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TO THE COMMISSIONER FOR PATENTS:

Transmitted herewith is a patent application identified as follows:

First-named inventor: Laurence B. Boucher

Assignee: Alacritech, Inc.

Filing Date: September 27, 2002

Title: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

This application claims the benefit under 35 USC §120 of (is a continuation of):

“Fast-Path Apparatus For Receiving Data Corresponding to a TCP Connection”
Serial No.: 10/260,112

Filing Date: September 27, 2002

Atty. Docket: ALA-006G

Examiner: Jude Jean Gilles

This application claims the benefit under 35 USC §120 of Application Serial No. 10/260,112, filed
September 27, 2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/092,967,
filed March 6, 2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240,
filed December 15, 2001, which in turn claims the benefit under 35 USC §120 of Application Serial No.
09/464,283, filed December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial
No. 09/439,603, filed November 12, 1999, which in turn claims the benefit under 35 USC §120 of Application
Serial No. 09/067,544, filed April 27, 1998, which in turn claims the benefit under 35 USC §119 of Provisional
Application Serial No. 60/061,809, filed October 14, 1997. )

This application also claims the benefit under 35 USC §120 of Application Serial No. 09/384,792, filed
August 27, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application Serial No.
60/098,296, filed August 27, 1998.

This application also claims the benefit under 35 U.S.C. §120 of the following:
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Patent Application Serial No.
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Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
. 09/802,550 (ALA-015), filed March 9, 2001,
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Patent Application Serial No.

09/514,425 (ALA-007), filed February 28, 2000,
09/675,484 (ALA-010A), filed September 29, 2000;
09/675,700 (ALA-010B), filed September 29, 2000;
09/789,366 (ALA-013), filed February 20, 2001;
09/801,488 (ALA-011), filed March 7, 2001,
09/802,551 (ALA-012), filed March 9, 2001,
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09/970,124 (ALA-020), filed October 2, 2001.

The specification contains a statement claiming priority under 35 USC § 120 and claiming the benefit under

35U.S.C. §119.

The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
09/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/801,488; 09/802,551; 09/802,426; 09/802,550; 09/855,979; 09/970,124) is considered as being part of the
disclosure of the accompanying application and is hereby incorporated by reference therein.

The entire disclosure of each of the prior provisional applications (60/061,809; 60/098,296) is considered as
being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
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1 page Abstract
89  pages Drawings
4 pages Declaration/Power of Attorney from prior
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page CD Appendix Transmittal Letter
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Newly Executed Declaration Not Required:

A newly executed declaration is not filed in this application because, under 37 CFR 1.63(d)(1), a newly executed
declaration is not required because: prior application contained a declaration as prescribed by 37 CFR 1.63; the
continuation application (this application) is filed by all of the inventors named in the prior application; the specification
and drawings in the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two) in the prior application is being submitted in the
continuation application (this application).
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FOR NO. FILED NO. EXTRA RATE FEE
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Independent Claims 3 0 $200.00 $0.00
*| Multiple Dependent Claims (if applicable) $0.00
Basic Filing Fee $300.00
Utility Application Size Fee $750.00
Utility Search Fee $500.00
Utility Examination Fee $200.00
Total Filing Fee $1800.00
I hereby certify that this is being deposited with the U.S. Postal Respectfully submitted,
Service “Express Mail Post Office to Addressee” service under.
37 CFR § 110 on the date indicated below and is addressed to: By: %
-~ . “ Mark Lauer
1(\:45 Pa?en.t Application Reg. No. 36,578
ommissioner for Patents
P.O. Box 1450 6691 Koll Center Parkway
Alexandria, VA 22313-1450 : Suite 245

Pleasanton, CA 94566
Phone: (925) 484-9295
By: % _ Fax: (925) 484-9291
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TO THE ASSISTANT COMMISSIONER FOR PATENTS:

Inventors: Laurence B. Boucher, et al. Atty Docket: ALA-006K
Filing Date:  June 25, 2007 Serial No.:  Unknown
Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO

A TCP CONNECTION

Compact Disk Transmittal Letter per 37 CFR 1.52(e)3(ii))

Sir:

Transmitted herewith are:

Two Labeled Compact Discs — Recordable (CD-R) — “Copy 1” and “Copy 2,” each in a

CD case and contained in a padded envelope.

The content on the two discs is identical
The machine format is: IBM-PC
The operating system is: MS-Windows

- The creation date of the CDs is: June 21, 2007

The name, date and size of the files on the CDs are listed below:
There are three folders on each disc: 1) CD Appendix A,
2) CD Appendix B, and

3) CD Appendix C.

Folder Appendix A contains two files:

CD Appendix A Title Page.txt. Its size is 370 bytes. It was created 6/21/07.

Rev.v. Its size is 84.4KB. It was created (written to disc) 6/21/07.

Folder Appenidix B contains two files:

CD Appendix B Title Page.txt. Its size is 495 bytes. It was created 6/21/07.

Microcode.txt. Its size is 105 KB. It was created (written to disc) 6/21/07.
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Folder Appendix C contains three files:
CD Appendix C Title Page.txt. Its size is 416 bytes. It was created 6/21/07.
atcpsource.wrd.txt. Its size is 778 KB. It was created (written to disc) 6/21/07.

simbasource.wrd.txt. Its size is 262 KB. It was created (written to disc) 6/21/07.

Respectfully submitted,
CERTIFICATE OF MAILING %_—,
[ hereby certify that this correspondence is being deposited with Mark Lauer
the United States Postal Service as Express Mail Label No. Reg. No. 36,578
EV406928085US in an envelope addressed to: Box PATENT Silicon Edge Law Group LLP
APPLICATION, Assistant Commissioner for Patents, 6601 Koll Center Parkway
Washington, D.C. 20231, on June 25, 2007. Suite 245
Pleasanton, CA 94566
Date: 5 X507 Z=— Tel:  (925) 484-9295
Mark Lauer Fax: (925) 484-9291
Express Mail No. EV 406928085 US 2
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FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher
Stephen E. J. Blightman
Peter K. Craft
David A Higgen
Clive M. Philbrick

~ Daryl D. Starr

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §120 of (is a continuation of) U.S.
Patent Application Serial No. 10/260,112, entitled “FAST-PATH APPARATUS FOR
RECEIVING DATA CORRESPONDING TO A TCP CONNECTION,” filed September 27,
2002, by Laurence B. Boucher et al., which in turn claims the benefit under 35 U.S.C. §120 of
(is a continuation of) U.S. Patent Application Serial No. 10/092,967, entitled “FAST-PATH
APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION,”
filed March 6, 2002, by Laurence B. Boucher et al., which in turn claims the benefit under 35
U.S.C. §120 of (is a continuation-in-part of) U.S. Patent Application Serial No. 10/023,240,
entitled “TRANSMIT FAST-PATH PROCESSING ON TCP/IP OFFLOAD NETWORK
INTERFACE DEVICE,” filed December 15, 2001, by Laurence B. Boucher et al., which in
turn claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) U.S. Patent
Application Serial No. 09/464,283, now U.S. Patent No. 6,427,173, entitled “INTELLIGENT
NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED
COMMUNICATION™, filed December 15, 1999, by Laurence B. Boucher et al., which in tum
claims the benefit under 35 U.S.C. §1>20 of (is a continuation-in-part of) U.S. Patent
Application Serial No. 09/439,603, now U.S. Patent No. 6,247,060, entitled “INTELLIGENT
NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL
PROCESSING”, filed November 12, 1999, by Laurence B. Boucher et al., which in turn
claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) U.S. Patent
Application Serial No. 09/067,544, now U.S. Patent No. 6,226,680, entitled “INTELLIGENT

1
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NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL
PROCESSING”, filed April 27, 1998, which in turn claims the benefit under 35 U.S.C. §
119(e)(1) of the Provisional Application filed under 35 U.S.C. §111(b) entitled
“INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL
PROCESSING,” Serial No. 60/061,809, filed on Octobef 14, 1997. ‘ .
Application No. 10/260,112 also claims the benefit under 35 U.S.C. §120 of (is a
continuation-in-part of) U.S. Patent Application Serial No. 09/384,792, now U.S. Patent No.
6,434,620, entitled “TCP OFFLOAD NETWORK INTERFACE DEVICE,” filed August 27,
1999, which in turn claims the benefit under 35 U.S.C. §120 of (is‘ a continuation-in-part of)
U.S. Patent Application Serial No. 09/141,713, now U.S. Patent No. 6,389,479, entitled
“INTELLIGENT NETWORK INTERFACE DEVICE AIxND SYSTEM FOR
ACCELERATED PROTOCOL PROCESSING”, filed August 28, 1998, which both claim the
benefit under 35 U.S.C. § 119(e)(1) of the Provisional Application filed under 35 U.S.C.
§111(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED COMMUNICATION,” Serial No. 60/098,296, filed August 27, 1998.
Application No. 10/260,112 also claims the benefit under 35 U.S.C. §120 of (is a
continuation-in-part of) U.S. Patent Application Serial No. 09/416,925, now U.S. 'Patent No.
6,470,415, entitled “QUEUE SYSTEM FOR MICROPROCESSORS,” filed October 13, 1999,
(is a continuation-in-part of) U.S. Patent Application Serial No. 09/514,425, now U.S. Patent
No. 6,427,171, entitled “PROTOCOL PROCESSING STACK FOR USE WITH
INTELLIGENT NETWORK INTERFACE CARD,” filed February 28, 2000, (is a
continuation-in-part of) U.S. Patent Application Serial No.- 09/675,484, now U.S. Patent No.
6,807,581, entitled “INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,” filed
September 29, 2000, (is a continuation-in-part of) U.S. Patent Application Serial No.
09/675,700, entitled “INTELLIGENT NETWORK STORAGE INTERFACE DEVICE,” filed
September 29, 2000, (is a continuation-in-part of) U.S. Patent Application Serial No.
09/789,366, now U.S. Patent No. 6,757,746, entitled “OBTAINING A DESTINATION
ADDRESS SO THAT A NETWORK INTERFACE DEVICE CAN WRITE NETWORK
DATA WITHOUT HEADERS DIRECTLY INTO HOST MEMORY,” filed February 20,
2001, (is a continuation-in-part of) U.S. Patent Application Serial No. 09/801,488, now U.S.
Patent No. 6,687,758, entitled “PORT AGGREGATION FOR NETWORK CONNECTIONS

THAT ARE OFFLOADED TO NETWORK INTERFACE DEVICES,” filed March 7, 2001,
2
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(is a continuation-in-part of) U.S. Patent Application Serial No. 09/802,551, entitled
“INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,” filed March 9, 2001, (is a
continuation-in-part of) U.S. Patent Application Serial No. 09/802,426, entitled “REDUCING
DELAYS ASSOCIATED WITH INSERTING A CHECKSUM INTO A NETWORK
MESSAGE,” filed March 9, 2001, (is a continuation-in-part of) U.S. Patent Application Serial
No. 09/802,550, now U.S. Patent No. 6,658,480, entitled “INTELLIGENT NETWORK
INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL
PROCESSING,” filed March 9, 2001, (is a continuation-in-part of) U.S. Patent Application
Serial No. 09/855,979, entitled “NETWORK INTERFACE DEVICE EMPLOYING DMA
COMMAND QUEUE,” filed March 14, 2001, (is a continuation-in-part of) U.S. Patent
Application Serial No. 09/970,124, entitled “NETWORK INTERFACE DEVICE THAT
FAST-PATH PROCESSES SOLICITED SESSION LAYER READ COMMANDS,” filed
October 2, 2001.

The subject matter of all of the above-identified patent applications (including the
subject matter in the Microfiche Appendix of U.S. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), which is a part of the present disclosure,
includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on
the compact disc. CD Appendix A contains a hardware description language (verilog code)
description of an embodiment of a receive sequencer. CD Appendix B contains microcode
executed by a processor that operates in conjunction with the receive sequencer of CD
Appendix A. CD Appendix C contains a device driver executéble'on the host as well as ATCP
code executable on the host. A portion of the disclosure of this patent document contains
material (other than any portion of the “free BSD” stack included in CD Appendix C) which is
subject to copyright protection. The copyright owner of that material has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright

rights.

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 009



ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

TECHNICAL FIELD

The present invention relates generally to computer or other networks, and more
particularly to processing of information communicated between hosts such as computers

connected to a network.

BACKGROUND

The advantages of network computing are increasingly evident. The convenience and
efficiency of providing information, communication or computational power to individuals at
their personal computer or other end user devices has led to rapid growth: of such network
computing, including internet as well as intranet devices and applications.

As is well known, most network computer communication is accomplished with the aid of
a layered software architecture for moving information between host computers connected to
the network. The layers help to segregate information into manageable segments, the general
functions of each layer often based on an international standard called Open Systems
Interconnecfion (OSI). OSI sets forth seven processing layers through which information may
pass when received by a host in order to be presentable té an end user. Similarly, transmission
of information from a host to the network may pass through those seven processing layers in
reverse order. Each step of processing and service by a layer may include copying the
processed information. Another reference model that is widely implemented, called TCP/IP
(TCP §tands for transport control protocol, while IP denotes internet protocol) essentially
employs five of the seven layers of OSI.

Networks may include, for instance, a high-speed bus such as an Ethernet connection or an
internet connection between disparate local area networks (LANSs), each of which includes
multiple hosts, or any of a variety of other known means for data transfer between hosts.
According to the OSI standard, physical layers are connected to the network at respective
hosts, the physical layerls providing transmission and receipt of raw data bits via the network.
A data link layer is serviced by the. physical layer of each host, the data link layers providing
frame division and error correction to the data received from the physical layers, as well as
processing acknowledgment frames sent by the receiving host. A network layer of each host is
serviced by respective data link layers, the network layers primarily controlling size and

coordination of subnets of packets of data.
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A transport layer is serviced by each network layer and a session layer is serviced by each
transport layer within each host. Transport layers accept data from their respéctive session
layers and split the data into smaller units for transmission to the other host’s transport layer,
which concatenates the data for presentation to respective presentation layers. Session layers
allow for enhanced communication control between the hosts. Presentation layers are serviced
by their respective session layers, the presentation layers translating between data semantics
and syntax which may be peculiar to each host and standardized structures of data
representation. Compression and/or encryption of data may also be accomplished at the
presentation le\;el. Application layers are serviced by respective presentation layers, the
application layers translating between programs particular to individual hosts and standardized
programs for presentation to either an application or an end user. The TCP/IP standard
includes the lower four layers and application layers, but integrates the functions of session
layers and presentation layers into adjacent layers. Generally speaking, application, .
presentation and session layers are defined as upper layers, while transport, network and data
link layers are defined as lower layers.

The rules and conventions for each layer are called the protocol of that layer, and since the
protocols and general functions of each layer are roughly equivalent in various hosts, it is
useful to think of communication occurring directly between identical layers of different hosts,
even though these peer layers do not directly communicate without information transferring
sequentially through each layer below. Each lower layer performs a service for the layer
immediately above it to help with processing the communicated information. Each layer saves
the information for processing and service to the next layer. Due to the multiplicity of
hardware and software architectures, devices and programs commonly employed, each layer is
necessary to insure that the data can make it to the intended destination in the appropriate
form, regardless of variations in hardware and software that may intervene.

In preparing data for transmission from a first to a second host, some control data is added
at each layer of the first host regarding the protocol of that layer, the control data being
indistinguishable from the original (payload) data for all lower layers of that host. Thus an
application layer attaches an application header to the payload data and sends the combined
data to the presentation layer of the sending host, which receives the combined data, operates
on it and adds a presentation header to the data, resulting in another combined data packet.

The data resulting from combination of payload data, application header and presentation
5
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header is then passed to the session layer, which performs required operations including
attaching a session header to the data and presenting the resulting combination of data to the
transport layer. This process continues as the information moves to lower layers, with a
transport header, network header and data link header and trailer attached to the data at each of
those layers, with each step typically including data moving and copying, before sending the
data as bit packets over the network to the second host. A

The receiving host generally performs the converse of the above-described process,
beginning with receiving the bits from the network, as headers are removed and data processed
in order from the lowest (physical) layer to the highest (application) layer before transmission
to a destination of the receiving host. Each layer of the receiving host recognizes and
manipulates only the headers associated with that layer, since to that layer the higher layer
control data is included with and indistinguishable from the payload data. Multiple interrupts,
valuable central processing unit ('CPU) processing time and repeated data copies may also be
necessary for the receiving host to place the data in an appropriate form at its intended
destination.

The above description of layered protocol processing is simplified, as college-level
textbooks devoted primarily to this subject are available, such as Computer Networks, Third
Edition (1996) by Andrew S. Tanenbaum, which is incorporated herein by reference. As
defined in that book, a computer network is an interconnected collection of autonomous
computers, such as internet and intranet devices, including local area networks (LANSs), wide:
area networks (WANSs), asynchronous transfer mode (ATM), ring or token ring, wired,
wireless, satellite or other means for providing communication capability between separate
processors. A computer is defined herein to include a device having both logic and memory
functions for processing data, while computers or hosts connected to a network are said to be
heterogeneous if they function according to different operating devices or communicate via
different architectures.

As networks grow increasingly popular and the information communicated thereby
becomes increasingly complex and copious, the need for such protocol processing has
increased. It is estimated that a large fraction of the processing power of a hoét CPU may be
devoted to controlling protocol processes, diminishing the ability of that CPU to perform other
tasks. Network interface cards have been developed to help with the lowest layers, such as the

physical and data link layers. It is also possible to increase protocol processing speed by
6 -
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simply adding more processing power or CPUs according to conventional arrangements. This
solution, however, is both awkward and expensive. But the complexities presented by various
networks, protocols, architectures, operating devices and applications generally require

extensive processing to afford communication capability between various network hosts.

SUMMARY OF THE INVENTION

The current invention provides a device for processing network communication that greatly
increases the speed of that processing and the efficiency of transferring data being
communicated. The invention has been achieved by questioning the long-standing practice of
performing multilayered protocol processing on a general-purpose processor. The protocol
processing method and architecture that results effectively collapses the layers of a connection-
based, layered architecture such as TCP/IP into a single wider layer which is able to send
network data more directly to and from a desired location or buffer on a host. This accelerated
processing is provided to a host for both transmitting and receiving data, and so improves
performance whether one or both hosts involved in an exchange of information have such a
feature.

The accelerated processing includes employing representative control instructions for a
given message that allow data from the message to be processed via a fast-path which accesses
message data directly at its source or delivers it directly to its intended destination. This fast-
path bypasses conventional protocol prbcessing of headers that accompany the data. The fast-
path employs a specialized microprocessor designed for processing network communication,
avoiding the delays and pitfalls of conventional software layer processing, such as repeated
copying and interrupts to the CPU. In effect, the fast-path replaces the states that are
traditionally found in several layers of a conventional network stack with a single state
machine encompassing all those layers, in contrast to conventional rules that require rigorous
differentiation and separation of protocol layers. The host retains a sequential protocol
processing stack which can be employed for setting up a fast-path connection or processing
message exceptions. “The specialized microprocessor and the host intelligently choose whether
a given message or portion of a message is processed by the microprocessor or the host stack.

One embodiment is a method of generating a fast-path response to a packet received onto a
network interface device where the packet is received over a TCP/IP network connection and
where the TCP/IP network connection is identified at least in part by a TCP source port, a TCP

7 L
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destination port, an IP source address, and an IP destination address. The method éomprises:
1) Examining the packet and determining from the packet the TCP source port, the TCP
destination port, the IP source address, and the IP destinationv address; 2) Accessing an
appropriate template header stored on the network interface device. The template header has
TCP fields and IP fields; 3) Employing a finite state machine that implements both TCP
protocol processing and IP protocol processing to fill in the TCP fields and IP fields of the
template header; and 4) Transmitting the fast-path response from the network interface device.
The fast-path response includes the filled in template header and a payload. The finite state
machine does not entail a TCP protocol processing layer and a discrete IP protocol processing
layer where the TCP and IP layers are executed one after another in sequence. Rather, the
finite state machine covers both TCP and IP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted are pushed
onto a plurality of transmit queues. A transmit sequencer pops the transmit queues and obtains
the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers
where the packets are stored. The retrieved packets are then transmitted from the network
interface device. In one embodiment, there are two transmit queues, one having a higher
transmission priority than the other. Packets identified by buffer descriptors on the higher
priority transmit queue are transmitted from the network interface device before packets
identified by the lower priority transmit queue. A

Other structures and methods are disclosed in the detailed description below. This

summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view diagram of a device of the present invention, including a host

computer having a communication-processing device for accelerating network
communication.

FIG. 2 is a diagram of information flow for the host of FIG. 1 in processing network
communication, including a fast-path, a slow-path and a transfer of connection context
between the fast and slow-paths.

FIG. 3 is a flow chart of message receiving according to the present invention.

FIG. 4A is a diagram of information flow for the host of FIG. 1 receiving a message packet

processed by the slow-path.
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FIG. 4B is a diagram of information flow for the host of FIG. 1 receiving an initial message
packet processed by the fast-path.

FIG. 4C is a diagram of information flow for the host of FIG. 4B receiving a subsequent
message packet processed by the fast-path.

FIG. 4D is a diagram of information flow for the host of FIG. 4C receiving a message
packet having an error that causes processing to revert to the slow-path.

FIG. 5 is a diagram of information flow for the host of FIG. 1 transmitting a message by
either the fast or slow-paths.

FIG. 6 is a diagram of information flow for a first embodiment of an intelligent network
interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG. 7 is a diagram of hardware logic for the INIC embodiment shown in FIG. 6, including
a packet control sequencer and a fly-by sequencer.

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for analyzing header bytes as they are
received by the INIC.

FIG. 9 is a diagram of information flow for a second embodiment of an INIC associated
with a server having a TCP/IP processing stack.
FIG.10isa diagram of a command driver installed in the host of FIG. 9 for creating and
controlling a communication control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and command driver of FIG. 10 configured for
NetB>ios communications. |

FIG. 12 is a diagram of a communication exchange between the client of F.IG.\ 6 and the
server of FIG. 9.

FIG. 13 is a diagram of hardware functions included in the INIC of FIG. 9.

FIG. 14 is a diagram of a trio of pipelined microprocessors included in the INIC of FIG. 13,
including three phases with a processor in each phase.

FIG. 15A is a diagram of a first phase of the pipelined microprocessor of FIG. 14.

FIG. 15B is a diagram of a second phase of the pipelined microprocessor of FIG. 14.

FIG. 15C is a diagram of a third phase of the pipelined microprocessér of FIG. 14.

FIG. 16 is a diagram of a plurality of queue storage units that interact with the
microprocessor of FIG. 14 and include SRAM and DRAM. .

FIG. 17 is a diagram of a set of status registers for the queues storage units of FIG. 16.
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FIG. 18 is a diagram of a queue manager, which interacts, with the queue storage units and
status registers of FIG. 16 and FIG. 17.

FIGs. 19A-D are diagrams of vérious stages of a least-recently-used register that is
eﬁlployed for allocating cache memory.

FIG. 20 is a diagram of the devices used to operate the least-recently-used register of FIGs.
19A-D. ’

FIG. 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure 13. |

FIG. 22 is a diagram of the receive sequencer of FIG. 21.

FIG. 23 is a diagram illustrating a “fast-path” transfer of data of a multi-packet message
from INIC 200 to a destination 2311 in host 20.

FIGS. 24-33, 34A-C, 35-57, 58A-C, and 59-107 are associated with the description below
entitled “Disclosure From Provisional Application 60/061,809.” ‘ |

DETAILED DESCRIPTION

FIG. 1 shows a host 20 of the present invention connected by a network 25 to a remote host

22. The increase in processing speed achieved by the present invention can be provided with
an intelligent network interface card (INIC) that is easily and affordably added to an existing
host, or with a communication processing device (CPD) that is integrated into a host, in either
case freeing the host CPU from most protocol processing and allowing improvements in other
tasks performéd by that CPU. The host 20 in a first embodiment contains a CPU 28 and a
CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

~ processing communication data and memory buffers controlled by a direct memory access

(DMA) unit. Also connected to the host bus 33 is a storage device 35, such as a
semiconductor memory or disk drive, along with any related controls.

Referring additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44
housed in storage 35, the stack including a data link layer 36, nefwork layer 38, transport layer
40, upper layer 46 and an upper layer interface 42. The upper layer 46 may represent a
session, presentation and/or application layer, depending upon the particular prdtocol being
employed and message communicated. The upper layer interface 42, along with the CPU 28
and any related controls can send or retrieve a file to or from the upper layer 46 or storage 35,
as shown by arrow 48. A connection context 50 has been crgated, as will be explained below,

the context summarizing various features of the connection, such as protocol type and source
10 -
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and destination addresses for each protocol layer. The context may be passed between an
interface for the session layer 42 and the CPD 30, as shown by arrows 52 and 54, and stored as
a communication control block (CCB) at either CPD 30 or storage 35.

When the CPD 30 holds a CCB defining a particular connection, data received by the CPD
from the network and pertaining to the connection is referenced to that CCB and can then be
sent directly to storage 35 according to a fast-path 58, bypassing sequential protocol
processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,
such as sending a file from storage 35 to remote host 22, can also occur via the fast-path 58, in
which case the context for the file data is added by the CPD 30 referencing a CCB, rather than
by sequentially adding headers during processing by the transport 40, network 38 and data link
36 layers. The DMA controllers of the CPD 30 pérform these transfers between CPD and
storage 35.

The CPD 30 collapses multiple protocol stacks each having possible separate states into a .
single state machine for fast-path processing. As a result, exception conditions may occur that
are not provided for in the single state machine, primarily because such conditions occur
infrequently and to deal with them on the CPD would provide little or no performance benefit
to the host. Such exceptions can be CPD 30 or CPU 28 initiated. An advantage of the
invention includes the manner in which unexpected situations that occur on a fast-path CCB
are handled. The CPD 30 deals with these rare situations by passing back or flushing to the
host protocol stack 44 the CCB and any associated message frames involved, via a control |
negotiation. The exception condition is then processed in a conventional manner by the host
protocol stack 44. At some later time, usually directly after the handling of the exception
condition has completed and fast-path processing can resume, the host stack 44 hands the CCB
back to the CPD. '

This fallback capability enables the performance-impacting functions of the host protocols
to be handled by the CPD network microprocessor, while the exceptions are dealt with by the
host stacks, the exceptions being so rare as to negligibly effect overall performance. The

custom designed network microprocessor can have independent processors for transmitting

"and receiving network information, and further processors for assisting and queuing. A

preferred microprocessor embodiment includes a pipelined trio of receive, transmit and utility
processors. DMA controllers are integrated into the implementation and work in close concert

with the network microprocessor to quickly move data between buffers adjacent to the
11
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controllers and other locations such as long term storage. Providing buffers logically adjacent
to the DMA controllers avoids unnecessary loads on the PCI bus.
FIG. 3 diagrams the general flow of messages received according to the current invention.

A large TCP/IP message such as a file transfer may be received by the host from the network

-in a number of separate, approximately 64 KB transfers, each of which may be split into many,

approximately 1.5 KB frames or packets for transmission over a network. Novell NetWare
protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol
(NCP) over Internetwork Packet Exchange (IPX) work in a similar fashion. Another form of
data communication which can be handled by the fast-path is Transaction TCP (hereinafter
T/TCP or TTCP), a version of TCP which initiates a connection with an initial transaction
request after which a reply containing data may be sent according to the connection, rather
than initiating a connection via a se\}eral-message initialization dialogue and then transferring
data with later messages. In any of the transfers typified by these protocols, each packet
conventionally includes a portion of the data being transferred, as well as headers for each of
the protocol layers and markers for positioning the packet relative to the rest of the packets of
this message.

When a message packet or frame is received 47 from a network by the CPD, it is first
validated by a hardware assist. This includes determining the protocdl types of the various
layers, verifying relevant checksums, and summarizing 57 these findings into a status word or
words. Included in these words is an indication whether or not the frame is a candidate for
fast-path data flow. Selection 59 of fast-path candidates is baséd on whether the host may
benefit from this message connection being handled by the CPD, which includes determining
whether the packet has header bytes indicating particular protocols, such as TCP/IP or
SPX/IPX for example. The small percent of frames that are not fast-path candidates are sent
61 to the host protocol stacks for slow-path protoéol processing. Subsequent network
microprocessor work with each fast-path candidate determines whether a fast-path connection
such as a TCP or. SPX CCB is already extant for that candidate, or whether that candidate may
be used to set up a new fast-path connection, such as for a TTCP/IP transaction. The
validation provided by the CPD provides acceleration whether a frame is processed by the fast-
path or a slow-path, as only error free, validated frames are proceésed by the host CPU even

for the slow-path processing.

12
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All received message frames which have been determined by the CPD hardware assist to be
fast-path candidates are examined 53 by the network microprocessor or INIC comparator
circuits to determine whether they match a CCB held by the CPD. Upon confirming such a
match, the CPD removes lower layer headers and sends 69 the remaining application data from
the frame directly into its final destination in the host using direct memory access (DMA) units
of the CPD. This operation may occur immediately upon receipt of a message packet, for
example when a TCP connection already exists and destination buffers have been negotiated, |
or it may first be necessary to process an initial header to acquire a new set of final destination
addresses for this transfer. In this latter case, the CPD will queue subsequent message packets
while waiting for the destination address, and then DMA the queued application data to that
destination.

A fast-path candidate that does not match a CCB may be used to set up a new fast-path
connection, by sending 65 the frame to the host for sequential protocol processing. In this
case, the host uses this frame to create 51 a CCB, which is then passed to the CPD to control
subsequent frames on that connection. The CCB, which is cached 67 in the CPD, includes
control and state information pertinent to all protocols that Would have been processed had
conventional software layer processing been employed. The CCB also contains storage space
for per-transfer information used to facilitate moving application-level data contained within
subsequent related message packets directly to a host application in a form available for
immediate usage. The CPD takes command of connection processing upon receiving a CCB
for that connection from the host. .

As shown more specifically in FIG. 4A, When a message packet is received from the remote
host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which
checksums headers and data, and parses the headers, creating a word or words which identify
the message packet and status, storing the headers, data and word temporarily in memory 60.
As well as validating the packet, the receive logic 32 indicates with the word whether this
packet is a candidate for fast-path processing. FIG. 4A depicts the case in which the packet is
not a fast-path candidate, in which case the CPD 30 sends the validated headers and data from
memory 60 to data link layer 36 along an internal bus for proéessing by the host CPU, as
shown by arrow 56. The packet is processed by the host protocol stack 44 of data link 36,
network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

sent to storage 35, as shown by arrow 65.
13
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FIG. 4B, depicts the case in which the receive logic 32 of the CPD determines that a
message packet is a candidate for fast-path processing, for example by deriving from the
packet’s headers that the packet belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A
processor 55 in the CPD 30 then checks to see whether the word that summarizes the fast-path .
candidate matches a CCB held in a cache 62. Upon finding no match for this packet, the CPD
sends the validated packet from memory 60 to the host protocol stack 44 for processing. Host
stack 44 may use this packet to create a connection context for the message, including finding
and reserving a destination for data from the message associated with the packet, the context
taking the form of a CCB. The present embodiment employs a single specralized host stack 44
for processing both fast-path and non-fest-path candidates, while in an embodiment described
below fast-path candidates are processed by a different host stack than non-fast-path
candidates. Some data (D1) 66 from that initial packet may optionally be sent to the
destination in storage 35, as shown by arrow 68. The CCB is then sent to the CPD 30 to be
saved in cache 62, as shown by arrew 64. For a traditional connection-based message such as
typified by TCP/IP, the initial packet may be part of a connection irritialization dialogue that
transpires between hosts before the CCB is created and passed to the CPD 30.

Referring now to FIG. 4C, when a subsequent packet from the same connection as the
initial packet' is received from the network 25 by CPD 30, the paeket headers and data are
validated by the receive logic 32, and the headers are parsed to create a summary of the
message packet and a hash for finding a corresponding CCB, the summary and hash contained
in a word or words. The word or words are temporarily stored in memory 60 aleng with the
packet. The processor 55 checks for a match between the hash and each CCB that is stored in
the cache 62 and, finding a match, sends the data (D2) 70 via a fast-path directly to the
destination in storage 35, as shown by arrow 72, bypassing the session layer 42, transport layer
40, network layer 38 and data link layer 36. The remaining data packets from the message can
also be sent by DMA directly to storage, avoiding the relatively slow protocol layer processing
and repeated copying by the CPU stack 44.

FIG. 4D shows the procedure for handling the rare instance when a message for which a
fast-path connection has been established, such as shown in FIG. 4C, has a packet that is not
easily handled by the CPD. In this case the packet is sent to be processed by the protocol stack
44, which is handed the CCB for that message ﬁorn cache 62 via a control dialogue with the

CPD, as shown by arrow 76, signaling to the CPU to take over processing of that message.
14
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Slow-path processing by the protocol stack then results in data (D3) 80 from the packet being
sent, as shown by arrow 82, to storage 35. Once the packet has been processed and the error
situation corrected, the CCB can be handed back via a control dialogue to the cache 62, so that

payload data from subsequent packets of that message can again be sent via the fast-path of the

| CPD 30. Thus the CPU and CPD together decide whether a given message is to be processed

according to fast-path hardware processing or more conventional software processing by the
CPU. _
Transmission of a message from the host 20 to the network 25 for delivery to remote host 22
also can be processed by either sequential protocol software processing via the CPU or
accelerated hardware processing via the CPD 30, as shown in FIG. 5. A message (M) 90 that
is selected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack
44, as shown by arrows 92 and 96. For the situation in which a connection exists and the CPD
30 already has an appropriate CCB for the message, however, data packets can bypass host
stack 44 and be sent by DMA directly to memory 60, with the processor 55 adding to each
data packet a single header containing all the appropriate protocol layers, and sending the
resulting packets to the network 25 for transmission to remote host 22. This fast-path
transmission can greatly accelerate processing for even a single packet, with the acceleration
multiplied for a larger message. | . '

A message for which a fast-path connection is not extant thus may benefit from creation of
a CCB with appropriate control and state information for guiding fast-path transmission. For a
traditional connection-based message, such as typified by TCP/IP or SPX/IPX, the CCB is
created during connection initialization dialogue. For a quick-connection message, such as
typified by TTCP/IP, the CCB can be created with the same transaction that transmits payload
data. In this case, the transmission of payload data may be a reply to a request that was used to
set up the fast-path connection. In any case, the CCB provides protocol and status informaﬁon
regarding each of the protocol layers, including which user is involved and storage space for
per-transfer information. The CCB is created by protocol stack 44, which then passes the CCB
to the CPD 30 by writing to a command register of the CPD, as shown by arrow 98. Guided
by the CCB, the processor 55 moves network frame-sized portions of the data from the source
in host memory 35 into its own memory 60 using DMA, as depicted by arrow 99. The

processor 55 then prepends appropriate headers and checksums to the data portions, and

_transmits the resulting frames to the network 25, consistent with the restrictions of the
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associated protocols. After the CPD 30 has received an acknowledgement that all the data has
reached its destination, the CPD will then notify the host 35 by writing to a response buffer.
Thus, fast-path transmission of data communications also relieves the host CPU of per-frame
processing. A vast majority of data transmissions can be sent to the network by the fast-path.
Both the input and output fast-paths attain a huge reduction in interrupts by functioning at an
upper layer level, i.e., session level or higher, and interactions between the network
microprocessor and the host occur using the full transfer sizes which that upper layer wishes to
make. For fast-path communications, an interrupt only occurs (at the most) at the beginning
and end of an entire upper-layer message transaction, and there are no interrupts for the
sending or receiving of each lower layer portion or packet of that transaction.

A simplified intelligent network interface card (INIC) 150 is shown in FIG. 6 to provide a
network interface for a host 152. Hardware logic 171 of the INIC 150 is connected to a
network 155, with a peripheral bus (PCI) 157 connecting the INIC and host. The host 152 in
this embodiment has a TCP/IP protocol stack, which provides a slow-path 158 for sequential
software processing of message frames received from the network 155. The host 152 protocol
stack inclﬁdes a data link layer 160, network layer 162, a transport layer 164 and an
application layer 166, which provides a source or destination 168 for the communication data
in the host 152. Other layers which are not shown; such as session and presentation layers,
may also be included in the host stack 152, and the source or destination may vary depending
upon the nature of the data and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages
along a slow-path 158 that includes the protoéol stack of the host, or along a fast-path 159 that
bypasses the protocol stack of the host. Each received packet is processed on the fly by
hardware logic 171 contained in INIC 150, so that all of the protocol headers for a packet can
be processed without copying, moving or storing the data between protocol layers. The
hardware logic 171 processes the headers of a given packet at one time as packet bytes pass
through the hardware, by categorizing selected header bytes. Results of processing the
selected bytes help to determine which other bytes of the packet are categorized, until a
summary of the packet has been created, including checksum validations. The processed
headers and data from the received packet are then stored in INIC storage 185, as well as the
word or words summarizing the headers and status of the packet. For a network storage

configuration, the INIC 150 may be connected to a peripheral storage device such as a disk
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drive which has an IDE, SCSI or similar interface, with a file cache for the storage device
residing on the memory 185 of the INIC 150. Several such network interfaces may exist for a
host, with each interface having an associated storage device.

The hardware processing of message packets received by INIC 150 from network 155 is
shown in more detail in FIG. 7. A received message packet first enters a media access
controller 172, which controls INIC access to the network and receipt of packets and can
provide statistical information for network protocol management. From there, data flows one
byte at a time into an assembly register 174, which in this example is 128 bits wide. The data
is categorized by a fly-by sequencer 178, as will be explained in more detail with regard to |
FIG. 8, which examines the bytes of a packet as they fly by, and generates status from those
bytes that will be used to summarize the packet. The status thus created is merged with the
data by a multiplexor 180 and the resulting data stored in SRAM 182. A pabket control
sequencer 176 oversees the fly-by sequencer 178, examines information from the media access
controller 172, counts the bytes of data, generates addresses, moves status and manages the

movement of data from the assembly register 174 to SRAM 182 and eventually DRAM 188.

‘ The packet control sequencer 176 managés a buffer in SRAM 182 via SRAM controller 183,

and also indicates to a DRAM controller 186 when data needs to be moved from SRAM 182 to
a buffer in DRAM 188. Once data movement for the packet has been completed and all the
data has been moved to the buffer in DRAM 188, the packet control sequencer 176 will move
the status that has been generated in the fly-by sequencer 178 out to the SRAM 182 and to the
beginning of the DRAM 188 buffer to be prependcd to the packet data. The packet control
sequencer 176 then requests a queue manager 184 to enter a receive buffer descriptor into a
receive queue, which in turn notifies the processor 170 that the packet has been processed by
hardware logic 171 and its status summarized.

FIG. 8 shows that the fly-by sequencer 178 has several tiers, with each tier generally
focusing on a particular portion of the packet header and thus on a particular protocol layer, for
generating status pertaining to that layer. The fly-by sequencer 178 in this embodiment
includes a media access control sequencer 191, a network sequencer 192, a transport sequencer
194 and a session sequencer 195. Sequencers pertaining to higher protocol layers can
additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer
176 and given pointers by the packet control sequencer that tell the ﬂy-by sequencer whether a

given byte is available from the assembly register 174. The media access control sequencer
17

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 023



ALA-006K : Express Mail No. EV 406928085 US

10

15

20

25

30

191 determines, by looking at bytes 0-5, that a packet is addressed to host 152 rather than or in
addition to another host. Offsets 12 and 13 of the packet are also processed by the media
access control sequencer 191 to determine the type field, for example whether the packet is
Ethernet or 802.3. If the type field is Ethernet those bytes also tell the media access control
sequencer 191 the packet’s network protocol type. For the 802.3 case, those bytes instead
indicate the length of the entire frame, and the media access control sequencer 191 will check
eight bytes further into the packet to determine the network layer type.

For most packets the nétwork sequencer 192 validates that the header length received has
the correct length, and checksums the network layer header. For fast-path candidates the
network layer header is known to be IP or IPX from analysis done by the media access control
sequencer 191. Assuming for example that the type field is 802.3 and the network protocol is
IP, the network sequencer 192 analyzes the first bytes of the network layer header, which will
begin at byte 22, in order to determine IP type. The first bytes of the IP header will be
processed by the network sequencer 192 to determine what IP type the packet involves.
Determining that the packet involves, for example, IP version 4, directs further processing by
the network sequencer 192, which also looks at the protocol type located ten bytes into the IP
header for an indication of the transport header protocol of the packet. For example, for IP
over Ethernet, the IP header begins at offset 14, and thevprotocol type byte is offset 23, which
will be processed by network logic to determine whether the transport layer protocol is TCP,
for example. From the length of the network layer header, which is typically 20-40 bytes,
network sequencer 192 determines the beginning of the packet’s transport layer header for
validating the transport layer header. Transport sequencer 194 may generate checksums for
the transport layer header and data, which may include information from the IP header in thc;
case of TCP at least.

Continuing with the example of a TCP packet,‘ traﬁsport sequencer 194 also analyzes the
first few bytes in the transport layer portion of the header to determine, in paﬁ, the TCP source
and destination ports for the message, such as whether the pac'ket is‘ NetBios or other
protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine
and validate the TCP header length. Byte 13 of the TCP header contains flags that may, aside
from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

cause the processor to categorize this packet as an exception. TCP offset bytes 16 and 17 are
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the checksum, which is pulled out and stored by the hardware logic 171 while the rest of the
frame is validated against the checksum.

Session sequencer 195 determines the length of the session layer header, which in the case
of NetBios is only four bytes, two of which tell the length of the NetBios payload data, but
which can be much larger for other protocols. The session sequencer 195 can also be used to
categorize the type of message as read or write, for example, for which the fast-path may be
particularly beneficial. Further upper layer logic processing, depending upon the message
type, can be performed by the hardware logic 171 of packet control sequencer 176 and fly-by
sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the
headers by‘ categorization of selected bytes from a single stream of bytes, with the status of the

packet being built from classifications determined on the fly. Once the packet control

~ sequencer 176 detects that all of the packet has been processed by the fly-by sequencer 178,

the packet control sequencer 176 adds the status information generated by the fly-by sequencer
178 and any status information generated by the packet control sequencer 176, and prepends
(adds to the front) that status information to the packet, for convenience in handling the packet
by the processor 170. The additional status information generated by the packet control
sequencer 176 includes media access controller 172 status information and any errors
discovered, or data overflow in either the assembly register or DRAM buffer, or other
miscellaneous information regarding the packet. The packet control sequencer 176 also stores
entries into a receive buffer queue and a receive statistics queue via the queue manager 184.
An advantage of processing a packet by hardware logic 171 is that the packet does not, in
contrast with conventional sequential software protocol processing, have to be stored, moved,
copied or pulled from storage for processing each protocol layer header, offering dramatic '
increases in proceséing efficiency and savings in processing time for each packet. The packets
can be processed at the rate bits are received from the network, for example 100
megabits/second for a 100 baseT connection. The time for categoriz'ing a packet received at
this rate and having a length of sixty bytes is thus about 5 microseconds. The total time for '
processing this packet with the hardware logic 171 and sending packet data to its host
destination via the fast-path may be about 16 microseconds or less, assuming a 66 MHz PCI
bus, whereas conventional software protocol processing by a 300 MHz Pentium II® processor
may take as much as 200 microseconds in a busy device. More than an order of magnitude

decrease in processing time can thus be achieved with fast-path 159 in comparison with a
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high-speed CPU employing conventional sequential software protocol processing,
demonstrating the dramatic acceleration provided by processing the protocol headers by the
hardware logic 171 and processor 170, without even considering the additional time savings
afforded by the reduction in CPU interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message packet held in storage 185, whether
that packet is a candidate for the fast-path 159 and, if so, checks to see whether a fast-path has
already been set up for the connection that the packet belongs to. To do this, the processor 170
first checks the header status summary to determine whether the packet headers are of a
protocol defined for fast-path candidates. If not, the processor 170 commands DMA
controllers in the INIC 150 to send the packet to the host for slow-path 158 processing. Even
for a slow-path 158 processing of a message, the INIC 150 thus performs initial procedures
such as validation and determination of message type, and passes the validated message at
least to the data link layer 160 of the host.

For fast-path 159 candidates, the processor 170 checks to see whether the header status
summary matches a CCB held by the INIC. If so, the data from the packet is sent along fast-
path 159 to the destination 168 in the host. If the fast-path 159 candideite’s packet summary
does not match a CCB held by the INIC, the packet may be sent to the host 152 for slow-path
processing to create a CCB for the message. Employment of the fast-path 159 may also not be
needed or desirable for the case of fragmented messages or other complexities. For the vast
majority of messages, however, the INIC fast-path 159 can greatly accelerate message
processing. The INIC 150 thus provides a single state machine processor 170 that decides
whether to send data directly to its destination, based upon information gleaned on the fly, as
opposed to the conventional employment of a state machine in each of several protocol layers
for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver of the host
selects the processing route based upon whether the indication is fast-path or slow-path. A
TCP/IP or SPX/IPX message has a connection that is set up from which a CCB is formed by
the driver and passed to the INIC for matching with and guiding the fast-path packet to the
connection destination 168. For a TTCP/IP message, the driver can create a connection
context for the transaction from processing an initial request packet, including locating the
message destination 168, and then passing that context to the INIC in the form of a CCB for

providing a fast-path for a reply from that destination. A CCB includes connection and state
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information regarding the protocol layers and packets of the message. Thus aCCB can
include source and destination media access control (MAC) addresses, source and destination
IP or IPX addresses, source and destination TCP or SPX ports, TCP variables such as timers,
receive and transmit windows for sliding window protocols, and information indicating the
session layer protocol.

Caching the CCBs in a hash table in the INIC provides quick comparisons with words
summarizing incoming packets to determine whether the packets can be processed via the fast-
path 159, while the full CCBs are also held in the INIC for processing. Other ways to
accelerate this comparison include software processes such as a B-tree or hardware assists
such as a content addressable memory (CAM). When INIC microcode or comparator circuits
detect a match with the CCB, a DMA controller places the data from the packet in the
destination 168, without any interrupt by the CPU, protocol processing or copying. Depending
upon the type of message received, the destination of the data may be the session, presentation
or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed as a file server. This
INIC provides a network interface for several network connections employing the 802.3u
standard, commonly known as Fast Ethernet. The INIC 200 is connected by a PCI bus 205 to
the server 202, which maintains a TCP/IP or SPX/IPX protocol stack including MAC layer
212, network layer 215, transport layer 217 and application layer 220, with a
source/destination 222 shown above the application layer, although as mentioned earlier the

application layer can be the source or destination. The INIC is also connected to network lines

. 210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial

cable or other lines each allowing data transmission of 100 Mb/s, while faster and slower data
rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated
row of hardware circuits which can each validate and summarize message packets received
from their respective network line. Thus line 210 is connected with a first horizontal row of
sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line
242 is connected with a third horizontal row of sequencers 262 and line 244 is connected with
a fourth horizontal row of sequencers 264. After a packet has been validated and summarized

by one of the horizontal hardware rows it is stored along with its status summary in storage
270.
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A network processor 230 determines, based on that summary and a comparison with any
CCBs stored in the INIC 200, whether to send a packet along a slow-path 231 for processing
by the host. A large majority of packets can avoid such sequential processing and have their
data portions sent by DMA along a fast-path 237 directly to the data destination 222 in the
server according to a matching CCB. Similarly, the fast-path 237 provides an avenue to send
data directly from the source 222 to any of the network lines by processor 230 division of the
data into packets and addition of full headers for network transmission, again minimizing CPU
processing and interrupts. For clarity only horizontal sequencer 250 is shown active; in
actuality each of the sequencer rows 250, 260, 262 and 264 offers full duplex communication,
concurrently with all other sequencer rows. The specialized INIC 200 is much faster at

working with message packets than even advanced general-purpose-host CPUs that processes

those headers sequentially according to the software protocol stack.

One of the most commonly used network protocols for large messages such as file transfers

is server message block (SMB) over TCP/IP. SMB can operate in conjunction with redirector

-software that determines whether a required resource for a particular operation, such as a

printer or a disk upon which a file is to be written, resides in or is associated with the host from
which the operation was generated or is located at another host connected to the network, such
as a file server. SMB and server/redirector are conventionally serviced by the transport layer;
in the present invention SMB and redirector can instead be serviced by the INIC. In this cdse,
sending data by the DMA controllers from the INIC buffers when receiving a large SMB
transaction may greatly reduce interrupts that the host must handle. Moreover, this DMA
generally moves the data to its final destination in the file device cache. An SMB transmission
of the present invention follows essentially the reverse of the above described SMB receive,
with data transferred from the host to the INIC and stored in buffers, while the associated
protocol headers are prepended to the data in fhe INIC, for transmission via a network line to a
remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, NetBios
and SMB protocol layers via custom hardware and without repeated interrupts of the host can
greatly increase the speed of transmitting an SMB message fo a network line.

As shown in FIG. 10, for controlling whether a given message is processed by the host 202
or by the INIC 200, a message command driver 300 may be installed in host 202 to work in
concert with a host protocol stack 310. The command driver 300 cén intervene in message

reception or transmittal, create CCBs and send or receive CCBs from the INIC 200, so that
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functioning of the INIC, aside from improved performance, 1s transparent to a user. Also
shown is an INIC memory 304 and an INIC miniport driver 306, which can direct message
packets received from network 210 to either the conventional protocol stack 310 or the
command protocol stack 300, depending upon whether a packet has been labeled as a fast-path
candidate. The conventional protocol stack 310 has a data link layer 312, a network layer 314
and a transport layer 316 for conventional, lower layer processing of messages that are not
labeled as fast-path candidates and therefore not processed by the command stack 300.
Residing above the lower layer stack 310 is an upper layer 318, which represents a session,
presentation and/or application layer, depending upon the message communicated. The
command driver 300 similarly has a data link layer 320, a network layer 322 and a transport
layer 325.

The driver 300 includes an upper layer interface 330 that determines, for transmission of
messages to the network 210, whether a message transmitted from the upper layer 318 is to be
processed by the command stack 300 and subsequently the INIC fast-path, or by the
conventional stack 310. When the upper layer interface 330 receives an appropriate message
from the upper layer 318 that would conventionally be intended for transmission to the
network after protocol processing by the protocol stack of the host, the message is passed to
driver 300. The INIC then acquires network-sized portions of the message data for that
transmission via INIC DMA units, prepends headers to the data portions and sends the
resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or
similar message packet from the network 210 to be used in setting up a fast-path connection,
miniport driver 306 diverts that message packet to command driver 300 for processing. The
driver 300 processes the message packet to create a context for that message, with the driver
302 passing the context and command instructions back to the INIC 200 as a CCB for sending
data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,
TTCP, SPX or similar CCB connections may be held indefinitely by the INIC, although a least
recently used (LRU) algorithm is employed for the case when the INIC cache is full. The
driver 300 can also create a connection context for a TTCP request which is passed to the INIC
200 as a CCB, allowing fast-path transmission of a TTCP reply to the request. A message
having a protocol that is not accelerated can be processed conventionally by protocol stack

310.
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FIG. 11 shows a TCP/IP implementation of command driver software for Microsoft®
protocol messages. A conventional host protocol stack 350 includes MAC layer 353, IP layer
355 and TCP layer 358. A command driver 360 works in conceﬁ with the host stack 350 to
process network messages. The command driver 360 includes a MAC layer 363, an IP layer
366 and an Alacritech TCP (ATCP) layer 373. The conventional stack 350 and command
driver 360 share a network driver interface specification (NDIS) layer 375, which interacts
with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications
for processing by either the conventional host stack 350 or the ATCP driver 360. A TDI filter
driver and upper layer interface 380 similarly determines whether messages sent from a TDI
user 382 to the network are diverted to the command driver and perhaps to the fast-path of the
INIC, or processed by the host stack.

FIG. 12 depicts a typical SMB exchange between a client 190 and server 290, both of
which have cémmunication devices of the present invention, the communication devices each
holding a CCB defining their connection for fast-path movement of data. The client 190
includes INIC 150, 802.3 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios
layer 166, and SMB layer 168. The client has a slow-path 157 and fast-path 159 for
communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data
link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and SMB 222. The server is
connected to network lines 240, 242 and 244, as well as line 210 whiéh is connected to client
190. The server.also has a slow-path 231 and fast-path 237 for communication processing.
Assuming that the client 190 wishes to read a 100KB file on the server 290, the client may
begin by sending a Read Block Raw (RBR) SMB command across network 210 requesting the
first 64 KB of that file on the server 290. The RBR command may be only 76 bytes, for
example, so the INIC 200 on the server will recognize the message type (SMB) and relatively
small message size, and send the 76 bytes directly via the fast-path to NetBios of the server.
NetBios will give the data to SMB, which processes the Read request and fetches the 64KB of
data into server data buffers. SMB then calls NetBios to send the data, and NeiBios outputs
the data for the client. In a conventional host, NetBios would call TCP output and pass 64(KB
to TCP, which would divide the data into 1460 byte segments and output each segment via IP
and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP
driver along with an indication regarding the client-server SMB oonnection,\which indicates a

CCB held by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the
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host buffers, add the appropriate headers for TCP, IP and MAC at one time, and send the
completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the
whole 64KB transfer has been sent. Usually after receiving acknowledgement from the client
that the 64KB has been received, the INIC will then send the remaining 36KB also by the fast-
path 237. »

With INIC 150 operating on the client 190 when this reply arrives, the INIC 150 recognizes
from the first frame received that this connection is receiving fast-path 159 processing
(TCP/IP, NetBios, matching a CCB), and the ATCP may use this first frame to acquire buffer
space for the message. This latter case is done by passing the first 128 bytes of the NetBios
portion of the frame via the ATCP fast-path directly to the host NetBios; that will give |
NetBios/SMB all of the frame’s headers. NetBios/SMB will analyze these headers, realize by
matching with a request ID that this is a reply to the original RawRead connection, and give
the ATCP a 64K list of buffers into which to place the data. At this stage only one frame has
arrived, although more may arrive while this processing is occurring. As soon as the client
buffer list is given to the ATCP, it passes that transfer information to the INIC 150, and the
INIC 150 starts DMAing any frame data that has accumulated into those buffers.

FIG. 13 provides a simplified diagram of the INIC 200, which combines the functions of a
network interface controller and a protocol processor in a single ASIC chip 400. The INIC
200 in this embodiment offers a full-duplex, four channel, 10/100-Megabit per second (Mbps)
intelligent network interface controller that is designed for high speed protocol processing for
server applications. Although designed specifically for server applications, the INIC 200 can
be connected to personal computers, workstations, routers or other hosts anywhere that
TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200 is connected with four network lines 210, 240, 242 and 244, which may
transport data along a number of different conduits, such as twisted pair, coaxial cable or
optical fiber, each of the connections providing a media independent interface (MII) via
commercially available physical layer chips, such as model 80220/80221 Ethernet Media
Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,
CA 94538. The lines preferably are 802.3 compliant and in connection with the INIC
constitute four complete Ethernet nodes, the INIC supporting 10Base-T, 10Base-T2, 100Base-
TX, 100Base-FX and 100Base-T4 as well as future interface standards. Physical layer

identification and initialization is accomplished through host driver initialization routines. The
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_ connection between the network lines 210, 240, 242 and 244 and the INIC 200 is controlled by

MAC units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408 which contain logic
circuits for performing the basic functions of the MAC sublayer, essentially controlling when
the INIC accesses the network lines 210, 240, 242 and 244. The MAC units 402-408 may act
in promiscuous, multicast or unicast modes, allowing the INIC to function as a network
monitor, receive broadcast and multicast packets and implement multiple MAC addresses for
each node. The MAC units 402-408 also provide statistical information that can be used for
simple network management protocol (SNMP).

The MAC units 402, 404, 406 and 408 are each connected to a transmit and receive
sequencer, XMT & RCV-A 418, XMT & RCV-B 420, XMT & RCV-C 422 and XMT &
RCV-D 424, by wires 410, 412, 414 and 416, respectively. Each of the transmit and receive
sequencers can perform several protocol processing steps on the fly as message frames pass
through that sequencer. In combination with the MAC units, the transmit and receive
sequencers 418-422 can compile the packet status for the data link, network, transport, session
and, if appropriate, presentation and application layer protocols in hardware, greatly reducing
the time for such protocol processing compared to conventional sequential software engines.

The transmit and receive sequencers 410-414 are connected, by lines 426, 428, 430 and 432 to

" an SRAM and DMA controller 444, which includes DMA controllers 438 and SRAM

controller 442. Static random access memory (SRAM) buffers 440 are coupled with SRAM
controller 442 by line 441. The SRAM and DMA controllers 444 interact across line 446 with
external memory control 450 to send and receive frames via external memory bus 455 to and
from dynamic random access memory (DRAM) buffers 460, which is located adjacent to the
IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 MB,
and may optionally be disposed on the chip. The SRAM and DMA controllers 444 are
connected via line 464 to a PCI Bus Interface Unit (BIU) 468, which manages the interface
between the INIC 200 and the PCI interface bus 257. The 64-bit, multiplexed BIU 468
provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC
200 is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-
bit addressing in either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMA controllers 444,
and connected via line 475 td the PCI BIU 468. Microprocessor 470 instructions and register

files reside in an on chip control store 480, which includes a writable on-chip control store
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(WCS) of SRAM and a read only memory (ROM), and is connected Ato thelmicroprocessor by
line 477. The microprocessor 470 offers a programmable state machine which is capable of
processing incoming frames, processing host commands, directing network traffic and
directing PCI bus traffic. Three processors.are implemented using shared hardware in a three
level pipelined architecture that launches and completes a single instruction for every clock
cycle. A receive processor 482 is primarily used for receiving communications while a
transmit processor 484 is primarily used for transmitting communications in order to facilitate
full duplex communication, while a utility processor 486 offers various functions including
overseeing and controlling PCI register access. '

The instructions for the three processors 482, 484 and 486 reside in the on-chip control-
store 480. Thus the functions of the three processors can be eaéi]y redefined, so that the
microprocessor 470 can adapted for a given environment. For instance, the amount of
processiﬂg required for receive functions may outweigh that required for either transmit or
utility functions. In this situation, some receive functions may be performed by the transmit
processor 484 and/or the utility processor 486. Alternatively, an additional level of pipelining
can be created to yield four or more virtual processors instead of three, with the additional
level devoted to receive functions. 4

The INIC 200 in this embodiment can support up to 256 CCBs which are maintained in a
table in the DRAM 460. There is also, however, a CCB index in hash order in the SRAM 440
to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,
with up to sixteen cached CCBs in SRAM in this example. Allocation of the sixteen CCBs
cached in SRAM is handled by a least recently used register, described below. These cache
locations are shared between the transmit 484 and receive 486 proceséors so that the processor
with the heavier load is able to use more cache buffers. There are also eight header buffers
and eight command buffers to be shared between the sequencers. A given header or command -
buffer is not statically linked to a specific CCB buffer, as the link is dynamic on a pér-frame
basis.

FIG. 14 shows an overview of the pipelined microprocessor 470, in which instructions for
the receive, transmit and utility processors are executed in three alternating phases according
to Clock increments I, IT and I, the phases corresponding to veach of the pipeline stages. Each
phase is responsible for different functions, and each of the three processors occupies a

different phase during each Clock increment. Each processor usually operates upon a different
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instruction stream from the control store 480, and each carries its own program counter and
status through each of the phases.

In general, a first instruction phase 500 of the pipelined microprocessors completes an
instruction and stores the result in a destination operand, fetches the next instruction, and
stores that next instruction in an instruction register. A first register set 490 provides a number
of registers including the instruction register, and a set of controls 492 for first register set |
provides the controls for storage to the first register set 490. - Some items pass through the first
phase without modification by the controls 492, and instead are simply copied into the first
register set 490 or a RAM file register 533. A second instruction phase 560 has an instruction
decoder and operand multiplexer 498 that generally decodes the instruction that was stored in
the instruction register of the. first register set 490 and gathers any operands which have been
generated, which are then stored in a decode register of a second register set 496. The first
register set 490, second register set 496 and a third register set 501, which is employed in a
third instruction phase 600, include many of the same registers, as will be seen in'the more
detailed views of FIGs. 15A-C. The instruction decoder and opérand multiplexer 498 can read
from two address and data ports of the RAM file register 533, which operates in both the first
phase 500 and second phase 560. A third phase 600 of the processor 470 has an arithmetic
logic unit (ALU) 602 which generally performs any ALU operations on the operands from the
second register set, storing the results in a results register included in the third register set 501.
A stack exchange 608 can reorder register stacks, and a queue manager 503 can arrange
queues for the processor 470, the results of which are stored in the third register set.

The instructions continue with the first phase then following the third phase, as depicted by a
circular pipeline 505. Note that various functions have been distributed across the three phases
of the instruction execution in order to minimize the combinatorial delays within any given
phase. With a frequency in this embodiment of 66 MHz, each Clock increment takes 15
nanoseconds to complete, for a total of 45 nanoseconds to complete one instruction for each of
the three processors. The rotating instruction phases are depicted in more detail in FIGs. 15A-
C, in which each phase is shown in a different figure.

More particularly, FIG. 15A shows some specific hardware functions of the first phase 500,
which generally includes the first register set 490 and related controls 492. The controls for the
first register set 492 includes an SRAM control 502, which is a logical control for loading

address and write data into SRAM address and data registers 520. Thus the output of the ALU
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602 from the third phase 600 may be placed by SRAM control 502 into an address register or
data register of SRAM address and data registers 520. A load control 504 similarly provides
controls for writing a context for a file to file context register 522, and another load control
506 provides controls for storing a variety of miscellaneous data to flip-flop registers 525.
ALU condition codes, such as whether a carried bit is set, get clocked into ALU condition
codes register 528 without an operation performed in the first phase 500. Flag decodes 508
can perform various functions, such as setting locks, that get stored in flag registers 530.

The RAM file register 533 has a single write port for addresses and data and two read ports
for addresses and data, so that more than one register can be read from at one time. As noted
above, the RAM file register 533 essentially straddles the first and second phases, as it is
written in the first phase 500 and read from in the second phase 560. A control store
instruction 510 allows the reprogramming of the processors due to new data in from the
control store 480, not shown in this figure, the instructions stored in an instruction register
535. The address for this is generated in a fetch control register 511, which determines which
address to fetch, the address stored in fetch address register 538. Load control 515 provides
instructions for a program counter 540, which operates much like the fetch address for the
control store. A last-in first-out stack 544 of three registers is copied to the first register set
without undergoing other operations in this phase. Finally, aload controi 517 for a debug
address 548 is optionally included, which allows correctio'n of errors that may occur.

FIG. 15B depicts the second microprocessor phase 560, which includes reading addresses
and data out of the RAM file register 533. A scratch SRAM 565 is written from SRAM
address and data register 520 of the first register set, which includes a register that passes
through the first two phases to be incremented in the third. The scratch SRAM 565 is read by
the instruction decoder and operand multiplexer 498, as are most of the registers from the first
register set, with the exception of the stack 544, debug address 548 and SRAM address and
data register mentioned above. The instruction decoder and operand multiplexer 498 looks at
the various registers of set 490 and SRAM 565, decodes the instructions and gathers the
operands for operation in the next phase, in particular determining the operands to provide to
the ALU 602 below. The oﬁtcome of the instruction decoder and operand multiplexer 498 is
stored to a number of registers in the second register set 496, including ALU operands 579 and
582, ALU condition code register 580, and a queue channel and command 587 register, which

in this embodiment can control thirty-two queues. Several of the registers in set 496 are
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loaded fairly directly from the instruction register 535 above without substantial decoding by
the decoder 498, including a program control 590, a literal ﬁeld 589, a test select 584 and a
flag select 585. Other registers such as the file context 522 of the first phase 500 are always
stored ih a file context 577 of the second phase 560, but may also be treated as an operand that
is gathered by the multiplexer 572. The stack registers 544 are simply copied in stack register
594. The program counter 540 is incremented 568 in this phase and stored in register 592.
Also incremented 570 is the optional debug address 548, and a load control 575 may be fed
from the pipeline 505 at this point in order to allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALU and queue
operations. The ALU 602 includes an adder, priority encoders and other standard. logic
functions. Results of the ALU are stored in registers ALU output 618, ALU condition codes
620 and destination operand results 622. A file context register 616, flag select register 626
and literal field register 630 are simply copied from the previous phase 560. A test multiplexer
604 is provided to determine whether a conditional jump results in a jump, with the results
stored in a test results register 624. The test multiplexer 604 may instead be perfofmed in the
first phase 500 along with similar decisions such as fetch control 511. A stack exchange 608
shifts a stack up or down by fetching a program counter from stack 594 or putting a program
counter onto that stack, results of which are stored in program control 634, program counter
638 and stack 640 registers. The SRAM address may optionally be incremented in this phase
600. Another load control 610 for another debug address 642 may be forced from the pipeline
505 at this point in order to allow error control in this phase also. A QRAM & QALU 606,
shown together in this figure, read from the queue channel and command register 587, store in
SRAM and rearrange queues, adding or removing data and pointers as needed to manage the
queues of data, sending results to the test multiplexer 604 and a queue flags and queue address
register 628. Thus the QRAM & QALU 606 assume the duties of managing queues for the
three processors, a task conventionally performed sequentially by software on a CPU, the
queue manager 606 instead providing accelerated and substantially parallel hardware queuing.

FIG. 16 depicts two of the thirty-two hardware queues that are managed by the queue
manager 606, with each of the queues having an SRAM head, an SRAM tail and the ability to
queue information in a DRAM body as well, allowing expansion and individual configuration

of each queue. Thus FIFO 700 has SRAM storage units, 705, 707, 709 and 711, each
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containing eight bytes for a total of thirty-two bytes, although the number and capacity of
these units may vary in other embodiments. Similarly, FIFO 702 has SRAM storage units
713,715,717 and 719. SRAM units 705 and 707 are the head of FIFO 700 and units 709 and
711 are the tail of that FIFO, while units 713 and 715 are the head of FIFO 702 and units 717
and 719 are the tail of that FIFO. Information for FIFO 700 may be written into head units
705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shown by arrow
725. A particular entry, however, may be both written to and read from head units 705 or 707,
or may be both written to and read from tail units 709 or 711, minimizing data movement and
latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as
shown by arrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may
instead be read from the same head or tail unit to which it was written.

The SRAM FIFOS 700 and 702 are both connected to DRAM 460, which allows virtually
unlimited expansion of those FIFOS to handle situations in which the SRAM head and tail are
full. For example a first of the thirty-two queues, labeled Q-zero, may queue an entry in
DRAM 460, as shoWn by arrow 727, by DMA units acting under direction of the queue
manager, instead of being queued in the head or tail of FIFO 700. Entries stored in DRAM
460 return to SRAM unit 709, as shown by arrow 730, extending the length and fall-through
time of that FIFO. Diversion from SRAM to DRAM is typically reserved for when the SRAM
is full, since DRAM is slower and DMA movement causes additional latency. Thus Q-zero
may comprise the entries stored by queue manager 606 in both the FIFO 700 and the DRAM
460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,
for exarhple, can be moved by DMA into DRAM 460, as shown by arrow 735. The capacity
for queuing in cost-effective albeit slower DRAM 460 is user-definable during initialization,
allowing the queues to change in size as desired. Information queued in DRAM 460 is
returned to SRAM unit 717, as shown by arrow 737.

Status for each of the thirty-two hardware queues is conveniently maintained in and
accessed from a set 740 of four, thirty-two bit registers, as shown in FIG. 17, in which a
specific bit in each register corresponds to a specific queue. The registers are labeled Q-
Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760. If a particular bit is set in
the Q-Out_Ready register 750, the queue corresponding to that bit contains information that is

ready to be read, while the setting of the same bit in the Q-In_Ready 752 register means that

the queue is ready to be written. Similarly, a positive setting of a specific bit in the Q-Empty
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register 755 means that the queue corresponding to that bit is empty, while a positive setting of
a particular bit in the Q-Full registér 760 means that the queue corresponding to that bit is full.
Thus Q-Out_Ready 745 contains bits zero 746 through thirty-one 748, including bits twenty-
seven 752, tWenty-eight 754, twenty-nine 756 and thirty 758. Q-In_Ready 750 contains bits
zero 762 through thirty-one 764, including bits twenty-seven 766, twenty-eight 768, twenty-

nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 througﬁ thirty-one 776,

including bits twenty-seven 778, twenty-eight 780, twenty-niné 782 and thirty 784, and Q-full
760 contains bits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-
eight 792, twenty-nine 794 and thirty 796. |

Q-zero, corresponding to FIFO 700, is a free buffer queue, which holds a list of addresses

for all available buffers. This queue is addressed when the microprocessor or other devices

need a free buffer address, and so commonly includes appreciable DRAM 460. Thus a device
needing a free buffer address would check with Q-zero to obtain that address. Q-twenty-
seven, corresponding to FIFO 702, is a receive buffer descriptor queue. After processing a
received frame by the receive sequencer the sequencer looks to store a descriptor for the frame
in Q-twenty-seven. If a location for such a descriptor is immediately available in SRAM, bit
twenty-seven 766 of Q-In_Ready 750 will be set. If not, the sequencer must wait for the queue
manager to initiate a DMA move from SRAM to DRAM, thereby freeing space to store the
receive descriptor.

Operation of the queue manager, which manages movement of queue entries between
SRAM and the processor, the transmit and receive sequencers, and also between SRAM and
DRAM, is shown in more detail in FIG. 18. Requests which utilize the queues include
Processor Request. 802, Transmit Sequencer Request 804, and Receive Sequencer Request
806. Other requests for the queues are DRAM to SRAM Request 808 and SRAM to DRAM
Request 810, which operate on behalf of the queue manager in moving data back and forth
between the DRAM and the SRAM head or tail of the queues. Determining which of these
various requests will get to use the queue manager in the next cycle is handled by priority logic
Arbiter 815. To enable high frequency operation the queue manager is pipelined, with
Register A 818 and Register B 820 providing temporary stbrage, while Status Register 822
maintains status until the next update. The queue manager reserves even cycles for DMA,
receive and transmit sequencer requests and odd cycles for processbr requests. Dual ported

QRAM 825 stores variables regarding each of the queues, the variables for each queue
' 32
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including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer

corresponding to the queue’s SRAM condition, and a Body Write Pointer and Body Read
Pointer corresponding to the queue’s DRAM condition and the queue’s size.

After Arbiter 815 hés selected the next operation to be performed, the variables of QRAM
825 are fetched and modified according to the selected operation by a QALU 828, and an
SRAM Read Request 830 or an SRAM Write Request 840 may be genefated. The variables
are updated and the updated status is stored in Status Register 822 as well as QRAM 825. The
status is also fed to Arbiter 815 to signal that the operation previously requested has been
fulfilled, inhibiting duplication of requests. The Status Register 822 updates the four queue
registers Q-Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760 to reflect the new
status of the queue that was accessed. Similarly updated are SRAM Addresses 833, Body
Write Request 835 and Body Read Requests 8383 which are accessed via DMA to and from
SRAM head and tails for that queue. Alternatively, various processes may wish to write to a
queue, as shown by Q Write Data 844, which are selected by multiplexor 846, and pipelined to
SRAM Write Request 840. The SRAM controller services the read and write requests by
writing the tail or reading the head of the accessed queue and returning an acknowledge. In
this manner the various queues are utilized and their status updated.

FIGs. 19A-C show a least-recently-used rc;:gister 900 that is employed for choosing which
contexts or CCBs to maintain in INIC cache memory. The INIC in this embodiment can cache
up to sixteen CCBs in SRAM at a given time, and so when a new CCB is cached an old one
must often be discarded, the discarded CCB usually chosen according to this register 900 to be
the CCB that has been used least recently. In this embodiment, a hash table for up to two
hundred fifty-six CCBs is also maintained in SRAM, while up to two hundred fifty-six full
CCBs are held in DRAM. The least-recently-used register 900 contaiﬁs sixteen four-bit blocks
labeled RO-R15, each of which corresponds to an SRAM cache unit. Upon initialization, the
blocks are numbered 0-15, with number 0 arbitrarily stored in the block representing the least
recently used (LRU) cache unit and number 15 stored in the block representing the most
recently used (MRU) cache unit. FIG. 19A shows the register 900 at an arbitrary time when
the LRU block RO holds the number 9 and the MRU block R15 holds the number 6. '

When a different CCB than is currently being held in SRAM is to be cached, the LRU
block RO is read, which in FIG. 19A holds the number 9, and the new CCB is ‘stored in the

SRAM cache unit corresponding to number 9. Since the new CCB corresponding to number
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9 is now the most recently used CCB, the number 9 is stored in the MRU block, as shown in
FIG. 19B. The other ﬁumbers are all shifted one register block to the left, leaving the number
1 in the LRU block. The CCB that had previously been cached in the SRAM unit
corresponding to number 9 has been moved to slower but more cost-effective DRAM.

FIG. 19C shows fhe result when the next CCB used had already been cached in SRAM. In
this example, the CCB was-cached in an SRAM unit corresponding to number 10, and. so after
employment of that CCB, number 10 is stored in the MRU block. Only those numbers which
had previously been more recently used than number 10 (register blocks R9-R15) are shifted
to the left, leaving the number 1 in the LRU block. In this manner the INIC maintains the
most active CCBs in SRAM cache.

In some cases a CCB being used is one that is not desirable_ to hold in the limited caché
memory. For example, it is preferable not to cache a CCB for a context that is known to be
closing, so that other cached CCBs can remain in SRAM longer. In this case, the number
representing the cache unit holding the decacheable CCB is stored in the LRU block RO rather
than the MRU block R15, so that the decacheable CCB will be replaced immediately upon
employment of a new CCB that is cached in the SRAM unit corresponding to the number held
in the LRU block RO. FIG. 19D shows the case for which number 8 (which had been in block
R9 in FIG. 19C) corresponds to a CCB that will be used and then closed. In this case number
8 has been removed from block R9 and stored in the LRU block R0O. All the numbers that héd
previously been stored to the left of block R9 (R1-R8) are then shifted one block to the right.

FIG. 20 shows some of the logical units employed to operate the least-recently-used
register 900. An array of sixteen, three or four input multiplexors 910, of which only
multiplexors MUX0, MUX7, MUX8, MUX9 and MUX15 are shown for clarity, have outputs
fed into the corresponding sixteen blocks of least-recently-used register 900. For example, the
output of MUXO is stored in block RO, the output of MUXT7 is stored in block R7, etc. The
value of each of the register blocks is connected to an input for its corresponding multiplexor
and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For

instance, the number stored in R8 is fed into inputs for MUX7, MUX8 and MUX9. MUXO0

“and MUX15 each have only one adjacent block, and the extra input for those multiplexors is

used for the selection of LRU and MRU blocks, respectively. MUXI15 is shown as a four-

input multiplexor, with input 915 providing the number stored on RO.

14
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An array of sixteen comparators 920 each receives the value stored in the corresponding
block of the least-recently-used register 900. Each comparator also receives a signal from
processor 470 along line 935 so that the register block having a number matching that sent by
processor 470 outputs true to logic circuits 930 while the other fifteen comparators output
false. Logic circuits 930 control a pair of select lines leading to each of the multiplexors, for
selecting inputs to the multiplexors and therefore controlling shifting of the register block
numbers. Thus select lines 939 control MUXO, select lines 944 control MUX7, select lines
949 control MUXS, select lines 954 control MUX9 and select lines 959 control MUX15.

When a CCB is to be used, processor 470 checks to see whether the CCB matches a CCB
currently held in one of the sixteen cache units. If a match is found, the processor sends a
signal along line 935 with the block number corresponding to that cache unit, for example
number 12. Comparators 920 compare the signal from that line 935 with the block numbers
and comparator C8 provides a true output for the block R8 that matches the signal, while all
the other comparators output false. Logic circuits 930, under control from the processor 470,
use select lines 959 to choose the input from line 935 for MUX1S5, storing the number 12 in the
MRU block R15. Logic circuits 930 also send signals along the pairs of select lines for MUX8
and higher multiplexors, aside from MUX15, to shift their output one block to the left, by
selecting as inputs to each multiplexor MUX8 and higher the value that had been stored in
register blocks one block to the right (R9-R15). The outputs of multiplexors that are to the left
of MUXS are selected to be constant.

If processor 470 does not find a match for the CCB among the sixteen cache units, on the
other hand, the processor reads from LRU block RO along line 966 to identify the cache
corresponding to the LRU block, and writes the data stored in that cache to DRAM. The
number that was stored in RO, in this case number 3, is chosen by select lines 959 as input 915
to MUX15 for storage in MRU block R15. The other fifteen multiplexors output to their
respective register blocks the numbers that had been stored each register block immediately to
the right. |

For the situation in which the processor wishes to remove a CCB from the cache after use,
the LRU block RO rather than the MRU block R15 is selected for placement of the number
corresponding to the cache unit holding that CCB. The number corresponding to the CCB to
be placed in the LRU block RO for removal from SRAM (for example number 1, held in block

R9) is sent by processor 470 along line 935, which is matched by comparator C9. The
35 '
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processor instructs logic circuits 930 to input the number 1 to RO, by selecting with lines 939
input 935 to MUXO0. Select lines 954 to MUX9 choose aS input the number held in register
block R8, so that the number from R8 is stored in R9. The numbers held by the other register
blocks between RO and R9 are similarly shifted to the right, whereas the numbers in register
blocks to the right of R9 are left constant. This frees scarce cache memory from maintaining
closed CCBs for many cycles while their identifying numbers move through register blocks
from the MRU to the LRU blocks.

Figure 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure
13. INIC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and
Dynamic Random Access Memory (DRAM) 460. PHY chip 2100 couples INIC card 200 to
network line 210 via a network connector 2101. INIC card 200 is coupled to the CPU of the
host (for example, CPU 28 of host 20 of Figure 1) via card edge connector 2107 and PCI bus
257. ASIC chip 400 includes a Media Access Control (MAC) unit 402, a sequencers block
2103, SRAM control 442, SRAM 440, DRAM control 450, a queue manager 2103, a
processor 470, and a PCI bus interface unit 468. Structure and operation of queue manager
2103 is described above in connection with Figure 18 and in U.S. Patent Application Serial
Number 09/416,925, entitled “Queue System For Microprocessors”, attorney docket no. ALA-
005, filed October 13, 1999, by Daryl D. Starr and Clive M. Philbrick (the subject matter of
which is incorporated herein by reference). Sequencers block 2102 includes a transmit
sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC
destination address is stored in configuration register 2106. Part of the program code executed
by processor 470 is contained in ROM (not shown) and part is located in a writeable control
store SRAM (not shown). The program is downloaded into the writeable control store SRAM
at initialization from the host 20.

Figure 22 is é more detailed diagram of receive sequencer 2105. Receive sequencer 2105
includes a data synchronization buffer 2200, a packet synchronization sequencer 2201, a data
assembly register 2202,. a protocol analyzer 2203, a packet processing sequencer 2204, a queue
manager interface 2205, and a Direct Memory Access (DMA) control block 2206. The packet
synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network-
synchronized clock of MAC 402, whereas the remainder of the receive sequencer 2105 utilizes

a fixed-frequency clock. Dashed line 2221 indicates the clock domain boundary.
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- CD Appendix A contains a complete hardware description (verilog code) of an embodiment

of receive sequencer 2105. Signals in the verilog code are named to designate their functions.

Individual sections of the verilog code are identified and labeled with comment lines. Each of

these sections describes hardware in a block of the receive sequencer 2105 as set forth below

in Table 1.

SECTION OF VERILOG CODE

BLOCK OF FIG. 22

Synchronization Interface

Sync-Buffer Read-Ptr Synchronizers
Packet-Synchronization Sequencer ‘

Data Synchronization Buffer

Synchronized Status for Link-Destination-Address
Synchronized Status-Vector

Synchronization Interface

Receive Packet Control and Status
Buffer-Descriptor

Ending Packet Status

AssyReg shift-in. Mac -> AssyReg.

Fifo shift-in. AssyReg -> Sram Fifo

Fifo ShiftOut Burst. SramFifo -> DramBuffer
Fly-By Protocol Analyzer; Frame, Network and Transport Layers
Link Pointer ' |
Mac address detection

Magic pattern detection

Link layer and network layer detection

Network counter

Control Packet analysis

Network header analysis

Transport layer counter

Transport header analysis

Pseudo-header stuff

Free-Descriptor Fetch

2201
2201

2201
2201 and 2200
2201

2201

2204

2204

2201

2201
2202 and 2204
2206

2206

2203

2203

2203

2203

2203

2203

2203

2203

2203

2203

2203

2205
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Receive-Descriptor Store 2205

Receive-Vector Store 2205

Queue-manager interface-mux 2205

Pause Clock Generator 2201

Pause Timer : . 2204
TABLE 1

Operation of receive sequencer 2105 of Figures 21 and 22 is now described in connection
with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At
initialization time, processor 470 partitions DRAM 460 into buffers. Receive sequencer 2105
uses the buffers in DRAM 460 to store incoming network packet data as well as status
information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A
buffer descriptor indicates the size and location in DRAM of its associated buffer. Processor
470 places these buffer descriptors on a “free-buffer queue” 2108 by writing the descriptors to
the queue manager 2103. Quéue manager 2103 maintains multiple queues including the “free-
buffer queue” 2108. In this implementation, the heads and tails of the various queues are
located in SRAM 440, whereas the middle portion of the queues are located in DRAM 460.

Lines 2229 comprise a request mechanism involving a reqﬁest line and address lines.
Similarly, lines 2230 comprise a request mechanism involving a request line and address lines.
Queue manager 2103 uses lines 2229 and 2230 to issue requests to transfer quéue information
from DRAM to SRAM or from SRAM to DRAM.

The queue manager interface 2205 of the receive sequencer always attempts to maintain a
free buffer descriptor 2207 for use by the packet processing sequencer 2204. Bit 2208 is a
ready bit that indicates that free-buffer descriptor 2207 is available for use by the packet
processing sequencer 2204. If queue manager interface 2205 does not have a free buffer
descriptor (bit 2208 is not set), then queue manager interface 2205 requests one from queue
manager 2103 via request line 2209. (Request line 2209 is actually a bus which communicates
the request, a queue ID, a read/write signal and data if the operation is a write to the queue.)

In response, queue manager 2103 retrieves a free buffer descriptor from the tail of the “free
buffer queue” 2108 and then alerts the queue manager interface 2205 via an acknowledge
signal on acknowledge line 2210. When queue manager interface 2205 receives the

acknowledge signal, the queue manager interface 2205 loads the free buffer descriptor 2207
38
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and sets the ready bit 2208. Because the free buffer descriptor was in the tail of the free buffer
queue in SRAM 440, the queue manager interface 2205 actually receives the free buffer
descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet
processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When
the queue manager interface 2205 retrieves the free buffer descriptor 2207 and the free buffer
descriptor 2207 is available for use by the packet processing sequencer, the queue manager
interface 2205 informs the packet processing sequencer 2204 via grant line 2212. By this
process, a free buffer descriptor is made available for use by the packet processing sequencer
2204 and the receive sequencer 2105 is ready to processes an incoming packet.

Next, a TCP/IP packet is received from the network line 210 via network connector 2101
and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC 402 via a
Media Independent Interface (MII) parallel bus 2109. MAC 402 begins processing the packet
and asserts a “start of packet* signal on line 2213 indicating that the beginning of a packet is
being received. When a byte of data is received in the MAC and is available at the MAC
outputs 2215, MAC 402 asserts a “data valid” signal on line 2214. Upon receiving the “data
valid” signal, the packet synchronization sequencer 2201 instructs the data synchronization
buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data
synchrdnization buffér 2200 is four bytes deep. The packet synchronization sequencer 2201
then increments a data synchronization buffer write pointer. This data synchronization buffer
write pointer is made available to the packet processing sequericer 2204 via lines 2216.
Consecutive bytes of data from data lines 2215 are clocked into the data synchronization
buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained by the
packet processing sequencer 2204. The packet processing sequencer 2204 determines that
data is available in data synchronization buffer 2200 by comparing the data synchronization
buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines
2219, '

Data assembly register 2202 contains a sixteen-byte long shift register 2217. This register
2217 is loaded serially a single byte at a time and is unloaded in parallel. When data is loaded
into register 2217, a write pointer is incremented. . This write pointer ié made available to the

packet processing sequencer 2204 via lines 2218. Similarly, when data is unloaded from

‘register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.
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This read pointer is available to the data assembly register 2202 via lines 2220. The packet
processing sequencer 2204 can therefore determine whether room is available in register 2217
by comparing the write pointer on lines 2218 to the read pointer on lines 2220,

If the packet processing sequencer 2204 determines that rooh is available in register 2217,
then packet processing sequencer 2204 instructs data assembly register 2202 to load a byte of
data from data synchronization buffer 2200. The data assembly register 2202 increments the

data assembly registér write pointer on lines 2218 and the packet processing sequencer 2204

increments the data synchronization buffer read pointer on lines 2219. Data shifted into

register 2217 is examined at the register outputs by protocol analyzer 2203 which verifies
checksums, and generates “‘status” information 2223.

DMA control block 2206 is responsible for moving information from register 2217 to
buffer 2114 via a sixty-four byte receive FIFO 2110. DMA control block 2206 implements
receive FIFO 2110 as two thirty-two byte ping-pong buffers using sixty-four bytes of SRAM
440. DMA control block 2206 implemehts the receive FIFO using a write-pointer and a read-
pointer. When data to be transferred is available in register 2217 and space is available in
FIFO 2110, DMA control block 2206 asserts an SRAM write request to SRAM controller -442
via lines 2225. SRAM controller 442 in turn moves data from register 2217 to FIFO 2110 and
asserts an acknowledge signal back to DMA control block 2206 via lings 2225. DMA control
block 2206 then increments the receive FIFO write pointer and causes the data assembly
register vread pointer to be incremented. _

When thirty-two bytes of data has been deposited into receive FIFO 2110, DMA control
block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This
write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for
the DRAM request address, and the receive FIFO read pointer for the SRAM read address.
Using the receive FIFO read pointer, the DRAM controller 450 asserts a read request to
SRAM controller 442. SRAM controller 442 responds to DRAM controller 450 by returning
the indicated data from the receive FIFO 2110 in SRAM 440 and asserting an acknowlcdge
signal. DRAM controller 450 stores the data in a DRAM write data register, stores a DRAM
request address in a DRAM address register, and asserts an acknowledge to DMA control
block 2206. The DMA control block 2206 then decrements the receive FIFO read pointer.
Then the DRAM controller 450 moves the data from the DRAM write data register to buffer

2114. In this way, as consecutive thirty-two byte chunks of data are stored in SRAM 440,
’ 40

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 046



ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

DRAM control block 2206 moves those thirty-two byte chunks of data one at a time from
SRAM 440 to buffer 2214 in DRAM 460. Transferring thirty-two byte chunks of data to the
DRAM 460 in this fashion allows data to be written into the DRAM using the relatively
efficient burst mode of the DRAM.

Packet data continues to flow from network line 210 to buffer 2114 until all packet data has
been received. MAC 402 then indicates that the incoming packet has completed by asserting
an “end of frame” (i.e., end of packet) signal on line 2227 and by presenting final packet status
(MAC packet status) to packet synchronization sequencer 2204. The packet processing
sequencer 2204 then moves the status 2223 (also called “protocol analyzer status™) and the
MAC packet status to register 2217 for eventual transfer to buffer 2114. After all the data of
the packet has been placed in buffer 2214, status 2223 and the MAC packet status is
transferred to buffer 2214 so that it is stored prepended to the associated data as shown in
Figure 22. -

After all data and status has been transferred to buffer 2114, packet processing sequencer
2204 creates a summary 2224 (also called a “receive packet descriptor”) by concatenating the
free buffer descriptor 2207, the buffer load-count, the MAC ID, and a status bit (also called an
“attention bit™). If the attention bit is a one, then the packet is not a “fast-path candidate”;
whereas if the attention bit is a zero, then the packet is a “fast-path candidate”. The value of
the attention bit represents the result of a significant amount of processing that processor 470
would otherwise have to do to determine whether the packet is a “fast-path candidate”. For
example, the attention bit being a zero indicates that the packet employs both TCP protocol
and IP protocol. By carrying out this significant amount of processing in hardware beforehand
and then encoding the result in the attention bit, subsequent decision making by processor 470
as to whether the packet is an actual “fast-path packet” is accelerated. A complete logical
description of the attention bit in verilog code is set forth in CD Appendix A in the lines
following the heading “Ending Packet Status”.

‘Packet processing sequencer 2204 then sets a ready bit (not shown) associated with
summary 2224 and presents summary 2224 to queue manager interface 2205. Queue manager
interface 2205 then requests a write to the head of a “summary queue” 2112 (also called the
“receive descriptor queue’). The queue manager 2103 receives the request, writes the
summary 2224 to the head of the summary queue 2212, and asserts an acknowledge signal

back to queue manager interface via line 2210. When queue manager interface 2205 receives
41
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the acknowledge, queue manager interface 2205 informs packet processing sequencer 2204
that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with the
summary. Packet processing sequencer 2204 also generateé additional status information (also
called a “vector”) for the packet by con'catenating the MAC packet status and the MAC ID.
Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and
presents this véctor to the queue manager interface 2205. The queue manager interface 2205
and the queue manager 2103 then cooperate to write this vector to the head of a “vector queue”
2113 in similar fashion to the way summary 2224 was written to the head of summary queue
2112 as described above. When the vector for the packet has been written to vector queue
2113, queue manager interface 2205 resets the ready bit associated with the vector.

Once suﬁmaw 2224 (including a buffer descriptor that points to buffer 2114) has been
placed in summary queue 2112 and the packet data has been placed in buffer 2144, processor
470 can retrieve summary 2224 from summary queue 2112 and examine the “attention bit”.

If the attention bit from summary 2224 is a digital one, then processor 470 determines that
the packet is not a “fast-path candidate” and processor 470 need not examine the packet
headers. Only the status 2223 (first sixteen bytes) from buffer 2114 are DMA transferred to
SRAM so processor 470 can examine it. If the status 2223 indicates that the packet is a type
of packet that is not to be transferred to the host (for'example, a multicast ﬁame that the host is
not registered to receive), then the packet is discarded (i.e., not passed to the host). If status
2223 does not indicate that the packet is the type of packet that is not to be transferred to the
host, then the entire packet (headers and data) is passed to a buffer on host 20 for “slow-path”
transport and network layer processing by the protocol stack of host 20.

If, on the other hand, the attention bit is a zero, then processor 470 determines that the
packet is a “fast-path candidate”. If processor 470 determines that the packet is a “fast-path
candidate”, then processor 470 uses the buffer descriptor from the summary to DMA transfer
the first approximately 96 bytes of information from buffer 2114 from DRAM 460 into a
portion of SRAM 440 so processor 470 é,an examine it. This first approximately 96 bytes
contains status 2223 as well as the IP source address of the IP header, the IP destination
address of the IP header, the TCP source address of the TCP header, and the TCP destination
address of the TCP header. The IP source address of the IP header, the IP destination address
of the IP header, the TCP source address of the TCP header, and the TCP destination address

of the TCP header together uniquely define a single connection context (TCB) with which the
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packet is associated. Processor 470 examines these addresses of the TCP and IP headers and
determines the connection context of the packet. Processor 470 then checks a list of

connection contexts that are under the control of INIC card 200 and determines whether the

- packet is associated with a connection context (TCB) under the control of INIC card 200.

If the connection context is not in the list, then the “fast-path candidate” packet is

~ determined not to be a “fast-path packet.” In such a case, the entire packet (headers and data)

is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack of host 20.

If, on the other hand, fhe connection context is in the list, then software executed by
processor 470 including software state machines 2231 and 2232 checks for one of numerous
exception conditions and determines whether the packet is a “fast-path packet” or is not a
“fast-path packet”. These exception conditions include: 1) IP fragmentation is detected; 2) an
IP option is detected; 3) an unexpected TCP flag (urgent bit set, reset bit set, SYN bit set or
FIN bit set) is detected; 4) the ACK field in the TCP header is before the TCP window, or the
ACK field in the TCP header is after the TCP window, or the ACK field in the TCP header
shrinks the TCP window; 5) the ACK field in the TCP header is a duplicate ACK and the
ACK field exceeds the duplicate ACK count (the duplicate ACK count is a user settable
value); and 6) the sequence number of the TCP header is out of order (packet is received out of
sequence). Ifthe software executed by processor 470 detects one of these exception
conditions, then processor 470 determines that the “fast-path candidate” is not a “fast-path
packet.” In such a case, the connection context for the packet is “flushed” (the connection
context is passed back to the host) so that the connection context is no longer present in the list
of connection contexts under control of INIC card 200. The entire packet (headers and data) is
transferred to a buffer in host 20 for “slow-path” transport layer and network layer processing
by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such exception condition, then the “fast-path
candidate” packet is determined to be an.actual “fast-path packet”. The receive state machine
2232 then processes of the packet through TCP. The data portion of the packet in buffer 2114
is then transferred by another DMA controller (not shown in Figure 21) from buffer 2114 to a
host-allocated file cache in storage 35 of host 20. In one embodiment, host 20 does no
analysis of the TCP and IP headers of a “fast-path packet”. All ‘analysis of the TCP and IP
headers of a “fast-path packet” is done on INIC card 20.
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Figure 23 is a diagram illustrating the transfer of data of “fast-path packets” (packets of a
64k-byte session layer message 2300) from INIC 200 to host 20. The portion of the diagram
to the left of the dashed line 2301 represents INIC 200, whereas the portion of the diagram to
the right of the dashed line 2301 represents host 20. The 64k-byte session layer message 2300
includes approximately forty-five packets, four of which (2302, 2303, 2304 and 2305) are
labeled on Figure 23. The first packet 2302 includes a portion 2306 containing transport and
network layer headers (for example, TCP and IP headers), a portion 2307 containing a session
layer header, and a portion 2308 confaining data. In a first step, portion 2307,'the first few
bytes of data from portion 2308, and the connection context identifier 2310 of the packet 2300
are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a second step, host 20
examines this information and returns to INIC 200 a destination (for exarﬁple, the location of a
file cache 2311 in storage 35) for the data. Host 20 also copies the first few bytes of the data
from buffer 2309 to the beginning of a first part 2312 of file cache 231 1‘. In a third step, INIC
200 transfers the remainder of the data from portion 2308 to host 20 such that the remainder of
the data is stored in the remainder of first part 2312 of file cache 2311. No network, transport,

or session layer headers are stored in first part 2312 of file cache 2311. Next, the data portion

. 2313 of the second packet 2303 is transferred to host 20 such that the data portion 2313 of the

second packet 2303 is stored in a second part 2314 of file cache 2311. The transport layer and
network layer header portion 2315 of second packet 2303 is not transferred to host 20. There
is no network, transport, or session layer header stored in file cache 2311 between the data
portion of first packet 2302 and the data portion of second packet 2303. Similarly, the data
portion 2316 of the next packet 2304 of the session layer message is transferred to file cache
2311 so that there is no network, transport, or session layer headers between the data portion
of the second packet 2303 and the data portion of the third packet 2304 in file cache 2311. In
this way, only the data portions of the packets of the session layer message are placed in the

file cache 2311. The data from the session layer message 2300 is present in file cache 2311 as

"ablock such that this block contains no network, transport, or session layer headers.

In the case of a shorter, single-packet session layer message, portions 2307 and 2308 of the
session layer message are transferred to 256-byte buffer 2309 of host 20 along with the
connection context identifier 2310 as in the case of the longer session layer message described

above. In the case of a single-packet session layer message, however, the transfer is completed
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at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does not transfer
subsequent daté to such a destination.

CD Appendix B includes a listing of software executed by processor 470 that determines
whether a “fast-path candidate” packet is or is not a “fast-path packet”. An example of the
instruction set of processor 470 is found starting on page 79 of the Provisional U.S. Patent
Application Serial No. 60/061,809, entitled “Intelligent Network Interface Card And System
For Protocol Processing”, filed chober 14, 1997 (the subject matter of this provisional
application is incorporated herein by reference). ‘

CD Appendix C includes device driver software executable on host 20 that interfaces .the
host 20 to INIC card 200. There is also ATCP code that executes on host 20. This ATCP
code includes: 1) a “free BSD” stack (available from the University of California, Berkeley)
that has been modified slightly to make it run on the NT4 operating system (the “free BSD”
stack normally runs on a UNIX machine), and 2) code added to the free BSD stack between
the session layer above and the device driver below that enables the BSD stack to carry out
“fast-path” processing in conjunction with INIC 200. |

TRANSMIT FAST-PATH PROCESSING: The following is an overview of one.
embodiment of a transfnit fast-path flow once a command has been posted (for additional
information, see provisional application 60/098,296, filed August 27, 1998). The transmit
request may be a segment that is less than the MSS, or it may be as much as a full 64K session
layer packet. The former request will go out as one segment, the latter as a number of MSS-
sized segments. The transmitting CCB must hold on to the request until all data in it has been
transmitted and ACKed. Appropriate pointers to do this are kept in the CCB. To create an
output TCP/IP seginent, a large DRAM buffer is acquired from the Q FREEL queue. Then
data is DMAJ from host memory into the DRAM buffer to create an MSS-sized segment.
This DMA also checksums the data. The TCP/IP header is created in SRAM and DMAd to
the front of the payload data. It is quicker and simpler to keep a basic frame header (i.e., a
template header) permanently in the CCB and DMA this directly from the SRAM CCB buffer
into the DRAM buffer each time. Thus the payload checksum is adjusted for the pseudo-
header (i.€., the template header) and placed into the TCP header prior to DMAing the header
from SRAM. Then the DRAM buffer is queued to the appropriate Q_UXMT transmit queue.
The final step is to update various window fields etc in the CCB. Eventually éither the entire

request will have been sent and ACKed, or a retransmission timer will expire in which case the
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context is flushed to the host. In either case, the INIC will place a éommand résponse in the
response queue containing the command buffer from the original transmit command and
appropriate status.

The above discussion has dealt with how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at the
time a transmit request arrives, and then to continue to transmit for as long as the transport
protocol permits. There are many reasons not to transmit: the receiver’s window size is less
than or equal to zero, the persist timer has expired, the amount to send is less than a full
segment and an ACK is expected/outstanding, the receiver’s window is not half-open, etc.
Much of transmit processing will be in determining these conditions.

The fast-path is implemented as a finite state machine (FSM) that covers at least three
layers of the protocol stack, i.e., IP, TCP, and Session. The following summarizes the steps
involved in normal fast-path transmit command processing: 1) get control of the associated
CCB (gotten from the command): this involves locking the CCB to stop other processing (e.g.
Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into

~ an SRAM CCB buffer. There are sixteen of these buffers in SRAM and they are not flushed to

DRAM until the buffer space is needed by other CCBs. Acquisition and flushing of these
CCB buffers is controlled by a hardware LRU mechanism. Thus getting into a buffer may
involve flushing another CCB from its SRAM buffer. 3) Process the send command
(EX_SCMD) event against the CCB’s FSM.

Each event and state intersection provides an action to be executed and a new state. The
following is an example of the state/event transition, the action to be executed and the new
state for the SEND command while in transmit state IDLE (SX_IDLE). The action from this
state/event intersection is AX_NUCMD and the next state is XMIT COMMAND ACTIVE
(SX_XMIT). To summarize, a command to transmit data has been received while transmit is
currently idle. The action performs the following steps: 1) Store details of the command into
the CCB. 2) Check that it is okay to transmit now (e.g. send window is not zero). 3) If output
is not possible, send the Check Output event to Q_EVENT]1 queue for the Transmit CCB’s
FSM and exit. 4) Get a DRAM 2K-byte buffer from the Q-FREEL queue into which to move
the payload data. 5) DMA payload data from the addresses in the scatter/gather lists in the
command into an offset in the DRAM buffer that leaves space for the frame header. These

DMAs will provide the checksum of the payload data. 6) Concurrently with the above DMA,
46 -

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 052



ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

fill out variable details in the frame header template in the CCB. Also get the IP and TCP
header checksums while doing this. Note that base IP and TCP headers checksums are kept in
the CCB, and these are simply updated for fields that vary per frame, viz. IP Id, IP length, IP
checksum, TCP sequence and_ ACK numbers, TCP window size, TCP flags and TCP
checksum. 7) When the payload is complete, DMA the frame header frqm the CCB to the
front of the DRAM buffer. 8) Queue the DRAM buffer (i.e., queue a buffer descriptor that
points to the DRAM buffer) to the appropriate Q_ UXMT queue for the interface for this CCB.
9) Determine if there is more payload in the command. If so, save the current command
transfer address details in the CCB and send a CHECK OUTPUT event via the Q_EVENTI
queue to the Transmit CCB. If not, send the ALL COMMAND DATA SENT (EX_ACDS)
event to the Transmit CCB. 10) Exit from Transmit FSM processing,

Code that implements an embodiment of the Transmit FSM (transmit software state
machine 2231 of Figure 21) is found in CD Appendix B. In one embodiment, fast-path
transmit processing is controlled using write only transmit configuration register (XmtCfg).
Register XmtCfg has the following portions: 1) Bit 31 (name: Reset). Writing a one (1) will
force reset asserted to the transmit sequencer of the channel selected by XcvSel. 2) Bit 30
(name: XmtEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)
causes the transmit sequencer to halt after completion of the current packet. 3) Bit 29 (name:
PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission, after
completion of the current packet, whenever the receive sequencer detects an 802.3X pause
command packet. 4) Bit 28 (name: LoadRng). Writing a one (1) causes the data in
RcvAddrB[10:00] to be loaded in to the Mac’s random number register for use during
collision back-offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15 (name: FreeQId). Selects
the queue to which the freed buffer descriptors will be written once the packet transmission
has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: XmtQId).
Selects the queue from which the transmit buffer descriptors will be fetched for data packets.
8) Bits 09:05 (name: CtrlQId). Selects the queue from which the transmit buffer descriptors
will be fetched for control packets. These packets have transmission priority over the data
packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:
VectQId). Selects the queue to which the transmit vector data is written after the completion
of each packet transmit. In some embodiments, transmit sequencer 2104 of Figure 21 retrieves

buffer descriptors from two transmit queues, one of the queues having a higher transmission
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priority than the other. The higher transmission priority transmit queue is used for the
transmission of TCP ACKs, whereas the lower transmission priority transmit queue is used for
the transmission of other types of packets. ACKs may be transmitted in accordance with
techniques set forth in U.S. Patent Application Serial No. 09/802,426 (the subject matter of
which is incorporated herein by reference). In some embodiments, the processor that executes
the Transmit FSM, the receive and transmit sequencers, and the host processor that executes
the protocol stack are all realized on the same printed circuit board. The printed circuit board
may, for example, be a card adapted for coupling to another computer.

All told, the above-described devices and systems for processing of data communication
result in dramatic reductions in the time and host resources required for processing large,
connection-based messages. Protocol processing speed and efficiency is tremendously
accelerated by specially designed protocol processing hardware as compared with a generaj
purpose CPU running conventional protocol software, and interrupts to the host CPU are also
substantially reduced. These adva;ntages can be provided to an existing host by addition of an
intelligent network interface card (INIC), or the protocol processing hardware may be
integrated with the CPU. In either case, the protocol processing hardware and CPU
intelligently decide which device processes a given message, and can change the allocation of

that processing based upon conditions of the message.

DISCLOSURE FROM PROVISIONAL APPLICATION 60/061,809.

BACKGROUND OF THE INVENTION.

Network processing as it exists today is a costly and inefficient use of system
resources. A 200 MHz Pentium-Pro is typically consumed simply processing network data .
from a 100Mb/second-network connection. The reasons that this processing is so costly are

described here.

TOO MANY DATA MOVES.

When network packet arrives at a typical network interface card (NIC), the NIC moves
the data into pre-allocated network buffers in system main memory. From there the data is
read into the CPU cache so that it can be checksummed (assuming of course that the protocol

in use requires checksums. Some, like IPX, do not.). Once the data has been fully processed
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by the protocol stack, it can then be moved into its final destination in memory. Since the
CPU is moving the data, and must read the destination cache line in before it can fill it and
write it back out, this involves at a minimum two more trips across the system memory bus. In

short, the best one can hope for is that the data will get moved across the system memory bus

+ four times before it arrives in its final destination. It can, and does, get worse. If the data

happens to get invalidated from system cache after it has been checksummed, then it must get
pulled back across the memory bus before it can be moved to its final destination. Finally, on
some systems, including Windows NT 4.0, the data gets copied yet another time while being
moved up the protocol stack. In NT 4.0, this occurs between the miniport driver interface and
the protocol driver interface. This can add up to a whopping eight trips across the system
memory bus (the four trips described above, plus the move to replenish the cache, plus three
more to copy from the miniport to the protocol driver). That’s enough to bring even today’s

advanced memory busses to their knees.

TOO MUCH PROCESSING BY THE CPU.

In all but the original move from the NIC to system memory, the system CPU is
responsible for moving the data. This is particularly expensive because while the CPU is
moving this data it can do nothing else. While moving the data the CPU is typically stalled
waiting for the relatively slow memory to satisfy its read and write requests. A CPU, which
can execute an instruction every 5 nanoseconds, must now wait as long as several hundred
nanoseconds for the memory controller to respond before it can begin its next instruction.
Even today’s advanced pipelining technology doesn’t help in these situations because that
relies on the CPU being able to do useful work while it waits for the memory controller to
respond. If the only thing the CPU has to look forward to for the next several hundred
instructions is more data moves, then the CPU ultimately gets reduced to the speed of the
memory controller. ‘

Moving all this data with the CPU slows the system down even after the data has been
moved. Since both the source and destination cache lines must be pulled into the CPU cache
when the data is moved, more than 3k of instructions and or data resident in the CPU cache
must be flushed or invalidated for every 1500 byte frame. This is of course assuming a
combined instruction and data second level cache, as is the case with the Pentium processors.

After the data has been moved, the former resident of the cache will likely need to be pulled
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* back in, stalling the CPU even when we are not performing network processing. Ideally a

system would never have to bring network frames into the CPU cache, instead reserving that
precious commodity for instructions and data that are referenced repeatedly and frequently.

" But the data movement is not the only drain on the CPU. There is also a fair amount of
processing that must be done by the protocol stack software. The most obvious expense is
calculating the checksum for each TCP segment (or UDP datagram).. Beyond this, however,
there is other processing to be done as well. The TCP connecﬁon object must be located when
a given TCP segment arrives, IP héader checksums must be calculated, there are buffer and
memory management issues, and finally there is also the significant expense of interrupt

processing which we will discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments
when running over Ethernet (1500 byte MTU). Each of these segments may result in an
interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming data, it’s
possible to get another 44 transmit-complete interrupts as a result of sending out the TCP
acknowledgements. While this is possible, it is not terribly likely. Delayed ACK timers allow
us to acknowledge more than one segment at a time. And delays in interrupt processihg may
mean that we are able to process more than one incoming network frame per interrupt.

Nevertheless, even if we assume four incoming frames per input, and an acknowledgement for

" every two segments (as is typical per the ACK-every-other-segment property of TCP), we are

still left with 33 interrupts per 64k SMB request. .

Interrupts tend to be very costly to the vsystem. Often when a system is interrupted,
important information must be flushed or invalidated from the system cache so that the
interrupt routine instructions, and needed data can be pulled into the cache.” Since the CPU
will return to its prior location after the interrupt, it is likely that the information flushed from
the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While
the processor pipeline is an extremely efficient way of improving CPU performance, it can be
expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the

peripheral bus (PCI). This is discussed more in the following section.
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INEFFICIENT USE OF THE PERIPHERAL BUS (PCI).

We noted earlier that when the CPU has to access system memory, it may be stalled for
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many
microseconds. This happens every time the CPU takes an interrupt from a standard NIC. The_
first thing the CPU must do when it receives one of these interrupts is to read the NIC Interrupt
Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling
thing about this is that since interrupt lines are shared on PC-based systems, we may have to
perforrh this expensive PCI read even when the interrupt is not meant for us.

There are other peripheral bus inefficiencies as well. Typical NICs operate using
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system
memory to determine where to place the data. Once the data has been moved to main
memory, the descriptor is then written back out to system memory with status about the
received frame. Transmit operates in a similar fashion. The CPU must notify that NIC that it
has a new transmit. The NIC will read the descriptor to locate the data, read the data itself, and
then write the descriptor back with status about the send. Typically on transmits the NIC will
then read the next expected descriptor to see if any more data needs to be sent. In short, each
receive or transmit frame results in 3 or 4 separate PCI reads or writes (not counting the status

-

register read).

SUMMARY OF THE INVENTION.

Alacritech was formed with the idea that the network processing described above could
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the
Alacritech INIC, we address each of the above problems, resulting in the following
advancements: v

1. The vast majority of the data is moved directly from the INIC into its final
destination. A single trip across the system memory bus. |

2 There is no header processing, little data éopying, and no checksumming
required by the CPU. Because of this, the data is never moved into the CPU cache, allowing
the system to keep important instructions and data resident in the CPU cache.

3. Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per

64k SMB write.
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4. There are no CPU reads over PCI and there are fewer PCI operations per
receive or transmit transaction.

In the remainder of this document we will describe how we acco}nplish the above.

PERFORM TRANSPORT LEVEL PROCESSING ON THE INIC.

In order to keep the system CPU from having to process the packet headers or
checksum the packet, we must perform this task on the INIC. This is a daunting task. There
are more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.
Clearly this is more code than could be efficiently handled by a competitively priced network
card. Furthermore, as noted above, the TCP/IP ﬁrotocol stack is complicated enough to
consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive
card, we need special network processing hardware as opposed to simply using a general

purpose CPU.

ONLY SUPPORT TCP/IP. .

In this section we introduce the notion of a "context". A context is required to keep
track of information that spans many, possibly discontiguous, pieces of information. ‘When
processing TCP/IP data, there are actually two contexts that must be maintained. The first
context is required to reassemble IP fragments. It holds information about the status of the IP
reassembly as well as any checksum information being calculated across the IP datagram
(UDP or TCP). This context is identified by the IP_ID of the datagram as well as the source
and destination IP addresses. The second context is required to handle the sliding window
protocol of TCP. It holds information about which segments have been sent or received, and
which segments have been acknowledged, and is identified by the IP source and destination’
addresses and TCP source and destination ports.

If we were to choose to handle both contexts in hardware, we would have to potentially
keep track of many pieces of information. One such example is a case in which a single 64k
SMB write is.broken down into 44 1500 byte TCP segments, which are in turn broken down
into 131 576 byte IP fragments, all of which can come in any order (though the maximum
window size is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection

establishment time, which should prevent IP fragmentation in nearly all TCP connections. The
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only time that we should end up with fragmented TCP connections is when there is a router in
the middle of a connection which must fragment the segments to subport a smaller MTU. The
only networks that use a smaller MTU than Ethernet are serial line interfaces such as SLIP and
PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we
had 256 of these connections, we would still only need to support 34Mb/sec, or a little over
three 10bT connections worth of data. This is not enough to justify any pérformance
enhancements that the INIC offers. If this becomes an issue at some point, we may decide to
implement the MTU discovery algorithm, which should prevent TCP fragmentation on all
connections (unless an ICMP redirect changes the connection route while the connection is
established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP
segments on the INIC. UDP is another matter. Since UDP does not support the notion of a
Maximum Segment Size, it is the responsibility of IP to break down a UDP datagram into
MTU sized packets. Thus, fragmented UDP datagrams are very common. The most common
UDP application running today is NFSV2 over UDP. While this is also the most common
version of NFS running today, the current version of Solaris being sold by Sun Microsystems
runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP traffic start to
decrease over the coming years. In summary, we will only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLE TCP “EXCEPTIONS”.
. As noted above, we won’t providé support for fragmented TCP segments on the INIC.

We have also opted to not handle TCP connection and breé.kdown. Here is a list of other TCP
“exceptions” which we have elected to not handle on the INIC: A

Fragmented Segments —Discussed above.

Retransmission Timeout — Occurs when we do not get an acknowledgement for
previously sent data within the expected time period.

Out of order segments — Occurs when we receive a segment with a sequence number
other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since wé have now eliminated support for so many different code paths, it might seem
hardly worth the trouble to provide any assistance by the card at all. This is not the case.
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According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated Volume
27, TCP operates without experiencing any exceptions between 97 and 100 percent of the time
in local area networks. As network, router, and switch reliability improve this number is likely

to only improve with time.

TWO MODES OF OPERATION.

So the next question is what to do about the network packets that do not fit our criteria.
The answer shown in Fig. 24 is to use two modes of operation: One in which the network
frames are processed on the INIC through TCP and one in which the card operates like a
typical dumb NIC. We call these two modes fast-path, and slow-path. In the slow-path case,
network frames are handed to the system at the MAC layer and passed up through the host
protocol stack like any other network frame. In the fast path case, network data is given to the
host aﬂef the headers have been processed and stripped.

The transmit case works in much the same fashion. In slow-path mode the packets are
given to the INIC with all of the headers attached. The INIC simply sends these packets out as
if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC which it must
carve' into MSS sized segmenté, add headers to the data, perform checksums on the segment,

and then send it out on the wire.

THE TCB CACHE. \

Consider a situation in which a TCP connection is being handled by the card and a
fragmented TCP segment for that connection arrives. In this situation, it will be necessary for
the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a
structure that contains the entire context associated with a connection. This includes the
source and destination IP addresses and source and destination TCP ports that define the
connection. It also contains information about the connection itself such as the current send
and receive sequence numbers, and the first-hop MAC address, etc. The complete set of TCBs
exists in host memory, but a subset of these may be "owned" by the card at any given time.
This subset is the TCB cache. The INIC can own up to 256 TCBs at any given time.

TCBs are initialized by the host during TCP connection setup. Once the connection has

achieved a “steady-state” of operation, its associated TCB can then be turned over to the INIC,
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putting us into fast-path mode. From this point on, the INIC owns the connection until either a
FIN arrives signaling that the connection is being closed, or until an exception occurs which
the INIC is not designed to handle (such as an out of order segment). When any of these
conditions occur, the INIC will then flush the TCB back to host memory, and issue a message
to the host telling it that it has relinquished control of the connection, thus putting the
connection back into slow-path mode. From this point on, the INIC simply hands incoming
segments that are destined for this TCB off to the host with all of the headers intact.

Note that when a connection is owned by the INIC, the host is not allowed to reference
the corresponding TCB in host memory as it will contain invalid information about the state of

the connection.

TCP HARDWARE ASSISTANCE.

When a frame is received by the INIC, it must verify it completely before it even
determines whether it belongs to one of its TCBs or not. This includes all header validation (is
it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum correct, etc). Once
this is done it must compare the source and destination IP address and the source and
destination TCP port with those in each of its TCBs to determine if it is associated with one of
its TCBs. This is an expensive process. To expedite this, we have added several features in
hardware to assist us. The header is fully parsed by hardware and its type is summarized in a
single status word. The checksum is also verified automatically in hardware, and a hash key is
created out of the IP addresses and TCP ports to expedite TCB lookup. For full details on
these and other hardware optimizations, refer to the INIC Hardware Specification sections 7
(Heading 8). ' '

With the aid of these and other hardware features, much of the work associated with
TCP is done essentially for free. Since the card will automatically calculate the checksum for
TCP segments, we can pass this on to the host, even when the segment is for a TCB that the

INIC does not own.

TCP SUMMARY. .
By moving TCP processing down to the INIC we have offloaded the host of a large

amount of work. The host no longer has to pull the data into its cache to calculate the TCP
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checksum. It does not have to process the packet headers, and it does not have to generate

TCP ACKs. We have achieved most of the goals outlined above, but we are not done yet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relation.to the hosts transport layer interface (Called
TDI or Transport Driver Interface in Windows NT). For full details on this interface, refer to
the Alacritech TCP (ATCP) driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing
the data in its final deétination. Somehow the host has to tell the INIC where to put the data.
This is a problem in that the host cannot do this without knowing what the data actually is.
Fortunate]y, NT has provided a mechanism by which a transport driver can “indicate” a small
amount of data to a client above it while telling it that it has more data to come. The client,
having then received enough of the data to know what it is, is then responsible for allocating a
block of memory and passing the memory address or addresses back down to the transport
driver, which is in turn responsible for moving the data into the provided location.

We will make use of this feature by providing a small amount of ény received data to
the host, with a notification that we have more data pending. When this small amount of data
is passed up to the client, and it returns with the address in which to put the remainder of the
data, our host transport driver will pass that address to the INIC which will DMA the
remainder of the data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small
amount of data (500 bytes for example), with a push flag set indicating that the data must be -
delivered to the client immediately, it does not make sense to deliver some of the data directly
while waiting for the list of addresses to DMA the rest. Under these circumstances, it makes
more sense to deliver the 500 bytes directly to the host, and allow the host to copy it into its
final destination. While various ranges are feasible, it is currently preferred that anything less
than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while
anything more will be delivered as a small piece which may bel28 bytes, while waiting until

receiving the destination memory address before moving the rest.
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The trick then is knowing when the data should be delivered to the client or not. As
we’ve noted, a push flag indicates that the data should be delivered to the client immediately,
but this alone is not sufficient. Fortunately, in the case of NetBIOS transactions (such as
SMB), we are explicitly told the length of the session message in the NetBIOS header itself.
With this we can simply indicate a small amount of data to the host immediately upon
receiving the first segment. The client will then allocate enough memory for the entire
NetBIOS transaction, which we can then use to DMA the remainder of the data into as it
arrives. In the case of a large (56k for example) NetBIOS session message, all but the first
couple hundred bytes will be DMA’d to their final destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not
rely on a session level protocol to tell us the length of the transaction. Under these
circumstances we will buffer the data as it arrives until A) we have receive some
predetermined number of bytes such as 8k, or B) some predetermined period of time passes
between segments or C) we get a push flag. If after any of these conditions occur we will then
indicate some or all of the data to the host depending on the amount of data buffered. If the
data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be returned from the host so that we may then DMA the remainder of the data.

TRANSMIT. .

The transmit case is much simpler. In this case the client (NetBIOS for example) issues
a TDI Send with a list of memory addresses which contain data that it wishes to send along
with the length. The host can then pass this list of addresses and length off to the INIC. The
INIC will then pull the data from its source location in host mvemory, as it needs it, until the

complete TDI request is satisfied.

. AFFECTS ON INTERRUPTS.

Note that when we receive a large SMB transaction, for example, that there are two
interactions between the INIC and the host. The first in which the INIC indicates a small
amount of the transaction to the host, and the second in which the host provides the memory
location(s) in which the INIC places the remainder of the data. This results in only two
interrupts from the INIC. The first when it indicates the small amount of data and the second

after it has finished filling in the host memory given to it. A drastic reduction from the 33/64k
57

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 063



ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

SMB request that we estimate at the beginning of this section. On transmit, we actually only

receive a single interrupt when the send command that has been given to the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having now established our interaction with Microsoft’s TDI interface, we have
achieved our goal of landing most of our data directly into its final destination in host memory.
We have also managed to transmit all data from its original location on host memory. And
finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 641'( SMB write. The

only thing that remains in our list of objectives is to design an efficient host (PCI) interface.

HOST (PCI) INTERFACE.
In this section we define the host interface. For a more detailed description, refer to the

“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

AVOID PCI READS.

One of our primary objectives in designing the host interface of the INIC was to
eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they
completely stall the reader until the transaction completes. As noted above, this could hold a
CPU up for several microseconds, a thousand times the time typicaily required to execute a
single instruction. PCI writes on the other hand, are usually buffered by the memory-
bus&PCI-bridge allowing the writer to continue on with other instructions. This technique is

known as “posting”.

MEMORY-BASED STATUS REGISTER.

The only PCI read that is required by most NICs is the read of the interrupt status
register. This register gives the host CPU information about what event has caused an
interrupt (if any). In the design of our INIC we have elected to place this necessary status
register into host memory. Thus, when an event occurs on the INIC, it writes the status
register to an agreed upon location in host memory. The corresponding driver on the host
reads this local register to determine the cause of the interrupt. The interrupt lines are held
high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadow registers are maintained on the INIC to ensure that events are not lost.
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BUFFER ADDRESSES ARE PUSHED TO THE INIC.

Since it is imperative that our INIC operate as efficiently as possible, we must also
avoid PCI reads from the INIC. We do this by pushing our receive buffer addresses to the
INIC. As mentioned at the beginning of this section, most NICs work on a descriptor queue
algorithm in which the NIC reads a descriptor from main memory in order to determine where
to place the next frame. We will instead write receive buffer addresses to the INIC as receive
buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the host to pass off a pages worth (4k) of buffers in a single write.

SUPPORT SMALL AND LARGE BUFFERS ON RECEIVE.

In order to reduce further the number of writes to the INIC, and to reduce the amount of
memory being used by the host, we support two different buffer sizes. A small buffer contains
roughly 200 bytes of data payloéd, as well as extra fields containing status about the received
data bringing the total size to 256 bytes. We can therefore pass 16 of these small buffers at a
time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path
data that does not fit in a small buffer. Note that when we have a large fast-path receive, a
small buffer will be used to indicate a small piece of the data, while the remainder of the data
will be DMA’d directly into memory. Large buffers are never passed to the host by
themselves, instead they are always accompanied by a small buffer which contains status about
the receive along with the large buffer address. By operating in the manner, the driver must
only maintain and process the small buffer queue. Large buffers are returned to the host by
virtue of being attached to small buffers. Since large buffers are 2k in size they are passed to
the INIC 2 buffers at a time.

COMMAND AND RESPONSE BUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we
also need a manner by which we can instruct the INIC to send data. Plus, when the INIC
indicates a small amount of data in a large fast-path receive, we need a method of passing back
the address or addresses in which to put the remainder of the data. We accomplish both of
these with the use of a command buffer. Sadly, the command buffer is the only place in which

we must violate our rule of only pushing data across PCI. For the command buffer, we write
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the address of command buffer to the INIC. The INIC then reads the contents of the command
buffer into its memory so that it can execute the desired command. Since a command may A
take a relatively long time to complete, it is unlikely that command buffers will complete in
order. For this reason we also maintain a response buffer queue. Like the small and large
receive buffers, a page worth of response buffers is passed to the INIC at a time. Response
buffers are only 32 bytes, so we have to replenish the INIC’s supply of them relatively
infrequently. The response buffers only purpose is to indicate the completion of the

designated command buffer, and to pass status about the completion.

EXAMPLES.
In this section we will provide a couple of examples describing some of the differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment
will contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of
this first segment is provided to the host by filling in a small receive buffer, modifying the
interrupt status register on the host, and raising the appropriate 'interrupt line. Upon receiving
the interrupt, the host will read the ISR, clear it by writing back to the INIC’s Interrupt Clear
Register, and will then process its small receive buffer queue looking for receive buffers to be
processed. Upon finding the small buffer, it will indicate the small amount of data up to the
client to be processed by NetBIOS. It will also, if necessary, replenish the receive buffer pool
on the INIC by passing off a pages worth of small buffers. Meanwhile, the NetBIOS client
will allocate a memory pool large enough to hold the entire NetBIOS message, and will pass
this address or set of addresses down to the transport driver. The transport driver will allocate
an INIC command buffer, fill it in with the list of gddresses, set the command type to tell the
INIC that this is where to put the receive data, and then pass the command off to the INIC by
writing to the command register. When the INIC receives the command buffer, it will DMA
the remainder of the NetBIOS data, as it is received, into the memory address or addresses
designated by the host. Once the entire NetBIOS transaction is complete, the INIC will
complete the command by writing to the response buffer with the appropriate status and

command buffer identifier.
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In this example, we have two interrupts, and all but a couple hundred bytes are DMA’d
directly to their final destination. On PCI we have two interrupt status register writes, two

interrupt clear register writes, a command register write, a command read, and a response

" buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get

moved anywhere from 4 to 8 times across the system memory bus.

SLOW-PATH RECEIVE.

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s,
it simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer
(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the host.
Otherwise it places the data in a large buffer, writes the address of the large buffer into a small
buffer, and again notifies the host. The host, having received the interrupt and found the
completed small buffer, checks to see if the data is contained in the small buffer, and if not,
locates the large buffer. Having found the dat.a, the host will then pass the frame upstream to
be processed by the standard protocol stack. It must also replenish the INIC’s small and large
receive buffer pool if necessary. '

With the INIC, this will result in one interrupt, one interrupt status register write and
one interrupt clear register write as well as a possible small and or large receive buffer register
write. The data will go through the normal path although if it is TCP data then the host will
not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assume that the client has a small amount of data to send. It will
issue the TDI Send tob tﬁe transport driver which wﬂl allocate a command buffer, fill it in with
the address of the 400 byte send, and set the command to indicate that it is a transmit. It will
then pass the command off to the INIC by writing to the command register. The INIC will

then DMA the 400 bytes into its own memory, prepare a frame with the appropriate
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checksums and headers, and send the frame out on the wire. After it has received the
acknowledgement it will then notify the host of the completion by writing to a response buffer.

With the INIC, this will result in one interrupt, one interrupt status register write, one
interrupt clear register write, a command buffer register write a command buffer read, and a
response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data would get moved
across the system bus a minimum of 4 times. The resulting TCP ACK of the data, however,
would add yet another interrupt, another interrupt status register read, interrupt clear register

write, a descriptor read and write, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECH INIC.

This section describes the host interface strategy for the Alacritech Intelligent Network
Interface Card (INIC). The goal of the Alacritech INIC is to not only process network data
through TCP, but also to provide zero-copy support for the SMP upper-layer protocol. It
achieves this by supporting two paths for sending and receiving data, the fast-path and the
slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,
while élow-path traffic corresponds to network data for which the NIC does not have a
connection. The fast-pgth flow works by passing a header to the host and subsequently holding

further data for that connection on the card until the host responds via an INIC command with

" a set of buffers into which to place the accumulated data. In the slow-path data flow, the INIC

will be operating as a “dumb” NIC, so that these packets are simply dumped into frame buffers
on the host as they arrive. To do either path requires a pool of smaller buffers to Abe used for
headers and a pool of data buffers for frames/data that are too large for the header buffer, with
both pools being managed by the INIC. This section discusses how these two pools of data are

managed as well as how buffers are associated with a given context.

RECEIVE INTERFACE.

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth
are the driving forces behind the host interface that is described herein. As mentioned above,
the fast-path flow puts a header into a header buffer that is then forwarded to the host. The host

uses the header to determine what further data is followihg, allocates the necessary host
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buffers, and these are passed béck to the INIC via a command to the INIC. The INIC then fills
these buffers from data it was accumulating on the card and notifies the host by sending a
response to the command. Alternatively, the fast-path may receive a header and data that is a
complete request, but that is also too large for a header buffer. This results in a header and data
buffer being passed to the host. This latter flow is identical to the slow-path flow, which also
puts all the data into the header buffer or, if the header is too small, uses a large (2K) host
buffer for all the data. This means that on the unsolicited receive path, the host will only see
either a header buffer or a header and at most, one data buffer. Note that data is never split
between a header and a data buffer.

Fig. 25 illustrates both situations. Since we want to fill in the header buffer with a
single DMA, the header must be the last piece of data to be written to the host for any received

transaction.

RECEIVE INTERFACE DETAILS.
HEADER BUFFERS. _

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte
boundaries. There will be a field in the header buffer indicating it has valid data. This field
will initially be reset by the host before passing the buffer descriptor to the INIC. A set of
header buffers are passed from the host to the INIC by the host writing to the “Header Buffer
Address Register” on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
header buffers.
Bits 7-0 Number of header buffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and pass all 16 buffers to
the INIC with one register write. The INIC will maintain a queue of these header descriptors
in the SmallHType queue in it’s own local memory, adding to the end of the queue every time
the host writes to the Header Buffer Address Register. Note that the single entry is added to
the queue; the eventual dequeuer will use the count after extracting that entry.

The header buffers, will be used and returned to the host in the same order that they
were given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a header buffer for the host to process. When servicing this
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interrupt, the host will look at its queue of header buffers, reading the valid field to determine

how many header buffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory are aligned to page boundaries, assumed here to be
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass receive
data buffers to the INIC, the host must write to two registers on'the INIC. The first register to
be written is the “Data Buffer Handle Register.” The buffer handle is not significant to the
INIC, but will be copied back to the host to return the buffer to the host. The second register
written is the Data Buffer Address Register. This is-the physical address of the data buffer.
When both registers have been written, the INIC will add the contents of these two registers to
FreeType queue of data buffer descriptors. Note that the INIC host driver sets the handle
register first, then the address register. There needs to be some mechanism put in place to
ensure the reading of these registers does not get out of sync with writing them. Effectively the
INIC can read the address register first and save its contents, then read the handle register. It -
can then lock the register pair in some manner such that another write to the handle register is
not permitted until the current contents have been saved. Both addresses extracted from the
registers are to be written to the FreeType queue. The INIC will extract 2 entries each time
when dequeuing. _ '

Data buffers will be allocated and used by the INIC as needed. For each data buffer
used by a slow-path transaction, the data buffer haﬁdle will be copied into a header buffer.

Then the header buffer will be returned to the host.

TRANSMIT INTERFACE.
TRANSMIT INTERFACE OVERVIEW.

The transmit interface shown in Fig. 26, like the receive interface, has been designed to
minimize the amount of PCI bandwidth and latencies. In order to transmit data, the host will
transfer a command buffer to the INIC. This command buffer will include a command buffer
handle, a command field, possibly a TCP context identification, and a list of physical data
pointers. The command buffer handle is defined. to be the first word of the command buffer
and is used by the host to identify the command. This word will be passed back to the host in

a response buffer, since commands may complete out of order, and the host will need to know
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which command is complete. Commands will be used for many reasons, but primarily to cause
the INIC to transmit data, or to pass a set of buffers to the INIC for input data on the fast-path
as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the
same order as they were given to it by the host. This enables the host to know which response

buffer(s) to next look at when the INIC signals a command completion.

TRANSMIT INTERFACE DETAILS.
COMMAND BUFFERS.

Command buffers in hosi memory are a multiple of 32 bytes, up to a maximum of 1K
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC by

writing to one of five “Command Buffer Address Registers.” These registers are defined as

follows:

Bits 31-5 Physical address in host memory of the command buffer.

Bits 4-0 Length of command buffer in bytes / 32 (i.e. number of multiples of 32
bytes).

This is the physical address of the command buffer. The register to which the command

is written predetermines the XMT interface number, or if the command is for the RCV CPU;

hence there will be 5 of them, 0 — 3 for XMT and 4 for RCV. When one of these registers has
been written, the INIC will add the contents of the register to it’s own internal queue of
command buffer descriptors. The first word of all command buffers is defined to be the
command buffer handle. It is the job of the utility CPU to extract a command from its local
queue, DMA the command into a small INIC buffer (from the FreeSType queue), and queue
that buffer into the Xmit#Type queue, where # is 0 — 3 depending on the interface, or the
appropriate RCV queue. The receiving CPU will service the queues to perform the commands.
When that CPU has completed a command, it extracts the command buffer handle and passes

it back to the host via a response buffer.

RESPONSE BUFFERS.
Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.
THhey are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. This field will initially be reset by the host before
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passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to
the INIC by the host writing to the “Response Buffer Address Register” on the INIC. This

register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
response buffers.
Bits 7-0 Number of response buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 128 buffers
to the INIC with one register write. The INIC will maintain a queue of these header
descriptors in it’s ResponseType queue, adding to the end of the queue every time the host
writes to the “Response Buffer Address Register”. The INIC writes the extracted contents
including the count, to the queue in exactly the same manner as for the header buffers.

'The response buffers can be used and returned to the host in the same order that they |
were given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be
generated to indicate that there is a response buffer for the host to process. When servicing
this interrupt, the host will look at its queue of response buffers, reading the valid field to

determine how many response buffers are to be processed.

INTERRUPT STATUS REGISTER / INTERRUPT MASK REGISTER.

Fig. 27 shows the general format of this register. The setting of any bits inthe ISR will
cause an interrupt, provided the corresponding bit in the Interrupt Mask Register is set. The
default setting for the IMR is 0. -

The INIC is configured so that the host should never need to directly read the ISR from
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host
memory into which the ISR is dumped. The address and size of that area ca be passed to the
INIC via a command on the XMT interface. That command will also specify the setting for the
IMR. Until the INIC receives this command, it will not DMA the ISR to host memory, and no
events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC
in this case. '

For the host to never have to actually read the register from the INIC itself, it is

- necessary for the INIC to update this host copy of the register whenever anything in it changes.

The host will Ack (or deassert) events in the register by writing the register with 0’s in
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appropriate bit fields. So that the host does not miss events, the following scheme has been
developed: ‘

The INIC keeps a local copy of the register whenever it DMAs it to the host i.e. after
some event(s). Call this COPYA Then the INIC starts accumulating any new events not
reflected in the host copy in a separate word. Call this NEWA. As the host clears bits by
writing the register back with those bits set to zero, the INIC clears these bits in COPYA (or
the host write-back goes directly to COPYA). If there are new events in NEWA, it ORs them
with COPYA, and DMAs this new ISR to the host. This new ISR then replaces COPYA,
NEWA is cleared and the cycle then repeats.

REGISTER ADDRESS.
For the sake of simplicity, in this example of Fig. 28 the registers are at 4-byte

increments from whatever the base address is.

ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.

This section outlines the design speciﬁcaﬁon for the Alacritech TCP (ATCP) transport
driver. The ATCP driver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.
This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the
driver.

2. At the top of the protocol stack we introduce an NT filter driver used to
intercept TDI requests destined for the Microsoft TCP driver.

3. At the bottom of the protocol stack we include an NDIS protocol-driver
interface which allows us to communicate with the INIC miniport NDIS driver beneath the
ATCEP driver. '

This section covers each of these topics, as well as issues common to the entire ATCP

driver.

CODING STYLE.

In order to ensure that our ATCP driver is written in a consistent manner, we have
adopted a set of coding guidelines. These guidelines are introduced with the philosophy that
we should write code in a Microsoft style since we are introducing an NT-based product. The
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guidelines below apply to all code that we introduce into our driver. Since a very large portion
of our ATCP driver will be based on FreeBSD, and since we are somewhat time-constrained
on our driver development, the ported FreeBSD code will be exempt from these guidelines.

1. Global symbols — All function names and global variables in the ATCP driver
should begin with the “ATK” prefix (ATKSend() for instance).

2. Variable names — Microsoft seems to use capital letters to separate multi-word
variable names instead of underscores (Variab]eName instead of variable name). We should
adhere to this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure
types are always capitals and they typedef a pointer to the structure as “P”<name> as follows:

typedef struct FOO {

INT bar;
} FOO, *PFOOQ;
We will adhere to this style.
4. Function calls — Microsoft separates function call arguments on separate lines:
X = foobar(
argument],
argument2,
);
We will adhere to this style.

5. Comments — While Microsoft seems to alternatively use // and /* */ comment
notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that
describe the function, its arguments, and its return value. We will also include these
comments, but will move them from within the function itself to just prior to the function for
better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when
defining function arguments. These keywords denote whether the function argument is used
as an input parameter, or alternatively as a placeholder for an output parameter. We will

include these keywords.
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8. . Function prototypes — We will include function prototypes in the most logical
header file corresponding to the .c file. For example, the prototype for function foo() found in
foo.c will be placed in foo.h.

9. Indentation — Microsoft codé fairly consistently uses a tabstop of 4. We will

5  dolikewise.
10.  Header file #ifndef - each header file should contain a #ifndef/#define/#endif
which is used to prevent recursive header file includes. For example, foo.h would include:
#ifndef _FOO H__
#define __ FOO_H__
10 <foo.h contents..>
#endif /* _ FOO H__ */
Note the _ NAME H - format.
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11. Each file must contain a comment at the beginning which includes the $1d$ as
follows: '
/*
* $1d$
*/
CVS (RCS) will expand this keyword to denote RCS revision, timestamps, author, etc.

SMP

This section describes the process by which we will make the ATCP driver SMP safe.
The basic rule for SMP kernel code is that any access to a memory variable must be protected
by a lock that prevents a competing access by code running on another processor. Spinlocks
are the normal locking method for code paths which do not take a long time to execute (and
which do not sleep.) _ ‘

In general each instance of a structure will include a spinlock, which must be acquired
before members of that structure are accessed, and held while a function is accessing that
instance of the structure. Structures which are logically grouped together may be protected by
a single spinlock: for example, the ‘in_pcb’ structure, ‘tcpeb’ structure, and ‘socket’ structure
which together constitute the administrative information for a TCP connection will probably ‘
be collectively managed by a single spinlock in the ‘socket’ structure.

In addition, every global data structure such as a list or hash table must also have a
protecting spinlock which must be held while the structure is being accessed or modified. The
NT DDK in fact provides a number of convenie_nt primitives for SMP-safe list manipulation;
and it is recommended that these be used for any new lists. Existing list manipulations. in the
FreeBSD code can probably be left as-is to minimize code disturbance, except of course that
the necessary spinlock acquisition and release must be added around them.

Spinlocksishould not be held for long periods of time, and most especially, must not be
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in the
NT kernel support for SMP systems: it does not provide an operation which allows a spinlock
to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX
environment where much of the processing occurs in the context of the user process which
initiated the operation. (The spinlock would have to be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)
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The NT approach is more asynchronous, however: IRPs are simply marked as
‘PENDING’ when an operation cannot be completed immediately. The calling thread does
NOT sleep at that point: it returns, and may go on with other processing. Pending IRPs are
later completed, not by waking up the thread which initiated them, but by an
“JoCompleteRequest” call which typically runs at DISPATCH level in an arbitrary context.

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver,

hoping the above issue will not arise.

DATA FLOW OVERVIEW.

The ATCP driver supports two paths for sending and receiving data, the fast-path and
the slow-path. The fast-path data flow corresponds to connections that are maintained on the
INIC, while slow-path traffic corresponds to network data for which the INIC does not have a
connection. In order to set some groundwork for the rest of this section, these two data paths

are summarized here.

FAST-PATH INPUT DATA FLOW.
There are 2 different cases fo consider:
1. NETBIOS traffic (identifiable by port number.)
2. Everything else.

NETBIOS INPUT.

As soon as the INIC has received a segment containing a NETBIOS header, it will
forward it up to the TCP driver, along with the NETBIOS length from the header. (In
principle the host could get this from the header itself, but since the INIC has already done the
decode, it seem reasonable to just pass it.)

From the TDI'spec, the amount of data in the buffer actually sent must be at least 128
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed .
directly by the TDI client without any further MDL exchange. Experiments tracing the TDI
data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the amount of
payload data in a single Ethernet frame. Thus the initial system specifies that the INIC will
indicate anything up to a complete segment to the ATCP driver. [See note (1)].
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Once the INIC has passed up an indication with an NETBIOS length greater than the
amount of data in the packet it passed, it will continue to accumulate further incoming data in
DRAM on the INIC. Overflow of INIC DRAM buffers will be avoided by using a receive‘
window on the INIC at this point, which can be 8K.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection,lpassing the actual size of the data in the packet
from the INIC as "bytes indicated" and the NETBIOS length as "bytes available." [See note
). _

In the "large data input" case, where "bytes available" exceeds the packet length, the
TDI client will then provide an MDL, associated with an IRP, which must be completed when
this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of the
receive handler, or as an explicit TDI_RECEIVE request.)

The ATCP driver will build a “receive request” from the MDL information, and pass
this to the INIC. This request will contain: |

1) The TCP context identifier; 2) Size and offset information; 3) A list of physical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to
identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must éopy any remaining data (which was not taken by the
receive handler) from the segment indicated by the INIC to the start of the MDL, and must
adjust the size & offset information in the request passed to the INIC to account for this.

The INIC will fill the given page(s) with incoming data up to the requested amount,
and respond to the ATCP driver when this is done [See note (3)]. If fhe MDL is large, the INIC
may open up its advertised receive window for improved throughput while filling the MDL.
On receiving the response from the INIC, the ATCP driver will complete the IRP associated
with this MDL, to tell the TDI client that the data is available. At this point the cycle of events

~ is complete, and the ATCP driver is now waiting for the next header indication.

OTHER TCP INPUT.
.In the general case we do not have a higher-level protocol header to enable us to
predict that more data is coming. So on non-NETBIOS connections, the INIC will just

accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, a
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maximum advertised window size, which may be 16K, will be used to prevent overflow of
INIC DRAM buffers.

. When the prescribed amount has been accumulated, or when a PSH flag is seen, the
INIC will indicate a small packet which may be 128 bytes of the data to the ATCP driver,
along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the packet
from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes available."

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated", the TDI client
will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to be
filled, as before. The INIC will reply to the ATCP driver, which in turn will complete the IRP
to the TDI client.

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K
and delay indicating to the ATCP driver until we have done so, a question arises regarding
further segments coming in, since INIC DRAM is a scarce resource. We do not want to ACK
with a zero-size window advertisement: this would cause the transmitting end to go into persist
state, which is bad for throughput. I'f the transmitting end is also our INIC, this results in
having to implement the persist timer on the INIC, which we do not wish to do. Instead for
large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the
MDL, and also, to avoid stopping the transmitting end, we will use a receive window of twice
the amount we will buffer before calling the host. Since the host comes back with the MDL

quite quickly (measured at < 100 microseconds), we do not expect to experience significant

. overruns.

INIC RECEIVE WINDOW UPDATES. : .

If the INIC “owns” an MDL provided by the TDI client (sent by ATCP as a receive
request), it will treat this as a “promise” by the TDI client to accept the data placed in it, and
may therefore ACK incoming data as it is filling the pages.

However, for small requests, there will be no MDL returned by the TDI client: it
absorbs all of the data directly in the receive callback function. We need to update the INIC’s

view of data which has been accepted, so that it can update its receive window. In order to be
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able to do this, the ATCP driver will accumulate a count of data which has been accepted by
the TDI client receive callback function for a connection.

From the INIC’s point of view, though, segments sent up to the ATCP driver are just
“thrown over the wall”; there is no explicit reply path. We will therefore “piggyback” the
update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data for that
connection, it will place this count in a field in the send request (and then clear the counter.)
Any receive request (passing a receive MDL to the INIC) may also be used to transport
window update info in the same way. .

Note: we will probably also need to design a message path whereby the ATCP driver
can explicitly send an update of this “bytes consumed” information (either when it exceeds a
preset threshold or if there are no requests going out to the INIC for more than a given time

interval), to allow for possible scenarios in which the data stream is entirely one-way.

NOTES.

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver to its client's callback
in this case is always 1460. The NETBIOS-aware TDI client presumably calculates the size of
the MDL it will return from the NETBIOS header. So strictly speaking we do not need the
NETBIOS header length at this point: just an indication that this is a header for a "large" size.
However, we *do* need an actual "bytes available" value for the non-NETBIOS case, so we
may as well pass it.

3) We observe that the PSH flag is set in the segment completing each NETBIOS transfer.
The INIC can use this to determine when the current transfer is comp]éte and the MDL should
be returned. It can, at least in a debug mode, sanity check the amount of received data against

what is expected, though.

FAST-PATH OUTPUT DATA FLOW.

The fast-path output data flow is similar to the input data-flow, but simpler. In this
case the TDI client will provide a MDL to the ATCP driver albng with an IRP to be completed
when the data is sent. The ATCP driver will then give a request (corresponding to the MDL)
to the INIC. This request will contain:
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1) The TCP context identifier; 2) Size and offset information; 3) A list of physical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to
identify the request-on completion; 5) “Piggybacked” window update information (as
discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the
corresponding network frames onto the network. When all of the data is sent, the INIC will
notify the host of the completion, and the ATCP driver will complete the IRP. |

Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, we will have
to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we will
port the FreeBSD protocol stack. In this mode, the INIC will be operating as a “dumb NIC”;
the packets which pass over the NDIS interface will just contain MAC-layer frames.

The MBUFs in the incoming direction will in fact be managing NDIS-allocated
packets. In the outgoing direction, we need protocol-allocated MBUFs in which to assemble
the data and headers. The MFREE macro must be cognizant of the various types of MBUFs,
and “do the right thing” for each type. '

We will retain a (modified) socket structure for each connection, containing the socket
buffer.ﬁelds expected by the FreeBSD code. The TCP code that operates on socket buffers
(adding/removing MBUFs to & from queues, indicating acknowledged & received data etc)
will remain essentially unchanged from the FreeBSD base (though most of the socket
functions & macros used to do this will need to be modified; these are the functions in
kern/uipc_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, instead of
sosend(), there will be a function that copies data from the MDL provided in a TDI_SEND call
into socket buffer MBUFs. Instead of soreceive(), there will be a handler that calls the TDI .
client receive callback function, and also copies data from socket buffer MBUFs into any
MDL provided by the TDI client (either explicitly with the callback response or as a separate

TDI_RECEIVE call.)
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We must note that there is a semantic difference between TDI_SEND and a write() on
a BSD socket. The latter may complete back to its caller as soon as the data has been copied
into the socket buffer. The completion of a TDI_SEND, however, implies that the data has
actually been sent on the connection. Thus we will need to keep the TDI_SEND IRPs (and
aésociated MDLs) in a queue on the socket until the TCP code indicates that the data from
them has been ACK’d. '

DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler
function registered. This has not been observed, but we can probably just ASSERT fora -
missing handler for the moment. If it should happen, however, we must assume that the TDI
client will be doing TDI_RECEIVE calls on the connection. If we can’t make a callup at the
time that the indication from the INIC appears, we can queue the data and handle it when a
TDI_RECEIVE does appear. |

2. 'NT has a notion of "canceling” IRPs. It is possible for us to get a "cancel" on an IRP
corresponding to an MDL which has been “handed” to the INIC by a send or receive request.
We can handle this by being able to force the context back off the INIC, since IRPs will only

get cancelled when the connection is being aborted.

CONTEXT PASSING BETWEEN ATCP AND INIC.
FROM ATCP TO INIC.

There is a synchronization problem that must be addressed here. The ATCP driver will
make a decision on a given connection that this connection should now be passed to the INIC.
It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is
not difficult; it simply pends and queues any new TDI_SEND requests and waits for any
unacknowledged slow path output data to be acknowledged before initiating the context pass
operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass
ina single command handshake, there is a window during which the ATCP driver has send the
context command, but the INIC has not yet seen this (or has not yet completed setting up its

context.) During fhis time, slow-path input data frames could arrive and be fed into the slow-
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path ATCP processing code. Should that happen, the context information which the ATCP .
driver passed to the INIC is no longer correct. We can simply abort the outward pass of the
context in this event, but it seems better to have a reliable handshake.

Therefore, the command to pass context from ATCP driver to INIC will be split into
two halves, and there will be a two-exchange handshake.

The initial command from ATCP to INIC expresses an “intention” to hand out the
context. It will include the source and destination IP addresses and ports, which will allow the
INIC to establish a “provisional” context. Once it has this “provisional” context in place, the
INIC will not send any more slow-path input frames for that src/dest IP/port combination (it
will queue them, if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows
that the INIC will send no more slow-path input. The ATCP dﬁver then waits for any
remaining unconsumed slow-path input data for this connection to be consumed by the client.
(Generally speaking there will be none, since the ATCP driver will not initiate a context pass
while there is unconsumed slow-path input data; the handshake is simply to close the
crossover window.)

Once any such data has been consumed, we know things are in a quiescent state. The
ATCEP driver can then send the second, “commit” command to hand out the context, with
confidence that the TCB values it is handing out (sequence numbers etc) are reliable. -

Note 1: it is conceivable that there might be situations in which the ATCP driver
decides, after having sent the original “intention” command, that the context is not to be
passed after all. (E.g. the local client issues a close.) So we must allow for the possibility that
the second command may be a “abort”, which should cause the INIC to deallocate and Iclear up
its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will gﬁarantee that only one context may
be in process of being handed out at a time: in other words, it will never issue another initial

“intention” command until it has completed the second half of the handshake for the first one.

FROM INIC TO ATCP.
There are two possible cases for this: a context transfer may be initiated either by the
ATCEP driver or by the INIC. However the machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
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message to the INIC specifying the context number to be flushed. Once the INIC receives
this, it will proceed with the same steps as for the case where the flush is initiated by the INIC
itself:

1) The INIC will send an error response to any current outstanding receive request it is
working on (corresponding to an MDL into which data is being placed.) Before sending the
response, it updates the receive command “length” field to reflect the amount of data which
has actually been placed in the MDL buffers at the time of the ﬂush. |

2) Likewise it will send an error response for any current send request, again reporting
the amount of data actually sent from the request.

3) The INIC will DMA the TCB for the context back to the host. (Note: part of the
information provided with a context must be the address of the TCB in the host.)

4) The INIC will send a “flush” indication to the host (very preferably via the regular
input path as a special type of frame) identifying the context which is being flushed. Sending
this indication via the regular input path ensures that it will arrive before any following slow-
path frames. |

At this point, the INIC is no longer doing fast-path processing, and any further
incoming frames for the connection will simply be sent to the host as raw frames for the slow
input path. The ATCP driver may not be able to complete the cleanup operations needed to
resume normal slow vpath processing immediately on receipt of the “flush frame”, since there
may be outstanding send and receive requests to which it has not yet received a response. If
this is the case, the ATCP driver must set a “pend incoming TCP frames” flag in its per-
connection context. The effect of this is to change the behavior of tcp_input(). This runs as a
function call in the context of ip_input(), and nonnally returns only when incoming frames
have been processed as far as possible (queued on the socket receive buffer or out-of-sequence
reassembly queue.) However, if there is a flush pending and we have not yet completed
resynchronization, we cannot do TCP processing and must instead queue input frames for TCP
on a “holding queue” for the connection, to be picked up later when context flush is complete
and normal slow path processing resumes. (This is why we want to send the “flush” indication
via the normal input path: so that we can ensure it is seen before any following frames of slow-
path input.)

Next we need to wait for any outstanding “send” requests to be errored off:
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1) The INIC maintains its context for the connection in a “zombie” state..As “send”
requests for this connection come out of the INIC queue, it sends error responses for them
back to the ATCP driver. (It is apparently difficult for the INIC to identify all command
requests for a given context; simpler for it to just continue processing them in order, detecting
ones that are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the number of outstanding requests it has sent to
the INIC. As error responses for these are received, it decrements this count, and when it
reaches zero, the ATCP driver sends a “flush complete” message to the INIC.

3) When the INIC receives the “flush complete” message, it dismantles its “zombie”
context. From the INIC perspective, the flush is now completed.

4) When the ATCP driver has received error responses for all outstanding requests, it
has all the information needed to complete its cleanup. This involves completing any IRPs
corresponding to requests which have entirely completed and adjusting fields in partially-
completed requests so that send and receive of slow path data will resume at the right point in
the byte streams. .

-5) Once all this cleanup is complete, the ATCP driver will loop pulling any “pended”
TCP input frames off the “pending queue” mentioned above and feeding them into the normal
TCP input processing. Once all input frames on this queue have been cleared off, the “pend
incoming TCP frames” flag can be cleared for the connection, and we are back to normal

slow-path processing.

FREEBSD PORTING SPECIFICATION.
The largest portion of the ATCP driver is either derived, or directly taken from the
FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this

code, the FreeBSD code itself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP
driver. It contains code to handle a variety of interface types and many different kinds of
protocols. To meet this requirement the code is often written in a sometimes confusing, over-
complex manner. Geﬁeral-pulpose structures are overlaid with other interface-specific

structures so that different interface types can coexist using the same general-purpose code.
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For our purposes much of this complexity is unnecessary since we are only supporting a single
interface type and a few specific protocols. It is therefore tempting to modify the code and
data structures in an effort to make it more readable, and perhaps a bit more efficient. There
are, however, some problems with doing this. First, the more we modify the original
FreeBSD, the more changes we will have to make. This is especially true with regard to data
structures. If we collapse two data structures into one we might improve the cleanliness of the
code a bit, but we will then have to modify every reference to that data structure in the entire
protocol stack. Another problem with attempting to “clean up” the code is that we might later
discover that we need something that we had previously thrown away. Finally, while we
might gain a small performance advantage in cleaning up the FreeBSD code, the FreeBSD
TCP code will mostly only run in the slow-path connections, which are not our primary focus.
Our priority is to get the slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep. the

data structures and code at close to the original FreeBSD implementation as possible. The

- code will be modified for the following reasons:

1) As reqliired for NT interaction — Obviously we can’t expect to.simply “drop-in” the
FreeBSD code as is. The interface of this code to the NT system will require some significant
code modifications. This will mostly occur at the topmost and bottommost portions of the
protocol stack, as well as the “ioct]” sections of the code. Modifications for SMP issues are
also needed.

2) Unnecessary code can be removed — While we will keep the code as close to the
original FreeBSD as possible, we will nonetheless re_mov.e code that will never be used (UDP

is a good example of this).

UNIX <> NT CONVERSION.

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These
include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc. These
will not be itemized in detail since the conversion to the corresponding NT calls is a fairly
trivial and mechanical operation. d

An area which will need non-trivial support redesign is MBUFs.
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NETWORK BUFFERS.

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers
are mapped using a combination of packet descriptors and buffer descriptors (the buffer
descriptors are really MDLs). There are a couple of problems with the Microsoft method.
First it does not provide the necessary fields which allow us to easily strip off protocol
headers. Second, converting all of the FreeBSD protocol code to speak in terms of buffer
descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our
own mbuf structures and remdp the NT packets as shown in Fig. 29.

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf
including the data pointer, which points to the current location of the data, data length fields
and flags. In addition each mbuf will point to the packet descriptor which is associated with
the data being mapped. Once an NT packet is mapped, our transport driver should never have
to refer to the packet or buffer descriptors for any information except when we are finished and
are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a
packet header should never be split across multiple buffers. Thus, we should never require the
equivalent of the “m_pullup” routine included in Unix. Also note that there are circumstances
in which we will be accepting data that will also be accepted by the Microsoft TCP/IP. One
such example of this is ARP frames. We will need to build our own ARP cache by looking at
ARP replies as they come off the network. Under these circumstances, it is absolutely
imperative that we do not modify the data, or the packet and buffer descriptors. We will
discuss this further in the following sections.

We will allocate a pool of mbuf headers at ATCP initialization time. It is important to
remember that unlike other NICs, we can not simply drop data if we run out of the system
resources required to manage/map the data. The reason for this is that we will be receiving
data from the card that has already been acknowledged by TCP. Because of this it is essential
that we never run out of mbuf headers. To solve this problem we will statically allocate mbuf
headers for the maximum number of buffers that we will ever allow to be outstandirig. By
doing so, the card will run out of buffers in which to put the data before we will run out of
mbufs, and as aresult, the card will be forced to drop data at the link layer instead of us
dropping it at the transport layer. DhXXX: as we’ve discussed, I don’t think this is really true

anymore. The INIC won’t ACK data until either it’s gotten a window update from ATCP to
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tell it the data’s been accepted, or it’s got an MDL. Thus it seems workable, though
undesirable, if we can’t accept a frame from the INIC & return an error to it saying it was not
taken.

We will also require a pool of actual mbufs (not just headers). These mbufs are
required in order to build transmit protocol headers for the slow-path data path, as well as
other miscellaneous purposes such as for building ARP requests. We will allocate a pool of
these at initialization time and we will add to this pool dynamically as needed. Unlike the
mbuf headers described above, which will be used to map acknowledged TCP data coming

from the card, the full mbufs will contain data that can be dropped if we can not get an mbuf.
THE CODE.
In this section we describe each section of the FreeBSD TCP/IP port. These sections

include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACE INITIALIZATION.

STRUCTURES.

There are a vaﬁety of structures, which represent a single interface in FreeBSD. These
structures include: ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr dl.
Fig. 30 shows the relationship between all of these structures: 7

_In the example of Fig. 30 we show a single interface with a MAC address of
00:60:97:DB:9B:A6 configured with an IP address of 192.100.1.2. As illustrated above, the
in_ifaddr.is actually an ifaddr structure with some extra fields tacked on to the end. Thus the
ifaddr structure is used to represent both a MAC address and an IP aadress. Similarly the
sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address type.
An interface can be configured to multiple IP addresses by simply chaining in_ifaddr
structures after the in_ifaddr structure shown in Fig. 30.

As mentioned in the Porting Philosophy section, many of the above structures could
likely be collapsed into fewer structures. In order to avoid making unnecessary modifications
to FreeBSD, for the time being we will leave these structures mostly as is. We will however
eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.
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We also show above a structure called iface. This is a structure that we define. It
contains the arpcom structure, which in turn contains the ifnet structure. It also contains fields
that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle used to call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeBSD initializes the above structures in two phases. First when a network interface
is found, the ifnet, arpcom, and first ifaddr structures are initialized first by the network layer
driver, and then via a call to the if_attach routine. The subsequent in_ifaddr structure(s) are

initialized when a user dynamically configures the interface. This occurs in the in_ioctl and

" the in_ifinit routines. Since NT allows dynamic configuration of a network interface we will

continue to perform the interface initialization in two phases, but we will consolidate these two

phases as described below:

IFINIT.

The IfInit routine will be called from the ATKProtocolBindAdapter function. The
IfInit function will initialize the Iface structure and associated arpcom and ifnet structures. It
will then allocate and initialize an ifaddr structure in which to contain link-level information
about the interface, and a sockaddr_dl structure to cdntain the interface name and MAC
address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs array (using
the if_index field of the ifnet structure) contained in the extended device object. IfInit will
then call IfConfig for each IP address that it finds in the registry entry for the interface.

IFCONFIG.

IfConfig is called to configure an IP address for a given interface. It is passed a pointer
to the ifnet structure for that interface along with all the information required to configure an
IP address for that interface (such as IP address, netmask and broadcast info, etc). IfConfig
will allocate an in_ifaddr structure to be used to configure the interface. It will chain it to the
total chain of in_ifaddr structures contained in the éxtended device object, and will then
configure the structure with the information given to it. After that it will add a static route for
the newly configured network and then broadcast a gratuitous ARP request to notify others of

our Mac/IP address and to detect duplicate IP addresses on the net.
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ARP.

We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the
FreeBSD ARP code is located in a file called if_ether.c. While the functionality of this file
will remain the same, we will rename it to a more logical arp.c. The main structures use\d by
ARP are the llinfo_arp structure énd the rtentry structure (actually part of route). These
structures will not require major modifications. The functions that will require modification

are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARP frame can either
be an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP
request on the network, while ARP replies are directed so we should only see ARP replies that
are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP
would reply to this ARP request with an ARP reply containing our MAC address. Since ARP
requests will also be passed up to the Microsoft TCP/IP driver, we need not reply. Note
however, that FreeBSD also creates or updates an ARP cache entry with the information
derived from the ARP request. It does this in anticipation of the fact that any host that wishes
to know our MAC address is likely to wish to talk to us soon. Since we will need to know his
MAC address in order to talk back, we might as well add the ARP information now rather than
issuing our own ARP request later.

2. ARP request trying to resolve someone else’s IP address — Since ARP requests are
broadcast, we see every one on the network. When we receive an ARP request of this type, we
simply check to see if we have an entry for the host that sent the request in our ARP cache. If
we do, we check to see if we still have the correct MAC address associated with that host. If it
is incorrect, we ﬁpdate our ARP cache entry. Note that we do not create a new ARP cache
entry in this case.

3. ARP reply - In this case we add the new ARP entry to our ARP cache. Having
resolved the address, we check to see if there is any transmit requests pending for the resolve

IP address, and if so, transmit them.
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Given the above three possibilities, the only major change to the in_arpinput code is
that we will remove the code which generates an ARP reply for ARP requests that are meant

for our interface.

" ARPINTR.

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We
will be calling in_arpinput directly from our ProtocolReceiveDPC routine (discussed in the

NDIS section below) so this function is not needed.

ARPWHOHAS.
This is a single line function that serves only as a wrapper around arprequest. We will

remove it and replace all calls to it with direct calls to arprequest.

ARPREQUEST.

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it
down to the ethernet output routine to be transmitted. For us, the code remains essentially the
same except for the obvious changes related to how we allocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interface is initialized to broadcast a gratuitous ARP
request (described in the interface initialization section) and to set some ARP related fields in
the ifaddr structure for the interface. We will simply mové this functionality into the interface

initialization code and remove this function.

ARPTIMER.

This is a timer-based function that is called every 5 minutes to walk through the ARP
table looking for entries that have timed out. Although the time-out period for FreeBSD is 20
minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can
modify this value or delete the timer altogether to suit our needs. Either way the function
won’t require any major changes. All other functions in if_ether.c will not require any major

changes.
85

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 091



ALA-006K ‘ : Express Mail No. EV 406928085 US

10

15

20

25

30

ROUTE.
| On first thought, it might seem that we have no need for routing support since our

ATCP driver will only receive IP datagrams whose destination IP address matches that of one
of our own interfaces. Therefore, we will not “route” from one interface to another. Instead,
the MICROSOFT TCP/IP driver will provide that service. We will, however, need to maintain
an up-to-date routing table so that we know a) whether an outgoing connection belongs to one
of our interfaces, b) to which interface it belongs, and c) what the first-hop IP address
(gateway) is if the destination is not on the local network.

We discuss four aspects on the subject of routing in this section. They are as follows:

1. The mechanics of how routing information is stored.

2. The manner in which routes are added or deleted from the route table.
3. When and how route information is retrieved from the route table.
4

. Notification of route table changes to interested parties.

THE ROUTE TABLE.

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA
(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated
algorithm that is a bit costly to set up, but is very efficient to reference. Since the réuting table
should contain the same information for both NT and FreeBSD, and since the key used to
search for an entry in the routing table will be the same for each (the destination IP address),
we should be able to port the routing table software to NT without aﬁy major changes.

The software which implements the route table (via the PATRICIA algorithm) is
located in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with

no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added of deleted in a number of different ways. The kernel adds or
deletes routes when the state of an interface. changes or when an ICMP redirect is received.
User space programs such as the RIP daemon, or the route command also modify the route

table.
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For kernel-based route changes, the changes can be made by a direct call to the routing
software. The FreeBSD software that is responsible for the modification of route table entries
is found in route.c. The primary routine for all route table changes is called rtrequest(). It
takes as ifs arguments, the request type (ADD, RESOLVE, DELETE), the destination IP
address for the route, the gateway for the route, the netmask for the route, the flags for the
route, and a pointer to the route structure (struct rtentry) in which we will place the added or
resolved route. Other routines in the route.c file include rtinit(), which is called during
interface initialization time to add a static route to the network, rtredirect, which is called by
ICMP when we receive a ICMP redirect, and an assortment of support routines used for the
modification of route table entries. All of these routines found in route.c will be ported with
no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route
changes are sent down to the kernel from user-space applications via é special route socket.
This code is found in the FreeBSD file, rtsock.c. Obviously this will not work for our ATCP
driver. Instead the filter driver portion of our driver will intercept route changes destined for
the Microsoft TCP driver and will apply those modifications to our own route table via the
rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddr_in) expected by the rtrequest routine.

vaviously, none of the code from rtsock.c will be ported to the ATCP driver. This same

procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FreeBSD, the route table is consulted in ip_output when an IP datagram is being
sent. In order to avoid a complete route table search for every outgoing datagram, the route is
stored into the in_pcb for the connection. For subsequent calls to ip_output, the route entry is
then simply checked to ensure validity. While we will keep this basic operation as is, we will
require a slight modification to allow us to coexist with the Microsoft TCP driver. When an
active connection is being set up, our filter driver will have to determine whether the
connection is.going to be handled by one of the INIC interfaces. To do this, we will have to
consult the route table from the filter driver portion of our driver. This is done via a call to the

rtallocl function (found in route.c). If a valid route table entry is found, then we will take
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control of the connection and set a pointer to the rtentry structure returned by rtallocl in our

in_pcb structure.

WHAT TO DO WHEN A ROUTE CHANGES.

When a route table entry changes, there may be connections that have pointers to a
stale route table entry. These connections will need to be notified of the new route. FreeBSD
solves this by checking the validity of a route entry during every call to ip_output. If the entry
is no longer valid, its reference to the stale route table entry is removed, and an attemptis
made to allocate a new route to the destination. For our slow path, this will work fine.
Unfortunately, since our IP processing is handled by the INIC for our fast path, this sanity
check method will not be sufficient. Instead, we will need to perform a review of all of our
fast path connections during every route table modification. If the route table change affects
our connection, we will need to advise the INIC with a new first-hop address, or if the
destination is no longer reachable, close the connection entirely.

ICMP. !

Like the ARP code above; we will need to process certain types of incoming ICMP
frames. Of the 10 possible ICMP message types, there are only three that we need to support.
These include ICMP_REDIRECT, ICMP_UNREACH, and ICMP_SOURCEQUENCH. Any
FreeBSD code to deal with other types of ICMP traffic will be removed. Instead, we will
simply return NDIS_STATUS_NOT_ACCEPTED for all but the above ICMP frame types.

This section describes how we will handle these ICMP frames.

ICMP_REDIRECT.

Under FreeBSD, an ICMP_REDIRECT causes two things to occur. First, it causes the
route table to be updated with the route given in the redirect. Second, it results in a call back
to TCP to cause TCP to flush the route entry attached to its associated in_pcb structures. By
doing this, it forces ip_output to search for a new route. As mentioned in the Route section
above, we will also fequire acalltoa routine which will review all of the TCP fast-path
connections, and update the route entries as needed (in this case because the route entry has

been zeroed). The INIC will then be notified of the route changes.
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ICMP_UNREACH.
In both FreeBSD and Microsoft TCP, the ICMP_UNREACH results in no more than a

simple statistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quench is sent to cause a TCP sender to close its congestion window to a
single segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD
code as-is for slow-path connections. For fast path connections we will send a notification to
the card that the congestion window for the given connection has been reduced. The INIC will

then be responsible for the slow-start algorithm.

IP.
The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

IP INITIALIZATION.

During initialization time, ip_init is called to initialize the array of protosw structures.
These structures contain all the information needed by IP to be able to pass incoming data to
the correct protocol above it. For example, when a UDP datagram arrives, IP locates the
protosw entry corresponding to the UDP protocol type value (0x11) and calls the input routine
specified in that protosw entry. We will keep the array of protosw structures intact, but since
we are only handling the TCP and ICMP protocols above IP, we will strip the protosw array

down substantially.

IP INPUT.

Following are the changes required for IP input (function ip_intr()).

NO IP FORWARDING.
Since we will only be handling datagrams for which we are the final destination, we
should never be required to forward an IP datagram. All references to IP forwarding, and the

ip_forward function itself, can be removed.
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IP OPTIONS.

The only options supported by FreeBSD at this time include record route, strict and
loose source and record route, and timestamp. For the timestamp opﬁon, FreeBSD only logs
the current time into the IP header so that before it is forwarded. Since we will not be
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the
remaining options, NT essentially does nothing useful with them. For the moment, we will not

bother dealing with IP options. They will be added in later if needed.

IP REASSEMBLY.

There is a small problem with the FreeBSD IP reassembly code. The reassembly code
reuses the IP header portionvof the IP datagram to contain IP reassembly queue information. It
can do this because it no longer requires the original IP header. This is an absolute no-no with
the NDIS 4.0 method of handling network packets. The NT DDK explicitly states that we
must not modify packets given to us by NDIS. This is not the only place in which the
FreeBSD code mddiﬁes the contents of a network buffer. It also does this when performing
endian conversions. At the moment we will leave this codé as is and violate the DDK rules.
We believe we can do this because we are going to ensure that no other transport driver looks
at these frames. If this becomes a problem we will have to modify this code substantially by.

moving the IP reassembly fields into the mbuf header.

IP OUTPUT.

There are only two modifications required for IP output. The first is that since, for the
moment, we are not dealing with IP options, there is no need for the code that inserts the IP
options into the IP header. Second, we may discover that it is impossible for us to ever receive
an output request that requires fragmentation. Since TCP performs Maximum Segment Size
negotiation, we should theoretically never attempt to send a TCP segment larger than the
MTU.

NDIS PROTOCOL DRIVER.
This section defines protocol driver portion of the ATCP driver. The protocol driver
portion of the ATCP driver is defined by the set of routines registered with NDIS via a call to

NdisRegisterProtocol. These routines are limited to those that are called (indirectly) by the
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INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so
that when the INIC driver calls NdisMIndicateR eceivePacket it will result in a call from NDIS
to our driver. Strictly speaking, the protocol driver portion of our driver does not include the
method by which our driver calls down to the miniport (for example, the method by which we
send network packets). Nevertheless, we will describe that method here for lack of a better
place to put it. That said, we cover the following topics in this section of the document: 1)
Initialization; 2) Receive; 3) Transmit; 4) Query/Set Information; 5) Status indications;

6) Reset; and 7) Halt.

INITIALIZATION.

The protocol driver initialization occurs in two phases. The first phase occurs when the
ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs the
following: |

1. Allocate resources — We attempt to allocate many of the required resources as soon
as possible so that we are more likely to get the memory we want. This mostly applies to
allocating and initializing our mbuf and mbuf header pools.

2. Register Protocol — We call NdisRegisterProtocol to register our set of protocol
driver routines.

3. Locate and initialize bound NICs — We read the Linkage parameters of the registry
to determine which NIC devices we are bound to. For each of these devices we allocate and
initialize a IFACE structure (defined above). We then read the TCP parameters out of the
registry for each bound device and set the corresponding fields in the IFACE structure.

After the underlying INIC devices have completed their initialization, NDIS will call
our driver’s ATKBindAdapter function for each underlying device. It will perform the
following: ’

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACE structure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter information. This includes such things as link speed
and MAC address. Save relevant information in the IFACE structure.

4. Perform the interface initialization as specified in the section on Interface

Initialization.
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RECEIVE.
Receive is handled by the protocol driver routine ATKReceivePacket. Before we
describe this routine, it is important to consider each possible receive type and how it will be

handled.

RECEIVE OVERVIEW. -

Our INIC miniport driver will be bound to our transport driver as wéll as the generic
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively to
INIC devices, while the Microsoft TCP driver will be Bound to INIC devices as well as other
types of NICs. This is illustrated in Fig. 31. By binding the driver in this fashion, we can
choose to direct incoming network data to our own ATCP transport driver, the Microsoft TCP
driver, or both. We do this by playing with the ethernet “type” field as follows.

. To NDIS and the transport drivers above it, our card is going to be registered as a
normal ethernet card. When a transport driver receives a packet from ouf driver, it will expect
the data to start with an ethernet header, and consequently, expects the protocol type field to be
in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to either IP,
or ARP, it will not accept the packet. So, to deliver an incoming packet to our driver, we must
simply map the data such that byte 12 contains a non-recognized ethemet type field. Note that
we must choose a value that is greater than 1500 bytes so that the transport drivers do not
confuse it with an 802.3 frame. We must also choose a value that will not be accepted by
other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to
Microsoft TCP, we can then simply leave the ethernet type field set to IP (or ARP). Note that
since we will also see these frames we can choose to accept or not-accept them as necessary.
Incoming packets are delivered as follows:

A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-
path frames and fast-path frames. In the slow-path case, the TCP frames are given in there
entirety (headers included). In the fast-path case, the ATKReceivePacket is given a header
buffer that contains status information and data with no headers (except those above TCP).
More on this later. ,

B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-T.CP packets.
92

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 098



ALA-006K . Express Mail No. EV 406928085 US

10

15

20

25

30

2. All packets that are not destined for one of our interfaces (packets that will be
routed). Continuing the above example, if there is an IP address 144.48.252.4 associated with
the 3com interface, and we receive a TCP connect with a destination IP address of
144.48.252.4, we will actually want to send that request up to the ATCP driver so that we
create a fast-path connection for it. This means that we will need to know every IP address in
the system and filter frames based on the destination IP address in a given TCP datagram.
This can be done in the INIC miniport driver. Since it will be the ATCP driver that learns of
dynamic IP address changes in the system, we will need a method to notify the INIC miniport
of all the IP addresses in the system. More on this later.

C. Packets delivered to both:
1. All ARP frames.
2. All ICMP frames.

TWO TYPES OF RECEIVE PACKETS.
There are several circumstances in which the INIC will need to indicate extra

information about a receive packet to the ATCP driver. One such example is a fast path

receive in which the ATCP driver will need to be notified of how much data the card has

buffered. To accomplish this, the first (and sometimes only) buffer in a received packet will
actually be an INIC header buffer. The header buffer contains status information about the
receive packet, and may or may not contain network data as well. The ATCP driver will
recognize a header buffer by mapping it to an ethernet frame and inspecting the type field
found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames
that are destined for both our driver and the Microsoft TCP driver (ARP, ICMP) will be
indicated without a header buffer. Fig. 32 shows an example of an incoming TCP packet. Fig.

33 shows an example of an incoming ARP frame.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIS has been designed such that all packets indicated via
NdisMIndicateReceivePacket by an underlying miniport are delivered to the
ProtocolReceivePacket routine for all protocol drivers bound to it. These protocol drivers can
choose to accept or not accept the data. They can either accept the data by copying the data

out of the packet indicated to it, or alternatively they can keep the packet and return it later via
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protocol driver to accept a given packet. For this reason, when a packet is delivered to a
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all be
treated as read-only. At the moment, we intend to violate’this rule. We choose to violate this
because much of the FreeBSD code modifies the packet headers as it examines them (mostly
for endian conversion purposes). Rather than modify all of the FreeBSD code, we will instead
ensure that no other transport driver accepts the data by making sure that the ethernet type field
is unique to us (no one else will want it). Obviously this only works With data that is only
delivered to our ATCP driver. For ARP and ICMP frames we will instead copy the data out of
the packet into our own buffer and return the packet to NDIS directly. While this is less
efficient than keeping the data and returning it later, ARP and ICMP traffic should be small
enough, and infrequent enough, that it doesn’t matter.

The DDK specifies that when a protocol driver chooses to keep a packet, it should
return a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then
later returned to NDIS via the call to NdisReturnPackets. This can only happen after the
ProtocolReceivePacket has returned control to NDIS. This requires that the call to
NdisReturnPackets must occur in a different execution context. We can accomplish this by
scheduling a DPC, scheduling a systeni thread, or scheduling a kernel thread of our own. For
brevity in this section, we will assume it is a done through a DPC. In any case, we will require
a queue of pending receive buffers on which to place and fetch receive packets.

After a receive packet is dequeued by the DPC it is then either passed to TCP directly
for fast-path processing, or it is sent through the FreeBSD path for slow-path processing. Note
that in the case of slow-path processing, we may be working on data that needs to be returned
to NDIS (TCP data) or we may be working on our own copy of the data (ARP and ICMP).
When we finish with the data we will need to figure out whether or not to return the data to
NDIS or not. This will be done via fields in the mbuf header used to map the data. When the
mfreem routine is called to free a chain of mbufs, the fields in the mbuf will be cl}ecked and, if

required, the packet descriptor pointed to by the mbuf will be returned to NDIS.
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MBUF < PACKET MAPPING.

As noted in the section on mbufs above, we will map incoming data to mbufs so that
our FreeBSD port requires fewer modifications. Depending on the type of data received, this
mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data for a TCP fast-path connection. In this example,
the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf
and sent upstream for fast-path TCP processing. In this case it is required that the header
buffer be mapped and sent upstream because the fast-path TCP code will need information
contained in the header buffer in order to perform the processing. When the mbuf in this
example is freed, the mfreem routine will determine that the mbuf maps a packet that is owned
by NDIS and will then free the mbuf header only and call NdisReturnPackets to free the data.

In Fig. 34B, we show incoming data for a TCP slow-path connection. In this example
the mbuf points to the start of the TCP data directly instead of the header buffer. Since this
buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf pointing to
a header buffer (FreeBSD would get awfully confused). Again, when mfreem is called to free
the mbuf, it will discover the mapped packet, free the mbuf header, and call NDIS to free the
packet and return the underlying buffers. Note that even though we do not directly map the
header buffer with the mbuf we do not lose it because of the link from the packet descriptor.
Note also that we could alternatively have the INIC miniport driver only pass us the TCP data
buffer when it receives a slow-path receive. This would work fine except that we have
determined that even in the case of slow-path connections we are going to attempt to offer
some assistance to the host TCP driver (most likely by checksum processing only). In this
case there may be some special fields that we need to pass up to the ATCP driver from the
INIC driver. Leaving the header buffer connected seems the most logical way to do this.

Finally, in Fig. 34C, we show a received ARP frame. Recall that for incoming ARP
and ICMP frames we are going to copy the incoming data out of the packet and return it
directly to NDIS. In this case the mbuf simply points to our data, with no corresponding
packet descriptor. When we free this mbuf, mfreem will discover this énd free not only the

mbuf header, but the data as well. -
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OTHER RECEIVE PACKETS.

We use this receive mechanism for other purposes besides the reception of network
data. It is also used as a method of communication between the ATCP driver and the INIC.
One such gxamp]e is a TCP context flush from the INIC. When the INIC determines,. for
whatever reason, that it can no longer manage a TCP connection, it must flush that connection
to the ATCP driver. It will do this by filling in a header buffer with appropriate status and
delivering it to the INIC driver. The INIC driver will in turn deliver it to the protocol driver
which will treat it essentially like a fast-path TCP connection by mapbing the header buffer
with an mbuf header and delivering it to TCP for fast-path processing. There are two
advantages to communicating in this manner. First, it is already an established path, so no
extra coding or testing is required. Second, since a context flush comes in; in the same manner
as received frames, it will prevent us from getting a slow-path frame before the context has

been flushed.

SUMMARY
Having covered all of the various types of receive data, following are the steps that are
taken by the ATKProtocolReceivePacket routine.

1. Map incoming data to an ethernet frame and check the type field;

2. If the type field contains our custom INIC type then it should be TCP;

3. If the header buffer specifies a fast-path connection, allocate one or more mbufs headers
to map the header and possibly data buffers. Set the packet descriptor field of the mbuf
to point to the packet descriptor, set the mbuf flags appropriately, queue the mbﬁf, and
return 1; '

4. If the header buffer épeciﬁes a slow-path connection, allocate a single mbuf header to
map the network data, set the mbuf fields to map the packet, queue the mbuf and return
1. Note that we design the INIC such that we will never get a TCP segment split across
more than one buffer;

5. If the type field of the frame indicates ARP or ICMP;

"~ 6. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.
Queue the mbuf, and return 0 (not accepted); and

7. If the type field is not either the INIC type, ARP or ICMP, we don’t want it. Return 0.
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The receive processing will continue when the mbufs are dequeued. At the moment
this is done by a routine called ATKProtocolReceiveDPC. It will do the following:
1. Dequeue a mbuf from the queue; and
2. Inspect the mbuf flags. If the mbufis meant for fast-path TCP, it will call the fast-path
routine directly. Otherwise it will call the ethernet input routine for slow-path

processing.

TRANSMIT.

In this section we discuss the ATCP transmit path.

NDIS 4 SEND OPERATION.

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes
to send one or more packets down to an NDIS 4 mihiport driver, it calls NdisSendPackets with
an array of packet descriptors to send. As soon as this routine is called, the transport/protocol
driver relinquishes ownership of the packets until they are returned, one by one in any order,
via a NDIS call to the ProtocolSendComplete routine. Since this routiﬁe is called
asynchronously, our ATCP driver must save any required context into the packet descriptor
header so that the appropriate resources can be freed. This is discussed further in the

following sections.

TYPES OF “SENDS”.
Like the Receive path described above, the transmit path is used not only to send
network data, but is also used as a communication mechanism between the host and the INIC.

Here are some examples of the types of sends performed by the ATCP driver.

FAST-PATH TCP SEND.

 When the ATCP driver receives a transmit request with an associated MDL, it will
package up the MDL physical addresses into a command buffer, map the command buffer
with a buffer and packet descriptor, and call NdisSendPackets with the-co.rresponding packet.
The underlying INIC driver will issue the command buffer to the INIC. When the
corresponding response buffer is given back to the host, fhe INIC miniport will call
NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete
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(ATKSendComplete) routine, at which point the resources associated with the send can be

freed. We will allocate and use a mbuf to hold the command buffer. By doing this we can

store the context necessary in order to clean up after the send completes. This context includes

a pointer to the MDL and presumably some other connection context as well. The other
advantage to using a mbuf to hold the command buffer is that it eliminates having another
special set of code to allocate and return command buffer. We will store a pointer to the mbuf
in the reserved section of the packet descriptor so we can locate it when the send is complete.
Fig. 35 illustrates the relationship between the client’s MDL, the command buffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

As described in the Fast-Path Input Data Flow section above, the receive process
typically occurs in two phases. First the INIC fills in a host receive buffer with a relatively
small amount of data, but notifies the host of a large amount of pending data (either through a
large amount of buffered data on the card, or through a large amount of expected NetBios
data). This small amount of data is deiivered to the client through the TDI interface. The
client will then respond with a MDL in which the data should be placed. Like the Fast-path
TCP send process, the receive portion of the ATCP driver will then fill in a command buffer
with the MDL information from the client, map the buffer with packet and buffer descriptors
and send it to the INIC via a call to NdisSendPackets. Again, when the response buffer is
returned to the INIC miniport, the ATKSendComplete routine will be called and the receive
will complete. This relationship between the MDL, command buffer and buffer and packet

descriptors are the same as shown in the Fast-path send section above.

SLOW-PATH (FREEBSD). _

Slow-path sends pass through the FreeBSD stack until the ethernet header is prepended
in ether_output and the packet is ready to be sent. At this point a command buffer will be
filled with pointers to the ethernet frame, ‘the command buffer will be mapped with a packet
and buffer descriptor and NdisSendPackets will be called to hand the packet off to the
miniport. Fig. 36 shows the relationship between the mbufs, command buffer, and buffer and

packet descriptors. Since we will use a mbuf to map the command buffer, we can simply link
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the data mbufs directly off of the command buffer mbuf. This will make the freeing of

resources much simpler.

NON-DATA COMMAND BUFFER.

5 The transmit path is also used to send non-data commands to the card. As shown in
Fig. 37, for example, the ATCP driver gives a context to the INIC by filling in a command.
buffer, mapping it with a packet and buffer descriptor, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.

10 Given the above different types of sends, the ATKProtocolSendComplete routine will
perform various types of actions when it is called from NDIS. First it must examine the
reserved area of the packet descriptor to determine what type of request has completed. In the
case of a slow-path completion, it can simply free the mbufs, command buffer, and descriptors
and return. In the case of a fast-path completion, it will need to notify the TCP fast path

15 routines of the completion so TCP can in turn complete the client’s IRP. Similarly, when a
non-data command buffer completes, TCP will again be notified that the command sent to the
INIC has completed.

TDI FILTER DRIVER. _

20 In a first embodiment of the product, the INIC handles only simple-case data transfer
operations on a TCP connection. (These of course constitute the large majority of CPU cycles
consumed by TCP processing in a conventional driver.)

' There are many other complexities of the TCP protocol which must still be handled by
host driver software: connection setup and breakdown, out-of-order data, nonstandard flags,

25  etc.

The NT OS contains a fully functional TCP/IP driver, and one solution would be to
enhance this-so that it is able to detect our INIC and take advantage of it by "handing off" data-
path processing where appropriate.

Unfortunateiy, we do not have access to NT source, let alone permission to-modify NT.

30  Thus the solution above, while a goal, cannot be done immediately. We instead provide our
own custom driver software on the host for those parts of TCP processing which are not

handled by the INIC.
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This presents a challenge. The NT network driver framework does make provision for

multiple types of protocol driver: but it does not easily allow for multiple instances of drivers

handling the SAME protocol. _

For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow
for routing of IP packets between our driver (handling our INICs) and the Microsoft driver
(handling other NICs).

Our approach to this is to retain the Microsoft driver for all non-TCP network
processing (even for traffic on our INICs), but to invisibly "steal" TCP traffic on our
connections and handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driver is
unaware of TCP connections on interfaces we handle.

The network "bottom end" of this artifice is described earlier in the document. In this
section we will discuss the "top end": the TDI interface to higher-level NT network client
software.

We make use of an NT facility called a filter driver. NT allows a special type of driver
("filter driver") to attach itself "on top" of another drivver in the system. The NT I/O manager
then arranges that all requests directed to the attached driver are sent first to the filter driver;
this arrangement is invisible to the rest of the system.

The filter driver may then either handle these requests itself, or pass them down to the
underlying driver it is attached to. Provided the filter driver completely replicates the
(externally visible) behavior of the underlying driver when it handles requests itself, the
existence of the filter driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the
basic mechanism whereby we can intercept requests for TCP operations and handle them in
our driver instead of the Microsoft driver.

However, while the filter drfver concept gives us a framework for what we want to
achieve, there are some significant technical problems to be solved.. The basic issue is that
setting up a TCP connection involves a sequence of several requests from higher-level
software, and it is not always possible to tell, for requests early in this sequence, whether the
connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we need it later,
but also allow the request to be passed down to the Microsoft TCP/IP driver in case the

connection ultimately turns out to be one which that driver should handle.
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Let us look at this in more detail, which will involve some examination of the TDI
interface: the NT interface into the top end of NT network protocol drivers. Higher-level TDI
client software which requires services from a protocol driver proceeds by creating various
types of NT FILE _OBJECTs, and then making various DEVICE IO CONTROL requests on
these FILE_OBJECTs.

There are two types of FILE_OBJECT of interest here. Local IP addresses that are
represented by ADDRESS objects, and TCP connections that are represented by

'CONNECTION objects. The steps involved in setting up a TCP connection (from the "active"

client side, for a CONNECTION object) are:

1) Create an ADDRESS object; 2) Create a CONNECTION object; 3) Issue a
TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION object with the
ADDRESS object; and 4) Issue a TDI_ CONNECT io-control on the CONNECTION object,
specifying the remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we would tell, on the
basis of the address given when creating the ADDRESS object, whether the connection is for
one of our interfaces or not. After which, it would be easy to arrange for handling entirely by
our code, or entirely by the Microsoft code: we would simply examine the ADDRESS object
to see if it was "one of ours" or not.

There are two main difficulties, however. First, when the CONNECTION object is
created, no address is specified: it acquires a local address only later when the
TDI_ASSOCIATE_ADDRESS is done. Also, when a CONNECTION object is created, the
caller supplies an opaque "context cookie" whiéh will be needed for later communications
with that caller. Storage of this cookie is the responsibility of the protocol driver: it'is not
directly derivable just by examination of the CONNECTION object itself. If we simply
passed the "create" call down to the Microsoft TCP/IP driver, we would have no way of
obtaining this cookie later if it turns out that we need to handle the connection. Therefore, for
every CONNECTION object which is created we allocate a structure to keep track of
information about it, and store this structure in a hash table keyed by the address of the
CONNECTION object itself, so that we can locate it if we later need to process requests on
this object. We refer to this as a "shadow" object: it replicates information about the object
stored in the Microsoft driver. (We must, of course, also pass the create request down to the

Microsoft driver too, to allow it to set up its own administrative information about the object.)
101

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 107



ALA-006K - ' Express Mail No. EV 406928085 US

10

15

20

25

30

A second major difficulty arises with ADDRESS objects. These are often created with
the TCP/IP "wildcard" address (all zeros); the actual local address is assigned only later during
connection setup (by the protocol driver itself.) Of course, a "wildcard" address.does not
allow us to determine whether connections that will be associated with this ADDRESS object
should be handled by our driver or by the Microsoft one. Also, as with CONNECTION
objects, there is "opaque" data associated with ADDRESS objects that cannot be derived just
from examination of the object itself. (In this case addresses of callback functions set on the
object by TDI_SET EVENT io-controls.)

Thus, as in the CONNECTION object case, we create a "shadow" object for each
ADDRESS object which is created with a wildcard address. In this we store information
(principally addresses of callback functions) which we will need if we are handling
connections on CONNECTION objects associated with this ADDRESS object. We store
similar information, of course, for any ADDRESS object which is explicitly for one of our
interface addresses; in this case we don't need to also pass the create request down to the
Microsoft driver.

 With this concept of "shadow" objects in place, let us revisit the steps involved in
setting up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is
a "wildcard" address, we create a "shadow" object before passing the call down to the
Microsoft driver.

The next step (omitted in the earlier list for brevity) is normally that the client makes a
number of TDI_SET EVENT io-control calls to associate various callback functions with the
ADDRESS object. These are functions that should be called to notify the TDI client when
certain events (such arrival of data or disconnection requests etc) occur. We store these
callback function pointers in our "shadow" address object, before passing the call down to the
Microsoft driver.

Next, the TDI client makes a call to create a CONNECTION object. Again, we create
our "shadow" of this object.

Next, the client issues the TDI_ASSOCIATE ADDRESS io-control to bind the
CONNECTION object to the ADDRESS object. We note the association in our "shadow"

objects, and also pass the call down to the Microsoft driver.
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Finally the TDI client issues a TDI_CONNECT io-control on the CONNECTION
object, specifying the remote IP address (and port) for the desired connection. At this point,
we examine our routing tables to determine if this connection should be handled by one of our

interfaces, or by some other NIC. Ifit is ours, we mark the CONNECTION object as "one of

ours" for future reference (using an opaque field which NT FILE_OBJECTS provide for driver

use.) We then proceed with connection setup and handling in our driver, using information
stored in our "shadow" objects. The Microsoft driver does not see the connection request or
any subsequent traffic on the connection. . ‘
If the connection request is NOT for one of our interfaces, we pass it down to the
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow"
objects at this point. The TDI interface allows re-use of CONNECTION objects: on
termination of a connection, it is legal for the TDI client to dissociate the CONNECTION
object from its current . Thus our "shadow" objects must be retained for the lifetime
ADDRESS object, re-associate it with another, and use it for another connection of the NT

FILE_OBJECTS: the subsequent connection could turn out to be via one of our interfaces.

TIMERS.
KEEPALIVE TIMER.
We don’t want to implement keepalive timers on the INIC. It would in any casebea

very poor use of resources to have an INIC context sitting idle for two hours.

IDLE TIMER.

We will keep an idle timer in the ATCP driver for connections that are managed by the
INIC (resetting it whenever we see activity on the connection), and cause a flush of context
bapk to the host if this timer expires. We may want to make the threshold substantially lower
than 2 hours, to reclaim INIC context slots for useful work sooner. May also want to make
that dependent on the number of contexts which have actually been handed out: don’t need to

reclaim them if we haven’t handed out the max.

RECEIVE AND TRANSMIT MICROCODE DESIGN.
This section provides a general description of the design of the microcode that will

execute on two of the sequencers of the Protocol Processor on the INIC. The overall
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philosophy of the INIC is discussed in other sections. This section will discuss the INIC

microcode in detail.

DESIGN OVERVIEW.

As specified in other sections, the INIC supplies a set of 3 custom processors that will
provide considerable hardware-assist to the microcode running thereon. The paragraphs
immediately following list the main hardware-assist features:

1) Header processing with specialized DMA engines to validate an input header and
generate a context hash, move the header into fast memory and do header comparisons on a
DRAM-based TCP control block;

2) DRAM fifos for free buffer queues (large & small), receive-frame queues, event
queues etc.;

3) Header compare logic;

4) Checksum generation;

5) Multiple register contexts with register access controlled by simply setting a context
register. The Protocol Processor will provide 512 SRAM-based ;egisters to be shared among
the 3 sequencers;

6) Automatic movement of input frames into DRAM buffers from the MAC Fifos;

7) Run receive processing on one sequencer and transmit processing on the other. This
was chosen as opposed to letting both sequencers run receive and transmit. One of the main
reasons for this is that the header-processing hardware can not be shared and interlocks wouid
be needed to do this. Another reason is that interlocks would be needed on the resources used
exclusively by receive and by transmit;

8) The INIC will support up to 256 TCP connections (TCB’s). A TCB is associated
with an input frame when the frame’s source and destination IP addresses and source and
destination ports match that of the TCB. For speed of access, the TCB’s will be maintained in -
a hash table in NIC DRAM to save sequential searching. There will however, be an index in
hash order in SRAM. Once a hash has been generated, the TCB will be cached in SRAM.
There will be up to 8 cached TCBs in SRAM. These cache locations can be shared between
both sequencers so that the sequencer with the heavier load will be able to use more cache
buffers. There will also be 8 header buffers to be shared between the sequencers. Note that

each header buffer is not statically linked to a specific TCB buffer. In fact the link is dynamic
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on a per-frame basis. The need for this dynamic linking will be explained in later sections.
Suffice to say here that if there is a free header buffer, then somewhere there is also a free TCB
SRAM buffer;

9) There were 2 basic implementation options considered here. The first was single-
stack and the second was a process model. The process model was chosen here because the
custom processor design is providing zero-cost overhead for context switching through the use
of a context base register, and because there will be more than enough process slots (or
contexts) available for the peak load. It is also expected that. all “local” variables will be held
permanently in registers whilst an event is being processed;

10) The features that provide this are 256 of the 512 SRAM-based registers that will
be used for the register contexts. This can be divided up into 16 contexts (or processes) of 16
registers each. Then 8 of these will be reserved for receive and 8 for transmit. A Little’s Law
analysis has shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100 -
Mbits, requires more than 8 jobs to be in process in the NIC. However each job requires an
SRAM buffer for a TCB context and at present, there are only 8 of these currently specified
due to SRAM space limits. So more contexts (e.g. 32 * 8 regs each) do not seem worthwhile.
Refer to the section entitled “LOAD CALCULATIONS” for more details of this analysis. A
context switch simply involves reloading the context base register based on the context to be
restarted, and jumping to the appropriate address for resumption;

11) To better support the process model chosen, the code will lock an active TCB into
an SRAM buffer while either sequencer is operating on it. This implies there will be no
swapping to and from DRAM of a TCB once it is in SRAM and an operation is started on it.
More specifically, the TCB will not be swapped after requesting that a DMA be performed for
it. Instead, the system will switch to another active “process”. Then it will resume the former
process at the point directly after where the DMA was requested. This constitutes a zero-cost
switch as mentioned above;

12) Individual TCB state machines will be run from within a “process”. There will be
a state machine for the receive side and one for the transmit side. The current TCB states will
be stored in the SRAM TCB index table entry;

13) The INIC will have 16 MB of DRAM. The current specification calls for dividing

a large portion of this into 2K buffers and control allocation / deallocation of these buffers
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through one of the DRAM fifos mentioned above. These fifos will also be used to control
small host buffers, large host buffers, command buffers and command response Buffers;

14) For events from one sequencer to the other (i.e. RCV <> XMT), the current
specification calls for using simple SRAM CIO buffers, one for each direction;

15) Each sequencer handles its own timers-independently of the others; |

16) Contexts will be passed to the INIC through the Transmit command and response
buffers. INIC-initiated TCB releases will be handled through the Receive small buffers. Host-
initiated releases will use the Command buffers. There needs to be strict handling of the
acquisition and release of contexts to avoid windows where for example, a frame is received

on a context just after the context was passed to the INIC, but before the INIC has “accepted”

~it; and

17) T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections.
This is because they are typically used for the HTTP protocol and the client for that protocol
typically connects, sends a request and disconnects in one segment. The server sends the
connect confirm, reply and disconnect in his first segment. Then the client confirms the
disconnect. This is a total of 3 segments for the life of a context. Typical data lengths are on
the order of 300 bytes from the client and 3K from the server. The INIC will provide as good
an assist as seems necessary here by checksumming the frame and splitting headers and data.
The latter is only likely when data is forwarded with a request such as when a filled-in form is

sent by the client.

SRAM REQUIREMENTS.
SRAM requirements for the Receive and Transmit engines are shown in Fig. 38.

Depending upon the available space, the number of TCB buffers may be increased to 16.

GENERAL PHILOSOPHY.

The basic plan is to have the host determine when a TCP connection is able to be
handed to the INIC, setup the TCB and pass it to the card via a command in the Transmit
queue. TCBs that the INIC owns can be handed back to the host via a request from the Receive
or Transmit sequencers or from the host itself at any time.

When the INIC receives a frame, one of its immediate tasks is to determine if the framé

is for a TCB that it controls. If not, the frame is passed to the host on a geneﬁc interface TCB.
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* On transmit, the transmit request will specify a TCB hash number if the request is on a INIC-

controlled TCB. Thus the initial state for the INIC will be transparent mode in which all
received frames are directly passed through and all transmit requests will be simply thrown on
the appropriate wire. This state is maintained until the host passes TCBs to the INIC to control.
Note that frames received for which the INIC has no FTCB (or it 1s with the host) will still have
the TCP checksum verified if TCP/IP, and may split the TCPIP header off into a separate
buffer.

REGISTER USAGE.

There will be 512 registers available. The first 256 will be used for process contexts.
The remaining 256 will be split between the three sequencers as follows: 1) 257 — 320: 64 for
RCV general processing / main loop; 2) 321 - 384: 64 for XMT general processing / main
loop; and 3) 385 - 512: 128 for three sequencer use.

RECEIVE PROCESSING.
MAIN LOQP.

Fig. 39 is a summary of the main loop of Receive.

RECEIVE EVENTS.

The events that will be processed on a given context are:

1) accept a context;

2) release a context command (from the host via Transmit);

3) release a context request (from Transmit); '

4) receive a valid frame; this will actually become 2 events based on the received
frame - receive an ACK, receive a segment;

- 5) receive an “invalid” frame i.e. one that causes the TCB to be flushed to the host;

6) avalid ACK needs to be sent (delayed ACK timer expiry); and

7) There are expected to be the following sources of events: a) Receive input queue:
it is expected that hardware will automatically DMA arriving frames into frame buffers and
queue an event into a RCV-event queue; b) Timer event queue: expiration of a timer will
queue an event into this queue; and c) Transmit sequencer queue: for requests from the

transmit processor.
107

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 113



ALA-006K Expréss Mail No. EV 406928085 US

10

15

20

25

30

For the sake of brevity the following only discusses receive-frame processing.

RECEIVE DETAILS - VALID CONTEXT.

The base for the receive processing done by the INIC on an existing context is the fast-
path or “header prediction” code in the FreeBSD release. Thus the processing is divided into
three parts: header validation and checksumming, TCP processing and subsequent SMB

processing.

HEADER VALIDATION.

There is considerable hardware assist here. The first step in receive processing is to
DMA the frame header into an SRAM header buffer. It is useful for header validation to be
implemented in conjunction with this DMA by scanning the data as it flies by. The following
tests need to be “passed”:

1) MAC header: destination address is our MAC address (not MC or BC t00), the
Ethertype is IP; 2) IP header: header checksum is valid, header length = 5, IP length > header
length, protocol = TCP, no fragmentation, destination IP is our IP address; and 3) TCP header:
checksum is valid (incl. pseudo-header), header length = 5 or 8 (timestamp option), length is
valid, dest port = SMB or FTP data, no FIN/SYN/URG/PSH/RST bits set, timestamp option is
valid if present, segment is in sequence, the window size did not change, this is not a
retransmission, it is a pure ACK or a pure receive segment, and most important, a valid
context exists. The valid-context test is non-trivial in the amount of work involved to
determine it. Also note that for pﬁre ACKs, the window-size test will be relaxed. This is
because initially the output PERSIST state is to be handled on the INIC.

Many but perhaps not all of these tests will be performed in hardware — depending

upon the embodiment.
TCP PROCESSING.

Once a frame has passed the header validation tests, processing splits based on whether

the frame is a pure ACK or a pure received segment.
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PURE RCV PACKET. '

The design is to split off headers into a small header buffer and pass the aligned data in
separaté large buffers. Since a frame has been received, eventually some receiver process on
the host will need to be informed. In the case of FTP, the frame is pure data and it is passed to
the host immediately. This involves getting large buffers and DMAing the data into them,
then setting the appropriate details in a small buffer that is used to notify the host. However for
SMB, the INIC is performing reassembly of data when the frame consists of headers and data.
So there may not yet be a complete SMB to pass to the host. In this case, a small buffer will be
acquired and the header moved into it. If the received segment completes an SMB, then the
procedures are pretty much as for FTP. If it does not, then the scheme is to at least move the
received data (not the headers) to the host to free the INIC buffers and to save latency. The list
of in-progress host buffers is maintained in the TCB and moved to the header buffer when the
SMB is complete.

The final part of pure-receive processing is to fire off the delayed ACK timer for this
segment. ’

PURE ACK.

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers
that can be returned to the host. If so, send an event to the Transmit processor (or do the
processing here). If there is more output available, send an event to the transmit processor.

Then appropriate actions need to be taken with the retransmission timer.

'~ SMB PROCESSING.

Fig. 40 shows the format of the SMB header of an SMB frame. The LENGTH field of
the NetBIOS header will be used to determine when a complete SMB has been received and
the header buffer with appropriate details can be posted to the host. The interesting commands
are the write commands: SMBwrite (0xB), SMBwriteBraw (0x1D), SMBwriteBmpx (0x1E),
SMBwriteBs (0x1F), SMBwriteclose (0x2C), SMBwriteX (0x2F), SMBwriteunlock (0x14).
These are interesting because they will have data to be aiigned in host memory. The point to
note about these commands is that they each have a different WCT field, so that the start offset
of the data depends on the command type. SMB -processing will thus need to be cognizant of

these types.
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RECEIVE DETAILS — NO VALID CONTEXT.
The design here is to provide as much assist as possible. Frames will be checksummed

and the TCPIP headers may be split off.

RECEIVE NOTES.. ,

1. PRU_RCVD or the equivalent in Microsoft language: the host application has to
tell the INIC when he has accepted the received data that has been queued. This is so that the
INIC can update the receive window. It is an advantage for this mechanism to be efficient.
This may be accomplished by piggybacking these on transmit requests (not necessaﬁly for the
same TCB).

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this timer.
This leaves the host with the job of determining that the TCB is still active.

3.. Timestamp option: it is useful to support this option in the fast path because the
BSD implementation does. Also, it can be very helpful in getting a much better estimate of the
round-trip time (RTT) which TCP needs to use.

. 4. Idle timer: the INIC will not maintain this timer (see Note 2 above).

5. Frame with no valid context: The INIC may split TCP/IP headers into a separate

header buffer.

TRANSMIT PROCESSING.
MAIN LOQP.

Fig. 41 is a summary of the main loop of Transmit.

TRANSMIT EVENTS.

The events that will be processed on a given context and their sources are: 1) accept a
context (from the Host); 2) release a context command (from the Host); 3) release a context
command (from Receive); 4) valid send request and window > 0 (from host or RCV
sequencer); 5) valid send request and window = 0 (from host or RCV sequencer); 6) send a
window update (host has accepted data); 7) persist timer expiration (persist timer); 8)
context-release event e.g. window shrank (XMT processing or retransmission timer); and 9).

receive-release request ACK( from RCV sequencer).
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TRANSMIT DETAILS — VALID CONTEXT.

The following is an overview of the transmit flow: The host posts a transmit request to
the INIC by filling in a command buffer with appropriate data pointers etc and posting it to the
INIC via the Command Buffer Address register. Note that there is one host command buffer
queue, but there are four physical transmit lines. So each request needs to include an interface
number as well as the context number. The INIC microcode will DMA the command in and
place it in one of four internal command queues which the transmit sequencer will work on.
This is so that transmit processing can round-robin service these four queues to keep all four
interfaces busy, and not let a highly-active interface lock out the others (which would happen
with a single queue). The transmit request may be a segment that is less than the MSS, or it
may be as much as a full 64K SMB READ. Obviously the former request will go out as one
segment, the latter as a number of MSS-sized segments. The transmitting TCB must hold on to
the request until all data in it has been transmitted and acked. Appropriate pointers to do this
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC and
TCP/IP headers are created in it. It may be quicker/simpler to keep a baéic frame header set up
in the TCB and either DMA directly this into the frame each timé. Then data is DMA’d from
host memory into the frame to create an MSS-sized segment. This DMA also checksums the
data. Then the checksum is adjusted for the pseudo-header and placed into the TCP header,
and the frame is queued to the MAC transmit interface which may be controlled by the third
sequencer. The final step is to update various window fields etc in the TCB. Eventually either
the entire request will have been sent and acked, or a retransmission timer will expire in which
case the context is flushed to the host. In either case, the INIC will place a command response
in the Response queue containing the command buffer handle from the original transmit
command and appropriate status.

The above discussion has dealt how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at the
time a transmit request arrives. There are many reasons not to transmit: the receiver’s window
size is <= 0, the Persist timer has expired, the amount to send is less than a full segment and an
ACK is expected / outstanding, the receiver’s window is not half-open etc. Much of the

transmit processing will be in determining these conditions.
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TRANSMIT DETAILS = NO VALID CONTEXT.

The main difference between this and a context-based transmit is that the queued
request here will already have the appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in length.
So the processing is fairly simple. A large buffer is acquired and the frame is DMAed into it,
at which time the checksum is also calculated. If the frame is TCP/IP, the checksum will be
appropriately adjusted if necessary (pseudo-header etc) and placed in the TCP header. The
frame is then queued to the appropriate MAC transmit interface. Then the command is

immediately responded to with appropriate status through the Response queue.

TRANSMIT NOTES.

1) Slow-start: the INIC will handle the slow-start algorithm that is now a part of the
TCP standard. This obviates waiting until the connection is sending a full-rate before passing
it to the INIC. |

2) Window Probe vs Window Update - an explanation for posterity. A Window Probe
is sent from the sending TCB to the receiving TCB, and it means the sender has the receiver in
PERSIST state. Persist state is entered when the receiver advertises a zero window. It is thus
the state of the transmitting TCB. In this state, he sends periodic window probes to the receiver
in case an ACK from the receiver has been lost. The receiver will return his latest window size
in the ACK. A Window Update is sent from the receiving TCB to the sending »TCB, usually to

tell him that the receiving window has altered. It is mostly triggered by the upper layer when it

- accepts some data. This probably means the sending TCB is viewing the receiving TCB as ‘

being in PERSIST state.

3) Persist state: it is designed to handle Persist state on the INIC. It seems
unreasonable to throw a TCB back to the host just because its receiver advertised a zero
window. This would normally be a transient situation, and would tend to happen mostly with
clients that do not support slow-start. Alternatively, the code can easily be changed to throw
the TCB back to the host as soon as a receiver advertises a zero window.

4) MSS-sized frames: the INIC code wili expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any request is, it will be dropped and an

appropriate response status posted.
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5) Silly Window avoidance: as a receiver, the INIC will do the right thing here and not
advertise small windows — this is easy. However it is necessary to also do things to avoid this
as a sender, for the cases where a stupid client does advertise small windows. Without getting
into too much detail here, the mechanism requires the INIC code to calculate the largest
window advertisement ever advertised By the other end. It is an attempt to guess the size of the
other end’s receive buffer and assumes the other end never reduces the size of its receive

buffer. See Stevens, “TCP/IP Illustrated”, Vol. 1, pp. 325-326 (1994).

THE UTILITY PROCESSOR.
SUMMARY.

The following is a summary of the main functions of the utility sequencer of the
MiCroprocessor:

1) Look at the event queues: Event13Type & Event23Type (we assume there will be
an event status bit for this - USE_EV13 and USE_EV23) in the events register; these are |
events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT sequencer.
Dequeue request and place the frame on the appropriate interface.

2) RCV-frafne support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls
VinicTrar}sferDataComplete() to check if the xfer (possibly DMA) of the frame into host
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion
interrupt. It queues complete buffers to the RCV sequencer via the normal queue mechanism.

3) Other processes may also be employed here for supporting the RCV sequencer.

4) Service the following registers (this will probably involve micro-interrupts):

a) Header Buffer Address register:

Buffers are 256 bytes long on 256-byte boundaries.
31-8 - physical addr in host of a set of contiguous hddr buffers.
7-0 - number of hddr buffers passed.
Use contents to add to SmallHType queue.
b) Data Buffer Handle & Data Buffer Address registers:
Buffers are 4K long aligned on 4K boundaries.
Use contents to add to the FreeType queue.

¢) Command Buffer Address register:
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Buffers are multiple of 32 bytes up to 1K long (2**5 * 32).
31-5 - physical addr in host of cmd buffer.
4-0 - length of cmd in bytes/32 (i.e. multiples of 32 bytes).
Points to host cmd; get FreeSType buffer and move.
command into it; queue to Xmit0-Xmit3Type queues.

d) Response Buffer Address register:
Buffers are 32 bytes long on 32-byte boundaries.
31-8 - physical addr in host of a set of contiguous resp buffers.
7-0 - number of resp buffers passéd.
Use contents to add to the RespdnseType queue.

5) Low buffer threshold support: set approp bits in the ISR when the available-buffers

count in the various queues filled by the host falls below a threshold.

FURTHER OPERATIONS OF THE UTILITY PROCESSOR.

The utility processor of the microprocessor housed on the INIC is responsible for
setting up and implementing all configuration space and memory mapped operations, and also -
as described below, for managing the debug interface. v

All data transfers, and other INIC initiated transfers will be donelvia DMA.
Configuration space for both the network processor function and the utility processor function
will define a single memory space for each. This memory space will define the basic
communication structure for the host. In geﬁeral, writing to one of these memory locations
will perform a request for service from the INIC. This is detailed in the memory description
for each function. This section defines much of the operation of the Host interface, but should
be read in conjunction with the Host Interface Strategy for the Alacritech INIC to fully define
the Host/INIC interface. '

Two registers, DMA hardware and an interrupt function comprise the INIC interface to
the Host through PCI. The interrupt function is implemented via a four bit register (PCI_INT)
tied to the PCI interrupt lines. This register is directly accessed by the microprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the
PCI_Address_Reg, to enable the Host to access Configuration Space and the memory space
allocated to the INIC. These registers are not available to the Host, but are used by THE
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" MICROPROCESSOR to enable Host reads and writes. The function of these two registers is
as follows.

1) PCI Data Reg: This register can be both read and written by THE
MICROPROCESSOR. On write operations from the host, this register contains the data being
sent from the host. On read operations, this register contains the data to be sent to the host.

2) PCI_Address_Reg: This is the control register for memory reads and writes from
the host. The structure of the register is shown in Fig. 42. During a write operation from the
Host the PCI_Data_Reg contains valid data after Data Valid is set in the PCI_Address_Reg.
Both registers are locked until THE MICROPROCESSOR writes the PCI_Data Reg, which
resets Data Valid. All read operations will be direct from SRAM. Memory space based reads

will return 00. Configuration space reads will be mapped as shown in Fig. 43.

CONFIGURATION SPACE.

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration space
headers will be the same, except for the differences noted in the following description.

Vendor ID — This field will contain the Alacritech Vendor ID. One field will be used
for both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. One field will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on the state of the system. Each
function (network and debug) will have its own command field, as shown in Fig. 44.

Status ~ This is not initialized to zero. Each function will have its own field. The
configuration is as shown in Fig. 45.

Revision ID — The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared. . | '

Cache Line Size — This is initialized to zero. Supported sizes are 16, 32, 64 and 128
bytes. This hardware register is replicated in SRAM and supported separately for each
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function, but THE MICROPROCESSOR will implement the value set in Configuration Space
1 (the network processor). ‘ |

Latency Timer — This is initialized to zero. The function is supported. This hardware
register is vre’plicated in SRAM. Each function is supported separately, but THE
MICROPROCESSOR will implement the value set in Conﬁgurati.on Space 1 (the network
processor). '

Header Type — This is set to 80 for botﬁ functions, but will be supported separately.

- BIST — Is implemented. In addition to responding to a request to run self test, if test
after reset fails, a code will be set in the BIST register. This will be implemented separately
for each function. |

Base Address Register — A single base address register is implemented for each
function. It is 64 bits in length, and the bottom four bits are configured as follows: Bit 0 - 0,
indicates memory base address; Bit 1,2 — 00, locate base address anywhere in 32 bit memory
space; and Bit 3 — 1, memory is prefetchable.

CardBus CIS Pointer — Not implemented—initialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for
each function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller,
and 02, corresponding to INTB# for the debug interface. This is implemented separately for
each function. _

Min_Gnt — This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for each function. V

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of

access to PCI. This is implemented separately for each function.

MEMORY SPACE.
Because each of the following functions may or may not reside in a single location, and
may or may not need to be in SRAM at all, the address for each is really only used as an

identifier (label). There is, therefore, no control block anywhere in memory that represents
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NETWORK PROCESSOR.

* The following four byte registers, beginning at location h00 of the network processor’s

allocated memory, are defined.

00 -

04 —

08 -

0C -
10 -

Interrupt Status Pointer -- Initialized by the host to point to a fdur byte area where
status is stored.

Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be ORed until the host writes the Interrupt

Status Register. New status will be ored with any remaining

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — ERR -- Error bits are set;

Bit 30 — RCV — Receive has occurred;

Bit 29 — XMT - Transmit command complete; and

Bit 25 — RMISS —Receive drop occurred due to no buffers.

Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the same bit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status

to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

Header Buffer Address — Written by host to pass a set of header buffers to the INIC.
Data Buffer Handle — First register to be written by the Host to transfer a receive data
buffer to the INIC. This data is Host reference data. It is not used by the INIC, it is
returned with the data buffer. However, to insure integrity of the buffer, this register

must be interlocked with the Data Buffer Address register. Once the Data Buffer
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Address register has been written, neither register can be written until after the Data

Buffer Handle register has been’read by THE MICROPROCESSOR.

‘14— Data Buffer Address — Pointer to the data buffer being sent to the INIC by the Host.

Must be interlocked with the Data Buffer Handle register.
18— Command Buffer Address XMTO0 — Pointer to a set of command
buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to local
DRAM found on the FreeSType queue and queue the Command
Buffer Address XMTO with the local address replacing the host Address.
1C—- Command Buffer Address SMT1.
20— Command Buffer Address SMT2.
24— Command Buffer Address SMT3.
28 — Response Buffer Address -- Pointer to a set of response buffers sent
by the Host. These will be treated in the same fashion as the Command Buffer Address

registers.

UTILITY PROCESSOR.

Ending status will be handled by the ﬁtility processor in the same fashion as it is
handled by the network processor. At present two ending stafus conditions are defined B31 —
command complete, and B30 — error. When end status is stored an interrupt is generated.

Two additional registers are deﬁned, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory before
storing a command pointer. Storing a command pointer initiates command decode and
execution by the debug processor. The Host must not modify either command or Data Pointer
until ending status has been received, at which point a new command may be initiated.
Memory space is write only by the Host, reads will receive 00. The format is as follows:
00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

04 — Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be stored until the host writes the Interrupt

Status Register. New status will be ored with any remaining
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uncleared status (as defined by the contents of the returned status)
and sfqred again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — CC — Command Complete;

Bit 30 — ERR - Error;

Bit29 — Transmit Processor Halted;

Bit28 — Receive Processor Halted; and

Bit27 — Utility Processor Halted.

Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as |
a result a status bit is unmasked, an interrupt is generated. Also,
when the Interrupt Status Registér is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

Command Pointer — Points to command to be executed. Storing

~ this pointer initiates command decode and execution.

Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

DEBUG INTERFACE.

In order to provide a mechanism to debug the microcode running on the microprocessor

sequencers, a debug process has been defined which will run on the utility sequencer. This

processor will interface with a control program on the host processor over PCI.

PCI INTERFACE.

This interface is defined in the combination of the Utility Processor and the Host

Interface Strategy sections, above.
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COMMAND FORMAT.
The first byte of the command, the command byte, defines the structure of the remainder

of the command.

COMMAND BYTE.
The first five bits of the command byte are the command itself. The next bit is used to
specify an alternate processor, and the last two bits specify which processors are intended for

the command.

PROCESSOR BITS.
00 — Any Processor;
01 — Transmit Processor;
10 — Receive Processor; and

11 — Utility Processor.

ALTERNATE PROCESSOR.

This bit defines which processor should handle debug processing if the utility
processor is defined as the processor in debug.

0 — Transmit Processor; and

1 — Receive Processor.

SINGLE BYTE COMMANDS.
00 — Halt - This command asynchronously halts the processor.
08 — Run - This command starts the processor.

10 — Step - This command steps the processor.

EIGHT BYTE COMMANDS.
18 — Break
0o B T 2-3 4-7
Command Reserved Count Address
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This command sets a stop at the specified address. A count of 1 causes the specified
processor to halt the first time it executes the instruction. A count of 2 or more causes the
processor to halt after that number of executions. The processor is halted just before executing
the instruction. A count of 0 does not halt the processor, but causes a sync signal to be
generated. If a second processor is set to the same break address, the count data from the first
break request is used, and each time either processor executes the instruction the count is

decremented.

20 — Reset Break
0 1-3 47

Command ‘ Reserved Address

This command resets a previously set break point at the specified address. Reset break

fully resets that address. If multiple processors were set to that break point, all will be reset.

28 — Dump
0 1 2-3 4-17
Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the address field is specified.

DESCRIPTOR.

00—  Register - This descriptor uses both count and address fields. Both fields are
four byte based (a count of 1 transfers four bytes).

01 — Sram - This descriptor uses both count and address fields. Count is in four byte
blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the
lower four byte aligned address.

02— DRAM - This descriptor uses both count and address fields. Count is in four

| byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address.
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03— Cstore - This descriptor uses both count and address fields. Count is in four
byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address.

Stand-alone descriptors: The following descriptors do not use either the count or address
fields. They transfer the contents of the referenced register.

04— CPU_STATUS; .

05- PC;

06— ADDR_REGA;

07— ADDR_REGB;

08 — RAM BASE;

09— FILE BASE;

0A - INSTR_REG L;

0B - INSTR REG H;

0C— MAC DATA;

0D - DMA_EVENT;

0OE- MISC EVENT,

OF - Q_IN_RDY;

10— Q_OUT RDY;

11- LOCK STATUS;

12— STACK - This returns 12 bytes; and

13- SENSE REG.

This register contains four bytes of data. If error status is posted for a command, if the
next command that is issued reads this register, a code describing the error in more detail may
be obtained. If any command other than a dump of this register is issued after error status,

sense information will be reset.

30 — Load
0 1 . 2-3 4-17
Command Descriptor Count Address
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This command transfers from the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the address field is specified.

DESCRIPTOR.

00— Register - This descriptor uses both count and address fields. Both fields are
four byte based.

01 —  Sram - This descriptor uses both count and address fields. Count is in four byte
blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the

A lower four byte aligned address. ‘

02 — DRAM - This descriptor uses both count and address fields. Count is in four
byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to
the lower four byte aligned address.

03 —  Cstore- This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

"~ the lower four byte aligned address. This applies to WCS only.

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04 -
05 -
06 -
07 -
08 -
09 -
0A —
0B -
38—

ADDR_REGA;
ADDR_REGB;
RAM BASE;
FILE_BASE;
MAC_DATA;
Q_IN_RDY;
Q_OUT_RDY;
DBG_ADDR; and
MAP.

This command allows an instruction in ROM to be replaced by an instruction in WCS.

The new instruction will be located in the Host buffer. It will be stored in the first eight bytes

of the buffer, with the high bits unused. To reset a mapped out instruction, map it to location

00.
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0 1-3 4-7
Command Address to Address to
Map To Map Out
HARDWARE SPECIFICATION.

FEATURES:
1) PERIPHERAL COMPONENT INTERCONNECT (PCI) INTERFACE.

a) Universal PCI interface supports both 5.0V and 3.3V signaling environments;
b) Supports both 32-bit and 64 bit PCI interface;

¢) Supports PCI clock frequencies from 15MHz to 66MHz;

d) High performance bus mastering architecture;

e) Host memory based communications reduce register accesses;

f) Host memory based interrupt status word reduces register reads;
g) Plug and Play compatible;

h) PCI specification revision 2.1 compliant;

i) PCI bursts up to 512 bytes;

j) Supports cache line operations up to 128 bytes; .

k) Both big-endian and little-endian byte alignments supported; and
1) Supports Expansion ROM.

2) NETWORK INTERFACE.

a) Four internal 802.3 and ethernet compliant Macs;

b) Media Independent Interface (MII) supports external PHYs;

¢) 10BASE-T, 100BASE-TX/FX and 100BASE-T4 supported;

d) Full and half-duplex modes supported; |

e) Automatic PHY status polling notifies system of status change;

f) Provides SNMP statistics counters;

g) Supports broadcast and multicast packets;

h) Provides promiscuous mode for network monitoring or multiple unicast address
detection,;

1) Supports “huge packets” up to 32KB;

j) Mac-layer loop-back test mode; and
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k) Supports auto-negotiating Phys.

3) MEMORY INTERFACE.
a) External DRAM buffering of transmit and receive packets;
5 b) Buffering configurable as 4MB, 8MB, 16MB or 32MB;
¢) 32-bit interface supports throughput of 224MB/s;
d) Supports external FLASH ROM up to 4 MB, for diskless boot applications; and

€) Supports external serial EEPROM for custom configuration and Mac addresses.

10 4) PROTOCOL PROCESSOR.
a) High speed, custom, 32-bit processor executes 66 million instructions per second;
b) Processes IP, TCP and NETBIOS protocols;
¢) Supports up to 256 resident TCP/IP contexts; and
d) Writable control store (WCS) allows field updates for feature enhancements.
15 ‘
5) POWER.
a) 3.3V chip operation; and
b) PCI controlled 5.0V/3.3V 1/O cell operation.

20 6) PACKAGING.
a) 272-pin plastic ball grid array;
b) 91 PCI signals;
c) 68 MII signals;
d) 58 external memory signals;
25 e) 1 clock signal;
f) 54 signals split between power and ground; and

g) 272 total pins.

GENERAL DESCRIPTION.
30 The microprocessor (see Fig. 46) is a 32-bit, full-duplex, four channel, 10/100-Megabit
per second (Mbps), Intelligent Network Interface Controller (INIC), designed to provide high—

speed protocol processing for server applications. It combines the functions of a standard
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network interface controller and a protocol processor within a single chip. Although designed
specifically for server applications, the microprocessor can be used by PCs, workstations and
routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous DRAM
(SDRAM), the INIC comprises four complete ethernet nodes. It contains four 802.3/ethernet
compliant Macs, a PCI Bus Interface Unit (BIU), a memory controller, transmit fifos, receive
fifos and a custom TCP/IP/NETBIOS protocol processor. The INIC supports 10Base-T ,
100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of appropriate
Phys. ‘

The INIC Macs provide statistical information that may be used for SNMP. The Macs
operate in promiscuous mode allowing the INIC to function as a network monitor, receive
broadcast and multicast packets and implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-

~ T, 10BASE-T2, 100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface

standards. PHY identification and initialization is accomplished through host driver
initialization routines. PHY status registers can be polled continuously by the INIC and
detected PHY status changes reported to the host driver. The Mac can be configured to support
a maximum frame size of 1518 byteé or 32768 bytes. '

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave
and master functions. The INIC is capable of operating in either a 64-bit or 32-bit PCI
environment, while supporting 64-bit addressing in either configuration. PCI bus frequencies
up to 66MHZ are supported yielding instantaneous bus transfer rates of 533MB/s. Both 5.0V
and 3.3V signaling environments can be utilized by the INIC. Configurable cache-line size up
to 256B_wi11 accommodate future architectures, and Expansion ROM/Flash support allows for
diskless system booting. Non-PC applications are supported via programmable big and little .
endian modes. Host based communication has been utilized to provide the best system
performance possible.

The INIC supports Plug-N-Play aﬁto—conﬁ guration through the PCI configuration
space. External pull-up and pull-down resistors, on the memory 1/0 pins, allow selection of
various features during chip reset. Support of an external eeprom allows for local storage of

configuration information such as Mac addresses.
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Externél SDRAM provides frame buffering, which is configurable as 4MB, 8MB, 16MB
or 32MB using the appropriate SIMMs. Use of -10 speed grades yields an external buffer
bandwidth of 224MB/s. The buffer provides temporary storage of both incoming and outgoing
frames. The protocol processor accesses the frames within the buffer in order to implement
TCP/IP and NETBIOS. Incoming frames are processed, assembled then transferred to host
memory under the control of the protocol processor. For transmit, data is moved from host

memory to buffers where various headers are created before being transmitted out via the Mac.

1) CORES/CELLS.
a) LSI Logic Ethernet-110 Core, 100Base and 10Base Mac with MII interface;
b) LSI Logic single port SRAM, triple port SRAM and ROM available;
¢) LSI Logic PCI 66MHz, 5V compatible I/O cell; and
d) LSI Logic PLL.
2) DIE SIZE / PIN COUNT.
LSI Logic G10 process. Fig. 47 shows the area on the die of each module.
3) DATAPATH BANDWIDTH (See Fig. 48). "
4) CPU BANDWIDTH (See Fig. 49).
5) PERFORMANCE FEATURES.
a) 512 registers improve performance through reduced scratch ram accesses and reduced
instructions;
b) Régister windowing eliminates context-switching overhead;
¢) Separate instruction and data paths eliminate memory contention;
d) Totally resident control store eliminates stalling during instruction fetch;
e) Multiple logical processors eliminate context switching and improve real-time
response; '
f) Pipelined architecture increases operating frequency;
g) Shared register and scratch ram improve inter-processor communication;
h) Fly-by state-Machine assists address compare and checksum calculation;
1) TCP/IP-context caching reduces latency;
J) Hardware implemented queues reduce CPU overhead and latency;
k) Horizontal microcode greatly improves instruction efficiency;

1) Automatic frame DMA and status between Mac and DRAM buffer; and
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m) Deterministic architecture coupled with context switching eliminates processor stalls.
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PROCESSOR.

The processor is a convenient means to provide a programmable state-machine which
is capable of processing incoming frames, processing host commands, directing network
traffic and directing PCI bus traffic. Three processors are implemented using shared hardware -
in a three-level pipelined architecture which launches and completes a single instruction for
every clock cycle. The instructions are executed in three distinct phases corresponding to each
of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the
destination operand, modifies the program counter (Pc), selects the address source for the
instruction to fetch, then fetches the instruction from the control store. The fetched instruction
is then stored in the instruction register at the end of the clock cycle.

The processor instructions reside in the on-chip control-store, which is implemented as
a mixture of ROM and SRAM. The ROM contains 1K instructions starting at address 0x0000
and aliases each 0x0400 locations throughout the first 0x8000 of instruction space. The SRAM
(WCS) will hold up to 0x2000 instructions starting at address 0x8000 and aliasing each
0x2000 locations throughout the last 0x8000 of instruction space. The ROM and SRAM are
both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate mapping
ram provides bits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM
based instructions. The mapping ram has a configuration of 128x7 which is insufficient to
allow a separate map address for each of the 1K ROM locations. To allow re-mapping of the
entire 1K ROM space, the map ram address lines are connected to the address bits Fetch[9:3].
The result is that the ROM is re-mapped in blocks of 8 contiguous locations.

The second instruction phase decodes the instruction which was stored in the

instruction register. It is at this point that the map address is checked for a non-zero value

-‘which will cause the decoder to force a Jmp instruction to the map address. If a non-zero value

is detected then the decoder selects the source operands for the Alu operation based on the
values of the OpdASel, OpdBSel and AluOp fields. These operands are then stored in the
decode register at the end of the clock cycle. Operands may originate from File, SRAM, or
flip-flop based registers. The second instruction phase is also where the results of the previous

instruction are written to the SRAM.
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The third instruction phase is when the actual Alu operation is performed, the test
condition is selected and the Stack push and pop are implemented: Results of the Alu
operation are stored in the results register at the end of the clock cycle.

Fig. 50 is a block diagram of the CPU. Fig. 50 shows the hardware functions
associated with each of the instruction phases. Note that various functions have been
distributed across the three phases of the instruction execution in order to minimize the

combinatorial delays within any given phase.

INSTRUCTION SET.

The micro-instructions are divided into six types according to the program control
directive. The micro-instruction is further divided into sub-fields for which the definitions are
dependent upon the instruction type. The six instruction types are listed in Fig. 51.

All instructions (see Fig. 51) include the Alu operation (AluOp), operand “A” select
(OpdASel), operand “B” select (OpdBSel) and Literal fields. Other field usage depends upon
the instruction type.

The “jump condition code” (Jcc) instruction causes the program counter to be altered if
the condition selected by the “test select” (TstSel) field is asserted. The new program counter
(Pc) value is loaded from either the Literal field or the AluOut as described in the following
section and the Literal field may be used as a source for the Alu or the ram address if the new
Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally.
The new program counter (Pc) value is loaded from either the Literal field or the AluOut as
described in the following section. The format allows instruction bits 23:16 to be used to

perform a flag operation and the Literal field may be used as a source for the Alu or the ram

_address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counter to be altered
unconditionally. The new program counter (Pc) value is loaded from either the Literal field or
the AluOut as described in the following section. The old program counter value is stored on
the top location of the Pc-Stack which is implemented as a LIFO memory. The format allows
instruction bits 23:16 to be used to perform a flag operation and the Literal field may be used

as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.
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The “Nxt” (Nxt) instruction causes the program counter to increment. The format |
allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction E
in which the “flag operation” (FigSel) field is set to a value of Ohff. The current Pc value is
replaced with the last value stored in the stack. The Literal field may be used as a source for
the Alu or the ram address.

The Map instruction is provided to allow replacement of instructions which have been
stored in ROM and is implemented any time the “map enable” (MapEn) bit has been set and
the content of the “map address” (MapAddr) field is non-zero. The instruction decoder forces a
jump instruction with the Alu operation and destination fields set to pass the MapAddr field to
the program control block.

The program control is determined by a combination of PgmCitrl, DstOpd, FlgSel and

~ TstSel. The behavior of the program control is defined with the "C-like" description in Fig. 52.

Figs. 53-61 show ALU operations, selected operands, selected tests, and flag operations.

SRAM CONTROL SEQUENCER (SramCtrl).

SRAM is the nexus for data movement within the INIC. A hierarchy of sequencers,
working in concert, accomplish the movement of data between DRAM, SRAM, CPU, ethernet
and the Pci bus. Slave sequencers, provided with stimulus from master sequencers, request
data movement operations by way of the SRAM, Pci bus,' DRAM and Flash. The slave
sequencers prioritize, service and acknowledge the requests.

The data flow block diagram of Fig. 62 shows all of the master and slave sequencers of
the INIC product. Request information such as r/w, address, size, endian and alignment are
represented by each request line. Acknowledge information to master sequencers include only
the size of the transfer being acknowledged. | |

The block diagram of Fig. 63 illustrates how data niovement is accomplished for a Pci
slave write to DRAM. Note that the Psi (Pci slave in) module functions as both a master
sequencer. Psi sends a write request to the SramCtrl module. Psi requests Xwr to move data
from SRAM to DRAM. Xwr subsequently sends a read request to the SramCtrl module then
writes the data to the DRAM via the Xctrl module. As each piece of data is moved from the

SRAM to Xwr, Xwr sends an acknowledge to the Psi module.
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The SRAM control sequencer services requests to store to, or retrieve data from an
SRAM organized as 1024 locations by 128 bits (16KB). The sequencer operates at a frequency
of 133MHz, allowing both a CPU access and a DMA access to occur during a standard
66MHz CPU cycle. One 133MHz cycle is reserved for CPU accesses during each 66MHz
cycle while the remaining 133MHz cycle is reserved for DMA accesses on a prioritized basis.

me block diagram of Fig. 64 shows the rﬁajor functions of the SRAM control
sequencer. A slave sequencer begins by asserting a request along with r/w, ram address,
endian, data path size, data path alignment and request size. SramCtrl prioritizes the requests.
The request parameters are then selected by a multiplexer which feeds the parameters to the
SRAM via a register. The requestor provides the SRAM address which when coupled with the
other parameters controls the input and output alignment. SRAM outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Fig. 65 is a timing diagram depicting two ram accesses during a single 66MHz clock

cycle. .

EXTERNAL MEMORY CONTROL (Xetrl).

Xctrl (See Fig. 66) provides the faéility whereby Xwr, Xrd, Dcfg and Eectrl access
external Flash and DRAM. Xctrl includes an arbiter, i/o registers, data multiplexers, address
multiplexers and control multiplexers. Ownership of the external memory interace is requested
by each block and granted to each of the requesters by the arbiter function. Once ownership
has been granted the multiplexers select the address, data and control signals from owner,

allowing access to external memory.

EXTERNAL MEMORY READ SEQUENCER (Xrd).

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master
sequencers, the Xrd sequencer moves data from external SDRAM or flash to the SRAM, via
the Xctrl module, in blocks of 32 bytes or less. The nature of the SDRAM requires fixed burst
sizes for each of it's internal banks with ras precharge intervals between each access. By
selecting a burst size of 32 bytes for SDRAM reads and interleaving bank accesses on a 16
byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied
before burst completion for the second bank, allowing us to re-instruct the first bank and

continue with uninterrupted DRAM access. SDRAMs require a consistent burst size be
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utilized each and every time the SDRAM is"accessed. For this reason, if an SDRAM access -
does not begin or end on a 32 byte boundary, SDRAM bandwidth will be reduced due to less
than 32 bytes of data being transferred during the burst cycle.

Fig. 67 depicts the major functional blocks of the Xrd external memory read sequencer.
The first step in servicing a request to move data from SDRAM to SRAM is the prioritization
of the master sequencer requests. Next the Xrd sequencer takes a snapshot of the DRAM read
address and applies configuration information to determine the correct bank, row and column
address to apply. Once sufficient data has been read, the Xrd sequencer issues a write request
to the SramCtrl sequencer Which in turn sends an acknowledge to the Xrd sequencer. The Xrd
sequencer passes the acknowledge along to the level two master with a size code indicating
how much data was written during the SRAM cycle allowing the update of pointers and
counters. The DRAM read and SRAM write cycles repeat until the original burst request has
been completed at which point the Xrd sequencer prioritizes any remaining requests in
preparation for the next burst cycle. '

Contiguous. DRAM burst cycles are not guaranteed to the Xrd sequencer as an
algorithm is implemented which ensures highest priority to refresh cycles followed by flash
accesses, DRAM writes then DRAM reads.

Fig. 68 is a timing diagram illustrating how data is read from SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. Bank A is first
selected/activated followed by a read command two clock cycles later. The bank
select/activate for bank B is next issued as read data begins returning two clocks after the read
command was issued to bank A. Two clock cycles before we need to receive data from bank B
we issue the read command. Once all 16 bytes have been received from bank A we begin

receiving data from bank B.

EXTERNAL MEMORY WRITE SEQUENCER (Xwr).
The Xwr sequencer is a slave sequencer. Servicing requests issued by master
sequencers, the Xwr sequencer moves data from SRAM to the external SDRAM or flash, via

the Xctrl module, in blocks of 32 bytes or less while accumulating a checksum of the data

" moved. The nature of the SDRAM requires fixed burst sizes for each of it's internal banks with

ras precharge intervals between each access. By selecting a burst size of 32 bytes for SDRAM

writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras
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prechage interval for the first bank is satisfied before burst completion for the second bank,
allowing us to re-instruct the first bank and continue with uninterrupted DRAM access.
SDRAMS require a consistent burst size be utilized each and every time the SDRAM is
accessed. For this reason, if an SDRAM access does not begin or end on a 32 byte boundary,
SDRAM bandwidth will be reduced due to less than 32 bytes of data being transferred during
the burst cycle.

Fig. 69 depicts the major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from SRAM to SDRAM is the prioritization of the level two
master requests. Next the Xwr sequencer takes a Snapshot of the DRAM write address and
applies configuration information to determine the correct.DRAM, bank, row and column
address to apply. The Xwr sequencer immediately issues a read command to the SRAM to
which the SRAM responds with both data and an acknowledge. The Xwr sequencer passes the
acknowledge to the level two master along with a size code indicating how much data was
read during the SRAM cycle allowing the update of pointers and counters. Once sufficient data
has been read from SRAM, the Xwr sequencer issues a write command to the DRAM starting
the burst cycle and computing a checksum as the data flys by. The SRAM read cycle repeats
until the original burst request has been completed at which point the Xwr sequencer
prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the Xwr sequencer as an
algorithm is implemented which ensures highést priority to refresh cycles followed by flash
accesses then DRAM writes. |

F 1g 70 is a timing diagram illustrating how data is written to SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. Bank A is first
selected/activated followed by a write command two clock cycles later. The bank
select/activate for bank B is next issued in preparation for issuing the second write command.
As soon as the first 16 byte burst to bank A completes we issue the write command for bank B

and begin supplying data.

PCI MASTER-OUT SEQUENCER (Pmo).
The Pmo sequencer (See Fig. 71) acts only as a slave sequencer. Servicing requests
issued by master sequencers, the Pmo sequencer moves data from an SRAM based fifo to a Pci

target, via the PciMstrlO module, in bursts of up to 256 bytes. The nature of the PCI bus
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dictates the use of the write line command to ensure optimal system performance. The write
line command requires that the Pmo sequencér be capable of transferring a whole multiple
(1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers.
To accomplish this end, Pmo will automatically perform partial bursts until it has aligned the
transfers on a cache line boundary at which time it will begin usage of the write line command.
The SRAM fifo depth, of 256 bytes, has been chosen in order to allow Pmo to accommodate
cache line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmo will
perform multiple, conﬁguous cache line bursts until it has exhausted the supply of data.

Pmo receives requests from two separate sources; the DRAM to Pci (D2p) module and
the SRAM to Pci (S2p) module. An operation first begins with prioritization of the requests
where the S2p module is given highest priority. Next, the Pmo module takes a Snapshot of the
SRAM fifo address and uses this to generate read requests for the SramCtrl sequencer. The
Pmo module then proceeds to arbitrate for ownership of the Pci bus via the PciMstrIO module.
Once the Pmo holding registers have sufficient data and Pci bus mastership has been granted, .
the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal
pointers, counters and status. Once the Pci burst transaction has terminated, Pmo parks on the
Pci bus unless another initiator has requested ownership. Pmo again prioritizes the incoming -

requests and repeats the process.

PCI MASTER-OUT SEQUENCER (Pmi).

The Pmi sequencer (See Fig. 72) acts only as a slave sequencer. Servicing requests
issued by master sequencers, the Pmi sequencer moves data from a Pci target to an SRAM
based fifo, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus
dictates the use of the read multiple command to ensure optimal system performance. The read
multiple command requires that the Pmi sequencer be capable of transferring a cache line or
more of data. To accomplish this end, Pmi will automaticélly perform partial cache line bursts
until it has aligned the transfers on a cache line boundary at which time it will begin usage of
the read multiple command. The SRAM fifo depth, of 256 bytes, has been chosen in order to
allow Pmi to accommodate cache line sizes up to 128 bytes. Provided the cache line size is
less than 128 bytes, Pmi will perform multiple, contiguous cache line bursts until it has filled

the fifo. ‘
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Pmi receive requests from two separate sources; the Pci to DRAM (P2d) module and
the Pci to SRAM (P2s) module. An operation first begins with prioritization of the requests
where the P2s module is given highest priority. The Pmi module then proceeds to arbitrate for
ownership of the Pci bus via the PciMstrIO module. Once the Pci bus mastership has been
granted and the Pmi holding registers have sufficient data, the Pmi module begins transferring
data to the SRAM fifo. For each successful transfer, Pmi sends an acknowledge and encoded
size to the master sequencer, allowing it to update it's internal pointers, counters and status.
Once the Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator

has requested ownership. Pmi again prioritizes the incoming requests and repeats the process.

DRAM TO PCI SEQUENCER (D2P).

The D2p sequencer (See Fig. 73) acts is a master sequencer. Servicing channel requests
issued by the CPU, the D2p sequencer manages movement of data from DRAM to the Pci bus
by issuing requests to both the Xrd sequencer and the Pmo sequencer. Data transfer is
accomplished using an SRAM based fifo through which data is staged. |

D2p can receive requests from any of the processor's thirty-two DMA channels. Once a
command request has been detected, D2p fetches a DMA descriptor from an SRAM location
dedicated to the requesting channel which includes the DRAM address, Pci address, Pci endian
and request size. D2p then issues a request to the D2s sequencer causing the SRAM based fifo
to fill with DRAM data. Once the fifo contains sufficient data for a Pci transaction, D2s issues
a request to Pmo which in turn moves data from the fifo to a Pci target. The process repeats
until the entire request has been satisfied at which time D2p writes ending status in to the
SRAM DMA descriptor area and sets the channel done bit associated with that channel. D2p
then monitors the DMA channels for additional requests. Fig. 74 is an illustration showing the
major blocks involved in the movement of data from DRAM to Pci target.

PCI TO DRAM SEQUENCER (P2d).

The P2d sequencer (See Fig. 75) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by the CPU, the P2d sequencer manages movement of data
from Pci bus to DRAM by issuing requests to both the Xwr sequencer and the Pmi sequencer.
Data transfer is accomplished using an SRAM based fifo through which data is staged.
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P2d can receive requests from any of the processor's thirty-two DMA channels. Once a
command request has been detected, P2d, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includes the
DRAM address, Pci address, Pci endian and request size. P2d then issues a request to Pmo
which in turn moves data from the Pci target to the SRAM fifo. Next, P2d issues a request to
the Xwr sequencer causing the SRAM based fifo contents to be written to the DRAM. The
process repeats until the entire request has been satisfied at which time P2d writes ending
status in to the SRAM DMA descriptor area and sets the channel done bit associated with that
channel. P2d then monitors the DMA channels for additional requests. Fig. 76 is an illustration

showing the major blocks involved in the movement of data from a Pci target to DRAM.

SRAM TO PCI SEQUENCER (S2p).

The S2p sequencer (See Fig. 77) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by the CPU, the S2p sequencer manages movement of data
from SRAM to the Pci bus by issuing requests to the Pmo sequencer

S2p caﬁ receive requests from any of the processor's thirty-two DMA channels. Once a
command request has been detected, S2p, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includes the
SRAM address, Pci address, Pci endian and request size. S2p then issues a request to Pmo
which in turm moves data from the SRAM to a Pci target. The process repeats until the entire
request has been satisfied at which time S2p writes ending status in to the SRAM DMA
descriptor area and sets the channel done bit associated with that channel. $2p then monitors
the DMA channels for additional requests. Fig. 78 is an illustration showing the major blocks

involved in the movement of data from SRAM to Pci target.

PCI TO SRAM SEQUENCER (P2s).

The P2s sequencer (See Fig. 79) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by the CPU, the P2s sequencer manages movement of data
from Pci bus to SRAM by issuing requests to the Pmi sequencer.

P2s can receive requests from any of the processor's thirty-two DMA channels. Once a
command request has been detected, P2s, operating as a s_lave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the
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SRAM address, Pci address, Pci endian and request size. P2s then issues a request to Pmo
which in turn moves data from the Pci target to the SRAM. The process repeats until the entire
request has been satisfied at which.time P2s writes ending status in to the DMA descriptor area
of SRAM and sets the channel done bit associated with that channel. P2s then monitors the
DMA channels for additional requests. Fig. 80 is an illustration showing the major blocks

involved in the movement of data from a Pci target to DRAM.

DRAM TO SRAM SEQUENCER (D2s). _

The D2s sequencer (See Fig. 81) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by the CPU, the D2s sequencer manages movement of data
from DRAM to SRAM by issuing requests to the Xrd sequencer.

D2s can receive requests from any of the processor's thirty-two DMA channels. Once a
command request has been detected, D2s, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includes the
DRAM address, SRAM address and request size. D2s then issues a request to the Xrd
sequencer causing the transfer of data to the SRAM. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the SRAM DMA
descriptor aréa and sets the channel done bit associated with that channel. D2s then monitors
the DMA channels for additional requésts. Fig. 82 is an illustration showing the major blocks
involved in the movement of data from DRAM to SRAM.

SRAM TO DRAM SEQUENCER (S2d).

The S2d sequencer (See Fig. 83) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by the CPU, the S2d sequencer manages movement of data
from SRAM to DRAM by issuing requests to the Xwr sequencer.

S2d can receive requests from any of the processor's thirty-two DMA channels. Once a
command request has been detected, S2d, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which~inc]udes the
DRAM address, SRAM address, checksum reset and request size. S2d then issues a request to
the Xwr sequencer causing the transfer of data to the DRAM. The process repeats until the
entire request has been satisﬁéd at which time S2d writes ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. S2d then monitors
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the DMA channels for additional requests. Fig. 84 is an illustration showing the major blocks
involved in the movement of data from SRAM to DRAM.

PCI SLAVE INPUT SEQUENCER (Psi).

The Psi sequencer (See Fig. 85) acts as both a slave sequencer and a master sequencer.
Servicing requests issued by a Pci master, the Psi sequencer manages movement of data from
Pci bus to SRAM and Pci bus to DRAM Qia SRAM by issuing requests to the SramCtrl and
Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, DRAM, SRAM and
memory mapped registers. Psi separates these Pci bus operations in to two categories with
different action taken for each. DRAM accesses result in Psi generating write request to an
SRAM buffer followed with a write request to the Xwr sequencer. Subsequent write or read
DRAM operations are retry terminated until the buffer has been emptied. An event notification
is set for the processor allowing message passing to occur through DRAM space.

All other Pci write transactions result in Psi posting the write information including Pci
address, Pci byte marks and Pci data to a reserved location in SRAM, then setting an event flag
which the event processor monitors. Subsequent writes or reads of configuration, expansion
rom, SRAM or registers are terminated with retry until the processor clears the event flag. This
allows the INIC pipelining levels to a minimum for the posted write and give the processor
ample time to modify data for subsequent Pci read operations.

Fig. 85 depicts the sequence of events when Psi is the target of a Pci write operation.

‘Note that events 4 through'7 occur only when the write operation targets the DRAM.

PCI SLAVE OUTPUT SEQUENCER (Pso). *

* The Pso sequencer (See Fig. 86) acts as both a slave sequencer and a master sequencer.
Servicing requests issued by a Pci master, the Pso sequencer manages movement of data to Pci
bus from SRAM and to Pci bus from DRAM via SRAM by issuing requests to the SramCtrl
and Xrd sequencers. ‘ A

Pso manages read requests to configuration space, expansion rom, DRAM, SRAM and
memory mapped registers. Pso separates these Pci bus operations in to two categories with
different action taken for each. DRAM accesses result in Pso genérating read request to the

Xrd sequencer followed with a read request to SRAM buffer. Subsequent write or read DRAM
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operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information
including Pci address and Pci byte marks to a reserved location in SRAM, then setting an
event flag which the event processor monitors. Subsequent writes or reads of configuration,
expansion rom, SRAM or registers are terminated with retry until the processor clears the
event flag. This allows the INIC to use a microcoded response mechanism to return data for
the request. The processor decodes the request information, formulates or fetches the requested
data and stores it in SRAM then clears the event flag allowing Pso to fetch the data and return
it on the Pci bus.

Fig. 78 depicts the sequence of events when Pso is the target of a Pci read operation.

FRAME RECEIVE SEQUENCER (RcvX).

The receive sequencer (See Fig. 87) (RcvSeq) analyzes and manages incoming packets,
stores the result in DRAM buffers, then notifies the processor through the receive queue
(RevQ) mechanism. The process begins when a buffer descriptor is available at the output of
the FreeQ. RcvSeq issues a request to the Qmg which responds by supplying the buffer
descriptor to RcvSeq. RevSeq then waits for a receive packet. The Mac, network, transport and
session information is analyzed as each byte is received and stored in the assembly register
(AssyReg). When four bytes of information is available, RcvSeq requests a write of the data to
the SRAM. When sufficient data has been stored in the SRAM based receive fifo, a DRAM
write request is issued to Xwr. The process continues until the entire packet has been received
at which point RcvSeq stores the results of the packet analysis in the beginning of the DRAM
buffer. Once the buffer and status have both been stored, RecvSeq issues a write-queue request
to Qmg. Qmg responds by storing a buffer descriptor and a status vector provided by RevSeq.
The process then repeats. If RcvSeq detects the arrival of a packet before a free buffer is
available, it ignores the packet and sets the FrameLost status bit for the next received packet.

. Fig. 88 depicts the sequence of events for successful reception of a packet followed by
a definition of the receive buffer and the buffer descriptor as stored on the RevQ. Fig. 89
shows the Receive Buffer Descriptor. Figs. 90-92 show the Receive Buffer Format.
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FRAME TRANSMIT SEQUENCER (XmtX).

The transmit sequencer (See Fig. 93) (XmtSeq) analyzes and manages outgoing
packets, using buffer descriptofs retrieved from the transmit queue (XmtQ) then storing the
descriptor for the freed buffer in the free buffer queue (FreeQ). The process begins when a
buffer descriptor is available at the output of the XmtQ. thSéq issues a request to the Qmg
which responds by supplying the buffer descriptor to XmtSeq. XmtSeq then issues a read
request to the Xrd sequencer. Next, XmtSeq issues a read request to SramCitrl then instructs
the Mac to begin frame transmission. Once the frame transmission has completed, XmtSeq
stores the buffer descriptor on the FreeQ thereby recycling the buffer.

Fig. 94 depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ. Fig. 95
shows the Transmit Buffer Descriptor. Fig. 96 shows the Transmit Buffer Format. Fig. 97

shows the Transmit Status Vector.

QUEUE MANAGER (Qmg).

The INIC includes special hardware assist for the implementation of message and

pointer queues. The hardware assist is called the queue manager (See Fig. 98) (Qmg) and
manages the movement of queue entries between CPU and SRAM, between DMA sequencers
and SRAM as well as between SRAM and DRAM. Queues comprise three distinct entities; the
queue head (QHd), the queue tail (QT1) and the queue body (QBdy). QHd resides in 64 bytes
of scratch ram and provides the area to which entries will be written (pushed). QT resides in
64 bytes of scratch ram and contains queue locations from which entries will be read (popped).
QBdy resides in DRAM and contains locations for expansion of the queue in order to
minimize the SRAM space reqhirements. The QBdy size depends upon the queue being

accessed and the initialization parameters presented during queue initialization.
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Qmg accepts operations from both CPU and DMA sources (See Fig. 99). Executing
these operations at a frequéncy of 133MHz, Qmg reserves even cycles for DMA requests and
reserves odd cycles for CPU requests. Valid CPU operations include initialize queue ([nitQ),
write queue (WrQ) and read queue (RdQ). Valid DMA requests include read body (RdBdy)
and write body (WrBdy). Qmg working in unison with Q2d and D2q generate requests to the
Xwr and Xrd sequencers to control the movement of data between the QHd, QT1 and QBdy.

Fig. 98 shows the major functions of Qmg. The arbiter selects the next operation to be
performed. The dual-ported SRAM holds the queue variables HHWrAddr, HIRdAddr,
TIWrAddr, TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request,
fetches the queue variables from the queue ram (Qram), modifies the variables based on the
current state and the requested operation then updates the variables and issues a read or write
request to the SRAM controller. The SRAM controller services the requests by writing the tail

or reading the head and returning an acknowledge.

DMA OPERATIONS.

DMA operations are accomplished through a combination of thirtytwo DMA channels
(DmaCh) and seven DMA sequencers (DmaSeq). Each DMA channel provides a mechanism
whereby a CPU can issue a command to any of the seven DMA sequencers. Where as the
DMA channels are multi-purpose, the DMA sequencers they command are single purpose as
shown in Fig. 100.

The processors manage DMA in the following way. The processor writes a DMA
descﬁptor to an SRAM location reserved for the DMA channel. The format of the DMA
descriptor is dependent upon the targeted DMA sequencer. The processor then writes the
DMA sequencer number to the channel command register.

" Each of the DMA sequencers polls all thirtytwo DMA channels in search of commands
to execute. Once a command request has been detected, the DMA sequencer fetches a DMA
descriptor from a fixed location in SRAM. The SRAM location is fixed and is determined by
the DMA channel number. The DMA sequencer loads the DMA descriptor in to it's own
registers, executes the command, then overwrites the DMA descriptor with ending status.
Once the command has halted, due to completion or error, and the ending status has been

written, the DMA sequencer sets the done bit for the current DMA channel.
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The done bit appears in a DMA event register which the CPU can examine. The CPU
fetches ending status from SRAM, then clears the done bit by writing zeroes to the channel
command (ChCmd) register. The channel is now ready to accept another command.

The format of the channel command register is as shown in Fig. 101. The format of the
P2d or P2s descriptor is as shown in Fig. 102. The format of the S2p or D2p descriptor is as
shown in Fig. 103. The format of the S2d, D2d or D2s descriptor is as shown in Fig. 104. The
format of the ending status of all channels is as shown in Fig. 105. The format of the ChEvnt
register is as shown in Fig. 106.- Fig. 107 is a block diagram of MAC CONTROL (Macctrl).

LOAD CALCULATIONS.

The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where:
N = number of jobs in the system (either in progress or in a queue),
X = system throughput,

R =response time (which includes time waiting in queues).

U=X* 8 (from Little’s Law) where:
S = service time,

U = utilization.
R=S8/(1-U) for exponential service times (which is the worst-case assumption).

A 256-byte frame at 100Mb/sec takes 20 usec per frame.

4 * 100 Mbit ethernets receiving at full frame rate is:
51200 (4 * 12800) frames/sec @ 1024 bytes/frame,
102000 frames/sec @ 512 bytes/frame,

204000 frames/sec @ 256 bytes/frame.
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The following calculations assume 250 instructions/frame, 45nsec clock. Thus

S =250 * 45 nsecs = 11.2 usecs.

Av Frame Size Thruput Utilization Response Nbr in system
X) ()] (R) N)
1024 51200 0.57 26 usecs 13
512 102000 >1 -- --
256 204000 >1 -- -

5  Letslook at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Per | Service Thruput Utilization | Response | Nbr in system
Frame | Time(S) X (9)) ®R) N)

250 11.2 usec 102000 >1 -- --

250 112 85000 (*) 0.95 224 usecs 19

250 11.2 80000 (**) 0.89 101 8

225 10 102000 1.0 -- --

225 10 95000 (*) 0.95 200 19

225 10 89000 (**) 0.89 90 8

200 9 102000 0.9 90 9

150 6.7 102000 0.68 20 2

(*) shows what frame rate can be supported to get a utilization of less than 1.

(**) shows what frame rate can be supported with 8 SRAM CCB buffers and at least 8 process

contexts.

10 If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support 256

byte frames:

100

4.5

204000

0.91

50

10

Note that these calculations assume that response times increase exponentially as

utilization increases. This is the worst-case assumption, and probably may not be true for our
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system. The figures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system, assuming
250 instructions per frame. Due to SRAM limitations, the current design specifies 8 SRAM
buffers for active TCBs, and not to swap a TCB out of SRAM once it is active. So under these
5  limitations, the INIC will not be able to keep up with the full frame rate. Note that the initial
implementation is trying to use only 8KB of SRAM, although 16KB may be available, in
which case 19 TCB SRAM buffers could be used. This is a cost trade-off. The real point here
is the effect of instructions/frame on the throughput that can be maintained. If the
instructions/frame drops to 200, then the INIC is capable of handling the full thedretical load
10 (102000 frames/second) with only 9 active TCBs. If it drops to 100 instructions per frame,
then the INIC can handle full bandwidth at 256 byte frames (204000 frames/second) with 10
active CCBs. The bottom line is that all hardware-assist that reduces the instructions/frame is
really worthwhile. If header-assist hardware can save us 50 instructions per frame then it goes

straight to the throughput bottom line.
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Claims

1. A method comprising;: ,

establishing, at a host computer, a transport layer connection, including creating
a context that includes protocol header information for the connection;

transferring the protocol header information to an interface device;

transferring data from the network host to the interface device, after transferring
the protocol header information to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from a template
header containing the protocol header information; and

prepending the headers to the segments to form transmit packets.

2. The method of claim 1, further comprising transferring status information for the
_context to the interface device during the same operation as transferring protocol header

information to the interface device.

3. The method of claim 1, wherein creating headers for the segments includes adding

status information to the template header.

4, The method of claim 1, wherein the protocol header information includes Internet
Protocol (IP) addresses and Transmission Control Protocol (TCP) ports for the connection, and
creating headers for the segments includes forming headers containing the IP addresses and
TCP ports. |

5. The method of claim 1, wherein the protocol header information includes a Media
Access Control (MAC) layer address, and creating headers for the segments includes forming

headers containing the MAC layer address.

6. The method of claim 1, further comprising adding to the context a descriptor for a

buffer, in a memory of the computer, that has been allocated for application data.
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7. The method of claim 1, further comprising receiving, by the interface device, receive
packets that correspond to the context, and updating the context by the interface device to

account for the receive packets.

8. The method of claim 1, further comprising transmitting the transmit packets on a
network.
9. A method comprising;

creating, at a computer, a context including protocol information and status
information for a network connection, the protocol information providing a template header
for the network connection;

transferring the protocol information and status information to an interface
device;

transferring data from the computer to the interface device, after transferring the
protocol information and status information to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from the template
header;

prepending the headers to the segments to form packets; and

transmitting the packets on a network.

10.  The method of claim 9, wherein creating headers for the segments includes adding
current status information to the template header, the current status information being different

than the status information that was transferred to the interface device..

11.  The method of claim 9, wherein the protocol header information includes Internet
Protocol (IP) addresses and Transmission Control Protocol (TCP) ports for the connection, and
creating headers for the segments includes forming headers containing the IP addresses and

TCP ports.
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12. The method of claim 9, wherein the protocol header information includes a Media
Access Control (MAC) layer address, and creating headers for the segments includes forming

headers containing the MAC layer address.

13. The method of claim 9, further comprising transferring to the interface device a
descriptor for a buffer, in a memory of the computer, that has been allocated for application

data that is transferred according to the protocol information.

14. The method of claim 9, further comprising receiving, by the interface device, receive
packets that correspond to the protocol information, and updating the status information by the

interface device to account for the receive packets.

15. A method comprising:

establishing, at a computer, a Transmission Control Protocol (TCP) connection
corresponding to a context that includes status information and Internet Protocol (IP) addresses .
and TCP ports for the connection;

“transferring the context to an interface device;

transferring data from the network host to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from a template

header that includes tpe IP addresses and TCP ports; and '

prepending the headers to the segments to form transmit packets.

16.  The method of claim 15, wherein transferring the context to the interface device occurs

prior to transferring the data to the interface device.

17. The method of claim 15, wherein creating headers for the segments includes adding
current status information to the template header, the current status information being different

than the status information that was transferred to the interface device.
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18.  The method of claim 15, wherein the template header includes a Media Access Control
(MAC) layer address, and creating headers for the segments includes forming headers

containing the MAC layer address.

19.  The method of claim 15, wherein the context includes a Media Access Control (MAC)
layer address, and creating headers for the segments includes forming headers containing the

MAC layer address.

20.  The method of claim 15, further comprising adding to the context a descriptor for a

buffer, in a memory of the computer, that has been allocated for appliéation data.

21.  The method of claim 15, further comprising receiving, by the interface device, receive
packets that correspond to the context, and updating the status information by the interface

device to account for the receive packets.
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FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher
Stephen E. J. Blightman
Peter K. Craft
David A. Higgen
Clive M. Philbrick
Daryl D. Starr

ABSTRACT OF THE DISCLOSURE

A system for protocol processing in a computer network has an intelligent network
interface card (INIC) or communication processing device (CPD) associated with a host
computer. The INIC provides a fast-path that avoids protocol processing for most large multi-
packet messages, greatly accelerating data communication. The INIC also assists the host for

those message packets that are chosen for processing by host software layers. A

 communication control block for a message is defined that allows DMA controllers of the

INIC to move data, free of headers, directly to or from a destination or source in the host. The
context is stored in .the INIC as a communication control block (CCB) that can be passed back
to the host for message processing by the host. The INIC contains specialized hardware
circuits that are much faster at their specific tasks than a general purpose CPU. A preferred
embodiment includes a trio of pipelined processors.with separate processors devoted to
transmit, receive and management proceésing’, with full duplex communication for four fast

Ethernet nodes.

150

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 156



. s e

47 L\
4 by
. \'7

1/89
e 20
! HOST  +~~
35— )8 |
i |STORAGE |
B N |
’ ]
’ |
: CPU
. | |
30 |
REMOTE |
HOST \f\ CPD It |
25~ s |
46
s UPPER
a 42 | LAYER
\_[UPPER LAYER| ")
CONTEXT | ] ~ INTEREACE [+ | STORAGE
54 ‘
'f — TRANSPORT s
40
. g~ NETWORK ‘\ 58
4 44 B
_—| DATALINK
36 "
T s6
30 —
Ny
» INIC/CPD |«
FI1G. 2
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 157



2/89

RECEIVE PACKET
FROM NETWORK |47
BY CPD

l

VALIDATE PACKET,
SUMMARIZE |57
HEADERS *

61

|

CAST PATH SEND PACKET TO
CANDIDATE? STACK FOR SLOW-
' PATH PROCESSING
65 ~
SEND PACKET TO
MATCH WITH STACK FOR SLOW-
CCB? PATH PROCESSING
69 l
SEND TO

DESTINATION | CREATE CCB FOR

IN HOST VIA MESSAGE

FAST-PATH

Ly

FIG. 3

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 158



_____________ 42 65 '
r 30 Fm—————-
22 60\LMEM - SESS J—lﬁ@, i 63 |
REMOTE |~ ja N | TRANS [~ | |
roA 56 | 40 35, |
HOST 25 : v : NETW —~3g ™ |
——A—ﬂKECEIVE LOGIC| | —{DLINK [~36 L :
32_7L ___________ A 44
FIG. 4A
r e —— — — = 2
60 ! CCB | .)“ 64 42 68 j——————- .
PN - %[ SESS |~
eeniors |2 HMEMlcacHES TRANS PDI-% |
300 | F 2 T 40 L ! !
HOST | 25N >~ | [PROCESSOR-55 | [NETW [—gq 321 |
»RECEIVELOGIC| | /> DLINK 35 | |
| Y s
32_7/ ___________ 56 A
FIG. 4B 4
72~
— o mmmmmo oo L 62
CCB |/ 4o
! ———3-——
29 60 | MEMl« >ICACHE| | :(2)\ SESS : '2 !
=301 ] [ 1 g [ERANS] 55 70,
REMOTE 25 ~ < y A 4 i ~— NETW \: 66 |
HOST | | [PROCESSOR| | 36, |=orrer . .
»RECEIVE LOGIC] | b |
327 T T T T T T T i ‘\44
FIG. 4C
62
rommmo-y-———— 76 42~ | 82
60 : CCB | \ SESS 66 . 2.
| 22 S {MEM0, cpglT | 3
REMOTE |~ I 5 | 55 40~ TRANS | |
30._ ; 1| [PROCESSOR] ! 35
HOST | 253 "+ 4 a 52\ NETW | \ "~ 707 4 |
| J_HRECEIVE LOGIC] | ‘—\3 DLINK | 44 | :
- L _______ 3 78 T
"
FIG. 4D
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 159



4/89

20 ro-pmm——————== g 42 99 92 90, .

60 | —% 70 ===}

REMOTE| 30_ | ' CACHE | 40~ TRANS | |

HOST (25N 1 62— 1 | i?‘ NETW ] |

Jﬁ{ PROCESSOR |4 DLINK Rl i

| -
A 96 s
- FIG. 5
152’"\\I ——————————————— .
|
FAST-PATH L3> SOURCE/DEST | |
159 168 —F— <N
/ || APPLICATION | | |
166 | [
| |
150 170 1§5\ 164— TRANSPORT ||
R N | | |
' | 162—1| i
| I |
| PROCESSOR | | | NETWORK ||
| Sl i 160\ _! |
! | HARDWARE LOGIC | SLOW-PATH | DATA LINK |
| | ] \ |
— O D T
155 15 \_157 158
FIG. 6
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 160



5/89

MEDIA ACCESS| 17,
CONTROLLER
ASSEMBLY 174 178 176
M ~——
REGISTER S Y
—> FLYBY | CIZSAI\(IZII;EOTL
J' ] SEQUENCER SEQUENCER
A '
MULTIPLEXOR }—~— 180
| 182 183
VS \
SRAM
SRAM = CONTROL
A
Y
DRAM CONTROL |
&186
Y
QUEUE

188
DRAM [~ 16¢ 184~ MANAGER

FIG. 7

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 161



6/89
| 174

|

176 ~| CONTROL [ASSEMBLY
.| REGISTER

SEQUENCER

L 191

MAC
SEQUENCER

192
NETWORK _ 2

SEQUENCER

178

TRANSPORT
SEQUENCER

—— 194

-

A

SESSION
SEQUENCER

180
y g A

- MULTIPLEXOR

FIG. 8

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 162



230 — 264

il

7/89

FAST-PATH |

270

HARDWARE LOGIC 4

E PROCESSOR |
|
|
|

(&

~ 237

231

222

220

215
212

|

J SOURCE/DEST
4

APPLICATION

|
T NNETWORK

i

OW-PATH | |MAC
1

T
|
|
|

HARDWARE LOGIC 3} § :
i
[
|

|

|

|

|

|

|

|

|

|

| |
2r%/j\TRANSPORT :
|

|

|

|

|

|

|

|

|

____(L _____ T e—

TDI USERS

—~_ 382

3807

TDI FILTER DRIVER
& UPPER LAYER INTERFACE

370/\/
360

ATCP

TCP

3667 N\

IP

IP

MAC

MAC

3757

- NDIS

L

!

INIC MINIPORT DRIVER -

FIG. 11

350

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 163



202> _J }
|
| 300~ 54 _ |
| \, "\_| UPPERLAYER [«
' |
' ‘ |
|
UPPER LAYER INTERFACE !
330" N =
' ' |
325N_{ TRANSPORT TRANSPORT (N~ 316
| : |
|
322°N_{ NETWORK NETWORK ”\f\/ 314
! |
| - .
320N_{ DATALINK DATALINK  (™~N_ 312

1 240N

INIC

304
MEMORY | >

FIG. 10

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 164



9/89

| |
002 /\m; DINI m 01c
| > > |
21— OVIA :
| |
| |
S1T ~— dl "
(A Ny "
|
L1Z /I\M) dOL /.\"\)mmm
| |
0ZZ~_—H | soIdLaN |
‘ | Y |
| |
72 /.\_7 qdNS l—— “
| |
062 ~--7 MAAVES 5

| _
m DINI | /“_\)oﬁ
Lk |
| IVIN /ﬁ.\}of
! _ |
_ dOL N—"$91

t .

_ _
! mOHmELmZA 097
| I
_ |
“ > dINS /“l\) 991
_ I
” INATTO F-- 7061

e e o —

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 165



! |
! |
| 04
402 406 |
| MAC-A | MacB MAC-C | MACD | |
: e |
I 410 412 1/414 416
! |
: |
[ XMT& | 418 [ XMT& | 420 XMT & | 422 | XMT& | |
| RCV-A | | RCV-B RCV-C |~ 424| RCV-D | !
|
| 428 430 |
! 43 !
i 426 ‘ |
| |
[ |
| ‘ i
l 480 440 o
' [REGFILE [ /~ i
: WCS |
i 477 SRAM |
| |
_____ |
EXTERNAL !
MEMORY |
CTRL :
A |
450 f455 |
l _______ o
468 | |
—T % DRAM
|
|
|
|

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 166



11/89

CLOCK / /\
|
| 492 | CONTROLS FOR FIRST REGISTER SET
| :
, 505
500 "\\ 490 513
\
| Y \ 4 \ Y
|
—I:—> FIRST REGISTER SET .
i RAM FILE
\ REGISTER
R S it Rl B ———1 - -
! 498 l
: \ V. \ 4 \ J
! INSTRUCTION DECODER
J. AND
60 A A OPERAND MULTIPLEXER
N\ 496 l l |
E v Ny v v
\Tl" SECOND REGISTER SET
I
|
\>_ _t ettt tf—_—_—_—_—— e—_———_t—_e—, e, —_—_— e — e — = = = ==
i B 2 Y \
! STACK
' |EXCHANGE ARITHMETIC LOGIC UNIT QUEUE
{
600" - 608 602J 503/
\‘I \ \ \/ Y \ \
\\IT:"’ THIRD REGISTER SET
|
|
/' '\\ 501 /
470 —\; ————————————— T N N <=7
FIG. 14

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 167



12/89

VST DId

NAay 4aav|
100d 1Nod
.............. R SN R <A £ (o'=o: O iy Ity IOt A 77 B I
815 ogs | 8z | STS
\ \vvm \Oﬁm \wmm AT NV \ \ \ \ | .@m “_om¢
¥aav | oo o, [daay) o | . |somd| s00 wmmm X1 Smw a A\_\
oNEda T HOIERUISNI gy OV AT | TS I | ol
i - y |
/mmm fmmm |
. 505 |
LTS SIS | (115 | (0TS 305 905 | (v0S | ;05 !
TLD TILO| TALD | HOMS 0ad TILO | TYLO | IO | _ V
avot avOTHOLAY OV aQvoT|avoT|Avys| |
AAAV NI |
|
|
N/ L L/ I AYARYAYA

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 168



13/89

dSs1 DIA

\wmm, \vmm \Nmm \omm \mwm \nwm \mwm \vwm\mwm \cwm \@m \Rm

qaav TILO A@AOO| TS | 1S | dO | SOO |SAdo| XI1D
pnaga 2 VIS P9 | woq | T PHOO|OVIA| 1SAL | NIV | NIV | NIV | 911
A \ | A \
\.ﬁm \wmv
IO AAXATALLTAN ANVIEdO
N Vo aNVv
: YHAOOAA NOLLDNILSNI
1 S S S
506 €€s
0LS 296G \ 595
( [ Naay ¥aav [
oA o 1Nn0d 1Lnoa VS
HOLVIOS
YHLSIOTA
114 NV H
...... I N Y N R e o |1 1 T T I T
NId 9daav ‘- 09¢

i

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 169



14/89

IST

DIA

SEERRR

.\wmo \omo \vmo n\nmlmﬁwl\l|u

029 | 819,919 |
Vad i

|
AAAV | oo o [T mam< 0 TaS | LISY ,mwm% SOD | 1nO | X100 | |
|
ongada INDd sortad | OV | ISEL | Lol NTv 0V | 97 i
i i i I
. |
505 __
aY;
019 809 909 09 209 |
[ [ m [ [ m
. nIv
TILD AONVHOXH XOW i
N\ —> > n1v !
|
avol SIDVLS HAID 1SAL “
- |
|
|
|||||||||||||||||||||||| — — —— — —_——— ———— e ———— — —— _——— —— — — —— lllllf'JlL
\
\
2009

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 170



t/nz tfm
| '—¥— | ~700 460\ 702~ J —Y—
| 713
705’4|v : 707 735 | T\
707/\L 1 S > < S | _T/\715
| | DRAM | |
700~ B —y—‘ il
| | 730 77 | .
7114, | : 710
| | — |
—?725 _‘vtf739
FIG. 16
745 | ,
S~
/ sy 746
748 758 75/6 754 75_2 746
750
S~
J |
’76/4 772 77/0 768 766 76/ 740
755
‘\> | '
77/6 784 78é 780 k778 774/
760
s
74 796 744 792 790 786

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 171



16/89

D2Q\ /Q2D\ /[XMT\ /RCV : Q
Proc )
Se Seq || Seq || Seq . 844 Write
Req/ \Req/ \Req/ Data
846

_ ARBITER | MUX
‘, (
REGISTER A
Y l A
Addr DIn Addr| 825
Out : In
QRAM
DOut
80 ¥ l
REGISTER B
828 4
QALU
822~ - 821
l'—_I —_———— 1 — T A —_——ﬂ—_——_\—‘
| v || y v Y
| Q Q Q Q | : Sram| |Sram Boc'iy Body | Sram
Empty | | Full In Out | | Req | |Addr Write| |Read| ! |Write
: RDY | [ Req | | Req : Data
_______ N N A Vo W ¢
\755 \760 AK750 \ 745 \830 AK833 \835 %838 840
FIG. 18
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 172



A

.

RN

A

LRU
RO | Rl
9 1
LRU
RO [ Rl
1 7
LRU
RO | Rl
1 7
LRU
RO | R1
8 1

17/89

MRU
R13 | R14 | R15
13 ] 4| 6
MRU
R13 | R14 | R15
4 6 | 9
MRU
R13 | R14 | R15
6 | 9 | 10
MRU
R13 | R14 | R15
6 9 | 10

R7 | R8 | R9
220
FIG. 19A

R7 | R8 | R9
L2103
FIG. 19B

R7 | R8 | RO
21 3|8
FIG. 19C
R7 | R8 | RO
2 |12 ] 3
FIG. 19D

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 173



18/89

CE6 ~—

026 —»

006 —»

016 —»

0C DIA

0Ly
~
MOSSADOU
0€6 996
\ ﬁ
SLINOWIOD DIDOT
A A \
‘/ ﬁ A/ A/ H A/ 6€6
656 <6 66 b6 N
S10 60 80 LD 00
' 4 3 3 A 3y )
] ] ] ]
sra| T 6d [ T 8 [ T a7 14 ox N
1 e It ieli
N 4
ST % 6 = 8 =] L 111 0 e
XOW XON XON XON “ XON
. At At " 3
L_| | ‘
L

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 174



19/89

NETWORK

210
2101 INIC 200
_________ ~ P
¥ |
|
PHYSICAL |
LAYER 210 i
INTERF. ASIC 400 |
T e — I |
L
‘ B o] 2 !
| 2109 UEUE-
| e WNGR L2103 | [PROCESSOR| | !
: MEDIA 2112 L 1 470 |
| ACCEES T |[RX | E
l TR E % 2231|(2232|| 1 |
| 410 v y '
I ~" " 2108 | 2113 2106 45 x HOST 20
r o o rFreY = | ot aro e ———— -_———
SEQUENCERS » 1]
| 2102 CONFIS. b 257 :
! — 468 : H |
! RXSEQ TXSEQ = ! cPU |
2105 | 2104 I [
| > pcr| 2107 £
| A H |
| 2228~ 442 BUS 55— |
' SRAM [ | INT. | ! |
| M ctrRL [ 450 > 11 |(»STORAGE
[ SRAM L) ! H 35 |
| . |
| 440 ;4 DRAM | a :
, 32 BYTES }2110 CTRL ] |
| 32 BYTES ¥ i
: | L i
|
I s U SN -_______J:
Y DRAM |
|
STATUS — 460 |
/2223 j BUFFER |
' 2114 |
|
l
|
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 175



20/89

QUEUE
AAC MANAGER
| 2213 2214 2227
2215 l l -/ 2221+ 2210 | 2209
8 a ! 2105
____________________ I A I
Yvy v ! |
DATA 2200 ! QUEUE |
SYNC [~ PACKET | | MANAGER |
BUFFER [+ SYNC | INTERFACE 1
2222 SEQZUZEOI:JCER '| 2205 » : 2230
LU0 \ g]:
y \\ T \ :
N ) 2208 2207 |
7] 7]
————m—————_ - _ _ _ _] l _ | = |
oo 2216 (2219 2212 2211 !
DATA P - |
ASSEMBLY| , 2518 PACKET !
REGISTER | PROCESSING | SUMMARY || 1
~ 2220 SEQUENCER 2224 | |
E I %4 2204 !
2217 1 t :
q 2228 |
STATUS 2223 !
| PrOTOCOL DMA CONTROL | !
ANALYZER 2206 |
2203 |
A A I
|
|
|
________ N I R I S
| F=4=2225 2226
SRA DRAM
CONTROLLER CONTROLLER
. 2214
| STATUS | DATA g
'R, _J
2223
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 176



MULTI-
PACKET
MESSAGE
2300

{

21/89

HOST 20

INIC 200
DESTINATION
2301 (FILE CACHE)
2306 2307 f\k:‘—z\' 2311
(0 = 20 =AY
| TCP/P [ SES[DATA | 5305 | DATA | DATA
S | DATA
2315 - .
R ct—
[TcPP| DaTA ] .
0313 2303 .
K—M
2304 L ]
[TCPP| DATA | . DATA
. ‘2316
256-BYTE BUFFER
* 2309 [
[TcerP] patA |4 310 Y

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 177



22/89

A
FAST-PATH TDI
NetBIOS
0P TCP
P IP
MAC
o MAC
PHYSICAL SLOW-PATH
Ethemet PCI
Header buffer descriptors Header buffers
Data buffers
Header a Status Data buffer descriptors
DATA
Header b TCPISMB N
Headers
(st path) /
DATA
Status DATA
DATA
buffer handle
(slow-path) DATA

FIG. 25

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 178



Command
buffer queue

23/89

Command buffers

Command pointer

Command pointer

Command
buffer handle

Command pointer

TCP context
- identifier

Command

Data pointers

- Command
buffer handle

TCP context
identifier

Command

Data pointers

Command
buffer handle

TCP context
identifier

Command

Response
buﬁ%rpoqueue

Command

buffer bandle

Status

Command
buffer bandle

Status

Command

- buffer handle

Status

Data pointers

FIG. 26

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 179



24/89

3 | e 0
AAA AAAA
* Emor bifs are sent
RCV has occured.
ERR Command has been completed
RCV —— .
M — |
' Rov drop ocoured due to no buffers
RMISS

FIG. 27

SR 00 Intemupt Stais

IMR Ox4  Intemrupt Mask
HBAR 0x8 Header Buffer Address
DBHR 0xC Data Buffer Handle
DBAR 0x10 Data Buffer Address

CBARD 0x14 Command Buffer Address XMT0
CBARI Ox18 " Command Buffer Address XMT1
CBAR2 0xI1C Command Buffer Address XMT2

CBAR3 0x20 Command Buffer Address XMT3
CBAR4 x4 Command Buffer Address RCV
RBAR 0x28 Response Buffer Address
\_ /)

FIG. 28

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 180



25/89

arpcom

Mbuf
> Buffer Desc
\
> Dafa

»>{  Packet Desc
ifiet
i Lee

»  Buffer Desc

Data

sockaddr dl

Y

00:60:97:DB:9B:A6

sockaddr in

Y

192.100.12

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 181



26/89

Filter Driver
) ATCP
Microsoft :
TCPIP Driver
Driver
it
Dn've?rort ~ Dniver

FIG. 31

Packet Desc Packet Desc

Buffer Desc Buffer Desc | Buffer Desc
Header TP | ARP -
Buffer Packet Frame
Example of incoming TCP pkt Example of incoming ARP Frame

FIG. 32 FIG. 33

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 182



27/89

vt DI

- dve Dl

Vi€ Ol

QR YV ed-#0)g 4L edise 0L
- Bg xng
e Py 1pea]
< 1peay
§ R
\ B
Bng By
| (PN
=N PN L
Cma |« Beq
f Ped
xpng g =
BeQ .
.o | osop g
%P By | |
nqm Jnqu B g
0=259p 1yoeg 9%p e 9P 1R
PPy Py PPy

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 183



28/89

Packet > mbuf MDL
Dt |
\
Command
Buﬁ‘er Y Y VY Y Y
l%)ugcer > Data Data Data

FIG. 35

Packet -~
Desc | mbuf mhuf mbuf
‘Command
Y Buffer - Y LY Y Y
B ' > Daa Dafa Dtz

FIG. 36

CAVIUM-1002
Cavium, Inc. v. Alacritech, Inc.
Page 184



29/89

Packet > b
Desc
\ 4
Command
Y Buffer
* Buffer
Desc

FIG. 37

SRAM requirements for the Receive and Transmit engines:

TCB buffers Wobys  *16 40%
Header buffers B bytes  *16 2048
TCB hash index 16 bytes  *256 40%
Timers 28
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Summary of the main loop of Receive:

forever {
while there are any Receive evenfs
if (a new event) {
if (no new context available)
| ignore the event,
} ,
call appropriate event handler to scrvice the event;
this may make a waiting process rumable or set up
a new process to be run (get frec context, hddr buffer,
| TCB buffer, set the context up).
\ .
while any process contexts are runable
nm them by jumping to the startfresume address;
if (process complete)
free the context;

FIG. 39
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Format of the SMB header of an SMB frame:

3 0
NefBIOS header TYPE FLAGS - LENGTH —
SMB header OXFF "SII "Mll "B"
COM RCLS REH ERR..
~ERR REBFLG Reserved
Resgrved
Resgrved
Resgrved
TDD PD
UD MD
WCT _ VW]
BCC Data...
Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command -
WCT Count (16 bit) of parameter words in VWV [ ]
ywWwv o Variable oumber of parameter words
BCC Bytes of data following
N ' J

FIG. 40
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Summary of the main loop of Transmit:

forever {
while there are any Transmit events {

if (a new evenf) { ,
if (no new context available)
ignore the event;-
}
call appropriate event handler to service the event,
this may make a waiting process runnable or set up
a new process to be un (get free context, hddr buffer,
TCB buffer, set the context up).
}
while any process contexts are runable {
nun them by jumping to the startesume address;
if (process complete)
free the context;

FIG. 41
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Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
valid for 32 bit addressing mode.
Bit 23 - 0 Memory access
| Configuration access
Bit 22 - 0 Read (to Host)
1 Write (to Host)
Bit2l -1 Data Valid
Bit 20 - 16 Reserved

Bit 15 - 0 Address
N L J
W,
Configuration Space | SRAM Address Offset
00 ' 00
W M4
08 ' 08
0C 0C
10 10
3C 14
Configuration Space 2 _
00 00
M 18
08 08
0C IC
10 2
C . M
U All other reads to configuration gpacewﬂlretmn 00. . Y,
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10 accesses are not enabled

Memory accesses are enabled

Bus master is enabled

Special Cycle is not enabled

Memory Write and Invalidate is enabled
VGA palette snooping is not enabled
Bit 6 - 1  Paniy checking is enabled

Bit 7-0  Address data stepping is not enabled
Bit 8 - SERR# is enabled

Bit9-0 Fast back to back is not enabled

FIG. 44
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Bit! -
- Bit2-
Bit 3 -
Bit 4 -
Bit § -

O =t O D e e O

Bit 5-1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system ninning at 66 MHz on reset
Bit6-0  User Definable Features is not enabled
Bit 7-1  Fast Back-to-Back slave transfers enabled
Bit8-1  Panity Eror enabled - This bit is initialized to 0
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz
01 - Medium device select will be set if we are at 66 MHz

Bit 11 -1 Target Abort is implemented. Initialized o 0.
Bit 12- 1  Target Abort is implemented. Inifalized to 0.
Bit 13- 1  Master Abort is implemented. Initialized to 0.
Bit 14 -1  SERR# is implemented. Initialized to 0.
Bit-15-1  Panty emor is implemented. Initialized to 0.

FIG. 45
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MODULE DESCR SPEED AREA
_Scratch RAM, IKx128 sport, 437 ns nom,, | 06.77 mm2
wes, 8Kl sport 640 s nom, 1829 mm’
MA®, 18 ot 350 ns nom, 0024
ROM, K9 3200, 500 15 nom, 0045 m”
REGs, 51232 tpor 610 s nom, (349 mn’
Macs, 75 mo’ x 4 = 0330 mm?
PLL, Smot = 00.55 mm?
MISC LOGIC, 117260 gates / (5035 gates / mm?) = 2329 mm?
TOTAL CORE 520 ot
vy 2 ' 2
(Core side) : = 5622 mm
Core side = 07.50 mm
Die side = core side + 1.0 mm (10 cells) = 0850 mm
Die area =85 mm x 85 mm = 725 m?
Pads needed = 200 signals x 125 (v, vd) = Yspins
LSI PBGA : _ 2N yis
g ) y,

FIG. 47
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(10MB/s/100Base) x 2 (full duplex) x 4 connections = 80 MBk
Average frame size = SI12B
Frame rate = 80MB/s / 512B ~ = 156250 frames / s
Cpu overhead / frame = (256B context read) + (64B header read) + o
(128B context write) + (128B misc.) = 512B / frame
Total bandwidth = (512B in) + (512B ouf) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 framesfs) = 240MBJs
Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MBfs
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) =" 24MBfs
PCI Bandwidth required = §0MBs
PCI Bandwidth available @ 30 MHz, 32b, average = 46MBis
PCI Bandwidth available @ 33 MHz, 32b, average = 50MBfs
PCI Bandwidth available @ 60 MHz, 32b, average = 9MBk
PCI Bandwidth available @ 66 MHz, 32b, average = 100MBfs
PCI Bandwidth available @ 30 MHz, 64b, average = 0)MBk
PCI Bandwidth available @ 33 MHz, 64b, average = 100MBs
PCT Bandwidth available @ 60 MHz, 64b, average = 184MBk
PCT Bandwidth available @ 66 MHz, 64b, average = 200MBls
\ _/
v
FIG. 48
Receive frame interval = S12B / 40MBJs . 12808
Tnstructions / frame @ 60MHz = (12.8us/frame) / (S0ns/instruction) 256
instructions/frame ,
Tnstructions / frame (@ 66MHz = (12.8us/frame) / (45ns/instruction) %4
instructions/frame
Required instructions / frame 250 instructions/frame
Ny J
N g
FIG. 49
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y
Srm |LOAD|LOAD| | |FLAG DINA FETCHILOAD| | |LOAD | LOAD
o | od | Col DEC s%m ol | c o | o
) \d Y 47 y Y Y Y y Y Y Y A Y
\ | Adfr |FIE| FF | ALU|FLAG| dr dD | NSTR|FETCH S | DEBUG
NN, BASDD c ¢ p [sTAck| Ade
| Da | CTX | REGs | s [RBGs| ) | REC | Add EBASE| Adk
SO I bl FIE || ] o ol
Y addrdo do Y y
) anl dou
scrafch X y INCR INCR
Stam | -
Y Y Y Y y v \ .Y Y Y
msmuan% DECODER LOAD
OPERAND MULTPLEXER o Y
E Y Y Y A Y Y Y y \ y y y
{ | FILE | ALU | ALU | ALU | TEST |FLAG]| QCH POM Sem | DEBUG
N> & | LT P [sTAck| Ade
CTX | OPDs| CCs | OP | SEL | SEL |QOMD Cel §BASE| Add
UV VT T UV
- TEST QI%LAM . STACk CR LOAD
‘ < | N i
MX| | [QAL EYCHANGE of | )
; Y Y Y ) Y Y Y Y Y Y ¥ y
{ | FLE | ALU | ALU | DEST| TEST |FLAGIQRLGS| | PGM Srm (DEBUG
N OPD Q& LT PC |STA| Addr
| { | CTX | OUT | CCs | SEL |RSLT| SEL |QAddr Cel &BASE) Addr

ST LT TR o
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INSTRUCTION-WORD FORMAT

TstSel, Literal
FlgSel, Literal
FlgSel, Literal
Ohff, Literal
FlgSel, Literal

TYPE _[55:49]_ [48:47] [46:42] _ [41:33] [32:24]
Jec  0b0000000  0b00, AluOp, OpdASel,  OpdBSel,
Jmp  0b0000000 0b01, AluOp, OpdASel,  OpdBSel,
Jsr 0b0000000 O0bl0, AluOp, OpdASel,  OpdBSel,
Rts  0b0000000 Obll, AluOp, OpdASel,  OpdBSel,
Nxt  0b0000000 Obll, AluOp, OpdASel,  OpdBSel,
Map MapAddr 0BXX, 0BXXXXX, OBXXXXXXXXX, 0BXXXXXXXXX, 0HXX, OHXXXX

FIG. 51
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SEQUENCER BEHAVIOR

if (MapEn & (MapAddr != 0b0000000)){

Stackc = Stacke;
StackB = StackB;
StackA = StackA;

InstrAddr = 0h8000 | Pc[2:0] | (MapAddr << 3);

Pc = InstrAddr + (Execute & ~DbgMd);
Fetch = DbgMd ? DbgAddr:InstrAddr,

DbgAddr = DbgAddr + (Execute & DbgMd);}

else if PgmCtrl == Jcc){
Stackc = Stacke;
StackB = StackB;
StackA = StackA;

//re-map instr

//conditional jump

InstrAddr = ~Tst@TstSel ? Pc:(AluDst==Pc) ? AluOut:Literal,

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr,
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl = Jmp){

Stackc = Stackc;

StackB = StackB;

StackA = StackA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd);}

else if PgmCtr] == Jsr){

Stacke = StackB;

StackB = StackA;

StackA = Pc;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr,

DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (FlgSel == Rts){
InstrAddr = StackA;
StackA = StackB;
StackB = Stacke;
Stacke = ErrVec;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else {
InstrAddr = Pc;
StackA = StackA;
StackB = StackB;
Stacke = Stackc;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr,
DbgAddr = DbgAddr + (Execute & DbgMd);}

" FIG. 52

/fjump

//jump subroutine

//return subroutine

//continue
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ALU OPERATIONS

AluOp OPERATION

0b00000 =(A & ~(1 <<B));
C=0,V=(B>=32)?1:0;

0b00001 A=(A &B);
C=0,V=0:

0600010 A = (Literal & B);
C=0;,V=0;

0b00011 A = (~Literal & B);
C=0;Vv=0;

0600100 A=(A|(l <<B)); '

. C=0;,;V=(B>=32)?1:0;

0b00101 A=(A|B),
C=0;V=0;

0b00110 A = (Literal | B);
C=0,V=0;

0b00111 A = (~Literal | B);
C=0;V=0;

0601000 for (i=31; i>=0; i--) if B[i] continue; A=i
C=0;V=(B) 20 1;

0601001 A=(A"B);
C=0;,V=0;

0b01010 A = ({Liter l} A B);
C=0;V=0;

0b01011 A = ({~Literal} ~ B);
C=0;V=0;

0b01100 A=B;
C=0;V=0;

0b01101 A = B[31:24] ~ B[23:16] ~ B[15:08] ~ B[07:00];
C=0,V=0;

0501110 A = {B[23:16],B[31:24],B[07: 00],B[15 08]};
C=0;V=0;

0b01111 A = {B[15:00], B[31:16]};
C=0;V=0;

FIG. 53

//bit clear
/ogical and
//logical and
//logica] and not
//bit set
/ogical or
/Nogical or
/Mogical or not
/fpriority enc
/Mogical xor
/Nogical xor
/Nogical xor not
//move

//hash

/[swap bytes

//swap doublets
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AluOp
0b10000

0b10001
0b10010
0b10011
0b10100
0b10101
0b10110
0b10111
0b11000
0b11001
0b11010
0b11011
0b11100
0Ob11101
0b11110

0b11111

{ 42/89

FUNCTION

A=(A+B)
C=(A+B)[32]; V=0;

A=(A+B+C),
C=(A+B+C)[32];V=0;

A = (Literal + B);
C = (Literal + B)[32]; V=0;

A = (-Literal + B);
C = (-Literal + B)[32]; V=0;

A=(A-B);
C=(A-B)[32]; V=0,
A=(A-B-~C)
C=(A-B-~C)[32];V=0;
A =(-A +B);
C=(-A+B)[32];V=0;
A=(-A+B-~C),
C=(-A+B-~C)[32]; V=0,
A =(A <<B);

C= A[31]; V=(B>=32)?0:1;

A = (B << Literal);
C = B[31]; V=(Literal >=32) ? 0:1;

A=(B<<1);
C= B[31]; V=0

n=(A-B); ‘
C=(A-B)[32]; V=0;

A =(A>>B),
C= A[0]; V=(B>=32)?1:0;

A = (B >> Literal);
C = A[0]; V=(Literal >=32) ? 1:0;

A=(B>>1);
C= A[0]; V=0;

n=(B-A);
C=(B-A)32];V=0;

FIG. 54

/ladd B

/ladd B, carry
//add constant
//sub constant
//sub B

//sub B, borrow
//sub A

//sub A, borrow
//shift left A
//shift left B
//shift left B
//compare
//shift right A
//shift right B
//shift right B

//lcompare
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Opdsel SELECTED OPERANDs
0b0000aaaaa File File@(OpdSel[4:0] | FileBase);

Allows paged access to any part of the register file.
0b0001aaaaa CpuReg File@{2'b11, Cpuld, Oé)dSel[4:(%]}

Allows direct access to Cpu specific registers.
0b001XXXXXX reserved Reserved for future expansion.
0b0100000XX CpuStatus 0b0000000000000BHD00000000000000CC

0b0100001XX
0b0100010XX

0b0100011XX

0b0100IXXXX
0b010100000

This is a read-only register providing information about the Cpu executing
(OpdSel[1:0]) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H" represents the current state of HIt, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

reserved Reserved for future expansion.

Pc 0x0000AAAA
Writing to this address causes the program control logic to use AluOut as the
new Pc value in the event of a Jmp, Jcc or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the vaﬁxe in
Pc for the Cpu executing (OpdSel[1:07) cycles after the current cycle.

DbgAddr 0XxDO00AAAA
Writing to this register alters the contents of the debug address register
(DbgAddr) for the Cpu executing (OpdSel{1:0]) cycles after the current
cycle. DbgAddr provides the fetch address for the control-store when
DbgMad has been selected and the Cpu is executing. DbgAddr is also used
as Lﬁe control-store address when performing a WrWces@DbgAddr or
RdWcs%Db&lAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

reserved Reserved for future expansion.

RamAddr {0b1CCC, 0x000, 0bl, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[31]?CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr. -

bit name - description

31 v Always 1.

30 PrevC . Previous Alu Carry.

29 PrevV Previous Alu Overflow.

28 PrevZ Previous Alu Zero.

27:16 Always 0.

15 Always 1.

14:0 = RamAddr Contents of last Sram address used.

When writing this register, if alu_out[31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluQut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr. If AluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr

FIG. 55
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OpdSel - SELECTED OPERANDs
0b010100001  AddrRegA 0x0000AAAA
AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write
operations. When AddrRegA[15] is set, the contents will be presented directly to the ram. When
AddrRegA[15] is reset, the conteénts will first be ored with the contents of the’' RamBase register
before presentation to the ram. Writing to this register takes priority over Literal loads using
FlgOp. Reading this register returns the current value of the register.

0b010100010  AddrRegB 0x0000AAAA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write
operations.

en AddrRegB[15] is set, the contents will be presented directly to the ram. When
AddrRegB[15] is reset, the contents will first be ored with the contents of the RamBase
register before presentation to the ram. Writing to this re%lster takes priority over Literal loads
using FlgOp. Reading this register returns the current value of the register.

0b010100011  AddrRegAb 0x0000AAAA
: AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA used to provide the address
for read and write operations Writing to this register takes (;)rlonty over Literal loads using
FigOp. Reading this register returns the value 0x00000000.

0b010100100 RamBase 0x0000AAAA
RamBase = AluOut;

A read/write register which provides the base address for ram read and write cycles. When
RamAddr[15] 1s set, the contents will not be used. When RamAddr([15] is reset, the contents
will first be ored with the contents of the RamBase register before presentation to the ram.

Reading this register returns the value for the current Cpu.

0b010100101  FileBase 0b00000000000000000000000AAAAAAAAA
FileBase = AluQut;
FileAddr = OpdSef[S] ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write cycles. When
OdpdSel{S] is set, the contents will not be used and OpdSel will be presented directly to the
address lines of the file. When OEdSel[S] is reset, the contents will first be ored with the
contents of the FileBase register before presentation to the file. Reading this register returns the
value for the current Cpu. :

0b010100110  InstrRegL OxIIITIIXT

This is a read-only register which returns the contents of InstrReg[31:0]. Writing to
this register has no effect.

0b010100111  InstrRegH 0xO0OIIIIII

This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this
register has no effect.

FIG. 56
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OpdSel SELECTED OPERANDs
0b010101000 ~ Minusl DNiiitiiig
: This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.
0b010101001  FreeTime A free-running timer with a resolution of 1.00 microseconds and amaximum count
' of 71 minutes. This timer is cleared during reset.
0b010101010  LiteralL Instr{15:0]
A read-only register. Writing to this register has no effect
0b010101011  LiteralH _ Instr[15:0]<<16;
A read-only register. Writing to this register has no effect
0b010101100  MacData - Writing to this address loads the AluOut data into the MacData register for use

during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp
Mstop

WrMcfg

WrMrng
RdPhy

WrPhy

MacData definition
ObXXXXXXXXXXXXXXXXXX)O(XXXXXXXXXXXX
MacData is not used for the StopM operation.

hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10,
ipgr1{6:0],

ipgr2(6:0), ipgt[6:0].

Loads the MacCfg register with the contents of thc MacData register. Refer to
LSI Logic's Ethernet-110 Core Technical Manual for detailed definitions of these

bits.

Ob XXX XXX XX KKK KK KK XXX XXX SSSSSSSSSSS
Loads seed[10:0] into the Mac's random number generator.

ObXXXXRRRRXXXXPPPPXX XXX XXXXXXXXXXX
Reads register[R] of phy[P].

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD
Writes register{R] of phy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted
as a result of a RdAPhy command. Refer to the appropriate phy technical manual for a

definition of the phy register contents.

FIG. 57
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FIG. 58A

FIG. 58B

FIG. 58C

FIG. 58
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OpdSel SELECTED OPERANDs

-0b010101101 MacOp - A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut description
OXXXXXXOXM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for

MacBsy to be deasserted before issuing another command or changing the

contents of MacData.

0:00OXX1XM WrMecfg - Writes the contents of MacData to the MacCfg register of MadqM]
The user must wait for MacBsy to be deasserted before issuing another command

. or changing the contents of MacData.

0xXXXXK2XM WrMrng - Writes the contents of MacData to the seed register of Mac[M]. The
user must wait for MacBsy to be deasserted before issuing another command or
changing the contents of MacData.

03003 XM RdPhy - Reads the contents of reg[R] for phy[P] on the MII management bus of
Mac[M]. The contents may be read from MacData after MacBsy has been de-

asserted.
0xXOOXXX4XM WrPhy - Writes the contents of MacData[15:0] to e reg[R] of phy[P] on the MII
management bus of Mac[M]. The user must wait for MacBsy to be deasserted
before issuing another command or changing the contents of MacData.
0XXOCXXXEXM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA[15:0] for Mac[M].
OxXXXXX9XM WrAddrAH - Writes the contents of MacData[11:0] to MacAddrA[47:16) for Mac[M].
0xXXXXXaXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for Mac[M].
0xXXXXXbXM WrAddrBH - Writes the contents of MacData[11:0] to MacAddrB[47:16] for Mac[M].

b010101110. ChCmd A write-only register.

bit name description
31:11 reserved Data written to these bits is ignored:
10:8 command 0 - Stops execution of the current operation and clears the
corresponding event flag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pci.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.
07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.

FIG. 58A
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0b010101110  ChEvnt A read-only register.
bit name description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmd register.

0b010101111 GenEvnt A read-only register.
bit name description
31 PciRdEvnt Indicates that a PCI initiator is attempting to read a mproc.
, register.
30 PciWrEvnt Indicates that a PCI initiator has posted a write to a mproc.
register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.
0b010110000  QCtrl A write-only register used to select and manipulate a Q.
bit name description
31:11 reserved Data written to these bits are-ignored.
10:8 QSz Used only during InitQ operations to specify the size of the QBdy in Dram.

7 - Queue depth is 32K entries (128KB).
6 — Queue depth is 16K entries (64KB).
5 - Queue depth is 8K entries (32KB).
4 — Queue depth is 4K entries (16KB).
3 — Queue depth is 2K entries (8KB).
2 - Queue depth is 1K entries (4KB).
1 — Queue depth is 512 entries (2KB).
0 — Queue depth is 256 entries (1KB).
7:5 QOp  Specifies the queue operation to perform.
7-DblQ Disables all queues.
6 —EnQ Enables all queues.
5—RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr.
4 — WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3—RdQ Returns a queue entry in register QData..
2-rsvd Reserved. Not to be used.
1-InitQ Set the queue status to empty and initializes QSz.
0—SelQ  Selects the QId to be utilized during writes to QData.

" FIG. 58B
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4:0

0b010110001

0b010110010

0b010110011

0b010110100

- 0b010110101

0b010111000
0b010111001
0b010111010
0b010111011
0b0101111XX
0b0110XXXXX

0b01110XXXX

( 49/89 ‘

Qld Specifies the queue on which to perform all operations except DblQ or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data popped off during
the previous RdQ operation. _

reserved Reserved for future expansion.

XcvCtrl A write-only register used to enable and disable Mac transmit and receive
sub-channels.

bit name___ description

31:09 reserved Data written to these bits are ignored.

8 enable When set, indicates to the Mac transmit or receive sequencer that the subchannel
contains a transmit or receive descriptor.

07:05 reserved Data written to these bits is ignored.

04 RevCh  Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel
when cleared.

03 reserved Data written to this bit are ignored.

02 - SubCh Selects subchannel B when set or A when reset.

01:00 Macld Provides the Mac number for the subchannel enable bit.

Lru 0x0000000A
A read/write operand indicating which of the 16 entries is least recently used.
When Reading This register the least recently used entry is returned, after which
it is automatically made the most recently used entry. This register should only be
read in conjunction with a 'Move' operation of the ALU, else the results are
unpredictable. Writing to this register forces the addressed entry to become the
least recently used entry.

Mru 0x0000000A
A write only operand forcing the addressed entry to become the most recently
used entry.

QInRdy A read-only register comprising QHd not full flags for each of the 32 queues.

QOutRdy A read-only register comprising QTI not empty flags for each of the 32 queues.

QEmpty A read-only register comprising QEmpty .ﬂags for each of the 32 queues.

QFull A read-only register comprising QFull flags for each of the 32 queues.

reserved Reserved for future expansion. \

Constants {0b000, OpdSel[4:0]}

reserved Reserved for future expansion.

FIG. 58C
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OpdSel SELECTED OPERANDs
0b01111XXXX Sram OPERATIONS
OpdSel[3] PostAddrOp
0 nop
1 RamAddr = RamAddr + (OpdSel[1:0]);
OpdSel[2] transpose Ctrl
0 don't transpose
1 transpose bytes
OpdSel[1:0] RamOpdSz
0 quadlet
1 triplet
2 doublet
3 byte
RAM READ ATTRIBUTES SOURCE_OPERAND
endian trans- byte Sram
mode ose_ offs data sz=Q sz=T sz=D sz=B
little 8 0 abcd abcd Obcd 00cd 000d
little 0 1 abcX trap Oabc  00bc  000c
little 0 2 abXX trap trap 00ab  000b
little 0 3 aXXX tra trap trap 000a
little 1 0 abcd dcba Odcb 00dc  000d
little 1 1 abcX trap Ocba - 00cb  000c
little 1 2 abXX trap trap 00ba  000b
little 1 3 aXXX trap traj trap 000a
BIG 0 0 abcd abcd Oabc 00ab  000a
BIG 0 1 Xbed  trap Obcd 00bc  000b
BIG 0 2 XXcd trap trap 00cd  000c
BIG 0 3 XXXd tra trap traj 000d
‘ BIG 1 0 abcd dcba Ocba 00ba  000a
BIG 1 1 Xbcd  trap Odcb  00cb  000b
BIG 1 2 XXcd trap trap . 00dc  000c
BIG 1 3 XXXd trap trap trap 000d
RAM WRITE ATTRIBUTES SOURCE OPERAND
endian trans- Opd Alu
mode ose _ size out OF=0 0F=1 QF=2 OF=3
little 8 Q abcd abed  tra trap trap
little 0 T Xbcd -bcd  bed-  trap trap
little 0 D XXed  --cd -cd- cd-- trap
little 0 B XXXd ---d --d- -d-- d---
little 1 Q abcd dcba tra trap . trap
little 1 T Xbed -dcb  dcb-  trap trap
little 1 D XXcd --dc -dc- dc-- trap
little 1 3 4 Xg()d(d “l;dd --d- -d-- d---
bi 0 abc abc trap trap trap
big 0 T Xbed bed- -bed  trap trap
big 0 D XXed  cd-- -cd- --cd trap
big 0 B XXXd d--- -d-- --d- ---d
big 1 Q abcd dcba  trap trap trap
big 1 T Xbcd dcb-  -dcb  tra trap
big 1 D XXed  dc-- -dc- --dc trap
big 1 B XXXd d-- -d-- --d- --d
Oblaaaaaaaa File File@OpdSel[8:0];

Allows direct, non-paged, access to the top half of the register file.

FIG. 59
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TstSel

0bX00XXXXX
0bX0100000
0bX0100001
0bX0100010
0bX0100011
0bX0100100
0bX0100101
0bX0100110
0bX0100111
0bX0101000
0bX0101001
0bX010101X
0bX01011XX

0bX0110XXX

0bX0111XXX
0bXOIXXXXX

ObXTXXXXXX

( 51/89

SELECTED TEST

Tst.= TstSel[7] ~ AluOut[TstSel[4:0]]
Tst=TstSel[7] * C
Tst=TstSel[7]" V
Tst="TstSel[7] " Z

Tst = TstSel[7] ~ (Z | ~C)

Tst = TstSel[7] * PrevC

Tst = TstSel[7] » Prev{l

Tst = TstSel[7] » PrevZ

Tst = TstSel[7] * (PrevZ & Z)
Tst = TstSel[7] » QOpDn
Tst = reserved

Tst = reserved

Tst = reserved

Tst = TstSel[7] » Lock[TstSel[2:0]]

Lock(TstSel[2:0]) = 1;

Tst = TstSel[7] * Lock[TstSel[2:0]]
]
Tst = reserved

Tst = reserved

FIG. 60

//Alu bit

/[carry

/lerror

)/zero

/lless or equal
//previous carry
/Iprevious error

//previous zero

' //64b zero

//queue op okay

/ftests the current value of
//the Lock then set it.

/Ntests the value of Lock.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.

Page 207



52/89

FLAG OPERATION

FlgSel
0600000000 No operation.
0b00000001 SelfRst Forces a self reset for the entire chip excluding the PCI configuration
registers
0b00000010 SelBigEnd Selects big-endian mode for ram accesses for the current Cpu.
0b00000011 SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.
0b00000100 DbiMap Disable instruction re-mapping for the current Cpu.
“0b00000101 EnbMap Enable instruction re-mapping for the current Cpu.
0b0000011X reserved
0b00001XXX reserved
0b00010XXX ClrLck Lock[FlgSeI[2:0E| =0;
Clears the semaphore register bit for the current Cpu only.
0b00011XXX reserved
0b0010XXXX AddrOp
FlgSel[3:2] AddrSelect
0 RamAddr = Literal{15] 7 Literal  :(Literal | RamBase);
1 RamAddr = AddrRegA[l 5} ? AddrRegA : éAddrRegA RamBase);
2 RamAddr = AddrRegB[15 ? AddrRegB : (AddrRegB | RamBase); ~
3 if (OpdA = RamAddr)
RamAddr = AluOut{15] ?AluOut  : (AluOut | RamBase);
else if (OpdA == ram) : i
RlamAddr = AddrRegB[15] . ? AddrRegB : (AddrRegB | RamBase);
else i :
RamAddr = AddrRegA[15]  ? AddrRegA : (AddrRegA | RamBase);
FlgSell1:0 addr reg load
0 no
1 Ad%rRegA =Literal;
2 - AddrRegB = Literal,
3 AddrRegA = Literal, AddrRegB = Literal;
note: When specifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.
0b0011XXXX reserved
0b01000000 WrWesL@Dbg  Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the current AluOut data.
0b01000001 WrWesH@Dbg  Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.
0b01000010 RdWcesL@Dbg  Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1ff. :
0b01000011 RdWcesH@Dbg  Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox 1ff then increments DbgAddr.
0b01000100 reserved '
0b010001XX Step Allows the Cpu (FlgSel[1:0]) ctycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed.
0b010010XX PcMd Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.
0b010011XX DbgMd Selects the DbgAddr address register as the address source for the
. control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle. .
0b010100XX Hit Halts the Cpu (FlgSel[1:0]) cycles after the current cycle.
0b010101XX Run Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.
0b01011XXX reserved '
0b01 IXXXXX reserved
ObIXXXXXXX  reserved

FIG. 61
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RECEIVE BUFFER DESCRIPTOR

bit name description
31:30 reserved
29:28  size A copy of the bits in the FreeBufDscr.

27:00 address

TIME STAMP

bit name

Represents the last address +1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

FIG. 89

OFFSET 0x0008:0x000B

description

31:00 RcvTime

CHECKSUM

bit name

The contents of FreeClk at the completion of the frame receive operation.

FIG. 90

OFFSET 0x000C:0x000F

description

31:T6 IpChksum

15:00 TcpChksum

RESERVED
FRAME Data

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

FIG. 91
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RECEIVE BUFFER FORMAT
FRAME Status A

bit

31

30

name

OFFSET 0x0000:0x0003
description

attention
CompositeErr

CtrlFrame
IpDn
802.3Dn
MacADet
MacBDet
MacMcst
MacBecst
IpMecst
IpBcst
Frag
IpOffst
IpFlgs
IpOpts
TcpFigs
TcpOpts
TcpUrg
CarrierEvnt
LongEvnt
FrameLost

reserved
NoAck
FrameTyp
NwkTyp
TrnsptTyp
NetBios
reserved
channel

FRAME Status B

Indicates one or more of the following: CompositeErr, [IpDn, TMacADet &
!MacBDet, IpMcst, IpBcst, !ethernet & !802.3Snap, !Ip4, !Tcp .

Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.

A control frame was received at our unicast or special MltCst address.

Frame processing Hlted due to exhaustion of the [P4 length counter.

Frame processing Hlted due to exhaustion of the 802.3 length counter.

Frame's destination address matched the contents of MacAddrA.

Frame's destination address matched the contents of MacAddrB.

The Mac detected a MItCst address. :

The Mac detected a BrdCst address.

The frame processor detected an IP MltCst address.

The frame processor detected an IP BrdCst address.

The frame processor detected a Frag IP datagram.

The frame processor detected a non-zero IP datagram offset.

The frame processor detected flags within the IP datagram.

The frame processor detected a header length greater than 20 for the IP datagram.
The frame processor detected an abnormal header flag for the TCP segment.
The frame processor detected a header length greater than 20 for the TCP segment.
The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to E110 Technical Manual.

Refer to E110 Technical Manual.
Set when an incoming frame could not be processed as a result of an outstanding frame completion

. event not yet serviced by the utility processor.

The frame processor detected a

00 - Reserved.  01- ethernet. 10 - 802.3. 11 - 802.3 Snap..
00 - Unknown. 01- Ip4. 10 - Ip6 11 - ip other.
00 - Unknown. 01- reserved. 10 - Tep 11 - Udp

A NetBios frame was detected.

The Mac on which this frame was received.

OFFSET 0x0004:0x0007

bit name description .
31 802.3Shrt End of frame was encountered before the 802.3 length count was exhausted.
30 BufOvr The frame length exceded the buffer space available.
29 BadPkt Refer to E110 Technical Manual.
28 InvidPrmbl Refer to E110 Technical Manual.
27 CrcErr Refer to E110 Technical Manual.
26 DrbINbbl Refer to E110 Technical Manual.
25 CodeErr Refer to E110 Technical Manual.
24 IpHdrShrt The IP4 header length field contained a value less than 0xS5.
23 IpIncmplt The frame terminated before the IP length counter was exhausted.
22 IpSumErr The IP header checksum was not Oxffft at the completion of the IP header read.
21 TepSumErr The session checksum was not Oxffff at the termination of session processing.
20 TcpHdrShrt The TCP header length field contained a value less than 0xS.
19:16 PressCd The state of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Processing IP header.
0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header (IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.
0b1001 Reserved.
0b101x Reserved.
Obl1xx Reserved.
15:08 MacHsh The Mac destination-address hash. Refer to £/70 Technical Manual.
07:00 CtxHsh The 8-bit context-hash generated by exclusive-oring all bytes of the IP source

address, IP destination-address, transport source port and the transport destination port.

FI1G. 92
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TRANSMIT BUFFER DESCRIPTOR

bit name description
31 ChksumEn When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will
not alter the outgoing data stream.
30 reserved
29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :
S=0 256B boundary. A[7:0] ignored.
S=1 2KB boundary. A[10:0] ignored.
S=2 4KB boundary. A[11:0] ignored.
S=3 32KB boundary. A[14:0] ignored.
27:00 EndAddr - The address of the last byte to transmit plus one.

FIG. 95

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name description

31:.00 Primer A value to be added during checksum accumulation. For IPV4, this should include
the psuedo-header values, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005
FRAME Data OFFSET 0x0006:END OF BUFFER

FIG. 96

TRANSMIT Status VECTOR

bit name description i
31 LnkErr Indicates that a link status error occured before or durmng transmit.

30:15 reserved

14 ExcessDeferral Refer to £/70 Technical Manual.
13 LateAbort Refer to E110 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.
10 ExcessLgth Refer to £110 Technical Manual.

09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to E110 Technical Manual.
05 CrcErr Refer to E110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 ColICnt Refer to E110 Technical Manual.

FIG. 97
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description

This is a no operation address.

Moves data from ExtMem to ExtMem.
Moves data from ExtMem bus to sram.
Moves data from ExtMem to Pci bus. -
Moves data from sram to ExtMem.
Moves data from sram to Pci bus.
Moves data from Pci bus to ExtMem.
Moves data from Pci bus to sram.

FIG. 100

description

Data written to these bits 1s ignored.

0 - Stops execution of the current operation and clears the corresponding event flag.

1 - Transfer data from ExtMem to ExtMem.

2 - Transfer data from ExtMem bus to sram.

3 - Transfer data from ExtMem to Pci bus.

4 - Transfer data from sram to ExtMem.

5 - Transfer data from sram to Pci bus.

6 - Transfer data from Pci bus to ExtMem.

7 - Transfer data from Pci bus to Sram.

Data written to these bits is ignored.

Provides the channel number for the channel command.

FIG. 101

description

DMA OPERATIONS

dma seq # name
0 none
1 D2dSeq
2 D2sSeq
3 D2pSeq
4 S2dSeq
5 S2pSeq
6 P2dSeq
7 P2sSeq

bit name

31:11 reserved

10:8 ChCmd

07:05 reserved

04:00 ChId

bit name

127:96 PciAddrH

95:64 PciAddrL

59:32 MemAddr

31 PciEndian

30 WideDbl

22 DstFlash

15:00 XfrSz

Bits [63:32] of the Pc1 address.
Bits [31 :OO} of the Pci address.

Bits [27:00

When set, selects big endian mode for Pci transfers.
When set, disables Pci 64-bit mode.

Selects Flash for the external memory destination of P2d.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 102

of the ExtMem address or bits [15:00] of the Sram address.
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bit name

) 88/89

description

123:96 MemAddr
95:64 PciAddrH
63:32 PciAddrL
30 SrcFlash
23 PciEndian

Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Bits {63:32] of the Pci address.

Bits [31:00] of the Pci address. :

Selects Flash for the external memory source of D2p.

When set, selects big endian mode for Pci transfers.

22 WideDbl When set, disables Pci 64-bit mode.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
bit name description

127:124 reserved
123:96 SrcAddr
95:60 reserved
59:32 DstAddr
30 FlashSel

Reserved for future use.
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.

Reserved for future use.
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Selects Flash for the external memory source of D2d or D2s.

22 FlashSel Selects Flash for the external memory destination of S2p or D2d.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

bit name description

127:64 reserved ‘Not used.

63:32  ChkSum

31:24  reserved
23:20  SrcStatus
19:16 DstStatus

Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d

operation only.
Reserved for future use.
TBD.

TBD.
Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the

dma operation was successful

FIG. 105

description

15:00 XfrSz
bit name
31:00 ChDn

Each bit represents the done flag for the respective dma channel. These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmd register ChCmdOp field.

FIG. 106
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S8 ‘ ‘ : ' “ " Attorney Docket No.: ALA-006C

bECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below fiamed inventor, I hereby declare that:

My residencé, post-office address, and citizenship are as stated below next to my name. I believe I am the on‘ginal,.first and sole
inventor (if only one name is listed below), or an original, first and joint inventor (if plural names are listed below) of the subject

matter which is claimed and for which a patent is sought by way of the application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) X .is attached hereto. .
and is amended by the Preliminary Amendment attached hereto.

was filed on , as Application Serial No.
and was amended on "~ (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended
by any amendment referred to above. I acknowledge the duty to dxsclose all information which is material to patentabxhty as deﬁned in

37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Prlorxty

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) demgnatmg at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
international application(s) designating at least one country other than the United States of America filed by me on the same subject

matter having a filing date before that of the application(s) on which priority is claimed:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed

below:

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international

application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or

PCT international filing date of this application:

Declaration and Power of Attorney
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L | . " Attorney Docket No.: ALA-006C

Power of Attorney o
As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact

all business in the Patent and Trademark Office connected therewith.

Mark A. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declare that all st