
INTEL Ex.1002.001

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE|
PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET |

_ 06/27/2087 HMARZT1 @a8B0B43 11821620
"BL FCs1611 368.68op

@2FCsiii1 =| Sap9 gp
@3 FCsi3i1 aaaeg op
@4 FC:i@ei . 758.88 OP.

85FC31262 . 568 OP.

PTO-1556 | -

" *U‘S. Goverment Printing Office: 2002-489-267/69033

INTEL Ex.1002.001

INTEL Ex.1002.002

PTO/SBN6 (02-07)
Approved for use through 02/28/2007. OMB 0651-0032

. . U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD
Substitute for Form PTO-875

APPLICATIONASFILED — PART| OTHER THAN

(Columa 1) (Column 2) OR. SMALL ENTITY

RATE ($NUMBER FILED

BASIC FEE
37 CFR 1,16{a). (0). oF (c NIA
SEARCH FEE
(37 CFR 1. t6(k), (0). of (mm)
EXAMINATION FEE
(37 CFR 1.16(0). (p). or (q))
TOTAL CLAIMS

(37 CFR 1.16(i)) e / minus 20 =|°
(37 CFR 1,16(h)) .

{f the’specification and drawings exceed 100
sheets of paper, the application size fee due
is $250 ($125 for small entity) for each

. additional 50 sheets or fraction thereof. See
35 U.S.C. 41(a)(1 .16(S).

MULTIPLE DEPENDENT CLAIM PRESENT(37 CFR 1.169) : 7

* if the difference in column 1 is less than zero, enter “0” in column 2.. QO:

gti

APPLICATION SIZE
FEE
(37 CFR 1,16(s))

, °
a x “"ais 4

+8
a

5 TOTAL ©

 APPLICATION AS AMENDED-— PARTII

OTHER THAN

(Column 1) {Column 2) (Cotumn 3) SMALL ENTITY
CLAIMS HIGHEST

< REMAINING NUMBER PRESENT AODI- RATE($) ADDI-
b _ AFTER’ PREVIOUSLY EXTRA TIONAL "TIONAL
> AMENDMENT PAID FOR $
Wi]. Total = 1 .
Sf 7 cre tren . x$60 =

g|ser ae $200Zl TcFR i.s6m)
uw

S| Application Size Fee (37 CFR 1.16(s))|$260|<

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16(j)) +369a PO
ADO'L FEE

(Column 1) (Column 2) (Column 3)

CLAIMS HIGHEST "
REMAINING NUMBER PRESENT ADOI-

AFTER PREVIOUSLY EXTRA TIONAL
AMENDMENT P

independent
(37 CFR 1.16(h))
 fermen[me(97 CFR 1.160)

 Application Size Fee (37 CFR 1.16(s))
AMENDMENTB

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16())

 ADO'L FEE ADD'L FEE

* Ifthe entry in column1 is less than the entry in column 2,write “0” in column 3.
** if the “HighestNumber Previously Paid For" IN THIS SPACEisless than 20, enter °20".

*** If the “Highest Number Previously Paid For’ IN THIS SPACEis tess than 3, enter “3".
The “Highest NumberPreviously Paid For" (Total or Independent) is the highest number foundin the appropriate box in column 1. ;

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the
USPTOto process) an application. Confidentiality is governed by35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete,
inctuding gathering, preparing. and submitting the completed application form to the USPTO.Timewill vary depending uponthe individual case. Any comments
on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent
and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. OO NOT SEND FEES OR COMPLETED FORMSTO THIS
ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

if you needassistance in completing the form,call1-809-PTO-9199 and select option 2.

INTEL Ex.1002.002

INTEL Ex.1002.003

7) 18351 U.S. PTO

IN
062507

“UTILITY PATENT APPLICATION TRANSMITTAL

U.S. PTO

11/821820

06/25/2007

Attorney Docket No.
_ ALA-006K

TO THE COMMISSIONER FOR PATENTS:

Transmitted herewith is a patent application identified as follows:
First-named inventor: Laurence B. Boucher

Assignee: Alacritech, Inc.
Filing Date: September 27, 2002
Title: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

This application claims the benefit under 35 USC §120 of(is a continuation of):

60/098,296,filed August 27, 1998.

(X)

“Fast-Path Apparatus For Receiving Data Corresponding to a TCP Connection”
Serial No.: 10/260,112

Filing Date: September 27, 2002
Atty. Docket: ALA-006G
Examiner: Jude Jean Gilles

This application claims the benefit under 35 USC §120 of Application Serial No. 10/260,112, filed
September 27, 2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/092,967,
filed March 6, 2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240,
filed December 15, 2001, which in turn claims the benefit under 35 USC §120 of Application Serial No.
09/464,283, filed December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial
No. 09/439,603, filed November 12, 1999, which in turn claims the benefit under 35 USC §120 of Application
Serial No. 09/067,544, filed April 27, 1998, which in turn claims the benefit under 35 USC §119 of Provisional
Application Serial No. 60/061,809, filed October 14, 1997.

This application also claims the benefit under 35 USC §120 of Application Serial No. 09/384,792, filed
August 27, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application Serial No.

This application also claims the benefit under 35 U.S.C. §120 of the following:
. Patent Application Serial No.
. Patent Application Serial No
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No.
. Patent Application Serial No

09/416,925 (ALA-005),filed October 13, 1999;
_ 09/514,425 (ALA-007), filed February 28, 2000;
09/675,484 (ALA-010A), filed September 29, 2000;
09/675,700 (ALA-010B),filed September 29, 2000;
09/789,366 (ALA-013), filed February 20, 2001;
09/801,488 (ALA-011), filed March 7, 2001;
09/802,551 (ALA-012), filed March 9, 2001;
09/802,426 (ALA-014), filed March 9, 2001;
09/802,550 (ALA-015), filed March 9, 2001;
09/855,979 (ALA-016), filed March 14, 2001; and

. 09/970, 124 (ALA-020), filed October 2, 2001. “

The specification contains a statement claimingpriority under 35 USC § 120 and claiming the benefit under
35 U.S.C. §119.
The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
09/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/80 1,488; 09/802,551; 09/802,426; 09/802,550; 09/855,979; 09/970,124) is considered as being part of the
disclosure of the accompanying application and is hereby incorporated by reference therein.
The entire disclosure of each of the prior provisional applications (60/061 ,809; 60/098,296) is considered as
being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.

INTEL Ex.1002.003

INTEL Ex.1002.004

Enclosedare:

145 pages Specification
4 pages Claims
1 page Abstract
89—spages Drawings
4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed - copy)
4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed - copy)
page CD Appendix Transmittal Letter

xX CD Appendix (two copies) |
Xx A checkforfiling fee ($1800.00)

tN

Newly Executed Declaration Not Required:
A newly executed declaration is not filed in this application because, under 37 CFR 1.63(d)(1), a newly executed

declaration is not required because: prior application contained a declaration as prescribed by 37 CFR 1.63; the
continuation application (this application) is filed by all of the inventors named in the prior application; the specification
and drawings in the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two) in the prior application is being submitted in the
continuation application (this application).

The filing fee is calculated as follows:

‘ CLAIMSAS FILED

NO. FILED NO. EXTRA

Total Claims pt $50.00 $ 50.00
Po

Independent Claims $200.00 $ 0.00

‘| Multiple Dependent Claims(if applicable $0.00

[UtilitySearchFee$500.00|

Basic Filing Fee $300.00

I hereby certify that this is being deposited with the U.S. Postal Respectfully submitted,
Service “Express Mail Post Office to Addressee” service under.

37 CFR § 1.10 on the date indicated below andis addressed to: By:
Mark Lauer

MS Patent Application Reg. No. 36,578Commissionerfor Patents

P.O. Box 1450 6601 Koll Center Parkway
: Suite 245

Alexandria, VA 22313-1450 Pleasanton, CA 94566
Phone: (925) 484-9295

By: EE Fax: (925) 484-9291
Typed Name: Mark Lauer Date: Buz 5yw 7

Express Mail Label No.: EV 406928085 US Correspondence Address:

Date of Deposit:BYE? , CUSTOMERNO.24501

INTEL Ex.1002.004

INTEL Ex.1002.005

TO THE ASSISTANT COMMISSIONERFOR PATENTS:

Inventors: Laurence B. Boucher,et al. Atty Docket: ALA-006K

Filing Date: June 25, 2007 Serial No... Unknown

Title: FAST-PATH APPARATUSFOR RECEIVING DATA CORRESPONDING TO

A TCP CONNECTION

Compact Disk Transmittal Letter per 37 CFR 1.52(e)3(i))

Sir:

Transmitted herewith are:

Two Labeled Compact Discs — Recordable (CD-R) — “Copy 1” and “Copy 2,” each in a

CDcase and contained in a padded envelope.

The content on the two discsis identical

The machine format is: IBM-PC

The operating system is: MS-Windows

- The creation date of the CDs is: June 21, 2007

The name, date andsize ofthe files on the CDsare listed below:

There are three folders on each disc: 1) CD Appendix A,

2) CD Appendix B, and

3) CD Appendix C.

Folder Appendix A contains twofiles:

CD Appendix A Title Page.txt. Its size is 370 bytes. It was created 6/21/07.

Rev.v. Its size is 84.4KB. It was created (written to disc) 6/21/07.

Folder Appenidix B contains twofiles:

CD Appendix B Title Page.txt. Its size is 495 bytes. It was created 6/21/07.

Microcode.txt. Its size is 105 KB. It was created (written to disc) 6/21/07.

Express Mail No. EV 406928085 US , 1

INTEL Ex.1002.005

INTEL Ex.1002.006

Folder Appendix C containsthree files:

CD Appendix C Title Page.txt. Its size is 416 bytes. It was created 6/21/07.

atcpsource.wrd.txt. Its size is 778 KB. It was created (written to disc) 6/21/07.

simbasource.wrd.txt. Its size is 262 KB. It was created (written to disc) 6/21/07.

CERTIFICATE OF MAILING

I hereby certify that this correspondenceis being deposited with

the United States Postal Service as Express Mail Label No.

EV406928085USin an envelope addressed to: Box PATENT

APPLICATION,Assistant Commissionerfor Patents,

Washington, D.C. 20231, on June 25, 2007.

Date:6257
Mark Lauer

Express Mail No. EV 406928085 US

Respectfully submitted,

Mark Lauer

Reg. No. 36,578
Silicon Edge Law Group LLP
6601 Koll Center Parkway
Suite 245

Pleasanton, CA 94566
Tel: (925) 484-9295
Fax: (925) 484-9291

INTEL Ex.1002.006

INTEL Ex.1002.007

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Craft

David A. Higgen
Clive M.Philbrick

_ Daryl D.Starr

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claimsthe benefit under 35 U.S.C. §120of(is a continuation of) U.S.

Patent Application Serial No. 10/260,112, entitled “FAST-PATH APPARATUS FOR

RECEIVING DATA CORRESPONDING TO A TCP CONNECTION,”filed September 27,
2002, by Laurence B. Boucheretal., which in turn claims the benefit under 35 U.S.C. §120 of

(is a continuation of) U.S. Patent Application Serial No. 10/092,967, entitled “FAST-PATH

APPARATUSFOR RECEIVING DATA CORRESPONDINGTO A TCP CONNECTION,”

filed March 6, 2002, by Laurence B. Boucher etal., which in turn claims the benefit under 35

U.S.C. §120 of (is a continuation-in-part of) U.S. Patent Application Serial No. 10/023,240,

entitled “TRANSMIT FAST-PATH PROCESSING ON TCP/IP OFFLOAD NETWORK

INTERFACE DEVICE,”filed December 15, 2001, by Laurence B. Boucheret al., which in

turn claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) U.S. Patent

Application Serial No. 09/464,283, now U.S. Patent No. 6,427,173, entitled “INTELLIGENT

NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED

COMMUNICATION”,filed December 15, 1999, by Laurence B. Boucheret al., which in turn

claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) U.S. Patent
Application Serial No. 09/439,603, now U.S.Patent No. 6,247,060, entitled “INTELLIGENT

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING”,filed November 12, 1999, by Laurence B. Boucheret al., which in turn

claims the benefit under 35 U.S.C. §120 of(is a continuation-in-part of) U.S. Patent

Application Serial No. 09/067,544, now U.S. Patent No. 6,226,680, entitled “INTELLIGENT

1

INTEL Ex.1002.007

INTEL Ex.1002.008

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING”, filed April 27, 1998, which in turn claims the benefit under 35 U.S.C.§

119(e)(1) of the Provisional Application filed under 35 U.S.C. §111(b)entitled

“INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL

PROCESSING,”Serial No. 60/061,809, filed on October 14, 1997.

Application No. 10/260,112 also claims the benefit under 35 U.S.C. §120 of (is a

continuation-in-part of) U.S. Patent Application Serial No. 09/384,792, now U.S. Patent No.

6,434,620, entitled “TCP OFFLOAD NETWORK INTERFACEDEVICE,”filed August 27,

1999, which in turn claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of)
U.S. Patent Application Serial No. 09/141,713, now U.S. Patent No. 6,389,479, entitled

“INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED PROTOCOL PROCESSING”,filed August 28, 1998, which both claim the

benefit under 35 U.S.C. § 119(e)(1) of the Provisional Application filed under 35 U.S.C.

§111(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED COMMUNICATION,”Serial No. 60/098,296,filed August 27, 1998.

Application No. 10/260,112 also claims the benefit under 35 U.S.C. §120 of (is a

continuation-in-part of) U.S. Patent Application Serial No. 09/416,925, now USS.Patent No.
6,470,415, entitled “QUEUE SYSTEM FOR MICROPROCESSORS,”filed October 13, 1999,

(is a continuation-in-part of) U.S. Patent Application Serial No. 09/514,425, now U.S. Patent

No.6,427,171, entitled “PROTOCOL PROCESSING STACK FOR USE WITH

INTELLIGENT NETWORK INTERFACE CARD,”filed February 28, 2000,(is a

continuation-in-part of) U.S. Patent Application Serial No. 09/675,484, now U.S. Patent No.

6,807,581, entitled “INTELLIGENT NETWORK STORAGEINTERFACESYSTEM,”filed

September 29, 2000,(is a continuation-in-part of) U.S. Patent Application Serial No.

09/675,700, entitled “INTELLIGENT NETWORK STORAGE INTERFACEDEVICE,”filed

September 29, 2000, (is a continuation-in-part of) U.S. Patent Application Serial No.

09/789,366, now U.S.Patent No. 6,757,746, entitled “OBTAINING A DESTINATION

ADDRESS SO THAT A NETWORK INTERFACE DEVICE CAN WRITE NETWORK

DATA WITHOUT HEADERS DIRECTLY INTO HOST MEMORY,”filed February 20,

2001, (is a continuation-in-part of) U.S. Patent Application Serial No. 09/801,488, now U.S.

Patent No. 6,687,758, entitled “PORT AGGREGATION FOR NETWORK CONNECTIONS

THAT ARE OFFLOADED TO NETWORK INTERFACE DEVICES,”filed March 7, 2001,
2

INTEL Ex.1002.008

INTEL Ex.1002.009

ALA-006K | Express Mail No. EV 406928085 US

15

20

25

30

(is a continuation-in-part of) U.S. Patent Application Serial No. 09/802,551, entitled
“INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,”filed March 9, 2001, (is a

continuation-in-part of) U.S. Patent Application Serial No. 09/802,426, entitled “REDUCING

DELAYS ASSOCIATED WITH INSERTING A CHECKSUM INTO A NETWORK

MESSAGE,”filed March 9, 2001, (is a continuation-in-part of) U.S. Patent Application Serial

No.09/802,550, now U.S.Patent No. 6,658,480, entitled “INTELLIGENT NETWORK
INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING,”filed March 9, 2001, (is a continuation-in-part of) U.S. Patent Application

Serial No. 09/855,979, entitled “NETWORK INTERFACE DEVICE EMPLOYING DMA

COMMANDQUEUE,”filed March 14, 2001, (is a continuation-in-part of) U.S. Patent

Application Serial No. 09/970,124, entitled “NETWORK INTERFACE DEVICE THAT

FAST-PATH PROCESSES SOLICITED SESSION LAYER READ COMMANDS,”filed

October2, 2001.

The subject matter of all of the above-identified patent applications (including the

subject matter in the Microfiche Appendix of U.S. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACTDISC APPENDIX

The Compact Disc Appendix (CD Appendix), whichis a part of the present disclosure,

includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on

the compact disc. CD Appendix A contains a hardware description language (verilog code)

description of an embodimentof a receive sequencer. CD Appendix B contains microcode

executed by a processorthat operates in conjunction with the receive sequencer of CD

Appendix A. CD Appendix C contains a device driver executable'on the host as well as ATCP
code executable on the host. A portion of the disclosure of this patent document contains

material (other than any portion ofthe “free BSD”stack included in CD Appendix C) whichis

subject to copyright protection. The copyright ownerof that material has no objection to the

facsimile reproduction by anyone of the patent documentor the patent disclosure, as it appears

in the Patent and Trademark Office patent files or records, but otherwise reservesall copyright

rights.

INTEL Ex.1002.009

INTEL Ex.1002.010

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

TECHNICAL FIELD

The presentinvention relates generally to computeror other networks, and more

particularly to processing of information communicated between hosts such as computers

connected to a network.

BACKGROUND

The advantages of network computing are increasingly evident. The convenience and

efficiencyofproviding information, communication or computational power to individuals at

their personal computer or other end user devices has led to rapid growthof such network

computing, including internet as well as intranet devices and applications.

Asis well known, most network computer communication is accomplished with the aid of

a layered software architecture for moving information between host computers connected to

the network. The layers help to segregate information into manageable segments, the general

functions of each layer often based on an international standard called Open Systems

Interconnection (OSI). OSIsets forth seven processing layers through which information may
pass whenreceived bya host in order to be presentable to an end user. Similarly, transmission
of information from a host to the network maypass through those seven processing layers in

reverse order. Each step of processing and service by a layer may include copying the

processed information. Another reference modelthat is widely implemented, called TCP/IP
(TCPstandsfor transport control protocol, while IP denotes internet protocol) essentially

employsfive of the seven layers of OSI.

Networks may include, for instance, a high-speed bus such as an Ethernet connection or an

internet connection between disparate local area networks (LANs), each of which includes

multiple hosts, or any of a variety of other known meansfor data transfer between hosts.

According to the OSI] standard, physical layers are connected to the network at respective

hosts, the physical layers providing transmission and receipt of raw data bits via the network.
A data link layer is serviced by the physical layer of each host,the data link layers providing
frame division anderrorcorrection to the data received from the physical layers, as well as

processing acknowledgmentframessent by the receiving host. A network layer of each hostis

serviced by respective data link layers, the network layers primarily controlling size and

coordination of subnets ofpackets of data.

INTEL Ex.1002.010

INTEL Ex.1002.011

k

ALA-006K. Express Mail No. EV 406928085.US

10

15

20

25

30

A transport layer is serviced by each network layer and a session layer is serviced by each

transport layer within each host. Transport layers accept data from their respective session

layers and split the data into smaller units for transmission to the other host’s transport layer,

which concatenates the data for presentation to respective presentation layers. Session layers

allow for enhanced communication control between the hosts. Presentation layers are serviced

by their respective session layers, the presentation layers translating between data semantics

and syntax which maybepeculiar to each host and standardized structures of data

representation. Compression and/or encryption of data may also be accomplished at the

presentation level. Application layers are serviced by respective presentation layers, the
application layers translating between programsparticular to individual hosts and standardized

programsfor presentation to either an application or an end user. The TCP/IP standard

includes the lower four layers and application layers, but integrates the functions of session

layers and presentation layers into adjacent layers. Generally speaking, application,

presentation and session layers are defined as upper layers, while transport, network and data

link layers are defined as lowerlayers.

Therules and conventions for each layer are called the protocol of that layer, and since the

protocols and general functions of each layer are roughly equivalent in varioushosts,it is

useful to think of communication occurring directly betweenidentical layers of different hosts,

even though these peer layers do not directly communicate without information transferring

sequentially through each layer below. Each lower layer performsa service for the layer

immediately aboveit to help with processing the communicated information. Each layer saves

the information for processing and service to the next layer. Due to the multiplicity of

hardware and software architectures, devices and programs commonly employed,each layeris

necessary to insure that the data can makeit to the intended destination in the appropriate

form, regardless of variations in hardware and software that may intervene.

In preparing data for transmission fromafirst to a second host, some control data is added

at each layer ofthe first host regarding the protocolofthat layer, the control data being

indistinguishable from the original (payload) data for all lower layers of that host. Thus an

application layer attaches an application header to the payload data and sends the combined

data to the presentation layer of the sending host, which receives the combined data, operates

on it and adds a presentation headerto the data, resulting in another combined data packet.

The data resulting from combination ofpayload data, application header and presentation
5

INTEL Ex.1002.011

INTEL Ex.1002.012

ALA-006K SS Express Mail No. EV 406928085 US

10

15

20

25

30

headeris then passed to the session layer, which performs required operations including

attaching a session headerto the data and presenting the resulting combination of data to the

transport layer. This process continuesas the information movesto lowerlayers, with a

transport header, network header and data link headerandtrailer attached to the data at each of

those layers, with each step typically including data moving and copying, before sending the

data as bit packets over the network to the second host.
The receiving host generally performs the converse of the above-described process,

beginningwith receiving the bits from the network, as headers are removed and data processed
in order from the lowest(physical) layer to the highest (application) layer before transmission

to a destination of the receiving host. Each layer of the receiving host recognizes and

manipulates only the headers associated with that layer, since to that layer the higher layer

control data is included with and indistinguishable from the payload data. Multiple interrupts,

valuable central processing unit (CPU) processing time and repeated data copies may also be
necessary for the receiving host to place the data in an appropriate form atits intended

destination.

The abovedescription of layered protocol processing is simplified, as college-level

textbooks devoted primarily to this subject are available, such as Computer Networks, Third

Edition (1996) by Andrew S. Tanenbaum, whichis incorporated herein by reference. As

defined in that book, a computer network is an interconnected collection of autonomous

computers, such as internet and intranet devices, including local area networks (LANs), wide:

area networks (WANs), asynchronoustransfer mode (ATM),ring or token ring, wired,

wireless, satellite or other means for providing communication capability between separate

processors. A computeris defined herein to include a device having both logic and memory

functions for processing data, while computers or hosts connected to a network are said to be

heterogeneousif they function according to different operating devices or communicate via
different architectures.

As networks grow increasingly popular and the information communicated thereby

becomesincreasingly complex and copious, the need for such protocol processing has

increased. It is estimated that a large fraction of the processing powerof a host CPU may be
devoted to controlling protocol processes, diminishing the ability of that CPU to perform other

tasks. Network interface cards have been developed to help with the lowest layers, such as the

physical and data link layers. It is also possible to increase protocol processing speed by
6 -

INTEL Ex.1002.012

INTEL Ex.1002.013

ALA-006K . Express Mail No. EV 406928085 US

10

15

20

25

30

simply adding more processing power or CPUsaccording to conventional arrangements. This

solution, however, is both awkward and expensive. But the complexities presented by various

networks, protocols, architectures, operating devices and applications generally require

extensive processing to afford communication capability between various network hosts.

SUMMARYOF THE INVENTION

The current invention provides a device for processing network communication that greatly

increases the speed of that processing andthe efficiency of transferring data being

communicated. The invention has been achieved by questioning the long-standing practice of

performing multilayered protocol processing on a general-purposeprocessor. The protocol

processing method andarchitecture that results effectively collapses the layers of a connection-

based, layered architecture such as TCP/IP into a single wider layer whichis able to send

network data more directly to and from a desired location or buffer on a host. This accelerated

processing is provided to a host for both transmitting and receiving data, and so improves

performance whetheroneor both hosts involved inan exchangeofinformation have such a
feature.

The accelerated processing includes employing representative controlinstructions for a

given messagethat allow data from the messageto be processed via a fast-path which accesses

message data directly at its source or delivers it directly to its intended destination. This fast-

path bypasses conventional protocol processing ofheaders that accompany the data. The fast-

path employsa specialized microprocessor designed for processing network communication,

avoiding the delays andpitfalls of conventional software layer processing, such as repeated

copying andinterrupts to the CPU. In effect, the fast-path replaces the states that are

traditionally found in several layers of a conventional network stack with a singlestate

machine encompassing all those layers, in contrast to conventional rules that require rigorous

differentiation and separation of protocol layers. The host retains a sequential protocol

processing stack which can be employed forsetting up a fast-path connection or processing

message exceptions. The specialized microprocessorandthe host intelligently choose whether
a given messageor portion of a messageis processed by the microprocessoror the host stack.

One embodimentis a method of generating a fast-path response to a packet received onto a

networkinterface device where the packet is received over a TCP/IP network connection and

where the TCP/IP network connection is identified at least in part by a TCP source port, a TCP
7 oooe

INTEL Ex.1002.013

INTEL Ex.1002.014

ALA-006K . Express Mail No. EV 406928085 US

10

15

20

25

30

destination port, an IP source address, and an IP destination address. The method comprises:

1) Examining the packet and determining from the packet the TCP sourceport, the TCP

destination port, the IP source address, and the IP destination address; 2) Accessing an
appropriate template header stored on the network interface device. The template header has

TCPfields and IP fields; 3) Employinga finite state machine that implements both TCP

protocol processing and IP protocol processingto fill in the TCP fields and IP fields of the

template header; and 4) Transmitting the fast-path response from the network interface device.

The fast-path response includesthefilled in template header and a payload. Thefinite state

machine doesnot entail a TCP protocol processing layer and a discrete IP protocol processing

layer where the TCP and JP layers are executed one after another in sequence. Rather, the

finite state machine covers both TCP andIP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted are pushed

onto a plurality of transmit queues. A transmit sequencer pops the transmit queues and obtains

the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers

where the packets are stored. The retrieved packets are then transmitted from the network

interface device. In one embodiment, there are two transmit queues, one having a higher

transmission priority than the other. Packets identified by buffer descriptors on the higher

priority transmit queue are transmitted from the network interface device before packets

identified by the lowerpriority transmit queue.

Other structures and methodsare disclosed in the detailed description below. This
summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view diagram ofa device ofthe present invention, including a host

computer having a communication-processing device for accelerating network

communication.

FIG. 2 is a diagram of information flow for the host of FIG. 1 in processing network

communication, including a fast-path, a slow-path and a transfer of connection context
between the fast and slow-paths.

FIG.3 is a flow chart of message receiving according to the present invention.

FIG.4A is a diagram of information flow for the host of FIG. 1 receiving a message packet

processed by the slow-path.

INTEL Ex.1002.014

INTEL Ex.1002.015

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

FIG.4B is a diagram of information flow for the host of FIG. 1 receiving aninitial message

packet processed by the fast-path.

FIG.4C is a diagram of information flow for the host of FIG. 4B receiving a subsequent

message packet processedby the fast-path.

FIG.4D is a diagram of information flow for the host of FIG. 4C receiving a message

packet having an error that causes processing to revert to the slow-path.

FIG.5 is a diagram of information flow for the host of FIG. 1 transmitting a message by

either the fast or slow-paths.

FIG.6 is a diagram of information flow for a first embodimentofan intelligent network

interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG.7 is a diagram of hardwarelogic for the INIC embodiment shownin FIG.6, including

a packet control sequencer and a fly-by sequencer.

FIG.8 is a diagram ofthe fly-by sequencer of FIG. 7 for analyzing headerbytes as they are

received by the INIC.

FIG.9 is a diagram of information flow for a second embodimentof an INIC associated

with a server having a TCP/IP processing stack.

FIG. 10 is a diagram of a commanddriverinstalled in the host of FIG.9 for creating and

controlling a communication control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and commanddriver of FIG. 10 configured for
NetBios communications. |

FIG. 12 is a diagram of a communication exchange betweenthe client of FIG.6 and the
server of FIG.9.

FIG.13 is a diagram of hardware functions included in the INIC of FIG.9.

FIG.14 is a diagram ofa trio of pipelined microprocessors included in the INIC of FIG.13,

including three phases with a processor in each phase.

FIG. 15A is a diagram ofa first phase ofthe pipelined microprocessor of FIG. 14.
FIG. 15B is a diagram of a second phaseofthe pipelined microprocessor of FIG. 14.

FIG. 15C is a diagram ofa third phase of the pipelined microprocessor of FIG. 14.
FIG. 16 is a diagram ofa plurality of queue storage units that interact with the

microprocessor of FIG. 14 and include SRAM and DRAM. .

FIG. 17 is a diagram ofa set of status registers for the queues storage units of FIG. 16.

9

INTEL Ex.1002.015

INTEL Ex.1002.016

ALA-006K | Express Mail No. EV 406928085 US

10

15

20

25

30

FIG. 18 is a diagram of a queue manager, which interacts, with the queue storage units and

status registers of FIG. 16 and FIG. 17.

FIGs. 19A-D are diagrams of various stages of a least-recently-used register that is
employed for allocating cache memory.

FIG. 20 is a diagram ofthe devices used to operate the least-recently-used register of FIGs.

19A-D. .

FIG, 21 is another diagram ofIntelligent Network Interface Card (INIC) 200 of Figure 13. .

FIG. 22 is a diagram ofthe receive sequencer of FIG.21.

FIG.23 is a diagram illustrating a “fast-path”transfer of data of a multi-packet message

from INIC 200 to a destination 2311 in host 20.

FIGS. 24-33, 34A-C, 35-57, 58A-C, and 59-107 are associated with the description below

entitled “Disclosure From Provisional Application 60/061,809.” . |

DETAILED DESCRIPTION

FIG. 1 showsa host 20 ofthe present invention connected by a network 25 to a remote host

22. The increase in processing speed achieved by the present invention can be provided with

an intelligent network interface card (INIC) that is easily and affordably added to an existing

host, or with a communication processing device (CPD)that is integrated into a host, in either

case freeing the host CPU from mostprotocol processing and allowing improvements in other
tasks performed by that CPU. The host 20 in a first embodimentcontains a CPU 28 and a
CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

_ processing communication data and memory buffers controlled by a direct memory access

(DMA)unit. Also connected to the host bus 33 is a storage device 35, such as a

semiconductor memory ordisk drive, along with any related controls.

Referring additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44

housed in storage 35, the stack including a data link layer 36, network layer 38, transport layer
40, upper layer 46 and an upper layer interface 42. The upper layer 46 mayrepresent a

session, presentation and/or application layer, depending upontheparticular protocol being
employed and message communicated. The upperlayer interface 42, along with the CPU 28

and anyrelated controls can sendorretrieve a file to or from the upperlayer 46 or storage 35,

as shownby arrow 48. A connection context 50 has been created, as will be explained below,
the context summarizing various features of the connection, such as protocol type and source

10 oe

INTEL Ex.1002.016

INTEL Ex.1002.017

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

and destination addresses for each protocol layer. The context may be passed between an

interface for the session layer 42 and the CPD 30, as shownbyarrows 52 and 54, and stored as

a communication control block (CCB)at either CPD 30 orstorage 35.

When the CPD 30 holds a CCBdefining a particular connection, data received by the CPD

from the network and pertaining to the connection is referenced to that CCB and can then be

sent directly to storage 35 according to a fast-path 58, bypassing sequential protocol

processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,

such as sending a file from storage 35 to remote host 22, can also occurvia the fast-path 58, in

which case the context for the file data is added by the CPD 30 referencing a CCB,rather than

by sequentially adding headers during processing by the transport 40, network 38 and data link

36 layers. The DMA controllers of the CPD 30 perform these transfers between CPD and
storage 35.

The CPD 30 collapses multiple protocol stacks each having possible separate states into a |

single state machine for fast-path processing. As a result, exception conditions may occurthat

are not provided for in the single state machine, primarily because such conditions occur

infrequently and to deal with them on the CPD would providelittle or no performance benefit

to the host. Such exceptions can be CPD 30 or CPU 28 initiated. An advantage ofthe

invention includes the manner in which unexpectedsituations that occur on a fast-path CCB

are handled. The CPD 30 deals with these rare situations by passing back orflushingto the
host protocol stack 44 the CCB and any associated message frames involved, via a control |
negotiation. The exception condition is then processed in a conventional mannerby the host

protocol stack 44. At somelater time, usually directly after the handling of the exception

condition has completed and fast-path processing can resume,the host stack 44 hands the CCB

back to the CPD.

This fallback capability enables the performance-impacting functions of the host protocols

to be handled by the CPD network microprocessor, while the exceptions are dealt with by the

host stacks, the exceptions being so rare as to negligibly effect overall performance. The

custom designed network microprocessor can have independentprocessors for transmitting

and receiving network information, and further processors for assisting and queuing. A
preferred microprocessor embodimentincludesa pipelinedtrio of receive, transmit andutility

processors. DMAcontrollers are integrated into the implementation and workin close concert

with the network microprocessor to quickly move data between buffers adjacentto the
11

INTEL Ex.1002.017

INTEL Ex.1002.018

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

controllers and other locations such as long term storage. Providing buffers logically adjacent

to the DMAcontrollers avoids unnecessary loads on the PCI bus.

FIG. 3 diagramsthe general flow ofmessages received according to the current invention.

A large TCP/IP message suchasa file transfer may be received by the host from the network

_in a numberof separate, approximately 64 KB transfers, each of which maybesplit into many,

approximately 1.5 KB frames or packets for transmission over a network. Novell NetWare

protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol

(NCP) over Internetwork Packet Exchange (IPX) work in a similar fashion. Another form of

data communication which can be handled bythe fast-path is Transaction TCP (hereinafter

T/TCP or TTCP), a version ofTCP whichinitiates a connection with an initial transaction

request after which a reply containing data may be sent according to the connection,rather

than initiating a connection via a several-message initialization dialogue and then transferring
data with later messages. In any of the transfers typified by these protocols, each packet

conventionally includes a portion of the data being transferred, as well as headers for each of

the protocol layers and markers for positioning the packetrelative to the rest of the packets of

this message.

When a message packetor frameis received 47 from a network by the CPD,itis first

validated by a hardwareassist. This includes determining the protocol types of the various

layers, verifying relevant checksums, and summarizing 57 these findings into a status word or

words. Included in these wordsis an indication whetheror not the frameis a candidate for

fast-path data flow. Selection 59 of fast-path candidates is based on whetherthe host may
benefit from this message connection being handled by the CPD, which includes determining
whether the packet has headerbytesindicating particular protocols, such as TCP/IP or

SPX/IPX for example. The small percent of framesthat are not fast-path candidates are sent

61 to the host protocol stacks for slow-path protocol processing. Subsequent network

microprocessor work with each fast-path candidate determines whether a fast-path connection

such as a TCP or. SPX CCBisalready extant for that candidate, or whether that candidate may —

be used to set up a new fast-path connection, such as for a TTCP/IP transaction. The

validation provided by the CPD provides acceleration whether a frameis processed bythe fast-

path or a slow-path, as only error free, validated frames are processed by the host CPU even

for the slow-path processing.

12

INTEL Ex.1002.018

INTEL Ex.1002.019

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

All received message frames which have been determined by the CPD hardwareassist to be

fast-path candidates are examined 53 by the network microprocessor or INIC comparator

circuits to determine whether they match a CCBheld by the CPD. Upon confirming such a

match, the CPD. removes lower layer headers and sends 69 the remaining application data from

the framedirectly into its final destination in the host using direct memory access (DMA)units

of the CPD. This operation may occur immediately upon receipt of a messagepacket, for

example when a TCP connection already exists and destination buffers have been negotiated, |
or it mayfirst be necessary to process an initial header to acquire a newsetoffinal destination

addresses for this transfer. In this latter case, the CPD will queue subsequent message packets

while waiting for the destination address, and then DMA the queued application data to that

destination.

A fast-path candidate that does not match a CCB maybeused toset up a new fast-path

connection, by sending 65 the frameto the host for sequential protocol processing. In this

case, the host uses this frame to create 51 a CCB, which is then passed to the CPD to control
subsequent frames on that connection. The CCB, which is cached 67 in the CPD,includes

control andstate information pertinent to all protocols that would have been processed had
conventional software layer processing been employed. The CCBalso contains storage space

for per-transfer information used to facilitate moving application-level data contained within

subsequentrelated message packets directly to a host application in a form available for

immediate usage. The CPD takes commandofconnection processing upon receiving a CCB

for that connection from the host.

As shown morespecifically in FIG. 4A, when a message packetis received from the remote
host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which

checksumsheaders and data, and parses the headers, creating a word or words whichidentify

the message packet andstatus, storing the headers, data and word temporarily in memory 60.

Aswell as validating the packet, the receive logic 32 indicates with the word whetherthis

packetis a candidate for fast-path processing. FIG. 4A depicts the case in which the packetis

not a fast-path candidate, in which case the CPD 30 sendsthe validated headers and data from

memory 60 to data link layer 36 along an internal bus for processing by the host CPU,as

shownby arrow 56. The packet is processed by the hostprotocol stack 44 ofdata link 36,
network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

sent to storage 35, as shownbyarrow 65.
13

INTEL Ex.1002.019

INTEL Ex.1002.020

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

FIG.4B,depicts the case in which the receive logic 32 of the CPD determinesthat a
message packetis a candidate for fast-path processing, for example by deriving from the

packet’s headers that the packet belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A

processor 55 in the CPD 30 then checks to see whether the word that summarizesthe fast-path | —

candidate matches a CCB held in a cache 62. Uponfinding no matchfor this packet, the CPD

sends the validated packet from memory 60to the host protocol stack 44 for processing. Host

stack 44 mayuse this packet to create a connection context for the message, including finding

and reserving a destination for data from the message associated with the packet, the context

taking the form of a CCB. The present embodiment employsasingle specialized host stack 44

for processing both fast-path and non-fast-path candidates, while in an embodiment described
below fast-path candidates are processed by a different host stack than non-fast-path
candidates. Somedata (D1) 66 from that initial packet may optionally be sent to the

destination in storage 35, as shown by arrow 68. The CCBis then sent to the CPD 30 to be

saved in cache 62, as shown by arrow 64. For a traditional connection-based message such as
typified by TCP/IP, theinitial packet may be part of a connection initialization dialogue that

transpires between hosts before the CCBis created and passed to the CPD 30.
Referring now to FIG. 4C, when a subsequent packet from the same connection as the

initial packet is received from the network 25 by CPD 30, the packet headers and data are
validated by the receive logic 32, and the headers are parsed to create a summary ofthe

message packet and a hashfor finding a corresponding CCB,the summary and hash contained

in a word or words. The word or words are temporarily stored in memory 60 along with the
packet. The processor 55. checks for a match between the hash and each CCBthatis stored in

the cache 62 and, finding a match, sends the data (D2) 70 via a fast-path directly to the

destination in storage 35, as shownby arrow 72, bypassing the session layer 42, transport layer

40, network layer 38 and data link layer 36. The remaining data packets from the message can

also be sent by DMAdirectly to storage, avoiding the relatively slow protocol layer processing

and repeated copying by the CPU stack 44.

FIG. 4D showsthe procedure for handling the rare instance when a message for which a

fast-path connection has been established, such as shownin FIG.4C,has a packetthatis not

easily handled by the CPD. In this case the packetis sent to be processed by the protocol stack

44, which is handed the CCB for that message from cache 62 via a contro! dialogue with the
CPD,as shownbyarrow 76,signaling to the CPU to take over processing of that message.

14

INTEL Ex.1002.020

INTEL Ex.1002.021

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Slow-path processing by the protocol stack then results in data (D3) 80 from the packet being

sent, as shown byarrow 82, to storage 35. Once the packet has been processed andthe error

situation corrected, the CCB can be handedbackvia a control dialogue to the cache 62,so that

payload data from subsequentpackets of that message can again besent via the fast-path of the

| CPD 30. Thus the CPU and CPDtogether decide whether a given messageis to be processed
according to fast-path hardware processing or more conventional software processing by the
CPU. .

Transmission of a message from the host 20 to the network 25 for delivery to remote host 22
also can be processed by either sequential protocol software processing via the CPU or

accelerated hardware processing via the CPD 30, as shown in FIG. 5. A message (M) 90 that

is selected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack

44, as shownbyarrows92 and 96. Forthe situation in which a connection exists and the CPD

30 already has an appropriate CCB for the message, however, data packets can bypasshost

stack 44 and be sent by DMA directly to memory 60, with the processor 55 adding to each

data packet a single header containing all the appropriate protocol layers, and sending the

resulting packets to the network 25 for transmission to remote host 22. This fast-path

transmission can greatly accelerate processing for even a single packet, with the acceleration

multiplied for a larger message. | . .
A message for which a fast-path connection is not extant thus may benefit from creation of

a CCB with appropriate control and state information for guiding fast-path transmission. Fora

traditional connection-based message, such as typified by TCP/IP or SPX/IPX, the.CCBis

created during connectioninitialization dialogue. For a quick-connection message, such as

typified by TTCP/IP, the CCB can be created with the sametransaction that transmits payload

data. In this case, the transmission of payload data may bea reply to a request that was used to

set up the fast-path connection. In any case, the CCB provides protocol and status information
regarding each ofthe protocol layers, including which user is involved and storage space for

per-transfer information. The CCBis created by protocol stack 44, which then passes the CCB

to the CPD 30 by writing to a commandregister of the CPD, as shown by arrow 98. Guided

by the CCB,the processor 55 moves network frame-sized portions of the data from the source

in host memory 35 into its own memory 60 using DMA,as depicted by arrow 99. The

processor 55 then prepends appropriate headers and checksumsto the data portions, and

_transmits the resulting frames to the network 25, consistent with the restrictions of the
15

INTEL Ex.1002.021

INTEL Ex.1002.022

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

associated protocols. After the CPD 30 has received an acknowledgementthatall the data has

reachedits destination, the CPD will then notify the host 35 by writing to a response buffer.

Thus, fast-path transmission of data communicationsalso relieves the host CPU ofper-frame

processing. A vast majority of data transmissionscan be sent to the network bythe fast-path.

Both the input and outputfast-paths attain a huge reduction in interrupts by functioning at an

upperlayerlevel, i.¢e., session level or higher, and interactions between the network

microprocessor andthe host occur using the full transfer sizes which that upper layer wishes to

make. For fast-path communications, an interrupt only occurs (at the most) at the beginning

and end of an entire upper-layer messagetransaction, and there are no interrupts for the

sending or receiving of each lowerlayer portion or packet of that transaction.

A simplified intelligent network interface card (INIC) 150 is shownin FIG.6 to provide a

network interface for a host 152. Hardware logic 171 of the INIC 150 is connected to a

network 155, with a peripheral bus (PCI) 157 connecting the INIC and host. The host 152 in

this embodiment has a TCP/IP protocol stack, which provides a slow-path 158 for sequential

software processing of message frames received from the network 155. The host 152 protocol

stack includes a data link layer 160, network layer 162, a transport layer 164 and an
application layer 166, which provides a source ordestination 168 for the communication data

in the host 152. Other layers which are not shown, such as session and presentation layers,

mayalso be includedin the host stack 152, and the source or destination may vary depending

uponthe nature of the data and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages

along a slow-path 158 that includes the protocol stack of the host, or along a fast-path 159 that
bypassesthe protocol stack of the host. Each received packet is processed onthe fly by

hardware logic 171 contained in INIC 150,so that all of the protocol headers for a packet can

be processed without copying, movingorstoring the data between protocol layers. The
hardware logic 171 processes the headers of a given packet at one time as packet bytes pass

through the hardware, by categorizing selected header bytes. Results of processing the

selected bytes help to determine which other bytes ofthe packet are categorized, until a

summary ofthe packet has been created, including checksum validations. The processed

headers and data from the received packet are then stored in INIC storage 185, as well as the

word or words summarizing the headers and status of the packet. For a network storage

configuration, the INIC 150 maybe connected to a peripheral storage device such as a disk
16

INTEL Ex.1002.022

INTEL Ex.1002.023

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

drive which has an IDE, SCSIor similar interface, with a file cache for the storage device

residing on the memory 185 of the INIC 150. Several such network interfaces may exist for a
host, with each interface having an associated storage device.

The hardware processing of message packets received by INIC 150 from network 155 is

shownin more detail in FIG. 7. A received message packetfirst enters a media access

controller 172, which controls INIC access to the network and receipt of packets and can

providestatistical information for network protocol management. From there, data flows one

byte at a time into an assembly register 174, which in this example is 128 bits wide. The data
is categorized by a fly-by sequencer 178, as will be explained in more detail with regard to |
FIG. 8, which examinesthe bytes of a packet as they fly by, and generates status from those

bytes that will be used to summarize the packet. The status thus created is merged with the

data by a multiplexor 180 and the resulting data stored in SRAM 182. A packet control
sequencer 176 oversees the fly-by sequencer 178, examines information from the media access

controller 172, counts the bytes of data, generates addresses, movesstatus and manages the

movementofdata from the assembly register 174 to SRAM 182 and eventually DRAM 188.

The packet control sequencer 176 manages a buffer in SRAM 182 via SRAMcontroller 183,
and also indicates toa DRAMcontroller 186 when data needs to be moved from SRAM 182 to

a buffer in DRAM 188. Once data movementfor the packet has been completed andall the

data has been movedto the buffer in DRAM 188, the packet control sequencer 176 will move
the status that has been generated in the fly-by sequencer 178 out to the SRAM 182 andto the

beginning of the DRAM 188buffer to be prepended to the packet data. The packet control
sequencer 176 then requests a queue manager 184 to enter a receive buffer descriptorinto a

receive queue, which in turn notifies the processor 170 that the packet has been processed by

hardware logic 171 and its status summarized.

FIG. 8 showsthat the fly-by sequencer 178 has several tiers, with each tier generally

focusing on a particular portion of the packet header and thus ona particular protocol layer, for

generating status pertaining to that layer. The fly-by sequencer 178 in this embodiment

includes a media access control sequencer 191, a network sequencer 192, a transport sequencer

194 and a session sequencer 195. Sequencerspertaining to higher protocol layers can

additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer

176 and given pointers by the packet control sequencerthattell the fly-by sequencer whether a
given byte is available from the assembly register 174. The media access control sequencer

17

INTEL Ex.1002.023

INTEL Ex.1002.024

ALA-006K , Express Mail No. EV 406928085 US

15

20

25

30

191 determines, by looking at bytes 0-5, that a packet is addressed to host 152 rather than or in

addition to another host. Offsets 12 and 13 of the packet are also processed by the media

access control sequencer 191 to determine the type field, for example whether the packetis

Ethernet or 802.3. Ifthe type field is Ethernet those bytes also tell the media access control

sequencer 191 the packet’s network protocol type. For the 802.3 case, those bytes instead

indicate the length of the entire frame, and the media access control sequencer 191 will check
eight bytes further into the packet to determine the networklayertype.

For most packets the network sequencer 192 validates that the header length received has

the correct length, and checksums the network layer header. Forfast-path candidates the

network layer header is knownto be IP or IPX from analysis done by the media access control

sequencer 191. Assuming for examplethat the type field is 802.3 and the network protocolis

IP, the network sequencer 192 analyzes thefirst bytes of the network layer header, which will

begin at byte 22, in order to determine IP type. Thefirst bytes of the IP header will be

processed by the network sequencer 192 to determine what IP type the packet involves.

Determining that the packet involves, for example, IP version 4,directs further processing by

the network sequencer 192, which also looksat the protocol type located ten bytes into the IP

header for an indication of the transport header protocol of the packet. For example, for IP

over Ethernet, the IP headerbeginsat offset 14, and theprotocol type byte is offset 23, which
will be processed by network logic to determine whetherthe transport layer protocol is TCP,

for example. From the length of the network layer header, which is typically 20-40 bytes,

network sequencer 192 determines the beginning ofthe packet’s transport layer header for

validating the transport layer header. Transport sequencer 194 may generate checksumsfor

the transport layer header and data, which may include information from the IP headerin the
case of TCPatleast.

Continuing with the example ofa TCP packet, transport sequencer 194 also analyzes the
first few bytes in the transport layer portion of the header to determine, in part, the TCP source
and destination ports for the message, such as whetherthe packet is NetBiosor other
protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine

and validate the TCP header length. Byte 13 of the TCP header contains flags that may,aside

from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

cause the processor to categorize this packet as an exception. TCP offset bytes 16 and 17 are

18

INTEL Ex.1002.024

INTEL Ex.1002.025

ALA-006K Express Mail No. EV 406928085 US

10

15.

20

25

30

the checksum,whichis pulled out and stored by the hardware logic 171 while the rest of the

frameis validated against the checksum.

Session sequencer 195 determines the length of the session layer header, which in the case

ofNetBios is only four bytes, two of whichtell the length of the NetBios payload data, but

which can be muchlarger for other protocols. The session sequencer 195 can also be used to

categorize the type of messageas read or write, for example, for which the fast-path may be

particularly beneficial. Further upper layer logic processing, depending upon the message

type, can be performedbythe hardware logic 171 of packet control sequencer 176 and fly-by

sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the

headers by categorization of selected bytes from a single’stream ofbytes, with the status of the
packet being built from classifications determined on the fly. Once the packet control

_ sequencer 176 detects that all of the packet has been processed by the fly-by sequencer 178,

the packet control sequencer 176 addsthe status information generated by the fly-by sequencer

178 and any status information generated by the packet control sequencer 176, and prepends

(adds to the front) that status informationto the packet, for conveniencein handling the packet
by the processor 170. Theadditional status information generated by the packet control

sequencer 176 includes media access controller 172 status information and any errors

discovered, or data overflow in either the assembly register or DRAM buffer, or other

miscellaneous information regarding the packet. The packet control sequencer 176 also stores

entries into a receive buffer queue and a receive statistics queue via the queue manager 184.

An advantage of processing a packet by hardware logic 171 is that the packet doesnot, in

contrast with conventional sequential software protocol processing, have to be stored, moved,

copied or pulled from storage for processing eachprotocol layer header, offering dramatic
increases in processing efficiency and savings in processing time for each packet. The packets
can be processedatthe rate bits are received from the network, for example 100

megabits/second for a 100 baseT connection. The timefor categorizing a packet received at

this rate and havinga length ofsixty bytes is thus about 5 microseconds. Thetotal time for

processing this packet with the hardware logic 171 and sending packetdatato its host

destination via the fast-path may be about 16 microsecondsor less, assuming a 66 MHz PCI

bus, whereas conventional software protocol processing by a 300 MHz Pentium II® processor

may take as much as 200 microsecondsin a busy device. More than an order of magnitude
decrease in processing time can thus be achieved with fast-path 159 in comparison with a

. 19

INTEL Ex.1002.025

INTEL Ex.1002.026

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

high-speed CPU employing conventional sequential software protocol processing,

demonstrating the dramatic acceleration provided by processing the protocol headers by the

hardware logic 171 and processor 170, without even considering the additional time savings

afforded by the reduction in CPU interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message packet held in storage 185, whether

that packet is a candidate for the fast-path 159 and, if so, checks to see whethera fast-path has

already been set up for the connection that the packet belongsto. To do this, the processor 170

first checks the header status summary to determine whether the packet headers are of a

protocol defined for fast-path candidates. If not, the processor 170 commands DMA

controllers in the INIC 150 to send the packet to the host for slow-path 158 processing. Even

for a slow-path 158 processing of a message, the INIC 150 thus performsinitial procedures

such as validation and determination of message type, and passes the validated messageat

least to the data link layer 160 of the host.

For fast-path 159 candidates, the processor 170 checks to see whether the headerstatus

summary matches a CCB held by the INIC. If so, the data from the packet is sent along fast-

path 159 to the destination 168 in the host. If the fast-path 159 candidate’s packet summary
does not match a CCB held bythe INIC,the packet maybesentto the host 152 for slow-path
processing to create a CCB for the message. Employmentofthe fast-path 159 mayalso not be

needed ordesirable for the case of fragmented messagesor other complexities. For the vast

majority of messages, however, the INIC fast-path 159 can greatly accelerate message

processing. The INIC 150 thus providesa single state machine processor 170 that decides

whetherto send data directly to its destination, based upon information gleaned on thefly, as

opposed to the conventional employmentof a state machine in each ofseveral protocol layers

for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver of the host

selects the processing route based upon whetherthe indication is fast-path or slow-path. A

TCP/IP or SPX/IPX message has a connectionthat is set up from which a CCBis formed by

the driver and passed to the INIC for matching with and guiding the fast-path packetto the

connection destination 168. For a TTCP/IP message,the driver can create a connection

context for the transaction from processing an initial request packet, including locating the

messagedestination 168, and then passing that context to the INIC in the form of a CCB for

providinga fast-path for a reply from that destination. A CCB includes connection andstate
20

INTEL Ex.1002.026

INTEL Ex.1002.027

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

information regarding the protocol layers and packets of the message. Thus a CCB can
include source and destination media access control (MAC)addresses, source and destination

IP or IPX addresses, source and destination TCP or SPX ports, TCP variables suchas timers,

receive and transmit windowsfor sliding window protocols, and information indicating the

session layer protocol.

Caching the CCBsin a hash table in the INIC provides quick comparisons with words

summarizing incoming packets to determine whether the packets can be processed via the fast-

path 159, while the full CCBsare also held in the INIC for processing. Other waysto

accelerate this comparison include software processes such as a B-tree or hardwareassists

such as a content addressable memory (CAM). When INIC microcode or comparatorcircuits

detect a match with the CCB, a DMAcontroller places the data from the packetin the

destination 168, without any interrupt by the CPU,protocol processing or copying. Depending

upon the type of messagereceived, the destination of the data may bethe session, presentation

or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed asa file server. This

INIC provides a network interface for several network connections employing the 802.3u
standard, commonly knownas Fast Ethernet. The INIC 200 is connected by a PCI bus 205to

the server 202, which maintains a TCP/IP or SPX/IPX protocol stack including MAClayer

212, network layer 215, transport layer 217 and application layer 220, with a

source/destination 222 shown abovethe application layer, although as mentionedearlier the
application layer can be the source or destination. The INIC is also connected to network lines

. 210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial

cable or other lines each allowing data transmission of 100 Mb/s, while faster and slower data

rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated

row of hardwarecircuits which can each validate and summarize message packets received

from their respective network line. Thus line 210 is connected withafirst horizontal row of

sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line

242 is connected with a third horizontal row of sequencers 262 and line 244 is connected with

a fourth horizontal row of sequencers 264. After a packet has been validated and summarized

by oneofthe horizontal hardwarerowsit is stored along with its status summary in storage

270.

21

INTEL Ex.1002.027

INTEL Ex.1002.028

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

A network processor 230 determines, based on that summary and a comparison with any
CCBsstored in the INIC 200, whether to send a packet along a slow-path 231 for processing

by the host. A large majority ofpackets can avoid such sequential processing and havetheir

data portions sent by DMAalonga fast-path 237 directly to the data destination 222 in the

server according to a matching CCB. Similarly, the fast-path 237 provides an avenue to send

data directly from the source 222 to any of the network lines by processor 230 division ofthe

data into packets and addition of full headers for network transmission, again minimizing CPU

processing and interrupts. Forclarity only horizontal sequencer 250 is shownactive;in

actuality each of the sequencer rows 250, 260, 262 and 264 offers full duplex communication,
concurrently with all other sequencer rows. The specialized INIC 200 is muchfaster at

working with message packets than even advanced general-purposehost CPUsthat processes

those headers sequentially according to the software protocol stack.

Oneof the most commonly used network protocols for large messages such as file transfers

is server message block (SMB) over TCP/IP. SMB can operate in conjunction with redirector

‘software that determines whether a required resource for a particular operation, such as a

printer or a disk upon whicha file is to be written, resides in or is associated with the host from

which the operation was generatedor is located at another host connected to the network, such

as a file server. SMB and server/redirectorare conventionally serviced by the transport layer;
in the present invention SMBandredirector can instead be serviced by the INIC. In this case,

sending data by the DMAcontrollers from the INIC buffers when receiving a large SMB

transaction may greatly reduce interrupts that the host must handle. Moreover, this DMA

generally movesthe data to its final destination in thefile device cache. An SMBtransmission

of the present invention follows essentially the reverse of the above described SMBreceive, ~

with data transferred from the host to the INIC and stored in buffers, while the associated

protocol headers are prependedto the data in the INIC,for transmission via a network line to a
remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, NetBios

and SMBprotocol layers via custom hardware and without repeated interrupts of the host can
greatly increase the speed of transmitting an SMB messageto a networkline.

Asshownin FIG.10, for controlling whether a given messageis processed by the host 202

or by the INIC 200, a message commanddriver 300 maybeinstalled in host 202 to work in

concert with a host protocol stack 310. The command driver 300 can intervene in message
reception or transmittal, create CCBs and sendor receive CCBsfrom the INIC 200, so that

22

INTELEx.1002.028

INTEL Ex.1002.029

ALA-006K: Express Mail No. EV 406928085 US

10

15

20

25

30

functioning of the INIC, aside from improved performance, is transparent to a user. Also
shownis an INIC memory 304 and an INIC miniport driver 306, which can direct message

packets received from network 210 to either theconventional protocol stack 310 or the

commandprotocol stack 300, depending upon whether a packet has been labeled asafast-path

candidate. The conventional protocol stack 310 has a data link layer 312,a network layer 314
and a transport layer 316 for conventional, lower layer processing of messagesthat are not

labeled as fast-path candidates and therefore not processed by the commandstack 300.

Residing above the lowerlayer stack 310 is an upper layer 318, which represents a session,

presentation and/or application layer, depending upon the message communicated. The

commanddriver 300 similarly has a data link layer 320, a network layer 322 and a transport

layer 325.

The driver 300 includes an upper layer interface 330 that determines, for transmission of

messages to the network 210, whether a message transmitted from the upperlayer 318 is to be

processed by the commandstack 300 and subsequently the INIC fast-path, or by the

conventional stack 310. Whenthe upperlayer interface 330 receives an appropriate message

from the upper layer 318 that would conventionally be intended for transmission to the

network after protocol processing by the protocol stack of the host, the message is passed to
driver 300. The INIC then acquires network-sized portions of the message datafor that

transmission via INIC DMAunits, prepends headers to the data portions and sends the

resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or

similar message packet from the network 210 to be usedin setting up a fast-path connection,

miniport driver 306 diverts that message packet to command driver 300 for processing. The

driver 300 processes the message packet to create a context for that message, with the driver

302 passing the context and commandinstructions back to the INIC 200 as a CCB for sending
data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,

TTCP, SPX or similar CCB connections maybeheld indefinitely by the INIC,althougha least

recently used (LRU)algorithm is employed for the case when the INIC cacheis full. The

driver 300 can also create a connection context for a TTCP request which is passed to the INIC

200 as a CCB,allowing fast-path transmission of a TTCPreply to the request. A message

having a protocol that is not accelerated can be processed conventionally by protocol stack

310.

23

INTEL Ex.1002.029

INTEL Ex.1002.030

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

FIG. 11 shows a TCP/IP implementation of commanddriver software for Microsoft®

protocol messages. A conventional host protocol stack 350 includes MAC layer 353, IP layer

355 and TCPlayer 358. A commanddriver 360 works in concert with the host stack 350 to
process network messages. The commanddriver 360 includes a MAClayer 363, an IP layer

366 and an Alacritech TCP (ATCP)layer 373. The conventional stack 350 and command

driver 360 share a network driver interface specification (NDIS) layer 375, which interacts

with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications

for processing by either the conventional host stack 350 or the ATCP driver 360. A TDIfilter

driver and upper layerinterface 380 similarly determines whether messages sent from a TDI

user 382 to the network are diverted to the command driver and perhapsto the fast-path of the

INIC,or processed by the host stack.

FIG. 12 depicts a typical SMB exchange between a client 190 and server 290, both of

which have communication devices of the present invention, the communication devices each
holding a CCB defining their connection for fast-path movement of data. The client 190

includes INIC 150, 802.3 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios

layer 166, and SMBlayer 168. The client has a slow-path 157 and fast-path 159 for
communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data
link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and SMB 222. Theserveris
connected to network lines 240, 242 and 244, as well as line 210 which is connected to client
190. The serveralso has a slow-path 231 and fast-path 237 for communication processing.
Assumingthatthe client 190 wishes to read a 100KB file on the server 290,theclient may

begin by sending a Read Block Raw (RBR) SMB commandacross network 210 requesting the

first 64 KB ofthat file on the server 290. The RBR command maybeonly 76 bytes, for

example, so the INIC 200 on the server will recognize the message type (SMB)andrelatively

small message size, and send the 76 bytes directly via the fast-path to NetBios ofthe server.

NetBios will give the data to SMB, which processes the Read request and fetches the 64KB of

data into server data buffers. SMB then calls NetBios to send the data, and NetBios outputs
the data for the client. In a conventional host, NetBios would call TCP output and pass 64 KB
to TCP, which would divide the data into 1460 byte segments and output each segmentvia IP

and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP

driver along with an indication regarding the client-server SMB connection, which indicates a

CCB held by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the
24

INTEL Ex.1002.030

INTEL Ex.1002.031

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

host buffers, add the appropriate headers for TCP, IP and MACat onetime, and send the

completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the

whole 64KB transfer has been sent. Usually after receiving acknowledgementfrom the client

that the 64KB has beenreceived, the INIC will then send the remaining 36KB also bythefast-

path 237. |

With INIC 150 operating on the client 190 whenthisreply arrives, the INIC 150 recognizes

from thefirst frame received that this connection is receiving fast-path 159 processing

(TCP/IP, NetBios, matching a CCB), and the ATCP mayusethis first frame to acquire buffer

space for the message. This latter case is done by passing the first 128 bytes of the NetBios

portion of the frame via the ATCP fast-path directly to the host NetBios; that will give |
NetBios/SMBall of the frame’s headers. NetBios/SMB will analyze these headers, realize by

matching with a request ID thatthis is a reply to the original RawRead connection,and give
the ATCP a 64Klist ofbuffers into which to place the data. At this stage only one frame has

arrived, although more mayarrive while this processing is occurring. As soonasthe client
buffer list is given to the ATCP,it passes that transfer information to the INIC 150, and the

INIC 150 starts DMAing any frame data that has accumulated into those buffers.

FIG. 13 provides a simplified diagram of the INIC 200, which combinesthe functions of a

network interface controller and a protocol processor in a single ASIC chip 400. The INIC

200 in this embodimentoffers a full-duplex, four channel, 10/100-Megabit per second (Mbps)

intelligent network interface controller that is designed for high speed protocol processing for

server applications. Although designed specifically for server applications, the INIC 200 can

be connected to personal computers, workstations, routers or other hosts anywherethat

TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200is connected with four network lines 210, 240, 242 and 244, which may
transport data along a numberofdifferent conduits, such as twisted pair, coaxial cable or

optical fiber, each of the connections providing a media independentinterface (MII) via

commercially available physical layer chips, such as model 80220/80221 Ethernet Media

Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,

CA 94538. Thelines preferably are 802.3 compliant and in connection with the INIC

constitute four complete Ethernet nodes, the INIC supporting 10Base-T, 10Base-T2, 100Base-

TX, 100Base-FX and 100Base-T4 as well as future interface standards. Physical layer

identification andinitialization is accomplished through host driverinitialization routines. The
25

INTEL Ex.1002.031

INTEL Ex.1002.032

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

_ connection between the network lines 210, 240, 242 and 244 and the INIC 200is controlled by

MACunits MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408 which contain logic

circuits for performing the basic functions of the MACsublayer, essentially controlling when

the INIC accesses the network lines 210, 240, 242 and 244. The MAC units 402-408 may act

in promiscuous, multicast or unicast modes, allowing the INIC to function as a network

monitor, receive broadcast and multicast packets and implement multiple MAC addresses for

each node. The MACunits 402-408also providestatistical information that can be used for

simple network managementprotocol (SNMP).

The MACunits 402, 404, 406 and 408 are each connected to a transmit and receive

sequencer, XMT & RCV-A 418, XMT & RCV-B 420, XMT & RCV-C 422 and XMT &

RCV-D 424, by wires 410, 412, 414 and 416,respectively. Each of the transmit and receive

sequencers can perform several protocol processing steps on the fly as message frames pass
through that sequencer. In combination with the MACunits, the transmit and receive

sequencers 418-422 can compile the packet status for the data link, network,transport, session

and, if appropriate, presentation and application layer protocols in hardware, greatly reducing

the time for such protocol processing compared to conventional sequential software engines.
Thetransmit and receive sequencers 410-414 are connected, by lines 426, 428, 430 and 432 to _

’ an SRAM and DMAcontroller 444, which includes DMA controllers 438 and SRAM

controller 442. Static random access memory (SRAM)buffers 440 are coupled with SRAM

controller 442 by line 441. The SRAM and DMA controllers 444 interact across line 446 with

external memory control 450 to send and receive frames via external memory bus455 to and

from dynamic random access memory (DRAM)buffers 460, which is located adjacent to the

IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 MB,

and may optionally be disposed on the chip. The SRAM and DMAcontrollers 444 are

connected via line 464 to a PCI Bus Interface Unit (BIU) 468, which managestheinterface

between the INIC 200 and the PCIinterface bus 257. The 64-bit, multiplexed BIU 468

provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC

200 is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-

bit addressing in either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMAcontrollers 444,

and connectedvia line 475 to the PCI BIU 468. Microprocessor 470 instructions and register
files reside in an on chip control store 480, which includes a writable on-chip control store

26

INTEL Ex.1002.032

INTEL Ex.1002.033

ALA-006K Express Mail No. EV 406928085 US

20

25

30

(WCS) of SRAMand a read only memory (ROM), andis connected to themicroprocessor by
line 477. The microprocessor 470 offers a programmable state machine whichis capable of

processing incoming frames, processing host commands,directing networktraffic and

directing PCIbustraffic. Three processorsare implemented using shared hardwarein a three
level pipelined architecture that launches and completesa single instruction for every clock

cycle. A receive processor 482 is primarily used for receiving communications while a

transmit processor 484 is primarily used for transmitting communicationsin orderto facilitate
full duplex communication, while a utility processor 486 offers various functions including

overseeing and controlling PCI register access. .
Theinstructions for the three processors 482, 484 and 486 reside in the on-chip control-

store 480. Thus the functions of the three processors can be easily redefined, so that the
microprocessor 470 can adapted for a given environment. For instance, the amount of

processing required for receive functions may outweigh that required for either transmit or
utility functions. In this situation, some receive functions may be performed bythe transmit

processor 484 and/or the utility processor 486. Alternatively, an additional level of pipelining

can be created to yield four or morevirtual processors instead of three, with the additional

level devoted to receive functions. |

The INIC 200 in this embodiment can support up to 256 CCBswhich are maintained in a

table in the DRAM 460. There is also, however, a CCB index in hash order in the SRAM 440

to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,

with up to sixteen cached CCBsin SRAMinthis example. Allocation of the sixteen CCBs

cached in SRAM is handledbya least recently used register, described below. These cache'

locations are shared between the transmit 484 and receive 486 processors so that the processor
with the heavier load is able to use more cache buffers. There are also eight header buffers

and eight commandbuffers to be shared between the sequencers. A given header or command —

buffer is not statically linked to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 shows an overview ofthe pipelined microprocessor 470, in which instructions for

the receive, transmit and utility processors are executed in three alternating phases according

to Clock incrementsI, II and III, the phases corresponding to each of the pipeline stages. Each
phaseis responsible for different functions, and each of the three processors occupies a

different phase during each Clock increment. Each processorusually operates upon a different
27

INTEL Ex.1002.033

INTEL Ex.1002.034

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

instruction stream from the control store 480, and each carries its own program counter and

status through each ofthe phases.

In general,a first instruction phase 500 of the pipelined microprocessors completes an

instruction and stores the result in a destination operand, fetches the next instruction, and

stores that next instruction in an instruction register. A first register set 490 provides a number

of registers including the instruction register, and a set of controls 492 for first register set |
provides the controls for storage to the first register set 490.: Some itemspass through thefirst

phase without modification by the controls 492, and instead are simply copiedinto thefirst

register set 490 or a RAMfile register 533. A secondinstruction phase 560 hasan instruction

decoder and operand multiplexer 498 that generally decodes the instruction that was stored in

the instruction register of the first register set 490 and gathers any operands which have been
generated, which are then stored in a decoderegister of a second register set 496. Thefirst

register set 490, second register set 496 andathird register set 501, which is employed ina

third instruction phase 600, include manyofthe sameregisters, as will be seen inthe more

detailed views of FIGs. 15SA-C. The instruction decoder and operand multiplexer 498 can read
from two address and data ports of the RAM file register 533, which operatesin both thefirst

phase 500 and second phase 560. A third phase 600 ofthe processor 470 has an arithmetic

logic unit (ALU) 602 which generally performs any ALU operations on the operands from the

secondregister set, storing the results in a results register included in the third register set 501.

A stack exchange 608 can reorder register stacks, and a queue manager 503 can arrange

queuesfor the processor 470, the results ofwhich are stored in the third register set.

Theinstructions continue withthefirst phase then following the third phase, as depicted by a

circular pipeline 505. Note that various functions have been distributed across the three phases

of the instruction execution in order to minimize the combinatorial delays within any given

phase. With a frequency in this embodiment of 66 MHz, each Clock increment takes 15

nanoseconds to complete, for a total of 45 nanoseconds to complete oneinstruction for each of

the three processors. The rotating instruction phases are depicted -in moredetail in FIGs. 15A-

C, in which each phaseis shownin a different figure.

Moreparticularly, FIG. 15A shows somespecific hardware functions ofthe first phase 500,

which generally includesthefirst register set 490 and related controls 492. The controls for the

first register set 492 includes an SRAM control 502, which is a logical control for loading

address and write data into SRAM address anddata registers 520. Thus the output of the ALU
28

INTEL Ex.1002.034

INTEL Ex.1002.035

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

602 from the third phase 600 may be placed by SRAM control 502 into an address register or

data register of SRAM address anddata registers 520. A load control 504 similarly provides

controls for writing a context for a file to file context register 522, and another load control

506 provides controls for storing a variety of miscellaneousdata to flip-flop registers 525.

ALUcondition codes, such as whethera carriedbit is set, get clocked into ALU condition

codes register 528 without an operation performedin thefirst phase 500. Flag decodes 508
can perform various functions, such as setting locks, that get stored in flag registers 530.

The RAMfile register 533 has a single write port for addresses and data and tworead ports

for addresses and data, so that more than oneregister can be read from at one time. As noted

above, the RAM file register 533 essentially straddles the first and second phases,asit is

written in the first phase 500 and read from in the second phase 560. A control store

instruction 510 allows the reprogrammingofthe processors due to new data in from the

control store 480, not shownin this figure, the instructions stored in an instruction register

535. The addressfor this is generated in a fetch control register 511, which determines which

address to fetch, the address stored in fetch address register 538. Load control 515 provides

instructions for a program counter 540, which operates muchlike the fetch address for the

control store. A last-in first-out stack 544 of three registers is copied to the first register set

without undergoing other operations in this phase. Finally, a load control 517 for a debug
address 548 is optionally included, which allows correction of errors that may occur.

FIG. 15B depicts the second microprocessor phase 560, which includes reading addresses

and data out of the RAM file register 533. A scratch SRAM 565 is written from SRAM

address and data register 520 of the first register set, which includes a-register that passes

through the first two phases to be incremented in the third. The scratch SRAM 565is read by

the instruction decoder and operand multiplexer 498, as are most of the registers from the first

register set, with the exception of the stack 544, debug address 548 and SRAM address and

data register mentioned above. The instruction decoder and operand multiplexer 498 looks at

the variousregisters of set 490 and SRAM 565, decodesthe instructions and gathers the

operands for operation in the next phase, in particular determining the operandsto provide to

the ALU 602 below. The outcome of the instruction decoder and operand multiplexer 498is
stored to a numberofregisters in the second register set 496, including ALUoperands 579 and

582, ALU condition code register 580, and a queue channel and command 587 register, which

in this embodiment can control thirty-two queues. Several of the registers in set 496 are
29

INTEL Ex.1002.035

INTEL Ex.1002.036

ALA-006K Express Mail No. EV 406928085 US

10

20

"25

30

loaded fairly directly from the instruction register 535 above without substantial decoding by

the decoder 498, including a program control 590,a literal field 589, a test select 584 and a
flag select 585. Other registers suchas the file context 522 of the first phase 500 are always

stored in a file context 577 of the second phase 560, but mayalso be treated as an operand that
is gathered by the multiplexer 572. The stack registers 544 are simply copied in stack register

594. The program counter 540 is incremented 568 in this phase andstored in register 592.
Also incremented 570 is the optional debug address 548, and a load control 575 maybe fed

from the pipeline 505 at this pointin order to allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALU and queue

operations. The ALU 602 includes an adder, priority encoders and other standardlogic

functions. Results of the ALUarestored in registers ALU output 618, ALU condition codes

620 and destination operandresults 622. A file context register 616, flag select register 626

andliteral field register 630 are simply copied from the previous phase 560. A test multiplexer

604 is provided to determine whether a conditional jump results in a jump, with the results

stored in a test results register 624. The test multiplexer 604 may instead be performed in the
first phase 500 along with similar decisions such as fetch control 511. A stack exchange 608

shifts a stack up or downby fetching a program counter from stack 594 or putting a program

counter onto that stack, results ofwhich are stored in program control 634, program counter

638 and stack 640 registers. The SRAM address mayoptionally be incrementedin this phase

600. Another load control 610 for another debug address 642 maybe forced from the pipeline

505 at this point in order to allow error control in this phase also. A QRAM & QALU606,

showntogetherin this figure, read from the queue channel and commandregister 587, store in

SRAMandrearrange queues, adding or removing data and pointers as needed to manage the

queuesofdata, sendingresults to the test multiplexer 604 and a queue flags and queue address

register 628. Thus the QRAM & QALU 606 assumethe duties ofmanaging queuesfor the
three processors, a task conventionally performed sequentially by software on a CPU,the

queue manager 606 instead providing accelerated and substantially parallel hardware queuing.

FIG. 16 depicts two ofthe thirty-two hardware queues that are managed by the queue

manager 606, with each of the queues having an SRAM head,an SRAM tail and the ability to
queue information ina DRAM bodyas well, allowing expansion and individual configuration

of each queue. Thus FIFO 700 has SRAMstorage units, 705, 707, 709 and 711, each
30

INTEL Ex.1002.036

INTEL Ex.1002.037

ALA-006K Express Mail No. EV 406928085 US

10

15

20

-25

30

containing eight bytes for a total of thirty-two bytes, although the number and capacity of

these units may vary in other embodiments. Similarly, FIFO 702 has SRAMstorage units

713, 715, 717 and 719. SRAM units 705 and 707 are the head of FIFO 700 and units 709 and

711 are thetail of that FIFO, while units 713 and 715 are the head ofFIFO 702 andunits 717

and 719 are the tail of that FIFO. Information for FIFO 700 maybe written into head units

705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shownby arrow

725. A particular entry, however, may be both written to and read from head units 705 or 707,

or may beboth written to and read from tail units 709 or 711, minimizing data movement and

latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as

shownby arrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may

instead be readfrom the sameheadortail unit to which it was written.

The SRAM FIFOS 700 and 702 are both connected to DRAM 460, which allowsvirtually

unlimited expansion of those FIFOSto handle situations in which the SRAM head andtail are
full. For example a first of the thirty-two queues, labeled Q-zero, may queuean entry in

DRAM 460, as shown by arrow 727, by DMAunits acting under direction of the queue
manager, instead of being queued in the head or tail of FIFO 700. Entries stored in DRAM
460 return to SRAM unit 709, as shown by arrow 730, extending the length and fall-through

time of that FIFO. Diversion from SRAM to DRAMistypically reserved for when the SRAM

is full, since DRAM is slower and DMA movementcausesadditional latency. Thus Q-zero

may comprise the entries stored by queue manager 606 in both the FIFO 700 and the DRAM

460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,

for example, can be moved by DMA into DRAM 460,as shownby arrow 735. The capacity
for queuingin cost-effective albeit slower DRAM 460is user-definable during initialization,

allowing the queues to changein size as desired. Information queued in DRAM 460is

returned to SRAM unit 717, as shown by arrow 737.

Status for each of the thirty-two hardware queuesis conveniently maintained in and

accessed from a set 740 of four, thirty-two bit registers, as shown in FIG. 17, in which a

specific bit in each register corresponds to a specific queue. Theregisters are labeled Q-
Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760. Ifa particular bit is set in

the Q-Out_Ready register 750, the queue correspondingto that bit contains informationthat is

readyto be read, while the setting of the samebit in the Q-In_Ready 752 register meansthat

the queueis ready to be written. Similarly, a positive setting of a specific bit in the Q-Empty
3]

INTEL Ex.1002.037

INTEL Ex.1002.038

ALA-006K , Express Mail No. EV 406928085 US

10

15

20

25

30

register 755 meansthat the queue correspondingto that bit is empty, while a positive setting of

a particularbit in the Q-Full register 760 meansthat the queue corresponding to that bit is full. —
Thus Q-Out_Ready 745 contains bits zero 746 through thirty-one 748, including bits twenty-

seven 752, twenty-eight 754, twenty-nine 756 andthirty 758. Q-In_Ready 750 containsbits
zero 762 through thirty-one 764,including bits twenty-seven 766, twenty-eight 768, twenty-

nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 through thirty-one 776,
including bits twenty-seven 778, twenty-eight 780, twenty-nine 782 and thirty 784, and Q-full
760 contains bits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-

eight 792, twenty-nine 794 and thirty 796. |
Q-zero, corresponding to FIFO 700,is a free buffer queue, which holdsa list of addresses

for all available buffers. This queue is addressed when the microprocessoror other devices

need a free buffer address, and so commonly includes appreciable DRAM 460. Thus a device

needing a free buffer address would check with Q-zero to obtain that address. Q-twenty-

seven, corresponding to FIFO 702,is a receive buffer descriptor queue. After processing a

received frame by the receive sequencer the sequencer looksto store a descriptor for the frame

in Q-twenty-seven. Ifa location for such a descriptor is immediately available in SRAM,bit

twenty-seven 766 of Q-In_Ready 750 will be set. If not, the sequencer must wait for the queue

managerto initiate a DMA move from SRAM to DRAM,thereby freeing spaceto store the

receive descriptor.

Operation of the queue manager, which manages movement of queue entries between

SRAM andthe processor, the transmit and receive sequencers, and also between SRAM and

DRAM,is shown in more detail in FIG. 18. Requests which utilize the queues include
Processor Request 802, Transmit Sequencer Request 804, and Receive Sequencer Request
806. Other requests for the queues are DRAM to SRAM Request 808 and SRAM to DRAM

Request 810, which operate on behalf of the queue manager in moving data back and forth

between the DRAM andthe SRAM headortail of the queues. Determining which ofthese

various requests will get to use the queue manager in the next cycle is handled bypriority logic

Arbiter 815. To enable high frequency operation the queue manageris pipelined, with

Register A 818 and Register B 820 providing temporary storage, while Status Register 822
maintainsstatus until the next update. The queue managerreserves even cycles for DMA,

receive and transmit sequencer requests and odd cycles for processor requests. Dual ported

QRAM825stores variables regarding each of the queues, the variables for each queue
32

INTEL Ex.1002.038

INTEL Ex.1002.039

ALA-006K | Express Mail No. EV 406928085 US

10

15

20

25

30

including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer

corresponding to the queue’s SRAM condition, and a Body Write Pointer and Body Read

Pointer corresponding to the queue’s DRAM condition and the queue’ssize.

After Arbiter 815 has selected the next operation to be performed, the variables of QRAM
825 are fetched and modified accordingto the selected operation by a QALU 828, and an

SRAMRead Request 830 or an SRAM Write Request 840 may be generated. The variables
are updated and the updatedstatus is stored in Status Register 822 as well as QRAM 825. The

status is also fed to Arbiter 815 to signal that the operation previously requested has been

fulfilled, inhibiting duplication of requests. The Status Register 822 updates the four queue

registers Q-Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760 to reflect the new

status of the queue that was accessed. Similarly updated are SRAM Addresses 833, Body

Write Request 835 and Body Read Requests 83 8, whichare accessed via DMAto and from
SRAMhead andtails for that queue. Alternatively, various processes may wish to write to a

queue, as shown by Q Write Data 844, which are selected by multiplexor 846, and pipelined to

SRAM Write Request 840. The SRAM controller services the read and write requests by

writing thetail or reading the head of the accessed queue and returning an acknowledge. In

thismannerthe various queuesare utilized and their status updated.

FIGs. 19A-C showa least-recently-used register 900 that is employed for choosing which
contexts or CCBsto maintain in INIC cache memory. The INIC in this embodiment can cache

up to sixteen CCBs in SRAMata given time, and so when a new CCBis cached an old one

mustoften be discarded, the discarded CCB usually chosen accordingto this register 900 to be

the CCB that has been used least recently. In this embodiment, a hash table for up to two

hundredfifty-six CCBsis also maintained in SRAM, while up to two hundredfifty-six full
CCBsare held in DRAM.Theleast-recently-used register 900 contains sixteen four-bit blocks
labeled RO-R15, each of which corresponds to an SRAM cache unit. Uponinitialization, the

blocks are numbered 0-15, with number0 arbitrarily stored in the block representing the least

recently used (LRU) cache unit and number15 stored in the block representing the most

recently used (MRU) cache unit. FIG. 19A showsthe register 900 at an arbitrary time when

the LRU block RO holds the number 9 and the MRUblock R15 holds the number6. |

Whena different CCB than is currently being held in SRAM isto be cached, the LRU

block RO is read, which in FIG. 19A holds the number9, and the new CCBis stored in the
SRAMcacheunit corresponding to number9. Since the new CCBcorresponding to number

33

INTEL Ex.1002.039

INTEL Ex.1002.040

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

9 is now the most recently used CCB, the number9is stored in the MRU block, as shown in

FIG. 19B. The other numbers are all shifted one register block to the left, leaving the number
1 in the LRU block. The CCB that had previously been cached in the SRAM unit

corresponding to number 9 has been moved to slower but more cost-effective DRAM.

FIG. 19C shows the result when the next CCB used had already been cached in SRAM.In
this example, the CCB wascached in an SRAM unit corresponding to number10, and so after
employmentof that CCB, number10 is stored in the MRU block. Only those numbers which

had previously been morerecently used than number10 (register blocks R9-R15) are shifted

to the left, leaving the number1 in the LRU block. In this manner the INIC maintainsthe

most active CCBs in SRAM cache.

In some cases a CCB being usedis onethatis not desirableto hold in the limited cache
memory. For example, it is preferable not to cache a CCB for a context that is known to be

closing, so that other cached CCBs can remain in SRAM longer. In this case, the number

representing the cache unit holding the decacheable CCBis stored in the LRU block RO rather

than the MRUblock R15,so that the decacheable CCBwill be replaced immediately upon

employment of a new CCBthat is cached in the SRAM unit corresponding to the numberheld

in the LRU block RO. FIG. 19D showsthe case for which number8 (which had beenin block

R9 in FIG. 19C) corresponds to a CCBthatwill be used and then closed. In this case number
8 has been removed from block R9 andstored in the LRU block RO. All the numbersthat had

previously beenstored to the left ofblock R9 (R1-R8) are then shifted one block to the right.

FIG. 20 shows someofthe logical units employed to operate the least-recently-used

register 900. An array of sixteen, three or four input multiplexors 910, ofwhich only

multiplexors MUX0, MUX7, MUX8, MUX9 and MUX15 are shownforclarity, have outputs

fed into the corresponding sixteen blocks ofleast-recently-used register 900. For example, the

output of MUX0isstored in block RO, the output of MUX7is stored in block R7, etc. The

value of each ofthe register blocks is connected to an input for its corresponding multiplexor

and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For

instance, the numberstored in R8is fed into inputs for MUX7, MUX8 and MUX9. MUX0

‘and MUX15 each haveonly one adjacent block, and the extra input for those multiplexorsis

used for the selection of LRU and MRUblocks, respectively. MUX15 is shownas a four-

input multiplexor, with input 915 providing the numberstored on RO.
é

34

INTEL Ex.1002.040

INTEL Ex.1002.041

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

An array of sixteen comparators 920 each receivesthe value stored in the corresponding

block of the least-recently-used register 900. Each comparatoralso receives a signal from

processor 470 along line 935 so that the register block having a number matching that sent by

processor 470 outputs true to logic circuits 930 while the other fifteen comparators output

false. Logic circuits 930 control a pair of select lines leading to each of the multiplexors, for

selecting inputs to the multiplexors andtherefore controlling shifting of the register block

numbers. Thusselect lines 939 control MUX0,select lines 944 control MUX7,select lines

949 control MUX8,select lines 954 control MUX9 andselect lines 959 control MUX15.

Whena CCBis to be used, processor 470 checks to see whether the CCB matches a CCB

currently held in one of the sixteen cache units. If a match is found, the processor sends a

signal along line 935 with the block numbercorresponding to that cache unit, for example

number 12. Comparators 920 comparethe signal from that line 935 with the block numbers

and comparator C8 providesa true output for the block R8 that matches thesignal, while all

the other comparators output false. Logic circuits 930, under control from the processor 470,

useselect lines 959 to choose the input from line 935 for MUX15, storing the number12 in the

MRUblock R15. Logic circuits 930 also send signals along the pairs of select lines for MUX8

and higher multiplexors, aside from MUX15,to shift their output one blockto theleft, by

selecting as inputs to each multiplexor MUX8and higherthe value that had been stored in

register blocks one block to the right (R9-R15). The outputs ofmultiplexors that are to theleft

of MUX8are selected to be constant.

If processor 470 does not find a match for the CCB amongthe sixteen cache units, on the

other hand, the processor reads from LRUblock RO alongline 966 to identify the cache

corresponding to the LRU block, andwrites the data stored in that cache to DRAM. The

numberthat wasstored in RO,in this case number3, is chosen byselect lines 959 as input 915

to MUX15 for storage in MRU block R15. The other fifteen multiplexors output to their

respective register blocks the numbersthat had been stored each register block immediately to

the right. |
Forthe situation in which the processor wishes to remove a CCBfrom the cacheafter use,

the LRU block RO rather than the MRU block R15 is selected for placement of the number

corresponding to the cache unit holding that CCB. The numbercorresponding to the CCB to

be placed in the LRU block RO for removal from SRAM (for example number1, held in block

R9)is sent by processor 470 along line 935, which is matched by comparator C9. The
35 ,

INTEL Ex.1002.041

INTEL Ex.1002.042

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

processorinstructs logic circuits 930 to input the number | to RO, by selecting with lines 939

input 935 to MUX0. Select lines 954 to MUX9 choose as input the numberheld in register
block R8, so that the number from R8is stored in R9. The numbersheld by the other register

blocks between RO and R9 are similarly shifted to the night, whereas the numbersin register

blocksto the right of R9 are left constant. This frees scarce cache memory from maintaining

closed CCBsfor manycycles while their identifying numbers movethrough register blocks

from the MRUto the LRU blocks.

Figure 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure

13. INIC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and

Dynamic Random Access Memory (DRAM)460. PHYchip 2100 couples INIC card 200 to

network line 210 via a network connector 2101. INIC card 200 is coupled to the CPU of the

host (for example, CPU 28 ofhost 20 of Figure 1) via card edge connector 2107 and PCI bus

257. ASIC chip 400 includes a Media Access Control (MAC) unit 402, a sequencers block

2103, SRAM control 442, SRAM 440, DRAM control 450, a queue manager 2103, a

processor 470, and a PCI businterface unit 468. Structure and operation of queue manager

2103 is described above in connection with Figure 18 and in U.S. Patent Application Serial

Number 09/416,925, entitled “Queue System For Microprocessors”, attorney docket no. ALA-

005, filed October 13, 1999, by Daryl D. Starr and Clive M. Philbrick (the subject matter of

whichis incorporated herein by reference). Sequencers block 2102 includes a transmit

sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC

destination address is stored in configuration register 2106. Part of the program code executed

by processor 470 is contained in ROM (not shown)andpart is located in a writeable control

store SRAM (not shown). The program is downloadedinto the writeable control store SRAM

at initialization from the host 20.

Figure 22 is a more detailed diagram of receive sequencer 2105. Receive sequencer 2105
includes a data synchronization buffer 2200, a packet synchronization sequencer 2201, a data
assembly register 2202, a protocol analyzer 2203, a packet processing sequencer 2204, a queue
managerinterface 2205, and a Direct Memory Access (DMA)control block 2206. The packet

synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network-

synchronized clock of MAC 402, whereas the remainderof the receive sequencer 2105 utilizes

a fixed-frequency clock. Dashed line 2221indicates the clock domain boundary.

36

INTEL Ex.1002.042

INTEL Ex.1002.043

ALA-006K Express Mail No. EV 406928085 US

_ CD Appendix A contains a complete hardware description (verilog code) of an embodiment

of receive sequencer 2105. Signals in the verilog code are named to designate their functions.

Individual sections of the verilog code are identified and labeled with commentlines. Each of

these sections describes hardware in a block of the receive sequencer 2105 as set forth below

5 in Table 1.

| SECTION OF VERILOG CODE BLOCKOFFIG. 22

Synchronization Interface 2201

Sync-Buffer Read-Ptr Synchronizers 2201

Packet-Synchronization Sequencer . 2201
Data Synchronization Buffer . 2201 and 2200 |
Synchronized Status for Link-Destination-Address 2201

Synchronized Status-Vector | 2201
Synchronization Interface 2204

Receive Packet Control and Status 2204

Buffer-Descriptor oo 2201

Ending Packet Status 2201

AssyReg shift-in. Mac -> AssyReg. _|2202 and 2204

Fifo shift-in. AssyReg -> Sram Fifo 2206

Fifo ShiftOut Burst. SramFifo -> DramBuffer 2206

Fly-By Protocol Analyzer; Frame, Network and Transport Layers|2203

Link Pointer : | 2203

Macaddress detection 2203

Magicpattern detection 2203

Link layer and networklayer detection . 2203

Network counter 2203

Control Packet analysis 2203
Network headeranalysis 2203

Transport layer counter 2203

Transport header analysis 2203

Pseudo-headerstuff 2203
Free-Descriptor Fetch 2205

. 37

INTEL Ex.1002.043

INTEL Ex.1002.044

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

Receive-Descriptor Store

Receive-Vector Store

Queue-managerinterface-mux

Pause Clock Generator

Pause Timer

TABLE1

Operation of receive sequencer 2105 of Figures 21 and 22 is now described in connection

with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At

initialization time, processor 470 partitions DRAM 460into buffers. Receive sequencer 2105

uses the buffers in DRAM 460to store incoming network packet data as well as status

information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A

buffer. descriptor indicates the size and location in DRAMofits associated buffer. Processor

470 places these buffer descriptors on a “‘free-buffer queue” 2108 by writing the descriptors to
the queue manager 2103. Queue manager 2103 maintains multiple queues includingthe “‘free-

buffer queue” 2108. In this implementation, the heads andtails of the various queues are

located in SRAM 440,whereas the middle portion of the queues are located in DRAM 460.

Lines 2229 comprise a request mechanism involving a request line and address lines.
Similarly, lines 2230 comprise a request mechanism involving a request line and addresslines.

Queue manager 2103 uses lines 2229 and 2230to issue requests to transfer queue information
from DRAM to SRAM or from SRAM to DRAM.

The queue managerinterface 2205 of the receive sequencer always attempts to maintain a

free buffer descriptor 2207 for use by the packet processing sequencer 2204. Bit 2208 is.a

ready bit that indicates that free-buffer descriptor 2207 is available for use by the packet

processing sequencer 2204. If queue managerinterface 2205 does not havea free buffer

descriptor (bit 2208 is not set), then queue manager interface 2205 requests one from queue

manager 2103 via request line 2209. (Request line 2209is actually a bus which communicates

the request, a queue ID, a read/write signal and dataifthe operation is a write to the queue.)

In response, queue manager 2103 retrieves a free buffer descriptor from thetail ofthe “free

buffer queue”2108 and then alerts the queue managerinterface 2205 via an acknowledge

signal on acknowledgeline 2210. When queue managerinterface 2205 receives the

acknowledgesignal, the queue managerinterface 2205 loads the free buffer descriptor 2207
38

INTEL Ex.1002.044

INTEL Ex.1002.045

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

andsets the ready bit 2208. Because the free buffer descriptor wasin the tail of the free buffer

queue in SRAM 440,the queue manager interface 2205 actually receives the free buffer
descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet

processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When

the queue managerinterface 2205retrieves the free buffer descriptor 2207 and the free buffer

descriptor 2207 is available for use by the packet processing sequencer, the queue manager

interface 2205 informs the packet processing sequencer 2204 via grant line 2212. By this

process, a free buffer descriptor is made available for use by the packet processing sequencer

2204 and the receive sequencer 2105is ready to processes an incoming packet.
Next, a TCP/IP packet is received from the networkline 210 via network connector 2101

and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC402 via a

Media IndependentInterface (MII) parallel bus 2109. MAC 402 begins processing the packet
and asserts a “start of packet“ signal on line 2213 indicating that the beginning of a packetis

being received. When a byte of data is received in the MAC andisavailable at the MAC

outputs 2215, MAC 402 asserts a “data valid” signal on line 2214. Upon receiving the “data

valid” signal, the packet synchronization sequencer 2201 instructs the data synchronization

buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data

synchronization buffer 2200 is four bytes deep. The packet synchronization sequencer 2201
then increments a data synchronization buffer write pointer. This data synchronization buffer

write pointer is made available to the packet processing sequencer 2204 via lines 2216.

Consecutive bytes of data from data lines 2215 are clocked into the data synchronization

buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained by the

packet processing sequencer 2204. The packet processing sequencer 2204 determinesthat

data is available in data synchronization buffer 2200 by comparing the data synchronization

buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines

2219.

Data assembly register 2202 contains a sixteen-byte long shift register 2217. This register

2217 is loadedserially a single byte at a time and is unloaded in parallel. When data is loaded

into register 2217, a write pointer is incremented. . This write pointer is madeavailable to the
packet processing sequencer 2204 via lines 2218. Similarly, when data is unloaded from

‘register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.
39

INTEL Ex.1002.045

INTEL Ex.1002.046

ALA-006K ExpressMail No. EV 406928085US

10

15

20

25

30

This read pointeris available to the data assembly register 2202 via lines 2220. The packet

processing sequencer 2204can therefore determine whether room is available in register 2217

by comparingthe write pointer on lines 2218 to the read pointer on lines 2220.

If the packet processing sequencer 2204 determines that room is available in register 2217,
then packet processing sequencer 2204 instructs data assembly register 2202 to load a byte of

data from data synchronization buffer 2200. The data assembly register 2202 increments the

data assembly register write pointer on lines 2218 and the packet processing sequencer 2204
increments the data synchronization buffer read pointer on lines 2219. Data shifted into

register 2217 is examinedat the register outputs by protocol analyzer 2203 which verifies

checksums, and generates “status” information 2223.

DMA control block 2206 is responsible for moving information from register 2217 to

buffer 2114 via a sixty-four byte receive FIFO 2110. DMAcontrol block 2206 implements
receive FIFO 2110 as twothirty-two byte ping-pong buffers using sixty-four bytes of SRAM

440. DMAcontrol block 2206 implements the receive FIFO using a write-pointer and a read-

pointer. When data to be transferred is available in register 2217 and spaceis available in

FIFO 2110, DMA control block 2206 asserts an SRAM write request to SRAM controller 442
via lines 2225. SRAM controller 442 in turn moves data from register 2217 to FIFO 2110 and

asserts an acknowledgesignal back to DMAcontrol block 2206via lines 2225. DMAcontrol
block 2206 then increments the receive FIFO write pointer and causes the data assembly

register read pointer to be incremented.
Whenthirty-two bytes of data has been deposited into receive FIFO 2110, DMA control

block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This

write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for

the DRAMrequestaddress, and the receive FIFO read pointer for the SRAM read address.

Using the receive FIFO read pointer, the DRAM controller 450 asserts a read request to

SRAMcontroller 442. SRAM controller 442 responds to DRAMcontroller 450 by returning

the indicated data from the receive FIFO 2110 in SRAM 440andasserting an acknowledge

signal. DRAMcontroller 450 stores the data ina DRAM writedata register, stores a DRAM

request address ina DRAM addressregister, and asserts an acknowledge to DMAcontrol
block 2206. The DMAcontrol block 2206 then decrementsthe receive FIFO read pointer.

Then the DRAM controller 450 moves the data from the DRAM write data register to buffer

2114. In this way, as consecutive thirty-two byte chunks of data are stored in SRAM 440,
. 40

INTEL Ex.1002.046

INTEL Ex.1002.047

ALA-006K Express Mail No. EV 406928085 US °

10

15

20

25

30

DRAMcontrol block 2206 moves those thirty-two byte chunksofdata oneat a time from

SRAM 440 to buffer 2214 in DRAM 460. Transferring thirty-two byte chunksofdatato the

DRAM 460in this fashion allows data to be written into the DRAM usingtherelatively

efficient burst mode of the DRAM.

Packet data continuesto flow from network line 210 to buffer 2114 until all packet data has
been received. MAC 402 then indicates that the incoming packet has completed by asserting

an “end of frame”(i.e., end of packet) signal on line 2227 and bypresenting final packet status

(MACpacket status) to packet synchronization sequencer 2204. The packet processing

sequencer 2204 then movesthe status 2223 (also called “protocol analyzer status’) and the

MACpacketstatus to register 2217 for eventualtransfer to buffer 2114. Afterall the data of

the packet has been placed in buffer 2214, status 2223 and the MACpacketstatusis

transferred to buffer 2214 so that it is stored prepended to the associated data as shown in

Figure 22. -

Afterall data and status has been transferred to buffer 2114, packet processing sequencer

2204 creates a summary 2224(also called a “receive packet descriptor’) by concatenating the

free buffer descriptor 2207, the buffer load-count, the MAC ID,anda status bit (also called an

“attention bit”). If the attention bit is a one, then the packet is not a “‘fast-path candidate”;

whereasif the attentionbit is a zero, then the packetis a “fast-path candidate”. The value of

the attention bit represents the result of a significant amount of processing that processor 470

would otherwise haveto do to determine whether the packet is a “fast-path candidate”. For

example,the attention bit being a zero indicates that the packet employs both TCP protocol

and IP protocol. By carrying out this significant amount of processing in hardware beforehand

and then encodingthe result in the attention bit, subsequent decision making by processor 470

as to whetherthe packet is an actual “fast-path packet”is accelerated. A completelogical

description of the attention bit in verilog codeis set forth in CD Appendix A in the lines

following the heading “Ending Packet Status”.

Packet processing sequencer2204 thensets a ready bit (not shown) associated with

summary 2224and presents summary 2224 to queue managerinterface 2205. Queue manager

interface 2205 then requests a write to the head of a “summary queue” 2112 (also called the

“receive descriptor queue”). The queue manager 2103 receives the request, writes the

summary 2224 to the head of the summary queue 2212,and asserts an acknowledgesignal
back to queue managerinterface via line 2210. When queue managerinterface 2205 receives

41

INTEL Ex.1002.047

INTEL Ex.1002.048

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

the acknowledge, queue managerinterface 2205 informs packet processing sequencer 2204

that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with the

summary. Packet processing sequencer 2204 also generates additional status information (also
called a “‘vector’’) for the packet by concatenating the MACpacketstatus and the MAC ID.
Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and

presents this vector to the queue managerinterface 2205. The queue managerinterface 2205
and the queue manager 2103 then cooperate to write this vector to the head of a “vector queue”

2113in similar fashion to the way summary 2224 waswritten to the head of summary queue

2112 as described above. Whenthe vector for the packet has been written to vector queue
2113, queue managerinterface 2205 resets the ready bit associated with the vector.

Once summary 2224 (including a buffer descriptor that points to buffer 2114) has been
placed in summary queue 2112 and the packet data has been placed in buffer 2144, processor ”

470 can retrieve summary 2224 from summary queue 2112 and examinethe “attention bit”.

If the attention bit from summary 22724 is a digital one, then processor 470 determines that

the packet is not a “fast-path candidate” and processor 470 need not examinethe packet

headers. Only the status 2223 (first sixteen bytes) from buffer 2114 are DMAtransferred to

SRAMsoprocessor 470 can examineit. If the status 2223 indicates that the packetis a type
ofpacketthat is not to be transferred to the host (for example, a multicast frame that the hostis
not registered to receive), then the packetis discarded(i.e., not passed to the host). If status

2223 does not indicate that the packet is the type of packet that is not to be transferred to the

host, then the entire packet (headers and data) is passed to a buffer on host 20 for “slow-path”

transport and network layer processing by the protocol stack of host 20.

If, on the other hand,the attention bit is a zero, then processor 470 determines that the

packetis a “fast-path candidate”. If processor 470 determinesthat the packetis a “fast-path

candidate”, then processor 470 uses the buffer descriptor from the summary to DMAtransfer

the first approximately 96 bytes of information from buffer 2114 from DRAM 460into a

portion of SRAM 440 so processor 470 can examineit. This first approximately 96 bytes
contains status 2223 as well as the IP source addressofthe IP header, the IP destination

addressof the IP header, the TCP source address of the TCP header, and the TCP destination

address of the TCP header. The IP source address of the IP header, the IP destination address

of the IP header, the TCP source address of the TCP header, and the TCP destination address

of the TCP header together uniquely define a single connection context (TCB) with which the
42

INTEL Ex.1002.048

INTEL Ex.1002.049

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

packet is associated. Processor 470 examines these addresses of the TCP and IP headers and

determines the connection context of the packet. Processor 470 then checksa list of

connection contexts that are under the control of INIC card 200 and determines whether the

. packet is associated with a connection context (TCB) underthe control of INIC card 200.

If the connection contextis not in the list, then the “fast-path candidate” packetis

determinednotto be a “fast-path packet.” In sucha case, the entire packet (headers and data)

is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack of host 20.

If, on the other hand, the connection contextis in the list, then software executed by
processor 470 including software state machines 2231 and 2232 checks for one of numerous

exception conditions and determines whether the packetis a “‘fast-path packet”or is not a

“fast-pathpacket”. These exception conditions include: 1) IP fragmentation is detected; 2) an

IP option is detected; 3) an unexpected TCP flag (urgentbit set, reset bit set, SYN bit set or

FIN bit set).is detected; 4) the ACK field in the TCP header is before the TCP window,or the

ACKfield in the TCP headeris after the TCP window,or the ACK field in the TCP header

shrinks the TCP window; 5) the ACKfield in the TCP headeris a duplicate ACK and the

ACKfield exceeds the duplicate ACK count(the duplicate ACK count is a user settable

value); and 6) the sequence numberof the TCP headeris outoforder (packet is received out of

sequence). Ifthe software executed by processor 470 detects one of these exception
conditions, then processor 470 determinesthatthe ‘“fast-path candidate”is not a “fast-path

packet.” In such a case, the connection context for the packetis “flushed” (the connection

context is passed backto the host) so that the connection context is no longerpresent in the list

of connection contexts under control of INIC card 200. The entire packet (headers and data) is
transferred to a buffer in host 20 for “slow-path”transport layer and network layer processing

by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such exception condition, then the “fast-path

candidate” packet is determined to be anactual “fast-path packet”. The receive state machine
2232 then processes of the packet through TCP. Thedata portion of the packet in buffer 2114

is then transferred by another DMAcontroller (not shown in Figure 21) from buffer 2114 to a

host-allocated file cache in storage 35 ofhost 20. In one embodiment, host 20 does no

analysis of the TCP and IP headersof a “fast-path packet”. All analysis of the TCP and IP
headers ofa “fast-path packet” is done on INICcard 20.

43

INTEL Ex.1002.049

INTEL Ex.1002.050

ALA-006K Express Mail No. EV 406928085 US

15

20

25

30

Figure 23 is a diagram illustrating the transfer of data of “fast-path packets” (packets of a

64k-byte session layer message 2300) from INIC 200 to host 20. The portion of the diagram

to the left of the dashed line 2301 represents INIC 200, whereasthe portion of the diagram to

the right of the dashed line 2301 represents host 20. The 64k-byte session layer message 2300

includes approximately forty-five packets, four of which (2302, 2303, 2304 and 2305) are

labeled on Figure 23. Thefirst packet 2302 includes a portion 2306 containing transport and
network layer headers (for example, TCP and IP headers), a portion 2307 containing a session

layer header, and a portion 2308 containing data. Ina first step, portion 2307,the first few
bytes of data from portion 2308, and the connection context identifier 2310 of the packet 2300

are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a second step, host 20

examinesthis information and returns to INIC 200a destination (for example, the location of a
file cache 2311 in storage 35) for the data. Host 20 also copiesthe first few bytes ofthe data

from buffer 2309 to the beginningofa first part 2312 offile cache 231 1, In a third step, INIC
200 transfers the remainderof the data from portion 2308 to host 20 such that the remainder of

the data is stored in the remainderoffirst part 2312 of file cache 2311. No network, transport,

or session layer headers arestored in first part 2312 of file cache 2311. Next, the data portion |

. 2313 of the second packet 2303is transferred to host 20 suchthat the data portion 2313 of the

second packet 2303 is stored in a second part 2314 offile cache 2311. The transport layer and
network layer header portion 2315 of second packet 2303is not transferred to host 20. There

is no network,transport, or session layer headerstored in file cache 2311 between the data

portion offirst packet 2302 and the data portion of second packet 2303. Similarly, the data

portion 2316 of the next packet 2304 of the session layer messageis transferredto file cache

2311 so that there is no network, transport, or session layer headers betweenthe data portion

of the second packet 2303 andthe data portion ofthe third packet 2304in file cache 2311. In
this way, only the data portions of the packets of the session layer messageare placed in the

file cache 2311: The data from the session layer message 2300is presentin file cache 2311 as

“a block suchthat this block contains no network,transport, or session layer headers.
In the case of a shorter, single-packet session layer message, portions 2307 and 2308 of the

session layer messageare transferred to 256-byte buffer 2309 ofhost 20 along with the

connection context identifier 2310 as in the case of the longer session layer message described

above, In the case of a single-packet session layer message, however, the transfer is completed

44

INTEL Ex.1002.050

INTEL Ex.1002.051

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does nottransfer

subsequentdata to such a destination.

CD Appendix B includesa listing of software executed by processor 470 that determines

whethera “‘fast-path candidate” packet is or is not a “fast-path packet”. An example of the

instruction set ofprocessor 470 is found starting on page 79 of the Provisional U.S. Patent

Application Serial No. 60/061,809, entitled “Intelligent Network Interface Card And System

ForProtocol Processing”, filed October 14, 1997 (the subject matter of this provisional
application is incorporated herein by reference).

CD Appendix C includes device driver software executable on host 20 that interfaces the
host 20 to INIC card 200. There is also ATCP code that executes on host 20. This ATCP

codeincludes: 1) a “free BSD”stack (available from the University of California, Berkeley)

that has been modified slightly to make it run on the NT4 operating system (the “free BSD”

stack normally runs on a UNIX machine), and 2) code addedto the free BSD stack between

the session layer above and the device driver below that enables the BSD stack to carry out

“‘fast-path” processing in conjunction with INIC 200.

TRANSMIT FAST-PATH PROCESSING: The following is an overview of one.

embodimentof a transmit fast-path flow once a commandhasbeenposted(for additional
information, see provisional application 60/098,296, filed August 27, 1998). The transmit

request may be a segmentthatis less than the MSS,or it may be as muchasa full 64K session

layer packet. The former request will go out as one segment,the latter as a number of MSS-

sized segments. The transmitting CCB must hold onto the request until all data in it has been

transmitted and ACKed. Appropriate pointers to do this are kept in the CCB. To create an

output TCP/IP segment, a large DRAM buffer is acquired from the QFREEL queue. Then
data is DMAdfrom host memory into the DRAM bufferto create an MSS-sized segment.

This DMAalso checksumsthe data. The TCP/IP headeris created in SRAM and DMAdto

the front of the payload data. It is quicker and simplerto keep a basic frame header(i.e., a

template header) permanently in the CCB and DMAthis directly from the SRAM CCBbuffer

into the DRAM buffer each time. Thus the payload checksum is adjusted for the pseudo-

header(i.e., the template header) and placed into the TCP headerprior to DMAingthe header

from SRAM. Then the DRAM bufferis queued to the appropriate Q_UXMTtransmit queue.
Thefinal step is to update various windowfields etc in the CCB. Eventually either the entire
request will have been sent and ACKed,or a retransmission timer will expire in which case the

45

INTEL Ex.1002.051

INTEL Ex.1002.052

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

context is flushed to the host. In either case, the INIC will place a command response in the
response queue containing the commandbuffer from theoriginal transmit command and

appropriatestatus.

The above discussion has dealt with how an actual transmit occurs. Howeverthe real -

challenge in the transmit processoris to determine whetherit is appropriate to transmit at the

time a transmit request arrives, and then to continue to transmit for as long as the transport

protocol permits. There are many reasons notto transmit: the receiver’s windowsizeis less

than or equalto zero, the persist timer has expired, the amountto send is less than a full

segment and an ACKis expected/outstanding, the receiver’s windowis not half-open, etc.
Muchoftransmit processing will be in determining these conditions.

The fast-path is implementedasa finite state machine (FSM)that coversat least three

layers of the protocol stack,i.e., IP, TCP, and Session. The following summarizesthe steps

involved in normal fast-path transmit commandprocessing: 1) get control ofthe associated
CCB(gotten from the command): this involves locking the CCBto stop other processing(e.g.
Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into

an SRAM CCBbuffer. There are sixteen of these buffers in SRAM and they are not flushed to

DRAMuntil the buffer space is needed by other CCBs. Acquisition andflushing of these
CCBbuffers is controlled by a hardware LRU mechanism. Thusgetting into a buffer may

involve flushing another CCB from its SRAM buffer. 3) Process the send command

(EX_SCMD)eventagainst the CCB’s FSM.

Each event andstate intersection provides an action to be executed and a newstate. The

following is an example ofthe state/event transition, the action to be executed and the new

state for the SEND commandwhilein transmit state IDLE (SX_IDLE). Theaction fromthis

state/eventintersection is AX_NUCMDandthe next state is XMIT COMMAND ACTIVE

(SX_XMIT). To summarize, a commandtotransmit data has beenreceived while transmit is
currently idle. The action performsthe following steps: 1) Store details of the commandinto

the CCB. 2) Check thatit is okay to transmit now (e.g. send windowis notzero). 3) If output

is not possible, send the Check Output event to QEVENT1 queue for the Transmit CCB’s

FSM andexit. 4) Get a DRAM 2K-byte buffer from the Q-FREEL queue into which to move

the payload data. 5) DMApayload data from the addressesin the scatter/gather lists in the

commandinto an offset in the DRAM buffer that leaves space for the frame header. These

DMAswill provide the checksum of the payload data. 6) Concurrently with the above DMA,
46 -

INTEL Ex.1002.052

INTEL Ex.1002.053

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

fill out variable details in the frame header template in the CCB. Also get the IP and TCP

header checksums while doing this. Note that base IP and TCP headers checksumsare kept in

the CCB,and these are simply updated for fields that vary per frame, viz. IP Id, IP length, IP

checksum, TCP sequence and ACK numbers, TCP windowsize, TCP flags and TCP

checksum. 7) When the payload is complete, DMAthe frame header from the CCBto the
front of the DRAM buffer. 8) Queue the DRAM buffer(i.e., queue a buffer descriptor that

points to the DRAM buffer) to the appropriate QUXMT queuefor the interface for this CCB.

9) Determine if there is more payload in the command.If so, save the current command

transfer address details in the CCB and send a CHECK OUTPUTevent via the QEVENT1

queue to the Transmit CCB. Ifnot, send the ALL COMMAND DATASENT (EX_ACDS)

event to the Transmit CCB. 10) Exit from Transmit FSM processing.

Code that implements an embodimentof the Transmit FSM (transmit software state

machine 2231 of Figure 21) is found in CD Appendix B. In one embodiment, fast-path

transmit processing is controlled using write only transmit configuration register (XmtCfg).

Register XmtCfg hasthe following portions: 1) Bit 31 (mame: Reset), Writing a one (1) will

force reset asserted to the transmit sequencerof the channel selected by XcvSel. 2) Bit 30

(name: XmtEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)

causes the transmit sequencerto halt after completion of the current packet. 3) Bit 29 (name:

PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission,after

completion of the current packet, wheneverthe receive sequencer detects an 802.3X pause

command packet. 4) Bit 28 (name: LoadRng). Writing a one (1) causesthe data in

RevAddrB[10:00] to be loaded in to the Mac’s random numberregister for use during

collision back-offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15 (name: FreeQId). Selects

the queue to which the freed buffer descriptors will be written once the packet transmission

has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: XmtQId).

Selects the queue from which the transmit buffer descriptors will be fetched for data packets.

8) Bits 09:05 (name: CtrlQId). Selects the queue from which the transmit buffer descriptors

will be fetched for control packets. These packets have transmission priority over the data

packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:

VectQId). Selects the queue to which the transmit vector data is written after the completion

of each packet transmit. In some embodiments, transmit sequencer 2104 of Figure 21 retrieves

buffer descriptors from two transmit queues, one of the queues having a higher transmission
47

INTEL Ex.1002.053

INTEL Ex.1002.054

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

priority than the other. The higher transmission priority transmit queue is used for the

transmission of TCP ACKs,whereas the lower transmission priority transmit queue is used for
the transmission of other types ofpackets. ACKs maybe transmitted in accordance with

techniques set forth in U.S. Patent Application Serial No. 09/802,426 (the subject matter of

whichis incorporated herein by reference). In some embodiments, the processorthat executes

the Transmit FSM, the receive and transmit sequencers, and the host processor that executes
the protocol stack are all realized on the sameprinted circuit board. The printed circuit board

may, for example, be a card adapted for coupling to another computer.

All told, the above-described devices and systems for processing of data communication

result in dramatic reductions in the time and host resourcesrequired for processing large,

connection-based messages. Protocol processing speed and efficiency is tremendously

accelerated by specially designed protocol processing hardware as compared with a general
purpose CPU running conventional protocol software, and interrupts to the host CPU are also

substantially reduced. These advantages can be provided to an existing host by addition of an
intelligent network interface card (INIC), or the protocol processing hardware may be

integrated with the CPU. In either case, the protocol processing hardware and CPU

intelligently decide which device processes a given message, and can changethe allocation of

that processing based upon conditions ofthe message.

DISCLOSURE FROM PROVISIONAL APPLICATION 60/061,809.

BACKGROUNDOFTHE INVENTION.

Network processing asit exists today is a costly and inefficient use of system

resources. A 200 MHz Pentium-Prois typically consumed simply processing network data
from a 100Mb/second-network connection. The reasonsthat this processing is so costly are

described here.

-TOO MANY DATA MOVES.

When networkpacket arrives at a typical network interface card (NIC), the NIC moves

the data into pre-allocated network buffers in system main memory. From there the data is

read into the CPU cachesothat it can be checksummed (assuming of course that the protocol

in use requires checksums. Some,like IPX, do not.). Once the data has been fully processe
48

INTEL Ex.1002.054

INTEL Ex.1002.055

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

by the protocol stack, it can then be movedintoits final destination in memory. Since the

CPUis movingthe data, and must read the destination cacheline in before it can fill it and

write it back out, this involves at a minimum two moretrips across the system memory bus. In

short, the best one can hopeforis that the data will get moved across the system memory bus

' four times beforeit arrivesin its final destination. It can, and does, get worse. If thedata

happensto get invalidated from system cacheafter it has been checksummed,then it must get

pulled back across the memory busbefore it can be movedto its final destination. Finally, on

some systems, including Windows NT4.0, the data gets copied yet another time while being

moved upthe protocol stack. In NT 4.0, this occurs between the miniport driver interface and

the protocol driver interface. This can add up to a whoppingeight trips across the system

memory bus(the fourtrips described above, plus the moveto replenish the cache, plus three

more to copy from the miniport to the protocol driver). That’s enough to bring even today’s

advanced memory bussesto their knees.

TOO MUCH PROCESSING BY THE CPU.

In all but the original move from the NIC to system memory,the system CPU is

responsible for moving the data. This is particularly expensive because while the CPU is

moving this data it can do nothing else. While moving the data the CPU is typically stalled

waiting for the relatively slow memory tosatisfy its read and write requests. A CPU, which

can execute an instruction every 5 nanoseconds, must now wait as long as several hundred

nanosecondsfor the memory controller to respond before it can begin its next instruction.

Even today’s advancedpipelining technology doesn’t help in thesesituations becausethat

relies on the CPU beingableto do useful work while it waits for the memory controller to

respond. If the only thing the CPU has to look forward to for the next several hundred

instructions is more data moves, then the CPU ultimately gets reduced to the speed ofthe

memory controller.

Movingall this data with the CPU slowsthe system downevenafter the data has been

moved. Since both the source and destination cache lines must be pulled into the CPU cache

whenthe data is moved, more than 3k of instructions and or data resident in the CPU cache

must be flushed or invalidated for every 1500 byte frame. This is of course assuming a

combinedinstruction and data second level cache, as is the case with the Pentium processors.

After the data has been moved, the formerresident of the cache will likely need to be pulled
49

INTEL Ex.1002.055

INTEL Ex.1002.056

ALA-006K , Express Mail No. EV 406928085 US

10

15

20

25

30

~ backin,stalling the CPU even when weare not performing network processing. Ideally a

system would neverhaveto bring network frames into the CPU cache, instead reserving that

precious commodity for instructions and data that are referenced repeatedly and frequently.

"But the data movementis notthe only drain on the CPU. Thereis also a fair amount of

processing that must be donebythe protocol stack software. The most obvious expenseis

calculating the checksum for each TCP segment (or UDP datagram). . Beyond this, however,

there is other processing to be done as well. The TCP connection object must be located when
a given TCP segmentarrives, IP header checksums mustbe calculated, there are buffer and
memory managementissues, andfinally there is also the significant expense of interrupt

processing which wewill discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMBrequest (write or read-reply) is typically made up of 44 TCP segments

when running over Ethernet (1500 byte MTU). Each of these segments mayresult in an

interrupt to the CPU. Furthermore, since TCP must acknowledgeall of this incomingdata,it’s

possible to get another 44 transmit-complete interrupts as a result of sending out the TCP

acknowledgements. Whilethis is possible,it is not terribly likely. Delayed ACKtimers allow
us to acknowledge more than one segmentat a time. Anddelays in interrupt processing may

mean that we are able to process more than one incoming network frameper interrupt.

Nevertheless, even if we assume four incoming frames per input, and an acknowledgementfor

' every two segments(as1s typical per the ACK-every-other-segment property of TCP), we are

still left with 33 interrupts per 64k SMBrequest. .
Interrupts tend to be very costly to the system. Often when a system is interrupted,

important information mustbe flushed or invalidated from the system cacheso that the

interrupt routine instructions, and needed data can be pulled into the cache. Since the CPU

will return to its prior location after the interrupt,it is likely that the information flushed from

the cache will immediately need to be pulled back into the cache.

What’s more,interrupts force a pipeline flush in today’s advanced processors. While

the processorpipeline is an extremely efficient way of improving CPU performance, it can be

expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the

peripheral bus (PCI). This is discussed morein the following section.
50

INTEL Ex.1002.056

INTEL Ex.1002.057

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

INEFFICIENT USE OF THE PERIPHERAL BUS(PCI).

Wenoted earlier that when the CPU has to access system memory,it may bestalled for

several hundred nanoseconds. Whenit has to read from PCI,it may bestalled for many

microseconds. This happens every time the CPUtakes an interrupt from a standard NIC. The
first thing the CPU must do whenit receives one ofthese interruptsis to read the NIC Interrupt

Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling

thing aboutthis is that since interrupt lines are shared on PC-based systems, we may haveto

perform this expensive PCI read even whenthe interrupt is not meantfor us.
There are other peripheral bus inefficiencies as well. Typical NICs operate using

descriptor rings. When a framearrives, the NIC reads a receive descriptor from system

memory to determine where to place the data. Once the data has been moved to main

memory, the descriptor is then written back out to system memory with status about the

received frame. Transmit operates in a similar fashion. The CPU mustnotify that NICthatit

has a new transmit. The NIC will read the descriptor to locate the data, read the data itself, and

then write the descriptor back with status about the send. Typically on transmits the NIC will

then read the next expected descriptor to see if any more data needs to be sent. In short, each

receive or transmit frameresults in 3 or 4 separate PCI readsor writes (not counting the status
c

register read).

SUMMARYOF THE INVENTION.

Alacritech was formed with the idea that the network processing described above could

be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the

Alacritech INIC, we address each of the above problems,resulting in the following

advancements: _
l. The vast majority of the data is moved directly from the INIC into its final

destination. A single trip across the system memory bus. |

_ 2. There is no header processing,little data copying, and no checksumming
required by the CPU. Because ofthis, the data is never moved into the CPU cache,allowing

the system to keep importantinstructions and data resident in the CPU cache.

3. Interrupts are reducedto aslittle as 4 interrupts per 64k SMBread and 2 per

64k SMB write.

51

INTEL Ex.1002.057

INTEL Ex.1002.058

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

4, There are no CPU reads over PCI and there are fewer PCI operations per

receive or transmit transaction.

In the remainderof this document we will describe how we accomplish the above.

PERFORM TRANSPORT LEVEL PROCESSINGON THEINIC.

In order to keep the system CPU from having to process the packet headers or

checksum the packet, we must perform this task on the INIC. This is a daunting task. There

are more than 20,000 lines of C code that make up the FreeBSD TCP/IPprotocolstack.

Clearly this is more code than could be efficiently handled by a competitively priced network
card. Furthermore, as noted above, the TCP/IP protocol stack is complicated enough to
consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive

card, we need special network processing hardware as opposed to simply using a general

purpose CPU.

ONLY SUPPORTTCP/IP.

In this section we introduce the notion of a "context". A context is required to keep

track of information that spans many, possibly discontiguous, pieces of information. When
processing TCP/IP data, there are actually two contextsthat must be maintained. Thefirst

context is required to reassemble IP fragments. It holds information aboutthe status of the IP

reassembly as well as any checksum information being calculated across the IP datagram

(UDP or TCP). This contextis identified by the IP_ID of the datagram as well as the source

and destination IP addresses. The second context is required to handle the sliding window

protocolofTCP. It holds information about which segments havebeensentor received, and
which segments have been acknowledged, andis identified by the IP source and destination

addresses and TCP source and destination ports.

If we were to chooseto handle both contexts in hardware, we would haveto potentially

keep track of many pieces of information. One such exampleis a case in which a single 64k

SMBwrite isbroken downinto 44 1500 byte TCP segments, whichare in turn broken down
into 131 576 byte IP fragments,all of which can comein any order (though the maximum

windowsize is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum SegmentSize negotiation at connection
establishmenttime, which should prevent IP fragmentation in nearly all TCP connections. The

52 ,

INTEL Ex.1002.058

INTEL Ex.1002.059

ALA-006K i Express Mail No. EV 406928085 US

10

15

20

25

30

only time that we should end up with fragmented TCP connections is when thereis a router in

the middle of a connection which must fragment the segments to support a smaller MTU. The
only networksthat use a smaller MTU than Ethernet areserial line interfaces such as SLIP and

PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we

had 256 of these connections, we wouldstill only need to support 34Mb/sec,ora little over

three 10bT connections worth of data. This is not enoughto justify any performance

enhancementsthat the INIC offers. If this becomesan issue at some point, we may decide to

implement the MTUdiscovery algorithm, which should prevent TCP fragmentation onall

connections (unless an ICMP redirect changes the connection route while the connectionis

established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP

segments on the INIC. UDPis another matter. Since UDP does not support the notion of a

Maximum SegmentSize, it is the responsibility of IP to break down a UDP datagram into

MTUsized packets. Thus, fragmented UDP datagrams are very common. The most common

UDPapplication running today is NFSV2 over UDP. While this is also the most common

version ofNFS running today, the current version of Solaris being sold by Sun Microsystems

runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDPtraffic start to

decrease over the coming years. In summary, wewill only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLE TCP “EXCEPTIONS”.

. As noted above, we won’t provide support for fragmented TCP segments on the INIC.
We havealso opted to not handle TCP connection and breakdown. Here is a list of other TCP
“exceptions” which we haveelected to not handle on the INIC:

Fragmented Segments —Discussed above.

Retransmission Timeout — Occurs when wedo not get an acknowledgementfor

previously sent data within the expected timeperiod.

Outof order segments — Occurs when wereceive a segment with a sequence number

other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have noweliminated support for so many different code paths, it might seem
hardly worth the trouble to provide any assistance by the card at all. This is not the case.

53

INTEL Ex.1002.059

INTEL Ex.1002.060

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated Volume

2”, TCP operates without experiencing any exceptions between 97 and 100 percentof the time

in local area networks. As network, router, and switch reliability improve this numberis likely

to only improvewith time.

TWO MODESOF OPERATION.

So the next question is what to do about the network packets that do notfit our criteria.

The answershownin Fig. 24 is to use two modesofoperation: One in which the network

frames are processed on theINIC through TCP and onein which the card operates like a

typical dumb NIC. Wecall these two modesfast-path, and slow-path. In the slow-path case,

network frames are handed to the system at the MAClayer and passed up through the host

protocol stack like any other network frame. In the fast path case, network data is given to the

host after the headers have been processed andstripped.
The transmit case works in much the same fashion. In slow-path modethe packets are

given to the INIC with all of the headers attached. The INIC simply sends these packets out as

if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC which it must

carve into MSSsized segments, add headers to the data, perform checksumson the segment,
and then send it out on the wire.

THE TCB CACHE.

Considera situation in which a TCP connection is being handled by the card and a

fragmented TCP segmentfor that connection arrives. In this situation, it will be necessary for

the card to turn control of this connection overto the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB isa

structure that contains the entire context associated with a connection. This includes the

source and destination IP addresses and source and destination TCPports that define the

connection. It also contains information aboutthe connectionitself such as the current send

and receive sequence numbers,and thefirst-hop MAC address, etc. The complete set of TCBs

exists in host memory, but a subset of these may be "owned"bythe card at any given time.

This subset is the TCB cache. The INIC can own up to 256 TCBsat any given time.

TCBsareinitialized by the host during TCP connection setup. Once the connection has
achieved a “steady-state” of operation, its associated TCB can then be turned overto the INIC,

54

INTEL Ex.1002.060

INTEL Ex.1002.061

ALA-006K. Express Mail No. EV 406928085 US

10

15

20

25

30

putting us into fast-path mode. From this point on, the INIC ownsthe connection until either a

FIN arrives signaling that the connection is being closed, or until an exception occurs which

the INIC is not designed to handle (such as an out of order segment). When anyof these

conditions occur, the INIC will then flush the TCB back to host memory, and issue a message

to the hosttelling it that it has relinquished control of the connection, thus putting the

connection back into slow-path mode. From this point on, the INIC simply hands incoming

segmentsthat are destined for this TCB offto the host with all of the headers intact.

Note that when a connection is owned by the INIC,the host is not allowed to reference

the corresponding TCB in host memory asit will contain invalid information aboutthe state of

the connection.

TCP HARDWAREASSISTANCE.

Whena frameis received by the INIC,it must verify it completely before it even

determines whetherit belongs to one of its TCBsor not. This includesall header validation (is

it IP, IPV4 or V6,is the IP header checksum correct, is the TCP checksum correct, etc). Once

this is done it must compare the source and destination IP address and the source and

destination TCP port with those in each of its TCBs to determineifit is associated with one of

its TCBs. This is an expensive process. To expedite this, we have added several features in

hardwareto assist us. The headeris fully parsedby hardwareandits type is summarized in a

single status word. The checksumis also verified automatically in hardware, and a hash key is

created out of the IP addresses and TCP ports to expedite TCB lookup. For full details on

these and other hardware optimizations, refer to the INIC Hardware Specification sections |
(Heading 8). . .

Withthe aid of these and other hardware features,much ofthe work associated with

TCP is doneessentially for free. Since the card will automatically calculate the checksum for
TCP segments, we can passthis on to the host, even when the segmentis for a TCB that the

INIC does not own.

TCP SUMMARY.

By moving TCP processing downto the INIC wehaveoffloaded the host of a large

amount of work. The host no longerhasto pull the data into its cache to calculate the TCP

55

INTEL Ex.1002.061

INTEL Ex.1002.062

ALA-006K Express Mail No. EV 406928085 US

15

20

25

30

checksum. It does not have to process the packet headers, and it does not have to generate

TCP ACKs. Wehaveachieved most ofthe goals outlined above, but weare not doneyet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relation.to the hosts transport layer interface (Called

TDI or Transport Driver Interface in Windows NT). For full details on this interface, refer to

the Alacritech TCP (ATCP)driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC doesnot allow us to achieve our goal of landing

the data in its final destination. Somehowthehosthasto tell the INIC whereto put the data.
This is a problem in that the host cannot do this without knowing whatthe data actuallyis.

Fortunately, NT has provided a mechanism by which a transport driver can “indicate” a small
amountofdata to a client aboveit while telling it that it has more data to come. The client,

having then received enoughofthe data to know whatit is, is then responsible for allocating a

block of memory and passing the memory address or addresses back downtothe transport

driver, which is in turn responsible for moving the data into the provided location.

Wewill makeuse ofthis feature by providing.a small amountof any received data to

the host, with a notification that we have more data pending. Whenthis small amount of data

is passed upto the client, and it returns with the address in which to put the remainderofthe

data, our host transport driver will pass that address to the INIC which will DMA the
remainderofthedata intoits final destination.

Clearly there are circumstances in which this does not make sense. When a small

amount of data (500 bytes for example), with a push flag set indicating that the data must be ©

delivered to the client immediately, it does not make sense to deliver someofthe data directly

while waiting for the list of addresses to DMA the rest. Under these circumstances, it makes

more senseto deliver the 500 bytes directly to the host, and allow the host to copy it into its

final destination. While various rangesare feasible, it is currently preferred that anything less

than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while

anything morewill be delivered as a small piece which may bel 28 bytes, while waiting until

receiving the destination memory address before movingtherest.

56

INTEL Ex.1002.062

INTEL Ex.1002.063

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Thetrick then is knowing whenthe data should be deliveredto the client or not. As

we’ve noted, a push flag indicates that the data should be delivered to the client immediately,

but this alone is not sufficient. Fortunately, in the case of NetBIOStransactions (such as

SMB), weare explicitly told the length of the session message in the NetBIOSheaderitself.

With this we can simply indicate a small amountofdata to the host immediately upon

receiving the first segment. The client will then allocate enough memory for the entire

NetBIOS‘transaction, which we can then use to DMAthe remainderofthe data into as it

arrives. In the case of a large (56k for example) NetBIOSsession message,al! butthefirst

couple hundred bytes will be DMA’dto their final destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not

rely on a session level protocol to tell us the length of the transaction. Under these

circumstances wewill buffer the data as it arrives until A) we have receive some

predetermined numberofbytes such as 8k, or B) some predeterminedperiod of time passes

between segments or C) weget a push flag. If after any of these conditions occur wewill then

indicate someorall of the data to the host depending on the amountof data buffered. If the

data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be returned from the host so that we may then DMA the remainderofthe data.

TRANSMIT. .

The transmit case is much simpler. In this case the client (NetBIOS for example) issues

a TDI Sendwith a list of memory addresses which contain data thatit wishes to send along

with the length. The host can then passthis list of addresses and length off to the INIC. The

INIC will then pull the data from its source location in host memory, as it needsit, until the

complete TDI request is satisfied.

. AFFECTS ON INTERRUPTS.

Note that when wereceive a large SMBtransaction, for example, that there are two

interactions between the INIC andthehost. The first in which the INIC indicates a small

amountofthe transaction to the host, and the second in which the host provides the memory
location(s) in which the INIC places the remainder of the data. This results in only two
interrupts from the INIC. Thefirst whenit indicates the small amount of data and the second

after it has finishedfilling in the host memory givento it. A drastic reduction from the 33/64k
57

INTEL Ex.1002.063

INTEL Ex.1002.064

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

SMBrequestthat weestimate at the beginning ofthis section. On transmit, we actually only

receive a single interrupt when the send commandthat has been given to. the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having nowestablished ourinteraction with Microsoft’s TDI interface, we have

achieved ourgoal of landing most of our data directly into its final destination in host memory.

Wehavealso managedto transmit all data from its original location on host memory. And

finally, we have reduced ourinterrupts to 2 per 64k SMBread and 1 per 64k SMB write. The
only thing that remainsin ourlist of objectives is to design an efficient host (PCI)interface.

HOST(PCI) INTERFACE.

In this section we define the host interface. For a more detailed description, refer to the

‘Host Interface Strategy for the Alacritech INIC” section (Heading3).

AVOID PCI READS.

Oneofour primary objectives in designing the host interface of the INIC was to

eliminate PCI readsin either direction. PCI readsare particularly inefficient in that they

completely stall the reader until the transaction completes. As noted above,this could hold a
CPU up for several microseconds, a thousand times the time typically required to execute a
single instruction. PCI writes on the other hand, are usually buffered by the memory-

busPC]I-bridge allowing the writer to continue on with other instructions. This technique is

knownas “posting”.

MEMORY-BASED STATUSREGISTER.

The only PCI read that is required by most NICsis the read of the interrupt status
register. This register gives the host CPU information about what event has caused an

interrupt (if any). In the design of our INIC we have elected to place this necessary status
register into host memory. Thus, when an event occurs on the INIC,it writes the status

register to an agreed upon location in host memory. The corresponding driver on the host

reads this local register to determine the cause of the interrupt. The interrupt lines are held

high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadowregisters are maintained on the INIC to ensurethat events are notlost.
58

INTEL Ex.1002.064

INTEL Ex.1002.065

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

BUFFER ADDRESSES ARE PUSHED TO THEINIC.

Since it is imperative that our INIC operate asefficiently as possible, we must also

avoid PCI reads from the INIC. Wedothis by pushing our receive buffer addresses to the

INIC. As mentionedat the beginning ofthis section, most NICs work on a descriptor queue

algorithm in which the NIC reads a descriptor from main memory in order to determine where

to place the next frame. We will instead write receive buffer addresses to the INIC as receive

buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the hostto pass off a pages worth (4k) ofbuffers in a single write.

SUPPORT SMALL AND LARGE BUFFERSON RECEIVE.

In order to reduce further the numberofwrites to the INIC, and to reduce the amount of

memory being used by the host, we support two different buffer sizes. A small buffer contains

roughly 200 bytes of data payload, as well as extra fields containing status about the received
data bringingthetotal size to 256 bytes. We can therefore pass 16 of these small buffers at a

time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path

data that doesnot fit in a small buffer. Note that when wehavealarge fast-path receive, a

small buffer will be used to indicate a small piece of the data, while the remainderof the data

will be DMA’d directly into memory. Large buffers are never passedto the host by

themselves, instead they are always accompanied by a small buffer which contains status about

the receive along with the large buffer address. By operating in the manner,the driver must

only maintain andprocessthe small buffer queue. Large buffers are returned to the host by

virtue ofbeing attached to small buffers. Since large buffers are 2k in size they are passed to
the INIC 2 buffers at a time.

COMMANDANDRESPONSEBUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we

also need a manner by which wecaninstruct the INIC to send data. Plus, when the INIC

indicates a small amountofdata in a large fast-path receive, we need a method of passing back

the address or addresses in which to put the remainder of the data. We accomplish both of

these with the use of a commandbuffer. Sadly, the commandbuffer is the only place in which

we mustviolate ourrule of only pushing data across PCI. For the commandbuffer, we write
59

INTEL Ex.1002.065

INTEL Ex.1002.066

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

the address of commandbuffer to the INIC. The INIC then reads the contents of the command
buffer.into its memory so that it can execute the desired command. Since a command may |
take a relatively long time to complete,it is unlikely that commandbuffers will complete in

order. For this reason we also maintain a response buffer queue. Like the small and large

receive buffers, a page worth of response buffers is passed to the INIC at a time. Response

buffers are only 32 bytes, so we have to replenish the INIC’s supply of them relatively

infrequently. The response buffers only purposeis to indicate the completion of the

designated commandbuffer, and to pass status about the completion.

EXAMPLES.

In this section we will provide a couple of examples describing someofthe differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOSsession message is received on the INIC. Thefirst segment

will contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of

this first segment is providedto the host byfilling in a small receive buffer, modifying the

interrupt status register on the host, and raising the appropriate interrupt line. Upon receiving

the interrupt, the host will read the ISR, clear it by writing back to the INIC’s Interrupt Clear

Register, and will then process its small receive buffer queue looking for receive buffers to be

processed. Upon finding the small buffer, it will indicate the small amountofdata up to the

client to be processed by NetBIOS.It will also, if necessary, replenish the receive buffer pool

on the INIC bypassing off a pages worth of small buffers. Meanwhile, the NetBIOSclient

will allocate a memory pool large enough to hold the entire NetBIOS message, and will pass

this address or set of addresses downto the transport driver. The transport driverwill allocate

an INIC commandbuffer, fill it in with the list of addresses, set the commandtypeto tell the

INIC that this is where to put the receive data, and then pass the commandoffto the INIC by

writing to the commandregister. When the INIC receives the commandbuffer, it will DMA

the remainder of the NetBIOSdata, as it is received, into the memory address or addresses

designated by the host. Once the entire NetBIOStransaction is complete, the INIC will

complete the commandby writing to the response buffer with the appropriate status and
commandbufferidentifier.

60

INTEL Ex.1002.066

INTEL Ex.1002.067

ALA-006K. ExpressMail No. EV 406928085 US

10

20

25

30

In this example, we have twointerrupts, and all but a couple hundred bytes are DMA’d

directly to their final destination. On PCI we havetwointerruptstatus register writes, two

interrupt clear register writes, a commandregister write, a commandread, and a response

buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register

reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get

moved anywherefrom 4 to 8 times across the system memory bus.

SLOW-PATH RECEIVE.

If the INIC receives a frame that does not contain a TCP segmentfor oneofits TCB’s,

it simply passesit to the host as if it were a dumb NIC.Ifthe framefits into a small buffer

(~200 bytesor less), then it simply fills in the small buffer with the data and notifies the host.

Otherwiseit places the data in a large buffer, writes the address of the large buffer into a small

buffer, and again notifies the host. The host, having received the interrupt and found the
completed small buffer, checks to see if the data is contained in the small buffer, andif not,

locates the large buffer. Having found the data, the host will then pass the frame upstream to
be processed bythe standard protocol stack. It must also replenish the INIC’s small and large

receive buffer pool if necessary. |

With the INIC,this will result in one interrupt, one interrupt status register write and

oneinterrupt clear register write as well as a possible small and or large receive buffer register

write. The data will go through the normalpath although if it is TCP data then the host will

not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assumethat the client has a small amountof data to send. It will

issue the TDI Send to the transport driver which will allocate a commandbuffer,fill it in with
the address of the 400 byte send, and set the commandto indicate that it is a transmit. It will

then pass the commandoff to the INIC by writing to the commandregister. The INIC will

then DMAthe 400 bytesinto its own memory, prepare a frame with the appropriate
61

INTEL Ex.1002.067

INTEL Ex.1002.068

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

checksumsand headers, and send the frame out on the wire. After it has received the

acknowledgementit will then notify the host of the completion by writing to a response buffer. |
With the INIC,this will result in one interrupt, one interrupt status register write, one

interrupt clear register write, a command buffer register write a command buffer read, and a

response buffer write. The data is DMA’d directly from the system memory.

With a standard NICthis will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, anda descriptor read and write. The data would get moved

across the system bus a minimum of4 times. Theresulting TCP ACK of the data, however,

would add yet another interrupt, another interrupt status register read, interrupt clear register

write, a descriptor read and write, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECHINIC.

This section describes the host interface strategy for the Alacritech Intelligent Network

Interface Card (INIC). The goal of the Alacritech INIC is to not only process network data
through TCP, but also to provide zero-copy support for the SMP upper-layer protocol.It
achieves this by supporting two paths for sending and receiving data, the fast-path and the

slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,

while slow-path traffic corresponds to network data for which the NIC doesnot have a

connection. The fast-path flow works bypassing a headerto the host and subsequently holding
further data for that connection on the card until the host responds via an INIC command with

a set of buffers into which to place the accumulated data. In the slow-path data flow, the INIC

will be operating as a “dumb”NIC,so that these packets are simply dumpedinto framebuffers

on the host as they arrive. To do either path requires a pool of smaller buffers to be used for
headers and a poolof data buffers for frames/data that are too large for the header buffer, with
both pools being managed by the INIC. This section discusses how these two pools of data are

managed as well as how buffers are associated with a given context.

RECEIVE INTERFACE.

The varying requirements ofthe fast and slow paths and a desire to save PCI bandwidth

are the driving forces behind the host interface that is described herein. As mentioned above,

the fast-path flow puts a header into a header buffer that is then forwarded to the host. The host

uses the header to determine whatfurther data is following, allocates the necessary host
62

INTEL Ex.1002.068

INTEL Ex.1002.069

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

buffers, and these are passed back to the INIC via a commandto the INIC. The INIC thenfills
these buffers from data it was accumulating on the card and notifies the host by sending a

response to the command. Alternatively, the fast-path may receive a header anddatathatis a

complete request, but that is also too large for a header buffer. This results in a header and data

buffer being passedto the host. This latter flow is identical to the slow-path flow, which also

puts all the data into the header bufferor, if the header is too small, uses a large (2K) host

buffer for all the data. This meansthat on the unsolicited receive path, the host will only see

either a header buffer or a header and at most, one data buffer. Note that data is neversplit

between a headerand a data buffer.

Fig. 25 illustrates both situations. Since we wanttofill in the header buffer with a

single DMA,the header mustbethelast piece of data to be written to thehost for any received

transaction.

RECEIVE INTERFACE DETAILS.

HEADER BUFFERS. .

Headerbuffers in host memory are 256 bytes long, and are aligned on 256 byte

boundaries. There will be a field in the header buffer indicating it has valid data. This field

will initially be reset by the host before passing the buffer descriptor to the INIC. A set of

header buffers are passed from the host to the INIC bythe host writing to the “Header Buffer

Address Register” on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory ofthe first of a set of contiguous

header buffers.

Bits 7-0 Numberofheaderbuffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and passall 16 buffers to

the INIC with oneregister write. The INIC will maintain a queue of these header descriptors

in the SmallHType queuein it’s own local memory, adding to the end of the queue every time

the host writes to the Header Buffer Address Register. Note that the single entry is added to
the queue; the eventual dequeuer will use the count after extracting that entry.

The headerbuffers, will be usedand returned to thehostin the sameorder that they
were given to the INIC. The valid field will be set by the INIC before returning the buffer to

the host. In this way a PCI interrupt, with a singlebit in the interrupt register, may be

generated to indicate that there is a header buffer for the host to process. When servicing this
63

INTEL Ex.1002.069

INTEL Ex.1002.070

ALA-006K Express Mail No. EV 406928085 US _

10

15

20

25

30

interrupt, the host will look at its queue of header buffers, reading the valid field to determine

how many headerbuffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory are aligned to page boundaries, assumedhereto be

2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass receive

data buffers to the INIC,the host must write to two registers on'the INIC. Thefirst register to

be written is the “Data Buffer Handle Register.” The buffer handleis not significant to the
INIC, but will be copied back to the host to return the buffer to the host. The second register

written is the Data Buffer Address Register. This is the physical address of the data buffer.

Whenboth registers have been written, the INIC will add the contents of these two registers to

FreeType queue of data buffer descriptors. Note that the INIC host driversets the handle

registerfirst, then the address register. There needs to be some mechanism put in placeto

ensure the reading of these registers does not get out of sync with writing them. Effectively the

INIC can read the addressregisterfirst and save its contents, then read the handleregister. It _-

can then lock the register pair in some mannersuchthat another write to the handle registeris
not permitted until the current contents have been saved. Both addresses extracted from the

registers are to be written to the FreeType queue. The INICwill extract 2 entries each time

when dequeuing. . .

Data buffers will be allocated and used by the INIC as needed. For each data buffer
used by a slow-path transaction, the data buffer handle will be copied into a header buffer.
Then the header buffer will be returned to the host.

TRANSMIT INTERFACE.

TRANSMIT INTERFACE OVERVIEW.

The transmit interface shownin Fig. 26, like the receive interface, has been designed to

minimize the amount of PCI bandwidth andlatencies. In order to transmit data, the host will

transfer a commandbuffer to the INIC. This commandbuffer will include a commandbuffer

handle, a commandfield, possibly a TCP context identification, and a list of physical data

pointers. The commandbuffer handle is definedto be the first word of the commandbuffer

and is used bythe hostto identify the command. This word will be passed back to the host in

a response buffer, since commands may complete out oforder, and the host will need to know
64

INTEL Ex.1002.070

INTEL Ex.1002.071

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

which command is complete. Commandswill be used for many reasons, but primarily to cause
the INIC to transmit data, or to pass a set of buffers to the INIC for input data on the fast-path

as previously discussed.

Responsebuffers are physical buffers in host memory. They are used by the INIC in the

sameorder as they were given to it by the host. This enablesthe host to know which response

buffer(s) to next look at when the INIC signals a command completion.

TRANSMIT INTERFACE DETAILS.

COMMANDBUFFERS.

Commandbuffers in host memory are a multiple of 32 bytes, up to a maximum of 1K
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC by

writing to one of five “Command Buffer Address Registers.” These registers are defined as
follows:

Bits 31-5 Physical address in host memory of the commandbuffer.

Bits 4-0 Length of commandbuffer in bytes / 32 (i.e. number of multiples of 32

bytes).

This is the physical address of the command buffer. The register to which the command

is written predetermines the XMT interface number,or if the commandis for the RCV CPU;

hencethere will be 5 of them, 0 — 3 for XMT and 4 for RCV. Whenoneofthese registers has

been written, the INIC will add the contents of the register to it’s own internal queue of

command buffer descriptors. The first word of all command buffers is defined to be the

commandbuffer handle.It is the job of the utility CPU to extract a command from its local

queue, DMAthe commandinto a small INIC buffer (from the FreeSType queue), and queue
that buffer into the Xmit#Type queue, where # is 0 — 3 dependingonthe interface, or the

appropriate RCV queue. The receiving CPU will service the queues to perform the commands.

When that CPU has completed a command,it extracts the command buffer handle and passes
it back to the host via a response buffer.

RESPONSE BUFFERS.

Responsebuffers in host memory are 32 bytes long and aligned on 32 byte boundaries.

They are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. Thisfield will initially be reset by the host before
65

INTEL Ex.1002.071

INTEL Ex.1002.072

ALA-006K , . Express Mail No. EV 406928085 US

10

15

20

25

30

passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to

the INIC bythe host writing to the “Response Buffer Address Register’ on the INIC. This

register is defined as follows:

Bits 31-8 Physical address in host memory ofthefirst of a set of contiguous

responsebuffers.

Bits 7-0 Numberofresponse buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and passall 128 buffers

to the INIC with one register write. The INIC will maintain a queue of these header

descriptors in it’s ResponseType queue, adding to the end of the queue every timethe host

writes to the “Response Buffer Address Register”. The INIC writes the extracted contents

including the count, to the queue in exactly the same manneras for the headerbuffers.
The response buffers can be used and returnedto the host in the sameorderthat they |

were given to the INIC. Thevalid field will be set by the INIC before returning the buffer to

the host. In this way a PCIinterrupt, with a singlebit in the interrupt register, may be

generatedto indicate that there is a response buffer for the host to process. Whenservicing

this interrupt, the host willlook at its queue of response buffers, reading thevalid field to

determine how manyresponsebuffers are to be processed.

INTERRUPT STATUS REGISTER / INTERRUPT MASK REGISTER.
Fig. 27 showsthe general formatof this register. The setting of any bits inthe ISR will

cause an interrupt, provided the correspondingbit in the Interrupt Mask Registeris set. The

default setting for the IMR is 0. -

The INICis configured so that the host should never need to directly read the ISR from

the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host

memory into which the ISR is dumped. Theaddress andsize of that area ca be passed to the

INIC via a commandon the XMTinterface. That commandwill also specify the setting for the

IMR.Until the INIC receives this command,it will not DMAthe ISR to host memory, and no

events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC

in this case.

Forthe host to never have to actually read the register from the INICitself, it is

‘ necessary for the INIC to update this host copy of the register whenever anything in it changes.

The host will Ack (or deassert) events in the register by writing the register with 0’s in
66

INTEL Ex.1002.072

INTEL Ex.1002.073

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

appropriate bit fields. So that the host does not miss events, the following scheme has been

developed:

The INIC keepsa local copy of the register whenever it DMAsitto the host1.¢. after

some event(s). Call this COPYA Thenthe INIC starts accumulating any new events not

reflected in the host copy in a separate word. Call this NEWA.Asthe hostclears bits by

writing the register back with those bits set to zero, the INIC clears these bits in COPYA(or

the host write-back goes directly to COPYA). If there are new events in NEWA,it ORs them

with COPYA, and DMAsthis new ISRto the host. This new ISR then replaces COPYA,

NEWAiscleared and the cycle then repeats. |

REGISTER ADDRESS.

For the sake ofsimplicity, in this example ofFig. 28 the registers are at 4-byte
increments from whateverthe base addressis.

ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.

This section outlines the design specification for the Alacritech TCP (ATCP) transport
driver. The ATCP driverconsists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocolstack.

This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the

driver.

2. At the top of the protocol stack we introduce an NTfilter driver used to

intercept TDI requests destined for the Microsoft TCP driver.

3. At the bottom ofthe protocol stack we include an NDISprotocol-driver

interface which allows us to communicate with the INIC miniport NDIS driver beneath the

ATCPdriver. |

This section covers each of these topics, as well as issues commonto the entire ATCP

driver.

CODING STYLE.

In order to ensure that our ATCPdriver is written in a consistent manner, we have

adopted a set of coding guidelines. These guidelines are introduced with the philosophy that

weshould write code in a Microsoft style since we are introducing an NT-based product. The

67

INTEL Ex.1002.073

INTEL Ex.1002.074

ALA-006K : | Express Mail No. EV 406928085 US

10

15

20

25

30

guidelines below apply to all code that we introduce into our driver. Since a very large portion

of our ATCP driver will be based on FreeBSD, and since we are somewhattime-constrained

on our driver development, the ported FreeBSD codewill be exemptfrom these guidelines.
1. Global symbols — All function namesand global variables in the ATCP driver

should begin with the “ATK”prefix (ATKSend() for instance).

2. Variable names — Microsoft seemsto use capital letters to separate multi-word

variable names instead ofunderscores (VariableName instead of variable_name). We should

adhereto this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure

types are alwayscapitals and they typedefa pointerto the structure as “P”<name> asfollows:

typedef struct FOO {

INT_bar;

} FOO, *PFOO;

Wewill adhereto this style.

4. Function calls ~ Microsoft separates function call arguments on separatelines:

X = foobar(

argument],

argument2,

);

Wewill adhereto this style.

5. Comments — While Microsoft seemsto alternatively use // and /* */ comment

notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that

describe the function, its arguments, and its return value. Wewill also include these

comments, but will move them from within the functionitself to just prior to the function for

better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when

defining function arguments. These keywords denote whether the function argumentis used
as an input parameter, or alternatively as a placeholder for an output parameter. Wewill

include these keywords.

68

INTEL Ex.1002.074

INTEL Ex.1002.075

ALA-006K Express Mail No. EV 406928085 US

8. . Function prototypes — Wewill include function prototypes in the most logical

headerfile correspondingto the .c file. For example, the prototype for function foo() found in

foo.c will be placed in foo.h.

9. Indentation — Microsoft code fairly consistently uses a tabstop of 4. We will
5 do likewise.

10. Headerfile #ifndef- each headerfile should contain a #ifndef/#define/#endif

whichis used to prevent recursive headerfile includes. For example, foo.h would include:

#ifndef_FOO_H__

#define FOO_H__

10 <foo.h contents..>

#endif/* FOOH_ */

Note the _NAMEH__ format.

69

INTEL Ex.1002.075

INTEL Ex.1002.076

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

11. Each file must contain a commentat the beginning which includes the id as

follows: .

/*

* Id

*/

CVS (RCS)will expand this keyword to denote RCSrevision, timestamps, author, etc.

SMP

This section describes the process by which we will make the ATCP driver SMPsafe.

The basic rule for SMP kernel codeis that any access to a memory variable must be protected

by a lock that prevents a competing access by code running on another processor. Spinlocks

are the normal locking method for code paths whichdo nottake a long time to execute (and

which do not sleep.) .
In general each instanceofa structure will include a spinlock, which must be acquired

before membersofthat structure are accessed, and held while a function is accessing that

instance of the structure. Structures which arelogically grouped together may beprotected by
a single spinlock: for example, the ‘in_pcb’ structure, ‘tepcb’ structure, and ‘socket’ structure
which together constitute the administrative information for a TCP connectionwill probably .

be collectively managed by a single spinlock in the ‘socket’ structure.

In addition, every global data structure such asalist or hash table must also have a

protecting spinlock which must be held while the structure is being accessed or modified. The
NT DDKin fact provides a numberof convenient primitives for SMP-safelist manipulation,
and it is recommendedthat these be used for any new lists. Existing list manipulations in the
FreeBSDcode can probably beleft as-is to minimize code disturbance, except of coursethat

the necessary spinlock acquisition and release must be added around them.

Spinlocksshould notbe held for long periods of time, and most especially, must not be
held during a sleep, since this will lead to deadlocks. Thereis a significant deficiency in the

NTkernel support for SMP systems:it does not provide an operation whichallowsa spinlock -

to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX

environment where muchofthe processing occurs in the context of the user process which

initiated the operation. (The spinlock would haveto be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)
70

INTEL Ex.1002.076

INTEL Ex.1002.077

ALA-006K ; Express Mail No. EV 406928085 US

10

15

20

25

30

The NT approach is more asynchronous, however: IRPs are simply marked as

‘PENDING’ whenan operation cannot be completed immediately. The calling thread does

NOTsleepat that point: it returns, and may go on with other processing. Pending IRPs are

later completed, not by waking up the thread which initiated them, but by an

“ToCompleteRequest” call which typically rans at DISPATCHlevel in an arbitrary context.

Thus wehavenotin fact used sleep locks anywhere in the design of the ATCPdriver,

hoping the aboveissue will notarise.

DATA FLOW OVERVIEW.

The ATCPdriver supports two paths for sending and receiving data, the fast-path and

the slow-path. The fast-path data flow correspondsto connections that are maintained on the

INIC, while slow-path traffic corresponds to network data for which the INIC doesnot have a

connection. In order to set some groundwork for the rest of this section, these two data paths
are summarized here.

FAST-PATH INPUT DATA FLOW.

There are 2 different cases to consider:

1. NETBIOStraffic (identifiable by port number.)

2. Everythingelse.

NETBIOS INPUT.

Assoon as the INIC hasreceived a segment containing a NETBIOSheader,it will

forward it up to the TCP driver, along with the NETBIOSlength from the header. (In

principle the host could get this from the headeritself, but since the INIC has already done the

decode, it seem reasonable to just passit.)

From the TDIspec, the amountofdata in the buffer actually sent must beat least 128
bytes. For small SMBs,all of the received SMB should be forwarded; it will be absorbed
directly by the TDI client without any further MDL exchange. Experiments tracing the TDI

data flow showthat the NETBIOS client directly absorbs up to 1460 bytes: the amount of
payload data in a single Ethernet frame. Thustheinitial system specifies thatthe INIC will

indicate anything up to a complete segment to the ATCP driver. [See note (1)].

71

INTEL Ex.1002.077

INTEL Ex.1002.078

ALA-006K : Express Mail No. EV 406928085 US

10

15

20

25

30

Once the INIC haspassed up an indication with an NETBIOSlength greater than the.

amountofdata in the packetit passed, it will continue to accumulate further incoming data in

DRAM onthe INIC. Overflow of INIC DRAM buffers will be avoided by using a receive
window onthe INICatthis point, which can be 8K. |

Onreceiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDIclient for the connection,passing the actual size of the data in the packet
from the INIC as "bytes indicated" and the NETBIOSlength as "bytes available." [See note

(2)]. |

In the "large data input" case, where "bytes available" exceeds the packet length, the

TDIclient will then provide an MDL,associated with an IRP, which must be completed when

this MDLisfilled. (This IRP/MDL may comebackeither in the response to TCP's call of the

receive handler, or as an explicit TDI_RECEIVErequest.)

The ATCPdriver will build a “receive request” from the MDL information, and pass

this to the INIC. This request will contain: |

1) The TCP context identifier; 2) Size and offset information; 3) A list of physical

addresses corresponding to the MDL pages; 4) A context field to allow the ATCPdriver to

identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must copy any remaining data (which wasnot taken by the
receive handler) from the segmentindicated by the INIC to the start of the MDL, and must

adjust the size & offset information in the request passed to the INIC to accountforthis.

The INICwill fill the given page(s) with incoming data up to the requested amount,

and respond to the ATCP driver whenthis is done [See note (3)]. If the MDLislarge, the INIC
mayopen upits advertised receive window for improved throughput whilefilling the MDL.
Onreceiving the response from the INIC, the ATCP driver will complete the IRP associated
with this MDL,to tell the TDI client that the data is available. At this point the cycle of events

is complete, and the ATCPdriver is now waiting for the next header indication.

OTHER TCP INPUT.

_In the general case we do not have a higher-level protocol header to enable us to

predict that more data is coming. So on non-NETBIOSconnections, the INIC will just

accumulate incoming data in INIC DRAMupto a quantity of 8K in this example. Again, a

72

INTEL Ex.1002.078

INTEL Ex.1002.079

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

maximum advertised window size, which may be 16K,will be used to prevent overflow of

INIC DRAM buffers.

. Whenthe prescribed amount has been accumulated, or when a PSHflag is seen, the

INIC will indicate a small packet which may be 128 bytes of the data to the ATCPdriver,

along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes available."

As in the NETBIOScase,if "bytes available" exceeds "bytes indicated", the TDI client

will provide an IRP with an MDL. The ATCPdriver will pass the MDLto the INIC to be

filled, as before. The INIC will reply to the ATCP driver, which in turn will complete the IRP

to the TDIclient.

Using an MDLfrom the client avoids a copy step. However, if we can only buffer 8K

and delay indicating to the ATCP driver until we have done so, a question arises regarding

further segments coming in, since INIC DRAMisascarce resource. We do not want to ACK

with a zero-size window advertisement: this would causethe transmitting end to go into persist

state, which is bad for throughput. If the transmitting end is also our INIC,this results in
having to implementthe persist timer on the INIC, which wedonotwish to do. Instead for
large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the
MDL,andalso, to avoid stopping the transmitting end, we will use a receive window of twice

the amount wewill buffer before calling the host. Since the host comes back with the MDL

quite quickly (measured at < 100 microseconds), we do not expect to experience significant

. Ovetruns.

INIC RECEIVE WINDOW UPDATES. .

If the INIC “owns” an MDLprovided by the TDI client (sent by ATCP asa receive

request), it will treat this as a “promise” by the TDI client to accept the data placedin it, and

may therefore ACK incomingdataasit is filling the pages.

However, for small requests, there will be no MDLreturned by the TDIclient:it

absorbsall of the data directly in the receive callback function. We need to update the INIC’s

view of data which has been accepted,so that it can updateits receive window. In order to be

73

INTEL Ex.1002.079

INTEL Ex.1002.080

ALA-006K . Express Mail No. EV 406928085 US

15

20

25

30

able to do this, the ATCP driver will accumulate a count of data which has been accepted by

the TDI client receive callback function for a connection.

From the INIC’s point of view, though, segments sent up to the ATCP driver are just
“thrownover the wall’; there is no explicit reply path. We will therefore “piggyback”the

update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data for that

connection,it will place this countin a field in the send request (and then clear the counter.)

Anyreceive request (passing a receive MDLto the INIC) mayalso be used to transport

window update info in the same way. .
Note: we will probably also need to design a message path whereby the ATCP driver

can explicitly send an update of this “bytes consumed”information (either when it exceeds a

preset threshold or if there are no requests going out to the INIC for more than a given time
interval), to allow for possible scenarios in which the data stream is entirely one-way.

NOTES.

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCPdriverto its client's callback

in this case is always 1460. The NETBIOS-aware TDIclient presumably calculates the size of

the MDLit will return from the NETBIOSheader. So strictly speaking we do not need the

NETBIOSheaderlength at this point: just an indication that this is a headerfor a "large"size.

However, we *do* need an actual "bytes available" value for the non-NETBIOScase, so we

mayas wellpassit.

3) Weobservethat the PSH flag is set in the segment completing each NETBIOStransfer.

The INIC can usethis to determine when the current transferis complete and the MDLshould
be returned. It can, at least in a debug mode, sanity check the amountof received data against

whatis expected, though.

FAST-PATH OUTPUT DATA FLOW.

The fast-path output data flow is similar to the input data-flow, but simpler. In this

case the TDIclient will provide a MDL to the ATCPdriver along with an IRP to be completed

whenthe data is sent. The ATCP driver will then give a request (corresponding to the MDL)

to the INIC. This request will contain:

74

INTEL Ex.1002.080

INTEL Ex.1002.081

ALA-006K Express Mail No. EV 406928085 US

15

20

25

30

1) The TCP context identifier; 2) Size and offset information; 3)Alist ofphysical

addresses corresponding to the MDL pages; 4) A contextfield to allow the ATCP driver to

identify the request-on completion; 5) “Piggybacked” window update information (as

discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the

corresponding network frames onto the network. Whenall of the data is sent, the INIC will

notify the host of the completion, and the ATCP driver will complete the IRP. |
Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, wewill have

to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we will

port the FreeBSD protocol stack. In this mode, the INIC will be operating as a “dumb NIC”;

the packets which pass over the NDISinterface will just contain MAC-layer frames.

The MBUFsin the incoming direction will in fact be managing NDIS-allocated

packets. In the outgoing direction, we need protocol-allocated MBUFsin which to assemble

the data and headers. The MFREE macro must be cognizantof the various types of MBUFs,

and “do the right thing” for each type.

Wewill retain a (modified) socket structure for each connection, containing the socket

bufferfields expected by the FreeBSD code. The TCP codethat operates on socket buffers
(adding/removing MBUFsto & from queues, indicating acknowledged & received data etc)

will remain essentially unchanged from the FreeBSDbase(though mostof the socket

functions & macros used to do this will need to be modified; these are the functions in
kern/uipc_socket2.c)

The uppersocket layer (kern/uipc_socket.c), where the overlying OS moves data in and
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, instead of

sosend(), there will be a function that copies data from the MDL provided in a TDI_SENDcall

into socket buffer MBUFs.Instead of soreceive(), there will be a handler that calls the TDI .

client receive callback function, and also copies data from socket buffer MBUFsinto any

MDLprovided by the TDIclient (either explicitly with the callback response or as a separate

TDI_RECEIVEcall.)
75

INTEL Ex.1002.081

INTEL Ex.1002.082

ALA-006K. , Express Mail No. EV 406928085 US

10

15

20

25

30

Wemustnotethat there is a semantic difference between TDI_SEND anda write() on

a BSD socket. The latter may complete backto its caller as soon as the data has been copied
into the socket buffer. The completion of a TDI_LSEND, however, implies that the data has

actually been sent on the connection. Thus wewill need to keep the TDI_SEND IRPs(and

associated MDLs)in a queue onthe socketuntil the TCP codeindicates that the data from
them has been ACK’d. |

DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler

functionregistered. This has not been observed, but we can probably just ASSERT fora .

missing handler for the moment. If it should happen, however, we mustassumethat the TDI
client will be doing TDI_RECEIVE calls on the connection. If we can’t make a callup at the
time that the indication from the INIC appears, we can queuethe data and handle it when a

TDI.RECEIVEdoes appear. |

2. NThas a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP

corresponding to an MDL whichhas been “handed”to the INIC by a sendor receive request.

Wecan handle this by being able to force the context back off the INIC, since IRPs will only

get cancelled when the connectionis being aborted.

CONTEXT PASSING BETWEEN ATCPANDINIC.

FROM ATCP TO INIC.

There is a synchronization problem that must be addressed here. The ATCPdriver will
makea decision on a given connection that this connection should now bepassed to the INIC.

It builds and sends a commandidentifying this connection to the INIC.

Before doing so,it must ensure that no slow-path outgoing data is outstanding. This is

not difficult; it simply pends and queues any new TDIL_SENDrequests and waits for any

unacknowledged slow path output data to be acknowledged before initiating the context pass

operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass

ina single command handshake, there is a window during which the ATCP driver has send the
context command,but the INIC hasnotyet seenthis (or has not yet completed setting up its

context.) During this time, slow-path input data frames could arrive and befed into the slow-
76

INTEL Ex.1002.082

INTEL Ex.1002.083

ALA-006K Express Mail No. EV 406928085 US

15

20

25

30

path ATCP processing code. Should that happen, the context information which the ATCP ,

driver passed to the INIC is no longer correct. We can simply abort the outward pass of the

context in this event, but it seemsbetter to have a reliable handshake.

Therefore, the commandto pass context from ATCP driver to INIC will be split into

two halves, and there will be a two-exchange handshake.

Theinitial command from ATCP to INIC expresses an “intention” to hand out the

context. It will include the source and destination IP addresses and ports, which will allow the

INIC to establish a “provisional” context. Onceit has this “provisional” context in place, the

INIC will not send any more slow-path input frames for that src/dest IP/port combination(it

will queue them,if any are received.)

When the ATCPdriver receives the responseto thisinitial “intent” command, it knows

that the INIC will send no more slow-path input. The ATCP driver then waits for any
remaining unconsumed slow-path input data for this connection to be consumedbytheclient.

(Generally speaking there will be none, since the ATCP driver will not initiate a context pass

while there is unconsumedslow-path input data; the handshakeis simply to'close the

crossover window.)

Once any such data has been consumed, we knowthingsare in a quiescentstate. The

ATCPdriver can then send the second, “commit” commandto hand out the context, with

confidence that the TCB valuesit is handing out (sequence numbersetc) are reliable. -

Note 1: itis conceivable that there mightbe situations in which the ATCP driver
decides, after having sent the original “intention” command,that the context is not to be

passedafter all. (E.g. the local client issues a close.) So we mustallow for the possibility that

the second command maybea “abort”, which should cause the INIC to deallocate and clear up
its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may
be in process ofbeing handed outat a time: in other words,it will never issue anotherinitial

“intention” command until it has completed the second half of the handshakeforthefirst one.

FROM INIC TO ATCP.

There are two possible cases for this: a context transfer may beinitiated either by the

ATCPdriver or by the INIC. Howeverthe machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
77

INTEL Ex.1002.083

INTEL Ex.1002.084

ALA-006K_- Express Mail No. EV 406928085 US

10

15

20

25

30

messageto the INIC specifying the context numberto be flushed. Oncethe INIC receives

this, it will proceed with the samesteps as for the case wheretheflushis initiated by the INIC
itself:

1) The INIC will send an error response to any current outstanding receive request it is

working on (corresponding to an MDLinto which datais being placed.) Before sending the

response, it updates the receive command “length”field to reflect the amount of data which

has actually been placed in the MDL buffers at the time of the flush. |
2) Likewise it will send an error response for any current send request, again reporting

the amountofdata actually sent from the request.

3) The INIC will DMAthe TCBfor the context back to the host. (Note: part of the

information provided with a context must be the address of the TCB inthehost.)

4) The INIC will send a “flush”indication to the host (very preferably via the regular

input path as a special type of frame) identifying the context which is being flushed. Sending

this indication via the regular input path ensuresthatit will arrive before any following slow-

path frames. |

Atthis point, the INIC is no longer doing fast-path processing, and any further

incoming framesfor the connection will simply be sent to the host as raw framesfor the slow

input path. The ATCPdriver maynotbe able to complete the cleanup operations neededto
resume normal slow path processing immediately on receipt of the “flush frame’, since there
may be outstanding send and receive requests to which it has not yet received a response. If

this is the case, the ATCP driver mustset a “pend incoming TCP frames”flag in its per-

connection context. The effect of this is to change the behavior of tep_input(). This runs as a

function call in the context of ip_input(), and normally returns only when incoming frames
have been processed as far as possible (queued on the socket receive buffer or out-of-sequence

reassembly queue.) However,if there is a flush pending and wehavenot yet completed

resynchronization, we cannot do TCP processing and mustinstead queue input frames for TCP
on a “holding queue” for the connection, to be picked up later when context flush is complete

and normal slow path processing resumes. (This is why we wantto send the “flush”indication

via the normalinput path: so that we can ensureit is seen before any following frames of slow-
path input.)

Next we need to wait for any outstanding “send”requests to be errored off:

78

INTEL Ex.1002.084

INTEL Ex.1002.085

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

1) The INIC maintainsits context for the connection in a “zombie”state..As “send”

requests for this connection comeout of the INIC queue,it sends error responses for them

back to the ATCPdriver.(It is apparently difficult for the INIC to identify all command

requests for a given context; simpler for it to just continue processing them in order, detecting

onesthat are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the numberof outstanding requests it has sent to

the INIC. As error responsesfor these are received, it decrements this count, and whenit

reaches zero, the ATCPdriver sends a “flush complete” message to the INIC.

3) When the INIC receives the “flush complete” message, it dismantles its “zombie”

context. From the INIC perspective, the flush is now completed.

4) When the ATCPdriver has received error responsesfor all outstanding requests,it

has all the information needed to complete its cleanup. This involves completing any IRPs

corresponding to requests which haveentirely completed and adjusting fields in partially-

completed requests so that send and receive of slow path data will resumeat the right point in

the byte streams. .

-5) Onceall this cleanup is complete, the ATCP driver will loop pulling any “pended”

TCP input framesoff the “pending queue” mentioned above and feeding them into the normal

TCP input processing. Onceall input frames on this queue have been clearedoff, the “pend

incoming TCP frames” flag can be cleared for the connection, and weare back to normal

slow-path processing.

FREEBSD PORTING SPECIFICATION.

Thelargest portion of the ATCP driveris either derived, or directly taken from the

FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this
code, the FreeBSD codeitself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP

driver. It contains code to handle a variety of interface types and manydifferent kinds of

protocols. To meet this requirement the code is often written in a sometimes confusing, over-

complex manner. General-purpose structures are overlaid with other interface-specific
structures so that different interface types can coexist using the same general-purpose code.

79

INTEL Ex.1002.085

INTEL Ex.1002.086

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25.

30

For our purposes much ofthis complexity is unnecessary since we are only supporting a single

interface type and a few specific protocols. It is therefore tempting to modify the code and

data structures in an effort to make it more readable, and perhapsa bit moreefficient. There

are, however, some problems with doing this. First, the more we modify theoriginal

FreeBSD,the more changes wewill have to make. This is especially true with regard to data

structures. If we collapse two data structures into one we might improvethe cleanliness of the

code a bit, but we will then have to modify every reference to that data structure in the entire

protocol stack. Another problem with attempting to “clean up”the codeis that we mightlater

discover that we need somethingthat we had previously thrown away. Finally, while we

might gain a small performance advantagein cleaning up the FreeBSD code, the FreeBSD

TCP code will mostly only run in the slow-path connections, which are not our primary focus.

Ourpriority is to get the slow-path code functional and reliable as quickly aspossible.

For the reasons above wehave adopted the philosophy that we shouldinitially keep the
data structures and codeat close to the original FreeBSD implementation as possible. The

- code will be modified for the following reasons:

1) As required for NT interaction — Obviously we can’t expect to.simply “drop-in”the

FreeBSD code as is. The interface of this code to the NT system will require somesignificant
code modifications. This will mostly occur at the topmost and bottommostportionsofthe

protocol stack, as well as the “ioctl” sections of the code. Modifications for SMP issues are

also needed.

2) Unnecessary code can be removed — While wewill keep the code as close to the

original FreeBSDaspossible, we will nonetheless remove code that will never be used (UDP
is a good exampleofthis).

UNIX <> NT CONVERSION.
The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These

include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc. These

will not be itemized in detail since the conversionto the corresponding NTcallsis a fairly

trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

80

INTEL Ex.1002.086

INTEL Ex.1002.087

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

NETWORK BUFFERS.

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers
are mapped using a combination of packet descriptors and buffer descriptors (the buffer

descriptors are really MDLs). There are a couple of problems with the Microsoft method.

First it does not provide the necessary fields which allow us to easily strip offprotocol
headers. Second, converting all of the FreeBSD protocol code to speak in termsofbuffer

descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our

own mbufstructures and remap the NT packets as shownin Fig. 29.
The mbufstructure will provide the standard fields provided in the FreeBSD mbuf

including the data pointer, which points to the current location of the data, data length fields

and flags. In addition each mbufwill point to the packet descriptor which is associated with

the data being mapped. Once an NTpacket is mapped, ourtransport driver should never have

to refer to the packet or buffer descriptors for any information except when wearefinished and

are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC suchthat a

packet header should neverbe split across multiple buffers. Thus, we should never require the

equivalent of the “m_pullup”routine included in Unix. Also note that there are circumstances

in which wewill be accepting data that will also be accepted by the Microsoft TCP/IP. One

such exampleof this is ARP frames. We will need to build our own ARPcache.by lookingat

ARP replies as they comeoff the network. Underthese circumstances,it is absolutely

imperative that we do not modify the data, or the packet and buffer descriptors. We will

discussthis further in the following sections.

Wewill allocate a pool of mbuf headers at ATCPinitialization time. It is important to

rememberthat unlike other NICs, we can not simply drop data if we run out of the system

resources required to manage/mapthe data. The reasonforthis is that wewill be receiving
data from the card that has already been acknowledged by TCP. Becauseofthis it is essential

that we never run out of mbuf headers. To solve this problem wewill statically allocate mbuf

headers for the maximum numberofbuffers that we will ever allow to be outstanding. By
doing so, the card will run out ofbuffers in which to put the data before we will run out of

mbufs, and as a result, the card will be forced to drop data at the link layer instead of us

droppingit at the transport layer. DhXXX: as we’ve discussed, I don’t think this is really true

anymore. The INIC won’t ACKdata until either it’s gotten a window update from ATCPto
81

INTEL Ex.1002.087

INTEL Ex.1002.088

* ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

tell it the data’s been accepted, or it’s got an MDL.Thusit seems workable, though

undesirable, if we can’t accept a frame from the INIC & return an errorto it saying it was not
taken.

Wewill also require a poolof actual mbufs (not just headers). These mbufs are

required in order to build transmit protocol headers for the slow-path data path, as well as

other miscellaneous purposes such as for building ARP requests. Wewill allocate a pool of

theseatinitialization time and wewill add to this pool dynamically as needed. Unlike the
mbuf headers described above, which will be used to map acknowledged TCP data coming

from the card, the full mbufs will contain data that can be dropped ifwe can not get an mbuf.

THE CODE.

In this section we describe each section of the FreeBSD TCP/IP port. These sections

includeInterface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACE INITIALIZATION.

STRUCTURES.

' There area variety of structures, which represent a single interface in FreeBSD. These
structures include: ifnet, arpcom,ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl.

Fig. 30 showsthe relationship betweenall of these structures:

_In the example of Fig. 30 we showasingle interface with a MAC address of

00:60:97:DB:9B:A6 configured with an IP address of 192.100.1.2. Asillustrated above, the

in_ifaddr.is actually an ifaddr structure with someextra fields tacked on to the end. Thus the

ifaddr structure is used to represent both a MACaddress and an IP address, Similarly the
sockaddrstructure is recast as a sockaddr_dl or a sockaddr_in depending onits addresstype.

Aninterface can be configured to multiple IP addresses by simply chaining in_ifaddr
structures after the in_ifaddr structure shownin Fig. 30.

As mentioned in the Porting Philosophy section, many of the abovestructures could

likely be collapsed into fewer structures. In order to avoid making unnecessary modifications

to FreeBSD,for the time being wewill leave these structures mostly as is. We will however

eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.

82

INTEL Ex.1002.088

INTEL Ex.1002.089

ALA-006K . Express Mail No. EV 406928085 US

10

15

20

25

30

Wealso show abovea structure called iface. This is a structure that we define. It

contains the arpcom structure, which in turn containsthe ifnet structure. It also contains fields

that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle used to call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeBSDinitializes the above structures in two phases. First when a network interface

is found, the ifnet, arpcom,and first ifaddr structuresare initialized first by the network layer

driver, and then via a call to the if_attach routine. The subsequent in_ifaddrstructure(s) are

initialized when a user dynamically configures the interface. This occurs in the in_ioctl and

‘the in_ifinit routines. Since NT allows dynamic configuration of a network interface we will

continue to perform the interface initialization in two phases, but we will consolidate these two

phasesas described below:

IFINIT.

TheIflnit routine will be called from the ATKProtocolBindAdapter function. The

IfInit function will initialize the Iface structure and associated arpcom and ifnet structures. It

will then allocate andinitialize an ifaddr structure in which to contain link-level information

aboutthe interface, and a sockaddr_d1 structure to contain the interface name and MAC
address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs array (using

the if_index field of the ifnet structure) contained in the extended device object. Iflnit will

then call IfConfig for each IP address that it finds in the registry entry for the interface.

IFCONFIG.

IfConfig is called to configure an IP address for a given interface. It is passed a pointer

to the ifnet structure for that interface along with all the information required to configure an

IP address for that interface (such as IP address, netmask and broadcastinfo, etc). I1fConfig

will allocate an in_ifaddr structure to be used to configure the interface. It will chain it to the

total chain of in_ifaddr structures contained in the extended device object, and will then
configure the structure with the information givento it. After that it will add a static route for

the newly configured network and then broadcast a gratuitous ARP requestto notify others of

our Mac/IP address and to detect duplicate IP addressesonthenet.
83

INTEL Ex.1002.089

INTEL Ex.1002.090

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

ARP.

Wewill port the FreeBSD ARP code to NT mostly as-is. For some reason, the

FreeBSD ARP codeis located in a file called if_ether.c. While the functionality ofthis file

will remain the same, we will renameit to a more logical arp.c. The mainstructures used by
ARP arethe Ilinfo_arp structure and the rtentry structure (actually part of route). These
structures will not require major modifications. The functions that will require modification
are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARPframecaneither

be an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP

request on the network, while ARP replies are directed so we should only see ARP replies that

are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP requesttrying to resolve our IP address — Under normal circumstances, ARP
would reply to this ARP request with an ARP reply containing our MAC address. Since ARP

requests will also be passed up to the Microsoft TCP/IP driver, we need not reply. Note

however, that FreeBSDalso creates or updates an ARP cache entry with the information

derived from the ARP request. It does this in anticipation of the fact that any host that wishes

to know our MACaddressislikely to wish to talk to us soon. Since we will need to knowhis
MACaddressin orderto talk back, we might as well add the ARP information nowrather than

issuing our own ARPrequestlater.

2. ARP requesttrying to resolve someoneelse’s IP address — Since ARP requests are

broadcast, we see every one on the network. When wereceive an ARP request ofthis type, we

simply check to see ifwe have an entry for the host that sent the request in our ARP cache. If

we do, we check to see if westill have the correct MAC address associated with that host. Ifit

is incorrect, we update our ARP cache entry. Note that we do not create a new ARP cache
entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having

resolved the address, we checkto see if there is any transmit requests pendingfor the resolve

IP address, and if so, transmit them.

84

INTEL Ex.1002.090

INTEL Ex.1002.091

ALA-006K - Express Mail No. EV 406928085 US:

10

15

20

25

30

Given the abovethree possibilities, the only major changeto the in_arpinput codeis

that we will remove the code which generates an ARP reply for ARP requests that are meant

for our interface.

-ARPINTR.

This is the FreeBSD codethat delivers an incoming ARP frame to in_arpinput. We

will be calling in_arpinput directly from our ProtocolReceiveDPCroutine (discussed in the

NDISsection below)so this function is not needed.

ARPWHOHAS.

Thisis a single line function that serves only as a wrapper around arprequest. Wewill

removeit and replaceall calls to it with direct calls to arprequest.

ARPREQUEST.

This code simply allocates ambuf, fills it in with an ARP header, and then passesit

downto the ethemet output routine to be transmitted. For us, the code remainsessentially the

same except for the obvious changesrelated to how weallocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interfaceis initialized to broadcast a gratuitous ARP

request (described in the interfaceinitialization section) and to set some ARP relatedfields in

the ifaddr structure for the interface. We will simply move this functionality into the interface
initialization code and removethis function.

ARPTIMER.

This is a timer-based function that is called every 5 minutes to walk through the ARP

table looking for entries that have timed out. Although the time-out period for FreeBSDis 20

minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can

modify this value or delete the timer altogether to suit our needs. Either way the function

won’t require any major changes. All other functionsin if_ether.c will not require any major

changes.
85

INTEL Ex.1002.091

INTEL Ex.1002.092

ALA-006K ; Express Mail No. EV 406928085 US

10

15

20

25

30

ROUTE.

| Onfirst thought, it might seem that we have no needfor routing support since our
ATCPdriver will only receive IP datagrams whose destination IP address matches that of one

of our owninterfaces. Therefore, we will not“route” from one interfaceto another. Instead,
the MICROSOFT TCP/IP driver will provide that service. We will, however, need to maintain
an up-to-date routing table so that we know a) whether an outgoing connection belongs to one

of our interfaces, b) to which interface it belongs, and c) what thefirst-hop IP address

(gateway)is if the destination is not on the local network.

Wediscuss four aspects on the subject of routing in this section. Theyare as follows:

1. The mechanics of how routing informationis stored. .

2. The mannerin whichroutesare added ordeleted from the routetable.

3. Whenand howroute informationis retrieved from the routetable.

4 . Notification of route table changesto interested parties.

THE ROUTE TABLE.

In FreeBSD,the route table is maintained using an algorithm known as PATRICIA

(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated

algorithm thatis a bit costly to set up, but is very efficient to reference. Since the routing table
should contain the same information for both NT and FreeBSD,andsince the key used to

search for an entry in the routing table will be the same for each (the destination IP address),

weshould beable to port the routing table software to NT without any major changes.
The software which implementsthe route table (via the PATRICIA algorithm)is

located in the FreeBSDfile, radix.c. This file will be ported directly to the ATCP driver with

no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added or deleted in a numberofdifferent ways. The kernel adds or
deletes routes when the state of an interface changes or when an ICMPredirect is received.
User space programssuch as the RIP daemon,or the route commandalso modify the route
table.

86

INTEL Ex.1002.092

INTEL Ex.1002.093

~ ALA-006K | Express Mail No. EV 406928085 US

15

20

25

30

For kernel-based route changes, the changes can be madebya direct call to the routing

software. The FreeBSD softwarethat is responsible for the modification of route table entries

is found in route.c. The primary routinefor all route table changesis called rtrequest(). It

takes as its arguments, the request type (ADD, RESOLVE, DELETE),the destination IP
address for the route, the gatewayforthe route, the netmask for the route, the flags for the

route, and a pointer to the route structure (struct rtentry) in which we will place the added or

resolved route. Other routines in the route.c file includertinit(), which is called during

interface initialization time to addastatic route to the network,rtredirect, which is called by

ICMP when wereceive a ICMPredirect, and an assortment of support routines used for the

modification of route table entries. All of these routines found in route.c will be ported with

no major modifications.
For user-space-based changes, we will have to be a bit more clever. In FreeBSD,route

changes are sent downto the kernel from user-space applications via a special route socket.
This codeis found in the FreeBSDfile, rtsock.c. Obviously this will not work for our ATCP

driver. Instead the filter driver portion of our driver will intercept route changes destined for

the Microsoft TCP driver and will apply those modifications to our ownroutetable via the

rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddr_in) expected by the rtrequest routine.
Obviously, noneof the code from rtsock.c will be ported to the ATCP driver. This same
procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FreeBSD,the route table is consulted in ip_output when an IP datagram is being

sent. In order to avoid a complete route table search for every outgoing datagram, the route is
stored into the in_pcb for the connection. For subsequentcalls to ip_output, the route entry is

then simply checked to ensure validity. While we will keep this basic operation as is, we will

require a slight modification to allow us to coexist with the Microsoft TCP driver. When an

active connection is being set up, ourfilter driver will have to determine whether the

connection is.going to be handled by oneof the INIC interfaces. To do this, wewill have to

consult the route table from thefilter driver portion of our driver. This is donevia a call to the

rtallocl function (found in route.c). Ifa valid route table entry is found, then wewill take

87

INTEL Ex.1002.093

INTEL Ex.1002.094

ALA-006K ; Express Mail No. EV 406928085 US

10

15

20

25

30

control of the connection andset a pointer to the rtentry structure returned byrtallocl in our

in_peb structure.

WHATTO DO WHENA ROUTE CHANGES.

Whena routetable entry changes, there may be connectionsthat have pointers to a

stale route table entry. These connections will needto be notified of the new route. FreeBSD

solves this by checking the validity of a route entry during every call to ipoutput. If the entry

is no longervalid, its reference to the stale route table entry is removed, and an attempt is __

madeto allocate a new route to the destination. For our slow path,this will work fine.
Unfortunately, since our IP processing is handled by the INIC for ourfast path, this sanity

check method will not be sufficient. Instead, we will need to perform a review ofall of our

fast path connections during every route table modification. If the route table change affects

our connection, wewill need to advise the INIC with a newfirst-hop address,or if the
destination is no longer reachable, close the connection entirely.

ICMP.’ ,

Like the ARP code above, wewill need to process certain types of incoming ICMP
frames. Ofthe 10 possible ICMP messagetypes,there are only three that we need to support.
These include ICMP_REDIRECT, ICMP_UNREACH,and ICMP_SOURCEQUENCH. Any

FreeBSD codeto deal with other types of ICMPtraffic will be removed. Instead, wewill

simply return NDISSTATUS_NOT_ACCEPTEDfor all but the above ICMP frametypes.

This section describes how wewill handle these ICMP frames.

ICMP_REDIRECT.
Under FreeBSD, an ICMP_REDIRECTcauses two things to occur. First, it causes the

route table to be updated with the route given in the redirect. Second,it results in a call back

to TCP to cause TCPto flush the route entry attachedto its associated in_pcb structures. By

doingthis, it forces ip_output to search for a new route. As mentionedin the Route section

above, wewill also require a call toa routine whichwill review all of the TCP fast-path
connections, and update the route entries as needed (in this case becausethe route entry has

been zeroed). The INIC will then be notified of the route changes.

88

INTEL Ex.1002.094

INTEL Ex.1002.095

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

ICMP_UNREACH.

In both FreeBSD and Microsoft TCP, the ICMP_UNREACHresults in no more than a

simplestatistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quenchis sent to cause a TCP senderto close its congestion window to a

single segment, thereby putting the sender into slow-start mode. Wewill keep the FreeBSD

code as-is for slow-path connections. For fast path connections wewill send a notification to

the card that the congestion window for the given connection has been reduced. The INIC will

then be responsible for the slow-start algorithm.

IP.

The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

IP INITIALIZATION.

Duringinitialization time, ip_init is called to initialize the array of protosw structures.

These structures contain all the information neededbyIP to be able to pass incoming data to

the correct protocol above it. For example, when a UDP datagram arrives, IP locates the

protosw entry corresponding to the UDP protocol type value (0x11) andcalls the input routine

specified in that protosw entry. We will keep the array ofprotosw structures intact, but since

weare only handling the TCP and ICMPprotocols aboveIP, we will strip the protosw array

downsubstantially.

IP INPUT.

Following are the changes required for IP input (function ip_intr()).

NO IP FORWARDING.

Since wewill only be handling datagrams for which wearethe final destination, we

should never be required to forward an IP datagram. All references to IP forwarding, and the

ip_forward functionitself, can be removed.

89

INTEL Ex.1002.095

INTEL Ex.1002.096

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

IP OPTIONS.

The only options supported by FreeBSDatthis time include record route, strict and ~

loose source and record route, and timestamp. For the timestamp option, FreeBSDonly logs
the current time into the IP headerso that before it is forwarded. Since we will not be

forwarding IP datagrams, this seemsto be oflittle use to us. While FreeBSD supports the

remaining options, NT essentially does nothing useful with them. For the moment, wewill not

bother dealing with IP options. They will be addedin later if needed.

IP REASSEMBLY.

There is a small problem with the FreeBSD IP reassembly code. The reassembly code

reuses the IP header portionof the IP datagram to contain IP reassembly queue information. It
can do this because it no longer requires the original IP header. This is an absolute no-no with

the NDIS 4.0 method of handling network packets. The NT DDK explicitly states that we

must not modify packets given to us by NDIS. This is not the only place in which the

FreeBSD code modifiesthe contents of a network buffer. It also does this when performing
endian conversions. At the moment wewill leave this codéas is and violate the DDKrules.

Webelieve we can do this because weare going to ensure that no other transport driver looks

at these frames. If this becomes a problem we will have to modify this code substantially by.
moving the IP reassembly fields into the mbuf header.

IP OUTPUT.

There are only two modifications required for IP output. Thefirst is that since, for the

moment, weare not dealing with IP options, there is no need for the codethat inserts the IP

options into the IP header. Second, we maydiscoverthatit is impossible for us to ever receive

an output request that requires fragmentation. Since TCP performs Maximum Segment Size

negotiation, we should theoretically never attempt to send a TCP segmentlarger than the

MTU.

NDIS PROTOCOL DRIVER.

This section defines protocol driver portion of the ATCP driver. The protocol driver

portion of the ATCPdriveris defined by the set of routines registered with NDISviaacall to

NdisRegisterProtocol. These routines are limited to those that are called (indirectly) by the
90

INTEL Ex.1002.096

INTEL Ex.1002.097

ALA-006K | Express Mail No. EV 406928085 US

10.

15

20

25

30

INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so

that when the INIC driver calls NdisMIndicateReceivePacketit will result in a call from NDIS

to our driver. Strictly speaking, the protocol driver portion of our driver does not include the

method by which ourdriver calls down to the miniport (for example, the method by which we

send network packets). Nevertheless, we will describe that method here for lack of a better

place to put it. That said, we cover the following topics in this section of the document: 1)

Initialization, 2) Receive; 3) Transmit; 4) Query/Set Information; 5) Status indications;
6) Reset; and 7) Halt.

INITIALIZATION.

The protocol driverinitialization occurs in two phases. Thefirst phase occurs when the

ATCPDriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs the

following: |

1. Allocate resources — We attempt to allocate many of the required resources as soon

as possible so that we are more likely to get the memory we want. This mostly applies to

allocating andinitializing our mbuf and mbuf headerpools.

2. Register Protocol — Wecall NdisRegisterProtocol to register our set ofprotocol

driver routines. __

3. Locate and initialize bound NICs — Weread the Linkage parametersofthe registry

to determine which NIC devices we are bound to. For each of these devices weallocate and

initialize a IFACEstructure (defined above). We then read the TCP parameters out of the

registry for each bound device and set the correspondingfields in the IFACEstructure.

After the underlying INIC devices have completedtheirinitialization, NDIS will call

our driver’s ATKBindAdapter function for each underlying device. It will perform the

following: .

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACEstructure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter information. This includes such things as link speed

and MAC address. Saverelevant information in the IFACEstructure.

4. Perform the interfaceinitialization as specified in the section on Interface

Initialization.

91

INTEL Ex.1002.097

INTEL Ex.1002.098

ALA-006K- Express Mail No. EV 406928085 US

10

15

20

25

30

RECEIVE.

Receive is handledbythe protocol driver routine ATKReceivePacket. Before we

describe this routine, it is important to consider each possible receive type and howit will be

handled. .

RECEIVE OVERVIEW.-

Our INIC miniport driver will be boundto our transport driver as well as the generic
Microsoft TCP driver (and possibly others). The ATCPdriverwill be bound exclusively to

INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as other

types ofNICs. Thisis illustrated in Fig. 31. By binding the driver in this fashion, we can

chooseto direct incoming network data to our own ATCPtransport driver, the Microsoft TCP

driver, or both. We do this by playing with the ethernet “type”field as follows.

~ To NDISandthe transport drivers aboveit, our card is goingto be registered as a
normal ethernet card. Whena transport driver receives a packet from our driver, it will expect
the data to start with an ethernet header, and consequently, expects the protocol type field to be

in byte offset 12. If Microsoft TCP findsthat the protocol type field is not equal to eitherIP,

or ARP,it will not accept the packet. So, to deliver an incoming packetto our driver, we must

simply map the data such that byte 12 contains a non-recognized ethernet type field. Note that

we must choosea valuethat is greater than 1500 bytesso that the transport drivers do not

confuse it with an 802.3 frame. We mustalso choose a value that will not be accepted by

other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to

Microsoft TCP, we can then simply leave the ethernet typefield set to IP (or ARP). Note that

since wewill also see these frames we can chooseto acceptor not-accept them as necessary.

Incoming packets are delivered as follows:

A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-

path framesandfast-path frames. In the slow-path case, the TCP framesare given in there

entirety (headers included). In the fast-path case, the ATKReceivePacketis given a header

buffer that contains status information and data with no headers (except those above TCP).

More onthislater. ,

B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-TCP packets.
92

INTEL Ex.1002.098

INTEL Ex.1002.099

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

2. All packets that are not destined for one of our interfaces (packets that will be

routed). Continuing the above example, if there is an IP address 144.48.252.4 associated with

the 3com interface, and we receive a TCP connect with a destination IP address of

144.48.252.4, we will actually want to send that request up to the ATCP driver so that we

create a fast-path connection for it. This means that we will need to know every IP addressin

the system andfilter frames based on the destination IP address in a given TCP datagram.

This can be done in the INIC miniport driver. Sinceit will be the ATCPdriverthat learns of

dynamicIP address changesin the system, we will need a methodto notify the INIC miniport

of all the IP addresses in the system. Moreonthislater.

C. Packets delivered to both:

1, All ARP frames.

2. All ICMPframes.

TWO TYPES OF RECEIVE PACKETS.

There are several circumstances in which the INIC will need to indicate extra

information about a receive packet to the ATCP driver. One such exampleis a fast path

receive in which the ATCPdriver will need to be notified of how muchdata the card has

buffered. To accomplish this, the first (and sometimes only) buffer in a received packetwill

actually be an INIC header buffer. The header buffer contains status information about the

receive packet, and may or may not contain network data as well. The ATCPdriver will

recognize a header buffer by mappingit to an ethernet frame and inspecting the type field

found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames

that are destined for both our driver and the Microsoft TCP driver (ARP, ICMP)will be

indicated without a header buffer. Fig. 32 shows an example ofan incoming TCP packet. Fig.

33 shows an example of an incoming ARPframe.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIShas been designed suchthat all packets indicated via

NdisMIndicateReceivePacket by an underlying miniport are delivered to the

ProtocolReceivePacket routine for all protocol drivers boundto it. These protocol drivers can

chooseto accept or not accept the data. They can either accept the data by copying the data

out of the packet indicatedto it, or alternatively they can keep the packet and return it later via
93

INTEL Ex.1002.099

INTEL Ex.1002.100

ALA-006K , | Express MailNo. EV 406928085 US

10

15

20

25

a call to NdisReturnPackets. By implementingit in this fashion, NDIS allows more than one

protocol driver to accept a given packet. For this reason, when a packetis delivered to a

protocol driver, the contents of the packet descriptor, buffer descriptors and data mustall be

treated as read-only. At the moment, weintend to violatethis tule. We chooseto violate this
because muchofthe FreeBSD code modifies the packet headers as it examines them (mostly

for endian conversion purposes). Rather than modify all of the FreeBSD code, wewill instead

ensure that no other transport driver accepts the data by making sure that the ethernet type field
is unique to us (no oneelse will wantit). Obviously this only works with data that is only
delivered to our ATCP driver. For ARP and ICMP frameswewill instead copy the data out of

the packet into our own buffer and return the packet to NDIS directly. While this is less

efficient than keeping the data and returning it later, ARP and ICMPtraffic should be small

enough, and infrequent enough,that it doesn’t matter.

The DDKspecifies that when a protocol driver chooses to keep a packet, it should

return a value of 1 (or more) to NDISin its ProtocolReceivePacket routine. The packetis then

later returned to NDISviathe call to NdisReturnPackets. This can only happenafter the

ProtocolReceivePacket has returned control to NDIS. This requires thatthe call to

NdisReturnPackets must occur in a different execution context. We can accomplish this by
scheduling a DPC, scheduling a system thread, or scheduling a kemel thread of our own. For

brevity in this section, we will assumeit is a done through a DPC. In anycase, wewill require

a queue of pending receive buffers on which to place and fetch receive packets.

After a receive packet is dequeuedby the DPCitis then either passed to TCP directly

for fast-path processing, orit is sent through the FreeBSDpath for slow-path processing. Note

' that in the case of slow-path processing, we may be working on datathat needs to be returned

to NDIS (TCP data) or we may be working on our owncopyof the data (ARP and ICMP).

Whenwefinish with the data we will need to figure out whetheror not to return the data to

NDISor not. This will be doneviafields in the mbuf header used to map the data. When the

mfreem routineis called to free a chain of mbufs,the fields in the mbufwill be checked and,if
required, the packet descriptor pointed to by the mbufwill be returned to NDIS.

94

INTEL Ex.1002.100

INTEL Ex.1002.101

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30.

MBUF < PACKET MAPPING.

Asnoted in the section on mbufs above, we will map incoming data to mbufs so that

our FreeBSDport requires fewer modifications. Depending on the type of data received, this

mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data for a TCP fast-path connection. In this example,

the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf

and sent upstream for fast-path TCP processing. In this caseit is required that the header

buffer be mapped and sent upstream because the fast-path TCP code will need information

contained in the header buffer in order to perform the processing. When the mbufin this

exampleis freed, the mfreem routine will determine that the mbuf mapsa packet that is owned

by NDISand will then free the mbuf header only and call NdisReturnPacketsto free the data.
In Fig. 34B, we show incoming data for a TCP slow-path connection. In this example

the mbufpoints to the start of the TCP data directly instead of the header buffer. Since this

buffer will be sent up for slow-path FreeBSD processing, we can not have the mbufpointing to

a header buffer (FreeBSD would get awfully confused). Again, when mfreemis called to free

the mbuf, it will discover the mapped packet, free the mbufheader, and call NDISto free the

packet and return the underlying buffers. Note that even though wedonot directly map the

header buffer with the mbuf we do not lose it because ofthe link from the packet descriptor.

Note also that we could alternatively have the INIC miniport driver only pass us the TCP data

buffer when it receives a slow-path receive. This would work fine except that we have

determined that even in the case of slow-path connections we are going to attemptto offer

someassistance to the host TCP driver (most likely by checksum processing only). In this

case there may be somespecialfields that we need to pass up to the ATCPdriver from the

INIC driver. Leaving the header buffer connected seems the mostlogical wayto dothis.

Finally, in Fig. 34C, we show a received ARP frame. Recall that for incoming ARP

and ICMPframes weare going to copy the incoming data out of the packet and return it

directly to NDIS. In this case the mbuf simply points to our data, with no corresponding

packet descriptor. When wefree this mbuf, mfreem will discoverthis and free not only the
mbufheader, but the data as well. -

95

INTEL Ex.1002.101

INTEL Ex.1002.102

ALA-006K | Express Mail No. EV 406928085 US

10

15.

20

25

30

OTHER RECEIVE PACKETS.

Weusethis receive mechanism for other purposes besides the reception of network

data. It is also used as a method of communication between the ATCP driver and the INIC.

One such example is a TCP context flush from the INIC. When the INIC determines,.for
whateverreason,that it can no longer manage a TCP connection,it must flush that connection

to the ATCP driver. It will do this by filling in a header buffer with appropriate status and

delivering it to the INIC driver. The INIC driver will in turn deliverit to the protocol driver

which will treat it essentially like a fast-path TCP connection by mapping the header buffer
with an mbufheaderand delivering it to TCP for fast-path processing. There are two

advantages to communicating in this manner. First,it is already an established path, so no
extra codingortesting is required. Second, since a context flush comesin; in the same manner

as received frames,it will prevent us from getting a slow-path frame before the context has

been flushed.

SUMMARY

Having covered all of the various types of receive data, following are the steps that are

taken by the ATKProtocolReceivePacket routine.

1. Map incoming data to an ethernet frame and checkthe typefield;

2. If the type field contains our custom INIC type then it should be TCP;

3. Ifthe header buffer specifies a fast-path connection, allocate one or more mbufs headers

to map the headerand possibly data buffers. Set the packet descriptor field of the mbuf

to point to the packet descriptor, set the mbufflags appropriately, queue the mbuf, and
return 1; .

4. Ifthe header buffer specifies a slow-path connection,allocate a single mbuf header to
map the networkdata, set the mbuf fields to map the packet, queue the mbufand return

1. Note that we design the INIC such that we will never get a TCP segmentsplit across

more than one buffer;

5. Ifthe type field of the frame indicates ARP or ICMP;

’ 6. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.

Queue the mbuf, and return 0 (not accepted); and

7. Ifthe type field is not either the INIC type, ARP or ICMP, we don’t wantit. Return 0.

96

INTEL Ex.1002.102

INTEL Ex.1002.103

ALA-006K , Express Mail No. EV 406928085 US

10

15

20

25

30

The receive processing will continue when the mbufs are dequeued. At the moment

this is done by a routine called ATKProtocolReceiveDPC.It will do the following:

1. Dequeue a mbuf from the queue; and

_2. Inspect the mbuf flags. If the mbufis meantfor fast-path TCP,it will call the fast-path

routine directly. Otherwiseit will call the ethernet input routine for slow-path

processing.

TRANSMIT.

In this section we discuss the ATCP transmit path.

NDIS 4 SEND OPERATION.

The NDIS4 send operation works as follows. Whena transport/protocol driver wishes

to send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets with

an array of packet descriptors to send. As soon asthis routine is called, the transport/protocol

driver relinquishes ownership of the packets until they are returned, one by onein anyorder,

via a NDIScall to the ProtocolSendComplete routine. Since this routine is called
asynchronously, our ATCP driver must save any required context into the packet descriptor

header so that the appropriate resources can be freed. Thisis discussed furtherin the
following sections.

TYPES OF “SENDS”.

Like the Receive path described above, the transmit path is used not only to send

network data, but is also used as a communication mechanism between the host and the INIC.

Here are some examples of the types of sends performed by the ATCPdriver.

FAST-PATH TCP SEND.

~ When the ATCPdriverreceives a transmit request with an associated MDL,it will

package up the MDLphysical addresses into a command buffer, map the command buffer

with a buffer and packet descriptor, and call NdisSendPackets with the corresponding packet.

The underlying INIC driver will issue the commandbuffer to the INIC. Whenthe

corresponding response buffer is given back to the host, the INIC miniport will call

NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete

97

INTEL Ex.1002.103

INTEL Ex.1002.104

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

(ATKSendComplete) routine, at which point the resources associated with the send can be

freed. Wewill allocate and use a mbufto hold the commandbuffer. By doing this we can
store the context necessary in order to clean up after the send completes. This context includes

a pointer to the MDL and presumably someother connection context as well. The other
advantage to using a mbufto hold the commandbufferis that it eliminates having another

special set of code to allocate and return commandbuffer. We will store a pointer to the mbuf

in the reserved section of the packet descriptor so we can locate it when the send is complete.

Fig. 35 illustrates the relationship between the client’s MDL, the commandbuffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

As describedin the Fast-Path Input Data Flow section above, the receive process

typically occurs in two phases. First the INIC fills ina host receive buffer with a relatively

small amountofdata, but notifies the host of a large amount of pending data (either through a

large amountofbuffered data on the card, or through a large amount of expected NetBios

data). This small amountofdata is delivered to the client through the TDI interface. The
client will then respond with a MDLin whichthe data should be placed. Like the Fast-path

TCP send process, the receive portion of the ATCP driver will then fill in a commandbuffer

with the MDL information from the client, map the buffer with packet and buffer descriptors

and send it to the INIC via a call to NdisSendPackets. Again, when the response buffer is

returned to the INIC miniport, the ATKSendComplete routine will be called and the receive

will complete. This relationship between the MDL, command buffer and buffer and packet

descriptors are the same as shownin the Fast-path send section above.

SLOW-PATH (FREEBSD).

Slow-path sends pass through the FreeBSDstack until the ethernet header is prepended

in ether_output and the packet is ready tobe sent. At this point a commandbuffer will be

filled with pointers to the ethernet frame, the command buffer will be mapped with a packet
and buffer descriptor and NdisSendPackets will be called to hand the packet off to the

miniport. Fig. 36 showsthe relationship between the mbufs, commandbuffer, and buffer and

packet descriptors. Since wewill use a mbuf to map the commandbuffer, we can simplylink

98

INTEL Ex.1002.104

INTEL Ex.1002.105

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

the data mbufs directly off of the command buffer mbuf. This will make the freeing of

resources much simpler.

NON-DATA COMMANDBUFFER.

The transmit path is also used to send non-data commandsto the card. As shown in

Fig. 37, for example, the ATCP driver gives a context to the INIC byfilling in a command.

buffer, mapping it with a packet and buffer descriptor, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.

Given the above different types of sends, the ATKProtocolSendCompleteroutinewill

perform various types of actions whenit is called from NDIS. First it must examinethe

reserved area of the packet descriptor to determine what type of request has completed. In the

case of a slow-path completion,it can simply free the mbufs, command buffer, and descriptors
and return. In the case of a fast-path completion, it will need to notify the TCP fast path

routines of the completion so TCP can in turn completethe client’s IRP. Similarly, when a

non-data command buffer completes, TCP will again be notified that the commandsentto the

INIC has completed.

TDI FILTER DRIVER. .

In a first embodimentof the product, the INIC handles only simple-case data transfer

operations on a TCP connection. (These of course constitute the large majority of CPU cycles

consumed by TCP processing in a conventional driver.)

‘There are many other complexities of the TCP protocol which muststill be handled by

host driver software: connection setup and breakdown,out-of-order data, nonstandardflags,

etc.

The NT OScontainsa fully functional TCP/IP driver, and one solution would be to

enhancethis-so that it is able to detect our INIC and take advantageofit by "handing off" data-
path processing where appropriate.

Unfortunately, wedo not have access to NT source, let alone permission tomodify NT.
Thusthe solution above, while a goal, cannot be done immediately. Weinstead provide our
own custom driver software on the host for those parts ofTCP processing which are not

handled by the INIC.
99

INTEL Ex.1002.105

INTEL Ex.1002.106

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

This presents a challenge. The NT network driver framework does make provision for

multiple types of protocol driver: but it does not easily allow for multiple instances ofdrivers

handling the SAMEprotocol. .

For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow

for routing of IP packets between our driver (handling our INICs) and the Microsoft driver

(handling other NICs).

Ourapproachto this is to retain the Microsoft driver for all non-TCP network

processing (even fortraffic on our INICs), but to invisibly "steal" TCP traffic on our

connections and handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driveris

unaware of TCP connections on interfaces we handle.

The network "bottom end"ofthis artifice is described earlier in the document. In this

section we will discuss the "top end": the TDIinterface to higher-level NT network client

software.

We makeuse of an NT facility called a filter driver. NT allows a special type of driver

("filter driver") to attach itself "on top" of another driver in the system. The NT I/O manager
then arrangesthat all requests directed to the attached driver are sentfirst to the filter driver;

this arrangementis invisible to the rest of the system.

The filter driver may then either handle these requestsitself, or pass them down to the

underlying driverit is attached to. Providedthefilter driver completely replicates the

(externally visible) behavior of the underlying driver whenit handles requestsitself, the

existence ofthe filter driver is invisible to higher-level software.

Thefilter driver attachesitself on top of the Microsoft TCP/IP driver; this gives us the

basic mechanism whereby wecan intercept requests for TCP operations and handle them in

our driver instead of the Microsoft driver.

However,while the filter driver concept gives us a framework for what we wantto
achieve, there are somesignificant technical problemsto be solved.. The basic issueis that

setting up a TCP connection involves a sequence of several requests from higher-level

software, andit is not always possibleto tell, for requests early in this sequence, whether the

connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we needit later,

but also allow the request to be passed downto the Microsoft TCP/IP driver in case the

connection ultimately turns out to be one which that driver should handle.
100 .

INTEL Ex.1002.106

INTEL Ex.1002.107

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Let us look at this in more detail, which will involve some examination of the TDI

interface: the NT interface into the top end ofNT network protocol drivers. Higher-level TDI

client software which requires services from a protocol driver proceeds by creating various
types ofNT FILE_OBJECTs, and then making various DEVICE_IOCONTROLrequests on

these FILEOBJECTs.

There are two types ofFILE_OBJECTofinterest here. Local IP addresses that are

represented by ADDRESSobjects, and TCP connectionsthat are represented by

‘CONNECTIONobjects. The steps involved in setting up a TCP connection (from the "active"

client side, fora CONNECTIONobject) are:

1) Create an ADDRESSobject; 2) Create a CONNECTIONobject; 3) Issue a

TDI_ASSOCIATE_ADDRESSio-control to associate the CONNECTIONobject with the

ADDRESS object; and 4) Issue a TDICONNECT io-control on the CONNECTION object,
specifying the remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we would tell, on the

basis of the address given when creating the ADDRESSobject, whether the connectionis for

one of our interfaces or not. After which, it would be easyto arrange for handling entirely by

our code,or entirely by the Microsoft code: we would simply examine the ADDRESSobject

to see if it was "one of ours"or not.

There are two main difficulties, however. First, when the CONNECTIONobjectis

created, no addressis specified: it acquires a local address only later when the

TDI_ASSOCIATE_ADDRESSis done. Also, when a CONNECTIONobjectis created, the

caller supplies an opaque "context cookie" which will be needed for later communications
with that caller. Storage of this cookie is the responsibility of the protocol driver: itis not

directly derivable just by examination of the CONNECTIONobjectitself. If we simply

passed the "create" call down to the Microsoft TCP/IP driver, we would have no way of

obtaining this cookielater if it turns out that we need to handle the connection. Therefore, for

every CONNECTION object which is createdweallocate a structure to keeptrack of
information aboutit, and store this structure in a hash table keyed by the address of the

CONNECTIONobjectitself, so that we can locateit if we later need to process requests on

this object. We refer to this as a "shadow"object: it replicates information about the object

stored in the Microsoft driver. (We must, of course, also pass the create request downto the

Microsoft drivertoo, to allow it to set up its own administrative information about the object.)
101

INTEL Ex.1002.107

INTEL Ex.1002.108

ALA-006K — , ' Express Mail No. EV 406928085 US

10

15

20

25

30

A second majordifficulty arises with ADDRESSobjects. These are often created with

the TCP/IP "wildcard" address(all zeros); the actual local address is assigned only later during

connection setup (by the protocoldriveritself.) Of course, a "wildcard" address does not

allow us to determine whether connections that will be associated with this ADDRESSobject

should be handled by our driver or by the Microsoft one. Also, as with CONNECTION

objects, there is "opaque" data associated with ADDRESSobjects that cannotbe derived just

from examination ofthe object itself. (In this case addresses of callback functions set on the

object by TDI_SET_EVENTio-controls.).

Thus, as in the CONNECTIONobject case, we create a "shadow"object for each

ADDRESSobject which is created with a wildcard address. In this we store information

(principally addresses of callback functions) which wewill need if we are handling

connections on CONNECTIONobjects associated with this ADDRESSobject. Westore

similar information, of course, for any ADDRESSobject whichis explicitly for one of our

interface addresses; in this case we don't need to also pass the create request downto the

Microsoft driver.

With this concept of "shadow"objects in place, let us revisit the steps involved in
setting up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESSobject. Assumingthat this is

a "wildcard" address, we create a "shadow"object before passing the call down to the

Microsoft driver.

The next step (omitted in the earlier list for brevity) is normally that the client makes a
number ofTDISETEVENT io-control calls to associate various callback functions with the
ADDRESSobject. These are functions that should becalled to notify the TDI client when

certain events (such arrival of data or disconnection requests etc) occur. Westore these

callback function pointers in our "shadow" address object, before passing the call downto the

Microsoft driver.

Next, the TDI client makesa call to create a CONNECTIONobject. Again, we create

our "shadow"ofthis object.

Next, the client issues the TD]ASSOCIATE_ADDRESSio-control to bind the

CONNECTIONobject to the ADDRESSobject. Wenote the association in our "shadow"

objects, and also pass the call down to the Microsoft driver.

102

INTEL Ex.1002.108

INTEL Ex.1002.109

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Finally the TDI client issues a TDI_CONNECTio-control on the CONNECTION

object, specifying the remote IP address (and port) for the desired connection. At this point,

we examineourrouting tables to determine if this connection should be handled by one of our

interfaces, or by some other NIC. Ifit is ours, we mark the CONNECTIONobject as "one of

ours"for future reference (using an opaquefield which NT FILE_OBJECTSprovide for driver
use.) We then proceed with connection setup and handling in ourdriver, using information

stored in our "shadow" objects. The Microsoft driver does not see the connection request or

any subsequenttraffic on the connection. ;

If theconnection request is NOT for one of our interfaces, we pass it down to the

Microsoft driver. Note carefully, however, that we can not simply discard our "shadow"

objects at this point. The TDIinterface allows re-use of CONNECTIONobjects: on

termination of a connection,it is legal for the TDIclient to dissociate the CONNECTION

object from its current . Thus our "shadow"objects mustbe retained for the lifetime

ADDRESSobject, re-associate it with another, and use it for another connection of the NT

FILE_OBJECTS: the subsequent connection could turn outto be via one of our interfaces.

TIMERS.

KEEPALIVE TIMER.

Wedon’t want to implementkeepalive timers on the INIC. It would in any casebea >

very pooruse ofresources to have an INIC context sitting idle for two hours.

IDLE TIMER.

Wewill keep an idle timerin the ATCP driver for connections that are managed bythe
INIC (resetting it whenever wesee activity on the connection), and cause a flush of context

back to the host if this timer expires. We may want to makethe threshold substantially lower
than 2 hours, to reclaim INIC context slots for useful work sooner. Mayalso want to make

that dependent on the numberof contexts which have actually been handed out: don’t need to

reclaim them if we haven’t handed out the max.

RECEIVE AND TRANSMIT MICROCODEDESIGN.

This section provides a general description of the design of the microcodethat will

execute on two of the sequencers of the Protocol Processor on the INIC. Theoverall
103 |

INTEL Ex.1002.109

INTEL Ex.1002.110

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

philosophy of the INIC is discussed in other sections. This section will discuss the INIC

microcodein detail.

DESIGN OVERVIEW. .

Asspecified in other sections, the INIC supplies a set of 3 custom processorsthat will

provide considerable hardware-assist to the microcode running thereon. The paragraphs

immediately following list the main hardware-assist features:

1) Header processing with specialized DMAenginesto validate an input header and

generate a context hash, movethe header into fast memory and do header comparisons on a

DRAM-based TCPcontrol block;

2) DRAM fifos for free buffer queues (large & small), receive-frame queues, event

queuesetc.;

3) Header comparelogic;

4) Checksum generation;

5) Multiple register contexts with register access controlled by simply setting a context

register. The Protocol Processor will provide 512 SRAM-based registers to be shared among
the 3 sequencers;

6) Automatic movementof input framesinto DRAM buffers from the MAC Fifos;

7) Run receive processing on one sequencer and transmit processing on the other. This

was chosen as opposedto letting both sequencers run receive and transmit. One of the main

reasonsforthis is that the header-processing hardware can not be shared andinterlocks would
be needed to do this. Another reasonis that interlocks would be needed on the resources used

exclusively by receive and by transmit;

8) The INIC will support up to 256 TCP connections (TCB’s). A TCBis associated

with an input frame when the frame’s source and destination IP addresses and source and

destination ports match that of the TCB. For speed of access, the TCB’s will be maintained in |
a hash table in NIC DRAMto save sequential searching. There will however, be an index in

hash order in SRAM.Once a hash has been generated, the TCB will be cached in SRAM.

There will be up to 8 cached TCBs in SRAM. These cache locations can be shared between

both sequencers so that the sequencer with the heavier load will be able to use more cache

buffers. There will also be 8 header buffers to be shared between the sequencers. Note that

each headerbufferis notstatically linked to a specific TCB buffer. In fact the link is dynamic
104

INTEL Ex.1002.110

INTEL Ex.1002.111

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

on a per-frame basis. The need for this dynamiclinking will be explained in later sections.

Suffice to say herethatif there is a free header buffer, then somewherethereis also a free TCB

SRAM buffer;

9) There were 2 basic implementation options considered here. Thefirst was single-

stack and the second was a process model. The process model was chosen here because the

custom processor design is providing zero-cost overhead for context switching through the use

of a context base register, and because there will be more than enoughprocessslots (or

contexts) available for the peak load. It is also expected that all “local” variables will be held ©
permanently in registers whilst an event is being processed;

10) The features that provide this are 256 of the 512 SRAM-basedregisters that will

be used for the register contexts. This can be divided up into 16 contexts (or processes) of 16

registers each. Then8ofthese will be reserved for receive and8 for transmit. A Little’s Law

analysis has shownthat in order to support 512 byte frames at maximumarrival rate of 4 * 100 -

Mbits, requires more than 8 jobs to be in process in the NIC. However each job requires an

SRAMbuffer for a TCB context and at present, there are only 8 of these currently specified

due to SRAM spacelimits. So more contexts (e.g. 32 * 8 regs each) do not seem worthwhile.

Refer to the section entitled “LOAD CALCULATIONS”for moredetails of this analysis. A

context switch simply involves reloading the context base register based on the context to be

restarted, and jumping to the appropriate address for resumption;

11) To better support the process model chosen, the code will lock an active TCB into

an SRAMbuffer while either sequencer is operating on it. This implies there will be no

swapping to and from DRAM of a TCBonceit is in SRAM and an operationis started onit.

Morespecifically, the TCB will not be swapped after requesting that a DMAbe performed for

it. Instead, the system will switch to another active “process”. Then it will resume the former

processat the point directly after where the DMA wasrequested. This constitutes a zero-cost

switch as mentioned above;

12) Individual TCB state machineswill be run from within a “process”. There will be

a state machinefor the receive side and onefor the transmit side. The current TCBstates will

be stored in the SRAM TCBindextable entry;

13) The INIC will have 16 MB of DRAM.Thecurrentspecification calls for dividing

a large portion of this into 2K buffers and control allocation / deallocation of these buffers

105

INTEL Ex.1002.111

INTEL Ex.1002.112

ALA-006K) Express Mail No. EV 406928085 US

10

15

20

25

30

through one of the DRAM fifos mentioned above. Thesefifos will also be used to control

small host buffers, large host buffers, command buffers and command response buffers;

14) For events from one sequencerto the other (i.e. RCV < XMT),the current

specification calls for using simple SRAM CIO buffers, one for each direction;

15) Each sequencer handles its own timersindependently of the others; |
16) Contexts will be passed to the INIC through the Transmit command and response

buffers. INIC-initiated TCB releases will be handled through the Receive small buffers. Host-

initiated releases will use the Commandbuffers. There needsto bestrict handling ofthe

acquisition and release of contexts to avoid windows where for example, a frameis received

on a context just after the context was passed to the INIC, but before the INIC has“accepted”

it; and

17) T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections.

This is because they are typically used for the HTTP protocol and the client for that protocol

typically connects, sends a request and disconnects in one segment. The server sends the

connect confirm, reply and disconnectin his first segment. Then the client confirms the

disconnect. This is a total of 3 segmentsfor the life of a context. Typical data lengths are on

the order of 300 bytes from the client and 3K from the server. The INIC will provide as good

an assist as seems necessary here by checksummingthe frame andsplitting headers and data.
Thelatter is only likely when data is forwarded with a request such as whena filled-in form is

sent by the client.

SRAM REQUIREMENTS.

SRAM requirements for the Receive and Transmit engines are shownin Fig.38.

Depending uponthe available space, the number of TCB buffers maybeincreased to 16.

GENERAL PHILOSOPHY.

The basicplan is to have the host determine when a TCP connectionis able to be

handedto the INIC, setup the TCB andpassit to the card via a command in theTransmit
queue. TCBsthat the INIC owns can be handedback to the host via a request from the Receive

or Transmit sequencers orfrom thehostitself at any time.
Whenthe INIC receives a frame, one of its immediate tasks is to determineif the frame

is for a TCB that it controls. If not, the frame is passed to the host on a generic interface TCB.
106

INTEL Ex.1002.112

INTEL Ex.1002.113

ALA-006K _ Express Mail No. EV 406928085 US

10

15

20

25

30

* On transmit, the transmit request will specify a TCB hash numberif the request is on a INIC-

controlled TCB. Thustheinitial state for the INIC will be transparent modein whichall

received framesare directly passed through andall transmit requests will be simply thrown on

the appropriate wire. This state is maintained until the host passes TCBsto the INIC to control.

Note that frames received for which the INIC has no TCB (or it is with the host) will still have
the TCP checksum verified if TCP/IP, and may split the TCPIP headeroff into a separate

buffer.

REGISTER USAGE.

There will be 512 registers available. The first 256 will be used for process contexts.

The remaining 256 will be split between the three sequencers as follows: 1) 257 — 320: 64 for

RCVgeneral processing / main loop; 2) 321 - 384: 64 for XMTgeneral processing / main

loop; and 3) 385 — 512: 128 for three sequenceruse.

RECEIVE PROCESSING.

MAIN LOOP.

Fig. 39 is a summary of the main loop ofReceive.

RECEIVE EVENTS.

Theevents that will be processed on a given context are:

1) accept a context;

2) release a context command(from the host via Transmit);

3) release a context request (from Transmit); .

4) receive a valid frame; this will actually become 2 events based on the received

frame - receive an ACK,receive a segment;

_ 5) receive an “invalid” frame i.e. one that causes the TCBto be flushedto the host;

6) a valid ACK needsto be sent (delayed ACKtimer expiry); and

7) There are expected to be the following sources of events: a) Receive input queue:

it is expected that hardware will automatically DMAarriving frames into frame buffers and

queue an event into a RCV-event queue; b) Timer event queue: expiration of a timer will

queue an event into this queue; and c) Transmit sequencer queue: for requests from the

transmit processor.
107

INTEL Ex.1002.113

INTEL Ex.1002.114

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

For the sake of brevity the following only discusses receive-frame processing.

RECEIVE DETAILS — VALID CONTEXT.

The base for the receive processing done by the INIC onan existing context is the fast-
path or “header prediction” code in the FreeBSD release. Thus the processing is divided into

three parts: header validation and checksumming, TCP processing and subsequent SMB

processing.

HEADER VALIDATION.

There is considerable hardwareassist here. Thefirst step in receive processingis to

DMAthe frame header into an SRAM headerbuffer. It is useful for header validation to be

implemented in conjunction with this DMAby scanningthedataasit flies by. The following

tests need to be “passed”:

1) MACheader:destination address is our MAC address (not MC or BCtoo), the

Ethertype is IP; 2) IP header: header checksumis valid, header length = 5, IP length > header

length, protocol = TCP, no fragmentation, destination IP is our IP address; and 3) TCP header:

checksum is valid (incl. pseudo-header), header length = 5 or 8 (timestamp option),length is

valid, dest port = SMBorFTP data, no FIN/SYN/URG/PSHRSTbits set, timestamp option is
valid ifpresent, segmentis in sequence, the windowsize did not change, this is not a

retransmission,it is a pure ACK or a pure receive segment, and most important, a valid

context exists. The valid-contexttest is non-trivial in the amount ofwork involved to

determineit. Also note that for pure ACKs, the window-sizetest will be relaxed. This is
becauseinitially the output PERSISTstate is to be handled on the INIC.

Manybutperhapsnotall of these tests will be performed in hardware — depending

upon the embodiment.

TCP PROCESSING.

Oncea framehas passed the headervalidation tests, processing splits based on whether

the frame is a pure ACK or a pure received segment.

108

INTEL Ex.1002.114

INTEL Ex.1002.115

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

PURE RCV PACKET.

The design is to split offheaders into a small header buffer and passthe aligned data in
separate large buffers. Since a frame has been received, eventually some receiver process on
the host will need to be informed.In the case of FTP, the frameis pure data andit is passed to

the host immediately. This involves getting large buffers and DMAingthe data into them,

then setting the appropriate details in a small buffer that is used to notify the host. Howeverfor

SMB,the INIC is performing reassembly of data whenthe frame consists ofheaders and data.

So there may not yet be a complete SMBto passto the host. In this case, a small buffer will be

acquired and the header movedinto it. If the received segment completes an SMB,then the

proceduresare pretty much as for FTP.If it does not, then the schemeis to at least move the

received data (not the headers) to the host to free the INIC buffers and to save latency. The list
of in-progress host buffers is maintained in the TCB and movedto the headerbuffer when the

SMBis complete.

The final part of pure-receive processing is to fire off the delayed ACKtimerfor this

segment. ,

PURE ACK.

Pure ACKprocessing implies this TCBis the sender, so there maybetransmit buffers
that can be returnedto the host. If so, send an event to the Transmit processor(or do the

processing here). If there is more output available, send an event to the transmit processor.

Then appropriate actions need to be taken with the retransmission timer.

' SMB PROCESSING.

Fig. 40 showsthe format of the SMB header of an SMB frame. The LENGTHfield of

the NetBIOS header will be used to determine when a complete SMB has been received and

the header buffer with appropriate details can be posted to the host. The interesting commands

are the write commands: SMBwrite (0xB), SMBwriteBraw (0x1D), SMBwriteBmpx (0x1E),

SMBwriteBs (0x1F), SMBwriteclose (0x2C), SMBwriteX (0x2F), SMBwriteunlock (0x14).

These are interesting because they will have data to be aligned in host memory. The point to
note about these commandsis that they each have a different WCTfield, so that the start offset

of the data depends on the command type. SMB processing will thus need to be cognizant of
these types.

109

INTEL Ex.1002.115

INTEL Ex.1002.116

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

RECEIVE DETAILS — NO VALID CONTEXT.

The design here is to provide as muchassist as possible. Frameswill be checksummed

and the TCPIP headers maybesplit off.

RECEIVE NOTES..

1. PRU_RCVDorthe equivalent in Microsoft language: the host application has to

tell the INIC when he has accepted the received data that has been queued. This is so that the

INIC can update the receive window. It is an advantage for this mechanism to beefficient.

This may be accomplished by piggybacking these on transmit requests (not necessarily for the

same TCB).

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this timer.

This leaves the host with the job of determining that the TCBisstill active.

3.. Timestampoption:it is useful to support this option in the fast path because the

BSD implementation does. Also, it can be very helpful in getting a muchbetter estimate of the

round-trip time (RTT) which TCP needsto use.

. 4. Idle timer: the INIC will not maintain this timer (see Note 2 above).
5. Framewith no valid context: The INIC may split TCP/IP headers into a separate

header buffer.

TRANSMIT PROCESSING.

MAIN LOOP.

Fig. 41 is a summary of the main loop of Transmit.

TRANSMIT EVENTS.

The events that will be processed on a given context and their sources are: 1) accept a

context (from the Host); 2) release a context command(from the Host); 3) release a context

command(from Receive); 4) valid send request and window > 0 (from host or RCV

sequencer); 5) valid send request and window = 0 (from host or RCV sequencer); 6) send a

window update(host has accepted data); 7) persist timer expiration (persist timer); 8)

context-release event e.g. window shrank (XMTprocessing or retransmission timer); and 9)
receive-release request ACK(from RCV sequencer).

110

INTEL Ex.1002.116

INTEL Ex.1002.117

ALA-006K , Express Mail No. EV 406928085 US

10

15

20

25

30

TRANSMIT DETAILS — VALID CONTEXT.

The following is an overview ofthe transmit flow: The host posts a transmit request to

the INIC byfilling in a command buffer with appropriate data pointers etc and posting it to the

INIC via the Command Buffer Address register. Note that there is one host command buffer

queue,but there are four physical transmit lines. So each request needs to include an interface

numberas well as the context number. The INIC microcode will DMA the commandin and

place it in one of four internal command queues which the transmit sequencer will work on.

Thisis so that transmit processing can round-robin service these four queues to keep all four

interfaces busy, and notlet a highly-active interface lock out the others (which would happen

with a single queue). The transmit request may be a segmentthatis less than the MSS,orit

maybe as much asa full 64K SMB READ.Obviously the former request will go out as one

segment, the latter as a number of MSS-sized segments. The transmitting TCB must hold on to

the request until all data in it has been transmitted and acked. Appropriate pointers to do this

will be kept in the TCB. A large buffer is acquired from the freebuffer fifo, and the MAC and
TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame headerset up
in the TCB and either DMAdirectly this into the frame each time. Then data is DMA’d from
host memory into the frame to create an MSS-sized segment. This DMA also checksumsthe

data. Then the checksum is adjusted for the pseudo-header and placed into the TCP header,

and the frame is queued to the MACtransmit interface which maybecontrolled by the third

sequencer. Thefinal step is to update various windowfields etc in the TCB. Eventually either

the entire request will have been sent and acked, or a retransmission timer will expire in which

case the context is flushed to the host. In either case, the INIC will place a commandresponse

in the Response queue containing the commandbuffer handle from the original transmit

command and appropriatestatus.

The above discussion has dealt how an actual transmit occurs. Howeverthe real

challenge in the transmit processoris to determine whetherit is appropriate to transmit at the

time a transmit request arrives. There are many reasonsnotto transmit: the receiver’s window

size is <= 0, the Persist timer has expired, the amount to sendis less than a full segment and an

ACKis expected / outstanding, the receiver’s window is not half-oper etc. Much of the

transmit processing will be in determining these conditions.

111

INTEL Ex.1002.117

INTEL Ex.1002.118

ALA-006K => Express. Mail. No. EV 406928085 US

15

20

25

30

TRANSMIT DETAILS = NO VALID CONTEXT.

The main difference between this and a context-based transmit is that the queued

request here will already have the appropriate MAC and TCP/IP (or whatever) headers in the

frame to be output. Also the request is guaranteed not to be greater than MSS-sizedin length.

So the processingis fairly simple. A large buffer is acquired and the frame is DMAed intoit,

at which time the checksumis also calculated. If the frame is TCP/IP, the checksum will be

appropriately adjusted if necessary (pseudo-header etc) and placed in the TCP header. The

frame is then queued to the appropriate MACtransmit interface. Then the commandis

immediately responded to with appropriate status through the Response queue.

TRANSMIT NOTES.

1) Slow-start: the INIC will handle the slow-start algorithm that is now a part of the

TCP standard. This obviates waiting until the connection is sending a full-rate before passing

it to the INIC. |

2) Window Probe vs Window Update - an explanation for posterity. A Window Probe

is sent from the sending TCBto the receiving TCB, and it meansthe senderhasthe receiver in

PERSISTstate. Persist state is entered when the receiver advertises a zero window.It is thus

the state of the transmitting TCB.In this state, he sends periodic window probesto the receiver

in case an ACKfrom the receiver has been lost. The receiver will return his latest windowsize

in the ACK. A Window Updateis sent from the receiving TCBto the sending TCB,usually to
tell him that the receiving window hasaltered. It is mostly triggered by the upper layer whenit

. accepts somedata. This probably meansthe sending TCBis viewing the receiving TCB as .
being in PERSISTstate.

3) Persist state: it is designed to handle Persist state on the INIC.It seems

unreasonable to throw a TCBbackto the host just becauseits receiver advertised a zero

window.This would normally beatransient situation, and would tend to happen mostly with

clients that do not support slow-start. Alternatively, the code can easily be changed to throw

the TCB back to the host as soon as a receiver advertises a zero window.

4) MSS-sized frames: the INIC code will expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any requestis, it will be dropped and an

appropriate responsestatus posted.

112

INTEL Ex.1002.118

INTEL Ex.1002.119

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

5) Silly Window avoidance:as a receiver, the INIC will do the right thing here and not

advertise small windows — this is easy. Howeverit is necessary to also do things to avoid this

as a sender, for the cases wherea stupid client does advertise small windows. Without getting

into too muchdetail here, the mechanism requires the INIC codeto calculate the largest

window advertisement ever advertised by the other end.It is an attempt to guessthe size of the
other end’s receive buffer and assumesthe other end never reducesthe sizeofits receive

buffer. See Stevens, “TCP/IP Illustrated”, Vol. 1, pp. 325-326 (1994).

THE UTILITY PROCESSOR.

SUMMARY.

The following is a summary of the main functionsofthe utility sequencer of the

microprocessor:

1) Lookat the event queues: Event13Type & Event23Type (we assumethere will be

an eventstatus bit for this - USE_EV13 and USE_EV23)in the events register; these are |
events from sequencers 1 and 2; they will mainly be XMITrequests from the XMT sequencer.

Dequeuerequest and place the frame on the appropriate interface.

2) RCV-frame support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls

VinicTransferDataComplete() to check if the xfer (possibly DMA)ofthe frameinto host
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion

interrupt. It queues complete buffers to the RCV sequencer via the normal queue mechanism.

3) Other processes may also be employed here for supporting the RCV sequencer.

4) Service the followingregisters (this will probably involve micro-interrupts):

a) Header Buffer Addressregister:

Buffers are 256 bytes long on 256-byte boundaries.

31-8 - physical addr in host of a set of contiguous hddr buffers.

7-0 - numberofhddr buffers passed.

Use contents to add to SmallHType queue.

b) Data Buffer Handle & Data Buffer Address registers:
Buffers are 4K long aligned on 4K boundaries.

Use contents to add to the FreeType queue.

c) Command Buffer Addressregister:
113

INTEL Ex.1002.119

INTEL Ex.1002.120

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Buffers are multiple of 32 bytes up to 1K long (2**5 * 32).

31-5 - physical addr in host of cmd buffer.

4-0 - length of cmdin bytes/32 (i.e. multiples of 32 bytes).

Points to host cmd; get FreeSType buffer and move.

commandinto it; queue to Xmit0-Xmit3Type queues.
d) Response Buffer Addressregister:

Buffers are 32 bytes long on 32-byte boundaries.

31-8 - physical addrin host of a set of contiguous resp buffers.

7-0 - numberofresp buffers passed.
Use contents to add to the ResponseType queue.

5) Low buffer threshold support: set approp bits in the ISR when the available-buffers

count in the various queuesfilled by the host falls below a threshold.

FURTHER OPERATIONS OF THE UTILITY PROCESSOR.

Theutility processor of the microprocessor housed on the INIC is responsible for

setting up and implementingall configuration space and memory mappedoperations, and also

as described below, for managing the debuginterface. |

All data transfers, and other [NIC initiated transfers will be donevia DMA.

Configuration space for both the network processor function andthe utility processor function

will define a single memory space for each. This memory space will define the basic

communication structure for the host. In general, writing to one of these memory locations
will perform a request for service from the INIC. This is detailed in the memory description

for each function. This section defines much of the operation of the Host interface, but should

be read in conjunction with the Host Interface Strategy for the Alacritech INIC to fully define

the Host/INICinterface. .

Tworegisters, DMA hardware and an interrupt function comprise the INIC interface to

the Host through PCI. The interrupt function is implemented via a four bit register (PCI_INT)

tied to the PCI interrupt lines. This register is directly accessed by the microprocessor.

THE MICROPROCESSORusestworegisters, the PCI_Data_Reg andthe.
PCI_AddressReg, to enable the Host to access Configuration Space and the memory space
allocated to the INIC. These registers are not available to the Host, but are used by THE

114

2 a .

INTEL Ex.1002.120

INTEL Ex.1002.121

ALA-006K | Express Mail No. EV 406928085 US

10

15

20

25

30

‘ MICROPROCESSORto enable Host reads and writes. The function of these tworegistersis

as follows.

1) PCI_Data_Reg: This register can be both read and written by THE

MICROPROCESSOR.On write operations from the host, this register contains the data being

sent from the host. On read operations, this register contains the data to besentto the host.

2) PCI_AddressReg: Thisis the control register for memory reads and writes from

the host. Thestructure of the register is shown in Fig. 42. During a write operation from the

Host the PCI_Data_Reg contains valid data after Data Valid is set in the PCIAddressReg.

Both registers are locked until THE MICROPROCESSORwrites the PCI_Data_Reg, which

resets Data Valid. All read operations will be direct from SRAM. Memory space based reads

will return 00. Configuration space reads will be mapped as shownin Fig. 43.

CONFIGURATION SPACE.

The INIC is implemented as a multi-function device. Thefirst device is the network

controller, and the second device is the debug interface. An alternative production

embodiment may implement only the network controller function. Both configuration space

headers will be the same, except for the differences noted in the following description.

VendorID — This field will contain the Alacritech Vendor ID. Onefield will be used

for both functions. The Alacritech VendorID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. Onefield will be used for

both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.

Thosethat are enabled will be set to 0 or 1 depending onthestate of the system: Each

function (network and debug) will have its own commandfield, as shownin Fig. 44.

Status — Thisis not initialized to zero. Each function will have its own field. The

configuration is as shownin Fig. 45.

Revision ID — Therevision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.

Thefield will be shared. | |
Cache Line Size — Thisis initialized to zero. Supported sizes are 16, 32, 64 and 128

bytes. This hardwareregister is replicated in SRAM and supported separately for each

115

INTEL Ex.1002.121

INTEL Ex.1002.122

ALA-006K , Express Mail No. EV 406928085 US

10

15

20

25

30

function, but THE MICROPROCESSORwill implementthe value set in Configuration Space

1 (the network processor). . |
Latency Timer — Thisis initialized to zero. The function is supported. This hardware

register is replicated in SRAM. Each function is supported separately, but THE

MICROPROCESSORwill implementthe value setin Configuration Space | (the network
processor).

Header Type — Thisis set to 80 for both functions, but will be supported separately.
‘ BIST — Is implemented. In addition to responding to a request to run self test, if test

after reset fails, a code will be set in the BIST register. This will be implemented separately
for each function. |

Base Address Register — A single base addressregister is implemented for each

function. It is 64 bits in length, and the bottom fourbits are configured as follows: Bit 0- 0,

indicates memory base address; Bit 1,2 — 00, locate base address anywherein 32 bit memory

space; and Bit 3 — 1, memory is prefetchable.

CardBus CIS Pointer — Not implemented—initialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address —Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for

each function.

Interrupt Pin ~ This is set to 01, corresponding to INTA# for the network controller,

and 02, corresponding to INTB# for the debug interface. Thisis implemented separately for

each function. .

Min_Gnt— This can besetat a value in the range of 10, to allow reasonably long bursts

on the bus. This is implemented separately for each function. .

Max_Lat — This can beset to 0 to indicate no particular requirement for frequency of

access to PCI. This is implemented separately for each function.

MEMORYSPACE.

Because each of the following functions may or may notreside in a single location, and

may or may not need to be in SRAMatall, the address for each is really only used as an

identifier (label). There is, therefore, no control block anywhere in memory that represents
116 .

INTEL Ex.1002.122

INTEL Ex.1002.123

ALA-006K Express Mail No. EV 406928085 US

this memory space. Whenthe host writes oneof these registers, the utility processor will

construct the data required and transfer it. Reads to this memory will generate 00 for data.

10

15

20

25

30

NETWORKPROCESSOR.

- The following four byte registers, beginningat location h00 ofthe network processor’s

allocated memory,are defined.

00 —

04-

08 -

0C -

10-

Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

newstatus. Oncestatus has been stored at the Interrupt Status Pointer

location, no new status will be ORed until the host writes the Interrupt

Status Register. New status will be ored with any remaining

uncleared status (as defined by the contents of the returnedstatus)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — ERR -- Errorbits are set;

Bit 30 — RCV — Receive has occurred;

Bit 29 — XMT — Transmit command complete; and

Bit 25 — RMISS — Receive drop occurred dueto no buffers.

Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the samebit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

whentheInterrupt Status Register is written, enabling new status

to be stored, whenit is stored if a bit is stored that is not masked

by the Interrupt Mask,an interrupt is generated.

Header Buffer Address — Written by host to pass a set of header buffers to the INIC.

Data Buffer Handle — First register to be written by the Host to transfer a receive data

buffer to the INIC. This data is Host reference data. It is not used by the INIC,it is

returned with the data buffer. However,to insure integrity of the buffer, this register

must be interlocked with the Data Buffer Address register. Once the Data Buffer
117

INTEL Ex.1002.123

INTEL Ex.1002.124

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Address register has been written, neither register can be written until after’ the Data

Buffer Handle register has been read by THE MICROPROCESSOR.

‘14-— Data Buffer Address — Pointer to the data buffer being sent to the INIC by the Host.

Mustbe interlocked with the Data Buffer Handle register.

18— Command Buffer Address XMTO — Pointer to a set of command

buffers sent by the Host. THE MICROPROCESSORwill DMAthe buffers to local

DRAM foundon the FreeSType queue and queue the Command

Buffer Address XMTOwith the local address replacing the host Address.

1C— Command Buffer Address SMT1.

20— Command Buffer Address SMT2.

24-— Command Buffer Address SMT3.

28— Response Buffer Address -- Pointer to a set of response buffers sent

by the Host. These will be treated in the same fashion as the Command Buffer Address

registers.

UTILITY PROCESSOR.

Endingstatus will be handled by the utility processorin the samefashionasit is

handled by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30-error. Whenendstatus is stored an interrupt is generated.

Two additional registers are defined, CommandPointer and Data Pointer. The Hostis

responsible for insuring that the Data Pointeris valid and points to sufficient memory before
storing a commandpointer. Storing a commandpointer initiates command decode and

execution by the debug processor. The Host must not modify either commandor Data Pointer

until ending status has beenreceived, at which point a new command maybeinitiated.

Memory spaceis write only by the Host, reads will receive 00. The format is as follows:

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

04— Interrupt Status — Returnedstatus from ‘host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be stored until the host writes the Interrupt

Status Register. New status will be ored with any remaining
118

INTEL Ex.1002.124

INTEL Ex.1002.125

ALA-006K

10

15

20

25

08 -

0C -

10 —

Express Mail No. EV 406928085 US

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 - CC - Command Complete;

Bit 30 — ERR — Error;

Bit29 — Transmit Processor Halted;

Bit28 — Receive Processor Halted; and

Bit27 — Utility Processor Halted.

Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the samebit in the mask

register is set. When the Interrupt Mask register is written and as

a result astatus bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status
to be stored, whenit is stored if a bit is stored that is not masked

by the Interrupt Mask,an interrupt is generated.

CommandPointer — Points to commandto be executed. Storing

- this pointer initiates command decode and execution.

Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the commandfunction.

DEBUG INTERFACE.

In order to provide a mechanism to debug the microcode running on the microprocessor

sequencers, a debug process has been defined which will run ontheutility sequencer. This

processorwill interface with a control program on the host processor over PCI.

PCI INTERFACE.

This interface is defined in the combination of the Utility Processor and the Host

Interface Strategy sections, above.

119

INTEL Ex.1002.125

INTEL Ex.1002.126

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

COMMANDFORMAT.

Thefirst byte of the command, the commandbyte, defines the structure of the remainder

of the command.

COMMANDBYTE.

Thefirst five bits of the commandbyte are the commanditself. The next bit is used to

specify an alternate processor, and the last two bits specify which processors are intended for

the command.

PROCESSORBITS.

00 — Any Processor;

01 — Transmit Processor;

10 — Receive Processor; and

11 — Utility Processor.

ALTERNATE PROCESSOR.

This bit defines which processor should handle debug processingif the utility

processoris defined as the processorin debug.

0 — Transmit Processor; and

1 — Receive Processor.

SINGLE BYTE COMMANDS.

00 — Halt - This commandasynchronously halts the processor.

08 — Run - This commandstarts the processor.

10 — Step - This commandsteps the processor.

EIGHT BYTE COMMANDS.

18 — Break

0 - ne 2-3 4-7

Command Reserved Count Address

120

INTEL Ex.1002.126

INTEL Ex.1002.127

ALA-006K | Express Mail No. EV 406928085 US

10

15

20

25

30

This commandsetsa stop at the specified address. A count of 1 causes the specified

processorto halt the first time it executes the instruction. A count of 2 or more causes the

processorto halt after that number of executions. The processoris halted just before executing

the instruction. A count of 0 does not halt the processor, but causes a sync signal to be

generated. If a second processoris set to the same break address, the count data from thefirst

break request is used, and each time either processor executes the instruction the countis

decremented.

20 — Reset Break

0 1-3 4-7

Command . Reserved Address

This commandresets a previously set break point at the specified address. Reset break

fully resets that address. If multiple processors wereset to that break point,all will be reset.

28 — Dump

0 1 2-3 4-7

Command Descriptor Count Address

This commandtransfers to the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptorsutilizing

an address the addressfield is specified.

DESCRIPTOR.

00— Register - This descriptor uses both count and address fields. Both fields are

four byte based (a count of 1 transfers four bytes).

01— Sram - This descriptor uses both count and addressfields. Count is in four byte

blocks. Addressis in bytes, butif it is not four byte aligned,it is forced to the

lower four byte aligned address.

02— DRAM- This descriptor uses both count and address fields. Countis in four

| byte blocks. Addressis in bytes, but if it is not four byte aligned,it is forced to
the lower four byte aligned address.

121

INTEL Ex.1002.127

INTEL Ex.1002.128

ALA-006K Express Mail No. EV 406928085 US

15

20

25

30

03-— Cstore - This descriptor uses both count and addressfields. Countis in four

byte blocks. Addressis in bytes, butif it is not four byte aligned,it is forced to

the lower four byte aligned address.

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04— CPUSTATUS; -

OS— PC;

06-— ADDR_REGA;

07— ADDR_REGB;

08-— RAMBASE;

09-— FILE_BASE;

OA-— INSTR_REGL;

OB- INSTR_REGH;

0C-— MACDATA;

OD- DMA_EVENT;

OE- MISCEVENT;

OF— QINRDY;

10— QOUT_RDY;

11- LOCK STATUS;

12— STACK- This returns 12 bytes; and

13-— SENSEREG.

This register contains four bytes of data. If error status is posted for a command,if the

next commandthatis issued readsthis register, a code describing the error in more detail may
be obtained. If any commandother than a dumpofthis registeris issued after error status,
senseinformation will be reset.

30 — Load

0 1 _ 2-3 4-7

Command Descriptor Count Address

122

INTEL Ex.1002.128

INTEL Ex.1002.129

ALA-006K

10

15

20

25

30

Express Mail No. EV 406928085 US

This commandtransfers from the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the addressfield is specified.

DESCRIPTOR.

00-— Register - This descriptor uses both count and address fields. Both fields are
four byte based.

O01— Sram - This descriptor uses both count and addressfields. Count is in four byte

blocks. Address is in bytes, but if it is not four byte aligned,it is forced to the

lowerfour byte aligned address. ,

02— DRAM- This descriptor uses both count and addressfields. Countis in four

byte blocks. Address is in bytes, butif it is not four byte aligned, it is forced to

the lower four byte aligned address.

03— Cstore- This descriptor uses both count and address fields. Countis in four

byte blocks. Addressis in bytes, butif it is not four byte aligned,it is forced to
the lower four byte aligned address. This applies to WCSonly. |

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04 -

05 —

06 —

07 -

08 —

09 -

0A —

0B -

38 -

ADDR_REGA;

ADDR_REGB;

RAM_BASE;

FILE_BASE;

MACDATA;

QIN_RDY;

QOUTRDY;

DBG_ADDR;and

MAP.

This command allowsan instruction in ROM to be replaced byan instruction in WCS.

The newinstruction will be located in the Host-buffer. It will be stored in the first eight bytes

of the buffer, with the high bits unused. To reset a mappedoutinstruction, map it to location

00.

123

INTEL Ex.1002.129

INTEL Ex.1002.130

ALA-006K , Express. Mail No. EV 406928085 US

10

15

20

25

30

0 1-3 4-7

Command Address to Address to

Map To Map Out

HARDWARE SPECIFICATION.

FEATURES:

1) PERIPHERAL COMPONENT INTERCONNECT(PCI) INTERFACE.

a) Universal PCIinterface supports both 5.0V and 3.3V signaling environments;

b) Supports both 32-bit and 64 bit PCIinterface;

c) Supports PCI clock frequencies from 1S5MHz to 66MHz;

d) High performance bus mastering architecture;

e) Host memory based communications reduce register accesses;

f) Host memory based interrupt status word reducesregister reads;

g) Plug and Play compatible;

h) PCI specification revision 2.1 compliant;

i) PCI bursts up to 512 bytes;

j) Supports cacheline operations up to 128 bytes;

k) Both big-endian andlittle-endian byte alignments supported; and

1) Supports Expansion ROM.

2) NETWORK INTERFACE.

a) Four internal 802.3 and ethernet compliant Macs;

b) Media Independent Interface (MID supports external PHYs;

c) 1OBASE-T, 100BASE-TX/FX and 100BASE-T4 supported;

d) Full and half-duplex modes supported; .
e) Automatic PHYstatus polling notifies system of status change;

f) Provides SNMPstatistics counters;

g) Supports broadcast and multicast packets;

h) Provides promiscuous mode for network monitoring or multiple unicast address

detection;

i) Supports “huge packets” up to 32KB;

j) Mac-layer loop-back test mode; and
124

INTEL Ex.1002.130

INTEL Ex.1002.131

ALA-006K ’ Express Mail No. EV 406928085 US

10

15

20

25

30

3)

k) Supports auto-negotiating Phys.

MEMORYINTERFACE.

a) External DRAM buffering of transmit and receive packets;

b) Buffering configurable as 4MB, 8MB, 16MB or 32MB;

c) 32-bit interface supports throughput of 224MB/s;

d) Supports external FLASH ROM upto 4 MB,for diskless boot applications; and

e) Supports external serial EEPROM for custom configuration and Mac addresses.

4) PROTOCOL PROCESSOR.

a) High speed, custom, 32-bit processor executes 66 million instructions per second;

b) Processes IP, TCP and NETBIOSprotocols;

c) Supports up to 256 resident TCP/IP contexts; and

d) Writable control store (WCS)allowsfield updates for feature enhancements.

5) POWER.

a) 3.3V chip operation; and

b) PCI controlled 5.0V/3.3V I/O cell operation.

6) PACKAGING.

a) 272-pin plastic ball grid array;

b) 91 PCI signals;

c) 68 MIIsignals;

d) 58 external memory signals;

e) 1 clock signal;

f) 54 signals split between power and ground; and

g) 272 total pins.

GENERAL DESCRIPTION.

The microprocessor(see Fig. 46) is a 32-bit, full-duplex, four channel, 10/100-Megabit

per second (Mbps),Intelligent Network Interface Controller (INIC), designed to provide high-
speed protocol processing for server applications. It combines the functions of a standard

125

INTEL Ex.1002.131

INTEL Ex.1002.132

ALA-006K ; Express Mail No. EV 406928085 US

10

15

20

25

30

networkinterface controller and a protocol processor within a single chip. Although designed

specifically for server applications, the microprocessor can be used by PCs, workstations and

routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MIH compliant Phys and Synchronous DRAM
(SDRAM), the INIC comprises four complete ethernet nodes. It contains four 802.3/ethernet

compliant Macs, a PC] BusInterface Unit (BIU), a memory controller, transmit fifos, receive

fifos and a custom TCP/IP/NETBIOSprotocol processor. The INIC supports 10Base-T ,

100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of appropriate

Phys. . “
The INIC Macsprovidestatistical information that may be used for SNMP. The Macs

operate in promiscuous modeallowing the INIC to function as a network monitor, receive

broadcast and multicast packets and implement multiple Mac addresses for each node.

Any 802.3/MI] compliant PHYcan beutilized, allowing the INIC to support 1OBASE-

_ T, lOBASE-T2, 1OOBASE-TX, 100Base-FX and 100BASE-T4 as well as future interface

standards. PHY identification and initialization is accomplished through host driver

initialization routines. PHY status registers can be polled continuously by the INIC and

detected PHY status changesreported to the host driver. The Maccan be configured to support

a maximum framesize of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU providesa direct interface to the PCI bus for both slave

and master functions. The INIC is capable of operating in either a 64-bit or 32-bit PCI

environment, while supporting 64-bit addressing in either configuration. PCI bus frequencies

up to 66MHz are supported yielding instantaneous bustransfer rates of 533MB/s. Both 5.0V
and 3.3V signaling environments can be utilized by the INIC. Configurable cache-line size up

to 256B will accommodate future architectures, and Expansion ROM/Flash support allowsfor
diskless system booting. Non-PC applications are supported via programmable big andlittle

endian modes. Host based communication has been utilized to provide the best system

performancepossible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration
space. External pull-up and pull-downresistors, on the memory I/O pins, allow selection of

various features during chip reset. Support of an external eeprom allowsfor local storage of

configuration information such as Mac addresses.

126

INTEL Ex.1002.132

INTEL Ex.1002.133

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

External SDRAMprovides framebuffering, which is configurable as 4MB, 8MB, 16MB
or 32MBusing the appropriate SIMMs.Useof -10 speed grades yields an external buffer

bandwidth of 224MB/s. The buffer provides temporary storage ofboth incoming and outgoing

frames. The protocol processor accesses the frames within the buffer in order to implement

TCP/IP and NETBIOS. Incoming frames are processed, assembled then transferred to host

memory underthe control of the protocol processor. For transmit, data is moved from host

memory to buffers where various headers are created before being transmitted out via the Mac.

1) CORES/CELLS.

a) LSI Logic Ethernet-110 Core, 100Base and 10Base Mac with MIIinterface;

b) LSI Logic single port SRAM,triple port SRAM and ROMavailable;

c) LSI Logic PCI 66MHz, 5V compatible I/O cell; and

d) LSI Logic PLL.

2) DIE SIZE / PIN COUNT.

LSI Logic G10 process. Fig. 47 showsthe area on the die of each module.

3) DATAPATH BANDWIDTH(SeeFig.48).

4) CPU BANDWIDTH(SeeFig. 49).

5) PERFORMANCE FEATURES.

a) 512 registers improve performance through reduced scratch ram accesses and reduced

instructions;

b) Register windowingeliminates context-switching overhead;
c) Separate instruction and data paths eliminate memory contention;

d) Totally resident control store eliminates stalling during instruction fetch;

e) Multiple logical processors eliminate context switching and improvereal-time

response;)
f) Pipelined architecture increases operating frequency;

g) Shared register and scratch ram improveinter-processor communication;

h) Fly-by state-Machineassists address compare and checksum calculation;

i) TCP/IP-context caching reduceslatency;

}) Hardware implemented queues reduce CPU overheadandlatency;

k) Horizontal microcode greatly improves instructionefficiency;

1) Automatic frame DMAandstatus between Mac and DRAMbuffer; and
127

INTEL Ex.1002.133

INTEL Ex.1002.134

ALA-006K ; Express Mail No. EV 406928085 US

m) Deterministic architecture coupled with context switching eliminates processorstalls.

128

INTEL Ex.1002.134

INTEL Ex.1002.135

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

PROCESSOR.

Theprocessoris a convenient means to provide a programmable state-machine which

is capable of processing incoming frames, processing host commands, directing network

traffic and directing PCI bustraffic. Three processors are implemented using shared hardware ©

in a three-level pipelined architecture which launches and completes a single instruction for

every clock cycle. The instructions are executed in three distinct phases corresponding to each

of the pipeline stages where each phaseis responsible for a different function.

Thefirst instruction phase writes the instruction results of the last instruction to the

destination operand, modifies the program counter (Pc), selects the address source for the

instruction to fetch, then fetches the instruction from the control store. The fetched instruction

is then stored in the instruction register at the end of the clock cycle.

The processorinstructions reside in the on-chip control-store, which is implemented as

a mixture of ROM and SRAM.The ROMcontains 1K instructionsstarting at address 0x0000

and aliases each 0x0400 locations throughoutthe first 0x8000 ofinstruction space. The SRAM

(WCS)will hold up to 0x2000instructionsstarting at address 0x8000 andaliasing each

0x2000 locations throughoutthe last 0x8000 ofinstruction space. The ROM and SRAMare

both 49-bits wide accountingfor bits [48:0] of the instruction microword. A separate mapping

ram provides bits [55:49] of the microword (MapAddr)to allow replacementof faulty ROM

based instructions. The mapping ram has a configuration of 128x7 whichis insufficient to

allow a separate map address for each of the 1K ROM locations. To allow re-mapping of the

entire 1K ROM space, the map ram addresslines are connected to the address bits Fetch[9:3].

Theresult is that the ROM is re-mappedin blocks of 8 contiguouslocations.

The second instruction phase decodes the instruction which wasstored in the

instruction register.It is at this point that the mapaddress is checked for a non-zero value

‘which will cause the decoder to force a Jmp instruction to the map address. If a non-zero value

is detected then the decoderselects the source operands for the Alu operation based on the

values of the OpdASel, OpdBSel and AluOpfields. These operandsare then stored in the

decoderegister at the end ofthe clock cycle. Operands may originate from File, SRAM,or

flip-flop based registers. The second instruction phase is also wheretheresults of the previous

instruction are written to the SRAM.

129

INTEL Ex.1002.135

INTEL Ex.1002.136

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

Thethird instruction phase is when the actual Alu operation is performed,thetest

conditionis selected and the Stack push and popare implemented. Results of the Alu
operation are stored in the results register at the end of the clock cycle.

Fig. 50 is a block diagram of the CPU. Fig. 50 showsthe hardware functions

associated with each ofthe instruction phases. Note that various functions have been
distributedacrossthethree phasesof the instruction execution in order to minimize the

combinatorial delays within any given phase.

INSTRUCTIONSET.

The micro-instructions are divided into six types according to the program control

directive. The micro-instruction is further divided into sub-fields for which thedefinitionsare

dependent uponthe instruction type. The six instruction typesare listed in Fig. 51.

All instructions (see Fig. 51) include the Alu operation (AluOp), operand “A”select

(OpdASel), operand “B” select (OpdBSel) and Literal fields. Other field usage depends upon
the instruction type.

The“jump condition code” (Jcc) instruction causes the program counterto be altered if

the condition selected by the “test select” (TstSel) field is asserted. The new program counter

(Pc) value is loaded from either the Literal field or the AluOutas described in the following

section and the Literal field may be used as a source for the Alu or the ram addressif the new

Pc valueis sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally.

The new program counter (Pc) value is loaded from either the Literal field or the AluOutas

described in the following section. The format allowsinstruction bits 23:16 to be used to

perform a flag operation andtheLiteral field may be used as a sourcefor the Alu or the ram

_address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counterto be altered

_ unconditionally. The new program counter (Pc) value is loaded from eitherthe Literal field or

the AluOutas described in the following section. The old program countervalueis stored on

the top location of the Pc-Stack which is implemented as a LIFO memory.Theformatallows

instruction bits 23:16 to be used to perform a flag operation and the Literal field may be used

as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

130

INTEL Ex.1002.136

INTEL Ex.1002.137

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

The “Nxt” (Nxt) instruction causes the program counter to increment. The format |
allowsinstruction bits 23:16 to be used to perform a flag operation and the Literal field may be

used as a source for the Alu or the ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction -
in whichthe “flag operation” (FlgSel) field is set to a value of Ohff. The current Pc value is

replaced with the last value stored in the stack. The Literal field may be used as a source for

the Alu or the ram address.

The Mapinstruction is provided to allow replacement of instructions which have been

stored in ROM andis implemented any time the “map enable” (MapEn)bit has been set and

the contentof the “map address” (MapAddr)field is non-zero. The instruction decoder forces a

Jumpinstruction with the Alu operation and destination fields set to pass the MapAdadrfield to

the program control block.

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and

_ TstSel. The behavior of the program control is defined with.the "C-like" description in Fig. 52.

Figs. 53-61 show ALUoperations, selected operands,selected tests, and flag operations.

SRAM CONTROL SEQUENCER(SramCtrl).

SRAMis the nexus for data movement within the INIC. A hierarchy of sequencers,

working in concert, accomplish the movementofdata between DRAM, SRAM,CPU,ethernet

and the Pci bus. Slave sequencers, provided with stimulus from master sequencers, request

data movementoperations by way of the SRAM,Pci bus, DRAM andFlash. The slave
sequencersprioritize, service and acknowledgethe requests.

The data flow block diagram of Fig. 62 showsall of the master and slave sequencers of

the INIC product. Request information suchas r/w, address, size, endian and alignmentare

represented by each request line. Acknowledge information to master sequencers include only

the size of the transfer being acknowledged. | |
The block diagram ofFig. 63 illustrates how data movement is accomplished for a Pci

slave write to DRAM.Notethat the Psi (Pci slave in) module functions as both a master

sequencer. Psi sends a write request to the SramCtrl module. Psi requests Xwr to move data

from SRAM to DRAM.Xwrsubsequently sends a read request to the SramCtrl module then

writes the data to the DRAM via the Xctrl module. As each piece ofdata is moved from the

SRAM to Xwr, Xwr sends an acknowledgeto the Psi module.
131

INTEL Ex.1002.137

INTEL Ex.1002.138

ALA-006K Express Mail No. EV 406928085 US

10

20

25

30

The SRAM control sequencerservices requests to store to, or retrieve data from an

SRAMorganized as 1024 locations by 128bits (16KB). The sequencer operates at a frequency

of 133MHz,allowing both a CPU access and a DMA accessto occur during a standard

66MHz CPU cycle. One 133MHzcycle is reserved for CPU accesses during each 66MHz

cycle while the remaining 133MHzcycle is reserved for DMAaccesseson a prioritized basis.

The block diagram of Fig. 64 showsthe major functions of the SRAM control
sequencer. A slave sequencer begins by asserting a request along with r/w, ram address,

endian, data path size, data path alignment and request size. SramCtrl prioritizes the requests.

The request parameters are then selected by a multiplexer which feeds the parametersto the

SRAMvia a register. The requestor provides the SRAM address which when coupled with the

other parameters controls the input and output alignment. SRAM outputs are fed to the output

aligner via a register. Requests are acknowledgedin parallel with the returned data.

Fig. 65 is a timing diagram depicting two ram accesses during a single 66MHz clock

cycle..

EXTERNAL MEMORY CONTROL (Xctrl).
Xctrl (See Fig. 66) provides the facility whereby Xwr, Xrd, Dcfg and Eectrl access

external Flash and DRAM.Xctrl includes an arbiter, i/o registers, data multiplexers, address

multiplexers and control multiplexers. Ownership of the external memory interace is requested

by each block and granted to each of the requesters by the arbiter function. Once ownership

has been granted the multiplexers select the address, data and control signals from owner,

allowing access to external memory.

EXTERNAL MEMORY READ SEQUENCER(Xrd).

The Xrd sequenceracts only as a slave sequencer. Servicing requests issued by master

sequencers, the Xrd sequencer moves data from external SDRAMorflash to the SRAM,via

the Xctrl module, in blocks of 32 bytes or less. The nature of the SDRAM requires fixed burst

sizes for each ofit's internal banks with ras precharge intervals between each access. By

selecting a burst size of 32 bytes for SDRAMreads and interleaving bank accesses on a 16
byte boundary, we can ensure that the ras precharge interval for thefirst bankis satisfied

before burst completion for the second bank,allowingusto re-instruct the first bank and

continue with uninterrupted DRAM access. SDRAMsrequire a consistent burst size be
132

f

INTEL Ex.1002.138

INTEL Ex.1002.139

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

utilized each and every time the SDRAMis’accessed. Forthis reason,if an SDRAM access "

does not begin or end on a 32 byte boundary, SDRAM bandwidth will be reduced dueto less

than 32 bytes of data beingtransferred during the burst cycle.

Fig. 67 depicts the major functional blocks of the Xrd external memory read sequencer.

Thefirst step in servicing a request to move data from SDRAMto SRAMistheprioritization

of the master sequencer requests. Next the Xrd sequencer takes a snapshot of the DRAM read

address and applies configuration information to determine the correct bank, row and column
address to apply. Oncesufficient data has been read, the Xrd sequencer issues a write request

to the SramCtrl sequencer which in turn sends an acknowledge to the Xrd sequencer. The Xrd
sequencer passes the acknowledge alongto the level two master with a size code indicating

how muchdata was written during the SRAM cycle allowing the update of pointers and

counters. The DRAM read and SRAMwrite cycles repeat until the original burst request has

been completed at which point the Xrd sequencerprioritizes any remaining requests in

preparation for the next burst cycle. ,

Contiguous. DRAM burst cycles are not guaranteed to the Xrd sequenceras an

algorithm is implemented which ensures highestpriority to refresh cycles followed byflash

ACCESSES, DRAMwrites then DRAMreads.

Fig. 68 is a timing diagram illustrating how data is read from SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. BankAis first

selected/activated followed by a read commandtwoclock cycles later. The bank

select/activate for bank B is next issued as read data begins returning two clocksafter the read

commandwasissued to bank A. Two clock cycles before we need to receive data from bank B

weissue the read command. Onceall 16 bytes have been received from bank A we begin

receiving data from bank B.

EXTERNAL MEMORYWRITE SEQUENCER(Xwr).

The Xwr sequenceris a slave sequencer. Servicing requests issued by master

sequencers, the Xwr sequencer moves data from SRAM to the external SDRAMorflash, via

the Xctrl module, in blocks of 32 bytes or less while accumulating a checksum ofthe data

‘moved. The nature of the SDRAM requiresfixed burst sizes for each ofit's internal banks with

ras precharge intervals between each access. By selecting a burst size of 32 bytes for SDRAM

writes and interleaving bank accesses on a 16 byte boundary, we can ensurethat the ras
133

INTEL Ex.1002.139

INTEL Ex.1002.140

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

prechageinterval forthe first bank is satisfied before burst completion for the second bank,

allowing usto re-instruct the first bank and continue with uninterrupted DRAM access.

SDRAMs require a consistent burst size be utilized each and every time the SDRAMis
accessed. For this reason, if an SDRAMaccessdoes not begin or end on a 32 byte boundary,

SDRAMbandwidth will be reduced dueto less than 32 bytes of data being transferred during

the burst cycle.

Fig. 69 depicts the major functional blocks of the Xwr sequencer. Thefirst step in

servicing a request to move data from SRAM to SDRAM istheprioritization of the level two
master requests. Next the Xwr sequencer takes a Snapshot of the DRAM write address and

applies configuration information to determine the correct DRAM, bank, row and column
address to apply. The Xwr sequencer immediately issues a read command to the SRAM to

which the SRAM responds with both data and an acknowledge. The Xwr sequencer passes the

acknowledgeto the level two master along with a size code indicating how much data was

read during the SRAM cycle allowing the update ofpointers and counters. Oncesufficient data

has been read from SRAM,the Xwr sequencerissues a write commandto the DRAMstarting

the burst cycle and computing a checksum asthe data flys by. The SRAM read cycle repeats

until the original burst request has been completed at which point the Xwr sequencer

prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the Xwr sequenceras an

algorithm is implemented which ensureshighest priority to refresh cycles followed by flash
accesses then DRAM writes. |

Fig. 70 is a timing diagram illustrating how data is written to SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. BankAisfirst

selected/activated followed by a write command two clock cycles later. The bank

select/activate for bank B is next issued in preparation for issuing the second write command.

Assoonasthe first 16 byte burst to bank A completes we issue the write commandfor bank B

and begin supplying data.

PCI MASTER-OUT SEQUENCER(Pmo).

The Pmo sequencer (See Fig. 71) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmo sequencer moves data from an SRAM basedfifo to a Pci

target, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus
134

INTEL Ex.1002.140

INTEL Ex.1002.141

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

30

dictates the use of the write line commandto ensure optimal system performance. The write

line commandrequires that the Pmo sequencer be capable of transferring a whole multiple
(1X, 2X, 3X,...) of cache lines of whichthe size is set through the Pci configuration registers.

To accomplish this end, Pmo will automatically perform partial bursts until it has aligned the

transfers on a cache line boundary at which timeit will begin usage of the write line command.

The SRAM fifo depth, of 256 bytes, has been chosen in order to allow Pmo to accommodate

cache line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmowill

perform multiple, contiguouscacheline bursts until it has exhausted the supply of data.
Pmoreceives requests from two separate sources; the DRAM to Pci (D2p) module and

the SRAM to Pci (S2p) module. An operationfirst begins with prioritization of the requests

where the S2p module is given highest priority. Next, the Pmo module takes a Snapshotofthe

SRAMfifo address and uses this to generate read requests for the SramCtrl sequencer. The

Pmo module then proceedsto arbitrate for ownership of the Pci bus via the PciMstrIO module.

Once the Pmo holding registers have sufficient data and Pci bus mastership has been granted,.

the Pmo module beginstransferring data to the Pci target. For each successful transfer, Pmo

sends an acknowledge and encodedsize to the master sequencer, allow it to updateit's internal

pointers, counters and status. Once the Pci burst transaction has terminated, Pmo parks on the

Pci bus unless anotherinitiator has requested ownership. Pmoagainprioritizes the incoming -

requests and repeats the process.

PCI MASTER-OUT SEQUENCER(Pmi).

The Pmi sequencer (See Fig. 72) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmi sequencer movesdata from a Pci target to an SRAM
based fifo, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus

dictates the use of the read multiple commandto ensure optimal system performance. The read

multiplecommand requires that the Pmi sequencerbe capable oftransferring a cacheline or

more of data. To accomplish this end, Pmi will automatically perform partial cacheline bursts
until it has aligned the transfers on a cacheline boundary at whichtimeit will begin usage of

the read multiple command. The SRAMfifo depth, of 256 bytes, has been chosen in order to

allow Pmi to accommodate cacheline sizes up to 128 bytes. Provided the cacheline sizeis

less than 128 bytes, Pmi will perform multiple, contiguous cacheline bursts until it has filled

the fifo.

135

INTEL Ex.1002.141

INTEL Ex.1002.142

ALA-006K | , Express Mail No. EV 406928085 US

10

20

25

30

Pmireceive requests from two separate sources; the Pci to DRAM (P2d) module and

the Pci to SRAM (P2s) module. An operation first begins with prioritization of the requests
where the P2s moduleis given highest priority. The Pmi module then proceedsto arbitrate for

ownership of the Pci bus via the PciMstrIO module. Once the Pci bus mastership has been

granted and the Pmiholdingregisters have sufficient data, the Pmi module beginstransferring

data to the SRAM fifo. For each successful transfer, Pmi sends an acknowledge and encoded

size to the master sequencer, allowing it to update it's internal pointers, counters andstatus.

Oncethe Pci burst transaction has terminated, Pmi parks on the Pci bus unless anotherinitiator

has requested ownership. Pmi again prioritizes the incoming requests and repeats the process.

DRAM TO PCI SEQUENCER(D2P).

The D2p sequencer (See Fig. 73) acts is a master sequencer. Servicing channel requests

issued by the CPU,the D2p sequencer manages movementofdata from DRAMto the Pci bus

by issuing requests to both the Xrd sequencer and the Pmo sequencer. Datatransfer is

accomplished using an SRAM basedfifo through which datais staged. |
D2p can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, D2p fetches a DMAdescriptor from an SRAMlocation

dedicated to the requesting channel which includes the DRAM address, Pci address, Pci endian

and request size. D2p then issues a request to the D2s sequencer causing the SRAM basedfifo

to fill with DRAM data. Oncethe fifo contains sufficient data for a Pci transaction, D2s issues

a request to Pmo which in turn movesdata from the fifo to a Pci target. The process repeats

until the entire request has beensatisfied at which time D2p writes endingstatusin to the

SRAM DMAdescriptor area and sets the channel donebit associated with that channel. D2p

then monitors the DMA channels for additional requests. Fig. 74 is an illustration showing the

major blocks involved in the movementofdata from DRAM toPcitarget.

PCI TO DRAM SEQUENCER(P2d).

The P2d sequencer (See Fig. 75) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU,the P2d sequencer manages movementofdata
from Pci bus to DRAM byissuing requests to both the Xwr sequencer and the Pmi sequencer.

Datatransfer is accomplished using an SRAMbasedfifo through whichdatais staged.

136

INTEL Ex.1002.142

INTEL Ex.1002.143

ALA-006K | | Express Mail No. EV 406928085 US

10

15

20

25

30

P2d can receive requests from any of the processor's thirty-two DMA channels. Once a

commandrequest has been detected, P2d, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAMaddress, Pci address, Pci endian and request size. P2d then issues a request to Pmo

which in tum moves data from the Pci target to the SRAM fifo. Next, P2d issues a request to

the Xwr sequencer causing the SRAM basedfifo contents to be written to the DRAM.The

process repeats until the entire request has been satisfied at which time P2d writes ending

status in to the SRAM DMAdescriptor area and sets the channel donebit associated with that

channel. P2d then monitors the DMA channels for additional requests. Fig. 76 is an illustration

showing the major blocks involved in the movementofdata from a Pci target to DRAM.

SRAM TO PCI SEQUENCER(S2p).

The S2p sequencer (See Fig. 77) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU,the S2p sequencer manages movementofdata

from SRAMto the Pci bus by issuing requests to the Pmo sequencer

S2p can receive requests from any of the processor's thirty-two DMAchannels. Once a
command request has been detected, S2p, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includesthe

SRAMaddress, Pci address, Pci endian and request size. S2p then issues a request to Pmo

which in turn moves data from the SRAMto a Pci target. The process repeats until the entire

request has beensatisfied at which time S2p writes ending status in to the SRAM DMA

descriptor area and sets the channel donebit associated with that channel. S2p then monitors

the DMA channels for additional requests. Fig. 78 is an illustration showing the major blocks

involved in the movementof data from SRAM to Pci target.

PCI TO SRAM SEQUENCER(P2s).

The P2s sequencer (See Fig. 79) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P2s sequencer manages movementofdata

from Pci bus to SRAM byissuing requests to the Pmi sequencer.

P2s can receive requests from any ofthe processor's thirty-two DMA channels. Once a

command request has been detected, P2s, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includes the

137 .

INTEL Ex.1002.143

INTEL Ex.1002.144

ALA-006K | Express Mail No. EV 406928085 US

10

15

20

25

30

SRAM address, Pci address, Pci endian and request size. P2s then issues a request to Pmo

which in turn moves data from the Pci target to the SRAM.The process repeats until the entire

request has beensatisfied at which time P2s writes ending status in to the DMAdescriptor area

of SRAMandsets the channel donebit associated with that channel. P2s then monitors the

DMAchannels for additional requests. Fig. 80 is an illustration showing the major blocks

involved in the movementofdata from a Pci target to DRAM.

DRAM TO SRAM SEQUENCER(D2s). |

The D2s sequencer (See Fig. 81) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the D2s sequencer manages movementofdata

from DRAM to SRAM by issuing requests to the Xrd sequencer.

D2s can receive requests from any ofthe processor's thirty-two DMAchannels. Once a

commandrequest has been detected, D2s, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAMaddress, SRAM address and request size. D2s then issues a request to the Xrd

sequencer causing the transfer of data to theSRAM.Theprocessrepeats until the entire

request has beensatisfied at which time D2s writes ending status in to the SRAM DMA

descriptor area and sets the channel donebit associated with that channel. D2s thenmonitors
the DMAchannels for additional requests. Fig. 82 is an illustration showing the major blocks
involved in the movementofdata from DRAM to SRAM.

SRAM TO DRAM SEQUENCER(82d).

The S2d sequencer (See Fig. 83) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU,the $2d sequencer manages movementofdata

from SRAM to DRAMbyissuing requests to the Xwr sequencer.

$2d can receive requests from any ofthe processor's thirty-two DMA channels. Once a

commandrequest has been detected, S2d, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel whichincludes the
DRAMaddress, SRAM address, checksum reset and request size. S2d then issues a request to

the Xwr sequencercausing the transfer of data to the DRAM.Theprocessrepeats until the

entire request has been satisfied at which time S2d writes.ending status in to the SRAM DMA
descriptor area and sets the channel donebit associated with that channel. S2d then monitors

138

INTEL Ex.1002.144

INTEL Ex.1002.145

ALA-006K . Express Mail No. EV 406928085 US

10

15

20

25

30

the DMA channels for additional requests. Fig. 84 is an illustration showing the major blocks

involved in the movement of data from SRAM to DRAM.

PCI SLAVE INPUT SEQUENCER(Psi).

The Psi sequencer (See Fig. 85) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pei master, the Psi sequencer manages movementofdata from
Pci bus to SRAM andPci bus to DRAM via SRAMbyissuing requests to the SramCtrl and
Xwrsequencers.

Psi manages write requests to configuration space, expansion rom, DRAM, SRAM and

memory mappedregisters. Psi separates these Pci bus operations in to two categories with

different action taken for each. DRAM accessesresult in Psi generating write request to an

SRAMbuffer followed with a write request to the Xwr sequencer. Subsequent write or read

DRAMoperationsare retry terminated until the buffer has been emptied. An eventnotification

is set for the processor allowing message passing to occur through DRAM space.

All other Pci write transactions result in Psi posting the write information including Pci

address, Pci byte marks and Pci data to a reserved location in SRAM,thensetting an eventflag

which the event processor monitors. Subsequent writes or reads of configuration, expansion

rom, SRAMorregisters are terminatedwith retry until the processor clears the eventflag. This
allows the INIC pipelining levels to a minimum for the posted write and give the processor

ample time to modify data for subsequent Pci read operations.

Fig. 85 depicts the sequence of events when Psiis the target of a Pci write operation.

‘Note that events 4 through’7 occur only whenthe write operation targets the DRAM.

PCI SLAVE OUTPUT SEQUENCER(Pso). °

' The Pso sequencer (See Fig. 86) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pci master, the Pso sequencer manages movementofdatato Pci

bus from SRAMandto Pci bus from DRAM via SRAMbyissuing requests to the SramCtrl

and Xrd sequencers. ,

Pso managesread requests to configuration space, expansion rom, DRAM, SRAM and

memory mapped registers. Pso separates these Pci bus operations in to two categories with

different action taken for each. DRAM accessesresult in Pso generating read request to the
Xrd sequencer followed with a read request to SRAM buffer. Subsequent write or read DRAM

139 r

INTEL Ex.1002.145

INTEL Ex.1002.146

ALA-006K ~ Express Mail No. EV 406928085 US

15

20

25

operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information

including Pci address and Pci byte marksto a reserved location in SRAM,thensetting an

event flag which the event processor monitors. Subsequentwrites or reads of configuration,

expansion rom, SRAMorregisters are terminated with retry until the processor clears the

event flag. This allows the INIC to use a microcoded response mechanism to return data for

the request. The processor decodes the request information, formulates or fetches the requested

data andstores it in SRAM thenclears the event flag allowing Pso to fetch the data and return

it on the Pci bus.

Fig. 78 depicts the sequence of events when Psois the target of a Pci read operation.

FRAME RECEIVE SEQUENCER(RcevX).

The receive sequencer (See Fig. 87) (RevSeq) analyzes and manages incomingpackets,
stores the result in DRAM buffers, then notifies the processor through the receive queue

(RcvQ) mechanism. The process begins when a buffer descriptor is available at the output of

the FreeQ. RevSeq issues a request to the Qmg which respondsby supplying the buffer

descriptor to RcvSeq. RevSeq then waits for a receive packet. The Mac, network, transport and

session information is analyzed as each byte is received and stored in the assembly register

(AssyReg). When four bytes of information is available, RcvSeq requests a write of the data to

the SRAM.Whensufficient data has been stored in the SRAM basedreceive fifo, a DRAM
write requestis issued to Xwr. The process continues until the entire packet has been received

at which point RevSegqstores the results of the packet analysis in the beginning of the DRAM

buffer. Once the buffer and status have both been stored, RevSeq issues a write-queue request

to Qmg. Qmgrespondsbystoring a buffer descriptor and a status vector provided by RevSeq.

The process then repeats. If RcvSeq detects the arrival of a packet before a free bufferis

available,it ignores the packetand sets the FrameLoststatus bit for the next received packet.

. Fig. 88 depicts the sequence of events for successful reception of a packet followed by
a definition of the receive buffer and the buffer descriptor as stored on the RevQ. Fig. 89

showsthe Receive Buffer Descriptor. Figs. 90-92 show the Receive Buffer Format.

140

INTEL Ex.1002.146

INTEL Ex.1002.147

ALA-006K Express Mail No. EV 406928085 US

10

15.

20

25

FRAME TRANSMIT SEQUENCER(XmtX).

The transmit sequencer (See Fig. 93) (XmtSeq) analyzes and managesoutgoing

packets, using buffer descriptors retrieved from the transmit queue (XmtQ)then storing the
descriptor for the freed buffer in the free buffer queue (FreeQ). The process begins when a

buffer descriptor is available at the output of the XmtQ. XmtSeq issues a request to the Qmg

which respondsby supplying the buffer descriptor to XmtSeq. XmtSeq then issues a read

request to the Xrd sequencer. Next, XmtSeq issues a read request to SramCtrl then instructs

the Macto begin frame transmission. Once the frame transmission has completed, XmtSeq

stores the buffer descriptor on the FreeQ thereby recycling the buffer.

Fig. 94 depicts the sequence of events for successful transmission of a packet followed

by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ. Fig. 95

showsthe Transmit Buffer Descriptor. Fig. 96 shows the Transmit Buffer Format. Fig. 97

shows the Transmit Status Vector.

QUEUE MANAGER(Qmg).

The INIC includes special hardware assist for the implementation of message and

pointer queues. The hardwareassist is called the queue manager (See Fig. 98) (Qmg) and
manages the movementofqueue entries between CPU and SRAM,between DMA sequencers

and SRAMas well as between SRAM and DRAM.Queues comprisethree distinct entities; the
queue head (QHd), the queue tail (QT]) and the queue body (QBdy). QHdresides in 64 bytes

of scratch ram and provides the area to which entries will be written (pushed). QT]resides in

64 bytes of scratch ram and contains queue locations from whichentries will be read (popped).

QBdyresides in DRAMandcontains locations for expansion of the queue in order to

minimize the SRAM space requirements. The QBdy size depends upon the queue being
accessed andtheinitialization parameters presented during queueinitialization.

141

INTEL Ex.1002.147

INTEL Ex.1002.148

ALA-006K Express Mail No. EV 406928085 US

10-

15

20

25

30

Qmgaccepts operations from both CPU and DMAsources(See Fig. 99). Executing
these operations at a frequency of 133MHz, Qmgreserves even cycles for DMA requests and

reserves odd cycles for CPU requests. Valid CPU operationsincludeinitialize queue (InitQ),

write queue (WrQ) and read queue (RdQ). Valid DMArequests include read body (RdBdy)
and write body (WrBdy). Qmg working in unison with Q2d and D2q generate requests to the

Xwrand Xrd sequencers to control the movement of data between the QHd, QTI and QBdy.

Fig. 98 shows themajor functions of Qmg.Thearbiter selects the next operation to be

performed. The dual-ported SRAM holds the queue variables HdWrAddr, HdRdAddr,

TlWrAddr, TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request,

fetches the queue variables from the queue ram (Qram), modifies the variables based on the

current state and the requested operation then updates the variables and issuesa read or write

request to the SRAM controller. The SRAM controller services the requests by writing thetail

or reading the head andreturning an acknowledge.

DMA OPERATIONS.

DMAoperations are accomplished through a combinationof thirtytwo DMA channels

(DmaCh) and seven DMA sequencers (DmaSeq). Each DMAchannel provides a mechanism
whereby a CPUcanissue a commandto any of the seven DMA sequencers. Whereas the

DMAchannels are multi-purpose, the DMA sequencers they commandare single purpose as

shownin Fig. 100.

The processors manage DMAin the following way. The processor writes a DMA

descriptor to an SRAM location reserved for the DMA channel. The format of the DMA
descriptor is dependent upon the targeted DMA.sequencer. The processor then writes the

DMAsequencer numberto the channel commandregister.

' Each of the DMAsequencerspolls all thirtytwo DMAchannels in search of commands

to execute. Once a commandrequest has been detected, the DMA sequencerfetches a DMA

descriptor from a fixed location in SRAM. The SRAM locationis fixed and is determined by

the DMA channel number. The DMA sequencer loads the DMAdescriptorinto it's own

registers, executes the command, then overwrites the DMA descriptor with ending status.

Once the commandhashalted, due to completion or error, and the endingstatus has been

written, the DMA sequencersets the donebit for the current DMA channel.

142.

INTEL Ex.1002.148

INTEL Ex.1002.149

ALA-006K Express Mail No. EV 406928085 US

10

15

20

25

The donebit appears in a DMAevent register which the CPU can examine. The CPU

fetches ending status from SRAM,then clears the donebit by writing zeroes to the channel

command (ChCmd)register. The channel is now ready to accept another command.

The format of the channel commandregister is as shown in Fig. 101. The format of the

P2dor P2s descriptor is as shown in Fig. 102. The format of the S2p or D2p descriptoris as

shownin Fig. 103. The format of the $2d, D2d or D2s descriptor is as shown in Fig. 104. The

format of the ending status of all channels is as shownin Fig. 105. The format of the ChEvnt

register is as shown in Fig. 106.: Fig. 107 is a block diagram of MAC CONTROL(Macctrl).

LOAD CALCULATIONS.

The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where:

N = numberofjobs in the system (either in progress or in a queue),

X = system throughput,

R = response time (which includes time waiting in queues).

U =X * S (from Little’s Law) where:

S = service time,

U = utilization.

R=S/(1-U) for exponential service times (which is the worst-case assumption).

A 256-byte frame at 100Mb/sec takes 20 usec per frame.

4 * 100 Mbit ethernets receiving at full framerateis:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame,

102000 frames/sec @ 512 bytes/frame,

204000 frames/sec @ 256 bytes/frame.

143

INTEL Ex.1002.149

INTEL Ex.1002.150

ALA-006K Express Mail No. EV 406928085 US

The following calculations assume 250 instructions/frame, 45nsec clock. Thus

S = 250 * 45 nsecs = 11.2 usecs. ;

Response Nbrin system

13

Av Frame Size Thruput Utilization

Sa
po

1024 51200

5 102000

>

Instns Per|Service Thruput Utilization|Response|Nbrinsystem|’

Frame Time (S) (X) (VU) (R) (N)

:

1

12

256 204000

85000 (*) 0.95 224 usecs 1

9

s ———

=

01

9 102000 0 90ferfren|
(*) shows whatframe rate can be supported to get a utilization of less than 1.

50

50

50

25

25

25

00

150

9

8

9

* 2
(**) shows what frame rate can be supported with 8 SRAM CCBbuffers andat least 8 process

contexts.

10 If 100 instructions/ frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support 256

byte frames:

Note that these calculations assume that response times increase exponentially as

utilization increases. This is the worst-case assumption, and probably may notbetrue for our

144

INTEL Ex.1002.150

INTEL Ex.1002.151

ALA-006K Express Mail No. EV 406928085 US

10

system. The figures showthat to support a theoretical full 4 * 100 Mbit receive load with an

average frame size of 512 bytes, there will need to be 19 active “jobs”in the system, assuming

250 instructions per frame. Due to SRAM limitations, the current design specifies 8 SRAM

buffers for active TCBs, and not to swap a TCB out of SRAM onceit is active. So under these

limitations, the INIC will not be able to keep up with thefull framerate. Notethat the initial
implementation is trying to use only 8KB of SRAM,although 16KB maybeavailable, in

which case 19 TCB SRAM buffers could be used. This is a cost trade-off. The real point here

is the effect of instructions/frame on the throughput that can be maintained. If the

instructions/frame drops to 200, then the INIC is capable of handling the full theoretical load
(102000 frames/second) with only 9 active TCBs.If it drops to 100 instructions per frame,

then the INIC can handle full bandwidth at 256 byte frames (204000 frames/second) with 10

active CCBs. The bottom lineis that all hardware-assist that reduces the instructions/frameis

really worthwhile. Ifheader-assist hardware can save us 50 instructions per frame thenit goes

straight to the throughput bottom line.

145

INTEL Ex.1002.151

INTEL Ex.1002.152

ALA-006K Express Mail No. EV 406928085 US

Claims

1, A method comprising:

establishing, at a host computer, a transport layer connection, including creating

a context that includes protocol header information for the connection;

transferring the protocol header information to an interface device;

transferring data from the network host to the interface device, after transferring

the protocol header informationto the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from a template

header containing the protocol header information; and

prepending the headers to the segments to form transmit packets.

2. The methodofclaim 1, further comprising transferring status information for the

contextto the interface device during the sameoperation as transferring protocol header
information to the interface device.

3. The methodofclaim 1, wherein creating headers for the segments includes adding

status information to the template header.

4. The method of claim 1, wherein the protocol header information includes Internet

Protocol (IP) addresses and Transmission Control Protocol (TCP)ports for the connection, and

creating headers for the segments includes forming headers containing the IP addresses and

TCPports. |

5. The method of claim 1, wherein the protocol header information includes a Media

Access Control (MAC)layer address, and creating headers for the segments includes forming

headers containing the MAClayer address.

6. The methodofclaim 1, further comprising adding to the context a descriptor for a

buffer, in a memory of the computer, that has been allocated for application data.

146

INTEL Ex.1002.152

INTEL Ex.1002.153

ALA-006K Express Mail No. EV 406928085 US

7. The method ofclaim 1, further comprising receiving, by the interface device, receive

packets that correspondto the context, and updating the context by the interface device to

account for the receive packets.

8. The method ofclaim 1, further comprising transmitting the transmit packets on a

network.

9. A method comprising:

creating, at a computer, a context including protocol information andstatus

information for a network connection, the protocol information providing a template header
for the network connection;

transferring the protocol information and status information to an interface

device;

transferring data from the computerto the interface device, after transferring the

protocol information and status information to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from the template
header;

prepending the headers to the segments to form packets; and
transmitting the packets on a network.

10. The method of claim 9, wherein creating headers for the segments includes adding

current status information to the template header, the current status information beingdifferent

than the status information that was transferred to the interface device..

11. The method of claim 9, wherein the protocol header information includes Internet

Protocol (IP) addresses and Transmission Control Protocol (TCP) ports for the connection, and

creating headers for the segments includes forming headers containing the IP addresses and

TCPports.

147

INTEL Ex.1002.153

INTEL Ex.1002.154

ALA-006K Express Mail No. EV 406928085 US

12. The methodofclaim 9, wherein the protocol header information includes a Media
Access Control (MAC)layer address, and creating headers for the segments includes forming

headers containing the MAC layer address.

13. The methodof claim 9, further comprising transferring to the interface device a

descriptor for a buffer, in a memory of the computer, that has been allocated for application

data that is transferred according to the protocol information.

14. The methodof claim 9, further comprising receiving, by the interface device, receive

packets that correspond to the protocol information, and updating the status information by the

interface device to account for the receive packets.

15. A method comprising:

establishing, at a computer, a Transmission Control Protocol (TCP) connection

corresponding to a contextthat includes status information and Internet Protocol (IP) addresses .

and TCP ports for the connection;

‘transferring the context to an interface device;

transferring data from the network hostto the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from a template

headerthat includes the IP addresses and TCPports; and .
prepending the headers to the segments to form transmit packets.

16. The method of claim 15, wherein transferring the context to the interface device occurs

priorto transferring the data to the interface device.

17. The method of claim 15, wherein creating headers for the segments includes adding

current status information to the template header, the current status information being different
than the status information that was transferred to the interface device.

148

INTEL Ex.1002.154

INTEL Ex.1002.155

ALA-006K Express Mail No. EV 406928085 US

18. The method of claim 15, wherein the template header includes a Media Access Control

(MAC)layer address, and creating headers for the segments includes forming headers

containing the MAClayeraddress.

19.|The method of claim 15, wherein the context includes a Media Access Control (MAC)

layer address, and creating headers for the segments includes forming headers containing the

MAClayeraddress.

20. The method of claim 15, further comprising adding to the context a descriptor for a

buffer, in a memory of the computer, that has been allocated for application data.

21. The method of claim 15, further comprising receiving, by the interface device, receive

packets that correspondto the context, and updating the status information bytheinterface

device to account for the receive packets.

149

INTEL Ex.1002.155

INTEL Ex.1002.156

-ALA-006K Express Mail No. EV 406928085 US

10

15

20

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M. Philbrick

Daryl] D. Starr

ABSTRACT OF THE DISCLOSURE

A system for protocol processing in a computer network hasan intelligent network
interface card (INIC) or communication processing device (CPD) associated with a host

computer. The INIC provides a fast-path that avoids protocol processing for most large multi-

packet messages, greatly accelerating data communication. The INIC alsoassists the host for

those message packets that are chosen for processing by host software layers. A
- communication control block for a messageis defined that allows DMAcontrollers of the

INIC to movedata, free of headers, directly to or from a destination or source in the host. The

contextis stored in the INIC as a communication control block (CCB) that can be passed back
to the host for message processing by the host. The INIC contains specialized hardware

circuits that are muchfaster at their specific tasks than a general purpose CPU. A preferred

embodimentincludesa trio of pipelined processorswith separate processors devoted to

transmit, receive and management processing, with full duplex communication for four fast
Ethernet nodes.

150

INTEL Ex.1002.156

INTEL Ex.1002.157

UPPER

. LAYER

UPPER LAYER

INTERFACE

TRANSPORT

STORAGE

NETWORK

4+ DATA LINK

INIC/CPD

FIG, 2

52

INTEL Ex.1002.157

INTEL Ex.1002.158

2189

RECEIVE PACKET

FROM NETWORK
BY CPD

 47

 VALIDATE PACKET,
SUMMARIZE

HEADERS

57

61

59,

CANDIDATE? STACK FOR SLOW-
PATH PROCESSING

67 65
—LYES 53

CACHE NO SEND PACKET TO
CCBIN STACK FOR SLOW-

CPD PATH PROCESSING

SEND TO

DESTINATION

IN HOST VIA

FAST-PATH

CREATE CCB FOR

MESSAGE

FIG.3

INTEL Ex.1002.158

INTEL Ex.1002.159

PROCESSOR|
||CACHE 155 40

38

INTEL Ex.1002.159

INTEL Ex.1002.160

4/89

164

162

160PROCESSOR ,
HARDWARE LOGIC

 ——_—_— eee ae ee

INTEL Ex.1002.160

INTEL Ex.1002.161

5/89

MEDIA ACCESS

CONTROLLER
 ASSEMBLY

REGISTER

MULTIPLEXOR

| 182

PACKET

CONTROL

SEQUENCER

FLY BY

SEQUENCER

 SRAM

ONTROL

FIG. 7

INTEL Ex.1002.161

INTEL Ex.1002.162

6/89

: _ 174

176
SEQUENCER

NETWORK

SEQUENCER

TRANSPORT

SEQUENCER

178

SESSION

SEQUENCER

 oO ~ MULTIPLEXOR

FIG. 8

PACKET ASSEMBLY
CONTROL REGISTER

SEQUENCER

MAC

INTEL Ex.1002.162

INTEL Ex.1002.163

7/89

PROCESSOR||
HARDWARE LOGIC4

HARDWARE LOGIC3} §

HARDWARE LOGIC 2

HARDWARE LOGIC1)
a

262

242

 240

TDI USERS 382

380%. - TDI FILTER DRIVER
& UPPER LAYER INTERFACE

370 360

366 355 350

363

375

377 INIC MINIPORT DRIVER ©

FIG. [1

INTEL Ex.1002.163

INTEL Ex.1002.164

 325

322

320

 INIC

MEMORY

FIG. 10

INTEL Ex.1002.164

INTEL Ex.1002.165

9/89

ClOIA,
CVTOZad}

|)aro7pp7|007|INI!Ole!OINI.NOST/|||——||||||||1€Z||TLST_LIT;adO|LEZ 651OL|vol|I:|||07iSOIGLHN;SOIGLHN|l99[||IJZT!ans|aWNS| |89]
I

06¢s--"1-!-
INAITOh-~7061

INTEL Ex.1002.165

INTEL Ex.1002.166

10/89

 EXTERNAL

CTRL

MEMORY

PCI BUS INTERFACE UNIT

FIG. 13

INTEL Ex.1002.166

INTEL Ex.1002.167

11/89

INSTRUCTION DECODER

AND

—T~

ARITHMETIC LOGIC UNIT
INTEL Ex.1002.167

INTEL Ex.1002.168

12/89

Onda
S0S

vs|rvs|Ors|ses|udav|oasl
aadTa

TALOTALO|TaLOavotCVOTHOLAA
waav_NIdpAL

VSIOld

UaLSIOWaa4AVa

Oo

3

Nidwddav

O€s cs
8

l

soqu}sooevaXLOwsqdcwOvid]ATV|S|A|ay
I||||||!

IZ6b

OLSJadTAL|Tao|Taro}LOflOVTdavolavo1lwvus --ootc4d--4----74ses[C8|
07S1067

l

_—-A4
\

00S

INTEL Ex.1002.168

INTEL Ex.1002.169

13/89

SLS
THLOadvo'l

SOS

OLS

qtOlas6s|-o6s}68S]-cgs}-ses}]gs]-zss]0

|

THLO|5,|DNOO)Tas|Tas|do|soo|sado|x19|WdHOO]OVIa|LsaL|atv|atv|atv|ati|UAXATILTONUNVaddOGNVwHadOOddNOILONAULSNI
8S}6s}rie|gos

WvasHOLVYOS

INTEL Ex.1002.169

INTEL Ex.1002.170

14/89

OSTDIAaaaplelaalelaeuaddvSIOVIS|OaTaLO4Paavo‘THS|LISAreksic(alWOdsoT7OVA)LSALaeHONVHOXE
AOVLSIa

to.SOO|LNO|}XLOLsaqQTV|OTV|ad{YTV

]||||]||'|||||||||||||j]||

INTEL Ex.1002.170

INTEL Ex.1002.171

705

707

709

711

FIG. 16

745

—»

752
748 758 756 794

750
>

: 766
764. 1/2 779 768

755
~~»

746 784 7%9 780 778
760

<a

798 796 794 792 m0

FIG. 17

746

76 | 740

77

786

INTEL Ex.1002.171

INTEL Ex.1002.172

16/89

D2Q\ /Q2D\ /XMT\ /RCV .
806

Seq||Seq||Seq||Seq BAA
Req/ \Req/ \Req/ \Req

802 Proc
Req

846

808 810 804
815

ARBITER 2

818

REGISTER A

Addr DIn

820

REGISTER B

828 | po
QALU

822~

OO: |
i|Q Q Q Q|1! gram) |sram) [Body] |Body | Sram

Empty||Full In Out | Req||Addr Write]|Read
! RDY| [RDY]|| | Req||Req
— ~a55 — 60 \750—« 745 «S830 N33 XB35 N38 840

FIG. 18

INTEL Ex.1002.172

INTEL Ex.1002.173

17/89

990 LRU | MRU
SY RO|R1|R2 R7|R8|RI R13] R14] R15

9} 1/74]. 2 }12} 10] | 13|4|6 |
FIG. 19A

999 LRU | MRU
a RO|Ri|R2 R7|R8|RO R13|R14] RIS

1|7]{5 } . L122] 10] 3 J+ -L4]6} 9
FIG. 19B

LRU. . . MRU
Me RO] R1|R2 {| R7]R8|R9 R13|R14] R15

1 7 5 J+ - 12|3 8 |. -| 6|9|10

FIG. 19C

990 LRU MRUae RO! R1|R2 R7|R8|RO R13|R14/ R15
8 11/7+/. .|2/1241 3 1. =| 6|9|10

FIG. 19D

INTEL Ex.1002.173

INTEL Ex.1002.174

18/89.

INTEL Ex.1002.175

19/89

NETWORK

 HOST 20

DRAM

460

BUFFER

2114

eweee

OQa

oO

gS

|on,|<!!\|IoO4TatOl-N:%:|{wasAQmwLULL:><¢Ea;m;iritaNIN!Ioo|orien}
|I|}

FIG. 21

INTEL Ex.1002.175

INTEL Ex.1002.176

20/89

: QUEUE

rAC MANAGER

2213 2214 2227

2215 |_—¢._4 2221, 2210|2209
8 ! 2105

poanecporenenaaa =Hana ——-$
DATA 2200 QUEUE

] SYNC PACKET|| MANAGER
||BUFFER SYNC | INTERFACE
| SEQUENCER 2205 9230

cl
ZF

3 | 2208 2207
bofe __/

“oT 2216: ~h3019 2212 2211

PACKET

PROCESSING [| SUMMARY]
SEQUENCER 2204

2204

 DMA CONTROL

2206

PROTOCOL

ANALYZER

2203

Loten a
SETADIDG2226

SRAM DRAM
CONTROLLER CONTROLLER

STATUS DATA

Od
2223

2214

INTEL Ex.1002.176

INTEL Ex.1002.177

21/89

INIC 200 HOST 20

DESTINATION

(FILE CACHE)
2311

2306 2307

| oy

~—

2315

KX
MULTI- 2313 2303

PACKET

MESSAGE
ooM4*

2300 TCP/IP] DATA
2316

LeekLheecttec

| 256-BYTE BUFFER
2309 ff

2310

2305ossjf

(rerae]pata] “

FIG. 23

INTEL Ex.1002.177

INTEL Ex.1002.178

22/89

 FAST-PATH
 NetBIOS T

Data buffer descriptors

INTEL Ex.1002.178

INTEL Ex.1002.179

23/89

Command | Response
buffer queue Commandbuffers buffer queue

d

Command
buffer handle

Command
_ buffer handle

Comman
buffer handle

Status

INTEL Ex.1002.179

INTEL Ex.1002.180

24/89

i . oo 0

fea

~ Enror bits are sent
RCV has occured.

ERR Command has been completed
RCV oe
XMT

Rev drop occured due to no buffers

RMISS

FIG. 27

ISR -—s Ox” —=——nterupt Status
IMR 0x4 " Interrupt Mask
HBAR 0x8 Header Buffer Address
DBHR OxC Data Buffer Handle
DBAR 0x10 Data Buffer Address

CBARO 0x14 Command Buffer Address XMT0
CBARI 0x18 ~ Command Buffer Address XMT1
CBAR2 OxlC Command Buffer Address XMT2
CBAR3 0x20 Command Buffer Address XMT3

CBAR4 0x24 Command Buffer Address RCV
RBAR 0x28 Response Buffer Address

FIG, 28

INTEL Ex.1002.180

INTEL Ex.1002.181

25/89

INTEL Ex.1002.181

INTEL Ex.1002.182

26/89

Filter Driver

Example of incoming TCP pkt Example of incoming ARP Frame

FIG, 320 FIG, 33

INTEL Ex.1002.182

INTEL Ex.1002.183

27/89

rteOl

 areOMWed-ogdO.

Wee‘OL
INTEL Ex.1002.183

INTEL Ex.1002.184

28/89

INTEL Ex.1002.184

INTEL Ex.1002.185

29/89

SRAM requirements for the Receive and Transmit engines:

TCB buffers 256 bytes=* (16 4096
Header buffers 128 bytes=* ‘(16 2048
TCB hash index 16 bytes—_* 256 4096
Timers 128

DRAM Fifo queues 128 bytes=* 16 2048
~1K bytes

Lo. |

FIG.38 |

INTEL Ex.1002.185

INTEL Ex.1002.186

30/89

Summary of the main loop of Receive:

forever {
while there are any Receive events {

if (a new event) {
if (no new context available)
ignore the event;

call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process fo be run (get free context, hddr buffer,

| TCB buffer, set the context up).

while any process contexts are runable {
nun them by jumping to the start/resume address;
if (process complete)

free the context

. | |:

FIG, 39

INTEL Ex.1002.186

INTEL Ex.1002.187

31/89

Format of the SMB header of an SMB frame:

31 0

NetBIOS header FAGS |<- -LENGIH =

opin|om|ss|ow|oe
es
eeee

Boc aee

Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command.

WCT Count(16 bit) of parameter words in VWV {]
VWV Variable number of parameter words
BCC Bytes of data following

KY

FIG. 40.

INTEL Ex.1002.187

INTEL Ex.1002.188

32/89

Summary of the main loop of Transmit:

‘forever {
while there are any Transmit events {

if (a new event) { .
if (no new context available)

ignore the event;
}
call appropriate event handler to service the event;
this may ‘make a waiting process runnable or set up
a new process to be rum (get free context, hddr buffer,
TCB buffer, set the context up).

}
while any process contexts are unable { =

run them by jumping to the starVresume address;
if (process complete)

free the context;

FIG. 41

INTEL Ex.1002.188

INTEL Ex.1002.189

33/89

Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
valid for 32 bit addressmg mode.

Bit 23 - 0 Memory access
1 Configuration access

Bit 22- 0 Read (to Host)
1 Write (to Host)

Bit 21-1 Data Valid

Bit 20 - 16 Reserved

Bit 15- 0 Address

vo.

FIG. 42

Configuration Space | SRAM Address Offset
00 00
04 (4
08 08
0C 0C
10 10
3C 14

Configuration Space 2

00 00
4 18
08 08
OC IC
10 20
3C — 4

\ All other reas to configuration space will retum 00.

FIG. 43.
INTEL Ex.1002.189

INTEL Ex.1002.190

Bit 5 - |

Bit 6 - 0

Bit 7-|

Bit 8 - |

. Btd-

~ Bit2 -

34/89

VO accesses are not enabled

Memory accesses are enabled
Bus master is enabled

Special Cycle is not enabled
Memory Write and Invalidate is enabled
VGA palette snooping is not enabled

Bit 6-1 Parity checking is enabled
Bit 7-0 Address data stepping is not enabled
Bit 8 - SERR# is enabled

Bit 9-0 Fast back to back is not enabled

FIG.44

Bit | -

Bit 3 -

Bit 4 -

Bit 5 - oOKHOKOo}.eeSS

66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz on reset

User Definable Features is not enabled

Fast Back-to-Backslave transfers enabled
Parity Enror enabled - This bit is initialized to 0

Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

Bit 11 -

Bit 12 -

Bit 13 -

Bit 14 -
Bit 15 -

—eeeeOe
o- Medium device select will be set if we are at 66 MHz
- Target Abort is implemented. Initialized to 0.

Target Abort is implemented. Initialized to 0.
Master Abort is implemented. Initialized to 0.
SERR# is implemented. Initialized to 0.
Parity emor is implemented. Initialized to 0.

FIG. 45

INTEL Ex.1002.190

INTEL Ex.1002.191

35/89

MIA MIB

XmtA XmiB
& &

RevA RevB
Seq Seq

REG FILE
8KI WCS
{KI ROM

| 1 KB X 128 Sram
uPROC & DMA Ctl

MIC

XmtD
&

RevD

MEMORY
BUS

INTEL Ex.1002.191

INTEL Ex.1002.192

36/89

‘MODULE DESCR SPEED AREA
‘Sorach RAM, IKx128 spot, 437 ns nom, | 0677 mm
Wes, Kx49 spot, 640 ns nom, 18.29 mm”
MAP, 187 spot, 3.50 ns nom, 00.24 mn”
ROM, IKxA9 32col, 500 ns nom, 00.45 mm
REGs, §12x32. tport, 6.10 ns nom, 03.49 mn”
Macs, 75 mm? x 4 = 03.30 mm?
PLL, Sm= 00.55 mm?
MISC LOGIC, 117260 gates / (5035 gates / mm?) = 73.29 mm?
TOTAL CORE 5622 mm

sd : . 2
(Core side) = 56.22 mm
Core side . = 07.50 mm

Die side = core side + 1.0 mm (VOcells) = 0850 mm
Die area = 85 mmx 85 mm = 72.25 mm?

Pads needed = 200 signals x 1.25 (vss, vdd) = 25 pins
LSI PBGA _ DD pins

FIG. 47

INTEL Ex.1002.192

INTEL Ex.1002.193

37/89

(1OMB/s/100Base) x 2 (full duplex) x 4 connections = = 80 MBs
Average frame size = SI2B
Framerate = 80MBYs/ 512B = 156,250 frames / s

Cpuoverhead / frame = (256B context read) + (64B header read) +
(128B context write) + (128B misc.) = 512B/ frame

Total bandwidth = (512B in) + (512B out) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames’s) = 240MB/s
Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MBis
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MBis
PCI Bandwidth required = 80MBis
PCI Bandwidth available @ 30 MHz, 32b, average = 4§MBis
PCI Bandwidth available @ 33 MHz, 32b, average = 50MB/s
PCI Bandwidth available @ 60 MHz, 32h, average = 9)MB/s
PCI Bandwidth available @ 66 MHz, 32b, average ‘=—1O0MB/s
PCI Bandwidth available @ 30 MHz, 64b, average = 92MBis
PCI Bandwidth available @ 33 MHz, 64b, average = JQ0MBs
PCI Bandwidth available @ 60 MHz,640, average = |84MBis
PCI Bandwidth available @ 66 MHz, 64b, average = 200MBS

FIG. 48

Receive frame interval = 512B / 40MB/s . = 128us
Instructions / frame @ 60MHz = (12.8us/frame) / (5Ons/instruction) = 256
instructions/frame
Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) = 284
instructions/frame

Required instructions / frame = 250 instructions/frame

\ oY
FIG. 49

INTEL Ex.1002.193

INTEL Ex.1002.194

38/89 |

fofcf . teFETCH] LOAD LOADa
rT _TCtl! “xa| FLAG at bs Sn_f

STAck| Atcrx|tee. (Cs|REGS REG|Addr AS Adarfieie
aDECODER}a=

tn

ALU|ALU}ALU|TEST|FLAG] QCH Sram|DEBUG
STAckaieaSTAckeeLL.

ALU|ALU|DEST|TEST|FLAG Gs Sram |DEBUSTAckLijec
FIG. 50

INTEL Ex.1002.194

INTEL Ex.1002.195

(39/89

INSTRUCTION-WORD FORMAT

TYPE _[55:49] [48:47] [46:42]_[41:33] [32:24] [23:16] [15:00]
Jcc

Jmp

Jsr

Rts

Nxt

Map

0b0000000

0b0000000

0b0000000

0b0000000

0b0000000

MapAddr

0b00, AluOp, OpdASel, OpdBSel,

0b01, AluOp, OpdASel, OpdBSel,

0b10, AluOp, OpdASel, OpdBSel,

0b11, AluOp, OpdASel, OpdBSel,

Ob11, AluOp, OpdASel, OpdBSel,

TstSel, Literal

FigSel, Literal

FigSel, Literal

Ohff, Literal

FigSel, Literal

0BXX, OBXXXXX, OBKXXXXXXXX, OBKXXXXXXXKX, OHXX, OHXXKK

FIG. 51

INTEL Ex.1002.195

INTEL Ex.1002.196

(40/89

SEQUENCER BEHAVIOR

if (MapEn & (MapAddr!= 0b0000000)) { //re-map instr
Stacke = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = 0h8000 | Pc[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & ~DbgMd);

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr= DbgAddr+ (Execute & DbgMd);} -

else if PgmCtrl == Jcc){ . /iconditional jump
Stacke = Stacke;
StackB = StackB;
StackA = StackA; .

InstrAddr = ~Tst@TstSel ? Pe:(AluDst==Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd? DbgAddr:InstrAddr;
DbgAddr= DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jmp){ /jump
Stacke = Stacke;
StackB = StackB;
StackA = StackA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (PgmCtrl == Jsr){ /fjump subroutine
Stacke = StackB;
StackB = StackA;
StackA = Pe;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (FlgSel == Rts){ //return subroutine
InstrAddr = StackA;

StackA = StackB;
StackB = Stacke;
Stacke = ErrVec;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr+ (Execute & DbgMd);}

else { '
InstrAddr= Pe; //continue

StackA = StackA;
StackB = StackB;
Stacke = Stacke;

Pc = InstrAddr+ (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr+ (Execute & DbgMd);}

FIG. 52

INTEL Ex.1002.196

INTEL Ex.1002.197

(41/89

ALU OPERATIONS

AluOp OPERATION

0b00000 A=(A &~(1 <<B));
C=0; V=(B >= 32)? 1:0;

0b00001 A=(A& Be:C=0; V=

0b00010 A = (Literal & B);
C=0; V=0;

0b00011 A= (~Literal & B);
C=0; V=0;

0b00100 A=(A|(1 <<B)); .
C =0; V = (B >= 32) ? 1:0;

0b00101 A=(A|B);
C=0; V=0;

0b00110 A= (Literal | B);
C=0; V=0;

0b00111 A = (~Literal| B)
C=0; V=0;

0b0.1000 for (i=31; i>=0;HOif B[i] continue; A=i;C=0;V=(B

0b01001 «=~ A=(A*B);
. C=0;V=0;

0b01010 A = ({Literal} * B);
C=0;V=0;

0b01011 A = ({~Literal} * B);
C=0; V=0;

0b01100 A=B;_
C=0; V=0;

0b01101 A= B[31:24] * B[23:16] * B[15:08] * B[07:00];
C=0; V=0;

0b01110 A = {B[23:16],B[3 1:24],B[07:00],BULS: 08)};
C=0; V=0;

0b01111 A= {B[15:00], B[31:16]};
C=0; V=0;

FIG. 53

bit clear

/Nogical and

//logical and

/Mogical and not

//bit set

logical or

/Nogical or

//logical or not

/fpriority enc

/Nogical xor

/Nogical xor

/Nogical xor not

/imove

//hash

//swap bytes

/iswap doublets

INTEL Ex.1002.197

INTEL Ex.1002.198

Aluop

0b10000

0b10001

0b10010

0b10011

0610100

0b10101

0b10110

0b10111

0b11000

0b11001

0b11010

0b11011

0b11100

0b11101

0b11110

Ob11111

(42/89

FUNCTION

A=(A+B);
C =(A + B)[32]; V=0;

A=(A+B+O);
C =(A+B+O)[32]; V=0;

A = (Literal +.B);
C = (Literal + B)[32]; V = 0;

A = (-Literal + B);
C = (-Literal + B)[32]; V = 0;

A=(A-B);
C = (A - B)[32]; V = 0;

A=(A-B-~O);
C=(A-B-~C)[32]; V=0;

-A

-A+B-~C);
-A +B -~C)[32]; V =0;

(A <<B);
(31]; V = (B >= 32) 7 0:1;A

(B << Literal);
(31]; V = (Literal >= 32) ? 0:1;

<< 1),
[31]; V=0,

n= (A -B);
C=(A- B32]; V= 0;

A=(A>>B);
C= A(0]; V = (B >= 32) ? 1:0;

A = (B >>Literal);
C= A[0]; V = (Literal >= 32) ? 1:0;

A=(B>> 1);
C= A(0]; V =0;

n = (B- A);
C =(B - A)[32]; V = 0;

FIG. 54

/add B

//add B, carry

//fadd constant

//sub constant

/Isub B

//sub B, borrow

sub A

//sub A, borrow

shift left A

“shift left B

shift left B

//compare

//shift right A

shift right B

shift right B

//compare .

INTEL Ex.1002.198

INTEL Ex.1002.199

OpdSel

0b0000aaaaa

0b000 laaaaa

0b001XXXXXX

0b0100000XX

0b0100001XX

0b0100010XX

0b0100011XX

0b01001XXXX

0b010100000

43/89

SELECTED OPERANDs

File

CpuReg

reserved

CpuStatus

reserved

Pc

DbgAddr

reserved

File@(OpdSel[4:0] | FileBase);
Allows paged access to anypart oftheregisterfile.

File@{2'b11, Cpuld, OpdSel[4:0]};
Allows direct access to Cpu specific registers.

Reserved for future expansion.

0b0000000000000BHD00000000000000CC

This is a read-only register providing information about the Cpu executing
(OpdSel[1:0]) cycles after the current cycle. "CC"represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H" represents the current state of HIt, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has noeffect.

Reserved for future expansion.

Ox0000AAAA

Writing to this address causes the program controllogic to use AluOutas the
new Pcvaluein the event of a Jmp, Jcc or Jsr instruction for the Cpu
executing during the current cycle. If the currentinstruction is Nxt, Map, orRts, the register write has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSelf{1:0]) cycles after the current cycle.

OxDO00AAAA

Writing to this register alters the contents of the debug address register
(DbgAddr)forthe Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddrprovides the fetch address for the control-store when

DbeMd has been selected and the Cpu is executing. DbgAddris also usedas the control-store address when performing a WrWcs@DbgAdadror

RaWes@DbeAdar operation. “D”represents bit 31 ofthe register.It is a generalpurposeflag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

Reserved for future expansion.

RamAddr {0b1CCC, 0x000, 0b1, AAAA}
RamAddr = AluOut{[15] ? AluOut: (AluOut | RamBase);
PrevCC = AluOut[31]?CCC : AluCC;

A read/write register. When readingthis register, the Alu condition codes from the previous
instruction are returned together with RamAddr. —

bit hame_. description
31 Always 1. .
30 PrevC | Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.

27:16 Always 0
15 Always1.
14:0 RamAddr Contents of last Sram address used.

Whenwriting this register, if alu_out[31] is set, the previous condition codes will be overwritten with .
bits 30:28 of AluOut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr.If AluOut[15]
is not set, bits 14:0 will be ored with the contents of the RamBase andwritten to the RamAddr

FIG. 55

INTEL Ex.1002.199

INTEL Ex.1002.200

OpdSel-

0b010100001

0b010100010

0b010100011

0b010100100

0b010100101

0b010100110

0b010100111

(| 44/89

SELECTED OPERANDs

AddrRegA 0x0000AAAA

AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write
operations. When AddrRegA[15] is set, the contents will be presented directly to the ram. When
AddrRegA[15]is reset, the contents will first be ored with thecontents of the RamBase register
before presentation to the ram. Writing to this register takes priority over Literal loads using
FigOp. Readingthis register returns the current value ofthe register.

AddrRegB 0x0000AAAA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and writeoperations.

en AddrRegB[15]is set, the contents will be presented directly to the ram. When
AddrRegB[15] is reset, the contents will first be ored with the contents of the RamBase
register before presentation to the ram. Writing to this register takes priority over Literal loads
using FlgOp. Reading this register returns the current value oftheregister.

AddrRegAb 0x0000AAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegaAusedto provide the address
for read and write operations Writing to this register takespriority overLiteral loads usingFigOp. Readingthis register returns the value 0x00000000.

RamBase 0x0000AAAA
RamBase = AluOut;

A read/write register which providesthe base address for ram read and write cycles. When
RamAddr[15]is set, the contents will not be used. When RamAddr{15]is reset, the contents
will first be ored, with the contents of the RamBaseregister before presentation to the ram.
Readingthis register returns the value for the current Cpu.

FileBase 0b00000000000000000000000AAAAAAAAA
FileBase = AluOut;

FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);
A read/write register which provides the base address for file read and write cycles. When
O dSelfs] is set, the contents will not be used and OpdSel will be presented directly to theaddresslines ofthe file. When OpdSell[8]is reset, the contents will first be ored with the
contents of the FileBase register before presentationto the file. Reading this register returns the
value for the current Cpu.

InstrRegL OxTM

This is a read-only register which returns the contents of InstrReg[31:0]. Writing to
this register has no effect.

InstrRegH OxO0INHI

This is a read-only register which returns the contents of InstrReg[55:32]. Writingto this
register has noeffect.

FIG. 56

INTEL Ex.1002.200

INTEL Ex.1002.201

OpdSel

06010101000

0b010101001

0b010101010

0b010101011

0b010101100

(45/89 (

SELECTED OPERANDs

* Minus1 Oxfffitttt

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

FreeTime A free-running timerwith a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

LiteralL Instr[15:0}
A read-only register. Writing to this register has no effect

LiteralH _ Instr[15:0]<<16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOutdata into the MacDataregister for use
during Mac operations. The Mac operation, resulting from writing to the MacOpregister,
determines the definition of the MacDataregister contents as follows.

MacOp MacDatadefinition
Mstop ObXXXXXXXXXXXXXAXKXKXXKXKXKXKKKKKK

MacDatais not used for the StopM operation.
WrMcfg : :

hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10,
ipgr1[6:0],
ipgr2[6:0], ipgt[6:0].
Loads the MacCfgregister with the contents of the MacDataregister. Refer to
LSI Logic's Ethernet-110 Core TechnicalManualfor detailed definitions ofthese
bits. ,

WrMrng ObXXXXXXKXXKXKKXKKXKKXKXKXXKKSSSSSSSSSSS
Loads seed[10:0] into the Mac's random numbergenerator.

RdPhy ObXXXXRRRRXXXXPPPPXXXKXKXKKXKXXXKXKX
Reads register[R] of phy[P].

WrPhy ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD
Writes register[R] of phy[P] with MacData[15:0].

Readingthis register returns prsd[15:0] of MacO which contains phy status data returned to the
Macat the completion of a RdPhy command.This data is invalid while MacBsy is asserted
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a
definition of the phy register contents.

FIG. 57

INTEL Ex.1002.201

INTEL Ex.1002.202

46/89

FIG. 538A

‘FIG. 58

INTEL Ex.1002.202

INTEL Ex.1002.203

(47189 Lo

OpdSel SELECTED OPERANDs

-0b010101101 §MacOp- A write only register, Writing to this address loads the MacSelregister and staRts
execution of the specified operation as follows.

AluOut description
OxXXXXX0XM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for

MacBsy to be deasserted before issuing another command or changing the
contents of MacData.

OxXXXXX1XM WrMcefg - Writes the contents of MacData to the MacCfg register of MadM}
The user must wait for MacBsyto be deasserted before issuing another command

. or changing the contents of MacData.
OxXXXXX2XM WrMrng- Writes the contents ofMacDatato the seed register ofMac[M]. The

user must wait for MacBsyto be deasserted before issuing another command or
changing the contents ofMacData.

OxXXXXX3XM RdPhy- Reads the contents ofreg[R] for phy[P] on the MII management bus of
Mac[M]. The contents may be read from MacData after MacBsyhas been de-

asserted.

OxXXXXX4XM WrPhy- Writes the contents ofMacData[15:0] to e reg[R] of phy[P] on the MII
management bus of Mac[M]. Theuser must wait for MacBsy to be deasserted
before issuing another commandor changing the contents of MacData.

OxXXXXX8XM WrAddrAL- Writes the contents of MacData[15:0] to MacAddrA[15:0] for Mac[M].
OxXXXXX9XM WrAddrAH - Writes the contents ofMacData[11:0] to MacAddrA[47:16] for Mac[M].
OxXXXXXaXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for Mac[M].
OxXXXXXbXM_ WrAddrBH - Writes the contents ofMacData[11:0] to MacAddrB[47:16] for Mac(M].

b010101110. ChCmd A write-only register.

bit name__ description
31:11 reserved Data written to these bits is ignored:
10:8 command 0 - Stops execution of the current operation and clears the

corresponding event flag.
1 - Transfer data from ExtMem to ExtMem.

2 - Transfer data from Pci to ExtMem.

3 - Transfer data from ExtMem to Pci.

4 - Transfer data from Sram to ExtMem.

5 - Transfer data from ExtMem to Sram.

6 - Transfer data from Pci to Sram.

7 - Transfer data from Sram to Pci.

07:05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel numberfor the channel command.

FIG. 58A

INTEL Ex.1002.203

INTEL Ex.1002.204

(48/89

0b010101110 ChEvnt A read-onlyregister.

bit name description
31:00 ChDn Eachbit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmdregister.

0b010101111 GenEvynt A read-only register.

bit name description
31 PciRdEvnt Indicates that a PCIinitiator is attempting to read a mproc.

register.
30 PciWrEvnt Indicates that a PCI initiator has posted a write to a mproc.

register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.

0b010110000 QCtrl A write-only register used to select and manipulate a Q.

ioit name description
31:11 reserved Data written to these bits are ignored.
10:8 QSz Used only during InitQ operations to specify the size of the QBdy in Dram.

7 — Queue depth is 32K entries (128KB).
6 — Queue depth is 16K entries (64KB).
5 — Queue depth is 8K entries (32KB).
4— Queue depth is 4K_entries (16KB).
3 — Queue depth is 2K entries (8KB).
2 — Queuedepth is IK entries (4KB).
1 — Queue depth is 512 entries (2KB).
0 — Queue depth is 256 entries (1KB).

7:5 QOp_Specifies the queue operation to perform.
7-DbIQ_Disables ail queues.
6—EnQ__Enables all queues.
5 —RdBdy Increments the QBdyRdPtr and increments the QT]WrPtr.
4 —WrBdy Decrements the QBdyWrPtrand increments the QHdRdPtr.
3—RdQ_Returns a queueentry in register QData..
2—rsvd Reserved. Notto be used.

1—InitQ Set the queuestatus to empty andinitializes QSz.
0-SelQ Selects the QId to be utilized during writes to QData.

FIG. 58B

INTEL Ex.1002.204

INTEL Ex.1002.205

4:0

0b010110001

06010110010

0b010110011

0b010110100

- 06010110101

0b010111000

0b010111001

0b010111010

ObO10111011

ObO1LOLIIIXX

Ob011OXXXKX

Ob01 1 1OXXXXK

Qld

QData

reserved

XevCtrl

(49/89

Specifies the queue on which to perform all operations except DbIQ or EnQ.

A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data poppedoffduring
the previous RdQ operation.

Reservedfor future expansion.

A write-only register used to enable and disable Mac transmit and receive
sub-channels.

bit name___ description

31:09 reserved Data written to thesebits are ignored.
8 enable Whenset, indicates to the Mac transmitor receive sequencerthat the subchannel

containsa transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.
04 RevCh Selects a Mac receive subchannel whenset. Selects a Mac transmit subchannel

whencleared.
03 reserved Data written to this bit are ignored.
02 - SubCh Selects subchannel B whenset or A whenreset.
01:00 MaclId Provides the Mac number for the subchannelenable bit.

Lru 0x0000000A

A read/write operand indicating which of the 16 entries is least recently used.
When Reading Thisregister the least recently used entry is returned, after which
it is automatically made the mostrecently used entry. This register should only be
read in conjunction with a 'Move' operation of the ALU,else the results are
unpredictable. Writing to this register forces the addressed entry to becomethe
least recently used entry.

Mru 0x0000000A

A write only operand forcing the addressed entry to becomethe mostrecently
used entry.

QInRdy A read-only register comprising QHdnotfull flags for each of the 32 queues.

QOutRdy A read-onlyregister comprising QTI not empty flags for each of the 32 queues.

QEmpty A read-only register comprising QEmpty flags for each of the 32 queues.

QFull A read-only register comprising QFull flags for each of the 32 queues.

reserved Reserved for future expansion.

Constants {0b000, OpdSel[4:0]}

reserved Reserved for future expansion.

FIG. 58C

INTEL Ex.1002.205

INTEL Ex.1002.206

OpdSel

0b0111 1 XXX

Oblaaaaaaaa

50/89

SELECTED OPERANDs

Sram OPERATIONS

OpdSel[3] PostAddrOp
0 nop
l RamAddr = RamAddr + (OpdSelf1:0));

OpdSel[2 transpose_Ctr]
0 don't transpose

l transpose bytes

OpdSel{1:0) RamOpdSz
0 quadlet
1 triplet
2 doublet

3 byte

RAM READ ATTRIBUTES

endian
mode

little
little
little
little
little
little
little
little
BIG
BIG
BIG
BIG
BIG
BIG
BIG
BIG

RAM WRITE ATTRIBUTES

trans- byte Sram
pose_ offs data sz sz=T sz=D

SeeOOOORPEEEOOOO

abcd abcd Obed 00cd

abcX trap Qabe O00bc
abXX trap trap 00ab
axXxXX tray trap trap
abcd dcba Odcb 00dc

abeX_trap Ocba_ . 00cb
abXX trap trap 00ba
aXXX trap tra trap
abcd abcd abc 00ab

Xbed trap Obed 00bc
XXcd__ trap trap 00cd
XXXd_ trap trap tra
abcd dcba Ocha O00ba

Xbed_ trap Odcb 00cb
XXed_— trap trap | 00dc
XXXd trap trap trap

WHOWN=|OWNOWNHoO
endian trans- Opd Alu

pose size out OF=0 OF=1 OF=2mode
little
little
little
little
little
little SeOOOOHEHOOO

Q abcd abcd tra trap
T Xbed -bcd bed- trap
D XXed_—--cd -cd- cd--
B XXXd_ ---d --d- -d--
Q abed dcba tra trap
T Xbed_=-dcb dcb-_—trap
D XXcd_--de -de- de--

B. XXXd ---d --d- -d-+
Q abcd abcd trap trap
T Xbed_bed- -bed trap
D XXed__cd-- -cd- --cd
B XXXd_ d--- -d-- --d-

Q abcd dcba_ trap trap
T Xbed deb- -deb_tra
D XXcd_ de-- -dc- --de
B XXXd d- -d- sd

File@OpdSel[8:0); ;
Allows direct, non-paged, access to the top half ofthe registerfile.

FIG. 59

SOURCE OPERAND

SZ=B
000d
000c
000b
000a
000d
000c
000b
000a
000a
000b
000c
000d
000a
000b
000c
000d

SOURCE OPERAND

OF=3

trap
trap
trap
d---

. trap
trap
trap
d---

trap
trap
trap
--d

trap
trap
trap
---d

INTEL Ex.1002.206

INTEL Ex.1002.207

TstSel

ObXO00XXXXX

0bX0100000

0bX0100001

* 0bX0100010

0bX0100011

0bX0100100

0bX0100101

0bX0100110

0bX0100111

0bX0101000

0bX0101001

ObX010101X

ObX01011XX

ObX0110XXX

ObX0111XXX

ObX01XXXXX

ODXIXXXXKXX

(51/89

SELECTED TEST

Tst= TstSel[7] * AluOut[TstSel[4:0]]

Tst = TstSel[7] “ C

Tst = TstSel[7] “ V

Tst = TstSel[7] * Z

Tst = TstSel{7] “(Z| ~C)

Tst = TstSel[7] * PrevC

Tst = TstSel[7] * PrevV

Tst = TstSel[7] * PrevZ

Tst = TstSel[7] * (PrevZ & Z)

Tst = TstSel{7] * QOpDn

Tst = reserved

Tst = reserved

Tst = reserved

Tst = TstSel[7] * Lock[TstSel[2:0]]
_Lock(TstSel(2:0]) = 1,

Tst = TstSel[7] *Lock(TstSel[2:0]]

Tst = reserved

Tst = reserved

FIG. 60

Alu bit

//carry

error

/Izet0

//ess or equal

//previous carry

//previous error

//previous zero

'/164b zero

//queue op okay

//tests the current value of

//the Lockthensetit.

/{tests the value of Lock.

INTEL Ex.1002.207

INTEL Ex.1002.208

FigSel

0b00000000

0b00000001

0600000010

0600000011

0b00000100

*0b00000101

0b0000011X

0b00001XXX

0b00010XXX

0b00011XXX

0b0010XXXX

0b0011XXXX

0b01000000

0b01000001

0b01000010

0b01000011

0b01000100

0b010001XX

0b010010XX

0b010011XX

0b010100KX

Ob010101XX

O0b01011XXX

0b011XXXXX

ObIXXXXXXX

L_ 52/89 _

FLAG OPERATION

Nooperation.

SelfRst Forcesaself reset for the entire chip excluding the PCI configuration
registers

SelBigEnd Selects big-endian modefor ram accesses for the current Cpu.

SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.

DbIMap Disable instruction re-mapping for the current Cpu.

EnbMap Enable instruction re-mapping for the current Cpu.

reserved

reserved

ClirLck Lock[FlgSel[2:0]] =0; |
Clears the semaphoreregister bit for the current Cpu only.

reserved

AddrOp

FigSel[3:2] AddrSelect
0 RamAddr = Literal[15] ? Literal : (Literal | RamBase);

1 RamAddr = AdarReeBtI 3} ? AddrRega:ers | RamBase);2 RamAddr= AddrRegB[15 ? AddrRegB : (AddrRegB | RamBase); *
3 if (OpdA == RamAddr)

RamAddr = AluQut{[15] ?AluOut —: (AluOut| RamBase);
else if (OpdA == ram) : .
RamAddr = AddrRegB[15}] . ? AddrRegB : (AddrRegB | RamBase);else
RamAddr = AddrRegA[15] _? AddrRegA : (AddrRegA | RamBase);

FigSel[1:0 addr reg loadaddrregload
nop
AddrRegA= Literal;

- AddrRegB=Literal;
AddrRegA=Literal; AddrRegB= Literal,

WNeo
note: When specifying the sameregister for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.

reserved

WrWesL@Dbg—Causesthe bits [31:0] of the control-store at address DbgAddrto be
written with the current AluOutdata.

WrWcsH@Dbg=Causesthe bits [63:32] of the control-store at address DbgAddrto be
written with the current AluOut data then increments DbgAddr.

RdWesL@Dbg Causesthe bits [31:0] of the control-store at address DbgAddrto be
moved to file address Oxlff. ,

RdWesH@Dbg—Causesthebits [63:32] of the control-store at address DbgAddrto be
movedto file address 0x1 ff then increments DbgAddr.reserved

Step Allows the Cpu (FigSelf[1:0]) cycles after the current cycle to execute a singleinstruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed.

PcMd Selects the Pe as the address source for the control-store during
instruction fetches for the Cpu (FigSel[1:0]) cycles after the current cycle.

DbgMd Selects the DbgAddraddressregister as the address source for the
. control-store during instruction fetches for the Cpu (FlgSel[1:0])

cycles after the currentcycle. /

Hit Halts the Cpu (FlgSel[1:0}) cycles after the current cycle.

Run Clears Halt for the Cpu (FigSel[1:0]) cycles after the current cycle.

reserved ,
reserved

reserved

FIG. 61

INTEL Ex.1002.208

INTEL Ex.1002.209

53/89

Cpu

Cfg .
eprom |

ob
pa
pm

' Ctpo]Dakpe Qmg
P|

Flash

INTEL Ex.1002.209

INTEL Ex.1002.210

54/89

FIG.63
INTEL Ex.1002.210

INTEL Ex.1002.211

55/89

wae Addr! Adcr/Req 0 Req N Gi eee Cl
Data 0 Data N

133MHz
CLK Arbiter

PO Y
133MHz CLK Rei

Addr DIN

133MHz WECLK Register Dou

Partial Align .

133MHz

Ack

Ads | FIG. 64 Data
ae

INTEL Ex.1002.211

INTEL Ex.1002.212

56/89

RAL)NLACNYNOTRCVNC)NLACNYNOMI)Ct)8)NRLONYNOFTY| :69‘OiFCVACPOSH,XOCVE:am)FLaHOCV{eCVNC8]ALUMYOCIVaR:ACMOS|ALPENYOOVAL|BRCINUNTVNCPOCNOTTY}PRCLAANM4)purNOFIV}BRCIMENTWACS]NOFIV}BRCLNgNTMA)S|NOPIV|MPVVNCPUATW}|PYM)PUTY}|PPVVACSTAT6;|VOYCnd)YOUAZISYYCNYPYBLN]OHAAYCWYOWOETTSPYCNRV{CLOGTSSUBPAVINCPO‘CHLOGTESSURRgVWIC8]|BeaneYHPOLLVCALOATASSueregndypuz:‘eDNaNeSYNSTaL|CALOATASsueregnda!
INTEL Ex.1002.212

INTEL Ex.1002.213

57/89

TO requestors

XwrReq
XwrAddr

XwrState

XenCi
XwiData

TO Xmem

DefgReq

DefgAddr

DefgState

DefgCtrl
DefgData

TO Xmem__

BecirlReq
BeetrlAddr

BectrState

BeetriCtl TO Xmem -
FectriData

FIG. 66

INTEL Ex.1002.213

INTEL Ex.1002.214

58/89

Dip
Ds

Did

Diq
Pso

XmtA

XAddr 4

XData

XmD XCtl oi

5sa

e ffme][lel[e
XctrlDin

XctrlGnt

SramGnt

SramAck

SramAckSz

FIG. 67

TO Requester

TO Xctl

SramGnt

SramData

TO Xetd

TO Xetrl

Ack To requester

XcttlReq
SramReq

— SramGnt

SramParams

INTEL Ex.1002.214

INTEL Ex.1002.215

59/89

89‘OldOOH——@mmax=$$DOODDOA=Y—_——_—_»m
INTEL Ex.1002.215

INTEL Ex.1002.216

60/89

LI

Q2q

Psi > > -XData |
RevA

RevB
XCul a

RevC

RevD

:

i y

XctlGat

SramGat

SramAck

SramAckSz

FIG. 69

§2s

Du a XAddr D
J

SramRdData | >

TO Requester

TO Xetl

> TO Xcul |

TO Xetrl

TO D2d

TO Pd

TO Xetrl

Ack TO requester

XctrlReq

SramReq

SramGnt

SramParams

INTEL Ex.1002.216

INTEL Ex.1002.217

61/89

OL‘OMXY$$$ (@@@axoe@@Q@Q@Q0aoot——_—_>=
INTEL Ex.1002.217

INTEL Ex.1002.218

62/89

FIG.71
INTEL Ex.1002.218

INTEL Ex.1002.219

63/89

HG.72
INTEL Ex.1002.219

INTEL Ex.1002.220

Xrd Status

Pmo Ack

Pio Status

Sram Ack .

SramRd Data

64/89 —

S|gy|3SsBS2S
TawBS

FIG. 73

TO Xrd

TO Pmo

10 Xed

TO Pmo

TO Xrd

FifoCnt

Pmo Req

SramReq

From Sram

SramParams

INTEL Ex.1002.220

INTEL Ex.1002.221

65/89

INTEL Ex.1002.221

INTEL Ex.1002.222

XaChisun

XwrAck .

XwrStatus

PmiAck

PmuStatus

SramAck

SramRdData

66/89

poyYY|EY 62/5A)'S8|38
S=A

ES

FIG. 75

TO Xwr

> TO Pmi

TO Pmi

TO Xwr

FifoCat

Pmi Req
XwiReq
SramReq

From Sram

SramParams

INTEL Ex.1002.222

INTEL Ex.1002.223

67/89

INTEL Ex.1002.223

INTEL Ex.1002.224

68/89

PmoAck

PmoStatus

SramAck

SramRdData

INTEL Ex.1002.224

INTEL Ex.1002.225

69/89

INTEL Ex.1002.225

INTEL Ex.1002.226

_ 70/89

INTEL Ex.1002.226

INTEL Ex.1002.227

71/89

INTEL Ex.1002.227

INTEL Ex.1002.228

72/89

FIG. 81

INTEL Ex.1002.228

INTEL Ex.1002.229

73/89

INTEL Ex.1002.229

INTEL Ex.1002.230

74/89

HG. 83

INTEL Ex.1002.230

INTEL Ex.1002.231

75/89

INTEL Ex.1002.231

INTEL Ex.1002.232

76/89

WTINIAAALLONINGA

INTEL Ex.1002.232

INTEL Ex.1002.233

77/89

UVaINHAYAMLLONINHAT

INTEL Ex.1002.233

INTEL Ex.1002.234

MacDataln

MacCtrlln

MacStatusIN

MacAddrA

MacAddrB

SramAck

SramRdData

FREEQID

RCVQD

ColQD

PauseDetEn

HG. 87

78/89

BoS5

al
373

_titddfi
ea

Bawae
68

:S\sSptttyyyy SigsSry)Sl Ut“i

VV

TO QmngR

From Sram

TO Sram
From Sram

: TO Sram

TO Xwr

TO Xwr

XwrReq
PauseDet

QmgkReq
SramReq

From Sram

SramParams

INTEL Ex.1002.234

INTEL Ex.1002.235

79/89

Mac Cul

OPTIONS OPTIONS

HIG. 88

INTEL Ex.1002.235

INTEL Ex.1002.236

(_ 80/89 —

RECEIVE BUFFER DESCRIPTOR

bit name
31:30 reserved
29:28 size
27:00 address

TIME STAMP

bit name
31:00 RevTime

CHECKSUM

bit name

31:16 IpChksum

15:00 TepChksum

RESERVED

FRAMEData

description

A copy ofthe bits in the FreeBufDscr. ;
Represents the last address +1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determine
the size ofthe frame received.

FIG. 89

OFFSET 0x0008:0x000B
description

The contents of FreeCikat the completion of the frame receive operation.

FIG. 90

OFFSET 0x000C:0x000F

ReflectsthevalueoFheIPheaderchecksumaTramecompletionofIPheadersReflects the value of the eader checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum providesa total for
the entire data portion of the received frame. The data area is defined as those bytes
receivedafter the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown,the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

FIG. 91

INTEL Ex.1002.236

INTEL Ex.1002.237

81/89 —

RECEIVE BUFFER FORMAT

FRAMEStatus A

bit name

31 attention

30 CompositeErr

29 CtriFrame

28 IpDn
27 802.3Dn
26 MacADet
25 MacBDet
24 MacMest
23 MacBest

22 IpMcst
21 IpBest
20 Frag
19 IpOffst
18 IpFlgs
17 IpOpts
16 TcpFlgs
15 TcpOpts
14 TcepUrg
13 CarrierEvnt

12 LongEvnt
11 FrameLost

10 reserved
10 NoAck

09:08 FrameTyp
07:06 NwkTyp
05:04 TrnsptTyp
03 NetBios
02 reserved
01:00 channel

FRAME Status B

bit name
31 802.3Shrt
30 BufOvr
29 BadPkt
28 InvidPrmbl
27 CreErr
26 DrbINbbi
25 CodeErr

24 IpHdrShrt
23 IpIncmplt
22 IpSumErr
21 TepSumErr
20 TepHdrShrt
19:16 PrcessCd

15:08 MacHsh
07:00 CtxHsh

OFESET 0x0000:0x0003

description
Indicates one or moreof the following: CompositeErr, !IpDn, {MacADet &
!MacBDet, IpMest, IpBest, !ethernet & !802.3Snap,!Ip4, !Tcp .
Set when anyofthe error bits of ErrStatusare set or if frame processing stops
while receiving a Tcp or Udp header.
A control frame was received at our unicast or special MltCst address.
Frame processing Hlted due to exhaustion of the IP4 length counter.
Frame processing Hlted due to exhaustion of the 802.3 length counter.
Frame's destination address matched the contents of MacAddrA.,
Frame's destination address matched the contents of MacAddrB.
The Mac detected a MltCst address.
The Mac detected a BrdCst address.

The frame processor detected an IP MitCst address.
The frame processor detected an IP BrdCst address.
The frame processor detected a Frag IP datagram.
The frame processor detected a non-zero IP datagram offset.
The frame processor detected flags within the IP datagram.
The frame processor detected a header length greater than 20 for the IP datagram.
The frame processor detected an abnormal header flag for the TCP segment.
The frame processor detected a header length greater than 20 for the TCP segment.
The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to E110 Technical Manual.
Refer to E110 Technical Manual.

Set when an incoming frame could not be processed as a result ofan outstanding frame completion
. event not yet serviced bythe utility processor.

The frame processordetected a
00 - Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap..
00 - Unknown. 01- Ip4. 10 - Ip6 11 - ip other.
00 - Unknown. 01- reserved. 10 - Tcp 11 - Udp
A NetBios frame was detected.

The Mac on which this frame was received.

OFFSET 0x0004:0x0007

description .
End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.
Refer to E110 Technical Manual.
Refer to £110 Technical Manual.
Refer to £110 Technical Manual.

Refer to E110 Technical Manual.
Refer to E110 Technical Manual.

The [P4 headerlength field contained a value less than 0x5.
The frame terminated before the IP length counter was exhausted.
The IP header checksum wasnot Oxffttat the completion of the IP header read.
The session checksum wasnot Oxffff at the termination of session processing.
The TCP headerlength field contained a value less than OxS.
Thestate of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Processing IP header.
0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header(IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.
0b1001 Reserved.
O0b101x Reserved.
Ob11xx Reserved.
The Macdestination-address hash. Refer to £110 Technical Manual.

The 8-bit context-hash generated by exclusive-oringall bytes of the IP source
address, IP destination-address, transport source port and the transport destination port.

FIG. 92

INTEL Ex.1002.237

INTEL Ex.1002.238

82/89

py|fd] (|Ut asf2seg&MacDataIN

MacCtrlIN

MacStatusIN

MacAddrA

MacAddrB

SramAck

- SramRdData

FREEQID

Cel.QD

XmtQID

PauseClr

PauseDet

Cpu_PauseReq

FG. 93

=

i
=)Ae
3S

pS 3B
B

CES SLUCLUL S z

ES&

S“i
pitTtTyyy 3S[S|2

=\sa: aa
XmtData

XwrReq
PauseD

QmnghReq
SramReq

“From Sram

SramParams\/

INTEL Ex.1002.238

INTEL Ex.1002.239

83/89

From PROCESSOR

From RCVSEQ

FROM PROCESSOR

TO PROCESSOR

FIG. 94

INTEL Ex.1002.239

INTEL Ex.1002.240

TRANSMIT BUFFER DESCRIPTOR

bit name description

31 ChksumEn Whenset, xmtSeg Will insert a calculated checksum. Whenreset, XmtSeq will
not alter the outgoing data stream.

reserved30

29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddrto determine the
starting addressof the buffer:

256B boundary. A[7:0] ignored.
2KB boundary. A[10:0] ignored.
4KB boundary. A[11:0] ignored.
32KB boundary. A[14:0] ignored.

27:00 EndAddr - The address ofthe last byte to transmit plus one.

FIG. 95

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

Ann ioetl WNpe

bit name description

31:00 Primer A value to be added during checksum accumulation. For IPV4, this should include
the psuedo-headervalues, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005

FRAME Data OFFSET 0x0006:END OF BUFFER

FIG. 96

TRANSMITStatus VECTOR

bit name description

31 LnkErr Indicates that a link status error occured before or during transmit.
30:15 reserved
14 ExcessDeferral Refer to £110 Technical Manual.
13 LateAbort Refer to £110 Technical Manual.
12 ExcessColl Refer to £110 Technical Manual.
11 UnderRun Refer to £110 Technical Manual.

10 ExcessLeth Refer to E110 Technical Manual.
09 Okay Refer to E/]0 Technical Manual.
08 deferred Refer to £110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to £110 Technical Manual.
05 CrcErr Refer to £110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

FIG, 97

INTEL Ex.1002.240

INTEL Ex.1002.241

85/89

a
TIWECTZHINCET

 6"bybyboyboybogonBeas3bANmxpebed
INTEL Ex.1002.241

INTEL Ex.1002.242

86/89

weqpyndyauCNYymin ™10}PYSu)uEIg|ind)JoyyoySmug|mdJO}Jue)Smugindy19}mapofabnsndyyam|0]BED)!!!fo"mgay|HMSUN3!HEP)way:nde)soyeyepl)TMI|

INTEL Ex.1002.242

INTEL Ex.1002.243

DMA OPERATIONS

dma seq # name
0 none

1 D2dSeq
2 D2sSeq
3 D2pSeq
4 S2dSeq
5 S2pSeq
6 P2dSeq
7 P2sSeq

bit name
31:11 reserved
10:8 ChCmd

07:05 reserved
04:00 ChiId

bit name
127:96 PciAddrH
95:64 PciAddrL
59:32 MemAddr
31 PciEndian
30 WideDbl
22 DstFlash
15:00 XfrSz

(— 87/89 _

description

This is a no operation address.
Movesdata from ExtMem to ExtMem. .
Movesdata from ExtMem busto sram.
Movesdata from ExtMemto Pci bus. °
Movesdata from sram to ExtMem.
Movesdata from sram to Pci bus.
Movesdata from Pci bus to ExtMem.
Movesdata from Pci bus to sram.

FIG. 100

description

Data written to these bits Is ignored.
0 - Stops execution of the current operation and clears the corresponding eventflag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem busto sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.

Data written to these bits is ignored.
Provides the channel numberfor the channel command.

FIG. 101

description ___
Bits [63:32] of the Pci address,
Bits [31:00] of the Pci address.
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Whenset, selects big endian modefor Pci transfers.
Whenset, disables Pci 64-bit mode.
Selects Flash for the external memory destination of P2d.
Bits [15:00] of the requested dmasize expressed in bytes.

FIG. 102

INTEL Ex.1002.243

INTEL Ex.1002.244

bit name
123:56 MemAddr
95:64 PciAddrH
63:32 PciAddrL

30 SrcFlash
23 PciEndian
22 WideDb!I
15:00 XfrSz

bit name
127:124 reserved
123:96 SreAddr
95:60 reserved
59:32 DstAddr
30 FlashSel
22 FlashSel
15:00 XfrSz

bit name
127:64 reserved
63:32 ChkSum

31:24 reserved
23:20 SrcStatus
19:16 DstStatus
15:00 XfrSz

bit name
31:00 ChDn

t 88/89 Co

description

Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
Bits [63:32] of the Pci address.
Bits [31:00] of the Pci address.
Selects Flash for the external memory source of D2p.
Whenset, selects big endian modefor Pci transfers.
Whenset, disables Pci 64-bit mode.
Bits [15:00] of the requested dmasize expressed in bytes.

- FIG. 103

description
Reservedfor future use.

Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
Reservedfor future use.

Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
Selects Flash for the external memory source of D2d or D2s.
Selects Flash for the external memory destination of S2p or D2d.
Bits [15:00] of the requested dmasize expressed in bytes.

FIG. 104

description
Notused.

Represents the I's compliment sum ofall halfwords transferred during a P2d or D2d
operation only.
Reserved for future use.
TBD.
TBD.

Bits [15:00] of the residual dma size expressed in bytes. This value will be zeroif the
dmaoperation was successful

FIG. 105

description

Eachbit represents the doneflag for the respective dma channel. These bits are set bya
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmdregister ChCmdOpfield.

FIG. 106

INTEL Ex.1002.244

INTEL Ex.1002.245

89/89

LO“D1
nd)QL

INTEL Ex.1002.245

INTEL Ex.1002.246

_. Attomey Docket No.: ALA-006C

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION |
As a below hamed inventor, I hereby declarethat:

Myresidencé,post-office address, and citizenship are as stated below next to my name. I believe J am the original, first and sole
inventor (if only one nameis listed below), or an original, first and joint inventor (if plural names are listed below) of the subject
matter whichis claimed and for which a patentis sought by way ofthe application entitled: _

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) x ‘is attached hereto.
and is amended by the Preliminary Amendmentattached hereto.
was filed on , as Application Serial No.
and was amended on Gf applicable).

I hereby state that I have reviewed and understoodthe contents ofthe above-identified specification, including the claims, as amended
by any amendmentreferred to above. J] acknowledge the duty to disclose all information which is material to patentability as defined iin
37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority
I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d), of aany foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
international application(s) designating at least one country other than the United States of America filed by me on the same subject
matter havinga filing date before that of the application(s) on whichpriority is claimed:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed
below:

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of Americalisted on the following page and,insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided bythefirst paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available betweenthe filing date of the prior application(s) and the national or
PCT international filing date of this application:

Declaration and Powerof Attorney

INTEL Ex.1002.246

INTEL Ex.1002.247

|Sdeentor’s S

| t Lo ' Attorney Docket No.: ALA-006C

SuRagENGSEY 2 Ks = H
rae

RACE AINE patie:
sh
zCee

Saee ‘foe nen OO/O7 53100 Fe oa

Sores phe!a
ie
a

Fe aE TRENT eugnsaa aes

PowerofAttorney
As a namedinventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith. .

Mark A. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

=
I hereby declare thatall statements made herein of my own knowledgeare true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge thatwillful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patentissued thereof.

Full Nameof Inventor: Laurence B. Boucher Citizenship: United States of America

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

Post Office Ad Same as above

2(21 low
Date

ignature

woDeclaration and Powerof Attorney

INTEL Ex.1002.247

INTEL Ex.1002.248

a - L-

Full Nameof Inventor: Stephen E.J. Blightman

Residence: 3733 Arlen Court
San Jose, CA 95132

(_. ~ Attorney Docket No.: ALA-006C

Citizenship: United Kingdom

Full Name of Inventor: Peter K. Craft

Residence: ; 156 Henry Street .
San Francisco, CA 94114

Post Office Address: Same as

Inventor’s Signature

Full Nameof Inventor: David A. Higgen

Residence: 17880 Los Alamos Drive

Saratoga, CA 95070

Post Office Address: Same as above

Inventor’s Signature

Declaration and Power of Attorney

Citizenship: United States of America

Date

Citizenship: United Kingdom

Date

INTEL Ex.1002.248

INTEL Ex.1002.249

oN ok :
; be ("Attorney Docket No.: ALA-006C

Full Nameof Inventor: Clive M. Philbrick Citizenship: -Australia

Residence: 1170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

Inventor’s Signature Date

Full Name of Inventor: Daryl] D. Starr Citizenship: United States of America

Residence: 446 Folsom Court

Milpitas, CA 95035

- Post Office A dy

 TESA
Inventor’s Signatpre

Declaration and Power of Attorney

INTEL Ex.1002.249

INTEL Ex.1002.250

ON , | | {
—- Attorney Docket No.: ALA-006C

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below namedinventor, I hereby declare that:

Myresidence, post-office address, and citizenship are as stated below next to my name. I believe I am theoriginal, first and sole
inventor (if only one nameis listed below), or an original, first and joint inventor (if plural namesare listed below) of the subject
matter which is claimed and for which a patent is sought by way of the applicationentitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) X___ is attached hereto.
~ and is amended by the Preliminary Amendment attached hereto.

wasfiled on , as Application Serial No.
and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended

by any amendmentreferred to above. I acknowledge the duty to disclose all information whichiis material to patentability as defined in
37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
international application(s) designating at least one country other than the United States of America filed by me on the same subject
matter having a filing date before that of the application(s) on whichpriority is claimed:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed
below:

ioe
U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of Americalisted on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by thefirst paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCT international filing date of this application:

Declaration and Powerof Attorney

INTEL Ex.1002.250

INTEL Ex.1002.251

“ay. ce ’
Attorney Docket No.: ALA-006C

baid
os

ee
0076

nue

ps
Sve

(oneAaee

PowerofAttorney
As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith.

MarkA. Lauer, Reg. No. 36,578 ° T. Lester Wallace, Reg. No. 34,748

PreACMEERpareeepa ie

rect Telephone;@aroth

ae

[7041RollCent
eB onsi@a

Ihereby declarethatall statements made herein of my own knowledge are true andthat all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patentissued thereof.

Full Nameof Inventor: Laurence B. Boucher Citizenship: United States of America

Residence: 20605 Montalvo Heights Drive
* Saratoga, CA 95070

Post Office Address: Same as above

Inventor’s Signature Date

nNDeclaration and Power of Attorney

INTEL Ex.1002.251

INTEL Ex.1002.252

~
°

7

oo | | (Attorney Docket No.: ALA-006C

Full Name of Inventor: Stephen E. J. Blightman Citizenship: United Kingdom

Residence: 3733 Arlen Court
San Jose, CA 95132

Post Office Address: Same as above

Inventor’s Signature _ Date

Full Nameof Inventor: Peter K. Craft Citizenship: United States of America

Residence: . 156 Henry Street
San Francisco, CA 94114

Post Office Address: Same as above

Inventor’s Signature Date

Full Name of Inventor: David A. Higgen Citizenship: United Kingdom

Residence: © 17880 Los Alamos Drive
Saratoga, CA 95070

Post Office Address: Same as above
~

Inventor’s Signature 7 Z Date

Declaration and Power of Attomey

INTEL Ex.1002.252

INTEL Ex.1002.253

Attorney Docket No.: ALA-006C

Full Nameof Inventor: Clive M. Philbrick Citizenship: . Australia

Residence: 1170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

Inventor’s Signature - Date

Full Nameof Inventor: Daryl D.Starr Citizenship: United States of America

Residence: 446 Folsom Court
Milpitas, CA 95035

Post Office Address: Same as above

Inventor’s Signature " Date

Declaration and Power of Attorney

INTEL Ex.1002.253

INTEL Ex.1002.254

oe
(BRESSGr y UNITED STATES PATENT AND TRADEMARK OFFICE

< UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTSP.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto gov

APPLICATION FILING or GRP ART
NUMBER 371(c) DATE UNIT FIL FEE REC'D ATTY.DOCKET.NO TTOT CLAIMSJIND CLAIMS

11/821,820 06/25/2007 2143 1800 ALA-006K 21 3

CONFIRMATIONNO.8447

24501 FILING RECEIPT
MARK A LAUER

6601 KOLL CENTER PARKWAY 0900.0090).00
SUITE 245

PLEASANTON, CA 94566

Date Mailed: 02/19/2008

Receipt is acknowledgedof this non-provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the
application mustinclude the following identification information: the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Feestransmitted by checkor draft are subject to collection.
Pleaseverify the accuracy of the data presented onthis receipt. If an error is noted onthis Filing Receipt, please
write to the Office of Initial Patent Examination's Filing Receipt Corrections. Please provide a copyof this
Filing Receipt with the changes noted thereon.If you received a "Notice to File Missing Parts" for this
application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the
USPTOprocessesthereply to the Notice, the USPTO will generate another Filing Receipt incorporating the
requested corrections

Applicant(s)
Laurence B. Boucher, Saratoga, CA;
Stephen E.J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;

David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;

Daryl D. Starr, Milpitas, CA;
AssignmentFor Published Patent Application

Alacritech, Inc.

Powerof Attorney:
Thomas Wallace--34748

Mark Lauer--36578

Domestic Priority data as claimed by applicant
This application is a CON of 10/260,112 09/27/2002 PAT 7,237,036
whichis a CON of 10/092,967 03/06/2002 PAT 6,591,302

whichis a CIP of 10/023,240 12/17/2001 PAT 6,965,941 *
whichis a CIP of 09/464,283 12/15/1999 PAT 6,427,173

whichis a CIP of 09/439,603 11/12/1999 PAT 6,247,060
whichis a CIP of 09/067,544 04/27/1998 PAT 6,226,680
whichclaims benefit of 60/061,809 10/14/1997

and said 10/260,112 09/27/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620

whichis a CIP of 09/141,713 08/28/1998 PAT 6,389,479
whichclaims benefit of 60/098,296 08/27/1998

page 1 of 3

INTEL Ex.1002.254

INTEL Ex.1002.255

and said 10/260,112 09/27/2002

is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
and is a CIP of 09/514,425 02/28/2000 PAT 6,427,171
and is a CIP of 09/675,484 09/29/2000 PAT 6,807,581

and is a GIP of 09/675,700 09/29/2000
and is a CIP of 09/789,366 02/20/2001 PAT 6,757,746

and is a CIP of 09/801,488 03/07/2001 PAT 6,687,758
and is a CIP of 09/802,551 03/09/2001 PAT 7,076,568
and is a CIP of 09/802,426 03/09/2001 PAT 7,042,898

and is a CIP of 09/802,550 03/09/2001 PAT 6,658,480
and is a CIP of 09/855,979 05/14/2001 PAT 7,133,940 *

and is a CIP of 09/970,124 10/02/2001 PAT 7,124,205

(*)Data provided by applicant is not consistent with PTO records.

Foreign Applications

If Required, Foreign Filing License Granted: 02/19/2008

The country code and numberof your priority application, to be used for filing abroad under the Paris Convention,

is US 11/821,820

Projected Publication Date: 05/29/2008

Non-Publication Request: No

Early Publication Request: No
Title

Fast-path apparatusfor transmitting data corresponding to a TCP connection

Preliminary Class

709

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent
in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same
effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing
of patent applications on the same invention in membercountries, but does not result in a grant of "an international
patent” and does noteliminate the need of applicantstofile additional documents and fees in countries where patent
protection is desired.

Almost every country hasits own patent law, and a person desiring a patent in a particular country must make an
application for patent in that country in accordance with its particular laws. Since the laws of many countries differ
in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions madein the United States, the Director of the USPTO must
issue a license before applicants can apply for a patent in a foreign country. Thefiling of a U.S. patent application

page 2 of 3

INTEL Ex.1002.255

INTEL Ex.1002.256

serves as a request for a foreign filing license. The application'sfiling receipt contains further information and
guidanceasto the status of applicant's license for foreignfiling.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the
section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlinesforfiling foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, orit
can be viewed on the USPTOwebsite at http:/Avww.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish
to consult the U.S. Government website, http:/Avww.stopfakes.gov. Part of a Department of Commerceinitiative,
this website includesself-help "toolkits" giving innovators guidance on howto protectintellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may
call the U.S. Governmenthotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED"followed by a date appears on this form. Such licenses are issuedin all applications where
the conditions for issuance of a license have been met, regardless of whetheror not a license may be required as
set forth in 37 CFR 5.15. The scope andlimitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This licenseis to be retained by the licensee and may be used at anytime onorafter the effective date thereof unless
it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grantofa license does not in any way lessen the responsibility of a licensee for the security of the subject matter
as imposed by any Governmentcontract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselvesof current regulations especially with
respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Departmentof
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and
Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of
Treasury (31 CFR Parts 500+) and the Departmentof Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted atthis time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOTappearonthis form. Applicant maystill petition for a license under 37 CFR5.12,
if a license is desired before the expiration of 6 monthsfrom thefiling date of the application. If 6 months has lapsed
from thefiling date of this application and the licensee has not received any indication of a secrecy order under 35
U.S.C. 181, the licensee mayforeignfile the application pursuant to 37 CFR 5.15(b).

page 3 of 3

INTEL Ex.1002.256

INTEL Ex.1002.257

ae

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 7
lication of Boucheretal. Ser. No: 11/821,820

Filing Date: June 25, 2007 . Examiner: Unknown

Atty. Docket No: ALA-006K GAU: 2143

For: FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDINGTO A TCP CONNECTION

February 21, 2008

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Information Disclosure Statement per 37 C.F.R. §1.98

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring two-hundred and

eighty-four documentslisted on the enclosed thirteen-page form PTO-1449to the

attention of the Examinerin the above-identified application. Copies of the two-hundred

and eight U.S. Patent documents are not enclosed. Copies of the seventy-five non-U.S.

Patent reference documentslisted on the enclosed thirteen-page form PTO-1449 are not

submitted because they were submitted in earlier applications (09/801,488, 09/675,700,

and 10/260,112) which are relied uponfor an earlierfiling date under 35 U.S.C. §120.

Documents 209-218, 221-262, 264-267, and 283-284, were submitted in application no.

09/801,488, documents 263, 268-270, and 281, were submitted in application no.

09/675,700, and documents 219-220, and 271-282, were submitted in application no.

10/260,112.

Citation of these documents shall not be construed as an admission that the
documentsare prior art with respect to the instant invention, a representation that a search

has been made,or an admissionthatthe information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

INTEL Ex.1002.257

INTEL Ex.1002.258

CERTIFICATE OF MAILING

I hereby certify that this correspondenceis being deposited with

sufficient postage in the US Postal Serviceasfirst class mail in an
envelope addressed to: Commissioner for Patents, P.O. Box 1450,

Alexandria, VA 22313-1450, February 21, 2008.

Date: ZZ OP
Mark Lauer

Respectfully submitted,

Gr___
Mark Lauer

Reg. No, 36,578
6601 Koll Center Parkway
Suite 245

Pleasanton, CA 94566
Tel: (925) 484-9295
Fax: (925) 484-9291

Information Disclosure Statement

App. Ser. No. 11/821,820

INTEL Ex.1002.258

INTEL Ex.1002.259

Application No.: 11/821 ,820

Filing date: June 25, 2007

Group Art Unit: 2143

ana
ONDING TO A TCP CONNECTION Attorney Docket No.: ALA-006K

Page 1 of 13

 U.S. Patent Documents

Examiner

Initial Cc >oO io 7] jn

710

340a oC NOaan

364

7

oSg8

~|e

5,289,580 February 22, 1994

—~
o

 — —

12

13

5,303,344 April 12, 1994

17 5,448,566 September5, 1995 3

5,485,579 January 16, 1996

ss0ec00|amigtee|an
|Swe

395

95

95

95

an Mn|
3 275

3 200

3 250

3 00

95

95

95

95 2

70 94.1

— nN

 N Ooo = No

3

38|2
8

1 5,517,668 May 14, 1996 Szwerinskiet al. 3

22. 5,524,250 . June 4, 1996 Chessonetal. 3

*EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copyofthis form with your communication to applicant. .

a

250

280

00

775

—| ‘Oo|0

INTEL Ex.1002.259

INTEL Ex.1002.260

t

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

age

5,535,375 July 9, 1996 Esheletal.

Application No.: 11/821,820

Filing date: June 25, 2007

 Group Art Unit: 2143

Inventors: Boucheret al

Nn 2g _ @

23

P

[ase
5,548,730 August 20, 1996 Younget al.

5,566,170 October 15, 1996 Bakkeetal.|370|60|
5,574,919 November12, 1996 Arun.N. Netravali etal

fm[0_|

675

69

11

28

29

0 5,592,622 January 7, 1997 Isfeld et al

5,588,121 December 24, 1996 Reddin etal.

5,590,328 December 31, 1996 Senoetal.

5,566,170 October 15, 1996 Bakkeetal.

200.15395

395

61

 EGE
200.02

5,619,650 April 8, 1997 Bachetal. 200.01

5,629,933 May 13, 1997 Delp et al. pat

36 ,

37

5,634,099 May 27, 1997 Andrewsetal. 200.07

36 5,634,127 May 27, 1997 Cloud etal.
5,642,482 June 24, 1997 Pardillos

680.

200.2

38 5,664,114 September2, 1997 Krech, Jr. etal. 200.64

—
—
—
—
—
—
—

395

395

foaraass[Sooner[cane=ias|a|
—
—_
—
—_
—
—_
—_
—_

fe|smic0|Nowenne25007[Stak
fe|somo|oxemeeier|See
am

‘ i

;

 200.12

 46.|5,701,516 December 23, 1997 Chenget al

*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Draw line throughcitation if not
in conformanceand not considered. Include copy of this form with your communication to applicant.

INTEL Ex.1002.260

INTEL Ex.1002.261

+

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA_[|Examiner name: Unknown

CORRESPONDING TO A TCP CONNECTION Attomey Docket No: ALA-006K

5,742,765 April 21, 1998 Wongetal.

7

Application No.: 11/821 ,820

Filing date: June 25, 2007

Inventors: Boucheretal.

Group Art Unit: 2143

wo °sa = w

Page

49 5,749,095 May 5, 1998 Hagersten

50 5,751,715 May 12, 1998 Chanet al.

5,752,078 May 12, 1998 Delp etal.

5,758,084 May 26, 2008 Silverstein et al. 200.58

, ' ' 31

86

29

07

45

oa) —_ 5

5

395

June 23, 1998 Picazo, Jr. et al.

July 7, 1998 Jedwab 8

, 70 2

9

52 9

4 9

wor
= = np

5,790,804 August4, 1998 Osborne|709|245|
5,794,061 August 11, 1998 ‘Hansenetal. 800.0112]

25

00

3

6

7

8

9

5

5,809,328 September 15, 1998 Nogalesetal.

5,812,775 September 22, 1998 Van Seetersetal.

= oO wo5,815,646 September29, 1998 Purcellet al.

5,828,835 October 27, 1998 MarkS.Isfeld et al

5,848,293 December8, 1998 Gentry et al.

5,872,919 February 16, 1999 Wakelandetal.

3

3

3

5

5

5

5

62

63

64

6

67

70 5,878,225 March 2, 1999 Bilansky etal. .

1 5,892,903 April 6, 1999 Christopher W. Klaus 187.01

72 5,898,713 April 27, 1999 Melzeret al.

3

3

3

3~

95

95

95

95

95

95

95

95

743

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Draw line throughcitationif not
in conformance and not considered. Include copyof this form with your communication to applicant.

INTEL Ex.1002.261

INTEL Ex.1002.262

Application No.: 11/821 ,820

Filing date: June 25, 2007

 U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

5 _ Page 4 of 13

fre[sass[aye00[meteroe|on|

Inventors: Boucheretal

[seen[warr008|wernt||

7 5,931,918 August 3, 1999 Rowetal. 300

5,935,205 August 10, 1999 . Murayamaetal. 216

Connery etal. 395 200.8

[sence|Aupmzerow@[Aimer|ro |

1

2

129

NO on

; al. 710

foo|sornere|muptanse|Hae10

84 5,991,299 November 23, 1999 Radognaetal.

85 5,996,013 November30, 1999 Gary Scott Delp et al

fas[050m|noventeran180|emerou|10

00.7

3

3

2

3

2

28

0

49

92

26

01

76

56,009,478 December 28, 1999 Panner, etal. 710

6,016,513 January 18, 2000 Glen H. Lowe 709

||90 6,021,446 February 1, 2000 Gentry et al.
F|91 6,021,507 February 1, 2000 Shawfu Chen
P| 92 6,026,452 February 15, 2000 William Michael Pitts

0 Noala
303

2

0

709

714

710 56

;
*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Draw line through citationif not
in conformance and not considered. Include copyof this form with your communication to applicant.

INTEL Ex.1002.262

INTEL Ex.1002.263

. U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

98|6,047,323|Apri'4,2000|Michael R. Krause
55|sowrsee[nenaat00[Aion eal

Ariel Hendelet al 235

101 Sompong P.Olarig 345 520

Application No.: 11/821 ,820

Filing date: June 25, 2007

Inventors: Boucheret al.

 Group Art Unit: 2143

 Examiner name: Unknown

 Attorney Docket No.: ALA-006K.
9

an °a = w

 227

U» oO

129wo}rnln a|a][o o/=-|6

102 6,061,368 May9, 2000 Hitzelberger 370 537

 104 6,067,569 May 23, 2000 MohamedJ. Khakiet al 709 224

105 6,070,200 May 30, 2000 Gatesetal. 710

—| oO|oa Joel Gotesmanetal 370 474

108 Gosheyetal. 709 321

Gee-Kung Chang etal. 359 123

Takeshi Ota et al 455 553

111 Toby D. Bennettet al 709 236

mm| —|©co|e

~ = oO—5
—

wn

NI]N —_—|— o|o

8 ‘February 24, 2004 San-Hong Kim

1 0

0

9

70

metmetee vee[mete|pt sDnN

||120) 6,223,242 April 24, 2001 Stephen J. Sheafor et al 1
—[iat] 6,226,680 May1, 2001 Boucheretal. 7
Ff122 ' 6,246,683 June 12, 2001 Connery et al.

7

3

3

7

0

5

228

401

392

20

132

230

392

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copyof this form with your communication to applicant.

INTEL Ex.1002.263

INTEL Ex.1002.264

U.S. Department of Commerce,Patent and Trademark Office Application No.: 11/821,820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007
Inventors: Boucheretal.

Group Art Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Page

126 6,298,403 October2, 2001 Suri et al.

127 6,324,649 November 27, 2001 Kevin W. Eyreset al 202

138 6,421,742 July 16, 2002 710

139 6,421,753 July 16, 2002 129

143 6,434,620 August 13, 2002 Boucher,et al. 709 230

aD

 ~“ —_ o 100

~ —_ oo

— G2 So

1

= on

~“ = oO

 —_ 0 260144 6,434,651 August 13, 2002 Gentry,Jr. 7

145 6,449,656 September10, 2002 Elzuret al. . 709 236

146 6,453,360 September17, 2002 Muller et al. 709 250

147 6,470,415 October 22, 2002 Starr, et al. 711 104

Examiner Date Considered :

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. include copy of this form with your communication to applicant.

INTEL Ex.1002.264

of 13

INTEL Ex.1002.265

 US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION ;

Page

148 6,473,425 October 29, 2002 Gilles Bellaton et al 92

6,480,489 November 12, 2002 Muller et al.

6,487,202 November26, 2002 Daniel E. Klausmeieret al

Attorney Docket No.: ALA-006K

=~] °= = w

9>

3

3

395

2~ —_3.z6,487,654 November 26, 2002 Eric M. Dowling

6,490,631 December 3, 2002 Paul R. Teichet al 7

3 6,502,144 December31, 2002 Jean-Paul Accarie T

6,523,119 February 18, 2003 Dominique Vincent Pavlin et al

8

9

4

5

mafeefe| micn|wm Nl1Oo|]oo
2

370

370

370

09

10

 92~ =“ wo —_

—_

Wn]aN mn|> 709— 6,526,446 February 25, 2003 Yang et al.

—_

fea]ess060[noventera200|Stennett |
fiea0sr76r|owaneera.zom|cockingcrereeta|
fica!onsen|oeonsr202|tavernooueretel
fea]oeez09|sonmy0,2004|_YetorTenio

64

65

66

7

— ws

Oo

 Glenn William Connery et al 370 419

Stephen B. Johnsonwa ~]

0

NY — oO

-2

310

et|e an oo

& = aw

3 392

3

7 239

3

1

0 9

59 12

09 3

70 463

6 1 6,681,364 January 20, 2004 Jean Louis Calvignac et al

1 6,687,758 February 3, 2004 Craft, etal.

1 : .

77

250

23‘0

e

16 6,751,665 June 15, 2004 7

168 6,765,901 July 20, 2004 370 352

June 29, 2004 Boucher,et al. 709 250

October 19, 2004 Daryl D. Starr et al 709 250

172 David A. Edgar 707 2

“EXAMINER: Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Drawline throughcitationif not
in conformance and not considered. Include copy of this form with your communication to applicant.

 714

709

709

09

224

INTEL Ex.1002.265

INTEL Ex.1002.266

I

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Examiner name: Unknown

Attorney Docket No.: ALA-006K

8 370|463

; itbri 709|250

; 709|242

206

709|250

 oo °o= = ®

Uv ft) oO

—

 fsi|1220s|oomerv.200|cakes|70
182 Blightman,et al. 710 22

7,042,898 May 9, 2006 Blightman,et al.|370|

 18 7,167,926 January 23, 2007 Boucher,et al. 709 250

184 7,167,927 January 23, 2007 Philbrick, etal. 709 250 185 Boucher, etal. 709 250

February 27, 2007 Blightman,etal. 714 | 776

Ww

7

7

Published Applications

230

225

245

502

Fi

li
 *EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline throughcitation if not

in conformance and not considered. Include copy of this form with your communication to applicant.

INTEL Ex.1002.266

INTEL Ex.1002.267

Application No.: 11/821,820

Filing date: June 25, 2007

U.S. Department of Commerce, Patent and Trademark Office : . ,

Inventors: Boucheretal.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Group Art Unit: 2143

Attorney Docket No.: ALA-006K.

||196| 2001/0025315 January 10, 2001
|La97 2001/0048681 December6, 2001 Bilic etal.
||198] 2001/0053148 December20, 2001 Bilic et al.
||199] 2002/0073223 June 13, 2002 B. Scott Darnell et al
||200|2002/0112175 August 15, 2002
||201| 2003/0066011 April 11, 2002

2003/01 10344 June 1, 2003 $zezepaneket al.hoon
||203|2003/0165160 September4, 2003 Minamietal.
|_|208

14 4

09 231

7

7

3 7 389

 7

70© N Ww No

Ow oOo;Oo w oo ©

“= QO nN OooMakofka et al ,

~_ = — QooOoO~“I= o-
~! ol

2004/0054814 March 1, 2004 McDaniel

~ — @205 March25, 2004 Angelo, etal.

206

207| 2004/0213290 October 1, 2004

NSS&=—o°o an©©Noa

oO 5oO3

2004/0153578 August 1, 2004 Elzur

OoNIoO aN Oo ©Johnsonet al.

Gyugyiet al. 395.312004/0246974 December9, 2004

 Foreign Patent Documents

Examiner

 DocumentInitinitial Number

||209] WO 98/19412 May7, 1998 PCT/US97/17257

211 WO 99/04343 January 28, 1999 PCT/US98/14729°

|[ais|WO 00/13091 March 9, 2000 PCT/US98/24943
P| 214 PCT/US00/18939

15

216 WO 01/05116 January 18, 2001

*EXAMINER:Initial if reference considered, whetherornot citation is in conformance with MPEP 609; Draw line through citation if not
in conformanceand not considered. Include copy of this form with your communication to applicant.

Class|Subclass

o>

PCT/US00/19243

Date Considered

INTEL Ex.1002.267

INTEL Ex.1002.268

Attorney Docket No.: ALA-006K.

ai[_woowsrs|loway1.207|ecmustoneore[|||
1s|_woovsssen|sinez2001|pomuscoseein|||

nis|_woowssew|mstseaw|omusconers|||_|
mf _woowseiso|Novenber152001|_pomusoinsso|[|

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

Mogproduct Brief entitled "285C30 CMOS SCC Serial Communication Controller", Zilog Inc., 3 pages,

Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinberis working on),

Internet pages of Xpoint Technologies, Inc. entitled “Smart LAN Work Requests”, 5 pages, printed
223|12/19/97.

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

|

 1 page,printed 11/25/98.

Internet pages entitled: Asante and 400BASE-T Fast Ethernet. 7 pages, “printed 5/27/97.

pages, printed 12/21/98.

Richard Stevens, “TCP/IP Illustrated, Volume 1, The Protocols’, pages 325-326 (1994).

Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

Internet pages entitled: A Guide to the Paragon XP/S-A7 Supercomputerat Indiana University. 13

 28 Gigabit Ethernet Technical Brief, Achieving End-to-End Performance. Alteon Networks, Inc., First
Edition, September 1996, 15 pages.

229 Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com,
14 pages, printed 3/15/97.

230 VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4", pagesi-iv, 1-11, cover and copyright
page, revision 1.3, Feb. 1, 2000.

932 “Toshiba Delivers First Chips to Make ConsumerDevices Internet-Ready Based On iReady’s Design,”
Press Release October, 1998, 3 pages,printed 11/28/98.

233 Internet pages from iReady Products, websitehttp:/Awww.ireadyco.com/products,html, 2 pages,
downloaded 11/25/98.

iReady NewsArchives, Toshiba, iReady shipping Internet chip, 1 page, printed 11/25/98.

Interprophetarticle entitled "Technology", http://www.interprophet. com/technology. html, 17 pages,printed 3/1/00.

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitationif not
in conformanceand not considered. Include copy of this form with your communication to applicant.

 iReady News Archives article entitled "iReady Rounding Out Management Team with Two Key
Executives", http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed 11/28/98.

INTEL Ex.1002.268

INTEL Ex.1002.269

s

U.S. Department of Commerce, Patent and TrademarkOffice

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Application No.: 11/821,820

Filing date: June 25, 2007
 Inventors: Boucheret al

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

Page 11 of 13

|236 iReady Corporation, article entitled "The I-1000 Internet Tuner”, 2 pages, date unknown.
iReady article entitled "About Us Introduction”, Internet pages fromhttp:/www.iReadyco.com/abouthtml,
3 pages,printed 11/25/98.

iReady NewsArchivearticle entitled “Revolutionary Approach to ConsumerElectronicsInternet
Connectivity Funded”, San Jose, CA, November 20,1997. 2 pages, printed 11/2/98.

iReady NewsArchivearticle entitled “Seiko Instruments Inc. (SII) INTRODUCES WORLD'S FIRST
INTERNET-READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY,” Santa

Clara, CA and Chiba, Japan, October 26, 1998. 2 pages, printed 11/2/98.

NEWSwatcharticle entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November5,
1996, printed 11/2/98, 2 pages.

EETimesarticle entitled "Tuner for Toshiba, Toshiba Taps iReadyfor Internet Tuner", by David
Lammers, 2 pages, printed 11/02/98.

"Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages, printed
4/10/98. ,242

p243] Adaptecarticle entitled "AEA-7110C-a DuraSAN product", 11 pages, printed 10/1/01.
144 iSCSI! HBAarticle entitled "iSCSI! and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic,

Adaptec, JNI", 8 pages, printed 10/01/01.

245 iSCSI HBAarticle entitled "FCE-3210/6410 32 and 64-bit PCl-to-Fibre Channel HBA”, 6 pages, printed
10/01/01.

|246] ISCStcom article entitled "iSCSI Storage", 2 pages, printed 10/01/01.
S|zat] “Two-Way TCPTraffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukasetal.,IEEE Transactions on Networking, vol. 6, no. 6, December 1998, 17 pages.

is
49|249] Internet pages of InterProphetentitled “Frequently Asked Questions”, by LynneJolitz, printed 6/14/00, 4pages.

 240

24]

 IReady Newsarticle entitled "Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready
Based on iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98, 3

“File System Design For An NFS File Server Appliance’, Article by D. Hitz, et al., 13 pages.

5] Adaptec Press Releasearticle entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May
4, 2000, printed 6/14/00.

S|252] Adaptecarticle entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.
Adaptecarticle entitled “EtherStorage White Paper’, 7 pages, printed 7/19/00.

*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copyof this form with your communication to applicant.

INTEL Ex.1002.269

INTEL Ex.1002.270

 U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Application No.: 11/821 ,820

Filing date: June 25, 2007

Group Art Unit: 2143

Attorney Docket No.: ALA-006K.

Page 12 of 13

||25a CIBC World Markets article entitled “Computers; Storage’, by J. Berlino et al., 9 pages, dated August7,2000.

|dass Merrill Lynch article entitled “Storage Futures”, by S. Milunovich, 22 pages, dated May 10, 2000.
256 CBS Market Watcharticle entitled "Montreal Start-Up Battles Data Storage Botttleneck’, by S. Taylor,

dated March 5, 2000, 2 pages, printed 3/7/00.

57 Internet-draft article entitled “SCSV/TCP (SCSI over TCP)’, by J. Satran et al., 38 pages, dated February
2000, printed 5/19/00.

258 Internet pages entitled “Technical White Paper-Xpoint's Disk to LAN Acceleration Solution for Windows
NT Server, printed 6/5/97, 15 pages.

2590 Jato Technologies article entitled “Network Accelerator Chip Architecture, twelve-slide presentation,
printed 8/19/98, 13 pages.

260 EETimesarticle entitled “Enterprise System Uses Flexible Spec, dated August 10,1998, printed
11/25/98, 3 pages.

Internet pages entitled “Smart Ethernet Network Interface Cards”, which Berend Ozceri is developing,
printed 11/25/98, 2 pages.

Internet pages of Xaqti corporation entitled “GigaPower Protoco! Processor Product Review,” printed
11/25/99, 4 pages.

U.S. Provisional Patent Application No.: 60/283,896, Titled: CRC Calculations for Out of Order PUDs,
Filed April 12, 2003, Inventor: Amit Oren, Assignee: Siliquent Technologies Ltd.

bo Nn =

N an No

263

 nternet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert
J. Walsh, printed 6/3/99, 25 pages.

265|Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996, ISBN 0-13-349945-6.

6 Article from Rice University entitled “LRP: A New Network Subsystem Architecture for Server Systems”,
by Peter Druschel and Gaurav Banga, 14 pages.

nternet RFC/STD/FYI/BCPArchivesarticle with heading “RFC2140” entitled “TCP Control Block
nterdependence’, web addresshttp://Awww.faqs.org/rics/ric2140.html, 9 pages, printed 9/20/02.

No Dp

267| |
WindRiverarticle entitled “Tornado: ForIntelligent Network Acceleration”, copyright Wind River
Systems, 2001, 2 pages.

WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks’,
Copyright Wind River Systems, 2002, 7 pages.

270 Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation,
1999, 8 pages.

Schwadereretal., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
271|Decomposition for ASIC Implementation’, from 15th Conference on Local Computer Networks, 5 pages,

Sept. 30 — Oct. 3, 1990.

268

NNo aan\oos

Examiner Date Considered

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline throughcitation if not
in conformanceand not considered. Include copyof this form with your communication to applicant.

INTEL Ex.1002.270

INTEL Ex.1002.271

U.S. Department of Commerce, Patent and Trademark Office Application No.: 11/821,820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Page 13 of 13

172 Beach, Bob, IEEE Computer Society Press publication entitled, “UltraNet: An Architecture for Gigabit
Networking’, from 15th Conference on Local Computer Networks, 18 pages, Sept. 30 — Oct. 3, 1990.

273

Inventors: Boucheretal

Chessonetal., IEEE Syposium Record entitled, “The Protocol Engine Chipset’, from Hot Chips Il, 16
pages, Aug. 26-27, 1991.

Rosset al., IEEE article entitled “FX1000: A high performancesingle chip Gigabit Ethernet NIC’, from
Compcon ’97 Proceedings, 7 pages, Feb. 23-26, 1997.

Koufopavlouet al., IEEE Global Telecommunications Conference, Globecom ‘92, presentation entitled,
“Parallel TCP for High Performance Communication Subsystems”, 7 pages, Dec: 6-9, 1992.

279|Lilienkampet al., Publication entitled “Proposed Host-Front End Protocol”, 56 pages, Dec. 1984.

280 Thia et al. Publication entitled “High-Speed OSI Protocol Bypass Algorithm with Window Flow Control,”
Protocols for High Speed Networks, pages 53-68, 1993.

U.S. Provisional Patent Application No.: 60/053,240, Titled: TCP/IP Network Accelerator and Method of
Use, Filed July 17, 1997, Inventor: William Jolizt et al

232 Thia et al. Publication entitled “A Reduced Operational Protocol Engine (ROPE)for a multiple-layer
bypassarchitecture,” Protocols for High Speed Networks, pages 224-239, 1995.

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

INTEL Ex.1002.271

INTEL Ex.1002.272

oe | | | ght¢

 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

nananpplication of Boucheret al. Ser. No: ~ * 11/821,820
Filing Date: June 25, 2007 Examiner: _ Unknown

Atty. Docket No: ALA-006K GAU: 2143

For: FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

February 29, 2008

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Supplemental Information Disclosure Statement

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring two U.S. Patent

documents to the Examiner’s attention. Copies of the two U.S. Patent documentsare not
enclosed.

Citation of these documents shall not be construed as an admissionthat the

documentsare prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING AE
I hereby certify that this correspondenceis being deposited with Mark Lauer

the United States Postal Serviceas first class mail in an envelope Reg. No. 36,578
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on February 29, 2008. Suite 245

Pleasanton, CA 94566
Date:ZZAx Ee Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

INTEL Ex.1002.272

INTEL Ex.1002.273

U.S. Department of Commerce, Patent and Trademark Office Application No.: 11/821 ,820

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT BY Filing date: June 25, 2007 APPLICANT

pfGroup ae it 2148

Attorney Docket No.: ALA-006K

Page 1 of 1

(ap X
P)ie c“ Uo-@3- oD°8¢3@=Go

Document Filing Date,
Initial Number If Appropriate

|B 5,809,527 9/15/98 Cooperet al.
Cc

res ,
oOo cr oO a»

3
oO Q H »na 5QO vw »n n

mn

Po]
re
a

[oreennPATENTLTERATOREDOCUMENTS————SS—=S
*Examiner .
Initial Cite (Including Author, Title, Date, Pertinent Pages, Etc.)

No

Examiner Date Considered

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline throughcitation if not
in conformanceand not considered. Include copyof this form with your communication to applicant.

INTEL Ex.1002.273

INTEL Ex.1002.274

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

Alexandria, Virginia 22313-1450www.uspto.zov

APPLICATION NUMBER FILING OR 371(c) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

11/821 ,820 06/25/2007 Laurence B. Boucher ALA-006K

CONFIRMATION NO. 8447

24501
MARK A LAUER
6601 KOLL CENTER PARKWAY

SUITE 245

PLEASANTON, CA94566

Title: Fast-path apparatus for transmitting data corresponding to a TCP connection

Publication No. US-2008-0126553-A1
Publication Date: 05/29/2008

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication
pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date
are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases
via the Internet at www.uspto.gov. The direct link to access the publication is currently
http:/www.uspto.gov/pattt/.

The publication process established by the Office does not provide for mailing a copy of the
publication to applicant. A copy of the publication may be obtained from the Office upon payment
of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application
publications are handled by the USPTO's Office of Public Records. The Office of Public Records
can be reachedby telephoneat (703) 308-9726or (800) 972-6382, by facsimile at (703) 305-8759,
by mail addressed to the United States Patent and TrademarkOffice, Office of Public Records,
Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions
and the dates of receipt of correspondencefiled in the Office, may also be accessed via the
Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of
the Patent Application Information and Retrieval (PAIR) system. The direct link to access this
status information is currently http://pair.uspto.gov/. Prior to publication, such status information is
confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling
the Patent Electronic Business Center at 1-866-217-9197.

Pre-Grant Publication Division, 703-605-4283

INTEL Ex.1002.274

INTEL Ex.1002.275

Doccode: IDS Approved forusethrough 02/28/2000,OMB0681-003wo gs . . . rover . -
Docdescription: Information Disclosure Statement (IDS) Filed U.S. Patent and Tiademark OfficeUS.DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit contains a valid OMB control number.

Application Number 11821820

Filing Date 2007-06-25

First Named Inventor|Laurence B. Boucher, Saratoga, CA

Attorney Docket Number|ALA-006K

 (Not for submission under 37 CFR 1.99)

U.S.PATENTS

. . . : Pages,Coiumns,Lines where
Examiner Cite Kind Nameof Patentee or Applicant ; :
Initial* No Patent Number Code! Issue Date of cited Document Relevant Passages or Relevant

Figures Appear

If you wishto add additional U.S. Patent citation information please click the Add button.

U.S.PATENT APPLICATION PUBLICATIONS

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear

Examiner Cite Publication Number Kind|Publication Nameof Patentee or Applicant
Code] Date of cited Document

etaittabtiteAARShenfnrinntnieneatfnineretenneninthantinaiintaneinmietentnt
ichifta

If you wish to add additional U.S. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS seninnaabanating
Nameof Patentee or Pages,Columns,Lines

Examiner] Cite|Foreign Document.|Country Kind|Publication : . where Relevant i
Applicant of cited Passagesor RelevantDocument . 9g

Figures Appear

If you wish to add additional Foreign Patent Documentcitation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS

Include nameof the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
(book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s),
publisher, city and/or country where published.

Examiner Cite

EFS Web 2.1.10

INTEL Ex.1002.275

INTEL Ex.1002.276

Application Number 11821820

INFORMATION DISCLOSURE [rt named invent

2443
STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)
Art Unit

Examiner Name Unknown

If you wish to add additional non-patentliterature documentcitation information please click the Add button

EXAMINER SIGNATURE

*EXAMINER: Initial if reference considered, whetheror not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Date Considered

 1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ? Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). $ For Japanese patent documents, the indication of the yearof the reign of the Emperor must precede the serial numberof the patent document.
4+ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark hereif
English languagetranslation is attached.

EFS Web 2.1.10

:

:it
i
}J}
L
ii
|{

INTEL Ex.1002.276

INTEL Ex.1002.277

Application Number 11821820

Filing Date 2007-06-25

First Named Inventor|Laurence B. Boucher, Saratoga, CA

Art Unit

INFORMATION DISCLOSURE

STATEMENTBY APPLICANT
(Not for submission under 37 CFR 1.99)

Examiner Name Unknown

ALA-006K

CERTIFICATION STATEMENT

Aitorney Docket Number

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement wasfirst cited in any communication
[-] from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the

information disclosure statement. See. 37 CFR 1.97(e)(1).

That no item of information contained in the information disclosure statement was cited in a communication from a

foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was. knownto
any individual designated in 37 CFR 1.56(c) more than three monthsprior to thefiling of the information disclosure
statement. See 37 CFR 1.97(e)(2).

See attached certification statement.

Fee set forth in 37 CFR 1.17 (p) has been submitted herewith.

None

SIGNATURE

A signature of the applicant or representative |Is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the
form of the signature.

Name/Print Mark Lauer Registration Number

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the
public whichis to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR
1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTO. Timewill vary depending uponthe individual! case. Any comments on the amountof time you
require to complete this form and/or suggestions for reducing this burden, should be sent to. the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND
FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

EFS Web 2.1.10

cetteinbebiestnseantbiteienieneatin

wintertimenhieuenn

INTEL Ex.1002.277

INTEL Ex.1002.278

Electronic Acknowledgement Receipt

Application Number: 11821820

International Application Number:

Confirmation Number: 8447

Title of Invention: Fast-path apparatusfor transmitting data corresponding to a TCP connection

First Named Inventor/Applicant Name: Laurence B. Boucher

Customer Number: 24501

Filer: Mark Alan Lauer/Emily Lauer

Filer Authorized By: Mark Alan Lauer

Paymentinformation:

Document Document Description File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

161157

Information Disclosure Statement(IDS)

Filed (SB/08) IDS_ALA_006K.pdf d06134e31f0b0f7c5415549529a9d 162b8fd}

Information:

4532

°

INTEL Ex.1002.278

INTEL Ex.1002.279

This is not an USPTO supplied IDS fillable form

TotalFiles Size (in bytes) 161157

This AcknowledgementReceipt evidences receipt on the noted date by the USPTO ofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enterthe national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary componentsfor
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and ofthe International Filing Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shownon this AcknowledgementReceiptwill establish the international filing date of
the application.

INTEL Ex.1002.279

INTEL Ex.1002.280

SST AND E>

x UNITED STATES PATENT AND TRADEMARK OFFICElL
. 3, UNITED STATES DEPARTMENT OF COMMERCE5), United States Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

NOTICE OF ALLOWANCEAND FEE(S) DUE

MARK A LAUER JEAN GILLES, JUDE
6601 KOLL CENTER PARKWAY ART UNIT
SUITE 245 2443

DATE MAILED:11/03/2009 PLEASANTON,CA 94566

APPLICATIONNO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447
TITLE OF INVENTION: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

APPLN. TYPE SMALL ENTITY ISSUE FEE DUE PUBLICATION FEE DUE|PREV. PAID ISSUE FEE TOTAL FEE(S) DUE DATE DUE

NO $0nonprovisional $1510 $300 $1810 02/03/2010

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT.

THIS APPLICATION IS SUBJECTTO WITHDRAWAL FROMISSUE AT THE INITIATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS

STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES
NOT REFLECT A CREDIT FOR ANY PREVIOUSLYPAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS

PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM
WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW
DUE.

HOW TO REPLYTO THIS NOTICE:

I. Review the SMALL ENTITYstatus shownabove.

Tf the SMALL ENTITYis shown as YES,verify your current If the SMALL ENTITYis shown as NO:
SMALL ENTITYstatus:

A. If the status is the same, pay the TOTAL FEE(S) DUE shown A. Pay TOTAL FEE(S) DUE shownabove, or
above.

B. If the status above is to be removed, check box 5b on Part B - B. If applicant claimed SMALL ENTITYstatus before, or is now
Fee(s) Transmittal and pay the PUBLICATION FEE (if required) claiming SMALL ENTITYstatus, check box 5a on Part B - Fee(s)
and twice the amount of the ISSUE FEE shownabove,or Transmittal and pay the PUBLICATION FEE (if required) and 1/2

the ISSUE FEE shown above.

II. PART B - FEE(S) TRANSMITTAL,orits equivalent, must be completed and returned to the United States Patent and Trademark Office
(USPTO) with your ISSUE FEE and PUBLICATIONFEE(if required). If you are charging the fee(s) to your deposit account, section "4b"
of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a
request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur dueto the difficulty in recognizing
the paper as an equivalent of Part B.

I. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenancefees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3
PTOL-85 (Rev. 08/07) Approved for use through 08/31/2010.

INTEL Ex.1002.280

INTEL Ex.1002.281

PARTB- FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE(if required). Blocks 1 through 5 should be completed where
appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as
indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "KEE ADDRESS"formaintenancefee notifications.

CURRENT CORRESPONDENCE ADDRESS(Note: Use Block | for any change of address) Note: A certificate of mailing can only be used for domestic mailings of the
Fee(s) Transmittal. This certificate cannot be used for any other accompanying

apers. Each additional paper, such as an assignment or formal drawing, must
have its own certificate of mailing or transmission.

24501 7590 11/03/2009
Certificate of Mailing or Transmission

MARK A LAUER I herebycertify that this Fee(s) Transmittal is being deposited with the United
States Postal Service with sufficient postage forfirst class mail in an envclope

6601 KOLL CENTER PARKWAY addressed to the Mail Stop ISSUE FEE address above, or being facsimile
SUITE 245 transmitted to the USPTO (571) 273-2885, on the date indicated below.
PLEASANTON,CA 94566 (Depositor's name)

 (Signature)

(Mate)

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447
TITLE OF INVENTION: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

APPLN. TYPE SMALL ENTITY ISSUE FEE DUE PUBLICATION FEE DUE|PREV. PAID ISSUE FEE TOTAL FEE(S) DUE DATE DUE

NO $0nonprovisional $1510 $300 $1810 02/03/2010

JEAN GILLES. JUDE 2443 709-245000

1. Change of correspondence addressor indication of "Fee Address" (37 2. For printing on the patent front page, list
CFR 1.363).

LI change of correspondence address (or Change of Correspondence
Address form PTO/SB/122)attached.

LI} "Fee Address" indication (or "Fee Address” Indication form
PTO/SB/47, Rev 03-02 or more recent) attached. Use of a Customer
Numberis required.

(1) the namesofup to 3 registered patent attorncys
or agents OR,alternatively,

(2) the name ofa single firm (having as amembera 2
registered attorney or agent) and the names of up to
2 registered patent attorneys or agents. Ifnonameis 43
listed, no name will be printed. .

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT(printor type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for
recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.

(A) NAME OF ASSIGNEE (B) RESIDENCE:(CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : LV individual LJ Corporation or other private groupentity (J Government

4a. The following fee(s) are submitted: 4b. Paymentof Fee(s): (Please first reapply any previously paid issue fee shown above)
L] Issue Fee LI A checkis enclosed.

_] Publication Fee (No small entity discount permitted) Lj Paymentby credit card. Form PTO-2038 is attached.
LY Advance Order- # of Copies [J The Directoris hereby authorized to charge the required fee(s), any deficiency, or credit any

overpayment, to Deposit Account Number (enclose an extra copy ofthis form).

5. Changein Entity Status (from status indicated above)

La. Applicant claims SMALL ENTITYstatus. See 37 CFR 1.27. LI b. Applicant is no longer claiming SMALL ENTITYstatus. See 37 CFR 1.27(g)(2).

NOTE: TheIssue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other partyin
interest as shownbythe records of the United States Patent and Trademark Office.

Authorized Signature Date

Typed or printed name Registration No.

This collection of information is required by 37 CFR 1.311. The information is required to obtain orretain a benefit by the public whichis to file (and by the USPTOto process)
an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and
submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete
this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O.
Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450,
Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit displays a valid OMB control number.

PTOL-85 (Rev. 08/07) Approved for use through 08/31/2010. OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

INTEL Ex.1002.281

INTEL Ex.1002.282

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark OfficeAddress: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATIONNO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447

MARK A LAUER JEAN GILLES, JUDE
6601 KOLL CENTER PARKWAY ART UNIT
SUITE 245 2443

DATE MAILED:11/03/2009 PLEASANTON,CA 94566

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 435 day(s). If the issue fee is paid on the date that is three months after the
mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half
months) after the mailing date of this notice, the Patent Term Adjustment will be 435 day(s).

If a Continued Prosecution Application (CPA) wasfiled in the above-identified application, the filing date that
determines Patent Term Adjustmentis the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval
(PAIR) WEBsite (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of
Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be
directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101—or
(571)-272-4200.

Page 3 of 3
PTOL-85 (Rev. 08/07) Approved for use through 08/31/2010.

INTEL Ex.1002.282

INTEL Ex.1002.283

Application No. Applicant(s)

11/821,820 BOUCHER ETAL.
Notice ofAllowability Examiner Art Unit

JUDE J. JEAN GILLES 2443

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSEDin this application. If not included
herewith (or previously mailed), a Notice of Allowance (PTOL-85)or other appropriate communication will be mailed in due course. THIS
NOTICE OF ALLOWASBILITY IS NOT A GRANT OF PATENT RIGHTS.This application is subject to withdrawal from issue atthe initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. KX] This communication is responsive to 06/25/2007.

2. XJ Theallowed claim(s) is/are 1-21.

3. [J Acknowledgmentis madeofa claim for foreign priority under 35 U.S.C. § 119(a)-(d) or(f).
a)O All b)—1Some* c)[1None ofthe:

1. C1] Certified copies ofthe priority documents have been received.

2. [1 Certified copies of the priority documents have been received in Application No.

3. [] Copiesofthe certified copies of the priority documents have been receivedin this national stage application from the

International Bureau (PCT Rule 17.2(a)).

* Certified copies not received:

Applicant has THREE MONTHS FROM THE “MAILING DATE?”of this communicationto file a reply complying with the requirements
noted below. Failure to timely comply will result in ABANDONMENTofthis application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.

4. (]A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER’S AMENDMENTor NOTICE OF
INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

5. [] CORRECTED DRAWINGS (as “replacement sheets”) must be submitted.
(a) (0 including changes required by the Notice of Draftsperson’s Patent Drawing Review (PTO-948) attached

1) 1 hereto or 2) [[] to Paper No./Mail Date.

(b) [J including changes required by the attached Examiner's Amendment / Commentorin the Office action of
Paper No./MailDate___.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawingsin the front (not the back) of
each sheet. Replacement sheet(s) should be labeled as suchin the header according to 37 CFR 1.121(d).

6. [] DEPOSIT OF and/or INFORMATIONaboutthe deposit of BIOLOGICAL MATERIAL must be submitted. Note the
attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)
1. K] Notice of References Cited (PTO-892) 5. CJ Notice of Informal Patent Application

2. [J Notice of Draftperson's Patent Drawing Review (PTO-948) 6. [J Interview Summary (PTO-413),
Paper No./Mail Date .

3. KX] Information Disclosure Statements (PTO/SB/08), 7. OJ Examiner's Amendment/Comment
Paper No./Mail Date See Continuation Sheet

4. (J Examiner's Comment Regarding Requirement for Deposit 8. K] Examiner's Statement of Reasonsfor Allowance
of Biological Material

9. [J Other .

/Jude J Jean-Gilles/

Primary Examiner, Art Unit 2443

U.S. Patent and Trademark Office

PTOL-37 (Rev. 08-06) Notice of Allowability Part of Paper No./Mail Date 20091026

INTEL Ex.1002.283

INTEL Ex.1002.284

Continuation Sheet (PTOL-37) Application No. 11/821,820

Continuation of Attachment(s) 3. Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date: 02/26/2008, 03/03/2008, and
02/09/2009 .

INTEL Ex.1002.284

INTEL Ex.1002.285

Application/Control Number: 11/821 ,820 Page 2

Art Unit: 2443

Information Disclosure Statement

1. The information disclosure statement (IDS) submitted on 02/26/2008,

03/03/2008, and 02/09/2009 wasfiled after the mailing date of the original application

on 06/25/2007. The submission is in compliance with the provisions of 37 CFR 1.97.

Accordingly, the information disclosure statement is being considered by the examiner.

INTEL Ex.1002.285

INTEL Ex.1002.286

Application/Control Number: 11/821 ,820 Page 3

Art Unit: 2443

EXAMINER’S REASON FOR ALLOWANCE

2. The following is an examiner's statementof reasonsfor allowance: The examiner

has conducted a thorough search for this application. No prior art of record appears to

teach the limitations of the independent claims. the closest prior art of record, Dillon et

al. US 6460085 B1 does not teach “A method comprising: establishing, at a host

computer, a transport layer connection, including creating a context that includes

protocol headerinformation for the connection; transferring the protocol header

information to an interface device; transferring data from the network hostto the

interface device,after transferring the protocol headerinformation to the interface

device; dividing, by the interface device, the data into segments; creating headers for

the segments, by the interface device, from a template header containing the protocol

headerinformation; and prepending the headers to the segments to form transmit

packets.” as well as the teachings of each dependentclaims in accordance with the

disclosure of the specification filed on 06/25/2007.

Any comments considered necessary by applicant must be submitted no later

than the paymentof the issue fee and, to avoid processing delays, should preferably

accompanythe issue fee. Such submissions should be clearly labeled “Comments on

Statement of Reasons for Allowance.”

3. Any inquiry concerning this communication or earlier communications from

examiner should be directed to Jude Jean-Gilles whose telephone numberis (571) 272-

INTEL Ex.1002.286

INTEL Ex.1002.287

Application/Control Number: 11/821 ,820 Page 4

Art Unit: 2443

3914. The examiner can normally be reached on Monday-Thursday-Friday from 8:00

AM to 5:00 PM.

If attempts to reach the examinerby telephone are unsuccessful, the examiner's

supervisor, Tonia Dollinger, can be reached on (571) 272-4170. The fax phone number

for the organization wherethis application or proceeding is assigned is (571) 273-3301.

Anyinquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone numberis (571) 272-

0800.

/Jude J Jean-Gilles/

Primary Examiner, Art Unit 2443

October 25, 2009

INTEL Ex.1002.287

INTEL Ex.1002.288

Application/Control No. Applicant(s)/Patent Under
Reexamination

11/821,820 BOUCHER ETAL.

Examiner Art Unit

JUDE J. JEAN GILLES 2443 Page 1 of 1
U.S. PATENT DOCUMENTS

Notice of References Cited

Document Number Date ae
Country Code-Number-Kind Code MM-YYYY Classification

12-1998 Dillon et al. 709/217

Document Number
Country Code-Number-Kind Code

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US orforeign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20091026

INTEL Ex.1002.288

INTEL Ex.1002.289

Page 1 of 2

UNITED STATES PATENT AND TRADEMARKOFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and ‘Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

BIB DATA SHEET

CONFIRMATIONNO. 8447

SERIAL NUMBER FILINGor 371(c) GROUP ART UNIT ATTORNEY DOCKET
11/821,820 06/25/2007 ALA-O06K

RULE

APPLICANTS

Laurence B. Boucher, Saratoga, CA;
Stephen E.J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;
David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;
Daryl D. Starr, Milpitas, CA;

kK CONTINUING DATA EREKEKEKEKEKEEKEREERERERERER

This application is a CON of 10/260,112 09/27/2002 PAT 7,237,036
which is a CON of 10/092,967 03/06/2002 PAT 6,591,302
which is a CIP of 10/023,240 12/17/2001 PAT 6,965,941
which is a CIP of 09/464,283 12/15/1999 PAT 6,427,173
which is a CIP of 09/439,603 11/12/1999 PAT 6,247,060
which is a CIP of 09/067,544 04/27/1998 PAT 6,226,680
which claims benefit of 60/061,809 10/14/1997
andsaid 10/260,112 09/27/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620
which is a CIP of 09/141,713 08/28/1998 PAT 6,389,479
which claims benefit of 60/098,296 08/27/1998
andsaid 10/260,112 09/27/2002
is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
and is a CIP of 09/514,425 02/28/2000 PAT 6,427,171
and is a CIP of 09/675,484 09/29/2000 PAT 6,807,581
and is a CIP of 09/675, 700 09/29/2000
and is a CIP of 09/789,366 02/20/2001 PAT 6,757,746
and is a CIP of 09/801 ,488 03/07/2001 PAT 6,687,758
and is a CIP of 09/802,551 03/09/2001 PAT 7,076,568
and is a CIP of 09/802,426 03/09/2001 PAT 7,042,898
and is a GIP of 09/802,550 03/09/2001 PAT 6,658,480
and is a CIP of 09/855,979 05/14/2001 PAT 7,133,940
and is a CIP of 09/970,124 10/02/2001 PAT 7,124,205
(“)Data provided by applicant is not consistent with PTO records.

kk FOREIGN APPLICATIONS KEEEKEEKEEEEEKEEEKEEREEEEEEE

** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **
02/19/2008

Foreign Priority claimed UO) Yes bANo STATEOR|SHEETS TOTAL |INDEPENDENT
35 USC 119(a-d) conditions met W ves C) No C) Metafter COUNTRY DRAWINGS CLAIMS CLAIMS
Verified and /JUDE JEAN GILLES/ JG

Acknowledged Examiners signature nitials CA 89 21 3
ADDRESS

MARK A LAUER

6601 KOLL CENTER PARKWAY

BIB (Rev. 05/07).

INTEL Ex.1002.289

INTEL Ex.1002.290

Page 2 of 2

SUITE 245

PLEASANTON, CA 94566
UNITED STATES

TITLE

Fast-path apparatus for transmitting data corresponding to a TCP connection

Q) All Fees

QO) 1.16 Fees(Filing)
FILING FEE FEES: Authority has been given in Paper
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT |LL11-17 Fees (Processing Ext. oftime)

for following: CJ 1.18 Fees (Issue)

L) Other

L) Credit

BIB (Rev. 05/07).

INTEL Ex.1002.290

INTEL Ex.1002.291

EAST Search History (Prior Art)

EAST Search History

EASTSearch History

05

05

z3

‘Time Stamp

‘2009/10/26

14

2009/10/26
18

Plurals

,5;55t5;;i;;4

ON

ON

Default

‘Operator: ;t;;;;5;5;55t5;;i;i;i;4

OR

OR

 USOCR

DBs

US-PGPUB;
USPAT; USOCR

US-PGPUB;
USPAT

ee

4iiiiiiiiiiiheiiiiiiii4

oj—i5sDotfotfnleltlennbbbnbenbenpnnpemtindbpbpnet.pe.tn.en.eennen.enenenCoSOTMODRLOAMNMHODHDTOKTOHDHKEANSGBOtTNODKR-DNMNDODHRYtOLYOODccANTMOMWDMOrANMONDArOwmWdOaTRODYORANinTOMODorANMONDANrowmd~eadaaoathoOo+tToyrogoyrMOnRWOOWDWDT-AANHrTONAOArRWADNMTHVYMigoTFToOyrnanoOonRWMoOdDdr-A-~TYMDADrTKhOO=—~-MMOTFTTONDRNANDDATNDAMONOATMIOMFHYDAMOATTONODORADAADATNDTHMONoDATAODOWDMONODOrONDDOTHDATADADTDDTADADNMNWDADMWrOMDNDDOTYYNOrDDomorMNTON-DWAADADMAOAMNODWATDATTAANANATYYTintVMVTONOWDAMWAOMOAODOArTTTTAA”LO19WDLOLOLO1WNLO1LD OOH©MHOHOHOCOCOO©Fz11LO1DLO1DIM1LDLN(O©CO((O
2

=ist

Ref #

|

SOR ReUeect, STU UU EUUE EU EUELE DS, QUEUE EEUU UU EE UEC UE EEE EEUU UE LEU UTUEEEERUEEEE, UU UU EEUU UE EEE CE UUUE LEU UE EEE EE RUEE EEE CEE ES, QUOTE EEE CEU ETE LENSE EEUU EERUTE EEE CHEE EEEEE

54543553543554PAPEEELLEEELE.NETTIEELIESEEEEEESEELEEEOENUELEEEEAELEAEEEENEELETEEEESUEEETALEOLEAEANEELEEEEEELELLEETOENUELEDEOEEELUEEUDEEUELEEEUELIESEEEEADEELEEEOESOASEEEEAEEENLEEEEEOELETYECEPEOUEEETEEELUAETENEELUEEEEEELLEETEEETALEEEEEECELUEEUDETAELUAETESEELEEEETEDEELUSEEEEOELEELEAEDENEELEEEDEELELEEETEENUELETEDEEMEAELEED
’

INTEL Ex.1002.291

00 AM:05-htm (1 of 7)10/26/09 6
100.-11821820_AccessibleVersNes/My%2...21820/EASTSearchHistoryings/jjeangi///C\/Documents %20and%20Settifile

INTEL Ex.1002.292

EASTSearch History

720

22

123

2009/10/26

2009/10/26

05

:

‘2009/10/26

105

105

y
333
3333

;3
33
:833

ON

ON

RRRR,

:OR

OR

‘OR

:

y

USPAT; USOCR

USPAT; USOCR

; USOCR

US-PGPUB;

‘US-PGPUB;

US-PGPUB;
USPAT

d$3))Reeececueccecctccecarectceuecceccecceceenttcceeceeceecueccecetececceectceuecctctteceectcaeccceceteteececcecetcecceccteccecetectececcareccececetccecceececcteceecececcerectcetcd

(header with

template

(prepend$3
append$3)) and

"6415329").PN.
and (header with
(prepend$3

"6415329").PN.

(protocol near7
header)

ppend$3))

near7 header)

(prepend$3
append$3))

near7 header)

"6298041" |
"6324582"|
"6385175"|

("5014265" |
"5163046"

"5313454"

"5426635"

"5594490"

"5784358"

"5850517"

"5852721"

"5896558"

"5897622"

"5912883"

"5968129"

"6038216"

"6098108"

"6101189"

"6115384"

"6130880"

"6161141"

"6215776"

"6292839"

"6298041"

"6324582"

"6385175"

(header with
(prepend$3

(header with

DoCc

Oo—

‘same

s

g

‘same (protocol

$

‘same (protocol

cooaQa
8

sal:

857

2

4

L3

L4

LS

ReeeeeeRennnCOnntnn’

PALTELEELUEELENIELEEELEELULEUEEOESELUTEEELEDOEESUOLTEEENETESLELLEEETALUEEEEECESUELEOEDUELUNECENEELEEEEEEDETEUEEEESEEDEEEEEEENEEEUDEDEELEDIELUASTEEEEEDEELEEOEESOASLEEEAEDESDEELEAEELETEOEEELUEEEOELULLUAEDANEELEEEEOELETEEDTANUELEDEEEEEAEEEUEELELTEEDEEAELEEETENEEEEEEOENCELEEEEAENtCEEETEEELETEDEEESUEETOLLEELEAEDENEEEEEE
INTEL Ex.1002.292

00 AM:05-htm (2 of 7) 10/26/09 6
100.-11821820_AccessibleVersNes/My%2...21820/EASTSearchHistoryings/jjeangi///C\/Documents %20and%20Settifile

INTEL Ex.1002.293

EASTSearch History

{Seepene,pennereGheeETEgreaeraPATENTNTN

A
a8
3

aNAyiYaNiiyANiNnNAyiYnNaNAYaNnNaNaNiYnNaN
iSBg
i

a

file:///Cl/Documents %20and%20Setting s/jjeangilles/My% 2...21820/EASTSearchHistory.11821820_AccessibleVersion.htm (3 of 7)10/26/09 6:05:00 AM

PARADISEESEEILLEEISIESELLEIOLLIEESEEEIDGVEDLIEEEEEEEIDELETEIEEEOLEED

L6

L13

‘(header with
'(prepend$3))
‘same (protocol
‘near7 header)
‘same template

‘US-PGPUB; OR
‘USPAT; USOCR

"7237036"
"6591302"
"6965941"
"6427173"
"6247060"
"6226680"
"6434620"
"6389479"
"6470415"
"6427171"
"6807581"
"6757746"
"6687758"
"7076568"
"7042898"
"6658480"
"7133940"
"7124205"

7 and (protocol
{near 10 header)

‘US-PGPUB; ‘OR
‘USPAT; USOCR

 ‘US-PGPUB; (OR
'USPAT; USOCR |

7 and (protocol
near 10 header)
‘same prepend$3:

'US-PGPUB; OR
'USPAT; USOCR |

‘7 and (protocol
‘near 10 header)
‘same (prepend

‘$3 pre-pend$3)
7 and (protocol
inear10 header)
‘same ((prepend
'$3 pre-pend$3)

{same segment)

‘US-PGPUB; ‘OR
‘USPAT; USOCR |

'USPAT; USOCR

7 and (("tcp" 'US-PGPUB: OR
protocol) near10 {USPAT; USOCR
theader)same
'((prepend$3 pre-
(pend$3)same
‘segment)
(7 and (("tcp" US: PGPUB: ‘OR
'protocol) near10 ‘USPAT; USOCR }
‘header)and :
‘((prepend$3 pre-
ipend$3)same
‘segment)

Oo?2

‘ON

peeerecenceceemtcuceeeerececcrerrecatercerenceterercuccecrrereccentrecracenercecencs teecrecetereccercecrrerencetereccenncereeces etcreccececereccenceercecenceecrarcecceentsceceeecrecrecerecceres

Ooza

INTEL Ex.1002.293

INTEL Ex.1002.294

EASTSearch History

2009/10/26

eee:

2See

FRR

USPAT; USOCR;
FPRS; EPO;

USPAT; USOCR;
FPRS; EPO;

USPAT; USOCR;
FPRS; EPO;

DERWENT;
IBM_TDB

USPAT; USOCR;
FPRS; EPO;

DERWENT;
IBM_TDB

is>a4A>

;;:;;;i;;i;;;;;;;;;;;;;i;;i;;;;;;4,;;;;;;;;;;;;

DERWENT;
|BM_TDB

US-PGPUB;

DERWENT;
IBM TDB

as>aiA>

4ttiti:iti:itt:itiitiittiittitttititittt4

(Clive adj4Prilbrick .in.
(Daryl adj4

)

iiiiijiiijiiijiijiiijiiijiiijiiijiiijiiijiijiijiiijiiijiiijiiijiiijiiiiiiiiiiijiii4

((prepend$3 pre-
‘pend$3) same

\((Laurence adj3
‘Boucher).in.

sadj4 Higgen).in.

alachritec.asn.)

‘Blightman).in.

and 17

‘7 and (("tcp"
‘protocol) near10
‘header)same

(Stephen adj4

(Peter adj4

‘15 and 9

Craft).in. (

y

:

s

 PRR,

grees

3

‘L14

file:///Cl/Documents %20and%20Setting s/jjeangilles/My% 2...21820/EASTSearchHistory.11821820_AccessibleVersion.htm (4 of 7)10/26/09 6:05:00 AM

INTEL Ex.1002.294

INTEL Ex.1002.295

EASTSearch History

2009/10/26
eee:

eee.

i

USPAT; USOCR;
FPRS; EPO;

USPAT; USOCR;
FPRS; EPO;
JPO;

USPAT; USOCR;
FPRS; EPO;

USPAT; USOCR;
EPOFPRS;

JPO;
DERWENT;

US-PGPUB;

DERWENT;
|BM_TDB

“{US-PGPUB;

DERWENT;
IBM TDB

US-PGPUB;

DERWENT;
IBM _TDB

US-PGPUB;

IBM TDB

inv,)

Philbrick).in.
(Daryl adj4
‘Starr).inv.

Philbrick).in.
(Daryl adj4

‘Starr) .inv.

Philbrick).inv.
(Daryl adj4
‘Starr).inv.

Stephen adj4

Philbrick).inv.
(Daryl adj4

‘((Laurenceadj3_

‘Boucher).inv.

Craft).inv. (David
adj4 Higgen).inv.
(Clive adj4

‘Boucher).in.

((Laurence adj3

‘adj4 Higgen).inv.

‘Boucher).inv.

adj4 Higgen).in.

(Clive adj4

((Laurence adj3

Craft).in. (David

(Clive adj4

adj4 Higgen).in.

‘Boucher).in.

Craft).in. (David

(Clive adj4

‘Blightman).inv.

alachritec.asn.)

alachritec.asn.)

(Stephen adj4
‘Blightman).in.
(Peter adj4

alachritec.asn.)

(Stephen adj4

(Peter adj4
Craft).inv. (

‘Blightman
(Peter adj4

‘Starr).inv.)

‘Blightman).in.
(Stephen adj4

(Peter adj4

nmTOCcoO4;4

(

§ss
s

$ss
s

s

3

Lig

=

file:///Cl/Documents %20and%20Setting s/jjeangilles/My% 2...21820/EASTSearchHistory.11821820_AccessibleVersion.htm (5 of 7)10/26/09 6:05:00 AM

INTEL Ex.1002.295

INTEL Ex.1002.296

EASTSearch History

eee:

DAR

USPAT; USOCR;

US-PGPUB;

US-PGPUB;

FPRS; EPO;

USPAT; USOCR;
FPRS; EPO;

USPAT; USOCR;
FPRS; EPO;

USPAT; USOCR;

IBM_TDB

US-PGPUB;

DERWENT;
IBM_TDB

FPRS; EPO:

DERWENT;
IBM_TDB

US-PGPUB;

DERWENT;
IBM _TDB

DERWENT;
IBM_TDB

FPRS; EPO:

DERWENT;
IBM_TDB

US-PGPUB;
USPAT; USOCR;
FPRS; EPO:

DERWENT;
IBM_TDB

US-PGPUB;
USPAT; USOCR;
FPRS; EPO;

DERWENT;

(transportadj4

7237036".pn.

layer protocol))

ntercept$3
eceipt$3)

near 10 (intercept
‘$3 relay$3 rout$

S2sameS3

(layer protocol))
"TCP") near10

((transfer$4 send
‘$3 forward$3

(connect$3

near30 header)

(header near20

((transport adj4

(connect$3

82oOgy

s

"TCP") near10
(connect$3

‘$3 gateway)

"7237036".pn.

(
(

,

5632

33333333333$4,VALETELLELIANAENENALATAASSETESETETASSETSCELESTEEDENSTEENSNSATNATETATATATASSSTATASETAESTAISENSEITASTEENSNATAIS.COTASASTATAEETASSSIATSEETSITETNEEETATSTATASEETASSELEASEETALSLEDSSESIANSENENAEETAASSETSESEESTEITASEETASSETENSEENSASSASTANASEITSETAESETASESTSASELTATEDEATSTEENSSEATS

file:///Cl/Documents %20and%20Setting s/jjeangilles/My% 2...21820/EASTSearchHistory.11821820_AccessibleVersion.htm (6 of 7)10/26/09 6:05:00 AM

INTEL Ex.1002.296

INTEL Ex.1002.297

EASTSearch History

AAOSEESRHEEEREEEERRSnREESEEgrey

S8 326 "11" same S38. {US-PGPUB; ‘OR ‘ON 2009/10/25
‘USPAT; USOCR; | 22:58
‘FPRS; EPO;
‘UPO;
‘DERWENT;
‘1BM_TDB

‘S1 same $3 ‘US-PGPUB; ‘OR ON 2009/10/25
‘USPAT; USOCR; | 22:58
‘FPRS; EPO;
‘UPO;
‘DERWENT;
‘IBM_TDB

((S1 same S3 and {US-PGPUB; ‘OR ON 2009/10/25
‘(prepend$3 ‘USPAT; USOCR; 22:59
‘$3append$3)) ‘FPRS; EPO;

‘JPO;
‘DERWENT;
‘|BM_TDB

(St same S3 and (US-PGPUB; ‘OR ‘ON 2009/10/25
(23:00

aaNafa3aSaNafa3aSaNiifiSaSififiSaNittfaSaNiaNaNayaNaNaNayaNaNaNaS3a8aNaN
ak

'(prepend$3 ‘USPAT; USOCR; |
‘append$3) ‘FPRS; EPO;
inear20 appel) —_JPO;

‘DERWENT;
‘|BM_TDB

\(S1 same S3 and {US-PGPUB;
‘(prepend$3 ‘USPAT; USOCR;
‘append$3) ‘FPRS; EPO;
inear20 header) —‘JPO;

‘DERWENT;
‘| BM_TDB

(S1 same S3 and } PUB;
‘(prepend$3 ‘USPAT; USOCR;
‘append$3) ‘FPRS; EPO;
‘near20 header PO;
inear30 segment) ‘DERWENT;

BM_TDBs

 2009/10/25

23:01

 Liecccecesetectiscstecsctscisetsetsssssstestssisettetstaseisetisistatmetstisetetieistatssieeeastetstanustnssetentunsevanunenetiies8

8
3
3
3
3
3
3
3
88

10/26/09 6:04:36 AM

C:\ Documents and Settings\ jjeangilles\ My Documents\ EAST\ Workspaces\ 11821820.
wsp

file:///Cl/Documents %20and%20Setting s/jjeangilles/My% 2...21820/EASTSearchHistory.11821820_AccessibleVersion.htm (7 of 7)10/26/09 6:05:00 AM

INTEL Ex.1002.297

INTEL Ex.1002.298

Application/Control No. Applicant(s)/Patent Under

Reexamination

Index of Claims 11821820 BOUCHERETAL.

v Rejected - Cancelled Non-Elected

 Examiner Art Unit JUDE J JEAN GILLES 2443

Appeal

= Allowed = Restricted Interference rep Objected
XX] Claims renumberedin the same order as presented by applicant O1 CPA OO TOD. O1 R.1.47

CLAIM

Final Original|10/25/2009
1

 O}OlNID)a]B][w]ry

= =

U.S. Patent and Trademark Office Part of Paper No. : 20091026

INTEL Ex.1002.298

INTEL Ex.1002.299

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 11821820 BOUCHERETAL.

Examiner Art Unit

JUDE J JEAN GILLES 2443

SEARCHED

Class Subclass Date Examiner

245, 230-234, 239, and 250 10/26/09 JG

235, 468, 237, 230, 233, and 234 10/26/09 JG

SEARCH NOTES

Search Notes|Date—||_—Examiner_|
EASTtex search, USPGPUB claim and text search, and NPLs 10/26/09

INTERFERENCE SEARCH

Subclass Examiner

245, 230-234, 239, and 250 10/26/09
235, 468, 237, 230, 233, and 234 10/26/09

U.S. Patent and Trademark Office Part of Paper No. : 20091026

INTEL Ex.1002.299

INTEL Ex.1002.300

Application/Control No. Applicant(s)/Patent Under Reexamination

Issue Classification|4.5130 BOUCHERETAL.

| | Examiner Art Unit
JUDE J JEAN GILLES 2443

ORIGINAL INTERNATIONAL CLASSIFICATION

CLASS SUBCLASS = = m oO

}62Claimsrenumberedinthesameorderaspresentedbyapplicant§=6sO]PAT.RMTClaims renumberedin the same order as presented by applicant O -D. R.1.47

Final Original Final Original Final Original Final Original Final Original Final Original Final Original Final Original

Total Claims Allowed:

 O}]/@MlnN|)ala;wl]n

21

(Assistant Examiner)
/JUDE J JEAN GILLES/

Primary Examiner.Art Unit 2443 10/25/2009 0.G. Print Claim(s) 0.G. Print Figure

(Primary Examiner) (Date) 1 2

U.S. Patent and Trademark Office Part of Paper No. 20091026

INTEL Ex.1002.300

INTEL Ex.1002.301

Le , Filing date: June 25, 2007
meno nase 8, Inventors: Boucheretal.

US. Dep:art ent of Commerce,Patent and Trademark Office

Sain agaSearus FOR TRANSMITTING DATA
PONDING TO A TCP CONNECTION Attorney Docket No.: ALA-006K

Page 1 of 13

 U.S. Patent Documents

Examiner . .
Initial Document Date Name Class

fa|4,366,538 - December 28, 1982 Johnsonetal.
4,485,455 November 27, 1984 Gary W. Booneetal

Mark A. Stambaugh 2

Shahetal.

 nm Cc >oo wn in

200

03 4,485,460 November 27, 1984

4,589,063 May 13, 1986 ~ =3

Pfs|4,700,185 October 13, 1987 Thomas J. Balphet al 340 825.5
Pefase|ay188 [veer|oe|om
fr|sotsose|oaonerast[Hessian|roo|am|
fs|sesso[outerswer|soometat|so|ose|
fo|soma|wewnrrtee[woes|ow |

||
|
|10|s6a.sas|November10,992|Roweta|395|
pat]sztzrre|aay10,1900|ater|208|
pf

3

200

400

85.1

75

po 13 5,289,580 February 22, 1994 Latif et al.
14 5,303,344 April 12, 1994 Yokoyamaetal.

15 5,412,782 May 2, 1995 Hausmanetal. 250

 5,418,912 May 23, 1995 395 200

|daz|5,448,566 September 5, 1995 Richteret al. 370 94.1
DavidA. Christenson

 00.1Np i]

2
Fao|seritoo|Aeneaeos[aed
(fa[seis|nay908[Seraos
[fan|ssetas0[anes008[Sasori

Examiner /Jude Jean Gilles! (1D/@6202Bbidered |

*EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609: Draw line eee citation if notin conformance agijindt GerfsigeFeR FADLGHESpOCH SWMRPbUcedeMiGncekonWubdlicdme: LINED THROUGH.

250

280

800

775

INTEL Ex.1002.301

INTEL Ex.1002.302

 US. Department of Commerce, Patent and TrademarkOffice

Filing date: June 25, 2007

Inventors: Boucheret al.

fh = oS
Application No.: 11/821 ,820

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

Page2of 13

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

No

23

24

25

26

27

28

29

0

1

2

33

34

2

Go

Go

 205
295
cs

uo wa

6

~

41 5,682,534 October 28, 1997 Kapooretal. 395 684

42 5,692,130 November25, 1997 Shobuetal. 395|200.12

[ses|es
395

395

; 254

eo

*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Draw line nee citation if notin conformance afidriot boksldéedel Firfeldde-cobyoftiefolhwithVednchmiGhiedtion WWAbpicbtic LINED THROUGH.

INTEL Ex.1002.302

INTEL Ex.1002.303

%

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

5,742,765 April 21, 1998

Group Art Unit: 2143

Examiner name: Unknown

 48

49

50

51

52

53

54

5

6

f42, , 395

95

5,758,194 May 26, 2008 Kuzma 395

395

5

5 Gene R.Ericksonetal 95,768,618 June 16, 1998

Filing date: June 25, 2007

Attorney Docket No.: ALA-006K

5,749,095 May 5, 1998 Hagersten 711 141

Wongetal.

May 12, 1998 Chanet al. 7

e 3 of 13

 200a
o

 455

 827

200.58

200.64

83 —_

886

829 5 Picazo,Jr. et al.

5,778,013

5,771,349 June 23, 1998
Jedwab 714July 7, 1998

7

58

60

1

Hansenetal. 711

188.01

=|@
ox

= ND

exami } |
“ener jJude Jean Gilles/ (1q/zarenberee" |

*EXAMINER:Initial if reference considered, whetheror not citation is in c
in conformance aftinot Edtisictdrekh FirelddévopsoftidSohavolncémsGakeation tWMabiicad= LINED T

joa)senaase|Senenversie08|Ohnos08|ve|
[6s|senseo|Senonert.wie[menses|vo|
[64[stones[Seponbee008|Wepaestat|ws|eas|
[6s|set2778|Setber22,108|_venSwoowatat||20048|
fos)sers616|Seperberz01008|Pacotet|ses|163|

67 5,828,835 October 27, 1998 Mark S. Isfeld et al 395 200.3

68 5,848,293 December8, 1998 Gentry et al. 395 825

jo|sarasw|remayieie@|wateeraatar|ow|ao|
fro|seraazs|waen2.too|eloniyeiss|es|amar|
ri)sasaane|vee8|Owstperwnins|sos|ror[

fre|sesaris[aerae0o|eewrotafam]|

onformance with MPEP 609; Draw line nee

h citation if not

ROUGH. /f

INTEL Ex.1002.303

INTEL Ex.1002.304

 4OtOOOtteSda rr oe ea

Application No.: 1 1/821 820
Filing date: June 25, 2007

’

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Inventors: Boucheretal

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

 FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

- _ Page 4 of 13

[Ta[sera|amererow[wanedom|mss|
Se
A
Tre[sosrs|mntsiom|avers+p|a0|
fe
(Prefsearses[ata09|comavetarsos|ame|_
Te[sens[ametznooo[rameterdo|ve|
foo[sonia|momanio|tower|va)|

ror|

fs|ssono19|nownnrs.toe|caySetdpa—_|70
|ss0o0e|Nena|aumeray‘|708
fs|orosow|ovemmerzttow|weissa

fe
i

[on[aanase|Fenen600|Wiener|

—_
_
—

5,970,804 August4, 1998 Osborne 395 200.75

5,987,022 November 16, 1999 Robert L. Geigeret al 370 349

370

709

709

370

P| 84 5,991,299 November 23, 1999 Radognaetal.

Ts

2

6,034,963 March 7, 2000 Minamietal. 370 401

6,038,562 March 14, 2000 Anjuret al. 707 10

Examiner Jude Jean Gilles/ (D8ColSbered

*EXAMINER:Initial if reference consider

93

04

6,041 ,058 March 21, 2000. John A. Flandersetal

in conformance aftEaistteret HhhladécanfKONHoumaccanisuuetohWpnteaae: LINEDTHROUGH./

INTEL Ex.1002.304

INTEL Ex.1002.305

INFORMATION DISCLOSURE STATEMENTBY APPLICANT Filing date: June 25, 2007

 fcrupetnies
FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION
Attorney Docket No.: ALA-006K.

6,047,323 April 4, 2000 Michael R. Krause

5

nn °a = w

7

2

1

7 2

4 5

7 5

1

0 2

2

6,078,733 June 20, 2000 Randy B. Osborne 95

6,097,734 August 1, 2000 Joel Gotesmanetal T 4

0 3

5

5 5

0 2

1

2

4

3

2

2

— S
— So nN — oS~

200.8

Page

27

29

35

20

37

14

24

0

74

21

53

36

5

5

5

28

01

92

0

30

92

—|me —_|©oS|}Oo

3

370

25

:

70

0

0

9

70

—_ wa

 —| pedpet oO|oe
120 6,223,242 April 24, 2001 Stephen J. Sheaforet al

121 6,226,680 ‘ May 1, 2001 Boucheretal.|709|230
122) 6,246,683 June 12, 2001 Connery etal.

Soni deeieBOAO
NeaeeesetrtelpeteePryrm|

INTEL Ex.1002.305

7

3

6,181,705 ‘February 24, 2004 San-Hong Kim 3

6,202,105 March 13, 2001 Gatesetal. “1

7

70

INTEL Ex.1002.306

U.S. Department of Commerce, Patent and Trademark Office A

INFORMATION DISCLOSURE STATEMENTBY APPLICANT Filing date: June 25, 2007|

Group Art Unit: 2143

Examiner name: Unknown

Attorney Docket No.: ALA-006K.

(Jii[eevo@[erat[amen[me]ae
Sc
Faas]szes|Senenterz00°|eindoweaster|avo|0
ies]aman[omer[sue||
piererase[Nevnseezzoor|vowtressesrs|a
Frasonsss|oeenserasoor|eaenerstas|roe|a

Fino) soe
Fier om
||. 09: 50

 FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

133 6,370,599 April 9, 2002 Sanjay Anandetal 710

134 6,385,647 May 7, 2002 Dean Willis et al

fase)eerie[saysaoe[tref

144 6,434,651 August 13, 2002 Gentry, Jr. 710 — 260

 145 6,449,656 September 10, 2002 Elzuret al. . 236

146 6,453,360 September17, 2002 Muller et al.

147 6,470,415 October 22, 2002 Starr,et al.

Examiner (Jude Jean Gilles/ (10/267008)sidered

“EXAMINER:Initial if re
in conformance t

INTEL Ex.1002.306

INTEL Ex.1002.307

{894997 SA Aere

11821,820

Application No.: 1U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

6,473,425 Gilles Bellatonet al

680,489 Muller eta =—
6,487,202 Daniel E. Klausmeieret al 370

6,487,654 Eric M. Dowling 712 244

6,490,631 Paul R. Teichet al 709

6,502,144 Jean-Paul Accarie 710|8
6,523,119 Dominique Vincent Paviin etal 713 192

6,526,446 Yanget al. 709 P|
156 6,570,884 _ Glenn William Connery etal 370

5 Stephen B. Johnson 710

Za
|310
|32|

Be‘oO w ~~! oO w oo ©drt|emtfetfee MmiGniwna+ ena)oo

N

—| am|a|Ww
— Ww ~N

6,591 ,310 July 8, 2003

6,591,302 July 8, 2003 Boucher,etal. 709 230

6,648,611 David M. Morseet al 310 a
6,650,640 Shimon Muller etal 370 392 ||
6,657,757 Gee-Kung Changetal 359 124 ||
6,658,480 Laurence B. Boucheret al 709|230|

ae
a
a
a

bh = ~Nws 9

lei nNwa
oy;

— nN N

6,678,283 January 13, 2004 Yakov Teplitsky - 370 463

— nN —_

6,681 364 January 20, 2004 Jean Louis Calvignacetal 714 776

6,687,758 February 3, 2004 Craft, et al. 709 250

February 24, 2004 Peter K. Craft et al 709
vo|mete NLnN|SN wm|&|Ww
— nN6

167 6,751,665

6,697,868

June 15, 2004 Philbrick, et al. 709 224

168 6,765,901 July 20, 2004 Michael Ward Johnsonet al 352

9! ~ 6,757,746 June 29, 2004 Boucher,etal. 200

 — a

170 6,807,581 October 19, 2004 Daryl D. Starr et al 709

171 6,842,896 January 11, 2005 Mark E. Redding etal 717

172 6,912,522 June 28, 2005 David A. Edgar

Examiner (Jude Jean Gilles/| (baiagideegerea

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; CN line escitation if not |in conformance aAdrot Edisktéredh Hhieldécopyofaidforinwithtyourchrittunicatin

INTEL Ex.1002.307

INTEL Ex.1002.308

rt) }

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006K

Page 8 of 13

6,938,092 August 30, 2005 Burns 709 230

|[ara] 6,941,386 September6, 2005 Peter K. Craft et al
|fas) 6,965,941 November 15, 2005 Laurence B. Boucheretal

iis 20.-(8b)S42

2949pt oa

,

3

709

[Yi]~seicere|Fennz0e[sanea)

so)7eom|Amartsame[Some|r|ae

rsa]zssrae|naan7[saat||an
184 7,167,927 January 23, 2007 Philbrick, etal.|709|250|

ree[so

2

2

2

2

50

30

52

63

50

42

06

50

22

7,174,393 February 6, 2007 Boucher,etal.

250

250

250

225

0 245

 |776|
9|230

March 13, 2007 Tripathy, etal.|712|225

Published Applications

Examiner

Fi
Initial Document Date Class|Subclass||i

70 328||192|2001/0004354 January 10, 2001 Jolitz 3
|}193| 2001/0013059 August 9, 2001 Dawsonetal. 709

707 200

nsoleREUATE

INTEL Ex.1002.308

INTEL Ex.1002.309

{901900 CAL o44

pplication No.: 1 1/821 8

Filing date: June 25, 2007

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Inventors: Boucheretal.

Group Art Unit: 2143

Examiner name: Unknown

Attorney Docket No.: ALA-006K

F|195 2001/0014954 Purcell et al. 714
p|96} 2001/0025315 Jolitz 231
||197| 2001/0048681 Bilic et al. 370 389

P| 198 2001/0053148 Bilic et al. 370 389
P| 99| 2002/0073223 B. Scott Darnell et al 232
po 200 2002/0112175 Makofka et al , 713 200
P| 201} 2003/0066011
|
a
|
|

pS

e(s/s|s

~] x
2]

202} 2003/0110344 June 1, 2003 Szezepaneketal. 711

203 2003/0165160 September4, 2003 Minamietal. 370

204} 2004/0054814 March 4, 2004 McDaniel |
205| 2004/0059926 Angelo,etal.

 March 25, 2004 168

 2004/0153578 August 1, 2004 Elzur

208| 2004/0246974 December 9, 2004 Gyugyiet al. 370 395.31

Foreign Patent Documents

Number

WO 98/19412 May7, 1998 PCT/US97/17257

1

Document

213

14

 WO 00/13091 March 9, 2000 PCT/US98/24943

WO01/04770

 January 18, 2001 PCT/US00/18939

PCT/US00/19006

 WO 01/05107 January 18, 2001

2004/0213290 October 1, 2004 Johnsonetal. 370 469 |

Examiner /Jude Jean Gilles/ (10/26/4

inconformance irilGcd apolasinirinoockmecoidtonMophineeLINEDTHROUGH./f

INTEL Ex.1002.309

INTEL Ex.1002.310

Application No: 11/821,820

Filing date: June 25, 2007

Inventors: Boucheretal.

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

217} WO01/05123 January 18, 2001|pctiusoons7e=|
| _woovmen|vner.201 |porusonzeon|

n19[_woovsee|metre.|Petusoocsi7s|
m0 _wooreecn|vovener16z00"|Petusoviseo|

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinberis working on),
1 page, printed 11/25/98.

Zilog product Brief entitled "Z85C30 CMOS SCCSerial Communication Controller", Zilog Inc., 3 pages,
1997.

Internet pages of Xpoint Technologies, Inc. entitled “Smart LAN Work Requests’, 5 pages,printed
12/19/97.

224 Internet pages entitled: Asante and 100BASE-T Fast Ethernet. 7 pages, “printed 5/27/97.

225 Internet pages entitled: A Guide to the Paragon XP/S-A7 Supercomputerat Indiana University. 13
pages, printed 12/21/98.

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

gs

 221

No N N

NO ld

226) Richard Stevens, “TCP/IP Illustrated, Volume 1, The Protocols’, pages 325-326 (1994).

 227) Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

Gigabit Ethernet Technical Brief, Achieving End-to-End Performance. Alteon Networks, Inc., First
Edition, September 1996, 15 pages.

Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com,
14 pages,printed 3/15/97.

VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4", pagesi-iv, 1-11, cover and copyright
page,revision 1.3, Feb. 1, 2000.

iReady NewsArchivesarticle entitled "Ready Rounding Out Management Team with Two Key
Executives", http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed 11/28/98.

“Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based On iReady’s Design,”
Press Release October, 1998, 3 pages,printed 11/28/98.
Internet pages from iReady Products, web sitehttp:/Avww.ireadyco.com/products, html, 2 pages,
downloaded 11/25/98.

||asa iReady NewsArchives, Toshiba, iReady shipping Internet chip, 1 page, printed 11/25/98.
35 Interprophetarticle entitled "Technology", http:/www.interprophet.com/technology.html, 17 pages,

printed 3/1/00.

Examiner ‘Jude Jean Gilles/ (1 Di&@CCBidered

*EXAMINER:Initial. if, SEEAReeeeeaneeeaeCNEL hepyahitalian Minot, | yin conformance

228

nN N \o

 230

 231

NO Oo No

 EIOd ioe)

INTEL Ex.1002.310

INTEL Ex.1002.311

(ig21098 SAllo449
U.S. Department of Commerce, Patent and TrademarkOffice Application No.: 1 4/821 820

INFORMATION DISCLOSURE STATEMENTBY APPLICANT Filing date: June 25, 2007
Inventors: Boucheret al

Group Art Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Page 11 of 13

236| iReady Corporation, article entitled "The |-1000 Internet Tuner", 2 pages, date unknown.

37 iReady article entitled "About Us Introduction”, Internet pages fromhttp://www.iReadyco.com/about.html,
3 pages,printed 11/25/98.

iReady NewsArchivearticle entitled “Revolutionary Approach to ConsumerElectronics Internet
Connectivity Funded”, San Jose, CA, November 20,1997. 2 pages, printed 11/2/98.

iReady NewsArchivearticle entitled “Seiko InstrumentsInc. (SII) INTRODUCES WORLD'S FIRST
INTERNET-READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY,” Santa

Clara, CA and Chiba, Japan, October 26, 1998. 2 pages, printed 11/2/98.

NEWSwatcharticle entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November5,
1996, printed 11/2/98, 2 pages.

EETimesarticle entitled "Tuner for Toshiba, Toshiba Taps iReadyfor Internet Tuner", by David
Lammers, 2 pages, printed 11/02/98.

"Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages, printed
242) 4140/98. ,

243|Adaptecarticle entitled "AEA-7110C-a DuraSANproduct", 11 pages, printed 10/1/01.

244 iSCSI HBAarticle entitled "iSCS! and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic,
Adaptec, JNI", 8 pages, printed 10/01/01.

iSCSI HBAarticle entitled "FCE-3210/6410 32 and 64-bit PCl-to-Fibre Channel HBA", 6 pages,printed
245|40/01/01.

246|ISCSl.com article entitled "iSCSI Storage”, 2 pages, printed 10/01/01.

“Two-Way TCPTraffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukasetal.,
IEEE Transactions on Networking, vol. 6, no. 6, December 1998, 17 pages.

IReady Newsarticle entitled "Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready
Based on iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98, 3
pages. ;

Internet pagesof InterProphetentitled “Frequently Asked Questions”, by LynneJolitz, printed 6/14/00, 4
pages.

“File System Design For An NFSFile Server Appliance”, Article by D. Hitz, et al., 13 pages.

Adaptec Press Releasearticle entitled “Adaptec Announces EtherStorage Technology’, 2 pages, May
4, 2000, printed 6/14/00. ‘

252|Adaptecarticle entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.

NoNO Lowe \ooo

NtQo

N> —

 248

NNNON nNwaa+ _So\O~
253|Adaptec article entitled “EtherStorage White Paper’, 7 pages, printed 7/19/00.

iconformance£at-kotSnecbrEREesSoyDONGinltan GedGsamhahootinWedmdareLINED THROUGHfl

INTEL Ex.1002.311

 a, 9Examiner dude Jean Gilles/ (10)

INTEL Ex.1002.312

A

INFORMATION DISCLOSURE STATEMENTBY APPLICANT Filing date: June 25, 2007

 [orropsrtnizves—
FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION Attorney Docket No ALA-O06K

Page 12 of 13

||28a CIBC World Markets article entitled “Computers; Storage”, by J. Berlino et al., 9 pages, dated August 7,2000.

Merrill Lynch article entitled “Storage Futures’, by S. Milunovich, 22 pages, dated May 10, 2000.

25

 6 CBS Market Watcharticle entitled "Montreal Start-Up Battles Data Storage Botttleneck’, by S. Taylor,

dated March5, 2000, 2 pages,printed 3/7/00.

Internet-draft article entitled “SCSI/TCP (SCSI over TCP)’, by J. Satran et al., 38 pages, dated February
2000,printed 5/19/00.

Internet pages entitled “Technical White Paper-Xpoint's Disk to LAN Acceleration Solution for Windows
NT Server, printed 6/5/97, 15 pages.

259 Jato Technologies article entitled “Network Accelerator Chip Architecture, twelve-slide presentation,
printed 8/19/98, 13 pages.

260 EETimesarticle entitled “Enterprise System Uses Flexible Spec, dated August 10,1998, printed
11/25/98, 3 pages.

261 Internet pages entitled “Smart Ethernet Network Interface Cards’, which Berend Ozceri is developing,
printed 11/25/98, 2 pages.

Internet pages of Xaqti corporation entitled “GigaPower Protoco! Processor Product Review,” printed
11/25/99, 4 pages.

U.S. Provisional Patent Application No.: 60/283,896, Titled: CRC Calculations for Out of Order PUDs,
Filed April 12, 2003, Inventor: Amit Oren, Assignee: Siliquent Technologies Ltd.

Internet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert
J. Walsh, printed 6/3/99, 25 pages.

 257

 258

Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996, ISBN 0-13-349945-6.
 Article from Rice University entitled “LRP: A New Network Subsystem Architecture for Server Systems’,

by Peter Druschel and Gaurav Banga, 14 pages.

Internet RFC/STD/FYI/BCPArchivesarticle with heading “RFC2140”entitled “TCP Control Block
Interdependence’, web address http://www.faqs.org/rics/ric2140.html, 9 pages, printed 9/20/02.

WindRiverarticle entitled “Tornado: For Intelligent Network Acceleration”, copyright Wind River
Systems, 2001, 2 pages.

WindRiver White Paperentitled “Complete TCP/IP Offload for High-Speed Ethernet Networks”,
Copyright Wind River Systems, 2002, 7 pages.

Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters’, Copyright Intel Corporation,
1999, 8 pages.

inconformanceafdcbtFeushidranErbeabtopySENcaresmnfoudomvuteatdnOlona: LINED THROUGH./

INTEL Ex.1002.312

INTEL Ex.1002.313

U.S. Department of Commerce, Patent and Trademark Office A

Filing date: June 25, 2007

Inventors: Boucheretal.

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION Attomey Docket No ALA-O06K

Page 13 of 13

Beach, Bob, IEEE Computer Society Press publication entitled, “UltraNet: An Architecture for Gigabit
Networking’, from 15th Conference on Local Computer Networks, 18 pages, Sept. 30 — Oct. 3, 1990.

Chessonetal., IEEE Syposium Record entitled, “The Protocol Engine Chipset’, from Hot ChipsIII, 16
pages, Aug. 26-27, 1991.

Rossetal., IEEE article entitled “FX1000: A high performancesingle chip Gigabit Ethernet NIC’, from
Compcon ’97 Proceedings, 7 pages, Feb. 23-26, 1997.

Publication entitled “Protocol Engine Handbook’, 44 pages, Oct. 1990.2

278 Koufopavlou et al., IEEE Global Telecommunications Conference, Globecom ‘92, presentation entitled,
“Parallel TCP for High Performance Communication Subsystems’, 7 pages, Dec: 6-9, 1992.

Lilienkampet al., Publication entitled “Proposed Host-Front End Protocol’, 56 pages, Dec. 1984.

Protocols for High SpeedNetworks, pages 53-68, 1993.

U.S. Provisional Patent Application No.: 60/053,240, Titled: TCP/IP Network Accelerator and Method of
Use, Filed July 17, 1997, Inventor: William Jolizt etal

Thia et al. Publication entitled “A Reduced Operational Protocol Engine (ROPE)for a multiple-layer
bypassarchitecture,” Protocols for High Speed Networks, pages 224-239, 1995.

280 Thia et al. Publication entitled “High-Speed OSI Protocol Bypass Algorithm with Window Flow Control,”

281

Form 10-K for Exelan, Inc., for the fiscal year ending December31, 1987 (10 pages).

84 Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1988 (10 pages).

Examiner

*EXAMINER:Ini
in conformance

INTEL Ex.1002.313

INTEL Ex.1002.314

 U.S. Department of Commerce, Patent and Trademark Office Application No.: « QO ~ = Nd

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENTBY Filing date: June 25, 2007
APPLICANT

FfGroup are nit: 2143 :

Attorney Docket No.: ALA-006K

2 ‘EE Page 1 of 1wey U.S. Patent Documents |

NeeSeater Document Filing Date, -Ta>et Number Date Name Class Subclass If Appropriate
5,774,660 6/30/98 Brendelet al.

OTHER ART—NONPATENT LITERATURE DOCUMENTS |
*Examiner

Initial = (Including Author, Title, Date, Pertinent Pages, Etc.)0

Examiner /Jude Jean Gilles/ (10/2q/BtnigPonsidered

*EXAMINER:Initialif reference Considered, whether orr not citation is in conformance with MPEP 609; Draw line through citation if notin conformance aa nsidered.ciackrde- copy Nischo nnn pith i ion toa ar Ki i
INTEL Ex.1002.314

INTEL Ex.1002.315

Receip}date: 02/09/2009 PTO/SB/08a (01-09) i
re . : . Approved for use through 02/28/2009. OMB 0651-0031

Docdescription: Information Disclosure Statement (IDS) Filed U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no personsare required to respond to a collection ofinformation unlessit contains a valid OMB control number.

anitesSSSCS*S

Attorney Docket Number|ALA-006K

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

U.S.PATENTS

Examiner Cite Patent Number Kind Issue Date NameofPatenteeor Applicant RelevantPaccoueeot Relevant |
Initial*|No . Code! of cited Document ges |

Figures Appear

1 6157944 2000-12-05 Pedersen 1

i

If you wishto add additional U.S. Patent citation information pleaseclick the Add button.

U.S.PATENT APPLICATION PUBLICATIONS L

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear |

Nameof Patentee or Applicant
of cited Document

{

If you wish to add additional U.S. Published Application citation information please click the Add button. |
FOREIGN PATENT DOCUMENTS |

i

Nameof Patentee or Pages,Columns,Lines |
Examiner| Cite|Foreign Document.|Country Kind|Publication Applicantof cited where Relevant
Initial* No|Number? Code? j Code4| Date PP Passages or Relevant

Document . i
Figures Appear i

If you wish to add additional Foreign Patent Documentcitation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS

Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate),title of the item
(book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s),
publisher, city and/or country where published.

Examiner Cite

EFS Web2.1.10 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /JJ/ |

INTEL Ex.1002.315

INTEL Ex.1002.316

Receipt date: 02/09/2009

anuntwsSSCSCS~*S

(Not for submission under 37 CFR 1.99)

ssyfieeenen
If you wish to add additional non-patentliterature documentcitation information please click the Add button

EXAMINER SIGNATURE

ade Jean Giles(02572003 oa

i
it

1i

4
:E

|
|

|
i
|
|

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ? Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). ° For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial numberof the patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ° Applicant is to place a check mark hereif
English languagetranslation is attached.

tenintentct

EFS Web 2.1.10 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /JJ/. |

INTEL Ex.1002.316

INTEL Ex.1002.317

)
wy

Page 1 of 13

U.S. Patent Documents :
Examiner

Initial OQ 00 “J ens

5,163,131 November 10, 1992

230

0

peau,

ad

2 85.1

275

—

.__—_ o}]~>5 ro

M86

ai
a|

20

21

22 -

5,511,169 April 23, 1996

5,517,668 May 14, 1996 ’ Szwerinski etal. .

Examiner /Jude Jean Gilles/ (1 P/@612009bicerea .

*EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw tineye citation if notFOLGEROOOtSiebunein conformance agiinbt GHEPEER AGEsWiredLINED THROUGH.
5,524,250 .

200

250

250

800

775

INTEL Ex.1002.317

INTEL Ex.1002.318

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

Application No.: 11/821,820
Filing date: June 25, 2007

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

fae[snares[weave[Wega=iwm
fos|wayst0|tasesdp|
so[sre|weeseo|cman[sw|oss
[sme|wwe|oefsee |

|eee|mealSenersfe[srs0009[woraeTYconnetar|as|20060 |_|
oes
Ee
a5

 FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

°= = w

33|js|5.750.190|May26,eo0e"?7%Hamitonetal va |[camer|tratedane
[56|szea.re|dune16,1900|GeneREvcksonetal|995|220_|
[s7|szrsaso|sune2a,1908|Pleazoiretal|
58|aor J
59| 2||
60||245

p28|
800.01

182.08

[205
ie
Tae
709

[|sree|nears|iaeeneas

[saci|Senor[apesLr
[sennsze|soponeeris08|__evden08

EI:
pss

ae
205
[or

200.57

187.01

Examiner jJude Jean Gilles/ (1ovzere0b6ys""°"" -

“EXAMINER:Initia! if reference considered, whetheror not citation is in conformance with MPEP 609; DNEBP)me h citation if notEntelddéxSp OUGH.in|in conformance t fedttohoh Wabdicéat LLIN

rs §,812,775 September 22, 1998 Van Seetersetal.
66|5,815,646 September29, 1998 Purcell et al.

o 5,828,835 October 27, 1998 MarkS.Isfeld et al
5,848,293 December8, 1998 Gentry etal.

§,872,919 February 16, 1999 Wakelandetal.

5,878,225 March 2, 1999 Bilansky etal.

7i 5,892,903 April 6, 1999 Christopher W. Klaus

72.|5,898,713 April 27, 1999 Melzeret al.

INTEL Ex.1002.318

INTEL Ex.1002.319

U.S. Department of Commerce, Patent and Trademark Office

 INFORMATION DISCLOSURE STATEMENTBY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Filing date: June 25, 2007

Inventors: Boucheretal.

Group Art Unit: 2143

Examiner name: Unknown

Attomey Docket No.: ALA-006K

2

U0i
o

©a
2B 5,913,028

74

75

16

7

78

79

June 15, 1999 Wang,etal.

Ariel Hendelet al 370

Mendelsonet al. .

Rowet al. 709 300

5,920,566 July 6, 1999

5,930,830 July 27, 1999

5,931,918 August 3, 1999

5,935,205 August 10, 1999 Murayamaetal. 709 216

5,937,169 August 10, 1999 Connery etal.

5,941,969 August 24, 1999 Ram etal. 710 = No

5,941,972 August 24, 1999 - Hoeseetal. 710 129

September 7, 1999 Stakuis et al. 707 > oO

nN oS°o a

~ ssre,804774 august 4, 1998 Osborne 395|200.7bd—
sie N on

83 5,987,022 November 16, 1999 Robert L. Geigeret al 37

5,991,299 November 23, 1999 wo “NI So wevo]NRadognaetal.

5 5,996,013 November 30, 1999 Gary Scott Delp et al 709

5,996,024

6,005,849

6,009,478

November 30, 1999 ol°oOBlumenau 301

oo

~ December21, 1999 oo ml oO. NOwloRoachetal.

December28, 1999 Panner, etal. 710

6,016,513 January 18, 2000 Glen H. Lowe 709

6,021 446 February 1, 2000 Gentry et al. 709 303

Shawfu Chen 714|2||
William Michael Pitts|710}se]|

Minamietal. 370 401 ||
Anjuta 707|0||

John A. Flanders etal 370 .

l

92

93

94

95

6,021,507 February 1, 2000

6,026,452 February 15, 2000

6,034,963 March 7, 2000

6,038,562 March 14, 2000

6,041,058 March 21, 2000.

6,041,381 March 21, 2000 Geoffrey B. Hoese 7 97 6,044,438 March 28, 2000

YeeONahered

naASRENTSSSRNaSETERE CREBPIROUGH

Howard Thomas O!nowich

Examiner ‘Jude Jean Gilles/ (

 J/

INTEL Ex.1002.319

INTEL Ex.1002.320

- U.S. Department of Commerce, Patent and Trademark Office A

INFORMATION DISCLOSURE STATEMENTBY APPLICANT

| FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

 6,047,323 Michael R. Krause

6,047,356 April 4, 2000

6,049,528 April 11, 2000

101 6,057,863 May 2, 2000

Andersonetal.

April 4, 2000

Ariel Hendel et al

Sompong P.Olarig

102 6,061,368 Hitzelberger

03 6,065,096 Dayetal.

6,067,569 Mohamed J. Khaki et al

105 6,070,200 Gatesetal.

6,078,733 Randy B. Osborne

6,097,734 Joel Gotesmanetal

6,101,555 Gosheyetal.

109 6,111,673 Gee-Kung Chang etal .

6,115,615 - Takeshi Ota etal

6,122,670 Toby D. Bennett et al

6,141,701 Mark M. Whitney

6,141,705 Anandet al.

6,157,955 Narad etal.

6,172,980 Flanders et al.

6,173,333 TPOOT jolitz etal. ves
AAS SQI0 ASR TW

6,181,705 San-Heng-<dnr

E15

7

pet|pee
°o

— _ N

Sooe)

— 6

7

6,202,105 Gatesetal.

Stephen J. Sheafor et al

121| 6,226,680 Boucheretal.

122|- 6,246,683 Connery et al.

——eeeeet|et i)——|e—_—|= omiem|WwW—_|oO

[omer yiean GilesBAO
EXAMINER:ifetapopsidelgtaionimtgitEo:aiepeteet,

age

ol
-
Z

345 | |
370 537 |
ac

709 224 |
ro[=|
|395|200.8 ||

370 474 ||
[ree[aes|

359 123||
Fess [of
ro [8|
no[s|.
Profs|

rof >|
ro|=|_
370 401 ||

aperall
370 392 ||
ro[=»|
ro [|

P7e6[2|09

mo|||

 J/

INTEL Ex.1002.320

INTEL Ex.1002.321

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where
appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as
indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate ™ ADDRESS"formaintenancefee notifications.

CURRENT CORRESPONDENCE ADDRESS(Note: Use Block 1 for any changeof address) Note: A certificate of mailing can only be used for domestic mailings of the
Fee(s) Transmittal. This certificate cannot be used for any other accompanying

papers. Each additional paper, such as an assignmentor formal drawing, mustave its own certificate of mailing or transmission.

24501 7590 11/03/2009 c ” f Mail Tertificate o iling or Transmission
MARK A LAUER I hereby certify that this Fee(s) Transmittal is being deposited with the UnitedStates Postal Service with sufficient postage for first class mail in an envelopent pos

6601 KOLL CENTER PARKWAY addressed to the Mail Stop ISSUE FEE address above, or being facsimile
SUITE 245 transmitted to the USPTO (571) 273-2885, on the date indicated below.

PLEASANTON,CA 94566 Mark Lauer TDepottorv came)
GerSet

-_ 4i(- lp (ate)

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447
TITLE OF INVENTION: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

APPLN. TYPE SMALL ENTITY ISSUE FEE DUE PUBLICATION FEE DUE|PREV. PAID ISSUE FEB TOTAL FEE(S) DUE DATE DUE

NO $0 $1810 02/03/2010nonprovisional $1510 $300

EXAMINER ART UNIT CLASS-SUBCLASS

JEAN GILLES, JUDE 2443 709-245000

2. Forprinting on the patent front page,list
(1) the namesof up to 3 registered patent attorneys
or agents OR,alternatively,

(2) the nameof a single firm (having as a member a
registered attorney or agent) and the namesof up to
2 registered patent attorneys or agents. Ifnonameis 3
listed, no namewill be printed.

1. Change of correspondence address or indication of "Fee Address”(37
CFR 1.363).

LJ Change of correspondence address (or Change of CorrespondenceAddress form PTO/SB/122)attached.

[I "Bee Address"indication (or "Fee Address" Indication form
PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer
Numberis required.

1_ Mark Lauer

2 Silicon Edge Law Group, LLP

3. ASSIGNEE NAME AND RESIDENCE DATATO BE PRINTED ON THE PATENT (printor type)

PLEASE NOTE:Unless anassignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the documenthas beenfiled for
recordation as set forth in 37 CFR 3.11. Completion ofthis form is NOTa substitute forfiling an assignment.

(A) NAME OF ASSIGNEE (B) RESIDENCE:(CITY and STATE OR COUNTRY)

Alacritech, Inc. San Jose, CA

Please check the appropriate assignee category or categories (will not be printed on the patent) : LJ tndividual Corporation or other private group entity LJ Government

4a. The following fee(s) are submitted: 4b. Paymentof Fee(s): (Pleasefirst reapply any previously paid issue fee shown above)
Ky Issue Fee (I A checkis enclosed.

Publication Fee (No small entity discount permitted) X Paymentby credit card.FormPTO-2038-tr-attached—
LY Advance Order - # of Copies (} The Directoris hereby authorized to charge the required fee(s), any deficiency, or credit any

overpayment, to Deposit Account Number (enclose an extra copy of this form).

5. Change in Entity Status (from status indicated above)
Da. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. Lb. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2).

NOTE:The Issue Fee and Publication Fee (if required) will not be accepted from anyoneother than the applicant; a registered attorney or agent; or the assignee orother party in
interest as shown by the recordsof the United States Patent and Trademark Office.

Authorizedsignatu Date 1—74(- (2
Typed or printed name _Mark Lauer Registration No. _36,578

This collection of information is required by 37 CFR 1.311. The informationis required to obtain or retain a benefit by the public whichisto file (and by the USPTOto process)
an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and
submitting the completed application form to the USPTO. Time will depending upon the individual case. Any comments on the amount of time you require to completethis form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O.Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMSTO THIS.ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450,
Alexandria,Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no personsare required to respond to a collection of information unless it displays a valid OMB control number.

PTOL-85 (Rev. 08/07) Approvedfor use through 08/31/2010. OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
i

INTEL Ex.1002.321

INTEL Ex.1002.322

Electronic Patent Application Fee Transmittal

Application Number: 11821820

Filing Date: 25-Jun-2007

FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A

Title of Invention: TCP CONNECTION

First Named Inventor/Applicant Name: Laurence B. Boucher

Attorney Docket Number: ALA-006K

Filed as Large Entity

Utility under 35 USC 111(a) Filing Fees

_ Sub-Total in

Basic Filing:

Pages:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Utility Appl issue fee

Publ. Fee- early, voluntary, or normal

INTEL Ex.1002.322

INTEL Ex.1002.323

_ Sub-Total in

Extension-of-Time:

Miscellaneous:
Total in USD (S$) 1810

INTEL Ex.1002.323

INTEL Ex.1002.324

Electronic Acknowledgement Receipt

Application Number: 11821820

International Application Number:

Confirmation Number: 8447

FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A

Title of Invention: TCP CONNECTION

First Named Inventor/Applicant Name: Laurence B. Boucher

Customer Number: 24501

Filer: Mark Alan Lauer

Filer Authorized By:

Paymentinformation:

Payment Type Credit Card

Payment wassuccessfully received in RAM $1810

Deposit Account

Document Document Description File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

INTEL Ex.1002.324

INTEL Ex.1002.325

102894
Issue_Fee_Payment_ALA-OO6K.

Issue Fee Payment (PTO-85B) pdf 936252.a86877f29b464004b9c1f1d96a75cq
eafd

Information:

Fee Worksheet (PTO-875) fee-info.pdf 2017777b65aa8df45 1 5a60ada8eefd87aed

Warnings:

Information:

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO ofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enterthe national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and otherapplicable requirements a Form PCT/DO/EO/903 indicating acceptanceof the application asa
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary componentsfor
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the InternationalFiling Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

INTEL Ex.1002.325

INTEL Ex.1002.326

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www uspto.gov

APPLICATION NO. ISSUE DATE PATENT NO. ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 03/02/2010 7673072 ALA-006K 8447

24501 7590 02/10/2010

MARK A LAUER
6601 KOLL CENTER PARKWAY
SUITE 245

PLEASANTON,CA 94566

ISSUE NOTIFICATION

The projected patent numberandissue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The Patent Term Adjustment is 435 day(s). Any patent to issue from the above-identified application will
include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) wasfiled in the above-identified application, the filing date that
determines Patent Term Adjustmentis the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information
Retrieval (PAIR) WEBsite (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the
Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee
payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management
(ODM)at (571)-272-4200,

APPLICANT(s) (Please see PAIR WEBsite http://pair.uspto.gov for additional applicants):

Laurence B. Boucher, Saratoga, CA;
Stephen E.J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;
David A. Higgen, Saratoga, CA;
Clive M.Philbrick, San Jose, CA;
Daryl D. Starr, Milpitas, CA;

IR103 (Rev. 10/09)

INTEL Ex.1002.326

INTEL Ex.1002.327

Case 2:16-cv-00692-JRG Document 3 Filed 06/30/16 Page 1 of 2PagelD#: 718

AO 120 (Rev. 08/10}

40 Mail Stop 8 : REPORTON THE
: Director of the U.S. Patent and Trademark Office | FELING OR DETERMENATION OF AN

P.O. Box 1450 | ACTION REGARDING A PATENT OR
Alexandria, VA 22313-1450 | TRADEMARK

in Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 youare hereby advised that a court action has been

filed in the U.S. District Court Eastern District of Texas (Marshall Division) on the following

!_| Trademarks or [v{ Patents. ([[} the patent action involves 35 U.S.C. § 292.):

DOCKET NO. DATE FELEB U.S. DISTRICT COURT
2:16-cv-692 6/30/2016 Eastern District of Texas (Marshall Division

PLAINTIFF DEFENDANT

ALACRITECH, INC. : WISTRON CORPORATION,et al

DATE INCLUDED INCLUDED BY

Ti Amendment [i Answer | Cross Bul [| Other Pleading
PATENTOR DATE OF PATENT

TRADEMARK NO. OR TRADEMARK
in the above-—entitied case, the following decision has been rendered or fudgement issued:

DECISIONJUDGEMENT

BY) DEPUTY CLERK
Copy 1-—-Upon hutiation of action, wail this copy to Director Copy 3—-Upon termination of action, mail this copy te Director
Copy 2-—Upen filing document adding patent(s), mail this copy te Director Copy ¢—Case fBe copy

INTEL Ex.1002.327

INTEL Ex.1002.328

Case 2:16-cv-00692-JRG Document 3 Filed 06/30/16 Page 2 of 2 PagelD #: 719

AO 120 (Rev. 08/10}

40 Mail Stop 8 : REPORTON THE
: Director of the U.S. Patent and Trademark Office | FELING OR DETERMENATION OF AN

P.O. Box 1450 | ACTION REGARDING A PATENT OR
Alexandria, VA 22313-1450 | TRADEMARK

in Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 youare hereby advised that a court action has been

filed in the U.S. District Court Eastern District of Texas (Marshall Division) on the following

!_| Trademarks or [v{ Patents. ([[} the patent action involves 35 U.S.C. § 292.):

DOCKET NO. DATE FILER U.S. DISTRICT COURT
2:16-cv-692 6/30/2016 Eastern District of Texas (Marshall Division

PLAINTIFF [DEFENDANT

ALAGRITECH, INC. WISTRON CORPORATION,et al

PATENT OR DATE OF PATENT oa
TRADEMARK NO. OR TRADEMARK HOLDER OF PATENT OR TRADEMARK

i 8,805,948 8/12/2014 Alacritech, Inc.

2 9,055,104 6/9/2015 Alacritech, inc.

ERes
eo
po

DATE INCLUDED INCLUDED BY

Ti Amendment [i Answer | Cross Bul [| Other Pleading
PATENTOR DATE OF PATENT

TRADEMARK NO. OR TRADEMARK
in the above-—entitied case, the following decision has been rendered or fudgement issued:

DECISIONJUDGEMENT

(BY) DEPUTY CLERK
Copy 1-—-Upon hutiation of action, wail this copy to Director Copy 3—-Upon termination of action, mail this copy te Director
Copy 2-—Upen filing document adding patent(s), mail this copy te Director Copy ¢—Case fBe copy

INTEL Ex.1002.328

INTEL Ex.1002.329

Case 2:16-cv-00693-JRG Document 3 Filed 06/30/16 Page 1 of 2 PagelD #: 740

AO 120 (Rev. 08/10}

40 Mail Stop 8 : REPORTON THE
: Director of the U.S. Patent and Trademark Office | FELING OR DETERMENATION OF AN

P.O. Box 1450 | ACTION REGARDING A PATENT OR
Alexandria, VA 22313-1450 | TRADEMARK

in Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 youare hereby advised that a court action has been

filed in the U.S. District Court Eastern District of Texas (Marshall Division) on the following

!_| Trademarks or [v{ Patents. ([[} the patent action involves 35 U.S.C. § 292.):

DOCKET NO. DATE FELEB U.S. DISTRICT COURT
2:18-cv-693 6/30/2016 Eastern District of Texas (Marshall Division

PLAINTIFF DEFENDANT

ALACRITECH, INC. : GENTUBRYLINK, INC.

DATE INCLUDED INCLUDED BY

Ti Amendment [i Answer | Cross Bul [| Other Pleading
PATENTOR DATE OF PATENT

TRADEMARK NO. OR TRADEMARK
in the above-—entitied case, the following decision has been rendered or fudgement issued:

DECISIONJUDGEMENT

(BY) DEPUTY CLERK
Copy 1-—-Upon hutiation of action, wail this copy to Director Copy 3—-Upon termination of action, mail this copy te Director
Copy 2-—Upen filing document adding patent(s), mail this copy te Director Copy ¢—Case fBe copy

INTEL Ex.1002.329

INTEL Ex.1002.330

Case 2:16-cv-00693-JRG Document 3 Filed 06/30/16 Page 2 of 2 PagelD #: 741

AO 120 (Rev. 08/10}

40 Mail Stop 8 : REPORTON THE
: Director of the U.S. Patent and Trademark Office | FELING OR DETERMENATION OF AN

P.O. Box 1450 | ACTION REGARDING A PATENT OR
Alexandria, VA 22313-1450 | TRADEMARK

in Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 youare hereby advised that a court action has been

filed in the U.S. District Court Eastern District of Texas (Marshall Division) on the following

!_| Trademarks or [v{ Patents. ([[} the patent action involves 35 U.S.C. § 292.):

DOCKET NO. DATE FILER U.S. DISTRICT COURT
2:18-cv-693 6/30/2016 Eastern District of Texas (Marshall Division

PLAINTIFF [DEFENDANT
ALAGRITECH, INC. GENTUBRYLINK, INC

DATE INCLUDED INCLUDED BY

Li Amendment [i Answer | Cross Bil [| Other Pleading
PATENTOR DATE OF PATENT

TRADEMARK NO. OR TRADEMARK
in the above-—entitied case, the following decision has been rendered or fudgement issued:

DECISIONJUDGEMENT

(BY) DEPUTY CLERK
Copy 1-—-Upon hutiation of action, wail this copy to Director Copy 3—-Upon termination of action, mail this copy te Director
Copy 2-—Upen filing document adding patent(s), mail this copy te Director Copy ¢—Case fBe copy

INTEL Ex.1002.330

