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The subdivision of the current probability interval would ideally require a multiplication of the interval by the probability
estimate for the LPS. Because this subdivision is done approximately, it is possible for the LPS sub-interval to be larger
than the MPSsub-interval. When that happens a “conditional exchange” interchanges the assignmentof the sub-intervals
such that the MPSis given the larger sub-interval.

Since the encoding procedure involves addition of binary fractions rather than concatenation of integer code words, the
more probable binary decisions can sometimes be codedat a cost of muchless than one bit per decision.

D.1.1.2 Conditioning of probability estimates

An adaptive binary arithmetic coder requires a statistical model — a model for selecting conditional probability estimates to
be used in the coding of each binary decision. When a given binary decision probability estimate is dependent on a
particular feature or features (the context) already coded, it is “conditioned” on that feature. The conditioning of
probability estimates on previously coded decisions must be identical in encoder and decoder, and therefore can use only
information knownto both.

Each conditional probability estimate required by the statistical model is kept in a separate storage location or “bin”
identified by a unique context-index S. The arithmetic coder is adaptive, which means that the probability estimates at
each context-index are developed and maintained by the arithmetic coding system on the basis of prior coding decisions
for that context-index.

D.1.2. Encoding conventions and approximations

The encoding proceduresuse fixed precision integer arithmetic and an integer representation offractional values in which
78000’ can be regarded as the decimal value 0.75. The probability interval, A, is kept in the integer
range X’8000’ < A < X’10000’ by doubling it whenever its integer value falls below X’8000’. This is equivalent to
keeping A in the decimal range 0.75 < A < 1.5. This doubling procedureis called renormalization.

The code register, C, contains the trailing bits of the bit stream. C is also doubled each time A is doubled. Periodically
—to keep C from overflowing — a byte of data is removed from the high order bits of the C-register and placed in the
entropy-coded segment.

Carry-over into the entropy-coded segmentis limited by delaying X’FF’ output bytes until the carry-over is resolved. Zero
bytes are stuffed after each X’FF’ byte in the entropy-coded segment in order to avoid the accidental generation of
markers in the entropy-coded segment.

Keeping A in the range 0.75 < A < 1.5 allows a simple arithmetic approximation to be used in the probability interval
subdivision. Normally, if the current estimate of the LPS probability for context-index S$ is Qe(S), precise calculation of
the sub-intervals would require:

Qe(S) x A Probability sub-interval for the LPS;
A~(Qe(S) x A) Probability sub-interval for the MPS.

Because the decimal value ofA is of order unity, these can be approximated by

Qe(S) Probability sub-interval for the LPS;
A—Qe(S) Probability sub-interval for the MPS.

Whenever the LPS is coded, the value of A — Qe(S)is addedto the code register and the probability interval is reduced to
Qe(S). Whenever the MPS is coded, the code register is left unchanged and theinterval is reduced to A — Qe(S). The
precision range required for A is then restored, if necessary, by renormalization of both A and C.

With the procedure described above, the approximations in the probability interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe(S) is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling gives one-third of the probability interval to the MPS and two-
thirds to the LPS. To avoidthis size inversion, conditional exchange is used. The probability interval is subdivided using
the simple approximation, but the MPS and LPS sub-interval assignments are exchanged whenever the LPS sub-interval is
larger than the MPS sub-interval. This MPS/LPS conditional exchange can only occur when a renormalization will be
needed.

Each binary decision uses a context. A context is the set of prior coding decisions which determine the context-index, S,
identifying the probability estimate used in coding the decision.

Whenevera renormalization occurs, a probability estimation procedure is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding of LPS and MPS provide, by means of a table-based probability estimation
state machine, a direct estimate of the probabilities.
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D.1.3. Encoder coderegister conventions

The flow charts in this annex assume the register structures for the encoder as shownin Table D.2.

Table D.2 — Encoderregister connections

C-register 0000cbbb, bbbbbsss, XXXXXXXX, XXXXXXXK

A-register 00000000, 00000000, aaaaaaaa, aaaaaaaa 
fray

The “a” bits are the fractional bits in the A-register (the current probability interval value) and the “x” bits are the
fractionalbits in the code register. The “s”bits are optional spacer bits which provide useful constraints on carry-over, and
the “b” bits indicate the bit positions from which the completed bytes of data are removed from the C-register. ‘The “c” bit
is a carry bit. Exceptat the time ofinitialization, bit 15 of the A-register is always set and bit 16 is always clear (the LSB
is bit 0).

These register conventions illustrate one possible implementation. However, any register conventions which allow
resolution of carry-over in the encoder and which produce the same entropy-coded segment may be used. The handling of
carry-over and the byte stuffing following X’FF’ will be describedin a later part of this annex.

D.1.4 Code_1(S) and Code_0(S) procedures

When a given binary decision is coded, one of two possibilities occurs — either a 1-decision or a 0-decision is coded.
Code_1(S) and Code_0(S) are shown in Figures D.1 and D.2. The Code_1(S) and Code_0(S) procedures use probability
estimates with a context-index S. The context-index S is determined by the statistical model and is, in general, a function
of the previous coding decisions; each value of S identifies a particular conditional probability estimate which is used in
encoding the binary decision.

 
Code_1(8)

Code_MPS(S) |
TISO1800-93/d039

| Code_LPS(S)    
Figure D.1 - Code_1(S) procedure
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Cede_LPS(S) CGode_MPS(S) |
71801 030-93/d040  

Figure D.2 —- Code_0(S) procedure

The context-index S selects a storage location which contains Index(S), an index to the tables which make up the
probability estimation state machine, When coding a binary decision, the symbol being coded is either the more probable
symbolorthe less probable symbol. Therefore, additional information is stored at each context-index identifying the sense
of the more probable symbol, MPS(S).

For simplicity, the flow charts in this subclause assume that the context storage for each context-index S has an additional
storage field for Qe(S) containing the value of Qe(Index(S)). If only the value of Index(S) and MPS(S) are stored,all
references to Qe(S) should be replaced by Qe(Index(S)).

The Code_LPS(S) procedure normally consists of the addition of the MPS sub-interval A — Qe(S) to the bit stream and a
scaling of the interval to the sub-interval, Qe(S). It is always followed by the procedures for obtaining a new LPS
probability estimate (Estimate_Qe(S)_after_LPS) and renormalization (Renorm_e) (see Figure D.3).

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPSsub-interval is coded.

The Code_MPS(S) procedure normally reduces the size of the probability interval to the MPS sub-interval. However, if
the LPS sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is
coded instead. Note that conditional exchange cannot occurunless the procedures for obtaining a new LPS probability
estimate (Estimate_Qe(S)_after_MPS) and renormalization (Renorm_e) are required after the coding of the symbol(see
Figure D.4).
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Code_LPS(S)

 

 
 

C=C+a
A=Qe(S)

Estimate_Qe(S)_after_LPS
Renorm_e

TISO1040-93/d041

 

Figure D.3 - Code_LPS(S) procedure with conditional MPS/LPS exchange
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Code_MPS(S)

A=A-Qe(S)

A < X8000’
?

Estimate_Qe(S)_after_MPS
Renorm_e

 
 

TISO1050-93/d042

Figure D.4 - Code_MPS(S)procedurewith conditional MPS/LPS exchange

D.1.5 Probability estimation in the encoder

D.1.5.1 Probability estimation state machine

The probability estimation state machine consists of a number of sequences of probability estimates. These sequences are
interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the
arithmetic coder renormalization. Some of these sequences are used during the initial “learning” stages of probability
estimation; the rest are used for “steady state” estimation.

Each entry in the probability estimation state machine is assigned an index, and each index has associated with it a
Qevalue and two Next_Index values. The Next_Index_MPSgives the index to the new probability estimate after an MPS
renormalization; the Next_Index_LPS gives the index to the new probability estimate after an LPS renormalization. Note
that both the index to the estimation state machine and the sense of the MPS are kept for each context-index S. The sense
of the MPS is changed wheneverthe entry in the Switch_MPSis one.

The probability estimation state machine is given in Table D.3. Initialization of the arithmetic coder is always with
an MPSsenseof zero and a Qe indexof zero in Table D.3.

The Qe values listed in Table D.3 are expressed as hexadecimal integers. To approximately convert the 15-bit integer
representation of Qe to a decimalprobability, divide the Qe values by (4/3) x (X’8000”).
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Table D.3 - Qe values and probability estimation state machine

 
  
 

Index

0 SAID’
I X’2586"
2 X14
3 X’080B’
4 X’03D8’
5 X°01DA’
6 X’00ES5’
7 X’006F”
8 X’ 0036"
9 X’001A’

10 X’000D’
11 x’0006°
12 X’0003” 10
13 X’°0001"* 12
14 X’5A7P’ 15
15 X’3F25° 36
16 X’2CF2’ 38
17 X’207C’ 39
18 K’17B9" 40
19 X’ 1182’ 42
20 X’0CEF” 43
21 X’09AL’ 45
22 X’072F” 46
23 X’055C’ 48
24 X’0406’ 49
25 X’ 0303’ 31
26 &’0240’ 52
27 X’0IBL’ 54
28 X’0144’ 56
29 X’00FS” 57
30 X’00B7’ 59
31 X’008A’ 60
32 X’ 0068’ 62
33 X'004E” 63
34 X’003B’ 32
35 X’002C’ 33
36 X’SAEL’ 37
37 X’484C’ 64
38 X°3A0D’ 65
39 X’2EF1’ 67
40 X’261FP’ 68
4i X77 1833’ 69
42 K’19A8” 70
43 X’1518’ 72
44 X°1177' 73
45 X’0E74' 74
46 X’0BFB’ 15
47 X’09F8” 77
48 X’0861’ 78
49 X’0706’ 79
50 x’05CD’ 48
51 X’04DE’ 50
52 X°040F’ 50
53 X’0363’ 51
54 x’02D4" 52
55 X°025C’ 53
56 X’01F8’ 54
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43
44
45
46
47
48
49
50
51
52
53
54
35
56
57
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111
112

 
 
  

 XOIAY?
X’0160"
X70125°
X’00F6’
X’00CB’
X’00AB’
X’008F’
X’SB12’
X’4D04’
X’412C’
X’37D8”
X’2FES’
X’293C’
X"2379"
X’1EDF’
x’ 1AA9"
X’174E"
X’1424"
x11I9C
X’OF6B’
X’0D5V
X'0BB6’
X’0A40°
X75832’
X'4D1C’
X’438E’
X°3BDD”"
X°34EE’
X°2EAE’
X’299A’
X’2516"
X75570°
X’4CA9’
X’44D9"
X’3E22’
X73824
X’32B4’
X’2E17
X’56A8"
X°4F46°
X’47ES’
X’41CP
X°3C3D"
X’375E’
X’5231”
X’4COP’
"4639"
X’415E
X°5627’
X’50E7
X’4B85’
X’5597°
X’504F
X’SA10’
X’5522”
X’S9EB’

 
 
 
 

 

  

Next_Index

0
56 59 0
57 60 0
58 61 0
59 62 0
61 63 0
61 32 0
65 65 1
80 66 0
81 67 0
82 68 0
83 69 0
84 70 0
86 71 0
87 72 0
87 73 0
72 74 0
72 75 0
74 76 0
74 77 0
75 78 0
77 719 0
V7 48 0
80 81 1
88 82 0
89 83 0
90 84 0
91 85 0
92 86 0
93 87 0
86 71 0
88 89 1
95 90 0
96 91 0
97 92 0
99 93 0
99 94 0
93 86 0
95 96 I

101 97 0
102 98 0
103 99 0
104 100 0
99 93 0

105 102 0
106 103 0
107 104 0
103 99 0
105 106 1
108 107 0
109 103 0
110 109 0
lil 107 0 =
110 lil 1
112 109 0
112 Vii 1
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D.1.5.2 Renormalization driven estimation

The changein state in Table D.3 occurs only when the arithmetic coderinterval register is renormalized. This must always
be doneafter coding an LPS, and whenever the probability interval register is less than X'8000' (0.75 in decimal notation)
after coding an MPS.

When the LPS renormalization is required, Next_Index_LPS gives the new index for the LPS probability estimate. When
the MPS renormalization is required, Next_Index_MPS gives the new index for the LPS probability estimate. If
Switch_MPSis 1 for the old index, the MPS symbol sense must be inverted after an LPS.

D.1.5.3 Estimation following renormalization after MPS

The procedure for estimating the probability on the MPS renormalization path is given in Figure D.5. Index(S)is part of
the information stored for context-index S. The new value of Index(S) is obtained from Table D.3 from the column labeled
Next_Index_MPS,as that is the next index after an MPS renormalization. This next index is stored as the new value of
Index(S) in the context storage at context-index S, and the value of Qe at this new Index(S) becomes the new Qe(S).
MPS(S) does not change.

Estimate_Qe(S)_
afterMPS

| = Index(S)
| = Next_Index_MPS(I}
Index(S) =|
Qe(S) = Qe_Value(l) 

11S01060-93/d043

Figure D.5 - Probability estimation on MPS renormalization path
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D.1.5.4 Estimation following renormalization after LPS

The procedure for estimating the probability on the LPS renormalization path is shown in Figure D.6. The procedure is
similar to that of Figure D.5 except that when Switch_MPS()is I, the sense of MPS(S) must be inverted.

 

  Estimate_Qe(S}_
after_LPS

 
( = Index(S)

MPS(S) = 1—MPS(S)

 
   [ = Next_Index_LPS()

Index(S) = |
Qa(S) = Qe_Value(l)  

 
 71801070-94/d044

Figure D.6 — Probability estimation on LPS renormalization path

D.1.6 Renormalization in the encoder

The Renorm_e procedure for the encoder renormalization is shown in Figure D.7. Both the probability interval register A
and the code register C are shifted, one bit at a time. The numberofshifts is counted in the counter CT; when CT is zero,
a byte of compressed data is removed from C by the procedure Byte_out and CT is reset to 8. Renormalization continues
until A is no longerless than X’8000’.
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Renorm_e

A=SLLA1
C=SLLC1
CcT=CT-1

Byte_out  
A<xX’8000"

2

 
TISO1080-99/d045

Figure D.7 — Encoder renormalization procedure

The Byte_out procedure used in Renorm_e is shown in Figure D.8. This procedure uses byte-stuffing procedures which
prevent accidental generation of markers by the arithmetic encoding procedures. It also includes an example of a
procedure for resolving carry-over. For simplicity of exposition, the buffer holding the entropy-coded segment is assumed
to be large enoughto contain the entire segment.

In Figure D.8 BPis the entropy-coded segmentpointer and B is the compressed data byte pointed to by BP. T in Byte_out
is a temporary variable which is used to hold the output byte and carry bit. ST is the stack counter which is used to count
X°FF’output bytes until any carry-over through the X’FF’ sequence has been resolved. The value of ST rarely exceeds 3.
However, since the upperlimit for the value of ST is boundedonly by the total entropy-coded segmentsize, a precision of
32 bits is recommended for ST.

Since large values of ST represent a latent output of compressed data, the following procedure may be needed in high
speed synchronous encoding systemsfor handling the burst of output data which occurs when thecarry is resolved.
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T=SRLC19  
 

Output_stacked_zeros 
 

_ Output_stacked_
ST=ST+1 X'FF’s

BP=BP +1 BP =BP +1
B=T B=T   
 

G=C AND X’7FFFF’

71IS801090-99/d046

Figure D.8 — Byte_out procedure for encoder

When the stack count reaches an upper bound determined by output channel capacity, the stack is emptied and the stacked
X’FF’ bytes (and stuffed zero bytes) are added to the compressed data before the carry-over is resolved. If a carry-over
then occurs, the carry is addedto the final stuffed zero, thereby converting the final X’FFO0O’ sequence to the X’FFO1’
temporary private marker. The entropy-coded segment must then be post-processed to resolve the carry-over and remove
the temporary marker code. For any reasonable bound on ST this post processing is very unlikely.

Referring to Figure D.8, the shift of the code register by 19 bits aligns the output bits with the low order bits of T. The
first test then determines if a carry-over has occurred. If so, the carry must be added to the previous output byte before
advancing the segment pointer BP. The Stuff_O procedure stuffs a zero byte wheneverthe addition of the carry to the data
already in the entropy-coded segments creates a X’FF’ byte. Any stacked output bytes — converted to zeros by the carry-
over — are then placed in the entropy-coded segment. Note that when the output byte is later transferred from T to the
entropy-coded segment(to byte B), the carry bit is ignoredif it is set.
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If a carry has not occurred, the output byte is tested to seeifit is X’FF’. If so, the stack count ST is incremented, as the
output must be delayed until the carry-overis resolved. If not, the carry-over has been resolved, and any stacked X’ FF”
bytes must then be placed in the entropy-coded segment. Note that a zero byte is stuffed following each X’FF’.

 

The procedures used by Byte_outare defined in Figures D.9 through D.11.

 

  

  
Output_stacked_zeros

TISO1810-93/d047

Figure D.9 — Output_stacked_zeros procedure for encoder

 

  

  
Output_stacked_

X'FF's

TISO1 100-93/d048

Figure D.10 -— Output_stacked_X’FF’s procedurefor encoder
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Stuff_o

 
TISO1 110-99/d049

Figure D.11 — Stuff_0 procedure for encoder

D.17 Initialization of the encoder

The Initenc procedureis usedto start the arithmetic coder. The basic steps are shownin Figure D.12.

initenc

Initialize statistics areas
ST=0
A=X’10000'

(see Note below)
Cc=0
cT=11
BP =BPST—-1 

71S01120-93/d050

Figure D.12 — Initialization of the encoder
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The probability estimation tables are defined by Table D.3. Thestatistics areas are initialized to an MPS sense of 0 and a
Qe index of zero as defined by Table D.3. The stack count (ST)is cleared, the code register (C) is cleared, and the interval
register is set to X’ 10000’. The counter (CT)is set to 11, reflecting the fact that whenAisinitialized to X’ 10000’ three
spacerbits plus eight outputbits in C must befilled before thefirst byte is removed. Note that BPis initialized to pointto
the byte before the start of the entropy-coded segment (which is at BPST). Note also that the statistics areas are initialized
for all values of context-index S to MPS(S) = 0 and Index(S) = 0.

NOTE — Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized tozero.

D.1.8 Termination of encoding

The Flush procedure is used to terminate the arithmetic encoding procedures and prepare the entropy-coded segment for
the addition of the X’FF’ prefix of the marker which follows the arithmetically coded data. Figure D.13 showsthis flush
procedure. Thefirst step in the procedure is to set as many low orderbits of the code register to zero as possible without
pointing outside ofthe final interval. Then, the output byte is aligned by shifting it left by CT bits; Byte_out then removes
it from C. C is then shifted left by 8 bits to align the second output byte and Byte_out is used a second time. The
remaining low orderbits in C are guaranteed to be zero, and thesetrailing zero bits shall not be written to the entropy-
coded segment.

Clear_final_bits

C=SLLCCT

Byte_out
Discard_final_zeros
 

‘TISO1130-93/d051

Figure D.13 — Flush procedure
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Any trailing zero bytes already written to the entropy-coded segment and not preceded by a X°FF’ may, optionally, be
discarded. This is done in the Discard_final_zeros procedure. Stuffed zero bytes shall not be discarded.

 

owed by a marker. For this reason, the final zero bits needed to complete decoding
hen the decoder encounters a marker, zero bits shall be
This convention guarantees that when a DNL markeris

Entropy coded segments are always fo
shall not be included in the entropy coded segment. Instead, w!
supplied to the decoding procedure until decoding is complete.
used, the decoderwill interceptit in time to correctly terminate the decoding procedure.

Clear_final_bits

T=C+A-1
T=TAND

X’FFFFOOOO"

T=T +x'8000° 
TISO1140-93/d052

Figure D.14 — Clear_final_bits procedurein Flush
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Discard_final_zeros

BP <BPST
9

Yes

BP =BP +1 m 
T1S01150-93/d053

Figure D.15 — Discard_final_zeros procedure in Flush

D.2 Arithmetic decoding procedures

Twoarithmetic decoding proceduresare used for arithmetic decoding (see Table D.4).

The “Decode(S)” procedure decodes the binary decision for a given context-index S$ and returnsa valueof either 0 or1. It
is the inverse of the “Code_O(S)” and “Code_1(S)” procedures described in D.1. “Initdec” initializes the arithmetic
coding entropy decoder.

Table D.4 - Procedures for binary arithmetic decoding —

Procedure

Decode(S) Decodea binary decision with context-index 5

Initdec Initialize the decoder  
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D.2.1__‘ Binary arithmetic decoding principles

The probability interval subdivision and sub-interval ordering defined forthe arithmetic encoding procedures also apply to
the arithmetic decoding procedures.

Since the bit stream always points within the current probability interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the bit stream. This is done recursively, using the same probability
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts from the bit stream
any interval the encoder added to the bit stream. Therefore, the code register in the decoder is a pointer into the current
probability interval relative to the base of the interval.

If the size of the sub-interval allocated to the LPS is larger than the sub-interval allocated to the MPS, the encoder invokes
the conditional exchange procedure. When the interval sizes are inverted in the decoder, the sense of the symbol decoded
must be inverted.

D.2.2. Decoding conventions and approximations

The approximations and integer arithmetic defined for the probability interval subdivision in the encoder must also be
used in the decoder. However, where the encoder would have addedto the code register, the decoder subtracts from the
coderegister.

D.2.3. Decoder code register conventions

The flow charts given in this section assumethe register structures for the decoder as shown in Table D.5:

Table D.5 — Decoder register conventions

Cx register XXXXXXXX, XXXXXXXK

C-low bbbbbbbb, 00000000

A-register aaaaaaaa, aaaaaaaa
 

Cx and C-low can be regarded as one 32-bit C-register, in that renormalization of C shifts a bit of new data from bit 15 of
C-low to bit 0 of Cx. However, the decoding comparisons use Cx alone. New data are inserted into the “b” bits of C-low
one byte at a time.

NOTE — The comparisons shown in the various procedures use arithmetic comparisons, and therefore assume precisions
greater than 16 bits for the variables, Unsigned (logical) comparisons should be used in 16-bit precision implementations.

D.2.4 ~The decode procedure

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the code register that the encoder added. The amountleft in the code register is the offset from the base of the current
probability interval to the sub-interval allocated to the binary decisions not yet decoded. In thefirst test in the decode
procedure shown in Figure D.16 the code register is compared to the size of the MPSsub-interval. Unless a conditional
exchange is needed, this test determines whether the MPS or LPS for context-index S is decoded. Note that the LPS for
context-index S is given by 1 - MPS(S).
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When a renormalization is needed, the MPS/LPS conditional exchange may also be needed. For the LPS path, the
conditional exchange procedure is shown in Figure D.17. Note that the probability estimation in the decoderis identical
to the probability estimation in the encoder (Figures D.5 and D.6).

 
 
 
  
 

A < X’8000’

 
 
  

 D = Cond_LPS_exchange(S)D = Cond_MPS_exchange(S)
Renoarm_d

D = MPS(S)
Renorm_d

TISO1 160-92/d054

Figure D.16 — Decode(S) procedure

For the MPS path of the decoder the conditional exchange procedureis given in Figure D,18.
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  Cond_LPS_
exchange(S)

 

 
 

 

 
 
 

D=1-MPS(8)
Cx=Ox-A
A= Qe(S)

D = MPS(S)
Cx=Cx-A
A = Qe(S)
 
 

Estimate_Qe(S)_
after_LPS

Return D

TISO1170-93/d055

  
 

Estimate_Qe(S)_
after_MPS  

 
Figure D.17 — Decoder LPS path conditional exchange procedure

 

   
 

Cond_MPS_
exchange(S)

2

Estimate_Qe(S)_
after_MPS
 
 

D = MPS(S)  D=1-MPS{(S)

  
 

Estimate_Qe(S)_
after_LPS  

TISO1 180-93/d056

Figure D.18 - Decoder MPSpath conditional exchange procedure
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D.2.5 Probability estimation in the decoder

The procedures defined for obtaining a new LPS probability estimate in the encoderare also used in the decoder.

D.2.6 Renormalization in the decoder

The Renorm_d procedurefor the decoder renormalizationis shown in Figure D.19. CT is a counter which keeps track of
the number of compressed bits in the C-low section of the C-register. When CT is zero, a new byte is inserted into C-low
by the procedure Byte_in and CTis reset to 8.

Both the probabilityinterval register A and the code register C are shifted, one bit at a time, until A is no longer less than
X’8000’.

 

 
 
 

Renorm_d

 

A=SLLA1
C=SLLC1
CT=CT-1

A< X’8000'
?

No

TISO1 190-93/d057

Figure D.19 — Decoder renormalization procedure
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The Byte_in procedure used in Renorm_d is shown in Figure D.20. This procedure fetches one byte of data,
compensating for the stuffed zero byte which follows any X’FF’ byte. It also detects the marker which must follow the
entropy-coded segment. The C-register in this procedureis the concatenation of the Cx and C-low registers. For simplicity
of exposition, the buffer holding the entropy-coded segment is assumed to be large enoughto contain the entire segment.

B is the byte pointed to by the entropy-coded segment pointer BP. BPis first incremented.If the new value of B is not a
X°’ FP’, it is inserted into the high order8 bits of C-low.

 
 
 

BP =BP+1

 C=C+SiLB8 Unstuff_0

TISO1200-93/d058

Figure D.20 — Byte_in procedure for decoder

74 CCITT Ree. T.81 (1992 E)

OLYMPUSEX. 1016 - 270/714



OLYMPUS EX. 1016 - 271/714

 

 
 
 

 
 

BP =BP+1

Interpret_marker
Adjust BP  

 
 C=C OR X’FFO0"

TISO121 0-93/d0s9

Figure D.21 ~ Unstuff_0 procedurefor decoder
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The Unstuff_0 procedure is shown in Figure D.21. If the new value of B is X’FF’, BP is incremented to point to the next
byte and this next B is tested to. see if it is zero. If so, B contains a stuffed byte which must be skipped. The zero B is
ignored, and the X’FF’ B value which precededit is inserted in the C-register.

If the value of B after a:X’FF’ byte is not zero, then a marker has been detected. The markeris interpreted as required and
the entropy-coded segment pointer is adjusted (“Adjust BP” in Figure D.21) so that 0-bytes will be fed to the decoder
until decoding is complete.One way of accomplishingthis is to point BP to the byte preceding the marker which follows
the entropy-coded segment.
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D.2.7 Initialization of the decoder

The Initdec procedure is used to start the arithmetic decoder. The basic steps are shown in Figure D,22.

Initialize statistics areas
BP =BPST-1
A= X'0000°

(see Note below)
C=0 

TISO1220-93/d060

Figure D.22 - Initialization of the decoder

The estimation tables are defined by Table D.3. Thestatistics areas are initialized to an MPS sense of 0 and a Qe index of
zero as defined by Table D.3. BP, the pointer to the entropy-coded segment,is theninitialized to.point to the byte before
the start of the entropy-coded segment at BPST,andtheinterval registeris set to the samestarting value as in the encoder.
Thefirst byte of compressed data is fetched and shifted into Cx. The second byteis then fetched and shifted into Cx. The
countis set to zero, so that a new byte of data will be fetched by Renorm_d.

NOTE - Although the probability interval is initialized to X’10000° in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized tozero.

D3 Bit ordering within bytes

The arithmetically encoded entropy-coded segment is an integer of variable length. Therefore, the ordering of bytes and
the bit ordering within bytes is the sameas for parameters (see B.1.1.1). :
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Annex E |

Encoderand decodercontrol procedures

(This annex formsan integral part of this Recommendation | International Standard)

This annex describes the encoder and decoder control procedures for the sequential, progressive, and lossless modes of
operation.

The encoding and decoding control procedures for the hierarchical processes are specified in Annex J.

NOTES

1 There.is no requirementin this Specification that any encoder or decoder shall implement the proceduresin precisely
the mannerspecified by the flow charts in this annex.It is necessary only that an encoder or decoder implementthe function specified
in this annex. The sole criterion for an encoder or decoder-to be considered in compliance with this. Specification is that it satisfy the
requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliancetests specified in Part 2.

2 Implementation-specific setup steps are not indicated in this annex and may be necessary.

E.1 Encodercontrol procedures

E.1.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shownin Figure E.1.

Encode_image

Append SO! marker

Encode_frame

Append EO! marker 
71801220-99/d061

Figure E.1 — Control procedure for encoding an image
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E.1.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed data, optional X’FF’ fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scansin the frame. The frame headeris first appended,
and thenthe scans are coded. Table specifications and other marker segments may precede the SOF, marker, as indicated
by [tables/miscellaneous] in Figure E.2.

Figure E.2 showsthe encoding process. framecontrol procedure.

 

 
 

Encode_frame

 

 
[Appendtables/miscellaneous]
Append SOF, marker and rest

of frame header

Encode_scan |
Yes [Append DNL

Ss segment]
More scans

?

  

  
 
 

71801240-93/d062

Figure E.2 — Control procedure for encoding a frame

E.1.3 Control procedure for encoding a scan

A scan consists of a single pass through the data of each componentin the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one componentis coded in the scan, the data are interleaved. If
restart is enabled, the data are segmented into restart intervals.If restart is enabled, a RST, marker is placed in the coded
data betweenrestart intervals. If restart is disabled, the control procedure is the same, except that the entire scan contains a
single restart interval. The compressed image data generated by a scan is always followed by a marker, either the EOI
markeror the marker of the next marker segment.
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Figure E.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the numberofrestart intervals which make up the scan. “m”is the restart interval modulo counter needed for the
RSTm marker. The modulo arithmetic for this counter is shownafter the “Append RST marker” procedure.

 

 
 

 

Encode_scan

 
 

  
 
 
 
 

[Appendtables/miscellaneous]
Append SOS marker and restof

scan header
m=0

Encode_restart_
interval

Moreintervals
?

  Append RST,, marker
m=(m+ 1) AND 7

TISO1260-93/d063

Figure E.3 - Control procedurefor encoding a scan
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E.1.4 Conirol procedure for encoding a restart interval

Figure E.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU)in the restart interval or when it has completed
the image scan. ,

 

  Encode.restart_
interval

  
 

Reset_encoder

Encode_MCU | 
 

Prepare_for_marker

71S01260-93/d064

Figure E.4 — Control procedure for encoding a restart interval

The “Reset_encoder” procedure consists at least of the following:

a) if arithmetic coding is used, initialize the arithmetic encoder using the “Initenc” procedure described
in D.1.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.1.1.5.1);

c) forlossless processes, reset the prediction to a default value for all components in the scan (see H.1.1);

d) do all other implementation-dependent setups that may be necessary.

The procedure “Prepare_for_marker” terminates the entropy-coded segment by:

a) padding a Huffman entropy-coded segment with 1-bits to complete the final byte (and if needed stuffing a
zero byte) (see F.1.2.3); or

b) invoking the procedure “Flush”(see D.1.8) to terminate an arithmetic entropy-coded segment.

NOTE — The number of minimum coded units (MCU)in the final restart interval must be adjusted to match the number
of MCUinthe scan. The number of MCUis calculated from the framie and scan parameters. (See Annex B.)
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E.1.5 Control procedure for encoding a minimum coded unit (MCU)

The minimum coded unitis defined in A.2. Within a given MCUthe data units are coded in the order in which they occur
in the MCU. The control procedure for encoding a MCUis shown in FigureE.5.

Encode_MCU

  
 
 N=N+1

Encode data unit

TtSO1270-93/d065

Figure E.5 - Control procedure for encoding a minimum coded unit (MCU)

In Figure E.5, Nb refers to the numberof data units in the MCU. Theorder in which data units occur in the MCU is
defined in A.2. The data unit is an 8 x 8 block for DCT-based processes, and a single sample for lossless processes.

The procedures for encoding a data unit are specified in Annexes F, G, and H.

—E2 Decoder control procedures ~

E.2.1 Control procedure for decoding compressed image data

Figure E.6 shows the decoding process control for compressed image data.

Decoding control centers around identification of various markers. The first marker must be the SOI (Start Of Image)
marker. The “Decoder_setup” procedure resets the restart interval (Ri = 0) and, if the decoder has arithmetic decoding
capabilities, sets the conditioning tables for the arithmetic coding to their default values. (See F.1.4.4.1.4 and F.1.4.4.2.1.)
The next marker is normally a SOF, (Start Of Frame) marker;if this is not found, one of the marker segmentslisted in
Table E.1 has been received.
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Yes    
interpret markers

  
 

Decode_frame

TISO1280-83/d066

Figure E.6 - Control procedurefor decoding compressed image data

Table E.1 —Markers recognized by “Interpret markers”

Define Huffman Tables
  
  Define Arithmetic Conditioning

 Define Quantization Tables  Define Restart Interval 
 Application defined marker 
 
 

Comment

Note that optional X’FF’ fill bytes which may precede any marker shall be discarded before determining which markeris
present.
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The additional logic to interpret these various markers is contained in the box labeled “Interpret markers”. DHT markers
shall be interpreted by processes using Huffman coding. DAC markers shall be interpreted by processes using arithmetic
coding. DQT markers shall be interpreted by DCT-based decoders. DRI markers shall be interpreted by all decoders.
APPn and COM markersshall be interpreted only to the extent that they do not interfere with the decoding.

By definition, the. procedures in “Interpret markers” leave the system at the next marker. Note that if the expected SOI
markeris missing atthe start of the compressed imagedata, an error condition has occurred. The techniques for detecting
and managing error conditionscan be as elaborateor as simple as desired.

E.2.2 Control procedure for decoding a frame

Figure E.7 showsthe control procedure for the decodingof a frame.

 
 

Decode_frame

Interpret frame header

a Interpret markers
Yes

joo|
EO! marker

?

  
 

TISO1290-93/c087

Figure E.7 ~ Control procedure for decoding a frame

The loop is terminated if the EOI markeris found at the end ofthe scan.

The markers recognized by “Interpret markers”are listed in Table E.1, Subclause E.2.1 describes the extent to which the
various markers shall be interpreted.
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E.2.3. Control procedure for decoding a scan

Figure E.8 shows the decoding ofa scan.

The loop is terminated when the expected numberofrestart intervals has been decoded.

 
 

 
 
 

Decode_scan

 interpret scan headerm=0

Decode_restart_
interval

Moreintervals
?

71S01300-93/d06B

Figure E.8 — Control procedure for decoding a scan
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E.2.4 Control procedure for decodinga restart interval

The procedure for decoding a restart interval is shown in Figure E.9. The “Reset_decoder™ procedure consists at least of
the following:

a) if arithmetic coding is used, initialize the arithmetic decoder using the “Initdec” procedure described
in D.2.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.2.1.3.1);

c) forlossless process, reset the prediction to a default value for all. components in.the scan (see H.2.1);

d) do al] other implementation-dependent setups that may be necessary.

  
 

 
 

Decode_restart_
intervai

Reset_decoder

Decode_MCU

Find marker

TISO1310-93/d069

Figure E.9 — Control procedure for decoding a restart interval

At the endoftherestart interval, the next markeris located. Ifa problem is detected in locating this marker, error handling
procedures may be invoked. While such procedures are optional, the decoder shall be able to correctly recognize restart
markers in: the compressed data and réset the decoder when they are encountered. The decoder shall also be able to
recognize the DNL marker, set the number of lines defined in the DNL segment, and end the “Decode_restart_interval”
procedure.

NOTE — Thefinal restart interval may be smaller than the size specified by the DRI marker segment, as it includes only the
number of MCUsremaining in the scan.

CCITTRee. T.81 (1992 E) 85

OLYMPUSEX.1016 - 281/714



OLYMPUS EX. 1016 - 282/714

ISO/IEC 10918-1 : 1993(E)   
£25 Control procedure for decoding a minimum coded unit (MCU)

The procedure for decoding a minimum coded unit (MCU) is shown in Figure E.10.

In Figure E.10 Nb is the numberofdata units in a MCU.

The procedures for decoding a data unit are specified in AnnexesF,G, and H.

Decode_MCU 
 
  

 
N=N+1
Decode_data_unit

T1801320-93/d070

Figure E.10 — Control procedure for decoding a minimum coded unit (MCU)
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Annex F

Sequential DCT-based mode of operation
(This annex formsan integral part of this Recommendation| International Standard)

This annex provides a functional specification of the following coding processes for the sequential DCT-based mode of
operation:

1)_baseline sequential;

2) extended sequential, Huffman coding, 8-bit sampleprecision;
3) extended sequential, arithmetic coding,8-bit sample precision;
4) extended sequential, Huffman coding, 12-bit sample precision;
5) extended sequential, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in F.1, and the decoding process is specified in F.2. The functional
specification is presented ‘py means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE — Thereis no requirementin this Specification that any. encoder or decoder which embodies one of the above-named
processes shall implementthe proceduresin precisely the manner specified by the flow charts in this annex. It is necessary only that anencoder or decoder implement the function specified‘in this annex. The gole ériterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy: the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliancetests specified in Part 2. :

FE. Sequential DCT-based encoding processes

F.1.1 Sequential DCT-based control procedures and coding models

F.1.1.1 Control procedures for sequential DCT-based encoders

The control procedures for encoding an image and its constituent parts — the frame, scan, restart interval and
MCU —are given in Figures E.1 to E.5. The procedure for encoding a MCU (see Figure E.5) repetitively calls the
procedure for encoding a data unit. For DCT-based encoders the data unit is an 8 x 8 block of samples.
F.1.1.2 Procedurefor encodingan 8 x 8 block data unit

For the sequential DCT-based processes encoding an 8 x.8 black data unit consists of the following procedures:
a) level shift, calculate forward 8x8 DCT and quantize the resulting coefficients using table destination

specified in frame header;

b) encode DC coefficient for 8 x 8 block using DC.table destination specified in scan header;
c) encode AC coefficients for 8 x 8 block using AC table destination specified in scan header.

F.1.1.3. Level shift and forward DCT (FDCT)

The mathematical definition of the FDCTis given in A.3.3.

Prior to computing the FDCT the input data are level shifted to a signed two’s complement representation as described in
A.3.1. For 8-bit input precision the level shift.is achieved by subtracting 128. For 12-bit input precision the level shift is
achieved by subtracting 2048.

F.1.1.4 Quantization of the FDCT

The uniform quantization procedure described in Annex A is used to quantize the DCT coefficients. One of four
quantization tables may be used by the encoder. No default quantization tables are specified in this Specification.
However, sometypical quantization tables are given in Annex K.

The quantized DCT coefficient values are signed, two’s complement integers with 11-bit precision for 8-bit input
precision and 15-bit precision for 12-bit inputprecision.
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F.1.1.5 Encoding models for the sequential DCT procedures

The two dimensional array of quantized DCT coefficients is rearranged in a zig-zag sequence order defined in A.3.6. The
zig-zag ordercoefficients are denoted ZZ (0) through ZZ(63) with: ,

ZZ(0) = SdyyZZ(1) = Sqy)ZZ(2) = Sa, q0,00,ZZ(63) = Say,

Sqvu are defined in Figure A.6.

Two coding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)..ZZ(63).
The coefficients are encoded in the order in which they occur in. zig-zag sequence order, starting with the DC coefficient.
The coefficients are represented as two’s complementintegers.

F.1.1.5.1 Encoding model for DC coefficients

The DC coefficients are coded differentially, using a one-dimensionalpredictor, PRED, whichis the quantized DC value
from the most recently coded 8 x 8 block from the same component. Thedifference, DIFF, is obtained from

DIFF = ZZ(0) — PRED

At the beginning ofthe scan andat the beginning ofeachrestart interval, the prediction for the DC coefficient prediction
is initialized to 0. (Recall.that the input data have been level shifted to two’s complement representation.)

F.1.1.5.2 Encoding model for AC coefficients

Since many coefficients are zero, runs of zeros are identified and coded efficiently. In addition, if the remaining
coefficients in the zig-zag sequence orderare all zero, this is coded explicitly as an end-of-block (EOB).

F.1.2 Baseline Huffman encoding procedures

The baseline encoding procedure is for 8-bit sample precision. The encoder may employ up to two DC and two AC
Huffman tables within one scan.

F.1.2.1 Huffman encoding of DC coefficients

¥F.1.2.1.1 Structure. of DC code table

The DC codetable consists of a set of Huffman codes (maximum length 16 bits) and appended additional bits (in most
cases) which can code any possible value of DIFF, the difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way that no code consists entirely of 1-bits
(X’FF’prefix marker code avoided).

The two’s complement difference magnitudes are grouped into 12 categories, SSSS, and a-‘Huffman code is created for
eachofthe 12 difference magnitude categories (see Table F.1).

For each category, except SSSS =0, an additional bits field is appended to the code word to uniquely identify which
difference in that category actually occurred. The numberofextrabits is given by SSSS; the extra bits are appended to the
LSBofthe preceding Huffman code, most significant bit first. When DIFF is positive, the SSSS low order bits of DIFF
are appended. When DIFF is negative, the SSSS low orderbits of (DIFF — 1) are appended. Note that the mostsignificant
bit of the appended bit sequenceis 0 for negative differences and 1 for positive differences.

F.1,2.1.2 Defining Huffmantables for the DC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C. No more than two Huffman tables may be defined for coding of DC coefficients.
Two examples of Huffman tables for coding of DC coefficients are provided in Annex K.
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Table F.1 - Difference magnitude categories for DC coding

DIFF values

0

-L1

-3,-2,2,3

-7.AA.T

-15..-8,8..15

~31..-16,16..31

—63..-32,32..63

-127..-64,64..127

—255..-128,128..255

—511..-256,256..511

-1 023..-512,512..1 023

—2 047..-1 024,1 024..2 047

oO6STAAWF&FWHWN
—- re©

   
F.L.2.1.3 Huffman encoding procedures for DC coefficients

The encoding procedure is defined in terms of a set of extended tables, XHUFCO and XHUFSI, which contain the .
complete set of Huffman codesandsizes forall possible difference values. For full 12-bit precision the tables are relatively
large. For the baseline system, however, the precision of the differences may be small enough to. make this description
practical.

XHUFCOand XHUFSIare generated from the encoder tables EHUFCO and EHUFSI(see Annex C) by appending to the
Huffman codes for each difference category the additional. bits that completely define the difference. By definition,
XHUFCO and XHUFSIhaveentries foreach. possible difference value. XHUFCOcontains the concatenated bit pattern of
the Huffman code and the additional bits field; XHUFSIcontains the total length in bits of this concatenated bit pattern.
Both are indexed by DIFF,the difference between the DC coefficient and the prediction.

The Huffman encoding procedure for the DC difference, DIFF,is:

SIZE = XHUFSIDIFF)

CODE = XHUFCO(DIFF)

code SIZE bits of CODE

where DC is the quantized DC coefficient value and PRED jis the predicted quantized DC value. The Huffman code
(CODE) (including any additional bits) is obtained from XHUFCO and SIZE (length of the code including additional
bits) is obtained from XHUFSI,using DIFF as the index to the twotables.

F.1.2.2 Huffman encoding of AC coefficients

F.1.2.2.1 Structure of AC codetable

Each non-zero AC coefficient in ZZ is described by a composite 8-bit value, RS, of the form

RS = binary ’RRRRSSSS’
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The 4 least significant bits, ’SSSS’, define a category for the amplitude of the next non-zero coefficient in ZZ, and the 4
mostsignificant bits, "RRRR’, give the position of the coefficient in ZZ relative to the previous non-zero coefficient (i.e.
the run-length of zero coefficients between non-zero coefficients). Since the run length of zero coefficients may exceed
15, the value ~RRRRSSSS’ = X’FO’is defined to represent a run length of 15 zero coefficients followed by a coefficient
of zero amplitude. (This can be interpreted as a run length of 16 zero coefficients.) In addition, a special value
-RRRRSSSS’ = 00000000" is used to code the end-of-block (EOB), when all remaining -coefficients in the block are
Zero.

The general structure of the code table is illustrated in Figure F.1. The entries marked “N/A” are undefined for the
baseline procedure.

ssss
2 soe. 9 10

 
  
 

 

ARRR COMPOSITE VALUES

15
71801330-99/d071

Figure F.1 -— Two-dimensional value array for Huffman coding

The magnitude rangesassigned to each value of SSSS are defined in Table F.2.

Table F.2 — Categories assigned to coefficient values

 
 

 
 

  
  
 

 
[sss AC coefficients

1 -1,1

2 -3,-2,2,3

3 1.44.7

4 -15,,-8,8..15

5 -31,.-16,16..31

6 63,.-32,32..63

1 127,-64,64..127

8 ~255,-128,128,.255
9 —511.,-256,256..511

~1 023.,-512,512..1 023 a oO 

The composite value, RRRRSSSS,is Huffman coded .and each Huffman codeis followed by additional bits which specify
the sign and exact amplitude ofthe coefficient.

The AC code table consists of one Huffman code (maximum length .16 bits, not including additional bits) for each
possible composite value. The Huffman codes for the 8-bit composite values are generated in such a way that no code
consists entirely of 1-bits.
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The format for the additional bits is the sameasin the coding of the DC coefficients. The value of SSSS gives the number
of additional bits required to specify the sign and precise amplitude of the coefficient. The additional bits are either the
low-order SSSSbits of ZZ(K) when.ZZ(K)is positive or the low-order SSSSbits of ZZ(K) — 1 when ZZ(K)is negative.
ZZ(K) is the Kth coefficient in the zig-zag sequence of coefficients being coded.

F.1.2.2.2 Defining Huffmantables for the AC coefficients

The syntax for specifying the Huffman tables is. given in Annex B. The procedure for creating a code table from this
information is described in Annex C.

In the baseline system no more than two Huffmantables may be defined for coding of AC coefficients. Two examples of
Huffman tables for coding of AC coefficients are provided in AnnexK.

¥.1,2.2.3 Huffman encoding procedures for AC coefficients

As defined in Annex C, the Huffman codetable is assumed to be available as a pair of tables, EHUFCO (containing the
codebits) and EHUFSI(containing the length of each codeinbits), both indexed by the composite value defined above.

The procedure for encoding the AC coefficients in a block is shown in Figures F.2 and F.3. In Figure F.2, K is the index
to the zig-zag scan position andRis the run length of zero coefficients.

The procedure “Append EHUFSI(X’F0’) bits of EHUFCO(X'F0’)” codes a run of.16 zero coefficients (ZRL code of
Figure F.1), The procedure “Code EHUFSI(0) bits of EHUFCO(0)” codes the end-of-block (EOB code). If the last
coefficient (K = 63) is not-zero, the EOB codeis bypassed.

CSIZEis a procedure which maps an ACcoefficientto the SSSSvalue as defined in Table F.2.

F.1.2.3 Byte stuffing

In order to provide code space for marker codes which can be located in the compressed image data without decoding,
byte stuffing is used.

Whenever,in the course of normal encoding, the byte value X°FF’ is created in the code string, a X’00’ byte is stuffed
into the codestring.

If a X’00" byte is detected after a X’FF’ byte, the decoder must discard it. If the byte is not zero, a marker has been
detected, and shall be interpreted to the extent needed to complete the decoding of the scan.

Byte alignment of markers is achieved by padding incomplete bytes with 1-bits. If padding with 1-bits creates aX” FF’
value, a zero byte is stuffed before adding the marker.

F.1.3 Extended sequential DCT-based Huffman encoding process for 8-bit sample precision

This process is identical to the Baseline encoding process described in F.1.2, with the exception that the numberofsets of
Huffman table destinations which may be used within the same scan is increased to four. Four DC and four AC Huffman
table destinations is the maximum allowedby this Specification. :

F.1.4 Extended sequential DCT-based arithmetic encoding process for 8-bit sample precision

This subclause describes the use of arithmetic coding procedures in the sequential DCT-based encodingprocess. _
NOTE — The arithmetic coding procedures in this Specification are defined for the maximum precision to encourage

interchangeability. :

The arithmetic coding extensions have the same DCT model as the Baseline DCT encoder. Therefore, Annex F.1.1 also
applies to arithmetic coding. As with the Huffman coding technique, the binary arithmetic coding techniqueis lossless: It
is possible to transcodebetween the two systems without either FOCT or IDCT computations, and without modification of
the reconstructed image. .

The basic principles of adaptive binary arithmetic coding are described in Annex D. Up to four DC and four AC
conditioning table destinations and associated statistics areas may be used within one scan.

The arithmetic encoding procedures for encoding binary decisions, initializingthe statistics area, initializing the encoder,
terminating the code string, and adding restart markers are listed in Table D.1 of Annex D.
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Encade_AC_
coefficients

  Append EHUFSI(X’F0’)bits A d EHUFSI(X’00’) bits
; of EHUFCODX'FO) ae SA UPcowcon)

 
 

Encode_R,ZZ(K)

TISQ1340-93/d072

Figure F.2 - Procedure for sequential encoding of AC coefficients with Huffman coding
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Encode_R,ZZ(K)

 888$ = CSIZE(ZZ(K))
RS = (16 x R) +SSSS
Append EHUFSI(RS)bits

of EHUFCO(RS)

ZZ(K) = ZZ(K) -1

  Append SSSS
low orderbits of ZZ(K)

TISO1350-93/d073

Figure F.3 — Sequential encodingof a non-zero AC coefficient

Someofthe procedures in Table D.1 are used in the higherlevel control structure for scans and restart intervals described
in Annex E. At the beginning of scans andrestart intervals, the probability estimates used in the arithmetic coder are reset
to the standard initial value as part of the Initenc procedure whichrestarts the arithmetic coder. At the end of scans and
restart intervals, the Flush procedure is invoked to empty the code register before the next marker is appended.

F.1.4.1 Arithmetic encoding of DC coefficients

The basic structure of the decision sequence for encoding a DC difference value, DIFF, is shown in Figure F.4.

The context-index SO and other context-indices used in the DC coding procedures are defined. in Table F.4
(see F.1.4.4.1.3). A-O-decision is coded.if the difference value is zero and a 1-decision is coded if the difference is not
zero. If the differenceis not.zero, the sign and magnitude are coded using the procedure Encode_V(S0), which is
described in F.1.4.3.1.

F.1.4.2 Arithmetic encoding of AC coefficients

The AC coefficients are coded in the order in which they occur.in the zig-zag sequence ZZ(1,..,63). An end-of-block
(EOB)binary decision is coded before coding the first AC coefficient in ZZ, and after each non-zero coefficient. If the
EOBoccurs, all remaining coefficients in ZZ are zero. Figure F.5 illustrates the decision sequence. The equivalent
procedure for the Huffman coderis found in Figure F.2.
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 Code_1(S0)
Encade_V(S0)  Gode_0({S0)

 
  

71S01360-93/d074

Figure F.4 — Coding mode] for arithmetic coding of DC difference

The context-indices SE and SO used in the AC coding procedures are defined in Table F.5 (see F.1.4.4.2). In Figure F.5,
Kis the index to the zig-zag sequence position. For the sequential scan, Kminis 1 and Se is 63. The V = 0 decision is part

of a loop which codes runs of zero coefficients. Wheneverthe coefficient is non-zero, “Encode_V(S0)” codes the sign and
magnitude of the coefficient. Each time a non-zero coefficient is coded,it is followed by an EOB decision. If the EOB
occurs, a 1-decision is coded to indicate that the coding of the block is complete. If the coefficient for K = Se is not zero,
the EOB decisionis skipped.

F.1.4.3 Encoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement integer values. The
decomposition of these signed integer values into a binary decision tree is done in the same. way for both the DC and AC
coding models.

Although the binary decision trees for this section of the DC and AC coding models are the same, the statistical models
for assigning statistics bins to the binary decisionsin the tree are quite different.

F.1.4.3.1 Structure of the encoding decision sequence =

The encoding sequence can be separated into three procedures, a procedure which encodes the sign, a second procedure
which identifies the magnitude category, and a third procedure which identifies precisely which magnitude occurred
within the category identified in the second procedure.

At the point where the binary decision sequence in Encode_V(S0)starts, the coefficient or difference has already been
determinedto be non-zero. That determination was made in the proceduresin Figures F.4 and F.5.

Denoting either DC differences (DIFF) or AC coefficients as V; the non-zero signed integer value of V is encoded by the
sequence shown in Figure F.6. This. sequence first codes the sign of V. It then (after converting V to a magnitude and
decrementing it by 1 to give Sz) codes the- magnitude category of Sz (code_log2_Sz), and then codes the low order
magnitude bits (code_Sz_bits) to identify the exact magnitude value.

94 CCITTRee. T.81 (1992 E)

OLYMPUSEX.1016 - 290/714



OLYMPUS EX. 1016 - 291/714

/TEC 10918-1 : 1993(E)  
There are two significant differences between this sequence and the similar set of operations described in F.1.2 for
Huffman coding.First, the sign is encoded before the magnitude category is identified, and second, the magnitude is
decremented by 1 before the magnitude category is identified.

 

Encode_AG_
Coefficients

Code_1(SE)

Code_0(SE)

Code_0(S0)

Code_1(S0)
Encode_V(S0)

11S01370-92/d075

Figure F.5 — AC coding modelfor arithmetic coding
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Encede_V(S)

Encode_sign_of_V

Sz=1VI-1

Encode_log2_Sz

Encode_Sz_bits 
TISO1380-93/d076

Figure F.6 — Sequence of procedures in encoding non-zero values of V

F.1.4.3.1.1 Encoding the sign

The sign is encoded by coding a O-decision when the sign is positive and a 1-decision when the sign is negative
(see Figure F.7). ,

The context-indices SS, SN and SP are defined for DC coding in Table F.4 and for AC coding in Table F.5. After the sign
is coded, the context-index S is set to either SN or SP,establishing an initial value for Encode_log2_Sz.

F.1.4.3.1.2 Encoding the magnitude category

The magnitude category is determined by a sequence of binary decisions which compares Sz against an exponentially
increasing bound (which is a power of 2) in order to determine the position of the leading 1-bit. This establishes the —
magnitude category in much the same way that the Huffman encoder generates a code for the value associated with the
difference category. The flow chart for this procedure is shownin Figure F.8.

Thestarting value of the context-index $ is determined in Encode_sign_of_V, and the context-index values X1 and X2
are defined for DC coding in Table F.4 and for AC coding in Table F.5. In Figure F:8, M is the.exclusive upper bound for
the magnitude andthe abbreviations “SLL” and “SRL”refer to the shift-left-logical and shift-right-logical operations — in
this case by one bit position. The SRL operation at the completion of the procedure aligns M with the mostsignificant bit
of Sz (see Table F.3).

The highest precision: allowed for the DCT is 15 bits. Therefore, the highest precision required for the coding. decision
tree is 16 bits for the DC coefficient difference and 15 bits for the AC coefficients, including the sign bit.
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Encode_sign_of_V

Code_1(SS) Code_0(SS) | 
 

TISO1390-53/d077

Figure F.7 ~ Encodingthe sign ofV

Table F.3 - Categories for each maximum bound
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Encode_log2_Sz

No

| Code_1(S) | | Code_0(S)

TISO1 400-93/d078

Figure F.8 — Decision sequenceto establish the magnitude category
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F.1,4.3.1.3 Encoding the exact value of the magnitude

After the magnitude category is encoded, the low order magnitude bits are encoded. These bits are encoded in order of
decreasing bit significance. The procedure is shown in Figure F.9. The abbreviation “SRL” indicates the shift-right-
logical operation, and M is. the exclusive bound established in Figure F.8. Note that M has only onebit set — shifting M
right converts it into a bit mask for the logical “AND”operation.

The starting value of the context-index S is determined in Encode_log2_Sz. The incrementof S by 14 at the beginning of
this procedure sets the context-indexto the value required in Tables F.4 and F.5.

Encode_Sz-bits

S=S+14  
 
 

 

No

T=M AND Sz 
 
 

Code_0(S8) Code_i(S) 
 

T1ISO1410-94/d079

Figure F.9 — Decision sequence to code the magnitudebit pattern
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F.1.4.4 Statistical models

An adaptive binary arithmetic coder requires a statistical model. The statistical model defines the contexts which are used
to select the conditional probability estimates used in the encoding and decoding procedures.

Each decision in the binary decision trees is associated with one or more contexts. These contexts identify the sense of the
MPSandthe index in Table D.3 of the conditional probability estimate Qe which is used to encode and decodethe binary
decision.

The arithmetic coder is adaptive, which means that the probability estimates for each context are developed and
maintained by the arithmetic coding system on the basis of prior coding decisionsfor that context.

F.1.4.4.1 Statistical model for coding DC prediction differences

Thestatistical model for coding the DC difference conditions someof the probability. estimates for the binary decisions on
previous DC codingdecisions. ,

F.1,4.4.1.1 Statistical conditioning on sign

In coding the DC coefficients, four separate statistics bins (probability estimates) are used in coding the zero/not-zero (V =
0) decision, the sign decision andthe first magnitude category decision. Two of these bins are used to code the V =0
decision and the sign decision. The other two bins are used in coding the first magnitude decision, Sz < 1; one of these
bins is used whenthe sign is positive, and the other is used whenthe sign is negative. Thus, the first magnitude decision
probability estimate is conditioned on the sign of V.

F.1.4.4.1.2 Statistical conditioning on DC difference in previous block

The probability estimates for these first three decisions are also conditioned on Da, the difference value coded for the
previous. DCT block. of-the:same. component. The differences are classified into five groups: zero, small positive, small
negative, large positive and large negative. Therelationship betweenthe defaultclassification and the quantization scale is
shownin Figure F,10.

5 -4 3 -2 <1 QO +1 42 #43 #44 «45 ... DC difference

 large | -small | 0 +large Classification
TISO1420-93/d080

’ Figure F.10 — Conditioningclassification of difference values

The bounds for the “small” difference category determinethe classification. Defining L and U as integers in the range 0 to
15 inclusive, the lower bound (exclusive) for difference magnitudesclassified as “small” is zero for L = 0, and is 2L-! for
L>0.

The upperbound(inclusive) for difference magnitudesclassified as “small” is 2U.

L shall be less than or equal to U.

These bounds for theconditioning category provide a segmentation whichis identical to thatlisted in Table F.3.

F.1.4.4.1.3 Assignment of statistical bins to the DC binarydecision tree
As shown in Table F.4, each statistics area for DC coding consists of a set of 49 statistics bins. In the following
explanation, it is assumed that the bins are contiguous. The first 20 bins consist of five sets of four bins selected by a
context-index SO. The-value'of SOis given by DC_Context(Da), which provides a value of0, 4, 8, 12 or 16, depending on
the difference classification of Da (see F,1.4.4.1.2). The remaining 29 bins, X1,.. .»X15,M2,...,.M15, are used to code
magnitude category decisions and magnitudebits.
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Table F.4 — Statistical model for DC coefficient coding
 

 Context-index. Value Coding decision

SO DC_Context(Da) v=0
SS sot+l Sign.of V
SP S0+2 . Sz<1lifV>0
SN $0+3 Sz<1lifV<0°
X1 20 ‘ Sz<2
X2 X1l+1 8z<4
X3 X1+2 8z<8

X1+14 $z<215

X2+ 14 Magnitudebits if Sz <4
X3 +14 Magnitudebits if Sz < 8

X1S+14 | | Magnitudebits if Sz < 2!5

 
 

F.1.4.4.1.4 Default conditioning for DC statistical model

The bounds, L and-U,for determining the conditioning category have the'default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define Arithmetic coding Conditioning) marker segment, as described in Annex B.

F.1.4.4.1.5 Initial conditions forDC statistical model

Atthe start of a scan and at the beginning of eachrestart interval, the difference for the previous DC value is defined to be
zero in determining the conditioningstate. ,

F.1.4.4.2 Statistical model for coding the AC coefficients

As shownin Table F.5, eachstatistics area for AC coding consists of a contiguous set of 245statistics bins. Three bins are
used. for each value of the zig-zag index K, and two sets of 28.additional bins X2,...,X15,M2,...,M15 are used for coding
the magnitude category and magnitudebits.

The value of SE (and also SO, SP and SN) is determined by the zig-zag index K. SinceKis in the range 1 to 63, the
lowestvalue for SE is 0 andthe largest value for SP is 188. SS is not assigned a:value in AC coefficient coding, as the
signs of the coefficients are coded with a fixedprobability value ofapproximately 0.5 (Qe = X’5A1D’, MPS = 0).

The value.of X2 is given by AC_Context(K). This gives K2 = 189 when K < Kx and X2 = 217 when K > Kx, where Kx is
defined using the DAC marker segment(see B.2.4.3).

Note that a X1 statistics bin is not used inthis sequence. Instead, the 63 x 1 array of statistics bins for the magnitude
category is used for two decisions. Once the magnitude bound has been determined — atstatistics bin Xn, for example — a
single statistics bin, Mn, is used to code the magnitude bit sequence for that bound.

F.1.4.4.2.1 Default conditioning for AC coefficient coding

The default value of Kx is 5. This may be.modified using the DAC marker segment, as described in Annex B.

F.1.4.4.2.2 Initial conditions for AC statistical model

At the start of a.scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D. : :
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Table F.5 — Statistical model for AC coefficient coding

    
 

  
  

 
 
 
 
 
 

 
 
 

 
 

Context-index Value Coding decision

3x(K-1 K=EOB
S0 SE+1 v=0

S88 Fixed estimate Sign of V
SN,SP._ SO+1 Sz<1

x1 : $0 +1 Sz<2
X2 / AC_Context(K) 8z<4
X3 X2+1 8z<8

X15 K2+13 Sz < 215

M2 X2+ 14 Magnitudebits if Sz <4
M3 ‘| X3+14 Magnitudebits if Sz < 8

X15+14 Magnitudebits if Sz-< 2!5

  
  

F.1.5—Extended sequential DCT-based Huffman encoding process for 12-bit sample precision

This processis identical to the sequential DCT process for 8-bit precision extended to four Huffman table destinations as
documented in F:1.3, with the following changes.

F.1.5.1 Structure of DCcodetable for 12-bit sample precision

The two’s complement difference magnitudes are grouped into 16 categories, SSSS, and a Huffman code is created for
each of the 16 difference magnitude categories.

The Huffman table for DC coding (see Table F.1) is extended as shown in Table F.6.

Table F.6 — Difference magnitude categories for DC coding

Difference values

—4 095..—2 048,2 048..4 095

-8 191.4 096,4 096..8 191

~16 383.-8 192,8 192..16 383

32 767..-16 384,16 384..32 767

  
  
  
  

F.1.5.2 Structure of AC codetable for 12-bit sample precision

The general structure of the code table is extended asillustrated in Figure F.11. The Huffman table for AC codingis
extended as shown in Table F.7,
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 RRAR COMPOSITE VALUES

15
TISO1430-99/d081

Figure F.11 - ‘Two-dimensional value array for Huffman coding

Table F.7 - Values assignedto coefficient amplitude ranges

  

  
 

  

AC coefficients

_2.047.-1 024,1 024..2 047

4 095..-2 048,2 048.4 095

-8 191.4 096,4 096..8 191
16 383..-8 192,8 192.16 383

 

F.1.6 Extended sequential DCT-based arithmetic encoding process for 12-bit sample precision
The processis identical to the sequential DCT processfor 8-bit precision except for changes in the precision of the FDCT
computation. . Os

The structure of the encoding procedure is identical to that specified in F.1.4 which was already defined for a 12-bit
sample precision. -

F.2 Sequential DCT-based decoding processes

F.2.1 Sequential DCT-based controlprocedures and coding models
F.2.1.1 Control procedures forsequentialDCT-based decoders

The control procedures for decoding compressed imagedata and its constituent parts — the-frame, scan, restart interval and- MCU — are given in Figures E.6 to E.10. The procedure’ for decoding a MCU (Figure E.10) repetitively calls the
procedure for decoding a data unit, For DCT-based decoders the data unit is an 8 x 8 block of samples.
F.2.1.2 Procedure for decoding an § x 8 block data unit

In the sequential DCT-based decodingprocess, decoding an 8x 8 block data unit consists of the following procedures:
a) decode DC coefficient for 8 x 8 block using the DC table destination specified in the scan header;
b) decode AC coefficients for 8 x 8 block using the AC table destination specified in the scan header;
c) dequantize using table destination specified in the frame header and calculate the inverse 8 x 8 DCT.

F.2.1.3 Decoding models for the sequential DCT procedures
Two decoding procedures are used, onefor the DC coefficient ZZ(0) andthe other for the AC coefficients ZZ(1)...2Z(63).The coefficients are decoded in the order in which they occur in the zig-zag sequence order, starting with the DC
coefficient. The coefficients are represented as two's complementintegers.
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F.2.1.3.1 Decoding model for DC coefficients

The decoded difference, DIFF, is added to PRED,the DC value from the most recently decoded 8 x 8 block from the
same component, Thus ZZ(0) = PRED + DIFF.”

At the beginning of the scan and at the beginning. of each restart interval, the prediction for the DC coefficient is
initialized to zero.

F,2.1.3.2 Decoding model for AC coefficients

The AC coefficients are decoded in the order in which they occur in ZZ. When the EOB is decoded, all remaining
coefficients in ZZ are initialized to zero.-

¥.2.1.4 Dequantization of the quantized DCTcoefficients

The dequantization of the quantized DCT aoefficients as described in Annex A, is accomplished by multiplying eachquantized coefficient value by the quantization table value for that coefficient. The decoder shall be able to use up to four
quantization table destinations. ,

¥.2.1.5 Inverse DET (DCT)

The mathematical definition of the IDCTis given in A.3.3.

After computation of the IDCT, the signed output samples are level-shifted, as described in Annex A, converting theoutput to an unsigned representation. For 8-bitprecision the level shift is performed byadding 128. For 12-bit precisionthe level shift is performed by adding 2 048. If necessary, the output samples shall be clamped to stay within the range
appropriate for the precision (0 to 255 for 8-bit precision and 0 to 4 095:for 12-bit precision).

F.2.2 Baseline Huffman Decoding procedures

The baseline decoding procedure is for 8-bit sample precision. The decoder shall be capable of using up to two DC and
two AC Huffman tables within one scan.

F.2.2.1 Huffman decodingof DC coefficients
The decoding procedure for the pe difference, DIFF,is:

“T = DECODE

DIFF = RECE!VE(T)

DIFF = EXTEND(DIFF,T)

where DECODEis a procedure which returns the 8-bit-value associated with the next Huffman code in the compressedimage data (see F.2.2.3) and RECEIVE(T)is a procedure which places the next T bits of the serial bit string into the loworder bits of DIFF, MSBfirst: If T is zero, DIFF is set to zero. EXTEND is a procedure which converts the partially
decoded DIFF valueofprecisionTto. the full précision difference. EXTENDis shown in Figure F.12.
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EXTEND(V,T)

V, =(GLL-1 7) +1
VeVeVy

TISsO1440-99/d082

Figure F.12 - Extending the sign bit of a decode

F.2,2.2 Decoding procedure for AC coefficients
The decoding procedure for AC coefficients is shown in Figures F.13 and F.14.

: 1993(E) PO/IEC 10918-1

d value in V
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Decode_AC_
coefficients

RS = DECODE

ISSSS = RS modulo 16
RRAR = SRL RS 4
R=RARR

[=|

7T1ISO1450-93/d083

- Figure F.13 - Huffman decoding procedure for AC coefficients
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 . Decode_Z2(K)

 
 Zz(K) = RECEIVE(SSSS)

2Z(K) = EXTEND(ZZ(K),SSSS)
 

 
TISO1460-93/d084

Figure F.14- Decoding a non-zero ACcoefficient

The decoding of the amplitude and sign of the non-zero coefficient is done in the procedure “Decode_ZZ(K)”, shown in
Figure F.14, ,

DECODEis a procedure |which returns the value, RS, associated with the next Huffman code in the code stream
(see F.2.2.3). The values SSSS and R are derived from RS. Thevalue of SSSSis the four low orderbits of the composite
value and R contains the value of RRRR (the four high orderbits. of the composite value), The ‘interpretation of these
values is described in F.1.2.2,EXTENDis shiown in Figure F.12.

F.2.2.3. The DECODEprocedure

The DECODEprocedure decodes an8-bit value which, for the DC coefficient, determines the differerice magnitude
category. For the AC coefficientthis 8-bit value determines the zero run length and non-zero coefficient category.

Three tables, HUFFVAL, HUFFCODE, and HUFFSIZE,have been: defined in Annex C. This particular-implementation
of DECODE makes use of the ordering of-the Huffman codes in HUFFCODEaccording to both value and codesize.
Manyother implementations ofDECODEarepossible.

NOTE- The values in HUFFVAL are. assigned to each code in HUFFCODE and HUFFSIZE in sequence. There are no
ordering requirements for the yalues in HUFFVAL which have assigned codes of the same length.

The implementation of DECODEdescribed.in: this subclause.uses-three tables, MINCODE, MAXCODEand VALPTR,
to decode a pointer to-the HUFFVALtable. MINCODE, MAXCODE and VALPTReach have 16 entries, one for each
possible codé size. MINCODE(Dcontainsthe smallest code value for a given length I. MAXCODE()containsthe largest
code value for a given length I, and VALPTR() contains the index to the start of the list of values in HUFFVAL which
are decoded by code words of length I. The values in MINCODE and MAXCODEare signed 16-bit integers; therefore, a

value of —1 sets all ofthe bits. ,

The procedure for generating these tables is showain Figure F,15. The procedure for DECODEis shown in Figure F.16.
Note that the 8-bit “VALUE”is returned to the procedure which invokes DECODE. .
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Decoder_tables

MAXCODE(I) = —1

 
 VALPTR(|) = J

MINCODE()) = HUFFCODE(J)
J=J+BITS(I)—1
MAXCODE(I) = HUFFCODE(J)
J=J+1- TISO1470-93/d085

Figure F.15 - Decodertable generation
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DECODE

CODE = NEXTBIT

  
 

 

t=l+1
CODE = (SLL CODE 1) + NEXTBIT

GODE > MAXCODE(|)
: ?

 
  
 
 

J=VALPTR())
J2J + CODE ~MINCODE()
VALUE = HUFFVAL(J)

Retum VALUE

TISO1480-93/d086

Figure F.16 — Procedure for DECODE
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F.2.2.4 The RECEIVE procedure

RECEIVE(SSSS)is a procedure which places the next SSSSbits of the entropy-coded segmentinto the low order bits of
DIFF, MSBfirst. It calls NEXTBITand it returns the value of DIFF to the calling procedure (see Figure F.17).

 
 RECEIVE(SSSS) 

  
 

l=t+14
V = (SLLV 1) + NEXTBIT

 
Return V 
 TISO#490-93/d087

Figure F.17 — Procedurefor RECEIVE(SSSS)

¥.2.2.5 The NEXTBIT procedure

NEXTSBIT readsthe next bit of compressed data and passes it to higher level routines.It also intercepts and removes stuff
bytes and detects markers. NEXTBIT readsthebits ofa byte starting with the MSB (see Figure F.18).

Before starting the decoding of a scan, and after processing a RST marker, CNTis cleared. The compressed data are read
one byte at a time, using the procedure NEXTBYTE.Eachtimea byte, B, is read, ENTissetto 8.

The only valid marker which may occur within the Huffman coded data is the RST, marker. Other than the EOI or
markers which may occurat or before the start of a scan, the. only marker which can occur at the end of the scan is the
DNL (define-number-of-lines). : :

Normally, the decoderwill terminate the decoding at the endof the final restart interval before the terminating markeris
intercepted. If the DNL markeris encountered,the currentline countis set to the value specified by that.marker. Since the
DNL marker can only be used at the end of the first scan, the scan decode procedure must be terminated when it is
encountered. ,
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 NEXTBIT

 
 B= NEXTBYTE

CNT =8

  
 
 

B2 = NEXTBYTE

 

 
 

BIT = SRLB7
CNT =CNT-1
B=SLLB1   Process DNL marker
 

  
 

Terminate scan 
 

Retum BIT

No :

Figure F.18 — Procedure for fetching the next bit of compressed data

TISO1500-93/d088

F.2.3 Sequential DCT decoding process with 8-bit precision extended to four sets of Huffman tables

This process is identical to the Baseline decoding process described in F.2.2, with the exception that the decoder shall be
capable ofusing upto.four DC and.four AC Huffman tables within one scan. Four DC andfour AC Huffman tablesis the
maximum allowed bythis Specification.

F.2.4 Sequential DCT decoding process with arithmetic coding

This subclause describes the sequential DCT decoding process with arithmetic decoding.

The arithmetic decoding procedures for decoding binary decisions, initializing the- statistical model, initializing ‘the
decoder,and resynchronizing the decoderare listed in Table D.4 of Annex D.

Someofthe procedures in Table D.4 are used-in the higher level control structure for scans and restart intervals described
in F.2: At the beginning of scans and restart intervals, the probabilityestimates used in.the arithmetic decoder are reset to
the standard initial value as part of the Initdec procedure whichrestarts the arithmetic coder.
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Thestatistical models defined in F.1.4.4 also applyto this decoding process.

The decodershall be capable of using up to four DC and four AC conditioning tables and associated statistics areas within
one scan.

F.2.4.1 Arithmetic decoding of DC coefficients

The basic structure of the decision sequence for decoding a DC difference value, DIFF, is shown in Figure F.19. The
equivalentstructure for the encoderis found in Figure F.4.

 
 

 

 
 
  

Decode_DC_DIFF

D = Decode(S0)

Decode_V(SO)

TISQ 1510-93/d089

Figure F.19 — Arithmetic decoding of DC difference

The context-indices used in the DC decoding procedures are defined in Table F.4 (see F.1.4.4.1.3).

The “Decode” procedure returns the value “D”of the binary decision. If the value-is not zero, the sign and magnitude of
the-non-zero DIFF must be decoded by the procedure “Decode_V(S0)”.

F.2.4.2 Arithmetic Decoding of AC coefficients

The AC coefficients are decodedin the order that they occur in ZZ(1,...,63). The encoder procedure for the coding process
is found in Figure F.5. Figure F.20illustrates the decoding sequence.
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Decode_AC_
coefficients

D = Decode(SE)

D = Decode(S0)

Decode_V(S0)

TIS01520-93/d090

Figure F.20 — Procedure for decoding the AC coefficients

The context-indices used in the AC decoding proceduresare defined in Table F.5 (see F.1.4.4.2).
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In Figure F.20, K is the index to the zig-zag sequence position. For the sequential scan, Kmin = 1 and Se = 63. The
decision at the top of the loop is the EOB decision. If the EOB occurs (D = 1), the remaining coefficients in the block are
set to zero. The inner loop just below the EOB decoding decodes runsof zero coefficients. Wheneverthe coefficient is
non-zero, “Decode_V” decodes the sign and magnitudeofthe coefficient. After each non-zero coefficientis decoded, the
EOBdecision is again decoded unless K = Se. ,

F.2.4.3. Decodingthe binary decision sequence for non-zero DCdifferences and ACcoefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement 16-bit integer values. The
decoding decision tree for these signed integer values is the same for both the DC and AC coding models. Note, however,
that the statistical models are not the same.

¥.2.4.3.1 Arithmetic decoding of non-zero values

Denoting either DC differences or AC coefficients as V, the non-zero signed integer value of V is decoded by the
sequence shownin Figure F.21. This sequencefirst decodes the sign of V.It then decodes the magnitude category of Vv |
(Decode_log2_Sz), and then decodes the low order magnitude bits (Decode_Sz_bits). Note that the value decoded for Sz '
must be incremented by1 to get the actual coefficient magnitude. :

 
  
  
  

Decode_V(S)

Decode_sign_of_V

Decode_log2_Sz

Decode_Sz_bits

TISO1530-94/d091

Figure F.21 — Sequence of proceduresin decoding non-zero values of V
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F.2.4.3.1.1. Decoding the sign

The sign is decoded by the procedure shownin Figure F.22.

The context-indices are defined for DC decoding in Table F.4 and AC decodingin TableF.5.

If SIGN = 0,the sign of the coefficientis positive; if SIGN = 1, the sign of the coefficient is negative.

 

  
 

Decode_sign_of_V

SIGN = Decode(SS)

 TISO1540-93/d092

Figure F.22 — Decoding the sign of V

F.2.4.3.1.2 Decoding the magnitude category

The context-index S is set in Decode_sign_of_V and the context-index values X1 and X2 are defined for DC coding in
Table F.4 and for AC coding in Table F.5.

In Figure F.23, M is set to the upper bound for the magnitude andshifted left until the decoded decisionis zero. itis then
shifted right by 1 to becomethe leading bit of the magnitude of Sz.
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Decode_log2_Sz

D = Decode(S)  
D = Decode(S)

D = Decode(S)

M=SRLM1
Sz=M

 
TISO1850-93/d083

Figure F.23 - Decoding procedureto establish the magnitude category
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F.2.4.3.1.3 Decoding the exact value of the magnitude

After the magnitude category is decoded, the low order magnitudebits are decoded. These bits are decoded in order of
decreasingbit significance. The procedure is shownin Figure F.24.

The context-index S is set in Decode_log2_Sz.

Decode_Sz_bits

§$=S8+14 
 
 

 
 

D = Decode(S)

TISO1560-93/d094

Figure F.24 — Decision sequence to decode the magnitude bit pattern

F.2.4.4 Decoder restart

The RST markers which are added to the compressed data between each restart interval have a two byte value which
cannot be generated by the coding procedures. These two byte sequences can be located without decoding, and can
therefore be used to resynchronize the decoder. RST» markers can therefore be used for error recovery.
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Before error recovery procedures can be invoked, the error condition must first be detected. Errors during decoding can
show upin twoplaces: :

a) The decoderfails to find the expected markerat the point whereit is expecting resynchronization.

b) Physically impossible data are decoded. For example, decoding a magnitude beyond the range of values
allowed by the model is quite likely when the compressed data are corrupted by errors. For arithmetic
decoders this error condition is extremely important to detect, as otherwise the decoder may reach a
condition where it uses the compressed data very slowly.

NOTE — Someerrors will not cause the decoder to lose synchronization. In addition, recovery is not
possible for all errors; for example, errors in the headers are likely to be catastrophic. The two error
conditions listed above, however, almost always cause the decoder to lose synchronization in a way which
permits recovery.

In regaining synchronization, the decoder can make use of the modulo 8 coding restart interval numberin the low order
its of the RST,, marker. By comparing the expected restart interval number. to the value in the next RST; marker in the
compressed imagedata, the decoder can usually recover synchronization.It thenfills in missing lines in the output data by
replication or some other suitable procedure, and continues decoding. Of course, the reconstructed image will usually be
highly corrupted forat least a part of the restart interval where the error occurred.

¥.2.5 Sequential DCT decoding process with Huffman coding and 12-bit precision

This process is identical to the sequential DCT process defined for 8-bit sample precision and extended to four Huffman
tables, as documentedin F.2.3, but with the following changes.

F.2.5.1 Structure of DC Huffman decodetable

The general structure of the DC Huffman decode table is extended as described in F.1.5.1.

F.2.5.2 Structure of AC Huffman decodetable

The general structure of the AC Huffman decodetable is extended as described in F.1.5.2.

F.2.6 Sequential DCT decoding process with arithmetic coding and 12-bit precision

The process isidentical to the sequential DCT process for 8-bit precision except for changes in the precision of the IDCT
computation.

The structure of the decoding procedurein F.2.4 is already defined for a 12-bit input precision. _
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Annex G

Progressive DCT-based modeof operation

(This annex formsan integral part of this Recommendation| International Standard)

This annex provides a functional specification of the following coding processes for the progressive DCT-based mode
of operation:

1) spectral selection only, Huffman coding, 8-bit sample precision;

2) spectral selection only, arithmetic coding, 8-bit sample precision;

3) full progression, Huffman coding, 8-bit sample precision; .

4) full progression, arithmetic coding, 8-bit sample precision;

35) spectral selection only, Huffman coding,12-bit sample precision;
6) spectral selectiononly, arithmetic coding, 12-bit sample precision;

7) full progression, Huffman coding, 12-bit sample precision;

8) full progression, arithmetic coding, 12-bit sample precision.

Foreach of these, the encoding process is specified in G.1, and the decoding process is specified in G.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE - There is no requirementin this Specification that any encoder or decoder which embodies one of the above-named
processes shall implementthe procedures in precisely the manner. specified by the flow charts in this annex.It is necessary only that an
encoder or decoder implement the functionspecified in this annex. The sole criterion for an encoder or decoder to be considered in

compliance with this Specification is thatit satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliancetests specified in Part 2.

The number of Huffman or arithmetic conditioning-tables which may be used within the samescan is four.

Two complementary progressive procedures are defined, spectral selection and successive approximation.

In spectral selection the DCT coefficients of each: block are segmented into frequency bands. The bands are coded inseparate scans.

In successive approximation the DCT coefficients are. divided by a power of two before coding. In the decoder the
coefficients are multiplied by that same power of two before computing the IDCT. In the succeeding scansthe precision of
the coefficients is increased by one bit in each scan until full precision is reached.

An encoder or decoder implementing a full progression uses spectral selection within successive approximation. An
allowed subsetis.spectral selection alone.

Figure G.1 illustrates the spectral selection and successive approximation progressive processes.

G.1 Progressive DCT-based encoding processes

G.1.1 Control procedures and coding models for progressive DCT-based procedures

G.1.1.1 Control procedures for progressive DCT-based encoders

The control procedures for encoding an image andits constituent parts — the frame, scan, restart interval and MCU — are
given in Figures E.1 through E.5.

The control structure for encoding a frame is the same as for the sequential procedures. However, it is convenient to
calculate the FDCT forthe entire, set of components in a frame before starting the scans. A buffer whichis large enough to
store all of the DCT coefficients may be.used for this progressive mode of operation.

The numberofscans is determined by the progression defined; the number of scans may be muchlarger than the number
of components in the frame.
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Figure G.1 — Spectral selection and successive approximation progressive processes
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The procedure for encoding a MCU (see Figure E.5) repetitively invokes the procedure. for coding a data unit. For
DCT-based encoders the data unitis an 8 x 8 block of samples.

Only a portion of each 8 x 8 blockis codedin each scan, the portion being determined by the scan header parameters Ss,
Se, Ah, and Ai (see B.2.3). The procedures used to code portions of each 8 x 8 block are described in this annex. Note,
however, that where these procedures are identical to those used in the sequential DCT-based mode of operation, the
sequential procedures are simply referenced.

GALL Spectral selection control

In spectral selection the zig-zag sequence of DCT coefficients is segmented into’ bands. A band is defined in the scan
header by specifying the starting and ending indices in the zig-zag sequence. One band is coded in a given scan of the
progression. DC coefficients are always coded separately from AC coefficients, and only scans which code DC
coefficients may have interleaved blocks from more than one component. All other scans shall have only one component.
With the exception ofthe first DC scans for the components, the sequence of bands defined in the scans need not follow
the zig-zag ordering, For each component, a first DE scan shall precede any AC scans.

G.1.1.1.2 Successive approximationcontrol

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header(see B.2.3). The successive approximation bit position parameter Al specifies the actual point
transform, andthe high fourbits (Ah) — if there are preceding scansfor the band ~ contain the value of the point transform
used in those preceding scans.If there are no preceding scans for the band, Ahis zero.
Each scan which followsthefirst scan for a given band progressively improves the precision of the coefficients by one bit,
until full precision is reached.

G.1.1.2 Coding models for progressive DCT-based encoders

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). These models also apply to the progressive DCT-based encaders, but with the
following changes.

G.11.2.1 Progressive encoding model for DC coefficients

If Al is not zero, the point transform for DC coefficients shall be used to reduce the precisionof the DC coefficients. If Ah
is zero, the coefficient values (as modified by the pointtransform)shall be coded, using the procedure. described in Annex
F. If Ah is notzero,theleast significant bit of the point transformed DC coefficients shall be coded,using the procedures
described in this annex.

G.1.1.2.2 Progressive encoding model for AC coefficients

If AL is not zero, the point transform for AC coefficients shall be used to reduce the precision of the ACcoefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded using modifications of the procedures
described in Annex F. These modifications are described in this annex. IfAh is not zero, the precision of the coefficients
shall be improved using the procedures describedin this annex.

G.1.2 Progressive encoding procedures with Huffmancoding

G.1.2.1 Progressive encoding of DC coefficients with Huffman coding =
Thefirst scan for a given componentshall encode the DC coefficient values using the procedures described in F.1.2.1. If
the successive approximation bit position parameter Al is not zero, the coefficient values shall be reduced in precision by
the point transform described in Annex A before coding.

In subsequentscans using successive approximation the least significant bits are appended to the compressed bit stream
without compression or modification (see G.1.2.3), except for byte stuffing.

G.1.2.2 Progressive encoding of ACcoefficients with Huffman coding

In spectral selection andin thefirst scan of successive approximation for a component, the AC coefficient coding model is
similar to that used by the sequential procedures. However, the Huffman code tables are extended to include coding of
runs of End-Of-Bands (EOBs). See Table G.1.
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Table G.1 — EOBn code run length extensions

EOBncode Run length

1

2,3
4.7

8.15

16..31

32..63

64.127

128..255

256.511

512.1 023

1 024.2047

2. 048..4 095

4096..8 191
8 192..16 383

16 384..32 767

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

The end-of-band run structure allows efficient coding of blocks which have only zero coefficients. An EOB runoflength
5 meansthat the current block and the next four blocks have an end-of-band with no intervening non-zero coefficients.
The EOB run lengthis limited only: by the restart interval.

The extension of the code tableis illustrated in Figure G.2.

RRRR : COMPOSITE VALUES 
71ISQ1580-93/d096

Figure G.2 — Two-dimensional value array for Huffman coding

The EOBn code sequence is defined as follows. Fach EOBn code is followed by an extension fieldsimilar to the
extension field for the coefficient amplitudes (but with positive numbers only). The number of bits appended to the EOBn
code is the minimum numberrequired to specify the run length.

If an EOBrunis greater than 32 767,it is coded as a sequence of EOB runsoflength 32 767 followed by a final EOB mun
sufficient to complete the run.

At the beginning of each restart interval the EOB run count, EOBRUN, is set to zero. At the end ofeach restart interval
any remaining EOB run is coded.

The Huffman encoding procedure for AC coefficients in spectral selection and in the first scan of successive
approximationis illustrated in Figures G.3, G.4, G.5, and G.6.
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 Encode_AC_
coefficients_SS

 
Encode_EOBRUN

 
  

 

EOBRUN =
EOBRUN +1

 Encode_ZRL

 
 EOBAUN= X’7FFP >

? 
   Encode_F_ZZ(K)

 
 

Encode_EOBRUN

 TISO1590-93/d097

Figure G.3 ~ Procedure for progressive encoding of AC coefficients with Huffman coding
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In Figure G.3, Ss-is the start of spectral selection, Se is the end of spectral selection, K is the index into the list of
coefficients stored in the zig-zag sequence ZZ,R is the run Jength of zero coefficients, and EOBRUNis the run length of
EOBs. EOBRUNissetto zero at the start of each restart interval.

If the scan header parameter Al (successive approximationbit position low) is not zero, the DCTcoefficient values ZZ(K)
in Figure G.3 and figures which follow in this annex, including those in the arithmetic coding section, shall be replaced
by the point transformed values ZZ’(K), where ZZ’ (K) is defined by:

Zork) =
 

EOBSIZEis a procedure which returnsthesize of the EOB extension field given the EOB runlength as input. CSIZE is a
procedure which maps an AC coefficient to the SSSS value defined in the subclauses on sequential encoding (see F.1.1
and F.1.3).

Encode_EOBRUN

?

No

SSSS = EOBSIZE(EOBRUN)
|= SSSS x 16
Append EHUFSI())

bits of EHUFCO(I)
Append SSSSlow order

bits of EOBRUN
EOBRUN =0

 
 

  
  

  

 

TIS01600-93/d098

Figure G.4 — Progressive encoding of a non-zero AC coefficient

Encode_ZRL

Append EHUFSI(X’F0’).
bits of EHUFCO(X’F0')

R=R-16

 
 

 
TISO1610-93/d099

Figure G.5 - Encoding of the runof zero coefficients
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Encode_R_2Z2(K)

SSSS = CSIZE(ZZ(K))
|= (16 x R).+SSSS
Append EHUFSI(!)

bits of EHUFCO(|)

<>

Append SSSS low order
bits of ZZ(K)

R=0

  

   
ZZ(K) = ZZ(K)— 1

  

71801620-92/d100

Figure G.6 - Encodingof the zero run and non-zero coefficient

G.1.2.3 Coding model for subsequent scans of successive approximation

The Huffman coding structure of the subsequent scans of successive approximation for a given componentis similar to the
coding structure of the first scan of that component.

The structure of the AC code table is identical to the structure described in G.1.2.2. Each non-zero point transformed
coefficient that has a zero history (i.e. that has a value + 1, and therefore has not been codedin a previous scan) is defined
by a composite 8-bit run length-magnitude value of the form:

RRRRSSSS

The four mostsignificant bits, RRRR, give the numberofzero coefficients that are between the current coefficient and the
previously coded coefficient (or the start of band). Coefficients with non-zero history (a non-zero value coded in a
previous scan) are skipped over when counting the zero coefficients. The four least significant bits, SSSS, provide the
magnitude category of the non-zero coefficient; for a given componentthe value of SSSS can only be one.

The run length-magnitude composite value is Huffman coded and each Huffman code is followed by additional bits:

a) Onebit codes the sign of the newly non-zero coefficient. A O-bit codes a negative sign; a 1-bit codes a
positive sign.

b) For each coefficient with a-non-zero history, one bit is used to code the correction. A O-bit means no
correction and-a 1-bit means that one shall be added to the (scaled) decoded magnitude ofthe coefficient.
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Non-zero coefficients with zero history are coded with a composite code of the form:

HUFFCO(RRRRSSSS) + additional bit (rule a) + correction bits (rule b)

In addition whenever zero runs are coded with ZRL or EOBn codes, correction bits for those coefficients with non-zero
history contained within the zero run are appended according to rule b above.

For the Huffman coding version of Encode_AC_Coefficients_SA the EOB is defined to be the position of the last point
transformedcoefficient of magnitude 1 in the band.If there are no coefficients of magnitude 1, the EOB is defined to be
zero.

NOTE ~ Thedefinition of EOBis different for Huffman andarithmetic coding procedures.

In Figures G.7 and G.8 BE is the count of buffered correction bits at the start of coding of the block. BEis initialized to
zero at the start of each restart interval. At the end of each restart interval any remaining buffered bits are appended to the
bit stream following the last EOBn Huffman code andassociated appendedbits.

In Figures G.7 and G.9, BRis the count of buffered correction bits which are appendedto the bit stream according to rule
b. BR is set to zero at the beginning of each Encode_AC_Coefficients_SA. At the end of each restart interval any
remaining buffered bits are appendedto the bit stream following the last Huffman code and associated appendedbits.

G.1.3_ Progressive encoding procedures with arithmetic coding

G.1,3.1 Progressive encoding of DC coefficients with arithmetic coding

Thefirst scan for a given componentshall encode the DC coefficient values using the procedures described in F.1.4.1. If
the successive approximation bit position parameteris not zero, the coefficient values shall be reduced in precision by the
point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits shall be coded as binary decisions using a
fixed probability estimate of 0.5 (Qe = X°5A1D’, MPS = 0).

G.1.3.2 Progressive encoding of AC coefficients with arithmetic coding

Except for the point transform scaling of the DCT coefficients and the grouping ofthe coefficients into bands,thefirst
scan(s) of successive approximation is identical to the sequential encoding procedure described in F.1.4. If Kmin is
equated to Ss, the index of the first AC coefficient index in the band, the flow chart shown in Figure F.5 applies. The
EOBdecision in that figure refers to the “end-of-band”rather than the “end-of-block”. For the arithmetic coding version
of Encode_AC_Coefficients_SA (and all other AC coefficient coding procedures) the EOB is defined to be the position
following the last non-zero coefficient in the band. —

NOTE - Thedefinition of EOBis different for Huffman and arithmetic coding procedures.

Thestatistical model described in F.1.4 also holds. For this model the default value of Kx is 5. Other values of Kx may be
specified using the DAC marker code (Annex B). The following calculation for Kx has proven to give good results for 8-
bit precision samples:

Kx = Kmin+SRL (8+ Se—-Kmin) 4

This expression reducesto the default of Kx =5 when the bandis from index 1 to index 63.
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Figure G.7 - Successive approximation coding of AC.coefficients using Huffman coding
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Append BE bufferedbitsto bit stream
BE =0 

TISO1640-93/d102

Figure G.8 - Transferring BE buffered bits from buffer to bit stream

Append_BR_bits 
 
 

Append BR buffered bits
to bit stream

BR=0

TISO1650-93/d103

Figure G.9 - Transferring BR buffered bits from buffer to bit stream
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G.1.3.3 Coding model for subsequentscans of successive approximation

The procedure “Encode_AC_Coefficient_SA” shown in Figure G.10 increases the precision of the AC coefficient values
in the band byonebit.

Asin the first scan of successive approximation for a component, an EOB decision is coded at the start of the band and
after each non-zero coefficient.

-However, since the end-of-band index of the previous successive approximation scan for a given component, EOBx,is
known from the data caded in the prior scan of that component, this decision is bypassed whenever the current index, K,
is less than EOBx.Asin thefirst scan(s), the EOB decision is also bypassed wheneverthe last coefficient in the bandis
not zero. The decision ZZ(K) = 0 decodes runs of zero coefficients. If the decoderis at this step of theprocedure, at least
one non-zero coefficient remains in the band of the block being coded. If ZZ(K) is not zero, the procedure in Figure G.11
is followed to code the value.

The context-indices in. Figures G.10 and G.11 are defined in Table G.2 (see G.1.3.3.1). The signs of coefficients with
magnitude of one are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.3.1 Statistical model for subsequent successive approximation scans

As shownin Table G.2,each statistics area for subsequent successive approximation scans of AC coefficients consists of a
contiguous set of 189 statistics bins. The signs of coefficients with magnitude of one are coded with a fixed probability
value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.2 Progressive decoding of the DCT

The description of the computation of the IDCT and the dequantization procedure contained in A.3.3 and A.3.4 apply to
the progressive operation.

Progressive decoding processes must be able to decompress compressed image data which requires up to four sets of
Huffman or arithmetic coder conditioning tables within a scan.

In orderto avoid repetition, detailed flow diagrams of progressive decoder operation are not included. Decoder operation
is defined by reversing the function of each step described in the encoder flow charts, and performing the steps in reverse
order.
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Figure G.10 — Subsequent successive approximation scans for coding
of AC coefficients using arithmetic coding

130 CCITTRec. T.81 (1992 E)

OLYMPUSEX.1016 - 326/714



OLYMPUS EX. 1016 - 327/714

 

  
 
 

 . CodeSA_22Z(K)

  T = LSB Z2(K) Code_i(S0)  

  Code_1(SS) Code_0(SS) 

 
Code_0(SC) Code_1(SC) 

71$01670-93/d105

  
Figure G.11 — Coding non-zero coefficients for subsequent successive approximation scans

Table G.2 — Statistical model for subsequent scans of successive
approximation coding of AC coefficient
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Annex H

Lossless mode of operation

(This annex formsan integral part of this Recommendation| International Standard)

This annex provides a functionalspecification of the following coding processes for the lossless mode of operation:

1) lossless processes with Huffman coding;

2) lossless processes with arithmetic coding.

For eachof these, the encoding process is specified in H.1, and the decoding process is specified in H.2. The functional
specification is presented by meansof specific procedures which comprise these coding processes.

NOTE — There is no requirementin this Specification that any encoder or decoder which embodies one of the above-named
processesshall implement the proceduresin precisely the mannerspecified in this annex.It is necessary only that an encoder or decoder
implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this
Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the
compliance tests specified in Part 2.

The processes which provide for sequential lossless encoding and decoding are not based on the DCT. Theprocesses used
are spatial processes based on the coding model developed for the DC coefficients of the DCT. However, the model is
extended by incorporating a’set of selectable one- and two-dimensional predictors, and for interleaved data the ordering of
samples for the one-dimensional predictor can bedifferent from that used in the DCT-based processes.

Either Huffman coding or arithmetic coding entropy coding may be employed for these lossless encoding and decoding
processes. The Huffman codetable structure is extended to allow up to 16-bit precision for the input data. The arithmetic
coderstatistical model is extended to a two-dimensional form.

H.1 Lossless encoder processes

H.1.1 Lossless encoder control procedures

Subclause E.1 contains the encoder control procedures. In applying these proceduresto the lossless encoder, the data unit
is one sample.

Inputdata precision may be from 2 to 16 bits/sample.If the input data path has different precision from the input data, the
data shall be aligned with theleast significant bits of the input data path. Input data is represented as unsigned integers
and is not level shifted prior to coding.

Whenthe encoderis reset in the restart interval control procedure (see E.1.4), the prediction is reset to a default value. If
arithmetic coding is used, the statistics are also reset.

Forthe lossless processesthe restart interval shall be an integer multiple of the number of MCU in an MCU-row.

H.1.2 Coding model forlossless encoding

The coding model developed for encoding the DC coefficients of the DCT is extended to allow a selection from a set of
seven one-dimensional and two-dimensional predictors. The predictor is selected in the scan header (see Annex B). The
same predictor is used for all! components ofthe scan. Each component in the scan is modeled independently, using
predictions derived from neighbouring samples of that component.

H.1.2.1 Prediction

Figure H.1 shows the relationship between the positions (a, b, c) of the reconstructed neighboring. samples used for
prediction and the position ofx, the sample being coded.

132 CCITT Rec. T.81 (1992 E)

OLYMPUSEX.1016 - 328/714



OLYMPUS EX. 1016 - 329/714

 D/TEC 10918-1 : 1993(E)

 
TISO1680-93/d106

Figure H.1 — Relationship between sample and prediction samples

Define Px to be the prediction and Ra, Rb, and Rc to be the reconstructed samples immediately to the left, immediately
above, and diagonally to the left of the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table H.1.

Table H.1 — Predictors for lossless coding

0 No prediction (See Annex J) 
 
 
 
 

  
 

 
Px=Ra

Px=Rb

Px =Re

-Px=Ra+Rb—Re 
Px = Ra+ ((Rb— Re)/2)”

Px = Rb+ ((Ra— Rc/2)”

Px = (Ra +Rb)y/2  
  4) Shift right arithmetic operation

Selection-value 0 shall only be used for differential coding in the hierarchical mode of operation. Selections 1, 2 and 3 are
one-dimensional predictors andselections 4, 5, 6, and 7 are two-dimensional predictors.

The one-dimensional horizontal predictor (prediction sample Ra) is used for thefirst line of samples at the start of the scan
and at the beginning of each restart interval. The selected. predictor is used for all other lines. The sample from the line
above (prediction sample Rb) is used at the start of each line, exceptfor the first line. At the beginning of the first line and
at the beginningof each restart interval the prediction value of 2P - 1 is used, where P is the input precision.

If the point transformation parameter (see A.4) is non-zero, the prediction value at the beginning ofthe first lines and the
beginning of each restart interval is QP -Pt-1, where Ptis the value of the point transformation parameter.

Each prediction is calculated with full integer arithmetic precision, and without clampingof either underflow or overflow
beyondthe input precision bounds. For example, if Ra and Rb are both 16-bit integers, the sum is a 17-bit integer. After
dividing the sum by 2 (predictor7), the prediction is a 16-bit integer.
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For simplicity of implementation, the divide by 2 in the prediction selections. 5 and 6 of Table H.1 is done by an
arithmetic-right-shift of the integer values.

 

The difference between the prediction value and the input is calculated modulo 2!6, In the decoder the difference is
decoded and added, modulo 2!6, to the prediction.

H.1.2.2 Huffman coding of the modulo difference

The Huffman coding procedures defined in Annex F for coding the DC coefficients are used to code the modulo 216

differences. The table for DC coding contained in Tables F.1 and F.$iis extendedby one additional entry. No extra bits
are appended after SSSS = 16 is encoded. See Table H.2.

Table H.2 — Difference categories for lossless Huffman coding

0

~1,1

-3,-2,2,3

+7.4,4..7

—I5..~-8,8..15

-31..-16,16..31

-63..-32,32..63

-127..-64,64..127

—255..-128,128..255

—511..-256,256,.511

—1 023..-512,512..1 023

~2 047..-1 024,1 024..2 047

—4 095,,-2 048,2 048..4 095

-8 191.4 096,4 096..8 191

-16 383.—8 192,8 192..16 383

~-32 767..-16 384,16 384..32 767
32 768

wowmrmntAunhwPH=Oo
PlaaeeUAbkWwW= 
— an

H.1.2.3 Arithmetic coding of the modulo difference

Thestatistical model defined for the DC coefficient arithmetic coding model (see F.1.4.4.1) is generalized to a two-
dimensional form in which differences coded for the sample to the left and for the line above are used for conditioning.

H.1.2.3.1 Two-dimensional statisticalmodel

The binary decisions are conditioned on the differences coded for the neighbouring samples immediately above and
immediately to the left from the same component. As in the coding of the DC coefficients, the differences are classified
into 5 categories: zero(0), small positive (+S), small negative (~S), large positive (+L), and large negative (—L).. The two
independent difference categories combine to give 25 different conditioning states, Figure H.2 shows the two-dimensional °
array of conditioning indices. For each of the 25 conditioning ‘states probability estimates for four binary decisions are
kept.

At the beginning of the scan and each restart interval the conditioning derived from the line aboveis set to zero for the
first line of each component. Atthestart of eachline, the differenceto theleft is set to zero for the purposes of calculating
the conditioning.
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‘Figure H.2 - 5 x 5Conditioning array for two-dimensionalstatistical model

H.1.2.3.2 Assignmentofstatistical bins to the DC binary decision tree

Eachstatistics area for lossless coding consists of a contiguous set of 158 statistics bins. The first 100 bins consist of
25 sets of four bins selected by a context-index SO. The value of SO is given by L_Context(Da,Db), which provides a
value of 0, 4,..., 92 or 96, depending on the difference classifications of Da and Db (see H.1.2.3.1). The value for SO
provided by L_Context(Da,Db)is from the array in Figure H.2.

The remaining 58 bins consist of two sets of 29 bins, X1, .... X15, M2, .... M15, which are used to code magnitude
category decisions and magnitude bits. The value of X1 is given by X1_Context(Db), which provides a value of 100 when |
Dbis in the zero, smail positive or small negative categories and a value of 129 when Dbis in the large positive or large
negative categories.

The assignmentofstatistical bins to the binary decision tree used for coding the difference is given in Table H.3.

Table H.3 - Statistical model for lossless coding

L_Context(Da,Db) V=0

S0+1 Sign
80 +2 Sz<1lifV>0

80+3 Sz<1ifV<0
X1_Context(Db) 8z<2

X1+1 ‘Sz<4
X1+2 8z<8

X1+14 . Sz < 215

X2+14 Magnitude bits if Sz <4
X3 +14 Magnitudebits if Sz < 8

X15+14 Magnitudebits if Sz < 215
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H.1.2.3.3 Default conditioning bounds

The bounds, L and U,for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
maybe set using the DAC (Define-Arithmetic-Conditioning) marker segment, as described in Annex B.

H.1.2.3.4 Initial conditions for statistical model

Atthe start of a scan andat éachrestart, all statistics bins are re-initialized to the standard default value described in
Annex D.

H.2 Lossless decoder processes

Lossless decoders may employ either Huffman decoding or arithmetic decoding. They shall be capable of using up to four
tables in a scan. Lossless decoders shall be able to decode encoded image source data with any input precision from 2 to
16 bits per sample.

H.2.1—_Lossless decoder control procedures

Subclause E.2 contains the decoder control procedures. In applying these proceduresto the lossless decoder the data unit
is one sample.

When the decoderis reset in the restart interval control procedure (see E.2.4) the prediction is reset to the same value
used in the encoder (see H.1.2.1), If arithmetic coding is used, the statistics are also reset.

Restrictions on the restart interval are specified in H.1.1.

H.2.2 Coding model forlossless decoding

The predictor calculations defined in H.1.2 also apply to the lossless decoder processes.
The lossless decoders, decode the differences and add them, modulo ‘216, to the predictions to create the output. The
lossless decoders shall be able to interpret the point transform parameter, and if non-zero, multiply the output of the
lossless decoder by 2Pt.

In orderto avoidrepetition, detailed flow charts of the lossless decoding procedures are omitted.

  

136 CCITT Ree. T.81 (1992 E)
 

OLYMPUSEX.1016 - 332/714



OLYMPUS EX. 1016 - 333/714

/TEC 10918-1 : 1993(E)  
Annex J

Hierarchical mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functionalspecification of the coding processes for the hierarchical mode of operation.

In the hierarchical mode of operation each componentis encoded or decoded in a non-differential frame. Such frames may
be followed by a sequence of differential frames. A non-differential frame shall be encoded or decoded using the
procedures defined in AnnexesF, G and H.Differential frame procedures are defined in this annex.

The coding process for a hierarchical encoding containing DCT-based processes is defined as the highest numbered
process listed in Table J.1 which is used to code any non-differential DCT-basedor-differential DCT-based frame in the
compressed image data format. The coding process for a hierarchical encoding containing only lossless processes is
defined to be the process used forthe non-differential frames.

Table J.1 — Coding processes for hierarchical mode

Non-differential frame specification

Extended sequential DCT, Huffman, 8-bit Annex F, process 2

 
Extended sequential DCT,arithmetic, 8-bit
Extended sequential DCT, Huffman, 12-bit
Extended sequential DCT,arithmetic, 12-bit
Spectral selection only, Huffman, 8-bit
Spectral selection only, arithmetic, 8-bit
Full progression, Huffman, 8-bit
Full progression,arithmetic, 8-bit
Spectral selection only, Huffman, 12-bit

OowmAITNAMbhWY=
Annex F, process 3
Annex F, process 4
Annex F, process 5
Annex G,process |
Annex G, process 2
Annex G,process 3
Annex G,process 4
Annex G,process 5

—_ Qo Spectral selection only, arithmetic, 12-bit Annex G,process 6
Full progression, Huffman, 12-bit Annex G,process 7
Full progression, arithmetic, 12-bit AnnexG,process 8
Lossless, Huffman, 2 through 16 bits Annex H,process 1
Lossless, arithmetic, 2 through 16 bits Annex H,process 2

_ _

 
— wbe
 

_ -

Hierarchical mode syntax requires a DHP marker segmentthat appears before the non-differential frame or frames. It may
include EXP marker segments and differential frames which shall follow the initial non-differential frame. The frame
structure in hierarchical modeis identical to the frame structure in non-hierarchical mode.

Either all non-differential frames within an image shall be coded with DCT-based processes,orall non-differential frames
shall be coded with lossless processes. All frames within an image must use the same entropy coding procedure, either
Huffman or arithmetic, with the exception that non-differential frames coded with the baseline process may occur in the
same image with frames.coded with arithmetic coding processes.

If the non-differential frames use DCT-basedprocesses, all differential frames except the final frame for a component shall
use DCT-basedprocesses. Thefinal differential frame for each component may use a differentiallossless process.

If the non-differential frames use lossless processes, all differential frames shall use differential lossless processes.

For each of the processeslisted in Table J.1, the encoding processes are specified in J.1, and decoding processes are
specified in J.2. : .

NOTE — There is mo requirement in this Specification that any encoder or decoder which embodies one of the
above-named. processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is
necessary only that an encoder or decoder implementthe function specified in this annex. The sole criterion for an encoder or decoder
to be considered in compliance with this Specificationis that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for
decoders), as determined by the compliancetests specified in Part 2. ‘
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In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame followed by a
sequence of differential frames. A non-differential frame shall use the procedures defined in Annexes F, G, and H.
Differential frame procedures are defined in this annex.

J.1 Hierarchical encoding

J.1.1 Hierarchical control procedure for encoding an image

The control structure for encoding of an imageusing the hierarchical modeis given in Figure J.1.

 
 

 
 

Encode_image

 [Generate down-sampled images]
Append SOI marker
[Appendtables/miscellaneous]
Append DHP marker segment

 
  
  
  

Differential frame
? 
 
 

[Upsample reference components and
append EXP marker segment]

Generate differential components
Encode_differential_frame
Reconstructdifferential components
Reconstruct components

   
 

Encode_frame

  
  
  
 Reconstruct components

using matching
decoder process

 
 

 
More frames

?

Append EO! marker

TISO1700-93/d108

Figure J.1 — Hierarchical control procedure for encoding an image

In Figure J.1 procedures in brackets shall be performed whenever the particular hierarchical encoding sequence being
followed requires them.
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In the hierarchical mode the define-hierarchical-progression (DHP) marker segment shall ‘be placed in the compressed
image data before the first start-of-frame. The DHPsegment is used to signal the size of the image components of the
completed image. The syntax of the DHP segmentis specified in Annex B.

The first frame for each component or group of components in a hierarchical process shall be encoded by a
non-differential frame. Differential frames shall then be used to encode the two’s complementdifferences between source
input components (possibly downsampled) and the reference components (possibly upsampled). The reference
components are reconstructed components created by previous framesin the hierarchical process. For either differential or
non-differential frames, reconstructions of the components shall be generated if needed as reference components for a
subsequent frame in the hierarchical process.

Resolution changes may occur between hierarchical frames in a hierarchical. process. These changes occur if
downsamplingfilters are used to reducethe spatial resolution of someorall of the components of the source image. When
the resolution of a reference component does not match the resolution of the component input to a differential frame, an
upsampling filter shall be used to increase the spatial resolution of the reference component. The EXP marker segment
shall be added to the compressed image data before the start-of-frame whenever upsampling of a reference componentis
required. No more than one EXP marker segmentshall precede a given frame.

Any of the marker segments allowed before a start-of-frame for the encoding process. selected may be used before either
non-differential or differential frames. ‘

For 16-bit input precision (lossless encoder), the differential components which are input to a differential frame are
calculated modulo 216, The reconstructed’ components calculated from the reconstructed differential components are also
calculated modulo 216,

If a hierarchical encoding process uses a DCT encoding process for the first frame, all frames in the hierarchical process
exceptfor the final frame for each componentshall use the DCT encoding processes defined in either Annex F or Annex
G,or the modified DCT. encoding processes defined in this annex. The final frame may use a modified lossless process
defined in this annex.

If a hierarchical encoding process uses a lossless encoding processforthe first frame, all frames in the hierarchical process
shall use a lossless encoding process defined in Annex H, or a modified lossless process defined in this annex.

J.1.1.1 Doewnsamplingfilter

The downsampled components are generated using a downsampling filter that is not specified in. this Specification. This
filter should, however, be consistent with the upsamplingfilter. An example of a downsamplingfilter is provided in K.5.

J.11.2 Upsamplingfilter

The upsamplingfilter increases’ the spatial resolution by a factor of two horizontally, vertically, or both. Bi-linear
interpolation is used for the upsamplingfilter, as illustrated in Figure J.2.

1ISO1710-93/d109

Figure J.2 — Diagram of sample positions for upsampling rules
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The rule for calculating the interpolated valueis:

P, = (Ra + Rb)/2

where Ra and Rb are sample values from adjacent positions a and b of the lower resolution image and Px is. the
interpolated value. The division indicates truncation, not rounding. Theleft-most columnof the upsampled image matches
the left-most column ofthe lowerresolution image. The top line of the upsampled image matches the top line of the lower
resolution image. The right column andthe bottom line of the lower resolution image are replicated to- provide the values
required for the right column edge and bottom line interpolations. The upsampling process always doubles the line length
or the numberoflines. :

If both horizontal and vertical expansions are signalled, they are done in sequence — first the horizontal expansion and
then the vertical.

J.1.2 Control procedurefor encoding a differential frame

The control procedures in AnnexEfor frames,scans,restart intervals, and MCU also apply to the encoding of differential
frames, and the scans,restart intervals, and MCUfrom whichthe differential frame is constructed. The differential frames
differ from the frames of AnnexesF, G, and H only atthe coding modellevel.

J.1.3 Encoder coding models fordifferential frames

The coding models defined in AnnexesF, G, and H are modified to allow them to be used for coding of two’s complement
differences.

 
J.1.3.1 Modifications to encoder DCT encoding models for differential frames

Two modifications are made to the DCT coding models to allow them to be used in differential frames. First, the FDCT of
the differential input is calculated without the level shift. Second, the DC coefficient of the DCT is coded directly —
withoutprediction. |

J.1.3.2. Modifications to lossless encoding models for differential frames

One modification is made to the lossless coding models. The difference is coded directly — without prediction. The
prediction selection parameterin the scan header shall be set to zero. The point transform which may be applied to the
differential inputs is defined in Annex A.

J.1.4 Modifications to the entropy encodersfor differential frames

The coding of two’s complementdifferences requires one extra bit of precision for the Huffman codingof ACcoefficients.
The extension to Tables F.1 and F.7 is given in Table J.2.

Table J.2 ~ Modifications to table _
of AC coefficient amplitude ranges

-32 767..-16 384, 16 384..32 767

 

 
 

 

 
 

The arithmetic coding models are already defined forthe precision needed in differential frames.
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J.2 Hierarchical decoding

J.2.1 Hierarchical control procedure for decoding an image

The control structure for decoding an image usingthe hierarchical mode is given in Figure J.3.

Yes

 
 
  

 

 
Interpret markers

  
Non-Hierarchical mode

No

Hierarchical
?

Yes

Differential frame ~Y2S
?

[Upsample reference components]
Decode_differential_frame
Reconstnict_components

   
 Decode_frame

TISO1720-93/d4110

Figure J.3 - Hierarchical control procedure for decoding an image
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The Interpret markers procedure shall decode the markers which may precede the SOF marker, continuing this decoding
until either a SOF or EOI marker is found.If the DHP marker is encountered before the first frame, a flag is set which
selects the hierarchical decoder at the “hierarchical?” decision point. In addition to the DHP marker (which shall precede
any SOF) and the EXP marker (which shall precede any differential SOFrequiring resolution changes in the reference
components), any other markers which may precede a SOFshall be interpreted to the extent required for decoding of the
compressed image data.

If a differential SOF marker is found, the differential frame path is followed. If the EXP was encountered in the Interpret
markers procedure, the reference components for the frame shall be upsampled as required by the parameters in the EXP
segment. The upsampling procedure described in J.1.1.2 shall be followed.

The Decode_differential_frame procedure generates a set of differential components. These differential components shall
be added, modulo 216, to the upsampled reference components in the Reconstruct.components procedure. This creates a
new set of reference components which shall be used when required in subsequent frames of the hierarchical process.

J.2.2 Control procedure for decoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCUalso apply to the decoding of differential
frames and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frame
differs from the frames of Annexes F, G, and H only at the decoder coding modellevel.

J.2.3 Decoder coding models for differential frames

The decoding models described in Annexes F, G, and H are modified to allow them to be used for decoding of two’s
complementdifferential components.

 
J.2.3.1 Modifications to the differential frame decoder DCT coding model

Two modifications are made to the decoder DCTcoding models to allow them to code differential frames. First, the IDCT
of the differential outputis calculated without the level shift. Second, the DC coefficient of the DCTis decoded directly —
without prediction.

J.2.3.2 Modifications to the differential frame decoderlossless coding model

One modification is madeto the lossless decoder coding model. The difference is decoded directly — without prediction. If
the point transformation parameter in the scan header is not zero, the point transform, defined in Annex A, shall be
applied to the differential output.

J.2.4 Modifications to the entropy decodersfor differential frames

The decoding of two’s complement differences requires one extra bit of precision in the Huffman code table. This is
described in J.1.4. The arithmetic coding models are already defined for the precision needed in differential frames.
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Annex K

Examples and guidelines

(This annex does not form an integral part of this Recommendation| International Standard)

This annex provides examples of various tables, procedures, and other guidelines.

K.1 Quantization tables for luminance and chrominance components

Two examples of quantization tables are given in Tables K.1 and K.2. These are based_on psychovisual thresholding and
are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as
examples only and are not necessarily suitable for any particular application. These quantization values have been used
with good results on 8-bit per sample luminance and chrominance images of the format illustrated in Figure 13. Note that
these quantization values are appropriate for the DCT normalization defined in A.3.3.

If these quantization values are divided by2, the resulting reconstructed image is usually nearly indistinguishable from the
source image.

Table K.1 - Luminance quantization table

 

  
    
Table K.2 — Chrominance quantization table
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K.2 A procedure for generating the lists which specify a Huffman code table

A Huffman table is generated from a collection ofstatistics in two steps. Thefirst. step is the generation of the list of
lengths and values which are in accord with the rules for generating the Huffman code tables. The second step is the
generation of the Huffman code table from thelist of lengths and values.

The first step, the topic of this section, is needed only for custom Huffman table generation and is done only in the
encoder.In this step thestatistics are used to create a table associating each value to be coded with the size (in bits) of the
corresponding Huffman code.This table is sorted by codesize.

A procedurefor creating a Huffman table for a set of up to 256 symbols is shown in Figure K.1. Three vectors are defined
for this procedure:

FREQ(Y) Frequency of occurrence of symbol V
CODESIZE(V) Codesize of symbol V
OTHERS(V) Index to next symbolin‘chain of all symbols in current branch of code tree

where V goes from 0 to 256.

Beforestarting the procedure, the values of FREQ arecollected for V = 0 to 255 and the FREQ value-for V = 256 is set to
1 to reserve. one code point. FREQ values for unused symbols are defined to be zero. In addition, the entries in
CODESIZE are all set to 0, and the indices in OTHERSare set to -I, the value which terminates a chain of indices.
Reserving one code point guarantees that no code word can ever be all “1”bits.

The search for the entry with the least value of FREQ(V)selects the largest value of V with the least value of FREQ(V)
greater than zero.

The procedure “Find V1 for least value of FREQ(V1) > 0” always selects the value with the largest value of V1 when
more than one V1 with the same frequency occurs. The reserved code point is then guaranteed to be in the longest code
word category.
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Code_size

Find V1 for least value of
FREQ(V1) > 0

Find V2 tor next least value
of FREQ(V2) > G

  FREQ(V1) =
FREQ(V1) +
FREQ(V2)

FREQ(V2) =0

 

 
 

CODESIZE(V1) =
CODESIZE(V1) + 1  V1 = OTHERS(V1)

OTHERS(V1) = V2

 

  
  

CODESIZE(V2) =
CODESIZE(V2) + 1 V2 = OTHERS(V2)

TISO1730-93/d111

Figure K.1 — Procedure to find Huffman codesizes
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Once the code lengths for each symbol have been obtained, the numberof codes of each length is obtained using the
procedure in Figure K.2. The count for each size is contained in the list, BITS. The counts in BITS are zero at the start of
the procedure. The procedure assumes that the probabilities are large enough that code lengths greater than 32 bits never
occur. Note that until the final Adjust_BITS procedure is complete, BITS may have more than the 16 entries required in
the table specification (see Annex C).

Count_BITS 
 
 

 
 

No| BITS(CODESIZE()=

CODESIZE() = ~|BITS(CODESIZE(N)+ 1

  
Adjust_BITS

 
TISO1740-93/d112

Figure K.2 — Procedure to find the numberof codes ofeachsize =
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Figure K.3 gives the procedure for adjusting the BITSlist so that no code is longer than 16 bits. Since symbols are paired
for the longest Huffman code, the symbols are removed from this length category two at a time. Theprefix for the pair
(whichis one bit shorter) is allocated to oneof the pair; then (skipping the BITS entry for that prefix length) a code word
from the next shortest non-zero BITS entry is converted into a prefix for two cade words one bit longer. After the BITS
list is reduced to a maximum code length of 16 bits, the last step removes the reserved code point from the code length
count.

 

 

 
 
 

Adjust_BITS

 
 
  
  

 

 

BITS() = BITS(I) -—2
BITS(l —1) = BITS(— 1) +1
BITS(J + 1) = BITS(J + 1) +2
BITS(J) = BITS (J) - 1

BITS() = BITS()— 1

T1ISO1750-93/d113

Figure K.3 - Procedureforlimiting code lengths to 16 bits
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The input values are sorted according to code size as shown in Figure K.4. HUFFVALis the list containing the input
values associated with each code word,in order of increasing code length.

 ISO/IEC 10918-1 : 1993(E)

At this point, the list of code lengths (BITS) and the list of values (HUFFVAL)can be used to generate the codetables.
These procedures are described in Annex C.

 

 
 

Sort_input  
TISO1760-93/d1 14

Figure K.4 — Sorting of input values accordingto codesize

K.3 Typical Huffman tables for 8-bit precision luminance and chrominance
Huffman table-specification syntax is specified in B.2.4.2.
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K.3.1. Typical Huffmantables for the DC coefficient differences

Tables K.3 and K.4 give Huffman tables for the DC coefficient differences which have been developed from the average
statistics of a large set of video images with 8-bit precision. Table K.3 is appropriate for luminance components and Table
K.4 is appropriate for chrominance components. Although there are no default tables, these tables may prove to be useful
for many applications.

Table K.3 — Table for luminance DC coefficient differences

2 00
010

O11

100

101

110

1110

11110

111110
1111110

11111110

111111110
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Table K.4 — Table for chrominance DC coefficient differences

00

ol

10

110

1110

11110

111110

o No

 1111110

11111110

111111110

1111111110 =
12111111110

wonnau&WN wowarnauwnrthwryWd
Ss PeOo -=- -_©

K.3.2 Typical Huffmantables for the ACcoefficients

Tables K.5 and K.6 give Huffman tables for the AC coefficients which have been developed from the averagestatistics of
alarge set of images with 8-bit precision. Table K.5 is appropriate for luminance components and Table K.6 is appropriate
for chrominance components. Although there are no default tables, these tables may prove to be useful for many
applications.
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Table K.5 — Table for luminance ACcoefficients (sheet 1 of 4)

   
   
  

    
 

    
  
  
  
  

 
  

 
  

 
 

 
 
   
  

 
 

0/0 (EOB) 4 1010
ofl 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 7 1111000
0/7 8 11111000

o/8 10 1111110110
16 4111111110000010 

1111111110000011
1100
11011
1111001
111110110
11111110110
1111111110000100

1111111110000101
1111111110000110
1111111110000111
1111111110001000
11100
11111001
1111110111
411111110100
1111111110001001
1111111110001010
1111111110001011
1111111110001100
1111111110001101
1111111110001110
111016
111110111
144111110101
1111111110001111

1111111110010000°
1111111110010001
1111111110010010
1111111110010011

1111111110010100
1111111110010101

O/A

V1
 
 

1/3
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4/2
43
4s

4/6
47
48
49

4A

5/2
“5/3
5/4
5/5
5/6
s7
5/8
3/9
SA
oft
6/2
6/3
6/4
6/5
6/6
6/7

  
  
  
  
  
  
  
  
  
  
    
  
  
  
  
  
  
  
  
  
  
  
  
  

 

4/5

SA

 

  
  
  
  
  
  
  
  
  
   

Table K.5 (sheet 2 of 4)

111011
1111111000
1111111110010110
1111111110010111
1111111110011000
1111111110011001
1111111110011010
1111111110011011
1111111110011100
1111111110011101
1111010
11111120111
1111111110011110

1111111110013111

 
1111111110100000
1111111110100001
1111111110100010
1111111110100011
1111111110100100
1111111110100101
1111011
111111110110
1111111110100110
1111111110100111
1111111110101000
1111111110101001
1111111110101010
1111111110101011

 
1111111110101100
1111111110101101
11111010
111411110111
1111111110101110
1111111110101111
1111111110110000
1111111110110001
1111111110110010
11111111101100%1
1111111110110100
1111111110110101
111111000
111111111000000

TEC 10918-1 : 1993(E)
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Table K.5 (sheet 3 of 4)

Run/Size Code length   
  
   
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
   
  
  

  
  
  
  

  
 

L111111110110111
1111111110111000
1111111110111001

1111111110111010
1111111110111021
1111111110111100
1111111110111101
111111001
1111111110111110

1111111110111111
1111111111000000
1111111111000001

1111111111000010
1111111111000011

1111111111000100
1111111111000101
1111111111000110
111111010...
1141111141000111

1111111111001000
1111111111001001
1111111111001010
1111111111001011

| 1111111111001100
1111111111001101
1111111111001110
1111111111001811
1111111001
1111111111010000

1111111111010001
1111111111010010
1111111111010011
1111111111010100
1111111111010101

| 1111111111010110

1111111111010111
1111111111011000
1111141010

4112111111011001
1111111111011010
1111111111011011
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Table K.5 (sheet 4 of 4) 
 

                                                        
   
            

 Code length

1111111111011100
1111111111011101
1111111111011110
LIDALAL1L1011111
1111111111100000
1111111111100001
11111111000
1111111111100010
4111111111100011
1111111111100100
1111111111100101
1111111111100110
LI11114111100111
1111111111101000
1111111111101001
1111111111101010
1111111111101011
1111111111101100
1111111111101101
1111111111101110
1111111 12301111
1111111111110000
1111111111110001
1111111111110010
1111111111110011
4111111111110100
11111111001

1411111111110101
L1LI111111110110

1111114111110111
1111111111111000
1111141111111001
1111111111111010
L1111121121111011
1111111111111100
1111111111111101
L111111 111111110

Code word
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Removalof subjective redundancy from DCT-coded
images

David L. McLaren, BE
D. Thong Nguyen, PhD

ey 2 Oe?Vv severe

Indexing terms: Discrete cosine transform coding, Image processing, Subjective redundancy

Abstract; The removal of subjective redundancy
from video images has recently become an import-
ant area of study. A suggested method of removin-
g this redundancy from transform-coded imagesis
through the psychovisual thresholding and quan-
tisation of the image transform coefficients. In this
paper, the coefficient thresholding and quantisa-
tion levels are based on the combined effects of
spatial masking and the varying sensitivity of the
human visual system to different spatial fre-
quencies and levels of luminance. By combining
the Discrete Cosine Transform (DCT) method of
image coding with psychovisual thresholding and
quantisation schemes, subdistortion motion video
bit-rates as low as 2.5 Mbit/s (non-interlaced 25
frame-per-second video) have been obtained
withoutthe needfor interframe coding.

1 intraduction

The increasing user demandfor video as a communica-
tion medium over the last decade has greatly increased
the-nsed for efficient image coding and compression
methods. Although many data compression algorithms
have been proposed in the past, only recently have high-
compression algorithms been introduced. Thefirst coding
schemes, involving simple Differential Pulse Code Modu-
lation (DPCM) and Adaptive Predictive Coding (APC)
algorithms, were only able to obtain compression ratios
of up to 25:1 {1}. Interpolative and extrapolative
coding wenta step further and increased the compression
ratio to around 4: 1 [1] by transmitting only a subset of
the samples and interpolating or extrapolating to obtain
the full image. However, the most recent and most suc-
cessful methods of image compression to date have been
transform-coding-based [2,3]. By transforming spatial
data into another domain (usually frequency-related), sta-
tistical independence between pixels and high-energy
compaction can be obtained. In particular, the Discrete
Cosine Transform (DCT) algorithm has become widely
recognised as an almost optimum transform method
when compared with other transforms on the basis of
energy compaction and decorrelation between pixels [4,
5].

The general method of discrete cosine transform
coding [5] involves dividing the original spatial image 
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into smaller N x N blocksofpels, and then transforming
the blocks to obtain equal-sized blocks of transform coef-
ficients in the frequency domain. These coefficients are
then thresholded, quantised and coded ready for trans-
mission. By combining the discrete cosine transform with
a minimum redundancy coding scheme [5] much of the
statistical redundancy in an image can be removed in the
coding process. Recently, however, the removalof subjec-
tive redundancy, through the thresholding and quant-
ising of the transform coefficients, has also become ap
important area of study as the quest continues to further
reduce the required bit rates to transmit still and moving
images. The problem has, however, not been dealt with
adequately.

It is the removal of these subjective redundancies from
DCT-coded images, through psychovisual thresholding
and quantisation, whichis the subject of this paper.

The compression techniques described in this paper
are all general in nature and are therefore applicable to
the coding and compression of any image or video-based
service from low bit-rate video-telephony to High Defini-
tion Television (HDTV). The sub-distortion results pre-
sented in Section 5 are, however, more suitable for
intermediary services such as high-quality video con-
ferencing or low-quality entertainment television with
bit-rates in the region of | to 5 Mbit/s.

2 Subjective redundancy

Unlike statistical redundancy, the removal of subjective
redundancy is an irreversible process and involves dis-
carding information which the designer feels can be
removed without any change being naticed by the human
observer [6]. The sensitivity of the human visual system
to stimuli of varying levels of contrast, luminance and
different spatial and temporal frequencies varies greatly
[6], and these inconsistencies can be exploited to deter-
mine how information can be discarded without subjec-
tively degrading the final image. A number of methods
have already been proposedfor including certain psycho-
visual properties of the human visual system (frequency
sensitivity [7, 8], luminance dependence[6] and masking
effects [9, 6]) into image coding and compression
schemes. However, no coding scheme has yet adequately
combined these effects to.produce a simple, efficient and
oplimum method of removing subjectively-redundant
information,

There are two areas in the standard transform-coding
process — the thresholding and the quantising of the
DCT coefficients ~ where the subjective redundancyin
an image, and hence the numberofhits required for rep-
resentation, can be reduced.

Many of the DCT coefficients, obtained by trans-
forming the blocks of spatial image. are small enough not

ME
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to be transmitted. By thresholding the blocks of coeffi-
cients, values below a given threshold leve! will be set to
zero leaving a reduced number ofcoefficients for coding.
Of course, as more coefficients are set to zero the quality
of the reconstructed image deteriorates. However, the
way in which the image quality is affected depends not
only on the numberof non-zero coefficients retained but
also on which coefficients are discarded. Harsh thresh-
olding of low-frequency coefficients causes blocking
effects (sub-block boundaries becoming visible), while
dropping too many high-frequency coefficients results in
a loss of resolution and blurring in areas of high activity.
For this reason, an N x N thresholding matrix is used
which is made _up of optimum. thresholding values_for
each spatial_fi and which removes only
subjectively-redundantcoefficients.

Once the blocks ofcoefficients have been thresholded,
the remaining non-zero coefficients are quantised to
reduce the numberoflevels and hence further reduce the
numberofbits. Again, over-harsh quantisation of coeffi-
cients corresponding to different spatial frequencies
affects the reconstructed image in different ways. Over-
quantising low-frequency coefficients again causes block-
ing, whike large quantisation steps at higher frequencies
lead to random noise becomingvisible. The phenomenon
of spatial masking can also be taken into account to
allow for larger quantisation step sizes in certain areas.

In the past, these coefficient thresholding and quant-
ising stages have been combined into a single uniform
quantisation scheme where only those coefficients below

“theTowestquantisationstepsizearediscarded [5].
However, because harshly thresholding and quantsing
different transform coefficients leads to different subjec-
tive effects, these two areas should be treated separately.

3 Psychovisual thresholding

Because of the varied effects of harshly thresholding DCT
coefficients of different spatial frequencies,il is clear that
a constant threshold level for all coefficients is not effi-
cient. When a typical video image (3:4 aspect ratio) is
viewed from a standard viewing distance [6], the spatial
frequency, w,;, in cycles per degree (cpd), of a coefficient,
¢,;, can be calculated from

NY (Ly
uj Wal Wo

,j=01,2...,N—-1

where N is the sub-block size, and i and j are the matrix
row and column indices respectively. Psychovisual
studies have shown that the human visual system has a
general bandpass characteristic [10,7] with peak sensi-
tivity between 3 and 4 cycles per degree and reduced
sensitivity at higher and lower spatial frequencies (Fig. 1).
This response curve has been the subject of much
research in the past and, as a result, a fairly standard
transfer function has evolved. One of the more common

forms of this sensitivity function, S,,, proposed by Ngan
in [9], is given in eqn. t

Sj = (0.31 + 0.69w,Jen 229%
Af=O02...N-3 ()

By making the coefficient thresholding levels inversely
proportional to the relative sensilivilies of the corres-
ponding spatial frequencies, coefficients corresponding to
relatively insensitive frequencies will be more harshly
thresholded than those corresponding to frequencies of
Mo

higher sensitivity. However, the spatial frequency sensi-
tivity function of eqn. 1 has been constructed from sub-
jective tests where the distribution of energy is uniform
overall frequencies [7]. As this is not true for the blocks
of DCTcoefficients, the sensitivity curve must be normal-
ised by the average powerat each frequency.

50

40

30aDR

2202
a
&&10

0.5 1 5 10 50
spatial frequency, cyclesMdegrees

Fig. 1 Frequency sensitivity curve

To determine the coefficient energy distribution, the
power in each coefficient was averaged over each sub-
block in ten different 512 x 512 x 8-bit images (10240
blocks in all) to obtain the distribution in Fig. 2. This

50

we* Soo
ny orelativepower 

Atate
tr ob 4h as

0 10 20 30 40
frequency, cyclesMegree

Fig. 2 Coefficient pawer distribution

energy distribution can be adequately modelled by the
‘best-fit’ function of eqn. 2 (shown by the solid line in
Fig. 2)

P,, = 3410 x wy? —1 f= 01,2.,N—-1
In addition to varying with spatial frequency content, the
sensitivity of the humanvisual system to smal! changes in
a single sub-blockis directly proportional to the average
background tuminance of the block. This relationship is
known as Weber's Law [11] and, although it is slightly
distorted by the non-linear relationship between the
applied voltage and the displayed luminance of a typical
television screen, it still holds at high luminance levels
[6]. As the DC transform coefficient, cog, is a measure of
the average luminance in an image [5], thiseffect is easily
incorporated into the coding process by simply scaling
each block thresholding matrix by coo.

The N x N matrix ofsensitivity values, S,;, is normal-
ised using the power distribution, P,,, and each valueis
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inverted to obtain a normalised sensitivity matrix Sj;, 4
j=0, 1, 2,..., N — 1. This matrix is given in Table 1 for
a sub-blocksize of 16 x 16 pels. Each value in the matrix
is then multiplied by cog, and uniformly scaled so that
Table 1: Thresholding level matrix, Si,

o 224 171 74 11 1 223 4 4 6
224 1 4 4°79 4 1222 3 4 4 6
1714 4 ¢ 74 «12 14 22 23 4 «5 6
41714 7 79 £ £€ 1 4°22 33 4 «6 F
144727 4 6 «FT 2223 4 4 6 7
114 4 4 «+€ 4 «2223 4 4 «5 7 8
1°11 41 21 22223 3 4 5 6 8 9
2°22 2 222 3 3 4465 6 8B 8
2222 2 3 3 4 4 4 5 6 8 8 ff 13
3°33 3 3 4 4 4 5 6 7 8 9 11 13 17
4 4 4 4 4 5 5 6 7 8B 9 11 13 15 17 19
5 5 6 6 6 7 7 8 9 9 11 13 15 17 19 25
8 8 6 8 8 8 § 11 #3 13 15 17 19 22 25 27

11°12 °14 11 11 13°13 15 17 17 19 22 25 27 30 32
15 15 16 18 17 17 17 19 19 22 26 27 27 30 32 33
19 19 19 19 22 22 22 25 25 27 30 30 32 33 32 28 

the thresholding, although as harsh as possible, stil!
causes only sub-threshold distortion (unseen by the
human observer). All subjective scaling and testing is per-
formed as a recursive comparison procedure [12}, where
the parameterin question is adjusted until no visible dif-
ference can be seen between the original and recon-
structed images when viewed from a standard viewing
distance of 6 to 8 times the image height [6]. Several
independent subjects were also used in each of these
viewing sessions. To avoid blocking effects, the low-
frequency coefficients (below 5 cycles per degree) are
further reduced to suitable values, T, (again determined
through subjective tests as described above). This final
matrix of thresholding values, T;;, (given by eqn. 3), is
then used to threshold the blocks of DCT coefficients
before quantisation.

-1

452) Coo Wi 2 5 cpdif

-- To Ww, < 5 cpd

4,7=01,2..,N-1 3)

Ie is“important to note that although each image sub-
block’ is thresholded by the same basic matrix (T,,), the
varying amountofactivity in each block (reflected in the
relative magnitudes of the DCT coefficients), combined
with the changing luminance values (cop), makes this
thresholding scheme inherently adaptive to changing
image characteristics. Sub-blocks containing little or no
information (and hence very small non-DC transform
coefficients) are thresholded relatively more harshly and
produce fewerbits for transmission.

 
 

4 Psychovisuai quantisation

Once thresholded, the remaining coefficients are quant-
ised to a numberofdiscrete levels. To make the thresh-
olding and quantisation levels independent, the lowest
quantisationlevel, q{}’, is set half a step above the thresh-
old level, 7,,. The overall quantisation scheme is then
uniform from that point, as shown in Fig. 3. The nonzero
transform coefficients, ¢,,, are then quantised to é,, using

  
yo G iuf2

cy~Ty + Gul: cy > 0
z= Qs

" ey + Ty al <0Qi ’ 
ij=012...N—1

IEE PROCEEDINGS-1, Vol. 138, Na, 5, OCTOBER 199]

where |x| refers to the integer value closest to x. The
optimum quantisation step sizes for each coellicient, Q;;
again depend on the spatial frequency sensitivity curve.

af), +Qi12 
Fig. 3 Coefficient quantisation scheme

The effects of spatial masking, however, can also be
exploited to allow for larger quantisation step sizes in
DCTblocks containing areas of high activity [13].

Spatial masking is a well known phenomenon [6, 14]
and refers to the changingvisibility of a single stimulus in
an area of varying spatial and temporalactivity. In a still
image,this leads to a reduction in the visibility of pixel
errors in areas of high-detail luminance changes (high
activity). The relationship between the allowable quant-
isation step size for sub-threshold distortion and the
amountofactivity in a block has been the subject of pre-
vious research [6]. For uniform quantisation, the
relationship is given by :

Oy = STjAp) 4f=0,1,2..,N—1 4)
where 7, is the threshold level corresponding to the
spatial frequency at matrix co-ordinates (i, j} and A, ts
the block activity function* (a measure of the amountof
activity in a block).

In References 6 and 14 A;is defined as the sum offirst
derivatives in the spatial domain. However,this defini-
tion produces a numberof inconsistencies. For example,
a ramp and a sawtooth function would give the same
value for Ap. In this paper, we propose a more accurate
measure ofblock activity ie. the power contained in the
sum of second derivatives in the spatial domain. The
Laplacian edge detector [15] achieves second-order dif-
ferentiation through the approximation

w = (w? + w3) = 4 — 2 cos w, — 2 cos w2

Converting to the (2, z,)domain, this approximation
results in the well-known Laplacian mask, L, in eqn. 5.
To take into account the 3: 4 aspect ratio of most video
images, this mask is altered to obtain the mask, M,in
eqn. 6.

-l -1 -1

L=|-1 8 -1 (5)
-1 -1 -1

-1 -2171 =!

M =| 1.5625 12.679 — 1.5625 (6)
-1 -2771 -!
nn

* Also knownas the masking function.
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Theactivity function, A, > 1, is then given by

A= vaj(E.or-- 203) (7)
where M ++ X denotes the 2-dimensional convolution
output of the edge operator, q is a normalisation factor
and N is the sub-block dimension. The square-rootofthe
summation has been applied to express the power in
linear units. However, when employing transform coding,
an ideal activity function should be calculated directly
from the blacks of transform coefficients. By invoking
Parseval's theorem, the total power contained in the
summation of second derivatives in the spatial domain
can be transformed into the frequency domain to obtain
 

 d*x(m) 2 N-1 >
= (wise)?2 dm? xe ad 

Taking the square-root of the summation, again to revert
to linear units, an activity function in the transform
domain is given by

Ap=lt a(xmiei) (8)
where w,, is the spatial frequency corresponding 10
matrix position(i, j). The activity functions given by eqns.
7 and 8 are, however, computationally costly. In view of
the asymmetry of the mask M, Ap as given in eqn. 7
requires (4N? + 1) multiplications per block while, by
using a pre-calculated wé, matrix, A, as defined in eqn.8
requires (2N? + 1) multiplications per block. If a sim-
plifying approximation to eqn. 8 is made, which includes
the square-root in the summation, the equation reducesto

N-1

Ap=1 +4 2wile (9)ue

Eqn. 9 now produces results which are well correlated
with those produced by eqn. 7 (shown by the correlation
plot of Fig. 4) and at a much reduced computational cost
(now only (N? + 1) multiplications per block and no
square-root operator). Eqn. 9, therefore, provides an
alternative definition for Ap which can be used in situ-
ations where the advantages of increased computational
efficiency outweigh the disadvantages of reduced accu-
racy.

By combining the subjective thresholding matrix, T;,
with the activity function, as described by eqn. 4, the

2nS oo> 1
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coefficient quantisation step sizes are obtained. The nor-
malisation factor, q, is again subjectively adjusted (using
the subjective testing criteria described in Section 3) so
that quantisation of the blocks of coefficients results in
only sub-threshold distortion.

5 Results

The psychovisual thresholding and quantisation schemes,
described in Sections 3 and 4 respectively, have been
combined with the standard DCT-coding algorithm and
applied to two $12 x 512 x 8-bit images (Figs. Sa and

Fig. 5 ‘Face’ image
o Original image
A Reconstructed image
v Scaled difference image
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6a). A sub-block size of 16 x 16 pels was used (N = 16)
and the images were thresholded and quantised as
harshly as possible while avoiding supra-threshold distor-

 
Fig. 6
a Original image
& Reconstructed image
¢ Scaled difference image

‘Church’ image

tion (no visible differences between the original and
reconstructed images when viewed from a standard
viewing distance [6]). The resulting blocks of transform
coefficients were scanned in orderof increasing frequency,
and Huffman-coded using tables of optimum code-words
(5). The compression results obtained (bits/pel ratios and
bit-rates for non-interlaced 25 frame-per-second video)
arc summarised in Table 2 along with compression
results obtained without the use of subjective compres-

(EE PROCEEDINGS-1, Vol. 138, Na. 5, OCTOBER 199f

sion techniques (transform coding without any thresh-
olding or quantising of the transform coefficients). Both
the reconstructed and difference (between original and
reconstructed) images and are displayed in Figs. 5b and

Table 2: Compression results

  
image Standard DCT Perceptually optimum

compression compression

Compression Bit-rate Compression Bit-rate

Face 1.47 biy/pel 9.61 Mbit/s 0.38 bitfpel 2.51 Mbit/s
Church 2.39 bit/pel 15.65 Mbit/s 0.66 bit/pel 4.30 Mbit/s

6b and Figs. 5c and 6c, respectively. The difference
images have been scaled by a factoroffive to make the
variationsvisible. A darker area indicates no change.

As expected, the higher complexity ‘church’ image
requires a higher bit-rate for transmission than the
simpler head-and-shoulders image. By removing most of
the subjective redundancy from the two test images, com-
pression ratios up to 0.38 bits per pel (21: 1) have been
obtained without the need for interframe coding. This is
also an improvement by a factor of 3.8 when compared
to the standard DCT-coding algorithm without psycho-
visual compression.

6 Conclusions

The combination of standard transform coding tech-
niques and psychovisually optimum thresholding and
quantising schemes has resulted in an optimum, high-
compression, image-<oding algorithm. Because of the
general nature of the psychovisualeffects exploited in the
compression scheme, the same techniques can be incor-
porated into almost any image communication system
involvingstill or moving images.

Although the results in Table 2 are optimum for sub-
threshold distortion, it should be remembered that the
bit-rates could be further reduced if a limited amountof
suptathreshold distortion was allowed for a lower grade
of service during periods of network congestion, Also, the
thresholding and quantisation levels in this case have
been optimised for still images. The sensitivity of the
human visual system to different spatial frequencies is
greatly reduced over the entire spectrum as the temporal
frequency approaches that of motion pictures [6], in
which case the images could be thresholded and quant-
ised more harshly. The result would be even lower bit-
rates whilestill retaining a high image quality.
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42.2: Color-Facsimile System for Mixed-Color Documents
Il. Miyagawa, H. Mizumachi, M. Matsuki

NTT Human Interface Laboratories, Kanagawa, Japan

ABSTRACT

In orderto transmit mixed color documents suchas a color
pageofillustrated magazine, with high data efficiency, we proposed
to use ODA type documentstructure and developed the simulation
system. The result of coding simulation, automatic image area
separation and the simulation system are described.

—_

INTRODUCTION

Due to recent progress in color image technology, the demand
for color image communication such as color facsimile ts rapidly
increasing. Color documents to be transmitted by color facsimile can
be roughly classified into the following types:

- multicolor : color pie graphs, B&W(Black and White)
documents marked with red ink,

- full color color photographs,
-mixed color : combinations of above documents

(ex. color pageofillustrated magazine, color catalog)

Standardization of a color extension for facsimile is being
discussed in ITU-T Study Group 8. The representation method for a
single full color imageon a single page will be developed as thefirst
step; mixed colors will be the secondstep. As many color documents
can be classified as mixed color documents, a highlyefficient but high
quality encoding method for mixed color documents is very
important.

‘Weproposed to use an ODA(Open Document Architecture)31
type documentstructure such as page and block, and single content
type ie. raster graphic content, for the encoding of mixed color
documentsl!.21, We have developed a simulation system for this
encoding and communication system named the Mixed Color
Facsimile. This paper presents results gained from encoding
simulations, mixed color syntax, and automatic image area separation,
especially for photographic images and B&W documents.

MIXED COLOR FACSIMILE

In the past few years, remarkable advances have been made in
the developmentand standardization of image coding techniques. The
JPEG(4I and JBIG(S] encoding schemes were developed by an ITU-T
and ISO/IECjoint group. The JPEG encoding scheme was
developedforfull color images. The JBIG encoding scheme was
developed for B&W bi-level images and bit-plane images such as
multi-color images. Therefore, they are not suitable for othertypes of
images.

If only one encoding scheme, JPEG or JB IG,is used for
mixed color documents, we may not be able to achieve highefficiency
and high quality for all document components.

In orderto solve this issue, we introduce the mixed color
communication mode,in which a page of mixed color components is
divided into few different image types such as full color, multi-color,
and B&W binary. Each type is encoded using the most suitable
encoding method. Full color areas are encoded using JPEG. Multi-
color areas and B&W binary imagesare encoded by JBIG or MMR.
For example,if the test image containing a full color component
CIPEG gold hill) and a B&W document (CCITT Test document
NO.4) in one page as shown in Figure | is encoded by JPEG, the
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Figure 1. Test image for Mixed Color Facsimile simulation

Table 1. Simulation results of Mixed Color Facsimile compression

 Mixed color compression
with MH_| with MMR |_with JBIG

200 dpi 519 Kbytes 76 Kbyteg 48 Kbytes 45 Kbytes
Full color

200 dpi 81 Kbytes 81 Kbytes 81 Kbytes
S19 Kbyte 157Koyied129Kbyted125Koyies

result is a compressedfile of S00kbytes. If this imageis divided into
a full-color area and a B&Wbi-level area and coded with JPEG and
MMRorJBIG respectively, the compressed file occupies only £25 to
129 kbytes. This is about one fourth that output by JPEG only. The
result is summarized in Table 1.

a Um0) °3<
 

  
  

In order to apply this method to the scan and send type color
facsimile system which scans and sends almost simultaneously, the
following are required;

1) document syntax that can representthe structure of the area
separated color images.

2) automatic area separation method.
Therefore, we studied document syntax and developed these items. A
simulation system was constructed on a work-station for confirming
the efficiency and applicability of the proposed method, This paper
reports the structure of the document syntax, automatic area
separation method and simulation results.
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Figure 2, The structure of mixed color documents

DOCUMENT SYNTAX FOR MIXED COLOR FACSIMILE

Fortransmitting a mixed color facsimile document, a
documentsyntax that represents the documentstructure is necessary.
Forthis simulation system, we extended the Group4class 1 facsimile
syntax. The Group 4 class 1 syntax is a subset of ODA and can be
extended to support structured documents. In this syntax, only the
layout structure is used and root, page and block are specified. This
structure is shown in Figure 2. Contents used for this system are
limited to the raster graphic contents of ODA.

An ASN.1(Abstract Syntax Notation 1) representationof this
syntax is shownin Figure 3. Colorrelated attributes that are used in
this system are introduced from the ODA Colourextension and JPEG
related attributes are newly added. Image encoding schemesused in
the simulation system are JPEG for full color images and MMRfor
B&W images.

AUTOMATIC IMAGE AREA SEPARATION

For easy operation of the mixed colorfacsimile, an automatic
image area separation techniqueis necessary. In this system,spatial
frequencyanalysis using DCT(Discrete Cosine Transform)is used to
distinguish character and photographic image area. Spatial frequency
analysis is a well known methodforthis kind of process, butit is
difficult to apply this method to scanned images whose resolutions
range from 200 or 300 ppi(pel/inch) resolution because the
differences between the DCT coefficients of these images are not
clear. Therefore, we analyzed the spatial frequency property of these
images using several subsampleratios from 1/1 to 1/3.

StatisticalCharacteristicsofDCTCoefficients
Weregard [g]as an( MxN_)two dimensional image data

matrix, and [ G ] as the two dimensional discrete cosine transformed
data matrix of [ g]. In this case, the element (u, v ) of [G ] is givenas,

888 « SID 94 DIGEST

 

--- Layout Object Descriptar ---
Layout-Object-Descriptor v= SEQUENCE (

object-type Layout-Object-Type,
desctiptor-body Layout-Object-Descriptor-Body OPTIONAL}

Layout-Object-Type = INTEGER { document-layout-root (0),
page (2),
block (4)

Layout-Object-Descriptor-Bedy ::= SET (
position [3}IMPLICIF Measure-Pair OPTIONAL,
dimensions {4]IMPLICIT Dimension-Pair OPTIONAL,
presentation-attributes {6}IMPLICIT Presentation-Attributes OPTIONAL}

Measure-Pair z==SEQUENCE{
x-position [0] IMPLICIT INTEGER,
y-position [0] IMPLICIT INTEGER }

Dimension-Pair n= SEQUENCE{
horizontal (OJIMPLICIT INTEGER,
vertical CHOICE (

fixed [0)IMPLICIT INTEGER} }
Presentation-Attributes=s= SET (

taster-graphics-attributes [1]IMPLICIT Raster-Graphics-Attributes OPTIONAL}
Raster-Graphics-Autributes s= SET (

pel-transmission-density (2Q}IMPLICIT Pel-Transmission-Density OPTIONAL}
Pel-Transmission-Density n= INTEGER { p6 (200 dpi) qh),

p3 (400 dpi) (4))
--- Text Unit---
Text-Unit z= SEQUENCE (

content-portion-attributes Content-Portion-Attributes OPTIONAL,
content-information Content-Information )

Content-Portion-Attributes ::= SET (
type-of-coding Type-of-Coding OPTIONAL,
coding-auributes CHOICE {

Taster-gr-coding-attributes [2]IMPLICIT Raster-Gr-Coding-Attributes }
OPTIONAL)

Raster-Gr-Coding-Atributes = SET {
number-of-pels-per-line [0] IMPLICIT INTEGER OPTIONAL,
number-of-lines [1] IMPLICIT INTEGER OPTIONAL,
subsampling [10]IMPLICIT Subsampling OPTIONAL,
jpeg-coding-mode [1L]IMPLICIT INTEGER{baseline (0)} OPTIONAL)

Type-of-Coding n= {O)IMPLICIT INTEGER{ t-6(MMR) (0),
t-81 GPEG) (16),
1-82 JBIG) (17)}

Subsampling s= SEQUENCE (
IMPLICIT Sub-Sample-Pair,
IMPLICIT Sub-Sample-Pair,
IMPLICIT Sub-Sample-Pair}

first-compenent
second-camponent
third-component

Sub-Sample-Pair = SEQUENCE {
horizontal INTEGER,
vertical INTEGER}

Content-Information 3s OCTET STRINGS( t-6 ar t-81 ar 1-82 }
END

Figure 3. ASN.1 definition for Mixed Color Facsimile simulation
system

M-!t Net n
6 (u,v) x2leely) = £ soncos{ E821)!"Jens“2net)™}MN m=O n=0 em zn

el (k =0)
Osu sM-1, ck) fy (1)
Osv sN-1, =] (k «0)

This spatial frequency analysis applied to the luminance
componentofthe color image obtained by color scanner. The CCITT
test document No. 4 and photographicarea of the Test chart No. 5 of
The Society of the Electrophotography of Japan were used as sample
images for character image and photographic image. Spatial
frequency characteristics were calculated as follows. Absolute values
of DCTcoefficients G(u, v) were calculated for each 8 x 8 block of
each subsampled image and averaged for the entire image area. The
result was plotted for the order of (8*v + u). Figure 4 shows the
result of the character image and figure 5 showsthe result of the
photographic image.
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Figure 4. DCT coefficient characteristics of character image for
different subsampling ratios.
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Figure 5. DCT coefficient characteristics of photographic image for
different subsamplingratios.

These two figures show almost the same characteristics for
1/1 subsampling. There are, however, remarkable differences in high
frequencies u and v with 1/2 and 1/3 subsampling. According to
these results, character image areas and photographic image areas can
be distinguish using 1/2 or 1/3 subsampling and DCTcoefficient
analysis.

Discrimination of photographic image and character image
In order to determine the discrimination function, the DCT

coefficients matrix is divided to four groups: DC component, group
A, group B, and group C, as show in Figure 6.

The dominant DCT coefficient groups for character images are
the DC component and group C. DC componentis influenced by
backgroundregion of character documents whichis generally white.
Group C components correspond to the edge structure of character
images. Group B components are also important for composing
charter shapes,but they also change with photographic images.

The dominant DCT coefficient group for photographic images
is group A, which correspondsto gradually changing tone areas.
High frequency components such as group C havequite low levels.
DC componentis also influenced by the background of photographic
image areas. Therefore, we selected the variables x, y for
discrimination function as follows;

Spatial Frequency u

 
pc

Group A

>
=

Group B ~23
S
i

g
Group C— &a

Figure 6. Separated DCT coefficient matrix
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The distribution of the x y coordinate of each block for
character image areas and photographic image areas is showninigure 7.

Frommutti regression analysis, the discrimination function
forcharacter image areas and photographic image areas became as‘ollows;

4
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»where,
M(xa), M(ya) : the mean of x,y,
V(xa), V(ya) : the variance of x, y,
V(xa), V(ya) : the covariance between x andy,

from photographic image;
M(xb), M(yb) : the mean of x,y,
V(xb), V(yb)_ : the variance of x, y,
V(xb), V(yb) : the covariance between x andy,

from character image.

SIMULATION SYSTEM

Atfirst, an original image stored in thefile system is displayed
as shownin Figure 9. Onthe display,it is possible ta chose either
automatic or manual image area separation mode. In the case ofthe
automatic separation mode, the image is processed by the method
described in Section 4. The discrimination function calculated in
Section 4 is used. The result of discriminatedresult is displayed on
the original image using rectangular area markers as shownin Figure
9. If the result is accurate, the image is divided into content blocks
and encoded by JPEG and MMRcoders. The SUI (Session User
Information) that contains the structured image data for Mixed Color
Facsimile communication is then assembled by the SUI encoderusing
the layout information and the coded image block data. In the
receiving side, the transferred data is disassembledto yield the layout
information and the coded block data. Thefull imageis reconstructed
using these data and displayed. This system can also print out the
image througha digital color copying system.(Canon CLC-500). The
compressed image shown in Figure 9, occupies about 247 kbytes.
This is about 60 % less than the JPEG only coded case (609kbyte).
Theprinted example exhibits some image quality degradation, such as
jerkiness in the character image area. This is because the character
image area was binarized as a 200 dpi image. Higherresolution may
be neededto avoid this degradation for binary images.

CONCLUSION

The mixed color facsimile and an automatic color image area
separation method using DCT were proposed. The mixed color
facsimile can reduce the amount of coded data by 60 % to 70 % from
that needed bythe JPEG only color facsimile. The automatic color
image area separation method was appliedto the test image, andits
performance was confirmed.
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THE CONTRAST SENSITIVITY OF HUMAN COLOURVISION TO

RED-GREEN AND BLUE-YELLOW CHROMATIC GRATINGS
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SUMMARY

1. Amethod of producing red-green and blue~yellowsinusoidal chromatic gratings
is used which permits the correction of all chromatic aberrations.

2. A quantitative criterion is adopted to choose the intensity match of the two
colours in the stimulus: this is the intensity ratio at which contrast sensitivity for
the chromatic grating differs most from the contrast sensitivity for a monochromatic
luminance grating. Results show that this intensity match varies with spatial
frequency and does not necessarily correspond to a luminance match between the
colours.

3. Contrast sensitivities to the chromatic gratings at the criterion intensity match
are measured as a function of spatial frequency, using field sizes ranging from 2 to
23 deg. Both blue-yellow and red-green contrast sensitivity functions have similar
low-pass characteristics, with no low-frequency attenuation even at low frequencies
below 0-1 cycles/deg. These functions indicate that the limiting acuities based on
red—green and blue—yellowcolour discriminations are similar at 11 or 12 cyeles/deg.

4. Comparisons between contrast sensitivity functions for the chromatic and
monochromatic gratings are made at the same mean luminances. Results showthat.
at low spatial frequencies below 0:5 cycles/deg. contrast sensitivity is greater to the
chromatic gratings. consisting of two monochromatic gratings added in antiphase.
than to either monochromatic grating alone. Above 0-5 cycles/deg, contrast
sensitivity is greater to monochromatic than to chromatic gratings.

INTRODUCTION

The aim of this paper is to examine the spatial characteristics of human colour
vision. For luminance vision this has been done by measuring a contrast sensitivity

spatialTréquenctes.The experiments described here aimtomake comparable contrast
sensitivity measurements for colour vision, by using grating stimuli which vary
sinusoidally in colour.

A fewprevious studics have attempted to determine spatial sensitivity to red-green
sinusoidal gratings. in which the two colours are matched in luminance to create an
isoluminant stimulus (c.g. Schade. 1958: Van der Horst & Bouman, 1969: Granger
& Heurtley. 1978: Kelly. 1988). Only one of these reports measurements using
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blucyellowsinusoidal stimuli (Van der Horst & Bouman. 1969). However. there are
manydifficulties associated with these investigations. First. the chromaticaberrations
of the eyearelikely to produce luminanceartifacts in colour gratings at medium and
high spatial frequencies. Transverse aberrations. or a chromatic difference of
magnification, have not been corrected in. previous isoluminant experiments.
Corrections for longitudinal aberrations. or a chromatic difference of focus, have
sometimes been made (Van der Horst & Bouman. 1969: Kelly. 1983). Secondly. a
luminance match between the two colours in the stimulus has generally been made
byusing flicker photometry at one temporal and spatial frequency (Van der Horst
& Bouman. 1969: Granger & Heurtley. 1973) andit has been assu med that this match
is appropriate for all the other spatial and temporal frequencies used. However.
red-green brightness matches may alter with temporal frequency (Ives. 1912:
Bérnstein & Marks. 1972), and so temporal andpossibly spatial-frequency-dependent
changesin brightness matches mayhave producedartifacts in previous isoluminant
studies.

Thirdly, previous measurements have not extendedto verylow spatial frequencies
and veryfew spatial cycles have been displayed at the lowest frequencies. A spatial
cycle numberbelowfourorfiveis known to reduce sensitivity to luminance gratings
(Findlay, 1969: Savoy & MeCann. 1975). The lowest chromatic frequency that has
been used while displaying four cycles is 0-4 cycles/deg (Granger & Heurtley, 1973)
althoughoften thelowest frequency measured with this cvele number has been higher
at, for example. 1-4 cyeles/deg (Van der Horst & Bouman. 1969). Furthermore. these
latter measurements only extended downtospatial frequencies of 0-7 cycles/deg and
for luminance gratings at comparable cvcle numbers, low-frequeney attenuation does
not occuruntil below0:5 cycles/deg (Howell! & Hess. 1978). Thus. the previous studies
have notsatisfactorily investigated colour sensitivity to lowspatial frequencies and
the effects of reducing the spatial cycle number have not been distinguished from
possible low-frequency attenuation below 0:5 cyeles/deg. Finally. in previous
investigations comparisons between colour and luminancesensitivities have not been
attempted. This is partly because there is no adequatedefinition of colour contrast
available which can be used for all colour combinations and does not depend on
theoretical assumptions about post-receptoral cone interactions. Previous measures
of colour sensitivity. such as purity (Van der Horst & Bouman. 1969) and wave-length
discrimination, are difficult to relate to luminance contrast sensitivities.

The experiments described in this paper aim to overcome these problems in the
following ways. (1) A different method of producing chromatic stimuli is used which
permits correction ofall chromatic aberrations. (2) Quantitative criteria are used to
judge the most appropriate intensity match for creation of an optimum chromatic
stimulus, andthis matchis adjustedseparatelyat all spatial frequencies. (3) A very
large field size is used which allows low spatial frequencies ta be presented, without
thresholds being affected by a low number of spatial eyeles. (4) The stimulus is
arranged so that the same contrast scale is used to determine thresholds for both
chromatic and Juminancegratings. This enables simple calculations to be madeof
the contrasts of the chromatic and luminance stimuli to individual cone types.

 

 
The

Ar
scTer!
filters
were

sen

red
12'
cor
qa:
(de
cor
me

{x
en

op
thi
(h4

 
OLYMPUSEX.1016 - 361/714



OLYMPUS EX. 1016 - 362/714

  

' CONTRAST SENSITIVITY TO CHROMATIC GRATINGS 383

 

ere are ; METHODS
rations .

: The stimulus and procedure
im and . . . . . wo

' A red-green chromatic grating was produced by displaying two gratings. each on Joyce display
nee of ‘ screens with white (P4) phosphors. These gratings were viewed through narrow band interference
ments. ’ filters to producetheir colour (Fig. 1). Interference filters with peak transmissions at 526 and 602 nm
:, have were chosen as these wave-lengths are at the peaks of both the human opponent colour spectral

idly, a

t made Ds 1
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1973) a
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2g and |
n does

tudies E WV
es and | . .
t from I Fig. 1. Adiagram oftheexperimental apparatus used tocreate the red-green and blue—yellow

. chromatic gratings. B.s., beam splitter: d.s. 1. d.s. 2, display screens Nos. | and 2: E. eye
2vious of observer: n.d., neutral densityfilter: Z. Zeiss telescope ( x 3): i-f., interference filter.
t been | Interference filters with peak wave-length transmissions of 602 and 526 nmwere used to
ntrast produce a red-green chromatic grating andfilters with peaks at 470 and 577 nm were used
nd on for the blue-yellowgrating.
asures ‘

ength | sensitivity function (Sperling & Harwerth, 1971) and the chromatie response function of Hurvich
i & Jameson (1955). Thus. this red-green wave-length pair causes maximal modulation in the

in the i red-green chromatic response function but modulates the blue-yellow response function by only
which 12%. The two monochromatic gratings were combined optically 180 deg out of phase to form the

!1

sed t i composite chromatic grating. The chromatic grating patch was circular and ranged from 9-2 to
o i 10:3 em in diameter, depending on the correction made for the chromatic difference of magnification

matic (described later). The remainder of the display screen was masked off with a diffuser; thus, at all
\ very contrasts used. the grating patch wasset in a uniform surround of the same meancolour and reduced 7
thout mean luminance. A fixation mark appeared at the centre of the chromatic grating. Viewing was
lus j monocular with a natural pupil and at a distance of 82 cm from each displayscreen. A Zeiss telescope
us Is ( x 3) couldhe placed directly in front of the eve. Viewing with the eye-piece close to the eve optically

‘both enlarged the grating and the field size, whereay viewing with the objective lens clase to the eve
ide of : optically reduces the image: it was thus equivalent to changing the viewing distance, and enabled
‘. the field size to be varied from 2-2 to 23-5 deg. The stimulus was phase reversed sinusoidally at0-4 Hz.

The same method was used to produce a blue-vellow chromatic grating. but using interference
filters with peak transmissions at 470 and 577 nm. 577 nmfalls at the trough of the red-green
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opponent spectral sensitivity function. and 470 nmis close to the blue peak. A filter Cransmitting
light at the blue peak was not used because it severely reduced the mean juminance of the stimulus,
This blue-vellow wave-length pair causes 74", modulation in the blue-yellow chromatic response
function, but only 5°, modulation in the red-green response function, Thus. the choive of the two
wave-length pairs has been made on the basis of our knowledge of the post-receptoral colour
opponent responses to different wave-lengths. As far as possible. chromatic gratings have been
created which maximallystimulate one opponent coloursystem, and as such cause little modulation
in the other opponent colour system.

Contrast of either component grating in the chromatic stimulus is defined by the usual formula:
lt fmnin’ Vax

Ca a
/ + Ini

where [max and [min are the peak and trough liminance values respectively of the monochromatic
grating. The contrasts of the two component gratings were voked together electronically. although
their respective mean luminances may differ. Thus. (526 = Ceo2 890 Cyiq = Cex at all luminances.
To find threshold, contrast ix varied and at thresholdthe reciprocal contrast of either grating may
be taken as the contrast sensitivity. Contrast output on the display sereen was measuredfor a range
of input contrasts using a UDT (United Detector Technology. model 40X) light-meter. Output
contrast was linearly related to input contrast. andcontrasts shown in the following experiments
are the true. calibrated values.

Contrast output was also measuredas a function of the spatial frequency on the display screen.
using a psychophysical procedure which avoids the use of any additional optical apparatus with
unknown modulation transfer characteristics. The subject set contrast thresholds for a range of
gratings which consisted of pairs of stimuli identical in retinal spatial frequency (in eyeles/deg) and
retinal field size, but differing only in their screen spatial frequency {in cyeles/em) and viewing
distance. Thus. anydifferences found between the thresholds for a pair of stimuli are likely to be
dueto the loss of contrast on the display screen at higher spatial frequencies. The results. shown
in Fig. 2. reveal a non-linear relation betweencontrast output andscreenspatial frequency: contrast
output declines markedlyabove (r+ cycles/em and the loss is 40°at 2 eycles/em. In the following
experiments. screen spatial frequencies above [8 cycles/cm were not used. All contrast values
quoted are of contrast output calibrated from the dataof Fig. 2. The results of this psychophysical
procedure agree well with results obtained from optical measurements of contrast loss for the same
type of apparatus (Hess & Baker. 1984). Natural pupil sizes for the red-green stimuli were around
4mm. and 6mmfor the blue-yellow stimuli, All mean luminances were measured using a
calibrated SEI spot photometer.

Contrast thresholds were determined bya single staircase procedure (Cornsweet. 1962). begun
at a randomlyselected contrast above or belowthreshold. The grating was displayed continuously
to increase the speed of thresholdsetting and to reduce considerably temporal transients. A mean
of at least four threshalds was obtainedfor each plotted data point. The largest standard deviation
of the thresholds is marked on each data curve. A 6808 Motorola microprocessor was used on-line
to contro! the stimulus production and presentation. and data collection.

Three subjects were used in the experiments: K.T. (the author). R.M.C. and 8. At least
two subjects. and in some cases three. were used in each experiment. All subjects wore their normal
correcting lenses, and performed normally on the Farnsworth-Munsell 100 hue test and the Ishihara
test for colour blindness.

max

 

 

Correction of chromatic aberrations
This method ofgrating production has the advantageover the use of colour TVdisplays in that

it allows the chromatic difference of focus and the chromaticdifference of magnification of the eye
andother optics to be corrected. The difference offocus may be corrected by placing a negative
lens in the path of the shorter wavelength of the grating pair or a positive Jens in the path of the
longer wave-length, before the two component eratings are combined by the heamsplitter.
Tt ix also possible to measure the magnitude of this correction directly, The stimulus was arranged
such that in the top halfofthe test patel one monochromatic square-wave component grating was
displayed, whereas in the bottom half the other one appeared. The subject tixated on the
longer-wave-length member of the pair (602 or 577 0m) with the help of a fixation mark. A series
of negative correcting lenses was placedin front of the shorter-wave-length stimulus (470 oF 526 nm)
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smitting und the subject saw this stimulus in sharpest focus simultaneously with the longer-wave-length
timulus. grating. This method indicated that a correction of —1 D was required for the blue grating in the
response blue-vellow pair and a correction of —05 1) was required for the green grating in the red-green
“the two pair. These values are close to previous calculations (see Wszecki & Stiles. 1967) and were used
dl colour in the present experiments.ve been
dulation

Q

ormula: 8
S ¢

g as
i 2

romatic 3 10 e S
Ithough 3 seinances. $ E #
ng may E 2”
a range $
Output . 20
riments 01 a3 1 3

Screen spatial frequency (cycies/em)

Screen, Fig. 2. Output contrast (r) normalized to contrast threshold as a function of sereen spatial
us with frequency(eveles/em). A psychophysical method. describedin the text. is used to calculate
ange of output contrast. Output contrast declines after 0-4 cyeles/em. Real contrast may be
eg) and calculated from the curve by multiplying the unealibrated input contrast by the
viewing normalized output contrast, or by adding the normalized output attenuation to the
y to be uncalibrated input attenuation. The smallest and largest standard deviations are shown.
shown Attenuation (dB) = 20 x log I/c.ontrast

llowing
values Thi a cet - 4. . sani :hysical is empirical method of measuring the chromatic difference of focus is convenientto use since

Y theoretical calculations become complex when the telescope is used to magnify or minify the
¢ Same stimulus, and will depend on the design of the telescope. When the telescope was used to magnify.
winga verylittle correction was required for the short-wave-length gratings (—0°25 D for the 470 nm

grating only). When the telescope was used to minify. much larger correcting lenses were needed.
b since for this reverse viewing condition a small difference of focus at the eye requires large correcting
gun lenses at the eye-piece. A +3 Dlens for the vellowgrating in the blue-yellow stimulus, anda +2 DYErE 3 g & 3

mously lens for the red grating in the red-green stimulus were found to be the best corrections.
tation The chromatic difference of magnification of the eve, and any additional optics in use, can be

ion corrected by making independent adjustments to the spatial frequency of one of the componenton-line . , B f ! } eanens3 nbons
gratings. This was done by adjusting the X-gain on the appropriate display screen. Magnification

t least differences are easily detected by displaying the two component gratings as square waves; overlap
sormal of adjacent bars produces a bright strip of a different colour which can be removed by adjusting
hi the magnification of one grating.hihara : wee . : : : .

Wave-length-dependent diffraction effects did not need correction as high frequencies, greater
than 6 evcles/deg are not used (Van der Horst. de Weert & Bouman. 1967). While the chromatic
aberrations are being corrected the subject's head is held in place using a dental bite bar and this

n that line-up is maintained throughout the experiment. When the corrections have been made the
he eve gratings are displayed sinusoidally in space to produce a sinusgidal red-green or blue-yellow
gative chromaticgrating.
of the RESULTS
‘anged The removal of achromatic contrast

be the When creating stimuli which vary only in colour, an important problem is to) e : ‘ : : “we : ‘
series establish the basis on which the intensities of the colours in the stimulus should be
6nm matched. Furthermore. it has frequently been assumed that a match madeat one{ .

U3 vay 350
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spatial or temporal frequency will apply toall otherfrequencies. However, there is intenevidence to suggest that stimuli matched in luminance. for example by flicker chror
photometry. will appear equally bright only under high spatial or high temporal grati:frequency conditions, whereas under other low-frequency conditions luminance the r.The -

lumi

L\/\/\/~ Red
+ 4

R
(2%)

Green Red A+G

é -\=/-Af + —___—_— 0

XPS?ANY Fee 25

NA FeSO 50

meee + EX 16

PNSN a____—  * 100 noR-

(Contrast = 1)
me

Fig. 3. A diagram of the luminance profiles across space of the red and green component exgratings which are added 180 deg out of phase to produce a sinusoidal red-green chromatic col
stimulus. The ratio of red (R) to green (@) mean luminances in the chromatic gratingig variable, and is expressed as the percentage of red light in the mixture. The mean ‘
luminance of the whole stimulus (2 +@)is constant. The contrasts of the component red pe
and green gratings are always equal and are at a value of 1 in this Figure. Contrast is bu
varied to determine threshold. The same method is used to produce a blue—yellow ch
chromatic grating. and the blue to yellow ratio is expressed as the percentage of yellowin the mixture. exse

= Ts

matched stimuli will contain brightness differences (Ives, 1912; Bornstein & Marks, er
1972; Myers. Ingling & Drum, 1973). Thus, there is a need to devise an appropriate hacriterion and a quantitative methodfor matching the intensity of the two colours fr
in the stimulus which maybeused atall spatial and temporal frequencies.

In this experiment. the ratio of the mean Juminancesof the two component gratings Ic
in the stimulus was varied over a wide range. and the subject's contrast sensitivity n

criterion for the choiceof the xto the stimulus was measured at selected points. The
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ere is intensity match was the luminance ratio at which the contrast sensitivity to the
icker chromatic grating differs most from the contrast sensitivity to the monochromatic
poral gratings. The methodisillustrated for the red~green grating in Fig. 3. In this case,
tance the ratio has been expressed as the percentage of red (#) in the red-green mixture.

The range begins and ends with a red or green monochromatic stimulus that has
luminancecontrast but no colour contrast, and in the middle region the stimulus will

300 -

-oO-n. 2:3

~~ oe ON1e 63
AT: Ag

Qo Yee o~ yA0-09a, or
\o-o# of
§-o-8

100

|
30

= oContrastsensitivity
_i. (%)R+G

Fig. 4. Contrast sensitivity as a function of the red-green luminanceratio in the stimulus,
expressed as the percentage of red in the mixture. Four spatial frequencies are shown
(eycles/deg): x, 23; ©. 53; ©, 70 and Lj, 0-09. Vertical bars indicate +1s.p.. The
subject is R.M.C.

have maximum colour contrast and minimal luminance contrast. Over-all there is
no net change in the mean luminance of the composite stimulus; although R/G varies,
R+G was arranged to be at a constant photopic luminance (15 cd/m). The same
method is used to vary the colour ratio in the blue-yellow stimulus. Theratio is

it expressed as the percentage of yellow in the mixture. The mean luminance of the
composite stimulus (B+ Y) remains constant at 2:1 ed/m?.

h Contrast sensitivity for one spatial frequency was measured at eleven or twelve
d percentages in the red-green or the blue-yellow range. The run was then repeated
. but beginning with the opposite colour in the range to avoid any effects due to
x chromatic adaptation. This was repeated for a range of spatial frequencies. Thus, the

experiment examinesthe effect on detection of a monochromatic grating when a
second grating of a different colour is added out of phase in various proportions.
Typical results for the red-green grating are shownin Fig. 4, and for the blue—vellow 7

larks, grating in Fig. 5. The subject's contrast sensitivity is plotted as a function of the
oriate luminance ratio. The set of curves in each Figure represents a range of spatial
lours frequencies.

The spatial frequencyof the stimulus has a profound influence on the results. For
tings low spatial frequencies (below 1 cycle/deg) the subject is less sensitive to the
tivity monochromatic conditions at either end, but as luminance contrast is reduced
of the sensitivity increases reaching a maximum. However,for the higher spatial frequencies

13-2
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the reverse occurs: the subject is most sensitive to the two monochromatie conditions.
and in between sensitivity decreases reaching a minimum. Thus, under lowspatial
frequencyconditions sensitivity isgreatest when there arecolour differences in the
stimulus,whereas at igher frequencies sensitivityisgreatest when the stimulushas|
only luminance cont
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Fig. 5. Contrast sensitivity as a function of the blue-yellow luminance ratio in the
stimulus. expressed as the percentage of yellow in the mixture. Four spatial frequencies
are shown (cycles/deg): x. 1-9: 1.29: 0. 34 and O. 24. The subject is K.T.

 

For the blue-yellow contrast sensitivities (Fig. 5) the minimum at high spatial
frequencies’ shifted relative to the maximum at low spatial frequencies. The low
spatial frequency (0-24 cycles/deg) maximum occurs at 60° yellow. or higher. At
1-9 cycles/deg a minimum occurs at 50%, yellow. and the remaining curves at 2:9 and
3-4 cycles/deg both have minimaat 45% yellow. All spatial frequenciesin this Figure
were displayed with the samefield size (6:5 deg). Thus. for this subject (K.T.) as for
others, thereis a shift in the intensity match with spatial frequency of aboutfifteen
percentage points. Most of this change oceurs below 2 cyeles/deg. Less blue is
required at the low spatial frequency maxima than at the high spatial frequency
minima,indicating that the effective intensity of the 470 nm wave-lengthis relatively
lower at high frequencies. The red-green threshold data. shown in Fig. 4. are
suggestive of a similar but much smaller shift. The low spatial frequency maxima
oceur at 55% red, and the minima occur at 50 and 47 °, red for 2 and 3 eveles/deg
respectively. For other subjects a similar pattern occurs. This effect is not more than
794 but resembles the blue-yellow results in that relatively more of the shorter-
wave-length (526 nm) light is required at the criterion match as spatial frequency
increases up to 2 cycles/deg. Thus. for both red-green and blue—vellow stimuli a
luminance match between colours, which occursat 50 85 red or 50°5 yellow, does not
predict the maxima or minima of contrast sensitivity.

It can also be seen from these results that the minima at high spatial frequencies
become more sharply defined. making an accurate choice of intensity match more
critical. since small differences in the match havequite large effects on sensitivity.
These minima continue to increase in depth from 2 to 7 eveles/deg.
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CONTRASTSENSITIVITY TO CHROMATIC GRATINGS 389

All subjects were asked to report any changes in the appearance of the gratings
at threshold. at the different intensity ratios. The appearance varied from a
homochromatic condition. where the bars appeared to be of a uniform colour but
varying in brightness. to a heterochromati¢ condition where hue differences could be
distinguished at threshold. At low spatial frequencies, colour differences could be

Field size (deg): 23-5
300

(1-8) (2-8)

oF=SOTSEO,

5 + 19

z 4E

2 30 oO
5 Qa
® 10 4
g | ‘aQo \

ab
‘

1 \0-03 O-1 0-3 1 3 10
Spatial frequency (cycles/deg)

Fig. 6. Contrast sensitivity as a function ofspatial frequency for a red-green grating (CJ:
526. 602 nm). Slightly different red-green ratios were used at different spatial frequencies
to obtain the criterion intensity match of the two colours. The lowest numbersof spatial
eycles displayed are indicated in parentheses. The continuous curve was fitted by eye. The
methodof extrapolation (dashedline) is described in the text. The subjectis R.M.C. See
also the upper curve of Fig. 7 for results of subject K.T.

detectedat threshold for mostof the intensity ratios. However, for the highest spatial
frequencies used. such heterochromatic colour thresholds occurred at only 2 or 3
intensity ratios. and these always coincided with the minima ofsensitivity. These
observations strongly suggest that colourdifferences are detected at threshold at the
intensity ratios which produce the maximal and minimal sensitivities. They also
emphasize the need for an accurate. quantitative method of determining the match
since, at high spatial frequencies. only a narrow range of intensity ratios produce
colour detection thresholds. Furthermore. at the intensity ratios which occur at and
around the maxima and minimaof contrast sensitivity. the two colours in the grating
appear as bars of equal brightness. Many subjects comment on the unusually vivid
or ‘fluorescent’ appearance of the colours at these points.

The chromatic contrast sensitivity function (esf.)

Measurements ofthesensitivity of colour vision to different spatial frequencies can
now be made using the criterion that the maxima and minima indicate the best
intensity ratio for the two colours in the chromatic grating. For a rangeofspatial
frequencies. results similarto those of Figs. 4and 5 were obtained, and intensity ratios
at the maxima and minimaselected for determining the contrast sensitivities which
are plotted in Figs. 6 and 7. The largest field size (235 deg) used in the experiment
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CONTRAST SENSITIVIT ¥ TO CHROMATIC GRATINGS 391

Comparisons between colour and luminance c.8fs
The colour and luminance e.s.f.s differ in shape. but we do not knowhowtheir

relative sensitivities compare. Comparisons of sensitivity are difficult since there is
no adequate definition of colour contrast available which can be appliedto all colour
combinations, and does not depend on theoretical assumptions about post-receptoral

Field size (deg): 235 ' § 1190524300 ‘ ‘

 

 
 

(18) (28) 5e°STOR,CA.4.0.92 3.
100 oom ath ‘

¢ Oo, Go
é a8

w oO

~ OoContrastsensitivity
 

  1 ‘
0-03 0-1 0:3 1 3 10 30 100

Spatial frequency (cycles/deg)

Fig. 8. Contrast sensitivity as a function of spatial frequency for the red-green grating
(OG; 526, 602 nm) and a green monochromatic grating (O; 526 nm). The data for the
chromatic grating are taken from Fig. 6. The subject is R.M.C.

cone interactions. None of the previous measures of chromatic sensitivity, such as
wave-length discrimination or purity, translate readily into the luminance domain.
Measures of purity have resulted in the two component luminance gratings being
presented at different contrasts, making comparisons with luminance sensitivity
difficult. In the present experiments, the contrasts of the two component gratings
are always held equal to each other, and at threshold the reciprocal contrast of either
grating is taken as contrast sensitivity. Thus, as a working measure, the same contrast
scale is used to determine detection thresholds for both the luminance and chromatic
gratings. More direct and quantitative comparisons of sensitivity can also be made
of the level of the cone responsessinceitis relatively simple to calculate the contrast
of the luminance and chromatic gratings to each conetype.

The results shown in Figs. 4 and 5 give an initial indication of how contrast
sensitivity changes as luminancecontrast is removed and chromatic contrast is added
to the stimulus. The present experiment extends thése comparisons over the complete
spatial range. The data for the chromatic gratings were' taken from Figs. 6 and 7.
Data for the luminance gratingswere obtained by cither using the pure green grating
(0 %red condition) to makethe red-green comparison,or using the pure yellow grating
(100% yellow condition) to make the bluc_yellow comparison. Luminance and
chromatic comparisons were each made at the same mean luminances. The choice
of monochromatic grating is not important since Van Nes & Bouman (1967) have
shown that the wave-length of a monochromatie luminance grating does not affect
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enabled frequencies as low as 0-17 eycles/deg to be displayed with over 4 cyeles
present. Thus. low spatial frequency sensitivity could be assessed without being
affected by a reduced eycle number, since if more than fourspatial cycles are present
contrastsensitivity is independent of the cycle number and thefield size (Howell &
Hess, 1978).
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Fig. 7. Contrast sensitivities as a function of spatial frequencyfor a blue-yellowgrating
(©. 470, 577 nm) and a red-green grating (C]; 602, 526 nm). both for subject K.T.
Different blue-yellow ratios were used at. different spatial frequencies to obtain the
criterion intensity match of the two colours. Slightly different red-green ratios were also
required for the criterion match. The continuous curve wasfitted by eye. The method of
extrapolation (dashedline) is deseribed in the text.

The results obtained using red-green gratings are shown in Fig. 6 for R.M.C. and
in the uppercurveof Fig. 7 for K.T., the blue—yellow results for K.T. are shown in
Fig. 7. Sensitivities to both blue-yellow and red-green stimuli have low-pass
characteristics, with no decline in sensitivity for spatial frequencies below
0-1 eycles/deg. Previous declines found (e.g. Kelly, 1983) may have been due to the
low numberof cycles displayed.

Sensitivity to the red-green and blue-yellow stimuli declinesat spatial frequencies
above 0-8 eycles/deg. Sensitivity to the red-green medium and higher spatial
frequenciesis lower than has been previously reported andby extrapolation, red-green
chromatic resolution fails at 11-12 cycles/deg for R.M.C. and K.T. (The method of
extrapolation is described later.) Previously, resolutions above 25 eycles/deg have
been suggested. Resolution ofthe blue-yellow gratingalso fails at around 11 eycles/deg
for both subjects K.T. and 8.C.S. (no Figure). This compares with an acuity of above
20 eycles/deg, obtained using bluc—yellow sine-wave stimuli (Van der Horst &
Bouman, 1969). These chromatic acuity values are investigated more fully in a latersection.

Fig. 7 shows a comparison between the red-green and blue-yellow sensitivities
obtained from the same subject (K.T.). The two c.s.f.s are remarkably similar and
have much the same high spatial frequency decline. The only significant difference
occurs in the low spatial frequency region where the blue-vellow sensitivity is
consistently about 0-15-4)-2 log units lower.
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contrast sensitivity provided the stimuli have the same mean luminance. The results
for the comparison between sensitivities to the red-green chromatic grating and the
green monochromatic grating are shown in Fig. 8. The blue-vellow chromatie and
yellow monochromatic comparisons are shownin Fig. 9.

Field size (deg): 23-5 | 6-5 2.27
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Fig. 9. Contrast sensitivity as a function of spatial frequency for the blue-vellow grating
(QO; 470. 577 nm) and a yellow monochromatic grating (OQ: 577 nm). The data for the
chromatic grating are taken from Fig. 7. Thesubject is K.T.

The results show that the contrast sensitivity to both red-green and blue-yeHlow
gratings is greatest below1 cycle/deg. whereas luminance contrast sensitivity peaks
at 0°84 cycles/deg. For the low spatial frequencies. the combination of the red and
green monochromatic gratings in antiphase can be seen when neither grating can be
seen alone. This difference in contrast sensitivity reaches 0-6 log units and may
increase at even lowerspatial frequencies. Results obtained on another subject (K.T.)
are very similar. The same effect occurs for the blue-yellowstimuli. For low spatial
frequencies, contrast sensitivity to the combination of monochromatic gratings in
antiphase is greater than to the monochromatic grating alone. This difference reaches
0-5 log units at 0-1 cycles/deg. For another subject (8.C.8.) the difference was slightly
less (0'4 log units). Above cross-over points at 0-3-0-5 cycles/deg for all subjects.
contrast sensitivity becomes greatest to the monochromatic stimuli. and it is
luminance vision which has the higher acuity.

Comparisonsof chromatic and luminance acuily
Previous studies using isoluminant techniques have produced a wide range of

values for chromatic acuity. In most studies, extrapolations have to be made byeye
from threshold measurements obtainedat lowerspatial frequencies. Such procedures.
using purity asthe measureofchromatic sensitivity suggest acuity values for red-green
gratings that range from 25-30 cycles/deg (Van der Horst & Bouman. 1969) to
50 cycles/deg and equal to luminance acuity (Schade. 1958). Two studies which
include measurements made using blue-vellow sine or square-wave stimuli suggest
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an acuity greater than 20 cevcles/deg (Van der Horst ef af. 1967: Van der Horst &
Bouman. 1969). Studies which have attempted to measure acuity using isoluminant
sine- or square-wavegratings of variable wave-lengths have also reported a similar
range of acuity values from 20to 30 cvcles/deg (Hilz, Hupperman & Cavonius, 1974).

100
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Spatial frequency (cycles/deq)
Fig. 10. Contrast sensitivity as a function of spatial frequency. plotted on semilogarithmic
coordinates. The data for red-green gratings ((]: 602. 426 nm) and green monochromatic
gratings (©. 526 nm) are taken from Fig. 8. Linear regressionlines are fitted to the data
and extrapolated to a contrast sensitivity of 1 (100°, contrast) to indicate acuity. Low
spatial frequency data have been omitted (see text for further details). The subject is
R.M.C.

and bar frequenciesof46 cycles/deg reported to equal luminance acuity undersimilar
conditions (Cavonius & Schumacher. 1966). The purposeofthe following calculations
is to make accurate predictions of colour and luminance acuity on the basis of the
new contrast sensitivity measurements obtained here.

The high spatial frequency data points for the luminance and chromatic gratings
were replotted on semilogarithmic coordinates. All the data points which occur after
the peak sensitivity of the colour or luminance contrast sensitivity functions are
included in the plot. In effect. the medium and high spatial frequency points that
occur at or belowa contrast sensitivity of 100 were included. A linear regressionline
was fitted to each function and extrapolated to a contrast of 100% (contrast
sensitivity = 1) to predict acuity. _

Results for red-green stimuli are shown in Fig. 10 and the blue—yellowresults in
Fig. 11. Visual inspection reveals that the regression lines fit the data points well.
Red~green chromatic acuity is 11-12 cycles/deg, compared to the luminance acuity
of 34-36 cycles/deg at the same mean luminance for subjects R.M.C. and K.T.
Blue—yellow chromatic acuity is around 11 cycles/deg, closely resembling red-green
acuity, compared to the luminance acuity of 32-33 cycles/deg. for subjects K.T. and
S.CLS8.

Luminanceacuity is lower than might be expected. This is probably due to the
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relatively low mean luminance of the stimuli which will reduce sensitivity to very
high spatial frequencies. However. comparisons with the results of previous chromatic
studies can be madesince equivalent or higher Juminances have been used in the
present experiments.

100- 0,VA$
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Fig. 11. Contrast sensitivity asa function ofspatial frequency. plotted on semilogarithmic
coordinates, The data for blue—vellowgratings (J: 470.577 nm)and yellow monochromatic
gratings (©. 577 nm) are taken from Fig. 9. Linear regressionlines are fitted to the data
and extrapolated to a contrast sensitivity of 1 (100°, contrast) to indicate acuity. Low
spatial frequency data have been omitted(see text for further details). The subject is K.T.

Thus, these results indicate that chromatic acuity, based on hue discriminations
ofsinusoidal chromatic gratings, is lower than previously thoughtat 11-12 cycles/deg
for both the red-green and bluc—yellowstimuli. Possible explanationsfor the higher
sensitivities and acuities found in previous studies are considered in the Discussion.

Note on colour appearance

Atsuprathreshold levels these purely chromatic sinc-wave gratings are square wave
in appearance. For example. no intermediary shades of yellow are seen between the
red and green peaks andlittle variation occurs in the appearance of these colours
within each bar. A similar effect occurs for the bluc—yellow stimulus, where no
intermediary blue—-whites are seen, The unexpectedabsenceofyellow betweenregions
of red and green. and the absence of other such ‘transition’ colours. has been
commented on before. both in the spectrum (von Helmholtz, 1909). and using
overlapping lincar ramps of red and green (Campbell, 1983). Below about
0:3 cycles/deg, this effect disappears and the chromatic gratings become more
sinusoidal in appearance.

DISCUSSION

These experiments have revealed a shift with spatial frequency in the intensity
match which produces the maximum changein contrast sensitivity. The shift is most
prominent for bluc-vellow gratings and shows that the effectiveness of blue light
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very relative to yellow in the match, decreases as spatial frequency increases up to
aatic 2 cycles/deg. Thereis also a suggestion of a similar but smaller shift in the red-green
1 the match, where the effectiveness of green light decreases relative to red at the higher

spatial frequencies. The question arises as to what causes these changes in match
point. Wave-length-dependent diffraction effects are unlikely since the shift occurs
at relatively low spatial frequencies, below 6 cycles/deg. Also, diffraction would cause
a relative decrease in the contrast of the red or yellowgrating, and so would produce
a shift in the opposite direction at higher spatial frequencies. Small differences in focus
between the twocolours duc to longitudinal chromatic aberrations might cause an
apparentshift in an intensity match, by reducing the contrast of one colour. However.
in the present experiments chromatic aberrations have been corrected, and a
considerable change in match still occurs for blue—yellow stimuli at very low spatial
frequencies below 1-2 cycles/deg. Any small residual differences in focus between the
two colours are unlikelyto affect thresholds at these low spatial frequencies (Campbell
& Green, 1965).

Another possible explanation is that blue cones or rods contribute to the match
under low spatial frequency conditions, but not at higher spatial frequencies,
therefore decreasing the effectiveness of short wave-length light in the match at these
higher frequencies. It is known that the sensitivity of the ‘isolated’ blue system
decreases above 1~2 cycles/deg and is considerably reduced by 5-6 cycles/deg (Kelly,
1974; Green, 1972), which is broadly compatible with the shift occurring at lowspatial

we

; frequencies. The fact that the shift is considerably greater for the blue-yellow match
' than for the red-green one is compatible with a blue-sensitive mechanism being

involved. Rodsensitivity also declines above 1 cycle/deg (Green, 1972). However,
rods are unlikely to contribute to threshold since, at threshold, different colours can
be seen in the stimulus. These results suggest that spatial frequency influences

dions brightness perception: and are compatible with other evidence which shows that
/deg brightness differences are not always predicted by the standard V, luminosity
gher function (Ives, 1912; Bornstein & Marks, 1972; Myers et al. 1973).
sion. These results have shown that acuities for the red-green and blue—yellow gratings

are very similar. namely 10-12 cycles/deg. Although our knowledgeofpost-receptoral
colour processing is very limiting, the wave-length pairs for the two gratings were

vave chosen so as to optimallystimulate either the red-green or the blue—yellow opponent
i the colour system, and each causes verylittle response in the opposite opponent system
ours (see Methods). Thus,it is likely that the detection of the red-green and blue—yellow
2 no gratings is by the red-green and blue-yellow opponentcolour systems respectively.
jons It is interesting that the red-green colour acuity is so low in view of the dense _
deen distribution of red and green cone types in the retina. The acuity for the blue-yellow
sing grating agrees well with recent estimates of the acuity of the ‘isolated’ blue
out mechanism, also at 1/14 cycles/deg (Stromeyer, Kranda & Sternheim, 1978;
nore Williams. Collier & Thompson, 1983). Thus, the results may suggest that the sparse

distribution of blue cones in the retina is not the only factor limiting blue-yellow
grating acuity. Previous measurements have suggested much higher chromatic acuity
values ranging from 20 to 30 cycles/deg to normal luminance acuities. The methods

iwity used here allow accurate measurements of sensitivity to chromatic high spatial
nost frequencies to be made since a quantitative way of making an intensity match has
ight been adopted: the accuracy of this match is shown to be most important at high

 
OLYMPUSEX.1016 - 374/714



OLYMPUS EX. 1016 - 375/714

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

396 KOT. MULLEN
spatial frequencies. Furthermore. corrections have been made for both types of of thechromatic aberration, reducing or eliminating luminance artifacts in the stimulus. mate!In the experiments. the subjects couldall detect the colour differences in the matched The
stimulus at threshold, at all spatial frequencies measured, suggesting that these freat:thresholds are based on colour discriminations. aeReports by some other authors suggest that previous measurements ofsensitivity nett *to medium and high spatial frequency chromatic gratings are not based on the coatsperception of colour differences. For example. Granger & Heurtley (1973) found that of ~colour differences in the stimulusat threshold disappearat spatial frequencies above —3 eycles/deg. and that the remaining brightness differences could not be nulled by epreadjusting the colour match. Sucheffects might be explained if the medium and high smespatial frequency thresholds were based on luminance artifacts in the stimulus alon.produced by chromatic aberrations. Cavonius & Schumacher (1966). who measured wher. |acuities to chromatic gratings, did not look for colour differences in the stimulus but heenreported a wave-length discrimination function at 30 cycles/deg which is very . iEunlikely to be based on hue discriminations. Another possibility which should be ea
considered in this case is that the spectral sensitivity of the achromatic detecting comt
mechanism changes at spatial frequencies greater than those used in the present Fi
experiment introducing brightness differences into the stimulus. If two achromatic of ordetecting mechanisms were available then brightness differences could not be nulled iansimply by readjusting the brightness match. Further experiments eliminating all . 5 +luminance artifacts at spatial frequencies above 7 cycles/deg are in progress to test T .these possibilities. vollIn the experiments described here. comparisons have been made between contrast —sensitivities to luminance and chromatic gratings. Although contrast sensitivity to a
monochromatic gratings does not change with the wave-length (colour) of the sen:stimulus. providing the mean luminance is constant (Van Nes & Bouman, 1967). the oe
over-all contrast sensitivity to the chromatic gratings will depend on the particular
colour pairs which they contain. Thus. any comparisons of sensitivity to luminance T

and chromatic gratings will be influenced bythe colours of the pairs in the chromaticstimulus. For the comparisons made here. wave-lengths were chosen to coincide with con
the peaks of the opponent colour spectral sensitivity function and the chromaticresponse function (see Methods). and so the over-all contrast sensitivity to thechromatic gratings is unlikely to be greatly increased. but maybe decreased. byusing
different wave-lengths. Also. measurements made of modulation sensitivities to
different wave-length combinations (Butler & Riggs. 1978) contirm that sensitivityis .
relatively high to the colour pairs used here.Both red andgreen gratings in the red-greenstimulus will stimulate both medium-andlong-wave-length cone types and even at isoluminance the stimulus will contain ~ “r
intensity differences to individual cone types. ‘Thus. comparisons between the

wh

he

an

luminance and colour casf.s can also be made in terms of their cone contrasts.Calculations have been madein the Appendix which show that. at the red-greenratio ie(
used for subject R. MLC. in the lowspatial frequency chromatic grating. the contrast
of this grating toa mechanism with the spectral sensitivither component grating. Fora mechanismwith the spectral

ist of the chromatic grating in3B9°o

yof long-wave-length cones

is 18°, of the contrast ofcit
sensitivity of medium-wave-length cones, the contre
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CONTRAST SENSITIVITY TO CHROMATIC GRATINGS 397

of of the contrast of cither component grating. These values at the criterion red-green
shed match for another subject (K.T.) are also given in the Appendix.
hese The comparisons of contrast sensitivities have revealed that at low spatial

frequencics the two monochromatic gratings combined in antiphasecan be seen when
vity neither grating can be seen alone. For example. at the lowest spatial frequency
the contrast sensitivity to the red-green grating is 3-8 times greater than to the green

that ‘grating presented alone (subject R.M.C.. Fig. 8). However, when considered in terms
sove of cone contrasts, this effect is considerably greater. The modulations of the
i by long-wave-length cones whichcan be detected in the chromatic condition are 21 times
high smaller than those which can be detected for the monochromatic grating presented
ulus alone. For medium-wave-length cones. modulations 10 times smaller can be detected
ured when the stimulus is in the chromatic (antiphase) condition than wheneither
: but monochromatic stimulus is presented alonc. Thus, at low spatial frequencies a
very chromatic grating can be detected on the basis of considerably smaller receptor
d be modulations than can a luminance grating. This interesting effect is presumably
ting mediated bythe post-receptoral extraction of colour opponentsignals, involving the
sent combination of different cone outputs.
tatic Finally.the psychophysical results reportedhere are relevant to theneurophysiology
led of primate colour vision. The evidence has shownthattherelative sensitivities of the
+ all visual systemto colour and luminance contrast change with spatial frequency. Since
* , colour opponentcells are likely to respond to both colour and luminance contrasttest . : : : ree :

(Ingling & Drum, 1973), it can be predicted thatthe relative sensitivity of these single
rast cells to colour and luminancecontrast is spatial frequency dependent. Thus. these
y to psychophysical results emphasize the importancein future neurophysiological studies
the of considering spatial variables when determining the colour and luminance contrast
the sensitivities and the spectral sensitivities of single cells.

tular

ance APPENDIX
iatic The following calculations are of the effective contrast (C',) of a chromatic grating.
with composed of two monochromaticgratings added in antiphase. for a single cone type.
latic The quantal intensityprofile (/,) of the chromatic grating is describedby:
the .

ising 1, = M, 2, + MW, a, + (a,— Gy &) SIN WH.Oo. , . . + ;

8 to where 5~ is its spatial frequency and x is space. The contrast of the grating
ty is an
vs is: (=Tnty=a:

; wa, + J, 2, _tum-

itain where: 1, 2 are subscripts denoting the wave-lengths of the component gratings: W,.
the M, are the mean quantal intensities of each component grating: a, a, are the

asts. amplitudes of each component grating: 2. 8 denote the spectral sensitivity weightings
-atio for the wave-lengths of the two component gratings for long (a)- and medium
srast (f)-wave-length cone types.
ones If the contrasts of the two component gratings are equal andat a value (

stra M,=a/e.
19%

0 My =a,/€
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and

hy ey ly ey
Gy, 4, $a, a,

cc
x. (1)

If the ratio of the luminance of component grating No. 1 to component grating
No. 2 is 4, their quantal intensities are equated by:

a,V, = La, hi,
or E

a, = La, V, (2) I

where V = 3/3); V, |, are the standard I, luminous efficiency weightings of the ‘
component wave-lengths.

Substituting eqn. (2) in eqn. (1):

LVa,— eyTL 2 Cc, 3C ¢ L Va, +2, * ( ) t
For the red-green chromatic grating used in the present experiments. wave-length E

No. 1 is 526 nm and wave-length No. 2 is 602 nm -

Veog = 08012.

Vos = 06054. F

Therefore, }’ = 0-7556. F

Cone spectral sensitivities may be taken from the Smith & Pokorny (1975) cone k
sensitivity functions, based on colour matching data (see Boynton. 1979).

BE i

For long-wave-length cones (a) 1
Oso, = 04526.
Aeqq = 04905. LI]

For medium-wave-length cones (f) k

Psog = 08484. BK
Boon = 0°1149.

}

The data in Fig. 4 for subject R.M.C. showthat the criterion intensity match at .
low spatial frequencies is at 50% red. Thus the green to red luminanceratio (L) = 1. ;

Using these values in eqn. (3) gives: s

C, = ~0-:1784 x C for long-wave-length cones, or 18°, of C: S
and =_ ‘

C. = +0°3923 x C for medium-wave-length cones. or 39% of €. =

For subject K.T., the intensity match at low spatial frequencies is at 55°, red. =

Thus, the green to red luminanceratio (L) = 0:8182. \
Using these values in eqn. (3) gives:

\
C, = —0:2735 x Cfor long-wave-length cones. or 27°, of C:

and

Co = +3043 x C for medium-wave-length cones. or 30°, of C.
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Abstract—To determine which spatial frequencies are most effective for letter identification. and whetherthis is becauseletters are objectively more discriminable in these frequency bands or because can utilizethe information moreefficiently, we studied the 26 upper-caseletters of English. Six two-octave wide filterswere used to produce spatially filtered letters with 2D-mean frequencies ranging from 0.4 to 20 cycles perletter height. Subjects attempted to identify filtered letters in the presence of identically filtered. addedGaussian noise. The percent of correct letter identifications vs s)7 (the root-mean-square ratio of signalto noise power) was determined for each band at four viewing distances ranging over 32:1. Object spatialfrequency band and s/n determine presence of information in the stimulus: viewing distance determinesretinal spatial frequency, and affects only ability to utilize. Viewing distance had no effect upon letter
determine discrimination efficiency, we compared human discrimination to an ideal discriminator. For ourtwo-octave wide bands, s/n performance of humans and ofthe ideal detector improved with frequencymainly because linear bandwidth increased as a function of frequency. Relative to the ideal detector.humanefficiency was 0 in the lowest frequency bands, reached a maximum of 0.42 at 1.5 cycles per abjectand dropped to about 0.104 in the highest band. Thus, our subjects best extract upper-case letterinformation from spatial frequencies of 1.5 cycles per object height, and they can extract it with equalefficiency over a 32: range of retinal frequencies. from 0.074 to more than 2.3 cycles per degree of visual
angle.

Spatial filtering Scale invariance

INTRODUCTION

Characterizing objects

When we view objects, what range of spatial
frequencies is critical for recognition, and how
is our visual system adapted to perceive these
frequencies? Ginsburg (1978, 1980) was among
the first to investigate this problem by means of
spatial bandpass filtered images of faces and
lowpassfiltered images ofletters. He noted the
lowest frequency band for faces and the cutoff

| frequency for letters at which the images seemedto him to be clearly recognizable. The cutoff
frequency for letters was 1-2 cycles per letter
width; faces were best recognized in a band
centered at 4 cycles per face width. He also

: proposed that the perception of geometric visual
| illusions, such as the Mugtler—Lyer and Poggen-

dorf, was mediated by“low spatial frequencies
A078. Ginsberg & Evans.
 (Ginsberg. 1971,

| 1979).

"To whom reprint requests should be addressed
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discriminability: object spatial frequency, not retinal spatial frequency. determined discriminability. To

Contrast sensitivity Acuity

An issue that is related to the lowest fre-
quency band that suffices for recognition is the
encoding economy ofa band. Forafilter with
a bandwidth that is proportional to frequency
(e.g. a two-octave-wide filter). the lower the i
frequency, the smaller the number of frequency
components needed to encodethe filtered image
of a constant object. Combining these two
notions, Ginsburg concluded that objects were
best, or most efficiently, characterized by the
lowest band of spatial frequencies that sufficed
to discriminate them. Ginsburg (1980) went on
to suggest that higher spatial frequencies were —
redundant for certain tasks. such as face or
letter recognition.

Several investigators were quick to point out
that objects can be well discriminated in various
spatial frequency bands. Fiorentini, Maffei and
Sandini (1983) observed that faces were well
recognized in either high or in lowpass filtered
bands. Norman and Erlich (1987) observed that
high spatial frequencies were essential for dis-
crimination between toy tanks in photographs.

} 399
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With respect to geometric illusions, both Janez
(1984) and Carlson, Moeller and Anderson

(1984) observed that the geometric illusions
could be perceived for images that had been
highpass filtered so that they contained no
low spatial frequencies. This suggests that low
and high spatial frequency bands may carry
equivalently useful information for higher visual
processes.

Characterizing the visual system

In the studies cited above, the discussion of
spatial filtering focuses on object spatial fre-
quencies, that is, frequencies that are defined in
terms of some dimension of the object they
describe (cycles per object). Most psychophysi-
eal research with spatial frequency bands has
focused on retinal spatial frequencies, that is,
frequencies defined in terms ofretinal coordi-
nates. For example, the spatial contrast sensi-
tivity function (Davidson, 1968; Campbell &
Robson, 1968) describes the threshold sensi-
tivity of the visual system to sine wave gratings
as a function of their retinal spatial frequency.
Visual system sensitivity is greatest at 3-10
cycles per degree of visual angle (c/deg). How
does visual system sensitivity relate to object
Spatial frequencies?

Unconfounding retinal and object spatial
Srequencies

Retinal spatial frequency and object spatial
frequency can be varied independently to deter-
mine whethercertain object frequencies are best
perceived at particular retinal frequencies. Ob-
ject frequency is manipulated by varying the
frequency band of bandpass filtered images:
retinal frequency is manipulated by varying the
viewing distance.

The cutoff object spatial frequency of lowpass
filters and the observer’s viewing distance were
varied independently by Legge, Pelli, Rubin and
Schleske (1985) who studied reading rate of
filtered text at viewing distances over a 133:1
range. Over about a 6:1 middle range of dis-
tances, reading rate was perfectly constant, and
it was approximately constant over a 30:1
range. At the longest viewing distances. there
was a sharp performance decrease (as the
letters became indiscriminably small). At the
shortest viewing distance, performance de-
creased slightly. perhaps due to large eye move-
ments that the subjects would have to execute
to bring relevant material towards their lines of

sight, and to the impossibility of peripherally
previewing new text.

While viewing distance changed the overall
level of performance in Legge et al., the cutoff
object frequency of their low-pass filters at
which performance asymptoted did not change.
From this study, we learn that reading rate can
be quite independentofretinal frequency over a
fairly wide range, and that dependenceon criti-
cal object frequency does not depend on viewing
distance. Because the authors measured reading
rate only in lowpassfiltered images, we cannot
infer reading performance in higher spatialfre-
quency bands from their data.

Unconfounding object statistics and visual system
properties

Humanvisual performanceis the result of the
combined effects of the objectively available
information in the stimulus, and the ability of
humansto utilize the information. In studying
visual performance with differently filtered im-
ages, it it critical to separate availability from
ability to utilize. For example, narrow-band
images can be completely described in terms
of a small number of parameters—Fourier
coefficients or any other independent descrip-
tors—than wide-band images. Poor human
performance with narrow-band images may
reflect the impoverished image rather than
an intrinsically human characteristic—an ideal
observer would exhibit a similar loss.

The problem ofassessing the utility of stimu-
lus information becomes acute in comparing
human performance in high and in low fre-
quency bandpass filtered images. Typically.
fillers are constructed to have a bandwidth

proportional to frequency (constant bandwidth
in terms of octaves). For example, Ginsburg
(1980) used faces filtered into 2-octave-wide
bands; while Norman and Ehrlich (1987) also
used 2-octave bandsfor their filtered tank pic-
tures. With such filters, high spatial frequency
images contain more independent frequencies
than low frequency images.

Although linear bandwidth represents per-
haps the important difference between images
filtered in octave bands at different frequencies.
the informational! content of the various bands

also depends critically on the nature of the
specific class of objects. such as faces or letter.
Obviously. determining the information content
of images is a difficult problem. Whenit is not
solved. the amount of stimulus information

available within a frequency band is confounded
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with the ability of human observers to use the
information. Direct comparisons of perform-
ance between differently filtered objects are
inappropriate. This distinction between objec-
tively available stimulus information and the
human ability to use it has not been adequately
posed in the context of spatial bandpass
filtering.

Efficiency
In the present context, physically available

information is best characterized by the per-
formance of an ideal observer. If there were no
noise in the stimulus, the ideal observer would
invariably respond perfectly. To compare the
performance of an observer, human or ideal,
noise of root-mean-square(r.m.s.) amplitude
is progressively added to the signal of r.m.s.
amplitude s until the performanceis reduced to
some criterion, such as 50% correct in a letter
identification task. This defines the signal to
noise ratio, (s/n). for a criterion c. Efficiency ef
of human performanceis defined by:a! 2

§,\7 oC 5 -
eff =(~)j / oh

ny t I Ny, «

where A and i indicate human and ideal observ-
ers, and s and ” are r.m.s. signal and noise
amplitudes (Tanner & Birdsall. 1958). In a pure,
quantally limited system, efficiency actually
represents the fraction of quanta absorbed
(utilization efficiency). In the context of signal
detection theory,efficiency is given by a d’ ratio:

eff = (didi.

Overview

For an object that contains a broad spectrum
of spatial frequencies, object spatial frequency is
determined by the center frequency of a spatial
bandpass filtered image. Retinal spatial fre-
quency is determined by the viewing distance at
which the stimulus is viewed. Stimulus infor-
mation is determined jointly by the signal-to-
noise ratio. by the spatial filtering. and by the
characteristics of the set of signals: these three
informational components are combinedin the
efficiency computation. Letters are a convenient
stimulus 10 study because they are highly over-
learned so that human performance can be
expected to be reasonablyefficient. and because
much is already known about the visibility of
letters in the presence of internal noise (letter
acuity) and about the visual processing of
letters.

Spatial frequencies and discrimination efficiency
1401

Specifically, to determine the roles of object
and retinal spatial frequencies, letters are
filtered into various frequency bands. Noise is
added, and the psychometric function for cor-
rect identification is determined as a function
of s/n. Accuracydepends only on s/n and not on
overall contrast, for a wide range of contrasts
(Pavel, Sperling, Riedl & Vanderbeck, 1987).
This determination is repeated for every combi-
nation of object frequency band and viewing
distance. Thereby, retinal spatial frequency
and object spatial frequency are unconfounded,
enabling us to determine whether a particular
object frequency band is better discriminated
in one visual channel (retinal frequency) than
any other (Parish & Sperling. 1987a, b). More-
over, by computing an ideal observer for the
identification task, we obtain an objective
measure of the information that is present in
each of the frequency bands. Finally, the com-
parison of human performance with the per-
formanceofthe ideal observer gives us a precise
measure of the ability of our subjects to utilize
the information in the stimulus. Having
untangled these factors, we can determine which
spatial frequencies most efficiently characterize
letters for identification.

METHOD

Two experiments were conducted using simi-
lar stimuli and procedures.

Stimuli

Letters (signals) and noise. The original,
unfiltered letters were selected from a simple
5 x 7 upper-case font commonly used on CRT
terminals. Since this is an experiment in pattern
recognition, we felt that the simplest letter pat-
tern might be the most general: indeed, this font
has been widely used in letter discrimination
studies. For the purpose of subsequent spatial
filtering. the letters were redefined on a pixel
grid that measured 45 (vertical height) x 35
(maximum horizontal extent of letters M and
W). The letters had value | (white); the back-
ground had value 0 (black). To avoid edge
effects in filtering, the background was extended
to 128 x 128 pixels for all computations. How-
ever, only the center 90 x 90 pixels of the stimu-
lus were displayed, as these contained effectively
all the usable stimulus information, even for
low spatial-frequency stimuli. Letters for pres-
entation were chosen pseudo-randomly from
the set of 26 upper-case English letters. Noise
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Table |. Parametersof the bandpass filters: lower and upper
half-amplitude frequencies, peak, and 2D mean frequencies

in eycles/letter height 

Band Lower Peak * Upper Mean*

0 0 Lowpass 0.53 0.39
I 0.26 0.53 1.05 0.74 ~
2 0.53 1.05 2.11 1.49
3 1.05 2.11 4.22 2.92
4 2.11 4.22 8.44 5.77
5 6.33 Highpass 22.5 20.25

“Frequencies are weighted according to their squared ampli-
tude (power) in computing the mean.

fields were defined on a 128 x 128 array by
choosing independent Gaussian noise samples
for each pixel, with the mean equal to zero and
a variance a” as required by the condition. (As
with the letters, only the central 90 x 90 pixels
were displayed.) Forty different noisefields were
created.

Filters. Each stimulus consisted of a filtered

letter added to an identically filtered noise field.
Six spatial filters were available, corresponding
to six successive levels of a Laplacian pyramid
(Burt & Adelson, 1983). The zero-frequency
componentwas addedto the imagesso that they
could be viewed. The object-relative filter
characteristics, upper and lower half-amplitude
cutoff and 2D mean frequency (cycles per
letter height), appear in Table 1. The 2D mean
frequency 7 for a given bandis:

$270 127 {27 127

f=Y 2 Says] Y Ya.x20 y=0 x=0 ¢=0

where f., is the 2D frequency and a,.,is its
amplitude. Cycles per object height is used
rather than the more usual cycles per object
width because the height of our upper-case
letters remained constant across the entire set,
whereas the width varied betweenletters.

The transfer functions (spectra) of thefilters
are displayed in Fig. 1. Approximately, filters
are separated in spatial frequency by an octave
(factor of 2) and have a bandwidth at half-
amplitude of two octaves. The small mound in
the lower right corner of Fig. 1 is a negligible
imperfection in filter 4. For convenience, the
limited range of spatial frequencies passed by
each of the filters will be referred to as the band

of that filter; a specific band is 6, (i = 0. I, 2. 3,
4, 5), where by is the lowest set of frequencies
and 4, is the highest.

The filter spectra (shown in Fig. 1) are
approximately symmetrical in log frequency
coordinates, a symmetrical spectrum in log co-
ordinates is highly skewed to the right in linear
frequency coordinates. resulting in a mean that

Davin H. ParisH and GEORGE SPERLING

Cyctes/field width
1 2 4 8 6 32 64 ,

 
22.4

~ 0.70 14 2a 5.6 41.2
Cycles/ Letter height

Fig. 1. Filter characteristics for the filters used in the
experiments. There are two abscissas, both on a Jog scale.
The top abscissa is the frequency in cycles per unwindowed
field width (128 pixels); the bottom abscissa is in cycles per
letter height (45 pixels). The ordinate is the normalized gain.
The parameter/indicates thefilter designation 6,in the text.

is much greater than the mode. In a 2D (vs 1D)
filter, the rightward shift is accentuated. For
example, band 2 has a peak frequency of 1.05
c/object but a 2D mean frequency of 1.49
c/object. The single most informative character-
ization of such a skewed bandpass spectrum
depends somewhat on the context; usually use
the mean rather than the peak.

Figure 2 (top) shows theletter G,filtered in
bands 1-5 without noise; the bottom showsthe
same signals plus noise, s/n =0.5. The full
128 x 128 array (extended byreflection beyond
its edges) was passed through thefilter so that
the effect of the picture boundary did not
intrude into the critical part of the display.

Signal to noise ratio, sin. A filtered letter is a
signal. Let i, j index a particular pixel in the x,y
coordinate space of the stimulus. The signal
contrast c,(i,/) of pixel i,/ is:

ty

where/,; is the luminanceofpixel i, j and fy is
the mean signal luminance over the 90 x 90
array. Signal power per pixel, s, is defined as
mean contrast power averaged over the 90 x 90.
pixel array:

c(i J)

id

s=(W)' YE oh P (2)

where ¢,, is the contrast of pixel i, j and
l=J=90.

Noise contrast ¢,(i, /) is the value of the i, jth
noise sample divided by the mean luminance.
Analogouslyto signal power (equation 2). noisé
contrast power per pixel. 7. is equal to (oth)
The signal to noise ratio is simply sa.
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Quantization. Our display system produced
156 discrete luminance levels. Level 128 was
used as the mean luminance [); f was
47.5cd/m’. To produce a visual display of a
given letter, band. and s/n, signal power s and
noise power n were normalized so that the
luminance of every one of the 8100 displayed
pixels fell within the range of the display system,
there was no truncation of the tails of the
Gaussian noise. (Although the relationship be-
tween input gray-level and output luminance
was not quite linear at the extreme intensity
values, it was determined that more than 90%
of the pixels fell within the linear intensity
range.) Intensity normalization was applied sep-
arately to each stimulus (combination of signal
plus noise). By normalizing the total stimulus
s+n, the actual value of s displayed to the
subject diminished as ” increased;i.e. the actual
value of s was not knownby the subject. Indeed.
even stimuli with precisely the sameletter in the
same band and with the same s/n might be
produced with slightly differents and n depend-
ing on the extreme values of the noise fields.

Seven values of s/n were available for each
band, chosen in a pilot study to insure that the
data yielded the entire psychometric function
{chance to best performance). The same pilot
study showed that subjects never performed
above chance when confronted with noise-free
letters from by: this band was omitted from the
present study.

Procedure: experiment |
Four of the experimental variables—letter

identity, noise field, frequency band, and sin—
were randomized within each session. A fifth
variable, viewing distance, was held constant
within each session and was varied between
sessions. Four viewing distances were used:
0.121, 0.38, 1.21 and 3.84m. A chin rest was
used to stabilize the subject’s head for viewing
at the shortest distance. At the four distances.
the 90 x 90 pixel stimulus subtended 31.6, 10.

“4.16 and 1.0 deg of visual angle respectively. The

upper and lower half-amplitude cut-off retinal
frequencies for the upper six filters. with respect
to the four viewing distances used in this exper-
iment, and for a fifth distance used in the second
experiment, appear in Table 2. Subjects partici-
pated in four I-hr sessions at each viewing
distance. Each session consisted of 315 trials,
nine trials at each of seven s/n’s for each of the
five frequency bands.

Prior to the first session, subjects were shown
noise-free examples of the unfiltered letters.
They were told that each stimulus presentation
consisted of a letter and a certain amount of
noise, and that the letter may appear degraded
in some way. They were informed that at no
time would a letter be shifted in orientation or
from its central location in the stimulus field.
Finally, they were instructed to view each stimu-
lus for as long as they desired before making
their best guess as to which letter had been
presented. A response (letter identity) was
required on every trial, Subjects typed the
response on a keyboard connected to the host
computer (Vax 11750); subsequently, typing a
carriage return erased the video screen and
initiated the next trial in a few seconds. The
room illumination was very dim: the response
keyboard was lighted by stray light from its
associated CRT terminal. No feedback was
offered to the subjects.

Observers

Three subjects, two male and one female.
between the ages of 20 and 27 participated in the
experiment. All subjects had normal or cor-
rected-to-normal vision. One of the subjects was
a paid participant in the study.
Procedure: experiment 2

This experiment was run before expt 1. It is
reported here because it offers additional data
with two new and one old subject at a fifth
viewing distance. Except as noted, the pro-
cedures are similar to expt t. The screen was
viewed through a darkened hood at a distance

Table 2. Lower and upper half-power frequency and 2D mean frequency(inc deg of visual angle) for all bands and viewing
distances used in both experiments

Viewing distance (m)

    
  

  
   

 

atne

j | Band 0.12 0.38 La 3.84 0.48i 0 (lowpass) —0.00--0.04 (0.03) 0.00 -0.12 (0.09) 0.00 0.37 40.27) 0.00. 1.18 (0.871 0.00 -0.15 (0.11) i1 0.02-0.07 (0.05) 0.06 0.23 (0.16) 0.18 0.7410.52) 0.58 2.34(1.65) 0.07 0.29 (0.21) :; 2 0.04-0.15 (0.10) 0.12: 0.47 (0.33) 0.37 -1.48 (1.04) LAS 4.70(3.30) 0.15 0.59 (0.41) !{ ! 3 0.07-0.30 (0.20) 0.23 0.94 (0.64) 0.74 2.97 (2.04) 334-9.40 (6.48) 0.29-1.18 (0.81) :\ 4 0.15 0.59 (0.40) 0.47 1.88 (1.27) 148 6.94 (4.04) 470 ISKOUIZED 0.99 2.36. 1.60) '\ 5 (highpass) 0.30-2.25 (1.41) 0.94 -7.13 (4.45) 2.97 22530419) y 4a 70.27 (48.001 1.77 8.96 (5.63)     

: ), t igi e., elec re huge. i. die. }: pov| hen ive (et nn tend 043 alc, al 0.% a
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of 0.48 m. At this distance, the 90 x 90 stimuli
subtended 7.15 deg of visual angle. The half-
amplitude cut-off frequencies and the mean
frequencies of the six spatialfilters are given in
the rightmost column of Table 2. Three male
subjects between the ages of 20 and 27 par-
ticipated in the experiment. All subjects had
normal or corrected-to-normal vision. Two of
the subjects were paid for their participation,
and one, DHP,also participated in expt 1. Five
sessions of 315 trials were run for each subject.

RESULTS

Psychometric functions: p vs log jg sin
The measure of performance is the observed

probability 6 of a correct letter identification.

Probabilitycorrect

“3.0 +2. +1. -2,0

 
The complete psychometric functions are dis-
played in Figs 3 (expt 1) and 4 (expt 2). A
separate psychometric function is shown for
each subject, viewing distance and frequency
band. In band 4,, for all subjects, performance
asymptotes (for noiseless stimuli) at 6 0.5. In
all other bands, performance improves from
near-chance (1/26) to near perfect as the value
of s/n increases.

Noise resistance as a function offrequency band

An obvious aspect of the data of both exper-
iments is that the data move to the left of the
figure panels as band spatial frequency in-
creases. This means that high spatial frequency
stimuli (bands 64, 6s) are identifiable at smaller

Log; S/N

Fig. 3. Psychometric functions from expt 1, Each graph displays performanceas a function of logy 5 ”.
within a frequency band. The parameter is viewing distance. Subjects are arranged in columns and
frequency band is arranged in rows, progressing from the highest frequency band at the top to the lowest
band at the battom. The four viewing distances are 3.84 (QO). 1.21 (A) 0.38 (C1), and 0.121 (O) m.
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Probabilitycorrect 
Log,,S/N

Fig. 4. Psychometric functions for each subject and fre-
quency band in expt 2. Viewing distance was 0.48 m. The
live frequency bands, b,~b,, are indicated, respectively, by
3.0. A, © and +. The probability of a correct response

is plotted as a function of log, s/n.

sin than stimuli in bands 5, and 4); resistance to
noise increases with spatial frequency band. To
enable comparisons of noise sensitivity as a
function of band, the s/n at which 6 = 50% was
estimated for each subject and frequency band
from expt 1 by means of inverse interpolation
ftom the best fitting logistic function. As view-
ing distance had no effect, all estimates were

made using the data collected when viewing
distance was equal to 0.38 m. A graph of these
(s/n), points as a function of the mean object
frequency of the band is plotted in Fig. 5 (©).
For comparison, the expected rate of improve-
Ment in (s/n)sq,, based on the increasing num-
ber of frequency componentsas one moves from
low to high frequency bands, is plotted as a
series of parallel lines in Fig. 5. Performance
improves [(s/m)sp,, decreases] somewhat faster
than 1/f (the slope of the parallel lines). These
Tesults, and Fig. 5, will be analyzed in detail in
the Discussion section.

Logig8/n oO a

  
2.5

—3.5, a —032 056 100 1.78 3.16 5.62 100 17.8 316
2D Mean frequency(cycles/letter height)

Fig. 5. Performance of human subjects and various compu-
tational discriminators. The abscissa indicates logis of the
mean frequency of each bandpass stimulus. The ordinate
indicates the (interpolated) s/n ratio at which a probability
of a correct response p = 0.5 is achieved. Circles indicate
each of the three subjects in expt ! at the intermediate
viewing distance of 1.21 m. In band 6,, 2 of 3 human
subjects fail to achieve 50% correct (eff = 0); these pointslie
outside the graph. (A)indicates sub-ideal and (©) indicates
super-ideal performancesofdiscriminators that brackets the
ideal discriminator. The shaded area below the super-ideal
discriminator indicates theoretically unachievable perform-
ance. Squares indicate performanceofa spatial correlator-
discriminator. The oblique parallel lines have slope —I that
represents the improvement in expected performance
(decrease in s/n) as function of the number of frequency
components in each band when filter bandwidth is

proportional to frequency.

The non-effect of viewing distance

Anotherproperty of the data is that, in most
conditions, viewing distance has no effect on
performance. Analysis of variance, carried out
individually for each subject, shows that thereis
no significant effect of distance in any band for
subject dhp andasignificanteffect of distance in
bands 6, and 6, for the other two subjects.
Further analysis by a Tukey test (Winer, 1971)
in bands 5, and b, for these subjects shows that
the only significant effect of distance is that
visibility at the longest viewing distance is berter
than at the other three distances. For subject
CID,the improvementis equivalent to a gain in
sfn of 0.19 and 0.28 logy (for bands b, and 55,
respectively); for MAV,the corresponding gains
were 0.21 and 0.40.

Improved performance at long viewing dis-
tances is almost certainly due to the square
configuration of individual: pixels, which pro-
duces a high frequencyspatial pixel noise thatis
attenuated by viewing from sufficiently far away
(Harmon & Julesz, 1973). In low frequency
bands, pixel-boundary noise is not a problem
becausethe spatialfiltering insures that adjacent
pixels vary only slightly in intensity. We ex-
plored the hypothesis of pixel-boundary noise
with subject CID, who showed a distance effect
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in band 5. At an intermediate viewing distance
of 1.21 m, CJD squinted her eyes while viewing
stimuli from band 5. By blurring the retinal
image of the display in this way, performance
improved approximately to the level of the
furthest viewing distance. ~

To summarize, the only significant effect of
distance that we observed was a lowering of
performance at near viewing distancesrelative
to the furthest distance. This impairment
occurred primarily in bands 4 and 5. In these
bands, the spatial quantization of the display
(90 x 90 square-shaped pixels) produces arti-
factual high spatial frequencies that mask
the target. These artifactually produced spatial
frequencies can be attenuated by deliberate
blurring (squinting), or by producing displays
with higher spatial resolution, or by increasing
the viewing distance to the point wherethe pixel
boundaries are attenuated by the optics of the
eye and neural components of the visual modu-
lation transfer function. In all cases, blurring
improves performance and eliminates the
slightly deleterious effect of a too small viewing
distance. Thus, for correctly constructed stim-
uli, in the frequency ranges studied, there would
be no significant effect of viewing distance on
performance. This finding is in agreement with
the results of Leggeet al. (1985), who examined
reading rate rather than letter recognition.It is
in stark disagreement with the results of
sinewave detection experiments in whichretinal
frequency is critical—see Sperling (1989) for an
explanation.

DISCUSSION

A comparison of performance in different
frequency bands shows that subjects perform
better the higher the frequency band; and sub-
jects require the smallest signal-to-noise ratio
in the highest frequency band. To determine
whether performancein high frequency bandsis
good because humans are more efficient in
utilizing high-frequency information. or because
there is objectively more information in the
high-frequency images, or both, requires an
investigation of the performance of an ideal
observer. The performanceofthe ideal observer
is the measure of the objective presence of
information. Human performanceresults from
the joint effect of the objective presence of
information and the ability of humansto utilize
that information. Humanefficiency is the ratio
of human performance to ideal performance.

Davip H. ParisH and GEORGE SPERLING

Ideal discriminator

‘Definition. An ideal discriminator makesthe
best possible decision given the available data
and the interpretation of “best.” The perform.
ance of the ideal discriminator defines the objec-
tive utility of the information in the stimulus.
Weprefer the name ideal discriminator, rather
than ideal observer, because it indicates the

critical aspect of performance under consider-
ation, but we occasionally use ideal observer to
emphasize the relations to a large, relevant
literature on this subject. Our purposes in this
section are first, to derive an ideal discriminator
for the letter identification task, second, to
develop a practical working approximation to
this discriminator, and third, to compare the
performance of the human with the ideal dis-
criminator.

Although ideal observers have recently come
into greater use in vision research, the appli-
cations have focused primarily on determining
the limits of performance for relatively low-level
visual phenomena. For example, Barlow (1978.
1980), and Barlow and Reeves (1979) investi-
gated the perception of density and of mirror
symmetry; Geisler (1984) investigated the limits
of acuity and hyperacuity; Legge, Kersten and
Burgess (1987) examined the pedestal effect:
Kersten (1984) studied the detection of noise
patterns; and Pelli (1981) detailed the roles of
internal visual noise. Geisler (1989) provides an
overview of efficiency computations in early
vision. Our application differs from these in that
we expand the techniques and apply them to
a higher perceptual/cognitive function, letter
recognition.

For the letter identification task, the ideal
discriminator is conceptually easy to define. A
particular observed stimulus, x, representing an
unknownletter plus noise, consists of an inten-
sity value (one of 256 possible values) at each of
90 x 90 locations. The discriminator’s task is to

makethe correct choiceas frequently as possible
from among the 26 alternative letters.

Thelikelihood of observing stimulus x, given
each of the 26 possible signal alternatives, can
be computed when the probability density func-
tion of the added noise is known exactly. The
optimal decision chooses theletter that has the
highest likelihood of yielding x. The expected
performance of the ideal discriminator is com-
puted by summing tts probability of a correct
response over the 256*™ possible stimuli (256
gray levels. 90 x 90 pixels). Unfortunately.
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Spatial frequencies and discrimination efficiency
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Template, (xy)

 
Latter, (ay)
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Digitizationnoise

 
 

 
Template, (@x, Oy) {

O
hat are modelled by the ideal discriminator analysis.
r half indicates the corresponding operations in the

re carried out on 128 x 128 arrays; the subject sees only the center
field are eachfiltered by the same filter (2); the noise

Fig. 6. Flow chart of the experimental procedures
Upper half indicates space-domain operations; lowe:
frequency domain. Computations a
90 x 90 pixels. A random letter and a random noise
is amplified to provide the desired signal-to-noise ratio:
and quantized (represented by the addition ofdigitization noise), 4filter selects an annulus, whereas the quantization noise
In the frequency domain @,, @,, the bandpass

 
the letter and noise are added, the output is scaled

nd the result is shown to the subject.

is uniform over @,, @y-

when there is both bandpassfiltered and inten-
sity quantization, the usual simplifications that
make this enormous computation tractable are
not applicable.

As an alternative to computing the expected
performanceofthe ideal discriminator, one can
compute its performance with a particular sub-
set of the possible stimuli—the stimuli that the
subject actually viewed or, preferably, a larger
set of stimuli for more reliable estimation. This
Monte Carlo simulation of the performance
of the ideal discriminator is a tractable com-
putation that yields an estimate of expected
performance.

Derivation. Stimulus construction is dia-
grammed in Fig. 6 which shows the equivalent
Operations in the space and the frequency do-
mains. To derive an ideal discriminator, we need
lo carefully review the processes of stimulus
construction. We use uppercase letters to rep-
tesent quantities in the frequency domain and
lowercase letters to represent quantities in the
space domain. A letter is defined by a 90 x 90
array that takes the value | at the letter
locations and 0 at the background locations.
When this arrayis spatially filtered in band 6,it
defines the letter template 1,,(x.y). where f

indicates the particular letter, b the frequency
band, and x,y the pixel location. We write
T, (@_, @,) for the Fourier series coefficient of
i,, indexed by frequency.

An unknownstimulus 4; ,(%, y) to be viewed
by a subject is produced by adding filtered
a, (x, 9°) with post-filtering variance a4, to the
template 1,,(x,¥); where letter identity i is un-
knownto the subject. The stimulusis scaled and
digitized (quantized) to 256 levels prior to pres-
entation, contributing an additional source of
noise g;4(, ¥)s called digitization noise. Finally,
a d.c. component(dc) is added to u,, to bring
the mean luminancelevel to 128. These steps are
diagrammed in Fig. 6 which shows both the
space-domain and the corresponding frequency-
domain operations. The space-domain compu-
tation is encapsulated in equations (3):

Uj; (XY) = Bi altos 3) + n(x") (3a)
Uj (Xs y= Bialto(x y) + ny(x YI

+ Gip(Xs 3") + de. (3b)
The scaling constant B;.5. limits the range of

real values for each pixel, prior to quantization,
to [-0.5, 255.5]. The degree of scalingis deter-
mined by the maximum and minimum values in
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the function 4,,+7,. Note that the extreme
values in the image are determined by oy, which
is adjusted to yield the appropriate s/n for each
condition; the values of 1,, are fixed prior to

‘scaling. Specifically:

_ 256
~ max(t,,+4,) — min(t,,+ ”,)

Bis (4)

As a result of bandpass filtering, the
noise samples in adjacent pixels are strongly
dependent on each other. Therefore, the dis-
criminator problem is best approached in the
Fourier domain, where the random variables

{N,(@,,@,)} are jointly independent because
the filtering operations simply scale the differ-
ent frequency components without intro-
ducing any correlations (van Tress, 1968). The
task of the ideal discriminator is to pick the
template ¢,, that maximizes the likelihood of u,,
with a priori knowledge of: (i) the fixed func-
tions ¢,,, and their probabilities; and (ii) the
densities of the jointly independent random
variables {N,(w,,@,)}. As is clear, B.,, 0%.
{Q, (a@., @,)}. and {N, (w,, @,)} are all jointly
distributed random variables characterized by

some density /. To computethelikelihood of u,;,
the ideal discriminator must integrate f over all
possible values that may be assumed bythe
set of jointly. distributed random variables,
whose values are constrained only in that they
result in a possible stimulus u,,. Unfortunately,
no closed-form solution to this problem is avail-
able, forcing us to look for an alternative
approach.

Bracketing. To estimate the performance of
the ideal discriminator, we look for a tractable

super-ideal discriminator that is better than the
ideal but which is solvable. Similarly, we look
for a tractable sub-ideal discriminator that is
worse than the ideal. The ideal discriminator
must lie between these two discriminators; that

is, we bracket its performance between that of
a “‘super-ideal” and a “‘sub-ideal” discriminator.
The more similar the performance of the super-
and sub-ideal discriminators, the more con-

strained is the ideal performance which lies
between them.

Our super-ideal discriminatoris told, a priori,
the extact values for f,, and o3 for each stimu-
lus presentation. Therefore, it is expected to
perform slightly better than the ideal discrimi-
nator which must estimate these values from
the data. The sub-ideal discriminator estimates

these same parameters from the presented
stimulus in a simple but nonideal way. There-

é

fore, it is expected to perform slightly worse
than the ideal discriminator. The computational
forms used to compute B,, and ox for the
sub-ideal discriminator are presented in the
Appendix, along with the derivation of the
likelihood estimator used by both discrimin-
ators. A complete discussion of these deri-
vations and the problems associated with the
formulation of an ideal discriminator for such

complex stimuli is presented in Chubb, Sperling
and Parish (1987).

Performance of the bracketed discriminator.
The super- and sub-ideal discriminators were
tested in a Monte Carloseries oftrials, in which

they each were confronted with 90 stimuli in
each of the frequency bandsat eachof seven s.1
values chosen to best estimate their 50% per-

formance point. The s/n necessary for 50%
correct discriminations was estimated by an

inverse interpolation of the best fitting logistic
function. The derived (5/1), is the measure
of performance of a discriminator. The mean
ratio, across frequency bands, of

(s/n gx, SUb-ideal/(s ‘1 se, super-ideal

is about 2 (approx. 0.3 log, units). The
ratio does not depend on the criterion of
performance.

Efficiency of human discrimination

In all conditions, human subjects perform
worse than the sub-ideal discriminator. Notably.
with no added luminance noise. the subideal
(and, of course, the ideal) discriminator func-
tion perfectly, even in by where subject perform-
ance is at chance. and in 5, where subjects
reached asymptote at about 50% correct.

Data from the subjects are plotted with the
(s/n)so, Sub-ideal and (5/1), Super-ideal in
Fig. 5. For comparison, Fig. 5 also shows the
performanceof a correlatordiscriminator which
chooses the letter template that correlates most
highly with the stimulus in the space domain. In
the coordinates of Fig. 5 (log; s/n vs loguf
where f represents the mean 2D spatial fre-
quency of the band), the vertical distance d from
the human data log(s/n)sgs,, Auman down to the
bracketed discriminator log(s.1)s9»,, ideal rep
resents the log,, of the factor by which the
bracketed discriminator outperforms the human
observer at that value of f. For the purposé
of specifying efficiency. we assume the ideal
discriminator lies at the mid-point of the sub
and super-idea! discriminators in Fig. 5. The

fficieney
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Spatial frequencies and discrimination efficiency

Efficiency  
 iD aMO23 aa 10

2D MeanSpatial Frequency. Cycles/Object

Fig. 7. Discrimination efficiency as a function of the mean
frequency of a 2-octave band (in cycles per letter height)
indicated on a logarithmicscale. Data are shown for three
observers: A =SAW, (1 =RS. O = DHP. The viewing
distance is 2.21 m, which is representative of all viewing

distances tested.

efficiency eff of human discrimination relative
to the bracketed discriminator is eff = 10~™,
where:

d= log(s in )soe. unin log(s [n )som, ideal

The values of eff in each object frequency
band are shown in Fig. 7. In band 0. eff'is zero
because human performance never reaches
50%; indeed, it never rises significantly above
4% (chance). In band 1, human performance
asymptotically climbs close to 50%as s/n ap-
proachesinfinity: eff = 0. In band 2, eff reaches
its maximum of 35-47% (depending on the
subject), and it declines rapidly with increasing
frequency (b,—6s).

The 42% average efficiency in band 2 is
similar in magnitude to the highest efficiencies
observed in comparable studies. For example.
efficiency has been determined for detecting
various kinds of patterns in arrays of random
dots (Barlow, 1978, 1980; van Meeteren &
Barlow, 1981), tasks which, like ours, may
require significantly cognitive processing. In a
wide range of conditions, the highest efficiencies
observed were about 50%, and frequently
lower. Van Meeteren and Barlow (1981) also

found that efficiency was perfectly correlated
With object spatial frequency and was indepen-
dent of retinal spatial frequency.
Spatial correlator discriminator. A correlator

discriminator cross-correlates the presented
stimulus with its memory templates and chooses
the template with the highest correlation. Corre-
lation can be carried out in the space or in the
frequency domain. Correlation is an efficient
strategy when noise in adjacent pixels is inde-
pendent and when membersofthesetof signals
have the same energy: both of these conditions

SRF RL

I4ll

are violated by our stimuli. However, when
sufficient prior information is available to sub-
jects, they do appear to employ a cross-corre-
lation strategy (Burgess. 1985).

It is interesting to note that the performance
of the spatial correlator discriminator over the
middle range ofspatial frequencies is quite close
to the performance of the sub-idea! discrimin-
ator. At high spatial frequencies, correlator
performance degenerates. due to its inability to
focus spatially on those pixel locations that
contain the most information. A spatial corre-
lator that optimally weighted spatial locations,
could overcomethe spatial focusing problem at
high frequencies. (Spatial focusing is treated in
the next section.)

At all frequencies, the spatial correlator is
nonideal because noise at spatial adjacent pixels
is not independent. At low spatial frequencies,
the nonindependence of adjacent locations be-
comes extreme and the correlator fails miser-
ably. This points out that. for our stimuli,
correlation detection is better carried out in the
frequency domain because there the noise at
different frequencies is independent. The quali-
tative similarity between the correlator dis-
criminator and the subjects’ data suggests that
the subjects might be employing a spatial
correlation strategy, augmented by location
weighting at high frequencies.

Lowest spatial frequencies sufficient for letter
discrimination. Band 2 corresponds to a 2-
octave band with a peak frequency of 1.05
cjobject (vertical height of letters) and a 2D
mean frequency of 1.49 c-object. At the four
viewing distances, 1.05 c, object corresponds to
retinal frequencies of 0.074. 0.234, 0.739 and
2.34 c/deg of visual angle. We observe perfect
scale invariance:all of these retinal frequencies,
and hence the visual channels that process this
information, are equally effective in achieving
the high efficiency of discrimination.

The finding that 5, with a center frequency of
1.05 c/object and a } amplitude cutoff at 2.1
c/object is critical for letter discrimination is in
good agreement with previous findings of both
Ginsburg (1978) for letter recognition and
Legge et al. (1985) for reading rate. Legge etal.
used low-pass filtered stimuli. which included
not only spatial frequencies within an octave of
1 c‘object (b,) but also included al! lower fre-
quencies. From the present study, we expect
human performance with low-pass and with
band-pass spatial filtering to be quite similar up
to | cobject because the lowest frequency
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bands, when presented in isolation, are percep-
tually useless (at least when presented alone).

It is an important fact that our subjects
actually performedbetter, in the sense of achiev-
ing criterion performanceat a lowers/nratio, at
higher frequency bands than b,. This is ex-
plained by the increase in stimulus information ©
in higher frequency stimuli. Increased infor-
mation more than compensatesfor the subjects’
loss in efficiency as spatial frequency increases.

Components of discrimination performance

Though the performance of the bracketed
ideal discriminator is useful in quantifying the
informationalutility of the various bands,it is
instructive to consider the changing physical
structure of the stimuli as well. What com-

ponents of the stimuli actually lead to a gain in
information with increasing frequency? Accord-
ing to Shannon’s theorem (Shannon & Weaver,
1949), an absolutely bandlimited I-D signal can
be represented by a number of samples m that
is proportional to its bandwidth. When the
signal-to-noise ratio in each sample s,in, is the
same, the overall signal-to-noise ratio sn grows
as ,/m. In the space domain, ourfilters were
constructed (approximately) to differ only in
scale but not in the shape of their impulse
responses. Therefore, when the mean frequency
of a filter band increased by a factor of 2. the
bandwidth also increased by 2. Since the stimuli
are 2D, the effective number of samples in-
creases with the square of frequency, and the
increase in effective s/n ratio is proportional to
m. This expected improvement with frequency.
based simply on the increase in effective number
of samples, is indicated by the oblique parallel
lines of Fig. 5 with slope of ~—1. The expected
improvementin threshold s/n due simply to the
linearly increasing bandwidth of the bands does
a reasonable job of accounting for the improve-
ment in performance for both human and
bracketed discriminators between 5, and ds.

Performance ofall discriminators improves
faster with frequency between 0.39 and 1.5
c/object and between 5.8 and 22 c, object than is
predicted from the bandwidths of the images. A
slope steeper than —1 meansthat there is more
information for discriminating letters in higher
frequency bands even when the number of
independent samples is kept the same in each
band. Once sampling density is controlled. just
how much information letters happen to con-
tain in each frequency band is an ecological
property of upper-caseletters.

Increasing spatial localization with increasing
frequency band. From the human observer's
point of view, the letter information in low-pass
filtered imagesis spread out overa large portion
of the total image array. In high spatial-fre-
quency images, the letter information is concen-
trated in a small proportion of the total number
of pixels, In high spatial-frequency images. a
human observer who knows which pixels to
attend will experience an effective s/n that ts
higher than an observer who attends equally to
all pixels. In this respect, humansdiffer from an
ideal discriminator. The ideal discriminator has

unlimited memory and processing resources,
does not explicitly incorporate any selective
mechanism into its decision, and uses the same

algorithm ‘in all frequency bands. Information
from irrelevant pixels is enmeshed in the
computation but cancels out perfectly in the
letter-decision process. To understand human
performance, however, it is useful to examine
how, with our size-scaled spatial filters, letter
information comes to be occupy a smaller and
smaller fraction of the image array as spatial
frequency increases.

Here we consider three formulations of the

change in the internal structure of the images
with increasing spatial frequency: (1) spatial
localization; (2) correlation between signals; and
(3) nearest neighbor analysis. We have already
noted that, in our images, the information-rich
pixels become a smaller fraction of the total
pixels as frequency band increases. Indeed, this
reduction can be estimated by computing the
information transmitted at any particular pixel
location or, more appropriately for estimating
noise resistance, by computing the variance of
intensity (at that pixel location) over the set of
26 alternative signals.

To demonstrate the degree of increasing
localization with increasing frequency, the vari-
ance (over the set of 26 letter templates) was
computed at each pixel location (x. 5°). Total
power, the total variance, is obtained by sum-
ming over pixel locations. The numberof pixel
locations needed to achievea specific fraction of
the total poweris given in Fig. 8, with frequency
band as a parameter. These curves describe the
spatial distribution of information in the latter
templates. If all pixels were equally informative.
exactly half of the total numberofpixels would
be needed to account for 50% of the total

power. Thesolid curves in Fig. 8 showthat the
numberofpixels needed to convey anypercent-
age of total signal power. decreases as the
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Spatial frequencies and discrimination efficiency

ag

9°a

Fractionofpower °Kg

°Nn 
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Q 1000 2000 3000 4000 5000
Numberof pixels

fig. 8. Fraction of total power contained in the n most
extreme-valued pixels as a function of n (out of 8100). Solid
ines indicate the power fractions for signals; the curve
parameter indicates the filter band. Dashed lines indicate
power fractions for filtered ‘noise fields. Although power
fractions from successive bands of noise are too close to
tubel, they generally fall in the same left-right 5-0 order as

those for signal bands.

frequency band increases. These information
distribution curves are an ecological property of
our set of letter stimuli; different curves would
be needed describe other stimulussets.

The dashed curves in Fig. 8 were derived from
random noise filtered in each of the six fre-
quency bands (by—;). The distribution of noise
poweris very similar between the various bands,
enormously more so than the distribution of
signal power. For our letter stimuli, stimulus
information coalesces to a smaller number of
spatial locations as spatial frequency increases.

Correlation between signals, A more abstract
way of describing the change of information
with bandwidth is to note that letters become
less confusible with each other in the higher

frequency bands. A good measure of confusibil-
ity is the average pairwise correlation between
the 26 letter templates in each frequency band
(Table 3). The average correlation between
letter templates diminishes from 0.94 in band 0
10 0.31 in band 5. In a band in which templates
have a pairwise correlation over 0.9, the over-
whelming amountofintensity variation (“infor-
mation”) is useless for discrimination. Small
wonder that subjects fail completely in this
band. Overall, performance of the ideal dis-
criminator and of observers improves as the
correlation decreases, but there is no obvious
way to use the pairwise correlation between
lemplates to predict performance.

Nearest neighbors. The analysis of nearest
neighbors is a useful technique for predicting
accuracy by the analysis of the possible causes
of errors. We can regard.a filtered image J; of
letter ¢as a vector in a space of dimensionality
8100 (90 x 90 pixels). When noise is added, the

1413

Table 3. Average pairwise correlations and
nearest neighbors (Euclidean distance x 10-5)

Band Correlations§Nearest neighbor
07 0.94 0.01
1 0.91 0.30
2 0.58 1.2
3 0.38 2.3

~4 0.33 3.1
5 0.31 4.1
Oe

possible positions of1, are described by a cloud
whose dimensions are determined by the s/n
ratio. A neighboring letter & may be confused
with letter i when the cloud around 1, envelopes
t,. The closer the neighbor, the greater the
opportunity for error. Table 3 gives the average
normalized distance to the nearest neighbor in
each of the bands. The increase in distance to
the nearest neighbor reflects the improvement in
the representation of signals as spatial frequency
increases.

We consider possible causes of lower
efficiency of discrimination in bands below 8).
The letters in these bands have high pair-wise
correlations and the mean band frequency is
less than the object frequency. This means
that letters differ only in subtle differences of
shading, a feature that we usually do not think
of as shape. Observers would need to be able to
utilize small intensity differences to distinguish
between letters. To eliminate an alternative ex-
planation (the smaller number of frequency
components in the low-frequency bands), we
conducted an informal experiment with a lower
fundamental frequency. The fundamental fre-
quency, whichis outside the band, nevertheless
determines the spacing of frequency com-
ponents within the band. Reducing the funda-
mental frequency of the letter by one-half
increases the number of frequency components
in the band by a factor of 4. (A 256 x 256
sampling grid was used rather than 128 x 128.)
These 4x more highly sampled stimuli were not
more discriminable than the original stimuli.
This suggests that the internal letter represen-
tation (template) that subjects bring with them
to the experiment cannot utilize low-frequency
information, even when it is abundantly avail-
able. Whether, with sufficient training, subjects
could learn to use low spatial frequencies to
make letter discriminations is an open question.

SUMMARY AND CONCLUSIONS

]. Visual discrimination of letters in noise,
spatially filtered in 2-octave wide bands, is
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independent of viewing distance (retinal fre-
quency) but improves as spatial frequency
increases. .

2. The improvement in performance with
increasing spatial frequency results mainly from
an increase in the objective amount of infor-
mation transmitted by the filters with increasing
frequency (because filter bandwidth was pro-
portional to center frequency) which is mani-
fested as objectively less confusible stimuli in the
higher bands.

3. The comparison of human performance
with that of an estimated ideal discriminator

demonstrates that humans achieve optimal
discrimination (a remarkable 42% efficiency)
whenletters are defined by a 2-octave band of
spatial frequencies centered at 1 cycle per letter
height (mean frequency 1.5 c/letter). This high
efficiency of discrimination is maintained over a
32:1 range of viewing distances.

4. Detection efficiency was invariant over a
range of retinal spatial frequencies in which the
contrast threshold for detection of sine gratings
(the modulation transfer function, MTF)varies
enormously. The independenceof detection per-
formance andretinal size held for all frequency
bands.

5. A partof the loss of humanefficiency in
discrimination as spatial frequency exceeded 1
c/object height may have been due to the sub-
jects’ inability to identify, to selectively attend,
and toutilize the smaller fraction of information-

rich pixels in the higher frequency images.
6. Finally, it is important to note that

without the comparison to the ideal observer,
we would not have been able to understand the

components of human performance in the
different frequency bands.
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APPENDIX

Both sub-ideal and super-ideal discriminators must compute
estimates of the likelihood that the stimulus u,, was pro-
duced with template ¢,,, and noise #,, where is the letter
used to generate the stimulus, fis an arbitrary letter, and 6
indexes spatial frequency band. Let x be an index on the
pixels of the image: 1 < x < 8100, for the 90 x 90 images of
the experiments.

For the Monte Carlo simulations of the super-ideal
discriminator, the unknown stimulus parameters. x,,and a3
are computed during stimulus construction, and their exact
values are supplied to the discriminator a priori, The
sub-ideal discriminator, however, must estimate these par-
ameters fram the data as follows.

Sub-Ideal Parameter Estimation

Recall that stimulus contrast is modulated for any pixel
vin the image:

Ue lX) = By pln(x) + air] +g, n00), (Al)

The scaling constant B,,, limits range of real values for each
pixel. prior to quantization, to the open interval (—0.5.
255.5); the addition of 4.a[x]. called quantization noise.
Tounds off pixel values to integers.

For each bandpassfiltered template /,,. we first compute
the corretation p,, of the template to the stimulus uy, 4:

2M NOSTBNGS) (A2)

"fst ALSOPt iru ALY it :

1415

To computethe likelihood estimates for each template ¢,,,
we mustbe able to reverse the effect of ,,. Thus we define
a,, = 1/B,, and chdOse a, , 80 as to minimize the expression:

Diem, s(x yr = Slee. tialx PF. (A3)

Solving for 2,, gives us:

LlsoP )
45 = Pay¢————— (A4)

z (He, lx FP

Finally we set:

aay 5 1,5 %@4, 66-6) — LoCo (AS)XE

where X = 8100, the number of pixels in the image.

Likelihood Estimation

With estimates of o}, and x,, for the sub-ideal dis-
criminator, and the a priori values for the super-ideal
discriminator, we can formulate a maximum likelihood

By rearranging terms of equation (Al) andestimator.

dividing both sides by £ yields:

Uy 4(X) GXx)at (x) = (x)+ (A6}
B fb al 3

Substituting z,, for 1/B, and by transposing into the fre-
quency domain, denoted by upper-case letters and indexed
by w, we have:

2.60, (@) — T,4(@) = N,(a) + 2,42, 4(@).

Note that the left side of equation (A7) is simply a
difference image between the stimulus U,,(@) and the
template 7, ,(w). This difference is exactly equal to the sum
of the luminance and quantization noise only when the
correct template is chosen (i=). When the incorrect
template is chosen (7 #k) the right hand side of equation
(A7) is equal to the sum of the noise sources plus some
residue that is equal to 7,,(w)—T7,,(w). Under the
assumption that quantization noise can be modeled as
independent additive noise in the frequency domain, the
density A of the joint realization of the right-hand side of
equation (A7) is given by:

A=T] x
« Mogi, FOX FOUL

x exoJeU, (a) -| (AB)ang t orlFol
where F,(c) is simply the kerneloffilter 6, in the frequency
domain. Dropping the multiplicative term in equation (A8),
which does not depend on the template 7, and taking logs,
the ideal discriminator choosesthe template that minimizes:

X14,4.Us,@) — Tt?
22,03 + 031 F(ol

(A7}

(A9)

Finally, it is more convenient to compute the power of
the quantization noise in the space domain (a?) than in the
frequency domain (03): 02 = 0}. Spatial quantization noise,
g, (x). is uniformly distributed on the interval [—0.5, 0.5),
so that a2 is computed as:

(A10)

and is equal to | 12.
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Visual Factors in Letter Identification

Denis G. Pelli, Catherine W. Burns, Manoj Raghavan, and Bart Farell
Institutefor Sensory Research, Syracuse University, Syracuse, New York

We have been studying how people identify letters. Our re-
sults indicate that the processofletter identification is medi-
ated by a general visual object recognition process.

Task :

Webriefly present a low contrast letter with indepen-
dent Gaussian noise added to eachpixel. Then the observer
is shown a complete high-contrast alphabet and asked to in-
dicate which letter was seen. An adaptive procedureadjusts
the letter contrast on successive trials (each with indepen-
dent noise) to estimate the “threshold”letter contrastat which
the observer attains 62% correct.

Efficiency
For comparison, we also implementthe ideal Bayesian

classifier, using exactly the same task. “Efficiency” is the
ratio of contrast energies at threshold (which is the squared
ration of ideal to humanthreshold contrasts).

Alphabets
We havetested fluent readers of English, Devanagari

(the script used for Hindi and Sanskit), Hebrew, and Arme-
nian. The appearancesofthese alphabets are very different,
yettheir efficiencies are all about 10%.

Learning
We have measured the learning of new alphabets by ob-

servers of all ages. Learning proceedsat a similar rate, per
trial, in all observers and alphabets, reaching expert perfor-
mance(indistinguishable from a fluent reader) after a mere

3,000 trials. This includes a previously illiterate 3-year old
learning the English alphabet, and adult readers learning for-
eign alphabets.

Novel Alphabets
We have created novel alphabets: two series of 26 ran-

dom checkerboards. They are learned at similar rates as the
traditional alphabets, but the asymptotic efficiencies are dif-
ferent. For a 4x4 checkerboard the efficiency is about 6%.
For a 2x3 checkerboard the efficiency is about 24%. The
similar fast learning rate for traditional and novel alphabets
indicates that the process is not unique to reading, instead
reflecting the operation of a general visual object recogni-
tion process.

Critical Band
Solomon and Pelli (1994) measured the effects of vi-

sual noise at various spatial frequencies on the threshold for
letter identification. Their results reveal thatletter identifi-
cation is mediated by an octave-wide bandpass filter cen-
tered at 3 cycles perletter. The insensitivity at low spatial-
frequencies confirmsParish and Sperling (1991).
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An Improved Detection Model for DCT Coefficient Quantization
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ABSTRACT

A detection model is developed to predict visibility thresholds for discrete cosine transform coefficient
quantization error, based on the luminance and chrominanceof the error. The model is an extension of a
previously proposed luminance-based model, and is based on new experimental data. In addition to the
luminance-only predictions of the previous model, the new model predicts the detectability of quantization error
in color space directions in which chrominanceerror plays a major role. This more complete model allows
DCTcoefficient quantization matrices to be designed for display conditions other than those ofthe experimental
measurements: other display luminances, other veiling luminances, other spatial frequencies (different pixel
sizes, viewing distances, and aspectratios), and other colordirections.

1. INTRODUCTION

1.1 Discrete cosine transform-based image compression

The discrete cosine transform (DCT) has becomea standard method of image compression. !'23 Typically
the image is divided into 8x8-pixel blocks, which are each transformed into 64 transform coefficients. The DCT
transform coefficients I,,,, of an NXN block of image pixels i;,,, are given by

N-1 N-1

Inca = > Dd ie Cram Ck ns min =0,...,N-l, (1a)
jr0 k=O

where

mm... ViIN , m=0 ib
Chm = On costs (2j+1)) , and QQ, = S2IN , m>o (1b)

The block of image pixels is reconstructed by the inverse transform:
N-1 N-1

ip k = > XY tacn Cjpm Ckn > Jk =1,...,N-1, (2)m=0 n=0

which for this normalization is the same as the forward transform. Quantization of the DCTcoefficients
achieves image compression, but also causes distortion in the decompressed image. Specifically, quantization of —
coefficient Im,, induces an error image which is simply the associated basis function, with amplitude equal to
the coefficient quantization error, (neglecting the DCT normalization).

1.2 The Quantization Matrix

The JPEG compression standard! requires that uniform quantizers be used for all the DCT coefficients.
The quantizer step size used for each coefficient is determined by the user. A matrix is used to specify the
quantization of the DCT coefficients, where the m,nth entry, Qnjn: in the matrix gives the quantizer step size
for coefficient J,,,,. Two example quantization matrices have been included in the IPEG standard. These
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matrices are given in Tables K.1 and K.2 of reference(2) and in Table 5 of reference(4). One of these matrices
is commonly used for graylevel images, and for the luminance component image of color images; the other
matrix is used for chrominance images. These matrices were designed for a particular compression/viewing
scenario, and it is not clear how they should be changed when used under different viewing conditions, or
especially for compression in a different color space. In this paper we propose a quantization matrix design
technique that can be applied under a wide variety of conditions: different display luminances, veiling
luminances,spatial frequencies, and color spaces.

2. DETECTION MODELS

2.1 Luminance-only Detection Model

Peterson, Peng, Morgan, and Pennebaker? developed quantization matrices for compressing images in the
RGBcolor space (a different matrix is used for each of the R, G, and B componentimages). The matrices were
derived from measured detection thresholds for small patches of replicated DCTbasis functions, produced on a
monitor using an individual R, G, or B gun onablack background. With minor adjustments, the measured
thresholds were converted to quantization matrices which performed well in informaltests.

Ahumadaand Peterson proposedthat the threshold measurements of Peterson ef al.* could be predicted
by a luminance-only detection model. The theoretical basis of their model is the assumption that the
detectability of distortion in the decompressed RGB image can be predicted from the luminance contrast of the
error image caused in a color component image by quantization of an individual DCTcoefficient for a single
block. Thatis, if the quantization error images associated with all the quantized DCT coefficients in all image
blocks in all three color component images have amplitudes below their respective visibility thresholds, then no
distortion will be visible in the decompressed image.

The Ahumada/Peterson luminance-only detection model approximates the log of the contrast sensitivity
function (the dependence of the inverse threshold contrast on spatial frequency) by a parabola in log spatial
frequency. The predicted log luminance threshold of the m,nth DCTbasis function is

s by +k -logf;)?, m,n =0,...,N-1. GBr+(Ir) COS?Ony,» Logfinn BFL) )
 

log Ti, m,n = log

The minimum Iuminance threshold, s b:, occurs at spatial frequency f, and ki determines the steepness of the
parabola. The parameter 0.0<s < 1.0 is to account for visual system summation of quantization errors over a
spatial neighborhood. Such spatial summation causes a decrease in threshold. The spatial frequency, fin,n>
associated with the m,nth basis function, is given by

lL aiwoealWy
Fan = Fp Ven We)? +Wy) (4)

where W, is the horizontal and W, the vertical size of a pixel in degrees of visual angle. The model includes a
factor ( rp+(l-rz) cos"On ) which accounts for the imperfect summation of the two Fourier components
present in basis functions having two cosine components (m and n #0), and also accounts for the reduced
sensitivity due to the obliqueness of these Fourier components. The magnitude of the summation/obliqueness
effect is determined by 0.0<r,<1.0, and the angular parameter 6,,,, is given by

2 n =Gaon = arosin=leoF On (5)

 
min

Based on a fourth power summation rule for the two Fourier components®, ry is set to 0.6. The oblique effect
can be included by decreasing the value of r,.

Ahumada and Peterson’fit this model to the Peterson et al.‘ threshold data, and then used the grating
detection data of Van Nes and Bouman’ to derive luminance dependencies for b,, f., and k,, thus enabling the
to model be used for a range of viewing conditions affecting luminance, contrast, and spatial frequency of the
quantization errors. Since the single gun measurements of Peterson et al.* mainly varied the intensity of the
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spatial modulation (chrominance remainedrelatively constant), the ability of the luminance-only modelto
predict visibility thresholds for modulations in combined luminance and chrominance directions was not
adequately tested. Also, the replicated DCT basis functions used by Peterson ef al.‘ have Fourier transforms
possibly more like those of grating studies than those ofsingle basis functions”®, To address these issues,
Peterson? made new threshold measurements ofsingle basis function, single monitor-gun test images
superimposed on a white background (1931 CIE coordinates: Xp = 37.27, Yq = 41.19, Zp = 29.65). This
configuration gives test stimuli having more significant chrominance modulation. Figure 1 shows the new
measured thresholds for basis functions where m or n =0.

A parabola representing a version of the luminance-only model is also shown in Figure 1. This model
does a fair job of predicting the measured thresholds independentof color direction, except for the DC (mm and
n = 0) thresholds, which are obviously different for the three color guns. We propose that the lower thresholds
for the R and B gun DCbasis functions are the result of chromatic detection mechanisms having greater
sensitivity than the luminance mechanism. Thus, even for quantization in the RGB color space, a luminance-
only model is not quite sufficient. Color mechanisms must be taken into accountto determine appropriate
quantization levels for the DC coefficients. More importantly, for images compressed using isoluminantcolor
directions, a complete color space discrimination model for the DCT basis functions is clearly needed.

0.2  thresholdratioT/L oO @ 
frequency, cycles / deg

Figure 1: Visibility threshold contrast ratio measurements from Peterson’ of single basis function, single
monitor-gun test images superimposed on a white background, for basis functions where m or n =0.
Circles indicate R gun thresholds, diamonds indicate G gun thresholds, and squares indicate B gun
thresholds. The points plotted at the far left of the graph are DC basis function (m and n =0) thresholds.
The parabola-shaped curve represents a version of the luminance-only model of Equation (3).

2.2 The Luminance/Chrominance Detection Model

To account for the DC sensitivities in the data of Figure 1, we add two chromatic channels to the =
luminance-only model. A large numberofdifferent color spaces have been proposed as appropriate bases for
chromatic discriminations. We have selected for our chrominance channels those favored by Boynton!™: a red-
green opponent channel and a blue channel. The relation between these chromatic channels and the CIE 193]
XYZ color space is straightforward. The blue channel is just Z, and the red-green opponent channel O is given
by O = 0.47K — 0.37 Y —0.10Z. This opponent channelis Boynton’s!° (Red-cone) —2(Green-cone) channel,
with the Red and Green XYZ cone responses taken from MacLeod and Boynton!®, (We ignore the small
correction developed by Vos! for going from the 1931 standard CIE values to the scientifically favored 1951
Judd CIE values used by MacLeod and Boynton.) Expressed in matrix form, the transformation from XYZ to

 
SPIE Vol. 1913 /193

 

OLYMPUSEX.1016 - 399/714



OLYMPUS EX. 1016 - 400/714

our YOZ opponent color spaceis

0 0.47 0

[ YOZ J = [ XYZ ] xyzMyoz = [ XYZ ] 1 -0.37 0 . (6)
0 -0.10 I

We model the frequency response of the Y channel with the luminance-only model described above. To
reflect this, we subsequently refer to threshold Tym, 45 Ty, m,.- The parameters in the luminance channel
model will subsequently be referred to with a similar change of subscript (L > Y). To complete our
luminance/chrominance model, we must also specify the shape of the frequency responses of the O and Z
channels. Measurements of the spatial frequency responses of isoluminant chromatic modulations have typically
found the chromatic sensitivity functions (the dependence of the inverse threshold contrasts on spatial frequency)
to be low-pass in the frequency range of our basis functions and to be less sensitive at high spatial frequencies
than the luminance channel.'!!?_ Wetherefore model each of the O and Z log chromatic thresholds as a
parabola, modified by setting it equal to its minimum value for all spatial frequencies to the left of the
minimum. Since the data of Peterson’ are too sparse to estimate two separate chromatic channels in close
proximity, we make the simplifying assumption, supported by the results of Mullen!’, that both O and Z have
the same shape spatial frequency response. The O and Z log chromatic thresholds for the m,th DCTbasis
function can then be written:

s§ bo if f <f+ L ~
e rozt(l-r9z) C0S"On, n mon0OF

log To. msn 5 bo (7a)
+ koz (logfm.n ~ logfoz)?s if fin > foz{_

rozt(l—roz) COS"Bn,n

and

b
og——-2___, if fain S02

rozt+(1-roz) cos a
(7b)log Tz myn $ bz

log————_——,—+ koz (log finn - logfoz)?, if fia > foz
roz+(1—rogz) cos Om,

Note that Equations (7a) and (7b) are identical, except for the parameters bg and bz; Tom,, and Tz,,,, share
the parameters s, Koz, foz, and roz. To obtain the overall model threshold T,,,, from the three channel
thresholds, we use the "minimum of" combination rule:

Tn = min{ Ty, m,n To.m,ns Tz ma } . (8)

In order to estimate the parameters in the model described above, we fit the model to the data of Peterson?
shownin Figure 1. Recall that the Peterson? thresholds were measured for single basis functions. Toreflect the
absence of a spatial summation effect in this data, we fixed s =1.0 duringthe fitting process. This fit resulted in
the parameter values shownin Table i for ky, fy, £oz, and foz. We chose roz=0.6, the same as ry.

Boynton!® claims that at moderately high intensities, the Z channel’s minimum threshold (s bz in gur
model) is approximately proportional to the background activity of the Z channel, and the minimum thresholds
for the Y and O channels (s by and s bo in our model) are approximately proportional to the background Y.
Based on thefit of our model to the Figure 1 data, we set the constants of proportionality to be: by = 0.0219 Yq,
bo = 0.0080 Yo, and bz = 0.0647 Z), where Yo and Zp are the CIE values of average white. To determine a
value for s, we compared the thresholds measured in Peterson® to those measured by Van Nes and Bouman®for
large test pattern sinusoidal gratings. The Peterson’ thresholds are consistently higher than the Van Nes and

"Boumanthresholds, a resultattributable to spatial summation. Multiplication of the Peterson? data by 0.25
brings them into approximate agreement with the Van Nes and Bouman® data. We therefore chose s =0.25.
These results are summarized in Table 1.

194 / SPIE Vol. 1913
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Table 1. Parameter values estimated for the model of Equation (8).

model parameter values
channel r Ft k

Y 3.1 1.34 0.0219 Yo
0 10 3.00 0.0080 Yo
zZ 10 3.00  0,0647Z)

  
Aspart of the modelfitting, we also tried the Euclidean distance combination rule:

Cnn 2 = Tysmatt Toma + Tzmn (9)
However, when the data of Figure 1 were fit using this rule, in order to prevent contributions from the chromatic
channels at low spatial frequencies, f oz was forced to be unrealistically low, and/or kz was forced to be
unrealistically high. This led to our selection of the "minimum of" rule for T,,,,-

3. QUANTIZATION MATRIX DESIGN

Quantization errors in an arbitrary color space are interpreted in the following way. Suppose we wish to
compress a color image whosepixels are computed as a linear combination of XYZ values,

[DEF] = [XYZ] xyzMper- (10)

That is, the DCT is to be performed on an image in color space DEF, and xyzMoer is the transformation from
XYZ to DEF. The image in DEF space can be thoughtof as being transformed to XYZ space, and then
converted by the visual system to YOZ space for discrimination. We need to determinelimits on the sizes of
errors in each of the D, E, and F color space dimensions, in order for the resulting errors in the Y, O, and Z
channels to all be below the thresholds established by our model. These DEF thresholds determine the
quantization matrices. For example, a unit error in the amplitude of a DCT coefficient in dimension D induces
errors whose amplitudes in the Y, O, and Z channels are given by the first row of perMyoz:

Mii Mi2 M13
perMyoz = vepMxyz%xvzMyoz =| Ma. M22 Ma3 |) qa)

M3; M32 Ms3,3

where pEEMxyz is the inverse of xyzMper-
We now describe in detail the procedure to calculate Op.m.n> Qem.n» Md Qe mn» the quantization matrix

entries for DCT coefficient J,,,, in the D, E, and F componentimages. First, using Equations (3) and (7), the
display parameters W, and W,, and the model parameters given in Table 1, the model channel thresholds,
Ty, m,n» 2O,m,n> and Tz,m,n+ for the m,nth DCT basis function are calculated. Now let yTp,m.n+ oTp, ma» and
zTp,m,n indicate the thresholds imposed on the quantization error in the D component by the model’s thresholds
for the Y, O, and Z channels, respectively. Each of the Y, O, and Z model channel thresholds are converted to
a D threshold as follows: ,

Ty, mon To, m,n Tz, m,n

 

 

T man > ’ iT, oT: d T, oT. 12aY'D,mn IM; 11 OADmn IM;, 91 ani Z*Dmyn IM, 31 ( )
Similarly for EB and F:

Ty mn To, mn Tz mnTe, =m = Oe = 12bY+E man IM, i , ol,ma [Mp, a , ZTE,m,n IMp, 3! (12b)
Ty mn To min Tz m nT; =, T, =, T, = — i2¢vermont) OR ivy 2m" Mg, ah (02°)

Then the combination rule is used to determine the D, E, and F thresholds. We use the "minimum of"rule:
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Tp, mia = min{ ¥Tp,mn> Old. m,n» 20D, m,n }, (13a)

TE m,n = min{ YTE m,n? oTE, m,n» ZTE, msn } ' (13b)

Trmyn = min{ YTRm.nt olm,n» pA }. (13c)

Finally, the D, BE, and F quantization matrix entries are obtained by dividing the thresholds above by the DCT
normalization constants ( o,, in Equation (1b) ):

Tom n TE m n TE mn a
=2-—"4 =2——t a7 me 14Odmon Om On CE mn On O, QEmn Om Of, { )

The factor 2 results from the maximum quantization error being half the quantizer step size.

3.1 Quantization in RGB space

For quantization in monitor-RGB space, we require the matrix to transform from RGB to XYZ space,
ropMxyz. Assuming that R, G, and B take on values between 0 and 1, posMxyz is the monitor calibration
matrix giving the XYZ values for unit changes in each of the RGB signals. For our monitor,

26.1 13.3 2.3

rosMxyz =| 25.2 48.9 10.2 |. (15)
93 4.7 35.7

This matrix is post-multiplied by xyzMyoz to obtain rosMyoz:
13.3 7.1 2,3

[ YOZ]=[ RGB ] rgsMyoz ={[RGB]} 48.9 -7.3 102]. (16)
4.7 -0.9 35.7

The matrix pggMyoz gives the amplitude of the YOZ errors resulting from unit errors in RGB. These values
indicate the sensitivity of the discrimination model YOZ channels to RGB errors. For example, a unit error in
the R component leads to an error of 7.1 in the O channel of the model.

Wecan calculate the R, G, and B coordinate increments which induce a minimum threshold step in each
of the Y, O, and Z channels. These are the the entries of rosMyoz divided into the appropriate minimum
threshold: s by, 5 bo, or s bz, calculated using the expressions in Table 1 and the Yo and Zp values of our
average white. For example,letting (gaaMyoz)1, 1, signify the upper left corner entry in yggMyoz, the increment
in R which results in a minimum threshold change in Y is (s by) / (pagpMyoz)1, 1. RGB minimum threshold
increments calculated in this way are given in Table 2 for YOZ. Note that the minimum threshold for G is
determined by the Y channel (0.0046 versus 0.0113 and 0.0469). That is, the Y channel imposesthestrictest
limit on G in order for a G change to not induce "too large" a change in YOZ-space. Similarly, the minimum
threshold for R comes from the O channel(0.01 16), and for B comes from the Z channel (0.0134). Following
the procedure described above, using rapMyoz, the model parameters in Table 1, and the Yj and Zp values for
our monitor, we obtain the quantization matrices shown in Table 3 for our RGB color space.

Table 2. Minimum thresholds imposed on R, G, and B quantization errors by the Y, O, and Z model
minimum thresholds. =

0.0046 -0.0113 0.0469
0.0483 -0.0881 0.0134 
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Table 3. RGB quantization matrices. The values in these matrices are obt
described in Section 3. The Qo,o value is located in the upper left comer 0
specified in the JPEG standard, the values have been roundedto the nearest inte
that values in the quantization matrix be < 255.

47 94 127
52 53 60 75 98

R ; 53 77 89 103 124
quantization||69 119 142 166

matrix 94 103 142 181 217
127 124 166 9-217 269
170 128 154 197 254 320
224 167 192 236 373

G

quantization
matrix

87 106
102 124

B

quantization
matrix

915 1109
1066 1306

 
Figure 2 plots all the measured R. G. and B gun,single basis function thresholds from Peterson’

(including those for the dual frequency (7: and 1 #0) basis functions), after correction by thesummation/obliqueness factors of Equations (3) and (7). Figure 2 also showsthe curves for the model threshold
predictions Tym,2+ To,m.a» and Tz,m_,,- using the parameters in Table 1, except with s =
ma used tO reflect the absence ofa spatia! summation effect in the single basis function data. In addition, thedate olotted mn jreshold ‘prediction curves have been converted to luminanceunits, since all the threshold3 3) a1 e in luminance units. This1s sccomplished by multiplying the To,m.. threshold predictions byOEMs and the Tz, m,n threshold pradictions by 4.7 / 35.7. These factors are obtained from the ropMyoz
matrix,Figure nou that for the B component. the DC and lowestspatial frequency thresholds arethe G theehelds ce ¢ annel, ane for the R component, the DC threshold is determined by the O channel. AllGwhich we assume t rau he . determined bv the Y channel. Note that the DC threshold for the Y channeloshud ling in Fi o be the threshoié measured for G) is not predicted on a theoretical basis. The dot- —ashed line in Figure 2 demonstrates tha: ex measured DC threshold for G, and hence our DC threshold for Y,
was found to be approximately equal to “he unimum threshold of the Y channel.

1.0. This value for s
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‘ , 4. CONCLUSIONS

We have presented a mode! for predicting visibility thresholds for DCT coefficient quantization error, from
which quantization matrices for use in DCT-based compression can be designed. We estimated values for the
parameters of our model based on experimentally measured visibility thresholds. The frequency parameters we
estimated, f y and fog, agree fairly well with results others have reported for similar parameters. The values we
have estimated for ky and koz are similar to those estimated by others, however we have found these parameters
to vary for the different experimentally measured thresholds. The value we have proposed for the
obliqueness/summation parameters, ry and rz, only reflects summation and does notreflect an effect due to
obliqueness. More data may be needed to more determine values for ky, Koz, ry, and roz morereliably; though
those we propose here are reasonable and result in quantization matrices which perform well in preliminary
tests. The value for s we have proposed is based on a limited amountof data. Further experiments are needed
to determine the spatial extent over which summation occurs among DCT quantization errors, in order to
estimate s more accurately.

_ The quantization matrices computed by the techniques described above take no accountof image content.
A promising extension of this model may be to optimize the quantization matrices for individual images or a
class of images. That is, use an image-dependent approach to quantization matrix design. Watson!> has shown
how this may be done for grayscale images, by taking into account local light adaptation, local contrast
masking, and error pooling. Watson's technique can be extended to the case of color images by adopting rules
governing masking and adaptation within the O and Z channels.
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Abstract. Progressive transmission of images based on the lapped
orthogonal transform (LOT), adaptiveclassification, and human vis-
ual sensitivity (HVS) weighting is proposed. HVS weighting for LOT
basis functions is developed. This technique is quite general and
can be applied to any orthogonal transform. The method is com-
pared with discrete cosine transform (DCT)-based progressive im-
age transmission (PIT). It is shown that LOT-based PIT yields sub-
jectively improved images compared to those based on DCT. This
is consistent with the reduction in block structure characteristic of
LOTimage coding.

1 Introduction

While progressive image transmission! (PIT) can be clas-
sified into two major categories, i.e., (1) spatial or pel do-
main and (2) transform or spectral domain, the latter has
gained wide acceptance.?-? This is not only due to various
adaptive features suchas classification, '!-!© spectral selec-
tion,*:7°8 and human visual system (HVS) weight-
ing,2-73-!7-2! etc., which can be easily incorporated into
the transform coding scheme,but is also due to the VLSI
development ofcoding operations such as transform, quan-
tization, and variable length coding. In addition, PIT based
on the discrete cosine transform (DCT)has beenextensively
investigated. For example, the JPEG (Joint Photographic
Experts Group) algorithm7:® for the baseline system is DCT
based and various hardware/software systems have already
been developed forthis algorithm. Also, the nonhierarchical
extended system of JPEG (both spectral selection and suc-

Paper 92-018 received April 7, 1992; revised manuscript received July 13, 1992;
accepted for publication July 16, 1992.
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cessive approximation) is DCT based. At low bit rates,
however, DCT introduces block structure in the recon-
structed images.” Onetechnique used to reduceor eliminate
this artifact is to replace DCT by the lapped orthogonal
transform (LOT),22-“® whose basis vectors overlap across
traditional block boundaries. Also because LOT has good
filtering properties, it has been applied to compatible cod-
ing,2?° i.e., coding ofthe original image/sequenceat dif-
ferent spatial resolutions. It has also been combined with
vector quantization (VQ) to achieve additional compres-
sion.?!It is intuitively felt that LOT-based PIT shouldyield
subjectively more pleasing pictures comparedto the DCT—
even during theinitial stages. This is the objective of this
paper: to develop a LOT-PIT incorporating various adaptive
features and to compare it with the DCT-dependent PIT.

In Sec. 2, we will address the Chen-Smith coder, giving
a brief summary of the algorithm steps and explaining the
incorporation of PIT techniques in this algorithm. Section
3 is reserved for a discussion about the HVS modelin the
transform domain. Simulations and coder details_are pre-
sented in Sec. 4, with conclusions given in Sec. 5.

2 PIT with the Chen-Smith Coder

The Chen-Smith coder’? is based on the zonal sampling
strategy. First, the image undergoes an orthogonal trans-
form. The transform coefficients are stored in a buffer and
some statistics are computed prior to the decision-making
process of (1) which coefficients are transmitted, (2) how
these coefficients are quantized, and (3) the order oftrans-
mission. We will assume the image has N XN picture ele-
ments (pixels or pels).

The encoding steps can be briefiy described as follows:
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e Transform the image using blocks of M x M pels. Let
N, = (N/M)? be the total numberof blocks in the im-
age. To simplify the presentation, we will use a lex-
icographic ordering that can obey row or column ar-
rangement. The blocks are then labeled from | to Ng.
Each one contains M? coefficients given as x,(u,v) for
i=1,...,Np and (u,v) E{(0,0),¥}, where Vis defined
as the set of M?—1 block-index pairs, excluding the
pair (0,0), as Y={(0,1), (0,2), ..., (0, M—1), (1,0),
(1,1), ..., (M1, M1}.
Quantize and code separately the coefficients ,(0,0)
(the de coefficients) using uniform quantizers.
Compute the ac energy of each block £; as

Ej= > x?dmn). qd)mnie .

Sort the energies, and classify the blocks (in sorted
order) into N- equally populated classes.'? Thus, there
would be N,/N- blocks in each class. Construct the
class map C(i) with the classification of each block,
where C(i) indicates the class to which the i’th block
belongs and is ordered in the original nonsorted se-
quence. If the i’th block belongs to the class k (k=1,
we» Ne), then C(i)=k.

Forall blocks belonging to the same class, compute
the variances of the transform coefficients and then
their standard deviations. Construct N- standard de-
viation maps with the standard deviations of the coef-
ficients, which are obtained from

NB

of(mn)= S8C(i)—Axian) (mane, (2)i=l

where 5 is the Kronecker delta function.

Merge all N- standard deviation maps and decide the
bit allocation. Based on the rate-distortion theory, we
shall iteratively find a distortion value D anda set of
integers B,(m,n) [for (m,n)EW and 1<k<N_], so
that

By(m,n) = Ys loge{oz(m,n)] —loga(D) (3)

is satisfied given the constraints

Non~t ; Ne
2, neyBE) = (RN ~ Bova (4)

0<8,(m,n)SBrax , (5S)

where 8,,., is the maximum numberofbits allowed,
B., is the numberofbits required for the transmission
of the overhead information, and R is the bit rate in
bits/pel for the whole image. Create N; bit-allocation
maps with a one-to-one correspondence with the ele-
ments of the standard deviation maps.

Reestimate the standard deviations using the bit-
allocation maps:

Ge(m,n) = 22k| 1SkSNc (mn)EW , (6)

where c is a normalization factor. Reference 12 sug-

gested that c be chosen as the maximum a,(m,n) for
which B,(m,n) =I to avoid excessive clipping.
Send class map ¢ and the bit-allocation maps as side
information.

Quantize, encode, and send ail the coefficients, using
the reestimated variances. A coefficient x,(m,m) (block
i), which belongs to class k{C(i) =&], is scaled [di-
vided by &,(m,n)], applied to a quantizer with 289
levels, and encoded with B,(m,#) bits. If B,(,2) =0,
the particular coefficient is not transmitted.

The receiver may first decode the side information and
the dc coefficients. Given the class map, the bit-allocation
maps, and the normalization factor c, the decoder can re-
construct the standard deviations used to scale the quantizers
as in Eq. (6). With the maps reconstructed, and with the
knowledgeof the transmission order, the decoder can ex-
actly determine the position of the incoming coefficient, the
class ofits block, how manybits were assigned to it, and
the variance used for quantization. Therefore, the receiver
can decodethe coefficients, apply an inverse transform, and
obtain the image.

The overhead is made by the class map, the bit-allocation
maps, and by c. Quantizing ¢ with 16 bits, the total amount
of overhead is given by:

Bov=Np logx(Nc) +Nc(M? — 1)

x loge(Bmax +1) +16 . (7)

IfM=8, N=256, Nc=8, Bmax =7, then Boy =4552, which
is equivalent to an approximaterate of 0.07 bit/pel, requiring
about 2 s of transmission on a 2400 bits/s communication
rate.

To use PIT, we transmit data in the following order:
(1) de coefficients in any predefined order, (2) class map ¢
andbit-allocation maps, (3) ac coefficients. The transmis-
sion of the ac coefficients” is made by spanning the blocks
and sendingfirst the elements x(m,n), which would yield
a higher contribution to the reconstructed image. To min-
imize the reconstruction error, we send the coefficients with
higher variances. Alternatively, we can incorporate some
information aboutthe spatial response of the visual system,
by using weighted standard deviations. If one assumes that
the estimated standard deviation is a good measure of the
real standard deviation of a particular coefficient (at least,
is the best information we have at hand), the priority can
be decided based on the weighting of the standard deviation
maps by a matrix H(s,1) containing spatial information
about the HVS. Let _.

adn) =6.(m,n)ACmn) 5 1<kS=Nc; (mnyeEw . (8)

The order for transmissionofthe coefficients is then defined
by sendingfirst the coefficients [x;(m,n); C(i)=&], which
correspond to: (1) greater value of ne(m.n); (2) if two or
more 7(m,7) have the same value, take the one with smaller
value of m+n: or (3) if there is still any ambiguity, take
the smaller value of k.

The first item is the only one that follows any theoretical
explanation, the last two are included merely foreliminating
ambiguities, such as two equal values, and can be changed
without affecting the performance. Note that using Eq. (6),
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Fig. 1 Coder diagram for PIT using LOT.

we can take the log and sum log(2/c) on both sides of Eq.
(8) so that yz(n,n) can be redefined as

n(n) =Bx(m,n) + loga[H(m,n)] (9)

Although havinga different value, this representation still
maintains the transmission order, addressing directly the bit-
allocation maps. As long as both encoder and decoder have
the same maps and use the same weighting matrix, there
will be no overhead for indicating the transmission order.

The coder has some limitations. First, the maximum
numberofdifferent variances used forscaling the quantizers
is Bmax. For high rates (>4 bits/pel), the performance de-
creases, since there will no longer be coefficients with only
a few bits allocated. Second,it is not possible to apply HVS
weighting to quantization without causing excessive mis-
match or amplification of distortion because of the reesti-
mation procedure in Eq. (6). It can be overcome by the
transmission of standard deviations in place of the bit-
allocation maps. Weare interested in ‘‘small’” pictures, such
as 256 X 256 pel images. For these types of images, using
8 or 16 classes, the overhead for fully transmitting the var-
iance maps would be prohibitive. The performance of this
coder can be improved in several ways. For example, by
choosing the proper parameters (block size, numberofclasses,
and bit rate), the coder can achieve very good performance.
The great advantage of the Chen-Smith approach is thatit
is quite insensitive to the transform used. One can inter-
changeably use DCT, LOT, extended lapped transforms,”
or any transform resulting in blocks of MxM coefficients

330 / Journal of Electronic Imaging / July 1992 / Vol. 1(3)

without any alteration in the algorithm (except for the
weighting matrix and, possibly, coding details). This is the
main reason for choosing the Chen-Smith coder.

The coder and decoder block diagrams employing the
LOTare presented in Figs. 1 and 2, respectively.

3 The HVS Weighting Matrix
A complete study of the psychophysical properties of the
visual system is well beyond the scope of this paper. Our
intention is restricted to the determination of a spatial re-
sponse weighting matrix for use with the LOT coefficients.
We now present a procedure that allowsusto find a HVS
weighting function for any transform.

Reference 2 discussed the application of a linear function
describing the HVSto spatial variations. Although the HVS
model responseis not linear, this principle was used with
good results and further discussion on the subjectis left to
Ref. 2. Given a linear transfer function representifg the
unidimensional spatial HVS as H(/) (where f is given in
cycles per degree of the visual angle subtended), we will
assume this model to be reliable and it will serve as the
basis for the rest of this section. However, we will present
our results as a function of the model in orderto allow one
to change H(f) if desired. Further, the usual assumptions
follow:

e The screen has a 1:1 ratio and has uniform brightness
when displaying a uniform image.

e The vieweris situated at a distance v from the screen,

right in front of its geometric center.
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e The screen has width w and each row (column) has N
pels.

e The viewer can observe approximately the same den-
sity of pels-per-degree (spatial) in any region of the
screen.

Let a be the ratio of viewer distance (v} by screen width
(w), i.e., «=ww. This factor is the relative distance of the
observer. The maximum visible frequency in cycles per
degree is obtained when the discrete signal displayed has
its maximum frequency component, which is half of the
sampling frequency. In other words, in N samples it is
possible to observe N/2 cycles. The maximum visible fre-
quency can be found as:

N/2.

fax = 55 =__N_ cycles/degree , (10)1
4 arctan| -—

arctan\ 5

where 6 in degrees is the viewing angle, from the centerto
the extreme of the screen, and tan(@)=w/2v= I/2a. We,
therefore, can represent a discrete sensitivity function as

Hp(e*) = Hp(e?™) = AUifimax) : Lf | <femax . . dh)

An orthogonal block transform is a special case of a
lapped transform in whichthere are as manybasis functions
as elements in each basis function.“ Furthermore, lapped
transforms are equivalent to paraunitary filter banks.
Therefore, we can always regard any discrete, real, and
orthogonal (lapped or block) transform as a filter bank. 26.32.33
The analysisfilters’ coefficients are the time-reversed basis
functions elements.?°3 Suppose the M basis functions have
elements pe(n) (K=O, 1,Ma landn=0,1,...,2—1).
The equivalentanalysisfilter bank is shown in Fig. 3, where
each filter [with coefficientfi.(x)]is equalto a basis function
of the LOT, i.e., fa(m)=pe(L—-1—2) for n=0, 1, ...,
L—1. Fortheparticular case of the LOT of M bands, L=2M,
but for the DCT we have L=M (as any block transform).
In Fig. 3, with x(7) as the input signal to the filter bank,

Rearrange
Coefficients
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Standard

Deviations
 
 
 

HVS-MTF
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 Display

 
Fig. 3 Analysis section ofa critically decimated M-bandfilter bank
where x(7) is the input signal and (mM) are the subband signals
after filtering (Q@<k=<M-—1). The subband signals are decimated
resulting in yx(m) =Jx(mM). The filters’ impulse responsesf,(n) are
the time-reversed basis functions of the transform.

x(n) corresponds to each subband (filtered signals), and
y(n) is the subband signal after decimation. Let F,(e/”) be
the frequency response of fi(n). Figure 4 shows the fre-
quency response of the first three filters (basis functions)
for a one-dimensional LOT with 8 bands(i.e., a 16xX8 LOT
matrix). Similar results for the DCT are found in Fig. 5.
The same procedure can also be applied to nonuniform filter
banks such as those resulting from the use of hierarchical
structures. If, in Fig. 3, the input x(2) has a power spectral
density (psd) given by 5,(w), and denoting the PSD of Jz(n)
and yz(1) as Syy(w) and Sy,(w), we have: =

S5x(o) = Sx(w)| Fie)]? (12)
After the decimator, y(n) =5.(nM), and

Mot w—2u0rSy(o)= Sy( ) (13)r=0 M

As

 

b 2u-a

S54(0) do=| S5(w) do ,a 2n-b
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Fig. 4 Frequency response in decibels of thefitters fm(n) corre-
spondingto thefirst three basis functions of the LOT,ie., |Fn(e“)I,
m=O, 1,2.

Gain
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2
frequency - w

Fig. 5 Frequency response in decibels of thefilters fm(n) corre-
spondingtothefirst three basis functions of the DCT,i.e., | Fn (e*)|,
m=O, 1, 2.

the variance of y,; is given by

1/(* 1/*g=+/ Syl) éo=+[ S5,(@) dw . (14)
Altematively, this result could be shownusing the fact that
if u(n) is a stationary process, then var{u(n)] = var[u(Mr)].
Therefore, var[};,(7)] = var[ys(n)] and the preceding equa-
tion is also true.

Roughly, if a signal is filtered by Hp(e’”), the signal
andits filtered version would be indistinguishable for the
observer to whom Hp(e/”) is a perfect sensitivity model.
If this signal has a flat PSD (white noise), the filtered signal
has the PSD shaped by thefilter, letting one know the
relative importance of each frequency componentfor the
observer. If this colored signal is split into subbands, as
when using the LOT, how can we measure the importance
of each subband component? A sampling in the frequency
domain would be imprecise and very dependent on the phase
of the sampling train, since there would be only M bands
of width a/M. This bandwidth can be large enoughto allow
significant variations of the input PSD. Since we are mea-
suring up to the second-order statistics in the image, and
on those we may apply the weighting matrix, one possible

332 / JournalofElectronic Imaging / July 1992 / Val. 1{3)

 

 
0 5 10 15 20 25 30 35

f (spatial frequency in cycles/degree)

Fig. 6 HVS model function used in this paper.?

solution would be the measure ofthe variance of each band.
These variances can providetherelative significance of each
subband. Note that as M increases, L increases, and the
filters are becoming closeto idealfilters and the bandwidth
is becoming narrower.In the limit, the approximations by
sampling and by variance computation would yield the same
results.

If a white noise with unit varianceis input to the linear
system Hp(e/), and its output is transformed using the
LOT, then Eq. (14) is given by:

getI lHp(e™)|? | File)? do (15)T40

The continuous HVS model function as used in Ref. 2
is plotted in Fig. 6. As previously stated, the frequency f
is given in cycles per degree of visual angle subtended. The
model is given by:

H(f)=2.46(0.1+ 0.25f)e°F. (16)

The corresponding weights £; can be found using Eqs. (11)
and (15).

The two-dimensional case is just an extension of these
results, since the transform is separable. Weare interested
in weights Gj, (ij) EV, which can be derived from

1 TT | .ea{ I |Hp(et*!, e2))?w'-0 ~0

x [Fi (e!, e#2)[? dor dor , (17)
where =

Hy(e!, e882) =Hp(e?™1, ¢?*2) = H(folfax) (18)
and

So= Vf tte > Ufil<finax + {fal <finax
and

File), ef2) =F(eM) Fj(e2) (19)

In our application, we are weighting standard deviation val-
ues and we use {;; instead of the squared value. Figure 7
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0.6854 0.8698 0.9883 1.0000 0.9546 0.8703 0.7706 0.6793
0.8698 0.9371 0.9930 0.9821 0.9294 0.8457 0.7475 0.6598
0.9883 0.9930 0.9963 0.9606 0.8987 0.8154 0.7194 0.6362
1.0000 0.9821 0.9606 0.9114 0.8458 0.7659 0.6752 0.5984
0.9546 0.9294 0.8987 0.8458 0.7816 0.7073 0.6241 0.5543
0.8703 0.8457 0.8154 0.7659 0.7073 0.6409 0.5667 0.5047
0.7706 0.7475 0.7194 0.6752 0.6241 0.5667 0.5028 0.4493
0.6793 0.6598 0.6362 0.5984 0.5543 0.5047 0.4493 0.4024

(a) «= 4; fmar = 9 cycles/degree

0.7460 0.9223 1.0000 0.9542 0.8566 0.7341 0.6071 0.5101
0.9223 0.9686 0.9836 0.9214 0.8222 0.7051 0.5829 0.4911
1.0000 0.9836 0.9515 0.8742 0.7749 0.6653 0.5503 0.4655
0.9542 0.9214 0.8742 0.7955 0.7032 0.6051 0.5021 0.4265
0.8566 0.8222 0.7749 0.7032 0.6222 0.5375 0.4483 0.3824
0.7341 0.7051 0.6653 0.6051 0.5375 0.4665 0.3916 0.3356
0.6071 0.5829 0.5503 0.5021 0.4483 0.3916 0.3312 0.2854
0.5101 0.4911 0.4655 0.4265 0.3824 0.3356 0.2854 0.2468

(b) a = 5; fmaz = 11.2 cycles/degree

0.8090 0.9702 1.0000 0.8988 0.7576 0.6112 0.4710 0.3804
0.9702 0.9920 0.9627 0.8533 0.7171 0.5803 0.4476 0.3630
1.0000 0.9627 0.8966 0.7846 0.6583 0.5354 0.4145 0.3379
0.8988 0.8533 0.7846 0.6845 0.5759 0.4714 0.3676 0.3012
0.7576 0.7171 0.6583 0.5759 0.4877 0.4024 0.3169 0.2610
0.6112 0.5803 0.5354 0.4714 0.4024 0.3348 0.2664 0.2206
0.4710 0.4476 0.4145 0.3676 0.3169 0.2664 0.2146 0.1789
0.3804 0.3630 0.3379 0.3012 0.2610 0.2206 0.1789 0.1498

(c) = 6; fmaz = 13.4 cycles/degree

0.8629 1.0000 0.9750 0.8228 0.6487 0.4928 0.3515 0.2769
1,0000 0.9933 0.9177 0.7674 0.6051 0.4622 0.3305 0.2616
0.9750 0.9177 0.8206 0.6824 0.5402 0.4162 0.2998 0.2384
0.8228 0.7674 0.6824 0.5696 0.4549 0.3541 0.2582 0.2060
0.6487 0.6051 0.5402 0.4549 0.3678 0.2897 0.2144 0.1717
0.4928 0.4622 0.4162 0.3541 0.2897 0.2307 0.1733 0.1394
0.3515 0.3305 0.2998 0.2582 0.2144 0.1733 0.1326 0.1073
0.2769 0.2616 0.2384 0.2060 0.1717 0.1394 0.1073 0.0872

(4) a = 7; fmaz = 15.7 cycles/degree

Fig. 7 Two-dimensional HVS weighting matrices for the LOT, as-
suming 256 pels in a line and blocks of 8x8 pels. The relative
distance « and maximum frequency fmax are indicated.

shows weighting matrices containing normalized (;; forTmax
as 9.0, 11.2, 13.4, and 15.7 cycles/degree. They represent
a=4, 5, 6, 7, respectively, for N= 256. Values for « of 6
or 7 are more representative for broadcast TV viewing.
Values of 4 or 5 fit modern PIT needs very well and ap-
proximate the situation in which a 256 X 256 pel image is
displayed on the 640x480 resolution mode on a regular
home PC monitor, with the observer in front of it, working
on the computer. The same procedure is repeated for the
matrices in Fig. 8, assuming N=512. For this value of N
and the same values of «, the maximum frequencies are
18.0, 22.4, 26.8, and 31.4 cycles per degree.

4 Implementation and Results
A 256X256 pel monochromeimageis divided into 8x8
nonoverlapping blocks (M =8) and the LOT is applied to
each block. Based on the ac energies, the 8 x8 blocks are

0.8945 1.0000 0.9209 0.7295 0.5375 0.3865 0.2539 0.2005
1.0000 0.9644 0.8474 0.6684 0.4942 0.3581 0.2362 0.1872
0.9209 0.8474 0.7270 0.5746 0.4289 0.3143 0.2098 0.1663
0.7295 0.6684 0.5746 0.4589 0.3477 0.2581 0.1754 0.1387
0.5375 0.4942 0.4289 0.3477 0.2683 0.2022 0.1404 0.1108
0.3865 0.3581 0.3143 0.2581 0.2022 0.1543 0.1092 0.0862
0.2539 0.2362 0.2098 0.1754 0.1404 0.1092 0.0792 0.0627
0.2005 0.1872 0.1663 0.1387 0.1108 0.0862 0.0627 0.0499

(a) a= 4; fmas = 18 cycles/degree

0.9608 1.0000 0.8236 0.5781 0.3739 0.2485 0.1360 0.1222
1.0000 0.9107 0.7255 0.5121 0.3343 0.2242 0.1239 0.1104
0.8236 0.7255 0.5746 0.4122 0.2747 0.1863 0.1057 0.0915
0.5781 0.5121 0.4122 0.3025 0.2071 0.1423 0.0835 0.0698
0.3739 0.3343 0.2747 0.2071 0.1460 0.1021 0.0622 0.0504
0.2485 0.2242 0.1863 0.1423 0.1021 0.0723 0.0452 0.0361
0.1360 0.1239 0.1057 0.0835 0.0622 0.0452 0.0295 0.0231
0.1222 0.1104 0.0915 0.0698 0.0504 0.0361 0.0231 0.0185

(b) @=5; frnaz = 22.4 cycles/degree

1.0000 0.9676 0.7115 0.4434 0.2512 0.1646 0.0707 0.0878
0.9678 0.8317 0.6001 0.3796 0.2184 0.1433 0.0631 0.0754
O.7115 0.6001 0.4384 0.2857 0.1699 0.1111 0.0516 0.0568
0.4434 0.3796 0.2857 0.1928 0.1191 0.0779 0.0385 0.0387
0.2512 0.2184 0.1699 0.1191 0.0767 0.0507 0.0266 0.0245
0.1646 0.1433 O.111L 0.0779 0.0507 0.0338 0.0182 0.0164
0.0707 0.0631 0.0516 0.0385 0.0266 0.0182 0.0106 0.0087
0.0878 0.0754 0.0568 0.0387 0.0245 0.0164 0.0087 0.0082

(c) « = 6; finor = 26.8 cycles/degree

1.0000 0.8965 0.5850 0.3231 0.1591 0.1141 0.0347 0.0692
0.8965 0.7254 0.4715 0.2669 0.1343 0.0943 0.0303 0.0561
0.5850 0.4715 0.3165 0.1870 0.0985 0.0663 0.0236 0.0379
0.3231 0.2669 0.1870 0.1157 0.0641 0.0418 0.0165 0.0227
0.1591 0.1343 0.0985 0.0641 0.0375 0.0241 0.0106 0.0123
0.1141 0.0943 0.0663 0.0418 0.0241 0.0159 0.0069 0.0083
0.0347 0.0303 0.0236 0.0165 0.0106 0.0069 0.0035 0.0033
0.0692 0.0561 0.0379 0.0227 0.0123 0.0083 0.0033 0.0046

(d) @=7; faz = 31-4 cycles/degree

Fig. 8 Two-dimensional HVS weighting matrices for the LOT, as-
suming 512 pels in a line and blocks of 8x8 pels. The relative
distance « and maximum frequencyfmax are indicated.

grouped into eight different equally populated classes (Nc = 8).
Thus, there are 32 x 32 blocksin the image (Np = 1024).
The de coefficients are quantized with a uniform 7-bit quan-
tizer, and Bmax is set to 7. Therefore, the overhead in Eq.
(7) is, as previously computed, 4552 bits and the amount
of bits needed to code the dc coefficients is 7168. “Fhis
yields a total of 11,720 bits sent prior to the transmission
of the ac coefficients (approximately 0.18 bits/pel). The
block classification map for the 256x256 monochrome
“Tena” image is shown in Fig. 9. Classes | through 8
represent increasing energies of 2-D LOT blocks. Figure 10
shows maps with standard deviations. Classes 1, 3, 6, and
8 are chosen as examples, and the dc coefficient is not
computed. The resulting bit-allocation map for the eight
classes is presented in Fig. 11. Using these maps and the
weighting matrix of Fig. 7 (for a =6), by means of Eq. (9)
we get the order for the transmission of the ac coefficients
as shownin Fig. 12.
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2136412271 11111121139621127841148
12254222114£122121112431115571584
LZIHALQALLLIAISHAVLAIZSLLL27B68H2
$5264221124334558422312221478422
66265121154324333783324411286237
76264121232333554377426821572357
25264124612334643238725475842473
252641278234663339224856887723841
153641286533554343442468737727421
1536412853554543333446532687397311
25264128554445665555332578484111
2526512875 43466768831587S8SS572111
252641187544 7677 874258688365 1111
14364126754756787534588623751111
14364134857656876442388525632331
14364136887556867773788838412233
2ARGA4BTBGEGCRGRTESCRITE4S2I1194
35464788767477856546666855222964
38454677778788542447576873113793
DE4HGOTGOTGEBRB7T4A33IHH8H587TSBILLAI3I1
Q6ERZH557TTGSTSRSTII2467THSFGSTZLIAT72I1
B735676578885752568884584l 137111
26357777678635633465645821148122
35456667686323474438455832258137
56468667778523365348874835664487
56558777668633543243686823565864
88558476668854752223368812375743
88646574678856751223328722658443
88647444678656731122327753478444
78757444677367711122335857876446
T7766356677367311112232836885544
56765467767631111112233863554675

Fig. 9 Equally populated 32 x 32 classification map for the “Lena”
image. Classes 1 through 8 represent increasing energies of 8x8LOTblocks.

The ac coefficients are well modeled by a Laplacian
probability density function (pdf), but the blocks are clas-
sified according to their ac activities. If u is the amplitude
of an ac coefficient, the actual important function is no
longer its density function py(«), but one conditional to the
estimated standard deviation py(u\é). If there is just one
class (Nc = 1), the Laplacian modelfits well. At the other
extreme, suppose there are as many blocks as classes (the
overhead would be enormous). The variances would be
computed from one element and would determine its am-
plitude completely. Therefore, the density would be an im-
pulse. In this extreme case, all quantizers should only have
two levels to indicate the sign of the coefficient. As long
as we have few classes, these extreme cases do not apply.
However, the lowest frequencyac coefficients (which have
great influencein the classification process because they are
larger) are well apart from having a Laplacian conditional
density. As an examplefora particular coefficient, suppose
its standard deviation is estimated to be very large. This
indicates that the coefficients on that coordinate (nmner
belonging to the same class are expected to have high am-
plitudes, not amplitudes close to zero as in the Laplacian
model. Generally, these large coefficients have low fre-
quencies and have large numbers ofbits allocated. Coef-
ficients with one or twobits allocated generally do not have
a great influence on the ac energy and are very close to the
Laplacian model. In our constant distortion rule forbit al-
location, we assumedthatall the quantizers were optimized

334 / Journalof Electronic Imaging / July t 992 / Vol. 1(3)

a

0.0 33.0 13.6 14.6 5.6 7.6 4.7 3.8
23.3 16.3 113 83 49 38 35 28

0.0 121.1 54.8 39.1 22.9 24.1 13.8 12.8
67.3 51.8 42.1 27-4 20.4 17.8 14.0 12.3
99.7 31.1 29.8 25.8 214 15.7 15.0 121
99.5 20.7 22.1 19.7 168 113 10.0 7.8
12.9 13.9 12.3 140 114 124 98 82
121 114 16 82 94 96 6.5 6.6
56 5.8 58 62 58 62 51 59
62 5.7 55 53 64 51 44 4.9

Class 8

0.0 316.5 116.1 68.0 41.6 34.0 20.1 20.5
160.7 149.2 81.6 46.3 39.1 32.5 18.8 19.2
47.9 62.2 54.9 45.7 26.6 22.7 18.9 16.8
31.7 31.3 34.3 27.3 27.0 22.6 13.4 13.1
18.1 18.5 22.7 21.3 18.1 16.8 14.2 11.6
13.5 168 149 11.8 15.5 114 9.2 9.4
8.5 10.2 8.4 91 84 89 7.1 7.6
O91 112 90 75 83 7.2 6.2 6.8

Fig. 10 Map with standard deviations of LOT coefficients in each
class. Classes 1, 3, 6, and 8 are chosen as examples. The standard
deviation for the de coefficient is not shown.

using the same pdf. Therefore, we have chosen the Gaussian
density as the density model for our Lloyd-Max quantizers
due to its greater robustness against pdf mismatches. Tests
carried out (for 8 and 16 classes) using twosets of quantizers
(for Laplacian and Gaussian pdfs), showed better perfor-
mance for the Gaussian set of quantizers.

The reestimated standard deviations assume an integer
numberofbits allocated to each coefficient; hence, if we
assume that all quantizer levels may be used, the quantizer
should be a midrise one. For one- and two-bit quantizers
optimizedfor a Gaussian input pdf, the inner reconstruction
levels (positive or negative) are 0.7980, and 0.45302, re-
spectively, where 01 =c and o2=2c represent the estimated
standard deviations for those coefficients that have been
allocated 1 and 2 bits, respectively. It is possible that some
null or insignificant coefficients would have to be quantized
using relatively high standard deviation values, and must
be reconstructed as a nonzero component with a magnitude
comparable to the standard deviation. In these cases, non-
existent frequency components emerge, resulting in annoy-
ing effects. For this reason, we decided to apply midtread
quantizers with three levels and variable length coding, in-
stead of quantizing with two or fourlevels. The standard
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Fig. 11 Bit-allocation maps for each class for the “Lena” image. The rate is 1 bit/pel including
overhead. This is also thefinal stage of the PIT.

Class 1 Class 2
- 1897 - - - - - = - 70 1144119 = - - =

3B - - - = = = = 139 124 - - - - = =

Class 3 Class 4
—- 40 NS 56 —- 161 - —- - 41 52 57 140 162 - —-
71 #61 ll 1288 - - = = 72 #31 #49 «127 144 - - =
116 112 WB - - - = = 117 113 54 182 155 - - -
$20 126 181 - = - - = 121 1298 «183 «16k - = - =
i - 145 156 - - - = =

Class 5 Class 6
- 18 #19 27 73 87 181 198 - 3 20 28 74 8&8 182 199
42 32 50 G2 146 170 - — 14 33 16 64 76 95 184 202
53 51 55 134 157 172 -  —- 21 i? 24 67 82 99 122 218
58 63 185 1682 167 - - - 59 65 68 79 90 177 194 217
i141 147 158 168 175 - - = 142 148 159 169 L7G 190 208 225
93 -—- - - = = = = 164 171 173 178 $91 205 - —-

Class 7 Class 8
- 4 9 29 43 89 107 149 - 1 10 11 44 47 «108 150

220 «18 #25 37 83 100 187 214 23.8 «26 38 85 «101 123 160
60 66 69 80 91 105 136 218 3036 «6389 BLS 93s 106=«196220
143° 77 «84 «92 103 192 209 226 75 78 86 94 104 129 2iL 227
165 97 174 179 193 206 222 229 166 98 102 180 130 207 223 230
— 18 188 195 210 - - - 183 186 189 I97 212 224 — 231

200 203 215 219 - - - = 201 204 216 221 228 - —- —-

Fig. 12 Transmission orderof the LOT coefficients amongall classesfor the “Lena” image. This order
is found using the bit-allocation maps in Fig. 11, weighted by the HVS matrix in Fig. 7(c), according
to Eq. (9). The transmission priority rules were defined in Sec. 2 based on these weighted matrices.
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(a)

 
(c)

(b)

 
{a}

Fig. 13 Partially reconstructed images: (a) DCT 0.2 bit/pel, (b) LOT 0.2 bit/pel, (c) DCT 0.3 bit/pel,
and (d) LOT 0.3 bit/pel.

deviations for quantization and reconstruction ofthese coef-
ficients would remain the same, butthe distortion nile and
the average bit rate would be affected. However, the dis-
tortion increase, a result of going from four to three levels
in the 2-bit quantizer, is partially compensated by the dis-
tortion decrease in going from two to three levels for the
I-bit quantizer. The same occurs with the bit-rate changes.
In our simulations, both schemes yielded roughly the same
bit rates, with the three-level scheme leading to images with
higher signal-to-noise ratios (SNRs).

The HVS-weighted PIT described previously is extended
to the 2-D DCT. The weighting matrix was found using the
method described in Ref. 2 for finax = 13.4 (a = 6). Recon-
structed images based on both LOT and DCTfor several
stages are shown in Fig. 13. Critical observation of these

336 / Journalof Electronic Imaging / July 1992 / Vol. 1(3)

imagesindicates the improvedfidelity and absence of block
structure during the initial stages when LOT is used. In
Table 1, a comparison of both methodsis carried out, €val-
uating the SNR of reconstructed images at several stages
for the ‘‘Lena’’ and ‘‘Girl’’ images. Since the HVS weight-
ing is used only forprioritizing the transmission of coeffi-
cients, the SNR measure did not incorporate subjective
weighting factors. If u(m,n) and fi(m,n) representthe orig-
inal and reconstructed image, then the SNRis given by

N-IN-1

> Ss (m,n)m=0 1=0

SNR=10 logio NoUNe
Ss s fu(rmwn) ~ a(m,ay]m=0 1=0
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Fig. 13 (continued) Partially reconstructed images: (e) DCT 0.4 bit/pel, (f) LOT 0.4 bit/pel, (g} DCT
1.0 bit/pel, and (h) LOT 1.0 bit/pel.

5 Conclusions

A PIT scheme that incorporates adaptive classification in
the transform domain and bit allocation based on the rate-
distortion theory is presented. A general technique for de-
veloping HVS weighting of the transform coefficients is
developed. Based on this, HVS weighting matrices appli-
cable to LOT are obtained. The order in which the transform
coefficients are transmitted is based on the estimated vari-
ances of these coefficients weighted by the human visual
system sensitivity, measured in the 2-D LOT domain. Be-
cause these variances can be estimated atthe receiver, over-
headis limited to bit-allocation mapsof the classes to which
the blocks are grouped andto the classification of the blocks.
The transform coefficients for all the classes during each
stage are transmitted progressively such that a specified bit
rate is reached for each stage. Visual comparison of the

Table 1 SNA (in decibels) resulting from intermediary reconstructed
images at severalbit rates for the “Lena” and “Girl” images.

Rate(bpp) -

18.41
20.55
22.39
23.29|25.21
25.15|26.98
26.67|28.50

  
reconstructed images based on the LOT and DCT shows
that the former yields subjectively superior images com-
pared to the DCTin all stages.
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A Perceptually Tuned Sub-band Image Coder With
Image Dependent Quantization and Post-quantization

Data Compression

Robert J. Safranek
AT&TBell Laboratories

Murray Hill, NJ

Abstract

In this paper we present a 16 band sub-band coder, arranged as
4 equal width sub-bands in each dimension, that uses an
empirically derived perceptual masking modelto set noise-level
targets not only for each sub-band but also for each pixelin a
given sub-band. The noise-level target is used to set the
quantization levels in a DPCM quantizer. The output from the
DPCM quantizer is then encoded, using an entropy-based
coding scheme, in either 1x1, 1x2, or 2x2 pixel blocks. The
type of encoding depends the statistics in each 4x4 sub-block
of a particular sub-band. One set of codebooks, consisting of
less than 100,000 entries, is used for all images, while the
codebook subset used for any given image is dependent on the
distribution of the quantizer outputs for that image. A block
elimination algorithm takes advantage of the peaky spatial
energy distribution of sub-bands to avoid using bits for
quiescent parts of a given sub-band. Using this system, high
quality output is obtainable at bitrates 0.1 to 0.9 bits/pixel,
while nearly transparent quality requires 0.3 to 1.5 bits/pixel.

1. Introduction

In general, the current generation of low bitrate
(< lbpp) Black and White image coders provide
a quality level of good to very good. Manyapplications, such as remote slideshows, would
benefit from higher quality. To achieve this level
of performance, we believe that knowledge of
human visual perception should play a strong part
in the coder design process. Our goal in this

work, was to develop a visual perceptual qualitymetric which would provide nearly transparent
quality to a coded image. In addition, this metric
Should be image independent. Thatis, it should
perform equally -well over a wide range of image

",Mput, say flat field .to strong irregular’ texture,
‘with no image specific. tuning. This paper willpresenta system that uses this perceptual’ metric
in. conjunction with’ sub-band filtering, DPCM
coding of sub-bands and multidimensional
Huffman compression to provide nearly
transparent coding of a wide variety of images at
rates of less than 1 bit/pixel.

2. Sub-band Analysis
In order to exploit the generally lowpass
characteristic of images, each image is first
passed through a separable Generalized
Quadrature Mirror Filter. ~(GQMF)_bank
[Cox,Woods], after the mean of the image is
calculated and removed. The mean is quantized
to 8 bits (0-255) and retained for transmission to
the decoder. Each of the |-dimensional GQMF
filters decompose the input image into 4 bandpass
sub-images with one stage of filtering. ‘This
“‘ontrasts with the 2 stages required with
conventional QMF filters. Since the filters are
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James D, Johnston

applied in both the horizontal and vertical
dimensions, this results in 16 total sub-bands,
numbered as shown below.

 
Table 1 - The sub-bands are numbered using this
scheme.

The GQMF filter that was used has a first
sidelobe suppression of >48dB, which ensures
perfect reconstruction of an 8 bit/pixel image
(ignoring edge effects). A contrast enhanced
example of the sub-band images, where the range
in each sub-band is. stretched to full scale, 1s
shown here for a text image:

 
 

 

. Figure 1: Here aresub-band images of grayscale text. The.
right image is conttast ‘enhanced with -each . $ub-band
stretched to use the full gray scale range.

The actual mean energy for this image is 123 and
the peak level in each sub-bandis:

Table 2 - Presented here are the peak values in

each sub-band for the text image of Figure lL.

3. Perceptual Masking Model

In the perceptual masking model, we use the
local mean and variance to calculate a noise

tolerance relative to the observed noise sensitivity
of that sub-band given a uniform background
grey level of 127.
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3.1 Obtaining the Base Sensitivity
The base sensitivity for each sub-band was

‘ established in an informal test using 3 trained
subjects. A set of 512x512 images with a
constant grey level of 127 (on a scale of 0-255)
were created, and uniformly distributed random
noise of known energy was added to the center
64x64 pixels of each sub-band in tum. _Taking
into account the 4:1 decimation_ ratio, the
reconstructed pictures have a 256x256 square of
noise in the center. For each sub-band, the
energy level of the noise was adjusted until the
observers could not reliably determine if the
reconstructed image did or did not containthe
"noise square". ‘The images were viewed in a
darkened room on a Sun 3/110 workstation
screen at 6 times the image height. The results
of this sensitivity test were:

 
Table 3 - RMS noise sensitivity threshold for
each sub-band. The order corresponds with
Figure 1. ;

3.2 Sensitivity Adjustment for Brightness
The next step in determining the perceptual
model was to vary the image grey scale
background, and determine the change in
sensitivity of band 0 for varied background grey
levels. This test was run in the same manner as *
the previous test, yielding a brightness correction
curve. For the specific conditions in this coder,

- the resulting adjustment curveis:
0

6

Correction
Factor 12

dB 
0 -32 64 96 128160 192°224 255

’ - Mean Level

The brightness adjustment was spot-checked in
other low frequency bands and found to predict
the thresholds reasonably well. A better model
could be obtained by running this correction test
for each sub-band.

3.3 Texture Masking Adjustment

The base sensitivity and brightness adjustment
provide a perceptual threshold which attempts to
account for the human visual systems sensitivity
to frequency content and image brightness for a
flat-feld image. Since humans are more sensitive
to noise in flat-fields than in textured regions, this
model provides a_ conservative perceptual
threshold. Smooth image regions would be
coded to an appropriate quality level, but textured

15

TexEnergy (x,y) = ¥, MTFweight(s)*Energy(s,x,y) +

regions would be greatly over-coded. Therefore,
a texture masking adjustment was incorporated to
the perceptual model.
The texture masking adjustment is a function of
the ‘‘texture energy’’ at each image location. It
is comprised of the weighted sum of the local
(either 2x2 or Ix1 pixel, depending on the target
quality) energy in each sub-band other than band
zero plus the variance of band zero over the same
locality (the variance is always taken over a 2x2
area with the target pixel in the upper left
comer). The weights for each sub-band are
determined empirically from the visual system's
modulation transfer function [Cornsweet]. Thatis

s=l

MTFweight (0)*variance (Gay)(etlyay+),tLy +1))

Where TexEnergy is the measure of texture
energy, x and y horizontal and vertical pixel
indices, MTFweight is the empirical weight from
{Clarke, p. 271}, and variance an operator that
retumns the variance of the enclosed pixels. This
provides a crude measure of how much masking
energy is visible in each sub-band. his texture
energy is raised to the power 0.07, and the
energy threshold multipled (or added in the dB
domain) by the texture component. ;

The final form of the perceptual threshold is
pt(s,x,y) = Base (s) —.15*log,(TexEnergy (x,y))

— BrightWeight*BrightCorr(x,y)

where x and y are pixel locations in a sub-band, s
is the sub-band number, Base() is the base noise
sensitivity from Table 3 (in dB), and pt is
expressed as a PSNR. Shown below is a
representation of the relative perceptual threshold
function for the text image. Portions of the
image that have large tolerance to coding errors
are represented by dark pixels, while sensitive
areas are indicated by light pixels.

4. DPCM Coding of Sub-bands
Each sub-band ‘is coded using a DPCM coder
With a variable uniform mid-riser quantizer. It
use$-a threepoint predictor ‘optimized for each
sub-band. The predictor coefficients are quantized .
to 5 ‘bit accuracy atid sent as.side information.

. The quantizer step size is adjustedto ensure’that

1946

the perceptual criterion is just met at.mostcritical.
point in the sub-band. This ensures that every

int in the sub-band receives. a sufficiently high
evel of coding without overcoding the most
sensitive position. Due to the wide dynamic
range of the perceptual threshold _values,
adaptation of the quantizer step size will be
advantageous. However, we have just begun
testing a modified step-size algorithm. that
responds within each sub-band to the image
texture information.

OLYMPUSEX. 1016 - 424/714
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Figure 2: In the upper left is the zero sub-band. Toits
right is the perceptual threshold function The perceptual
threshold function provides an measure of the sensitivity
of each point to coding noise. Dark pixels indicate
insensitive portion of the image, while white areas are
very sensitive. The bottom row shows the activity
measure. The number of sub-bands that are coded at
each point is a function of the local frequency content.
Black pixels denote that one sub-band was coded while
white denotes that 6 sub-bands were coded.

5. Noiseless Compression

After quantization, the codewords for each sub-
band are compressed using_potentially
multidimensional Huffman coding. Furst, if an
entire subband consists of the zero codeword
(which implies the perceptual threshold is met if
every point in the sub-band is identical to zero), a
tag notes this, and the coder proceeds to the next
sub-band. If portions of a sub-band are non-zero,

_ x4 blocks .of zero: codewords -are- identified.
' : Depending on the percéntage of zero blocks, one -

of two schemes of ‘encoding this. is used. If there’ -
are less than 102 non-zero blocks, the block
number for each of these is sent, followed by the
block’s codewords. If there are more than 960
non-zero blocks, a bitmap is sent, followed by the
codewords for the non-zero blocks. Smooth
portions of an image require information from
one sub-band. But, textured areas and edges, due
to their broad spectrum, require information from
several sub-bands. The perceptual threshold
function automatically determines the number of
sub-bands that must be coded. Shown below is a
Tepresentation of this activity measure for the text
image. Black pixels indicate that one sub-band
was required at that point. Each successively
lighter shade of gray denotes another sub-band
was coded. For this image, a maximum of six
Sub-bands were required at any one point, even
though portions of nine sub-bands were coded.

 
Table 3 - The coding algorithm encodes only the
perceptually relevant portions of a sub-band. In
addition, multidimensional Huffman coding its
highly effective.

Each non-zero block is encoded using one, two,
or four dimensional Huffman codebooks. The
codebook with the highest dimensionality that
will fit the rate (i.e. lowest potential rate) is used
for each block. The dimensionality of the
codebook for each block is combined with the
block activity information and transmitted for
each sub-band that is not all zeros. The four
dimensional codebook operates on 2x2 codeword
blocks, where each codeword has an absolute
value of less than 4. The two dimensional
codebook operates on 2x1 codeword blocks,
where each codeword has an absolute value of
less than 26. Likewise the one dimensional
codebook operates on individual codewords, of
any size required to meet the perceptual
threshold. Since the quantizer outputs are
entropy coded, and hence inherently of a variable
bit length, the high peak quantizer outputs do not
degrade the transmission cost of less active areas
of the same image by a factor of
loga(largest level count)—log2 (mean level count)
as would happen in a standard DPCM coder.

6. Testing and Results

A wide selection of images, ranging from simple
(low-resolution scenery) to complex (strongly
contrasting textures, grey level text), have been
collected for both training purposes and test
purposes. No image is included in both the test
and training sets. The results reported in this
paper are for images that are in the test set,

_which consists of around 30 512x512grey-level .
“images. . All codebooks used in the compréssion =<...

_salgorithms .. were generated strictly “ from-‘the . -
training set, ‘which consists of 107 images, that ©

‘are distinct from the test set. ~ . oo

The results of this compression algorithm provide
an image quality, at a rate of .33 bit/pixel, for the
“Lena Image" similar to or better than that of the
.5 bit/pixel coder previously reported in ICASSP
88 [Safranek]. The quality of the Lena imageis
nearly transparent at 6x the image height at a rate
of .5 bit/pixel. Using this algorithm, typical
images require from .1 bit/pixel to .6 bit/pixel,

and extremely complex textures require in therange of 0.9 bit/pixel for a high-quality encoding,
or 1.5  bits/pixel for near-transparent coding.Grey scale text images that are not obviously
impaired also require roughly .9 bits/pixel, while
readable (for characters understandable in the
original at 6x the image height) grey scale images

1947
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of text require about .5 bits/pixel Figures 4 to 7
resent the output of this coder on a variety of

images at three different quality levels. For these
examples, the upper left image is the 8 bit/pixel
original, the upper right image 1s at the nearly
transparent quality level, the lowerleft offsets the
erceptual eshold function by 5dB, and_the
ower right offsets the perceptual threshold

function by 10 dB.

7. Conclusions

We have presented a variable bit rate coder
which provides approximately constant quality for
a wide range of input image complexities. Its
compression gains are a result of a combination
of all of the compression methods (DPCM,
entropy coding, perceptual-threshold calculation,
and quiescent block rejection), which work co-
operatively to automatically provide good
compression results and quality over a variety of
images withoutuserintervention.
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Figure 4: Here is an example of coding gray level text.
The original image is in the upper left. The upper rightis
coded at 0.83 bits/pixel, lower left is coded at 0.47
bits/pixel, and the lower right is coded at 0.34 bits/pixel. ;

oe
» wba yo wat, That's +
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iea
% RoneeRAO

 
 
 
  

- , Figure, 5.-Here-is an‘example of codinig “maridrill,. The.
* origirial ‘image is in tHe, upper’ left. The upper-right is.

coded at 1.00 bits/pixel, lower left is coded at 0.58
" bits/pixel, and the lower right is coded at 0:37 bits/pixel.

 
 

 

 

  
Figure 3: Here are the results of coding lena. The original
image is in the upper left. The upper right is coded at
0.47 bits/pixel, lower left is coded at 0.33 bits/pixel, and
the lower right is coded at 0.23 bits/pixel.

1948
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A JPEG Compliant Encoder Utilizing Perceptually Based Quantization

Robert J. Safranek

Signal Processing Research Department
AT&T Bell Laboratories

Murray Hill, NJ 07974
rjs@research.att.com

Abstract

Recently, the use of image compression algorithms in commercial products has been increasing
an extremely fast rate. This explosion has been fueled by two recent developments, the
availability of cheap signal processing ICs and the completion of several international standards
for image compression. The ICs make the products cost effective, and the standards provide for a
large degree of interoperability.

Oneofthese standards, JPEG (Joint Photographics Experts Group), deals with the compression of
still images. As is typical of these newly evolving standards, it specifies the information
contained in the compressed bit stream, and a decoder architecture which can reconstruct an
image from the data in the bit stream. However, the exact implementation of the encoder is not
standardized. The only requirement on the encoder is that is generate a compliant bit stream.
This provides an opportunity to introduce new research result

The challenge in improving these standards based codecs is to generate a compliant bitstream
which produces a perceptually equivalent image as the baseline system that has a higher
compression ratio. This results in a lower encoded bit rate without perceptual loss in quality.
The proposed encoder uses the perceptual model developed by Johnston and Safranek [JohnSaf]
to determine, based on the input data, which coefficients are perceptually irrelevant. This
information, is used to remove (zero out) some coefficients before they are input to the quantizer
block. This results in a larger percentage of zero codewordsat the output of the quantizer which
reduces the entropy of the resulting codewords.

1. Introduction

Recently, the use of image compression algorithms in commercial products has been increasing
rapidly. This explosion has been fueled by two recent developments, the availability of cheap
signal processing ICs and the establishment of several international standards for image
compression. The ICs make the products cost effective, and the standards provide for a large
degree of interoperability.

Oneofthese standards, JPEG (Joint Photographics Experts Group), deals.with the compression of
still images. Some applications in which it has been utilized are archival storage of images for
the publishing industry, reducing storage requirements for picture archiving systems, and ISDN
based image services. In addition, it has been used for intraframe only compression of motion
video. .

As is typical of these newly evolving standards, it specifies the information contained in the
compressed bit stream, and a decoder architecture which can reconstruct an image from the data
in the bit stream. However, the exact implementation of the encoder is not standardized. The
only requirement on the encoderis that it generates a compliant bit stream. This provides an
opportunity for people to improve the compression efficiency and/or subjective image quality by
designing better encoders. This paper will present an such encoderfor the Baseline Sequential
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As shown in Figure 1, the encoder consists of three major components, a Forward Transform,
Quantization, and Entropy Coding. The Forward Transform is an 8x8 Discrete Cosine Transform
(DCT). Its purpose is to reduce number of samples that need to be transmitted by performing
energy compaction on the signal. Since most images have a low pass spectrum,transforming the
spatial domain data into the frequency domainresults in a fewer significant samples. In addition
these samples tend to be clustered at the low frequencies.

The purpose of the quantization step is to take the raw output of the DCT and quantize the
coefficients. This step results in a loss of information, but provides for the majority of the data
rate reduction in the system. By adjusting parameters in this stage, it is possible to control the
compressedbitrate and output image quality.

Entropy Coding takes the fixed length quantized DCTcoefficients and produces a set of variable
length channel symbols. This operation attempts to produce a compressed data stream whoserate
is as close as possible to the entropy ofthe quantized DCT coefficients.

2.1 Quantization

Wewill now focus on how the quantization is performed since that step is vital in understanding
the improved encoder. The forward DCT produces 64 coefficients. These coefficients are then
uniformly quantized. The quantizer step size that is used for each coefficient is determined by a
Quantization Table which must be specified by the application as an input to the encoder.
Elements in the Quantization Table can take on integer values in the range of 1 to 255.

The quantization process is defined as a division of each DCT coefficient by its corresponding
entry from the quantization table, followed by roundingto the nearest integer.

Fo(u,v) = IntegerRound (u,v) 
where F(u,v) the DCT coefficients for a given input block, Fg(u,v) are the quantized DCT
coefficients, and Q(u,v) is the Quantization Table.

In the decoder, the inverse operation is performed which provides the decoder with the values
appropriate for input to the inverse DCT.

Fo(u,v) = Fg(u,v) * (wy)
where F sub Q‘ (u,v) are the reconstructed DCTcoefficients for a piven block. ee

Frorasthis discussion it is clear that the Quantization Table is part of theinformation that must be
transmitted from the encoder to decoder. If an entry in the Quantization Table is greater than __
unity, information loss occurs. The table is chosen to trade off compression efficiency an
subjective image quality. |

3. Perceptual Model

In has long been known that the human visual system is not an ideal receiver, and that it is
possible to take advantage of this fact in the encoding process [Cornsweet]. It has only been
recently however, that more systematic investigation of the use of visual masking in image
compression has occurred [JaJoSa}]. These studies have attempted to derive a computational
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proposed by Watson do not have this restriction and provide more adaptability at the cost of
increased computational load.

Max

Threshold
Elevation

1.0

Standard Deviation of Input Block

Figure 2: Presented here is an example of a threshold elevation curve.

4, Perceptual Encoder

The previous section described a method for determining a set of masking thresholds for each
block of an input image which result in a unique perceptually optimal quantization table for each
block. Unfortunately, JPEG allows only one quantization table for each image. Therefore the
problem that must be solved is how to makeuseof this local information within the framework of

the JPEG standard. If you examine the forward quantization equation in section 2.1, it is clear
that all input coefficients that have a value less than their corresponding quantization table entry
will be quantized to a value of zero. This observation is the key to incorporating locally adaptive
quantization into JPEG.

Since a quantized coefficient with a value of zero is a valid member of the JPEG bitstream, the
perceptually based encoder will identify which coefficients can be set to zero while maintaining _
the subjective quality of the encoded image. This will maintain complaince with the JPEG
bitstream specification while reducing the bitrate required to encode the image.

Figure3illustrates the structure of such an encoder. The forward transform is identical to the one
in baseline JPEG. At this point, the DCT coefficients are input to the perceptual model which
generates the data dependent quantization table for that block. This table and the raw DCT
coefficients are now input to a ‘‘pre-quantizer.’’ The purpose of this module is to zero out the
coefficients that have a magnitude less than the corresponding entry in the quantization table for
that block, and pass the other coefficients through unchanged.
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Bitrate Savings Cin percent?

Figure 4: Bitrate savings over baseline JPEG obtained from PxJPEG

Two objective evaluation methods were used. The first was a traditional A/B forced choice test.
The subject was simultaneously shown two images sided by side on a video monitor. One was the
original image and the other was the same image encoded using either JPEG or PxJPEG. The
order of presentation, that is which side the original image was located on, was randomized.
Given this stimulus, the task was to determine which image was the original. A test set of 10

imagesthat was used. This set was chosen to contain typical images,as well as test pattéris that
would Stress the encoder. At present, this test has been taken by 7 times by a single subject, the
author, who was familiar with the test data. The result of this test was that both JPEG and _
PxJPEGusing the perceptually optimal quantization matrices werestatistically indistinguishable
from the original image.

In order to provide further insight into the subjective quality of the codecs, the output images
were evaluated using Scot Daly’s Visual Difference Predictor (VDP) [Daly]. This algorithm
takes as input two images, a reference and a test, as well as viewing condition and a
characterization of the display. The input images are normalized to account for the viewing
conditions and display, and then passed thought a detailed model of the human visual system.It
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PercentSavingsinBitrate 
Bitrate of JPEG Iaage

Figure 5: Bitrate savings by PxJPEG as a function of JPEGbitrate
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ABSTRACT

Several image compression standards (JPEG, MPEG,H.261) are based on the Discrete Cosine Transform
(DCT). Thesestandards do not specify the actual DCT quantization matrix. Ahumada & Peterson! and Peterson,Ahumada & Watson? provide mathematical formulae to compute a perceptually lossless quantization matrix.
Here I show how to computea matrix thatis optimized for a particular image. The methodtreats each DCT
coefficient as an approximation to the local tesponse of a visual “channel.” For a given quantization matrix, the
DCT quantization errors are adjusted by contrastsensitivity, light adaptation, and contrast masking, and are
pooled non-linearly over the blocks of the image. This yields an 8x8 “perceptual error matrix." A second non-
linear pooling overthe perceptualerror matrix yields total perceptual error. With this model we may estimate the
quantization matrix for a particular imagethat yields minimum bit rate for a given total perceptualerror, or
minimum perceptualerrorfor a given bit rate. Custom matrices for a numberof images show clear improvement
over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requirestransmission of the quantization matrix,

1. JPEG DCT QUANTIZATION

The JPEG image compression standard provides a mechanism by which images may be compressed andshared among users *4, I briefly review the quantization process within this standard. The imageis first divided
into blocks ofsize (8,8}. Each block is transformed into its DCT, which we write Cy, Where i,j indexes the DCT
frequency(or basis function), and k indexesa block ofthe image. Thoughthe blocks themselves form a two
dimensionalarray, for present purposes a one dimensionalblock index is sufficient. Each blockis then quantized
by dividingit, coefficient by coefficient, by a quantization matrix (QM) 4, and roundingto the nearest integer

Hie = Round{cie/94j] . (1)
The quantization error ej in the DCT domain is then

Cijk = Cigk — Uijk Vij - (2)

2. IMAGE-INDEPENDENTPERCEPTUAL QUANTIZATION

The JPEG QMis notdefined by the standard, butis supplied by the user and stored or transmitted with the
compressed image. The principle that should guide the design of a JPEG OMis thatit provide optimum visual
quality for a given bit rate. QM design thus depends uponthevisibility of quantization errorsat the various DCT
frequencies. In recent papers, Petersonetal. 5©have provided measurements of threshold amplitudes for DCT
basis functions. For each frequency ij they measured psychophysically the smallest coefficient that yielded a
visible signal. Call this threshold {,. From Eqn.s (1) and (2) it is clear that the maximum possible quantization
error ej, is Gi; /2. Thusto ensurethatall errors are invisible (below threshold), we set
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[call this the Image-IndependentPerceptual approach(IIP).It is perceptual becauseit depends explicitly
upon detection thresholds for DCTbasis functions, but is image-independent because a single matrix is computed
independentof any image. Ahumadaetal. !-? have extended the valueofthis approach by measuring f,under
yarious conditions and by providing a formula that allows extrapolation to other display luminances (L) and pixel
sizes (px,py), as well as other display properties. For future reference, we write this formula in symbolic form as

ty = apli,j,L, px, py,...] (4)
3. LIMITATIONS OF THE IIP APPROACH

While a great advance overthe ad hoc matrices that precededit, the IIP approach has several shortcomings.
The fundamental drawbackis that the matrix is computed independentof the image. This would notbe a
problemif visual thresholdsforartifacts were fixed and independentof the image upon which they are
superimposed,butthis is not the case. ,

First, visual thresholds increase with background luminance. The formula of Ahumada & Peterson describes
the threshold for DCT basis functions as a function of a mean luminance. This would normally be taken as the
mean luminanceofthe display. But variations in local mean luminance within the imagewill in fact produce
substantial variations in DCTthreshold. Wecall this luminance masking.

Second, threshold for a visual pattern is typically reduced in the presence ofother patterns, particularly those
of similar spatial frequency and orientation, a phenomenonusually called contrast masking. This means that
threshold error in a particular DCTcoefficientin a particular block of the image will be a function of the value of
that coefficient in the original image.

Third, the IP approach ensuresthat any single error is below threshold. But in a typical image there are
manyerrors, of varying magnitudes. Thevisibility of this error ensembleis not generally equalto thevisibility of
the largest error, butreflects a poolingof errors, over both frequencies and blocksof the image. I call this error
pooling.

Fourth, whenall errors are kept below a perceptual thresholda certain bit rate will result. The IP method
gives no guidance on whatto do whena lowerbitrateis desired. The ad hac "quality factors" employed in some
JPEG implementations, which usually do no more than multiply the quantization matrix bya scalar, will allow an
arbitrary bit rate, but do not guarantee (or even suggest) optimum quality at thatbit rate.I call this the problem of
selectable quality.

HereI present a general method of designing a custom quantization matrix tailored to a particular image.
This image-dependent perceptual (IDP) methodincorporates solutions to each of the problems described above:
luminance masking, contrast masking, error pooling, and selectable quality. The strategy is to develop a very
simple model of perceptualerror, based upon DCTcoefficients, and to iteratively estimate the quantization
matrix which yields a designated perceptualerror.

4, LUMINANCE MASKING

Detection threshold for a luminance pattern typically depends upon the mean luminanceofthe local image
region:the brighter the background,the higher the luminance threshold 8,9. This is usually called "light
adaptation,” but here wecallit "luminance masking" to emphasize the similarity to contrast masking, discussed in
the next section.

Toillustrate this effect, the solid lines in Fig. 1 plot values of the formula for t, provided by Ahumada and
Peterson! as a function of the mean luminanceof the block, assumingthat the maximum display luminanceis 100
cd m7? and thatthe greyscale resolution is 8 bits. The three curvesare for five representative frequencies. These
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curvesillustrate that variations by as muchas 0.5 log unit in ¢, might be expected to occurwithin an image, =
variations in the mean luminanceof the block.

LogT 
0 20 40 60 80 100

L (cd/m*2)

Figure 1. Logof £, as a function of luminanceL ofthe block. From thetop, the curves are for frequencies of {7
{0,7}, {0,0}, {0,3}, and {0,1}. The maximum display luminance is assumed to be 100 cd m2, The dashed
curves are the powerfunction approximation described in the text..

The effect of mean luminance upon the DCTthresholds is complex, involving both vertical and horizontz
shifts of the contrast sensitivity function. We can compute a luminance-masked threshold matrix for each bloc
either of two ways. Thefirst is to make use of a formula such as that supplied by Ahumada and Peterson V

tix = aplt, JLo Coox/oo]

where Cop, is the DC coefficient of the DCTfor block k., Lo is the mean luminanceofthe display, and Cog is the
coefficient corresponding to Ly (1024 for an 8 bit image). This solution is as complete and accurate as the
underlying formula, but may be rather expensive to compute. For example,in the Mathematica language, usin
compiled function, and running on a SUN Sparc2,it takes about 1 second perblock.

A second, simpler solution is to approximate the dependenceof f,upon Cy, with a power function:

_ = \a
tiie = ty (Cook /@00)”

Theinitial calculation of t,should be made assuminga display luminance of Lg The parameter dy takes
namefrom the corresponding parameter in the formula of Ahumada and Peterson, wherein they suggesta va
of 0.649. Note that luminance masking may be suppressed by setting @,=0. More generally, a-controls the
degree to which this masking occurs. Note also that the power function makesit easy to incorporate a non-un
display Gamma, by multiplying a; by the Gamma exponent(see Section 10.2).
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Asillustrated by the dashed lines in Fig. 1, this power function approximation is accurate over an upper
range of luminances(for the parameters in Fig. 1, above about 10 cd m~4). Except for very dark sections of an
image, this range should be adequate. The discrepancy is also greatest at the lowest frequencies, especially the DC
term. This could be corrected by adopting a matrix of exponents, one for each frequency. But note that the
discrepancyis a conservative one,thatis the threshold changesless with block luminance than the model calls
for. This may not be a badthing, especially at DC, wherethe validity of the model maybeleast.

5. CONTRAST MASKING

Contrast maskingrefers to the reductionin the visibility of one image component by the presence of another.
This masking is strongest when both componentsare of the samespatial frequency, orientation, and location.
Here we consider only masking within a block and a particular DCTcoefficient(It is possible to extend these
ideas to masking between DCTcoefficients, and across DCTblocks). We employ a model of visual masking that
has been widely used in vision models, based on seminal work by Legge and Foley 10, 11, Given a DCTcoefficient
Ci, and a corresponding absolute threshold f;, our maskingrule states that the masked threshold m,, will be

Wy 1-w, (7)

where Wj; is an exponentthatlies between 0 and 1. Because the exponent may differ for each frequency, we
allow a matrix of exponents equalin size to the DCT. Note that when wy =0, no masking occurs, and the
threshold is constantat t,,. When wj = 1, we have whatis usually called "Weber Law"behavior, and threshold
is constant in log or percentage terms(for C,,>f,,,). The function is pictured for a typical empirical value of w=
0.7 in Fig. 2.

My
Cit

Figure 2. Contrast masking function, describing the masked threshold 7,4 as a function of DCT coefficient Ci, ,
for parameters wjj=0.7, fiz = 2. _

Because the effect of the DC coefficient upon thresholds has already been expressed by luminance masking,
we specifically exclude the DC term from the contrast masking,by setting the value of Wy) = O. It is interesting
that while contrast maskingis assumedto be independentfrom coefficient to coefficient(frequency to frequency),
in the case of luminance masking the DC frequencyaffects all other frequencies.

Figure 3 shows the masked sensitivity (mix) for the Lena image. Notethat the dark strip in the upperright
results in generally higher sensitivity due to luminance masking (un-masking, perhaps we should say}.

SPIE Vol. 1913 /205

 
OLYMPUSEX.1016 - 435/714



OLYMPUS EX. 1016 - 436/714

 
Figure 3. The Lena image andits masked sensitivity DCT (mj) for Wij=0.7 and a,=0,649.If wy=0and a,=0,cells would beidentical and would look like the inset (2 ty).

6. PERCEPTUAL ERROR AND JUST-NOTICEABLE-DIFFERENCES

In vision science, we often express the magnitude of a signal in multiples of the thresholdThese threshold units are often called “just-noticeable differences," for that signal.
My, , the error DCT may therefore be expressedin jnd's as or jnd's, Having computed a masked thresho.

diy, = Ck / Mix (8
Each value of diy, is an errorin a particular frequency andblock, expressed as a proportion of the just-detectable errorin that frequency and block. Thusall the errors are now in the "commoncoin" of perceptualerro:the jnd.

7. SPATIAL ERROR POOLING

To poolthe errorsin the jnd DCT we employanother standard feature of current vision models: the so-callecB-norm (or Minkowski metric). It often arises from an attemptto combine the separate probabilities that
/ e scheme knownas “probability summation" 12, 13,14 Wepoolthe jndsfor aparticular frequency(i,/} over all blocks k as

VB, ~

Py = Sain” (9
Different values of the exponent £, implementdifferent types or degrees of pooling. When f,=1, thepoolingis linear summation of absolute values. When (3, =2, the errors combine quadratically, in an RMS orstandard deviation type measure. When [s =°°(in practice, a large numbersuch as 100 will do), the pooling rulebecomes a maximum-of operation:only the largest error matters. In psychophysical experiments that examine
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summation among sinusoidal componentsof differing frequency, a B5 of about 4 has been observed 15,16, 17,
The exponent §,is given here asa scalar, but may be madea matrix equalin size to the QM to allow differing

poling behaviorfor different DCT frequencies. This matrix p,, of "pooled jnds" is now a simple measureof the
visibility of artifacts within each of the frequency bands definedby the DCTbasis functions. I call it the
“perceptual error matrix.”

8. FREQUENCY ERROR POOLING

This perceptualerror matrix p,, mayitself be of value in revealing the frequencies that result in the greatest
pooled error for a particular image and quantization matrix. But to optimize the matrix we would like a single-
valued perceptualerror metric. We obtain this by combining the elements in the perceptual error matrix, using a
Minkowski metric with a possibly different exponent , f

VB,

P=| > pyPr (10)
y

It is nowstraightforward,at least conceptually, to optimize the quantization matrix to obtain minimum bit-
rate for a given P, or minimumPfora givenbitrate. In practice, however, a solution maybe difficult to compute.
Butif § ¢=°e, then P is given by the maximumof the p,. Underthis condition minimum bit-rate for a given
P= is achieved when all p,= Y. Intuitively,if the maximum of the p,equals W, each of the others mightas
well be increased to , since that will not increase P,, but will decreasebit-rate. .

Recall that each entry in the matrix py corresponds(atleast monotonically) with the visibility of a particular
class ofartifact: that of the corresponding frequency(basis function). This strategy of equating all pj to ythus
also has the effect of equating the visibilities of each of these classes of error.

Whileit is likely that the true value of Bf is nearer to B, (approximately4), it also seemslikely thatthis
more accurate value will not greatly alter the outcomeof the optimization and will not be worth the substantial
increase in computationaleffort.

8. OPTIMIZATION METHOD

Underthe assumption f‘f= 00, the joint optimization of the quantization matrix reducesto the vastly simpler
separate optimization ofthe individual elements of the matrix. Each entry of the perceptual error matrix Pp, may
be considered an independentfunction of the corresponding entry qj of the quantization matrix

py = fy(ay) (1)
This function is monotonically increasing and

fg) =0 V i,j. (12)

Weseek a particular Gi such that

fal@g)av Vis - (13)
Of course, in some cases no amount of quantization will yield a value as large as the target y (for example,if

all coefficients are quantized to 0, butthe error remains below Y/). For those cases we are content to set q ij to an
arbitrary maximum,such as 255 (the largest quantization table entry permitted in the JPEG baseline standard).
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In a practical implementation, a rapid methodof estimating qi is required. Here we have usedabisection
method that, while slow, is guaranteedto find a solution. A range is established for q,, between lower and upp
bounds of qj and ij (typically (1,255}). p,is evaluated at the midpointof the range,

- lf< >= dj — + .qi Roun 3(, a0) (i
If py< YW, then bij = q,,, otherwise, aii = q,. This procedureis repeated until Gj no longer changes. Aspractical matter, since QM's in baseline JPEG are eightbit integers, this degree of accuracy is obtained in n=9

iterations from a starting range of 255 .

In the following examples, unless otherwise stated, the parameter values used were a; = 0.649, B =4, ,0.7 , display mean luminance Lo= 65 cd m™, image greylevels = 256, To = 1024. The viewing distance was
assumedto yeild 32 pixels /degree. Fora 256 by 256 pixel image, this corresponds to a viewing distance if 7.115
picture heights. The "JPEG bit rate" is calculated by computing the code size for AC and DC coefficients usingtdefault JPEG Huffman tables.It does not include the overhead composed of quantization tables, Huffman table
marker codes,etc. because this overheadis not image dependent and depends on coding decisions made by th
application (e.g. use ofrestart intervals). If it had been includedit would increase thebit rate for a 256 by 256
image by about0.038bits/pixel.

Several stepsin theiterative estimation of Gy are illustrated in Fig. 4. Successive steps show further
refinement in 4,, and a progressively more uniform matrix p,.On step 1, 9j = 955, V i,j. On this step th
perceptual error matrix showsgreatest error at low spatial frequencies.
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trial 1 bit/pix = 0.2168 Max[p-psi] = Null

 
triel 2 bit/pix = 0.418 Max[p-psi] = 4.419

 
trial 10 bit/pix = 1.703 [Max{p-psi] = 0.122

 
Figure4.Iterative estimation of the custom quantization matrixj- Phe three panels in each row show

quantization matrix q,;,, the reconstructed image using ¢,, and the perceptual error matrix p,. The
labels indicate the iterationtrial, the current JPEG bit-rate, and the maximum difference between Py and
yf (discounting those for which the maximumerroris always less than /). The image was(64,64), target
Wwas 1. For q, and pj, the DC coefficient is at the lowerleft corner. -

Figure 5 shows the Lena image 18 compressedto various values of perceptual error y = {1, 2, 4, 8}. The
value of Y=1produces anessentially "perceptually lossless" compression*”underthe prescribed viewing
conditions (mean luminance = 65 ed m““, 32 pixels/deg.
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Figure 5. The Lena image compressed using custom matrices designed for perceptualerrorlevels ( ¥/) of 1,2, 4,

and 8. Correspondingbit rates were 2.28, 1.47, 0.72, 0.24. The original image had dimensions of {256,256}.

It is interesting to compare the image-independent quantization matrix to the custom matrix for various
quality levels. This is shown in Table 1, where wegivethe ratio of image-dependent and independent matrices,
for two quality levels of 1 and 4. Elements that have been set to the maximum of 255 are indicated by zeros. Note
that image dependencedoesalter the structure of the matrix, and that changes in quality (as defined here) do not
yield a constantscaling of the basic matrix.
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  Table 1. Ratio of image-dependent and independent quantization matrices for the Lena image at quality levels of
1 (top) and 4 (bottom). This ratio is equal to ¢,/2t, . Empty cells indicate that the image-dependent
matrix had a value of 255 (the maximum allowed).

9. OPTIMIZING QM FORA GIVENBIT-RATE

It is of interest to relate the JPEG bit-rate to the perceptualerror level y’. This is shown for the Lena and
Mandrill imagesin Fig.6. This is a sort of inverse "rate-distortion" function. Note that useful bit-rates below 2
bits/pixel yield perceptual errors above about2.

bits/pixel Ppou
ds 

Perceptual Error

Figure 6. JPEG bit-rate versus perceptual error y for the Lena (lower curve) and Mandrill (upper curve) images.
Thelines are second order polynomial interpolations.
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The method described above yields a QM with a specified perceptual error ¥/. However, one may desire a
OMthatyields a given bit rate ho with minimum perceptual error y. This can be done iteratively by noting that
the bit rate is a decreasing function of y, as shownin Fig, 6. In our current implementation, we use a second
order interpolating polynomialfit to all previousestimated values of {/, YF} to estimate the next candidate y,
terminating when |h — hol < Ah, where Af is the desired accuracy in bit-rate. On each iteration, a complete
estimation of g4 38 performed. There are no doubt more rapid methods.

The most meaningful contest between IDP and IP approachesis to compare images compressed by the two
methods to a constantbit rate. Furthermore,the bit rate must be low enough that the poorer method shows
visible artifacts, else both will appear perfect. Figures 7 and 8 provide such comparisons. The IDP methodis
visibly superior, evenin relatively low-quality printed renditions.  

é 
 

Figure 7. IIP (left) and IDP (right) compressionsat 0.25 bits/pixel (top row) and 0.5 bits / pixel (bottom row).
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Figure 8. IIP (left) and IDP (right) compressionsat0.25 bits/pixel (top row) and 0.5 bits/pixel (bottom row).

10. EXTENSIONS AND FUTURE RESEARCH

10.1 Estimation of f, Wj, B, 1 ar

The method described here depends uponestimates of the matrices f,and w,, and the parameters B, and
a,. Estimatesof f,,may be obtained directly from psychophysical experiments that measuredetection thresholds
for individual DCT basis functions !*5 ©, Weare devising experiments, adapted from the methodsof Legge and
Foley 10, 11 tg directly estimate w,. In these experiments detection thresholds are measuredfor an increment (or

SPIE Vol. 19137213

 
OLYMPUSEX.1016 - 443/714



OLYMPUS EX. 1016 - 444/714

* Andrew B. Watson,

decrement) in the amplitude of a DCTbasis function. Estimation of , is more difficult. Several values of B, in
the range of 1-100 could be evaluated for the degree to which they yield a plausible perceptualerror metric Pj. In
addition, a matrix of values of 8, might be warranted, with different degrees of spatial pooling at each DCT
frequency.

10.2 Gamma Functions

Remarkably, the JPEG specification makes no statement regarding the relation between pixel values and
displayed luminance. While one can understand their reluctance to impose constraints upon JPEG applications,it
should be understoodthatultimate visual quality depend onthis relation. The “de facto" assumption appears to
bethatpixel values will be applied directly to the display subsystem, which typically has a non-linearrelation
between greylevel and juminance, often known as a “gamma function"thatis approximately a powerfunction
with an exponent (gamma) of about 2.3. The assumption presumably also is that variations in this function from
system to system are notso great as to seriously degrade visual quality.

In anideal system, one would specify both the gammafunction of image capture, andof the target display.
Image data would be transformed to luminance before compression, and after reconstruction,to values thatwouldresult in luminance on the display. Unfortunately, we cannot adddescriptors of these gammafunctions to
the existing JPEG specification, so we must be content with the "de facto" assumption.

Since the preceding calculations have treated pixel values as proportional to luminance (gamma=1), under
the "de facto” assumption, we should subject the image data to inverse and forward gammatransformations
before coding and after decoding, respectively. The present approach, which does no such transformations, relies
on the approximatelinearity of the gamma function nearthe middleofits range, and on the inclusion of the
display gammainto the luminance masking function as discussed in Section 4. This subject will be examinedin
future research.

10.3 Color Images

The Image-Dependent Perceptual approach has been described here only with respect to coding of
monochrome images. Theprinciples, however, are easily extended to color images. The simplest approach is to
measure or compute a unique ¢, for each of the three color channels”, and from them computethree custom
quantization matrices. The matter may be complicated by different masking and pooling properties in thechromatic channels than in the luminance channel. But since color consumes so small a partof the total bit-rate,
these details are notlikely to becritical in practical applications.

11, SUMMARY

Ihave shown how to computea visually optimal quantization matrix for a given image. These image-
dependent quantization matrices producebetter results than image independent matrices. The algorithm can be
easily incorporated into JPEG compliant applications.

Ina practical sense, the IDP method proposed here solves two problems. Thefirst is to provide maximum
visual quality for a given bit rate. The second problem it solvesis to providethe user with a sensible and
meaningful quality scale for JPEG compression. Without such a scale, each image must be repeatedly compressed,
reconstructed, and evaluated by eyeto find the desired level of visual quality.

However,at present, it is admittedly only a conjecture thatthis scale relates in a direct way to perceived
visual quality. While I am confident thatit relates more directly to quality than does the ad hoc "quality factor” of
some JPEG implementations, to demonstrate a robust relation between computedperceptual error and perceived
quality will require subjective judgments, both over different bit rates and different images.
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From the standpoint of computational complexity, this algorithm adds only a modest amountto the cost of
JPEG image compression. All optimization takes place in the DCT domain,so no additional forward orinverse
DCT's are required, The DCT maskis computed only once, and consists of a few calculations on each DCTpixel.
The estimation of the quantization matrix requires a maximum of ten (and probably many fewer)iterations, each
of which consists of a modest numberof simple operations on each DCTpixel. It is certainly a smaller burden
than requiring the user to repeatedly compress, reconstruct, and visually assess the result.

12, NOTATION

Chik DCTof an image
qij quantization matrix
uijk quantized DCT
Cijk DCTerror

ly DCTthreshold matrix (based on global mean luminance)
apli,j,L, px, PY....] threshold formula of Ahumada and Peterson!
bin DCTthreshold matrix (based on local mean luminance cy),)
ar luminance masking exponent
Wij contrast masking exponent (Weber exponent)
Myx mask DCT

dix jnd DCT
Py perceptual error matrix
Bs spatial error-pooling exponent

P. total perceptual error
f frequency error-pooling exponent

Cox DC coefficient in block k

Lo mean luminance of the display
Coo Average DCcoefficient, corresponding to [y (typically 1024)
y target total perceptual error value
4ij estimated quantization matrix yielding target perceptual error
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ABSTRACT

Several recent image compression standards rely upon the Discrete Cosine Transform (DCT). Models of DCT basis
function visibility can be used to design quantization matrices for arbitrary viewing conditions and images. Here we report new
results on the effects of viewing distance and contrast masking on basis function visibility. We measured contrast detection
thresholds for DCTbasis functions at viewing distances yielding 16, 32, and 64 pixels/degree. Our detection model has been
elaborated to incorporate the observed effects. We have also measured detection thresholds for individual basis functions when
superimposed upon another basis function of the sameora different frequency. Wefind considerable masking between nearby
DCTfrequencies. A model for these masking effects will also be presented.

1. INTRODUCTION

The JPEG, MPEG,and CCITT H.261 image compression standards, and several proposed HDTV schemes employthe
Discrete Cosine Transform (DCT)as a basic mechanism !+ 2, Typically the DCTis applied to 8 by 8 pixel blocks,followed by
uniform quantization of the DCTcoefficient matrix. The quantization bin-widthsfor the various coefficients are specified by a
quantization matrix (QM). The QMis notdefined by the standards, but is supplied by the user and stored or transmitted with
the compressed images.

Theprinciple that should guide the design of a QM is that it provide optimum visual quality for a given bit rate. QM
design thus depends uponthe visibility of quantization errors at the various DCT frequencies, In recent papers” 4 Peterson et
al. have provided measurementsof threshald amplitudes for DCT basis functions at one viewing distance and several mean
luminances, Ahumada and Peterson > have devised a modelthat generalizes these measurements to other luminances and
viewing distances, and Petersonetal. © have extended this modelto deal with color images. From this model, a matrix canbe
computed which will insure that all quantization errors are below threshold. Watson 7 has shown how this model may be used to
optimize the quantization matrix for an individual image.

2. EFFECTS OF DISPLAY RESOLUTION

Visual resolution of the display (in pixels/degree of visual angle) may be expectedto have a strong effect upon the
visibility of DCT basis functions, and we therefore collected data to documentthis effect and to validate and enhance the model.
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 2.1 Practical Pixel Sizes

Visual resolution of the display (in pixels/degree of visual angle) is determined by display resolution (in pixels/cm) and
viewing distance (in cm), according to the formula

(pixels/degree) = (pixels/cm)/ cot"! [distance]

In the viewing situations for which block-DCT compression is contemplated, there are limits to the practical range of
visual resolutions. At the high end,display resolution will be wasted on spatial frequencies which are not visible to the human
eye. The limit of humanspatial resolution is about 60 cycles/degree. Nyquist sampling of this frequency would require 120
pixels/degree. This corresponds to 300 dpi printing viewedat a distance of about 23 inches. At the low end, the pixel raster
becomesvisible. In these experiments, we have examined three viewing distances, 16, 32, and 54 pixels/degree, that spana
large part of the range of useful viewing distances.

2.2 Methods  
Detection thresholds for single basis functions were measured by a two-alternative, forced-choice method. Each trial

consisted of twotime intervals, within one of which the stimulus appeared. The stimulus was a single DCTbasis function,
added to the uniform gray background that remained throughout the experiment. Background luminance was 40 cd m-, and
frame rate was 60 Hz. Observers viewed the display screen from distances of 48.7, 97.4, 194.8 cm. Display resolution was
37.65 pixels/cm. Images were magnified by two in each dimension,by pixelreplication, to reduce monitor bandwidth
limitations, resulting in magnified pixel sizes of 1/16, 1/32, and 1/64 of a degree, respectively at the three viewing distances
(basis functions were 1/2, 1/4, and 1/8 degree in width). We describe these three viewing distances as yielding effective visual
resolutions of 16, 32, and 64 (magnified) pixels/degree.

 
During presentation, the luminance contrastof the stimulus was a Gaussian function of time, with a duration of 32

frames (0.53 sec) between e™ points. The peak contrast on eachtrial was determined by an adaptive QUESTprocedure 8
which convergedto the contrast yielding 82% correct. After completionof 64 trials, thresholds were estimated byfitting a
Weibull psychometric function 9. Thresholdsare expressed as contrast (peak luminance, less mean luminance, divided by mean
luminance), converted to decibel sensitivities (-20 logjo[threshold])

To reduce the burden of data collection, we measured thresholdsfor only 30 ofthe possible 64 basis functions, as
indicated in Fig. 1. To the extent that thresholds change slowly as a function of DCT frequency, this sampling constrains our
model sufficiently.

oOFPFNwWH~1 
O12 3 45 6 7

Figure 1. Subset of DCT frequencies used in the experiment.

To date, two data sets have been collected at the low resolution,five at the middle resolution, and one at the highest
resolution, as shown in Table 1.
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resolution ab

abw mj alg

32 7 30 60 30 30
64 0 30 0 2

Table 1, Thresholds collected for each observer and viewing distance.

2.3 Model of DCT Contrast Sensitivity

 

 
server

sj} jas   
The model of DCT contrastsensitivity that we consider here is essentially that described by Peterson etal. © tn that

model, log sensitivity versus log frequency is a parabola, whose peak value, peak location, and width vary with mean
luminance.In addition, sensitivity at oblique frequencies ({ u#0,v#0}) is reduced by a factor thatis attributed to the orientation
tuning of visual channels. The parameters of significance here are sg (peak sensitivity), f0 (peak DCT frequencyat high
luminances), and kg (inverse ofthe latus rectum of the parabola), and r (the orientation effect).

2.4 Results

Figures 2, 3, and 4 show decibel contrastsensitivities for the three viewing distances, along with curves showing the
predictionsof the bestfitting version of the model. Within eachfigure, the three panels show data for horizontal frequencies {u,
0}, vertical frequencies degree orientations {u, v=u}, and the remaining obliques {u>0, O0<v#u}, all plotted against the
radial frequency f = u’ +y” . In the case of the obliques, because there is no simple one-dimensionalpredictionto plot, we
plot instead the actual sensitivity minus that predicted by the model. These plots, and thefits, do notinclude the thresholds at
{0,0} (DC), which are reserved for a separate discussion. The data at 64 pixels/degree also omit 3 thresholdsat very high
frequencies which we suspect to be artifactual.

Vertical Horizontal

 
2 4 6 8 10 2 4 6 8 10

45 Degree Oblique Errors

 
Figure 2. DCT basis function sensitivities at 16 pixels/degree.
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Vertical Horizontal
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Figure 3. DCTbasis function sensitivities at 32 pixels/degree.
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Figure 4. DCTbasis function sensitivities at 64 pixels/degree.
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Thefits are reasonable, though there appear to be some systematic departures from the model. For reference, the RMS
error of the raw data at the middle distance is 2.03 decibels, while the RMSerrorofthe fit in Fig.s 2-4 is 2.94 decibels. The
estimated parameters are shownin Table 2.

0)
fo
ko
r

  16 32 64
56.17 29.84    

Table 2. Estimated model parameters.

The parameters j0, KO, and r (related to peak frequency, bandwidth, and orientation effects) are equated for all
resolutions, while a separate value of sO (peak contrast sensitivity) is estimated for each ofthe three resolutions. The behaviorof
this parameter is worth considering. Between 64 and 32 pixels/degree,it increases by a factor of 1.88. Between these two
resolutions, the basis functions increase in size by a factor of two in each dimension. Thusif sensitivity increased linearly with
area (as it should for very small targets 10, 11, 12) we would expect an increase ofa factor of4. If sensitivity increased due only
to spatial probability summation 13,14we would expecta factor of about 41/4 = 1.414, Thusthe obtained effectis nearer to that
expected ofprobability summation. At the closest viewing distance, despite a further magnification by 2, the parameter s0
actual declines. While we would expect a smaller effect of size at the largest sizes, this decline is unexpected and may be due to
1) the relatively poorfit at this resolution, and 2) aspects of visual sensitivity which are not yet captured by the model.

2.5 DC Sensitivities

Figure 5 showsthesensitivities for DC basis functions at the three visual resolutions.

40

Sensitivity(dB) w ° 28

26

24

22 5 -

20 20 30 40 50 60 70
pixels/degree

Figure 5. DC basis function sensitivities as a function of display visual resolution. Error bars of plus and minus one standard
deviation are shown when multiple measurements were available. For clarity, points with error bars are labeled on theleft, those

without, on the right. The line indicates the parameter sO from Table 2.
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Ahumada etal: > Sproposed asa working hypothesis that. DC sensitivity is, given. by, the peak sensitivity sO. This
prediction is given bythe linedrawnin Fig. 5. It captures someofthe variation in the DC sensitivities, but further data willbe
needed to adequately test this model. Thepoints in Fig. 5 at aresolution of 16 pixels/degree and: labeled with the suffix ‘-
wereobtained bypixel-replication atthe middle viewing distance,rather than useofthe near distance. Their enhanced
sensitivity suggests that viewing distance per'se may have an effect,.even when visual resolution is-held constant. The
substantial variability of DC-thresholds at the highest resolution may be dueto differénces in accommodation between
observers.

2.6 Discussion

Wehave. examined. the variation in visibility of single DCT basis functionsas a.function of display visual resolution.
Wehave shown.that the existing model >5 accommodates resolutions of 16, 32, and 64 pixels/degree, provided that one
parameter, the peak:sensitivitysO,is allowed to vary. Variationsin this parameter are to someextent consistent with spatial
summation, although sensitivity is lowerat the lowest resolution than simmation would predict.

Practical DCT quantization matrices must take into account both thevisibility of single basis functions,and the spatial

pooling of artifacts from,block to block. Elsewhere we haveshown thatto a first approximation this pooling is consistent with
probability summation!5: If we consider two images of equivalent size in degrees, but visual resolutions differing by a factor of
two, then thesensitivity to individual artifacts would be lower by 41/4 in the higherresolution image dueto the smaller block
size in-degrees, but higher by. 41/4 in the sare image diie to the gteatér numberof blocks. Thus the same matrix should be used
with both. The point ofthis example iis that.the overall gain ofthe best quantization matrix musttake into account both display
resolution and imagesize.

3, EFFECTS OF CONTRAST MASKING

3.1 Contrast masking

Watson’noted several image-dependent factors influencing the detectability of DCTbasis functions and showed how
to compute custom QMsfor given images, in accord with these factors. One image-dependentfactor influencing the
detectability of DCT basis functions is contrast masking. Typically, sensitivity to quantization error, in.a particular DCT
coefficient; decreases with the magnitude ofthat coefficient. Watson's quantization schemerelies on the following model
(based-on work by Legge and Foley 16,17 ) for contrast masking: given a DCT coefficient C, and a corresponding absolute
threshold Zp, the masked threshold My will be

mh a) 

LEMEENSATHELNEToPRNATMEARISENNATIAIVEPRTNORTESLINGPUDUICERE6cORTCPTAPCHOREEIRRRRPIPER,RAOHEEA8APIMPTEACTON
My = by Max{ 1 ep/ty

 
where We is an exponentthatlies between 0 and 1.’- In the sequel; -we will-refer to this model as Model 1 In Model.1,
sensitivity to a particular coefficient's quantization error is independentof the magnitudesofall the. other coefficients (except
the DC). Here wepresentdata whichindicate that sensitivity to a particular coefficient's quantization error is affected by the
magnitudesof other coefficients. We proposea revision of Model 1 to accountfor between-coefficient contrast masking.

3.2 Methods

General methods were.the sameasin the earlier experiments (Section 2.2). Each stimulus was the sum ofa test basis
function‘arid a mask basis function, added to the mean luminanceofthe ‘display. The contrast of the mask remained constant
throughouta block of 64 trials, while the contrast of the test was varied using the Quest procedure® to determine the threshold
for the test in the presence of the mask. Effective visual resolution was 32 pixels/degree, so that each stimulus subtended 0.25
degrees by 0.25 degrees.
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Masked thresholds 7p forfour test DCT frequencies were measured as a function of‘masking contrast for three
different mask frequencies. The tests frequencies T' were {0,0}, { 0,1}, {0,3}: and { 0,7}. These last threealso.served as the
masks. Additionally, {1,1} and.{1,0}-were used to mask {0,1}; and {2,2} was used.to mask {0,3}. Un-masked threshold
£; was also determined for eachtest. Theoretically, DCT coefficients can assume any realvalue. In the current Study we use
coefficients C,;, such that O'S cy <1: A coefficient with value | fully. utilizes.the dynamic rangeofthe display. For nearly
every test/mask combination, six masking contrasts were used. Here weexpress these Contrasts in decibels
(AB[cy]=20 logio[cy ]): -36, -30, -24, -18, -12 and -6. Because {97 is so high, whenthis basis function served to mask
others, only the four greatest masking contrasts were tised. Test and mask frequericies were fixed within a block of trials, and
frequency combinatiéns were run in a randomized fashion. The second author (jas) was the only observer in these experiments.
3.3 Results and Discussion.

Theresults are plotted in Figs..6 and 7.

TL M=I0, 1) T=(0, 1},M={0, 1) otal 3},M=(0, 1} peels The,1
-10 -10 “19 -10
-20 . 20 -20 -20

-40) -40 -40 Foo)
-40 -30 -20 -10 0 -40 -30 -20'-10 0  -40.-30 -20 -10 0 -40 -30 -20 -10 0

Tio. 0},M={0,3} 3 THO TAME, 3} g Tale ShM=(0, 3} T={0, 7hM=I0,3
-10 -10 -10 “10

-20) -20 -20) -20)

-30 -30 -30 -30

-40 -40 “40 -40
-40 -30 +20 -10 0 -40 -30°-20 -10 0 ~40:'-30°-20 -10° 0 -40 -30 -20 -10 0

T={0, 0},M=(0, 7} T={0, 1};M={0, 7} : T=(0, 3},M={0, 7}. T={0, 7},M=(0, 7}O 0 0, 1 0

-10 -10 10 -10
-20 -20 -20 -20

-30 -30 -30 -30

-40 ~40 -40 -40
-40 -30 -20.-10..0 -40 -30 -20 -10-.0 -40 -30 -20 -10 0 -40 -30 -20 -10 0

Fig. 6. Masked thresholds ( dB[mz ]) for four test basis functionsare plotted as a function of masking contrast (dB[cy, ]) for
three different masks. Unmasked thresholds (dB[t; ]) for the test basis functions are plotted onthe ordinates. The dashed and

solid lines are the predictions of Models 1 and 2, respectively, as describedin the text.
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T={0, 1},M={1, 1} T=(0, 1},M={1, 0} T={0, 3},M=(2, 2}
0; 0; 0

+40 -30 -20 -10 0 -40 -30 -20 -10 0 -40 -30 -20 -10 0

Fig. 7. Masked thresholdsfor test {0,1} as a function of masking contrast for the masks {1,1} and {1,0}, and fortest {0,3} as a
function of masking contrast for the mask {2,2}.

i

:
|

3.3.1 The dipper effect :
Data gathered with the {0,1}/{0,1) test/mask combination at masking contrasts of -36 and -30 dB have been omitted

from further analysis. Similarly, we have omitted the {0,3}/({0,3} data at -36 and -30 dB. These data appear as short vertical
line segments in Fig. 6. Measured thresholds for these four viewing conditions fall well below their corresponding unmasked s
thresholds. These data demonstrate the “dippereffect," a well-documented phenomenon wherein a low contrastgrating
increases the detectability of a grating of the same frequency and phase!® 18,19These data have been omitted becauseit is not
clear that the dipper effect comesinto play for natural images. For images composed of morethan one 8x8 pixel block, DCT E
basis functions can appear as gratings (uniform values) or noise (random values; with a quantifiable variance) or anything in :
between. Thedippereffect would appear if both test and mask were gratings. However,there is no indication that it would
appear otherwise. The influenceofa particular DCT coefficient on the detectability of quantization errors in natural images is
similar in conceptto the influenceof a grating on the detectability of random visual noise. No dippereffect is expected in such
a paradigm. Since we ultimately wish to modelthe detectability of quantization error in natural images, we believe that the
exclusion of the "dipper data" will benefit our initial approximations.

3.3.2 Model 1

Model 1 was fit to the data. Model 1 does not include between-coefficient contrast masking. Consequently, for any
given test basis function, its prediction for masked threshold is the same constantfunction of masking contrast for every mask
having a non-zero coefficientat a different DCT index thanthe test. By setting all of the was in Eq. 1. equal toa single
parameter w, the total variance (on a log scale) from the model increased by less than 0.3%. Hereafter, when we refer to Model

1, we mean specifically: Given a test DCT basis function Cp, its corresponding absolute threshold £, and a mask DCTbasis
function Cy, the masked threshold 772, will be  

 
ty Max(1 (cue/te)”| for T=M 2)
tp otherwise

where OS w 1. Bestfitting (method of least squares) values for w and fp, as determined for Model1, are given in Table 3.
For comparison, we have also analyzed a Model 0 which predicts no contrast masking, i.e. Mp = tVT. Bestfitting values
for fy, as determined by Model 0 are also given in Table 3. Model1 reflects the data for the viewing conditions in which the
mask and target were identical more accurately than Model 0 does. However, it cannotreflect the between-coefficieritmasking
evidentby the increase in measured threshold with masking contrastfor the other test/mask combinations.

3.3.3, Model 2

In orderto reflect the between-coefficient masking, we propose the following revision of Model 1, referred to
hereafter as Model 2. Given a test DCT basis function Cp, its corresponding absolute threshold f, and a mask DCTbasis
function Cy the maskedthreshold 72; will be
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My = bynl (xm) } (3) |
where w is an exponentthat lies between 0 and | and f[T,M]is a positive, frequency-dependentscaling factor, that assumes a
maximum value of | when T=M. f[T,M] may be described as a family of tuning functions. Thatis, for any test basis
function Cy, f[T,M] reflects the sensitivity of C, detection to masksatdifferent frequencies. We have chosento specify these
sensitivity functions with the following one-parameterrule:

A[T,M] = exp[ - xf - Mp/cé |, | (4)

where Gp = ¢ Max| 1,|T| ]- This is a radially symmetric Gaussiansensitivity function with a bandwidth that increasesin
proportion to frequency (except at DC). This is analogousto the spatial frequency channels that are believed to underlie the
early stages of humanvisual processing.

Bestfitting (method of least squares) values for ¢, w and Z», as determined for Model2, are also given in Table 3.
The average variance (squared rms error on a decibel scale) from Models 0, 1 and 2 is also provided in Table 3. Thebestfitting
predictions of Model 2 are also drawnas solid lines in Figs. 6 and 7.

: Parameter Model 0 Model 1 Model 2

 
Average variance from model

Table 3. Residual variance from Models 0, | and 2.

3.4 Conclusions

With the addition of a single parameter (¢), our Model 1 captures 46% more of the variance in our data than does
Model 0. Incorporating this modification into the current method for computing DCT quantization matrices will yield more
efficient image compression. The estimated value of ¢ indicates a rather broad bandwidth for the masking effect. This may be
duein part to the rather broad bandwidth of the basis functions themselves.

4, ACKNOWLEDGMENTS —_

Wethank Mark Young for extensive assistance and Heidi Peterson for useful discussions. This work was supported by
NASA RTOPs 506-59-65 and 505-64-53. i

5. REFERENCES

1. W.B. Pennebakerand J.L. Mitchell,JPEG Still image data compression standard, Van Nostrand Reinhold, New York (1993).

2. G. Wallace,"The JPEG still picture compression standard," Communications of the ACM, 34(4), 30-44 (1991).

3. HLA. Peterson,"DCTbasis function visibility in RGB space," (1992).

SPIE Vol. 2179 / 107

OLYMPUSEX. 1016 - 455/714



OLYMPUS EX. 1016 - 456/714

4. HLA.Peterson, H. Peng, J.H. Morgan and W.B. Pennebaker,"Quantization of color image components in the DCT domain,"
(1991).

5. AJ. Ahumada Jr. and H.A. Peterson,"Luminance-
6. H. Peterson, A. Ahumada and A. Watson,"An Improved Detection Model for DCT Coefficient Quantization,” (1993).

s," (1993).7. A.B. Watson,"DCT quantization matrices visually optimized for individual image:
8. A.B. Watson and D.G. Pelli,"QUEST: A Bayesian adaptive psychometric method," Perception and Psychophysics, 33(2),

113-120 (1983).

9, A.B. Watson,"Probability summation overtime,"
10. C. Noorlander, M.J.G. Heuts and J.J. Koenderink,"Influenceofthe target size on the detection threshold for juminance and

chromaticity contrast," Journal of the Optical Society of America, 70(9), 1116-1121 (1980).
11. CH. Graham, R.H. Brownand F.A. Mote,"The relation of size of stimulus and intensity in the human eye: I. Intensity

thresholds for white light," J. Exp. Psychol., 24, 555-573 (1939).
humanvisionatdifferent background intensities," Journal of Physiology,

Model-Based DCT Quantization for Color Image Compression," (1992).

" Vision Research, 19, 515-522 (1979).

 
12. H.B. Barlow,"Temporal and spatial summation in

141 , 337-350 (1958).

13. N. Graham, J.G. Robson andJ. Nachmias,"Grating summation in fovea and periphery,
(1978 ).

14. J.G. Robson and N. Graham,"Probability summation and regional v:
Vision Research, 21, 409-418 (1981).

15. BLA.Peterson, A.J. AhumadaJr. and A.B. Watson,
Papers, XXIV, 942-945 (1993).

16. G.E. Legge and J.M. Foley,"Contrast masking in humanvision,
1471 (1980).

17. G.E. Legge,"A power law for contrast discrimination,
18. C.F, StromeyerIII and S. Klein,”Spatial frequency channels in human vision as asym

Research, 14, 1409- 1420 (1974).

19. J. Nachmias and R. Sansbury,"Grating contrast: discrimination may be better than detection,
1042 (1974 ).

" Vision Research, 18 , 815-825

ariation in contrast sensitivity across the visual field,"

“The Visibility of DCT Quantization Noise," SID Digest of Technical

* Journal of the Optical Society of America, 70(12), 1458-

" Vision Research, 21, 457-467 (1981).
metric (edge) mechanisms," Vision

" Vision Research, 14 , 1039-

=

@
e
A

=

e
£

:z
z
i
f

108 / SPIE Vol. 2179

re

OLYMPUSEX. 1016 - 456/714


