United States Patent [19]

Heath et al.

[54] COMPUTER SYSTEM WITH AUTOMATIC INITIALIZATION OF PLUGGABLE OPTION CARDS

- [75] Inventors: Chester A. Heath; John K. Langgood, both of Boca Raton, Fla.; Ronald E. Valli, Pittsburgh, Pa.
- [73] Assignee: International Business Machines Corp., Armonk, N.Y.
- [21] Appl. No.: 296,387
- [22] Filed: Jan. 6, 1989

Related U.S. Application Data

- [63] Continuation of Ser. No. 21,391, Mar. 13, 1987, abandoned.
- (52) 0.3. 01, 1.4. 364/944.61; 364/975.2; 364/976.4; 364/945; 364/929.5; 364/929.2; 371/11.1
- [58] Field of Search ... 364/200 MS File, 900 MS File; 340/825.07, 825.06, 825.52, 825.06; 371/11.1, 11.2, 11.3, 66, 7

[56] References Cited

U.S. PATENT DOCUMENTS

3,480,914	11/1969	Schlaeppi 364/200
3,510,843	5/1970	Bennett
3,573,741	4/1971	Gavril 364/200
3,818,447	6/1974	Craft 340/172.5
4,003,033	1/1977	O'Keefe 364/200
4,015,244	3/1977	Simpson 364/200

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0041406	9/1981	European Pat. Off
0087368	8/1983	European Pat. Off
0121331	3/1984	European Pat. Off
0121381	10/1984	European Pat. Off
0136178	4/1985	European Pat. Off
0179981	6/1985	European Pat. Off
0171073	2/1986	European Pat. Off
0182044	5/1986	European Pat. Off
0200198	11/1986	European Pat. Off

DOCKE.

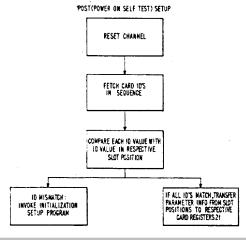
[11] Patent Number: 5,038,320

[45] Date of Patent: Aug. 6, 1991

3508648 9/1986 Fed. Rep. of Germany . 50-120935 9/1976 Japan

(List continued on next page.)

OTHER PUBLICATIONS


IBM TDB vol. 20, No. 7, Dec. 1977, Input/Output Device Address Recognition Mechanism. (List continued on next page.)

Primary Examiner—Gareth D. Shaw Assistant Examiner—Paul Kulik Attorney, Agent, or Firm—Winfield J. Brown, Jr.; Robert Lieber

[57] ABSTRACT

A data processing system includes a planar board having a central processing unit (CPU), a main memory unit, and input/output (I/O) sockets or slots, each adapted to receive a selected one of a plurality of different and/or similar option cards. each card contains (or is connected to) and controls a respective peripheral device; and each card is pre-wired with an ID value corresponding to its card type. Software programmable option registers on each card store parameters such as designated default (or alternate) address information, priority levels, and other system resource parameters. A setup routine, during initial power-on, retrieves and stores the appropriate parameters in the I/O cards and also in slot positions in main memory, one position being assigned to each slot on the board. Each slot position is adapted to hold the parameters associated with the card inserted in its respective slot and the card ID value. That portion of main memory containing the slot positions is adapted to maintain the parameter and ID information by means of battery power when system power fails or is disconnected, i.e., a nonvolatile memory portion. Subsequent power-on routines are simplified by merely transferring parameters from the table to the card option registers if the status of all the slots has not changed since the last power-down, system reset, or channel reset.

18 Claims, 7 Drawing Sheets

Find authenticated court documents without watermarks at docketalarm.com.

U.S. PATENT DOCUMENTS

٠.

1 005 000 E (1077	Kaufman 364/200
4,025,903 5/1977	Moorehead .
4,027,108 5/1977	Calle et al
4,070,704 1/1978	
4,075,693 2/1978	I UA
4,155,117 5/1979	
4,177,511 12/1979	
4,191,996 3/1980	Chesley
4,236.207 11/1980	Saal
4,253,087 2/1981	Saal
4,253,144 2/1981	DCHAINS
4,254,463 3/1981	
4,268,901 5/1981	
4,293,924 10/1981	
4,303,993 12/1981	1 unephilo him
4,314,354 2/1982	I Cluci initiation of the second
4,335,426 6/1982	Maxwell
4,356,475 10/1982	Neumann
4,360,870 11/1982	McVey
4,363,094 12/1982	Kaul
4,373,181 2/1983	Chisholm et al
4,400,775 8/1983	Nozaki
4,432,049 2/1984	Shaw et al
4,437,157 3/1984	Witalka
4,442,504 4/1984	Dummermuth
4,454,596 6/1984	Wunsch
4,458,357 7/1984	Weymouth
4,491,913 1/1985	Calvignac
4,514,728 4/1985	Ahuja 340/825.5
4,521,847 6/1985	Ziehm et al 371/7 X
4,556,953 12/1985	Caprio et al
4,562,535 12/1985	Vincent et al
4,563,736 1/1986	Boudreau
4,571,676 2/1986	Mantellina 364/200
4,578,773 3/1986	Desai
4,589,063 5/1986	Shah et al
4,604,690 8/1986	Crabtree et al
4,622,633 11/1986	Ceccon et al 364/200
4,626,634 12/1986	Brahm
4,633,392 12/1986	Vincent
4,654,857 3/1987	Samson
4,660,141 4/1987	Ceccon
4,670,855 6/1987	Caprio 364/900
4,701.878 10/1987	Günkel et al
4,713,834 12/1987	Brahm
4,718,038 1/1988	Yoshida
4,750,136 6/1988	Arpin et al
4,760,553 7/1988	Buckley et al
4,787,025 11/1988	
4,787,028 11/1988	Finfrock et al
4,787,030 11/1988	Harter
4,870,704 9/1989	Matelan 364/200

FOREIGN PATENT DOCUMENTS

54-24314	3/1979	Japan	
54-73531	6/1979	Japan	

DOCKE

55-56235	4/1980	Japan .
56-46384	10/1982	Japan .
2101370	1/1983	United Kingdom .
2137382	10/1984	United Kingdom .
2166893	5/1986	United Kingdom .
2175716	12/1986	United Kingdom .

OTHER PUBLICATIONS

IBM TDB vol. 20, No. 8, Jan. 1978, Initial Microprogram Load by Blocks Via Cycle Steal.

IBM TDB vol. 22, No. 2, Jul., 1979, Even/Odd Addresses to Allow Device Adapter Sharing by More Than One Processor.

IBM TDB vol. 22, No. 5, Oct. 1979, Satellite Station Address Assignment Method.

IBM TDB vol. 22, No. 10, Mar., 1980, Automatic Module Detection.

IBM TDB vol. 23, No. 8, Jan., 1981, Dynamic Device Address Assignment Mechanism.

Electronic Design, Sep. 3, 1981, pp. 141–156, Several Articles, "Functional Architecture Threatens Central CPUs", etc.

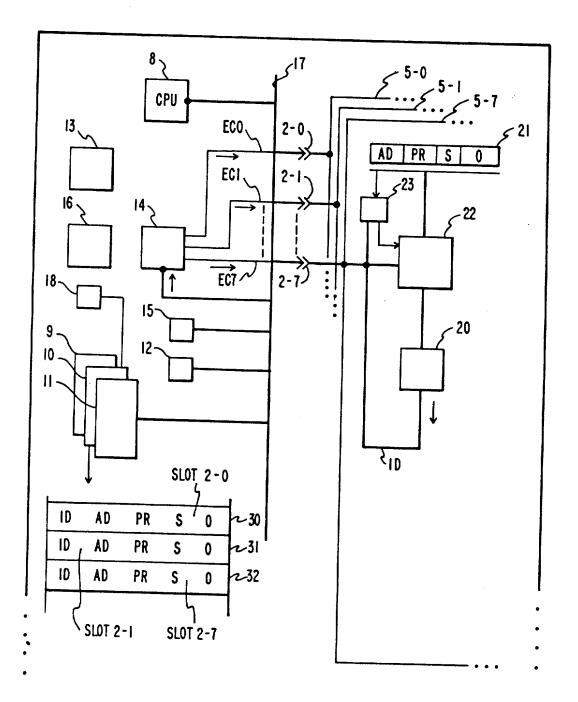
Paper in Euromicro, Input/Output Control 6f IBM System/370 Model 125 through Dedicated Input/Output Processors, by Assmuth et al., pp. 24-40.

Technical Disclosure Bulletin (IBM) vol. 27, No. 1E "Automatic Domain Configuration Mechanism for a Multi-Device I/O Controller".

Wescon Technical Paper Oct. 30-Nov. 2, 1984, "A Standard Protocol for Host Computer-Peripheral In terface Allows Upgrading to the Latest Mass Storage Devices".

Technical Disclosure Bulletin (IBM) vol. 27, No. 2, Jul 1984 "Input/Output Channel Address Assignmen Mechanism".

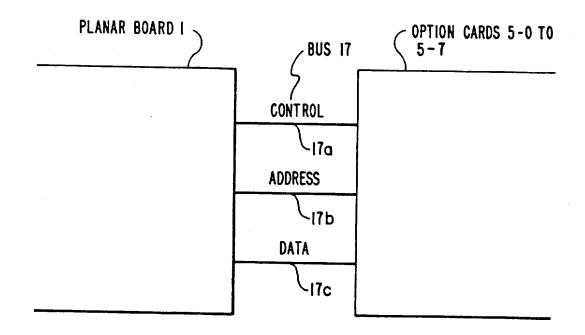
JP Abstract vol. 10, No. 256 (P-493) (23312) Sep. 2 1986.


JP Abstract vol. 9, No. 239 (P-391) (1962) Sep. 25 1985.

JP Abstract vol. 9, vol. 9, No. 190 (P-378) (1913) Aug 7, 1985.

EDN Magazine vol. 26 (1981) Feb., No. 3, Boston, MA New Electronics 19(1986) Jul., No. 14, London, Grea Britain.

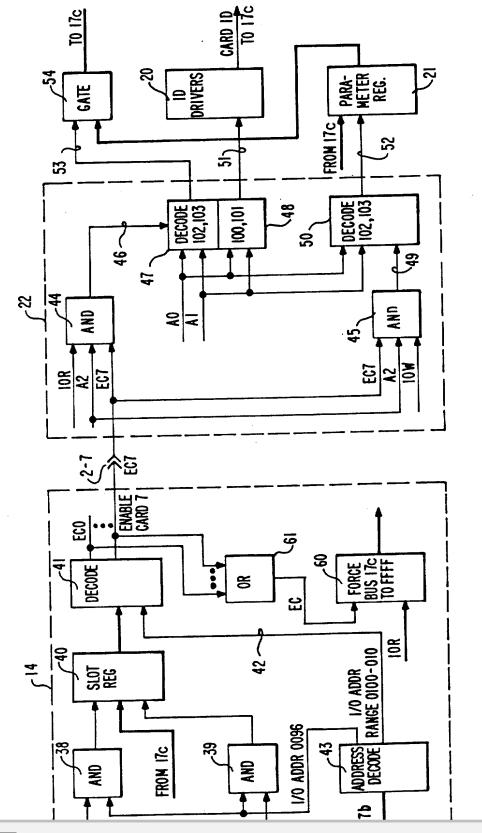
vol. 22, No. 3, Aug. 1979, IBM Technical Disclosur-Bulletin, Programmable Identification for I/O Device J. M. McVey.


vol. 16, No. 1 Jun. 1973, IBM Technical Disclosur-Bulletin, Program Controlled I/O Address Assignment L. J. Rosenberg. FIG. I

DOCKET ALARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>. .

۰.

FIG. 2



Δ RM Δ Find authenticated court documents without watermarks at docketalarm.com.

KF.

Α

FIG. 3

R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.