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This paper surveys a variety of data compression methods spanning almost 40 years of 
research, from the work of Shannon, Fano, and Huffman in the late 1940s to a technique 
developed in 1986. The aim of data compression is to reduce redundancy in stored or 
communicated data, thus increasing effective data density. Data compression has 
important application in the areas of file storage and distributed systems. Concepts from 
information theory as they relate to the goals and evaluation of data compression 
methods are discussed briefly. A framework for evaluation and comparison of methods is 
constructed and applied to the algorithms presented. Comparisons of both theoretical and 
empirical natures are reported, and possibilities for future research are suggested. 
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INTRODUCTION 

Data compression is often referred to as 
coding, where coding is a general term en­
compassing any special representation of 
data that satisfies a given need. Informa­
tion theory is defined as the study of 
efficient coding and its consequences in 
the form of speed of transmission and 
probability of error [Ingels 1971]. Data com­
pression may be viewed as a branch of 
information theory in which the primary 
objective is to minimize the amount of data 
to be transmitted. The purpose of this pa­
per is to present and analyze a variety of 
data compression algorithms. 

A simple characterization of data 
compression is that it involves transform­
ing a string of characters in some represen­
tation (such as ASCII) into a new string 
(e.g., of bits) that contains the same infor-

mation but whose length is as small as 
possible. Data compression has important 
application in the areas of data transmis­
sion and data storage. Many data process­
ing applications require storage of large 
volumes of data, and the number of such 
applications is constantly increasing as the 
use of computers extends to new disci­
plines. At the same time, the proliferation 
of computer communication networks is 
resulting in massive transfer of data over 
communication links. Compressing data to 
be stored or transmitted reduces storage 
and/or communication costs. When the 
amount of data to be transmitted is re­
duced, the effect is that of increasing the 
capacity of the communication channel. 
Similarly, compressing a file to half of its 
original size is equivalent to doubling the 
capacity of the storage medium. It may then 
become feasible to store the data at a 
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higher, thus faster, level of the storage hi­
erarchy and reduce the load on the input/ 
output channels of the computer system. 

Many of the methods discussed in this 
paper are implemented in production 
systems. The UNIX1 utilities compact 
and compress are based on methods dis­
cussed in Sections 4 and 5, respectively 
[UNIX 1984). Popular file archival systems 
such as ARC and PKARC use techniques 
presented in Sections 3 and 5 [ARC 1986; 
PKARC 1987). The savings achieved by 
data compression can be dramatic; reduc­
tion as high as 80% is not uncommon 
[Reghbati 1981). Typical values of com­
pression provided by compact are text 
(38%), Pascal source (43%), C source 
(36%), and binary (19%). Compress gener­
ally achieves better compression (50-60% 
for text such as source code and English) 
and takes less time to compute [UNIX 
1984). Arithmetic coding (Section 3.4) has 

'UNIX is a trademark of AT&T Bell Laboratories. 
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been reported to reduce a file to anywhere 
from 12.1 to 73.5% of its original size [Wit­
ten et al. 1987). Cormack reports that data 
compression programs based on Huffman 
coding (Section 3.2) reduced the size of a 
large student-record database by 42.1 % 
when only some of the information was 
compressed. As a consequence of this size 
reduction, the number of disk operations 
required to load the database was reduced 
by 32.7% [Cormack 1985). Data com­
pression routines developed with specific 
applications in mind have achieved com­
pression factors as high as 98% [Severance 
1983). 

Although coding for purposes of data se­
curity (cryptography) and codes that guar­
antee a certain level of data integrity (error 
detection/correction) are topics worthy of 
attention, they do not fall under the 
umbrella of data compression. With the 
exception of a brief discussion of the sus­
ceptibility to error of the methods surveyed 
(Section 7), a discrete noiseless channel is 
assumed. That is, we assume a system in 
which a sequence of symbols chosen from 
a finite alphabet can be transmitted from 
one point to another without the possibility 
of error. Of course, the coding schemes 
described here may be combined with data 
security or error-correcting codes. 

Much of the available literature on data 
compression approaches the topic from the 
point of view of data transmission. As noted 
earlier, data compression is of value in data 
storage as well. Although this discussion is 
framed in the terminology of data trans­
mission, compression and decompression 
of data files are essentially the same tasks 
as sending and receiving data over a com­
munication channel. The focus of this 
paper is on algorithms for data compres­
sion; it does not deal with hardware aspects 
of data transmission. The reader is referred 
to Cappellini [1985) for a discussion of 
techniques with natural hardware imple­
mentation. 

Background concepts in the form of ter­
minology and a model for the study of data 
compression are provided in Section 1. Ap­
plications of data compression are also dis­
cussed in Section 1 to provide motivation 
for the material that follows. 
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Although the primary focus of this survey 
is data compression methods of general 
utility, Section 2 includes examples from 
the literature in which ingenuity applied to 
domain-specific problems has yielded inter­
esting coding techniques. These techniques 
are referred to as semantic dependent since 
they are designed to exploit the context 
and semantics of the data to achieve re­
dundancy reduction. Semantic-dependent 
techniques include the use of quadtrees, 
run-length encoding, or difference mapping 
for storage and transmission of image data 
[Gonzalez and Wintz 1977; Samet 1984]. 

General-purpose techniques, which as­
sume no knowledge of the information 
content of the data, are described in 
Sections 3-5. These descriptions are suffi­
ciently detailed to provide an understand­
ing of the techniques. The reader will need 
to consult the references for implementa­
tion details. In most cases only worst-case 
analyses of the methods are feasible. To 
provide a more realistic picture of their 
effectiveness, empirical data are presented 
in Section 6. The susceptibility to error of 
the algorithms surveyed is discussed in Sec­
tion 7, and possible directions for future 
research are considered in Section 8. 

1. FUNDAMENTAL CONCEPTS 

A brief introduction to information theory 
is provided in this section. The definitions 
and assumptions necessary to a compre­
hensive discussion and evaluation of data 
compression methods are discussed. The 
following string of characters is used to 
illustrate the concepts defined: EXAMPLE 
= "aa bbb cccc ddddd eeeeee fffffffgggggggg ". 

1.1 Definitions 

A code is a mapping of source messages 
(words from the source alphabet a) into 
codewords (words of the code alphabet (3). 
The source messages are the basic units 
into which the string to be represented is 
partitioned. These basic units may be single 
symbols from the source alphabet, or they 
may be strings of symbols. For string 
EXAMPLE, a= {a, b, c, d, e, f, g, space I. 
For purposes of explanation, (3 is taken to 
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Source message Codeword 

a 000 
b 001 
c 010 
d 011 
e 100 
f 101 
g 110 

space 111 

Figure 1. A block-block code for EXAMPLE. 

Source message Codeword 

aa 0 
bbb 1 
cccc 10 
ddddd 11 
eeeeee 100 
fffffff 101 
gggggggg 110 
space 111 

Figure2. A variable-variable code for EXAMPLE. 

be {O, lj. Codes can be categorized as block­
block, block-variable, variable-block, or 
variable-variable, where block-block in­
dicates that the source messages and 
codewords are of fixed length and variable­
variable codes map variable-length source 
messages into variable-length codewords. A 
block-block code for EXAMPLE is shown 
in Figure 1, and a variable-variable code is 
given in Figure 2. If the string EXAMPLE 
were coded using the Figure 1 code, the 
length of the coded message would be 120; 
using Figure 2 the length would be 30. 

The oldest and most widely used codes, 
ASCII and EBCDIC, are examples of 
block-block codes, mapping an alphabet of 
64 (or 256) single characters onto 6-bit (or 
8-bit) codewords. These are not discussed, 
since they do not provide compression. 
The codes featured in this survey are of 
the block-variable, variable-variable, and 
variable-block types. 

When source messages of variable length 
are allowed, the question of how a mes­
sage ensemble (sequence of messages) is 
parsed into individual messages arises. 
Many of the algorithms described here are 
defined-word schemes. That is, the set of 
source messages is determined before the 
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invocation of the coding scheme. For 
example, in text file processing, each 
character may constitute a message, or 
messages may be defined to consist 
of alphanumeric and nonalphanumeric 
strings. In Pascal source code, each token 
may represent a message. All codes involv­
ing fixed-length source messages are, by 
default, defined-word codes. In free-parse 
methods, the coding algorithm itself parses 
the ensemble into variable-length se­
quences of symbols. Most of the known 
data compression methods are defined­
word schemes; the free-parse model differs 
in a fundamental way from the classical 
coding paradigm. 

A code is distinct if each codeword is 
distinguishable from every other (i.e., the 
mapping from source messages to code­
words is one to one). A distinct code is 
uniquely decodable if every codeword is 
identifiable when immersed in a sequence 
of codewords. Clearly, each of these fea­
tures is desirable. The codes of Figures 1 
and 2 are both distinct, but the code of 
Figure 2 is not uniquely decodable. For 
example, the coded message 11 could be 
decoded as either "ddddd" or "bbbbbb". A 
uniquely decodable code is a prefix code (or 
prefix-free code) if it has the prefix prop­
erty, which requires that no codeword be a 
proper prefix of any other codeword. All 
uniquely decodable block-block and vari­
able-block codes are prefix codes. The code 
with codewords {1, 100000, 00} is an ex­
ample of a code that is uniquely decodable 
but that does not have the prefix property. 
Prefix codes are instantaneously decodable; 
that is, they have the desirable property 
that the coded message can be parsed into 
codewords without the need for lookahead. 
In order to decode a message encoded using 
the codeword set {l, 100000, 00}, lookahead 
is required. For example, the first codeword 
of the message 1000000001 is 1, but this 
cannot be determined until the last (tenth) 
symbol of the message is read (if the string 
of zeros had been of odd length, the first 
codeword would have been 100000). 

A minimal prefix code is a prefix code 
such that, if x is a proper prefix of some 
codeword, then xa is either a codeword or 
a proper prefix of a codeword for each letter 
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a in {3. The set of codewords {00, 01, 10} is 
an example of a prefix code that is not 
minimal. The fact that 1 is a proper prefix 
of the codeword 10 requires that 11 be 
either a codeword or a proper prefix of a 
codeword, and it is neither. Intuitively, the 
minimality constraint prevents the use of 
codewords that are longer than necessary. 
In the above example the codeword 10 could 
be replaced by the codeword 1, yielding a 
minimal prefix code with shorter code­
words. The codes discussed in this paper 
are all minimal prefix codes. 

In this section a code has been defined 
to be a mapping from a source alphabet 
to a code alphabet; we now define related 
terms. The process of transforming a source 
ensemble into a coded message is coding or 
encoding. The encoded message may be re­
ferred to as an encoding of the source en­
semble. The algorithm that constructs the 
mapping and uses it to transform the source 
ensemble is called the encoder. The decoder 
performs the inverse operation, restoring 
the coded message to its original form. 

1.2 Classification of Methods 

Not only are data compression schemes 
categorized with respect to message and 
codeword lengths, but they are also classi­
fied as either static or dynamic. A static 
method is one in which the mapping from 
the set of messages to the set of codewords 
is fixed before transmission begins, so that 
a given message is represented by the same 
codeword every time it appears in the mes­
sage ensemble. The classic static defined­
word scheme is Huffman coding [Huffman 
1952]. In Huffman coding, the assignment 
of codewords to source messages is based 
on the probabilities with which the source 
messages appear in the message ensemble. 
Messages that appear frequently are rep­
resented by short codewords; messages with 
smaller probabilities map to longer code­
words. These probabilities are determined 
before transmission begins. A Huffman 
code for the ensemble EXAMPLE is given 
in Figure 3. If EXAMPLE were coded using 
this Huffman mapping, the length of the 
coded message would be 117. Static Huff­
man coding is discussed in Section 3.2; 
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Source message Probability Codeword 

a 2/40 1001 
b 3/40 1000 
c 4/40 011 
d 5/40 010 
e 6/40 111 
f 7/40 110 
g 8/40 00 

space 5/40 101 

Figure 3. A Huffman code for the message EXAM­
PLE (code length= 117). 

other static schemes are discussed in Sec­
tions 2 and 3. 

A code is dynamic if the mapping from 
the set of messages to the set of codewords 
changes over time. For example, dynamic 
Huffman coding involves computing an ap­
proximation to the probabilities of occur­
rence "on the fly," as the ensemble is being 
transmitted. The assignment of codewords 
to messages is based on the values of the 
relative frequencies of occurrence at each 
point in time. A message x may be repre­
sented by a short codeword early in the 
transmission because it occurs frequently 
at the beginning of the ensemble, even 
though its probability of occurrence over 
the total ensemble is low. Later, when the 
more probable messages begin to occur with 
higher frequency, the short codeword will 
be mapped to one of the higher probability 
messages, and x will be mapped to a longer 
codeword. As an illustration, Figure 4 
presents a dynamic Huffman code table 
corresponding to the prefix "aa bbb" of 
EXAMPLE. Although the frequency of 
space over the entire message is greater 
than that of b, at this point b has higher 
frequency and therefore is mapped to the 
shorter codeword. 

Dynamic codes are also referred to in the 
literature as adaptive, in that they adapt to 
changes in ensemble characteristics over 
time. The term adaptive is used for the 
remainder of this paper; the fact that these 
codes adapt to changing characteristics is 
the source of their appeal. Some adaptive 
methods adapt to changing patterns in the 
source [Welch 1984), whereas others ex­
ploit locality of reference [Bentley et al. 
1986). Locality of reference is the tendency, 
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Source message Probability Codeword 

a 2/6 10 
b 3/6 0 

space 1/6 11 

Figure 4. A dynamic Huffman code table for the 
prefix "aa bbb" of message EXAMPLE. 

common in a wide variety of text types, for 
a particular word to occur frequently_ for 
short periods of time and then fall mto 
disuse for long periods. 

All of the adaptive methods are one-pass 
methods· only one scan of the ensemble is 
required: Static Huffman coding requires 
two passes: one pass to compute probabili­
ties and determine the mapping, and a sec­
ond pass for transmission. Thus, as long as 
the encoding and decoding times of an 
adaptive method are not substantially 
greater than those of a static method, ~he 
fact that an initial scan is not needed im­
plies a speed improvement in the adaptive 
case. In addition, the mapping determined 
in the first pass of a static coding scheme 
must be transmitted by the encoder to the 
decoder. The mapping may preface each 
transmission (i.e., each file sent), or a single 
mapping may be agreed upon and used for 
multiple transmissions. In one-pass meth­
ods the encoder defines and redefines the 
mapping dynamically during transmission. 
The decoder must define and redefine the 
mapping in sympathy, in essence "learn­
ing" the mapping as codewords are re­
ceived. Adaptive methods are discussed in 
Sections 4 and 5. 

An algorithm may also be a hybrid, 
neither completely static nor completely 
dynamic. In a simple hybrid scheme, sender 
and receiver maintain identical codebooks 
containing k static codes. For each trans­
mission the sender must choose one of the 
k previ~usly agreed upon codes and inform 
the receiver of the choice (by transmitting 
first the "name" or number of the chosen 
code). Hybrid methods are discussed fur­
ther in Sections 2 and 3.2. 

1.3 A Data Compression Model 

In order to discuss the relative merits of 
data compression techniques, a framework 
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