
Data Compression

DEBRA A. LELEWER and DANIEL S. HIRSCHBERG

Department of Information and Computer Science, University of California, Irvine, California 92717

This paper surveys a variety of data compression methods spanning almost 40 years of
research, from the work of Shannon, Fano, and Huffman in the late 1940s to a technique
developed in 1986. The aim of data compression is to reduce redundancy in stored or
communicated data, thus increasing effective data density. Data compression has
important application in the areas of file storage and distributed systems. Concepts from
information theory as they relate to the goals and evaluation of data compression
methods are discussed briefly. A framework for evaluation and comparison of methods is
constructed and applied to the algorithms presented. Comparisons of both theoretical and
empirical natures are reported, and possibilities for future research are suggested.

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory-data
compaction and compression

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adaptive coding, adaptive Huffman codes, coding,
coding theory, file compression, Huffman codes, minimum-redundancy codes, optimal
codes, prefix codes, text compression

INTRODUCTION

Data compression is often referred to as
coding, where coding is a general term en­
compassing any special representation of
data that satisfies a given need. Informa­
tion theory is defined as the study of
efficient coding and its consequences in
the form of speed of transmission and
probability of error [Ingels 1971]. Data com­
pression may be viewed as a branch of
information theory in which the primary
objective is to minimize the amount of data
to be transmitted. The purpose of this pa­
per is to present and analyze a variety of
data compression algorithms.

A simple characterization of data
compression is that it involves transform­
ing a string of characters in some represen­
tation (such as ASCII) into a new string
(e.g., of bits) that contains the same infor-

mation but whose length is as small as
possible. Data compression has important
application in the areas of data transmis­
sion and data storage. Many data process­
ing applications require storage of large
volumes of data, and the number of such
applications is constantly increasing as the
use of computers extends to new disci­
plines. At the same time, the proliferation
of computer communication networks is
resulting in massive transfer of data over
communication links. Compressing data to
be stored or transmitted reduces storage
and/or communication costs. When the
amount of data to be transmitted is re­
duced, the effect is that of increasing the
capacity of the communication channel.
Similarly, compressing a file to half of its
original size is equivalent to doubling the
capacity of the storage medium. It may then
become feasible to store the data at a

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1988 ACM 0360-0300/87 /0900-0261 $1.50

ACM Computing Surveys, Vol. 19, No. 3, September 1987

NetApp; Rackspace Exhibit 1015 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

wts
copyright

https://www.docketalarm.com/

262 • D. A. Lelewer and D. S. Hirschberg

CONTENTS

INTRODUCTION
1. FUNDAMENTAL CONCEPTS

1.1 Definitions
1.2 Classification of Methods
1.3 A Data Compression Model
1.4 Motivation

2. SEMANTIC DEPENDENT METHODS
3. STATIC DEFINED-WORD SCHEMES

3.1 Shannon-Fano Code
3.2 Static Huffman Coding
3.3 Universal Codes and Representations of the

Integers
3.4 Arithmetic Coding

4. ADAPTIVE HUFFMAN CODING
4.1 Algorithm FGK
4.2 Algorithm V

5. OTHER ADAPTIVE METHODS
5.1 Lempel-Ziv Codes
5.2 Algorithm BSTW

6. EMPIRICAL RESULTS
7. SUSCEPTIBILITY TO ERROR

7 .1 Static Codes
7.2 Adaptive Codes

8. NEW DIRECTIONS
9. SUMMARY
REFERENCES

higher, thus faster, level of the storage hi­
erarchy and reduce the load on the input/
output channels of the computer system.

Many of the methods discussed in this
paper are implemented in production
systems. The UNIX1 utilities compact
and compress are based on methods dis­
cussed in Sections 4 and 5, respectively
[UNIX 1984). Popular file archival systems
such as ARC and PKARC use techniques
presented in Sections 3 and 5 [ARC 1986;
PKARC 1987). The savings achieved by
data compression can be dramatic; reduc­
tion as high as 80% is not uncommon
[Reghbati 1981). Typical values of com­
pression provided by compact are text
(38%), Pascal source (43%), C source
(36%), and binary (19%). Compress gener­
ally achieves better compression (50-60%
for text such as source code and English)
and takes less time to compute [UNIX
1984). Arithmetic coding (Section 3.4) has

'UNIX is a trademark of AT&T Bell Laboratories.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

been reported to reduce a file to anywhere
from 12.1 to 73.5% of its original size [Wit­
ten et al. 1987). Cormack reports that data
compression programs based on Huffman
coding (Section 3.2) reduced the size of a
large student-record database by 42.1 %
when only some of the information was
compressed. As a consequence of this size
reduction, the number of disk operations
required to load the database was reduced
by 32.7% [Cormack 1985). Data com­
pression routines developed with specific
applications in mind have achieved com­
pression factors as high as 98% [Severance
1983).

Although coding for purposes of data se­
curity (cryptography) and codes that guar­
antee a certain level of data integrity (error
detection/correction) are topics worthy of
attention, they do not fall under the
umbrella of data compression. With the
exception of a brief discussion of the sus­
ceptibility to error of the methods surveyed
(Section 7), a discrete noiseless channel is
assumed. That is, we assume a system in
which a sequence of symbols chosen from
a finite alphabet can be transmitted from
one point to another without the possibility
of error. Of course, the coding schemes
described here may be combined with data
security or error-correcting codes.

Much of the available literature on data
compression approaches the topic from the
point of view of data transmission. As noted
earlier, data compression is of value in data
storage as well. Although this discussion is
framed in the terminology of data trans­
mission, compression and decompression
of data files are essentially the same tasks
as sending and receiving data over a com­
munication channel. The focus of this
paper is on algorithms for data compres­
sion; it does not deal with hardware aspects
of data transmission. The reader is referred
to Cappellini [1985) for a discussion of
techniques with natural hardware imple­
mentation.

Background concepts in the form of ter­
minology and a model for the study of data
compression are provided in Section 1. Ap­
plications of data compression are also dis­
cussed in Section 1 to provide motivation
for the material that follows.

NetApp; Rackspace Exhibit 1015 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Although the primary focus of this survey
is data compression methods of general
utility, Section 2 includes examples from
the literature in which ingenuity applied to
domain-specific problems has yielded inter­
esting coding techniques. These techniques
are referred to as semantic dependent since
they are designed to exploit the context
and semantics of the data to achieve re­
dundancy reduction. Semantic-dependent
techniques include the use of quadtrees,
run-length encoding, or difference mapping
for storage and transmission of image data
[Gonzalez and Wintz 1977; Samet 1984].

General-purpose techniques, which as­
sume no knowledge of the information
content of the data, are described in
Sections 3-5. These descriptions are suffi­
ciently detailed to provide an understand­
ing of the techniques. The reader will need
to consult the references for implementa­
tion details. In most cases only worst-case
analyses of the methods are feasible. To
provide a more realistic picture of their
effectiveness, empirical data are presented
in Section 6. The susceptibility to error of
the algorithms surveyed is discussed in Sec­
tion 7, and possible directions for future
research are considered in Section 8.

1. FUNDAMENTAL CONCEPTS

A brief introduction to information theory
is provided in this section. The definitions
and assumptions necessary to a compre­
hensive discussion and evaluation of data
compression methods are discussed. The
following string of characters is used to
illustrate the concepts defined: EXAMPLE
= "aa bbb cccc ddddd eeeeee fffffffgggggggg ".

1.1 Definitions

A code is a mapping of source messages
(words from the source alphabet a) into
codewords (words of the code alphabet (3).
The source messages are the basic units
into which the string to be represented is
partitioned. These basic units may be single
symbols from the source alphabet, or they
may be strings of symbols. For string
EXAMPLE, a= {a, b, c, d, e, f, g, space I.
For purposes of explanation, (3 is taken to

Data Compression • 263

Source message Codeword

a 000
b 001
c 010
d 011
e 100
f 101
g 110

space 111

Figure 1. A block-block code for EXAMPLE.

Source message Codeword

aa 0
bbb 1
cccc 10
ddddd 11
eeeeee 100
fffffff 101
gggggggg 110
space 111

Figure2. A variable-variable code for EXAMPLE.

be {O, lj. Codes can be categorized as block­
block, block-variable, variable-block, or
variable-variable, where block-block in­
dicates that the source messages and
codewords are of fixed length and variable­
variable codes map variable-length source
messages into variable-length codewords. A
block-block code for EXAMPLE is shown
in Figure 1, and a variable-variable code is
given in Figure 2. If the string EXAMPLE
were coded using the Figure 1 code, the
length of the coded message would be 120;
using Figure 2 the length would be 30.

The oldest and most widely used codes,
ASCII and EBCDIC, are examples of
block-block codes, mapping an alphabet of
64 (or 256) single characters onto 6-bit (or
8-bit) codewords. These are not discussed,
since they do not provide compression.
The codes featured in this survey are of
the block-variable, variable-variable, and
variable-block types.

When source messages of variable length
are allowed, the question of how a mes­
sage ensemble (sequence of messages) is
parsed into individual messages arises.
Many of the algorithms described here are
defined-word schemes. That is, the set of
source messages is determined before the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

NetApp; Rackspace Exhibit 1015 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

264 • D. A. Lelewer and D. S. Hirschberg

invocation of the coding scheme. For
example, in text file processing, each
character may constitute a message, or
messages may be defined to consist
of alphanumeric and nonalphanumeric
strings. In Pascal source code, each token
may represent a message. All codes involv­
ing fixed-length source messages are, by
default, defined-word codes. In free-parse
methods, the coding algorithm itself parses
the ensemble into variable-length se­
quences of symbols. Most of the known
data compression methods are defined­
word schemes; the free-parse model differs
in a fundamental way from the classical
coding paradigm.

A code is distinct if each codeword is
distinguishable from every other (i.e., the
mapping from source messages to code­
words is one to one). A distinct code is
uniquely decodable if every codeword is
identifiable when immersed in a sequence
of codewords. Clearly, each of these fea­
tures is desirable. The codes of Figures 1
and 2 are both distinct, but the code of
Figure 2 is not uniquely decodable. For
example, the coded message 11 could be
decoded as either "ddddd" or "bbbbbb". A
uniquely decodable code is a prefix code (or
prefix-free code) if it has the prefix prop­
erty, which requires that no codeword be a
proper prefix of any other codeword. All
uniquely decodable block-block and vari­
able-block codes are prefix codes. The code
with codewords {1, 100000, 00} is an ex­
ample of a code that is uniquely decodable
but that does not have the prefix property.
Prefix codes are instantaneously decodable;
that is, they have the desirable property
that the coded message can be parsed into
codewords without the need for lookahead.
In order to decode a message encoded using
the codeword set {l, 100000, 00}, lookahead
is required. For example, the first codeword
of the message 1000000001 is 1, but this
cannot be determined until the last (tenth)
symbol of the message is read (if the string
of zeros had been of odd length, the first
codeword would have been 100000).

A minimal prefix code is a prefix code
such that, if x is a proper prefix of some
codeword, then xa is either a codeword or
a proper prefix of a codeword for each letter

ACM Computing Surveys, Vol. 19, No. 3, September 1987

a in {3. The set of codewords {00, 01, 10} is
an example of a prefix code that is not
minimal. The fact that 1 is a proper prefix
of the codeword 10 requires that 11 be
either a codeword or a proper prefix of a
codeword, and it is neither. Intuitively, the
minimality constraint prevents the use of
codewords that are longer than necessary.
In the above example the codeword 10 could
be replaced by the codeword 1, yielding a
minimal prefix code with shorter code­
words. The codes discussed in this paper
are all minimal prefix codes.

In this section a code has been defined
to be a mapping from a source alphabet
to a code alphabet; we now define related
terms. The process of transforming a source
ensemble into a coded message is coding or
encoding. The encoded message may be re­
ferred to as an encoding of the source en­
semble. The algorithm that constructs the
mapping and uses it to transform the source
ensemble is called the encoder. The decoder
performs the inverse operation, restoring
the coded message to its original form.

1.2 Classification of Methods

Not only are data compression schemes
categorized with respect to message and
codeword lengths, but they are also classi­
fied as either static or dynamic. A static
method is one in which the mapping from
the set of messages to the set of codewords
is fixed before transmission begins, so that
a given message is represented by the same
codeword every time it appears in the mes­
sage ensemble. The classic static defined­
word scheme is Huffman coding [Huffman
1952]. In Huffman coding, the assignment
of codewords to source messages is based
on the probabilities with which the source
messages appear in the message ensemble.
Messages that appear frequently are rep­
resented by short codewords; messages with
smaller probabilities map to longer code­
words. These probabilities are determined
before transmission begins. A Huffman
code for the ensemble EXAMPLE is given
in Figure 3. If EXAMPLE were coded using
this Huffman mapping, the length of the
coded message would be 117. Static Huff­
man coding is discussed in Section 3.2;

NetApp; Rackspace Exhibit 1015 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Source message Probability Codeword

a 2/40 1001
b 3/40 1000
c 4/40 011
d 5/40 010
e 6/40 111
f 7/40 110
g 8/40 00

space 5/40 101

Figure 3. A Huffman code for the message EXAM­
PLE (code length= 117).

other static schemes are discussed in Sec­
tions 2 and 3.

A code is dynamic if the mapping from
the set of messages to the set of codewords
changes over time. For example, dynamic
Huffman coding involves computing an ap­
proximation to the probabilities of occur­
rence "on the fly," as the ensemble is being
transmitted. The assignment of codewords
to messages is based on the values of the
relative frequencies of occurrence at each
point in time. A message x may be repre­
sented by a short codeword early in the
transmission because it occurs frequently
at the beginning of the ensemble, even
though its probability of occurrence over
the total ensemble is low. Later, when the
more probable messages begin to occur with
higher frequency, the short codeword will
be mapped to one of the higher probability
messages, and x will be mapped to a longer
codeword. As an illustration, Figure 4
presents a dynamic Huffman code table
corresponding to the prefix "aa bbb" of
EXAMPLE. Although the frequency of
space over the entire message is greater
than that of b, at this point b has higher
frequency and therefore is mapped to the
shorter codeword.

Dynamic codes are also referred to in the
literature as adaptive, in that they adapt to
changes in ensemble characteristics over
time. The term adaptive is used for the
remainder of this paper; the fact that these
codes adapt to changing characteristics is
the source of their appeal. Some adaptive
methods adapt to changing patterns in the
source [Welch 1984), whereas others ex­
ploit locality of reference [Bentley et al.
1986). Locality of reference is the tendency,

Data Compression • 265

Source message Probability Codeword

a 2/6 10
b 3/6 0

space 1/6 11

Figure 4. A dynamic Huffman code table for the
prefix "aa bbb" of message EXAMPLE.

common in a wide variety of text types, for
a particular word to occur frequently_ for
short periods of time and then fall mto
disuse for long periods.

All of the adaptive methods are one-pass
methods· only one scan of the ensemble is
required: Static Huffman coding requires
two passes: one pass to compute probabili­
ties and determine the mapping, and a sec­
ond pass for transmission. Thus, as long as
the encoding and decoding times of an
adaptive method are not substantially
greater than those of a static method, ~he
fact that an initial scan is not needed im­
plies a speed improvement in the adaptive
case. In addition, the mapping determined
in the first pass of a static coding scheme
must be transmitted by the encoder to the
decoder. The mapping may preface each
transmission (i.e., each file sent), or a single
mapping may be agreed upon and used for
multiple transmissions. In one-pass meth­
ods the encoder defines and redefines the
mapping dynamically during transmission.
The decoder must define and redefine the
mapping in sympathy, in essence "learn­
ing" the mapping as codewords are re­
ceived. Adaptive methods are discussed in
Sections 4 and 5.

An algorithm may also be a hybrid,
neither completely static nor completely
dynamic. In a simple hybrid scheme, sender
and receiver maintain identical codebooks
containing k static codes. For each trans­
mission the sender must choose one of the
k previ~usly agreed upon codes and inform
the receiver of the choice (by transmitting
first the "name" or number of the chosen
code). Hybrid methods are discussed fur­
ther in Sections 2 and 3.2.

1.3 A Data Compression Model

In order to discuss the relative merits of
data compression techniques, a framework

ACM Computing Surveys, Vol. 19, No. 3, September 1987

NetApp; Rackspace Exhibit 1015 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

