
Facebook Ex. 1010
U.S. Pat. 8,243,723

0001

 
United States Patent [19]

Hogan et a1. 

[54] DISTRIBUTED VOICE SYSTEM AND
METHOD

[75] Inventors: Steven J. Hogan; Kristi T. Feltz;
Douglas R. Murdock; David J.
Vercande. all of Cedar Rapids; Roy A.
Rhodes, Marion, all of Iowa

[73] Assigncc: LinkUSA Corporation. Cedar Rapids,
Iowa

[21] Appl. No: 257,623

[22] Filed: Jun. 8, 1994

[51} Int. Cl.“ ............................ .. G10L 9100; H04M 1164;
H04M 3150

[52] US. Cl. ............................... .. 379167; 379188; 379189;
379171; 379176; 39512.79; 39512.87

[58} Field of Search .................................. 379167, 88, 89,
3791142, 112. 71. 76. 83. 87: 370161; 39512.87,

2.89. 2.79

[56] References Cited

U.S. PATENT DOCUMENTS

4.232.199 1111980 Boatwright el al. .
4,611,096 911986 Asmuth at 5.1. .
4,625.08] 1111986 Lolita ela]. 379133

 

 
 

 
4.697.282 911937 Winter et al. 379188
4.841.574 611989 Pham et a1. .. 331131
4.891.835 111990 Leung et a}. . 379183
4.905.003 211990 Heiferich .. 3411110
4.918.322 411990 Winteret a}. 379196
5.222.120 611993 McLeod et a1. . .. 379133

AUDIO SYSTEM 1510/‘/

“111 1111 III "III Illll 111 111 lllll ||||| 111 Ill" 1111 III Ill" 1111
U8005619554A

[11] Patent Number:

[45] Date of Patent:

5,619,554

Apr. 8, 1997
 

5.359.645 1011994 Kala
5.367.609 1111994 Hopper ct a]. 39512.37

379167
 
 
 

5.384.829 111995 Heileman, Jr. el al.
5.443.633 911995 Jammaleddin ................ .. 3791207
5.477.541 1211995 While et al. ......................... .. 370194.1

OTHER PUBLICATIONS

Somme Architec Series Portico, {SDS Product Overview),
[992.

The Open Architect Newark Interface. “Profit from Open
Architecture".

Primon Examiner—Krista M. Zele
Assistant Examiner—Parag Dharia
Attorney, Agent, or Fina—Sterne, Kcssler. Goldstein & Fox,
P.L.L.C.

[57] ABSTRACT

A distributed voice system and method provides voice
scripting and voice messaging to a call processing system.
According to this system and method, audio voice is
recorded in frames and the frames encapsulated into data
packets. The data packets are stored in a database as voice
Scripts or voice messages. To play back a voice script or
voice message, its packets are sequentially retrieved from
the database. As soon as the first packet is retrieved. the data
are extracted therefrom and playback can begin. As the voice
is being played back to a user 106, subsoquenl packets are
retrieved, the data extracted therefrom. and the data bufl'ered

for playback. In this manner, a voice script or a voice
message can be played back without interruption.

16 Claims, 44 Drawing Sheets

. PLAY THREAD

 

VOICE MODULE 1530/‘/

Facebook EX. 1010

US. Pat. 8,243,723

0001

 



0002

:uEmg.

5,619,554

<93mMMwD.QZHHSAHOSHO

 
 

megmmmmbOZHHSAEM

mAOmZOOMOHémmO 
  

mi.

 

WW ____ __..., .._ _.Y ._ _.. __. .._.

no
“‘2'p-n-a

no
3 I—(

fin
NH

 
    

 

 
4

4l«M_ v“HM.Na_.:l-mmmfimqupmm5thw_1...............iSEggmm
N:IrA,“IrN:mmo

7NH:lJl,NNH"n9lllllllllllllllllllllllllllllllllllllJ./__El _xJ13;Hgm,9::.....mo:mmmmonmboM@2058mAha:m.oEEzEmBnt«flmmm4.34mEganMco.mEUHEm"mmmmbtmMmmDMEOHwDUwmMEOHmDO“GEH<ZHGEOaUZMHfiZHUHMO#_“P__m_mQMm“rm................L
U



0003

US. Patent Apr. 3, 1997 Sheet 2 of 44 5,619,554

  

 
 

  

  
 

 

ORIGWATE CALL

AND SEND IT TO

MATRIX SWITCH 102

202

 MAW SWITCH 102

USES CALL DATA TO

DETERMINE HOW TO

HANDLE AND ROUTE

THECALL

204

 
 

 

 
 
 

 

FOR A 0+ CALL,

  
 

FOR A 1+ CALL, 206 PROVIDE OPERATOR
USE CALL DATA 144 1 "CALL DATA 146 T0
T0 ROUTE THE CALL 210 OPERATOR CONSOLE

108

 0 SEND OPERATOR
2 8 L COMMANDS 143 TO

MATRIX SWITCH 102

FIG 2

0003

 



0004

mGE

5,619,554

_

amm‘HOwZOOMOHQMmmO1|1.:.fl5mmm?08BS002

mam293wmm<H<QmeOmmmml.~lMOM.ng

am«3
Km5‘3_62

40528

.x“mm
M___M

m:

Sheet 3 of 44

 

0004

MOhémAHO

\

X/
x.

\SEQ/

NE

\£5.4,x,0592‘35\M/IL/Efizzéom2oaqfizoaIflmzzéo86>
mm.

Apr. 8, 1997

fifiEUHEmEUHbSmmmmD
20342;me

MEOHmDOOZF<ZHOHMO
 

US. Patent



0005

m2:

v65

5,619,554

 2%.:|__OEEZEMEmmmwmwu.4%ENHme___OEH<ZHOEO%Mmammmoofi.55mm3n"amMmmHmommSw__mHsn9x..m,_3Emmao:3:__o:AEmmawe"mmama:OEQEBwagzgme
 
   

EUHEmMum—SHOEmDU

 

mm553$2830

 «63

fivein

mmmmb

mmmmbZHH<ZHUHMO

 
 DZHH<ZHGEO

 
________

._._._u._m.I:w_n_u._m_W_.._.m_m__
 

I
I
|
|
I

II|
J
I
I
|
|
|
|
|
I
l
I
I
l
l
l
|
|
|
l
I
I
I
|
|
|
|
|
|L

US. Patent



0006

US. Patent Apr. 8, 1997 Sheet 5 of 44 5,619,554

START

INITIATE CALL

502

CALL PROCESSING

SYSTEM 302

RECEIVES CALL AUDIO 7—504

142 AND CALL

DATA 144
 

NCP 304

DETERMINES HOW 1.506

TO HANDLE CALL 
 

  

  
 

 NCP 304 INSTRUCTS

MATRIX SWITCH 306

REGARDING

CALL ROUTING

1503

 MATRIX SWITCH 306

DIRECTS THE CALL

TO THE DESTINATION

AS INSTRUCTED BY

NCP 304

DONE

FIG 5

0006

 



0007

US. Patent Apr. 3, 1997 Sheet 6 of 44 5,619,554

FIG?

FIG 8

FIG 6

0007

 



0008

U.S. Patent Apr. 8, 1997 Sheet 7 of 44 5,619,554

 
 

 

INITIATE A CALL

REQUIRING OPERATOR L702
ASSISTANCE

CALL PROCESSING

SYSTEM 302 RECEIVES 704
CALL AUDIO 142 AND

CALL DATA 144

NCP 304

DETERMINES THAT

ORIGINATTNG USER 7—706

REQUIRES OPERATOR

ASSISTANCE

NCP 304 INSTRUCTS

MATRIX SWITCH 306

TO ROUTE CALL AUDIO L708
_ 142 TO OPERATOR

CONSOLE 308

CONTROL DATA 324 TO

OPERATOR CONSOLE 303

INDICATING HOW L710

TO HANDLE THE CALL

0008

 



0009

US. Patent Apr. 8, 1997 Sheet 3 of 44 5,619,554

FROM 710

FIG 7

IF THE CALL IS A CALLING CARD CALL,

OPERATOR CONSOLE 308 PROMPTS THE CALLER

FORTI-IECARDNTJIVIBERAND VERIFIESTHE

VALIDITY OF THE CARD NUNIBER

 

  
  

 
802

IF CALLING CARD NUIVIBER IS VALID,
OPERATOR CONSOLE 308 SENDS OPERATOR

RESPONSE DATA TO NCP 304 TO CONFIGURE

THE CALL

804 
NCP 304 INSTRUCTS MATRIX SWITCH

306 TO ROUTETHE CALL TO THE 806

CORRECT DESTINATION 
FOR A COLLECT CALL, THE OPERATOR VERIFIES

THAT THE CALLED PARTY IS WILLING TO 303

ACCEPT THE CHARGES FOR THE CALL 
IF THE CALLED PARTY REFUSES THE COLLECT

CALL CHARGES, OPERATOR CONSOLE 308

INSTRUCTS NCP 304 TO TERIVEINATE THE

CONNECTION

  
  

810

FIG 8

0009

 



0010

   
 
 

    

 
  

M

5.,hm0E
011

£1.
5

v.3

3w

motam

mot/mm

M.NE9:am053d<o9Q?155
9

m3:saJl§<n155o.523mommmoofiw
mmZOmmmm155200W.85>55>,me

1.,Mamommos/vimMmagma:85>

.m

.wmamamummoSmmmmoSmEHmE. #5855>mzmézofi
S.U



0011

455,916.,5Sheet 10 of 44Apr. 3, 1997US. Patent

IrrIIIII1IaIInuunui..IIIIIIJI1IIIIIIIIIIIuIIIIIIrIII.n...........J
  

mgmMm>MMmQMOUm—‘Mme

 

 

 
MOmmmUOMmdogma/HODEMngmzIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII4lJ..IrIIllII4  

wdmMOT/ammmPmHMUmmung?fl

 
  

viola.MEMm>ZOUmAEmDHO>

moofiMAEmUHO>
 
   
 

N843mmole__mm<m<H€Qamt/vimMOHDmHmHmHQmmDMOUmE\Illllillllllll::X-22%55>QZm920%053%
{In

 
0011

 



0012

US. Patent Apr. 3, 1997 Sheet 11 of 44 5,619,554

START

RECORD VOICE AUDIO

PACKETIZE VOICE AUDIO INTO

VOICE SCRIPT 1008

DISTRIBUTE VOICE SCRIPT 1008

SAVE VOICE SCRIPT 1008 IN

DATABASE 1004

  

 
1 1104

 
 

 

TL— 1108

_‘-- 1112 

   
‘7— 1116

FIG 11

0012

 



0013

US. Patent Apr. 3, 1997 Sheet 12 of 44 5,619,554

START

NCP 304 NOTIFIES VRU 334 THAT A

NEW CALL IS RECEIVED 1204

VRU 334 DETERMINES THAT A

VOICE SCRIPT 1008 Is TO BE PLAYED I 1203 
 

 

VRU 334 REQUESTS VOICE SCRIPT

1008 FROM VOICE SCRIPT SERVER --1__ 1212
1002

 
 

VOICE SCRIPT SERVER 1002

RETRIEVES VOICE SCRIPT 1008 AND

SENDS A PACKET OF VOICE DATA 1215

TO VRU 334

1220

M 1262 /‘/
NO NHNMUM # OF

PACKETS?

YES

VRU 334 PLAYS VOICE SCRIPT 1008 I 1224

 

  
FIG 12

0013

 



0014

455,916.,5Sheet 13 of 44Apr. 8, 1997tnetaPQMU

2DE

ENmow/yam"ED

 
 

gumMOmmeOMmAOMHZOUMMOBEMZ
  

NaMEMMmm0<mmmaamUHO>

  

mamMOEmEmeQZm..H.ZOMm

 

 
0014

 



0015

US. Patent Apr. 8, 1997 Sheet 14 of 44 5,619,554

START

VRU 334 RECEIVES AUDIO MESSAGE -z__ 1404

VRU 334 PACKETIZES AUDIO

MESSAGE L— 14.03

MESSAGE PACKETS ARE

SEQUENTIALLY NUMBERED AND 1 1412
SENT TO FED 904

 

 

FED 904 ASSIGNS A MESSAGE

NUMBER AND SENDS VOICE

_’—— _ 1416MES SAGE 1308 TO VOICE MESSAGE

SERVER 1302

FED 904 SENDS MESSAGE NUMBER

TO VRU 334 *1— 1420

 

FIG 14

0015

 



0016

US. Patent Apr. 8, 1997 Sheet 15 of 44 5,619,554

 
 

 

VOICEMODULE1530/‘/
MESSAGE QUEUE 15.32

FIG15

AUDIOSYSTEM1510/“ 



0017

US. Patent Apr. 8, 1997 Sheet 16 of 44 5,619,554

START

VRU 334 INITIATES RECORD

THREAD 1536A-

INITIALIZE VOICE DATA

PROCESSOR 1500

RECORD AUDIO VOICE

PACKETIZE AUDIO VOICE

STORE PACKETIZED AUDIO VOICE

AS VOICE SCRIPT 1008 OR VOICE '_1.._ 1620
MESSAGE 1308

   

  

 
 

_L— 1604

I 1608 
—L-— 1612 

 
 

—’—— 1616

 
 
 

FIG 16

0017

 



0018

 
US. Patent Apr. 3, 1997 Sheet 17 of 44 5,619,554

START

VRU 334 INITIATES AUDIO RECORD THREAD

1536A '—

MAIN VRU APPLICATION THREAD STARTS

I TIMER IF MESSAGE LENGTH DEFINED "—7—- 1708

—2_._

“"7—

1704

RECORD THREAD 1536A INITIALIZES AUDIO

DRIVER 1514

AUDIO DRIVER 1514 ALERTS AUDIO THREAD

1534 1716

1712

AUDIO THREAD 1534 DETERMINES IF RECORD

REQUIRED VIA INDICATORS 1718

TO STEP 1612

FIG 16

 

FIG 17

0018

 



0019

US. Patent Apr. 8, 1997 Sheet 18 of 44 5,619,554

FROM STEP 1608

FIG 16

AUDIO THREAD 1534 COMIMANDS AUDIO

DRIVER 1514 TO BEGIN RECORDING

AUDIO DRIVER 1514 INDICATES RECORD

COMIVIAND ACCEPTED

AUDIO THREAD 1534 SENDS NEXT BUFFER

COMMAND TO AUDIO DRIVER 1514

AUDIO DRIVER 1514 SENDS RECORD BEGUN

EVENT TO AUDIO THREAD 1534

 
AUDIO DRIVER 1514 INFORMS AUDIO THREAD

_"7—— 18201534 THAT BUFFER 1518 IS FULL

TO STEP 1904

FIG 19

 

FIG 13

0019

 



0020

US. Patent Apr. 3, 1997 Sheet 19 of 44 5,619,554

 
 

 
  
 

  

FROM STEP 1820

FIG 18

AUDIO THREAD 1534 CHECKS FOR "SILENCE" —z_.. 1904

AUDIO THREAD 1534 COMMANDS AUDIO

DRIVER 1514 TO STOP RECORDING

TO STEP 1616

FIG 16

FIG 19

0020

 



0021

US. Patent Apr. 3, 1997 Sheet 20 of 44 5,619,554

FROM STEP

1612

FIG 16

AUDIO THREAD 1534 PACKETIZES VOICE DATA ——¢_ 2004

AUDIO THREAD 1534 PLACES PACKETS INTO

FRAME BLOCK QUEUE 1538 ‘— 2003

AUDIO THREAD 1534 INDICATES TO AUDIO

DRIVER 1514 THAT AUDIO DATA CAN BE

STORED IN NOW AVAILABLE BUFFER 1513

 

  
 

 
 
 

“‘7— 2012

 

 

 

AUDIO THREAD 1534 INFORMS RECORD

THREAD 1536A THAT PACKETS ARE READY TO “*7— 2016

BE STORED

 
TO STEP 1620

FIG 16

FIG 20

0021

 



0022

US. Patent Apr. 8, 1997 Sheet 21 of 44 5,619,554

 

 

FROM STEP 1616

FIG 16

RECORD THREAD 1536A RETRIEVES PACKETS

FROM FRANIE BLOCK QUEUE 1538

RECORD THREAD 1536A CHECKS FOR SILENT

LEADING PACKETS

i 2104  
  i 2108

 
  

YES

_ DISCARD PACKET —z_ 2116

RECORD THREAD 1536A SENDS PACKETS FOR 2 20
STORAGE '— 1

FIG 21

0022

 



0023

US. Patent Apr. 8, 1997 Sheet 22 0f 44 5,619,554

  
 

  

  
 

AUDIO THREAD 1534 CHECKS ENERGY LEVEL EL 2204
WHILE PACKETIZING

 CONTINUE

PACKETIZING

  AUDIO THREAD 1534 SENDS RECORD STOP TO

AUDIO DRIVER 1514 AND A CHECK FOR

SILENCE MESSAGE TO RECORD

THREAD 1536A

FIG 22

0023

 



0024

 
U.S. Patent Apr. 8, 1997 Sheet 23 of 44 5,619,554

 
 

AUDIO DRIVER 1514 DETECTS DTMF TONE —L— 23 ()4

AUDIO DRIVER 1514 SENDS DTMF EVENT TO

AUDIO THREAD 1534

AUDIO THREAD 1534 SENDS RECORD STOP

COMMAND T0 AUDIO DRIVER 1514 AND CHECK

FOR SILENCE MESSAGE TO AUDIO RECORD _“— 2312

THREAD 1536A

REC RD ‘O THREAD 1536A DISCARDS PACKET IF —L__ 2314
SILENCE DETECTED

FIG 23

0024

 



0025

 
US. Patent Apr. 8, 1997 Sheet 24 of 44 5,619,554

START TIMER ""1— 2404

 APPLICATION THREAD INSTRUCTS VOICE DATA —L_ 2408
PROCESSOR TO STOP RECORDING

WAKEAUDIO DRIVER 1514 SENDS READ EVENT _L__ 2412
TO AUDIO THREAD 1534 

AUDIO THREAD 1534 CHECKS INDICATOR THAT __L_ 2416
SAYS TO STOP RECORDING 

AUDIO THREAD 1534 SENDS RECORD STOP

COW/{AND T0 AUDIO DRIVER 1514 L“ 2420 

AUDIO THREAD 1534 SENDS CHECK FOR
"—1-— 2424

SILENCE MESSAGE TO RECORD THREAD 1536A

TO FIG 15

FIG 24

 

0025

 



0026

US. Patent Apr. 8, 1997 Sheet 25 of 44 5,619,554

 
AUDIO DRIVER 1514 STOPS RECORDING, SENDS

RECORD STOP EVENT TO AUDIO THREAD 1534, —L 25 04
AND RELEASES LAST DATA BUFFER 1518

AUDIO THREAD 1534 SECTIONS LAST DATA

BUFFER INTO PACKETS AND PLACES PACKETS _7— 2508

INTO FRAME BLOCK QUEUE

AUDIO THREAD POSTS AUDIO RECORD

STOPPED MESSAGE TO RECORD THREAD 1536A

RECORD THREAD 1536A SETS INDICATOR THAT

RECORDING STOPPED, COMPLETES EMPTYING

FRAME BLOCK QUEUE 1538, AND SENDS

RECORD DONE MESSAGE TO MAIN VRU

APPLICATION THREAD

FIG 25

0026

 



0027

US. Patent Apr. 8, 1997 Sheet 26 of 44 5,619,554

  

  

RE'I‘RIEVE PACKETS TO BE PLAYED —1_ 2604

STORE PACKET IN FRAME BLOCK

QUEUE 1538

BUFFER PACKETS IN BUFFER 1518 _L« 2612

PLAY VOICE SCRIPT 1008

2662

_1— 2608

  

 

FIG 26

0027

 



0028

US. Patent Apr. 8, 1997 Sheet 27 of 44 5,619,554

START

PLAY THREAD 1536B REQUESTS VOICE SCRIPT

1008

PLAY THREAD 1536B SETS SEARCHING

INDICATOR TO TRUE

GO TO STEP 2608

FIG 26

  

  
  

1 2704

TIL 2708

FIG 27

0028

 



0029

US. Patent Apr. 3, 1997 Sheet 23 of 44 5,619,554

START

PLAY THREAD 1536B SETS INDICATORS

TELLING AUDIO THREAD 1534 THAT IT WILL BE __1— 2804

PLAYING VOICE DATA

PLAY THREAD 1536B INITIALIZES AUDIO _.__l__ 2808
DRIVER 1514

10 THREAD

AUDIO DRIVER 1514 EEORMS AUD ———2_ 2812

AUDIO THREAD 1534 DETERMINES TO PLAY

VOICE DATA VIA INDICATORS SET BY PLAY “fl... 2316

THREAD 15363

  

 
 
 

 

 

DONE

FIG 23

0029

 



0030

US. Patent Apr. 3, 1997 Sheet 29 of 44 5,619,554

FROM STEP 2608

FIG 26

AUDIO THREAD 1534 RETRIEVES ONE PACKET

FROM FRAME BLOCK QUEUE 1538

AUDIO THREAD 1534 STORES THE DATA IN

FIRST DATA BUFFER 1518A

AUDIO THREAD 1534 INSTRUCTS AUDIO

DRIVER 1514 TO BEGIN PLAYING

TO STEP 2616

FIG 26

STEP 2612 j

  
 i 2904 
 

    
 _"7— 2908

FIG 29

0030

 



0031

US. Patent Apr. 8, 1997 Sheet 30 of 44 5,619,554

FROM 2612

FIG 26

AUDIO DRIVER 1514 PLAYS VOICE SCRIPT 1003 —a_ 3004

PLAY THREAD 1536B INFORMS VOICE DATA

SYSTEM 1500 THAT VOICE SCRIPT 1008 IS

PLAYING

 

 
 

 

 
 AUDIO DRIVER 1514 INFORMS AUDIO THREAD ——L_ 3012

1534 THAT PLAYED BUFFER 1513 IS EMPTY

 
STEP 2616 1

FIG 30

0031

 



0032

US. Patent Apr. 3, 1997 Sheet 31 of 44 5,619,554

FROM STEP

2616

FIG 26

AUDIO THREAD 1534 RETRIEVES PACKETS

FROM THE FRANIE BLOCK QUEUE 1538

AUDIO THREAD 1534 STORES DATA IN SECOND

DATA BUFFER 1518B

AUDIO THREAD 1534 INFORMS AUDIO DRIVER
1514 THAT DATA ARE IN SECOND DATA

BUFFERI 5 18B

  
   

 

'—'-— 3104 

 i 3108

 
  
  

 

 

i 3112

 

AUDIO THREAD 1534 POSTS AN AUDIO FED

PLAY QUEUE NIESSAGE TO THE PLAY THREAD —“c._. 3116
1536B

TO STEP 2612

FIG 26

FIG 31

0032

 



0033

US. Patent Apr. 8, 1997 Sheet 32 of 44 5,619,554

  
 
  
 

  
 
 

AUDIO DRIVER 1514 DETECTS DTIVIF TONE AND —1_ 3204
SENDS DTMF EVENT TO AUDIO THREAD 1534

AUDIO THREAD 1534 SENDS PLAY STOP

COMMAND TO AUDIO DRIVER 1514

AUDIO DRIVER 1514 SENDS PLAY STOP EVENT u-L 3212
TO AUDIO THREAD 1534

 

 
 

  

AUDIO THREAD 1534 FLUSI-IES DATA BUFFERS

1518, POSTS AUDIO PLAY STOPPED MESSAGE i 3216
TO PLAY THREAD 1536B

 
 

PLAY THREAD 1536B SENDS AUDIO DONE

MESSAGE TO APPLICATION THREAD AND _‘— 3220

FLUSHES FRAME BLOCK QUEUE 1533

FIG 32

0033

 



0034

US. Patent Apr. 8, 1997 Sheet 33 of 44 5,619,554

  
 

 
  

AUDIO DRIVER 1514 RUNS OUT OF VOICE DATA
AND SENDS PLAY NO MORE FRAMES EVENT TO *7— 3304

AUDIO THREAD 1534

   
AUDIO THREAD 1534 SENDS PLAY STOP

COMMAND TO AUDIO DRIVER 1514

AUDIO DRIVER 1514 SENDS PLAY STOP EVENT

TO AUDIO THREAD 1534 
 

 

AUDIO THREAD 1534 FLUSI-IES DATA BUFFERS

1518 AND POSTS AUDIO PLAY DONE MESSAGE "—1-.— 3316

TO PLAY THREAD 1536B

 
 

PLAY THREAD 1536B SENDS AUDIO DONE

MESSAGE TO MAIN VRU APPLICATION THREAD

AND FLUSHES THE FRAME BLOCK QUEUE 1538 

FIG 33

0034

 



0035

US. Patent Apr. 3, 1997 Sheet 34 of 44 5,619,554

 
FIG 34

0035

 



0036

US. Patent Apr. 3, 1997 Sheet 35 of 44 5,619,554

 
  

  
 

 
 

PLAY THREAD 15363 RECEIVES PACKET FROM

VOICE SCRIPT SERVICE 908, PLACES THE ._.L_ 3 504
PACKET INTO FRAME BLOCK QUEUE 1538, AND

SETS SEARCHING INDICATOR TO FALSE

TO FIG 37

NO STEP 3704

YES

3512

TO FIG 38

NO STEP 3804

 
  IS THIS THE

LAST PACKET?
 

 
YES

TO FIG 36

STEP 3604

FIG 35

0036

 



0037

US. Patent ' Apr.3,1997 Sheet 36 of 44 5,619,554

FROM FIG 35 STEP

3512

/

   

 
 

  

3604

TO FIG 28

NO STEP 2804

YES

TO FIG 37

STEP 3704

FIG 36

0037

 



0038

US. Patent Apr. 3, 1997 Sheet 37 of 44 5,619,554

FROM FIG 35 FROM FIG 36

STEP 3508 STEP 3604

3704

  

 
 

  

SEARCHING

INDICATOR SET

TO TRUE?

NO

  

 RETRIEVE PACKET FROM

VOICE SCRIPT SERVICE 908

YES

TO FIG 40

STEP 4004

FIG 37

0038

 



0039

US. Patent Apr. 3, 1997 Sheet 33 of 44 5,619,554

FROM FIG 35

STEP 3512

PLAY THREAD 1536B SENDS NEXT SEARCH

REQUEST TO VOICE SCRIPT SERVICE 908 AND I 3304
SETS SEARCHING INDICATOR T0 TRUE

 
  

  
 
 
  

 

3808

NO TO FIG 28
STEP 2804

  
//

YES

RETRIEVE PACKET FROM VOICE SCRIPT

SERVICE 908

TO FIG 35

STEP 3504

—_‘—- 3812

FIG 38

0039

 



0040

US. Patent Apr. 8, 1997 Sheet 39 of 44 5,619,554

FROM FIG 37

STEP 3712

PLAY THREAD 1536B SENDS SEARCH REQUEST

AND SETS SEARCHING INDICATOR TO TRUE

  
  
 

—L 3904

PACKET OF VOICE DATA FROM VOICE SCRIPT

SERVICE 908

TO FIG 35

STEP 3504

FIG 39

0040

 



0041

US. Patent Apr. 8, 1997 Sheet 40 of 44 5,619,554

FROM FIG 37

STEP 3712

ANOTHER

CRIPT TO PLAY9

 

  
 
  

  

 
 

NO—i' DONE

YES

PLAY THREAD 153 6B SENDS SEARCH REQUEST

TO VOICE SCRIPT SERVICE 908

PLAY THREAD 153613 SETS SEARCHING

INDICATOR TO TRUE

TO FIG 37

STEP 3 704

I 4012

FIG 40

0041

 



0042

US. Patent Apr. 3, 1997 Sheet 41 of 44 5,619,554

  

 
  

 
 

4142'3_
BASE PROCESS

4102

FlNISI-I PROCESS

4 108

COMPLETE CALL PROCESS

41 12

FIG 41

0042

 



0043

US. Patent Apr. 8, 1997 Sheet 42 of 44 5,619,554

CALL RECEIVED BY CALL PROCESSING

SYSTEM 302

NCP 304 IDENTIFIES CALL
 
NCP 304 SENDS OPERATOR CONTROL DATA 324

TO OPERATOR CONSOLE 308  

OPERATOR CONSOLE 308 STARTS —'_l_

BASE PROCESS 4102 4214 

BASE PROCESS 4102 RETRIEVES

DEF RECORD 4104 

BASE PROCESS 4102 PROCESSES CALL 14222

STARTS FINISH PROCESS 4103 —w_ 4226

STARTS COMPLETE CALL PROC 4112 —'i__ 4230

FIG 42

0043

 



0044

US. Patent Apr. 8, 1997 Sheet 43 of 44 5,619,554

 
  

 
 

  
  
 

 

DEF RECORD

4104

DEF RECORD # "L. 4302

TAG # 14304

LENGTH FIELD L4306

DATA FIELD

L4308
DATA 43.19

TAG # 1—4304

LENGTH FIELD 7—4306

DATA FIELD "1—4303

FIG 43

0044

 



0045

US. Patent Apr. 3, 1997 Sheet 44 of 44 5,619,554

SPECIFIC DEF RECORD

TAG#

m I P

4406

GROUP DEF RECORD

TAG #

43 Q4 GENUS

GENERIC DEF RECORD

TAG #
CLASS

4394

 
FIG 44

0045

 



0046

 
5,619,554

1
DISTRIBUTED VOICE SYSTEM AND

METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to systems and
methods used in processing telephone calls, and more par-
ticularly, to systems and methods for allowing telephone
carriers to olIer enhanced products and services to their
subscribers.

2. Related Art

Deregulation of the long-distance telephone industry
spawned the growth of numerous long-distance service
providers, each vying for a share of the United States”
long-distance market. Thus far, the US. industry is domi—
nated by three large companies: AT&T, MCI and Sprint.
These large carriers have the resources and capital at their
disposal to enable them to develop and provide a wide range
of telephone—related services to their customers.

Perhaps less known, but still extremely important in the
more than $50 billion interexchange U.S. long-distance
market, are the smaller companies. In l99l,AT&T, MCI and
Sprint controlled appmximately 85 percent of the U.S.
market. At this time, 12 medium-sized companies shared
eight percent of the U.S. market. The remhining seven
percent of the U.S. market was divided among nearly 320
small carriers.

The larger carriers are able to attract customers by offer—
ing a full range of services in addition to direct dial calling.
These services include, but are not limited to: operator—
assisted calling, full-feature calling cards, and specialized
800 number routing.

The strategy followed by the smaller carriers in attracting
customers has been to offer excellent service and low-cost,

direct—dial long—distance calling (e.g. l+calling). Many
smaller carriers, for example, focus on a particular geo—
graphic market. By understanding the market’s calling pat-
terns, the smaller carrier can maximize crucial economies

and can attract subscribers by offering long-distance calling
at rates lower than those offered by larger carriers.

Additionally, many smaller carriers use the fact that they
are a small, local business in order to attract other local

businesses as their clients. These carriers stress the ability to
offer more personalized. responsive attention than some
larger carriers may provide.

However, many of the smaller carriers are finding it
increasingly diliicult to compete with the larger carriers by
offering direct—dial calling alone. For these carriers to attract
and retain customers, they need the ability to ofier the same
range of features and services provided by some of the larger
carriers. For example, a small carrier may have a small travel
agency as a long-distance subscriber. As the travel agency
grows, develops more business, and hires additional sales-
persons, the travel agency‘s telephone services requirements
also grow. The travel agency may want to offer calling cards
to its salespersons who travel frequently The travel agency
may also want the ability to rc-route an incoming call that
was made to their 800 number. Such re-routing allows the
travel agency to re-route incoming BOO—number calls to any
telephone number. a voice mailbox, or a pager. Additionally,
the travel agency may want the ability for its office workers,
clients and vendors to make operator—assisted calls.

Unfortunately, most smaller carriers can only provide
direct-dial long distance service to its customers. If a smaller
carrier wants to offer enhanced products to its customers, the

10

15

30

35

40

45

50

55

60

65

2

smaller carrierl has two choices. First, the smaller carrier
may purchase its own telephone switching system and
operator consoles. Second. the smaller carrier may purchase
and resell the products of one of its larger competitors.

However, reliable, affordable, and scalable switching
equipment is not commercially available. If a long-distance
carrier wants to purchase its own equipment, the selection is
limited to the large-scale complex switching systems that are
currently available. Because these systems are costly. in
most instances, the smaller carrier is forced to go through a
larger carrier to obtain enhanced products.

Several problems arise out of the inability of smaller
can‘iers to provide enhanced calling services. Three of these
problems are now described.

First, the flexibility and customization options available to
the smaller carriers in providing services are limited when
they resell the products of their larger competitors. One
reason for this is that those products were not designed with
the smaller can'icrs‘ needs in mind. For example, consider a
smaller carrier that wants to ofi'er a product like 800 number
forwarding to its customers. The smaller carrier will want its
customers to hear customized user prompts. including the
identification of the carrier. The smaller carrier will also

want to establish its own prices for the service. To further
customize its systems, the carrier may want to change the
way the call processes, or to add additional features such as
the ability to route an 800 number to a voice mailbox.

In another example, the smaller carrier is unable to
provide carrier-unique operator services. The cost of pro-
viding operator services prohibits most Smaller carriers from
hiring their own operators and purchasing the required
equipment. Instead, smaller carriers typically purchase
operator services from a competitor carrier or from operator
service providers.

One drawback of having to use a competitor’s operators
is the inability to custom brand the call. For example, when
a customer of the smaller carrier places an operator-assisted
call using a competitor carrier‘s operators, she hears the
operator of the competitor carrier thank her for using the
competitor carrier’s services. For example, consider the
following hypothetical. XYZ. a small carrier, procures
operator services for its users from ABC, 3. large can'ier.
When XYZ’s user places an operator-assisted call, the
operator answers the call with the greeting: ‘Thank you for
using ABC.”

Another drawback of having to use another‘s operators is
the inability to custom-tailor call processing because the
operator services provided and the operator responses can—
not be customized. The smaller carrier has no control over

the operators used by the competitor carrier or the operator
service provider. '

Relying on larger carriers for providing these enhanced
products does not give smaller carriers the flexibility they
desire. This is because smaller carriers cannot customize the

products they obtain from the larger carriers to provide
unique services to their subscribers.

A second problem is the range of services that can be
provided by a smaller carrier is limited to the services that
carrier can purchase from its competitors. As a result, the
smaller carrier often cannot create innovative new products
and services to offer its customers.

Another problem is the smaller carrier's inability to get
customized fulfillment material through a competitor carrier.
For example, calling cards provided by a larger competitor
carrier, in turn to be provided to the smaller carrier‘s
customers, often hear the name of the competitor carrier.

0046

 



0047

 
5,619,554

3

In summary, because the small carriers must rely on the
larger competitor carriers for advanced products and ser-
vices such as calling cards, operator assistance, 800 service,
audiotext, voice mail, and the like, the smaller carriers

cannot offer a full range of carrier—unique and customer-
uniquc products. As a result, the smaller carriers lose part of
their ability to compete in the U.S. long-distance market.

The problems of flexible control of a lclcphone network
are not limited to the smaller carriers or the long-distance
industry. All telephone carriers would benefit from the
ability to offer popular, customized. value—added services.
Commercially available hardware and cenvcntional solu-
tions to date, however, do not oiTer this ability.

SUMMARY OF THE INVENTION

The present invention is directed toward a system and
method for recording and playback of voice scripts and
voice messages for subscribers to a call processing system.
Voice scripts are used to allow an automated voice response
unit to provide instructions to and otherwise communicate
with users of the call processing system. Voice scripts are
recorded and stored in a voice script service. When required,
a voice seripl is retrieved from the voice script service and
played to the user. The voice script provides a user with a
greeting, instructions on how to proceed when using an
enhanced feature of the call processing system, ande’or other
required information. The voice scripts can be customized to
a particular carrier or user, and can also be provided in a
specified language.

When a call is placed by a user requiring operator
assistance. a network control processor receives the call data
for that call. allocates an operator console to handle the call,
and provides information to the console allowing the con-
sole to retrieve and play the appropriate script.

When a voice script or a voice message is recorded, the
frames of audio voice are encapsulated into packets and the
packets are stored in a database. Preferably, each packet
contains a plurality of frames of audio voice. When a voice
message or voice script is to be played to a user 106, the first
packet of that voice script or voice message is retrieved and
playback begins immediately. As the first packet is de-
packetized and the voice script played to the user, subse-
quent packets are retrieved, the data extracted therefrom and

queued in a buffer for playback. As a result, playback can
begin as soon as the first packet is retrieved and playback
continues without interruption until the voice script or the
voice message is completely played.

The capability is also provided to record voice scripts
remotely. This is accomplished through an automated voice
response unit. To accomplish this, a user with the appropri—
ate access can dial into a voice response unit and record a
voice script in the same way that voice messages are
recorded. As a result of this capability, carrier-customers of
the call processing system can change their customer-spe-
cific voice scripts without intervention by a human operator
at the call processing system.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described herein with reference
to the accompanying drawings. In the drawings, like refer—
ence numbers indicate identical or functionally similar ele~
ments. Additionally, the left digitts) of each reference num-
ber identifies the drawing in which the reference number
first appears.

0047

5

10

IS

25

3!}

35

4t}

45

50

55

60

65

4

FIG. 1 is a high—level block diagram illustrating the
architecture of a conventional telephone switching configu-
ration.

FIG. 2 is a high-level operational flow diagram illustrat-
ing the manner in which a conventional long~distanee carrier
provides long-distance telephone services to a longndistancecarrier customer.

FIG. 3 is a high—level block diagram: illustrating a call
processing system.

FIG. 4 is a high-level block diagram illustrating the
interface of customers and users to the call processing
system according to one embodiment of the present inven-[1011.

FIG. 5 is a high-level operational flow diagram illustrat—
ing the steps involved in placing and completing a call using
the call processing system.

FIG. 6, which comprises FIGS. 7 and 8, is a high—level
operational flow diagram illustrating the process that the call
processing system uses to process operator-assisted calls.

FIG. 7 is a high-level operational flow diagram illustrat—
ing the process that the call processing system uses to
process operator-assisted calls.

FIG. 8, which is a continuation of FIG. 7, illustrates a
high-level operational [low of the process that the call
processing system uses to process operator-assisted calls.

FIG. 9 is a block diagram illustrating a call processing
system with distributed voice features.

FIG. 10 is a block diagram illustrating a call processing
system with distributed voice script capabilities.

FIG. 11 is an operational flow diagram illustrating the
prooess by which a voice script is recorded and stored in a
voice script database.

FIG. 12 is an operational flow diagram illustrating a
manner in which a voice script is played to a user.

FIG. 13 is a block diagram illustrating a distributed voice
messaging system.

FIG. 14 is an operational flow diagram illustrating steps
associated with recording a voice message.

FIG. 15 is a diagram illustrating a representative func—
tional architecture of a voice data processor.

FIG. 16 is an operational flow diagram illustrating the
recording of a voice script or a voice message for later
playback.

FIG. 17 is an operational flow diagram illustrating a
process of initializing a voice data process.

FIG. 18 is an operational flow diagram illustrating a
manner in which voice data is recorded.

FIG. 19 is an operational flow diagram illustrating a
manner in which voice data is checked for silence.

FIG. 20 is an operational flow diagram illustrating a
manner in which voice data is packetiaed.

FIG. 21 is an operational flow diagram illustrating a
manner in which packetized data is stored.

FIG. 22 is an operational flow diagram illustrating a
manner in which recording is stopped when silence is
detected.

FIG. 23 is an operational fl0w diagram illustrating a stop
recording scenario in response to a DTMF tone.

FIG. 24 is an operational flow diagram illustrating a
manner in which recording is stopped when a maximum
time limit is exceeded.

FIG. 25 is an operational flow diagram illustrating steps
followed upon receipt of a RECORD STOP command.

 



0048

 
5,619,554

5

FIG. 26 is an operational flow diagram illustrating a
manner in which voice data is played.

FIG. 27 is an operational flow diagram illustrating steps
involved with retrieving packets of the voice script to be
played.

FIG. 28 is an operational flow chart illustrating a manner
in which a voice data processor is initialized.

FIG. 29 is an operational flow diagram illustrating the
buchring of packets in a data buffer.

FIG. 30 is an operational flow diagram illustrating the
playback of a voice script.

FIG. 31 is an operational flow diagram illustrating steps
of extracting data from packets in the frame block queue and
storing this data in an available buffer.

FIG. 32 is an operational flow diagram illustrating a
method by which playback is stopped when user 106 enters
the appropriate keystroke on the telephone keypad.

FIG. 33 is an operational flow diagram illustrating a
manner in which playback is stopped when voice data is
exhausted (Le. according to scenario 2).

FIG. 34, which comprises FIGS. 35, 36, 3'7. 38, 39, and
40. is an operational flow diagram illustrating the manner, in
which packets are retrieved from the voice script service and
the voice message service, and queued in the frame block
queue.

FIG. 35 is an operational flow diagram illustrating a
manner in which packets are retrieved from the voice script
service and placed in the frame block queue.

FIG. 36, which is a continuation of FIG. 35, is an
operational flow diagram illustrating a manner in which
packets are retrieved from the voice script service and
queued in the frame block queue.

FIG. 3?, which is a continuation of FIGS. 35 and 36, is an
operational flow diagram illustrating the manner in which
packets are retrieved from voice script service and placed
into the from: black queue.

FIG. 38, which is a continuation. of FIG. 35, is an

operational flow diagram illustrating a manner in which
packets are retrieved from voice script service and stored in
the frame block queue.

FIG. 39, which is a continuation of FIG. 37, is an
operational flow diagram illustrating a manner in which
packets are retrieved from the voice script service and
placed into the frame block queue.

FIG. 40, which is a continuation of FIG. 37, is an
operational flow diagram illustrating a manner by which
packets are retrieved from the voice script service and
placed into the frame block queue.

FIG. 41 is a high level block diagram illustrating the
processes and DEF records used by a call processing system
to process calls.

FIG. 42 is an operational flow diagram illustrating the
manner in which a call processing system uses DEF records
and processes to handle calls.

FIG. 43 is a diagram illustrating the structure of a DEF
record.

FIG. 44 is a diagram illustrating how different levels of
DEF records can be used to optimize data storage.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Table of Contents

1.0 High-Level Overview of the Invention

1.1 Standard Call Processing System

10

15

2D

30

35

4s

50

55

60

65

0048

6

1.2 Enhanced Call Processing System
2.0 Distributed Voice System

2.1 Distributed Voice Scripts 2.1.1 Voice Script Recording
2.1.2 Voice Script Play

2.2 Voice Messaging 2.2.] Voice Message Recording
2.2.3 Remote Script Recording

2.3 Voice Data Processor

2.4 Voice Recording

2.5 Voice Playback
2.6 Packet Retrieval
3.0 DEF
4.0 Conclusion

1.0 High-Level Overview of the Invention
The present invention is directed toward a distributed

voice system and method for recording and playing back
voice scripts and voice messages. The distributed voice
system operates in the environment of a call processing
system. In order to provide the reader with a more complete
understanding of the invention, two call processing systems
iare first described. In Section 1.1, a standard call processing
is described. Section 1.2 describes an enhanced call pro-
cessing system that utilizes a network control processor
(NCP) 304 (illustrated in FIG. 3) to provide enhanced call
processing features. In Section 2 of this document a distrib-
uted voice system and method are described. In Section 3,
data records, known as DEF records, are described.
1.] Standard Call Processing System

An example of a conventional telephone switching con-
figuration is illustrated in FIG. 1. FIG. 1 is a high—level block
diagram illustrating the architecture of a conventional tele-
phone switching configuralion. Referring now to FIG. I, the
configuration includes a matrix switch 102 and an operator
console 103. A typical subscriber 114 to a long-distance
carrier 112 may be a business, another carrier, or an indi—
vidual user 106. Customer 110 may, for example. be a
business or it may be a carrier that is procuring enhanced
services from a competitor long-distance carrier 112. Cus—
tomer 110 may have its own customer switch 104 for routing
calls between outside trunks and inside lines or instruments.

Users 106 (for example, humans talking on the telephone)
place long-distance calls using long-distance carrier 112.
The user 106 who places the call (calling party) is termed an
originating user 106A. The user 106 to whom the call is
placed (called party) is termed a terminating user 10613.

Originating user 106A may place the call directly with
long—distance carrier 112 where originating user 106A is a
customer of long-distance carrier 112. Where originating
user 106A subscribes to another carrier that is a customer

110 of long-distance carrier 112, the call is routed through
customer 110. Where originating user 106A is an end-user at
a business that is a customer 110 of long-distance earlier 112
and that has its own switch 104, that originating user‘s call
also gets routed through customer switch 104. In the latter
two cases, originating user 106A is deemed a “client” of
customer 110.

Matrix switch 102 is provided as a switch to route calls
between users 106. A call is routed from originating user
106A to terminating user 106B. Matrix switch 102 typically
can route thousands of telephone calls simultaneously. An
example of matrix switch 102 is the commercially-available
switch model DMS 250, manufactured by Northern Tele-
com, Inc. in Richardson, Tex., USA. “DMS” is a registered
trademark of Northern Telecom, Inc.

The manner in which long-distance carrier 112 provides
long-distance services is now described. FIG. 2 is a high—
level operational flow diagram illustrating the manner in

 



0049

 
5,619,554

'7

which long-distance carrier 112 provides long—distance tele-
phone services to its subscribers 114. FIGS. 1 and 2 are now

referred to in order to illustrate how long-distance carrier
112 provides direct-dial long—distance service and Operator-
assisted calling for users 106. Long—distance direct dialing is
accomplished by dialing one plus (1+) the called number.
Operator-assisted calling can be placed by dialing zero plus
{0+} the called number or by simply dialing zero (0).

The long-distance call is originated by user 106 and sent
to matrix switch 102. This occurs in a step 202. The call is
sent over two channels. These channels are an audio channel

122 and a signalling channel 124. Audio channel 122 carries
the audio portion of the call. The audio portion of the call is
referred to as call audio 142. It is over audio channel 122 that

the caller‘s voice [in other words, call audio 142) can be
heard. Call audio 142 can be analog audio. digital audio, or
other information transferred among users 106 in analog or
digital form (for example, fax or modem signals).

Signalling channel 124 is used to transmit call data 144.
Call data 144 includes information regarding the type of
telephone call being made and other call handling param—
eters including called number, originating number (cg, an
automatic number identification, or ANT), ihow the call was
dialed (1+, 0+, 0}, and the like. Call data 144 also provides
call setup parameters to matrix switch 102.

An example of a signalling channel 124 is the industry
standard common channel signalling system '1' (SS?) out-
of-band signalling channel. 537 is typically a 56 kilobit
(kbit) link, and is commonly transmitted over a T—l carrier.
Typically, call data 144 is a data packet comprising 30—40
bytes of data.

Matrix switch 102 accepts call data 144 to determine how
to handle and route the call. This occurs in a step 204.

If the cal] requires operator assistance (for example, a
collect call), operator call data 146 is provided to an operator
console 108. This occurs in a step 206. Typically, operator
call data 146 is transferred to operator console 108 over a
data link 126. Operator call data 146 includes information
regarding the type of call and other information which
matrix switch 102 knows regarding the call such as Origi-
nating number, h0w the call was dialed. and the like.

OperatOr console 108 is typically a manual operator
console which requires a human operator. The human opera-
tor an5wers the incoming call. The human operator then
sends operator commands 128 to matrix switch 102 to
complete the call so the operator can verify that the called
party will accept the charges for the call. This occurs in a
step 208.

If the call was instead a direct-dial call, matrix switch 102
uses call data 144 provided over signalling channel 124 to
determine where to route the call. Matrix switch 102 then
routes the call to the destination number. This occurs in a

step 210.
There are several problems associated with this system

used by the conventional long distance carrier. First, data
link 126 over which operator call data 146 are transferred is
often slower, than desired and introduces unwanted delays in
handling the call.

A second problem is that the human operator at operator
console 108 only gets the information that matrix switch 102
decides to send. In other words, call handling is limited to
the features and capabilities that are provided by the par—
ticular matrix switch 102 that was purchased by the carrier.

Note, other manufacturers may provide matrix switches
102 with difi‘ercnt features from those of the DMS 250. For

example, other Switches 102 may have a higher data rate limit
126. However, long-distance carrier 112 is still limited to the

0049

I0

15

20

30

35

40

45

50

55

65

8

choices of matrix switches 102 that are commercially avail-
able, because it would be prohibitively expensive to design,
develop and manufacture a custom matrix 102. Thus, the
functionality and capabilities that can be provided by a long
distance carrierin this conventional system are limited to the
functionality and characteristics provided by available
matrix switches 102.

Because matrix switches 102 are costly to develop, they
are typically designed to provide only those basic functions
that all long-distance carriers are likely to desire. In this
manner, the development costs of matrix switch 102 can be
spread among numerous long—distance carriers. The cost of
developing and manufacturing a unique mau-ix switch 102 is
too high to provide a custorn switch for a single lOng-
distance carrier. or for only a small group of long-distance
carriers. As a result, customenunique and carrier—unique
calling features and services cannot be provided.

Additionally, most manufacturers of matrix switches 102
are unable to modify existing matrix switches 102 to meet
unique needs of the various long—distance carriers without a
significant com and isignificant time to implement.

An additional problem is that it is typically expensive to
provide operator positions to interface to matrix switch 102.
This is because operator consoles can only interface to
conventional matrix switches 102 via special operator ports.
Most conventional matrix switches provide a limited num-
ber of such operator ports. For example, the DMS 250
matrix switch 102 provides a capability of 384 operator
console ports per switch. Thus, in this example, if more than
384 operator consoles are desired, at least one additional
DMS 250 matrix switch must be purchased. At a cost of
approximately $2 million per DMS 250 (1993 prices}. the
cost of additional operator positions is high.

This example serves to illustrate an underlying reason
behind the problems discuSSed in the Background section.
Due to the high cost of available matrix switches 102. most,
if not all, of the smaller long—distance carriers cannot afford
to purchase or develop custom telecommunications switch-
ing equipment. As a result, these carriers cannot have their
own operator positions. Therefore, these carriers must obtain

high-end services such as operator—assisted calling through
carriers 112 who have such capabilities.

Additionally, for those long-distance carriers who do have
matrix switches 102, Such switches 102 cannot be easily {or
cost-effectively) reconfigured, or customized, to meet
unique call processing needs. Thus. the flexibility required
to alter a wide range of customer services and call handling
capabilities cannot be provided to the customers and users of
these call processing systems 112.
1.2 Enhanced Call Processing System

A call processing system can be implemented to over-
come the above—discussed limitations of the matrix switch

102 and to provide a flexible call processing system. FIG. 3
provides a high-level illustration of such a call processing
system 302.

As is described fully in this document, call processing
system 302 provides a wide range of enhanced calling
products and features to carriers and individual users. One or
more carriers can Use call processing system 302 to obtain
carrier-unique and customer-unique, customized products
and features for their customers.

Call processing system 302 includes a network control
processor (network control processor) 304 and a matrix
switch 306. Matrix switch 306 eculd be the same as malrix

switch 102 (for example, a DMS 250). Alternatively, matrix
switch 306 could be a simpler type of switch as will be
described below. Network control processor 304 is a unique

 



0050

 
5,619,554

9

combination of hardware. software structure and programs
designed and developed to control calls being handled by
call processing system 302. Network control processor 304
is fully described in detail in co-pending patent application
of common assignec, Scr, No. 08113621] and filed on Oct.
[5, 1993, which is incorporated herein by reference in its
entirety.

Call processing system 302 can also include one or more
operator consoles 308. Operator console 308 can be the
same as operator console 108 used in the conventional
system. However. in a preferred embodiment, operator con~
soles 308 provide additional features not found in conven-
tion a1 operator consoles 108. For example, operator consoles
308 provide the capability to use customized scripts to
present a carrier-unique interface. Scripts and other features
of operator consoles 308 are discussed in Section 2 of this
document.

Types of operator consoles 308 can include a manual
operator console (MOC) 332 and an automated voice
response unit (VRU) 334. Manual operator console 332
provides the functionality, required for a human operator to
converse with the caller. Automated voice response unit 334
does not require a human operator to handle operator-
assisted calls. Automated voice response unit 334 includes
stored voice responses [automated scripts) to provide auto~
mated voice instructions to the caller. For example, auto-
mated voice response unit 334 may instruct a caller 106A
[originating user) to enter her calling card number.

An additional type of operator console 308 includes a
customer service console (CSC) 336. Customer service
console 336 performs customer service related functions.
These functions include giving credits for call problems and
answering questions of users 106 and long—distance carrier
customers of call-processing system 302.

When a call is originated by originating user 106A, call
audio 142 and call data 144 for the call are routed to call

processing system 302. A key feature of call processing
system 302 is that it enables call audio 142 on audio channel
122 to be handled separately from call data 144.

Originating user 106A can be a client of a customer 110
of call processing system 302, or a direct subscriber 14 of
call processing system 302. Customer 110 can be a business
or a carrier procuring enhanced services from call process-
ing system 302. Originating user 106A may place a call
directly to call processing system 302 or through customer
switch 104. This is more clearly illustrated in FIG. 4. The
detail of customer 110 and users 106 is illustrated separately
in FIG. 4 for clarity. The term subscriber 114 is used to
generally refer to users 106 who are direct clients of call
processing system 302 andr'or to customers 110.

Calls are placed to terminating users 1063. Terminating
users 106B may be subscribers 114, clients of customers
110, or any other destination to which a call is placed.

Network control processor 304 receives call data 144 via
signalling channel 124. Network control processor 304 uses
eail data 144 to make call handling decisions. Examples of
these decisions include whether operator assistance is
required, whether a number translation is required. how to
bill the call, where the call should be routed. and the like.
Also, When the call is originated, matrix switch 306 receives
call audio 142 from the user 106 who placed the call.

Network conU‘ol processor 304 then sends switch control
data 322 to matrix switch 306. Switch control data 322

include data that control call routing in malrix switch 306.
For calls requiring operator assistance, network control
processor 304 sends operator control data 324 to operator
console 308. Operator control data 324 includes information
on how to handle the operatornassisted call.

10

15

30

35

40

45

50

55

65

0050

10

Call processing system 302 is best described in conjunc-
tion with an example illustrating how calls are handled. FIG.
5 is an operational flow diagram illustrating the steps
involved in placing and completing a call using call pro—
cessing system 302. Referring to FIGS. 3 and 5, these steps
are now described.

In a step 502. an originating user 106A initiates a call. In
other words. a caller picks up the telephone and dials a
telephone number of it called party (terminating user 1063).
Examples of user 106 can include a human communicating
via a telephone instrument, a fax machine, or a modem. The
only difl'crence is that originating user 106A originates the
telephone call, while terminating user 1068 is the user to
whom the call is placed.

The call can be routed directly to network control pro—
cessor 304. or it could be routed to network control proces—
sor 304 via customer switch 104. In the latter case. customer
switch 104 forwards call audio 142 and call data 144

associated with this call to call processing system 302. If a
customer switch 104 is not in place. call audio 142 goes
directly to mau'ix switch 306 at call processing system 302
and call data 144 to network control processor 304.

in a step 504, call processing system 302 receives call
audio 142 and call data 144 for the call initiated in step 502.
More specifically, matrix switch 306 receives call audio 142.
and network control processor 304 receives call data 144.

In a step 506, network control processor 304 uses call data
144 to determine how to handle the call. Specific details
regarding the manner in which network control processor-
304 makes this determination are fully described in detail in
the Network Control Processor Section of this patent docu-ment.

In a step 508, network control processor 304 sends switch
control data 322 to matrix switch 306. Switch control data
322 commands matrix switch 306 to route the call to the

correct destination. For example, switch control signal 322
may command matrix Switch 306 to route the call audio 142
to customer switch 104 at the terminating end and ultimately
to terminating user 106B.

The manner in which network control processor 304
commands matrix switch 306 is through sending switch
control data 322 to matrix switch 306. The format and

content of switch control data 322 depends on the type of
matrix switch 306 utilized. Note that in some cases. depend—
ing on the customer, a customer switch 104 at the terminal-
ing end may not be used. In these cases, the call is routed
directly to terminating user 10613.

in a step 510, matrix switch 306 routes the call to
terminating user 1063 as instructed by network control
processor 304 in step 508.

As a result of the functionality provided by network
control processor 304-. matrix switch 306 no longer controls
the call as was the case with matrix switch 102 in the

conventional system. Matrix switch 306 now simply func-
tions as a passive switch that is reconfigured based on switch
control information 322 sent by network control processor
304.

Network control processor 304 receives all the call data
144 associated with the telephone call. There is no filtering
or screening performed before data 144 is received by
network control processor 304. Call data 144 can include,
among other call attributes, the originating number, the
called number, and the route or circuits activated in customer
switch 104. Thus, full control of the call and all its call audio

142 and call data 144 can be provided by call processing
system 302.

A further high—level illustration of the functionality of call
processing system 302 is now described with reference to

 



0051

 
5,619,554

11

the following example. ln this example, an originating user
106A initiates a call requiring operator assistance. FIG. 6,
which comprises FIGS. 7 and 8, isi a high-level operational
flow diagram illustrating the process that call processing
system 302 uses to process operator—assisted calls. Referring
now to FIGS. 3, 7, and 8, originating user 106A initiates an
operator-assisted call as shown in a step 702.

In a step 704, call processing system 302 receives call
audio 142 and call data 144. More specifically, matrix switch
306 receives call audio 142 and network control processor-
304 receives call data 144.

In a step 706, network control processor 304 interprets
call data 144 and determines that originating user 106
originated a call requiring operator assistance. For example.
in one embodiment network control processor 304 could
examine the called number and determine that because the

first number dialed is zero, the caller is requesting operator
assistance.

In a step 708, network control processor 304 instntcts
matrix switch 306 to route call audio 142 to an operator
console 308. If a human operator is not required, call audio
142 can be routed to an automated operator console (for
example, an automated voice response unit 334). In this
case. the voice response unit 334 instructs the caller on how
to proceed. These instructions are typically telephone key—
pad button sequences to be pressed by the caller to complete
the call. An example of this is where voice response unit 334
instructs the caller to enter a calling card number.

If a human operator is required to handle the call. the call
audio 142 is routed to a. manual operator console 332. In this
case, the caller can converse with the operator. An example
of this case is where the caller is placing a collect caIl.

Where matrix switch 306 is a DMS 250, network control
processor 304 simply instructs the DMS 250 to route the call
to the console position assigned to operator console 308.
Because operator console 308 only gets call audio 142,
operator console 308 is treated as any other destination and
can be identified by a terminating number.

In a step 710, network control processor 304 routes
operator control data 324 to operator console 308 via a LAN
328. Operator control data 324 instructs operator console
308 regarding the handling of the call. Operator control data
324 is determined by network control processor 304 when
network control processor 304 receives call data 144.

There is a key distinction between call-processing system
302 and the conventional system illustrated in FIG. 1. With
the conventional system. special operator console pens are
required to allow an operator console 108 to be interfaced to
matrix switch 102. This is because control information had

to be provided by matrix switch 102 to operator console 108.
However, according to call processing system 302. matrix

switch 306 only has to transfer call audio 142 to operator
console 308. The control information is provr'dcd by network
control processor 304 in the form of operator control data
324. Operator console 308 only gets call audio 142 from
matrix switch 306. Therefore. operator console 308 can be
treated as if it is any other terminating user 10613 or
customer switch 104. Thus operator console 308 does not
have to interface to matrix switch 306 via a special operator
console port. Therefore. the number of operator consoles
308 that can interface to matrix switch 306 is not limiled to
the number of operator console ports available on matrix
switch 306.

OperatOr console 308 now has a connection with audio
channel 122. As noted above, operator console 308 can be
either a manual operator console 332 for a human operator,
or an automated voice response unit 334.

0051

10

‘15

30

35

40

45

50

55

60

65

12

If originating user 106A is placing a calling card call,
originating user 106A is prompted by operator console 308
to enter the calling card number. The number is received and
verified to ensure that it is a valid number. If the number is
invalid, the user is informed that the call cannot be com—

pleted. This occurs in a step 802 (FIG. 8).
For valid calling card numbers and for collect calls,

operator console 308 initiates the connection to the termi—
nating user 106. This occurs as described in steps 804—808
as follows.

In a step 804, operator console 308 sends operator
response data 326 to network control processor 304 via LAN
328 indicating that the call can be placed as requested. In
response. network control processor 304 sends switch con-
trol data 322 to configure matrix switch 306. This tells
matrix switch 306 how to route the call. This occurs in a step806.

In a step 808, matrix switch 306 is reconfigured to direct
the call to the destination as instructed by network control
processor 304.

For a collect call, the operator asks the called party
whether they are willing to accept the charges. This occurs
in a step 808.

If the called party is not willing to accept the charges,
operator censole 308 sends operator response data 326 to
network control processor 304 indicating that the call should
be terminated. This occurs in a step 810.

It should be understood that the two examples of placing
a collect call and a calling card call are offered as examples
only. These examples should not be interpreted to imply that
the call processing system 302 is limited to only these types
of capabilities.

Call processing system 302 provides additional value—
added features to telephone services. Call processing system
302 can be configured to provide the capability for, among
other things, operator assisted calling, calling card and credit
card calling, number translation and forwarding, real-time
call billing, and real-time call rating.
2.0 Distributed Voice System

As discussed above, call processing system 302 utilizes
an automated voice response unit 334 to provide automated
operator assistance to user 106. To allow automated voice
response unit 334 to provide such assistance, automated
voice response unit 334 must be able to communicate with
user 106. A distributed voice system is provided to allow
automated voice response unit 334 to provide instructions
and otherwise communicate to user 106 using voice scripts.
The distributed voice system allows carrier—unique voice
scripts to be stored in databases and played to users 106
where appropriate. The distributed voice system also pro-
vides functionality to implement voice messaging for users
106.

In a preferred embodiment, the distributed voice system is
implemented in the environment of a call processing system
302 as described above in Section 1.2 of this document.

Additionally, the distributed voice system uses a DEF ser-
vice 916 {FIG. 9) to control operations. The DEF service is
described in detail in Section 3 of this document.

FIG. 9 is a block diagram illustrating a call processing
system 302 with distributed voice features. Referring now to
FIG. 9. the distributed voice system includes a front-end
distributor 904, a voice script service 908, and a voice
message service 912. When a call is received from a user
106 requiring a voice script 1008 (illustrated in FIG. 10).
voice response unit 334 retrieves voice script 1008 from
voice script service 908 and plays that voice script 1008 to
user 106. Voice response unit 334 stores voice scripts 1008

 



0052

 
5,619,554

13

into voice script service 908 and voice messages 1308
(illustrated in FIG. 13) in voice message service 912 via
front-end distributor 904.

2.1 Distributed Voice Scripts
Voice scripts 1008 are used to provide voice communi-

cations to a user via an automated voice response unit 334.
When a user 106 places a call requiring operator assistance
and this operator assistance is provided by an automated
voice response unit 334, the allocated automated voice
response unit 334 communicates with user 106 using voice
scripts 1008. Voice scripts 1008 provide user 106 with a
greeting and instructions on how to proceed. These instruc—
tions can include a menu offering choices to user 106 that
can be made by the user 106 depressing numbers on the
telephone key pad.

FIG. 10 is a block diagram illustrating a call processing
system 302 with distributed voice script capabilities. The
distributed voice script system includes a voice script system
1001, a front—end distributor 904, and voice script service
908. Voice script system 1001 includes an audio recorder
1003, a voice file 1005, and a voice file converter 1006.

Voice script service 908 includes a voice script server
1002, a voice script database 1004. and one or more voice
scripts I008A—1008N. To minimize errors and system
downtime. multiple redundant voice script servers 1002 and
voice script databases 1004 can be provided. Where such
redundancy is provided, each voice script database 1004 has
its own redundant copy of scripts 1008A—1008N. To accom-
modate the recording of multiple scripts 1008 into multiple
voiec script data bases 1004, front-end distributor is pro-
vided to distribute each script 1008A—1008N to each redun-
dant voice script server 1002.
211 Voice Script Recording

Once a voice script 1008 is recorded and stored in voice
script database 1004. automated voice response unit 334 can
retrieve that voice script 1008 when required and play it to
a user 106.

A method for recording a voice script 1008 is new
described. FIG. 11 is an operational flow diagram illustrating
the process by which a voice script 1008 is recorded and
stored in voice script database 1004. Referring now to FIGS.
10 and 11, in a step 1104, a speaker records voice audio
using audio recorder 1003 and records this voice audio in a
voice file 1005. In one embodiment. voice script system
1001 is implemented using a DOS-based personal computer.
In this embodiment, audio recorder is a VBXIOO l—port PC
compatible voice processing board and SE1DOS run time
software and device driver. The VBXlOD voice processing
:board and SEDOS run time software and device driver are

available from Natural MicroSystems in Natick, Mass.
U.S.A.

In a step 1108. voice file converter 1006 packetiaes the
voice audio into packet data to create a voice script 1008.
Voice file converter 1006 forwards this created voice script
1008 to front-end distributor 904.

In a step 1112., front-end distributor 904 distributes voice
script 1008 to the multiple redundant voice script servers
1002 within voice script service 908. In a step 1116, each
voice script server 1002 stores voice script 1003 in its
associated voice script database 1004. The data packets that
make up voice script 1008 are sequentially numbered and
can be retrieved from database 1004 using a key composed
of a script number and a sequential frame block number. To
provide subscriber-unique scripting, scripts can be stored
based on the language in which the script is recorded. and
other subscriber-unique information. This information can
include. for example, branding to uniquely identify the name

10

15

20

30

35

40

4-5

50

55

65

0052

14

of a carrier—customer 110 that is providing the telephone
service to user 106.

To accommodate this, unique scripts can be recorded for
each carrier—customer 110 to provide a carrier-unique inter-
face to users 106. Additionally, voice scripts 1008 can be
recorded in diflerent languages to provide correct-language
scripting to a specific user 106. Therefore, voice scripts 1008
are stored in voice script database 1004 based on not only a
script number identifying the voice script 1008 but also on
the script language and carrier 110 identification. This
facilitates retrieval of a specific voice script 1008 using a key
composed of a language, a carrier identification (i.e., a
brand). a script number, and a sequential frame block
number.

2.1.2 Voice Script Play
When a user 106 places a call requiring operator assis—

tance. and that operator assistance is provided by an auto-
mated voice response unit 334, the assigned automated
voice response unit 334 retrieves the appropriate script 1008
from voice script service 908 and begins playing this voice
script 1008 to user 106. This process of playing a voice
script 1008 is now described.

FIG. 12 is an operational flow diagram illustrating the
process by which a voice script 1008 is played to a user 106.
Referring now to FIGS. 10 and 12, in a step 1204, when a
user 106 places: a call requiring assistance of an automated
voice response unit 334, network control processor 304
notifies the automated voice response unit 334 that a new
call is received. Network control processor 304 allocates an
automated voice response unit 334 to handle the call and
connects call audio 142 via matrix switch 306 [as illustrated
in FIG. 9).

In a step I208, automated voice response unit 334 deter-
mines which voice script 1008 is to be played to user 106.
In one embodiment, this is accomplished by reuieving a
DEF record 1028 from a DEF record database 1024 via DEF
record server 122. DEF record 1028 indicates the correct

voice script 1008 to be played to user 106. The use of DEF
records 1028 is described in detail in Section 3 of this
document.

In a step 1212, automated voice response unit 334
requests the appropriate voice script 1008 from voice script
server 1002. In a step 1216, voice script server 1002
retrieves the appropriate voice script 1008 from voice script
database 1004 and sends a packet of voice data from this
voice script 1008 to automated voice response unit 334.

When a minimum number of packets has been received
by automated voice response unit 334. automated voice
response unit 334 begins playing the selected voice script
1008. This is illustrated by steps 1220 and 1224. If the
minimum number of packets has not been received by
automated voice response unit 334, voice script server 1002
continues to send packets of voice data as illustrated by flow
line 1262. The minimum number of packets required is
chosen such that automated voice response unit 334 can
begin playing the selected voice script 1008 to user 106
without interruption. Automated voice response unit 334 can
begin playing script 1008 before all of the packets that make
up that script 1008 are retrieved from voice script service
908. In a preferred embodiment, the :minimum number of
packets required is one. Thus. once the first packet of script
1008 is retrieved, automated voice response unit 334 can
begin playing script 1008. '

Automated voice response unit 334 continues playing
selected voice script 1008 as it receives subsequent data
packets from voice script service 908. Automated voice
response unit 334 continues to :retrieve packets and to play

 



0053

 
5,619,554

15

the selected voice script 1008 until the voice script 1008 is
completed.
2.2 Voice Messaging

The distributed voice system according to the invention
allows voice messaging as well as voice scripting. The
purpose of voice messaging is to allow a user 106 or a carrier
110 to record and store a message that can be retrieved by
another user 106. In other words, voice messaging provides
a voice mailbox feature for use by subscribers 114. Record-
ing and playback of voice messages 1308 are similar to the
recording and playback of voice scripts 1008, in that they are
both packetizcd before they are stored and playback is
accomplished by sequentially retrieving the stored data
packets and playing them back to the user 106. After a
minimum number of packets are retrieved. the playing
begins and continues as additional packets are retrieved
from the database. Voice message recording and voice
message playback are now described in greater detail.
2.2.1 Voice Message Recording

FIG. 13 is a block diagram illustrating a distributed voice
messaging system. Referring now to FIG. 13, a distributed
voice messaging system includes a network control proces—
sor 304, an automated voice response unit 334. a DEF
service 916, a front-end distributor 904. and voice messag-
ing service 912. Voice messaging service 912 includes a
message server 1302 and a voice message database 1304,
and one or more voice messages 1308A—1308N. As was the
case with voice script service 908, voice message service
912 can be implemented using redundant voice message
servers 1302 and redundant voice message databases 1304.
Where such redundancy is provided, each voice message
database 1304 has a copy of each voice message
1308A—1308N.

When a user calls in to leave a message, that user 106 is
connected to automated voice response unit 334 via matrix
switch 306. This connection, illustrated in FIG. 9, is not

repeated in FIG. 13 to simplify the drawing. User 106 recites
the audible message to automated voice response unit 334
which packedzes the audible message to create a voice
message 1308. Automated voice response unit 334 then
forwards the created voice message 1308 to front-end dis-
tributor 904. Frontwcnd distributor 904 stores voice message
1308 in the redundant voice message databases 1304.

FIG. 14 is an operational flow diagram illustrating the
steps associated with recording a voice message 1308.
Referring now to FIGS. 13 and 14, in a steli 1404, automated
voice response unit 334 receives an audio message from user
106. In a step 1408, automated voice response unit 334
paeketizcs the audio message received from user 106 into
data packets. These data packets make up the voice message
1308. In a step DMRIIZ, the data packets that make up
voice message 1308 are sequentially numbered and sent to
front-end distributor 904 for storage in voice message ser—
vice 912.

In a step 1416, front~end distributor 904 assigns a mes-
sage number to the voice message 1308 and sends voice
message 1308 to voice message service 912. Where redun-
dant voice message servers 1302 are implemented, front»end
distributor 904 distributes message 1308 to each voice
message server 1302.

in a step 1420, front—end distributor 904 sends the
assigned message number to automated voice response unit
334. As a result of this process, voice message 1308 is stored
in a voice message database 1304 and can be identified by
a message number.

The playback of a voice message is accomplished in a
manner that is similar to the playback of a voice script 1008.

0053

5

10

15

20

25

30

35

40

45

50

SS

65

16

As is fully described in Section 3 of this document, when a
call is received, the automated voice response unit 334
allocated to the call retrieves a DEF record 1028 indicating
the steps to be taken to handle the call. For a call requesting
message playback, the DEF record 1028 provides message
information including the unique message number to request
a specific voice message 1308 from voice message service
912. The data packets of voice message 1308 are sequen-
tially retrieved, and playback begins as soon as enough
packets are retrieved to allow uninterrupted playback.
Packet retrieval continues until playback of voice message
1308 is completed.
2.2.3 Remote Script Recording

Voice scripts 1008 can be recorded remotely through
automated voice response unit 334 in the same way that
voice messages 108 are recorded. By allowing the ability for
remote voice script 1008 recording, carrier-customers 110
can change their customer-specific voice scripts 1008 with
out any intervention by a human operator at call processing
system 302. In other words, personnel at the site of customer
110 can record a new voice script 1008 via voice response
unit 334 without requiring the use of audio recorder 1002 to
reconl the script 1008.
2.3 Voice Data Processor

In one embodiment of the distributed voice system, a
voice data processor is used to control the encapsulation of
audio data into packets. This voice data processor is now
described. FIG. 15 is a diagram illustrating a representative
architecture of a voice data processor 1500. This represen-
tative architecture is presented by way of example only.
After reading the following description, it will be apparent
to one skilled in the relevant art how voice data processor
i500 can be implemented using a variety of different archi-lectures.

In this document, voice scripts 1008 and voice messages
1308 are generain referred to as voice data.

Referring now to FIG. 15, voice data processor 1500
comprises an audio system 1510 and a voice module 1530.
Audio system 1510 includes an audio driver 1514, audio
boards 1516, a buifer 1518, and an event queue 1512. Buffer
1518 is divided into a first buffer 1518A and a second buffer
15188.

In this embodiment, audio board 1516 is a VBX 1200

voice processing board. Audio driver 1514 is VBX digital
voice port driver, and event queue 1512 is a subport ofaudio
driver 1514. These components are available from Natural
MicroSystems in Natick. Mass, U.S.A. In this embodiment,
these boards operate in the environment of a DOS—based
personal computer. In an embodiment where automated
voice response unit 334 is a personal computer-based sys-
tem, these boards can be mounted in expansion slots of the
automated voice response unit 334.

Voice data processor 1500 can be used to store either
voice seripts 1008 or voice messages 1308 as packetized
data (i.e., voice data}. In the preferred embodiment, voice
data processor 1500 is only used for remote recording of
voice scripts 1008. In this embodiment, local voice script
recording, including packetization and storage, is accom-
plished using a separate voice script system 1001 as
described above with reference to FIG. 10. Voice seript
system 1001 functions similarly to voice data processor
1500. However, in this preferred embodiment, voice data
processor 1500 is part of autumated voice response unit 334,
whereas voice script system 1001 is a stand-alone system.

Voice module 1530 includes an audio thread 1534, a
message queue 1532, a frame block queue 1538, a record
thread 1536A, and a play thread 15363. In one embodiment,

 



0054

 
5,619,554

17

automated voice response unit 334 is a DOS-OSIZ-based
computer. In this embodiment, voice data processor 1500 is
implemented in the 0812 environment of automated voice
response unit 334. In this 08.32 environment, each program
is a single process. Each process can have one or more
threads of execution. Where multiple threads are used, each
thread executes independently of the other threads and all
threads appear to be executing at the same time. In this
environment, automated voice response unit 334 has a main
application thread, a thread for receiving network messages,
a timer thread. and an audio thread.

The implementation of voice module 1530 is not limited
to an implementation using threads. The functionality per-
formed by the threads could be performed using one or more
processors, ASICs (application specific integrated circuits),
software modules, or other implementations.
2.4 Voice Recording

FIG. 16 is an operational flow diagram illustrating the
recording ofa voice script 1008 or a voice message 1308 for
later playback. Referring now to FIGS. 15 and 16, in a step
1604, automated voice response unit 334 initiates record
thread 1536A. In a step 1608. record thread 1536A initial-
izes voice data processor 1500. In a step 1612, the audio
voice is recorded in buffers 1518 by audio system 1510. In
a step 1616, this recorded audio voice is encapsulated into
data packets which are stored as voice script 1008 or voice
message 1308, as appropriate, in step 1620.

The above-described process for recording voice script
1008 or voice nessagc 1308 is now described in greater
detail. FIG. 17 is an operational flow diagram illustrating the
process of initializing voice data processor 1500 (Le. step
1608}.

Referring now to FIGS. 15 and 17, in a step 1704,
automated voicr: response unit 334 initiates record thread
1536A. In one embodiment, when voice data needs to be
recorded. the main application thread in automated voice
response unit 334 initiates record thread 1536A. Upon
initialization, record thread 1536A sets indicators to audio
thread 1534, indicating that audio thread 1534 will be
recording voice data.

In a step 1708, the main voice response unit 334 appli—
cation thread starts a timer if the script or message length is
defined. The timer can be used to limit the icngth of a script
1008 or a message 1308.

In a step 1712, record thread 1536A intializes audio driver
1514. In one embodiment, this is accomplished by record
thread 1536A sending a QUEUE WAKE command to audio
driver 1514. In response, audio driver 1514 alerts audio
thread 1534 that audio voice is to be recorded. This occurs

in a step 1716. In one embodiment, this is accomplished by
audio driver 1514 sending a READ WAKE event to audio
thread 1534 vis event queue 1512. Event queue 1512 is used
to queue messages from audio driver 1514 to audio thread
1534.

In a step 1718. audio thread 1534 checks the indicators set
by record thread 1536A in step 1704. These indicators
provide an indication to audio thread 1534 that it will be
recording voice data. With these steps accomplished, voice
data processor 1500 is initialized and the recording process-
ing can continue at step 1612 with the recording of voice
data.

FIG. 18 is an operational flow diagram illustrating the
steps associated with recording voice data. Referring now to
FIGS. 15 and 18, in a step 1804, audio thread 1534 com-
mands audio driver i514 to begin recording the audio voice.
In this step, audio thread 1534 sends the: address of a first
data buffer 1518 to audio driver 1514. This is the address of

I0

[5

20

25

30

35

40

45

55

65

0054

18
the buffer 1518 in which the recorded audio voice will be

stored. In one embodiment this is accomplished by audio
thread 1534 sending a RECORD BEGIN command to audio
driver 1514.

In a step 1808. audio driver 1514 acknowledges the
command to begin recording by sending a BUFFER DONE
CONTINUING event via event queue 1512 to audio thread
1534.

Upon receipt, in a step 1812, audio thread 1534 sends a
NEXT BUFFER command to audio driver 1514 along with
the address of the second data bufier 1518 in which the audio
voice is to be recorded.

In a step 1816, audio driver 1514 sends a RECORD
BEGUN event to audio thread 1534 via event queue 1512
indicating that the recording of the audio voice has started.

In a step 1820, when audio driver 1514 has filled the first
buffer 1518A, audio driver 1514 informs audio thread 1534

that this buffer 1518A is full. This is accomplished by audio
driver 1514 sending a first BUFFER DONE CONTINUING
event to audio thread 1534 via event queue 1512. Audio
driver 1514 releases the first buffer 1518A so the data therein

can be packctized by voice module 1530. Before packetizing
the audio voice in buffer 1518, audio thread 1534 first
checks each frame of audio voice stored in the data buffer to

determine whether a configurable length of silence is
detected. In one embodiment, the configurable length of
silence is three seconds.

FIG. 19 is an Operational flow diagram illustrating the
steps of checking for silence. Referring now to FIGS. 15 and
19, in a step 1904, audio thread 1534 checks the data in first
bufi’er 1518 to determine whether there is a configurable
length of silence. If a configurable length of silence is
detected, as illustrated by a step 1908, audio thread 1534
commands audio driver 1514 to stop recording by sending :1
STOP RECORDING command. This occurs in a step 1912.
Also in this step, audio thread 1534 indicates to record
thread 1536A that recording is stopping. This is aceom~
plishcd by sending a CHECK FOR SILENCE message to
record thread 1536A. Regardless of whether the config-
urable length of silence was detected in step 1908, audio
thread 1534 can packctize the data recorded in first buffer
1518A. Thus. the operation continues at step 1616 (FIG. 16).

FIG. 20 is an operational flow diagram illustrating the
packetizing of audio voice (i.e., step 1616). In a step 2004,
audio thread 1534 takes the audio voice stored in buffer

1518A and encapsulates that data into data packets. In a step
2008, audio thread 1534 sequentially places each packet into
frame block queue 1538. Once all the data is packetized and
placed in a frame block queue 1538, audio thread 1534 sends
:1 NEXT BUFFER command to audio driver 1514 along with
the address of the new empty data buffer 1518A indicating
that additional audio voice can be stored in that bufi'cr

1518A. This occurs in a step 2012.
In a step 2016, audio thread 1534 notifies record thread

1536A that data packets of voice script 1008 {or voice
message 1308} are in frame block queue 1538 and ready to
be stored as voice data. In one embodiment this is accom-

plished by audio thread 1534 sending an AUDIO FED
RECORD QUEUE message to record thread 1536A.

As audio thread 1534 is packctizing data and storing it in
frame block queue 1538, audio driver 1514 is continuing to
record the audio voice into buffers 1518. When the second

buffer 15183 is full, the operation continues at step 1820
(FIG. 18) where audio driver 1514 informs audio thread
1534 that the second buffer 15183 is full. At this time, audio

thread 1534 checks for silence (FIG. 19) and begins pack-
ctizing data (FIG. 20) from the second buffer 1518B.

 



0055

 
5,619,554

19

If in step 1908 silence was detected in first buffer 1518A,
and a STOP RECORDING command issued in step 1912
(illustrated by decision black 2018), there is no need for
audio driver 1514 to continue recording, and the operation
continues at step 1620 by storing packetized data currently
in frame block queue 1538 into the appropriate database
1004, 1304.

If, on the other hand, in step 1908 no silence was detected
in first data buffer 1518A. there is data to be packetized and
stored in second buffer 15183 and the recording continues
(FIG. 18) (illustrated by decision block 2020). As with first
buffer 1518A, when second buchr 15183 is full, in a step
1820, audio driver 1514 informs audio thread 1534 that the

second buffer 15183 is full. Again, audio thread 1534- checks
second buiTer 15183 for silence (FIG. 19), packetizes the
data (FIG. 20), and stores it in frame block queue 1538 for
subsequent storage in the appropriate database 1004, 1304.
These steps of recording, checking for silence and paeketic—
ing continue until silence is detected in step 1908.

Regardless of whether a STOP RECORDING command

has been issued, packetized data in frame block queue 1538
must be stored in step 1620. The process by which this
packetjzed data are stored is illustrated in FIG. 21. Referring
now to FIG. 21, in a step 2104. record thread 1536A
retrieves the data packets from a frame block queue 1538. [n
a step 2108, each packet is checked to determine whether
voice energy can be detected in any frame of the packet. If
a packet does not contain any frames that have detectable
voice energy, t’_illustrated by decision box 2112), that packet
is discarded in a step 2116. If, however, voice energy is
detected, that packet and all subsequent packets are sent to
the appropriate database 1004, 1304 until recording is
stopped, as illustrated by step 2120. The process of discard-
ing leading packets containing all silent Frames is how
leading silence on a newly—recorded message is edited. After
all the packets have been retrieved from frame block queue
1538 and stored, record thread 1536A waits for another

AUDIO FED RECORD QUEUE message. Upon receipt of
AUDIO FED RECORD QUEUE message, record thread
1536A continues at step 2104.

The storage of voice scripts in voice script database 1004
and voice messages in voice message database 1304 can be
accomplished a variety of ways. The method of storage can
be an element in a linked list in memory. as records in a flat
file. or as records in a distributable network database server.

In a preferred embodiment, recorded voice packets are
stored as elements in a linked list in memory first, over-
flowing to a temporary flat file when the length of the
recorded voice data exceeds what can be easin be stored in
memory. Subsequently. when the voice data is saved for
future use, the voice data is transferred to front end distribu—

tor 904 for distribution to voice script service 908 or voice
message service 912.

As stated above, the recording of voice data and the initial
storage continues until silence is detected. If the energy level
in a frame of audio voice is below a configurable level, that
frame is designated as silent. When the number of consecu-
tive silent frames exceeds a configurable length of time,
audio thread 1534 sends RECORD STOP command to audio

driver 1514 and sends a CHECK FOR SILENCE message to
record thread 1536A.

FIG. 22 is an operational flow diagram illustrating a
manner by which recording is stopped when silence is
detected. Referring now to FIG. 22. in a step 2204. audio
thread 1534 checks the energy level of each frame of audio
voice as it is being encapsulated into data packets. ll" no
silence is detected (decision block 2208], audio thread 1534

0055

10

15

20

30

35

40

45

50

55

65

20

continues packctizing data. If, however, silence is detected
{decision block 2208), audio thread 1534 compares the
number ofsilent frames to a predetermined length of time to
determine whether the length of silence is greater than the
configured time. If, in decision block 2212, the configured
length of time is exceeded, audio thread 1534 sends a
RECORD STOP message to audio driver 1514 and a
CHECK FOR SILENCE message to record thread 1536A.
This occurs in a step 2216. This causes record thread 1536A
to check for silence. Record thread 1536A continues to send

packets for storage until it detects silence. The process of
discarding trailing packets containing all silent frames is the
method by which trailing silence in a newly recorded
message is edited.

Recording can also be stopped when audio driver 1514
detects a DTMF (dual-tene multifrequency) tene or if a
maximum message time length limit is exceeded. FIG. 23 is
an operational flow diagram illustrating a stop recording
scenario in response to a DTMF tone Referring now to FIG.
23, in a step 2304, audio driver 1514 detects a DTMF tone.
In response. audio driver 1534 sends a DTMF event to audio
thread 1534. This occurs in a step 2308. When audio thread
1534 receives the DTMF event, audio thread 1534 sends a
RECORD STOP command to audio driver 1514 and a

CHECK FOR SILENCE message to record thread 1536A.
This occurs in a step 2312. In step 2314, record thread
1536A checks the packets for silence, and if silence is
detected, discards the packet. The process of discarding
trailing packets containing all silent frames is the method by
which trailing silence on a newly recorded message isedited.

In the third scenario, recording is stopped when a maxi-
mum time iimit for the message is exceeded. This is illus~
trated in FIG. 24. Referring now to FIG. 24, in a step 2404,
if a recorded message has a maximum message length time
limit defined, a timer is started for the message length time
limit at the same time that recording is started.

When the timer expires, the application thread informs
voice data processor 1500 to stop recording, as illustrated by
step 2408. This is accomplished by setting an indicator
telling audio thread 1534 to stop recording and sending a
QUEUE WAKE command to audio driver 1514. In
response, audio driver 1514 sends a READ WAKE event to
audio thread 1534. causing audio thread 1534- to check the
indicator that says stop recording. This is illustrated by steps
2412 and 2416. In response, audio thread 1534 sends a
RECORD STOP command to audio driver 1514 and a

CHECK FOR SILENCE message to record thread 1536A.
This occurs in steps 2420 and 2424. In response, record
thread 1536A checks for silence and discards silent packets.

In each of the three scenarios described above for stop—
ping the recording, audio thread 1534 issued 2: RECORD
STOP command to audio driver 1514. The steps foliowed
upon receipt of this command are illustrated in FIG. 25.
Referring now to FIG. 25, in a step 2504 upon receipt of the
RECORD STOP command, audio driver 1514 stops record—
ing and sends a RECORD STOP event to audio thread 1534
and releases the last data buffer 1518.

In response, audio thread 1534 sections the last data buffer
1518 into packets and places these packets in frame block
queue 1538. This occurs in a step 2503. Audio thread 1534
then posts an AUDIO RECORD STOPPED message to
record thread 1536A in a step 2512. In step 2516, record
thread 1536A sets an indicator that recording has stopped,
completes emptying frame block queue 1538, and sends 3
RECORD DONE message to the main automated voice
respOnse unit 334 application thread.

 



0056

 
5,619,554

21

2.5 Voice Playback
Once a voice script 1008 is stored in voice script database

1004, this voice script 1008 can be played back to auser 106.
Similarly. a voice message 1308 stored in voice message
database 1304 can be played to a user 106. As briefly
introduced above, playback is accomplished by retrieving
the packets that make up the voice script 1008 or voice
message 1308 and playing them to the user 106 as they are
retrieved.

The process used to play back a voice script 1008 is the
same as the process used to play a voice message 1308. The
following discussion describes voice playback in terms of
playing a voice script 1008 from a voice script database
1004. The same process is followed to replay a voice
message 1308 from voice message database 1304. FIG. 26
is an operational flow diagram illustrating the process of
playing voice data. Referring now to FIG. 26. in a step 2604
automated voice response unit 334 retrieves the script 1004
to be played. More specifically. the first packet or packets of
the script are retrieved. In a step 2608, the retrieved packets
are stored in frame block queue 1538. Once these packets
are stored in:frame block queue 1538, the playback of voice
script 1008 can be controlled by audio thread 1534 and audio
driver 1514.

In a step 2612, the audio voice extracted from the packets
queued in frame block queue 1538 is stored in a first buffer
1518A. In a step 2616, audio driver 1514 can play the
message from first buffer 1518A. As illustrated by flowline
2662, if there are additional packets in frame block queue
1538, the data is de-packetized and stored in second buffer
15183. Once audio driver 1514 has finished playing the
audio voice from buffer 1518A, it begins playing the audio
voice from 15183. At this point, additional data can be
dc-packetizcd and stored in first buffer 1518A. This process
continues until the entire message is played.

The above description provides a high level overview of
the playback of voice data. The steps illustrated in 26 are
now described in greater detail. In step 2604. automated
voice response unit 334 retrieves the data packets that
comprise the voice script 1008 that is to be played. This step
is described in greater detail with reference to FIG. 2'7.

FIG. 27 is an operational flow diagram illustrating the
steps involved with retrieVing packets of the script 1008 to
be played (i.e. step 2604). Referring new to FIGS. 27 and 15,
in a step 2104, piay thread 15363 requests the appropriate
voice script 1008 from voice script service 908. In a pre—
ferred embodiment, this is accomplished by sending 3
FIRST SEARCH REQUEST message to a CLIF client
interface.

In a step 2708, play thread 1536B sets a searching
indicator to true which indicates that voice data processor
1500 will be playing voice data. As packets are received,
they are stored in frame block queue 1538. as illustrated by
step 2612. Play thread 1536151 centinues to receive packets
from voice script service 908 as long as there is room in
frame block queue 1538 and until all the packets are
retrieved for the appropriate voice script 1008.

FIG. 28 is an operational flow chart illustrang the
manner in which voice data processor 1500 is initialized to
play a voice script 1008. Referring now to FIGS. 28 and 15,
in step 2804, play thread 15368 sets an indicator teliing
audio thread 1534 that it will be playing voice data.

Play thread 2636B initializes audio driver 1514. This
occurs in a step 2808. In one embodiment, this initializaan
is accomplished by sending a QUEUE WAKE command to
audio driver 1514.

In a step 2812, audio driver 1514 responds to the QUEUE
WAKE command by informing audio thread 1534 that it has

10

15

20

25

30

35

40

45

50

55

60

65

22

been initialized. In one embodiment this is accomplished by
audio driver 1514 sending a READ WAKE event to audio
thread 1534. The READ WAKE event is sent via event

queue 1512.
In a step 2816, audio thread 1534 checks the indicators set

in step 2804 and thereby determines that voice data is to be
played by play thread 1536B. With this accomplished, voice
data processor is initialized and playback can begin.

As discussed above with reference to FIG. 26, the data

packets that make up the script 1008 to be played are
retrieved from frame block queue 1538, dc-packetized, and
stored in bull'ers 1518.

The latency associated with playing back voice script
1008 can be minimized by beginning playback of the script
as soon as the first packet of that script is retrieved and
de—paeketized. Therefom, according to the preferred
embodiment, when the first packet is retrieved, the audio
voice is extracted therefrom and stored in first buffer 1518A.

Audio driver 1514 immediately begins playing this data to
user 106 while additional packets are being de-packetiaed
and their data stored in second buffer 1518B. Once the data

has been played from first buffer 1518A, audio driver 1514
begins playing the data from second buffer 151813 and
informs audio thread 1534 that additional data can be

de-packetized from the packets stored in frame block queue
1538, and that data may be stored in the now available first
buffer 1518A.

This process of playing from one buffer and de-packetiz—
ing and storing data in the other buffer continues until the
entire script is played. As a result, playback can begin as
soon as the first packet is retrieved. and the data extracted

therefrom and playback continues without interruption until
completed. These steps 2612 and 2616 are illustrated in
greater detail in FIGS. 29 and 30. Refening now to FIGS.
29, 30, and 15, in a step 2904, audio thread 1534 retrieves
the first packet of voice script 1008 from frame block queue
1538. In step 2908, audio thread 1534 extracts the data from
this data packet and stores this data in first data buffer
1518A.

In a step 2912, audio thread 1534 instructs audio driver
1514 to begin playing voice script 1008. in one embodiment,
this is accomplished by audio tlucad 1534 sending a PLAY
BEGIN conunand to audio driver 1514 along with the
location of first buffer 1518A. Audio driver 1514 acknowl—

edges the ctrmmand to begin playing by sending a BUFFER
DONE CONTINUING event via event queue 1512 to audio
thread 1534.

At this time, the operation continues at FIG. 30 (step
2616) with audio driver 1514 playing voice script 1008 and
the operation also continues at FIG. 31, step 3104, with
audio thread retrieving packets from frame block queue
1538 and extracting data therefrom. Referring now to FIG.
30, audio driver 1514 begins playing voice script 1008 to
user 106 in a step 3004. Audio driver 1514 informs play
thread 153613 by sending a PLAY BEGUN event to play
thread 153613. This occurs in a step 3008. Play thread 153613
informs the rest of voice data processor 1500 that script 1008
is playing.

In a step 3012. audio driver 1514 informs audio thread
1534 that voice data buffer 1518A is empty.

As audio driver 1514 is playing voice script 1008, audio
thread 1534 continues to extract data from packets in frame
block queue 1538 and store this data in the next available
data buffer 1518. This is described with retrence to FIG. 31.

FIG. 31 is an operational flew diagram illustrating the steps
of extracting data from packets in frame block queue 1538
and storing this data in an available outlier 1518. Referring

0056

 



0057

 
5,619,554

23

now to FIG. 31, in a step 3104, audio thread 1534 retrieves
packets from frame block queue 1538. In a step 3108. audio
thread 1534 stores data in second data buffer 1518B until

second data buffer 15188 is full or frame block queue 1538
is empty.

In a step 3112, audio thread 1534 informs audio driver
1514 that data is in second buiTer 151813. In one embodi-

ment, this is accomplished by audio thread 1534 sending :3.
NEXT BUFFER command to audio driver 1514 with the
location of second data buffer 15183.

If at any time during the process of retrieving packets
from voice script database 1004 and storing these packets in
frame block queue 1538. frame block queue 1538 becomes
full, play thread 153GB suspends retrieval of those packets.
To alert play thread 15368 that there is now additional room
in frame block queue 1538, audio thread 1534 informs play
thread 15363 when it has retrieved packets from frame
block queue 1538 for extraction of the data therefrom. In one
embodiment, this is accomplished by audio thread 1534
posting an AUDIO FED PLAY QUEUE message to play
thread 1536B via message queue 1532. This is illustrated by
a step 3116.

It should be noted that when audio voice is recorded and

encapsulated into packets, the last packet is usually not a full
packet of frames. This is not a problem when a single voice
script 1008, or single voice message 1308 is being played.
However, when multiple voice scripts 1008 or voice mes-
sages 1308 are played one right after the other, empty frames
in the last packet can result in a noticeable pause between
playback of multiple voice scripts 1008 andfor voice mes—
sages 1308. To solve this problem, every packet placed in
frame block queue 1538 by play thread 1536B contains a full
complement of frames. When the last packet for a voice
script 1008 or voice message 1308 is retrieved by play
thread 1536B, the packet is not automatically placed in
frame block queue 1538 if there is an additional voice script
1008 or voice message 1308 to be played. Instead, play
thread 1536B first retrieves the first packet of the next voice
script 1008 or voice message 1308 to be played. Play thread
1536B appends the first portion of this next packet to the last
portion of the previous packet. As a result, the previous
packet is a full packet when it is placed into frame block
queue 1538. This method of transferring a portion of a next
packet to the previous packet continues until the last packet
in a series of voice scripts 1008 are retrieved.

There are two scenarios by which playback of a voice
script 1008 or a voice message 1308 can be stopped. In the
first scenario, the playback is stopped in response to the user
106 pressing the appropriate key (or keystroke sequence) on
the telephone keypad. In a second scenario, playback is
stopped when there is no more audio voice to be packetized.
Both of these scenarios are now discussed in detail.

FIG. 32 is an operational flow diagram illustrating a
method by which playback is stopped when user 106 enters
the appropriate keystroke on the telephone keypad. Refer—
ring now to FIGS. 15 and 32, when a user is done listening
to voice script 1008 the user enters the appropriate key on
the telephone keypad. This could occur, for example, when
the user has heard enough menu selections provided by a
voice script 1008 and enters a key to choose the desired
selection before the menu is done playing.

These scenarios are discussed in terms of a voice script
1008 for simplicity. After reading the below description, it
will become apparent to a person skilled in the relevant art
how these scenarios can be implemented for voice messages
1308.

In a step 3204, audio driver 1514 detects the DTMF tone
generated when the user 106 enters the keypad keystroke. In

0057

10

IS

20

25

30

35

40

45

50

55

60

65

24

response, audio driver 1514 sends a DTMF tone event to
audio thread 1534. Audio thread 1534 recognizes this
DTMF tone and interprets it to indicate that playback of
script 1008 should be stopped. To stop playback, audio
thread 1534 sends a PLAY STOP command to audio driver

1514 in a step 3208. In response, in a step 3212, audio driver
1514 sends a PLAY STOP event to audio thread 1534. In a
step 3216, audio thread 1534 flushes data buffers 1518 and
posts an AUDIO PLAY STOPPED message to play thread
1536B.

In reaponse, play thread 1536B sends an AUDIO DONE
message to the voice response unit application thread and
flushes the data in frame block queue 1538. This occurs in
a step 3220.

FlG. 33 is an operational flow diagram illustrating a
manner by which playback is stopped when voice data is
exhausted (i.e. according to scenario 2). Referring now to
FIGS. lSand 33, in a step 3304, when audio driver 1514 runs
out of audio voice (i.e., buffers 1518 are empty), audio driver
1514 sends a PLAY NO MORE FRAMES event to audio

thread 1534. In a step 3308, audio thread 1534 responds by
sending a PLAY STOP command to audio driver 1514.
Audio driver 1514 responds in step 3312 by sending a PLAY
STOP event to audio thread 1534. In a step 3316, audio
thread 1534 flushes data buffers 1518 and posts an AUDIO
PLAY DONE message to play thread 1536B. In a step 3320,
play thread 1536B sends an AUDIO DONE message to the
main automated voice response unit application thread and
flushes frame block queue 1538. Because play thread
153613 is no longer required, it ceases to exist.
2.6 Packet Retrieval

As described above with reference to FIG. 26, in steps
2604 and 2608, play thread 1536B retrieves packets. from
the appropriate service 908, 912 and stores these packets in
frame block queue 1538. This operation is now described in
greater detail with reference to FIG. 34. FIG. 34, which

comprises FIGS. 35, 36, 37, 38, 39, and 40. is an operational
flow diagram illustrating retrieval of packets and the storage
of packets in frame block queue 1538. Referring first to FIG.
35, in a step 3504, play thread 1536B receives a packet from
voice script service 908, places the packet into frame block
queue 1538, and sets a searching indicator to false. If frame
block queue 1538 is not full (decision block 3508), the
operation continues at a step 3704 (FIG. 37). If, on the other
hand, frame block queue 1538 is full (decision block 3508),
play thread 15363 checks to determine whether the packet
received is the last packet for the voice script 1008 being
played, as illustrated by decision block 3512. If this is not
the last packet, the operation continues at step 3804 in FIG.
38. If this is the last packet, the operation continues at FIG.
36 where play thread 1536B checks to determine whether
voice script 108 is currently playing, as illustrated by
decision block 3604. If the voice script 108 is currently
playing, the operation continues at a step 3704 (FIG. 37). If,
on the other hand, a voice seript 108 is not currently playing
(decision block 3604), the operation continues at step 2804
(FIG. 28).

Referring now to FIG. 38, if frame block queue 1538 is
not full (decision block 3508) and this is not the last packet,
play thread 15363 sends a next search request to voice script
service 908 and sets a searching indicator to true. If the script
is not currently playing (decision block 3808} the operation
continues at step 2804 (illustrated in FIG. 28). If, on the
other hand, the script is currently playing, the next packet is
retrieved from the voice script service 908. This occurs in a
step 3812. At this time, the operation continues at step 3504
(FIG. 35) or play thread 1536Bb receives and queues the
packet.

 



0058

 
5,619,554

25

As stated above, if frame block queue 1538 is not full, or
if frame block queue 1538 is full and this is the last packet
and voice script 1008 is currently playing, the operation
continues at step 3704 (illustrated in FIG. 37). Referring
now to FIG. 37, if the searching indicator is set to true
(illustrated by FIG. 3704}, the packet is retrieved from voice
script service 908 in a step 3708. At this time, the operation
continues at step 3504 (FIG. 35) where play thread 153613
receives the packet and places it into frame block queue
1538. If, on the other hand, the searching indicator is not
true, play thread 1536B checks to determine whether this is
the last packet (decision block 3712). If it is not the last
packet, the operation continues at step 3904. (FIG. 39). If, on
the other hand, this is the last packet, the operation continues
at step 4004 (FIG. 40).

Referring now to FIG. 39, in a step 3904, play thread
1536B sends a search request to voice script service 908 and
sets the searching indicator to true. in a step 3908, a packet
of voice data is retrieved from voico script service 908. At
this time, the operation continues at step 3504 (FIG. 35)
where play thread 1536B receives the packet and places it
into frame block queue 1538.

Referring now to FIG. 40, in a step 4004, if there is
another voice script 1008 to play, in a step 4008, play thread
1536B sends a search request to voice script service 908. In
a Stop 4012, play thread 15363 sets the searching indicator
to true. At this time, the operation continues at step 3704
(FIG. 37). If, on the other hand, in step 4004 there are no
more voice scripts 1008 to play at this time, the operation is
completed.

In a preferred embodiment, the retrieval of packets from
voice script service 908 is accomplished using a CLIP client
interface. The CLIF client interface is fully described in
Co-Pending Patent Application of Common Assignee, Ser.
No. 08036211, filed on Oct. 15, 1993, which is incorpo-
rated herein by reference in its entirety. According to this
embodiment. requests for packets generated by play thread
1536B are sent to the CLIF client interface. The CLIF client

interface then retrieves the packet of voice data from voice
script service 908 and forwards this packet to play thread
15363. The CLIF client interface is also used for storing
packets to voice script service 908 and for other communi—
cations in general.

The process of relrieving packets for playback was
described above in terms of retrieving voice data packets for
a voice script 1008. This process is the same process used to
retrieve a voice message 1308 from voice message service
912.
3.0 DEF

One problem faced by developers of conventional call
processing systems is that of developing call processing
software that is easily maintainable and highly reconfig-
urable. Another problem is that of creating a call processing
system capable of providing subscriber-unique features and
capabilities. As the number of subscribers to the conven—
tional call processing system increases, it becomes increas-
ingly diflicult to provide highly maintainable and reconfig-
urablc code to handle a wide variety of custom andlor
standard features using conventional software techniques.

In many conventional systems, the call processing soft-
ware is coded in such a way that when changes are to be
made to the system, entire sections of code have to be.
rewritten and re-compiled. This can be a time-consuming
task that requires the platforms on which the code is running
to be brought to a non-operational status while the new
software is loaded.

In one embodiment, a wide array of subscriber-unique and
standard call processing features are provided while elimi-

[0

15

20

25

30

35

45

55

60

26

nating the need to recompile large portions of operational
software. According to the present invention, the cal] pro-
cessing operations are driven primarily by data records.
known as DEF records. Call processing system 302 uses
DEF records in conjunction with call processes to provide
subscriber—unique and standard call processing features. A
call process is started when a new call enters call processing
system 302. The call process accesses one or more data
fields in a DEF record that indicate how the call is to be

processed. Thus, DEF records can be used to dictate certain
subscriber-unique features and genetic features as weil.
When changes are to be made to call processing system 302,
the majority of these changes can be made by updating the
data fields found in the DEF records. Thus, most changes to
call processing system 302 do not recluire operational soft—
ware to be modified, re-compiled, and re-loadcd.

The manner in which call processing system 302 uses
DEF records to process calls is now described. FIG. 41 is a
high-level block diagram illustrating the manner in which
DEF records are used by call processing system 302 to
process calls. FIG. 42 is an operational flow diagram illus—
trating the manner in which call processing 302 uses DEF
records and processes to handle calls. Referring now to
FIGS. 41 and 42, in a step 4202, a call is received by call
processing system 302. As described above, call data 144 is
routed to network control processor 304 and call audio 142
is routed to matrix switch 306. For operator—assisted calls,
call audio 142 is then routed to an operator console 308 to
provide operator assistance.

In a step 4206. network control processor 304 identifies
the call and the type of call being placed. The manner in
which network control processor 304 processes the call is
described above.

In a step 4210, network control processor sends operator
control data 324 to operator console 308. Operator control
data 324 includes information required by operator console
308 to process the call. This information includes a base
process number, a DEF record number, and other call
information such as ANT, called party number. subscriber
identification, etc. At this time, operator console 308 can
begin processing the call.

In a step 4214, operator console 308 starts a base process
4102. The base process 4 102 started is the base process
identified by the base process number that was sent by
network control meessor 304 with operator control data
324. Base process 4102 is a process template that contains
the basic steps that are to be followed by operator console
308 in processing the call. Base process 4102 is coded to
look for certain pieces of information within a DEF record
4104. Base process 4 102 uses this information to process
the call. This information can dictate that base process 4102
start other processes 4106, wait for user 106 input. or wait
for operator instructions.

In a step 4218, base process 4102 retrieves the DEF
record 4104 as specified by the DEF record number that was
sent with operator control data 324.

In a step 422, base process 4 102 uses the information in
DEF record 4104 to process the call. This process is
described in more detail below with retrence to FIGS. 43 and
44.

in one embodiment. when base process 4102 has com-
pleted all of its call processing operations. it starts a finish
process 4108 and sends a DEF record number identifying a
DEF record 4110 that finish process 4108 will use in
finishing the call processing. The finish process 4108 is
another process that is designed to look for specific data tags
4304 that describe how to finish the call process. For

0058

 



0059

 
5,619,554

27

example, finish process 4108 may look for a specific tag
4304. This tag may point to a record that displays keys on
the operator screen for the operator to press to complete the
call, or that displays {or plays in the case of a voice response
unit 334] a closing script.

In a step 4230, finish process 4108 starts to complete cal]
process 4112. Complete call process 4112 completes the call
placed by user 106.

The structure of DEF records 4104 (and 4110 in the case
of a finish process 4108) is now more fully described. FIG.
43 is a diagram illustrating the structure of a DEF record
4104 in one embodiment. DEF record 4104 includes a DEF

record number 4302. DEF record number 4302 uniquely
identifies each DEF record 4104. DEF record number 4102

is sent to operator console 308 with operator control data
324. Network control processor 304 determines which DEF
record number 4302 to provide to operator console 308
using cal] data 344. Different DEF records 4104 may be
chosen and identified based on the type ofcall that is placed,
the particular subseriber 114 or other call infonnation. Thus,
the operation performed by base process 4102 can be custom
tailored based on call data 144 and by the use of diflerent
DEF records 4104.

The fields within DEF record 4104 include a tag number
4304, a length field 4306, and a data field 4308. Tag number
4304 is an identifier that base process 4102 uses to find
specific data 4310 within DEF record 4104. Length field
4306 specifies the length of data field 4308. Data field 4308
contains data 4310 used in processing the call. Data 4310
can be the actual data used to process the call, or can be a
reference to data in another data file, data table, or database.

Depending on the particular DEF record 4104, any num—
ber of fields, which comprise tag numbers 4304, length
fields 4306 and data fields 4308, can be provided in a DEF
record 4104.

Base process 4102 is coded to look for certain tag
numbers 4304 within DEF record 4104 at certain times. For

example, base process 4102 may be coded to look for tag
number 1, then tag number 2, then tag number 3. Tag
number I may be a tag identifying a greeting script to be
played by an automated voice response unit 334, or read by
an operator at a manual operator console 332. In this case,
base process 4102100ks in DEF record 104 for tag number
1 and reads data 4310 in data field 4308 associated with tag
number 1. In the case of a greeting script, data 4310 will
point to the script to be played, read, or synthesized to user
106. The script can be customized to a particular customer
110 in a number of different ways. One way is for network
control processor 304 to provide customer 110 identification
to operator console 308 with operator control data 324.
Operator console 308 would then use this identification
information in conjunction with data 4310 in data field 4308
associated with tag number 1 to read the carrier-unique
greeting script found in a database. For example, operator
console 308 will go to voice script database 1004 to retrieve
the voice script 1008 identified by data 4310 and the carrier
identification. Operator console 308 (Le, automated voice
response unit 334) then plays this voice script 1008 to user
106. For example. the voice script 1008 may say “Welcome
to XYZ Cempany's voice mail system." or “1112110: you for
using XYZ Long Distance Company. Please enter your
calling card number now."

In addition to playing voice scripts 1008 and voice
messages 1308, base process 4102 can be coded to find tags
to perform numerous other functions. For example, base
process 4102 can be coded to perform validation of data
received. For example, base process 4102 may be coded to

0059

10

15

25

30

35

40

45

50

55

65

28

retrieve anomer tag that identifies that the calch number
should be validated to verify that the called number is the
correct number of digits (for example, 10 digits). In this
case, when base process reads the data 4310 associated with
that tag number, base process 4102 may start an additional
process 4106 that performs the validation. This results in a
validation request being sent to a validation system. Once
base process 4102 starts the additional process 4106. it
doesn‘t necessarily have to wait for the additional process
4106 to be completed before moving on to the next tag.

As another example, base process 4102 may be coded to
retrieve another tag that requires that the calling card num—
ber be validated. In this case, data field 4308 associated with

that tag will direct base process 4102 to send a request to a
validation system to validate the calling card number. Base
process 4102 continues to read tags and perform the opera—
tions dictated by the tags. Thus, changes to call processing
system 302 can be made by redefining the data 4310 in data
fields 4308.

Base process 4 102 need not look for every tag number
4304 within a DEF record 4104. It may, instead, only be
coded to search for certain tag numbers 4304 with a DEF
record 4104.

When processing the call, base process 4102 is also
capable of accepting and responding to inputs from user 106.
For example, data 4310 may also include strings which base
process 4102 uses to match against user input. For example,
base process 4102 may be programmed to retrieve 4304 that
define data fields 4308 to match user input strings “lit.”
“2th” "330.“ For each of these user input sequences, data
4310 uniquely defines a process 4106 to be started or another
base process 4102 to be started. For example, one particular
DEF record 4104 may define that when a user dials lit, a
second base process 4102 should be started. Data 43 0
identifies this base process with a base process number and
can also identify a specific DEF record 4104 for the new
base process 4102 to use. For example, a user dialing Ill may
indicate that the user wishes to access a speed-dial feature.
In this case, data 4310 and DEF record 4104 will tell base

process 4102 to start a speed-dial process when this string is
detected.

To recapitulate, processes 4102, 4106, perform operations
that can be done in a number of difl’erent ways. The manner
in which the operation is performed for a specific call is
dictated by the data 4420 pointed to by the tags 4304
referenced. As the process 4102, 4106 performs an opera-
tion, it may come to a point where data 4310 from the DEF
record 4104 is required. At this point, the tag 4304 is
referenced and its associated data 4310 retrieved.

Consider the base process 4102 as an example. A base
process 4102 is typically designed to collect information
from a user 106. validate the information collected, and
pursue a course of action based on the information collected

and the results of the validation. The general framework for
completing these operations is coded in the base process
4102: it must prompt the user for information, validate the
information. and follow a course of action. The data 4310

retrieved using tags 4304 prevides the specific actions to be
followed by the process 4102. These can include, but are not
limited to: the manner in which the user is prompted, the
order in which information is collected, the manner in which
information is validated, the number of additional chances at
user 106 is given after a failed validation, the action to take
in the event the number of additional chances is exhausted,

the amount of time to wait for input, the action to take if the
time—out period expires, and a large number of other param-
eters.

 



0060

 
5,619,554

29

Thus, the data 4310 found in DEF records 4104dictates
how the call is to be processed by base process 4102. New
features can be added, existing features changed or deleted,
and features customized for specific users by updating one
or more DEF records 4104. Thus, operational code does not
have to be modified and re—compiled to implement these
types of changes.

To minimize the amount of duplication of data 4310, DEF
records can be defined at various levels. FIG. 44is a diagram
illustrating how different levels of DEF records 4104 can be
used to optimize data storage.

Referring now to FIG. 44, a generic DEF record 4402
includes data 4310 that is common to all subscribers 114. A

group DEF record 4404 can contain data 4310 that is unique
to a customer 110. Because this data 4310 is unique to a
customer 110. it is not contained in generic DEF record
4402. If a particular customer 110 has a unique feature that
is different from other carriers 110, data 4310 for that feature
is found in group DEF record 4404.

Specific DEF record 4406 defines data 4310 that is
specific to a user 106. If a user 106 subscribes to features that
are unique from other users 106, data 4310 for those features
will be contained in specific DEF record 4406.

In search for data 4310 using tag numbers 4304, base
process 4102 will first stat}~ in specific DEF record 4406. If
tag number 4304 is not found in specific DEF record 4406,
base process 4102 then searches group DEF record 4404. If
tag number 4304is not found in group DEF record 4404,
base process 4102 then goes to generic DEF record 4402 to
find that tag number 4304. Thus, if a user 106 has a unique
feature, or that user‘s call is to be handled uniquely, the data
4310 instructing base process 4102 on how to handle that
call will be found in specific DEF record T3206 and used.

A DEF record manager is a set of functions calls used to
manage DEF records read by the application (for example,
the operator console 308]. The DEF record manager asso-
ciates a DEF record with a particular call process (base
process 4102). The allows the application to search for any
tag 4304 in the system or tags 4304within a particular DEF
record 4104. This is done so that some tags 4304 may be
accessed by any process 4102, 4106 that may require it
while other tags 4304 can be restricted only to the process
4102. 4106 reading the DEF record 4104containing the tag
4304.
4.0 Conclusion

While various embodiments of the present invention have
been described above, it should be understood that they have
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present invention should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

It should be noted that the block diagrams depicted
throughout this document illustrate an example of how the
functionality of the various systems can be implemented.
Although physical or logical architectures may be inferred
by the diagrams and the text describing these diagrams, it is
important to note that this is done by way of example only.
Numerous alternative physical auditor logical architectures
can be chosen when implementing the systems described
herein.

What is claimed is:

1. A method for storing voice data for a call processing
system. comprising the steps of:

(a) recording audio voice by an audio driver and storing
said audio voice in a first data bufier;

(b) encapsulating said recorded audio voice stored in said
first data buffer into data packets, thereby.creating

10

IS

20

25

30

35

45

50

55

60

65

30

voice data, wherein said step of encapsulating com-
prises the steps of:
i. checking said audio voice in said first data buffer to

determine whether a configurable length of silence is
detected; and

ii. commanding said audio driver to stop recording if
said configurable length of silence is detected; and

(c) storing said voice data in a database, wherein said step
of storing comprises the steps of:
i. checking said data packets for silence;
ii. discarding one of said data packets if said one of said

data packets does not contain any frames that have
detectable voice energy; and

iii. storing one of said data packets if said one of said
data packets does contain frames that have detectable
voice energy.

2. The method of claim 1, wherein said audio voice is an
audio message and said voice data is a voice message,
further comprising the steps of:

(d) sequentially numbering said data packets; and

(e) assigning a message number to said voice data.
3. The method of claim 1, wherein step (a) for recording

audio voice comprises the steps of:

i. recording audio voice as digital data;

ii. storing said audio voice in a first data buffer; and

iii. indicating to an audio thread when said first data buffer
is full.

4. The method of claim 3, wherein step (a) for recording
audio voice further comprises the step of sending an event
to said audio thread indicating that recording has begun.

5. The method of claim 3, wherein step (a) further
comprises the steps of:

iv. commanding an audio driver to begin recording said
audio voice and storing said audio voice in said first
data butter; and

v. commanding said audio driver to continue recording
said audio voice and storing said audio voice in a
second data buffer.

6. The method of claim 3, wherein said method for storing
voice data further comprises the steps of:

(d) placing said data packets into a frame block queue;
and

(e) setting an indicator that signals that said first data
bufier is available for storing additional audio voice.

7. The method of claim 6, wherein said step of checking
said audio voice comprises the steps of:

(i) checking each frame of audio voice as it is being
encapsulated into said data packets and determining a
number of silent frames; and

(ii) computing the number of silent frames to a predeter-
mined length of time to determine whether said con-
figured length of silence is exceeded; and

wherein step ([1) further comprises the step of instructing a
record thread to check data packets for silence if said
configurable length of silence is exceeded.

8. The method of claim 5, further comprising the steps of:

(d) detecting a DTMF tone indicating that recording is to
be stopped;

(e) stopping said recording of said audio voice; and

(g) checking said data packets for silence.
9. A system for storing voice data for a call processing

system, comprising:

an audio driver for recording aubio voice and storing said
audio voice in a first data buficr;

0060

 



0061

 
5,619,554

31

means for encapsulating said recorded audio voice stored
in said first data buller into data packets, thereby
creating voice data, wherein said means for encapsu-
lating comprises:

means for checking said audio voice in said first data 5
buffer to determine whether a configurable length of
silence is detected; and

means for commanding said audio driver to stop record—
ing if said configurable length of silence is detected;
and

means for storing said voice data in a database. wherein
said means for storing comprises:

means for checking said data packets for silence;

means for discarding one of said data packets if said one 15
of said data packets does not contain any frames that
have detectable voice energy: and

means for storing one of said data packets if said one of
said data packets does contain frames that have detect-
able voice energy. 20

10. The system of claim 9, wherein said audio voice is an
audio message and said voice data is a voice message.
further comprising:

means for sequentially numbering said data packets; and

means for assigning a message number to said voice data.
11. The system of claim 9, wherein said means for

recording audio voice comprises:

means for recording audio voice as digital data;

means fer storing said audio voice in a first data buifcr; 3t)
and

means for indicating to an audio thread when said first
data buffer is full.

12. The system of claim 11I wherein said means for
recording audio voice further comprises means for sending 35
an event to said audio thread indicating that chrding has
begun.

in

25

0061

32

13. The system of claim 11. wherein said means for
recording further comprises:

means for commanding an audio driver to begin recording
said audio voice and surfing said audio voice in said
first data buffer; and

means for commanding said audio driver to continue

recording said audio voice and storing said audio voice
in a second data bufier.

14. The system of claim 11. further cornprising:

means for placing said data packets into a frame block
queue; and

means for selling an indicator that signals that said first
data buffer is available for storing additional audio
voice.

15. The system of claim 9, wherein said means for
checking said audio voice comprises:

means for checking each frame audio voice as it is being
encapsulated into said data packets and determining a
number of silent frames;

means For comparing the number of silent frames to a
predetermined length of time to determine whether said
configured length of silence is exceeded; and

Whereirt said means for encapsulating further comprises
means for instructing a record thread to check data
packets for silence if said configurable length of silence
is exceeded.

16. The system of claim 13, further comprising:

means for detecting a DTMF tone indicating that record—
ing is to be stopped;

means for stopping said recording of said audio voice; and

means for checking said data packets for silence.

erases:  


