
Mobile Agents Coordination in Mobadtl

Gianluigi Ferrari, Carlo Montangero, Laura Semini, and Simone Semprini

Dipartimento di Informatica, Università di Pisa.
{giangi,monta,semini,semprini}@di.unipi.it

Abstract. We present and formalize Mobadtl, a model for network–
aware applications, extending the Oikos–adtl temporal–logic based ap-
proach to the specification and verification of distributed systems. The
model supports strong subjective mobility of agents under the control of
stationary guardians. Communications are based on asynchronous mes-
sage passing. The approach exploits the notions of coordination and re-
finement to deal separately with the specification of functional issues in
the agents, and with the specification of coordination policies, e.g. secu-
rity, routing, etc., in the guardians. The goal is to specify mobile agents
as independently as possible of the requirements related to the other
facets of distribution. The specification of an application is obtained by
instantiating the general model, refining it along different dimensions
corresponding to the different aspects of interest, and finally composing
the refinements. The main advantage, besides the increased flexibility of
the specification process, is that it is possible to specify rich coordina-
tion policies incrementally, while the functional units remain relatively
simple. We use Mobadtl to specify a simple electronic commerce applica-
tion, paying particular attention to the incremental specification of the
policies. We show how refined policies lead to stronger system properties.

1 Introduction

Present–day network computing technologies exploit mobile entities (either logi-
cal, like program codes and agents, or physical, like hand–held devices) that exe-
cute certain computational activities while moving around the network. A basic
concern in such a context is the complexity of the development of these network–
aware applications. Network–awareness means that behaviours strongly depend
on the network environment of the host in which the application is running.
Moreover, the programming focus is on structural or architectural rather than
algorithmic issues. The emerging network–aware programming mechanisms and
languages [15,10] provide effective infrastructures to support forms of mobility
and control of dynamically loaded software components and physical devices.

A certain amount of success has been achieved in the development of network–
aware applications over the WEB; however these experiences have shown the
difficulties of using traditional software technologies in the context of network–
aware computing. Therefore, from a Software Engineering perspective there is
a new challenging issue: the definition of structural and computational models
to provide designers with conceptual and programming abstractions to master

A. Porto and G.-C. Roman (Eds.): COORDINATION 2000, LNCS 1906, pp. 232–248, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

GOOGLE EXHIBIT 1043
Google LLC v. Blackberry Ltd.

IPR2017-01620Page 1 of 17
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Mobile Agents Coordination in Mobadtl 233

the overall architecture and the structure of the components of network–aware
applications.

In this paper we present Mobadtl, a temporal logic based model to specify
and develop network–aware applications. We introduce the model and its ax-
iomatic presentation in Oikos–adtl [22], a linear–time temporal logic specifically
designed to deal with distributed systems with asynchronous communications.
Our approach is based on the notions of coordination [7,1] and refinement calcu-
lus [4]. Coordination provides a powerful conceptual tool to specify and develop
systems in a compositional way. The refinement calculus simplifies the design
of a system by using incremental development techniques. In Mobadtl, we can
specify network–aware applications by separating functionality from structural
design: coordination provides primitives to glue together independent computa-
tional units, like those realizing the functionalities and those realizing security
and routing policies. Hence, coordinators are the basic conceptual and program-
ming abstractions to make applications adapt and react to the dynamic changes
of their network environments. However, functional specifications cannot ab-
stract completely from the policies: a policy that does not allow a component
to enter into a site may have a visible functional effect. Mobadtl provides the
necessary hooks to provide a very abstract description of the consequences of
the policies, allowing at the same time to postpone to the appropriate points
in the refinement process the specific decisions about the policies themselves.
Indeed, Mobadtl does not provide directly any specific policy: effective policies
must be explicitly specified through suitable refinement steps.

To illustrate how Mobadtl supports system specification we consider electronic
commerce. Electronic commerce has many aspects including security, distribu-
tion and recovery. It involves strong interaction patterns among the actors (e.g.
clients and vendors). These are typical features of network–aware applications
having a set of controlled activities with strong interactions over a distributed en-
vironment. In the example, we first define the behaviour of a pair of components:
a customer, and an agent sent to order a pizza, and derive the overall properties
of the application assuming that the involved sites behave as the generic sites of
our model. We then refine the application by fixing some policies for these sites,
and show which new properties of the application can be derived.

The remainder of this paper is organized as follows. In Section 2, we present
our abstract model for network–aware computing. Section 3 reviews Oikos–adtl.
The axiomatization of the model is subsequently defined in Section 4. In Section 5
we apply the framework to the specification of a simple electronic commerce
application. We conclude the paper with some remarks about related works and
future research directions.

2 A Model for Network–Aware Computing

This section presents our abstract model for network–aware computing. First,
we classify the models for network–aware computing presented in the literature
along the following axis.

Page 2 of 17
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

234 G. Ferrari et al.

The nature of mobile units: They can be any combination of code, data and
control [15,10]. Models where only pieces of code can be moved are said to
support a weak form of mobility, while models where the units of mobility are
processes (code + control) or agents (code + control + data) support strong
mobility.

There are programming languages designed only to provide the ability of
downloading code for execution (e.g. Java [3]). More sophisticated languages
support migration of entire computations (e.g. Telescript [29]). A number of
Distributed process calculi have been proposed as formal models for network–
aware programming. We mention the Distributed Join-Calculus [14], the Dis-
tributed π-Calculus [18], the Ambient Calculus [6], and the Seal Calculus [28].
All these calculi advocate programming models which support strong mobility.
Coordination-based models of behaviours have been adopted in the design of the
Klaim experimental programming language [11], the σπ calculus [2] and Mobile
Unity [21]. Klaim extends the Linda [16,8] model with multiple distributed tu-
ple spaces and provide programming abstractions to support process mobility.
σπ permits the specification of dynamic networks of components (i.e. networks
which reconfigure their communication linkages): a component name is the unit
of mobility. In Mobile Unity the unit of mobility is a component. Program states
are equipped with a distinguished variable, the location variable, and a change
of the value of the location variable corresponds to a component migration.

Mobility extent: If not all the components can move, it is useful to distinguish
between mobile and stationary components. In the Aglets API [19], the aglet
context provides a bounded environment where mobile components live. Aglet
contexts are considered as not transferable. Similarly, Telescript’s places are
stationary components.

The dichotomy between stationary and mobile components also emerges in
the foundational calculi. For instance, Klaim’s nodes and Distributed π calculus
allocated threads are stationary components. In the Ambient calculus, instead,
ambients are the units of movement and they can be always moved as a whole
including subambients. However, it is difficult to prove behavioural properties
of ambients as the control of movements is distributed over all ambients (any of
them can exercise the movement capabilities). A type system that constraints
mobility of ambients has been proposed in [5]. Using type information one can
express whether an ambient is mobile or stationary. To constrain explicitly am-
bient movements, an extension of the basic calculus has been proposed in [20]:
the movement interactions become synchronous operations, and any movement
can take place only if the two participant ambients agree.

Location awareness: The units can be either location aware or not. Location
awareness results in the ability of choosing between a set of possible next actions
depending on the current location. Locations reflect the idea of administrative
domains and computations at a certain location are under the control of a specific
authority.

Page 3 of 17
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Mobile Agents Coordination in Mobadtl 235

Basically, in all models the units are location aware. The notions of ambi-
ents in the Ambient calculus, of seals in the Seal calculus, and localities in the
Distributed Join calculus and Distributed π calculus correspond to variants of
the general notion of locations. Finally, in Mobile Unity, location awareness is
modelled by the value hold by the location variable.

Location control: The mobile units can control their location (proactive or subjec-
tive mobility), or can be moved by other entities (reactive or objective mobility).
For instance, in Mobile Unity and Klaim only a proactive form of mobility is
allowed, while the seals are moved by their parent in the Seal calculus. The Am-
bient calculus is an hybrid: ambients can decide to move, but they carry their
sub–ambients with them, which are thus moved in an objective way.

Communication model: Examples are the transient shared memory of Mobile
Unity; the name passing over a named channel in the Distributed Join calculus;
the anonymous asynchronous message passing via explicit addressing of Klaim.
In general, remote interactions are handled through explicit naming: a com-
ponent which interacts over a non-local channel has to know the place where
the channel is located. An exception to this schema is the Ambient calculus:
the knowledge of an ambient name is not enough to access its services; it is
necessary to know the route to the ambient. Finally, interposition mechanisms
(wrappers), which encapsulate components to control and monitor communica-
tions have been exploited in [27]. Wrappers support the enforcement of secu-
rity properties by constraining communications between trusted and untrusted
components: wrappers explicitly specify which are the allowed communications
among components.

In our model, a system is based on an immutable net of elaboration nodes:
the neighborhoods. The neighborhood is a bounded environment where several
components (both stationary and mobile) live. Components have a unique name,
e.g. determined by the initial neighborhood and a suffix to distinguish siblings.

The notion of neighborhood basically corresponds to that of location. Each
neighborhood is associated with a stationary component, the guardian. The
knowledge of their own guardian makes components (both stationary and mo-
bile) location aware. A guardian acts as an interposition interface among compo-
nents and neighborhoods: it specifies and implements communication and move-
ment policies. In other words, guardians monitor the components and limit the
resources they can use. More precisely, communications between components
occur via the guardians. Communications are based on asynchronous message
passing. Guardians provide also routing facilities to forward messages and to
handle migrating components.

The model supports strong mobility and mobility is subjective, but compo-
nent migration requests can be refused by guardians, for instance because of
security reasons. Indeed, guardians intercept messages and components and can
decide which messages and components can enter or leave the neighborhood they
control. The following figure provides a pictorial representation of our model.

Page 4 of 17
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

236 G. Ferrari et al.

���
���
���
���

����
����
����
����

���
���
���
���

neighborhood

communication

guardian

component

Fig. 1. Communication among components in different neighborhoods: messages and
migrating components are routed via the guardians at both ends. Which other guardian
may be involved is fixed by the routing and security policies at lower refinement steps.

The notion of neighborhood permits to model several crucial issues of network–
aware programming. For instance a neighborhood can be used to represent an
administrative domain where components are under the control of a single au-
thority (the guardian), a naming domain where components adopt a given nam-
ing policy, and also an address space. The current notion of neighborhood is not
complete. For instance, important requirements are not covered: the ability to
define new neighborhoods and merge existing neighborhoods is missing.

Asynchronous communication permits to keep the model abstract from any
specific communication protocol. The model itself does not embody any routing
or security policy for the communications between guardians. Effective routing
and security policies must be explicitly specified through suitable refinement
steps. The development approach deals separately with functional, security, and
mobility issues. For instance, we can fully specify the functionality of a com-
ponent by giving only very abstract description of the security requirements. A
complete system specification is therefore obtained by plugging together different
refinements corresponding to different aspects of the system.

3 Background: Oikos–adtl

Oikos–adtl is a specification language for distributed systems based on asyn-
chronous communications. It is based on an asynchronous, distributed, temporal
logic, which extends Unity [9] to deal with components and events.

The language, its semantics, and a number of theorems have been introduced
in [22,26]. We recall here the most important concepts.

The Computational Model. A system is characterized by a list of component
names, and a set of state transitions, each associated to a component. A compu-
tation is a graph of states like the one in the figure below (dotted arrows denote
multiple transition steps, plain arrows single transitions or message emission).
Any state of component M is either the result of the application of a local tran-
sition, (as the one establishing q in the figure below), or the result of a send
operation originated in a distinguished component (as message r).

Page 5 of 17
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

