
Page 1 of 238 GOOGLE EXHIBIT 1031

IN A NUTSHELL
A Des/atop Quick Reference

Daw‘a’ Flanagan

Page 2 of 238

JAVA 2/1.2 & 1.3

i—i

Z

>

E
H
CA

E
n1
L—‘
H

FLANAGAN

O’REILLY"

Page 3 of 238

JAVM
IN A NUTSHEL

A Desktop Quick Reference

Page 4 of 238

THE

JAVA”
SERIES

Exploring Java”

Java“ Threads

Java“ Network Programming

Javam Virtual Machine

Java” AWT Reference

Java” Language Reference

Java“ Fundamental Classes Reference

Database Programming with

JDBC'” and Javam

Javaw Distributed Computing

Developing Java Beans’"

Java” Security

Java“ Cryptography

Java” Swing

Java“ Servlet Programming

Java” I/O

Java'” 2D Graphics

Enterprise JavaBeans’“

Also from O’Reilly

Java“ in a Nutshell

Java” in a Nutshell, Deluxe Edition

Java'" Examples in a Nutshell

Java” Enterprise in a Nutshell

Java” Foundation Classes in a Nutshell

Java'" Power Reference: A Complete
Searchable Resource on CD-ROM

Page 5 of 238

JAAW
IN A NUTSHELL

A Des/atop Quick Reference

Third Edition

David Flanagan

O’REILLY®

Beijing ‘ Cambridge ' Fambam - Kb'ln - Paris - Sebastopol - Taipei ' Tokyo

Page 6 of 238

Javam in a Nutshell, Third Edition
by David Flanagan

Copyright © 1999, 1997, 1996 O’Reilly 8; Associates, Inc. All rights reserved.
Printed in the United States of America

Published by O’Reilly 8: Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Paula Ferguson

Production Editor: Mary Anne Weeks Mayo

Printing History:

February 1996: First Edition.

May 1997: Second Edition.

November 1999: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks and The JavaTM Series is a trademark of O’Reilly 8: Associates,
Inc. The association of the image of aJavan tiger with the topic ofJava is a trademark
of O’Reilly & Associates, Inc. Java and all Java—based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc, in the United States
and other countries. O’Reilly 8; Associates, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly 8: Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

ISBN: 1—56592—487-8
[M]

Page 7 of 238

Table of Contents

Preface xi

Part 1: Introducingjava

Chapter 1 —Introduction 3

What Is Java? 3

Key Benefits of Java 6

An Example Program 9

Chapter 2—]ava Syntaxfrom the Ground Up 19
The Unicode Character Set 20

Comments 20

Identifiers and Reserved Words 21

Primitive Data Types 22

Expressions and Operators 29
Statements 43

Methods 59

Classes and Objects 61

Array Types 64

Reference Types 70

Packages and the Java Namespace 76

Java File Structure 78

Defining and Running Java Programs 79

Differences Between C and Java 80

Page 8 of 238

Chapter 3—- Object—Om’ertted Programming injava 82
The Members of a Class 82

Creating and Initializing Objects 88

Destroying and Finalizing Objects 92
Subclasses and Inheritance 95

Data Hiding and Encapsulation 104
Abstract Classes and Methods 110

Interfaces 112

Inner Class Overview 117

Static Member Classes 118

Member Classes 119
Local Classes 124

Anonymous Classes 127

How Inner Classes Work 130
Modifier Summary 132

C++ Features Not Found in Java 135

Chapter 4— Tbejava Platform 136

Java Platform Overview 136

Strings and Characters 138
Numbers and Math 140

Dates and Times 143

Arrays 144
Collections 145

Types, Reflection, and Dynamic Loading 147
Threads 149

Files and Directories 155

Input and Output Streams 154

Networking 158
Processes 161

Security 161

Cryptography 163

Chapter 5—java Security 166

Security Risks 166

Java VM Security and Class File Verification 167

Authentication and Cryptography 168
Access Control 168

Security for Everyone 171
Permission Classes 175

Page 9 of 238

Chapter 6—favaBeans 1 78

Bean Basics 179

JavaBeans Conventions 181
Bean Contexts and Services 187

Chapter 7—java Programming and Documentation '

Conventions 189

Naming and Capitalization Conventions 189

Portability Conventions and Pure Java Rules 190
Java Documentation Cements 192

Chapter 8—fava Development Tools 200

appletviewer 200

extcheck 204 ‘

jar 204

jarsigner 206
java 208

javac .. .l 214

javadoc 217

javah 221

javakey 225

javap, 225

jdb 227

keytool 231
nativeZascii 234

policytool, 235
serialver .. it 256

Part II: API Quick Reference

How To Use This Quick Reference 239

Chapter 9# Thejava. beans Package 248

Chapter 1 0— Thejava.beans.heancontext Package 264(

Page 10 of 238

Chapter 1 1— Thejava. z‘o Package 280

Chapter 12— Thejavalartg Package 328

Chapter 13— The javalangrefPackage 3 77

Chapter 14— Thejavalangreflect Package 381

Chapter 15— Thejava. math Package 391

Chapter 1 6— Thejava. net Package 395

Chapter 1 7— Thejavasecartty Package 418

Chapter 18— Thejavasecarttyacl Package 453

Chapter 19— Thejavasecart'tycert Packaget 457

Chapter 20—— Thejava.secarz’ty.tnterfaces Package 466

Chapter 21 — Thejavasecarttyspec Package 4 70

Chapter 22—— Thejavatext Package 4 76

Chapter 23— Thejavaattl Package 49 7

Chapter 24— Thejavaatt‘l.jar Package 544

Chapter 25— Thejavaatt'lzzp Package 550

Chapter 26—— Thejavax. crypto Package 561

Chapter 2 7— Thejar/ax. crypto. interfaces Package 576

Page 11 of 238

Chapter 28— Thejavax. cryptospec Package 578

Chapter 29—— Class, Method, and Field Index 584

Index 615

Page 12 of 238

Preface

This book is a desktop quick reference for JavaTM programmers, designed to sit
faithfully by your keyboard while you program. Part I of the book is a fast~paced,
“no-fluff” introduction to the Java programming language and the core APIs of the
Java platform. Part II is a quick-reference section that succinctly details every class
and interface of those core APIs. The book covers Versions 1.0, 1.1, 1.2, and 1.3
beta of Java.

Changes Since the Second Edition
Readers who are familiar with the second edition of this book will notice a num-

ber of changes in this edition. Most notably, the AWT and applet APIs are no
longer documented in this book. The Java platform tripled in size between Java
1.1 and Java 1.2. Accordingly, and unavoidably, jam in a Nutshell has been split
into three volumes. The volume you are now reading documents only the essen-
tial APIs of the platform, including the basic language and utility classes, as well as
classes for input/output, networking, and security. See the Table of Contents for a
complete list of the packages documented here.

If you are a client—side programmer who is working with graphics or graphical
user interfaces, you will probably want to supplement this book with jam Foun—
dation Classes in a Nutshell, which documents all the graphics- and GUI—related
classes, including the AWT, Swing, Java 2D, and applet APIs. And, if you are an
server-side or enterprise programmer, you will likely be interested in Java Enter-
prise in a Nutshell.

Another big change is that Part I of this book has been almost entirely rewritten.
The first and second editions of this book assumed knowledge of and experience
with C or C++. Now that Java has come thoroughly into its own, that assumption
no longer seems appropriate, so I have rewritten and expanded Chapters 2 and 3
to explain Java without any reference to C, C++, or any other programming lan—
guage. Programmers with a modest amount of experience should now be able to
learn Java programming from this book. These introductory chapters are written in

Page 13 of 238

a tight, concise style, so programmers who already know Java should find them
useful as a language reference.

Another new feature of Part I is Chapter 4, The java Platform. This chapter is an
introduction to the APIs documented in the reference section of the book. It

includes more than 60 detailed API usage examples that show how to accomplish
common tasks with the predefined classes of the Java platform.

Finally, the quick—reference seCtion in Part II of the book has a new look that dra—
matically improves the readability of the reference material and packs even more
API information into a small space. Even if you are already familiar with the sec-
ond edition, you should take the time to read the How To Use This Quick Reference
section at the beginning of Part II; it explains the new quick-reference format and
shows you how to get the most out of it.

Contents of This Boole

The first eight chapters of this book document the Java language, the Java plat—
form, and the Java development tools that are supplied with Sun’s Java SDK (soft—
ware development kit):

Chapter 1: Introduction
This chapter is an overview of the Java language and the Java platform that
explains the important features and benefits of Java. It concludes with an
example Java program and walks the new Java programmer through it line by
line.

Chapter 2: java Syntax From the Ground Up
This chapter explains the details of the Java programming language. It is a
long and detailed chapter. Experienced Java programmers can use it as 3 lan-
guage reference. Programmers with substantial experience with languages
such as C and C++ should be able to pick up Java syntax by reading this
chapter. The chapter does not assume years of programming experience, or
even familiarity, with C or C++, however. Even beginning programmers, with
only modest experience, should be able to learn Java programming by study-
ing this chapter carefully.

Chapter 3; Object-Oriented Programming infava
This chapter describes how the basic Java syntax documented in Chapter 2 is
used to write object-oriented programs in Java. The chapter assumes no prior
experience with 00 programming. It can be used as a tutorial by new pro—
grammers or as a reference by experienced Java programmers.

Chapter 4: Thejava Platform
This chapter is an overview of the essential Java APIs covered in this book, It
contains numerous short examples that demonstrate how to perform common
tasks with the classes and interfaces that comprise the Java platform. Program-
mers who are new to Java, and especially those who learn best by example,
should find this a valuable chapter.

xii Preface

Page 14 of 238

Chapter 5: java Security
This chapter explains the Java security architecture that allows untrusted code
to run in a secure environment from which it cannot do any malicious dam—
age to the host system. It is important for all Java programmers to have at
least a passing familiarity with Java security mechanisms.

Chapter 6.- javaBeans
This chapter documents the JavaBeansTM component framework and explains
what programmers need to know to create and use the reusable, embeddable
Java classes known as beans.

Chapter 7: java Programming and Documentation Conventions
This chapter documents important and widely adopted Java programming
conventions and also explains how you can make your Java code self—docu—
menting by including specially formatted documentation cements.

Chapter 8: java Development Tools
The Java SDK shipped by Sun includes a number of useful Java development
tools, most notably the Java interpreter and the Java compiler. This chapter
documents those tools.

These first eight chapters teach you the Java language and get you up and running
with the Java APIs. The bulk of the book, however, is the API quick reference,
Chapters 9 through 29, which is a succinct but detailed API reference formatted for
optimum ease of use. Please be sure to read the How To Use This Quick Reference
section, which appears at the beginning of the reference section; it explains how
to get the most out of this section.

Related Books

O’Reilly & Associates, Inc. publishes an entire series of books on Java program-
ming. These books include java Foundation Classes in a Nutshell and java Enter-
prise in a Nutshell, which, as mentioned earlier, are companions to this book.

A related reference work is the Java Power Reference. It is an electronic Java quick
reference on CD-ROM that uses the java in a Nutshell style. But since it is
designed for viewing in a web browser, it is fully hyperlinked and includes a pow-
erful search engine. It is wider in scope but narrower in depth than the java in a
Nutshell books. The java Power Reference covers all the APIs of the Java 2 plat-
form, plus the APIs of many standard extensions. But it does not include tutorial
chapters on the various APIs, nor does it include descriptions of the individual
classes.

You can find a complete list of Java books from O’Reilly & Associates at
http://javaoreillycomfl Books that focus on the core Java APIs, as this one does,
include:

Exploringjava, by Pat Niemeyer and Joshua Peck
A comprehensive tutorial introduction to Java, with an emphasis on client—side
Java programming.

Preface xiii

Page 15 of 238

java Threads, by Scott Oaks and Henry Wong
Java makes multithreaded programming easy, but doing it right can still be
tricky. This book explains everything you need to know.

java 1/0, by Elliotte Rusty Harold
Java’s stream-based input/output architecture is a thing of beauty. This book
covers it in the detail it deserves.

java Network Programming, by Elliotte Rusty Harold
This book documents the Java networking APIS in detail.

java Security, by Scott Oaks 1
This book explains the Java access-control mechanisms in detail and also doc-
uments the authentication mechanisms of digital signatures and message
digests.

java erptograpby, by Jonathan Knudsen
Thorough coverage of the Java Cryptography Extension, the javax.cnypto.*
packages, and everything you need to know about cryptography in Java.

Developingjava Beans, by Robert Englander
A complete guide to writing components that work with the JavaBeans API.

java Programming Resources Online

This book is a quick reference designed for speedy access to frequently needed
information. It does not, and cannot, tell you everything you need to know about
Java. In addition to the books listed earlier, there are several valuable (and free)

electronic sources of information about Java programming.

Sun’s main web site for all things related to Java is http://javasuracom/ The web
site specifically for Java developers is brazfldeueloperjavasuncom/ Much of the
content on this developer site is password—protected, and access to it requires
(free) registration.

Sun distributes electronic documentation for all Java classes and methods in its
javaa’oc HTML format. Although this d0cumentation is somewhat difficult to navi-
gate and is rough or outdated in places, it is still an excellent starting point when
you need to know more about a particular Java package, class, method, or field. If
you do not already have the javaa'oc files With your Java distribution, see
brpfljavasurmom/docs/ for a link to the latest available version. Sun also dis-
tributes its excellent Java Tutorial online. You can browse and download it from
btips/flauasun.com/docs/booles/tutorial/

For Usenet discussion (in English) about Java, try the complangjauaprogrammer
and related comp.lang.java.* newsgroups. You can find the very comprehensive
complangjavaprogrammer FAQ by Peter van der Linden at http://wwwafiacom/
javafaq.btm.

Finally, don’t forget O’Reilly’s Java web site. bthfljavaorefllycom/ contains Java
news and commentary and a monthly tips~and-tricks column by O’Reilly Java
author Jonathan Knudsen.

xiv Preface

Page 16 of 238

Examples Online

The examples in this book are available online and can be downloaded from the

home page for the book at http://wwworeilly,com/catalogfiavanutj You also may
want to visit this site to see if any important notes or errata about the book have
been published there.

Conventions Used in This Boole

We use the following formatting conventions in this book:

Italic

Used for emphasis and to signify the first use of a term. Italic is also used for
commands, email addresses, web sites, FTP sites, file and directory names,
and newsgroups.

Bold

Occasionally used to refer to particular keys on a computer keyboard or to
portions of a user interface, such as the Back button or the Options menu.

Letter Gothic

Used in all Java code and generally for anything that you would type literally
when programming, including keywords, data types, constants, method
names, variables, class names, and interface names.

Letter Gothic Obiique

Used for the names of function arguments and generally as a placeholder to
indicate an item that should be replaced with an actual value in your pro—
gram.

Franklin, Gothic Book Condensed

Used for the Java class synopses in the quick-reference section. This very nar-
row font allows us to fit a lot of information on the page without a lot of dis-
tracting line breaks. This font is also used for code entities in the descriptions
in the quick-reference section.

Franklin Gothic Deml Condensed

Used for highlighting class, method, field, property, and constructor names in
the quick-reference section, which makes it easier to scan the class synopses.

Franklin Gothic Book Compressed Italic

Used for method parameter names and comments in the quick—reference sec—
tion.

Requestfor Comments

Please help us improve future editions of this book by reporting any errors, inac-
curacies, bugs, misleading or confusing statements, and even plain old typos that
you find. Please also let us know what we can do to make this book more useful
to you. We take your comments seriously and will try to incorporate reasonable
suggestions into future editions. You can contact us by writing:

Preface xv

Page 17 of 238

O’Reilly & Associates, Inc.
101 Morris Street

Sebastopol, CA 95472
1-800-998—9938 (in the United States or Canada)
1-707-829-051 5 (international/local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

b00kquestions®oreilb1.com

We have a web site for the book, where we’ll list examples, errata, and any plans
for future editions. You can access this page at:

max/flown).oreilbx.com/camlogflamnut3/

For more information about this book and others, see the O’Reilly web site:

bttp://www.oreilly.com

How the Quick Reference Is Generated

For the nerdy or merely inquisitive reader, this section explains a bit about how
the quick-reference material in jam in a Nutshell and related books is created.

As Java has evolved, so has my system for generating Java quick-reference mate-
rial. The current system is part of a larger commercial documentation browser sys-
tem I’m developing (Visit http://wwwdavidflanagun.comflude/ for more
information about it). The program works in two passes: the first pass collects and
organizes the API information, and the second pass outputs that information in the
form of quick-reference chapters.

The first pass begins by reading the class files for all of the classes and interfaces
to be documented. Almost all of the API information in the quick reference is
available in these class files. The notable exception is the names of method argu-
ments, which are not stored in class files. These argument names are obtained by
parsing the Java source file for each class and interface. Where source files are not
available, I obtain method argument names by parsing the API documentation
generated by javadoc. The parsers I use to extract API information from the source
files and javadoc files are created using the Antlr parser generator developed by
Terrence Parr of the Magelang Institute. (See btqr/fluwwflnflnorg/ for details on
this very powerful programming tool.)

Once the API information has been obtained by reading class files, source files,
and javadoc files, the program spends some time sorting and cross—referencing
everything. Then it stores all the API information into a single large data file.

The second pass reads API information from that data file and outputs quick-refer-
ence chapters using a custom SGML format. The SGML markup is fairly complex,
but the code that generates it is quite mundane. Once I’ve generated the SGML

xvi Preface

Page 18 of 238

output, I hand it off to the production team at O’Reilly & Associates. They process
it and convert it to troff source code. The troff source is processed with the GNU
grofi‘ program (fip://fip.gnu.org/gnu/grofl/) and a custom set of troff macros to
produce PostScript output that is shipped directly to the printer.

Acknowledgments

Many people helped in the creation of this book, and I am grateful to them all. I
am indebted to the many, many readers of the first two editions who wrote in
with comments, suggestions, bug reports, and praise. Their many small contribu-
tions are scattered throughout the book. Also, my apologies to those who made
the many good Suggestions that could not be incorporated into this edition.

Paula Ferguson, a friend and colleague, has been the editor of all three editions of
this book. Her careful reading and always-practical suggestions have made the
book stronger, clearer, and more useful. She guided the evolution of Java in a
Nutshell from a single book into a three—volume series and, at times, juggled edit~
ing tasks for all three books at once. Finally, Paula went above and beyond the
call of editorial duty by designing the hierarchy diagrams found at the start of each
reference chapter.

Mike Loukides provided high-level direction and guidance for the first edition of
the book. Eric Raymond and Troy Downing reviewed that first edition—they
helped spot my errors and omissions and offered good advice on making the
book more useful to Java programmers.

For the second edition, John Zukowski reviewed my Java 1.1 AWT quick—reference
material, and George Reese reviewed most of the remaining new material. The
second edition was also blessed with a “dream team" of technical reviewers from

Sun. John Rose, the author of the Java inner class specification, reviewed the chap—
ter on inner classes. Mark Reinhold, author of the new character stream classes in

java . 1' 0, reviewed my documentation of these classes. Nakul Saraiya, the designer
of the new Java Reflection API, reviewed my documentation of the
java.lang.reflect package. I am very grateful to these engineers and architects;
their efforts ‘made this a stronger, more accurate book.

The third edition also benefited greatly from the contributions of reviewers who
are intimately familiar with the Java platform. Joshua Bloch, one of the primary
authors of the Java collections framework, reviewed my descriptions of the collec-
tions classes and interfaces. Joshua was also helpful in discussing the Timer and
TimerTask classes of Java 1.5 with me. Mark Reinhold, creator of the
java .1 ang. r‘ef package, explained the package to me and reviewed my documen—
tation of it. Scott Oaks reviewed my descriptions of the Java security and cryptog-
raphy classes and interfaces. Joshua, Mark, and Scott are all engineers with Sun
Microsystems, and I’m very grateful for their time. The documentation of the
javax.crypto package and its subpackages was also reviewed by Jon Eaves. Jon
worked on a clean-room implementation of the Java Cryptography Extension
(which is available from htqa-flwwwabaflerau/L and his cements were quite
helpful. Jon now works for Fluent Technologies (htmflwwwfluentcomaufl con-
sulting in Java and electronic commerce. Finally, Chapter 1 was improved by the
comments of reviewers who were not already familiar with the Java platform:

Preface xvii

Page 19 of 238

Christina Byrne reviewed it from the standpoint of a novice programmer, and
Judita Byrne of Virginia Power offered her comments as a professional COBOL
programmer.

The O’Reilly 8: Associates production team has done its usual fine work of creating
a book out of the electronic files I submit. My thanks to them all. And a special
thanks to Lenny Muellner and Chris Maden, who worked overtime to implement
the new and improved format of the quick-reference section.

As always, my thanks and love to Christie.

David Flanagan
http://wwwdam'dflanagan.com/
September 1999

xviii Preface

Page 20 of 238

IntroducingJava

Part I is an introduction to the Java language and the Java platformr These

chapters provide enough information for you to get started using Java

right away

Chapter 1, Introduction

Chapter 2, java Syntax From the Ground Up

Chapter 3, Object-Oriented Programming infava

Chapter 4, Tbefava Platform

Chapter 5, java Security

Chapter 6, javaBeans

Chapter 7, java Programming and Documentation Conventions

Chapter 8, java Development Tools

Page 21 of 238

CHAPTER 1

Introduction

Welcome to Java. Since its introduction in late 1995, the Java language and plat-
form have taken the programing world by storm. This chapter begins by explain-
ing what Java is and why it has become so popular. Then, as a tutorial
introduction to the language, it walks you through a simple Java program you can
type in, compile, and run.

What Isjava?

In discussing Java, it is important to distinguish between the Java programming
language, the Java Virtual Machine, and the Java platform. The Java programming
language is the language in which Java applications (including applets, servlets,
and JavaBeans components) are written. When a Java program is compiled, it is
converted to byte codes that are the portable machine language of a CPU architec—
ture known as the Java Virtual Machine (also called the Java VM or JVM). The JVM
can be implemented directly in hardware, but it is usually implemented in the
form of a software program that interprets and executes byte codes.

The Java platform is distinct from both the Java language and Java VM. The Java
platform is the predefined set of Java classes that exist on every Java installation;
these classes are available for use by all Java programs The Java platform is also
sometimes referred to as the Java runtime environment or the core Java APIs
(application programming interfaces). The Java platform can be extended with
optional standard extensions. These extension APIs exist in some Java installations,
but are not guaranteed to exist in all installations.

TheJava Programming Language

The Java programming language is a state—of—the—art, object—oriented language that
has a syntax similar to that of C. The language designers strove to make the Java
language powerful, but, at the same time, they tried to avoid the overly complex
features that have bogged down other object-oriented languages, such as C++. By
keeping the language simple, the designers also made it easier for programmers to

uananptwul

Page 22 of 238

write robust, bug~free code. As a result of its elegant design and next—generation
features, the Java language has proved wildly popular with programmers, Who
typically find it a pleasure to work with Java after struggling with more difficult,
less powerful languages.

TbeJava Virtual Machine

The Java Virtual Machine, or Java interpreter, is the crucial piece of every Java
installation. By design, Java programs are portable, but they are only portable to
platforms to which a Java interpreter has been ported. Sun ships VM implementa-
tions for its own Solaris operating system and for Microsoft Windows (95/98/NT)
platforms. Many other vendors, including Apple and various Unix vendors, pro-
vide Java interpreters for their platforms. There is a freely available port of Sun’s
VM for Linux platforms, and there are also other third-party VM implementations
available. The Java VM is not only for desktop systems, however. It has been
ported to set-top boxes, and versions are even available for hand-held devices that
run Windows CE and PalmOS.

Although interpreters are not typically considered high—performance systems, Java
VM performance is remarkably good and has been improving steadily. Of particu—
lar note is a VM technology called just-in-time (JIT) compilation, whereby Java
byte codes are converted on—the-fly into native-platform machine language, boost-
ing execution speed for code that is run repeatedly. Sun’s new Hotspot technology
is a particularly good implementation of JIT compilation.

Thejava Platform

The Java platform is just as important as the Java programming language and the
Java Virtual Machine. All programs written in the Java language rely on the set of
predefined classes" that comprise the Java platform. Java classes are organized into
related groups known as packages. The Java platform defines packages for func—
tionality such as input/output, networking, graphics, user—interface creation, secu—
rity, and much more.

The Java 1.2 release was a major milestone for the Java platform. This release
almost tripled the number of classes in the platform and introduced significant
new functionality. In recognition of this, Sun named the new version the Java 2
Platform This is a trademarked name created for marketing purposes; it serves to
emphasize how much Java has grown since its first release. However, most pro-
grammers refer to the Java platform by its official 'version number, which, at the
time of this writing, is 1.2.1'

It is important to understand what is meant by the term platform. To a computer
programmer, a platform is defined by the APIs he or she can rely on when writing
programs. These APIs are usually defined by the operating system of the target
computer. Thus, a programmer writing a program to run under Microsoft Windows

* A class is a module of Java code that defines a data structure and a set of methods (also called proce-
dures, functions, or subroutines) that operate on that data.

1- Although there is currently a beta release of Java 1.3 available

4 Chapter 1 — Introduction

Page 23 of 238

must use a different set of APIs than a programmer writing the same program for
the Macintosh or for a Unix-based system. In this respect, Windows, Macintosh,
and Unix are three distinct platforms

Java is not an operating system.* Nevertheless, the Java platform—particularly the
Java 2 Platform—provides APIs with a comparable breadth and depth to those
defined by an operating system. With the Java 2 Platform, you can write applica—
tions in Java Without sacrificing the advanced features available to programmers
writing native applications targeted at a particular underlying operating system. An
application written on the Java platform runs on any operating system that sup-
ports the Java platform. This means you do not have to create distinct Windows,
Macintosh, and Unix versions of your programs, for example. A single Java pro—
gram runs on all these operating systems, which explains why “Write once, run
anywhere” is Sun’s motto for Java.

It also explains why companies like Microsoft might feel threatened by Java. The
Java platform is not an operating system, but for programmers, it is an alternative
development target and a very popular one at that. The Java platform reduces pro-
grammers’ reliance on the underlying operating system, and, by allowing programs
to run on top of any operating system, it increases end users’ freedom to choose
an operating system.

Versions ofjava

As of this writing, there have been four major versions of Java. They are:

jam 1.0

This was the first public version of Java. It contained 212 classes organized in
8 packages. There is a large installed base of web browsers that run this ver-
sion of Java, so this version is still in use for writing simple applets—Java pro-
grams that are included in web pages. (See java Foundation Classes in a Nut—
shell (O’Reilly) for a discussion of applets.)

java 11
This release of Java doubled the size of the Java platform to 504 classes in 25
packages. It introduced inner classes, an important change to the Java lan-
guage itself, and included significant performance improvements in the Java
VM. This version of Java is out of date, but is still in use on systems that do
not yet have a stable port ofJava 1.2.

law 1.2

This is the latest and greatest significant release of Java; it tripled the size of
the Java platform to 1520 classes in 59 packages. Because of the many new
features included in this release, the platform was renamed and is now called
the Java 2 Platform.

* There is a Java-based operating system, however; it is known as JavaOS.

What Isjava? 5

uauanptmu]

Page 24 of 238

java 1.3 (beta)
This release includes minor corrections and updates to the Java platform, but
does not include major changes or significant new functionality.

In addition, Sun has instituted a process for proposing and developing standard
extensions to the Java platform. In the future, most new functionality is expected
to take the form of a standard extension, rather than be a required part of every
Java installation.

In order to work with Java 1.0 or Java 1.1, you have to obtain the Java Develop—
ment Kit (JDK) for that release. As of Java 1.2, the JDK has been renamed and is
now called a Software Development Kit (SDK), so we have the Java 2 SDK or,
more precisely, the Java 2 SDK, Standard Edition, Version 1.2 (or Version 1.3 beta).
Despite the new name, many programmers still refer to the development kit as the
JDK.

Don’t confuse the JDK (or SDK) with the Java Runtime Environment (JRE). The
JRE contains everything you need to run Java programs, but does not contain the
tools you need to develop Java programs (i.e., the compiler). You should also be
aware of the Java Plug—in, a version of the Java 1.2 (and 1.3) JRE that is designed
to be integrated into the Netscape Navigator and Microsoft Internet Explorer web
browsers.

In addition to evolving the Java platform over time, Sun is also trying to produce
different versions of the platform for different uses. The Standard Edition is the
only version currently available, but Sun is also working on the Java 2 Platform,
Enterprise Edition (J2EE), for enterprise developers and the Java 2 Platform, Micro
Edition, for consumer electronic systems, like handheld PDAs and cellular tele-
phones.

Key Benefits ofjava
Why use Java at all? Is it worth learning a new language and a new platform? This
section explores some of the key benefits of Java.

Write Once, Run Anywhere

Sun identifies “Write once, run anywhere” as the core value proposition of the Java
platform. Translated from business jargon, this means that the most important
promise of Java technology is that you only have to write your application once—
for the Java platform—and then you’ll be able to run it anywhere.

Anywhere, that is, that supports the Java platform, Fortunately, Java support is
becoming ubiquitous. It is integrated, or being integrated, into practically all major
operating systems. It is built into the popular web browsers, which places it on
Virtually every Internet-connected PC in the world. It is even being built into con-
sumer electronic devices, such as television set-top boxes, PDAs, and cell phones.

6 Chapter 1 — Introduction

Page 25 of 238

Security

Another key benefit of Java is its security features. Both the language and the plat—
form were designed from the ground up with security in mind. The Java platform
allows users to download untrusted code over a network and run it in a secure

environment in which it cannot do any harm: it cannot infect the hOSt system with
a virus, cannot read or write files from the hard drive, and so forth. This capability
alone makes the Java platform unique.

The Java 2 Platform takes the security model a step further. It makes security levels
and restrictions highly configurable and extends them beyond applets. As of Java
1.2, any Java code, whether it is an applet, a servlet, a JavaBeans component, or a
complete Java application, can be run with restricted permissions that prevent it
from doing harm to the host system.

The security features of the Java language and platform have been subjected to
intense scrutiny by security experts around the world. Security—related bugs, some
of them potentially serious, have been found and promptly fixed. Because of the
security promises Java makes, it is big news when a new security bug is found.
Remember, however, that no other mainstream platform can make security guaran—
tees nearly as strong as those Java makes. If Java’s security is not yet perfect, it has
been proven strong enough for practical day-to-day use and is certainly better than
any of the alternatives.

Network-centric Programming

Sun’s corporate motto has always been “The network is the computer.” The
designers of the Java platform believed in the importance of networking and
designed the Java platform to be network-centric. From a programmer‘s point of
view, Java makes it unbelievably easy to work with resources across a network
and to create network—based applications using client/server or multitier architec-
tures. This means that Java programmers have a serious head start in the emerging
network economy.

Dynamic, Extensible Programs

Java is both dynamic and extensible. Java code is organized in modular object-ori-
ented units called classes. Classes are stored in separate files and are loaded into
the Java interpreter only when needed. This means that an application can decide
as it is running what classes it needs and can load them when it needs them. It
also means that a program can dynamically extend itself by loading the classes it
needs to expand its functionality.

The network-centric design of the Java platform means that a Java application can
dynamically extend itself by loading new classes over a network. An application
that takes advantage of these features ceases to be a monolithic block of code.
Instead, it becomes an interacting collection of independent software components.
Thus, Java enables a powerful new metaphor of application design and
development.

Key Benefits ofjava 7

uauonpauul

Page 26 of 238

Internationalization

The Java language and the Java platform were designed from the start with the
rest of the world in mind. Java is the only commonly used programming language
that has internationalization features at its very core, rather than tacked on as an
afterthought. While most programming languages use 8—bit characters that repre~
sent only the alphabets of English and Western European languages, Java uses
16—bit Unicode characters that represent the phonetic alphabets and ideographic
character sets of the entire world. Java’s internationalization features are not

restricted to just low—level character representation, however. The features perme~
ate the Java platform, making it easier to write internationalized programs with
Java than it is with any other environment.

Performance

As I described earlier, Java programs are compiled to a portable intermediate form
known as byte codes, rather than to native machine-language instructions. The
Java Virtual Machine runs a Java program by interpreting these portable byte-code
instructions. This architecture means that Java programs are faster than programs
or scripts written in purely interpreted languages, but they are typically slower
than C and C++ programs compiled to native machine language. Keep in mind,
however, that although Java programs are compiled to byte code, not all of the
Java platform is implemented with interpreted byte codes. For efficiency, computa-
tionally intensive portions of the Java platform—such as the string—manipulation
methods—are implemented using native machine code.

Although early releases of Java suffered from performance problems, the speed of
the Java VM has improved dramatically with each new release. The VM has been
highly tuned and optimiZed in many significant ways. Furthermore, many imple-
mentations include a just-in-time compiler, which converts Java byte codes to
native machine instructions on the fly. Using sophisticated JIT compilers, Java pro-
grams can execute at speeds comparable to the speeds of native C and C++ appli-
cations.

Java is a portable, interpreted language; Java programs run almost as fast as native,
non—portable C and C++ programs. Performance used to be an issue that made

tsome programmers avoid using Java. Now, with the improvements made in Java
12, performance issues should no longer keep anyone away. In fact, the winning
combination of performance plus portability is a unique feature no other language
can offer.

Programmer Bflz‘cz'ency and Hme-to-Market

The final, and perhaps most important, reason to use Java is that programmers like
it. Java is an elegant language combined with a powerful and well-designed set of
APIs. Programmers enjoy programming in Java and are usually amazed at how
quickly they can get results with it. Studies have consistently shown that switching
to Java increases programmer efficiency. Because Java is a simple‘and elegant lan—
guage with a well-designed, intuitive set of APIs, programmers write better code
with fewer bugs than for other platforms, again reducing development time.

8 Chapter 1 — Introduction

Page 27 of 238

An Example Program

Example 1—1 shows a Java program to compute factorials.* The numbers at the
beginning of each line are not part of the program; they are there for ease of refer-
ence when we dissect the program line-by—line. uauanpauul
Example 1 —J: Factofialjnw: A Program to Compute Factorial;

1 /*1r
2 * This program computes the factorial of a number
3 */
4 public class Factorial { // Define a class
5 public static void main(String[] args) { // The program starts here
6 int input = lnteger.parse1nt(args[0]); // Get the user's input
7 double result = factorial(input); // Compute the factorial
8 System.out.println(result); // Print out the result
9 l // The main() method ends here

10
11 public static double factorialiint x) i // This method computes X!
12 if (x < 0) // Check for bad input
13 return 0.0; // if bad, return 0
14 double fact = 1.0; // Begin with an initial value
15 while<x >1) { // Loop until x equals 1
16 fact = fact * x; // multiply by x each time
17 x = x - l; // and then decrement x
18 l // Jump back to start of loop
19 return fact; // Return the result
20 l // factoriaH) ends here

// The class ends here

Compiling and Running the Program

Before we look at how the program works, we must first discuss how to run it. In
order to compile and run the program, you need a Java software development kit
(SDK) of some sort. Sun Microsystems created the Java language and ships a free
Java SDK for its Solaris operating system and for Microsoft Windows (95/98/NT)
platforms. At the time of this writing, the current version of Sun’s SDK is entitled
Java 2 SDK, Standard Edition, Version 1.2.2 and is available for download from
http://javasun.com/productsfidk/ZQ/ (Sun’s Java SDK is still often called the JDK,
even internally). Be sure to get the SDK and not the Java Runtime Environment.
The JRE enables you to run existing Java programs, but not to write your own.

Sun supports its SDK only on Solaris and Windows platforms. Many other compa-
nies have licensed and ported the SDK to their platforms, however. Contact your
operating—system vendor to find if a version of the Java SDK is available for your
system. Linux users should visit bipflwwwblacledownorg/

The Sun SDK is not the only Java programming environment you can use. Compa-
nies such as Borland, Inprise, Metrowerks, Oracle, Sybase, and Symantec offer
commercial products that enable you to write Java programs. This book assumes

* The factorial of an integer is the product of the number and all positive integers less than the number.
So, for example, the factorial of 4, which is also written 4!, is 4 times 3 times 2 times 1, or 24. By defini-
tion, 0! is 1.

An Example Program 9

Page 28 of 238

that you are using Sun's SDK. If you are using a product from some other vendor,
be sure to read that vendor’s documentation to learn how to compile and run a
simple program, like that shown in Example 1-1.

Once you have a Java programming environment installed, the first step towards
running our program is to type it in. Using your favorite text editor, enter the pro-
gram as it is shown in Example 1-1. Omit the line numbers, as they are just there
for reference. Note that Java is a case-sensitive language, so you must type lower-
case letters in lowercase and uppercase letters in uppercase You’ll notice that
many of the lines of this program end with semicolons. It is a common mistake to
forget these characters, but the program won’t work without them, so be careful! If
you are not a fast typist, you can omit everything from // to the end of a line.
Those are comments; they are there for your benefit and are ignored by Java.*

When writing Java programs, you should use a text editor that saves files in plain-
text format, not a word processor that supports fonts and formatting and saves
files in a proprietary format. My favorite text editor on Unix systems is emacs. If
you use a Windows system, you might use Notepad or WordPaa’, if you don’t have
a more specialiZCd programmer’s editor. If you are using a commercial Java pro-
gramming environment, it probably includes an appropriate text editor; read the
documentation that came with the product. When you are done entering the pro—
gram, save it in a file named Factorialjava. This is important; the program will not
work if you save it by any other name.

After writing a program like this one, the next step is to compile it. With Sun’s
SDK, the Java compiler is known as jauac. jar/ac is a command—line tool, so you
can only use it from a terminal window, such as an MS-DOS window on a Win-
dows system or an xterm window on a Unix system. Compile the program by typ-
ing the following command linen‘

C:\> javac Factorial .java

If this command prints any error messages, you probably got something wrong
when you typed in the program. If it does not print any error messages, however,
the compilation has succeeded, and javac creates a file called Factorialclass. This
is the compiled version of the program.

Once «you have compiled a Java program, you must still run it. Unlike some other
languages, Java programs are not compiled into native machine language, so they
cannot be executed directly by the system. Instead, they are run by another pro-
gram known as the Java interpreter. In Sun’s SDK, the interpreter is a command—
line program named, appropriately enough, java. To run the factorial program,
type:

C:\> java Factorial 4

java is the command to run the Java interpreter, Factorial is the name of the Java
program we want the interpreter to run, and 4 is the input data—the number we

* I recommend that you type this example in by hand, to get a feel for the language. If you really don't
want to, however, you can download this, and all examples in the book, from brpflwwworerllycom/
catalog/javanarjfl

1‘ The “C:\>” characters represent the command-line prompt; don’t type these Characters yourself.

10 Chapter 1 —~ Introduction

Page 29 of 238

want the interpreter to compute the factorial of. The program prints a single line
of output, telling us that the factorial of 4 is 24:

C:\> java Factorial 4
24.0 ‘

Congratulations! You’ve just written, compiled, and run your first Java program.
Try running it again to compute the factorials of some other numbers.

uananpauul
Analyzing the Program

Now that you have run the factorial program, let’s analyze it line by line, to see
what makes a Java program tick.

Comments

The first three lines of the program are a comment. Java ignores them, but they tell
a human programmer what the program does. A comment begins with the charac-
ters /* and ends with the characters */. Any amount of text, including multiple
lines of text, may appear between these characters. Java also supports another
type of comment, which you can see in lines 4 through 21. If the characters //
appear in a Java program, Java ignores those characters and any other text that
appears between those characters and the end of the line.

Defining a class

Line 4 is the beginning of the program. It says that we are defining a class named
Factorial. This explains why the program had to be stored in a file named Facto-
rialjava. That filename indicates that the file contains Java source code for a class
named Factorial. The word public is a modifier; it says that the class is publicly
available and that anyone may use it. The open curly-brace character (0 marks
the beginning of the body of the class, which extends all the way to line 21,
where we find the matching close curly—brace character (l). The program contains
a number of pairs of curly braces; the lines are indented to show the nesting
within these braces.

A class is the fundamental unit of program structure in Java, so it is not surprising
that the first line of our program declares a class. All Java programs are classes,
although some programs use many classes instead of just one. Java is an object-
oriented programming language, and classes are a fundamental part of the object-
oriented paradigm, Each class defines a unique kind of object. Example 1-1 is not
really an object-oriented program, however, so I’m not going to go into detail
about classes and objects here. That is the topic of Chapter 3, Object-Oriented Pro-
gramming in Java. For now, all you need to understand is that a class defines a
set of interacting members. Those members may be fields, methods, or other
classes. The Factorial class contains two members, both of which are methods.
They are described in upcoming sections.

An Example Program 11

Page 30 of 238

Defining a method

Line 5 begins the definition of a method of our Factorial class. A method is a
named chunk of Java code. A Java program can call, or invoke, a method to exe—
cute the code in it. If you have programmed in other languages, you have proba—
bly seen methods before, but they may have been called functions, procedures, or
subroutines. The interesting thing abOut methods is that they have parameters and
return values. When you call a method, you pass it some data you want it to oper—
ate on, and it returns a result to you. A method is like an algebraic function:

y = fix)

Here, the mathematical function f performs some computation on the value repre-
sented by x and returns a value, which we represent by y.

To return to line 5, the public and static keywords are modifiers. public means
the method is publicly accessible; anyone can use it. The meaning of the static
modifier is not important here; it is explained in Chapter 3. The void keyword
specifies the return value of the method. In this case, it specifies that this method
does not have a return value.

The word main is the name of the method. mai n is a special name. When you run
the Java interpreter, it reads in the class you specify, then looks for a method
named mai n().* When the interpreter finds this method, it starts running the pro-
gram at that method. When the mai n() method finishes, the program is done, and
the Java interpreter exits. In other words, the main() method is the main entry
point into a Java program. It is not actually sufficient for a method to be named
main(), however. The method must be declared public static void exactly as
shown in line 5. In fact, the only part of line 5 you can change is the word args,
which you can replace with any word you want. You’ll be using this line in all of
your Java programs, so go ahead and commit it to memory nowlT

Following the name of the main() method is a list of method parameters, con—
tained in parentheses. This main() method has only a single parameter. StringE]
specifies the type of the parameter, which is an array of strings Ge, a numbered
list of strings of text). args specifies the name of the parameter. In the algebraic
equation fix), X is simply a way of referring to an unknown value. args serves
the same purpose for the mai n0 method. As we’ll see, the name args is used in
the body of the method to refer to the unknown value that is passed to the
method.

As I’ve just explained, the mai n() method is a special one that is called by the Java
interpreter when it starts running a Java class (program). When you invoke the
Java interpreter like this:

* By convention, when this book refers to a method, it follows the name of the method by a pair of
parentheses. As you‘ll see, parentheses are an important part of method syntax, and they serve here to
keep method names distinct from the names of classes, fields, variables, and so on.

All Java programs that are run directly by the Java interpreter must have a mai n() method. Programs of
this sort are often called applications. It is possible to write programs that are not run directly by the
interpreter, but are dynamically loaded into some other already running Java program. Examples are
applets, which are programs run by a web browser, and serulets, which are programs run by a web
server. Applets are discussed in java Foundation Classes in a Nutshell (O’Reilly), while servlets are dis- .
cussed in java Enterprise m a Nutshell (O’Reilly) In this book, we consider only applications.

12 Chapter 1 — Introduction

Page 31 of 238

C:\> java Factorial 4

the string “4” is passed to the mai n() method as the value of the parameter named
args. More precisely, an array of strings containing only one entry, “4”, is passed
to mai n(). If we invoke the program like this:

C:\> java Factorial 4 3 2 1

then an array of four strings, “4", “3", “2”, and “1”, are passed to the main()
method as the value of the parameter named args. Our program' looks only at the
first string in the array, so the other strings are ignored.

Finally, the last thing on line 5 is an open curly brace. This marks the beginning of
the body of the main() method, which continues until the matching close curly
brace on line 9. Methods are composed of statements, which the Java interpreter
executes in sequential order. In this case, lines 6, 7, and 8 are three statements that
compose the body of the main() method. Each statement ends with a semicolon
to separate it from the next. This is an important part of Java syntax; beginning
programmers often forget the semicolons.

Declaring a variable andparsing input

The first statement of the mai n() method, line 6, declares a variable and assigns a
value to it. In any programming language, a variable is simply a symbolic name
for a value. Think back to algebra class again:

c2=32+b2

The letters a, b, and c are names we use to refer to unknown values. They make
this formula (the Pythagorean theorem) a general one that applies to arbitrary val-
ues of a, b, and c, not just a specific set like:

52:42+32

A variable in a Java program is exactly the same thing: it is a name we use to refer
to a value. More precisely, a variable is a name that refers to a storage space for a
value. We often say that a variable holds a value.

Line 6 begins with the words int input. This declares a variable named input and
specifies that the variable has the type int; that is, it is an integer. Java can work
with several different types of values, including integers, real or floating-point
numbers, characters (e.g., letters, digits), and strings. Java is a strongly typed lan-
guage, which means that all variables must have a type specified and can only
refer to values of that type. Our input variable always refers to an integer; it can—
not refer to a floating point number or a string. Method parameters are also typed.
Recall that the a r‘gs parameter had a type of Str‘i ngE].

Continuing with line 6, the variable declaration int input is followed by the =
character. This is the assignment operator in Java; it sets the value of a variable.
When reading Java code, don’t read = as “equals,” but instead read it as "is
assigned the value.” As We’ll see in Chapter 2, Java Syntax from the Ground Up,
there is a different operator for “equals.”

The value being assigned to our input variable is Integer.par‘selnt(args[0]).
This is a method invocation. This first statement of the main() method invokes

An Example Program 13

uananpouul

Page 32 of 238

another method whose name is lnteger.parse1nt(). As you might guess, this
method “parses” an integer, that is, it converts a string representation of an integer,
such as “4”, to the integer itself. The lnteger.parseint() method is not part of
the Java language, but it is a core part of the Java API or Application Programming
Interface. Every Java program can use the powerful set of classes and methods
defined by this core API. The second half of this book is a quick-reference that

' documents that core API.

When you call a method, you pass values (called arguments) that are assigned to
the corresponding parameters defined by the method, and the method returns a
value. The argument passed to Integer.parselnt() is argsEO]. Recall that args is
the name of the parameter for mai n(); it specifies an array (or list) of strings. The
elements of an array are numbered sequentially, and the first one is always num-
bered 0. We only care abont the first string in the args array, so we use the
expression args[0] to refer to that string, Thus, when we invoke the program as
shown earlier, line 6 takes the first string specified after the name of the class, “4",
and passes it to the method named Integer . pa r‘seInt(). This method converts the
string to the corresponding integer and returns the integer as its return value.
Finally, this returned integer is assigned to the variable named input.

Computing the result

The statement on line 7 is a lot like the statement on line 6. It declares a variable

and assigns a value to it. The value assigned to the variable is computed by invok-
ing a method. The variable is named result, and it has a type of double. double
means a double-precision floating—point number. The variable is assigned a value
that is computed by the factori ai () method. The factori a'l () method, however,
is not part of the standard Java API. Instead, it is defined as part of our program,
by lines 11 through 19. The argument passed to factorial () is the value referred
to by the input variable, which was computed on line 6. We’ll consider the body
of the factorial () method shortly, but you can surmise from its name that this
method takes an input value, computes the factorial of that value, and returns the
result.

Displaying output

Line 8 simply calls a method named System.out.pr‘intln(). This commonly used
method is part of the core Java API; it causes the Java interpreter to print out a
value. In this case, the value that it prints is the value referred to by the variable
named result. This is the result of our factorial computation If the input variable
holds the value 4, the result variable holds the value 24, and this line prints out
that value.

The System.out.println() method does not have a return value, so there is no
variable declaration or = assignment operator in this statement, since there is no
value to assign to anything. Another way to say this is that, like the mai n() method
of line 5, System.out.println() is declared void.

14 Chapter 1 — Introduction

Page 33 of 238

The end ofa method

Line 9 contains only a single character, }. This marks the end of the method.
When theJava interpreter gets here, it is done executing the mai n() method, so it
stops running. The end of the mai n() method is also the end of the variable scope
for the input and result variables declared within mai n() and for the args param-
eter of mai n(). These variable and parameter names have meaning only within the
mai n() method and cannot be used elsewhere in the program, unless other parts
of the program declare different variables or parameters that happen to have the
same name.

Blank lines

Line 10 is a blank line. You can insert blank lines, spaces, and tabs anywhere in a
program, and you should use them liberally to make the program readable. A
blank line appears here to separate the main() method from the factorial()
method that begins on line 11. You’ll notice that the program also uses spaces and
tabs to indent the various lines of code. This kind of indentation is optional; it
emphasizes the structure of the program and greatly enhances the readability of
the code.

Another method

Line 11 begins the definition of the factorial () method that was used by the
main() method. Compare this line to line 5 to note its similarities and differences.
The factorial() method has the same public and static modifiers. It takes a

single integer parameter, which we call x. Unlike the main() method, which had
no return value (void), factorial() returns a value of type double. The open
curly brace marks the beginning of the method body, which continues past the
nested braces on lines 15 and 18 to line 20, where the matching close curly brace
is found. The body of the factorial() method, like the body of the main{)
method, is composed of statements, which are found on lines 12 through 19.

Checkingfor valid input

In the main() method, we saw variable declarations, assignments, and method
invocations. The statement on line 12 is different. It is an if statement, which exe-
cutes another statement conditionally. We saw earlier that the Java interpreter exe-
cutes the three statements of the mai n() method one after another. It always
executes them in exactly that way, in exactly that order. An if statement is a flow-
control statement; it can affect the way the interpreter runs a program.

The if keyword is followed by a parenthesized expression and a statement. The
Java interpreter first evaluates the expression. If it is true, the interpreter executes
the statement. If the expression is fal se, however, the interpreter skips the state-
ment and goes to the next one. The condition for the if statement on line 12 is X
< 0. It checks Whether the value passed to the factorial () method is less than
zero. If it is, this expression is true, and the statement on line 13 is executed. Line
12 does not end with a semicolon because the statement on line 13 is part of the
if statement. Semicolons are required only at the end of a statement.

An Example Program 15

uauanpauul

Page 34 of 238

Line 13 is a return statement. It says that the return value of the factorial ()
method is 0.0. return is also a flow—control statement. When the Java interpreter
sees a return, it stops executing the current method and returns the specified
value immediately. A return statement can stand alone, but in this case, the
return statement is part of the if statement on line 12. The indenmtion of line 13
helps emphasize this fact. (Java ignores this indentation, but it is very helpful for
humans who read Java code!) Line 13 is executed only if the expression on line 12
is true.

Before we move on, we should pull back a bit and talk about why lines 12 and 15
are necessary in the first place. It is an error to try to compute a factorial for a neg-
ative number, so these lines make sure that the input value x is valid. If it is not
valid, they cause factorial () to return a consistent invalid result, 0.0.

An important variable

Line 14 is another variable declaration; it declares a variable named fact of type
doubi e and assigns it an initial value of 1.0. This variable holds the value of the
factorial as we compute it in the statements that follow. In Java, variables can be
declared anywhere; they are not restricted to the beginning of a method or block
of code.

Looping and computing thefactorial

Line 15 introduces another type of statement: the whi l e loop. Like an if statement,
a whi le statement consists of a parenthesized expression and a statement. When
the Java interpreter sees a while statement, it evaluates the associated expression.
If that expression is true, the interpreter executes the statement. The interpreter
repeats this process, evaluating the expression and executing the statement if the
expression is true, until the expression evaluates to false. The expression on line
15 is x > 1, so the whi l e statement loops while the parameter x holds a value that
is greater than 1. Another way to say this is that the loop continues until x holds a
value less than or equal to 1. We can assume from this expression that if the loop
is ever going to terminate, the value of x must somehow be modified by the state-
ment that the loop executes.

The major difference between the if statement on lines 12-13 and the while loop
on lines 15—18 is that the statement associated with the whi 1 e loop is a compound
statement. A compound statement is zero or more statements grouped between
curly braces. The while keyword on line 15 is followed by an expression in paren-
theses and then by an open curly brace. This means that the body of the loop
consists of all statements between that opening brace and the closing brace on line
18. Earlier in the chapter, I said that all Java statements end with semicolons. This
rule does not apply to compound statements, however, as you can see by the lack
of a semicolon at the end of line 18. The statements inside the compound state-
ment (lines 16 and 17) do end with semicolons, of course.

The body of the whil e loop consists of the statements on line 16 and 17. Line 16
multiplies the value of fact by the value of X and stores the result back into 1‘ a ct,
Line 17 is similar. It subtracts 1 from the value of x and stores the result back into

x. The * character on line 16 is important: it is the multiplication operator. And, as

16 Chapter 1 — Introduction

Page 35 of 238

you can probably guess, the — on line 17 is the subtraction operator. An operator
is a key part of Java syntax: it performs a computation on one or two operands to
produce a new value. Operands and operators combine to form expressions, such
as fact * -x or x — 1. We’ve seen other operators in the program. Line 15, for
example, uses the greater—than operator (>) in the expression x > 1, which com-
pares the value of the variable x to 1. The value of this expression is a boolean
truth value—either true or false, depending on the result of the comparison.

To understand this while loop, it is helpful to think like the Java interpreter. sup-
pose we are trying to compute the factorial of 4. Before the loop starts, fact is 1.0,
and x is 4. After the body of the loop has been executed once—after the first iter-
ation—fact is 4.0, and x is 3. After the second iteration, fact is 12.0, and x is 2.
After the third iteration, fact is 24.0, and x is 1. When the interpreter tests the loop
condition after the third iteration, it finds that x > 1 is no longer true, so it stops
running the loop, and the program resumes at line 19.

Returning the result

Line 19 is another return statement, like the one we saw on line 13. This one
does not return a constant value like 0.0, but instead returns the value of the fact
variable. If the value of x passed into the factorial () function is 4, then, as we
saw earlier, the value of fa ct is 24.0, so this is the value returned. Recall that the
factorialO method was invoked on line 7 of the program. When this return
statement is executed, control returns to line 7, where the return value is assigned
to the variable named result.

Exceptions

If you’ve made it all the way through the line—by—line analysis of Example 1—1, you
are well on your way to understanding the basics of the Java language.* It is a sim-
ple but nontrivial program that illustrates many of the features of Java. There is
one more important feature of Java programming I want to introduce, but it is one
that does not appear in the program listing itself. Recall that the program com-
putes the factorial of the number you specify on the command line. What happens
if you run the program without specifying a number?

C:\> java Factorial
java.lang.ArrayIndexOutOfBoundsException: 0

at Factorial .maintFactorial .javaz6)
C:\>

And what happens if you specify a value that is not a number?

C:\> java Factorial ten
java.lang.NumberFormatException: ten

* If you didn’t understood all die details of this factorial program, don’t worry. We’ll cover the details of
the Java language a lot more thoroughly in Chapter 2 and Chapter 3. However, if you feel like you
didn’t understand any of the line-by-line analysts, you may also find that the upcoming chapters are
over your head. In that case, you should probably go elsewhere to learn the basics of the Java language
and return to this book to solidify your understanding, and, of course, to use as a reference. One
resource you may find useful in learning the language is Sun’s online Java tutorial, available at
bth/jaua.sun.cam/docs/books/tutofiaM

An Example Program 1 7

uayanpzwu;

Page 36 of 238

at java.lang.Integer.parselnt(Integer.java)
at java.1ang.Integer.parselnt(Integer.java)
at Factoria].main(Factor1aI.java:6)

C:\>

In both cases, an error occurs or, in Java terminology, an exception is thrown.
When an exception is thrown, the Java interpreter prints out a message that
explains what type of exception it was and where it occurred (both exceptions
above occurred on line 6). In the first case, the exception is thrown because there
are no strings in the ar‘gs list, meaning we asked for a nonexistent string with
argsEO]. In the second case, the exception is thrown because Integer.parse1nt()
cannot convert the string “ten” to a number. We’ll see more about exceptions in
Chapter 2 and learn how to handle them gracefully as they occur.

18 Chapter 1 — Introduction

Page 37 of 238

CHAPTER 2

java Syntax

from the Ground Up

This chapter is a terse but comprehensive introduction to Java syntax. It is written
primarily for readers who are new to the language, but have at least some previ—
ous programming experience. Determined novices with no prior programming
experience may also find it useful If you already know Java, you should find it a
useful language reference. In previous editions of this book, this chapter was writ—
ten explicitly for C and C++ programmers making the transition to Java. It has
been rewritten for this edition to make it more generally useful, but it still contains
comparisons to C and C++ for the benefit of programmers coming from those
languages.*

This chapter documents the syntax of Java programs by starting at the very lowest
level of Java syntax and building from there, covering increasingly higher orders of
structure. It covers:

The characters used to write Java programs and the encoding of those charac—
tCl’S.

Data types, literal values, identifiers, and other tokens that comprise a Java
program.

The operators used in Java to group individual tokens into larger expressions.

Statements, which group expressions and other statements to form logical
chunks of Java code.

Methods (also called functions, procedures, or subroutines), which are named
collections of Java statements that can be invoked by other Java code.

* Readers who want even more thorough coverage of the Java language should consider The/Elva Pro—
grammmg Language, Second Edition, by Ken Arnold and James Gosling (the creator of Java) (Addison
Wesley Longman). And hard-core readers may want to go straight to the primary source: Tbejava Lan-
guage Specification, by James Gosling, Bill Joy, and Guy Steele (Addison Wesley Longrnan). This speci-
fication is available in printed book form, but is also freely available fo/r download from Sun’s web site
at him/(jumsun.com/dOLS/booksylsfl I found both documents quite helpful while writing this chapter.

Page 38 of 238

Classes, which are collections of methods and fields. Classes are the central

program element in Java and form the basis for object-oriented programming.
Chapter 3, Object-Oriented Programming in Java, is devoted entirely to a dis-
cussion of classes and objects.

6 Packages, which are collections of related classes.

0 Java programs, which consist of one or more interacting classes that may be
drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no exception.
In general, it is not possible to document all elements of a language without refer-
ring to other elements that have not yet been discussed. For example, it is not
really possible to explain in a meaningful way the operators and statements sup-
ported by Java without referring to objects. But it is also not possible to document
objects thoroughly without referring to the operators and statements of the lan-
guage. The process of learning Java, or any language, is therefore an iterative one.
If you are new to Java (or a Java-style programming language), you may find that
you benefit greatly from working through this chapter and the next twice, so that
you can grasp the interrelated concepts.

The Unicode Character Set

Java programs are written using the Unicode character set. Unlike the 7-bit ASCII
encoding, which is useful only for English, and the 8-bit ISO Latin—1 encoding,
which is useful only for major Western European languages, the 16—bit Unicode
encoding can represent Virtually every written language in common use on the
planet. Very few text editors support Unicode, however, and in practice, most Java
programs are written in plain ASCII. l6~bit Unicode characters are typically written
to files using an encoding known as UTF-8, which converts the 16—bit characters
into a stream of bytes. The format is designed so that plain ASCII and Latin-1 text
are valid UTF-8 byte streams. Thus, you can simply write plain ASCII programs,
and they will work as valid Unicode.

If you want to embed a Unicode character within a Java program that is written in
plain ASCII, use the special Unicode escape sequence \uxxxx. That is, a backslash
and a lowercase u, followed by four hexadecimal characters. For example, \u0020
is the space character, and \u3c00 is the character 72'. You can use Unicode charac~
ters anywhere in a Java program, including comments and variable names.

Comments

Java supports three types of comments. The first type is a single—line comment,
which begins with the characters // and continues until the end of the current
line. For example:

int i = 0; // initialize the Ioop variable

The second kind of comment is a multiline comment. It begins with the characters
/* and continues, over any number of lines, until the characters */. Any text
between the /* and the */ is ignored by the Java compiler. Although this style of

20 Chapter 2— java Syntaxfrom the Ground Up

Page 39 of 238

comment is typically used for multiline comments, it can also be used for single-
line comments. This type of comment cannot be nested (i.e., one /* */ comment

cannot appear within another one). When writing multiline comments, program-
mers often‘ use extra * characters to make the comments stand out. Here is a typi—
cal multiline comment:

/*
* Step 4: Print static methods, both public and protected,
* but don't list deprecated ones.
*/

The third type of comment is a special case of the second. If a continent begins
with /**, it is regarded as a special doc comment. Like regular multiline com-
ments, doc comments end with */ and cannot be nested. When you write a Java
class you expect other programmers to use, use doc cements to embed docu-
mentation about the class and each of its methods directly into the source code. A
program named javadoc extracts these comments and processes them to create
online documentation for your class. A doc comment can contain HTML tags and
can use additional syntax understood by javadoc. For example:

/**
Display a list of classes, many to a line.

@param classes The classes to display
@return <tt>true</tt> on success,
<tt>false</tt> on failure.
@author David Flanagan

*/

See Chapter 7, java Programming and Documentation Conventions, for more
information on the doc-comment syntax and Chapter 8, java Development Tools,
for more information on the jdvadoc program.

Identifiers and Reserved Words

An identifier is any symbolic name that refers to something in a Java program.
Class, method, parameter, and variable names are all identifiers. An identifier must
begin with a letter, an underscore (_), or a Unicode currency symbol (e.g., $, £,
¥). This initial letter can be followed by any number of letters, digits, underscores,
or currency symbols. Remember that Java uses the Unicode character set, which
contains quite a few letters and digits other than those in the ASCII character set.
The following are legal identifiers:

l
engine3
theCurrentTime
the_current_time
s

Identifiers can include numbers, but cannot begin with a number. In addition, they
cannot contain any punctuation characters other than underscores and currency
characters. By convention, dollar signs and other currency characters are reserved
for identifiers automatically generated by a compiler or some kind of code prepro-
cessor. It is best to avoid these characters in your own identifiers.

Identifiers and Reserved Words 21

Page 40 of 238

Another important restriction on identifiers is that you cannot use any of the key—
words and literals that are part of the Java language itself. These reserved words
are listed in Table 2-1.

Table 2—]: java Reserved Words

abstract do if package synchronized

boolean double implements private this

break else import protected throw

byte extends instanceof public throws
case false int return transient

catch final interface short true

char finally long static try

class float native strictfp void

const for new super volatile
continue goto null switch while
default

Note that const and goto are reserved words, but aren’t part of the Java language.

Primitive Data Types

Java supports eight basic data types known as primitive types. In addition, it sup-
ports classes and arrays as composite data types, or reference types. Classes and
arrays are documented later in this chapter. The primitive types are: a boolean
type, a character type, four integer types, and two floating-point types. The four
integer types and the two floating-point types differ in the number of bits that rep-
resent them, and therefore in the range of numbers they can represent. Table 2-2
summarizes these primitive data types.

Table 2—2: java Primitive Data Types ' d

Txbe Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character \uOOOO 16 bits \uOOOO to \uFFFF

byte Signed integer 0 8 bits —128 to 127

short Signed integer 0 16 bits —32768 to 32767

int Signed integer O 52 bits 4147483648 to 2147483647
0 64 bits -9223372056854775808 to

. 9223572056854775807

float IEEE 754 0.0 32 bits 11.4E—45 to

floating point 13.4028235E+38

double IEEE 754 0.0 64 bits 14913-324 to

floating point $1.7976931348623157E+308—l

long Signed integer

22 Cbapter2~java Syntaxfrom the Ground Up

Page 41 of 238

The boolean Type

The bool ean type represents a truth value. There are only twO possible values of
this type, representing the two boolean states: on or off, yes or no, true or false.
Java reserves the words true and Fal se to represent these two boolean values.

C and C++ programmers should note that Java is quite strict about its boolean
type: boo] ean values can never be converted to or from other data types. In partic—
ular, a bool ean is not an integral type, and integervvalues cannot be used in place
of a boolean. In other words, you cannot take shortcuts such as the following in
Java:

if (0) {
whileh‘) {
}

l

Instead, Java forces you to write cleaner code by explicitly stating the comparisons
you want:

if (0 != null) {
whiieh‘ != [Di
}

l

The char Type

The char type represents Unicode characters. It surprises many experienced pro-
grammers to learn that Java char values are 16 bits long, but in practice this fact is
totally transparent. To include a character literal in a Java program, simply place it
between single quotes (apostrophes):

char c = ‘A';

You can, of course, use any Unicode character as a character literal, and you can
use the \u Unicode escape sequence. In addition, Java supports a number of other
escape sequences that make it easy both to represent commonly used nonprinting
ASCII characters such as newline and to escape certain punctuation characters that
have special meaning in Java. For example:

char tab = ’\t', apostrophe = '\", nul = ", aleph='\u05DO';

Table 2-3 lists the escape characters that can be used in char literals. These charac-
ters can also be used in string literals, which are covered later in this chapter.

Table 2-3: Java Escape Characters

Escape Sequence Character Value

Backspace
Horizontal tab

Newline

Form feed

Primitive Data Types 23

Page 42 of 238

Table 2-3: java Escape Characters (continued)

Escape Sequence Character Value

\r Carriage return

\" Double quote

\ ' Single quote
\\ Backslash

\xxx The Latinal character with the encoding XXX, where XXX is an
octal (base 8) number between 000 and 377. The forms \X

and \XX are also legal, as in ‘\0 ', but are not recommended
because they can cause difficulties in string constants where
the escape sequence is followed by a regular digit.

\uxxxx The Unicode character with encoding XXXX, where XXXX is four
hexadecimal digits. Unicode escapes can appear anywhere in
a Java program, not only in character and string literals.

char values can be converted to and from the various integral types. Unlike byte,
short, int, and long, however, char is an unsigned type. The Character class
defines a number of useful stati 6 methods for working with characters, including
isDigitO, lsJavaLetteM), isLowerCaseO, and toUpperCase().

Integer Types

The integer types in Java are byte, short, int, and long. As shown in Table 2-2,
these four types differ only in the number of bits and, therefore, in the range of
numbers each type can represent. All integral types represent signed numbers;
there is no unsigned keyword as there is in C and C++.

Literals for each of these types are written exactly as you would expect: as a string
of decimal digits. Although it is not technically part of the literal syntax, any inte-
ger literal can be preceded by the unary minus operator to indicate a negative
number. Here are some legal integer literals:

0
1
123
42000

Integer literals can also be expressed in hexadecimal or octal notation. A literal
that begins with 0x or 0X is taken as a hexadecimal number, using the letters A to F
(or a to f) as the additional digits required for base~16 numbers. Integer literals
beginning with a leading 0 are taken to be octal (base—8) numbers and cannot
include the digits 8 or 9. Java does not allow integer literals to be expressed in
binary (base-2) notation. Legal hexadecimal and octal literals include:

Oxff // Decimal 255, expressed in hexadecimal
0377 // The same number. expressed in octal (base 8)
OXCAFEBABE // A magic number used to identify Java class files

24 Chapter 2 —Jaua Syntaxfrom the Ground Up

Page 43 of 238

Integer literals are 52-bit int values unless they end with the character L or l, in
which case they are 64-bit long values:

1234 _ // An int value
1234L // A long value
OxffL // Another long value

Integer arithmetic in Java is modular, which means that it never produces an over—
flow or an underflow when you exceed the range of a given integer type. Instead,
numbers just wrap around. For example:

byte bl = 127. [)2 = 1; // Largest byte is 127
byte sum = {)1 + b2; // Sum wraps to 428, which is the smallest byte

Neither the Java compiler nor the java interpreter warns you in any way when this
occurs. When doing integer arithmetic, you simply must ensure that the type you
are using has a sufficient range for the purposes you intend. Integer division by
zero and modulo by zero are illegal and cause an ArithmeticException to be
thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and
Long. Each of these classes defines MIN_VALUE and MAX__VALUE constants that

describe the range of the type. The classes also define useful static methods, such
as Byte.parseByte() and Integer.parselnt(), for converting strings to integer
values.

Floating-Point Types

Real numbers in Java are represented with the float and double data types. As
shown in Table 2-3, float is a 32-bit, single-precision floating-point value, and
double is a 64-bit, double-precision floating-point value. Both types adhere to the
IEEE 754—1985 standard, which specifies both the format of the numbers and the
behavior of arithmetic for the numbers.

Floating—point values can be included literally in a Java program as an optional
string of digits, followed by a decimal point and another string of digits, Here are
some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a
number is followed by the letter e or E (for exponent) and another number. This
second number represents the power of ten by which the first number is multi-
plied. For example:

1.2345E02 // 1.2345 X 102, or 123.45
le-6 // 1 X 10‘s, or 0.000001
6.02e23 // Avagadro's Number: 6.02 X 1023

Floating-point literals are double values by default. To include a fl oat value liter-
ally in a program, follow the number by the character f or F:

Primitive Dam Twes 25

Page 44 of 238

double d = 6.02E23;
float f = 6.02623‘F;

Floating—point literals cannot be expressed in hexadecimal or octal notation.

Most real numbers, by their very nature, cannot be represented exactly in any
finite number of bits. Thus, it is important to remember that float and double val-
ues are only approximations of the numbers they are meant to represent. A float
is a 32~bit approximation, which results in at least 6 significant decimal digits, and
a double is a 64-bit approximation, which results in at least 15 significant digits. In
practice, these data types are suitable for most real-number computations.

In addition to representing ordinary numbers, the fl oat and double types can also
represent four special values: positive and negative infinity, zero, and NaN. The
infinity values result when a floating—point computation produces a value that
overflows the representable range of a float or double. When a floating—point
computation underflows the representable range of a float or a double, a zero
value results. The Java floating—point types make a distinction between positive
zero and negative zero, depending on the direction from which the underflow
occurred. In practice, positive and negative zero behave pretty much the same.
Finally, the last special floating-point value is NaN, which stands for not-a-nurnber.
The NaN value results when an illegal Heating—point operation, such as 0/0, is per-
formed. Here are examples of statements that result in these special values:

double inf = 1/0; // Infinity
double neginf = ~1/0; // -Im°inity
double negzero = -l/inf; // Negative zero
double NaN = 0/0; // NaN

Because the Java floating-point types can handle overflow to infinity and under-
flow to zero and have a special NaN value, floating-point arithmetic never throws
exceptions, even when performing illegal operations, like dividing zero by zero or
taking the square root of a negative number.

The fl oat and double primitive types have corresponding classes, named Float
and Double. Each of these classes defines the following useful constants:
MIN7VALUE, MAXwVALUE, NEGATIVE_INFIN ITY, POSITIVE_INFINITY, and NaN.

The infinite floating-point values behave as you would expect. Adding or subtract-
ing anything to or from infinity, for example, yields infinity. Negative zero behaves
almost identically to positive zero, and, in fact, the == equality operator reports
that negative zero is equal to positive zero. The only way to distinguish negative
zero from positive, or regular, zero is to divide by it. 1/0 yields positive infinity,
but 1 divided by negative zero yields negative infinity. Finally, since NaN is not-a-
number, the =2 operator says that it is not equal to any other number, including
itself! To check whether a float or double value is NaN, you must use the
Float.isNan() and D0uble.isNan() methods.

Strings

In addition to the boolean, character, integer, and floating—point data types, Java
also has a data type for working with strings of text (usually simply called strings).
The String type is a class, however, and is not one of the primitive types of the

26 Cbapter2~java Syntaxfrom the Ground Up

Page 45 of 238

language. Because strings are so commonly used, though, Java does have a syntax
for including string values literally in a program A String literal consists of arbi—
trary text within double quotes. For example:

"Hello, world"
"'This‘ is a string!"

String literals can contain any of the escape sequences that can appear as char lit—
erals (see Table 2-5). Use the \" sequence to include a double-quote within a
String literal. Strings and string literals are discussed in more detail later in this
chapter. Chapter 4, The [nun Platform, demonstrates some of the ways you can
work with String objects in Java.

Type Conversions

Java allows conversions between integer values and floating-point values. In addi-
tion, because every character corresponds to a number in the Unicode encoding,
char types can be converted to and from the integer and floating-point types. In
fact, boolean is the only primitive type that cannot be converted to or from
another primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a
value of one type is converted to a wider type—one that is represented with more
bits and therefore has a wider range of legal values. A narrowing conversion
occurs when a value is converted to a type that is represented with fewer bits.
Java performs widening conversions automatically when, for example, you assign
an int literal to a double variable or a char literal to an int variable,

Narrowing conversions are another matter, however, and are not always safe. It is
reasonable to convert the integer value 13 to a byte, for example, but it is not rea—
sonable to convert 13000 to a byte, since byte can only hold numbers between
$ndash;128 and 127. Because you can lose data in a narrowing conversion, the
Java compiler complains when you attempt any narrowing conversion, even if the
value being converted would in fact fit in the narrower range of the specified type:

int i =13;
byte b = i; // The compiler does not allow this

The one exception to this rule is that you can assign an integer literal (an int

value)\ to a byte or short variable, if the literal falls within the range of the vari-
able. ‘

If you need to perform a narrowing conversion and are confident you can do so
without losing data or precision, you can force Java to perform the conversion
using a language construct known as a cast. Perform a cast by placing the name of
the desired type in parentheses before the value to be converted. For example:

int 1 = 13;
byte b = (byte) 1; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to
integers. When you do this, the fractional part of the floating-point value is simply
truncated (i.e., the floating-point value is rounded towards zero, not towards the

Primitive Data Twes 27

Page 46 of 238

nearest integer). The methods Math.round(), Math.floor(), and Math.ceil () per-
form other types of rounding.

The char type acts like an integer type in most ways, so a char value can be used
anywhere an int or long value is required Recall, however, that the char type is
unsigned, so it behaves differently than the short type, even though both of them
are 16 bits wide:

short 5 = (Short) Oxffff; // These bits represent the number —1
char c = '\uffff'; // The same bits, representing a Unicode character
int il 5; // Converting the short to an int yields —1
int i2 c; // Converting the char to an int yields 65535

Table 2-4 is a grid that shows which primitive types can be converted to which
other types and how the conversion is performed. The letter N in the table means
that the conversion cannot be performed. The letter Y means that the conversion
is a widening conversion and is therefore performed automatically and implicitly
by Java. The letter C means that the conversion is a narrowing conversion and
requires an explicit cast. Finally, the notation Y” means that the conversion is an
automatic widening conversion, but that some of the least significant digits of the
value may be lost by the conversion. This can happen when converting an i ht or
long to a float or double. The floating-point types have a larger range than the
integer types, so any int or long can be represented by a float or double. How—
ever, the floating-point types are approximations of numbers and cannot always
hold as many significant digits as the integer types.

Table 2—4: Java Primitive Type Conversions

Convert Com/en To.-

From: boolean ‘ byte

boolean

byte
short

char

int

long
float

double

2222222
Reference Types

In addition to its eight primitive types, Java defines two additional categories of
data types: classes and arrays. Java programs consist of class definitions; each class
defines a new data type that can be manipulated by Java programs. For example,
a program might define a class named Point and use it to store and manipulate
X,Y points in a Cartesian coordinate system. This makes Point a new data type in
that program. An array type represents a list of values of some other type. char is
a data type, and an array of char values is another data type, written charl]. An

28 Cbapter2—jam Syntaxfrom the Ground Up

Page 47 of 238

array of Point objects is a data type, written Pointl]. And an array of Point arrays
is yet another type, Written Poi ntE] K].

As you can‘see, there are an infinite number of possible class and array data types.
Collectively, these data types are knOWn as reference types. The reason for this
name will become clear later in this chapter. For now, however, what is important
to understand is that class and array types differ significantly from primitive types,
in that they are compound, or composite, types. A primitive data type holds
exactly one value. Classes and arrays are aggregate types that contain multiple val—
ues. The Point type, for example, holds two double values representing the X and
Y coordinates of the point. And charl] is obviously a compound type because it
represents a list of characters. By their very nature, class and array types are more
complicated than the primitive data types. We’ll discuss classes and arrays in detail
later in this chapter and examine classes in even more detail in Chapter 3.

Expressions and Operators

So far in this chapter, we’ve learned about the primitive types that Java programs
can manipulateand seen how to include primitive values as literals in a Java pro-
gram, We’ve also used variables as symbolic names that represent, or hold, values.
These literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java
interpreter evaluates an expression to compute its value. The very simplest expres—
sions are called primary expressions and consist of literals and variables. So, for
example, the following are all expressions:

1.7 // An integer literal
true // A boolean literal
sum // A variable

\When the Java interpreter evaluates a literal expression, the resulting value is the
literal itself. When the interpreter evaluates a variable expression, the resulting
value is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made
by using operators to combine primary expressions. For example, the following
expression uses the assignment operator to combine two primary expressions—a
variable and a floating—point literal—into an assignment expression:

sum : 1.7

But operators are used not only with primary expressions; they can also be used
with expressions at any level of complexity. Thus, the following are all legal
expressions:

sum =1+ 2 + 3*1.2 + (4 + 8)/3.0
sum/Math.sqrt[3.0 * 1.234)
(int)(sum + 33)

Expressions and Operators 29

Page 48 of 238

Operator Summary

The kinds of expressions you can write in a programing language depend
entirely on the set of operators available to you. Table 2—5 summarizes the opera-
tors available in Java. The P and A columns of the table specify the precedence
and associativity of each group of related operators, respectively.

Table 2—5: java Operators

P

15

A

L

Operator

Operand Type($)

object, member

array, int

method, arglist
variable

variable

number

integer
boolean

class, arglist

type: any

number, number

number, number

string, any

integer, integer

integer, integer

integer, integer

number, number

number, number

reference, type

primitive, primitive

primitive, primitive

reference, reference

reference, reference

integer, integer

boolean, boolean

integer, integer

boolean, boolean

integer, integer

Operation Performed

object member access

array element access
method invocation

post-increment, decrement

pre—incrernent, decrement

unary plus, unary minus

bitwise complement
boolean NOT

object creation

cast (type conversion)

multiplication, division,
remainder

addition, subtraction

string concatenation
left shift

right shift with sign extension

right shift with zero extension

less than, less than or equal
greater than, greater than or
equal

type comparison

equal (have identical values)

not equal (have different values)

equal (refer to same object)

not equal (refer to different

objects)
bitvvise AND

boolean AND

bitwise XOR

boolean XOR

bitwise OR

30 CbapterZ— Java Syntaxfrom the Ground Up

Page 49 of 238

Table 2—5: java Operators (continued)

operand Type(s) Operation Performed

boolean, boolean boolean OR

boolean, boolean conditional AND

boolean, boolean conditional OR

boolean, any, any conditional (ternary) operator

variable, any assignment

variable, any assignment with operation
Precedence

The P column of Table 2—5 specifies the precedence of each operator. Precedence
specifies the order in which operations are performed. Consider this expression:

a+b*c

The multiplication operator has higher precedence than the addition operator, so a
is added to the product of b and C. Operator precedence can be thought of as a
measure of how tightly operators bind to their operands. The higher the number,
the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses, to
explicitly specify the order of operations. The previous expression can be rewrit—
ten as follows to specify that the addition should be performed before the multipli-
cation:

(a+b)*c

The default operator precedence in Java was chosen for compatibility with C; the
designers of C chose this precedence so that most expressions can be written nat—
urally without parentheses. There are only a few common Java idioms for which
parentheses are required. Examples include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != nuil) (}

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) l= O] l }

Associattvity

When an expression involves several operators that have the same precedence,
the operator associativity governs the order in which the operations are per—
formed. Most operators are left—to-right associative, which means that the

Expressions and Operators 31

Page 50 of 238

operations are performed from left to right. The assignment and unary operators,
however, have right—to-left associativity. The A column of Table 2-5 specifies the
associativity of each operator or group of operators. The value L means left to
right, and R means right to left.

The additive operators are all left-to—right associative, so the expression a+b—C is
evaluated from left to right: (a+b)-c. Unary operators and assignment operators
are evaluated from right to left. Consider this complex expression:

a : b +: : ."d

This is evaluated as follows:

a = (b += (c = -("d)))

As with operator precedence, operator associativity establishes a default order of
evaluation for an expression. This default order can be overridden through the use
of parentheses. However, the default operator associativity in Java has been cho—
sen to yield a natural expression syntax, and you rarely need to alter it.

Operand number and type

The fourth column of Table 2-5 specifies the number and type of the operands
expected by each operator. Some operators operate on only one operand; these
are called unary operators. For example, the unary minus operator changes the
sign of a single number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two operand values.
The — operator actually comes in both forms:

.a - b // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is
like an if statement inside an expression. Its three operands are separated by a
question mark and a colon; the second and third operators must both be of the
same type:

x > y ? x : y // Ternary expression; evaluates to the larger of x and y

In addition to expecting a certain number of operands, each operator also expects
particular types of operands. Column four of the table lists the operand types.
Some of the codes used in that column require Further explanation:

number

An integer, floating-point Value, or character (i.e., any primitive type except
boolean)

integer
A byte, short, int, long, or char value (long values are not allowed for the
array access operator [1)

32 Cbapter2—java Syntaxfrom the Ground Up

Page 51 of 238

reference
An object or array

variable

A variable or anything else, such as an array element, to which a value can be
assigned

Return type

Just as every operator expects its operands to be of specific types, each operator
produces a value of a specific type. The arithmetic, increment and decrement, bit—
wise, and shift operators return a double if at least one of the operands is a dou-

ble. Otherwise, they return a float if at least one of the operands is a float:
Otherwise, they return a long if at least one of the operands is a long. Otherwise,
they return an int, even if both operands are byte, short, or char types that are
narrower than int.

The comparison, equality, and boolean operators always return boolean values.
Each assignment operator returns whatever value it assigned, which is of a type
compatible with the variable on the left side of the expression. The conditional
operator returns the value of its second or third argument (which must both be of
the same type).

Side efiects

Every operator computes a value based on one or more operand values. Some
operators, however, have side eflects in addition to their basic evaluation. If an
expression contains side effects, evaluating it changes the state of a Java program
in such a way that evaluating the expression again may yield a different result. For
example, the ++ increment operator has the side effect of incrementing a variable.
The expression ++a increments the variable a and returns the newly incremented
value. If this expression is evaluated again, the value will be different. The various
assignment operators also have side effects. For example, the expression a*=2 can
also be written as a=a*2. The value of the expression is the value of a multiplied
by 2, but the expression also has the side effect of storing that value back into a.
The method invocation operator () has side effects if the invoked method has side
effects, Some methods, such as Math.sqr‘t(), simply compute and return a value
without side effects of any kind. Typically, however, methods do have side effects.
Finally, the new operator has the profound side effect of creating a new object.

Order ofevaluation

When the Java interpreter evaluates an expression, it performs the various opera-
tions in an order specified by the parentheses in the expression, the precedence of
the operators, and the associativity of the operators. Before any operation is per-
formed, however, the interpreter flrst evaluates the operands of the operator. (The
exceptions are the M, | I, and ?: operators, which do not always evaluate all their
operands.) The interpreter always evaluates operands in order from left to right.
This matters if any of the operands are expressions that contain side effects. Con-
sider this code, for example:

Expressions and Operators 33

Page 52 of 238

inta 2;
int v Ha +++a * H—a;

Although the multiplication is performed before the addition, the operands of the
+ operator are evaluated first. Thus, the expression evaluates to 3+4“5, or 23.

Arithmetic Operators

Since most programs operate primarily on numbers, the most commonly used
operators are often those that perform arithmetic operations. The arithmetic opera-
tors can be used with integers, floating-point numbers, and even characters (i.e.,
they can be used with any primitive type other than boolean). If either of the
operands is a floating-point number, floating-point arithmetic is used; otherwise,
integer arithmetic is used. This matters because integer arithmetic and floating-
point arithmetic differ in the way division is performed and in the way underflows
and overflows are handled, for example. The arithmetic operators are:

Addition (+)

The + operator adds two numbers. As we‘ll see shortly, the + operator can
also be used to concatenate strings. If either operand of + is a string, the other
one is converted to a string as well. Be sure to use parentheses when you
want to combine addition with concatenation. For example:

System.uut.println("Tota1: " + 3 + 4); // Prints "Totai: 34", not 7!

Subtraction (—)

When — is used as a binary operator, it subtracts its second operand from its
first. For example, 7—3 evaluates to 4. The — operator can perform unary nega—
tion.

Multiplication (*)
The * operator multiplies its two operands. For example, 7‘3 evaluates to 21.

Division 0)

The / operator divides its first operand by its second. If both operands are
integers, the result is an integer, and any remainder is lost. If either operand is
a floating—point value, however, the result is a floating-point value. When
dividing two integers, division by zero throws an ArithmeticException. For
floating—point calculations, however, division by zero simply yields an infinite
result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

Modulo (ii)

The % operator computes the first operand modulo the second operand (i.e., it
returns the remainder when the first operand is divided by the second
operand an integral number of times). For example, 7%3 is 1. The sign of the
result is the same as the sign of the first operand. While the modulo operator
is typically used with integer operands, it also works for floating-point values.
For example, 4.3%2.1 evaluates to or]. When operating with integers, trying to

34 Chapter 2—jdvd Syntaxfrom the Ground Up

Page 53 of 238

compute a value modulo zero causes an ArithmeticException. When work~
ing with floating-point values, anything modulo 0.0 evaluates to NaN, as does
infinity modulo anything.

Unary Minus (-)
When - is used as a unary operator, before a single operand, it performs
unary negation. In other words, it converts a positive value to an equivalently
negative value, and vice versa.

String Concatenatz‘on Operator

In addition to adding numbers, the + operator (and the related += operator) also
concatenates, or joins, strings. If either of the operands to + is a string, the opera-
tor converts the other operand to a string. For example:

System.out.pr‘intln("Qu0tient: " + 7/3.0f); // Prints "Quotient: 2.3333333"

As a result, you must be careful to put any addition expressions in parentheses
when combining them with string concatenation. If you do not, the addition oper—
ator is interpreted as a concatenation operator.

The Java interpreter has built-in string conversions for all primitive types. An
object is converted to a string by invoking its toStringU method. Some classes
define custom toStri ng() methods, so that objects of that class can easily be con-
verted to strings in this way. An array is converted to a string by invoking the
built-in toStr‘ingO method, which, unfortunately, does not return a useful string
representation of the array contents.

Increment and Decrement Operators

The 4+ operator increments its single operand, which must be a variable, an ele—
ment of an array, or a field of an object, by one. The behavior of this operator
depends on its position relative to the operand. When used before the operand,
where it is known as the pre—increment operator, it increments the operand and
evaluates to the incremented value of that operand. When used after the operand,
where it is known as the post-increment operator, it increments its operand, but
evaluates to the value of that operand before it was incremented.

For example, the following code sets both 1' and j to 2:

1' 1;
J' ++i:

But these lines set 1' t0 2 and j to 1:

1:
j 1H-

Similarly, the -- operator decrements its single numeric operand, which must be a
variable, an element of an array, or a field of an object, by one. Like the ++ opera-
tor, the behavior of —— depends on its position relative to the operand. When used
before the operand, it decrements the operand and returns the decremented value.

Expressions and Operators 35

Page 54 of 238

When used after the operand, it decrements the operand, but returns the un—
decrememed value.

The expressions x++ and x—— are equivalent to x=x+1 and x=x—l, respectively,
except that when using the increment and decrement operators, X is only evalu—
ated once. If x is itself an expression with side effects, this makes a big difference.
For example, these two expressions are not equivalent;

aEiHJH; // Increments an element of an array
aii++l = aEiH] + l; // Adds one to an array element and stores it in another

These operators, in both prefix and postfix forms, are most commonly used to
increment or decrement the counter that controls a loop.

Comparison Operators

The comparison operators consist of the equality operators that test values for
equality or inequality and the relational operators used with ordered types (num-
bers and characters) to test for greater than and less than relationships. Both types
of operators yield a boolean result, so they are typically used with if statements
and whi l e and for loops to make branching and looping decisions. For example:

if (0 l= null) ...; // The not equals operator
whilefi < a.length) ...; // The less than operator

Java provides the following equality operators:

Equals (= =)
The == operator evaluates to true if its two operands are equal and false
otherwise. With primitive operands, it tests Whether the operand values them-
selves are identical. For operands of reference types, however, it tests Whether
the operands refer to the same object or array. In other words, it does not test
the equality of two distinct objects or arrays. In particular, note that you can—
not test two distinct strings for equality with this operator.

I == is used to compare two numeric or character operands that are not of
the same type, the narrower operand is converted to the type of the Wider
operand before the comparison is done. For example, when comparing a
short to a float, the short is first converted to a float before the compari—
son is performed. For floating-point numbers, the special negative zero value
tests equal to the regular, positive zero value. Also, the special NaN (not-a-
number) value is not equal to any other number, including itself. To test
whether a floatingvpoint value is NaN, use the Float.1‘ sNan() or Dou—
ble.isNan() method.

Not Equals (1:)
The != operator is exactly the opposite of the == operator. It evaluates to
true if its two primitive operands have different values or if its two reference
operands refer to different objects or arrays. Otherwise, it evaluates to fal se.

The relational operators can be used With numbers and characters, but not with
bool ean values, objects, or arrays because those types are not ordered. Java pro-
vides the following relational operators:

36 Cbapter2—jaua Syntaxfrom the Ground Up

Page 55 of 238

Less Than (<)

Evaluates to true if the first operand is less than the second.

Less Than or Equal (<=)
Evaluates to true if the first operand is less than or equal to the second.

Greater Than (>)

Evaluates to true if the first operand is greater than the second.

Greater Than or Equal (>=)
Evaluates to true if the first operand is greater than or equal to the second.

Boolean Operators

As we’ve just seen, the comparison operators compare their operands and yield a
boolean result, which is often used in branching and looping statements. In order
to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the Boolean (or logical) Operators to com-
bine multiple comparison expressions into a single, more complex, expression.
The Boolean operators require their operands to be bool ean values and they eval-
uate to bool ean values. The operators are:

Conditional AND (&&)

This operator performs a Boolean AND operation on its operands. It evaluates
to true if and only if both its operands are true. If either or both operands
are false, it evaluates to fal set For example:

if (x <10 Edi y > 3) // If both comparisons are true

This operator (and all the Boolean operators except the unary ! operator)
have a lower precedence than the comparison operators. Thus, it is perfectly
legal to write a line of code like the one above. However, some programmers
prefer to use parentheses to make the order of evaluation explicit:

if ((X < 10) && (y > 3)}

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates its
second operand. If the first operand evaluates to false, the value of the
expression is false, regardless of the value of the second operand. Therefore,
to increase efficiency, the Java interpreter takes a shortcut and skips the sec—
ond operand. Since the second operand is not guaranteed to be evaluated,
you must use caution when using this operator with expressions that have
side effects. On the other hand, the conditional nature of this operator allows
us to write Java expressions such as the following:

if (data 1: null &&1‘ < data.length && dataEl'] != -1)

The second and third comparisons in this expression would cause errors if the
first or second comparisons evaluated to false. Fortunately, we don't have to
worry about this because of the conditional behavior of the && operator.

Expressions and Operators 3 7

Page 56 of 238

Conditional OR (I I)

This operator performs a Boolean OR operation on its two bool ean operands.
It evaluates to true if either or both of its operands are true. If both operands
are fal se, it evaluates to fal se. Like the && operator, | I does not always eval-
uate its second operand. If the first operand evaluates to true, the value of
the expression is true, regardless of the value of the second operand. Thus,
the operator simply skips that second operand in that case.

Boolean NOT(!)

This unary operator changes the bool earl value of its operand. If applied to a
true value, it evaluates to false, and if applied to a false value, it evaluates
to true. It is useful in expressions like these:

if (Ifound) // found is a boolean variable declared somewhere

while (Ic.isEmpty()) // The isEmptyO method returns a boolean value

Because I is a unary operator, it has a high precedence and often must be
used with parentheses:

it (I(x>y&&y>z))

Boolean AND (ll)
When used with bool ean operands, the & operator behaves like the && opera-
tor, except that it always evaluates both operands, regardless of the value of
the first operand. This operator is almost always used as a bitwise operator
with integer operands, however, and many java programmers would not even __
recognize its use with bool ean operands as legal Java code. W

Booletm OR (I)

This operator performs a Boolean OR operation on its two bool ean operands.
It is like the I | operator, except that it always evaluates both operands, even
if the first one is true. The l operator is almost always used as a bitwise oper-
ator on integer operands; its use with bool ean operands is very rare.

Boolean XOR C)

When used with bool ean operands, this operator computes the Exclusive OR
(XOR) of its operands. It evaluates to true if exactly one of the two operands
is true. In other words, it evaluates to fal se if both operands are false or if
both operands are true. Unlike the && and I l operators, this one must always
evaluate both operands. The ‘ operator is much more commonly used as a
bitwise operator on integer operands. With boolean operands, this operator is
equivalent to the l: operator.

. Bz‘twise and Shift Operators

The bitwise and shift operators are low-level operators that manipulate the individ-
ual bits that make up an integer value. The bitwise operators are most commonly
used for testing and setting individual flag bits in a value, In order to understand
their behavior, you must understand binary (base-2) numbers and the twos-com—
plement format used to represent negative integers. You cannot use these opera-
tors with floating-point, bool ean, array, or object operands. When used with
boolean operands, the &, l, and ‘ operators perform a different operation, as
described in the previous section.

38 CbapterZ—Jaua Syntaxfrom the Ground ([D

Page 57 of 238

If either of the arguments to a bitwise operator is a long, the result is a long. Oth-
erwise, the result is an int. If the left operand of a shift operator is a long, the
result is a long; otherwise, the result is an 1‘ nt. The operators are:

Bitwise Complement (”)
The unary " operator is known as the bitwise complement, or bitwise NOT,
operator. It inverts each bit of its single operand, converting ones to zeros and
zeros to ones. For example:

byte b : ~12; // ~00000110 => 11111001 or -13 decimal
flags = flags & ~t; // Clear flag f in a set of flags

Bmm'se AND (80

This operator combines its two integer operands by performing a Boolean
AND operation on their individual bits. The result has a bit set only if the cor-
responding bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 => 00000010 or 2
if ((flags Xi f) 1: 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used Boolean AND
operator described earlier.

Bitwise OR (I)

This operator combines its two integer operands by performing a Boolean OR
operation on their individual bits. The result has a bit set if the corresponding
bit is set in either or both of the operands. It has a Zero bit only where both
corresponding operand bits are zero. For example:

10 | 7 // 00001010 | 00000111 => 00001111 or 15
flags = flags | f; // Set flag f

When used with boolean operands, | is the infrequently used Boolean OR
operator described earlier.

Bith'se XOR (A)

This operator combines its two integer operands by performing a Boolean
XOR (Exclusive OR) operation on their individual bits. The result has a bit set
if the corresponding bits in the two operands are different. If the correspond—
ing operand bits are both ones or both zeros, the result bit is a zero. For
example:

10 21 7 // 00001010 “ 00000111 => 00001101 or‘ 13

When used with boolean operands, ‘ is the infrequently used Boolean XOR
operator.

Lefi‘ szfi («D
The << operator shifts the bits of the left operand left by the number of places
specified by the right operand. High-order bits of the left operand are lost,
and zero bits are shifted in from the right. Shifting an integer left by n places
is equivalent to multiplying that number by 2". For example:

10 << 1 // 00001010 << 1 = 00010100 = 20
7 << 3 // 00000111 << 3 = 00111000 = 56
—1 << 2 // OXFFFFFFFF << 2 = 0xFFFFFFFC

Expressions and Operators 39

Page 58 of 238

If the left operand is a long, the right operand should be between 0 and 63.
Otherwise, the left operand is taken to be an int, and the right operand
should be between 0 and 31.

Signed Right Shift (>>)
The >> operator shifts the bits of the left operand to the right by the number

of places specified by the right operand. The low-order bits 'of the left
operand are shifted away and are lost. The high—order bits shifted in are the
same as the original high-order bit of the left operand. In other words, if the
left operand is positive, zeros are shifted into the high—order bits. If the left
operand is negative, ones are shifted in instead. This technique is known as
Sign extension; it is used to preserve the sign of the left operand. For exam~
ple:

10 >> 1 // 00001010 >> 1
27 >> 3 // 00011011» 3
-50 >> 2 // 11001110 >> 2

00000101
00000011
11110011

5 10/2
3 27/8
-13 1= ~50/4II||II IIIIll

If the left operand is positive and the right operand is n, the >> operator is the
same as integer division by 2".

Unsigned Right Shift (>>>)
This operator is like the >> operator, except that it always shifts zeros into the
high-order bits of the result, regardless of the sign of the left—hand operand.
This technique is called zero extension; it is appropriate when the left
operand is being treated as an unsigned value (despite the fact that Java inte—
ger types are all signed). Examples:

-50 >>> 2 // 11001110 >>> 2 00110011 51
Oxff >>> 4 // 11111111 >>> 4 00001111 15 = 255/16

Assignment Operators

The assignment operators store, or assign, a value into some kind of variable. The
left operand must evaluate to an appropriate local variable, array element, or
object field. The right side can be any value of a type compatible with the vari-
able. An assignment expression evaluates to the value that is assigned to the vari-
able. More importantly, however, the expression has the side effect of actually
performing the assignment. Unlike all other binary operators, the assignment oper—
ators are right-associative, which means that the assignments in a=b=c are per-
formed right—to-left, as follows: a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator,
==. In order to keep these two operators distinct, I recommend that you read = as
“is assigned the value.”

In addition to this simple assignment operator, Java also defines 11 other operators
that combine assignment with the S arithmetic operators and the 6 bitvvise and
shift operators. For example, the += operator reads the value of the left variable,
adds the value of the right operand to it, stores the sum back into the left variable
as a side effect, and returns the sum as the value of the expression. Thus, the
expression x+=2 is almost the same x=x+2. The difference between these two
expressions is that when you use the += operator, the left operand is evaluated

40 Chapter2—java Syntaxfrom the Ground (40

Page 59 of 238

only once. This makes a difference when that operand has a side effect. Consider
the following two expressions, which are not equivalent:

aEiH] += 2;
aEi++l = a[i++] + 2:

The general form of these combination assignment operators is:

var op: value

This is equivalent (unless there are side effects in var) to:

var = var 0p value

The available operators are:

+= —= *= /= %= // Arithmetic operators plus assignment
&= = = // Bitwise operators plus assignment
<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and —=, although &= and |= can also
be useful when working with bool ean flags. For example:

i +: 2; // Increment a loop counter by 2
— 5; // Decrement a counter by 5

flags |= f; // Set a flag f in an integer set of flags
flags &= "f; // Clear a flag f in an integer set of flags

The Conditional Operator

The conditional operator ?: is a somewhat obscure ternary (three-operand) opera-
tor inherited from C. It allows you to embed a conditional within an expression.
You can think of it as the operator version of the if/el 5e statement. The first and
second operands of the conditional operator are separated by a question mark ('2),
while the second and third operands are separated by a colon (z). The first
operand must evaluate to a bool ean value. The second and third operands can be
of any type, but they must both be of the same type.

The conditional operator starts by evaluating its first operand. If it is true, the
operator evaluates its second operand and uses that as the value of the expression.
On the other hand, if the first operand is false, the conditional operator evaluates
and returns its third operand. The conditional operator never evaluates both its
second and third operand, so be careful when using expressions with side effects
with this operator. Examples of this operator are:

int max=(x>y) '2 x : y;
String name = (name != null) ’3 name : "unknown";

Note that the ’3: operator has lower precedence than all other operators except the
assignment operators, so parentheses are not usually necessary around the
operands of this operator. Many programmers find conditional expressions easier
to read if the first operand is placed within parentheses, however. This is espe—
cially true because the conditional if statement always has its conditional expres-
sion written within parentheses.

Expressions and Operators 41

Page 60 of 238

Tbe instanceof Operator

The i nstancemc operator requires an object or array value as its left operand and
the name of a reference type as its right operand. It evaluates to true if the object
or array is an instance of the specified type; it returns false otherwise. If the left
operand is null, instanceof always evaluates to false. If an instanceof expres-
sion evaluates to true, it means that you can safely cast and assign the left
operand to a variable of the type of the right operand.

The instanceoi operator can be used only with array and object types and values,
not primitive types and values. Object and array types are discussed in detail later
in this chapter. Examples of instanceof are:

"string" instanceof String // True: all strings are instances of String
”" instanceof Object // True: strings are also instances of Object
new int[] {1} instanceof intE] // True: the array value is an int array
new intEl {1} instanceof bytei] // False: the array value is not a byte array
new int[] {1) instanceof Object // True: all arrays are instances of Object
null instanceof String // False: null is never instanceof anything

// Use instanceo’r‘ to make sure that it is safe to cast an object
if (object instanceof Point) i

Point p = (Point) object;
}

Special Operators

There are five language constructs in Java that are sometimes considered operators
and sometimes considered simply part of the basic language syntax. These “opera-
tors” are listed in Table 2-5 in order to show their precedence relative to the other
true operators. The use of these language constructs is detailed elsewhere in this
chapter, but is described briefly here, so that you can recognize these constructs
when you encounter them in code examples:

Object member access (.)
An object is a collection of data and methods that operate on that data; the
data fields and methods of an object are called its members. The dot (.)
operator accesses these members. If 0 is an expression that evaluates to an
object reference, and f is the name of a field of the object, 0.1” evaluates to
the value contained in that field. If rn is the name of a method, o.m refers to
that method and allows it to be invoked using the () operator shown later.

Army element access ([1)
An array is a numbered list of values. Each element of an array can be
referred to by its number, or index. The [] operator allows you to refer to the
individual elements of an array. If a is an array, and i is an expression that
evaluates to an int, a[il refers to one of the elements of a. Unlike other

operators that work with integer values, this operator restricts array index val-
ues to be of type int or narrower.

42 CbaprerZ—faz/a Syntaxfrom the Ground Up

Page 61 of 238

Method invocation (())

A method is a named collection of Java codethat can be run, or invoked, by
following the name of the method with zero or more comma—separated
expressions contained within parentheses. The values of these expressions are
the arguments to the method. The method processes the arguments and
optionally returns a value that becomes the value of the method invocation
expression. If o.m is a method that expects no arguments, the method can be
invoked with o.m(). If the method expects three arguments, for example, it
can be invoked with an expression such as o.m(x,y,z). Before the Java inter~
preter invokes a method, it evaluates each of the arguments to be passed to
the method. These expressions are guaranteed to be evaluated in order from
left to right (which matters if any of the arguments have side effects).

Object creation (new)
In Java, objects are created with the new operator, which is followed by the
type of the object to be created and a parenthesized list of arguments to be
passed to the Object constructor. A constructor is a special method that initial-
izes a newly created object, so the object creation syntax is similar to the Java
method invocation syntax. For example:

new ArrayList();
new Point(1,2)

Type conversion or casting (())
As we’ve already seen, parentheses can also be used as an operator to per—
form narrowing type conversions, or casts. The first operand of this operator
is the type to be converted to; it is placed between the parentheses. The sec—
ond operand is the value to be converted; it follows the parentheses. For
example:

(byte) 28 // An integer literal cast to a byte type
(int) (X + 3.1M) // A floating-point sum value cast to an integer value
(String)h.get(k) // A generic object cast to a more specific string type

Statements

A statement is a single “command” that is executed by the Java interpreter. By
default, the Java interpreter runs one statement after another, in the order they are
written. Many of the statements defined by Java, however, are flow—control state
ments, such as conditionals and loops, that alter this default order of execution in
well-defined ways. Table 2-6 summarizes the statements defined by Java.

Table 2—6- java Statements

Statement

expression side effects var = expr;
epo—r;
method ();

new Type();

compound group statements { statements }

Statements 43

Page 62 of 238

Table 2-6- java Statements (continued)

Statement

empty
labeled

variable

if

switch

while

do

for

break

continue

return

synchronized
throw

try

Punoose

do nothing
name a statement

declare a variable

conditional

conditional

loop

loop

simplified loop
exit block

restart loop
end method

critical section

throw exception

handle exception

Expression Statements

Syntax

label : statement

[final] type name [= value] [, name [= value]] . . .;

if (expr) statement [else statement]

switch (expr) i

[case expr : statements] ,..
[default statements]

l

while (expr) statement

do statement while (expr);

for (im't ; test ; increment) statement

break [label I ;

continue [label] ;

return [expr];

synchronized (expr) { statements }

throw expr ;

try { statements }

[catch (type name) { statements }]
[finally { statements }]

As we saw earlier in the chapter, certain types of Java expressions have side
effects. In other words, they do not simply evaluate to some value, but also
change the program state in some way. Any expression with side effects can be
used as a statement simply by following it with a semicolon. The legal types of
expression statements are assignments, increments and decrements, method calls,
and object creation. For example:

a = 1;
X 9:: 2;
l-H-;
.-c;
System. out.printl n("statement");

Compound Statements

// Assignment
// Assignment with operation
// Post-increment
// Pre-decrement
// Method invocation

A compound statement is any number and kind of statements grouped together
within curly braces. You can use a compound statement anywhere a statement is
required by Java syntax:

for(int i = 0; i < 10; i++) {
alil++;

A

// Body of this loop is a compound

44 Chapter 2—java Syntaxfrom the Ground Up

Page 63 of 238

statement. bEi]--; // It consists of two expression statements
l // within curly braces.

The Empty Statement

An empty statement in Java is written as a single semicolon. The empty statement
doesn’t do anything, but the syntax is occasionally useful. For example, you can
use it to indicate an empty loop body of a for loop:

f0r(1nt i = O; 1' <10; aElH-J‘H") // Increment array elements
/* empty */; // Loop body is empty statement

Labeled Statements

A labeled statement is simply a statement that has been given a name by prepend—
ing a identifier and a colon to it. Labels are used by the break and contl nue state—
ments. For example:

rquoop: for(int r = 0; r < rows.length; rH) { // A labeled loop
colLoop: for(1‘nt c = 0; c < columns.length; C'H') { // Another one

break rowLoop; // Use a label
l

}

Local Variable Declaration Statements

A local variable, often simply called a variable, is a symbolic name for a location
where a value can be stored that is defined Within a method or compound state-
ment, All variables must be declared before they can be used; this is done with a
variable declaration statement. Because Java is a strongly typed language, a vari-
able declaration specifies the type of the variable, and only values of that type can
be stored in the variable.

In its simplest form, a variable declaration specifies a variable’s type and name:

int counter;
String s;

A variable declaration can also include an initializer: an expression that specifies
an initial value for the variable. For example:

int 1' = 0;
String s = readLine();
intE] data = (x+l, x+2, x+3); // Array initializers are documented later

The Java compiler does not allow you to use a variable that has not been initial—
ized, so it is usually convenient to combine variable declaration and initialization
into a single statement. The initializer expression need not be a literal value or a
constant expression that can be evaluated by the compiler; it can be an arbitrarily
complex expression whose value is computed when the program is run.

A single variable declaration statement can declare and initialize more than one
variable, but all variables must be of the same type. Variable names and optional
initializers are separated from each other with commas:

Statements 45

Page 64 of 238

int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

In Java 1.1 and later, variable declaration statements can begin with the final key—
word This modifier specifies that once an initial value is specified for the variable,
that value is never allowed to change:

final String greeting : getLocalLanguageGreeting();

C programmers should note that Java variable declaration statements can appear
anywhere in Java code; they are not restricted to the beginning of a method or
block of code. Local variable declarations can also be integrated with the ini tia 7 -
7'ze portion of a for loop, as we’ll discuss shortly.

Local variables can be used only Within the method or block of code in which
they are defined, This is called their scope or lexical scope:

void method() { // A generic method
int i = 0; // Declare variable i
while (i <10) { // i is in scope here

int j = 0; // Declare j; i and j are in scope here
} // j is no longer in scope; can't use it anymore
System.out.println(i); // i is still in scope here

} // The scope of i ends here

The z'f/else Statement

The if statement is the fundamental control statement that allows Java to make
decisions or, more precisely, to execute statements conditionally. The if statement
has an associated expression and statement. If the expression evaluates to true,
the interpreter executes the statement If the expression evaluates to false, how—
ever, the interpreter skips the statement. For example:

if (username = null) // If username is null,
username = "John Doe"; // define it.

Although they look extraneous, the parentheses around the expression are a
required part of the syntax for the if statement.

As I already mentioned, a block of statements enclosed in curly braces is itself a
statement, so we can also write if statements that look as follows:

if ((address = null) ll (address.equals(""))) {
address = "[undefined]"; '
System.out.println("WARNING: no address specified");

)

An i f statement can include an optional else keyword that is followed by a sec—
ond statement. In this form of the statement, the expression is evaluated, and, if it
is true, the first statement is executed. Otherwise, the second statement is exe-
cuted. For example:

if (username 1: null)
System.out.println("Hello " + username);

else {
username = astuestioni‘Mhat is your name?“);

46 Chapter 2—folth Syntaa‘cfrom the Ground Up

Page 65 of 238

System.out.pr1’ntln("Hello " + username + Welcomel");
}

When you use nested 1' f/el se statements, some caution is required to ensure that

the elseclause goes with the appropriate if statement. Consider the followinglines:

if (1 = j)
if (j == k)

System.0ut.pr1‘ntln("1 equals k");
else

System.out.pr1‘ntln("1' doesn't equal j"); // WRONGI!

In this example, the inner 1' 1’ statement forms the single statement allowed by the
syntax of the outer if statement. Unfortunately, it is not clear (except from the
hint given by the indentation) which 1‘ f the else goes with. And in this example,
the indentation hint is wrong. The rule is that an else clause like this is associated
with the nearest if statement. Properly indented, this code looks like this:

if (1 == j)
if (j = k)

System.out.pr1‘ntln("1 equals k”);
else

System.out.pr1‘ntln("1‘ doesn‘t equal 3’"); // WRONGH

This is legal code, but it is clearly not what the programmer had in mind. When
working with nested 11° statements, you should use curly braces to make your
code easier to read. Here is a better way to write the code:

if (1' = j) {
if (j = k)

System.out.pr‘1‘ntln("1‘ equals k");
}
else {

System.out.pr1‘ntln("1‘ doesn‘t equal j“);
}

Tbe else ifclause

The 1'1c/el se statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need to
choose between several blocks of code? This is typically done with an else 11‘
clause, which is not really new syntax, but a common idiomatic usage of the stan—
dard if/el se statement. It looks like this:

if (n = l) {
// Execute code block #1

}
else if (n = 2)l

// Execute code block #2
}
else if (n = 3) i

// Execute code block #3
}
else {

// If all else fails, execute block #4
}

Statements 47

Page 66 of 238

There is nothing special about this code. It is just a series of if statements, where
each if is part of the else clause of the previous statement. Using the else if
idiom is preferable to, and more legible than, writing these statements out in their
fully nested form:

if (h = 1) i
// Execute code block #1

}
else i

if (n = 2) i
// Execute code block #2

}
else i

if (n = 3) {
// Execute code block #3

}
else i

// If all else fails, execute block #4
l

}
l

The switch Statement

An if statement causes a branch in the flow of a program’s execution. You can
use multiple 1' f statements, as shown in the previous section, to perform a multi-
way branch. This is not always the best solution, however, especially when all of
the branches depend on the value of a single variable. In this case, it is inefficient
to repeatedly check the value of the same variable in multiple if statements.

A better solution is to use a switch statement, which is inherited from the C pro—
gramming language. Although the syntax of this statement is not nearly as elegant
as other parts of Java, the brute practicality of the construct makes it worthwhile. If
you are not familiar with the switch statement itself, you may at least be familiar
with the basic concept, under the name computed goto or jump table. A switch
statement has an integer expression and a body that contains various numbered
entry points. The expression is evaluated, and control jumps to the entry point
specified by that value. For example, the following switch statement is equivalent
to the repeated if and else/11‘ statements shown in the previous section:

switch(n) {
case 1: // Start here if h

// Execute code block #1
break; // Stop here

case 2: // Start here if h
// Execute code block #2
break; // Stop here

case 3: // Start here if n
// Execute code block #3
break; // Stop here

default: // If all else fails...
// Execute code block #4

break; // Stop here

48 Chapter2—Jam Syntaxfrom the Ground 010

Page 67 of 238

As you can see from the example, the various entry points into a switch statement
are labeled either with the keyword case, followed by an integer value and a
colon, or with the special default keyword, followed by a colon. When a switch
statement executes, the interpreter computes the value of the expression in paren-
theses and then looks for a case label that matches that value. If it finds one, the
interpreter starts executing the block of code at the first statement following the
case label. If it does not find a case label with a matching value, the interpreter
starts execution at the first statement following a special-case defaul t: label. Or, if
there is no default: label, the interpreter skips the body of the switch statement
altogether.

Note the use of the break keyword at the end of each case in the previous code.
The break statement is described later in this chapter, but, in this case, it causes
the interpreter to exit the body of the switch statement. The case clauses in a
switch statement specify only the starting point of the desired code. The individ-
ual cases are not independent blocks of code, and they do not have any implicit
ending point. Therefore, you must explicitly specify the end of each case with a
break or related statement. In the absence of break statements, a switch statement
begins executing code at the first statement after the matching case label and con—
tinues executing statements until it reaches the end of the block. On rare occa-
sions, it is useful to write code like this that falls through from one case label to
the next, but 99% of the time you should be careful to end every case and
default section with a statement that causes the switch statement to stop execut-
ing. Normally you use a break statement, but return and throw also work.

A switch statement can have more than one case clause labeling the same state-
ment. Consider the switch statement in the following method:

boolean parseYesOrNoResponse<char response) {
switch(resp0nse) { *

case 'y':
case 'Y': return true;
case 'n':
case 'N': return false; .
default: throw new lllegalArgumentExceptioM"Response must be Y or N”):

l
i

There are some important restrictions on the switch statement and its case labels.
First, the expression associated with a switch statement must have a byte, char,
short, or int value. The floating—point and bool ean types are not supported, and
neither is long, even though long is an integer type. Second, the value associated
with each case label must be a constant value or a constant expression the com-
piler can evaluate. A case label cannot contain a runtime expressions involving
variables or method calls, for example. Third, the case label values must be Within
the range of the data type used for the switch expression. And finally, it is obvi—
ously not legal to have two or more case labels with the same value or more than
one default label.

Statements 49

Page 68 of 238

The while Statement

Just as the if statement is the basic control statement that allows Java to make
decisions, the while statement is the basic statement that allows Java to perform
repetitive actions. It has the following syntax:

whi l e (expression)
statement

The while statement works by first evaluating the expression. If it is false, the
interpreter skips the statement associated with the loop and moves to the next
statement in the program If it is true, however, the statement that forms the body
of the loop is executed, and the expression is reevaluated. Again, if the value of
expression is false, the interpreter moves on to the next statement in the pro-
gram; otherwise it executes the statement again. This cycle continues while the
expression remains true (ie, until it evaluates to false), at which point the
whi l e statement ends, and the interpreter moves on to the next statement. You can
create an infinite loop with the syntax whi l e(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {

System.out.println(count);
count4+g

)

As you can see, the variable count starts off at 0 in this example and is incre-
mented each time the body of the loop runs. Once the loop has executed 10
times, the expression becomes false (i.e., count is no longer less than 10), the
while statement finishes, and the Java interpreter can move to the next statement
in the program. Most loops have a counter variable like count. The variable names
1' , j, and k are commonly used as a loop counters, although you should use more
descriptive names if it makes your code easier to understand.

The do Statement

A do loop is much like a while loop, except that the loop expression is tested at
the bottom of the loop, rather than at the top. This means that the body of the
loop is always executed at least once. The syntax is:

(10
statement

while (expression) ;

There are a couple of differences to notice between the do loop and the more
ordinary whi l e loop. First, the do loop requires both the do keyword to mark the
beginning of the loop and the while keyword to mark the end and introduce the
loop condition. Also, unlike the wm‘ l e loop, the do loop is terminated with a semi—
colon. This is because the do loop ends with the loop condition, rather than sim-
ply ending with a curly brace that marks the end of the loop body. The following
do loop prints the same output as the while loop shown above:

50 Chapter 2—]am Syntaxfrom the Ground Up

Page 69 of 238

int count = 0;
do {

System.out.printlmcount);
count-H;

} whfle<count < 10);

Note that the do loop is much less commonly used than its whiie cousin. This is
because, in practice, it is unusual to encounter a situation where you are sure you
always want a loop to execute at least once.

Tbefor Statement

The for statement provides a looping construct that is often more convenient than
the whi i e and do loops. The for statement takes advantage of a common looping
pattern. Most loops have a counter, or state variable of some kind, that is initial-
ized before the loop starts, tested to determine whether to execute the loop body,
and then incremented, or updated somehow, at the end of the loop body before
the test expression is evaluated again. The initialization, test, and update steps are
the three crucial manipulations of a loop variable, and the for statement makes
these three steps an explicit part of the loop syntax:

for(in1tiaiize ; test ; increment)
statement

This for loop is basically equivalent to the following while loop:*

initialize;
whil e(test) {

statement;
increment;

}

Placing the initialize, test, and increment expressions at the top of a for‘ loop
makes it especially easy to understand what the loop is doing, and it prevents mis-
takes such as forgetting to initialize or increment the loop variable. The interpreter
discards the values of the initialize and increment expressions, so in order to
be useful, these expressions must have side effects. initialize is typically an
assignment expression, while increment is usually an increment, decrement, or
some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and
do loops have done:

int count;
for(count = 0 ; count < 10 ; count-H)

System.out.println(count);

Notice how this syntax places all the important information about the loop vari-
able on a single line, making it very clear how the loop executes, Placing the
increment expression in the for statement itself also simplifies the body of the

* As you’ll see when we con51der the continue statement, this while loop is not exactly equivalent to the
for loop. We'll discuss how to write the true equivalent when we talk about the try/catch/finallystatement.

Statements 51

Page 70 of 238

loop to a single statement; we don’t even need to use curly braces to produce a
statement block.

The for loop supports some additional syntax that makes it even more convenient
to use. Because many loops use their loop variables only within the loop, the for
loop allows the initialize expression to be a full variable declaration, so that the
variable is scoped to the body of the loop and is not visible outside of it. For
example:

for(int count = 0 ; count < 10 ; count++)
System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use
only a single variable. Both the initialize and increment expressions of a for
loop can use a comma to separate multiple initializations and increment expres—
sions. For example:

forCinti=0,j=10;i<lO;' ,j--)
sum+=i*j;

Even though all the examples so far have counted numbers, for loops are not
restricted to loops that count numbers. For example, you might use a for loop to
iterate through the elements of a linked list:

for(Node n = listHead; n E: null; n = h.nextNode())
process(n);

The initialize, test, and increment expressions of a for loop are all optional;
only the semicolons that separate the expressions are required. If the test expres—

sion is omitted, it is assumed to be true. Thus, you can write an infinite loop as
for(; ;). '

The break Statement

A break statement causes the Java interpreter to skip immediately to the end of a
containing statement. We have already seen the break statement used with the
switch statement. The break statement is most often written as simply the key—
word break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the
innermost containing while, do, to r, or switch statement. For example:

for(int i = 0; i < data.length; iH) { // Loop through the data array.
if (data[1'] 2 target) { // When we find what we‘re looking for,

index = i; // remember where we found it
break; // and stop looking!

)
) // The Java interpreter goes here after executing break

The break statement can also be followed by the nameof a containing labeled
statement. When used in this form, break causes the Java interpreter to immedi-
ately exit from the named block, which can be any kind of statement, not just a
loop or switch. For example:

52 Chapter 2—1611»: syntaxfirom the Ground Up

Page 71 of 238

testfornull: if (data 1: null) (// if the array is defined,
for<int row = 0; row < numrows; rowH) { // loop through one dimension,

for<int col = 0; col < numcols; colt-r) C // then loop through the other.
if (datairolecoll = null) // if the array is missing data,

break testfornull; // treat the array as undefined,
}

l
} // Java interpreter goes here after executing break testfornull

The continue Statement

While a break statement exits a loop, 21 continue statement quits the current itera-
tion of a loop and starts the next one. continue, in both its unlabeled and labeled
forms, can be used only within a while, do, or for loop. When used Without a
label, continue causes the innermost loop to start a new iteration. When uSCd with
a label that is the name of a containing loop, it causes the named loop to start a
new iteration. For example:

for(int i = 0; i < data.length; i++) { // Loop through data.
if (data[il = <1) // If a data value is missing,

continue; // skip to the next iteration.
process(data[i]); // Process the data value.

}

while, do, and for loops differ slightly in the way that continue starts a new itera-
tion:

With a while loop, the Java interpreter simply returns to the top of the loop,
tests the loop condition again, and, if it evaluates to true, executes the body
of the loop again.

With a do loop, the interpreter jumps to the bottom of the loop, where it tests
the loop condition to decide whether to perform another iteration of the loop.

With a for loop, the interpreter jumps to the top of the loop, where it first
evaluates the increment expression and then evaluates the test expression to
decide whether to loop again. As you can see, the behavior of a for loop
with 21 continue statement is different from the behavior of the “basically
equivalent” while loop I presented earlier; increment gets evaluated in the
for loop, but not in the equivalent whi l e loop.

The return Statement

A return statement tells the Java interpreter to stop executing the current method.
If the method is declared to return a value, the return statement is followed by an
expression. The value of the expression becomes the return value of the method.
For example, the following method computes and returns the square of a number:

double square(double x) i // A method to compute x squared
return x * x; // Compute and return a value

l

Some methods are declared void to indicate they do not return any value. The
Java interpreter runs methods like this by executing its statements one by one until
it reaches the end of the method. After executing the last statement, the interpreter

Statements 53

Page 72 of 238

returns implicitly. Sometimes, however, a void method has to return explicitly
before reaching the last statement. In this case, it can use the return statement by
itself, without any expression. For example, the following method prints, but does
not return, the square root of its argiment. If the argument is a negative number, it
returns without printing anything:

void printSquareRoot(double x) i // A method to print square root of x
if (x < 0) return; // If x is negative, return explicitly
System.out.println(Math.sqrt(x)); // Print the square root of x

} // End of method: return implicitly

The synchronized Statement

Since Java is a multithreaded system, you must often take care to prevent multiple
threads from modifying an object simultaneously in a way that might corrupt the
object’s state. Sections of code that must not be executed simultaneously are
known as critical sections. Java provides the synchronized statement to protect
these critical sections. The syntax is:

synchronized (expression) {
statements

)

expression is an expression that must evaluate to an object or an array.’ The
statements constitute the code of the critical section and must be enclosed in

curly braces. Before executing the critical section, the Java interpreter first obtains
an exclusive lock on the object or array specified by expression. It holds the lock
until it is finished running the critical section, then releases it. While a thread holds
the lock on an object, no other thread can obtain that lock. Therefore, no other
thread can execute this or any other critical sections that require a lock on the
same object. If a thread cannot immediately obtain the lock required to execute a

critical section,7 it simply waits until the lock becomes available.

Note that you do not have to use the synchronized statement unless your program
creates multiple threads that share data. If only one thread ever accesses a data.
structure, there is no need to protect it with synchronized. When you do have to
use synchronized, it might be in code like the following:

public static void SortintArray<intE1 a) {
// Sort the array a. This is synchronized so that some other thread
// cannot change elements of the array while we're sorting it (at
// least not other threads that protect their changes to the array
// with synchronized).
synchronized (a) {

// Do the array sort here...
l

l

The synchronized keyword is also available as a modifier in Java and is more
commonly used in this form than as a statement. When applied to a method, the
synchronized keyword indicates that the entire method is a critical section. For a
synchronized class method (a static method), Java obtains an exclusive lock on
the class before executing the method. For a synchronized instance method, Java

54 CbapterZ—jam Syntaxfrom the Ground Up

Page 73 of 238

obtains an exclusive lock on the class instance. (Class and instance methods are
discussed in Chapter 5.)

The throw Statement

An exception is a signal that indicates some sort of exceptional condition or error
has occurred. To throw an exception is to signal an exceptional condition. To
catch an exception is to handle it—to take whatever actions are necessary to
recover from it.

In Java, the throw statement is used to throw an exception:

throw expression ;

The expression must evaluate to an exception object that describes the exception
or error that has occurred. We’ll talk more about types of exceptions shortly; for
now, all you need to know is that an exception is represented by an object. Here
is some example code that throws an exception:

public static double factorial<int X) {
if (x < 0)

throw new lllegalArgumentException(”x must be >= 0”));
double fact;
for(fact=1.0; x > 1; fact *= x, x-—)

/* empty */ ; // Note use of the empty statement
return fact;

}

When the Java interpreter executes a throw statement, it immediately stops normal
program execution and starts looking for an exception handler that can catch, or
handle, the exception. Exception handlers are written with the try/catch/fi ml 1 y
statement, which is described in the next section. The Java interpreter first looks at
the enclosing block of code to See if it has an associated exception handler. If so,
it exits that block of code and starts running the exception-handling code associ—
ated with the block. After running the exception handler, the interpreter continues
execution at the statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler,
the interpreter checks the next higher enclosing block of code in the method. This
continues until a handler is found. If the method does not contain an exception
handler that can handle the exception thrown by the throw statement, the inter—
preter stops running the current method and returns to the caller. Now the inter—
preter starts looking for an exception handler in the blocks of code of the calling
method. In this way, exceptions propagate up through the lexical structure of Java
methods, up the call stack of the Java interpreter. If the exception is never caught,
it propagates all the way up to the mai :10 method of the program. If it is not han—
dled in that method, the Java interpreter prints an error message, prints a stack
trace to indicate Where the exception occurred, and then exits.

Exception types

An exception in Java is an object. The type of this object is java.langThrowable,
or more commonly, some subclass of Throwable that more specifically describes

Statements 55

Page 74 of 238

the type of exception that occurred.* Throwable has two standard subclasses:
java.lang.Error and java.lang.Exception. Exceptions that are subclasses of
Error generally indicate unrecoverable problems: the virtual machine has run out
of memory, or a class file is corrupted and cannot be read, for example. Excep—
tions of this sort can be caught and handled, but it is rare to do so. Exceptions that
are subclasses of Exception, on the other hand, indicate less severe conditions.
These are exceptions that can be reasonably caught and handled They include
such exceptions as java.io.EOFException, which signals the end of a file, and
java.lang.ArraylndexOutOfBoundsException, which indicates that a program has
tried to read past the end of an array. In this book, I use the term “exception” to
refer to any exception object, regardless of whether the type of that exception is
Exception or Error.

Since an exception is an object, it can contain data, and its class can define meth-
ods that operate on that data. The Th rowable class and all its subclasses include a
String field that stores a human-readable error message that describes the excep-
tional condition. It’s set when the exception object is created and can be read from
the exception with the getMessage() method. Most exceptions contain only this
single message, but a few add other data. The java.io. InterruptedIOException,
for example, adds a field named bytesTransfer red that specifies how much input
or output was completed before the exceptional condition interrupted it.

Declaring exceptions

In addition to making a distinction between Error and Exception classes, the Java
exception—handling scheme also makes a distinction between checked and
unchecked exceptions. Any exception object that is an Error is unchecked. Any
exception object that is an Exception is checked, unless it is a subclass of
java.lang.RuntimeException, in which case it is unchecked. (RuntimeException
is \a subclass of Exception.) The reason for this distinction is that virtually any
method can throw an unchecked exception, at essentially any time. There is no
way to predict an OutOfMemoryError, for example, and any method that uses
objects or arrays can throw a Nul l Poi nterExcepti on if it is passed an invalid null
argument. Checked exceptions, on the other hand, arise only in specific, well-
defined circumstances. If you try to read data from a file, for example, you must at
least consider the possibility that a FileNotFoundExcepti on will be thrown if the
specified file cannot be found.

Java has different rules for working with checked and unchecked exceptions. If
you write a method that throws a checked exception, you must use a throws
clause to declare the exception in the method signature. The reason these types of
exceptions are called checked exceptions is that the Java compiler checks to make
sure you have declared them in method signatures and produces a compilation
error if you have not. The factorial () method shown earlier throws an exception
of type java.lang.IilegalArgumentException. This is a subclass of RuntimeEx-
cepti on, so it is an unchecked exception, and we do not have to declare it with a
throws clause (although we can if we want to be explicit).

* We haven’t talked about subclasses yet; they are covered in detail in Chapter 3

56 Chapter 2— java Syntaxfrom the Ground Up

Page 75 of 238

Even if you never throw an exception yourself, there are times when you must use
a throws clause to declare an exception. If your method calls a method that can

throw a checked exception, you must either include exception-handling code to
handle that exception or use throws to declare that your method can also throw
that exception.

How do you know if the method you are calling can throw a checked exception?
You can look at its method signature to find out. Or, failing that, the Java compiler
will tell you (by reporting a compilation error) if you’ve called a method whose
exceptions you must handle or declare. The following method reads the first line
of text from a named file. It uses methods that can throw various types of
java .io . IOException objects, so it declares this fact with a throws clause:

public static String readFirstLine(String filename) throws IOException {
BufferedReader in = new BufferedReader(new FileReaderilenameJ);
return in.readLine();

l

We’ll talk more about method declarations and method signatures later in this
chapter. ~

The try/catcb/fz'nally Statement

The try/catch/ finall y statement is Java’s exception—handling mechanism. The
try clause of this statement establishes a block of code for exception handling.
This try block is followed by zero or more catch clauses, each of which is a
block of statements designed to handle a specific type of exception. The catch
clauses are followed by an optional finally block that contains cleanup code
guaranteed to be executed regardless of what happens in the try block. Both the
catch and finally clauses are optional7 but every try block must be accompanied
by at least one or the other. The try, catch, and finally blocks all begin and end
with curly braces These are a required part of the syntax and cannot be omitted,
even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/ f inal l y
statement:

try {
// Normally this code runs from the top of the block to the bottom
// without problems. But it can sometimes throw an exception,
// either directly with a throw statement or indirectly by calling
// a method that throws an exception.

l
catch (SomeException e1) {

// This block contains statements that handle an exception obJect
// of type SomeException or a subclass of that type. Statements in
// this block can refer to that exception object by the name e1.

l
catch (AnotherException e2) {

// This block contains statements that handle an exception object
// of type AnotherException or a subclass of that type. Statements
// in this block can refer to that exception object by the name e2.

}

Statements 57

Page 76 of 238

finally i
// This block contains statements that are always executed
// after we leave the try clause, regardless of whether we leave it:
// 1) normally, after reaching the bottom of the block;
// 2) because of a break, continue, or return statement;
// 3) with an exception that is handled by a catch clause above; or
// 4) with an uncaught exception that has not been handled.
// If the try clause calls System.exit(), however, the interpreter
// exits before the finally clause can be run.

"3’

The try clause simply establishes a block of code that either has its exceptions
handled or needs special cleanup code to be run when it terminates for any rea—
son. The try clause by itself doesn’t do anything interesting; it is the catch and

finally clauses that do the exception-handling and cleanup operations.

catch

A try block can be followed by zero or more catch clauses that specify code to
handle various types of exceptions Each catch clause is declared with a single
argument that specifies the type of exceptions the clause can handle and also pro-
vides a name the clause can use to refer to the exception object it is currently han-
dling. The type and name of an exception handled by a catch clause are exactly
like the type and name of an argument passed to a method, except that for a
catch clause, the argument type must be Th rowabl e or one of its subclasses.

When an exception is thrown, the Java interpreter looks for a catch clause with an
argument of the same type as the exception object or a superclass of that type.
The interpreter invokes the first such catch clause it finds. The code within a
catch block should take Whatever action is necessary to cope with the exceptional
condition. If the exception is a java.i o.FileNotFoundExcepti on exception, for
example, you might handle it by asking the user to check his spelling and try
again. It is not required to have a catch clause for every possible exception; in
some cases the correct response is to allow the exception to propagate up and be
caught by the invoking method. In other cases, such as a programming error sig-
naled by Nul l Poi nterExcepti on, the correct response is probably not to catch the
exception at all, but allow it to propagate and have the Java interpreter exit with a
stack trace and an error message.

finally

The finally clause is generally used to clean up after the code in the try clause
(e.g., close files, shut down network connections). What is useful about the
final l y clause is that it is guaranteed to be executed if any portion of the try
block is executed, regardless of how the code in the try block completes. In fact,
the only way a try clause can exit without allowing the finally clause to be exe-
cuted is by invoking the System. exi t() method, which causes the Java interpreter
to stop running.

58 Chapter 2—]ava Syntaxfrom the Ground Up

Page 77 of 238

In the normal case, control reaches the end of the try block and then proceeds to
the finally block, which performs any necessary cleanup. If control leaves the
try block because of a return, continue, or break statement, the finally block is
executed before control transfers to its new destination.

If an exception occurs in the try block, and there is an associated catch block to
handle the exception, control transfers first to the catch block and then to the
finally block. If there is no local catch block to handle the exception, control
transfers first to the finally block, and then propagates up to the nearest contain-
ing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control
transfer is abandoned, and this new transfer is processed. For example, if 2
finally clause throws an exception, that exception replaces any exception that
was in the process of being thrown. If a final l y clause issues a return statement,
the method returns normally, even if an exception has been thrown and has not
been handled yet.

try and finally can be used together without exceptions or any catch clauses. In
this case, the finally block is simply cleanup code that is guaranteed to be exe-
cuted, regardless of any break, continue, or return statements within the try
clause.

In previous discussions of the for and continue statements, we’ve seen that a for
loop cannot be naively translated into a while loop because the continue state-
ment behaves slightly differently when used in a for loop than it does when used
in a while loop. The finally clause gives us a way to write a while loop that is
truly equivalent to a for loop. Consider the following generalized for loop:

for(initialize ; test ; increment)
statement

The following while loop behaves the same, even if the statement block contains
a continue statement:

initialize ;
while (test)‘l

tr‘y { statement)
finally { increment ; l

l

Methods

A method is a named collection of Java statements that can be invoked by other
Java code. When a method is invoked, it is passed zero or more values known as
arguments The method performs some computations and, optionally, returns a
value. A method invocation is an expression that is evaluated by the Java inter—
preter. Because method invocations can have side effects, however, they can also
be used as expression statements.

Methods 59

Page 78 of 238

You already know how to define the body of a method; it is simply an arbitrary
sequence of statements enclosed within curly braces. What is more interesting
about a method is its signature. The signature specifies:

' The name of the method

0 The type and name of each of the parameters used by the method

The type of the value returned by the method

The exception types the method can throw

Various method modifiers that provide additional information about the
method

A method signature defines everything you need to know about a method before
calling it. It is the method specification and defines the API for the method. The
reference section of this book is essentially a list of method signatures for all pub-
licly accessible methods of all publicly accessible classes of the Java platform. In
order to use the reference section of this book, you need to know how to read a
method signature. And, in order to write Java programs, you need to know how to
define your own methods, each of which begins with a method signature.

A method signature looks like this:

modifiers type name (paramiist) C throws exceptions J

The signature (the method specification) is followed by the method body (the
method implementation), which is simply a sequence of Java statements enclosed
in curly braces. In certain cases (described in Chapter 5), the implementation is
omitted, and the method body is replaced with a single semicolon.

Here are some example method definitions. The method bodies have been omit-
ted, so we can focus on the signatures:

public static void main(Str1ng[] args) { ... l
pubiic final synchronized int index0t(0bject element, int startlndex) { ... }
double djstanceFromOrigin(l (... }
static double squareRoot(doubie x) throws IiiegaiArgumentException { ... }
protected abstract String readTexttFiie f, String encoding)

throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from each other
by spaces. A method might be declared with the public and static modifiers, for
example. Other valid method modifiers are abstract, final, native, private,
protected, and synchronized. The meanings of these modifiers are not‘important
here; they are discussed in Chapter 3.

The type in a method signature specifies the return type of the method. If the
method returns a value, this is the name of a primitive type, an array type, or a
class. If the method does not return a value, type must be void. A constructor is a

special type of method used to initialize newly created objects. As We‘ll see in
Chapter 5, constructors are defined just like methods, except that their signatures
do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method
names, like variable names, are Java identifiers and, like all Java identifiers, can

60 Chapter 2 —]ava Syntaxfrom the Ground Up

Page 79 of 238

use any characters of the Unicode character set. It is legal (and sometimes useful)
to define more than one method with the same name, as long as each version of
the method has a different parameter list. Defining multiple methods with the
same name is called method overloading. The System.out,pri ntl n() method
we’ve seen so much of is an overloaded method. There is one method by this
name that prints a string and other methods by the same name that print the val-
ues of the various primitive types. The Java compiler decides which method to call
based on the type of the argmment passed to the method.

When you are defining a method, the name of the method is always followed by
the methods parameter list, which must be enclosed in parentheses. The parame—
ter list defines zero or more arguments that are passed to the method. The param—
eter specifications, if there are any, each consist of a type and a name and are
separated from each other by commas (if there are multiple parameters). When a
method is invoked, the argument values it is passed must match the number, type,
and order of the parameters specified in this method signature line. The values
passed need not have exactly the same type as specified in the signature, but they
must be convertible to those types without casting. C and C++ programmers
should note that when a Java method expects no arguments, its parameter list is
simply 0, not (void).

The final part of a method signature is the throws clause, which I first described
when we discussed the throw statement. If a method uses the throw statement to

throw a checked exception, or if it calls some other method that throws a checked
exception and does not catch or handle that exception, the method must declare
that it can throw that exception. If a method can throw one or more checked
exceptions, it specifies this by placing the throws keyword after the argument list
and following it by the name of the exception class or classes it can throw. If a
method does not throw any exceptions, it does not use the throws keyword. If a
method throws more than one type of exception, separate the names of the
exception classes from each other with commas.

Classes and Objects

Now that we have introduced operators, expressions, statements, and methods, we
can finally talk about classes. A class is a named collection of fields that hold data
values and methods that operate on those values. Some classes also contain nested
inner classes. Classes are the most fundamental structural element of all Java pro—
grams. You cannot write Java code without defining a class. All Java statements
appear within methods, and all methods are defined within classes.

Classes are more than just another structural level of Java syntax. Just as a cell is
the smallest unit of life that can survive and reproduce on its own, a class is the
smallest unit of Java code that can stand alone. The Java compiler and interpreter
do not recognize fragments of Java code that are smaller than a class. A class is the
basic unit of execution for Java, which makes classes very important. Java actually
defines another construct, called an interface, that is quite similar to a class. The
distinction between Classes and interfaces will become clear in Chapter 3, but for
now I‘ll use the term “class” to mean either a class or an interface.

Classes and Objects 61

Page 80 of 238

Classes are important for another reason: every class defines a new data type. For
example, you can define a class named Point to represent a data point in the two—
dimensional Cartesian coordinate system, This class can define fields (each of type
double) to hold the X and Y coordinates of a point and methods to manipulate
and operate on the point, The Point class is a new data type,

When discussing data types, it is important to distinguish between the data type
itself and the values the data type represents. char is a data type: it represents Uni-
code characters. But a Char value represents a single specific character. A class is a
data type; the value of a class type is called an object. We use the name class
because each class defines a type (or kind, or species, or class) of objects. The
Point class is a data type that represents X,Y points, while a Point object repre-
sents a single specific X,Y point. As you might imagine, classes and their objects
are closely linked. In the sections that follow, we will be discussing both.

befinmg a Class
Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (X,y) point */
public class Point {

public double X, y; // The coordinates of the point.
public Pointtdouble x, double y) (// A constructor that

this.x = x; this.y = y; // initializes the fields.
}

public double distanceFromOrigin() [// A method that operates on
return Math.sqr‘t(x*x + y*y); // the x and y fields.

}
}

This class definition is stored in a file named Pointjtzva and compiled to a file
named Pointclass, at which point it is available for use by Java programs and
other classes. This class definition is provided here for completeness and to pro—
vide context, but don’t expect to understand all the details just yet; most of Chap—
ter 3 is devoted to the topic of defining classes. Do pay extra attention to the first
(non—comment) line of the class definition, however. Just as the first line of a
method definition—the method signature—defines the API for the method, this
line defines the basic API for a class (as described in the next chapter).

Keep in mind that you don't have to define every class you want to use in a Java
program. The Java platform consists of over 1500 predefined classes that are guar-
anteed to be available on every computer that runs Java.

Creating an Object

Now that we have defined the Point class as a new data type, we can use the fol—
lowing line to declare a variable that holds a Point object:

Point p;

Declaring a variable to hold a Point object does not create the object itself, how-
ever: To actually create an object, you must use the new operator. This keyword is
followed by the object’s class (is, its type) and an optional argument list in

62 Chapter 2—]ava Syntaxfrom the Ground Up

Page 81 of 238

parentheses. These arguments are passed to the constructor method for the class,
which initializes internal fields in the new object:

// Create a Point object representing (2,-3.5) and store it in variable p
Point p = new Point(2.0, -3.5);

// Create some other objects as well
Date d = new Date(); // A Date object that represents the current time
Vector list = new Vector(); // A Vector object to hold a list of objects

The new keyword is by far the most common way to create objects in Java. There
are a few other ways that are worth mentioning, however. First, there are a couple
of classes that are so important that the Java language defines special literal syntax
for creating objects of those types (as we’ll discuss in the next section). Second,
Java supports a dynamic loading mechanism that allows programs to load classes
and create instances of those classes dynamically. This dynamic instantiation is
done with the newlnstance() methods of java.lang.Class and java.lang.Con~

st ructor. Finally, in Java 1.1 and later, objects can also be created by deserializing
them. In other words, an object that has had its state saved, or serialized, usually
to a file, can be recreated using the java .io.0bjectInputStream class.

Object Literals

As I just said, Java defines special syntax for creating instances of two very impor-
tant classes. The first class is String, which represents text as a string of charac-
ters. Since programs usually communicate with their users through the written
word, the ability to manipulate strings of text is quite important in any program~
ming language. In some languages, strings are a primitive type, on a par with inte-
gers and characters. In Java, however, strings are objects; the data type used to
represent text is the String class.

Because strings are such a fundamental data type, Java allows you to include text
literally in programs by placing it between double—quote C") characters. For exam—
ple:

String name = “David”;
System.out.println("Hello, " + name);

Don’t confuse the double—quote characters that surround string literals with the
single-quote (or apostrophe) characters that surround char literals. String literals
can contain any of the escape sequences char literals can (see Table 2-3). Escape
sequences are particularly useful for embedding double—quote characters within
double-quoted string literals. For example:

String story = "\t\"H0w can you stand it?\" he asked sarcastically.\n";

String literals can be only a single line long. Java does not support any kind of
continuation—character syntax that allows two separate lines to be treated as a sin—
gle line. If you need to represent a long string of text that does not fit on a single
line, break it into independent string literals and use the + operator to concatenate
the literals. For example:

String s = "This is a test of the // This is illegal; string literals
emergency broadcast system"; // cannot be broken across lines.

Classes and Objects 63

Page 82 of 238

String s = "This is a test of the " + // Do this instead.
"emergency broadcast system“;

This concatenation of literals is done when your program is compiled, not when it
is run, so you do not need to worry about any kind of performance penalty.

The second class that supports its own special object literal syntax is the class
named Class. Class is a (self—referential) data type that represents all Java data
types, including primitive types and array types, not just class types. To include a
Class object literally in a Java program, follow the name of any data type with
.cl ass. For example:

Class typelnt = int.type;
Class typelntAr‘r‘ay = int[].type;
Class typePoint = Point.class;

This feature is supported by Java 1.1 and later.

The Java reserved word null is a special literal that can be used with any class.
Instead of representing a literal object, it represents the absence of an object. For
example:

String s = null;
Point p = null;

Finally, objects can also be included literally in a Java program through the use of
a construct known as an anonymous inner class. Anonymous classes are discussed
in Chapter 3.

Using cm Object

Now that we’ve seen how to define classes and instantiate them by creating
objects, we need to look at the Java syntax that allows us to use those objects.
Recall that a class defines a collection of fields and methods. Each object has its
own copies of those fields and has access to those methods. We use the dot char-
acter C.) to access the named fields and methods of an object. For example:

Point p = new Point(2, 3); // Create an object
double x = p.x; // Read a field of the object
p.y = p.>< * p.x; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is central to object—oriented programming in Java, so you’ll see it a lot.
Note, in particular, the expression p.di stance FromOr‘i gi n(). This tells the Java
compiler to look up a method named d1 stanceFromOri gi n() defined by the class
Point and use that method to perform a computation on the fields of the object p.
We’ll cover the details of this operation in Chapter 3.

Army Types

Array types are the second kind of reference types in Java. An array is an ordered
collection, or numbered list, of values. The values can be primitive values, objects,
or even other arrays, but all of the values in an array must be of the same type.

64 Chapter 2—java Syntaxfrom the Ground Up

Page 83 of 238

The type of the array is the type of the values it holds, followed by the characters
E]. For example:

byte b; // byte is a primitive type
byteE‘] arrayOfotes; // byte[] is an array type: array of byte
byte[][] arrayOfArrayOfotes; // byte[][] is another type: array of byteE]
PointE] points; // Point[] is an array of Point objects

For compatibility with C and C++, Java also supports another syntax for declaring
variables of array type. In this syntax, one or more pairs of square brackets follow
the name of the variable, rather than the name of the type:

byte arranyBytesE]; // Same as bytei] arrayOfotes
byte arrayOfAr‘r‘ayOfoteSEJEJ; // Same as byteEJE] arrayOfArrayOfotes
byteE] arrayOfArrayOfotesE]; // Ugh! Same as byteEJEJ arrayOfArrayOfotes

This is almost always a confusing syntax, however, and it is not recommended.

With classes and objects, we have separate terms for the type and the values of
that type. With arrays, the single word array does double duty as the name of both
the type and the value. Thus, we can speak of the array type int[] (21 type) and
an array of 1' nt (a particular array value). In practice, it is usually clear from con-
text whether a type or a value is being discussed.

Creating Arrays

To create an array value in Java, you use the new keyword, just as you do to create
an object. Arrays don’t need to be initialized like objects do, however, so you
don’t pass a list of arguments between parentheses. What you must specify,
though, is how big you want the array to be. If you are creating a byteE], for
example, you must specify how many byte values you want it to hold. Array val—
ues have a fixed size in Java. Once an array is created, it can never grow or
shrink. Specify the desired size of your array as a non—negative integer between
square brackets:

byte[] buffer = new byte[1024];
StringE] lines = new StringESO];

When you create an array with this syntax, each of the values held in the array is
automatically initialized to its default value. This is false for boolean values,
'\u0000' for char values, 0 for integer values, 0.0 for floating—point values, and
null for objects or array values.

Using Arrays

Once you've created an array with the new operator and the square-bracket syntax,
you also use square brackets to access the individual values contained in the array.
Remember that an array is an ordered collection of values. The elements of an
array are numbered sequentially, starting with O. The number of an array element
refers to the element. This number is often called the index, and the process of
looking up a numbered value in an array is sometimes called indexing the array.

To refer to a particular element of an array, simply place the index of the desired
element in square brackets after the name of the array. For example:

Army Types 65

Page 84 of 238

Stringtl responses = new StringlE]; // Create an array of two strings
responses[0] * "Yes"; // Set the first element of the array
responsesEl] "No"; // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responsesEO] + "/" +

responses[ll + ”): ");

In some programming languages, such as C and C++, it is a common bug to write
code that tries to read or write array elements that are past the end of the array.
Java does not allow this. Every time you access an array element, the Java inter-
preter automatically checks that the index you have specified is valid. If you spec-
ify a negative index or an index that is greater than the last index of the array, the
interpreter throws an exception of type ArrayIndexOutOfBoundsException. This
prevents you from reading or writing nonexistent array elements.

Array index values are integers; you cannot index an array with a floating—point
value, a boolean, an object, or another array. char values can be converted to int
values, so you cam use characters as array indexes. Although long is an integer
data type, long values cannot be used as array indexes. This may seem surprising
at first, but consider that an int index supports arrays with over two billion ele-
ments. An int[l with this many elements would require eight gigabytes of mem-
ory. When you think of it this Way, it is not surprising that long values are not
allowed as array indexes.

Besides setting and reading the value of array elements, there is one other thing
you can do with an array value. Recall that whenever we create an array, we must
specify the number of elements the array holds. This value is referred to as the
length of the array; it is an intrinsic property of the array. If you need to know the
length of the array, append .length to the array name:

it (errorCode < errorMessages.length)
System.out.println(errorMessagesEerrorCode]);

.length is special Java syntax for arrays. An expression like a.length looks as
though it refers to a field of an object a, but this is not actually the case. The
.length syntax can be used only to read the length of an array. It cannot be used
to set the length of an array (because, in Java, an array has a fixed length that can
never change).

In the previous example, the array index within square brackets is a variable, not
an integer literal. In fact, arrays are most often used with loops, particularly for
loops, where they are indexed using a variable that is incremented or decre-
mented each time through the loop:

int[] values; // Array elements initialized elsewhere
int total = O; // Store sum of elements here
for(1’nt i = 0; 1' < values.length; i+l-) // Loop through array elements

total += valueinl; // Add them up

In Java, the first element of an array is always element number 0. If you are accus-
tomed to a programming language that numbers array elements beginning with 1,
this will take some getting used to. For an array a, the first element is a[0], the
second element is a[1], and the last element is:

66 CbapterZ—java Syntaxfrom the Ground Up

Page 85 of 238

aEa.length - l] // The last element of any array named a

Army Literals
The null literal used to represent the absence of an object can also be used to
represent the absence of an array. For example:

charE] password = null;

In addition to the null literal, Java also defines special syntax that allows you to
specify array values literally in your programs. There are actually two different syn-
taxes for array literals. The first, and more commonly used, syntax can be used
only when declaring a variable of array type. It combines the creation of the array
object with the initialization of the array elements:

intE] powersOfTwo = (1, 2, 4, 8, 16, 32, 64, 128);

This creates an array that contains the eight int elements listed within the curly
braces. Note that we don’t use the new keyword or specify the type of the array in
this array literal syntax. The type is implicit in the variable declaration of which the
initializer is a part. Also, the array length is not specified explicitly with this syntax;
it is determined implicitly by counting the number of elements listed between the
curly braces. There is a semicolon following the close curly brace in this array lit-
eral. This is one of the fine points of Java syntax. When curly braces delimit
classes, methods, and compound statements, they are not followed by semicolons.
However, for this array literal syntax, the semicolon is required to terminate the
variable declaration statement.

The problem with this array literal syntax is that it works only when you are
declaring a variable of array type. Sometimes you need to do something with an
array value (such as pass it to a method) but are going to use the array only once,
so you don’t want to bother assigning it to a variable. In Java 1.1 and later, there is
an array literal syntax that supports this kind of anonymous arrays (so called
because they are not assigned to variables, so they don’t have names). This kind
of array literal looks as follows:

// Call a method, passing an anonymous array literal that contains two strings
String response = asKQuestion(”Do you want to quit?".

new String[] ("Yes", "No"});

// Cali another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new PointE] { new Point(1,2).

new Point(3,4),
new Point(3,2) i);

With this syntax, you use the new keyword and specify the type of the array, but
the length of the array is not explicitly specified.

It is important to understand that the Java Virtual Machine architecture does not
support any kind of efficient array initialization. In other words, array literals are
created and initialized when the program is run, not when the program is com-
piled. Consider the following array literal:

intE] perfectNumbers = {6, 28};

Army Types 67

Page 86 of 238

This is compiled into Java by'te codes that are equivalent to:

intl] perfectNumber‘s = new intEZ];
perfectNumberSEO] 6;
perfectNumbersEl] 28;

Thus, if you want to include a large amount of data in a Java program, it may not
be a good idea to include that data literally in an array, since the Java compiler has
to create lots of Java byte codes to initialize the array, and then the Java interpreter
has to laboriously execute all that initialization code. In cases like this, it is better
to store your data in an external file and read it into the program at runtime.

The fact that Java does all array initialization explicitly at runtime has an important
corollary, however. It means that the elements of an array literal can be arbitrary
expressions that are computed at runtime, rather than constant expressions that
are resolved by the compiler. For example:

Point[] points = { circlel.getCenterPoint(), circle2.getCenterPoint());

Multidimensional Arrays

As we‘ve seen, an array type is simply the element type followed by a pair of
square brackets. An array of char is charE], and an array of arrays of char is
char[][]. When the elements of an array are themselves arrays, we say that the
array is multidimensional. In order to work with multidimensional arrays, there
are a few additional details you must understand.

Imagine that you want to use a multidimensional array to represent a multiplica—
tion table:

int[][] products; // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-
dimensional array. To access a single int element of this two-dimensional array,
you must specify two index values, one for each dimension. Assuming that this
array was actually initialized as a multiplication table, the 1' nt value stored at any
given element would be the product of the two indexes. That is, products[2][4]
would be 8, and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size
of both dimensions of the array. For example:

int[][] products = new int[101[10];

In some languages, an array like this would be created as a single block of 100
int values. Java does not work this way. This line of code does three things:

0 Declares a variable named products to hold an array of arrays of int.

0 Creates a 10-element array to hold 10 arrays of int.

Creates 10 more arrays, each of which is a lO—element array of 1' nt. It assigns
each of these 10 new arrays to the elements of the initial array. The default
value of every int element of each of these 10 new arrays is 0,

68 Cbupter2—juuu Syntuxfrom the Ground Up

Page 87 of 238

To put this another way, the previous single line of code is equivalent to the fol-
lowing code:

intllll Products = new intElOJEJ; // An array to hold ten intl] values.
forh'nt i = 0; 1' <10; 14+) // Loop ten times...

productsli] = new intElO]; // ...and create ten arrays.

The new keyword performs this additional initialization automatically for you. It
works with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size
for all dimensions of the array, only the leftmost dimension or dimensions. For
example, the following two lines are legal:

floatEJUEJ globalTemperatureData : new floatESGOJEJEJ;
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array
can hold a float[][]. The second line creates a two-dimensional array, where
each element of the array is a fl oatl]. If you specify a size for only some of the
dimensions of an array, however, those dimensions must be the leftmost ones. The
following lines are not legal:

floatEJEJJI] globalTemoeratureData
fl oat[][] E] gl obal Temperatu reData

new floatl360][][100]; // Error!
new float[][180][100]; // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an
array literal. Simply use nested sets of curly braces to nest arrays within arrays. For
example, we can declare, create, and initialize a 5X5 multiplication table like this:

intUEJ products = l {0, 0, 0,0, 0}.
{0, 1, 2,3, 4},
{0, 2, 4, 6, 8},
l0, 3, 6, 9, 12},
{0, 4, 8,12,16ll;

Or, if you want to use a multidimensional array without declaring a variable, you
can use the anonymous initializer syntax:

boolean response = bilingualQuestioMquestion, new Stringllll l
{ “Yes”, "No")1
{ “Om-u, "Non" H);

When you create a multidimensional array using the new keyword, you always get
a rectangular array: one in which all the array values for a given dimension have
the same size. This is perfect for rectangular data structures, such as matrixes.
However, because multidimensional arrays are implemented as arrays of arrays in
Java, instead of as a single rectangular block of elements, you are in no way con—
strained to use rectangular arrays. For example, since our multiplication table is
symmetrical about the diagonal from top left to bottom right, we can represent the
same information in a nonrectangular array with fewer elements:

intEJEJ products = i {0},
{0, 1}.
{0, 2. 4},

Array Type: 69

Page 88 of 238

{0. 3, 6. 9},
{0, 4, 8,12,16}}:

When working with multidimensional arrays, you‘ll often find yourself using
nested loops to create or initialize them. For example, you can create and initialize
a large triangular multiplication table as follows:

int[][] products = new int[12][l; // An array of 12 arrays of int.
for(1nt row = 0; row < 12; rowH) { // For each element of that array,

productsErow] = new intIrow-l-ll; // allocate an array of int.
for(int col = 0; col < row+1; col++) // For each element of the intE],

productsErochol] = row * col; // initialize it to the product.

Reference Types

Now that we have discussed the syntax for working with objects and arrays, we
can return to the issue of why classes and array types are known as reference
types. As we saw in Table 2-2, all the Java primitive types have Well-defined stan—
dard sizes, so all primitive values can be stored in a fixed amount of memory
(between one and eight bytes, depending on the type). But classes and array types
are composite types; objects and arrays contain other values, so they do not have
a standard size, and they often require quite a bit more memory than eight bytes.
For this reason, Java does not manipulate objects and arrays directly. Instead, it
manipulates references to objects and arrays. Because Java handles objects and
arrays by reference, classes and array types are known as reference types. In con-
trast, Java handles values of the primitive types directly, or by value.

A reference to an object or an array is simply some fixed-size value that refers to
the object or array in some way.* When you assign an object or array to a variable,
you are actually setting the variable to hold a reference to that object or array.
Similarly, when you pass an object or array to a method, what really happens is
that the method is given a reference to the object or array through which it can
manipulate the object or array.

C and C++ programmers should note that Java does not support the & address-of
operator or the * and 7> dereference operators. In Java, primitive types are always
handled exclusively by value, and objects and arrays are always handled exclu-
sively by reference. Furthermore, unlike pointers in C and C++, references in Java
are entirely opaque: they cannot be converted to or from integers, and they cannot
be incremented or decremented.

Although references are an important part of how Java works, Java programs can-
not manipulate references in any way. Despite this, there are significant differ-
ences between the behavior of primitive types and reference types in two
important areas: the way values are copied and the way they are compared for
equality.

"‘ Typically, a reference is the memory address at which the object or array is stored. However, since Java
references are opaque and cannot be manipulated in any way, this is an implementation detail

70 Chapter 2 — Java Syntaxfrom the Ground Up

Page 89 of 238

Copying Objects andArrays

Consider the following code that manipulate a primitive int value:

int x ‘ 42;
int y x;

After these lines execute, the variable y contains a copy of the value held in the
variable X. Inside the Java VM, there are two independent copies of the 32-bit inte-
ger 42.

Now think about what happens if we run the same basic code but use a reference
type instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

After this code runs, the variable q holds a copy of the reference held in the vari-
able p. There is still only one copy of the Point object in the VM, but there are
now two copies of the reference to that object. This has some important implica-
tions. Suppose the two previous lines of code are followed by this code:

System.out.println(p.x); // Print out the X coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.print1n(p.x); // Print out p.x again; this time it is 13.0

Since the variables p and (1 hold references to the same object, either variable can
be used to make changes to the object, and those changes are visible through the
other variable as well.

This behavior is not specific to objects; the same thing happens with arrays, as
illustrated by the following code:

charE] greet ={ 'h','e','1‘,'1'.‘ ' l; // greet holds an array reference
charE] cuss = greet; // cuss holds the same reference
cuss[4] = '1'; // Use reference to change an element
System.out.printin<greet); // Prints "heil!"

A similar difference in behavior between primitive types and reference types
occurs when arguments are passed to methods. Consider the following method:

void changePrimitive(int x) {
whi1e(x > O)

System.out.printin(x--);
}

When this method is invoked, the method is given a copy of the argument used to
invoke the method in the parameter x. The code in the method uses x as a loop
counter and decrements it to zero. Since X is a primitive type, the method has its
own private copy of this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the
parameter is a reference type: '

vo'id changeReference(Point p) {
whi1e(p.x > 0)

System.out.printin(p.x—-);

Reference Types 71

Page 90 of 238

When this method is invoked, it is passed a private copy of a reference to a Point
object and can use this reference to change the Point object. Consider the follow—

Point q = new Point(3.0, 4.5); // A point with an X coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The X coordinate of q is now 01

When the changeReference() method is invoked, it is passed a copy of the refer-
ence held in variable q. Now both the variable q and the method parameter p hold
references to the same object. The method can use its reference to change the
contents of the object. Note, however, that it cannot change the contents of the
variable q. In other words, the method can change the Point object beyond recog—
nition, but it cannot change the fact that the variable q refers to that object.

The title of this section is “Copying Objects and Arrays,” but, so far, we’ve only
seen copies of references to objects and arrays, not copies of the objects and
arrays themselves. To make an actual copy of an object or an array, you must use
the special cT one() method (inherited by all objects from java . T ang.0bject):

Point p = new Point(1,2); // p refers to one object
Point q = (Point) p.clone(); // q refers to a copy of that object
q.y = 42; // Modify the copied object, but not the original

intE] data {1,2,3,4,5}; // An array
intE] copy (int[]) data.clone(); // A copy of the array

Note that a cast is necessary to coerce the return value of the cl 0ne() method to
the correct type. The reason for this will become clear later in this chapter. There
are a couple of points you should be aware of when using clone(). First, not all
objects can be cloned. Java only allows an object to be cloned if the object’s class
has explicitly declared itself to be cloneable by implementing the Cl oneabl e inter-
face. (We haven’t discussed interfaces or how they are implemented yet; that is
covered in Chapter 3.) The definition of Point that we showed earlier does not
actually implement this interface, so our Point type, as implemented, is not clone—
able. Note, however, that arrays are always cloneable. If you call the clone()
method for a non—cloneable object, it throws a CToneNotSupportedException, so
when you use the cl one() method, you may want to use it within a try block to
catch this exception.

The second thing you need to understand about clone() is that, by default, it is

implemented to create a shallow copy of an object or‘array. The copied object or
array contains copies of all the primitive values and references in the original
object or array. In other words, any references in the object or array are copied,
not cloned; cTone() does not recursively make copies of the objects or arrays
referred to by those references. A class may need to override this shallow copy
behavior by defining its own version of the clone() method that explicitly per—
forms a deeper copy where needed. To understand the shallow copy behavior of
Cl 0ne(), consider cloning a two—dimensional array of arrays:

intEM] data = {{1,2,3}, (4,5)}; // An array of 2 references
intilil coD)’ = (intEHl) data.clone(); // Copy the Z refs to a new array
copy[0][O] = 99; // This changes dataEOJEO] too!
copyEl] : new intE] {7,8,9}; // This does not change dataEl]

72 Chapter 2—]am Syntaxfrom the Ground Up

Page 91 of 238

If you want to make a deep copy of this multidimensional array, you have to copy
each dimension explicitly:

intEJEJ data - {£1,222}, {4,5}}; // An array of 2 references
intEJEJ copy new intEdata.length][]; // A new array to hold copied arrays
forh'nt 1' - 0; i < data.length; iH)

com/[i] (int[])data[i].clone();

Comparing Objects and Arrays

We’ve seen that primitive types and reference types differ significantly in the way
they are assigned to variables, passed to methods, and copied. The types also dif-
fer in the way they are compared for equality, When used with primitive values,
the equality operator (= =) simply tests whether two values are identical (i.e.,
whether they have exactly the same bits). With reference types, however, == com-
pares references, not actual objects or arrays. In other words, :2 tests whether two
references refer to the same object or array; it does not test Whether two objects or
arrays have the same content. For example:

String letter = ” "; _
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s = t) System.out.println("equal"); // But they are not equal!

byteE] a = { l, 2, 3 l; // An array.
byteE] b = (byteii) a.clone(); // A copy with identical content.
if (a = b) System.out.println("equal"); // But they are not equal!

When working with reference types, there are two kinds of equality: equality of
reference and equality of object. It is important to distinguish between these two
kinds of equality. One way to do this is to use the word “equals” when talking
about equality of references and the word “equivalent” when talking about two
distinct object or arrays that have the same contents. Unfortunately, the designers
of Java didn’t use this nomenclature, as the method for testing whether one object
is equivalent to another is named equalsf). To test two objects for equivalence,
pass one of them to the equal si) method of the other:

String letter = "0";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) // And the equals() method

System.out.println("equivalent"); // tells us so.

All objects inherit an equal 5() method (from Object, but the default implementa-
tion simply uses == to test for equality of references, not equivalence of content. A
class that wants to allow objects to be compared for equivalence can define its
own version of the equal 50 method. Our Point class does not do this, but the
String class does, as indicated by the code above. You can call the equals()
method on an array, but it is the same as using the == operator, because arrays
always inherit the default equal 30 method that compares references rather than
array content. Starting in Java 1.2, you can compare arrays for equivalence with
the convenience method java.util .Arrays.equal s(). Prior to Java 1.2, however,
you must loop through the elements of the arrays and compare them yourself.

Reference Types 73

Page 92 of 238

Tbe null Reference

We’ve seen the null keyword in our discussions of objects and arrays. Now that
we have described references, it is worth revisiting null to point out that it is a
special value that is a reference to nothing, or an absence of a reference The
default value for all reference types is null. The null value is unique in that it can
be assigned to a variable of any reference type whatsoever.

Terminology: Pass by Value

I’ve said that Java handles arrays and objects “by reference.” Don’t confuse this
with the phrase “pass by reference,” “Pass by reference” is a term used to
describe the method-calling conventions of some programming languages. In a
pass-by—reference language, values—even primitive values—are not passed
directly to methods. Instead, methods are always passed references to values.
Thus, if the method modifies its parameters, those modifications are visible when
the method returns, even for primitive types.

Java does not do this; it is a “pass by value“ language. However, when a reference
type is involved, the value that is passed is a reference. But this is not the same as
pass—by—reference. If Java were a pass-by—reference language, when a reference
type was passed to a method, it would be passed as a reference to the reference.

Memory Allocation and Garbage Collection

As we’ve already noted, objects and arrays are composite values that can contain a
number of other values and may require a substantial amount of memory. When
you use the new keyword to create a new object or array or use an object or array
literal in your program, Java automatically creates the object for you, allocating
whatever amount of memory is necessary. You don’t need to do anything to make
this happen.

In addition, Java also automatically reclaims that memory for reuse when it is no
longer needed. It does this through a process called garbage collection. An object
is considered garbage when there are no longer any references to it stored in any
variables, the fields of any objects, or the elements of any arrays. For example:

Point p = new Point(1,2); // Create an object
double d = p.distanceFrom0rigin(); // Use it for something
p = new Point(2,3); // Create a new object

After the Java interpreter executes the third line, a reference to the new Point
object has replaced the reference to the first one. There are now no remaining ref-
erences to the first object, so it is garbage. At some point, the garbage collector
will discover this and reclaim the memory used by the object.

C programmers, who are used to using malloc() and free() to manage memory,
and C++ programmers, who are used to explicitly deleting their objects with
delete, may find it a little hard to relinquish control and trust the garbage

* Unfortunately, previous editions of this book may have contributed to the confusion!

74 Cbapter2— java Syntaxfrom the Ground Up

Page 93 of 238

collector. Even though it seems like magic, it really works! There is a slight perfor_
mance penalty due to the use of garbage collection, and Java programs may some,

times slow down noticeably while the garbage collector is actively reclaiming
memory. However, having garbage collection built into the language dramatically_
reduces the occurrence of memory leaks and related bugs and almost always
improves programmer productivity.

Reference Type Conversions

When we discussed primitive types earlier in this chapter, we saw that values of
certain types can be converted to values of other types. Widening conversions are
performed automatically by the Java interpreter, as necessary. Narrowing convep
sions, however, can result in lost data, so the interpreter does not perform them
unless explicitly directed to do so with a cast.

Java does not allow any kind of conversion from primitive types to reference types
or vice versa. Java does allow widening and narrowing conversions among certain
reference types, however. As we’ve seen, there are an infinite number of potential
reference types. In order to understand the conversions that can be performed
among these types, you need to understand that the types form a hierarchy, usu-
ally called the class hierarchy.

Every Java class extends some other class, known as its superclass. A Class inherits
the fields and methods of its superclass and then defines its own additional fields
and methods. There is a special class named Object that serves as the root of the
class hierarchy in Java. It does not extend any class, but all other Java classes
extend Object or some other class that has Object as one of its ancestors. The

Object class defines a number of special methods that are inherited (or overrid-
den) by all classes. These include the toString<), clone<), and equal 50 methods
described earlier.

The predefined St M’ ng class and the Point class we defined earlier in this chapter
both extend Object. Thus, we can say that all Stri ng objects are also Object
objects. We can also say that all Point objects are Object objects. The opposite is
not true, however. We cannot say that every Object is a String because, as we’ve
just seen, some Object objects are Point objects.

With this simple understanding of the class hierarchy, we can return to the rules of
reference type conversion:

- An object cannot be converted to an unrelated type. The Java compiler does
not allow you to convert a String to a Point, for example, even if you use a
cast operator.

An object can be converted to the type of a superclass. This is a widening
conversion, so no cast is required. For example, a String value can be
assigned to a variable of type Object or passed to a method where an Object
parameter is expected. Note that no conversion is actually performed; the
object is simply treated as if it were an instance of the superclass.

Reference Types 75

Page 94 of 238

An object can be converted to the type of a subclass, but this is a narrowing
conversion and requires a cast. The Java compiler provisionally allows this
kind of conversion, but the Java interpreter checks at runtime to make sure it
is valid. Only cast an object to the type of a subclass if you are sure, based on
the logic of your program, that the object is actually an instance of the sub-
class. If it is not, the interpreter throws a C1 assCastException. For example, if
we assign a String object to a Variable of type Object, we can later cast the
value of that variable back to type String:

Object o = "string"; // Widening conversion from String to Object
// Later in the program...
String s = (String) 0; // Narrowing conversion from Object to String

All array types are distinct, so an array of one type cannot be converted to an
array of another type, even if the individual elements could be converted. For
example, although a byte can be widened to an int, a byte[] cannot be con—
verted to an 1 ml], even with an explicit cast.

Arrays do not have a type hierarchy, but all arrays are considered instances of
Object, so any array can be converted to an Object value through a widening
conversion. A narrowing conversion with a cast can convert such an object
value back to an array. For example:

Object o = new int[] {1,2,3}; // Widening conversion from array to Object
// Later in the program.”
int[] a = (int[]) 0; // Narrowing conversion back to array type

Packages and thejava Namesp’ace

A package is a named collection of classes (and possibly subpackages). Packages
serve to group related classes and define a namespace for the classes they contain.

The Java platform includes packages with names that begin with java, javax, and
org.omg. (Sun also defines standard extensions to the Java platform in packages
whose names begin with javax.) The most fundamental classes of the language
are in the package java .iang. Various utility classes are in java .uti 1. Classes for
input and output are in java . i o, and classes for networking are in java .net. Some
of these packages contain subpackages. For example, java . i ang contains two
more specialized packages, named java.1ang.refiect and java.iang.ref, and
j ava.utii contains a subpackage, java.utii .zip, that contains classes for work—
ing with compressed ZIP archives.

Every class has both a simple name, which is the name given to it in its definition,
and a fully qualified name, which includes the name of the package of which it is
a part. The String class, for example, is part of the java.lang package, so its fully
qualified name is java.lang.String.

Defining a Package

To specify the package a class is to be part of, you use a package directive. The
package keyword, if it appears, must be the first token of Java code (i.e., the first
thing other than comments and space) in the Java file. The keyword should be

76 Chapter 2— java Syntaxfrom the Ground Up

Page 95 of 238

followed by the name of the desired package and a semicolon. Consider a file of
Java code that begins with this directive:

package com.davidfl anagan .jude;

All classes defined by this file are part of the package named com.davidflana-
gan.jude.

If no package directive appears in a file of Java code, all classes defined in that file
are part of a default unnamed package. As we’ll see in Chapter 5, classes in the
same package have special access to each other. Thus, except when you are writ—
ing simple example programs, you should always use the package directive to pre—
vent access to your classes from totally unrelated classes that also just happen to
be stored in the unnamed package.

Importing Classes and Packages

A class in a package p can refer to any other class in p by its simple name. And,
since the classes in the java.lang package are so fundamental to the Java lan-
guage, any Java code can refer to any class in this package by its simple name.
Thus, you can always type String, instead of java.lang.$tring. By default, how—
ever, you must use the fully qualified name of all other classes. So, if you want to
use the File class of the java.io package, you must type java.i0.File.

Specifying package names explicitly all the time quickly gets tiring, so Java
includes an impo r‘t directive you can use to save some typing. import is used to
specify classes and packages of classes that can be referred to by their simple
names instead of by their fully qualified names. The import keyword can be used
any number of times in a Java file, but all uses must be at the top of the file,
immediately after the package directive, if there is one. There can be comments
between the package directive and the import directives, of course, but there can-
not be any other Java code.

The import directive is available in two forms. To specify a single class that can be
referred to by its simple name, follow the import keyword with the name of the
class and a semicolon:

import java.io.File; // Now we can type File instead of java.io.File

To import an entire package of classes, follow import with the name of the pack—
age, the characters .*, and a semicolon. Thus, if you want to use several other
classes from the java.io package in addition to the File class, you can simply
import the entire package:

import java.io.*; // Now we can use simple names for all classes in java.1o

This package import syntax does not apply to subpackages. If I import the
java.util package, I must still refer to the java.util .zip.ZipInputStream class
by its fully qualified name. If two classes with the same name are both imported
from different packages, neither one can be referred to by its simple name; to
resolve this naming conflict unambiguously, you must use the fully qualified name
of both classes.

Packages and theJava Namespace 77

Page 96 of 238

Globally Um‘que Package Names

One of the important functions of packages is to partition the Java namespace and
prevent name collisions between classes. It is only their package names that keep
the java.util .List and java.awt. List classes distinct, for example. In order for
this to work, however, package names must themselves be distinct. As the devel-
oper of Java, Sun controls all package names that begin with java, javax, and sun.

For the rest of us, Sun proposes a package-naming scheme, which, if followed c0r~
rectly, guarantees globally unique package names. The scheme is to use your
Internet domain name, with its elements reversed, as the prefix for all your pack—
age names. My web site is dauldflanagaucom, so all my Java packages begin with
com.davidflanagan. It is up to me to decide how to partition the namespace
below com. davidfl anagan, but since I own that domain name, no other person or
organization who is playing by the rules can define a package with the same name
as any of mine.

java File Structure

This chapter has taken us from the smallest to the largest elements of Java syntax,
from individual characters and tokens to operators, expressions, statements, and
methods, and on up to classes and packages. From a practical standpoint, the unit
of Java program structure you will be dealing with most often is the Java file. A
Java file is the smallest unit of Java code that can be compiled by the Java com-
piler. AJava file consists of:

0 An optional package directive

- Zero or more import directives

0 One or more class definitions

These elements can be interspersed With comments, of course, but they must
appear in this order. This is all there is to a Java file. All Java statements (except
the package and import directives, which are not true statements) must appear
Within methods, and all methods must appear Within a class definition.

There are a couple of other important restrictions on Java files. First, each file can
contain at most one class that is declared public. A public class is one that is
designed for use by other classes in other packages. We’ll talk more about public
and related modifiers in Chapter 3. This restriction on public classes only applies
to top—level classes; a class can contain any number of nested or inner classes that
are declared publ i c, as we’ll see in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a
publ i c class, the name of the file must be the same as the name of the class, with

the extension java appended. Thus, if Point is defined as a public class, its
source code must appear in a file named Pointjava. Regardless of whether your
classes are public or not, it is good programming practice to define only one per
file and to give the file the same name as the class.

78 Chapter 2—]ava Syntaxfrom the Ground Up

Page 97 of 238

When a Java file is compiled, each of the classes it defines is compiled into a sepa-
rate class file that contains Java byte codes to be interpreted by the Java Virtual
Machine. A class file has the same name as the class it defines, with the extension

.class appended. Thus, if the file Pointjava defines a class named Point, a Java
compiler compiles it to a file named Pointclass. On most systems, class files are
stored in directories that correspond to their package names. Thus, the class
com.davidf1anagan.jude.DataFil e is defined by the class file com/davidflanagan/
jude/DataFile.class.

The Java interpreter knows where the class files for the standard system classes are
located and can load them as needed. When the interpreter runs a program that
wants to use a class named c0m.davidf1anagan.jude.lDataFi1e, it knows that the
code for that class is located in a directory named coWdavz’dflanagan/jude and,
by default, it “looks” in the current directory for a subdirectory of that name. In
order to tell the interpreter to look in locations other than the current directory,
you must use the -classpath option when invoking the interpreter or set the
CLASS PATH environment variable. For details, see the documentation for the Java
interpreter, java, in Chapter 8.

Defining and Runningjava Programs

A Java program consists of a set of interacting class definitions. But not every Java
class or Java file defines a program. To create a program, you must define a class
that has a special method with the following signature:

public static void main(String args[])

This mai n() method is the main entry point for your program. It is where the Java
interpreter starts running. This method is passed an array of strings and returns no
value. When main() returns, the Java interpreter exits (unless main() has created
separate threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java interpreter, java, specifying the fully qual-
ified name of the class that contains the mai n() method. Note that you specify the
name of the class, not the name of the class file that contains the class. Any addi-
tional arguments you specify on the command line are passed to the main()
method as its StringE] parameter. You may also need to specify the -classpath
option to tell the interpreter to look for the classes needed by the program. Con—
sider the following command:

C:\> java -classpath /usr/loca1/Jude com.davidflanagan.jude.Jude datafi'le.jude

java is the command to run the Java interpreter. ~clas.spatb /usr/local/fude tells the
interpreter where to look for .class files. com.davidf1anagan.jude.Jude is the
name of the program to run (i.e., the name of the class that defines the main()
method). Finally, datafilejude is a string that is passed to that main() method as
the single element of an array of String objects.

In Java 1.2, there is an easier way to run programs. If a program and all its auxil-
iary classes (except those that are part of the Java platform) have been properly
bundled in a Java archive (JAR) file, you can run the program simply by specify-
ing the name of the JAR file:

Defining and Runningjava Programs 79

Page 98 of 238

C:\> java -jar /usr/local/Jude/jude.jar datafilejude

Some operating systems make JAR files automatically executable. On those sys—
tems, you can simply say:

C:\> /usr/local/Jude/jude.jar‘ datafile.jude

See Chapter 8 for details.

Dz‘fierences Between C andjcwa
If you are a C or C++ programmer, you should have found much of the syntax of
Java—particularly at the level of operators and statements—to be familiar.
Because Java and C are so similar in some ways, it is important for C and C++ pro-
grammers to understand where the similarities end. There are a number of impor—
tant differences between C and Java, which are summarized in the following list:

Nopreprocessor
Java does not include a preprocessor and does not define any analogs of the
#define, #include, and #ifdef directives. Constant definitions are replaced
with static final fields in Java. (See the java,.lang.Math.PI field for an

example.) Macro definitions are not available in Java, but advanced compiler
technology and inlining has made them less useful. Java does not require an
#incl ude directive because Java has no header files. Java class files contain
both the class API and the class implementation, and the compiler reads API
information from class files as necessary. Java lacks any form of conditional
compilation, but its cross-platform portability means that this feature is very
rarely needed.

No global variables
Java defines a very clean namespace. Packages contain classes, classes contain
fields and methods, and methods contain local variables. But there are no

global variables in Java, and, thus, there is no possibility of namespace colli-
sions among those variables.

Well-dq’inedprimitive type sizes
All the primitive types in Java have Well-defined sizes. In C, the size of short,
int, and long types is platform-dependent, which hampers portability.

No pointers

Java classes and arrays are reference types, and references to objects and
arrays are akin to pointers in C. Unlike C pointers, however, references in
Java are entirely opaque. There is no way to convert a reference to a primitive
type, and a reference cannot be incremented or decremented. There is no

address-of operator like &, dereference operator like * or e>, or 51' zeof opera-
tor. Pointers are a notorious source of bugs. Eliminating them simplifies the
language and makes Java programs more robust and secure.

Garbage collection

The Java Virtual Machine performs garbage collection so that Java program—
mers do not have to explicitly manage the memory used by all objects and
arrays. This feature eliminates another entire category of common bugs and
all but eliminates memory leaks from Java programs.

80 CbapterZ—Jam Syntaxfrom the Ground Up

Page 99 of 238

No goto statement
Java doesn’t support a goto statement. Use of goto except in certain well-
defined circumstances is regarded as poor programming practice. Java adds
exception handling and labeled break and continue statements to the flow-
control statements offered by C. These are a good substitute for goto.

Variable declarations anywhere
C requires local variable declarations to be made at the beginning of a
method or block, while Java allows them anywhere in a method or block.
Many programmers prefer to keep all their variable declarations grouped
together at the top of a method, however.

Forward references
The Java compiler is smarter than the C compiler, in that it allows methods to
be invoked before they are defined. This eliminates the need to declare func—
tions in a header file before defining them in a program file, as is done in C.

Method overloading
Java programs can define multiple methods with the same name, as long as
the methods have different parameter lists.

No stmct and union Wes
Java doesn’t support C struct and union types. AJava class can be thought
of as an enhanced struct, however.

No enumerated types
Java doesn’t support the enum keyword used in C to define types that consist
of fixed sets of named values. This is surprising for a strongly typed language
like Java, but there are ways to simulate this feature with object constants.

No bitfields
Java doesn’t support the (infrequently used) ability of C to specify the number
of individual bits occupied by fields of a struct.

No typedef ‘
Java doesn’t support the typedef keyword used in C to define aliases for type
names. Java’s lack of pointers makes its type-naming scheme simpler and
more consistent than C’s, however, so many of the common uses of typedef
are not really necessary in Java.

No methodpointers
C allows you to store the address of a function in a variable and pass this
function pointer to other functions. You cannot do this with Java methods, but
you can often achieve similar results by passing an object that implements a
particular interface. Also, a Java method can be represented and invoked
through a java.lang. reflect.Method object.

No variable-length argument lists
Java doesn’t allow you to define methods such as C’s printfi) that take a
variable number of arguments. Method overloading allows you to simulate C
varargs functions for simple cases, but there’s no general replacement for this
feature.

Differences Between C andjava 81

Page 100 of 238

was

CHAPTER 5

Object-Oriented Programming injava

Java is an object-oriented programming language. As we discussed in Chapter 2,
java Syntax from the Ground Up, all Java programs use objects, and every Java
program is defined as a class. The previous chapter explained the basic syntax of
the Java programming language, including data types, operators, and expressions,
and even showed how to define simple classes and work with objects. This chap—
ter continues where that one left off, explaining the details of object—oriented pro—
gramming in Java.

If you do not have any object—oriented (OO) programming background, don’t
worry; this chapter does not assume any prior experience. If you do have experi-
ence with 00 programming, hOWever, be careful. The term “object—oriented” has
different meanings in different languages. Don’t assume that Java works the same
way as your favorite 00 language. This is particularly true for C++ programmers.
We saw in the last chapter that close analogies can be drawn between Java and C.
The same is not true for Java and C++, however. Java uses object-oriented pro-
gramming concepts that are familiar to C++ programmers and even borrows C++
syntax in a number of places, but the similarities between Java and C++ are not
nearly as strong as those between Java and C. Don’t let your experience with C++
lull you into a false familiarity with Java.

The Members ofa Class

As we discussed in Chapter 2, a class is a collection of data, stored in named
fields, and code, organized into named methods, that operates on that data. The
fields and methods are called members of a class. In Java 1.1 and later, classes can
also contain other classes. These member classes, or inner classes, are an
advanced feature that is discussed later in the chapter. For now, we are going to
discuss only fields and methods. The members of a class come in two distinct
types: class, or static, members are associated with the class itself, while instance
members are associated with individual instances of the class (i.e., with objects).
Ignoring member classes for now, this gives us four types of members:

Page 101 of 238

Class fields

Class methods

0 Instance fields

0 Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains
all four types of members.

Example 3—1: A Simple Class and its Members

public class Circle {
// A class field
public static final double PI: 3.14159; // A useful constant

// A class method: just compute a value based on the arguments
public static double radiansToDegrees(double rads) {

return rads * 180 / PI;
}

// An instance field
public double r; // The radius of the circle

// Two instance methods: they operate on the instance fields of an object
public double area() (// Compute the area of the circle

return PI * r * r;
}
public double circumferenceO (

return 2 * PI * r;
}

}

// Compute the circumference of the circle ‘

Class Fields

A class field is associated with the class in which it is defined, rather than with an
instance of the class. The following line declares a class field:

public static final double P1 = 3.14159;

This line declares a field of type double named PI and assigns it a value of
3.14159. As you can see, a field declaration looks quite a bit like the local variable
declarations we discussed in Chapter 2. The difference, of course, is that variables
are defined within methods, while fields are members of classes.

The static modifier says that the field is a class field. Class fields are sometimes
called static fields because of this static modifier. The final modifier says that
the value of the field does not change. Since the field PI represents a constant, we
declare it final so that it cannot be changed. It is a convention in Java (and many
other languages) that constants are named with capital letters, which is why our
field is named PI, not pi. Defining constants like this is a common use for class
fields, meaning that the static and final modifiers are often used together. Not
all class fields are constants, however. In other words, a field can be declared
static without declaring it final. Finally, the public modifier says that anyone
can use the field. This is a visibility modifier, and we’ll discuss it and related modi—
fiers in more detail later in this chapter.

The Members ofa Class 83

palueyg 499/40

Page 102 of 238

The key point to understand about a static field is that there is only a single copy
of it. This field is associated with the class itself, not with instances of the class. If
you look at the various methods of the Ci r‘cl e class, you’ll see that they use this
field. From inside the Circle class, the field can be referred to simply as PI. Out-
side the class, however, both class and field names are required to uniquely spec—
ify the field. Methods that are not part of Ci Fe] is access this field as Ci rcl e. PI.

A class field is essentially a global variable. The names of class fields are qualified
by the unique names of the classes that contain them, however. Thus, Java does
not suffer from the name collisions that can affect other languages when different
modules of code define global variables with the same name.

Class Methods

As with class fields, class methods are declared with the static modifier:

public static double radiansToDegreestdouble rads) (greturn rads * 180 / PI; }

This line declares a class method named radi ansToDegrees(). It has a single
parameter of type doubi e and returns a double value. The body of the method is
quite short; it performs a simple computation and returns the result.

Like class fields, class methods are associated with a class, rather than with an

object. \then invoking a class method from code that exists outside the class, you
must specify both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined,
you don‘t have to specify the class name. However, it is often good style to specify
the class name anyway, to make it clear that a class method is being invoked.

Note that the body of our Circle. radiansToDegrees() method uses the class field
PI. A class method can use any class fields and class methods of its own class (or
of any other class). But it cannot use any instance fields or instance methods
because class methods are not associated with an instance of the class. In other
words, although the radiansToDegreesO method is defined in the Ci rcie class, it
does not use any Circle objects. The instance fields and instance methods of the
class are associated with Ci r‘cle objects, not with the class itself. Since a class
method is not associated with an instance of its class, it cannot use any instance
methods or fields.

As we discussed earlier, a class field is essentially a global variable. In a similar
way, a class method is a global method, or global function. Although radi —
ansToDegreesU does not operate on Circle objects, it is defined within the Cir-
cle class because it is a utility method that is sometimes useful when working
with circles. In many non-object—oriented programming languages, all methods, or
functions, are global. You can write complex Java programs using only class meth-
ods. This is not object-oriented programming, however, and does not take advan-
tage of the power of the Java language. To do true object-oriented programming,
we need to add instance fields and instance methods to our repertoire.

84 Chapter 3 — Object—Oriented Programming injava

Page 103 of 238

Instance Fields

Any field declared Without the static modifier is an instancefield:

publicldouble r; // The radius of the circle

Instance fields are associated with instances of the class, rather than with the class

itself. Thus, every Circle object we create has its own copy of the double field r.
In our example, r represents the radius of a circle. Thus, each Circle object can
have a radius independent of all other Ci rcl e objects.

Inside a class definition, instance fields are referred to by name alone. You can see
an example of this if you look at the method body of the ci rcumferenceO
instance method. In code outside the class, the name of an instance method must
be prepended by a reference to the object that contains it. For example, if we
have a Ci rd 9 object named c, we can refer to its instance field r as c . 1":

Circle c = new Circle(); // Create a new Circle object; store it in variable c
c.r = 2.0; '// Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = or * 2; // Make this one twice as big

Instance fields are key to object—oriented programming. Instance fields define an
object; the values of those fields make one object distinct from another.

Instance Methods

Any method not declared with the static keyword is an instance method. An
instance method operates on an instance of a class (an object) instead of operating
on the class itself. It is with instance methods that object-oriented programming
starts to get interesting. The Circle class defined in Example 3-1 contains two
instance methods, area() and ci rcumference(), that compute and return the area
and circumference of the circle represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must
prepend a reference to the instance that is to be operated on. For example:

// Create a Circle object; store in variable c
// Set an instance field of the object
// Invoke an instance method of the object

Circle c = new Circlet);
c.r = 2.0;
double a = c.area():

If you’re new to object-oriented programming, that last line of code may look a lit-
tle strange. I did not write:

a = area(c);

Instead, I wrote:

c.area();a:

This is why it is called object-oriented programming; the object is the focus here,
not the function call. This small syntactic difference is perhaps the single most
important feature of the object-oriented paradigm.

The point here is that we don’t have to pass an argument to c.ar‘ea(). The object
we are operating on, c, is implicit in the syntax. Take a look at Example 3—1 again.

The Members ofa Class 85

[191119.110 439.1170

Page 104 of 238

You'll notice the same thing in the signature of the area() method: it doesn’t have
a parameter. Now look at the body of the area() method: it uses the instance field
r“. Because the area() method is part of the same class that defines this instance
field, the method can use the unqualified name r. It is understood that this refers
to the radius of whatever Ci rcl e instance invokes the method.

Another important thing to notice about the bodies of the area() and Ci rcumfer-
enceO methods is that they both use the class field PI. We saw earlier that class
methods can use only class fields and class methods, not instance fields or meth-
ods. Instance methods are not restricted in this way: they can use any member of
a class, whether it is declared stati c or not.

How instance methods work

Consider this line of code again:

a = c.area();

What’s going on here? How can a method that has no parameters know what data
to operate on? In fact, the area() method does have a parameter. All instance
methods are implemented with an implicit parameter not shown in the method
signature. The implicit argument is named thi s; it holds a reference to the object
through which the method is invoked. In our example, that object is a Ci rc'l e.

The implicit this parameter is not shown in method signatures because it is usu—
ally not needed; whenever a Java method accesses the fields in its class, it is
implied that it is accessing fields in the object referred to by the thi s parameter.
The same is true when an instance method invokes another instance method in

the same class. I said earlier that to invoke an instance method you must prepend
a reference to the object to be operated on. When an instance method is invoked
Within another instance method in the same class, however, you don’t need to
specify an object. In this case, it is implicit that the method is being invoked on
the thi 5 object.

You can use the thi 5 keyword explicitly when you want to make it clear that a
method is accessing its own fields and/or methods. For example, we can rewrite
the area() method to use this explicitly to refer to instance fields:

public double area” i
return CirclePI * this.r * this.r;

l

This code also uses the class name explicitly to refer to class field PI. In a method
this simple, it is not necessary to be explicit. In more complicated cases, however,
you may find that it increases the clarity of your code to use an explicit this
where it is not strictly required.

There are some cases in which the this keyword is required, however. For exam-
ple, when a method parameter or local variable in a method has the same name as
one of the fields of the class, you must use this to refer to the field, since the field
name used alone refers to the method parameter or local variable. For example,
we can add the following method to the Circle class:

86 Cbapter3 — Object-Oriented Programming injava

Page 105 of 238

public void setRadius(double r) {
this.r = r; // Assign the argument (r) to the field (this.r)

// Note that we cannot just say r = r
}

Finally, note that while instance methods can use the this keyword, class methods
cannot. This is because class methods are not associated with objects.

Instance methods or class methods?

Instance methods are one of the key features of object-oriented programming.
That doesn’t mean, however, that you should shun class methods. There are many
cases in which is is perfectly reasonable to define Class methods. When working
with the Circle class, for example, you might find there are many times you want
to compute the area of a circle with a given radius, but don’t want to bother creat-
ing a Circle object to represent that circle. In this case, a class method is more
convenient:

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with the same
name, as long as the methods have different parameters. Since this version of the
area() method is a Class method, it does not have an implicit this parameter and
must have a parameter that specifies the radius of the circle. This parameter keeps
it distinct from the instance method of the same name.

As another example of the choice between instance methods and class methods,
consider defining a method named bigger() that examines two Circle objects
and returns whichever has the larger radius. We can write bi gger() as an instance
method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) i

if (this.r > that.r) return this;
else return that;

i

We can also implement bi gger() as a class method as follows:

// Compare circle a to circle b and return‘the one with the larger radius
wmicsmth mrdebmgm(mrdea,cwdeb)i

if (a.r > b.r) return a;
else return b;

)

Given two Circle objects, X and y, we can use either the instance method or the
class method to determine which is bigger. The invocation syntax differs signifi-
cantly for the two methods, however:

Circle biggest = x.bigger(y);
Circle biggest = Circle.bigger(x, y);

// instance method: also y.bigger(x)
// Static method

Neither option is the correct choice. The instance method is more formally object-
oriented, but its invocation syntax suffers from a kind of asymmetry. In a case like
this, the choice between an instance method and a Class method is simply a design

Wye Members ofa Class 87

paiuayo 403140

Page 106 of 238

decision. Depending on the circumstances, one or the other will likely be the
more natural choice.

A Mystery Solved

As we saw in Chapters 1 and 2, the way to display textual output to the terminal
in Java is with a method named System.out.println(). Those chapters never
explained why this method has such an long, awkward name or what those two
periods are doing in it. Now that you understand class and instance fields and
class and instance methods, it is easier to understand what is going on. Here’s the
story: System is a class. It has a class field named out. The field System.out refers
to an object. The object System.out has an instance method named printan.
Mystery solved! If you want to explore this in more detail, you can look up the
java.lang.System class in Chapter 12, 77aejava.lang Package. The class synopsis
there tells you that the field out is of type java.io.PrintStream, which you can
look up in Chapter 11, Thejavajo Package.

Creating and Initializing Objects

Take another look at how we’ve been creating Circle objects:

Circle 0 = new Circle();

What are those parentheses doing there? They make it look like we’re calling a
method. In fact, that is exactly what we‘re doing. Every class in Java has at least
one constructor, which is a method that has the same name as the class and

whose purpose is to perform any necessary initialization for a new object. Since
we didn’t explicitly define a constructor for our Circle class in Example 5—1, Java
gave us a default constructor that takes no arguments and performs no special ini-
tialization.

Here’s how a constructor works. The new operator creates a new, but uninitialized,
instance of the class. The constructor method is then called, with the new object
passed implicitly (a this reference, as we saw earlier), and whatever arguments
that are specified between parentheses passed explicitly. The constructor can use
these arguments to do whatever initialization is necessary.

Defining a Constructor

There is some obvious initialization we could do for our circle objects, so let’s
define a constructor. Example 3—2 shows a new definition for Circle that contains
a constructor that lets us specify the radius of a new Circle object. The construc-
tor also uses the this reference to distinguish between a method parameter and
an instance field that have the same name,

I Example 3—2: A Constructorfor the Circle Class

public class Circle {
public static final double P1 = 3.14159; // A constant
public double 1‘; // An instance field that holds the radius of the circle

88 Chapter 3 — Object-Oriented Programming injava

Page 107 of 238

Example 3—2: A Constructorfor the Circle Class (continued)
// The constructor method: initialize the radius field
public Circle(double r‘) { this.r = r; }

// The instance methods: compute values based on the radius
public double circumference() { return 2 * PI * r; }
public double area() i return PI * r*r; }

l

When we relied on the default constructor supplied by the compiler, we had to
write code like this to initialize the radius explicitly:

Circle c = new Circle(>:
c.r = 0.25;

With this new constructor, the initialization becomes part of the object creation
step:

Circle (2 = new Circle(0.25); pajuaua ~193qu
Here are some important notes about naming, declaring, and writing constructors:

o The constructor name is always the same as the class name.

0 Unlike all other methods, a constructor is declared without a return type, noteven void.

The body of a constructor should initialize the this object.

A constructor should not return this or any other value.

Defining Multiple Constructors

Sometimes you want to initialiZe an object in a number of different ways, depend-
ing on What is most convenient in a particular circumstance. For example, we
might want to initialize the radius of a circle to a specified value or a reasonable
default value. Since our Circle class has only a single instance field, there aren’t
too many ways we can initialize it, of course. But in more complex classes, it is
often convenient to define a variety of constructors. Here’s how we can define two
constructors for Circle:

public Circle() {r = 1.0;}
public Circle(double r) { this.r = r; }

It is perfectly legal to define multiple constructors for a class, as long as each con—
structor has a different parameter list. The compiler determines which constructor
you wish based on the number and type of arguments you supply. This is simply
an example of method overloading, which we discussed in Chapter 2.

Invoking One Constructorfrom Another

There is a specialized use of the this keyword that arises when a class has multi-
ple constructors; it can be used from a constructor to invoke one of the other con-
structors of the same class. In other words, we can rewrite the two previous
Circle constructors as follows:

Creating and Initializing Objects 89

Page 108 of 238

// This is the basic constructor: initialize the radius
public Circleldouble r) {thism = r;}
// This constructor uses this() to invoke the constructor above
public Circle() (this(l.0);}

The thi s() syntax is a method invocation that calls one of the other constructors
of the class. The particular constructor that is invoked is determined by the num-
ber and type of arguments, of course. This is a useful technique when a number
of constructors share a significant amount of initialization code, as it avoids repeti—
tion of that code. This would be a more impressive example, of course, if the one—
parameter version of the Ci rcl e(} constructor did more initialization than it does.

There is an imponant restriction on using thi s(): it can appear only as the first
statement in a constructor. It may, of course, be followed by any additional initial-
ization a particular version of the constructor needs to do. The reason for this
restriction involves the automatic invocation of superclass constructor methods,
which we’ll explore later in this chapter.

Field Defaults and InitialiZers

Not every field of a class requires initialization. Unlike local variables, which have
no default value and cannot be used until explicitly initialized, the fields of a class
are automatically initialized to the default values shown in Table 2-2. Essentially,
every field of a primitive type is initialized to a default value of false or zero7 as
appropriate, All fields of reference type are, by default, initialized to null. These
default values are guaranteed by Java. If the default value of a field is appropriate,
you can simply rely on it Without explicitly initializing the field. This default initial-
ization applies to both instance fields and class fields.

As we’ve seen, the syntax for declaring a field of a class is a lot like the syntax for
declaring a local variable. Both class and instance field declarations can be fol—
lowed by an equals sign and an initial value, as in:

public static final double PI = 3.14159;
public double r =1-0;

As we discussed in Chapter 2, a variable declaration is a statement that appears
within a Java method; the variable initialization is performed when the statement is
executed. Field declarations, however, are not part of any method, so they cannot
be executed as statements are. Instead, the Java compiler generates instance—field
initialization code automatically and puts it in the constructor or constructors for
the class. The initialization code is inserted into a constructor in the order it

appears in the source code, which means that a field initializer can use the initial
values of fields declared before it. Consider the following code excerpt, which
shows a constructor and two instance fields of a hypothetical class:

public class TestClass (
public int leh 10;

public int[] table new intElen];

public TestClass()
for(int i = 0;i len; i++) table[i] = i;

}

90 Chapter 3 — Object-Oriented Programming inform

Page 109 of 238

// Rest of the class is omitted.”
)

In this case, the code generated for the constructor is actually equivalent to the fol-
lowing:

public TestClasst) {
len = 10;
table = new intilen];
for(int i = O; i < len; i++) tableEi] = i;

}

If a constructor begins with a thi 50 call to another constructor, the field initializa—
tion code does not appear in the first constructor. Instead, the initialization is han—
dled in the constructor invoked by the thi s() call. ,

So, if instance fields are initialized in constructor methods, where are class fields
initialized? These fields are associated with the class, even if no instances of the
class are ever created, so they need to be initialized even before a constructor is
called. To support this, the Java compiler generates a class initialization method
automatically for every class. Class fields are initialized in the body of this method,
which is guaranteed to be invoked exactly once before the class is first used (often
when the class is first loaded). As with instance field initialization, Class field ini—
tialization expressions are inserted into the class initialization method in the order
they appear in the source code. This means that the initialization expression for a
class field can use the class fields declared before it. The class initialization method

is an internal method that is hidden from Java programmers. If you disassemble
the byte codes in a Java class file, however, you’ll see the class initialization code
in a method named <ci ini t>.

Initializer blocks

So far, we’ve seen that objects can be initialized through the initialization expres-
sions for their fields and by arbitrary code in their constructor methods. A class has
a class initialization method, which is like a constructor, but we cannot explicitly
define the body of this method as we can for a constructor. Java does allow us to
write arbitrary code for the initialization of class fields, however, with a construct
known as a static initializer. A static initializer is simply the keyword static fol-
lowed by a block of code in curly braces. A static initializer can appear in a class
definition anywhere a field or method definition can appear. For example, con-
sider the following code that performs some nontrivial initialization for two class
fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {

// Here are our static lookup tables and their own simple initializers
private static final NUMPTS = 500;
private static double sinesE] = new doubleENUMPTS];
private static double cosines[] = new doublE[NUMPTS];

// Here's a static initializer that fills in the arrays
static {

double x = 0.0, delta_x;
delta_x = (Circle.PI/2)/(NUMPTS-l);

Creating and Initializing Objects 91

Page 110 of 238

for(1'nt i = O, x = 0.0; i < NUMPTS;1’++, x += delta_x){
sinesEi] = Math.sin(x);
cosinesEi] = Math.cos(x);

}
l
// The rest of the class is omitted... }

A class can have any number of static initializers. The body of each initializer
block is incorporated into the class initialization method, along with any static field
initialization expressions. A static initializer is like a class method in that it cannot
use the this keyword or any instance fields or instance methods of the class.

In Java 1.1 and later, classes are also allowed to have instance initializers. An
instance initializer is like a static initializer, except that it initializes an object, not a
class. A class can have any number of instance initializers, and they can appear
anywhere a field or method definition can appear. The body of each instance ini-
tializer is inserted at the beginning of every constructor for the class, along with
any field initialization expressions. An instance initializer looks just like a static ini-
tializer, except that it doesn’t use the static keyword. In other words, an instance
initializer is just a block of arbitrary Java code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initial-
ization. They are sometimes useful because they locate the initialization code right
next to the field, instead of separating it off in a constructor method. For example:

private static finale int NUMPTS = 100;
private int[] data = new inthUMPTS];
{for(int 1‘ = 0; i < NUMPTS; iH) dataEi] = i; }

In practice, however, this use of instance initializers is fairly rare. Instance initializ-
ers were introduced in Java to support anonymous inner classes, and that is their
main utility (we’ll discuss anonymous inner classes later in this chapter).

Destroying and Finalizing Objects

Now that we’ve seen how new objects are created and initialized in Java, we need
to study the other end of the object life cycle and examine how objects are final-
ized and destroyed. Finalization is the opposite of initialization.

As I mentioned in Chapter 2, the memory occupied by an object is automatically
reclaimed when the object is no longer needed. This is done through a process
known as garbage collection. Garbage collection is not some newfangled tech—
nique; it has been around for years in languages such as Lisp. It just takes some
getting used to for programmers accustomed to such languages as C and C++, in
which you must call the free() method or the delete operator to reclaim mem-
ory. The fact that you don’t need to remember to destroy every object you create
is one of the features that makes Java a pleasant language to work with. It is also
one of the features that makes programs written in Java less prone to bugs than
those written in languages that don’t support automatic garbage collection.

92 Chapter 3 — Object-Oriented Programming injava

Page 111 of 238

Garbage Collection

The Java interpreter knows exactly what objects and arrays it has allocated. It can
also figure out which local variables refer to which objects and arrays, and which
objects and arrays refer to which other objects and arrays. Thus, the interpreter is
able to determine when an allocated object is no longer referred to by any other
object or variable. When the interpreter finds such an object, it knows it can
destroy the object safely and does so. The garbage collector can also detect and
destroy cycles of objects that refer to each other, but are not referenced by any
other active objects. Any such cycles are also reclaimed.

The Java garbage collector runs as a low-priority thread, so it does most of its
work when nothing else is going on, such as during idle time While waiting for
user input. The only time the garbage collector must run while something high-pri-
ority is going on (i.e., the only time it will actually slow down the system) is when
available memory has become dangerously low. This doesn’t happen very often
because the low-priority thread cleans things up in the background.

This scheme may sound slow and wasteful of memory. Actually though, modern
garbage collectors can be surprisingly efficient. Garbage collection will never be as
efficient as well—written, explicit memory allocation and deallocation. But it does
make programming a lot easier and less prone to bugs. And for most real-world
programs, rapid development, lack of bugs, and easy maintenance are more
important features than raw speed or memory efficiency.

Memory Lea/es injava

The fact that Java supports garbage collection dramatically reduces the incidence
of a class of bugs known as memory leaks. A memory leak occurs when memory
is allocated and never reclaimed. At first glance, it might seem that garbage collec—
tion prevents all memory leaks because it reclaims all unused objects. A memory
leak can still occur in Java, however, if a valid (but unused) reference to an
unused object is left hanging around. For example, when a method runs for a long
time (or forever), the local variables in that method can retain object references
much longer than they are actually required. The following code illustrates:

public static void main(String argsoEJ) {
int big_array[] = new int[100000];

// Do some computations with big_array and get a result.
int result = compute(big~array);

// We no longer need big_array. It will get garbage collected when there
// are no more references to it. Since big_array is a local variable,
// it refers to the array until this method returns. But this method
// doesn't return. So we've got to explicitly get rid of the reference
// ourselves, so the garbage collector knows it can reclaim the array.
big_array = null;

// Loop forever. handling the user's input
for(;;) handle_input(result);

Destroying and Finalizing Objects 93

Page 112 of 238

Memory leaks can also occur when you use a hashtable or similar data structure to
associate one object with another. Even when neither object is required anymore,
the association remains in the hashtable, preventing the objects from being
reclaimed until the hashtable itself is reclaimed. If the hashtable has a substantially
longer lifetime than the objects it holds, this can cause memory leaks.

Object Finalization

A finalizer in Java is the opposite of a constructor. While a constructor method
performs initialization for an object, a finalizer method performs finalization for the
object. Garbage collection automatically frees up the memory resources used by
objects, but objects can hold other kinds of resources, such as open files and net—
work connections. The garbage collector cannot free these resources for you, so
you need to write a finalizer method for any object that needs to perform such
tasks as closing files, terminating network connections, deleting temporary files,
and so on.

A finalizer is an instance method that takes no arguments and returns no value.
There can be only one finalizer per class, and it must be named finali ze().* A
finalizer can throw any kind of exception or error, but when a finalizer is automat-
ically invoked by the garbage collector, any exception or error it throws is ignored
and serves only to cause the finalizer method to return. Finalizer methods are typi-
cally declared protected (which we have not discussed yet), but can also be
declared public. An example finalizer looks like this:

protected void finalizeO throws Throwable {
// Invoke the finalizer of our superclass
// We haven't discussed superclasses or this syntax yet
super.finalize();

// Delete a temporary file we were using
‘ // It the file doesn‘t exist or temptile is null, this can throw

// an exception, but that exception is ignored.
temptile.delete();

}

Here are some important points about finalizers:

0 If an object has a finalizer, the finalizer method is invoked sometime after the
object becomes unused (or unreachable), but before the garbage collector
reclaims the object.

0 Java makes no guarantees about when garbage collection will occur or in
what order objects Will be collected. Therefore, Java can make no guarantees
about when (or even whether) a finalizer will be invoked, in what order final-
izers will be invoked, or What thread will execute finalizers.

* C++ programmers should note that alth0ugh Java constructor methods are named like C++ constructors,
Java finalization methods are not named like C++ destructor methods. As we will see, they do not
behave quite like C++ destructor methods, either.

94 CbapterB — Object-Oriented Programming injava

Page 113 of 238

The Java interpreter can exit without garbage collecting all outstanding
objects, so some finalizers may never be invoked. In this case, though, any
outstanding resources are usually freed by the operating system. In Java 1.1,
the Runtime method runFinalizersOnExit()‘ can force the virtual machine to

run finalizers before exiting. Unfortunately, however, this method can cause
deadlock and is inherently unsafe; it has been deprecated as of Java 1.2. In
Java 1.3, the Runtime method addShutdownHookO can safely execute arbitrary
code before the Java interpreter exits.

After a finalizer is invoked, objects are not freed right away. This is because a
finalizer method can resurrect an object by storing} the this pointer some-
where so that the object once again has references. Thus, after fi nal ize() is
called, the garbage collector must once again determine that the object is
unreferenced before it can garbage—collect it. However, even if an object is
resurrected, the finalizer method is never invoked more than once. Resurrect-

ing an object is never a useful thing to do—just a strange quirk of object
finalization. As of Java 1.2, the java.lang.r‘ef.PhantomReference class can
implement an alternative to finalization that does not allow resurrection.

In practice, it is relatively rare for an application-level class to require a final -
ize() method. Finalizer methods are more useful, however, when writing Java
classes that interface to native platform code with native methods. In this case,
the native implementation can allocate memory or other resources that are not
under the control of the Java garbage collector and need to be reclaimed explicitly
by a native finalizeo method.

While Java supports both class and instance initialization through static initialiZers
and constructors, it provides only a facility for instance finalization. The original
Java specification called for a cl assFinal 1' ze() method that could finalize a class
when the class itself became unused and was unloaded from the VM. This feature

was never implemented, however, and because it has proved to be unnecessary,
class finalization has been removed from the language specification.

Subclasses and Inheritance

The Circle defined earlier is a simple class that distinguishes circle objects only by
their radii. Suppose, instead, that we want to represent circles that have both a
size and a position. For example, a circle of radius 1.0 centered at point 0,0 in the
Cartesian plane is different from the circle of radius 1.0 centered at point 1,2. To
do this, we need a new class, which we’ll call Pl aneCi rcle. We’d like to add the
ability to represent the position of a circle without losing any of the existing func-
tionality of the Circle class. This is done by defining Pl aneCi rcl e as a subclass of
Circle, so that Pl aneCi rcl e inherits the fields and methods of its superclass, Ci r-
cle. The ability to add functionality to a class by subclassing, or extending, it is
central to the object—oriented programming paradigm.

Subclasses and Inheritance 95

paiuaug 433.100

Page 114 of 238

Extending a Class

Example 3-3 shows how we can implement Pl aneCi rcle as a subclass of the Cl r-
cl e class.

Example 3—3: Extending the Circle Class

public class PlaneCircle extends Circle {
// We automatically inherit the fields and methods of Circle,
// so we only have to put the new stuff here.
// New instance fields that store the center point of the circle
public double cx, cy;

// A new constructor method to initialize the new fields
// It uses a special syntax to invoke the Circle() constructor
public PlaneCircle<double r, double x, double y) (

super(rl; // Invoke the constructor of the superclass, Circle()
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

}

// The area() and circumference() methods are inherited from Circle
// A new instance method that checks whether a point is inside the circle
// Note that it uses the inherited instance Field r
public boolean isInside(double x, double y) {

double dx = x - cx, dy = y — cy; // Distance from center
double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
return (distance < r); // Returns true or false

}
}

Note the use of the keyword extends in the first line of Example 3-3. This key-
word tells java that PlaneCi rcle extends, or subclasses, Circle, meaning that it
inherits the fields and methods of that class.* The definition of the isInside()

method shows field inheritance; this method uses the field r (defined by the Ci r-
cle class) as if it were defined right in Pl aneCi rcl e itself. Pl aneCircle also inher-
its the methods of Ci rclei Thus, if we have a PlaneCircle object referenced by
variable pc, we can say:

double ratio = pc.circumference() / pc.aree();

This works just as if the area() and ci rcumierenceO methods were defined in
PlaneCircl e itself.

Another feature of subclassing is that every Pl aneCi rCl e object is also a perfech
legal Circle object. Thus, if pc refers to a PlaneCi rcl e object, we can assign it to
a Circle variable and forget all about its extra positioning capabilities:

PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0); // Unit circle at the origin
Circle c = pc; // Assigned to a Circle variable without casting

This assignment of a Pl aneCi rcl e object to a Circle variable can be done without
a cast. As we discussed in Chapter 2, this is a widening conversion and is always
legal. The value held in the Circle variable c is still a valid Pl aneCi rcle object,

* C++ programmers should note that extends is the Java equivalent of : in C++; both are used to indicate
the superclass of a class.

96 Chapter 3 — Object-Oriented Programming injava

Page 115 of 238

but the compiler cannot know this for sure, so it doesn’t allow us to do the oppo-
site (narrowing) conversion without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCir‘cle ch = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);

Final classes

When a class is declared with the final modifier, it means that it cannot be
extended or subclassed. java . l ang.$ystem is an example of a final class. Declar-
ing a class final prevents unwanted extensions to the class, and it also allows the
compiler to make some optimizations when invoking the methods of a class. We’ll
explore this in more detail later in this chapter, when we talk about method over-
riding.

Superclasses, Object, and the Class Hierarchy

In our example, PlaneCi rcle is a subclass of Circle. We can also say that Circle
is the superclass of Pl aneCir‘cle. The superclass of a class is specified in its
extends clause:

public class PlaneCircle extends Circle I }

Every class you define has a superclass. If you do not specify the superclass with
an extends clause, the superclass is the class java.lang.0bject. Object is a spe-
cial class for a couple of reasons:

- It is the only class inJava that does not have a superclass.

- All Java classes inherit the methods of Object.

Because every class has a superclass, classes in java form a class hierarchy, which
can be represented as a tree with Object at its root. Figure 3-1 shows a class hier-
archy diagram that includes our Ci r‘cl e and Pl aneCi r‘cl'e classes, as well as some
of the standard classes from the java API. Every API quick-reference chapter in
Part 11 includes a class-hierarchy diagram for the classes it documents.

Subclass Constructors

Look again at the Pl aneCi rcl e() constructor method of Example 3-3:

public PlaneCircle(double r‘, double x, double y) {
super(r); // Invoke the constructor of the superclass, Circle()
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

}

This constructor explicitly initiaIiZes the cx and cy fields newly defined by
PlaneCi rcle, but it relies on the superclass Ci r‘cle() constructor to initialize the
inherited fields of the class. To invoke the superclass constructor, our constructor
calls super(). super is a reserved word in Java. One of its uses is to invoke the
constructor method of a Superclass from within the constructor method of a sub—
class. This use is analogous to the use of thi s() to invoke one constructor method

Subclasses and Inheritance 97

paiuaua 493140

Page 116 of 238

Plunotlrtle

InpulStreumReader T: FileRender

FilterReurler

SlringReader

Figure 3-1: A class hierarchy diagram

of a class from within another constructor method of the same class. Using
superO to invoke a constructor is subject to the same restrictions as using thl s()
to invoke a constructor:

super() can be used in this way only within a constructor method.

0 The call to the superclass constructor must appear as the first statement within
the constructor method, even before local variable declarations.

The arguments passed to super‘() must match the parameters of the superclass
constructor. If the superclass defines more than one constructor, super() can be
used to invoke any one of them, depending on the arguments passed.

Constructor Cbaining and the Default Constructor

Java guarantees that the constructor method of a class is called whenever an
instance of that class is created. It also guarantees that the constructor is called
whenever an instance of any subclass is created. In order to guarantee this second
point, Java must ensure that every constructor method calls its superclass construc-
tor method. Thus, if the first statement in a constructor does not explicitly invoke
another constructor with thi s() or superl), Java implicitly inserts the call
superl); that is, it calls the superclass constructor with no arguments. If the super-
class does not have a constructor that takes no arguments, this implicit invocation
causes a compilation error.

Consider what happens when we create a new instance of the Pl aneCi rcl e class.
First, the Pl aneCi rcl e constructor is invoked. This constructor explicitly calls
super(r) to invoke a Circle constructor, and that Ci rcle() constructor implicitly
calls super() to invoke the constructor of its superclass, Object. The body of the
Object constructor runs first. When it returns, the body of the C1 rcl e() construc-
tor runs. Finally, when the call to super(r) returns, the remaining statements of
the Pl aneCi r‘cl e() constructor are executed.

98 Chapter 3 — Object-Oriented Programming inJava

Page 117 of 238

What all this means is that constructor calls are chained; any time an object is cre—
ated, a sequence of constructor methods is invoked, from subclass to superclass
on up to Object at the root of the class hierarchy. Because a superclass construc-
tor is always invoked as the first statement of its subclass constructor, the body of
the Object constructor always runs first, followed by the constructor of its subclass
and on down the class hierarchy to the class that is being instantiated. There is an
important implication here; when a constructor is invoked, it can count on the
fields of its superclass to be initialized.

The default constructor

There is one missing piece in the previous description of constructor chaining. If a

constructor does not invoke a superclass constructor, Java does so implicitly. But
what if a class is declared without a constructor? In this case, Java implicitly adds a
constructor to the class. This default constructor does nothing but invoke the
superclass constructor. For example, if we don’t declare a constructor for the
Pl aneCi rcl e class, Java implicitly inserts this constructor:

public PlaneCircleO { supero; }

If the superclass, Circle, doesn’t declare a no—argument constructor, the super()
call in this automatically inserted default constructor for PlaneCi r‘cle() causes a
compilation error. In general, if a class does not define a tic-argument constructor,
all its subclasses must define constructors that explicitly invoke the superclass con-
structor with the necessary arguments.

If a class does not declare any constructors, it is given a no—argument constructor
by default. Classes declared public are given public constructors. All other classes
are given a default constructor that is declared without any visibility modifier: such
a constructor has default visibility. (The notion of visibility is explained later in this
chapter.) If you are creating a public class that should not be publicly instantiated,
you should declare at least one non-publ i c constructor to prevent the insertion of
a default public constructor. Classes that should never be instantiated (such as
java.lang.Math or java.lang.$ystem) should define a private constructor. Such
a constructor can never be invoked from outside of the class, but it prevents the
automatic insertion of the default constructor.

Finalizer chaining?

You might assume that, since Java chains constructor methods, it also automati-
cally chains the finalizer methods for an object. In other words, you might assume
that the finalizer method of a class automatically invokes the finalizer of its super-
class, and so on. In fact, Java does not do this. When you write a fi' nalize()
method, you must explicitly invoke the superclass finalizer. (You should do this
even if you know that the superclass does not have a finalizer because a future
implementation of the superclass might add a finalizer.)

As we saw in our example finalizer earlier in the chapter, you can invoke a super-
class method with a special syntax that uses the super keyword:

// Invoke the finalizer‘ of our superclass. supet.fina'|ize();

Subclasses and Inheritance 99

Page 118 of 238

We’ll discuss this syntax in more detail when we consider method overriding. In
practice, the need for finaliZer methods, and thus finalizer chaining, rarely arises.

Shadowing Superclass Fields

For the sake of example, imagine that our PlaneCi rcle class needs to know the
distance between the center of the circle and the origin (0,0). We can add another
instance field to hold this value:

public double r; I

Adding the following line to the constructor computes the value of the field:

this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean Theorem

But wait, this new field r has the same name as the radius field I" in the Circle
superclass. When this happens, we say that the field r of Pl aneCi rcl e shadows the
field r of Circle. (This is a contrived example, of course: the new field should
really be called distanceFromOrigin. Although you should attempt to avoid it,
subclass fields do sometimes shadow fields of their superclass.)

With this new definition of Pl aneCi rcl e, the expressions r and thi s.r both refer
to the field of PlaneCi rcle. How, then, can we refer to the field r of Circle that
holds the radius of the circle? There is a special syntax for this that uses the super
keyword:

1" // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

Another way to refer to a shadowed field is to cast this (or any instance of the
class) to the appropriate superclass and then access the field:

((Circle) this),r // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a shadowed
field defined in a class that is not the immediate superclass. Suppose, for example,
that classes A, B, and C all define a field named x and that C is a subclass of B,
which is a subclass of A. Then, in the methods of class C, you can refer to these
different fields as follows:

x // Field in classx
this.x // Field x in class
super.x // Field x in class
((B)this).x // Field x in class
((A)this).x // Field x in class
super.super.x // Illegal; does not refer to x in class A

You cannot refer to a shadowed field X in the superclass of a superclass with
super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields
named x like this:

c.x // Field x of class C
((B)c).x // Field x of class B
((A)c).x // Field x of class A

100 Cbapterj - Object-Oriented Programming infava

Page 119 of 238

So far, we’ve been discussing instance fields. Class fields can also be shadowed.
You can use the same super syntax to refer to the shadowed value of the field, but
this is never necessary since you can always refer to a class field by prepending
the name.of the desired class. Suppose that the implementer of PlaneCircle
decides that the Ci r‘cl e. PI field does not express 7: to enough decimal places. She
can define her own class field PI:

public static final double PI = 3.14159265358979323846;

Now, code in Pl aneCi rcl e can use this more accurate value with the expressions
P1 or PlaneCircle.PI. It can also refer to the old, less accurate value. with the
expressions super.PI and Circle.PI. Note, however, that the area() and ci rcum-
ferenceO methods inherited by PlaneCircle are defined in the Circle class, so
they use the value Circle.PI, even though that value is shadowed now by
PlaneCircle.PI.

Overridmg Superclass Methods

When a class defines an instance method using the same name, return type, and

parameters as a method in its superclass, that method overrides the method of the
superclass. When the method is invoked for an object of the class, it is the new
definition of the method that is called, not the superclass’s old definition.

Method overriding is an important and useful technique in object-oriented pro-
gramming. Pl aneCi rcl e does not override either of the methods defined by Ci r-
cle, but suppose we define another subclass of Ci r‘cle, named El l ipse.* In this
case, it is important for Ellipse to override the area() and circumferenceO
methods of Circle, since the formulas used to compute the area and circumfer-
ence of a circle do not work for ellipses.

The upcoming discussion of method overriding considers only instance methods.
Class methods behave quite differently, and there isn’t much to say. Like fields,
class methods can be shadowed by a subclass, but not overridden. As I noted ear-
lier in this chapter, it is good programming style to always prefix a class method
invocation with the name of the class in which it is defined. If you consider the
class name part of the class method name, the two methods have different names,
so nothing is actually shadowed at all. It is, however, illegal for a class method to
shadow an instance method.

Before we go any further with the discussion of method overriding, you need to
be sure you understand the difference between method overriding and method
overloading. As we discussed in Chapter 2, method overloading refers to the prac—
tice of defining multiple methods (in the same class) that have the same name, but
different parameter lists. This is very different from method overriding, so don’t get
them confused.

* Mathematical purists may argue that since all circles are ellipses, Ellipse should be the superclass and
Circle the subclass. A pragmatic engineer might counterargue that circles can be represented with
fewer instance fields, so Circle objects should not be burdened by inheriting unnecessary fields from
Ellipse. In any case, this is a useful example here.

Subclasses and Inheritance 101

pawaug 139140

Page 120 of 238

Overridz‘ng is not shadowing

Although Java treats the fields and methods of a class analogously in many ways,
method overriding is not like field shadowing at all. You can refer to shadowed
fields simply by casting an object to an instance of the appropriate superclass, but
you cannot invoke overridden instance methods with this technique, The follow-
ing code illustrates this crucial difference:

class A (// Define a class named A
int i =1; // An instance field
int f0 { return i; } // An instance method
static char g() { return 'A'; } // A class method

}

class B extends A { // Define a subclass of A
int i = 2; // Shadows field i in class A
int f() i return -i; l // Overrides instance method F in class A
static char 9() (return '8'; l // Shadows class method 90 in class A

}

public class OverrideTest {
public static void main(String argsfl) (

B b = new B(); // Creates a new object of type B
System.out.println(b.i); // Refers to 8.1; prints 2
System.out.println(b.f()); // Refers to B.f(); prints »2
System.out.println(b.g()); // Refers to 8.90; prints B
System.out.println(B.g()); // This is a better way to invoke 8.90

A a = (A) b; // Casts b to an instance of class A
System.out.println(a.i); // Now refers to A.i; prints 1
System.out.println(a.f()J; // Still refers to B.f(); prints -2
System.out.println(a.g()); // Refers to A.g(); prints A
System.out.println(A.g()); // This is a better way to invoke A.g()

}
}

While this difference between method overriding and field shadowing may seem
surprising at first, a little thought makes the purpose clear. Suppose we have a
bunch of Circle and Ellipse objects we are manipulating. To keep track of the
circles and ellipses, we store them in an array of type Ci rcl e[]. (We can do this
because Ellipse is a subclass of Circle, so all Ellipse objects are legal Circle
objects.) When we loop through the elements of this array, we don‘t have to know
or care whether the element is actually a Circle or an Ellipse. What we do care
about very much, however, is that the correct value is computed when we invoke
the a rea() method of any element of the array In other words, we don’t want to
use the formula for the area of a circle when the object is actually an ellipse! Seen
in this context, it is not surprising at all that method overriding is handled differ-
ently by Java than field shadowing.

Dynamic method lockup

If we have a Circleljl array that holds Circle and Ellipse objects, how does the
compiler know whether to call the area() method of the Circle class or the
Ellipse class for any given item in the array? In fact, the compiler does not know
this because it cannot know it. The compiler knows that it does not know,

102 Chapter 3 — Object-Oriented Programming injava

Page 121 of 238

however, and produces code that uses dynamic method lookup at runtime. When
the interpreter runs the code, it looks up the appropriate area() method to call for
each of the objects in the array. That is, when the interpreter interprets the expres-
sion o.area(), it checks the actual type of the object referred to by the variable 0
and then finds the area() method that is appropriate for that type. It does not sim-
ply use the areal) method that is statically associated with the type of the variable
0. This process of dynamic method lookup is sometimes also called virtual method
invocation.*

Final methods and static method lockup

Virtual method invocation is fast, but method invocation is faster when no
dynamic lookup is necessary at runtime, Fortunately, there are a number of situa-
tions in which Java does not need to use dynamic method lookup. In particular, if
a method is declared with the final modifier, it means that the method definition
is the final one; it cannot be overridden by any subclasses. If a method cannot be
overridden, the compiler knows that there is only one version of the method, and
dynamic method lookup is not necessaryi In addition, all methods of a fi nal
class are themselves implicitly final and cannot be overridden. As we’ll discuss
later in this chapter, private methods are not inherited by subclasses and, there-
fore, cannot be overridden (i.e., all private methods are implicitly f i nal). Finally,
class methods behave like fields (i.e., they can be shadowed by subclasses but not
overridden). Taken together, this means that all methods of a class that is declared
final, as well as all methods that are final, private, or static, are invoked with-
out dynamic method lookup. These methods are also candidates for inlining at
runtime by a just—in~time compiler (JIT) or similar optimization tool.

Invoking an overridden method

We’ve seen the important differences between method overriding and field shad—
owing. Nevertheless, the Java syntax for invoking an overridden method is quite
similar to the syntax for accessing a shadowed field: both use the super keyword.
The following code illustrates:

class {
int ' =1;
int ()l

l
class

// An instance field shadowed by subclass B
return i; l // An instance method overridden by subclass B

B extends A {
int i' // This field shadows i in A

// This method overrides f() in A
// It can retrieve A.i like this
// It can invoke A.f() like this

int f() l
i = super.i +1;
return super.f() + i;

}
l

C++ programmers should note that dynamic method lockup is what C++ does for virtual functions. An
important difference between Java and C++ is that Java does not have :1 vi rtual keyword. In Java,
methods are Virtual by default.

In this sense, the final modifier is the opposrte of the vi rtual modifier in C+f. All non-f1 nal methods
in Java are virtual.

Subclasses and Inheritance 103

P91119110 433/00

Page 122 of 238

Recall that when you use super to refer to a shadowed field, it is the same as cast—
ing this to the superclass type and accessing the field through that. Using super
to invoke an overridden method, however, is not the same as casting this. In
other words, in the previous code, the expression super.f() is not the same as
((A)this).t(). '

When the interpreter invokes an instance method with this super syntax, a modi-
fied form of dynamic method lookup is performed. The first step, as in regular
dynamic method lookup, is to determine the actual class of the object through
which the method is invoked. Normally, the dynamic search for an appropriate
method definition would begin with this class. When a method is invoked with the
super syntax, however, the search begins at the superclass of the class. If the
superclass implements the method directly, that version of the method is invoked.
If the superclass inherits the method, the inherited version of the method is
invoked.

Note that the super keyword invokes the most immediately overridden version of
a method. Suppose class A has a subclass B that has a subclass C, and all three
classes define the same method N). Then the method C.f() can invoke the

method B . f(), which it overrides directly, with super . f (). But there is no way for
C.f() to invoke A.f() directly: super.super.f() is not legal Java syntax. Of
course, if C.f() invokes B.f(), it is reasonable to suppose that B.f() might also
invoke A.f(). This kind of chaining is relatively common when working with
overridden methods: it is a way of augmenting the behavior of a method without
replacing the method entirely. We saw this technique in the the example fi nal -
ize() method shown earlier in the chapter: that method invoked super.f1‘na1-
1‘ ze() to run its superclass finalization method.

Don’t confuse the use of super to invoke an overridden method with the super()
method call used in constructor methods to invoke a superclass constructor.
Although they both use the same keyword, these are two entirely different syn-
taxes. In particular, you can use super to invoke an overridden method anywhere
in the overriding method, while you can use super() only to invoke a superclass
constructor as the very first statement of a constructor.

It is also important to remember that super can be used only to invoke an overrid-
den method from within the method that overrides it. Given an Ellipse object e,
there is no way for a program that uses an object (with or without the super syn-
tax) to invoke the area() method defined by the Circle class on this object.

I’ve already explained that class methods can shadow class methods in super—
classes, but cannot override them. The preferred way to invoke class methods is to
include the name of the class in the invocation. If you do not do this, however,
you can use the super syntax to invoke a shadowed class method, just as you
would invoke an instance method or refer to a shadowed field.

Data Hiding and Encapsulation

We started this chapter by describing a class as “a collection of data and methods.”
One of the important object-oriented techniques we haven’t discussed so far is
hiding the data within the class and making it available only through the methods.

104 Chapter 3 — Object-Oriented Programming injava

Page 123 of 238

This technique is known as encapsulation because it seals the data (and internal
methods) safely inside the “capsule” of the class, where it can be accessed only by
trusted users (i.e., by the methods of the class).

Why would you want to do this? The most important reason is to hide the internal
implementation details of your class. If you prevent programmers from relying on
those details, you can safely modify the implementation without worrying that you
will break existing code that uses the class.

Another reason for encapsulation is to protect your class against accidental or will—
ful stupidity. A class often contains a number of interdependent fields that must be
in a consistent state. If you allow a programmer (including yourself) to manipulate
those fields directly, he may change one field without changing important related
fields, thus leaving the class in an inconsistent state. If, instead, he has to call a
method to change the field, that method can be sure to do everything necessary to
keep the state consistent. Similarly, if a class defines certain methods for internal
use only, hiding these methods prevents users of the class from calling them.

Here’s another way to think about encapsulation: when all the data for a class is
hidden, the methods define the only possible operations that can be performed on
objects of that class. Once you have carefully tested and debugged your methods,
you can be confident that the class will work as expected. On the other hand, if all
the fields of the class can be directly manipulated, the number of possibilities you
have to test becomes unmanageable.

There are other reasons to hide fields and methods of a class, as well:

0 Internal fields and methods that are visible outside the class just clutter up the
API. Keeping visible fields to a minimum keeps your class tidy and therefore
easier to use and understand.

If a field or method is visible to the users of your class, you have to document
it. Save yourself time and effort by hiding it instead.

Access Control

All the fields and methods of a class can always be used Within the body of the
class itself. Java defines access control rules that restrict members of a class from
being used outside the class. In an number of examples in this chapter, you’ve
seen the public modifier used in field and method declarations. This publ 1' c key-
word, along with protected and private, are access control modtfiers; they spec-
ify the access rules for the field or method.

Access to packages

A package is always accessible to code defined within the package. Whether it is
accessible to code from other packages depends on the way the package is
deployed on the host system. When the class files that comprise a package are
stored in a directory, for example, a user must have read access to the directory
and the files within it in order to have access to the package. Package access is
not part of the Java language itself. Access control is usually done at the level of
classes and members of classes instead.

.Data Hiding and Encapsulation 105

paiuaua 499qu

Page 124 of 238

Access to classes

By default, top—level classes are accessible within the package in which they are
defined. However, if a top—level class is declared public, it is accessible every—
where (or everywhere that the package itself is accessible). The reason that we‘ve
restricted these statements to top—level classes is that, as we’ll see later in this
chapter, classes can also be defined as members of other classes. Because these
inner classes are members of a class, they obey the member access-control rules.

Access to members

As I've already said, the members of a class are always accessible within the body
of the class, By default, members are also accessible throughout the package in
which the class is defined. This implies that classes placed in the same package
should trust each other with their internal implementation details.* This default
level of access is often called package access. It is only one of four possible levels
of access. The other three levels of access are defined by the public, protected,
and private modifiers. Here is some example code that uses these modifiers:

public class Laundromat { // People can use this class.
private LaundryE] dirty; // They cannot use this internal field,
public void wasn() (l // but they can use these public methods
public void dry() { } // to manipulate the internal field.

}

Here are the access rules that apply to members of a class:

0 If a member of a class is declared with the public modifier, it means that the
member is accessible anywhere the containing class is accessible. This is the
least restrictive type of access control.

If a member of a class is declared private, the member is never accessible,
except within the class itself. This is the most restrictive type of access control.

If a member of a class is declared protected, it is accessible to all classes
within the package (the same as the default package accessibility) and also
accessible Within the body of any subclass of the class, regardless of the pack-
age in which that subclass is defined. This is more restrictive than public
access, but less restrictive than package access.

If a member of a class is not declared with any of these modifiers, it has the
default package access: it is accessible to code within all classes that are
defined in the same package, but inaccessible outside of the package.

protected access requires a little more elaboration. Suppose that the field r of our
Circle class had been declared protected and that our PlaneCircle class had

been defined in a different package. In this case, every Pl aneCi rcl e object inherits
the field r, and the Pl aneCi rcl e code can use that field as it currently does. Now
suppose that Pl aneCi rcl e defines the following method to compare the size of a
Pl aneCi rcle object to the siZe of some other Circle object:

* C++ programmers might say that all classes within a package are friend-1y to each other.

106 Cbapter3 — Object-Oriented Programming in java

Page 125 of 238

// Retur‘n true if this object is bigger than the specified circle
public boolean isBiggeMCircle c) {

return (this.r > cm); // If r is protected, c.r‘ is illegal access!
}

In this scenario, this method does not compile. The expression thi s. r‘ is perfectly
legal, since it accesses a protected field inherited by P1 aneCi rcl e. Accessing c . l" is
not legal, however, since it is attempting to access a protected field it does not
inherit. To make this method legal, we either have to declare Pl aneCi rcl e in the
same package as Ci rcle or change the type of the 1581' 996%) parameter to be 21
Pl aneCi rcle instead of a Circle.

Access control and inheritance

The Java specification states that a subclass, inherits all the instance fields and
instance methods of its superclass accessible to it. If the subclass is defined in the
same package as the superclass, it inherits all non-private instance fields and
methods. If the subclass is defined in a different package, however, it inherits all
protected and public instance fields and methods. private fields and methods
are never inherited; neither are Class fields or class methods. Finally, constructors
are not inherited; they are chained, as described earlier in this chapter.

The statement that a subclass does not inherit the inaccessible fields and methods

of its superclass can be a confusing one. It would seem to imply that when you
create an instance of a subclass, no memory is allocated for any private fields
defined by the superclass. This is not the intent of the statement, however. Every
instance of a subclass does, in fact, include a complete instance of the superclass
within it, including all inaccessible fields and methods. It is simply a matter of ter-
minology. Because the inaccessible fields cannot be used in the subclass, we say
they are not inherited. I stated earlier in this section that the members of a class
are always accessible within the body of the class. If this statement is to apply to
all members of the class, including inherited members, then we have to define
“inherited members” to include only those members that are accessible. If you
don’t care for this definition, you can think of it this way instead:

0 A class inherits all instance fields and instance methods (but not constructors)

of its superclass.

The body of a class can always access all the fields and methods it declares
itself. It can also access the accessible fields and members it inherits from its

superclass.

Member access summary

Table 3-1 summarizes the member access rules.

Data Hiding and Encapsulation 107

Page 126 of 238

Table 3-1: Class Member Accessibility

Member Visibility

Accessible to: package
Yes Yes YeDefining class 5

Class in same package Yes Yes Yes

Subclass in different package Yes Yes No

Non—subclass different package Yes No No

Here are some simple rules of thumb for using visibility modifiers:

- Use public only for methods and constants that form part of the public API of
the class. Certain important or frequently used fields can also be public, but it
is common practice to make fields non-pub] ic and encapsulate them with
public accessor methods.

Use protected for fields and methods that aren’t required by most program—
mers using the class, but that may be of interest to anyone creating a subclass
as part of a different package. Note that protected members are technically
part of the exported API of a class. They should be documented and cannot
be changed Without potentially breaking code that relies on them.

Use the default package visibility for fields and methods that are internal
implementation details, but are used by cooperating classes in the same pack-
age. You cannot take real advantage of package visibility unless you use the
package directive to group your cooperating classes into a package.

Use private for fields and methods that are used only inside the class and
should be hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, it
is better to start with overly restrictive member access. You can always relax the
access restrictions in future versions of your class, if necessary. Doing the reverse
is not a good idea because increasing access restrictions is not a backwards-com-
patible change.

Data Accessor Methods

In the Circle example we’ve been using, we’ve declared the circle radius to be a
public field. The Circle class is one in which it may well be reasonable to keep
that field publicly accessible; it is a simple enough class, with no dependencies
between its fields. On the other hand, our current implementation of the class
allows a Ci rcle object to have a negative radius, and circles with negative radii
should simply not exist. As long as the radius is stored in a public field, however,
any programmer can set the field to any value she wants, no matter how unrea-
sonable. The only solution is to restrict the programmer’s direct access to the field
and define public methods that provide indirect access to the field. Providing
publ ic methods to read and write a field‘is not the same as making the field itself
publ ic. The crucial difference is that methods can perform error checking.

108 Chapter 3 - Object-Oriented Programming injava

Page 127 of 238

Example 3-4 shows how We might reimplement Circle to prevent circles with
negative radii This version of Circle declares the r field to be protected and
defines accessor methods named getRadi us() and set Radi us() to read and write

the field value While enforcing the restriction on negative radius values. Because
the r field is protected, it is directly (and more efficiently) accessible to sub—
classes.

Example 3—4: 7799 Circle Class Using Data Hiding and Encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public
// This is a generally useful constant, so we keep it public
public static final double PI : 3.14159;

protected double r; // Radius is hidden, but visible to subclasses

// A method to enforce the restriction on the radius
// This is an implementation detail that may be of interest to subclasses
protected checkRadius(double radius) {

if (radius < 00)
throw new [llegalArgumentExceptioM"radius may not be negative");

}

// The constructor method

public Circle(double r) {
checkRadius(r);
this.r = r;

l

// Public data accessor methods
public double getRadius() { return r; };
public void setRadius(double r) {

checkRadius(r);
this.r = r;

l

// Methods to operate on the instance field
public double area() i return PI * r * r; }
public double circumference<> { return 2 * PI * r; }

l

We have defined the Circle class Within a package named shapes. Since r is pro-
tected, any other classes in the shapes package have direct access to that field
and can set it however they like. The assumption here is that all classes Within the
shapes package were written by the same author or a closely cooperating group
of authors, and that the classes all trust each other not to abuse their privileged
level of access to each other’s implementation details.

Finally, the code that enforces the restriction against negative radius values is itself
placed within a protected method, checkRadius(). Although users of the Circle
class cannot call this method, subclasses of the class can call it and even override
it if they want to change the restrictions on the radius

Note particularly the getRadius() and setRadius() methods of Example 3-4. It is
almost universal in Java that data accessor methods begin With the prefixes “get”
and “set.” If the field being accessed is of type boolean, however, the get()

Data Hiding and Encapsulation 109

paluaua 499100

Page 128 of 238

method may be replaced with an equivalent method that begins with “is.” For
example, the accessor method for a boolean field named readable is typically
called 1‘ sReadabl 60 instead of getReadabl e(). In the programming conventions of
the JavaBeans component model (covered in Chapter 6, jauaBeans), a hidden field
with one or more data accessor methods whose names begin with “get,” “is,” or
“set” is called a property. An interesting way to study a complex class is to look at
the set of properties it defines. Properties are particularly common in the AWT and
Swing APIs, which are covered in java Foundation Classes in a Nutshell (O’Reilly).

Abstract Classes and Methods

In Example 3—4, we declared our Circle class to be part of a package named
shapes. Suppose we plan to implement a number of shape classes: Rectangle,
Square, Ellipse, Triangle, and so on. We can give these shape classes our two
basic area() and circumferenceo methods. Now, to make it easy to work with
an array of shapes, it would be helpful if all our shape classes had a common
superclass, Shape. If we structure our class hierarchy this way, every shape object,
regardless of the actual type of shape it represents, can be assigned to variables,
fields, or array elements of type Shape. We want the Shape class to encapsulate
whatever features all our shapes have in common (e.g., the area() and Ci rcurn-
fe rence() methods). But our generic Shape class doesn’t represent any real kind
of shape, so it cannot define useful implementations of the methods. Java handles
this situation with abstract methods.

Java lets us define a method without implementing it by declaring the method
with the abstract modifier. An abstract method has no body; it simply has a sig-
nature definition followed by a semicolon.‘ Here are the rules about abstract
methods and the abstract classes that contain them:

0 Any class with an abstract method is automatically abstract itself and must
be declared as such.

An abstract class cannot be instantiated.

A subclass of an abstract class can be instantiated only if it overrides each of
the abstract methods of its superclass and provides an implementation (i.e.,
a method body) for all of them. Such a class is often called a concrete sub-
class, to emphasize the fact that it is not abstract.

If a subclass of an abstract class does not implement all the abstract meth-
ods it inherits, that subclass is itself abstract.

static, private, and final methods cannot be abstract, since these types of
methods cannot be overridden by a subclass. Similarly, a final class cannot
contain any abstract methods.

* An abstract method in Java is something like a pure virtual function in C++ (Le, a virtual function that
is declared = O). In C++, 2 class that contains a pure virtual function is called an abstract class and can-
not be instantiated. The same is true of Java classes that contain abstract methods.

1 10 Chapter 3 — Object-Oriented Programming injava

Page 129 of 238

- A class can be declared abstract even if it does not actually have any
abstract methods. Declaring such a class abstract indicates that the imple-
mentation is somehow incomplete and is meant to serve as a superclass for
one or more subclasses that will complete the implementation. Such a class
cannot be instantiated.

There is an important feature of the rules of abstract methods. If we define the
Shape Class to have abstract area() and circumferenceO methods, any subclass
of Shape is required to provide implementations of these methods so it can be
instantiated. In other words, every Shape object is guaranteed to have implementa-
tions of these methods defined. Example 3—5 shows how this might work. It
defines an abstract Shape class and two concrete subclasses of it.

Example 3—5: An Abstract Class and Concrete Subclasses

public abstract class Shape (
pub ic abstract double area(); // Abstract methods: note
pub ic abstract double circumference(); // semicolon instead of body.

} paiua/Ja '139.,40
class Circle extends Shape {

pub‘ic static final double PI = 3.14159265358979323846;
protected double r; // Instance data
pub‘ic Circle(double r) { this.r = r; l // Constructor
pub ic double getRadius() { return r; } // Accessor
pub ic double area() i return PI*r*r; } // Implementations of
pub ic double circumference() { return 2*P1*r; l // abstract methods.

}

class Rectangle extends Shape {
pro ected double w, h; // Instance data
pub ic Rectangle(double w, double h) i // Constructor

this.w = w; this.h = h;
)
pub‘ic double getWidth() { return w; l // Accessor method
pub ic double getHeight() { return h; l // Another accessor
pub ic double area() { return w*h; } // Implementations of
pub ic double circumference() { return 2*(w + h); } // abstract methods.

}

Each abstract method in Shape has a semicolon right after its parentheses. There
are no curly braces, and no method body is defined. Using the classes defined in
Example 3—5, we can now write code like this:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes
shapes[D] = new Circle(2.0); // Fill in the array
shapesEl] - new Rectangle(1.0. 3.0);
shapesEZ] new Rectangle(4.0. 2.0);

double total_area = 0;
for(int i = 0; i < shapes.lehgth; 14+)

total_area += shapes[i1.area(l; // Compute the area of the shapes

There are two important points to notice here:

0 Subclasses of Shape can be assigned to elements of an array of Shape. No cast
is necessary. This is another example of a widening reference type conversion
(discussed in Chapter 2).

Abstract Classes and Methods 11 1

Page 130 of 238

You can invoke the area() and circumferencet) methods for any Shape
object, even though the Shape class does not define a body for these meth-
ods. When you do this, the method to be invoked is found using dynamic
method lookup, so the area of a circle is computed using the method defined
by Circle, and the area of a rectangle is computed using the method defined
by Rectangle.

Interfaces

Let’s extend our shapes package further. Suppose we now want to implement a
number of shapes that not only know their sizes, but also know the position of
their center point in the Cartesian coordinate plane. One way to do this is to
define an abstract Cente redShape class and then implement various subclasses of
it, such as CenteredCi rcle, CenteredRectangle, and so on.

But we also want these positionable shape classes to support the area() and ci r-
cumference() methods we’ve already defined, without reimplementing these
methods. So, for example, we’d like to define CenteredCi role as a subclass of
Circle, so that it inherits area() and circumference<). But a class in Java can
have only one immediate superclass. If Cente redCi rcl e extends Circle, it cannot
also extend the abstract CenteredShape class!*

Java’s solution to this problem is called an interface. Although a Java class can
extend only a single superclass, it can implement any number of interfaces.

Defining an Interface

An interface is a reference type that is closely related to a class. Almost everything
you’ve read so far in this book about classes applies equally to interfaces. Defining
an interface is a lot like defining an abstract class, except that the keywords
abstract and class are replaced with the keyword interface. When you define
an interface, you are creating a new reference type, just as you are when you
define a class. As its name implies, an tntetface specifies an interface, or API, for
certain functionality. It does not define any implementation of that API, however.
There are a number of restrictions that apply to the members of an interface:

0 An interface contains no implementation whatsoever. All methods of an inter-
face are implicitly abstract, even if the abstract modifier is omitted. Inter-
face methods have no implementation; a semicolon appears in place of the
method body. Because interfaces can contain only abstract methods, and
class methods cannot be abstract, the methods of an interface must all be
instance methods.

0 An interface defines a public API. All methods of an interface are implicitly
public, even if the public modifier is omitted. It is an error to define a pro»
tected or private method in an interface.

* C++ allows classes to have more than one snperclass, using a technique known as multiple inheritance.
Multiple inheritance adds a lot of complexity to a language; Java supports what many believe is a more
elegant solution

112 Chapter 3 — Object-Oriented Programming injava

Page 131 of 238

Although a class defines data and methods that operate on that data, an inter—
face cannot define instance fields. Fields are an implementation detail, and an

interface is a pure specification without any implementation. The only fields
allowed in an interface definition are constants that are declared both static
and final.

0 An interface cannot be instantiated, so it does not define a constructor

Example 3—6 shows the definition of an interface named Centered. This interface
defines the methods a Shape subclass should implement if it knows the x,y coordi-
nate of its center point.

Example 3—6: An Interface Definition

public interface Centered {
public void setCenter<double x, double y);
public double getCenterXi);
public double getCenterYi);

l

Implementing an Interface

Just as a class uses extends to specify its superclass, it can use implements to
name one or more interfaces it supports. implements is a Java keyword that can
appear in a class declaration following the extends clause. implements should be
followed by the name or names of the interface(s) the class implements, with mul—
tiple names separated by commas.

When a class declares an interface in its implements clause, it is saying that it pro-
vides an implementation Ge, 21 body) for each method of that interface. If a class
implements an interface but does not provide an implementation for every inter-
face method, it inherits those unimplemented abstract methods from the interface
and must itself be declared abstract. If a class implements more than one inter-
face, it must implement every method of each interface it implements (or be
declared abstract).

Example 3-7 shows how we can define a CenteredRectangle class that extends
our Rectangle class and implements the Centered interface we defined in Exam—
ple 3-6.

Example 3— 7.- Implementing an Interface

public class CenteredRectangle extends Rectangle implements Centered l
// New instance fields
private double cx, cy;

// A constructor

public CenteredRectangle(double cx, double cy, double w, double h) l
super(w, h);
this.cx = cx;
this.c_y = cy;

}

// We inherit all the methods of Rectangle, but must
// provide implementations of all the Centered methods.
public void setCenteMdouble x. double y) { cx = x; cy = y; l

Interfaces 113

P31113110 496/40

Page 132 of 238

Example 3— Z- Implementing an Inteiy‘ace (continued)

public double getCenterX() { return cx; }
public double getCenterY() { return cy; }

}

As I noted earlier, constants can appear in an interface definition, Any class that
implements the interface inherits the constants and can use them as if they were
defined directly in the class. There is no need to prefix them with the name of the
interface or provide any kind of implementation of the constants. \Vhen you have
a set of constants used by more than one class (e.g., a port number and other pro-
tocol constants used by a client and server), it can be convenient to define the
necessary constants in an interface that contains no methods. Then, any class that
wants to use those constants needs only to declare that it implements the interface.
java . io.0bjectStreamConstants is just such an interface.

Using Interfaces

Suppose we implement CenteredCircie and CenteredSquare just as we imple-
mented CenteredRectangle in Example 3-7. Since each class extends Shape,
instances of the classes can be treated as instances of the Shape class, as we saw
earlier. Since each class implements Centered, instances can also be treated as
instances of that type. The following code demonstrates both techniques:

ShapeE] shapes = new Shape[3]; // Create an array to hoid shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are 311 widening conversions
shapes[0] = new CenteredCirc1e(1.0, 1.0, 1.0);
shapesfl] = new CenteredSquare(2.5, 2, 3);
shapesEZ] = new CenteredRectangie(2.3, 4.5, 3, 4);

// Compute average area of the shapes and average distance from the origin
double totaiArea = 0;
double totaiDistance;
for(int i = 0; i < shapes.length; i++) {

totaiArea += shapesEi].area(); // Compute the area of the shapes
if (shapes[i] instanceof Centered) { // The shape is a Centered shape

// Note the required cast from Shape to Centered (no cast
// would be required to go from CenteredSquare to Centered. however).
Centered c = (Centered) shapesEi]; // Assign it to a Centered variable
double cx = c getCenterX(); ‘ // Get coordinates of the center
double cy = c.getCenterY(); // Compute distance from origin
totalDistance += Math.sqrt(cx*cx + cy*cy):

}
)
System.out.println("Average area: ” + totalArea/shapes.length);
System.out.print1n("Average distance: " + totaiDistance/shapes.)ength);

This example demonstrates that interfaces are data types in Java, just like classes.
When a class implements an interface, instances of that class can be assigned to
variables of the interface type. Don‘t interpret this example, however, to imply that
you must assign a CenteredRectangle object to a Centered variable before you
can invoke the setCenterO method or to a Shape variable before you can invoke
the area() method. CenteredRectangie defines setCentert) and inherits area()
from its Rectangi e superclass, so you can always invoke these methods.

114 Chapter 3 - Oly‘éct—Orz’ented Programming injava

Page 133 of 238

When to Use Interfaces

When defining an abstract type (e.g., Shape) that you expect to have many sub-
types (e.g., Circle, Rectangle, Square), you are often faced with a choice
between interfaces and abstract classes. Since they have similar features, it is not
always clear when to use one over the other.

An interface is useful because any class can implement it, even if that class
extends some entirely unrelated superclass. But an interface is a pure API specifi-
cation and contains no implementation. If an interface has numerous methods, it
can become tedious to implement the methods over and over, especially when
much of the implementation is duplicated by each implementing class.

On the other hand, a class that extends an abstract class cannot extend any other
class, which can cause design difficulties in some situations. However, an abstract
class does not need to be entirely abstract; it can contain a partial implementation
that subclasses can take advantage of. In some cases, numerous subclasses can
rely on default method implementations provided by an abstract class.

Another important difference between interfaces and abstract classes has to do
with compatibility. If you define an interface as part of a public API and then later
add a new method to the interface, you break any classes that implemented the
previous version of the interface. If you use an abstract clas, however, you can
safely add nonabstract methods to that class Without requiring modifications to
existing classes that extend the abstract class.

In some situations, it will be clear that an interface or an abstract class is the right
design choice. In other cases, a common design pattern is to use both. First, define
the type as a totally abstract interface. Then create an abstract class that imple~
ments the interface and provides useful default implementations subclasses can
take advantage of. For example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {

public void setSize(d0uble width, double height);
public void setPosition(double x, double y);
public void translate(double dx, double dy);
public double area();
public boolean islnside();

)

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape implements RectangularShape (

// The position and size of the shape
protected double x,‘ y, w, h;

// Default implementations of some of the interface methods
public void setSize(double width, double height) { w = width; h = height;)
public void setPosition(double x, double y) { this.x = x; this.y = y; }
public void translate (double dx, double dy) (x += dx; y += dy; }

Interfaces 115

Page 134 of 238

Implementing Multiple Intevfaces

Suppose we want shape objects that can be positioned in terms of not only their
center points, but also their upper—left corners. And suppose we also want shapes
that can be scaled larger and smaller. Remember that although a class can extend
only a single superclass, it can implement any number of interfaces. Assuming we
have defined appropriate UpperRightCornered and Scalable interfaces, we can
declare a class as follows:

public class SuperDupequuare extends Shape
implements Centered, UpperRightCornered, Scalable (

// class members omitted here.
}

When a class implements more than one interface, it simply means that it must
provide implementations for all abstract methods in all its interfaces.

Extending Interfaces

Interfaces can have subinterfaces, just as classes can have subclasses A subinter—
face inherits all the abstract methods and constants of its superinterface and can
define new abstract methods and constants. Interfaces are different from classes in

one very important way, however: an interface can have an extends clause that
lists more than one superinterface. For example, here are some interfaces that
extend other interfaces:

public interface Positionable extends Centered (
public setUpperRightCorner(double x, double y);
public double getUpperRightXO;
public double getUpperRightY0;

}
public interface Transformable extends Scalable, Translatable, Rotatable {)
public interface SuperShape implements Positionable, Transformable {}

An interface that extends more than one interface inherits all the abstract methods
and constants from each of those interfaces and can define its own additional

abstract methods and constants. A class that implements such an interface must
implement the abstract methods defined directly by the interface, as well as all the
abstract methods inherited from all the superinterfaces.

Marker Interfaces

Sometimes it is useful to define an interface that is entirely empty. A class can
implement this interface simply by naming it in its implements clause without hav-
ing to implement any methods. In this case, any instances of the class become
valid instances of the interface. Java code can check whether an object is an
instance of the interface using the instanceof operator, so this technique is a use-
ful way to provide additional information about an object. The Cl onea bl e interface
in java.lang is an example of this type of marker interface. It defines no meth-
ods, but identifies the class as one that allows its internal state to be cloned by the
clone() method of the Object class. As of Java 1.1, java.io.Serializable is
another such marker interface. Given an arbitrary object, you can determine
Whether it has a working cl one() method with code like this:

116 Chapter 3 — Object-Oriented Programming infava

Page 135 of 238

Object o; // Initialized elsewhere
Object copy;
if (0 instanceof Cloneable) copy = o.clone();
else copy 2 null;

Inner Glass Overview

The classes and interfaces we have seen so far in this chapter have all been top-
level classes (i.e., they are direct members of packages, not nested within any
other classes). Starting in Java 1.1, however, there are four other types of classes,
loosely known as inner classes, that can be defined in a Java program. Used cor—
rectly, inner classes are an elegant and powerful feature of the Java language.
These four types of classes are summarized here:

Static member classes

A static member class is a class (or interface) defined as a static member of

another class. A static method is called a class method, so, by analogy, we
could call this type of inner class a “class class,” but this terminology would
obviously be confusing. A static member class behaves much like an ordinary
top-level class, except that it can access the stati c members of the class that
contains it. Interfaces can be defined as static members of classes.

paws/40 499qu

Member classes

A member class is also defined as a member of an enclosing class, but is not
declared with the static modifier. This type of inner class is analogous to an
instance method or field. An instance of a member class is always associated
with an instance of the enclosing class, and the code of a member class has
access to all the fields and methods (both static and non-stati c) of its

enclosing class. There are several features of Java syntax that exist specifically
to work with the enclosing instance of a member class. Interfaces can only be
defined as static members of a class, not as non—stati C members.

Local classes

A local class is a class defined within a block of Java code. Like a local vari-
able, a local class is visible only Within that block. Although local classes are
not member classes, they are still defined within an enclosing class, so they
share many of the features of member classes. Additionally, however, a local
class can access any fi nal local variables or parameters that are accessible in
the scope of the block that defines the class. Interfaces cannot be defined
locally.

Anonymous classes
An anonymous class is a kind of local class that has no name; it combines the
syntax for class definition with the syntax for object instantiation. While a
local class definition is a Java' statement, an anonymous class definition (and
instantiation) is a Java expression, so it can appear as part of a larger expres-
sion, such as method invocation. Interfaces cannot be defined anonymously.

Java programmers have not reached a consensus on the appropriate names for the
various kinds of inner classes. Thus, you may find them referred to by different
names in different situations. In particular, static member classes are sometimes
called “nested top-level” classes, and the term “nested classes" may refer to all

Inner Class Overview 11 7

Page 136 of 238

types of inner classes. The term “inner classes" is itself overloaded and sometimes
refers specifically to member classes. On other occasions, “inner classes" refers to
member classes, local classes, and anonymous classes, but not static member
classes. In this book, I use “inner class” to mean any class other than a standard
top-level class and the names shown previously to refer to the individual types of
inner classes.

Static Member Classes

A static member class (or interface) is much like a regular top—level class (or inter—
face). For convenience, however, it is nested within another class or interface.
Example 3-8 shows a helper interface defined as a static member of a containing
class. The example also shows how this interface is used both within the class that
contains it and by external classes. Note the use of its hierarchical name in the
external class. ’

Example 3-8: Defining and Using a Static Member Interface

// A class that implements a stack as a linked list
public class LinkedStack {

// This static member interface defines how objects are linked
public static interface Linkable {

public Linkable getNext();
public void setNext(Linkable node);

l

// The head of the list is a Linkable object
Linkable head;

// Method bodies omitted
public void push(Linkable node) i l
public Object pop() { l

)

// This class implements the static member interface
class Linkablelnteger implements LinkedStack.Linkable {

// Here's the node's data and constructor
int 1';
public Linkablelntegerfint i) { this.i = i; l

// Here are the data and methods required to implement the interface
LinkedStack.Linkable next;
public LinkedStack.Linkable getNext() { return next; }
public void setNext(Linl<edStack.Linkable node) { next = node; }

Features ofStatic Member Classes

A static member class or interface is defined as a static member of a containing
class, making it analogous to the class fields and methods that are also declared
static. Like a class method, a static member class is not associated with any
instance of the containing class (i.e., there is no this object). A static member
class does, however, have access to all the static members (including any other
static member classes and interfaces) of its containing class. A static member class

1 18 Chapter 3 — Object-Oriented Programming injava

Page 137 of 238

can use any other static member without qualifying its name with the name of the
containing class.

A static member class has access to all static members of its containing class,
including private members. The reverse is true as well: the methods of the con-
taining class have access to all members of a static member class, including the
private members. A static member class even has access to all the members of

any other static member classes, including the private members of those classes.

Since static member classes are themselves class members, a static member class
can be declared with its own access control modifiers. These modifiers have the

same meanings for static member classes as they do for other members of a class.
In Example 3—8, the Linkable interface is declared public, so it can be imple-
mented by any class that is interested in being stored on a Li nkedStack.

Restrictions on Static Member Classes

A static member class cannot have the same name as any of its enclosing classes.
In addition, static member classes and interfaces can be defined only within top-
level classes and other static member classes and interfaces. This is actually part of
a larger prohibition against static members of any sort within member, local, and
anonymous classes.

New Syntaxfor Static Member Classes

In code outside of the containing class, a static member class or interface is named
by combining the name of the outer class with the name of the inner class (eg,
LinkedStack.Linkable). You can use the import directive to import a static mem-
ber class:

import Li nkedStack. Li nkabl e;
import LinkedStack.*;

// Import a specific inner class
// Import all inner classes of LinkedStack

Importing inner classes is not recommended, however, because it obscures the fact
that the inner class is tightly associated with its containing class.

Member Classes

A member class is a class that is declared as a non—stati c member of a containing
class. If a static member class is analogous to a class field or class method, a mem-
ber class is analogous to an instance field or instance method. Example 3-9 shows
how a member class can be defined and used. This example extends the previous
Li nk'edStack example to allow enumeration of the elements on the stack by defin-
ing an enumerateO method that returns an implementation of the java . util .Enu-
meration interface. The implementation of this interface is defined as a member
class.

Example 3-9: An Enumeration Implemented as a Member Class

public class LinkedStack (
// Our static member interface; body omitted here...
public static interface Linkable { l

Member Classes 1 19

pawaua 433.100

Page 138 of 238

Example 3-9: An Enumeration Implemented as a Member Class (continued)
// The head of the list
private Linkable head;

// Method bodies omitted here
public void push<Linkable node) i l
public Linkable pop() { l

// This method returns an Enumeration object for this LinkedStack
public java.util.Enumeration enumerate() i return new Enumerator(); }

// Here is the implementation of the Enumeration interface,
// defined as a member class.
protected class Enumerator implements java.util.Enumeration (

Linkable current;
// The constructor uses the private head field of the containing class

public Enumerator() { current = head; l
public boclean hasMoreElements() { return (current i: null); l
public Object nextElement() {

if (current = null) throw new java.util .NoSuchElementException();
Object value = current;
current = current.getNext();
return value;

}
l

l

Notice how the Enumerator class is nested within the Li nkedStack class. Since

En ume rator is a helper class used only within Li nkedStack, there is a real elegance
to having it defined so close to Where it is used by the containing class

Features ofMember Classes

Like instance fields and instance methods, every member class is associated with
an instance of the class within which it is defined (i.e., every instance of a member
class is associated with an instance of the containing class). This means that the
code of a member class has access to all the instance fields and instance methods

(as Well as the static members) of the containing class, including any that are
declared private.

This crucial feature is illustrated in Example 5-9. Here is the body of the Li nked-
Stack. Enumerator() constructor again:

current = head;

This single line of code sets the current field of the inner class to the value of the
head field of the containing class. The code works as shown, even though head is
declared as a private field in the containing class

A member class, like any member of a class, can be assigned one of three visibility
levels: public, protected, or private. If none of these visibility modifiers is speci-
fied, the default package visibility is used. In Example 5—9, the Enumerator class is
declared protected, so it is inaccessible to code using the LinkedStack class, but
accessible to any class that subclasses Li nkedStack.

120 Chapter 3 — Object-Oriented Programming injava

Page 139 of 238

Restrictions on Member Classes

There are three important restrictions on member classes:

- A member class cannot have the same name as any containing class or pack—
age. This is an important rule, and one not shared by fields and methods.

Member classes cannot contain any static fields, methods, or classes (with
the exception of constant fields declared both static and final). static

fields, methods, and classes are top-level constructs not associated with any
particular object, while every member class is associated with an instance of
its enclosing class. Defining a static top—level member within a non-top—level
member class simply promotes confusion and bad programming style, so you
are required to define all static members within a top-level or static member
class or interface.

Interfaces cannot be defined as member classes. An interface cannot be

instantiated, so there is no object to associate with an instance of the enclos-
ing class. If you declare an interface as a member of a class, the interface is
implicitly static, making it a static member class.

New Syntaxfor Member Classes

The most important feature of a member class is that it can access the instance
fields and methods in its containing object. We saw this in the LinkedStack. Enu—
meratorO constructor of Example 3—9:

public Enumerat0r() { current = head; i

in this example, head is a field of the LinkedStack class, and we assign it to the
current field of the Enumerator class, The current code works, but what if we
want to make these references explicit? We could try code like this:

public EnumeratoM) i this.current = this.head; }

This code does not compile, however. thi s.current is fine; it is an explicit refer-
ence to the current field in the newly created Enumera tor object. It is the
this.head expression that causes the problem; it refers to a field named head in
the Enumerator object. Since there is no such field, the compiler generates an
error. To solve this problem, Java defines a special syntax for explicitly referring to
the containing instance of the this object. Thus, if we want to be explicit in our
constructor, we can use the following syntax:

public Enumeratori) { this.cur‘rent = LinkedStack.this.head;)

The general syntax is classname.thi s, where classname is the name of 2 contain-
ing class Note that member classes can themselves contain member classes,
nested to any depth. Since no member class can have the same name as any con-
taining class, however, the use of the enclosing class name prepended to this is a
perfectly general way to refer to any containing instance. This syntax is needed
only when referring to a member of a containing class that is hidden by a member
of the same name in the member class.

Member Classes 121

[131119110 439/110

Page 140 of 238

Accessing superclass members of the containing class

When a class shadows or overrides a member of its superclass, you can use the
keyword super to refer to the hidden member. This super syntax can be extended
to work with member classes as well. On the rare occasion when you need to
refer to a shadowed field f or an overridden method in of a superclass of a con-
taining class C, use the following expressions:

C.super.f
C.super.m()

This syntax was not implemented by Java 1.1 compilers, but it works correctly as
of Java 1.2.

Specifying the containing instance

As we’ve seen, every instance of a member class is associated with an instance of
its containing class. Look again at our definition of the enumerate() method in
Example 3-9:

public Enumeration enumerateO (return new EnumeratorI); l

When a member class constructor is invoked like this, the new instance of the
member class is automatically associated with the this object. This is what you
would expect to happen and exactly What you want to occur in most cases. Occa-
sionally, however, you may want to specify the containing instance explicitly when
instantiating a member class. You can do this by preceding the new operator with a
reference to the containing instance Thus, the en umerate() method shown above
is shorthand for the following:

public Enumeration enumerateO { return thismew Enumeratorfi); }

Let’s pretend we didn’t define an enumerate() method for Li nkedStack. In this
case, the code to obtain an Enumerator object for a given LinkedStack object
might look like this:

LinkedStack stack : new LinkedStackO; // Create an empty stack
Enumeration e = stack.new EnumeratorC); // Create an Enumeration for it

The containing instance implicitly specifies the name of the containing class; it is a
syntax error to explicitly specify that containing class:

Enumeration e = stack.new LinkedStack.Enumerator(); // Syntax error

There is one other special piece of Java syntax that specifies an enclosing instance
for a member class explicitly, Before we consider it, however, let me point out that
you should rarely, if ever, need to use this syntax. It is one of the pathological
cases that snuck into the language along with all the elegant features of inner
classes.

As strange as it may seem, it is possible for a top-level class to extend a member
class. This means that the subclass does not have 3 containing instance, but its
superclass does. When the subclass constructor invokes the superclass constructor,
it must specify the containing instance. It does this by prepending the containing
instance and a period to the super keyword. If we had not declared our

122 Cbapter3 -— Object-Oriented Programming injaua

Page 141 of 238

Enumerator class to be a protected member of LinkedStack, we could subclass it.
Although it is not clear why we would want to do so, we could write code like the
following:

// A top-level class that extends a member class
class SpecialEnumerator extends LinkedStack.Enumerator {

// The constructor must explicitly specify a containing instance
// when invoking the superclass constructor.
public SpecialEnumerator(LinkedStack s) { s.super(); }

// Rest of class omitted...

Scope Versus Inheritancefor Member Classes

We’ve just noted that a top—level class can extend a member class. With the intro-
duction of member classes, there are two separate hierarchies that must be consid-
ered for any class. The first is the class hierarchy, from superclass to subclass, that
defines the fields and methods a member class inherits. The second is the contain-
ment hierarchy, from containing Class to contained class, that defines a set of
fields and methods that are in the scope of (and are therefore accessible to) the
member class.

The two hierarchies are entirely distinct from each other; it is important that you
do not confuse them. This should not be a problem if you refrain from creating
naming conflicts, where a field or method in a superclass has the same name as a
field or method in a containing class. If such a naming conflict does arise, how—
ever, the inherited field or method takes precedence over the field or method of
the same name in the containing class. This behavior is logical: when a class inher-
its a field or method, that field or method effectively becomes part of that class.
Therefore, inherited fields and methods are in the scope of the class that inherits
them and take precedence over fields and methods by the same name in enclos-
ing scopes.

Because this can be quite confusing, Java does not leave it to chance that you get
it right. Whenever there is a naming conflict between an inherited field or method
and a field or method in a containing class, Java requires that you explicitly specify
which one you mean. For example, if a member class B inherits a field named x
and is contained within a class A that also defines a field named X, you must use
thi 5.x to specify the inherited field and A.thi s .x to specify the field in the con-
taining class. Any attempt to use the field X without an explicit specification of the
desired instance causes a compilation error.

A good way to prevent confusion between the class hierarchy and the contain-
ment hierarchy is to avoid deep containment hierarchies. If a class is nested more
than two levels deep, it is probably going to cause more confusion than it is
worth. Furthermore, if a class has a deep class hierarchy (i.e., it has many super—
class ancestors), consider defining it as a top—level class, rather than as a member
class.

Member Classes 123

paxuaug 409/40

Page 142 of 238

Local Classes

A local class is declared locally within a block of Java code, rather than as a mem-
ber of a class. Typically, a local class is defined within a method, but it can also be
defined within a static initializer or instance initializer of a class. Because all blocks

ofJava code appear within class definitions, all local classes are nested Within con-
taining classes. For this reason, local classes share many of the features of member
classes. It is usually more appropriate, however, to think of them as an entirely
separate kind of inner class. A local class has approximately the same relationship
to a member class as a local variable has to an instance variable of a class.

The defining characteristic of a local class is that it is local to a block of code. Like
a local variable, a local class is valid only within the scope defined by its enclosing
block. If a member class is used only Within a single method of its containing
class, for example, there is usually no reason it cannot be coded as a local class,
rather than a member class. Example 5-10 shows how we can modify the enumer-
ate() method of the LinkedStack class so it defines Enumerator as a local class

instead of a member class. By doing this, We move the definition of the class even
closer to Where it is used and hopefully improve the clarity of the code even fur-
ther. For brevity, Example 3-10 shows only the enumerate() method, not the entire
Li nkedStack class that contains it.

Example 3—10: Defining and Using a Local Class

// This method creates and returns an Enumeration object
public java.util.Enumeration enumerate() {

// Here's the definition of Enumerator as a local class
class Enumerator implements java.util.Enumeration {

Linkable current;
public Enumerator() (current 2 head; }
public boolean hasMoreElements() { return (current 1: null);)
public Object nextElement() {

if (current :2 null) throw new java.util.NoSuchElementException();
Object value = current;
current = current.getNext();
return value;

}
l

// Now return an instance of the Enumerator class defined directly above
return new Enumerator();

}

Features ofLocal Classes

Local classes have the following interesting features:

- Like member classes, local classes are associated with a containing instance,
and can access any members, including private members, of the containing
class.

124 Chapter 3 — Object-Oriented Programming injaz/a

Page 143 of 238

- In addition to accessing fields defined by the containing class, local classes
can access any local variables, method parameters, or exception parameters
that are in the scope of the local method definition and declared fi nal.

Restrictions on Local Classes

Local classes are subject to the following restrictions:

- A local class is visible only within the block that defines it; it can never be
used outside that block.

Local classes cannot be declared public, protected, private, or static.
These modifiers are for members of classes; they are not allowed with local
variable declarations or local class declarations.

Like member classes, and for the same reasons, local classes cannot contain
static fields, methods, or classes. The only exception is for constants that are
declared both static and ti nal. paluayo 4931170
Interfaces cannot be defined locally.

A local class, like a member class, cannot have the same name as any of its
enclosing classes.

As noted earlier, a local class can use the local variables, method parameters,
and even exception parameters that are in its scope, but only if those vari-
ables or parameters are declared fi nal. This is because the lifetime of an
instance of a local class can be much longer than the execution of the method
in which the class is defined For this reason, a local class must have a private
internal copy of all local variables it uses (these copies are automatically gen-
erated by the compiler). The only way to ensure that the local variable and
the private copy are always the same is to insist that the local variable is
f 1‘ ha].

New Syntaxfor Local Classes

In Java 1.0, only fields, methods, and classes can be declared fi nal. The addition
of local classes in Java 1.1 has required a liberalization in the use of the final
modifier. It can now be applied to local variables, method parameters, and even
the exception parameter of a catch statement. The meaning of the fi nal modifier
remains the same in these new uses; once the local variable or parameter has
been assigned a value, that value cannot be changed.

Instances of local classes, like instances of member classes, have an enclosing
instance that is implicitly passed to all constructors of the local class. Local classes
can use the same thi 5 syntax as member classes, to refer explicitly to members of
enclosing classes. Because local classes are never visible outside the blocks that
define them, however, there is never a need to use the new and super syntax used
by member classes to specify the enclosing instance explicitly.

Local Classes 125

Page 144 of 238

Scope ofa Local Class

In discussing member classes, we saw that a member class can access any mem-
bers inherited from superclasses and any members defined by its containing
classes. The same is true for local classes, but local classes can also access final
local variables and parameters. The following code illustrates the many fields and
variables that may be accessible to a local class:

class A { protected char a
class B { protected char b

= ‘a'; l
= 'b'; }

public class C extends A {
private char c = ‘c‘; // Private fields visible to local class
public static char d = ‘d';
public void createLocalObject(final char e)
{

final char f = 'f';
int i = 0; // i not final; not usable by local class
class Local extends B
(

char 9 = ’9';
public void printVarsO
l .

// All of these fields and variables are accessible to this class
System.out.println(g); // (this.g) g is a field of this class
System.out;println(f); // f is a final local variable
System.out.println(e); // e is a final local parameter
System.out.println(d): // (C.this.d) d -- field of containing class
System.out.println(c); // (C.this.c) c -v field of containing class
System.out.println(b); // b is inherited by this class
$ystem.out.println(a): // a is inherited by the containing class

}
}
Local 1 = new Local(); // Create an instance of the local class
l.printVars(); // and call its printVars() method.

}
}

Local Classes and Local Variable Scope

A local variable is defined within a block of code, which defines its scope. A local
variable ceases to exist outside of its scope. Java is a lexically scoped language,
which means that its concept of scope has to do with the way the source code is
written. Any code within the curly braces that define the boundaries of a block
can use local variables defined in that block.>K

Lexical scoping simply defines a segment of source code Within which a variable
can be used. It is common, however, to think of a scope as a temporal scope—to
think of a local variable as existing from the time the Java interpreter begins exe—
cuting the block until the time the interpreter exits the block. This is usually a rea-
sonable way to think about local variables and their scope.

* This section covers advanced material; first»time readers may want to skip it for now and return to itlater

126 Chapter 3— Object-Oriented Programming injava

Page 145 of 238

The introduction of local classes confuses the picture, however, because local
classes can use local variables, and instances of a local class can have a lifetime

much longer than the time it takes the interpreter to execute the block of code. In
other words, if you create an instance of a local class, the instance does not auto-
matically go away when the interpreter finishes executing the block that defines
the class, as shown in the following code:

public class Weird {
// A static member interface used below
public static interface IntHolder { public int getValueO; }

public static void main(String[] args) {
IntHolderU holders = new IntHolderElO];
for(int i = 0; i <10,- i-H) (// Loop to fill the array up

final int fi = i; I // A final local variable
class MyIntHolder implements IntHolder { // A local class

public int getValue() { return fi; } // It uses the final variable

// An array to hold 10 objects

}
holders[il = new MyIntHolderO;

}
// Instantiate the local class

// The local class is now out of scope, so we can‘t use it. But
// we‘ve got ten valid instances of that class in our array. The local
// variable fi is not in our scope here, but it is still in scope for
// the getValue() method of each of these ten objects. So call getValue()
// for each object and print it out. This prints the digits 0 to 9.
for(int i = 0; i <10; i-H) System.0ut.println(holders[i].getValue());

}
}

The behavior of the previous program is pretty surprising. To make sense of it,
remember that the lexical scope of the methods of a local class has nothing to do
with when the interpreter enters and exits the block of code that defines the local
class. Here’s another way to think about it: each instance of a local class has an
automatically created private copy of each of the final local variables it uses, so, in
effect, it has its own private copy of the scope that existed when it was created.

Anonymous Classes

An anonymous class is a local class without a name. An anonymous class is
defined and instantiated in a single succinct expression using the new operator.
While a local class definition is a statement in a block ofJava code, an anonymous
class definition is an expression, which means that it can be included as part of a
larger expression, such as a method call. When a local class is used only once,
consider using anonymous class syntax, which places the definition and use of the
class in exactly the same place.

Consider Example 3-11, which shows the Enumeration class implemented as an
anonymous class within the enumerate() method of the LinkedStack class. Com—
pare it with Example 5-10, which shows the same class implemented as a local
class.

Anonymous Classes 127

paws/10 439/00

Page 146 of 238

Example 3-11: An Enumeration Implemented with an Anonymous Class

public java.util.Enumeration enumerate() €
// The anonymous class is defined as part of the return statement
return new java.util Enumeration() {

Linkable current; = head;
{ current = head; } // Replace constructor with an instance initializer
public boolean hasMoreElements() { return (current 1: null); }
public Object nextElement() {

if (current = null) throw new java.util.NoSuchElementExceptioM);
Object value = current;
current = current.getNeXt();
return value;

}
l; // Note the required semicolon: it terminates the return statement

l

One common use for an anonymous class is to provide a simple implementation
of an adapter class. An adapter class is one that defines code that is invoked by
some other object. Take, for example, the list() method of the java.io.File
class. This memod lists the files in a directory. Before it returns the list, though, it
passes the name of each file to a FilenameFi lter object you must supply. This
Fi 1 en ameFi l ter object accepts or rejects each file. When you implement the Fi l e-
nameFi l ter interface, you are defining an adapter class for use with the
Fi le.li 5120 method, Since the body of such a class is typically quite short, it is
easy to define an adapter class as an anonymous class. Here’s how you can define
a F i l enameFi l ter class to list only those files whose names end with java:

File 1‘ = new File("/src"); // The directory to list

// Now call the list() method with a single FilenameFilter argument
// Define and instantiate an anonymous implementation of FilenameFilter
// as part of the method invocation expression.
StringEJ filelist = f.list(new FilenameFilter() {

\public boolean accept(File 1“, String s) { return s.endsw1'th(".java"); l
l); // Don't forget the parenthesis and semicolon that end the method call!

As you can see, the syntax for defining an anonymous class and creating an
instance of that class uses the new keyword, followed by the name of a class and a
class body definition in curly braces. If the name following the new keyword is the
name of a class, the anonymous class is a subclass of the named class. If the name
following new specifies an interface, as in the two previous examples, the anony-
mous Class implements that interface and extends Object. The syntax does not
include any way to specify an extends clause, an implements clause, or a name
for the class.

Because an anonymous class has no name, it is not possible to define a construc-
tor for it within the class body. This is one of the basic restrictions on anonymous
classes. Any argmments you specify between the parentheses following the super-
class name in an anonymous class definition are implicitly passed to the superclass
constructor. Anonymous classes are commonly used to subclass simple classes that
do not take any constructor arguments, so the parentheses in the anonymous class
definition syntax are often empty. In the previous examples, each anonymous
class implemented an interface and extended Object. Since the Obj ect() construc-
tor takes no arguments, the parentheses were empty in those examples.

128 Chapter 3 — Object-Oriented Programming infava

Page 147 of 238

Features ofAnonymous Classes

One of the most elegant things about anonymous classes is that they allow you to
define a one-shot class exactly where it is needed. In addition, anonymous classes
have a succinct syntax that reduces clutter in your code.

Restrictions on Anonymous Classes

Because an anonymous class is just a type of local class, anonymous classes and
local classes share the same restrictions An anonymous class cannot define any
static fields, methods, or classes, except for static final constants. Interfaces
cannot be defined anonymously, since there is no way to implement an interface
without a name. Also, like local classes, anonymous classes cannot be public,
private, protected, or static.

Since an anonymous class has no name, it is not possible to define a constructor
for an anonymous class. If your class requires a constructor, you must use a local
class instead. However, you can often use an instance initializer as a substitute for
a constructor. In fact, instance initializers Were introduced into the language for
this very purpose.

The syntax for defining an anonymous class combines definition with instantiation.
Thus, using an anonymous class instead of a local class is not appropriate if you
need to create more than a single instance of the class each time the containing
block is executed.

New Syntaxfor Anonymous Classes

We’ve already seen examples of the syntax for defining and instantiating an anony-
mous class. We can express that syntax more formally as:

new class-name ([argument-list]) l class-body }

new interface-name () { class-body)

As I already mentioned, instance initializers are another specialized piece of Java
syntax that was introduced to support anonymous classes. As we discussed earlier
in the chapter, an instance initializer is a block of initialization code contained
within curly braces inside a class definition. The contents of an instance initializer
for a class are automatically inserted into all constructors for the class, including
any automatically created default constructor. An anonymous class cannot define a
constructor, so it gets a default constructor. By using an instance initializer, you
can get around the fact that you cannot define a constructor for an anonymous
class.

When to Use an Anonymous Class

As we’ve discussed, an anonymous class behaves just like a local class and is dis-
tinguished from a local class merely in the syntax used to define and instantiate it.
In your own code, when you have to choose between using an anonymous class

Anonymous Classes 129

WIUHIJU 493qu

Page 148 of 238

and a local class, the decision often comes down to a matter of style. You should
use whichever syntax makes your code clearer. In general, you should consider
using an anonymous class instead of a local class if:

0 The class has a very short body‘

0 Only one instance of the class is needed.

0 The class is used right after it is defined.

- The name of the class does not make your code any easier to understand.

Anonymous Class Indentation and Formatting

The common indentation and formatting conventions we are familiar with for
block-structured languages like Java and C begin to break down somewhat once
We start placing anonymous class definitions within arbitrary expressions. Based
on their experience with inner classes, the engineers at Sun recommend the fol-
lowing formatting rules:

0 The opening curly brace should not be on a line by itself; instead, it should
follow the close parenthesis of the new operator. Similarly, the new operator
should, when possible, appear on the same line as the assignment or other
expression of which it is a part.

The body of the anonymous class should be indented relative to the begin—
ning of the line that contains the new keyword.

The closing curly brace of an anonymous class should not be on a line by
itself either; it should be followed by whatever tokens are required by the rest

, of the expression. Often this is a semicolon or a close parenthesis followed by
a semicolon. This extra punctuation serves as a flag to the reader that this is
not just an ordinary block of code and makes it easier to understand anony-
mous classes in a code listing.

How Inner Classes Work

The preceding sections have explained the features and behavior of the various
types of inner classes. Strictly speaking, that should be all you need to know about
inner classes. In practice, however, some programmers find it easier to understand
the details of inner classes if they understand how they are implemented.

Inner classes were introduced in Java 1.1. Despite the dramatic changes to the Java
language, the introduction of inner classes did not change the Java Virtual Machine
or the Java class file format. As far as the Java interpreter is concerned, there is no
such thing as an inner Class: all classes are normal top~level classes. In order to
make an inner class behave as if it is actually defined inside another class, the Java
compiler ends up inserting hidden fields, methods, and constructor arguments into
the classes it generates. You may want to use the javap disassembler to disassem-
ble some of the class files for inner classes so you can see what tricks the compiler
has used to make inner classes work, (See Chapter 8, Java Development Tools, for
information on javap.)

130 Chapter 3 — Object-Oriented Programming injava

Page 149 of 238

Static Member Class Implementation

Recall our first Li nkedStack example (Example 5—8), which defined a static mem-
ber interface named Li nkabl e. When you compile this LinkedStack class, the
compiler actually generates two class files. The first one is LinkedSmc/eclass, as
expected, The second class file, however, is called LinkedStacle$Linleab1eclass. The
$ in this name is automatically inserted by the Java compiler. This second class file
contains the implementation of the static member interface.

As we discussed earlier, a static member class can access all the static members
of its containing class. If a static member class does this, the compiler automati-
cally qualifies the member access expression with the name of the containing
class. A static member class is even allowed to access the private static fields of

its containing class. Since the static member class is compiled into an ordinary top-
level class, however, there is no way it can directly access the private members of
its container. Therefore, if a static member class uses a private member of its con-
taining class (or vice versa), the compiler automatically generates non—private
access methods and converts the expressions that access the private members
into expressions that access these specially generated methods. These methods are
given the default package access, which is sufficient, as the member class and its
containing class are guaranteed to be in the same package.

Member Class Implementation

A member class is implemented much like a static member class. It is compiled
into a separate top-level class file, and the compiler performs various code manip-
ulations to make interclass member access work correctly.

The most significant difference between a member class and a static member class
is that each instance of a member class is associated with an instance of the
enclosing class. The compiler enforces this association by defining a synthetic field
named thi s$O in each member class. This field is used to hold a reference to the

enclosing instance. Every member class constructor is given an extra parameter
that initializes this field. Every time a member class constructor is invoked, the
compiler automatically passes a reference to the enclosing class for this extra
parameter.

As we’ve seen, a member class, like any member of a class, can be declared pub-
li c, protected, or private, or given the default package visibility. However, as I
mentioned earlier, there have been no changes to the Java Virtual Machine to sup-
port member classes. Member classes are compiled to class files just like top-level
classes, but top—level classes can only have public or package access. Therefore, as
far as the Java interpreter is concerned, member classes can only have public or
package visibility. This means that a member class declared protected is actually
treated as a public class, and a member class declared private actually has pack-
age visibility. This does not mean you should never declare a member class as
protected or private. Although the interpreter cannot enforce these access con-
trol modifiers, the modifiers are noted in the class file. This allows any conforming
Java compiler to enforce the access modifiers and prevent the member classes
from being accessed in unintended ways.

How Inner Classes Work 131

PBJUQIJU 403.100

Page 150 of 238

Local and Anonymous Class Implementation

A local class is able to refer to fields and methods in its containing class for exactly
the same reason that a member class can; it is passed a hidden reference to the
containing class in its constructor and saves that reference away in a private field
added by the compiler. Also, like member classes, local classes can use private
fields and methods of their containing class because the compiler inserts any
required accessor methods.

What makes local classes different from member classes is that they have the abil-
ity to refer to local variables in the scope that defines them. The crucial restriction
on this ability, however, is that local classes can only reference local variables and
parameters that are declared final. The reason for this restriction becomes appar-
ent from the implementation. A local class can use local variables because the
compiler automatically gives the class a private instance field to hold a copy of
each local variable the class uses. The compiler also adds hidden parameters to
each local class constructor to initialize these automatically created private fields:
Thus, a local class does not actually access local variables, but merely its own pri-
vate copies of them. The only way this can work correctly is if the local variables
are declared final, so that they are guaranteed not to change. With this guarantee,
the local class can be assured that its internal copies of the variables are always in
sync with the real local variables.

Since anonymous classes have no names, you may wonder What the class files that
represent them are named. This is an implementation detail, but the Java compiler
from Sun uses numbers to provide anonymous class names. If yon compile the
example shown in Example 3-11, you’ll find that it produces a file with a name
like LinkedStacle$1.class. This is the class file for the anonymous class.

Modifier Summary

As we’ve seen, classes, interfaces, and their members can be declared with one or
more modifiers—keywords such as public, static, and final. This chapter has
introduced the public, protected, and private access modifiers, as well as the
abstract, final, and static modifiers. In addition to these six, Java defines five
other less commonly used modifiers. Table 3—2 lists the Java modifiers, explains
What types ofJava constructs they can modify, and explains what they do.

Table 3-2.- java Modifiers

Meaning

abstract class The class contains unimplemented methods and
cannot be instantiated.

interface All interfaces are abstract. The modifier is

optional in interface declarations.

132 Chapter 3 — Object—Oriented Programming inJava

Page 151 of 238

Table 3—2: JavaModg’fiers (continued)

Used on

method

Modifier

abstract -

class

method

field

variable

Meaning

No body is provided for the method; it is

provided by a subclass. The signature is followed
by a semicolon. The enclosing class must also be
abstract.

The class cannot be subclassed.

The method cannot be overridden (and is not

subject to dynamic method lookup).

The field cannot have its value changed. static
fi nal fields are compile-time constants.

A local variable, method parameter, or exception
parameter cannot have its value changed (Java
1.1 and later). Useful with local classes.

The method is implemented in some platform—
dependent way (often in C). No body is

provided; the signature is followed by a
semicolon.

none (package) class

interface

member

private

A non-publ ic class is accessible only in its
package.

A non-publ 1c interface is accessible only in its
package.

A member that is not private, protected, or

public has package visibility and is accessible
only within its package.

The member is accessible only within the class
that defines it.

protected

class

interface

member

The member is accessible only within the

package in which it is defined and within
subclasses.

The class is accessible anywhere its package is

The interface is accessible anywhere its package
15.

The member is accessible anywhere its class is.

All methods of the class are implicitly stri ctfp
(Java 1.2 and later).

Modifier Summary 133

paiuayg 403/00

Page 152 of 238

Table 3—2: java Modifiers (continued)

Modifier ‘ Used on ‘ Meaning

strictfp

synchronized

transient

volatile

method

initializer

All floating-point computation done by the

method must be performed in a way that strictly
conforms to the IEEE 754 standard. In particular,

all values, including intermediate results, must be
expressed as IEEE float or double values and
cannot take advantage of any extra precision or

range offered by native platform floating-point
formats or hardware (Java 1.2 and later). This

modifier is rarely used.

An inner class declared static is a top-level
class, not associated with a member of the

containing class {Java 1.1 and later).
A static method is a class method. It is not

passed an implicit till 5 object reference. It can
be invoked through the class name.

A static field is a class field. There is only one

instance of the field, regardless of the number of
class instances created. It can be accessed

through the class name.

The initializer is run when the class is loaded,
rather than when an instance is created.

The method makes non-atomic modifications to

the class or instance, so care must be taken to

ensure that two threads cannot modify the class
or instance at the same time. For a stati (2

method, a lock for the class is acquired before

executing the method. For a non-stati c method,
a lock for the specific object instance is acquired.

The field is not part of the persistent state of the
object and should not be serialized with the
object. Used with object serialization; see
java .io.0bject0utput5tream.

The field can be accessed by unsynchronized
threads, so certain optimizations must not be

performed on it. This modifier can sometimes be ‘
used as an alternative to synchronized. This

modifier is very rarely used.

134 Chapter 3 — Object~0fiemed Programming injava

Page 153 of 238

C++ Features Not Found inJava

Throughout this chapter, I’ve noted similarities and differences between Java and
C++ in footnotes. Java shares enough concepts and features with C++ to make it
an easy language for C++ programmers to pick up. There are several features of
C++ that have no parallel in Java, however. In general, Java does not adopt those
features of C++ that make the language significantly more complicated.

C++ supports multiple inheritance of method implementations from more than-one
superclass at a time. While this seems like a useful feature, it actually introduces
many complexities to the language. The Java language designers chose to avoid

the added complexity by using interfaces instead. Thus, a class in Java can inherit
method implementations only from a single superclass, but it can inherit method
declarations from any number of interfaces.

C++ supports templates that allow you, for example, to implement a Stack class
and then instantiate it as Stacl<<i nt> or Stack<double> to produce two separate
types: a stack of integers and a stack of floating-point values. Java does not allow
this, but efforts are underway to add this feature to the language in a robust and
standardized way. Furthermore, the fact that every class in Java is a subclass of
Object means that every object can be cast to an instance of Object. Thus, in Java
it is often sufficient to define a data structure (such as a Stack class) that operates
on Object values; the objects can be cast back to their actual types whenever nec-
essary.

C++ allows you to define operators that perform arbitrary operations on instances
of your classes. In effect, it allows you to extend the syntax of the language. This
is a nifty feature, called operator overloading, that makes for elegant examples. In
practice, however, it tends to make code quite difficult to understand. After much
debate, the Java language designers decided to omit such operator overloading
from the language. Note, though, that the use of the + operator for string concate-
nation in Java is at least reminiscent of operator overloading.

C++ allows you to define conversion functions for a class that automatically invoke
an appropriate constructor method when a value is assigned to a variable of that
class. This is simply a syntactic shortcut (similar to overriding the assignment oper—
ator) and is not included in Java.

In C++, objects are manipulated by value by default; you must use & to specify a
variable or function argument automatically manipulated by reference. In Java, all
objects are manipulated by reference, so there is no need for this & syntax.

C++ Features Not Found injava 135

paiuam} 493/110

Page 154 of 238

Thejava Platform

Chapter 2, java Syntaxfrom the Ground Up, and Chapter 3, Object—Oriented Pro—
gramming in Java, documented the Java programming language. This chapter
switches gears and covers the Java platform, which is the vast collection of prede-
fined classes available to every Java program, regardless of the underlying host
system on which it is running. The classes of the Java platform are collected into
related groups, known as packages. This chapter begins with an overview of the
packages of the Java platform that are documented in this book. It then moves on
to demonstrate, in the form of short examples, the most useful classes in these
packages.

java Platform Overview

Table 4-1 summarizes the key packages of the Java platform that are covered in
this book.

Table 4-]: Key Packages ofthejava Platform

Package

java.beans

java.beans.beancontext

java.io

java.1ang

Description

The JavaBeans component model for reusable,

embeddable software components.

Additional classes that define bean context objects
that hold and provide services to the JavaBeans

objects they contain.

Classes and interfaces for input and output.
Although some of the classes in this package are
for working directly with files, most are for
working with streams of bytes or characters.

The core classes of the language, such as String,
Math, System, Thread, and Exception.

Page 155 of 238

Table 4* 1: Key Packages of thejam Platform (continued)

Package

javaflangureic

.1ang.ref1ect

.math

.net

.secur‘ity

.security.ac1

.security.cert

. security. interfaces

.securi ty . spec

java.

java.

java.ut1‘l .jar

java.util.zip

javax.crypto

javax.crypto.1nterfaces

javax.crypto.spec

Description

Classes that define weak references to objects. A
weak reference is one that does not prevent the

referent object from being garbage-collected.

Classes and interfaces that allow Java programs to
reflect on themselves by examining the
constructors, methods, and fields of classes.

A small package that contains classes for arbitrary-
precision integer and floating-point arithmetic.

Classes and interfaces for networking with other
systems.
Classes and interfaces for access control and

authentication. Supports cryptographic message
digests and digital signatures.

A package that supports access control lists.
Deprecated and unused as of Java 1.2.

Classes and interfaces for working with public key
certificates.

Interfaces used with DSA and RSA public-key
encryption.

uuajield B/Iyr3111
Classes and interfaces for transparent
representations of keys and parameters used in

public—key cryptography.

Classes and interfaces for working with text in
internationalized applications.

Various utility classes, including the powerful
collections framework for working with collections
of objects.

Classes for reading and writing JAR files.

Classes for reading and writing ZIP files.

Classes and interfaces for encryption and
decryption of data.

Interfaces that represent the Diffie—Hellman public/
private keys used in the Diffie—Hellman key
agreement protocol.

Classes that define transparent representations of
keys and parameters used in cryptography.

Table 4—1 does not list all the packages in the Java platform, only those docu—
mented in this book. Java also defines numerous packages for graphics and graph—
ical user interface programming and for distributed, or enterprise, computing. The

java Platform Overview 13 7

Page 156 of 238

graphics and GUI packages are java.awt and j avax.swing and their many sub-
packages. These packages, along with the java.applet package, are documented
in java Foundation Classes in a Nutshell (O’Reilly). The enterprise packages of
Java include java.rmi, java.sql, javax.jndi, org.omg.CORBA, org.omg.CosNaming,
and all of their subpackages. These packages, as well as several standard exten-
sions to the Java platform, are documented in the book java Enterprise in a Nat-
shell (O’Reilly),

Strings and Characters

Strings of text are a fundamental and commonly used data type. In Java, however,
strings are not a primitive type, like char, i nt, and fl oat. Instead, strings are rep-
resented by the java .lang.Stri ng class, which defines many useful methods for

manipulating strings. String are immutable: once a String object has been cre-
ated, there is no way to modify the string of text it represents. Thus, each method
that operates on a string typically returns a new String object that holds the modi-
fied string.

This code shows some of the basic operations you can perform on strings:

// Creating strings
String s = "Now"; // String objects have a special literal syntax
String t = s + " is the time"; // Concatenate strings with + operator
String t1 = s + “ ” + 23.4; // + converts other values to strings
t1 = String.value0f('c'); // Get string corresponding to char value
t1 String.value0f(42); // Get string version of integer or any value
t1 0bject.to$tring(); // Convert objects to strings with toString()

// String length
int len : t.length(); // Number of characters in the string: 16

// Substrings of a string
String sub = t.substring(4); // Returns char 4 to end: "is the time "
sub = t.substring(4, 6); // Returns chars 4 and 5: "is"
sub = t.substring(0, 3); // Returns chars 0 through 2: "Now"
sub 2 t.substring(x, y); // Returns chars between pos x and y-l

‘int numchars = sub.length(); // Length of substring is always (y-X)

// Extracting characters from a string
char c = t.charAt(2); // Get the 3rd character of t: w
charlI] ca = t.toCharArray(); // Convert string to an array of characters
t.getChars(0, 3, ca, 1); // Put lst 4 chars of s into ca at position 2

// Case conversion

String caps = t.toUpperCase(); // Convert to uppercase
String lower = t.toLowerCase(); // Convert to lowercase

// Comparing strings
boolean bl = t.equals("hello"); // Returns false: strings not equal
boolean b2 = t.equalslgnoreCaseicaps); // Case-insensitive compare: true
boolean b3 = t.startsWith("Now"); // Returns true
boolean D4 = t.endsWith("time."); // Returns true
int r1 s.compareTo(”Pow“); // Returns < 0: 5 comes before “Pow”
int r2 5 compareTo("Now“); // Returns 0: strings are equal
int r3 s.compareTo(”Mow"); // Returns > 0: 5 comes after "Mow"
r1 = s.compareToIgnoreCase(“pow"); // Returns < 0 (Java 1.2 and later)

138 Chapter 4 — TheJava Plazform

Page 157 of 238

// Searching for characters and substrings
int pos = t.index0f(‘i'); // Position of first 'i‘: 4
pos = t.index0f('i', pos+1); // Position of the next ‘1': 12
pos = t.index0f('i', pos+1); // No more 'i's in string, returns -1
pos tJlastIndex0t(‘i'); // Position of last 'i‘ in string: 12
pos t.last1ndex0t('i', pos-l); // Search backwards for ‘i' from char 11

pos t.index0f(“is"); // Search for substring: returns 4
pos t.index0f("is", pos+1); // Only appears once: returns -1
pos t.lastIndex0t("the "); // Search backwards for a string
String noun = t.substring(pos+4); // Extract word following "the"

// Replace all instances of one character with another character
SUMgMde=thMHHU‘PM HOMymmsmmCMM,mthWM%

// Strip blank space off the beginning and end of a string
String noextraspaces = t.trim();

// Obtain unique instances of strings with intern()
String 51 = s.intern(); // Returns 51 equal to 5
String $2 = "Now".intern(); // Returns 52 equal to "Now"
boolean equals = (51 == 52); // Now can test for equality with ==

Since String objects are immutable, you cannot manipulate the characters of a
String in place. If you need to do this, use a java . l ang.StringBuffer instead:

// Create a string buffer from a string
StringBuffer b = new StringBuffer("Mow"); wane/d 2/:er91/1
// Get and set individual characters of the StringBufter
char c = b.charAt(0); // Returns 'M': just like String.charAt()
b.5etCharAt(0, 'N'); // b holds “Now”: can't do that with a String!

// Append to a StringButfer
b.append(‘ ‘); // Append a character
b.append("is the time"); // Append a string
b.append(23); // Append an integer or any other value

// Insert Strings or other values into a StringBuffer
b.insert(6, ”n‘t"); // b now holds: "Now isn't the time 23"

// Replace a range of characters with a string (Java 1.2 and later)
b.replace(4, 9, "is"); // Back to "Now is the time.23“

// Delete characters
b.delete(16, 18); // Delete a range: "Now is the time"
b.deleteCharAt(2); // Delete 2nd character: "No is the time"
b.5ettength(5); // Truncate by setting the length: "No is”

// Other useful operations
b.reverse(); ' // Reverse characters: "si oN"
String s = b.toString(); // Convert back to an immutable string
5 = b.5ubstring(l,2); // Or take a substring: "i"
b.setLength(0); // Erase buffer; now it is ready for reuse

In addition to the String and StringButfer classes, there are a number of other
Java classes that operate on strings. One notable class is java.util .StringTok-
eni zer, which you can use to break a string of text into its component words:

Strings and Characters 139

Page 158 of 238

String s = "Now is the time";
java.util.StringTokenizer st = new java.util.StringTokenizer(s);
while(st.hasMoreTokens()) i

System.out.println(st.nextToken());
}

You can even use this class to tokenize words that are delimited by characters
other than spaces:

String s = "azbzc d";
java.util.StringTokenizer st 2 new java.util.StringTokenizer(s, ":”);

As you know, individual characters are represented in Java by the primitive char
type. The Java platform also defines a Character class, which defines useful class
methods for checking the type of a character and converting the case of a charac—
ter. For example:

charE] text; // An array of characters, initialized somewhere else
int p = 0; // Our current position in the array of characters
// Skip leading whitespace
while((p < text.length) && Character.isWhitespace(text[pl)) p++;
// Capitalize the first word of text
while((p < text.length) && Character.isLetter(text[p])) {

textEp] = Character.toUpperCase(text[p]);
D“;

l

The comparelo() and equal s() methods of the String class allow you to compare
strings. compareTol) bases its comparison on the character order defined by the
Unicode encoding, while equals() defines string equality as strict character-by-
character equality. These are not always the right methods to use, however. In
some languages, the character ordering imposed by the Unicode standard does not
match the dictionary ordering used when alphabetizing strings. In Spanish, for
example, the letters “ch” are considered a single letter that comes after “c” and
before “d.” When comparing human-readable strings in an internationalized appli-
cation, you should use the java .text.Col l ator class instead:

import java.te><t.*;

// Compare two strings; results depend on where the program is run
// Return values of Collator.compare() have same meanings as String.comparelo()
Collator c Collator.getInstance(); // Get Collator for current locale
int result c.compare("chica", “coche"); // Use it to compare two strings

Numbers and Math

Java provides the byte, short, int, long, float, and double primitive types for
representing numbers. The java.lang package includes the corresponding Byte,
Short, Integer, Long, Float, and Double classes, each of which is a subclass of

Number. These classes can be useful as object wrappers around their primitive
types, and they also define some useful constants:

// Integral range constants: Integer, Long, and Character also define these
Byte.MIN_VALUE // The smallest (most negative) byte value
Byte.MAX_VALUE // The largest byte value
Short.MIN_VALUE // The most negative short value

140 Chapter 4 — Thejaua Plazform

Page 159 of 238

Short.MAX_VALUE // The largest short value

// Floating-point range constants: Double also defines these
Float.MiN_VALUE // Smallest [closest to zero) positive float value
Float.MAX_VALUE // Largest positive float value

// Other useful constants
Math.PI // 3.14159265358979323846
Math.E // 2.7182818284590452354

A Java program that operates on numbers must get its input values from some—
where. Often, such a program reads a textual representation of a number and
must convert it to a numeric representation. The various Number subclasses define
useful conversion methods:

String s I "-42";
byte b = Byte.parseByte(sl; //
short sh = Short.parseShort<sh); //
int i = Integer.parse1nt(s).; //
long l = Long.parseLong(s); //
tloat f : Float.parseFloat(s); //
f = Float.value0f(s).floatValueO; //
double d = Double.parseDouble(s); //
d = Double.valueOf(s).doubleValue(); //

as a byte
as a short
as an int
as a long
as a float (Java 1.2 and later)
as a float (prior to Java 1.2)
as a double (Java 1.2 and later)

as a double (prior to Java 1.2)
mmwmwmmm

// The integer conversion routines handle numbers in other bases
byte b = Byte.parseByte(”1011”, 2); // 1011 in binary is 11 in decimal
short sh = Short.parseShort("ff", 16); // if in base 16 is 255 in decimal WUJJEH Ellgr9111
// The valueOfl) method can handle arbitrary bases
int i = Integer.value0f("egg", 17).intValue(); // Base 17!

// The decode() method handles octal, decimal, or hexadecimal, depending
// on the numeric prefix of the string
short sh = Short.decode("0377").byteValue(); // Leading 0 means base 8
int i : Integer.decode(”0xff”).shortValue(); // Leading Ox means base 16
long 1 = Long.decode("255").intValue(); // Other numbers mean base 10

// Integer class can convert numbers to strings
String decimal = Integer.toString(42);
String binary = Integer.toBinaryString(4Z);
String octal = Integer.toOctalString(42);
String hex = Integer.toHexString(4Z);
String base36 = integer.toString(42, 36);

Numeric values are often printed differently in different countries For example,
many European languages use a comma to separate the integral part of a floating-
point value from the fractional part (instead of a decimal point). Formatting differ-
ences can diverge even further when displaying numbers that represent monetary
values. When converting numbers to strings for display, therefore, it is best to use
the java.text.NumberFormat class to perform the conversion in a locale-specific
way:

import java.text.*;

// Use NumberFormat to format and parse numbers for the current locale
NumberFormat nf = NumberFormat.getNumberInstancel); // Get a NumberFormat
System.out.println(nf,format(9876543.21l); // Format number for current locale
try l

Numbers and Math 141

Page 160 of 238

Number n = nf.parse("1.234.567,89"); // Parse strings according to locale
} catch (ParseException e) { /* Handle exception */ l

// Monetary values are sometimes formatted differently than other numbers
NumberFormat moneyFmt = NumberFormat.getCurrencyInstance();
System.out.println(moneyFmt.format(1234.56)); // Prints $1,234.56 in U.S.

The Math class defines a number of methods that provide trigonometric, logarith-
mic, exponential, and rounding operations, among others. This class is primarily
useful with floating-point values. For the trigonometric functions, angles are
expressed in radians. The logarithm and exponentiation functions are base 9, not
base 10. Here are some examples:

double d = Math.toRadians(Z7); // Convert 27 degrees to radians
d = Math.cos(d); // Take the cosine

Math.sqrt(d); // Take the square root
Math.log(d); // TaKe the natural logarithm
Math.exp(d); // Do the inverse: e to the power d
Math.pow(10, d); // Raise 10 to this power

d = Math.atan(d); // Compute the arc tangent
d = Math.toDegrees(d); // Convert back to degrees
double up = Math.ceil(d); // Round to ceiling
double down = Math.floor(d); // Round to floor
long nearest = Math.round(d); // Round to nearest

d
d
d
d II[IIIII

The Math class also defines a rudimentary method for generating pseudo-random
numbers, but the java.util .Random class is more flexible. If you need very ran-
dom pseudo-random numbers, you can use the java.security.SecureRandom
class:

// A simple random number
double r = Math.random(); // Returns d such that: 0.0 <= d < 1.0

// Create a new Random object, seeding with the current time
java.util.Random generator = new java.util.Random(System.currentTimeMillis());
double d = generator.nextDouble(); // 0.0 <= d < 1.0
float f = generator.nextFloat(); // 0.0 <= d < 1.0
long l = generator.nextLong(); // Chosen from the entire range of long
int i = generator.next1nt(); // Chosen from the entire range of int
i = generator.nextlnt(limit):4 // 0 <= i < limit (Java 1.2 and later)
boolean b : generator nextBooleani); // true or false (Java 1.2 and later)
d = generator.nextGaussian(); // Mean value: 0.0; std. deviation: 1.0
byteE] randomBytes = new byteElZB];
generator.nextBytes(randomBytes); // Fill in array with random bytes

// For cryptographic strength random numbers, use the SecureRandom subclass
java.security.SecureRandom generatorZ = new java.security.SecureRandom();
// Have the generator generate its own 16—byte seed; takes a *long* time
generatorZ.setSeed(generator2.generateSeed(16)); // Extra random 16-byte seed
// Then use SecureRandom like any other Random object
generator2.nextBytes(randomBytes); // Generate more random bytes

The java.math package contains the Biglnteger and BigDecimal classes. These
classes allow you to work with arbitrary-size and arbitrary-precision integers and
floating-point values. For example:

import java.math.*;

// Compute the factorial of 1000

142 Chapter 4 — Tbejzwa Platform

Page 161 of 238

Biglnteger total = BigInteger.value0f(1);
for(int i = 2; i <= 1000; i+l-)

total = total.multiply(BigInteger.value0f(i));
System.out.println(total.toStringO);

Dates and Times

Java uses several different classes for working with dates and times The
java .uti 1 .Date class represents an instant in time (precise down to the millisec—
end) This class is nothing more than a wrapper around a long value that holds
the number of milliseconds since midnight GMT, January 1, 1970‘ Here are two

ways to determine the current time: v
long to = System.currentTimeMillis<); // Current time in milliseconds
java.util.Date now = new java.util.Date(); // Basically the same thing
long t1 = now.getTime(); // Convert a Date to a long value

The Date class has a number of interesting-sounding methods, but almost all of
them have been deprecated in favor of methods of the java.util .Calendar and
java .text.DateFormat classes. To print a date or a time, use the DateFormat class,
which automatically handles locale-specific conventions for date and time format-
ting. DateFormat even works correctly in locales that use a calendar other than the
common era (Gregorian) calendar in use in much of the world:

lWWWch E/Ier31/1import java.util .Date;
import java.text.*;

// Display today's date using a default format for the current locale
DateFormat defaultDate = DateFormat.getDateInstance();
System.out.println(defaultDate.format(new Date()));

// Display the current time using a short time format for the current locale
DateFormat shortlime = DateFormat.getTimeInstance(DateFormat.SHORT);
System.out.println(shortTime.format(new Date()));

// Display date and time using a long format for both
DateFormat longTimestamp =

DateFormat.getDateTimeInstanCe(DateFormat.FULL, DateFormat.FULL);
System.out.println(longTimestamp.f0rmat(new Date()));

// Use SimpleDateFormat to define your own formatting template
// See java.text.SimpleDateFormat for the template syntax
DateFormat myformat = new SimpleDateFormat("yyyy.MM.dd");
System.out.println(myformat.format(new Date()));
try { // DateFormat can parse dates too

Date leapday = rrLyformat.parse("2000.02.29");
}
catch (ParseException e) i /* Handle parsing exception */ }

The Date class and its millisecond representation allow only a very simple form of
date arithmetic:

long now = System.currentTimeMillis(); // The current time
long anHourFromNow = now + (60 * 60 * 1000); // Add 3,600,000 milliseconds

Dates and Times 143

Page 162 of 238

To perform more sophisticated date and time arithmetic and manipulate dates in
ways humans (rather than computers) typically care about, use the
java.util .Calendar class:

import java util.*;

// Get a Calendar for current locale and time zone
Ca endar cal = Calendar getlnstance();

// Figure out what day of the year today is
ca .setTime(new Date()); // Set to the current time
in dayOerar = cal.get(Calendar.DAY_OF_YEAR); // What day of the year is it?

// What day of the week does the leap day in the year 2000 occur on?
ca .set(2000, Calendar.FEBRUARY, 29); // Set year, month, day fields
int dayOfWeeK = cal.get(Calendar.DAY_OF_WEEK); // Query a different field

// What day of the month is the 3rd Thursday of May, 2001?
ca .set(Calendar.YEAR, 2001); // Set the year
ca .set(Calendar.MONTH, Calendar MAY); // Set the month
ca .set(Calendar.DAY_0E_WEEK, Calendar.THURSDAY); // Set the day of week
ca .set(Calendar.DAY_OF_WEEK_IN_MONTH, 3); // Set the week
int dayOfMonth = cal.get(Calendar.DAY_DF_MONTH); // Query the day in month

// Get a Date object that represents 30 days from now
Da e today = new Date(); // Current date
ca'.setTime(today); // Set it in the Calendar object
ca .add(Calendar.DATE, 30); // Add 30 days
Date expiration = cal getTime(); // Retrieve the resulting date

Arrays

The java . l ang.System class defines an arraycopyO method that is useful for
copying specified elements in one array to a specified position in a second array.
The second array must be the same type as the first, and it can even be the same
array:

charE] text = "Now is the time“.toCharArray();
chart] copy = new charthOl;
// Copy 10 characters from element 4 of text into copy, starting at copyEO]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
System.arraycopy(c0py, 3, copy, 6, 7);

In Java 1.2 and later, the j ava . util .Arrays class defines useful array-manipulation
methods, including methods for sorting and searching arrays:

import java.util.Arrays;

int[] intarray = new intE] { 10, 5, 7, -3 l; // An array of integers
Arrays.sort(intarray); // Sort it in place
int pos = Arrays.binarySearch(intarray, 7); // Value 7 is found at index 2
pos = Arrays.binarySearch(intarray, 12); // Not found: negative return value

// Arrays of objects can be sorted and searched too
StringEl strarray : new StringE] { "how", “is”, “the”, "time");
Arrays.sort(strarray); // { "is", "now", "the", "time" l

144 Chapter 4— Thejczm Platform

Page 163 of 238

// Arrays.equals() compares all elements of two arrays
StringE] clone = (String[]) strarray.clone();
boolean bl = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill() initializes array elements
byte[] data = new bytE[100]; // An empty array; elements set to 0
Arrays.fill(data, (byte) -1); // Set them all to -l
Arrays.fill(data, 5, 10, (byte) -2); // Set elements 5, 6, 7, 8, 9 to —2

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object
0, you can use code such as the following to find out if the object is an array and,
if so, what type of array it is:

Class type = o.getClass();
if (type.isArray()) {

Class elementType = type.getComponentType();
}

Collections .

The Java collection framework is a set of important utility classes and interfaces in
the j ava.util package for working with collections of objects. The collection
framework defines two fundamental types of collections. A Collection is a group
of objects, while a Map is a set of mappings, or associations, between objects. A
Set is a type of Collection in which there are no duplicates, and a List is a Col -
lection in which the elements are ordered. Collection, Set, List, and Map are all
interfaces, but the java.util package also defines various concrete implementa-
tions (see Chapter 23, Thejavautil Package). Other important interfaces are Iter-
ator and ListIterator, which allow you to loop through the objects in a
collection. The collection framework is new as of java 1.2, but prior to that release
you can use Vector and Hashtabl e, which are approximately the same as
ArrayList and HashMap.

The following code demonstrates how you might create and perform basic manip-
ulations on sets, lists, and maps:

import java.util .*;

Set 5 = new HashSet(); // Implementation based on a hash table
s.add("test"); // Add a String object to the set
boolean ab = s.contains("test2"); // Check whether a set contains an object
s.remove(“test"); // Remove a member from a set

Set 55 = new TreeSet();
ss.add("b");
ss.add("a");
// Now iterate through the elements (in sorted order) and print them
for(Iterator i = ss.iterator(); i.hasNext();)

$ystem.out.println(i.nextO);

// TreeSet implements SortedSet
// Add some elements

List l = new LinkedList();
l = new ArrayList();
Vector v = new Vectort);
l.addAll(ss);
l.addAll(1, ss);
Object o = l.get(l);

// LinkedList implements a doubly linked list
// ArrayList is more efficient, usually
// Vector is an alternative in Java 1.1/1.0
// Append some elements to it
// Insert the elements again at index 1
// Get the second element

Collections 145

uuaneId 2/12/-3111

Page 164 of 238

l set(3, “new element”); // Set the fourth element
l.add(”test”); // Append a new element to the end
l.add(0, "test2“); // Insert a new element at the start
l.remove(1); // Remove the second element
l.remove("a”); // Remove the element "a"
l.removeAll(ss); // Remove elements from this set
if (ll.isEmpty()) // If list is not empty,

System.out.println(l.size()); // print out the number of elements in it
boolean bl = l.contains(”a”); // Does it contain this value?
boolean b2 = l.containsAll(ss); // Does it contain all these values?
List sublist = l.subList(1,3); // A sublist of the 2nd and 3rd elements
DbjectE] elements = l.toArray(); // Convert it to an array
l.clear(); // Delete all elements

Map m = new HashMap(); // Hashtable an alternative in Java 1.1/1.0
m.put("key", new lnteger(42)); // Associate a value object with a key object
Object value = m.get(”key”); // Look up the value associated with a key
m.remove("key"); // Remove the association from the Map
Set keys = m.keySet(); // Get the set of keys held by the Map

Arrays of objects and collections serve similar purposes. It is possible to convert
from one to the other:

Object[] members = set.toArray(); // Get set elements as an array
ObjectEJ items = list.t0Array(); // Get list elements as an array
ObjectE] keys = map.keySet().toArray(); // Get map key objects as an array
ObjectEJ values = map.values().toArray(); // Get map value objects as an array

List l = Arrays.asList(a); // View array as an ungrowable list
List 1 = new ArrayList(Arrays.asList(a)); // Make a growable copy of it

Just as the j ava.ut1'l .Arrays class defined methods to operate on arrays, the
java.util .Collections class defines methods to operate on collections. Most
notable are methods to sort and search the elements of collections:

Collections.sort(list);
int pos = Collections.binarySearchtlist, "key"); // list must be sorted first

Here are some other interesting Collections methods:

Collections.copy(list1, listZ); // Copy list? into listl, overwriting listl
Collections.fill(list, o); // Fill list with Object o
Collections.max(c); // Find the largest element in Collection c
Collections.min(c>; // Find the smallest element in Collection (2
Collections.reverse(list); // Reverse list
Collections.shuffle(list); // Mix up list

Set s = Collections.singleton(o); // Return an immutable set with one element 0
List ul = Collections.unmodifiableList(list); // Immutable wrapper for list
Map sm = Collections.synchronizedMap(map); // Synchronized wrapper for map

One particularly useful collection class is java.util .Properties. Properties is a
subclass of Hashtabl e that predates the collections framework of Java 1.2, making
it a legacy collection. A Properties object maintains a mapping between string
keys and string values, and defines methods that allow the mappings to be written
to and read from a simple-format text file. This makes the Properties class ideal
for configuration and user preference files. The Properties class is also used for
the system properties returned by System.getProperty():

146 Chapter 4 — Thejam Platform

Page 165 of 238

import java.util.*;
import java.io.*;

String homedir = System getProperty(“user home"); // Get a system property
Properties sysprops = System.getProperties(); // Get all system properties

// Print the names of all defined system properties
for(Enumeration e = sysprops.propertyNames(); e.hasMoreElements();)

System.out . printl n(e .nextEl ement() J;

sysprops.list(System.out); // Here‘s an even easier way to list the properties

// Read properties from a configuration file
Properties options I new Properties(); // Empty properties list
File configfile = new File(homedir, ".config"); // The configuration file
try {

options load(new FilglnputStream(configfile)J; // Load props from the file
} catch (lOException e) { /* Handle exception here */ }

// Query a property ("color"), specifying a default ("gray") if undefined
String color = options.getProperty("color", "gray");

// Set a property named "color" to the value "green"
options.setProperty("color". "green");

// Store the contents of the Properties object back into a file
try {

options.store(new FileOutputStream(configfile), // Output stream
"MyApp Config File“); // File header comment text

} catch (IOException e) { /* Handle exception */ }
“NONE/d 2/:or3111

Types, Reflection, and Dynamic Loading

The java.lang.Class class represents data types in Java and, along with the
classes in the java .lang. refl ect package, gives Java programs the capability of
introspection (or self—reflection); a Java class can look at itself, or any other class,
and determine its superclass, What methods it defines, and so on. There are sev-
eral ways you can obtain a Cl ass object in Java:

// Obtain the Class of an arbitrary object 0
Class c = 0.getClass();

// Obtain a Class object for primitive types with various predefined constants
c Void.TYPE; // The special “no—return—value" type
c Byte.TYPE; // Class object that represents a byte
c Integer.TYPE; // Class object that represents an int
c Double.TYPE; // etc. See also Short, Character, Long, Float.

// Express a class literal as a type name followed by ".class"
c int.class; // Same as lnteger.TYPE
c String.class; // Same as "dummystring".getClass()
c byte[1.class; // Type of byte arrays
c Class[][].class; // Type of array of arrays of Class objects

Once you have a Cl ass object, you can perform some interesting reflective opera-
tions with it:

Types, Reflection, and Dynamic Loading 147

Page 166 of 238

import java.lang.reflect.*;

Object o; // Some unknown object to investigate
Class c = o.getClass(); // Get its type

// If it is an array, figure out its base type
while (c.isArray()) c = c.getComponentType();

// If c is not a primitive type, print its class hierarchy
if (lc.isPrimitive()) {

for(Class s = c; s != null; s = s.getSuperclass())
System.out.println(s.getName() + " extends");

}

// Try to create a new instance of c; this requires a no-arg constructor
Object newobj = null;
try { newobj = c.newlnstance(); }
catch (Exception e) l

// Handle InstantiationException, IllegalAccessException
l

// See if the class has a method named setText that takes a single String
// If so, call it with a string argument
try {

Method m = c.getMeth0d("setText", new ClassE] { String.class });
m.invoke(newobj, new 0bject[] { "My Label“ l);

} catch(Exception e) { /* Handle exceptions here */ }

Class also provides a simple mechanism for dynamic class loading in java. For
more complete control over dynamic class loading, however, you should use a
java.lang.ClassLoader (fljecn typknfly a java.net.URLClassLoader.‘Th$ tech:
nique is useful, for example, when you want to load a class that is named in a
configuration file instead of being hardcoded into your program:

// Dynamically load a class specified by name in a config file
String classname = // Look up the name of the class

config.getProperties("filterclass", // The property name
"com.davidflangan.filters.Default”); // A default

try {
Class c = Class.forName(classname); // Dynamically load the class
Object o = c.new1nstance(); // Dynamically instantiate it

} catch (Exception e) { /* Handle exceptions */)

// If the class to be loaded is not in the classpath, create a custom
// class loader to load it.
// Use the config file again to specify the custom path
import java.net.URLClassLoader;
String classdir = config.getProperties("classpath”);
try {

ClassLoader loader = new URLClassLoader(new URLE] { new URL(classdir) l);
Class c = loader.loadClass(classname);

}
catch (Exception e) { /* Handle exceptions */ }

148 Chapter 4 — Thefava Platform

Page 167 of 238

Threads

Java makes it easy to define and work with multiple threads of execution within a
program. .java . l ang .Thread is the fundamental thread class in the Java API. There
are two ways to define a thread. One is to subclass Thread, override the run()
method, and then instantiate your Thread subclass. The other is to define a class
that implements the Runnable method (i.e., define a run() method) and then pass
an instance of this Runnable object to the Thread() constructor. In either case, the
result is a Thread object, where the run() method is the body of the thread. When
you call the start() method of the Thread object, the interpreter creates a new
thread to execute the run() method. This new thread continues to run until the

run() method exits, at which point it ceases to exist. Meanwhile, the original
thread continues running itself, starting with the statement following the start()
method. The following code demonstrates:

final List list; // Some long unsorted list of objects; initialized elsewhere

/** A Thread class for sorting a List in the background */
class BackgroundSorter extends Thread {

List 1;
public BackgroundSorter<List l) { this.l = l; } // Constructor
public void run() C Collections.sort(l); } // Thread body

}

// Create a BackgroundSorter thread
Thread sorter = new BackgroundSorterllist);
// Start it running; the new thread runs the run() method above, while
// the original thread continues with whatever statement comes next.
sorter.start();

“Hall?ch EIIEI‘at“

// Here's another way to define a similar thread
Thread t = new Thread(new Runnable() { // Create a new thread

public void run() { Collections.sort(list); } // to sort the list of objects.
l);
t.start(); // Start it running

Threads can run at different priority levels. A thread at a given priority level does
not run unless there are no higher-priority threads waiting to run. Here is some
code you can use when working with thread priorities:

// Set a thread t to lower—than-normal priority
t.setPriority(Thread.NORM_PRIORITY-1);

// Set a thread to lower priority than the current thread
t.setPrioritytThread.currentThread().getPriorityt) - l);

// Threads that don't pause for I/O should explicitly yield the CPU
// to give other threads with the same priority a chance to run.
Thread t = new Thread(new RunnableO {

public void run() (
for(int i = 0; i < data.length; i++) { // Loop through a bunch of data

process(data[i]>; // Process it
if ((i % 10) = 0) // But after every 10 iterations,

Thread.yield(); // pause to let other threads run.

Threads 149

Page 168 of 238

Often, threads are used to perform some kind of repetitive task at a fixed interval.
This is particularly true when doing graphical programming that involves anima—
tion or similar effects:

public class Clock extends Thread C
java.text.DateFormat f = // How to format the time for this locale

java.text.DateFormat.getTimeInstance(java.text.DateFormat.MEDiUM);
hoolean keepRunning = true;

public Clock() { // The constructor
setDaemon(true); // Daemon thread: interpreter can exit while it runs
start(); // This thread starts itself

}

public void run() { // The body of the thread
while(keepRunning) { // This thread runs until asked to stop

String time = f.format(new java.util .Date()); // Current time
System.out.println(time); // Print the time
try { Thread.sleep(1000); } // Wait 1000 milliseconds
catch (InterruptedException e) (l // Ignore this exception

)
l

// Ask the thread to stop running
public void pleaseStop() { keepRunning = false; }

}

Notice the pl easeStop() method in the previous example. You can forcefully ter—
minate a thread by calling its st0p() method, but this method has been depre—
cated because a thread that is forcefully stopped can leave objects it is
manipulating in an inconsistent state. If you need a thread that can be stopped,
you should define a method such as pl easeStop() that stops the thread in a con—
trolled way.

In Java 1.3, the java.util .Timer and java.util .TimerTask classes make it even
easier to run repetitive tasks. Here is some code that behaves much like the previ-
ous Clock class:

import java.util.*;

// How to format the time for this locale
final java.text.DateFormat timeFmt =

java.text.DateFormat.getTimeInstance(java.text.DateFormat.MEDlUM);
// Define the time-display task
TimerTask displayTime = new TimerTaSk() {

public void run() { System.out.println(timeFmt.format(new Date()));)
l;
// Create a timer object to run the task (and possibly others)
Timer timer = new Timer();
// Now schedule that task to be run every 1000 milliseconds, starting now
Timer.schedule(displayTime, 0, 1000);
// To stop the time-display task
displayTimelcancel();

150 Chapter 4 —— Tbejava Platform

Page 169 of 238

Sometimes one thread needs to stop and wait for another thread to complete. You
can accomplish this with the joi n() method:

List list; // A long list of objects to be sorted; initialized elsewhere

// Define a thread to sort the list: lower its priority, so it only runs
// when the current thread is waiting for I/O, and then start it running.
Thread sorter = new BackgroundSorter(list); // Defined earlier
sorter.setPriority(Thread.currentThread.getPriority()—1); // Lower priority
sorter.start(); // Start sorting

// Meanwhile, in this original thread, read data from a file
byte[] data = readData(); // Method defined elsewhere

// Before we can proceed, we need the list to be fully sorted, so
// we‘ve got to wait for the sorter thread to exit, if it hasn't already.
sorter.join();

When using multiple threads, you must be very careful if you allow more than one
thread to access the same data structure. Consider what would happen if one
thread was trying to loop through the elements of a List while another thread
was sorting those elements. Preventing this problem is called thread synchroniza—
tion and is one of the central problems of multithreaded computing. The basic
technique for preventing two threads from accessing the same object at the same
time is to require a thread to obtain a lock on the object before the thread can
modify it. While any one thread holds the lock, another thread that requests the
lock has to wait until the first thread is done and releases the lock. Every Java
object has the fundamental ability to provide such a locking capability.

The easiest way to keep objects thread—safe is to declare any sensitive methods
synchronized. A thread must obtain a lock on an object before it can execute any
of its synchronized methods, which means that no other thread can execute any
other synchronized method at the same time. (If a static method is declared
synchronized, the thread must obtain a lock on the class, and this works in the
same manner.) To do finer-grained locking, you can specify synchronized blocks
of code that hold a lock on a specified object for a short time:

// This method swaps two array elements in a synchronized block
public static void swap(0bject[] array. int indexl, int indexZ) {

synchronized(array) {
Object tmp = arrayEindexl];
arrayEindexl] = arraylindexZ];
arrayEi‘ndexZ] = tmp;

}
}

// The Collection, Set, List, and Map implementations in java.util do
// not have synchronized methods (except for the legacy implementations
// Vector and Hashtable). When working with multiple threads, you can
// obtain synchronized wrapper objects.
List synclist = Collections.synchronizedList(list);
Map syncmap = Collections.synchronizedMap(map);

When you are synchronizing threads, you must be careful to avoid deadlock,
which occurs when two threads end up waiting for each other to release a lock
they need. Since neither can proceed, neither one can release the lock it holds,
and they both stop running:

Threads 151

ll“ally/r! 2/:er91/1

Page 170 of 238

// When two threads try to lock two objects, deadlock can occur unless
// they always request the locks in the same order.
final Object resourcel = new Object(); // Here are two objects to lock
final Object resourceZ = new Object();
Thread t1 = new Thread(new Runnable() (// Locks resourcel then resourceZ

public void run() {
synchronized(resourcel) {

synchronized(resource2) { computel); }
l

)
l);

Thread t2 = new Thread(new RunnableO (// Locks resourcez then resourcel
public void run(){

synchronized(resource2) {
synchronized<resourcel) { compute(); }

l
l

l);

t1.start(); // Locks resource]
t2.start(); // Locks resourceZ and now neither thread can progress!

Sometimes a thread needs to stop running and wait until some kind of event
occurs, at which point it is told to continue running. This is done with the wai t()
and noti fy() methods. These aren’t methods of the Thread class, however; they
are methods of Object. Just as every Java object has a lock associated with it,
every object can maintain a list of waiting threads When a thread calls the wait()
method of an object, it is added to the list of waiting threads for that object and
stops running. When another thread calls the noti fy() method of the same object,
the object wakes up one of the waiting threads and allows it to continue running:

/**
* A queue. One thread calls push() to put an object on the queue.
* Another calls pop() to get an object off the queue. If there is no
* data, pop(> waits until there is some, using wait()/notifyo.
* wait() and notify() must be used within a synchronized method or
* block.
*/

import java.util .*;

public class Queue (
LinkedList q = new LinkedList(); // Where objects are stored
public synchronized void push(0bject O) (

q.add(o); // Append the object to the end of the list
this.notity(); // Tell waiting threads that data is ready

}
public synchronized Object pop() l

while(q.size() = 0) i
try { this.wait(); }
catch (InterruptedException e) i /* Ignore this exception */ }

i
return q.remove(0);

}
l

152 Chapter 4 — Thejava Platform

Page 171 of 238

Files and Directories

The java.i0. File class represents a file or a directory and defines a number of
importantmethods for manipulating files and directories. Note, however, that none
of these methods allow you to read the contents of a file; that is the job of
java.io.FilelnputStream, which is just one of the many types of input/output
streams used in Java and discussed in the next section, Here are some things you
can do with File:

import java.io.*;

// Get the name of the user's home directory and represent it with a File
‘File homedir = new File(System.getProperty("user.home"));

// Create a File object to represent a file in that directory
File f = new File(homedir, ".configfile”);

// Find out how big a file is and when it was last modified
long filelength = f.length();
Date lastModified = new java.util.Date(f.lastModified());

// If the file exists, is not a directory, and is readable,
// move it into a newly created directory.
if (f.exists() && f.isFile() && f.canRead()) { // Check config file

File configdir = new File(homedir, ".configdir"); // A new config directory
configdir.mkdir(); // Create that directory
f.renameTo(new File(configdir, ".config")); // Move the file into it

}
‘wJa/Ield' alter3111

// List all files in the home directory
StringE] allfiles = homedir.list();

// List all files that have a ".java“ suffix
StringE] sourcecode = homedir.list(new FilenameFilter() {

public boolean accept(File d, String name) { return name.endsWith(".java”); }
l);

The File class provides some impoxtant additional functionality as of Java 1.2:

// List all filesystem root directories; on Windows, this gives us
// File objects for all drive letters (Java 1.2 and later).
FileE] rootdirs = File.listRoots();

// Atomically, create a lock file, then delete it (Java 1.2 and later)
File lock = new File(configdir, ".lock");
if (lock.createNewFile()) {

// We successfully created the file. so do something

// Then delete the lock file
lock.delete();

)
else (

// We didn‘t create the file; someone else has a lock
System.err.println("Can't create lock file; exitingi“);
System.exit(0);

l

// Create a temporary file to use during processing (Java 1.2 and later)
File temp = File.createTempFile("app", ".tmp"); // Filename prefix and suffix

Files and Directories 153

Page 172 of 238

// Make sure file gets deleted when we're done with it (Java 1.2 and later)
temp.del eteOnExi t(J;

The java.io package also defines a RandomAccessFile class that allows you to
read binary data from arbitrary locations in a file. This can be a useful thing to do
in certain situations, but most applications read files sequentially, using the stream
classes described in the next section. Here is a short example of using RandomAc—
cessFi l e:

// Open a file for read/write ("rw") access
File datafile = new File(configdir, "datafile“);
RandomAccessFile f = new RandomAccessFile(datafile, "rw”);
f.seek(100); // Move to byte 100 of the file
byte[] data = new byte[100]; // Create a buffer to hold data
f.read(data); // Read 100 bytes from the file
int i = f.readlnt(); // Read a 4-byte integer from the file
f.seek(100): // Move back to byte 100
f.writelnt(i); // Write the integer first
f.write(data); // Then write the 100 bytes
f.close(); // Close file when done with it

Input and Output Streams

The java.io package defines a large number of classes for reading and writing
streaming, or sequential, data. The InputStream and OutputStream classes are for
reading and writing streams of bytes, while the Reader and Writer classes are for
reading and writing streams of characters. Streams can be nested, meaning you
might read characters from a Fi l terReader object that reads and processes charac-
ters from an underlying Reader stream. This underlying Reader stream might read
bytes from an InputSt ream and convert them to characters.

There are a number of common operations you can perform with streams. One is
to read lines of input the user types at the console:

import java.io.*;

BufferedReader console = new BufferedReader<new InputStreamReader(System.in));
System.out.print("what is your name: ”);
String name = null;
try {

name = console.readLine();
l
catch (IOException e) (name = "<" + e + ">"; } // This should never happen
System.out.println("Hello " + name);

Reading lines of text from a file is a similar operation. The following code reads an
entire text file and quits when it reaches the end:

String filename = System.getProperty("user.home”) + File.separator + “.cshrc”;
try {

BufferedReader in = new BufferedReader<new FileReaderifilename));
String line;
while((line = in.readLine()) 1= null) { // Read line, check for end-of-file

System.out.println(line); // Print the line
l
in.close(); // Always close a stream when you are done with it

l

154 Chapter 4 — Malaya Platform

Page 173 of 238

catch (iOException e) {
// Handle FileNotFoundException, etc. here

l

Throughout this book, you’ve seen the use of the System.out.println() method
to display text on the console. System.out simply refers to an output stream. You
can print text to any output stream using similar techniques. The following code
shows how to output text to a file:

try {
File f = new File(homedir, ".config");
Printwriter out = new Printhritermew Filewriter(f));
out.println("## Automatically generated config file. DO NOT EDIT!");
out,close(); // Ne're done writing

}
catch (IOException e) { /* Handle exceptions */ }

Not all files contain text, however. The following lines of code treat a file as a
stream of bytes and read the bytes into a large array:

tFy {
File f; // File to read; initialized elsewhere
int filesize = (int) f.length(); // Figure out the file size
byte[] data = new byteEfilesize]; // Create an array that is big enough
// Create a stream to read the File
DataInputStream in = new DataInputStream(new FilelnputStream(f));
in.readFully(data); // Read file contents into array
in.close();

l
catch (IOException e) i /* Handle exceptions */ }

“Hafiz/d 9/121‘9111
Various other packages of the Java platform define specialized stream classes that
operate on streaming data in some useful way. The following code shows how to
use stream classes from java . util .2i p to compute a checksum of data and then
compress the data while writing it to a file:

import java.io.*;
import java.util.zip.*;

try {
File 1‘; // File to write to; initialized elsewhere
byte[] data; // Data to write; initialized elsewhere
Checksum check = new Adler32(); // An object to compute a simple checksum

// Create a stream that writes bytes to the file f
FileOutputStream fos = new FileOutputStreamif);
// Create a stream that compresses bytes and writes them to fos
GZIPOutputStream 9205 = new GZIPOutputStream(tos);
// Create a stream that computes a checksum on the bytes it writes to 9205
CheckedOutputStream cos = new CheckedOutputStream<gzos, check);

cos.write(data); // Now write the data to the nested streams
cos.close(); // Close down the nested chain of streams
long sum = check.getValue(); // Obtain the computed checksum

l
catch (IOException e) (/* Handle exceptions */ }

Input and Output Streams 155

Page 174 of 238

The java.uti 1 .zip package also contains a ZipFil e class that gives you random
access to the entries of a ZIP archive and allows you to read those entries through
a stream:

import java.io.*;
import java.util.zip.*;

String filename; // File to read; initialized elsewhere
String entryname; // Entry to read from the ZIP file; initialized elsewhere
ZipFile ziptile = new ZipFile(filename); // Open the ZIP file
ZipEntry entry = zipfile.getEntry(entryname); // Get one entry
InputStream in = zipfile.getInputStream(entry); // A stream to read the entry
BufferedlnputStream bis 2 new BufferedlnputStream(in); // Improves efficiency
// Now read bytes from bis...
// Print out contents of the ZIP file
For(java.util.Enumeration e = zipfile.entrie$(); e hasMoreElements();) {

ZipEntry zipentry = (ZipEntry) e.nextElement();
System.out.println(zipentry.getName(J);

)

If you need to compute a cryptographic-strength checksum (also knows as a mes-
sage digest), use one of the stream classes of the java.security package. For
example:

1mportjava.io.*;
import java.security.*;
import java.util.*;

File f; // File to read and compute digest on; initialized elsewhere
List text = new ArrayList(); // We‘ll store the lines of text here

// Get an object that can compute an SHA message digest
MessageDigest digester = MessageDigest.getInstance<"SHA”);
// A stream to read bytes from the file f
FilelnputStream fis = new FileInputStream(f);
// A stream that reads bytes from fis and computes an SHA message digest
DigestlnputStream dis = new Digest]nput$tream(fis, digester):
// A stream that reads bytes from dis and converts them to characters
InputStreamReader isr = new InputStreamReader<dis);
// A stream that can read a line at a time
BufferedReader br = new BufferedReader(isr);
// Now read lines from the stream
for(String line; (line = br.readLine()) != null; text.add(line)) ;
// Close the streams
br.close();
// Get the message digest
byteE] digest = digester.digest();

So far, we’ve used a variety of stream classes to manipulate streaming data, but the
data itself ultimately comes from a file or is written to the console. The java.io
package defines other stream classes that can read data from and write data to
arrays of bytes or strings of text:

import java.io.*;

// Set up a stream that uses a byte array as its destination
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(baos);
out.writeUTF("hello"); // Write some string data out as bytes

156 Chapter 4 — Tbejava Platform

Page 175 of 238

out.writeDouble(Math.PI); // Write a floating-point value out as bytes
byte[] data = baos.toByteArray(>; // Get the array of bytes we've written
out.close(); // Close the streams

// Set up a stream to read characters from a string
Reader in = new StringReader(”Now is the time!");
// Read characters from it until we reach the end
int c;
while((c = in.read()) != -l) System.out.print((char) c);

Other classes that operate this way include ByteArrayInputStream, Stringwriter,
CharArrayReader, and CharArrayWriter.

PipedInputStream and PipedOutputStream and their character—based counterparts,
PipedReader and PipedWriter, are another interesting set of streams defined by
java .i 0. These streams are used in pairs by two threads that want to communi-
cate. One thread writes bytes to a PipedOutputStream or characters to a Pi ped-

.Writer, and another thread reads bytes or characters from the corresponding
PipedInputStream or PipedReader:

// A pair of connected piped I/O streams forms a pipe. One thread writes
// bytes to the PipedOutputStream, and another thread reads them from the
// corresponding PipedlnputStream. Or' use Pipedwriter/PipedReader for chars.
final PipedOutputStream writeEndOfPipe = new PipedOutputStream();
final PipedInputStream readEndOfPipe = new PipedInputStream(writeEnd0fPipe);

// This thread reads bytes from the pipe and discards them
Thread devnull = new Thread(new Runnable() {

public void run() {
try { while(readEndOfPipe.read() l= ~11; }
catch (IOException e) {l // ignore it

i
l);
devnull .starti);

Willie/d 2/:er31/1

One of the most important features of the java. io package is the ability to serial-
ize objects: to convert an object into a stream of bytes that can later be deserial-
ized back into a copy of the original object. The following code shows how to use
serialization to save an object to a file and later read it back:

Object o; // The object we are serializing; it must implement Serializable
File f; // The file we are saving it to

try {
// Serialize the object
0bject0utputStream 005 = new ObjectOutputStreammew FileOutputStream(f));
oos.write0bject(o);
oos.close();

// Read the object back in:
ObjectlnputStream ois = new ObjectlnputStreammew FilelnputStream(f));
Object copy = ois.read0bject();
ois.close();

l
catch (IOException e) i /* Handle input/output exceptions */ }
catch (ClassNotFoundException cnfe) { /* readObjectO can throw this */ l

The previous example serialiZes to a file, but remember, you can write serialized
objects to any type of stream. Thus, you can write an object to a byte array, then

Input and Output Streams 157

Page 176 of 238

read it back from the byte array, creating a deep copy of the object. You can write
the object’s bytes to a compression stream or even write the bytes to a stream con-
nected across a network to another program!

Networking

The java.net package defines a number of classes that make writing networked .
applications surprisingly easy The easiest class to use is URL, which represents a
uniform resource locatori Different Java implementations may support different
sets of URL protocols, but, at a minimum, you can rely on support for the http:,
ftp :, and fi l e: protocols. Here are some ways you can use the URL class:

import java.net.*;
import java.io.*;

// Create some URL objects
URL url=null, ur12=nu11, url3=nuli;
try C

url = new URL(”http://www.orei1iy.com“); // An absolute URL
urlZ = new URL(url, "catalog/booKs/javanut3/"); // A relative URL
url3 = new URL("http:“, "www.creilly com”, "index.html”);

} catch (MaiformedURLException e) (/* Ignore this exception */ }

// Read the content of a URL from an input stream:
InputStream in = url.0penStream();

// For more control over the reading process, get a URLConnection object
URLConnecti on conn = ur1.openConnection();

// Now get some information about the URL
String type = conn.getContentType();
String encoding = conn.getContentEncoding();
java.util.Date lastModified = new java.uti'l .Datetconn.getLastModified());
int len = conn.getC0ntentLength();

// If necessary, read the contents of the URL using this stream
InputStream in = conn.getInputStream();

Sometimes you need more control over your networked application than is possi—
ble with the URL class. In this case, you can use a Socket to communicate directly
with a server. For example:

import java.net.*;
import java.io.*;

// Here's a simple client program that connects to a web server,
// requests a document, and reads the document from the server.
String hostname = "java.oreilly.com"; // The server to connect to
int port = 80; // Standard port for HTTP
String filename = "/index.html"; // The file to read from the server
Socket 5 = new Socket(hostname, port); // Connect to the server

// Get 1/0 streams we can use to talk to the server
InputStream sin = s.getInputStream();
BufferedReader fromServer = new BufferedReadermew InputStreamReader<sin));
OutputStream sout = s.get0utput$tream();
PrintWriter toServer = new Printwritermew OutputStreamwriteMsout));

158 Chapter 4 — Thejava Platform

Page 177 of 238

// Request the file from the server, using the HTTP protocol
toServer.print("GET " + filename + " HTTP/l.0\n\n");
toServer.flush();

// Now.read the server's response, assume it is a text file, and print it out
for(String l = null; (l = fromServermeadLineO) != null;)

System.out.println(l);

// Close everything down when we‘re done
toServer.cl ose<);
fromServer.close();
s.close();

A client application uses 3 Socket to communicate with a server. The server does
the same thing: it uses a Socket object to communicate with each of its clients.
However, the server has an additional task, in that it must be able to recognize
and accept client connection requests. This is done with the ServerSocket class.
The following code shows how you might use a Server Socket. The code imple-
ments 3. simple HTTP server that responds to all requests by sending back (01' mir—
roring) the exact contents of the HTTP request. A dummy server like this is useful
when debugging HTTP clients:

import java.io.*;
import java.net.*;

public class HttpMirror {
public static void main($tring[l args) {

try {
int port = Integer.parseInt(args[O]); // The port to listen on
ServerSocket ss = new ServerSocket(port); // Create a socket to listen
for(:;) l // Loop forever

Socket client = ss.accept(); // Wait for a connection
ClientThread t = new ClientThread(client); // A thread to handle it
t.start(); // Start the thread running

} // Loop again
}
catch (Exception e) {

System.err.println(e.getMessage());
System.err.println("Usage: java HttpMirror <port>");

}

wwlleld 2/121‘9111

}

static class ClientThread extends Thread {
Socket client;
ClientThread(Socket client) { this.client = client; }
public void run() {

try {
// Get streams to talk to the client
BufferedReader in =

new BufferedReader(new InputStreamReadertclient.getInputStream()));
Printwriter out =

new PrintWriter<new OutputStreamWriter(client.get0utput$tream())):

// Send an HTTP response header to the client
out.print(”HTTP/l.0 200\nContent-Type: text/plain\n\n");

// Read the HTTP request from the client and send it right back
// Stop when we read the blank line from the client that marks
// the end of the request and its headers.

Networking 159

Page 178 of 238

String line;
while((line : in.readLine()) != null)i

if (line.length() = 0) break;
out.println(line);

}

out.close();
in.close();
client.close();

}

catch (IOException e) i /* Ignore exceptions */ ll
}

)

Note how elegantly both the URL and Socket classes use the input/output streams
that we saw earlier in the chapter. This is one of the features that makes the Java
networking classes so powerful.

Both URL and Socket perform networking on top of a stream-based network con-
nection. Setting up and maintaining a stream across a network takes work at the
network level7 however. Sometimes you need a low-level way to speed a packet
of data across a network, but you don’t care about maintaining a stream. If, in
addition, you don’t need a guarantee that your data will get there or that the pack-
ets of data will arrive in the order you sent them, you may be interested in the
DatagramSocket and DatagramPacket classes:

import java.net.*;

// Send a message to another computer via a datagram
try {

String hostname = "host.domain.org"; // The computer to send the data to
InetAddress address = // Convert the DNS hostname

InetAddress.getByName(hostname); // to a lower-level IP address.
int port = 1234; // The port to connect to
String message = "The eagle has landed.”; // The message to send
byte[] data = message.getBytes(); // Convert string to bytes
DatagramSocket s = new DatagramSocket(); // Socket to send message with
DatagramPacket p = // Create the packet to send

new DatagramPacket(data. data.length, address, port);
s.send(p); // Now send it!
s.close(); // Always close sockets when done

}
catch (UnknownHostException e) i} // Thrown by InetAddress.getByName()
catch (SocketException e) {l // Thrown by new DatagramSocket()
catch (java.io.IOException e) {l // Thrown by DatagramSocket.send()

// Here‘s how the other computer can receive the datagram
try {

byte[] buffer = new byte[4096]; // Buffer to hold data
DatagramSocket s = new DatagramSocket(1234); // Socket to receive it through
DatagramPacket p =

new DatagramPacket<butfer, buffer.length); // The packet to receive it
s.receive(p); // Wait for a packet to arrive
String msg = // Convert the bytes from the

new String(bufier, 0, p getLength()); // packet back to a string.
s.close(); // Always close the socket

160 Chapter 4 —- Ybejava Platform

Page 179 of 238

catch (SocketException e) {}
catch (java.io.lOException e) (l

// Thrown by new DatagramSocket()
// Thrown by DatagramSocket.receive()

ProceSses

Earlier in the chapter, we saw how easy it is to create and manipulate multiple
threads of execution running within the same Java interpreter. Java also has a
java . l ang . Process class that represents a program running externally to the inter-
preter. AJava program can communicate with an external process using streams in
the same way that it might communicate with a server running on some other
computer on the network. Using a Process is always platform-dependent and is
rarely portable, but it is sometimes a useful thing to do:

// Maximize portability by looking up the name of the command to execute
// in a configuration file.
java.util.Properties contig;
String cmd = config.getProperty(“sysloadcmd”);
it (cmd != null) {

// Execute the command; Process p represents the running command
Process p = Runtime.getRuntime().exec(cmd); // Start the command
InputStream pin = p.9etlnputStream(); // Read bytes from it
InputStreamReader cin = new InputStreamReader(pinl; // Convert them to chars
BufferedReader in = new BufferedReader(cin); // Read lines of chars
String load = in.readLine(); // Get the command output
in.close(); // Close the stream

Security

The java .security package defines quite a few classes related to the Java access-
control architecture, which is discussed in more detail in Chapter 5, Java Security.
These classes allow Java programs to run untrusted code in a restricted environ—
ment from which it can do no harm. While these are important classes, you rarely
need to use them.

The more interesting classes are the ones used for authentication. A message digest
is a value, also known as cryptographic checksum or secure hash, that is com-
puted over a sequence of bytes. The length of the digest is typically much smaller
than the length of the data for which it is computed, but any change, no matter
how small, in the input bytes, produces a change in the digest. When transmitting
data (a message), you can transmit a message digest along with it. Then, the recip-
ient of the message can recompute the message digest on the received data and,
by comparing the computed digest to the received digest, determine whether the
message or the digest was corrupted or tampered with during transmission. We
saw a way to compute a message digest earlier in the chapter when we discussed
streams. A similar technique can be used to compute a message digest for non—
streaming binary data:

import java.security.*;

// Obtain an object to compute message digests using the "Secure Hash
// Algorithm"; this method can throw NoSuchAlgorithmException.
MessageDigest md = MessageDigest.getInstance("SHA");

Security 1 61

a:
§5. [METat“

Page 180 of 238

byte[] data, datal, data2, secret; // Some byte arrays initialized elsewhere

// Create a digest for a single array of bytes
byteE] digest = md digest(data);

// Create a digest for several chunks of data
md.reset(); // Optional: automatically called by digest()
md.update(datal); // Process the first chunk of data
md.update(data2); // Process the second chunk of data
digest = md.digest(); // Compute the digest

// Create a keyed digest that can be verified if you know the secret bytes
md.update(data); // The data to be transmitted with the digest
digest = md.digest(secret); // Add the secret bytes and compute the digest

// Verity a digest like this
byteE] receivedData, receivedDigest; // The data and the digest we received
byteE] verifyDigest = r‘nd.digest(receivedData); // Digest the received data
// Compare computed digest to the received digest
boolean verified = java.util.Arrays.equals(receivedDigest, verifyDigest);

A digital signature combines a message—digest algorithm with public—key cryptog—
raphy. The sender of a message, Alice, can compute a digest for a message and
then encrypt that digest with her private key, She then sends the message and the
encrypted digest to a recipient, Bob. Bob knows Alice’s public key (it is public,
after all), so he can use it to decrypt the digest and verify that the message has not
been tampered with. In performing this verification, Bob also learns that the digest
was encrypted with Alice’s private key, since he was able to decrypt the digest
successfully using Alice’s public key. As Alice is the only one who knows her pri-
vate key, the message must have come from Alice. A digital signature is called
such because, like a pen-and-paper signature, it serves to authenticate the origin
of a document or message. Unlike a pen-and—paper signature, however, a digital
signature is very difficult, if notirnpossible, to forge, and it cannot simply be cut
and pasted onto another document.

Java makes creating digital signatures easy. In order to create a digital signature,
however, you need a java . security.PrivateKey object. Assuming that a keystore
exists on your system (see the leeytool documentation in Chapter 8, Java Develop-
ment Tools), you can get one with code like the following:

// Here is some basic data we need
File homedir = new File(System.getProperty("user.home“));
File keyfile = new File(homedir, ".keystore”); // Or read from config tile
String filepass : "KeyStore password" // Password for entire tile
String signer = "david"; // Read from contig file
String password = "No one can guess thisl"; // Better to prompt for this
PrivateKey key; // This is the key we want to look up from the keystore

try (
// Obtain a KeyStore object and then load data into it
KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType(D);
keystore . l oad(new BufferedlnputStreammew Fi l elnputStream(keyti l e)) ,

filepass.toCharArray());
// Now ask for the desired key
key = (Privatekey) keystore.getKey(signer, password.toCharArray());

l
catch (Exception e) { /* Handle various exception types here */ }

162 Chapter 4 — Tbejaua Platform

Page 181 of 238

Once you have a PrivateKey object, you create a digital signature With a
java.security.Signature object:

PrivateKey key; // Initialized as shown previously
byte[] data; // The data to be signed
Signature 5 = // Obtain object to create and verify signatures

Signature.get1nstance(”SHAlwithDSA"); // Can throw NoSuchAlgorithmException
s.initSign(key); // Initialize it; can throw InvalidKeyException
s.update(data); // Data to sign; can throw SignatureException
/* s.update(data2); */ // Call multiple times to specify all data
byteE] signature = s.sign(); // Compute signature

A Signature object can verify a digital signature:

byte[] data; // The signed data; initialized elsewhere
byteE] signature; // The signature to be verified; initialized elsewhere
String signername; // Who created the signature; initialized elsewhere
KeyStore keystore; // Where certificates stored; initialize as shown earlier

// Look for a public key certificate for the signer
java.security.cert.Certificate cert = keystore.getCertificate(signername);
PublicKey publickey = cert.getPublicKey(); // Get the public key from it

Signature 5 : Signature.getInstance("SHAlwithDSA"); // Or some other algorithm
s.initVerify(publickey); // Setup for verification
s.update(data); // Specify signed data
boolean verified = s.verify(signature); // Verify signature data uuoueld 2/12/-31/1

The java.securi ty.$igned0bject class is a convenient utility for wrapping a digi-
tal signature around an object. The Si gnedObject can then be serialized and trans-
mitted to a recipient, who can deserialize it and use the veri fy() method to verify
the signature:

Serializable o; // The object to be signed; must be Serializable
PrivateKey k; // The key to sign with; initialized elsewhere
Signature 5 = Signature.get1nstance("SHAlwithDSA"); // Signature "engine"
SignedObject so = new SignedObject(o, k, s); // Create the SignedObject

// The SignedObject encapsulates the object o; it can now be serialized
// and transmitted to a recipient.

// Here's how the recipient verifies the SignedObject
SignedObject so; // The deserialized SignedObject
Object o; // The original object to extract from it
PublicKey pk; // The key to verify with
Signature 3 = Signature.getlnstance("SHAlwithDSA"); // Verification “engine”
if (so.verify(pk,s)) // If the signature is valid,

0 = so.get0bject(); // retrieve the encapsulated object.

Cryptography

The java.security package includes cryptography-based classes, but it does not

contain classes for actual encryption and decryption That is the job of the
javax.crypt0 package. This package supports symmetric-key cryptography, in
which the same key is used for both encryption and decryption and must be
known by both the sender and the receiver of encrypted data. The SecretKey
interface represents an encryption key; the first step of any cryptographic

Ccyptogmphy 163

Page 182 of 238

operation is to obtain an appropriate Sec retKey. Unfortunately,‘ the leeytool pro—
gram supplied with the Java SDK cannot generate and store secret keys, so a pro—
gram must handle these tasks itself. Here is some code that shows various ways to
work with SecretKey objects:

import javax.crypto.*;
import javax.crypto.spec.*;

// Generate encryption keys with a KeyGenerator object
KeyGenerator desGen = KeyGenerator.getlnstance("DES"); // DES algorithm
SecretKey desKey = desGen.generateKey(); // Generate a key
KeyGenerator desEdeGen = KeyGenerator.getInstance("DESede”); // Triple DES
SecretKey desEdeKey = desEdeGen.generateKey(); // Generate a key

// SecretKey is an opaque representation of a key. Use SecretKeyFactory to
// convert to a transparent representation that can be manipulated: saved
// to a file, securely transmitted to a receiving party, etc.
SecretKeyFactory desFactory = SecretKeyFactory.getlnstance("DES");
DESKeySpec desSpec = (DESKeySpec)

desFactory.getKeySpec(desKey, javax.crypto.spec.DE$KeySpec.class);
byteE] rawDesKey = desSpec.getKey();
// Do the same for a DESede key
SecretKeyFactory desEdeFactory = SecretKeyFactory.getInstance("DESede”):
DESedeKeySpec desEdeSpec = (DESedeKeySpec)

desEdeFactory.getKeySpec(desEdeKey, javax.crypto.spec.DESedeKeySpec.class);
bytet] rawDesEdekey = desEdeSpec.getKey();

// Convert the raw bytes of a key back to a SecretKey object
DESedeKeySpec keyspec = new DESedeKeySpec(rawDesEdeKey);
SecretKey k = desEdeFactory.generateSecret(keyspec);

// For DES and DESede keys, there is an even easier way to create keys
// SecretKeySpec implements SecretKey, so use it to represent these keys
byteE] desKeyData = new byteE8]; // Read 8 bytes of data from a file
byteE] tripleDesKeyData = new byte[24]; // Read 24 bytes of data from a file
SecretKey myDesKey = new SecretKeySpec(desKeyData, "DES");
SecretKey myTripleDesKey = new SecretKeySpec(tripleDesKeyData, "DESede");

Once you have obtained an appropriate SecretKey object, the central class for
encryption and decryption is Ci pher‘. Use it like this:

SecretKey key; I // Obtain a SecretKey as shown earlier
byteE] plaintext; // The data to encrypt; initialized elsewhere

// Obtain an object to perform encryption or decryption
Cipher cipher = Cipher.getlnstance("DESede"); // Triple-DES encryption
// Initialize the cipher object for encryption
cipher.init(Cipher.ENCRYPT_MODE, key);
// Now encrypt data
bytel] ciphertext = cipher.doFinal(plaintext);

// If we had multiple chunks of data to encrypt, we can do this
cipher. update<message1);
cipher.update(message2);
byteE] ciphertext = cipher.doFinal();

// We simply reverse things to decrypt
cipher.init(Cipher.DECRYPT_MODE, key);
byteE] decryptedMessage = cipher.doFinal(ciphertext):

164 Chapter 4 — Theft/1m Plagform

Page 183 of 238

// To decrypt multiple chunks of data
byteE] decryptedl ‘ cipher.update(ciphertext1);
byteEJdecryptedZ cipher.update(ciphertext2);
byte[]decrypted3 cipher.doFinal(ciphertext3);

The Cipher class can also be used with CipherlnputStream or CipherOutput-
Stream to encrypt or decrypt While reading or writing streaming data:

byte[] data; // The data to encrypt
SecretKey Key; // Initialize as shown earlier
Cipher c = Cipher.get1nstance("DESede"); // The object to perform encryption
c.init(Cipher.ENCRYPT_MODE, kEy); // Initialize it

// Create a stream to write bytes to a file
FileOutputStream fos = new FileOutputStream(“encrypted.data");

// Create a stream that encrypts bytes before sending them to that stream
// See also CipherInputStream to encrypt or decrypt while reading bytes
CipherDutputStream cos = new CipherOutputStream<fos. c);

cos.write(data); // Encrypt and write the data to the filecos.close(); // Always remember to close streams
java.util .Arrays.fill(data, (byte)0); // Erase the unencrypted data

Finally, the javax.crypto.SealedObject class provides an especially easy way to
perform encryption. This class serializes a specified object and encrypts the result-
ing stream of bytes. The Seal edObj ect can then be serialized itself and transmitted
to a recipient. The recipient is only able to retrieve the original object if she knows
the required SecretKey:

wane/d enerat“
Serializable o; // The object to be encrypted; must be Serializable
SecretKey Key; // The key to encrypt it with
Cipher c = Cipher.getInstance("Blowfish"); // Object to perform encryption
c.init(Cipher.ENCRYPTJIODE, key); // Initialize it with the key
SealedObject so = new SealedObject(o, C); // Create the sealed object

// Object so is a wrapper around an encrypted form of the original object o;
// it can now be serialized and transmitted to another party.
// Here‘s how the recipient decrypts the original object
Object original = so.get0bject(key); // Must use the same SecretKey

Cryptography 165

Page 184 of 238

CHAPTER 5

java Security

Java programs can dynamically load Java classes from a variety of sources, includ-
ing untrusted sources, such as web sites reached across an insecure network. The
ability to create and work with such mobile code is one of the great strengths and
features of Java. To make it work successfully, however, Java puts great emphasis
on a security architecture that allows untrusted code to run safely, without fear of
damage to the host system.

The need for a security system in Java is most acutely demonstrated by applets—
rniniature Java applications designed to be embedded in web pages.* When a user
visits a web page (with a Java-enabled web browser) that contains an applet, the
web browser downloads the Java class files that define that applet and runs them.
In the absence of a security system, an applet could wreak havoc on the user’s
system by deleting files, installing a Virus, stealing confidential information, and so
on. Somewhat more subtly, an applet could take advantage of the user’s system to
forge email, generate spam, or launch hacking attempts on other systems.

Java’s main line of defense against such malicious code is access control: untrusted
code is simply not given access to certain sensitive portions of the core Java API.
For example, an untrusted applet is not typically allowed to read, write, or delete
files on the host system or connect over the network to any computer other than
the web server from which it was downloaded. This chapter describes the Java
access control architecture and a few other facets of the Java security system.

Security Risks

Java has been designed from the ground up with security in mind; this gives it a
great advantage over many other existing systems and platforms. Nevertheless, no
system can guarantee 100% security, and Java is no exception.

* Applets are documented in Java Foundation Classes in a Nutshell (O’Reilly) and are not covered in this
book. Still, they serve as good examples here.

Page 185 of 238

The Java security architecture was designed by security experts and has been stud-
ied and probed by many other security experts. The consensus is that the architec-
ture itself is strong and robust, theoretically without any security holes (at least
none that have been discovered yet). The implementation of the security architec-
ture is another matter, however, and there is a long history of security flaws being
found and patched in particular implementations of Java. For example, in April
1999, a flaw was found in Sun’s implementation of the class verifier in Java 1.1.
Patches for Java 1.1.6 and 1.1.7 Were issued and the problem was fixed in Java
1.1.8. Even more recently, in August 1999, a severe flaw was found in Microsoft’s
Java Virtual Machine (which is used by the Internet Explorer 4.0 and 5.0 web
browsers). The flaw was a particularly dangerous one because it allowed a mali—
cious applet to gain unrestricted access to the underlying system. Microsoft has
released a new version of their VM, and (as of this writing) there have not been
any known attacks that took advantage of the flaw.

In all likelihood, security flaws will continue to be discovered (and patched) in
Java VM implementations. Despite this, Java remains perhaps the most secure plat-
form currently available. There have been few, if any, reported instances of mali-
cious Java code exploiting security holes “in the wild.” For practical purposes, the
Java platform appears to be adequately secure, especially when contrasted with
some of the insecure and virus-ridden alternatives.

java I/M Security and Class File Verification

The lowest level of the Java security architecture involves the design of the Java
Virtual Machine and the byte codes it executes. The Java VM does not allow any
kind of direct access to individual memory addresses of the underlying system,
which prevents Java code from interfering with the native hardware and operating
system. These intentional restrictions on the VM are reflected in the Java language
itself, which does not support pointers or pointer arithmetic. The language does
not allow an integer to be cast to an object reference or vice versa, and there is no
way whatsoever to obtain an object’s address in memory. Without capabilities like
these, malicious code simply cannot gain a foothold.

In addition to the secure design of the Virtual Machine instruction set, the VM goes
through a process known as byte-code verification whenever it loads an untrusted
class. This process ensures that the byte codes of a class (and their operands) are
all valid; that the code never underflows or overflows the VM stack; that local vari-
ables are not used before they are initialized; that field, method, and class access
control modifiers are respected; and so on. The verification step is designed to
prevent the VM from executing byte codes that might crash it or put it into an
undefined and untested state where it might be vulnerable to other attacks by
malicious code. Byte—code verification is a defense against malicious hand—crafted
Java byte codes and untrusted Java compilers that might output invalid byte codes.

java VM Security and Class File Verification 167

Amines 9/1er

Page 186 of 238

Authentication and Cryptography

In Java 1.1 and later, the java.security package (and its subpackages) provides
classes and interfaces for authentication. As described in Chapter 4, Thejown Plat-
form, this piece of the security architecture allows Java code to create and verify
message digests and digital signatures. These technologies can ensure that any
data (such as a Java class file) is authentic; that it originates from the person who
claims to have originated it and has not been accidentally or maliciously modified
in transit.

The Java Cryptography Extension, or JCE, consists of the javax.crypto package
and its subpackages. These packages define classes for encryption and decryption
of data. This is an important security-related feature for many applications, but is
not directly relevant to the basic problem of preventing untrusted code from dam—
aging the host system, so it is not discussed in this chapter.

Access Control

As I noted at the beginning of this chapter, the heart of the Java security architec—
ture is access control: untrusted code simply must not be granted access to the
sensitive parts of the Java API that would allow it to do malicious things. As we’ll
discuss in the following sections, the Java access—control model evolved signifi—
cantly between Java 1.0 and Java 1.2. The Java 1.2 access—control model is rela—
tively stable; it has not changed significantly in Java 1.5.

java 1.0: The Sandbox

In this first release of Java, all Java code installed locally on the system is trusted
implicitly. All code downloaded over the network, however, is untrusted and run
in a restricted environment playfully called “the sandbox.” The access-control poli-
cies of the sandbox are defined by the currently installed java . l ang .Securi tyMan-
ager object. \When system code is about to perform a restricted operation, such as
reading a file from the local filesystern, it first calls an appropriate method (such as
checkRead()) of the currently installed Secur‘i tyManager object. If untrusted code
is running, the SecurityManager throws a Securi tyException that prevents the
restricted operation from taking place.

The most common user of the SecurityManager class is a Java-enabled web
browser, which installs a SecurityManager object to allow applets to run without
damaging the host system. The precise details of the security policy are an imple-
mentation detail of the web browser, of course, but applets are typically restricted
in the following ways:

0 An applet cannot read, write, rename, or delete files. It cannot query the
length or modification date of a file or even check whether a given file exists.
Similarly, an applet cannot create, list, or delete a directory.

An applet cannot connect to or accept a connection from any computer other
than the one it was downloaded from. It cannot use any privileged ports (i.e,,
ports below and including port 1024).

168 Chapter 5 —jawz Security

Page 187 of 238

An applet cannot perform system-level functions, such as loading a native
library, spawning a new process, or exitng the Java interpreter. An applet
cannot manipulate any threads or thread groups, except for those it creates
itself. In Java 1.1 and later, applets cannot use the Java Reflection API to
obtain information about the non-public members of classes, except for
classes that were downloaded with the applet.

An applet cannot access certain graphics- and GUI-related facilities. It cannot
initiate a print job or access the system clipboard or event queue. In addition,
all windows created by an applet typically display a prominent visual indica-
tor that they are “insecure,” to prevent an applet from spoofing the appear-
ance of some other application.

An applet cannot read certain system properties, notably the user.home and
user.d1‘ r properties, that specify the user’s home directory and current work—
ing directory.

An applet cannot circumvent these security restrictions by registering a new
SecurityManager‘ object.

How the sandbox works

Suppose that an applet (or some other untrusted code running in the sandbox)
attempts to read the contents of the file /etc/passwd by passing this filename to the
Pi I elnputStreamO constructor. The programmers who wrote the F1‘ 1 elnput-
Stream class were aware that the class provides access to a system resource (a
file), so use of the class should therefore be subject to access control. For this rea-
son, they coded the FileInputStreamO constructor to use the SecurityManager
class.

Every time FileInputStreamO is called, it checks to see if a SecurityManager
object has been installed. If so, the constructor calls the checkRead() method of
that Secu r1" tyManager object, passing the filename (/etc/passwd, in this case) as the
sole argument. The checkRead() method has no return value; it either returns nor~
mally or throws a SecurityException. If the method returns, the Filelnput-
Stream) constructor simply proceeds with whatever initialization is necessary and
returns. Otherwise, it allows the SecurityException to propagate to the caller.
When this happens, no Fi I eInputStream object is created, and the applet does not
gain access to the /etc/passwd file.

java 1.]: Digitally Signed Classes

Java 1.1 retains the sandbox model of Java 1.0, but adds the java.securi ty pack-
age and its digital signature capabilities. With these capabilities, Java classes can be
digitally signed and verified. Thus, web browsers and other Java installations can
be configured to trust downloaded code that bears a valid digital signature of a
trusted entity. Such code is treated as if it were installed locally, so it is given full
access to the Java APIs. In this release, the java/eey program manages keys and
digitally signs JAR files of Java code. Although Java 1.1 adds the important ability
to trust digitally signed code that would otherwise be untrusted, it sticks to the

Access Control 169

Amnaas ener

Page 188 of 238

basic sandbox model: trusted code gets full access and untrusted code gets totally
restricted access.

java 1.2: Permissions and Policies

Java 1.2 introduces major new access-control features into the Java security archi—
tecture. These features are implemented by new classes in the java.security
package. The Po'l icy class is one of the most important: it defines a Java security
policy. A Policy object maps CodeSource objects to associated sets of Permission
objects. A CodeSour‘ce object represents the source of a piece of Java code, which
includes both the URL of the class file (and can be a local file) and a list of entities

that have applied their digital signatures to the class file. The Permission Objects
associated with a CodeSource in the Policy define the permissions that are granted
to code from a given source. Various Java APIs includes subclasses of Permission
that represent different types of permissions. These include java.1ang . Run-
timeP‘ermission, java.io.FiJePermission, and java .net.SocKetPermission, for
example.

Under this new access-control model, the SecurityManager class continues to be
the central class; access-control requests are still made by invoking methods of a
SecurityManager. However, the default SecurityManager implementation now del-
egates most of those requests to a new AccessContr‘ol 1 er‘ class that makes access
decisions based on the Permission and Policy architecture.

The new Java 1.2 access—control architecture has several important features:

. Code from different sources can be given different sets of permissions. In
other words, the new architecture supports fine—grained levels of trust. Even
locally installed code can be treated as untrusted or partially untrusted. Under
this new architecture, only system classes and standard extensions run as fully
trusted.

It is no longer necessary to define a custom subclass of SecurityManager to
define a security policy. Policies can be configured by a system administrator
by editing a text file or using the new policytool program.

The new architecture is not limited to a fixed set of access control methods in

the SecurityManager class. New Permission subclasses can be defined easily
to govern access to new system resources (which might be exposed, for
example, by new standard extensions that include native code).

How policies andpermissions work

Let’s return to the example of an applet that attempts to create a F11 elnputStream
to read the file /etc/passwd. In Java 1.2, the Fi l elnputSt r‘eam() constructor
behaves exactly the same as it does in Java 1.0 and Java 1.1: it looks to See if a
SecurityManager‘ is installed and, if so, calls its checkRead() method, passing the
name of the file to be read.

What’s new in Java 1.2 is the default behavior of the checkRead() method. Unless
a program has replaced the default security manager with one of its own, the
default implementation creates a FilePermission object to represent the access

1 70 Chapter 5 — jar/a Security

Page 189 of 238

being requested. This Fi l ePermi ssion object has a target of "/etc/passwd” and an
action of “read”. The checkRead() method passes this FilePermission object to
the static checkPermissionO method of the java.security.AccessControiler‘
class.

It is the AccessControlier and its checkPermission() method that do the real

work of access control in Java 1.2. The method determines the CodeSource of each
calling method and uses the current Pol icy object to determine the Permission
objects associated with it. With this information, the AccessController can deter-
mine whether read access to the /etC/passwd file should be allowed.

The Permission class represents both the permissions granted by a Pol icy and the
permissions requested by a method like the Fi l e1nput$tream<) constructor. When
requesting a permission, Java typically uses a Fi lePermission (or other Permis—

si on subclass) with a very specific target, like “/etc/passwd". When granting a per—
mission, however, a Policy commonly uses a F i l ePermi ssi on object with a
wildcard target, such as “/etc/*”, to represent many files. One of the key features
of a Permission subclass such as FilePermission is that it defines an implies()
method that can determine whether permission to read “/etc/"’ implies permission
to read “/etc/passwd”.

Securityfor Everyone

Programmers, system administrators, and end users all have different security con—
cerns and, thus, different roles to play in the Java 1.2 security architecture.

Securityfor System Programmers

System programmers are the people who define new Java APIs that allow access
to sensitive system resources. These programmers are typically working with
native methods that have unprotected access to the system. They need to use the
Java access-control architecture to prevent untrusted code from executing those
native methods. To do this, system programmers must carefully insert Security-
Manager calls at appropriate places in their code. A system programmer may
choose to use an existing Permission subclass to govern access to the system
resources exposed by her API, or she may decide to define a specialized subclass
of Permission.

The system programmer carries a tremendous security burden: if she does not per-
form appropriate access control checks in her code, she compromises the security
of the entire Java platform. The details are complex and are beyond the scope of
this book. Fortunately, however, system programming that involves native meth-
ods is rare in Java; almost all of us are application programmers who can simply
rely on the existing APIs.

Securityfor Application Programmers

Programmers who use the core Java APIs and standard extensions, but do not
define new extensions or write native methods, can simply rely on the security
efforts of the system programmers who created those APIs. In other words, most

Secan‘tyforEveryone 1 71

Aymaas mgr

Page 190 of 238

of us Java programmers can simply use the Java APIs and need not worry about
introducing security holes into the Java platform.

In fact, application programmers rarely have to use the access-control architecture.
If you are writing Java code that may be run as untrusted code, you should be
aware of the restrictions placed on untrusted code by typical security policies.
Keep in mind that some methods (such as methods that read or write files) can
throw Securi tyExcepti on objects, but don’t feel you must write your code to
catch these exceptions. Often, the appropriate response to a Securi tyExcepti on is
to allow it to propagate uncaught, so that it terminates the application.

Sometimes, as an application programmer, you want to write an application (such
as an applet viewer) that can load untrusted classes and run them subject to
access—control checks. To do this in Java 1.2, you must first install a security man-
ager:

System.set5ecurityManager(new SecurityManageNH;

Then use java .net.URLCl assLoader to load the untrusted classes. URLClassLoader

assigns a default set of safe permissions to the classes it loads, but in some cases
you may want to modify the permissions granted to the loaded code through the
P01 icy and PermissionCollection classes.

Securityfor System Administrators

In Java 1.2 and later, system administrators are responsible for defining the default
security policy for the computers at their site. The default policy is stored in the
file lib/security/jawpolicy in the Java installation. A system administrator can edit
this text file by hand or use the policytool program from Sun to edit the file graphi—
cally. policytool is the preferred way to define policies, so the syntax of the under—
lying policy file is not documented in this book.

The default javapoh’cy file defines a policy that is much like the policy of Java 1.0
and Java 1.1: system classes and installed extensions are fully trusted, while all
other code is untrusted and only allowed a few simple permissions. While this
default policy is adequate for many purposes, it may not be appropriate for all
sites. For example, at some organizations, it may be appropriate to grant extra per-
missions to code downloaded from a secure intranet.

In order to define secure and effective security policies, a system administrator
must understand the various Permission subclasses of the Java platform, the target
and action names they support, and the security implications of granting any par-
ticular permission. These topics are explained well in a document titled “Permis—
sions in the Java 2 SDK,” which is part of the Java 1.2 release and also available (at
the time of this writing) online at: mgr/4am.sun.comfibroductsfidle/J.2/docs/gutde/
security/permissiom.btml.

Securityfor End Users

Most end users do not have to think about security at all: their Java programs
should simply run in a secure way with no intervention by them. Some sophisti-
cated end users may want to define their own security policies, however. An end

J 72 Chapter 5 — java Security

Page 191 of 238

user can do this by running policytool himself to define personal policy files that
augment the system policy. The default personal policy is stored in a file named
.jdzldpolicy in the user’s home directory. By default, Java loads this policy file and
uses it to augment the system policy file.

In Java 1.2 and later, a user can specify an additional policy file to use when start—
ing up the Java interpreter, by defining the j ava.security.pol icy property with
the —D option. For example:

C:\> java -Djava.security.policy=policyfi7e Untr‘ustedApp

This line runs the class UntrustedApp after augmenting the default system and user
policies with the policy specified in the file or URL p07 1' cyfi 76. To replace the sys-
tem and user policies instead of augmenting them, use a double equals sign in the

property specification: ‘

C:\> java -Djava.security.policy=polfcyfi7e UntrustedApp

Note, however, that specifying a policy file is only useful if there is a Security-
Manager installed. If a user doesn’t trust an application, he presumably doesn’t
trust that application to voluntarily install its own security manager. In this case, he
can define the java .security.manager system property:

C:\> java -Djava.security.manager‘ »Djava.security.policy=policyfile UntrustedApp

The value of this property does not matter; simply defining it is enough to tell the
Java interpreter to automatically install a default SecurityManager‘ object that sub—
jects an application to the access control policies described in the system, user,
and java.secur‘1‘ty.pol icy policy files.

2/:erPermission Classes Amines
Table 5-1 lists the various Permission subclasses, the target and action names they
support, and the methods that require those permissions (in Java 1.2 and later).

Table 5—].- Permission Classes and the Methods They Govern

Permission Target, Action Methods

ANT. “accessClipboar " Tool k1 t.get$ystemm 1pboard0

Perm 551' 0n “accessEventQueue” Tool k1t.get$ystemEventQueue()

“listenToAllAWTEvents” Tool kit. {addAWTEventListeneN),
removeAWTEventLi stener<))

“readDisplayPixels” Graphi csZD.setCompos1’te()

“showWindowWithout— Ni ndow.w1‘ ndow() (if permission is

WarningBanner” not granted, window has an
“insecure” indication)

F11 e. command, “execute” Runti me . exec()

Permission filendme, “delete” Fil e. {delete(), deleteOnExit<)}

Permission Classes 1 73

Page 192 of 238

Table 5-]: Permission Classes and the Methods They Govern (continued)
Permission Target, Action Methods

F116-

Permission
filename, “read”

filename, “write”

FfleInputStr‘eam.FflelnputStream),
Fi1e.{exists(), canRead(>,

isFi1e(),1'sDirectory(),
isHiddenO, 1astMod1'f1‘ed0,

1ength(),1ist(),1istF11es()L
RandomAccessFi1e.RandomAccessF11e(L
ZipFflelipFfleU

Fi 1 eOutpUtStream. Fi 1e0utput5tream(),

File.{canwrite(), createNewFfleO,
createTempFfleU, mkdirU, mkdirs(),

renameT0(),setLastModified<L
setReadOMyU},
RandomAccessFi1e.RandomAccessFi1e()

Net-
Permission

Property-
Permission “requestPassword-

Authentication”

“setDefaultAuthenticatot”

“specifyStreamHandler”

“*”, “read, write”

“user.language”, “write”

prop, “read”

prop, “write”

Authenti cater. requestPassword-
Authenti cati 0M)

Authenticator. setDefau1t()

URL.URL()

Beans. (setDesignTime(),
setGuiAvailab1e()}

Introspector. setBeanInfo—

SearchPathO,
PropertyEdi torManager . (regi ster—
EditoM), setEditorSearchPatM >},

System. {getProperties(>,
setProperti es()}
Loca1 e. setDefau1t()

System.getProperty()

System.setProperty()

Ref] ect-
Permission

Runtime-
Permission

“suppressAccessChecks”

“accessClassIn-

Package.plegname”

AccessibleObject.setAccessib1e()

Ciass.{getC'|asses(),
getDec1aredC1asses(>,

getConstructor(), getConstructorsO,
getDec1aredFie1ds(),

getDec1aredMethods(),
getDec1aredConstr‘uctorSO,
getDeciar‘edFieim),

getDec1aredMeth0d(),
getDec1aredConstructoN),

1 74 Chapter 5 — Java Security

Page 193 of 238

Table 5-]: Permission Classes and the Methods They Govern (continued)

Permission

Runtime»
Permission

Target, Action

“accessDeclaredMembers”

“createClassLoadex”

“getClassLoader”

“getProtectionDomain”

“IoadLibrary. libName”

“modifyThread”

“modifyThreadGroup”

“queuePrintjob”

“readFileDescriptor”

“setContextClassLoader”

getFieIdsU, getMethods(),
getFier<), getMethod()}

C'I ass. {getC1 asses(),
getDec] aredC] asses(),

getDecl aredFie1ds<),
getDec1aredMethods(),

getDec1aredConstructors(),
getDec1aredF1e1dO,

getDec1aredMethod(),
getDec1aredConstructor())

C1 assLoader .CW ass- LoadeM),
URLCW assLoader.URL-CW assLoader(),
SecureC] assLoader .Secure-
C1assLoader()

Runtime.{ex1‘t(),
runFinah‘zersOnExiH) },

System. (exit(),
r‘unFi na1 izersOnExifi H

C1ass.(forName(), getmassLoadertH,
C1assLoader.{getSystemClassLoadeN),
getParent()},
Thread.getContextC1assLoaderU

Amnaas eAerC1 ass .getProtectionDomainO

Runtime.(1oad(),1oadL1braryO},
System.{1oad(), loadLibraPyU}

Thread.{checkAccess(), interrupti),
suspendO, resumeO, setPriom‘tyU,
setNameO, setDaemonO},

ThreadGr‘oup.{1‘nterrupt(), st0p())

Thread.(Thread(), enumeratEU},
ThreadGroup.{ThreadGroup(),

enumerateO, getParentO,
interrupfi), setDaemon(),

setMame‘orw’tyO, stop(), suspend(),
resumeO, destroyO}

Too1k1't .geth‘ ntJobO

F11e1nputStream.Ffle-

InputStream(F1‘ 1 eDescriptor)
Thread. setContextCW assLoader<)

Permission Classes 1 75

Page 194 of 238

Table 5—]: Permission Classes and the Methods They Govern (continued)
Permission

Runtime-
Permission

Target, Action

“setFactory”

“setIO”

“setSecurityManager”

“stopThread”

“writeFileDescriptor”

Methods

ServerSocket . setSocket Factory(),
Socket . setSocketImp1 Factory(),
URL. setURLStream-Hand1 erFactory(),
URLConnect1 on . {setContent-

Hand1erFactory0, setFi1eNameMap0},
HttpURLConnection. set-

Fo11owRed1‘rectsO,
acti vat1‘ on.Act1‘ vation—

Group.{createGroup(), setSystem()),
server. RMISocketFactory . set-
SocketFactory()

System.{set1n(), setOutO, setErr())

System.setSecurityManagerO

Thread.st0p(), ThreadGroup.st0p()

F11e0utputStream. Fi1e»

OutputStream(Fi1eDescr1ptor)

Security-
Permission

 “addIdentityCertificate”
“ClearProvider—

Properties.provider”

“getPolicy”

“getPropertypropname”

“getSignerPrivateKey”

“insertProvider.provider”

“printldentity”

“putProvider—

Property.provider”

“removeIdentityCertificate”

“removeProviderproz/ider”
“removeProvider—

Property.provider”

“setIdentityInfo”

“setIdentityPublicKey”

“setPolicy”

“setPropertyproprzame”

“setSignerKeypair”

“setSysternScope”

1 76 Cbapter5 ~ jam Security

Identity.addCert1ficate()
Provider.c1ear()

P01 icy . getPo1 1' cy()

Security.getProperty()

Signer . getPri vateKey()

Security. (addProviderO,
insertProviderAtO}

Identity .toStri ng()

Provider.put()

Identity. removeCertifi cate()

Securi ty. removeProviderO

Provi der. remove()

Identity .setInFotStri ng)

Identity. setPub11’cKey()

Pu1icy.setPo11‘cy();

Security.setProperty()

$1 gner . setKeyPai r()

IdentityScope . setSystemScope()

Page 195 of 238

Table 5—]: Permission Classes and the Methods They Govern (continued)

Permission Targeg Action

“enableSubclass-

Implementation”

SerializabTe-
Permission

“enableSubstitution”

Socket-
Permission

“localhostzpori”, “listen”

host, “accept, connect”

host, “resolve”

host-port, “accept”

hoskpon‘, “connect”

Methods

ObjectlnputStr‘eam.Object»

InputStream<),
ObjectOutputStream.0bject-
OutputStr‘eamO

ObjectlnputStream. enatfl e-
Reso] veObject<),
Object0utput5tr‘eam.enab1 e—

Rep1ace0bject0

ServerSocket.ServerSocket(),

DatagramSocket. DatagramSocket(),
Mu]ticastSocket.Mu1ticastSockeU)

Mu1ticastSocket.{joinGroup(),

1eaveGroup(), send()}

InetAddr‘ess . {getHostName(),
getAHByNameO, getLoca1Host0},
Datagr‘amSocket .getLoca1Address(J

Datagr‘amSocket . recei ve(),
ServerSocket . {accept(),

imp1Accept<)}

DatagramSocket. send(),
Socket.Socket()

xfmnaas eAer

Permission Classes 1 77

Page 196 of 238

Symbols

+ addition operator, 34
+= operator, 35
[I array element access Operator, 42
= assignment operator, 13, 4O
* asterisk, 194
@author doc-comment tag, 194
@beaninfo doc—comment tag, 199

l

Boolean OR operator, 38
bitwise OR operator, 39

! Boolean NOT operator, 38
” bitwise complement operator, 39

Boolean XOR operator, 38
bitwise XOR operator, 39

8:

Boolean AND operator, 38
bitwise AND, 39

&& conditional AND operator, 37
? conditional operator, 41

| | conditional OR operator, 38
{} curly-brace character

{@link} doc—comment tag, 194
/ division operator, 34
// single-line comments, 10—11, 20
/* */ multiline comments, 11, 20
/"* "/ doc comments, 21
@exception doc-comment tag, 195
—— decrement operator, 35

@deprecated doc-comment tag, 11, 13,
198

== equality operator, 36, 73
> greater than operator, 37
>= greater than/equal to operator, 37
>++ increment operator, 33, 35
< less than operator, 37
<= less than/equal to operator, 37
() method invocation operator, 43
% module operator, 34
f multiplication operator, 34
!= not equals operator, 36
. object member access operator, 42
@pararn doc-comment tag, 195
@return doc-comment tag, 195
@see doc-comment tag, 196
; semicolon

in program lines, 10
separating statements, 13

@serial doc-comment tag, 198
@serialData doc—comment tag, 198
@serialField doc—comment tag, 198
<< shift operator, left, 39
>> shift operator, signed right, 40
>>> shift operator, unsigned right, 40
@since doc-comment tag, 198
} single character, 15
— substraction operator, 34
+ symbol (URLEncoder), 416
@throws doc—comment tag, 196
0 type conversion or casting operator,

43

Page 197 of 238

— unary minus, 35
(_) underscore, 21

$ Unicode symbol, 21
¥ Unicode symbol, 21
.£ Unicode symbol, 21
@Version doc—comment tag, 195

Numbers

“100% Pure Java”, 192

A

<A> HTML tag, 194
abstract classes, 110—112

InstantiationError, 349

InstantiationException, 349
abstract methods

AbstractMethodError, 328
AbstractCollection class, 497 '
AbstractList class, 500
AbstractMap class, 500
AbstractSequentialList class, 501
AbstractSet class, 502

acceptO
FileFilter interface, 293
FilenameFilter interface, 294
ServerSocket class, 407

access control, 105—108, 166, 168—171
classes implementing, 418
classes, uniting with authenication

classes, 418 I
inheritance and, 107

javasecurity package, 161
javasecurityacl Package, 453—456
lists, package for, 137
member accessibility, list of, 108
modifiers, 105
package for, 137

AccessControlContext class, 419
AccessControlException, 421
AccessController class, 170—171, 418,

422

AccessibleObject class, 381
ACL (Access Control List), 453

Ad interface, 453
AclEntry interface, 454
AclNotFoundException, 454

actions, 171
activeCount() (ThreadGroup), 572

616 Index

activeGroupCountO (ThreadGroup),
372

add(), 502
AbstractCollection class, 497
AbstractList class, 500
Calendar class, 506
Collection interface, 508
HashSet class, 517
LinkedList class, 520
List interface, 521
ListIterator interface, 522
Set interface, 532
TreeSet class, 539
Vector class, 540

addAllO
Collection interface, 508
List interface, 521

addAttributesO (AttributedString), 479
addAttributeO (AttributedString), 479
addition (+) operator, 34
addObserverO (observable), 528
addPropertyChangeListener(), 252,

260

addProviderO (Security), 444
addService() (BeanContextServices),

273 '
addShutdownHookO, 359
add() (Permissions), 441
Adler32 class, 550
after(), 506
AlgorithmParameterGenerator class,

422

AlgorithmParameterGeneratorSpi class,
425

AlgorithmParameters class, 423
AlgorithmParameterSpec interface, 470
algorithms (cryptography)

RC2 encryption algorithm, 582
RC5 encryption algorithm, 582

allAll() (Set), 532
AllPermission class, 425
animation, threads for, 150
Annotation class, 476
anonymous classes, 117, 127—130

implementation, 132
restrictions on, 129
When to use, 129

Page 198 of 238

APIs (application programming inter-
face)

Java (see Java API)
JavaBeans (see JavaBeans API)

appendO (StringBuffer), 566
AppletContext, 248
AppletInitializer interface, 248
applets, 168

appletviewer for, 200—204
security and, 166

AppletStub, 248
appletviewer program, 200—204
application programmers, security for,

172

applications
client, 159
networked, 158

applyPatternO
ChoiceFormat class, 481
DecimalFormat class, 487

MessageFormat class, 491
SimpleDateFormat class, 494

arbitrary-precision integers, package
for, 137

arguments, 14
arithmetic operators, 34
ArithmeticException, 350
array element access ([1) operator, 42
array literals, 67
array types, 64—70
arraycopyO, 144
arraycopy() (System), 369
ArrayList class, 502
arrays, 28, 144

Array class, 581—682
ArrayIndeXOutOfBoundsException,

330

Arrays class, 497, 503
ArrayStoreException, 331
comparing, 73
copying, 71
creating, 65
multidimensional, 68
NegativeArraySizeException, 355
rectangular, 69
treated as objects, 145
using, 65

Arrays class, 144
asListO (Arrays), 503

assignment (=) operator, 40
for variables, 13

associatiw'ty, 51
asterisk (') in doc comments, 194
Attribute Class, 478
AttributedCharacterIterator interface,

477

Attribute class, 478
AttributedString class, 478«479
Attributes class, 544

,Name class, 546
authentication, 168

classes implementing, 418
classes, uniting with access control

classes, 418
classes used for, 161
messages transmitted with secret

key, 570
package for, 137

Authenticator class, 395
@author doc-comment tag, 194
auxiliary classes, 186
available(), 299
avoidingGuiO, 263
AWT programming, 178

B

BadPaddingException, 563
basic assignment (=) operator, 40
BasicPermission class, 425
BCSChild class, 279
BCSIterator class, 279

. BCSSChild class, 276
BCSSProxyServiceProvider class, 276
BCSSServiceProvider class, 276
bean contexts, 181
beanbox applications, 180
beanbox tool, 179—180
BeanContext interface, 187, 264
BeanContext(), 188
BeanContextChild interface, 188, 266
BeanContextChildSupport class, 267
BeanContextContainerProxy interface,

268

BeanContextEvent class, 268

BeanConteXm/IembershipEvent class, ‘
269

Index 61 7

Page 199 of 238

BeanContextMernbershipListener inter—
face, 269

BeanConteXtProxy interface, 267, 270
BeanConteXtSerViceAvailableEvent

class, 270
BeanConteXtServiceProvider interface,

270
BeanConteXtServiceProviderBeanInfo

interface, 271
BeanConteXtServiceRevokedEvent

class, 271
BeanConteXtSerViceRevokedListener

interface, 272
BeanContex Services interface, 188,

272

BeanConteX’Services(), 188
BeanConteX’ServicesListener interface,

274

BeanContextServicesSupport class,
188, 274

BCSSChild class, 276
BCSSProxyServiceProvider class,

276

BCSSServiceProvider class, 276
BeanContextSupport class, 188, 276

BCSChild class, 279
BCSIterator class, 279

BeanDescriptor class, 249
BeanInfo class, 180, 182, 252
@beaninfo doc—comment tag, 199
Beanlnfo interface, 249—250
beans, 178—179

conventions for, 182
distribution/packaging, 187
(see also JavaBeans API)

Beans class, 248, 251
beforeO, 506
BigDeclrnal class, 142, 391
BigInteger class, 142, 393
binary data, reading arbitrarily, 154
binarySearchO

Arrays class, 504
Collections class, 509

BindException, 397
BitSet class, 497, 505
bitwise AND (8:), 39
bitwise complement (”) operator, 39
bitwise OR (I) operator, 39
bitwise XOR (‘) operator, 39
blank lines, 15

618 Index

boolean AND (81) operator, 38
boolean data type, 332

Boolean class, 328, 332
boolean NOT 0) operator, 38
boolean OR (I) operator, 38
boolean type, 23
boolean XOR (‘D operator, 38
booleanValueO, 332
bound properties, 180, 183, 258
break statements, 52
Breaklterator class, 476, 479
BufferedlnputStream class, 280, 282
BufferedOutputStrearn class, 280,. 283
BufferedReader class, 282—283
BufferedWriter class, 284
bugs, security-related, 7
bytes

ByteArrayInputStream class, 280
Byte class, 140
ByteArrayInputStrearn class, 157
byteAcode, 8

JIT compilers, 342
Verinyrror, 375
verification of, 167

bytes
Byte class, 328, 332
ByteArrayInputStream class, 284
ByteArrayOutputStrearn class, 280,

285

CharConversionException, 287
reading, 155
streams of, 154

C

C programming language, vs. Java, 8,
80

C++ programming language
features of not found in Java, 135
vs. Java, 8, 80, 82
Virtual functions, 103

CA (certificate authority), 457
Calendar class, 143, 497, 506

GregorianCalendar class, 516
cancelO

Timer class, 536
TimerTask class, 537

canReadC) (File), 291
canWriteO (File), 291

Page 200 of 238

capacity()
Arrayth class, 502
Vector class, 540

capitalization conventions, 189
case sensitivity, 10
casts, 27

catch clause, 58
certificate authority (CA), 457
Certificate class, 457, 462

Certificate interface (javasecurity
Package) vs., 457

CertificateRep class, 459
(see also X509Certificate class)

Certificate interface, 418, 425, 429, 451
Certificate class (javasecuritycert)

vs, 457
certificate revocation lists (see CRLs)
CertificateException, 459
CertificateExpiredException, 460
CertificateFactory class, 460
CertificateFactorySpi class, 461
CertificateNotYetValidException, 461
CertificateParsingException, 461
CertificateRep class, 459
certificates (identity), 457—465
Character class, 140
character sets, 8
characters, 138-140

char data type, 23, 533
Character class, 328, 333

Subset class, 335
UnicodeBlock class, 335

Characteriterator interface, 480
CharArrayReader class, 286
CharArrayWriter class, 286
CharConversionException, 287
streams of, 154

UnsupportedEncodingException,
325

CharArrayReader class, 157
CharArrayWriter class, 157
charAtO, 365

StringBuffer class, 366
charValueO, 333
checkAccess() >

Thread class, 370
ThreadGroup class, 372

CheckedInputStrearn class, 550
CheckedOutputStream class, 551
CheckError(), 316

checkGuardO (Guard), 428
checkPerrnission()

AccessControlContext class, 419'
AccessController class, 422
Acl interface, 455
SecurityManager class, 361

checkReadC), 168, 170
Checksum

computing, 155
cryptographic-strength, 156

Checksum interface, 552
checkValidityO (X509Certificate), 462
childJustAddedHookO (BeanCon—

textSupport), 277
childValueO (InheritableThreadLocal),

348

ChoiceForrnat class, 476, 481
Cipher class, 164, 561, 563

NullCipher class, 572
CipherInputStream class, 165, 566
CipherOutputStream class, 165, 566
CipherSpi class, 566
circular dependency, 339
Class class, 147
class fields, 83
class files, 79

verification of, 167
class hierarchy, 97, 123
class methods, 84
Class objects, obtaining, 147
classes, 7, 28, 61

abstract, 110—112
access to, 106
anonymous, 117, 127—130

byte-code verification, not passing,
375

capitalization/naming conventions,
189

Class class, 328, 337
ClassCastException, 338, 511
ClassCircularityError, 339
ClassFormatError, 339 '
ClassLoader class, 339

ClassNotFoundException, 340
code source, 426
constructors, fields, and methods,

381

containing, 122
core, package for, 136

Index 619

134
I47

Page 201 of 238

classes (cont’d)

defining, 11, 62
conventions/rules for, 192

dynamic loading, 148
extending, 96
final, 97

IllegalAccessError, 346
IllegalAccessException, 346
importing, 77
IncompatibleClassChangeError, 347
inner, 117

how they Work, 130—132
InvalidClassException, 300
LinkageError, 351
local, 117
member, 117, 119—123
members of, 82—88
NoClassDefFoundError, 353

object, 97
online documentation for, 21
Permission, 173—177

predefined, 4
programs and, 11
static member, 117—118
tool for, 225—227
undocumented, conventions/rules

for, 191
UnsatisfiedLinkError, 375
UnsupportedClassVersionError, 375
version number, tool for displaying,

236
clear(), 378

Collection interface, 508
List interface, 521
Map interface, 525
Reference class, 578

client connection requests, 159
Clock class, 150
clone(), 341

Mac class, 571
MessageDigest class, 437
Object class, 356

Cloneable interface, 341

CloneNotSupportedException, 341
close(), 326

BufferedWriter class, 284
CharArrayWriter class, 286
DatagramSocket class, 399
DeflaterOutputStream class, 554
FileInputStream class, 293

FileOutputStream classes, 294
GZIPInputStream class, 555
GZIPOutputStream class, 555
InputStream Class, 299
JarOutputStream class, 549
OutputStream class, 312
PrintWriter class, 316
Reader class, 320
Socket class, 407
StringWriter class, 325
ZipOutputStream class, 560

closeEntryC)
ZipInputStream class, 559
ZipOutputStream class, 560

CodeSource class, 418, 426
CollationElementIterator class, 482
CollationKey class, 483
Collator class, 476, 483

RuleBasedCollator class, 494
collections, 145—147

arrays of, converting to objects, 146
classes for working with, 497—543
Collection interface, 508, 520
Collections class, 497, 509

elements of, searching/sorting, 146
immutable or unmodifiable, error,

375

Permission objects, 440
Collections methods, 146
coma in numeric values, 141
commando

Compiler class, 342
commentChar(), 323
comments, 10—11, 20

doc, 192~199

tags for, 194
Comparable interface, 341
Comparator interface, 497, 511
compareC)

CollationElementIterator class, 482
Collator class, 483
Comparator interface, 5 1 1

compareToO, 365
BigDecimal class, 391
Biglnteger class, 393
CollationKey class, 483
Comparable interface, 341

comparison operators, 36
compileClassO, 342

620 Index

Page 202 of 238

compileClasses(), 342
Compiler class, 342
compiling programs, 10
compoundstatements, 16, 44
compression and decompression of

data, 550—560
computing

factorials, 16
results, 14

concatO, 365
concatenating strings, 367
ConcurrentModificationException, 512,

519, 522

conditional (?) operator, 41
conditional AND (&&) operator, 37
conditional OR (I l) operator, 38
configuration files, Properties class

and, 146
connect()

DatagramSocket class, 399
PipedInputStream class, 313
PipedOutputStream class, 314
URLConnection class, 414

ConnectException, 398 ,
constants, capitalization/naming con-

ventions, 190

constrained properties, 180, 184-186,
258

changes, prohibiting, 261
conventions for, 184—186

constructors, 60, 88—90, 384
chaining, 98—100
classes, 381
default, 98
subclass, 97

containing
classes, 122
instances, 122

containment hierarchy, 123
containment protocol (JavaBeans), 187

contains()

BeanContextMembershipEvent
class, 269

Collection interface, 508
HashSet class, 517
TreeSet class, 539

containsAll() (Collection), 508

containsKey()
Map interface, 525
TreeMap class, 559

containsValueO (Map), 525
ContentHandler class, 398
ContentHandlerFactory interface, 398
continue statements, 53
conventions

capitalization, 189
documentation, 189—199
for portability, 190—192
for JavaBeans, 181—187
naming, 189

copy() (Collections), 510
countTokensO, 535
CRC32 class, 550, 552
createNewFileO (File), 291
createTempFileO (File), 291
CRL class, 461

(see also X509CRL class)

CRLEntry class, 464
(see also X509CRLEntry class)

CRLException, 462
CRLs, 457

parsing from byte streams, 460
cryptographic checksum (see message

digests)
cryptography, 137, 163—165, 168

algorithms, parameters for, 423
arbitrary-precision integers, using,

391

DSA and RSA public and private
keys, 466

Java Cryptography Extension (ICE),
419

javaxcrypto Package, 561—575
javax.crypto.interfaces Package,

576

keys, invalid, 431
keys/parameters, package for, 137
private key, 442
public and private key, 418
resources for further reading, 562
service provider, not available, 439
symmetric—key, 163
(see also encryption)

curly—brace characters (U)
in classes, 11
in main method, 13

Index 62]

Page 203 of 238

current()
BreakIterator class, 480
CharacterIterator interface, 481

currentThreadO (Thread), 570
currentTimeMillisC) (System), 569
Customizer class, 181
Customizer interface, 249, 251

D

data

compressing and writing to file,
155

' hiding, 104—110
streaming, 154

data accessor methods, 108-110

data types
primitive, 22—29, 352—555, 542, 345.

549, 551, 562
DataFormatException, 555
DatagrarnPacket class, 161, 595, 599
DatagramSocket class, 161,599
DatagramSocketImpl class, 400
DatagramSocketImplFactory interface,

401

DataInput interface, 287
DataInputStream class, 280, 288
DataOutput interface, 289
DataOutputStream class, 280, 289
Date class, 145, 497, 512
DateFormat class, 145, 476, 484
DateFormatSymbols class, 486
dates, 145 I
deadlock, 151
debugger for Java, 227—251
decimal places, specifying, 591
DecimalFormat class, 476, 487
DecimalFormatSyrnbols class, 488
declaring variables, 15
decodeO

Byte class, 552
Integer class, 549
Short class, 565
URLDecoder class, 416

decrement (—) operator, 55
decrypting data (see encrypting and

decrypting data)
decryption, 165

package for, 157
default constructor, 98

defaulted() (GetField), 505

defaultReadObject(), 504, 521
defaultWriteObjectO (ObjectOutput-

Stream), 507, 521
defineClass() (SecureClassLoader), 446
definePackageO (ClassLoader class),

559

defining
classes, 11
methods, 12

deflateO (Deflater), 555
Deflater class, 550, 555

DeflaterOutputStream class, 550, 554
delete()

File class, 291, 295

StringBuffer class, 566
deleteCharAt() (StringBuffer), 566
deleteEntryO (KeyStore), 456
deleteOnEXitO (File), 291

@deprecated doc—comment tag, 198
DESedeKeySpec class, 578
deserializing objects, 157
design patterns (see conventions)
DesignMode interface, 252
DESKeySpec class, 579 .
destroyO (Process), 558
DHGenPatameterSpec class, 580
DHKey interface, 576
DHParameterSpec class, 580
DHPrivateKey interface, 577
DHPrivateKeySpec class, 580
DHPublicKey interface, 577
DHPublicKeySpec class, 581
diagrams, class-hierarchy, 97
Dictionary class, 515
Diffie-Hellman key—agreement algo-

rithm, 567
parameters, generating set, 580
public/private keys, 157, 576, 578
three—party agreement, 568

digestO (MessageDigest), 427, 457
DigestInputStream class, 419, 427
DigestOutputStream class, 419, 427
digital signatures, 162, 169

classes for, 169
tool for, 225—225

digM), 555
directories, 155—154

622 Index

Page 204 of 238

disableO

Compiler class, 342
disconnect(), 402

DatagramSocket class, 399
displaying output, 14
division (/) operator, 34
do statements, 50
doc comments, 21, 192~199

{@link} doc-comment tag, 194
body of, 195
images in, 194
for packages, 199
spaces in, 194
structure of, 193
tags for, 195—199

documentation

conventions for, 189—199
tool for, 217—221

doFinalO

Cipher class, 564
Mac class, 571

DomainCombiner interface, 428
dontUseGui(), 263
doPhase() (KeyAgreement), 568
doPrivilegedO (AccessController), 422,

443

Double class, 140, 342
double data type, 342
double type, 14
doubleToLongBits(), 343
DSA and RSA public and private keys,

466

representing and encoding,
470—475

DSAKeyPairGenerator interface, 467
DSAParameterSpec interface, 471
DSAParams interface, 467
DSAPrivateKey interface, 468
DSAPrivateKeySpec interface, 471
DSAPublicKey interface, 468
DSAPublicKeySpec interface, 472
dynamic class loading, 148
dynamic loading, 147
dynamic method lookup, 102

E

elementAtO (Vector) , 540
elements()

Hashtable class, 518
Permissions class, 441
Vector class, 540

else if clause, 47
emacs text editor, 10
empty statements, 45
EmptyStackException, 514
enableC) (Compiler), 342

enableReplaceObjectO (ObjectOutput—
Stream), 322

enableResolveObjectO (ObjectOutput-
Stream), 322

encapsulation, 104—110
EncodedKeySpec interface, 472
encoding, 20

tool for, 234
encrypting and decrypting data,

561—575

encryption, 163
public-key, 162

package for, 137
(see also cryptography)

end users, security for, 173
endsWith(), 365
engineSetModeO (CipherSpi), 566
engineSetPaddingO (CipherSpi), 566
enqueueO (Reference), 378
ensureCapacityC)

ArrayList class, 502
Vector class, 541

entries(), 558
JarFile class, 547

Entry interface (Map), 526
entrySetO

AbstractMap class, 500
Map interface, 525—526
SortedMap interface, 533

enumerateC) (ThreadGroup), 372
enumerationO (Collections), 510
Enumeration interface, 514

Iterator interface vs., 519
EOFException, 290
eolIsSignificant(), 323
equality (==) operator, 36, 73
equalsO, 539—540, 542

Index 623

Page 205 of 238

equalsO (cont’cl)
Arrays class, 504
Collator class, 483
Comparator class, 342
Hashtable class, 518
Object class, 356

equalsIgnoreCaseO, 365
Error class, 328, 343

errors (see exceptions)
escape characters, 23
evaluation, order of, 33
event models, conventions/rules for,

192

EventLiStener interface, 180, 252

EventObject class, 180 '
events, 180

bean-context related, 268
conventions for, 185
EventListener, 515
EventObject class, 515
EventSetDescriptor class, 252
notifying of new service class, 270

examples in this book available
online, xv

@exception doc-comment tag, 195
exceptions, 17, 55—57

certificates, 459
Exception class, 328, 344
ExceptionInInitializerError, 344
Il1egalMonitorStateException, 347
Throwable interface, 328, 374

exec() (Runtirnc), 191, 295, 359
existsO (File), 291
exit()

Runtirne class, 359
System class, 369

exitValueO (Process), 358

export regulations (cryptographic
technology), 561

expressions, 29
combining, caution with, 35
statements, 44

extcheck utility, 204-206
Externalizable interface, 290

F

FeatureDescriptor class, 248—249,
252—253, 256

fields

capitalization/narning conventions,
190

classes, 381
defaults, 90—92
Field class, 384
FieldPosition class, 489
input, output, and error (system),

369
NOSuchFieldError, 354
NoSuchFieldException, 354
shadowing, 100

File class, 153
file protocol, 158
file separators, 200
file structure, 78
FilenameFilter interface, 294
filenames, 11

hardcoded, 192
files, 153—154

class, 79
File class, 280, 290
FileDescriptor class, 292
FileFilter interface, 293

FileInputStream class, 280, 293, 296
FilenameFilter interface, 280, 294
FileNameMap interface, 401
FileNotFoundException, 294
FileOutputStream class, 280, 294
FilePermission class, 295
FileReader class, 296
FileWriter class, 296
RandornAccessFile class, 280, 319

text, reading, 154
ZipFile class, 558

fillC)

Arrays class, 504
Collections class, 510

fillInStackTracd), 374
FilterlnputStream class, 280

CheckedInputStrearn class, 550
FilterOutputStrearn class, 280, 297
FilterReader class, 297
FilterWriter class, 298
final classes, 97

624 Index

Page 206 of 238

final methods, static method lookup
and, 103

finalization, 92—95

finalizeO (Object), 356
finalizers, 94

chaining and, 99
finally clause, 58
findClassO (ClassLoader), 339
findEditorO (PropertyEditorManager),

260

findResourceO (ClassLoader), 340
findResourcesO (ClassLoader), 340
firePropertyChangeO, 258, 260
fireVetoableChangeO, 262
first()

BreakIterator class, 480
Characterlterator interface, 480
SortedSet interface, 534

firstKeyO (SortedMap), 533
floating-point data types, 137, 141,

323, 391
Float class, 140, 328, 345

float’ToIntBitsO, 345
floatValueO, 345
flush(), 326

BufferedOutputStream class, 283
BufferedWriter Class, 284
CharArrayWriter class, 286
CipherOutputStream class, 566
DataOutputStream class, 289
OutputStream class, 312
PrintWriter class, 316
StringWriter class, 325

following() (Breaklterator), 480
for statements, 51
forClassO (ObiectStreamClass), 309
forDigit(), 333
format()

ChoiceFormat class, 481
DateFormat class, 485
Format class, 490
MessageFormat class, 490
NumberForrnat class, 492

Format class, 490
forNameO (Class), 337, 339
freeMemory(), 359
ftp: protocol, 158
functions (see methods)

G

garbage collection, 74, 92
OutOflVlemoryError, 357
system, 369
WeakHashMap class, 542

garbage collector, Java programs and,
377

gco, 359
System class, 369

gch), 393
GeneralSecurityException, 428
generateCertificatesO (CertificateFac—

tory), 460
generateCertificateO (CertificateFac-

tory), 460, 462
generateCRLs() (CertificateFactory),

460

generateCRLO (CertificateFactory),
460, 463

generateKeyO (KeyGenerator), 570
generateKeyPairO (KeyPairGenerator),

467

generatePararnetersO (AlgorithmPara—
meterGenerator), 422

generatePrivateO (KeyFactory), 432
generatePublicO (KeyFactory), 432
generateSecret()

KeyAgreement class, 568
SecretKeyFactory class, 574

generateSeed() (SecureRandom), 447
generating quick reference material,

xvi

genKeyPair() (KeyPairGenerator), 434
get(), 414, 500

Array class, 382
ArrayList class, 502
Calendar class, 506
Field class, 384
GetField class, 305
HashMap class, 516
Hashtable class, 518
LinkedList class, 520
List interface, 521
Map interface, 525
PhantomReference class, 378
Reference class, 378
ReferenceQueue class, 379
ThreadLocal class, 373

Index 625

Page 207 of 238

get() (cont’d)
TreeMap class, 559
WeakHashMap class, 542

get accessor method, 181
getAbsoluteFileO (File), 291
getAbsolutePathO (File), 291
getAddressO (InetAddress), 403
getAlgorithmO (Key), 431
getAllAttributeKeysO (AttributedChar—

acterIterator), 477

getAllByNameC) (InetAddress), 403
getAttribute() (AttributedCharacterIter—

ator), 477
getAttributes()

AttributedCharacterIterator inter-

face, 477
JarEntry class, 546
Manifest class, 549

getAvailableIDsO (TimeZone), 537
getAvailableLocales(), 524

Collator class, 483
NumberFormat class, 491

getBeanContextProxy() (BeanCon—
textProxy), 267, 270

getBeanDescriptorC), 250
getBeanInfoC), 255
getBeginIndex()

Characterlterator interface, 481
FieldPosition class, 489

getBooleanO, 332
getBuffer() (StringWriter), 325
getBundleO, 531
getByNameO, 403
getCanonicalFile() (File), 291
getCanonicalPathO (File), 291
getCenificateO (KeyStore), 435
getCertificateChainO (KeyStore), 435
getCertificatesO (IarEntry), 546
getCharacterInstanceO (BreakIterator),

479

getChecksum()
CheckedInputStream class, 551
CheckedOutputStream class, 552

getClass()
Class class, 337

Object class, 356
getClassName(), 527
getCollationElementIterator(), 482
getCollationKeyO, 483

Collator class, 484

getConstructor() (Class), 384
getContainerO (BeanContextContain—

erProxy), 268
getContentO

ContentI-Iandler class, 398
URL class, 412
URLConnection class, 414

getContentEncoding(), 414
getContentLength(), 414
getContentsO (ListResourceBundle),

523

getContentTypeC), 414
getContextO (AccessController), 419,

422

getCurrencyInstanceO (NumberFor—
mat), 491

getCurrentServiceClasses() (BeanCon-
textServices), 272

getCurrentSerViceSelectors()
BeanContextServiceAvailableEvent

class, 270
BeanConteXtServices interface, 272

getDateO (URLConnection), 414
getDateInstanceO (DateFormat), 484
getDateTimeInstanceO (DateFormat),

484

getDeclaringClassO
Field class, 384
Member interface, 386
Method class, 385

getDefaultO
Locale class, 524
TimeZone class, 537

getDefaultEventIndex(), 250
getDefaultPropertyIndex(), 250
getDisplay methods (Locale), 524
getEncoded()

AlgorithmParameters class, 423
Certificate class, 457
Key interface, 431

getEncodingC)
InputStreamReader class, 300
OutputStreamWriter class, 312

getEndIndexO
CharacterIterator interface, 481
FieldPosition class, 489

getEntriesO (Manifest), 549
getEntryO (ZipFile), 558
getenvO (Systems), 191

626 Index

Page 208 of 238

getEventSetDescriptors(), 250
getException() (PrivilegedActionEx-

ception), 443
getExceptiQnTypesO, 384, 387
getExpirationO, 414
getFD(), 292
getFieldO (ObjectStreamClass), 309
GetField class, 305

getFieldsO (ObjectStreamClass), 309
getFileO, 412
getFormatO

Key interface, 431
SecretKey interface, 573

getHeaderFieldO, 414
getHeaderFieldDateO, 414
getHeaderFieldInt(), 414
getHost(), 412
getIconC) (SimpleBeanInfo), 250
getIDO (TimeZone), 537
getIndexC)

CharacterIterator interface, 481
ParsePosition class, 493

getlnetAddress<)
DatagramSocket class, 399
Socket class, 407

getInfoO (Provider), 444
getInputStreamO

JarFile class, 547
Process class, 358
Socket class, 407
URLConnection class, 414
ZipFile class, 558

getInstance()
AlgorithmParameterGenerator class,

422

Calendar class, 506, 516
CertificateFactory class, 460
Cipher class, 563
Collator class, 483, 494
DateFormat class, 485
KeyAgreement class, 567
KeyGenerator class, 569-570
KeyPairGenerator class, 434, 467
KeyStore class, 435
Mac class, 570
MessageDigest class, 437
SecretKeyFactory class, 573
SecureRandorn class, 446
Signature class, 448

getInstanceOfO , 251

getlnstanceO
CertificateFactory class, 460
Collator class, 140, 483, 494
DateFormat class, 485
KeyPairGenerator interface, 467
NumberForrnat class, 491

getlnt()
Array class, 382

getIntegerO, 349
getlnterfaces(), 337
getInvocationHandlerO (Proxy), 389
geflSOCountriesO (Locale), 524
getISOLanguagesO (Locale), 524
getIteratorC) (AttributedStrlng), 479
getIV() (Cipher), 564
get]arEntry() OarFile), 547
getKeyC), 527

Entry interface, 526
KeyStore class, 435

getKeys()
ListResourceBundle class, 523
ResourceBundle class, 531

getKeySpecC)
KeyFactory class, 452
SecretKeyFactory class, 574

getLastModified(), 414
getLengthC) (Array), 383
getLineInstanceO (BreakIterator), 479
getLineNumberO (LineNumber—

Reader), 302
getLocalHostO (InetAddress), 403
getLocalPort(), 399

Socket class, 407
getLong(), 351
getMacLengthO (Mac), 571
getMainAttributesO (Manifest), 549
getManifest()

JarFile class, 547
JarInputStream class, 548

getMessageO
Error class, 343
Exception class, 344
Throwable interface, 374
WriteAbortedException, 326

getMethodO (Class), 387
getMethodDescriptorsO, 250
getModifiers(), 388

Field class, 384
Member interface, 386

Index 627

Page 209 of 238

getModulusO (RSAKey), 468
getNarneO

Class class, 337
Field class, 384
File class,» 291
Member class, 386
Member interface, 386
Provider class, 444

getNeXtEntryO
JarInputStream class, 548
ZipInputStream class, 559

getNextJarEntry() (IarInputStream),
548

getNextUpdateO (X509CRL), 463
getObjectO

GuardedObject class, 429
ResourceBundle class, 531
SealedObject class, 572
SignedObject class, 450

getObjectStreamClassO (GetField), 305
getOffset() (TimeZone), 537
getOptionO (SocketOptions), 410
getOutputSize() (Cipher), 564
getOutputStrearn()

Process class, 358
Socket class, 407
URLConnection class, 414

getPackage()
ClassLoader class, 339

Package class, 357
getPackagesO (Package), 357
getParametersO (Cipher), 564
getParameterTypes(), 384, 387
getParamsO (DHKey), 576
getParentO

File class, 291
ThreadGroup class, 372

getParentFileO (File), 291
getPasswordO (PasswordAuthentica-

tion), 406
getPasswordAuthenticationO (Authen—

ticator), 396 '
getPathO (File), 291
getPercentInstance() (NumberFormat),

491

getPermissionO, 421
getPermissions()

Policy class, 441
SecureClassLoader class, 446

getPolicyO (Policy), 441, 448

628 Index

getPortO, 412
DatagramSocket class, 399
Socket class, 407

getPropagatedFromO (BeanContex—
tEvent), 268

getPropertyO
Properties class, 528
System class, 368
System interface, 529

getPropertyDescriptorsO, 250
getProtectionDomainO (Class), 444
getProtocol(), 412
getProvidersO (Security), 448
getProxyClassC) (Proxy), 388
getPublicKey()

Certificate class, 457
X509Certificate class, 462

getRefO, 412
getRequesting(), 397
getResource(), 188

BeanConteXt interface, 264
ClassLoader class, 339

getResourceAsStrearnO, 188
BeanCoritext interface, 264
ClassLoader class, 339

getResourcesO (ClassLoader), 339
getResponseCode(), 402
getResponseMessageC), 402
getReturnTypeC), 387
getReV0kedCértificateO (X509CRL),

465

getRunLimitO (AttributedCharacterIter—
ator), 477

getRunStartO (AttributedCharacterIter—
ator), 477

getRuntirneO, 359
getSecurityManagerO (System), 369
getSentenceInstanceO (Breaklterator),

479

getSerialVersionUID()(ObjectStream-
Class), 309

getService(), 188
BeanContextServiceProvider inter-

face, 270
BeanContextServices interface,

272—273

getServiceClass()
BeanConteXtServiceAvailableEvent

class, 270

Page 210 of 238

getServiceClassO (Cont’d)
BeanConteXtServiceRevokedEvent

class, 271 _
getServicesBeanInfoC) (BeanCon—

textServiceProviderBeanInfo)
271

getSourceO (EventObject), 515
getSourceString()

CollationKey class, 483

getSpecificationVersionO (Package),
357

getStringO (ResourceBundle) , 531"
getStringArrayO (ResourceBundle),

531

getSubjectDNO (X509Certificate), 457,
462

getSuperclassO, 337
getTargetExceptionO (InvocationTar-

getEXception), 386
getThisUpdateO (X509CRL), 463
getThreadGroupO (Thread), 370
getTimeInstanceO (DateFormat), 484
getTirneZoneO (TimeZone), 537
getType()

Character class, 333
Field class, 384

getUndeclaredThrowableO (Unde-
claredThrowabIeException),
389

getValueO
CheckedInputStream class, 551
CheckedOutputStream class, 552
Checksum interface, 552
Entry interface, 526

getVersionO (Provider), 444
getWordInstanceO (Bre'akIterator), 479
getXO (DHPrivateKey), 577
getYO (DHPublicKeY), 577 .
graphical user interfaces (see GUIs)
greater than (>) operator, 37
greater than/equal to (=>) Operator, 37
GregorianCalendar class, 516
Group interface, 455
Guard interface, 428
GuardedObject class, 419, 429
guessContentTypeFromNarne() (URL-

Connection), 401

7

GUIs

beans, specifying need for , 263
components, 178

GZIPInputStream class, 555
GZIPOutputStream class, 555

H

halt(), 359

handleGetObject()
ListResourceBundle class, 523
ResourceBundle class, 531

hardcoded filenames, conventions/
rules for, 192

hasChangedO (observable), 527
hashCode()

Hashtable class, 518
Object class, 356

HashMap class, 145, 516
HashSet class, 517
Hashtable Class, 518
hasMoreElements()

Enumeration class, 514
StringTokenizer class, 535

hasMoreTokensO (StringTokenizer),
535

hasNeXIO, 501
Iterator class, 497
Iterator interface, 519
Listlterator interface, 522

hasPreviousO, 501
ListIterator interface, 522

hasServiceO, 188
BeanContextSerVices interface, 272

headMapO (SortedMap), 533
headSetO (SortedSet), 534
hierarchy

class, 123
containment, 123

HTML tags in doc comments, 192, 194
http: protocol, 158 .
HttpURLConnection class, 402

I

identifiers, 21
identity certificates (see certificates)
Identity class, 429
identityHashCodeO (System), 369
IdentityScope class, 430
if/else statements, 46

IllegalAccessErtor, 346

Index 629

Page 211 of 238

IllegalAccessException, 346
IllegalArgumentException, 346
IllegalBlockSizeException, 567
lllegalMonitorStateException, 347
IllegalStateException, 347
IllegalThreadStateException, 347
images in doc comments, 194
implementations, 131

conventions/rules for, 191
impliesC)

AllPermission class, 425
BasicPermission class, 425
CodeSource class, 426
Permission class, 439
PermissionCollection class, 440
Permissions class, 441
ProtectionDomain class, 444

Inc0mpatibleClassChangeError, 347
increment (++) operator, 33, 35
inDaylightTimeO (TimeZone), 537
index(), 501
indexed properties, 180
IndexedPropertyDescriptor class, 254
indexOfO

List interface, 521

String class, 365
IndexOutOfBoundsException, 348
InetAddress class, 395, 403
inflateO (Inflater), 556

Inflater class, 550, 556
InflaterInputStream class, 550, 556
InfoBus standard extension, 179
InheritableThreadLocal class, 348
inheritance, 95—104

vs. scope for member classes, 123
init()

Cipher class, 564
KeyAgreement class, 568
KeyGenerator class, 569
Mac class, 571

initialization vectors (Cipher), 564, 581
initializeO (KeyPairGenerator), 434,

467
initializeBeanConteXtResources()

(BeanConteXtChildSupport),
' 267

initializers, 90-92

ExceptionlnlnitializerError, 344
IllegalAccessException, 346

initialValueO (ThreadLocal), 373

630 Index

initSignC) (Signature), 449
initVerifyO (Signature) , 449
inner classes, 117

how they work, 130—132
input

parsing, 13
reading lines of, 154
valid, checking for, 15

input streams, 154—158
BufferedlnputStream class, 280, 282
ByteArrayInputStream class, 280,

284

CheckedlnputStream class, 550
CipherInputStream class, 566
DataInputStream class, 280, 288
FileInputStream class, 280, 293, 296
FilterInputStream class, 280
GZIPInputStream class, 555
InflaterInputStream class, 550, 556
InputStream class, 280, 299
InputStreamReader class, 300
JarInputStream class, 548
LineNumberInputStrearn class, 302
ObjectlnputStream class, 282, 304
package for, 136
PipedInputStream class, 280, 313
PushbacklnputStream class, 318
SequenceInputStream class, 321
StreamCorruptedException, 322
system, 369
ZipInputStream class, 559

input strings
StringBufferInputStream class, 324

InputStream class, 154
insert() (StringBuffer), 366
insertProviderAtO (Security), 444
instance fields, 85
instance methods, 85-88
instanceof operator, 42
instantiate(), 248

Beans class, 251
instantiateChildO (BeanContext), 264
InstantiationError, 349
InstantiationException, 349
int data type, 349
intBitsToFloat(), 345

Integer class, 140, 328, 349
integers, 24

arbitrary-precision, math, 391

Page 212 of 238

integers (cont’d)
BigInteger class, 393

interfaces, 112—116

capitalization/naming conventions,
189

defining, 112
extending, 116
implementing, 113
InstantiationError, 349
marker, 116
multiple, implementing, 116
using/when to use, 114

InternalError, 350
internationalization, 8

applications, package for, 137
interrupt()

Thread class, 370
ThreadGroup class, 372

InterruptedException, 350
IntermptedIOException, 300, 400, 407
introspection (JavaBeans), 180
IntrospectionException, 254
Introspector class, 180, 248, 250, 255
InvalidClassException, 300
InvalidKeyException, 431
InvalidKeySpecException, 472
InvalidObjectException, 301
InvalidParameterException, 431
InvalidParameterSpecException, 473
InvocationHancller interface, 381, 385
InvocationTargetException, 386
invokeC), 387, 389

InvocationHandler interface, 385
invoking methods, 12

' IOException, 301
isAbsolute() (File), 291
isAbstract(), 388
isAliveO (Thread), 370

isCompatibleWithO (Package), 357
isCurrentSerViceInvalidNow() (Bean—

ContextServiceRevokedE—

vent), 271
isDesignTirneO, 188, 251
isDirectoryC) (File), 291
isEmpty()

Collection interface, 508
Map interface, 525

isEnqueuedO (Reference), 378
isFileO (File), 291
isGuiAvailableO, 251

isHiddenO (File), 291
isInfinite()

Double class, 342
Float class, 345

isInstanceOf() (Bean), 251
isInterface() (Class), 337
isInterrupted() (Thread), 370
isNaN()

Double class, 342
Float class, 345

isProbablePrimeC), 593

isPropagatedO (BeanContextEvent),
268

isProxyClassO (Proxy), 389
isPublicO, 388
isRevokedO (CRL), 461, 463
isSealedO (Package), 357
iterations, 17
iterat0r(), 534

AbstractCollection class, 497
BeanContextMembershipEvent

class, 269
List interface, 521
Set interface, 526

Iterator interface, 145, 497, 519
IvParameterSpec class, 581

J

J2EE (Java 2 Platform, Enterprise Edi—
tion), 6

JAR files, 169
archive, conventions for, 187
classes for reading and writing

files, 544—549
files, retrieving, 404
manifest, format of, 544
package for, 137
tools for, 204—208

JarEntry class, 544, 546
JarException, 547
JarFile class, 544, 547
JarInputStream class, 544, 548
JarOutputStream class, 544, 548
jarsigner tool, 206—208
JarURLConnection class, 404, 544
Java, 3—8

benefits of, 6—8
vs, C programming language, 8, 80

Index 631

Page 213 of 238

Java (cont’d)
vs, C++ programing language, 8,

80, 82
case sensitivity, 10
files, 153—154
learning, 20
object—oriented programming in,

82-135

performance, 8
programmers and, 4
version 10, 5

access control, 168
version 11, 5

classes, digitally signed, 169
security and, 167

version 12, 5
access-control architecture, 170
array—manipulation methods,

144

collections, 145
File class, 155
permissions/policies, 170
policy file, additional, 173
programs, running, 79

version 1.5, 6
Java 2 Platform, 5

Enterprise Edition, 6
Micro Edition, 6
security, 7

Java Activation Framework standard
extension, 179

Java API, 14, 166
Java Cryptography Extension (ICE),

168, 419, 561
Java Development Kit (see SDK)
.java file extension, 78
Java in a Nutshell, companion books,x1

Java interpreter, 4, 208—215
InternalError, 350
Java program, 10
OutOfMemoryError, 357
running programs, 79
StackOVerflOWError, 363

Java platform, 4, 156—165
Standard Edition, 6

Java Plug—in, 6
Java programming

commercial products for, 9
conventions for, 189—199

632 Index

example program, 9—18
language, 3
online resources, xiv
online tutorial, 17
programs

classes and, 11
compiling, 10
running, ‘10

syntax, 19—81
Java Runtime Environment (see JRE)
Java Virtual machine

UnknownError, 374
VirtualMachineError, 376

Java VM (Java Virtual Machine), 4
Microsoft implementation, security

and, 167
security, 167

javaawt package, 178
java.awt.peer package, conventions/

rules for, 191
JavaBeans API, 178—188

BeanDescriptor class, 249
Beanlnfo interface, 250
beans, 178
Beans class, 251
components, 178
conventions for, 179, 181—187
Customizer interface, 251
EventSetDescriptor class, 252
Feature Descriptor class, 253
IndexedPropertyDescriptor class,

254

IntrospectionException, 254
Introspector class, 255
MethodDescriptor class, 255
objects, package for, 136
ParameterDescriptor class, 256
PropertyChangeEvent class, 256
PropertyChangeListener interface,

257

PropertyChangeSupport class, 258
PropertyDescriptor class, 258
PropertyEditor interface, 259
PropertyEditorManager class, 260
PropertyEditorSupport class, 260
PropertyVetoException, 261
SimpleBeanInfo class, 261
VetoableChangeListener interface,

256,262

Page 214 of 238

JavaBeans API (cont’d)
VetoableChangeSupport class, 262
Visibility interface, 263

javabeans package, 136, 178, 248—263 I
javabeansbeancontext packages, 136,

178, 181, 187, 264—279
javac compiler, 10, 213—216
javadoc program, 21, 217-221

HTML documentation, creating, 192
javah program, 221
java.io package, 136, 154, 156—157,

2804327

objects, serializing/deserializing,
157

javakey program, 169, 223—225
javalang package, 136, 140, 328—376
java.lang.ref package, 136, 377—380
java.lang.reflect package, 137, 147,

381—390

java.math package, 137, 142, 391—394
. java.net package, 137, 158, 595-417
javap Class disassembler, 225—227
java.policy file, 172 V
java.security package, 137, 156, 161,

165, 169, 418—452
javasecurityacl package, 137, 453—456
javasecuritycert package, 137,

457—465

javasecurityjnterfaces package, 137,
466—469

javasecurityspec package, 137,
470—475

java.text package, 137, 476—496
java.util package, 137, 145, 497—543
java.util.jar package, 137, 544—549"
javautilzip package, 137, 155,

550—560

javaxactivation package, 179
javaxcrypto package, 137, 163, 168,

561—575

javaxcryptointerfaces Package, 137,
576

javaxcryptospec package, 137,
578—583

javaxinfobus package, 179
javaxswing package, 178
JCE (lava Cryptography Extension),

168, 419, 561
jdb debugger, 227—251
JDK (see SDK)

JIT compiler, 4, 342
joinO (Thread), 151, 570
joinGroupO (MulticastSocket), 405
JRE (Iava Runtime Environment), 6
just-in—time GIT) compilation, 4
JVM (see Java VM)

K

Key interface, 431
key—agreement algorithms, 567
KeyAgreement class, 567
KeyAgreementSpi class, 569
KeyException, 432'
KeyFactory class, 432
KeyFactorySpi class, 433
KeyGenerator class, 561, 569
KeyGeneratorSpi class, 570
KeyPair class, 434
KeyPairGenerator class, 418, 434
KeyPairGeneratorSpi class, 435
keysC) (Hashtable), 518
keys (cryptography)

DES key, 579
secret keys (symmetric), generat-

ing, 569
SecretKey interface, 573
triple-DES key (DESede), 578

keySet()
Map interface, 525
SortedMap interface, 533

KeySpec interface, 473
keystore, 231
KeyStore class, 418, 429, 435, 451
KeyStoreException, 436
KeyStoreSpi class, 437 4
keytool program, 163, 231~234

L

labeled statements, 45
language constructs, ’42
languages

European, numbers in, 141
lexically scoped, 126
non—English, 8
pass-by-reference, 74
pass—by-Value, 74

Page 215 of 238

last()
BreakIterator class, 480
CharacterIterator interface, 480
SortedSet interface, 534

last-in-first—out (LIFO) stacks, 535
lastIndexOfO, 365

List interface, 521

lastKey() (SortedMap), 533
lastModifiedO (File), 291
LastOWnerException, 455
leaveGroupO (MulticastSocket), 405
left shift (<<) operator, 39
left»to—right associativin, 31
legacy collections, 146
lengthO

File class, 291

String class, 365
less than (<) operator, 37
less than/equal to (<=) operator, 37
lexical scoping, 126
java.policy file, 172
LIFO (last-in-first—out) stacks, 535
line separators, conventions/rules for,

192

linen0(), 323
LineNumberInputStream class, 302
LineNumberReader class, 302
lines, blank, 15
{@link} doc-comment tag, 194, 197
LinkageError, 351
LinkedList class, 520
list()

File class, 291, 294
Properties class, 528

List interface, 497, 501, 520—521, 541
listeners ‘

BeanConteXtMembershipListener
interface, 269

BeanConteXtServiceRevokedLis—

tenet, 272
BeanConteXtServicesListener, 274
EventListener, 515

managing list of, 260
PropertyChangeListener interface,

248, 252, 257
TooManyListenersException, 538
VetoableChangeListener interface,

256, 262
listFilesO (File), 291
ListIterator interface, 145, 497, 522

listIterator()

AbstractSequentialList class, 501
List interface, 521

ListResourceBundle class, 523
listRoots() (File), 291
lists, 145
literals, 29
load()

KeyStore class, 435
Properties class, 528
Runtime class, 359

loadClassO
ClassLoader class, 339
URLClassLoader class, 413

loadImageO (SimpleBeanInfo), 261
loadLibraryO, 359

System class, 369
load() (System), 369
local classes, 117, 124—127

implementation, 132
local variable scope and, 126
restrictions on, 125

scope of, 126
local variables, 45

capitalization/naming conventions,
190 '

scope of, 126
Locale class, 524
locks on objects, 151
Long class, 140, 328, 351
longBitsToDoubleO, 343
lookupO (ObjectStreamClass), 309
looping, 16
lowerCaseModeO, 323

M

MAC, 561, 570
(see also Mac class)

Mac class, 561, 570
MacSpi class, 572
mainO method, 12
MalformedURLException, 404
Manifest class, 549
Map interface, 497, 525

Entry interface, 526
SortedMap interface, 533
Tree-Map class, 539
WeakHashMap Class, 542

634 Index

Page 216 of 238

mapLibraryNameO (System), 569
maps, 145
mark()

CertificateFactory class, 460
CharArrayReader class, 286
InputStream class, 299
Reader class, 320

StringReader class, 324
marker interfaces, 116
markSupportedO

InputStream class, 299
Reader class, 320

math, 140—145
Math class, 142, 528, 552

ArithmeticException, 330
maXO (Collections), 510
member classes, 117, 119—125

implementation, 131
scope vs. inheritance, 125
(see also inner classes)

Member interface, 386
members, 11

access to, 106
rules, list of, 108

of classes, 82—88
members (class), 581
memory

allocation, 74
leaks, 93
OutOfMemoryError, 357
Runtime class and, 359

message authentication code (see
MAC ; Mac class)

message digests, 156, 161, 168
MessageDigest class, 418, 437
MessageDigestSpi class, 438
MessageFormat class, 476, 490
messages, checking for tampering

With, 161
method invocation (O) operator, 43
method parameters, 12
methods, 59—61, 110—112

AbstractMethodError, 528
capitalization/naming conventions,

190

classes, 381
Collections, 146
data accessor, 108—110
defining, 12
end of, 15

final, static method lookup and,
103

IllegalAccessError, 346
IllegaLArgumentException, 546
IllegalStateException, 547
JavaBeans and, 180, 186
mainO , 12
Method class, 587
MethodDescriptor class, 255
NoSuchMethodError, 354 .

NoSuchMethodException, 354
overriding, 101—104

invoking overridden, 103
parameters for, 12
synchronized, 151
unsupported, error, 375

Microsoft Windows (95/98/NT), SDK
for, 9

MIME types, 398, 401
min() (Collections), 510
MissingResourceException, 527
mkdirC) (File), 291
mkdirs() (File), 291
Modifer class, 381
modifiers, 11

list of, 132—134
Modifier class, 388

modInverse(), 393
modPow(), 593

modulo (%) operator, 34
MS-DOS Window, 10
MulticastSocket class, 395, 405
multidimensional arrays, 68
multiline comments (/* */), 11, 20
multiple interfaces, 116
multiplication (*) operator, 34

N

Name class, 546
namespace, 76-78
naming conventions, 189
narrowing conversions, 27
native methods

conventions/rules for, 190
tool for, 221

native2ascii program, 254
nCopiesO (Collections), 510
needsGuiO, 263 '

Index 635

3,,'5’”,
2

W22“5%

’4J,
,WIQZZ’M

m/

Page 217 of 238

NegativeArraySizeException, 353
NetPermission class, 405
network-centric programming, 7
networking, 158—161

java.net Package, 395—417
package for, 137

new operator for object creation, 43
newInstanceO, 337

Array class, 383
Constructor class, 384
URLClassLoader class, 413

newLineC) (BufferedWriter), 284
newPermissionCollectionC) (Permis-

sion), 440
newProxyInstanceO (Proxy), 389
nextO, 501

CharacterIterator interface, 480
CollationElementIterator class, 482
Iterator class, 497
Iterator interface, 519
ListIterator interface, 522

neXtBoolean() (Random), 530
neXtBytesO

Random class, 530
SecureRandom class, 447

neXtDouble(), 530
nextElementC)

Enumeration class, 514
StringTokenizer class, 535

nextFloatO, 530
nextGaussianO, 530
nextIndeXO (ListIterator), 522
neXtInt(), 530
neXtLongO, 530
nextTokenO, 323

StringTokenizer class, 535
NoclassDefFoundError, 353

NoRouteToHostException, 406
NOSuchAlgorithmException, 439
NoSuchElementException, 522, 527
NoSuchFieldError, 354
NoSuchFieldException, 354
NoSuchMethodError, 354
NoSuchMethodException, 354
NoSuchPaddingException, 572
NoSuchProviderException, 439
not equals (!=) operator, 36
NotActiveException, 303
Notepad, 10
notifYO (Object), 152, 547, 556, 370

notifyAllO (Object), 356
NotOWnerException, 455
NotSerializableException, 303
null reference, 74
NullCipher class, 572
NullPointerException, 355
NumberForrnat class, 476
numbers, 140—143, 530

comparing (Comparator class), 511
DateFormat class, 484
DecimalFormat class, 487
Enumeration class, 514
Number class, 355
NumberFormat class, 491
NumberFormatException, 355
SimpleDateFormat class, 494

numeric values, 141

0

Object class, 328
object classes, 97
object creation, operator for, 43
object identifier (OID), 464
object literals, 63
object member access 0 operator, 42
object serialization

Externalizable interface, 290
NotSerializableException, 303
ObjectInput interface, 303
ObjectInputStream class, 282, 304

GetField class, 305

ObiectInputValidation class, 306
ObiectOutput interface, 306
ObjectOutputStream class, 282, 307

PutField class, 308
ObjectStrearnConstants interface,

310

ObjectStreamException, 311
ObjectStreamField class, 311
SealedObject class, 572
Serializable interface, 321

object-oriented programming, 82—135
objects, 61—64

AccessibleObject class, 381
arrays of, converting to collections,

146

collections of, 145
package for, 137

656 Index

Page 218 of 238

objects (cont’d)
comparing, 73
copying, 71
creating, 62, 88—92
destroying, 92—95
finalizing, 92—95
initializing, 88—92
InvalidObjectException, 501
NullPointerException, 355
Object class, 356
serializing/deserializing, 157
threads and, 151

using, 64
ObjectStreamClass class, 309
observable class, 527
Observer interface, 528
of() (UnicodeBlock), 335
CID (object identifier), 464
okToUseGuiO, 263
on()

DigestInputStream class, 427
DigestOutputStream class, 427

openConnectionO
HttpURLConnection class, 402
URL class, 412
URLStreamHandler class, 416

openStreamO (URL), 412
operands, 17

list of, 30
number/type, 32

operators, 16, 29-34
arithmetic, 34
list of, 50
special, 42

OptionalDataEXception, 312
order of evaluation, 33
ordinaryChar<), 523
ordinaryCharsO, 323
OutOflVlemoryError, 357
output, displaying, 14
output streams, 154—158

BufferedOutputStream class, 280,
283

ByteArrayOutputStream class, 280,
285

CheckedOutputStream class, 551
CipherOutputStream class, 566
DataOutputStream class, 280, 289

DeflaterOutputStream class, 550,
554

FileOutputStream class, 280, 294
FilterOutputStream class, 280, 297
GZIPOutputStream class, 555
JarOutputStream class, 548
ObjectOutputStream class, 282, 307
OutputStream class, 280, 312
OutputStreamWriter class, 312
package for, 136
PipedOutputStream class, 280, 314
StreamCorruptedException, 322
system, 369
ZipOutputStream class, 560

OutputStream class, 154
overriding

methods, 101—104
overrides, 101
vs. shadowing, 102

overviewhtml file, 199
Owner interface, 455

P

Package class, 357
packagehtml file, 199
packages, 4, 76—78, 136

access to, 105
capitalization/naming conventions,

189

defining, 76
doc comments for, 199
importing, 77
key, list of, 136
names, unique, 78
not documented in this book, 137

packets of data, 161
padding schemes (cryptography), 572

SunJCE cryptographic provider,
supporting, 564

@param doc-comment tag, 195
ParameterDescriptor class, 256
parameters, 12

capitalization/naming conventions,
190

parentheses O
in expressions, 33

for method parameters, 12
parse(), 493

Index 63 7

Page 219 of 238

parseO (cont’d)
DateFormat class, 485
MessageFormat class, 491
NumberFormat class, 492

parseByteC), 332
ParseException, 493
parseInt(), 14, 349
parseLongO, 351
parseNumbers(), 323
parseObjectO, 495

DateForrnat class, 485
Format class, 490
NumberFormat class, 492

ParsePosition class, 493
parseShort(), 365
parsing

input, 13
integers, 14

pass—by—reference languages, 74
pass-by—value languages, 74
PasswordAuthentication class, 406
password-based encryption (PBE), 581
passwords, authenticating, 395
path separators, 200
PBE (password-based encryption), 581
PBEKeySpec class, 581
PBEParameterSpec class, 581
PBEWithMDSAndDES algorithm, 564
peekO, 535
performance, 8
Permission class, 171, 439
Permission interface

javasecurityacl Package, 456
PermissionCollection class, 440
permissions, 170

accessing local filesystem, 295
classes/subclasses, 173—177
delayed resolution of, 452
NetPermission class, 405
PropertyPerrnission class, 529
ReflectPermission class, 389
restricted, 7
serialization features, 322
SocketPermission class, 410

URLClassLoader class, 413
Permissions class, 418, 441
PhantomReference class, 377-378
PipedlnputStream class, 157, 280, 313

638 Index

PipedOutputStream class, 157, 280,
314

PipedReader class, 157, 314
PipedWriter class, 157, 315
PKCS#5 (password-based encryption

algorithm), 581
PKCS8EncodedKeySpec interface, 473
platforms, 4

(see also Java platform)
pleaseStopO method, 150
policies, '170
Policy class, 170, 418, 441
policytool program, 170, 172, 235
poll() (ReferenceQueue), 379
pop(), 535 .
portability

certification program, 192
conventions, 190—192

post—increment operator, 35
precedence, 31
pre-increment operator, 35
preVC) (Characterlterator), 480
previousC), 501 _

Breaklterator class, 480
Listlterator interface, 522

previouslndexO (ListIterator), 522
primary expressions, 29
primitive data types, 22—29

boolean, 332
char, 333
double, 342
float, 345
int, 349
long, 351
short, 362

Principal interface, 442
print()

PrintStream class, 315
PrintWriter class, 316

printlnC), 155, 369
PrintStream class, 315
PrintWriter class, 316

printStackTraceO, 374
PrintStream class, 315
PrintWriter class, 282, 316
priority levels, 149
private key encryption, 418, 577

Diffie—Hellman private key, 580
DSA private key, 468

Page 220 of 238

private key encryption (cont’d)
RSA private key, 468

private keys, 162
tool for, 231

PrivateKey interface, 442
DSA, casting to, 468
RSAPrivateCrtKey, casting to, 468

PrivilegedAction interface, 443
PrivilegedActionException, 443
PrivilegedExceptionAction, 443
procedures (see methods)
Process class, 161, 328, 358
processes, 161
programmers

application, security for, 172
beans, using, 179
Java and, 4, 8
system, security for, 171

programming, 7
network—centric, 7

(see also Java programming)
programs

complete, conventions/rules for,
192

defining, 79
running, 79

properties, 110
Properties class, 528
PropertyChangeEvent class, 248,

252, 256
PropertyChangeListener interface,

248, 252, 257
PropertyChangeSupport class, 258
PropertyDescriptor class, 258
PropertyEditor interface, 259
PropertyEditorManager class, 260
PropertyEditorSupport class, 260
PropertyPermission class, 529
PropertyResourceBundle class, 530
PropertyVetoException, 261

Properties class, 146
properties (JavaBeans), 179

constrained, 184-186
conventions for, 182
indexed, 183

conventions for, 183
PropertyChangeEvent class, 266
propertyNamesO, 528
PropertyVetoException, 266—267
ProtectionDomain class, 418, 444

ProtocolException, 406
Provider class, 444
ProviderException class, 445
Proxy class, 381, 388
pseudo—random numbers, 142, 418,

446, 550
Cipher class, 564

public key encryption, 162, 418, 577
Diffie—Hellman public key, 581
DSA public key, 468
entities, 429
package for, 137
RSA public key, 469
tool for, 231

public static void declaration, 12
PublicKey interface, 445

RSA, setting to, 466
RSAPublicKey, casting to, 469

pushC), 535
pushBackC), 323
PushbackInputStream class, 318
PushbackReader class, 318
putO

AbstractMap class, 500
HashMap class, 516
Hashtable class, 518
Map interface, 525
Properties class, 528
TreeMap class, 539

putAll() (Map), 525
PutField class, 308
putFields() (Object(ObjectOutput—

Stream), 307
putNextEntryO

JarOutputStrearn class, 549
ZipOutputStream class, 560

Q

quick reference material, generating,
xvi

quoteCharO, 323

R

radians, 142
Random class, 142, 497, 530
RandomAccessFile class, 154, 280, 319
RCZParameterSpec class, 582

Index 639

Page 221 of 238

RC5ParameterSpec class, 582
read(), 548

CheckedInputStream class, 551
DataInputStream class, 288
DigestInputStream class, 427
FileInputStrearn class, 293
FilterInputStream class, 280
GZIPInputStream class, 555
InflaterInputStream class, 556
InputStream class, 299
Manifest class, 549
Reader class, 320
Socket class, 407

ZipInputStream class, 559
Reader class, 154
readers

BufferedReader class, 282—283

CharArrayReader class, 286
FileReader class, 296
FilterReader class, 297
InputStreamReader class, 300
LineNumberReader class, 302

PipedReader class, 314
PushbackReader class, 318
Reader class, 282, 320

StringReader class, 324
readExternalO, 290
readFieldsO (ObjectInputStream),

304—305

readFullyC) (DataInputStream), 288
readLine()

BufferedReacler class, 282-283
DatalnputStream class, 288
LineNurnberReader class, 302

readObjectO
ObjectInputStream class, 304—306,

321

OptionalDataException, 312
Serializable interface, 303

readUnsignedByteC) (DataInput—
Stream), 288

readUnsignedShortC) (Datalnput-
Stream), 288

readUTF() (DatalnputStream), 288
readyO (Reader), 320
receiveC) (DatagramSocket), 399
rectangular arrays, 69
Reference class, 377—378

reference types, 28, 70—76
conversions, 75

ReferenceQueue class, 377, 379
references, 70

null, 74
referent, 377
reflection, 147

package for, 137
ReflectPermission class, 389
refreshO (Policy), 441
registerEditor (PropertyEditorMan—

ager), 260
registerValidationC) (Objectlnput-

Stream), 304, 306
releaseBeanContextResources()

(BeanContextChildSupport),
267

releaseServiceO
BeanContextServiceProvider inter-

face, 270
BeanContextServices interface, 272

remove()
AbstractList class, 500
AbstractMap class, 500
BCSIterator class, 279
Collection interface, 508
HashSet class, 517
Hashtable class, 518
Iterator class, 497
Iterator interface, 519
LinkedList class, 520
List interface, 521
ListIterator interface, 522
Map interface, 525
ReferenceQueue class, 379
TreeMap class, 559
TreeSet class, 539

removeAllO (Collection), 508
removeElementAtO (Vector), 540
removePropertyChangeListener(), 252,

260

removeShutdownHook(), 359
renameToC) (File), 291
repetitive tasks, threads for, 150
replaceO (StringBuffer), 365
requestPasswordAuthentication()

(Authenticator), 396, 405
reserved words, 22
resetC)

ByteArrayOutputStream class, 285
CertificateFactory class, 460

640 Index

Page 222 of 238

reset() (cont’d)

CharArrayReader class, 286
CharArrayWriter class, 286
Checksum interface, 552
InputStream class, 299
MessageDigest class, 437
Reader class, 320

StringReader class, 324
resetSyntaxO, 323
ResourceBundle class, 497, 551

Java programming
books, xiii

language, 19
tutorial, 17
web sites, xiv

javaBeans API event model, 180

portability certification program
(Sun), 192

quick reference material, generat-
ing, xvi

RMI tool, 200
security, 172
standard extensions, 137

restrictions

on anonymous classes, 129
on local classes, 125
on member classes, 121
on static member classes, 119

resume() (Thread), 370
retainAll() (Collection), 508
@return doc-comment tag, 195
return statements, 53
return types, 33
return values, 12
returning results, 17
reverseO (Collections), 510
reverseOrderO (Collections), 510
revokeServiceO (BeanContextSer—

vices), 273
right-to—left associativity, 31
roll(), 506
root directories, listing, 291
RSA and DSA public and private keys,

466

representing and encoding,
470—475

RSAKey interface, 468
RSAKeyGenParameterSpec interface,

474

RSAPrivateCrtKey interface, 468

RSAPrivateCrtKeySpec interface, 474
RSAPrivateKey interface, 469
RSAPrivateKeySpec interface, 474
RSAPublicKey interface, 466, 469
RSAPublicKeySpec interface, 475
RuleBasedCollator class, 494
rules, 181

pure Java, 190—192
(see also conventions)

run(), 149
PrivilegedAction interface, 443
PrivilegedExceptionAction, 443
Runnable interface, 358
Thread class, 370
TimerTask class, 557

runFinalizationO, 559

System class, 369
Runnable interface, 149, 358
running programs, 10
Runtime class, 328, 359
RuntimeException, 360
RuntimePermission class, 360

S

sameFile(), 412
URL class, 412

“sandbox”, 168

save() (Properties), 528
scheduleO (Timer), 536
scheduleAtFixedRateO (Timer), 536
scheduledExecutionTimeC) (Timer—

Task), 537
scope

vs. inheritance for member classes,
125

of local classes, 126
SDK (Software Development Kit), 6

downloads, 9
tools, 200—236

SealedObject class, 165, 572
searching arrays, 144
SecretKey interface, 163, 573
SecretKeyFactory class, 573
SecretKeyFactorySpi class, 574
SecretKeySpec class, 582
secure hash (see message digests)
SecureClassLoader class, 446
SecureRandom class, 418, 446

Index 641

1aZraga/fine
,7;Ta;74%”

Page 223 of 238

SecureRandornSpi class, 447
security, 7, 161—165, 166—177

access control lists (ACLs), working
with, 455—456

architecture, 167
certificates, working with, 457—465
default, 172
DSA and RSA public and private

key representations, 470—475
GeneralSecurityException, 428
interfaces package, 466—469
javasecurity Package, 418—452
NetPermission class, 405

packets, sending/receiving, 399
permission to access files, 295
ReflectPermission class, 389
risks, 166
RunTimePerrnission class, 361
Security class, 448
SecurityException, 361
SecurityManager class, 361
SecurityPermission class, 448
socket permissions, 410
system properties, granting access

to, 529

tool for policy configuration files,
235

URLClassLoader class, 413
users, 171—175

Security/Manager class, 168, 170
@see doc-comment tag, 196
seek(), 319
self-reflection, 147
semicolon Q)

in program lines, 10
separating statements, 13

sendO
DatagramSocket class, 399
MulticastSocket class, 405

separators, file/path, 200
SequenceInputStream class, 321
sequential data (see streaming data)
@serial doc-comment tag, 198
@serialData doc-comment tag, 198
@serialField doc-comment tag, 198
Serializable interface, 321
SerializablePermission class, 322
serializing objects, 157
serialver program, 236
ServerSocket class, 159, 395,407

service provider interface, 418
CertificateFactory class, 461
CipherSpi class, 566
javax.crypto Package, 561
KeyAgreementSpi class, 569
KeyGeneratorSpi class, 570
KeyStoreSpi class, 437
MacSpi class, 572
message—digest algorithms, 438
SecretKeyFactorySpi class, 574
secure random number generation,

447
serviceAvailableC) CBeanContextSer—

vicesListener), 274
serviceRevoked() (BeanContextSer—

viceRevokedListener), 272
services protocol GavaBeans), 187
set(), 414, 500

Array class, 383
ArrayList Class, 502
Calendar class, 506
Field class, 384
LinkedList class, 520
List interface, 521
ListIterator interface, 501, 522
ThreadLocal class, 375

set accessor method, 181
Set interface, 497, 532

AbstractSet class, 502

SortedSet interface, 554
seLAccessibleO (AccessibleObiect),

581, 389
setAllowUserInteractionO, 414
setBeanContext(), 188, 266
setBoundO (PropertyDescriptor), 258
setCalendarO (DateFormat), 485
setCertificateEntryO (KeyStore), 435
setCharAtO (StringBuffer), 366
setConstrainedO (PropenyDescriptor),

258

setContentHandlerFactoryO (Con-
tentHandlerFactor), 398

setContextClassLoaderO (Thread) ,
570

setDaemonC) (Thread), 570
setDatagrarnSocketImplFactory()

(DatagrarnSocket), 401
setDefaultO (Authenticator), 395, 405
setDefaultAllowUserInteraction(), 414

642 Index

Page 224 of 238

setDefaultUseCachesO, 414
setDesignTime(), 251
setDisplayName(), 253
setDoInputO, 414
setDoOutput(), 414
setElementAtO (Vector), 540
setEndRuleO (SimpleTimeZone), 532
setErrO (System), 369
setExpert(), 253
setFollowRedirectsO, 402

setFormatC) (MessageFormat), 491
setGroupingUsedC) (NumberFormat),

491

setGuiAvailable(), 251
setHidden(), 253
setIModifiedSince(), 414
setInO (System), 369
setInDefaultEventSet(), 252
setIndexO

Characterlterator interface, 481
ParsePosition class, 493

setInputO
Deflater class, 555
Inflater class, 556

setKeepAliveO (Socket), 407
setKeyEntryO (KeyStore), 435
setLastModifiedO (File), 291
setLevel() (ZipOutputStream), 549,

560
setLineNumberO (LineNumber—

Reader), 302
setLocale() (MessageFormat), 491
setMaximumFractionDigitsO (Number-

Format), 491
setMaxPriorityO (ThreadGroup), 372
setMethodO, 549

ZipOutputStream class, 560
setNameC)

FeatureDescriptor class, 253
Thread class, 370

setNegativePermissionsO (AclEntry),
454

setObiectO, 252
setOptionO (SocketOptions), 410
setOutO (System), 369
setPolicyO (Policy), 441, 448
setPriorityO (Thread), 370
setProperties() (System), 368

setPropertyO
Properties class, 528
System interface, 529

setPropertyEditorClassO, 258
setReadOnly() (File), 291
setReceiveBufferSize()

DatagramSocket class, 400
Socket class, 407

setRe'questMethodO, 402
sets, 145

setSecurltyManagerO (System), 369
setSeedC), 530

SecureRandom class, 447
setSendBufferSizeO

DatagramSocket class, 400
Socket class, 407

setShortDescription(), 253
setSoTimeout()

DatagramSocket class, 400
Socket class, 407

setStartRuleO (SimpleTimeZone), 532
setStrengthO (Collator), 484
setTcpNoDelay() (Socket), 407
setTextO (Breaklterator), 479

setTimeToLiveO (MulticastSocket), 405
setTimeZone() (DateForrnat), 485
setTimeO (Calendar), 506
setUnicastO, 252
setUseCachesO, 414
setValueO

Entry interface, 526
FeamreDescriptor class, 253

shadowing
fields, 100
vs. overriding, 102

shift operators, 38
Short class, 140, 328, 362
ShortBufferException, 574
shuffleC) (Collections), 510

shutdownlnputO (Socket), 407 \
shutdownOutputO (Socket), 407
side effects, 33
sign() (Signature), 449
Signature class, 418, 448
SignatureException, 450
signatures, 60
SignatureSpi class, 450
signed right shift (>>) operator, 40
SignedObject class, 163, 419, 450

Index 643

Page 225 of 238

Signer class, 451
SimpleBeanlnfo class, 250, 261
SimpleDateFormat class, 476, 494
SimpleTimeZone class, 532
@since doc-comment tag, 198
single character 0), 15
single-line comments (//), 20
singletonO (Collections), 510
singletonListO (Collections), 510
singletonMapO (Collections) , 510
size(), 500—501

AbstractCollection class, 497
BeanConteXtMembershipEvent

class, 269
CharArrayWriter class, 286
DataOutputStream class, 289
Map interface, 525
Vector class, 540

skipO
CheckedlnputStream class, 551
InflaterlnputStream class, 556
InputStream class, 299
Reader class, 320

ZiplnputStream class, 559
skipByteS(), 288
slashSlashComments(), 323
slashStarCommentsO, 323
sleepC) Clhread), 370
Socket class, 158

SocketOptions interface, 410
SocketPermission class, 410
sockets

BindException, 397
ConnectException, 598
DatagramSocket class, 395, 399
DatagrarnSocketImpl class, 400
MulticastSocket class, 395, 405
ServerSocket class, 407
Socket class, 595, 407
SocketException, 409
Socketlmpl class, 409
SocketImplFactory interface, 410
unable to connect to remote host,

406

SoftReference class, 377, 379
software components

package for, 136
reusable, 178

Software Development Kit (see SDK)
Solaris operating system, SDK for, 9
SortedMap interface, 497, 533
SortedSet interface, 497, 534
sorting arrays, 144
sort()‘

Arrays class, 503
Collections class, 509

spaces, 15
spaces in doc comments, 194
special effects, threads for, 150
SPI (see service provider interface)
Stack class, 535

EmptyStackException, 514
StackOverflowError, 363
stacks

LinkedList, well-suited for, 520
standard extensions, 6

conventions/rules for, 192
start 0 method, 149
startsWith(), 365
starco (Thread), 370
statements, 15, 43—59

break, 52
compound, 44
continue, 53
do, 50

empty, 45
expression, 44
for, 51
if/else, 46
labeled, 45
local variable declaration, 45

~ return, 53
switch, 48
synchronized, 54
throw, 55
try/catch/finally, 57
types, list of, 43
while, 50

static member classes, 117—118
implementation, 131

static method lookup, 103
stop(), 150

Thread class, 370
store()

KeyStore class, 436
Properties class, 528

StreamCorruptedException, 322

644 Index

Page 226 of 238

streaming data, 154
(see also input streams; output

streams)
StreamTokenizer class, 323
StrictMath class, 364
String class, 138
StringBuffer class, 139, 366
strings, 26, 138—140

concatenation, 367
String class, 328, 365
StringBuffer class, 328
StringBufferInputStream class, 324
StringCharacterIterator class, 495
StringlndexOutOfBoundsException,

368

StringReader class, 324
StringTokenizer class, 497, 535
StringWriter class, 325

StringTokenizer class, 139
StringWriter class, 157
strongly typed languages, 13
subclass constructors, 97
subclasses, 95—104

Permission, 173—177
subList(), (List)
subMap() (SortedMap), 533
subroutines (see methods)
Subset class, 335

' subSet() (SortedSet), 534
substraction (-) operator, 34
substringC) (StringBuffer), 365
SunJCE cryptographic provider, 561

cryptographic algorithms, support—
ing, 563

Diffie—Hellman key-agreement algo—
rithm, supporting, 567

key—generation implementations,
supporting, 569

message authentication algorithms,
supporting, 570

padding schemes, supporting, 564
RC2 encryption algorithm, not sup—

porting, 582
RC5 encryption algorithm, not sup-

porting, 582
SecretKeyFactory implementations,

supporting, 575
superclasses, 97

fields, shadowing, 100
methods, overriding, 101—104

suspendO (Thread), 370
Swing programmrning, 178
switch statements, 48
symmetric keys, 165
SyncFailedException, 325
synchronized methods (Collections),

510

synchronized statements, 54
synchronizedListO (Collections), 502,

520

synchronizedSetO (Collections), 517,
540

synchronizing threads, 151
IllegalMonitorStateException, 347

system administrators, security for, 172
System class, 144, 328, 368
system programmers, security for, 171
system properties, read and write

access control, 529

T

tabs, 15
tailMap() (SortedMap), 533
tailSetO (SortedSet), 534

ternary (three-operand) operators, 41text

displaying, 155
outputing to file, 155

text editors, 10
text files, reading, 154
Thread class, 149, 570
thread synchronization

IllegalMonitorStateException, 347
ThreadDeath error, 372
ThreadGroup class, 372
ThreadLocal class, 573
threads, 149—152

IllegalThreadStateException, 547
inheritance, 348

InterruptedException, 350
multiple, caution with, 151
safety, 510, 518, 541
synchronizing, 151
terminating, 150
Thread class, 328, 370
ThreadDeath error, 372
ThreadGroup class, 372
waiting, list of, 152

Index 645

a
a}

23%?

Page 227 of 238

throw statements, 55
Throwable interface, 328, 374
throwing exceptions, 18
@throws doc—comment tag, 196
Timer class, 150, 497, 536
TimerTask class, 150, 497, 537
times, 143
time—to—live (TTL) Values, 405
TimeZone class, 497, 537

SimpleTimeZone class, 532
toArray()

BeanContextMembershipEvent
class, 269

Collection interface, 508
toBinaryString()

Integer class, 349
Long class, 351

toByteArrayC) (ByteArrayOutput—
Stream), 285

toCharArrayO (CharArrayWriter), 286,
365

toHexStringO
Integer class, 349
Long class, 351

tokenizing words, 139
toLowerCase(), 365
toOctalString()

Integer class, 349
Long class, 351

tools, 200-236
TooManyListenersException, 538
toPatternO

ChoiceFormat class, 481

MessageFormat class, 491
toStringO

Byte class, 332
ByteArrayOutputStream class, 285
CharArrayWriter class, 286
Integer class, 349
Long class, 351
MessageForrnat class, 490
Object class, 356
PrintStrearn class, 315
Short class, 363
StringBuffer class, 366
StringWriter class, 325
Subset class, 335

totalMemoryO, 359
' toUpperCase(), 365
traceInstructions(), 359

traceMethodCalls(), 359
TreeMap class, 539
TreeSet class, 539
trimO, 365 '
trimToSizeO (ArrayList), 502
triple-DES key, 578
try clause, 58
try/catch/finally statements, 57
TTL values, 405
type conversions, 27, 43
types, 147

U

Unicode, 20, 190
currency symbols, 21
PrintStream class and, 315
subset, 335
UnicodeBlock class, 335

UTFDataFormatException, 326
unary minus (-), 35
unary C”) operator (see bitwise com-

plement operator)
uncaughtExceptionO (ThreadGroup),

372

UncleclaredThrowableException, 386,
389

undecremented values, 36
underscore (_) in identifier name, 21
unicast events (IavaBeans), 180
uniform resource locator (see URLs)
UnknownError, 374
UnknownHostException, 411
UnknownServiceException, 412
unmodifiable methods (Collection),

510
unreadO

PushbacklnputStream class, 318
PushbackReader class, 318

UnrecoverableKeyException, 451
unreliable datagram packets, 399
UnresolvedPermission class, 452
UnsatisfiedLinkError, 375
unsigned right shift (>>>) operator, 40
UnsupportedClassVersionError, 375
UnsupportedEncodingException, 325
UnsupportedOperationException, 375,

509—510, 519

until loop, 16

646 Index

Page 228 of 238

untrusted code, 166-172

update()
Checksum interface, 552
Cipher class, 564
MessageDigest class, 437
Observable class, 527
Observer interface, 528
Signature class, 449

URLs, 158

examples in this book, xv
HttpURLConnection class, 402
lnfoBus standard extension, 179
JAR archive URLs, 404
Java Activation Framework stan~

dard extension, 179

Java language specification, 19
MalformedURLException, 404
URL class, 158, 160, 395, 412
URLClassLoader class, 413
URLConnection class, 395, 414
URLDecoder class, 416
URLEncoder class, 416
URLStreamHandler class, 416
URLStreamHandlerFactory inter-

face, 417
Java programming, xiv

tutorial, 17
JavaBeans conventions, 179

portability certification program
(Sun), 192

quick reference material, generat—
ing, xvi

SDK, 9
security, 172

useProtocolVersion() (ObjectOutput-
Stream), 310

user preference files, Properties class
and, 146

username and password, encapsulat-
ing, 406

users, security and, 171—173
UTF-8 encoding '

UTFDataFormatException, 326
UTFDataFormatException, 326

V

validateObjectO (ObjectInputValida—
tion), 306

validatePendingAdd()(BeanCon—

textSupport), 1277
validatePendingSetBeanContext()

(BeanContextChildSupport),
267

validation

InvalidObjectException, 301
ObjectlnputValidation class, 306

valueOfO
Boolean class, 332

Byte class, 332
Float class, 345
Integer class, 349
Long class, 351
Short class, 363
String class, 365

valuesC) (Map), 525
variable scope, 15
variables, 13, 29

declaring, 13
IllegalAccessError, 346
local, 45

capitalization/naming conven-
tions, 190

Vector class, 145, 540
Verinyrror, 375

verify()
Certificate class, 457
Signature class, 449
SignedObject class, 450
X509Certificate class, 462
X509CRL class, 463

Verinyrror, 375
@version doc-comment tag, 195
VetoableChangeListener interface, 256,

262, 266
VetoableChangeSupport class, 262
vetoableChangeO, 262
VirtualMachineError, 376
Visibility

members, working with, 381
Visibility interface, 263

VM implementations, 4
Void class, 376

Index 64 7

Page 229 of 238

W

waitO (Object), 152, 347, 370, 356
waitFor(), 358
weak references, package for, 136
WeakHashMap class, 542
WeakReference class, 377, 380
while loop, 16
while statements, 50
whitespaceChars(), 323
widening conversions, 27
wizards, 181
wordCharsO, 323
WordPad, 10
write(), 326, 549

BufferedWriter class, 284

CharAIrayWriter class, 286 ‘
CheckedOutputStream class, 552
DataOutputStream class, 289
DeflaterOutputStream class, 554
DigestOutputStream class, 427
FileOutputStream classes, 294
FilterOutputStream class, 280
FilterWriter class, 298
GZIPOutputStrearn class, 555
Manifest class, 549
ObjectOutputStream class, 308
OutputStream class, 312
Printhiter class, 316

StringWriter class, 325
ZipOutputStream class, 560

“Write once, run anywhere”, 6, 190
WriteAbortedException, 326
writeEXternalO, 290

writeFieldsO (ObjectOutputStream),
307

writeObjectO
ObjectOutputStream class, 307—308,

321

Serializable interface, 303
writeReplaceC) (Certificate), 459
writers

BufferedWriter class, 284
CharArrayWriter class, 286
FileWriter class, 296
FilterWriter class, 298
OutputStreamWriter class, 312
PipedWriter class, 315
PrintWriter class, 282, 316

648 Index

StringWriter class, 325
Writer class, 154, 282, 326

writeToO (CharArrayWriter), 286
writeUTF() (DataOutputStream), 289

X

X509Certificate class, 457, 460, 462
(see also Certificate class)

X509CRL class, 457, 460—461, 463
(see also CRL class)

X509CRLEntry class, 464
(see also CRLEntry class)

X509EncodedKeySpec interface, 475
X509Extension interface, 464
xterm window, 10

Y

yieldC) (Thread), 370

Z

ZIP files, JAR files vs., 544
ZIP files, package for, 137
ZipEntry class, 557
ZipException', 558
ZipFile class, 156, 558
ZipInputStream class, 559
ZipOutputStream class, 560

Page 230 of 238

About the Author

David Flanagan is a computer programmer who spends most of his time writing
about Java. His other books with O’Reilly & Associates include java Foundation
Classes in a Nutshell, jar/u Enterprise in a Nutshell juvuScn’pt: The Definitive Guide,
[am Examples in a Nutshell, java Power Reference, and juvuScripl Pocket Reference.
David has a degree in computer science and engineering from the Massachusetts
Institute of Technology. He lives with his partner Christie in the US. Pacific North-
west between the cities of Seattle, Washington and Vancouver, British Columbia.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal appearing on the cover of jut/u in u Nutshell, Third Edition, is a Javan
tiger. It is the smallest of the eight subspecies of tiger, and has the longest cheek
Whiskers, forming a short mane across the neck. The encroachment of the growing
human population, along with increases in poaching, led to the near-extinction of
the javan tiger. The Indonesian government has become involved in trying to pre-
serve the tiger. It is to be hoped that the remaining subspecies of tiger will be helped
by increasing awareness and stricter protections.

Tigers are the largest of all cats, weighing up to 660 pounds and with a body length
of up to 9 feet. They are solitary animals, and, unlike lions, hunt alone. Tigers prefer
large prey, such as Wild pigs, cattle, or deer. Tigers rarely attack humans, although
attacks on humans have increased as the increasing human population more fre-
quently comes into contact with tigers. Tiger attacks usually occur when the tiger
feels that it or its young are being threatened. In such cases, the tiger almost never
eats its human victim. There are some tigers, however, who have developed a taste
for human flesh. This is a particularly bad problem in an area of India and Bang—
ladesh called the Sunderbans.

Mary Anne Weeks Mayo was the production editor and copyeditor for jam in u Nut-
shell, Third Edition; Ellie Cutler, Maureen Dempsey, and Jane Ellin provided quality
control, and Ellie Fountain Maden proofread the book, Anna Kim Snow provided
production assistance. Lenny Muellner and Chris Maden provided SGML support,
Ellen Troutman Zaig and Brenda Miller wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. Whenever possible, our books use RepKoverTM, a dura-
ble and flexible lay-flat binding. If the page count exceeds RepKover’s limit, perfect
binding is used.

Kathleen Wilson produced the cover layout with Quark XPress 3.3 using Adobe’s
ITC Garamond font. The interior layouts were designed by Edie Freedman and
Nancy Priest, with modifications by Alicia Cech, and Lenny Muellner implemented
the layout in gtrofl. Interior fonts are Adobe ITC Garamond and Adobe ITC Franklin

Page 231 of 238

Gothic. The illustrations that appear in the book were produced by Robert Romano
and Rhon Porter using Macromedia FreeHand 8 and Adobe Photoshop 5. This c01-
ophon was written by Clairemarie Fisher O’Leary.

Page 232 of 238

" More Tiiies from E’Eeiiiy, ’

Java

Java Servlet Programming
_ Byjason Hunter with William Gran/Md

JAYA

‘ 1st Edition November 1998
5"“ Wm” 528pnges, ISBN 1-56592-391~X

Java servlets offer a fast, powerful,
portable replacement for CGI scripts.
java Serb/9t Programming covers
everything you need to lcnow to write
reflective setvlets. Topics include: serving
dynamic Web content, maintaining state

information, session tracking, database connectivity using
JDBC, and applet-setvlet communication.

 Java Swing

& By Robert Eclertein, More My G. Dave Wood
s'""g [rt/Edition Sqaiember 1998

1252pages, ISBN 1-56592-455—X

The Swing classes eliminate Java's
biggest weakness: its relatively primitive
user interface toolkit.jam Sun‘ng helps
you to take full advantage of the Swing
classes, prodding detailed descriptions

of every class and interface in the key Swing packages. It shows
you how to use all of the new components, allowing you to
build sutte-of-the-ait user interfaces and giving you the context
you need to understand what you’re doing. It’s more than
documentation;Jam Swing helps you develop code quickly
and effectively

Java Power Reference

By an‘n’Flannng
lsiMiiion Match 1999
depages, Featmes CD-ROM
ISBN 1565925890

fat/n Power Reference is a searchable,
browser-based resource that documents
all the packages and classes of the Java
2(TM) platform on a single (ID-ROM.
Based on the clear, concise quick-
reference style of the bestsellingjam

in a Nutshell, thejava Power Reference provides a unique view
of the functionality of the Java APIs. In addition to the CD-ROM,
the package contains a concise printed overview of the newly
released Java 2 platform.

 .mmmnmum

JAVAw

 ouw- urn mou-

Enterprise JavaBeans
By RichardManson-Hand
[st EditionJune 1999
336pages, ISBN 1-56592-605-6

Enietprisejntenns is a thorough
introduction to EJB for the enterprise
software developer. It shows how to get
started developing enterprise Beans,
how to deploy those Beans in a server,
and how to use those Beans to create

applications that do useful tasks. The end result is a highly
flexible system built from components that can easily be
reused and that can be changed to suit your needs without
upsetting other parts of the system.

Enteam‘le

JAVABEANS

Java 20 Graphics
Byjonn/ljan Knudsen

JAVA

‘ IstEdinbnttIny I999

366mm, ISBN 1—56.592—484—3
java 20 Graphics describes the 21) API
from top to bottom, demonstrating how
to set line styles and pattern fills as well
as more advanced techniques of image
processing and font handling. You’ll see
how to create and manipulate the three

types of graphics objects: shapes, text, and images. Other
topics include image data storage, color management, font
glyphs, and printing.

Developing Java Beans

FEEL—— By Robert Eng/under
‘ J [St Editionjtme I997

316MgatlSBN1-56592289-1
' Developingjava Beans is a complete

introduction to Java’s component
architecture. It describes how to write

Beans, which are software components
that can be used in visual programming
environments. This book discusses event

adapters, serialization, introspection, property editors, and
customizers, and shows how to use Beans within Activex
controls.

O’REILLY®
to (more: 800-998—9933 - order@areiiiy.cam o hitp://www.nreilly.onm/

OUR PRODUCTS ARE AVAILABLE ATA BOOKSTORE on SUFiWAHE STORE NEAR you.

FOB/NFORMAT/ON.‘ 300-990-9938 0 707-829-0515 - inia@oreilly.cam

Page 233 of 238

How to stay in touch with U’Heilly

1. Visit Our Award-Winning Site

http://www.areilly.eam/ '

* “Top 100 Sites on the Web" —PCMngazine
“Top 5% Web sites” —Point Communications

‘k “3-Star site” —T}Je McKinley Group

Our web site contains a library of comprehensive
product information (including book excerpts
and tables of contents), downloadable software,
background articles, interviews with technology
leaders, links to relevant sites, book cover art,
and more. File us in your Bookmarks or Hotlist!

2. Join Our Email Mailing Lists
New Product Releases

To receive automatic email with brief descriptions
of all new O'Reilly products as they are released,send email to:

listproc@online.oreilly.com
Put the following information in the first line of
your message (not in the Subiect field):
subscribe oreilly-news

O’Beilly Events
If you’d also like us to send information about
trade show events, special promotions, and other
O’Reilly events, send email to:
listproc@online.oreillycom
Put the following information in the first line of
your message (not in the Subject field):
subscribe oreilly-events

. Get Examples from Our Books
via FTP

There are two ways to access an archive of example
files from our books:

Regular FTP
~ ftp to:

ftp.oreilly.com
(login: anonymous
password: your email address)

0 Point your web browser to:
ftp://ftp.oreilly.com/

FTPMAIL

0 Send an email message to:
ftpmail@online.oreilly.com
(Write “help” in the message body)

4. Contact Us via Email
order@oreilly.com

To place a book or software order online. Good
for North American and international customers.

subscriptions@oreilly.com
To place an order for any of our newsletters or
periodicals.

books@oreilly.com
General questions about any of our books.

sofiware©oreillyzcom
For general questions and product information
about our software. Check out O’Reilly Software
Online at http://sofiwarenreiflycom/ for software
and technical support information. Registered
O’Reilly software users send your questions to:
website-support@oreilly.com

cs@oreilly.com
For answers to problems regarding your order
or our products.

booktech@oreilly.com
For book content technical questions orcorrections.

proposals@oreilly.com
To submit new book or software proposals to our
editors and product managers.

intemational®oreillycom
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:

http://www.oreilly.com/www/order/counn-y.html

O’Reilly & Associates, Inc
101 Morris Street, Sebastopol, CA 95472 USA
TEL 707-829-0515 or 800-998-9938

(6am to 5pm PST)
FAX 707-829-0104

O’REILLY®
70 ORDER: 800-998-9938 - order@nreilly.eam o http://www.areilly.cam/

OUR PRODUCTS ARE AVA/LABLEAIA BUOKSTOHE 0/? SOFTWARE STORE NEAA you.

FOR/NFORMATIUN.‘ 800-993-9938 0 707-829-0515 - into@areilly.enm

Page 234 of 238

WEB
Advanced Perl Programming
Apache: The Definitive Guide,2nd Ed. ‘
ASP in a Nutshell
Building Your Own Web

Conferences
Building Your Own WebsiteTM
CGI Programming with Perl
Designing with JavaScript
Dynamic HTML:

The Definitive Reference
Frontier: The Definitive Guide
HTML: The Definitive Guide, 3rd Ed.
Information Architecture

for the World Wide Web
JavaScript Pocket Reference
JavaScript: The Definitive Guide,

3rd Ed.
Learning VB Script
Pbotoshop for the Web
WebMaster in a Nutshell
WebMaster in a Nutshell, Deluxe Ed.
Web Design in a Nutshell
Web Navigation: Designing the

User Experience
Web Performance Tuning
Web Security & Commerce
Writing Apache Modules

PERI.
Learning Perl, 2nd Ed.
teaming Perl for Win52 Systems
Learning Peri/Tit
Mastering Algorithms with Perl
Mastering Regular Expressions
PerlS Pocket Reference, 2nd Ed.
Perl Cookbook
Perl in a Nutshell
Perl Resource Kit—UNIX Ed.
Perl Resource Kit—Win32 Ed.
Perl/I'K Pocket Reference
Programming Perl, 2nd Ed.
Web Client Programming with Perl

[mamas & MULTIMEDIA
Director in a Nutshell
Encyclopedia of Graphics

File Formats, 2nd Ed.
Lingo in a Nutshell
Photoshop in a Nutshell
QuarkXPress in a Nutshell

USING THE lummrr
AOL in a Nutshell
Internet in a Nutshell
Smileys
The Whole Internet for

Windows95
The Whole Internet:

Tile Next Generation
The Whole Internet

User’s Guide 8: Catalog

Titles from O’Beilly
JAVA SEHIEs
Database Programming with

JDBC and Java
Jeveloping Java Beans
Exploring Java, 2nd Ed

Java AWT Reference
Java Cryptography
Java Distributed Computing
Java Examples in a Nutshell
ava Foundation Classes in a

Nutshell
ava Fundamental Glasses Reference
ava in a Nutshell, 2nd Ed.
ava in a Nutshell, Deluxe Ed.
ava I/O
ava Language Reference, 2nd Ed.
ava Media Players

_ ava Native Methods
u ava Network Programming
ava Security

, ava Servlet Programming
Java Swing
Jain Threads
Java Virtual Machine

UNIX
Exploring Expect
GNU Emacs Pocket Reference
Learning GNU Emacs, 2nd Ed.
Learning the bash Shell, 2nd Ed.
Learning the lforn Shell
Learning the UNIX Operating

System. 4th Ed.
[earning the vi Editor, 6th Ed.Linux in a Nutshell
Linux Multimedia Guide
Running Linux, 2nd Ed.
8C0 UNIX in a Nutshell
sed & awk, 2nd Ed.
Tel/[k in a Nutshell
Tcl/l'k Pocket Reference
Tel/Pk Tools
The UNIX CD Bookshelf
UNIX in a Nutshell, System V Ed.
UNIX Power Tools, 2nd Ed
Using csh & tsch
Using Samba
vi Editor Pocket Reference
What You Need To Know:

When You Can’t Find Your
UNIX System Administrator

Writing GNU Emacs Extensions

SONGLINE Gums
NetLaw NetRescarch
Netiearning NetSuccess
NetLessons Net’i‘ravel

SUI-TWARE
Building Your Own WebSiteTM
Building Your Own Web Conference
WebBoardTM 5.0
WebSite ProfessionalTM 2.0
PolyFor-mTM

SYSTEM ADMINISTRATION
Building Internet Firewalls
Computer Security Basics
Cracking DES
DNS and BIND, 3rd Ed.
DNS on WindowsNT
Essential System Administration
Essential WindowsNT

System Administration
Getting Connected:

The lntemet at 56K and UpLinux Network Administrator‘s
Guide

Managing IP Networks with
Cisco Routers

Managing Mailing Lists
Managing [\TS and N18
Managing the Windowle‘ Registry
Managing Usenet
MCSE: The Core Exams in a

Nutshell
MCSE: The Electives in a Nutshell
Networking Personal Computerswith TCP/IP
Oracle Performance Timing,

2nd Ed.
Practical UNIX & Internet Security,

2nd Ed.
PGP: Pretty Good Privacy
Protecting Networks with SATAN
sendmail, 2nd Ed.
sendmail Desktop Reference
System Performance Tuning
TCP/IP Network Administration,

2nd Ed.
termcap 8r terminio
The Networking CD Bookshelf
Using & Managing PPP
Virtual Private Networks
WindowsNT Backup 8r Restore
WindowsNT Desktop Reference
WindowsNT Event Logging
WindowsNT in a Nutshell
WindotszT Server 4.0 for

Netware Administrators
WindowsNT SNMP
WindowsNT TCP/IP Administration
WindowsNT User Administration
Zero Admiriistralion for Windows

It Wmuaw
Vol. 1: Xlib Programming Manual
Vol. 2: Xlib Reference Manual
Vol. 3M: X Window System

User’s Guide, Motif Ed.
Vol. 4M: X Toolkit Intrinsics

Programming Manual, Motif Ed.
Vol. 5: X Toolkit Intrinsics

Reference Manual
Vol 6m Motif Programming Manual
Vol. 68: Motif Reference Manual
Vol. 8 : X Window System

Administrator’s Guide

O’REILLY®
r0 0am; 800-998-9938 0 arder@areilly.wm - http://www.oreilly.com/

UUH manners ARE AVAILABLE AT A BOOKSTORE 0H SOFTWARE STORE NEAR you.

FOHINFOHMATION: 800-998-9938 0 707-829-0515 0 infa@oreilly.cam

PnannAMMIm;
Access Database Design and

Programming
Advanced Oracle PI/SQL

Programming with Packages
Applying ROS and SCGS
BE Developer's Guide
BE Advanced Topics
C++: The Core Language
Checking C Programs with lint
Developing Windows Error Messages
Developing Visual Basic Addins
Guide to Writing DCE Applications
High Performance Computing,

2nd Ed.
Inside the Windows 95 File System
Inside the Windows 95 Registry
Iex 8r yacc, 2nd Ed.Linux Device Drivers
Managing Projects with make
Oracles Design Tips
Oracle Built-in Packages
Oracle Design
Grade PL/SQL Programming,

2nd Ed.
Oracle Scripts
Grade Security
Palm Programming:

The Developer‘s Guide
Porting UNIX Software
POSIX Programmer’s Guide
POSIXA: Programming

for the Real World
Power Programming with RPC
Practical C Programming, 3rd Ed.
Practical (3+ + Programming
Programming Python
Programnting with curses
Programming with GNU Software
Pthreads Programming
Python Pocket Reference
Software Portability with imake,

2nd Ed.
UML in a Nutshell
Understanding DGE
UNIX Systems Progranuning for SVR4
VB/VBA in a Nutshell: The languages
WmfiZ Multithreadeil Programming
Windows NT File System Internals
Year 2000 in aNutslrell

USING WINDOWS
Excel97 Annoyances
Ofi‘ice97 Annoyances
Outlook Annoyances
Windows Annoyances
Windows98 Annoyances
Windows95 in aNutshell
Windows98 in a Nutshell
Word97 Annoyances

0mm TITLES
PalmPilot: The Ultimate Guide
Palm Programming

The Developer's Guide

Page 235 of 238

iniematianal Distributors

UK, EUROPE, MIDDLE EAST AND
AFR/GA (EXCEPT FRANCE GERMANY,
AUSTRIA, SWITZERLAND, LUXEMBOURG,
LIECHTENSTEIN, AND EASTERN EUROPE)
l N l] U | HI ES

O'Reilly UK Limited
4 Castle Street
Famham

Surrey, GU9 7H8
United Kingdom
Telephone: 44-1252-711776
Fax: 44-1252-734211
Email: josette@oreilly.com
ORDERS

Wiley Distribution Services Ltd.
1 Oldlands Way
Bognor Regis
West Sussex PO22 93A
United Kingdom
Telephone: 44-1243-779777
Fax: 44-1243-820250
Email: cs~books@wiley.co,uk

FRANCE
ORDERS
GEODIF

61, Bd Saint-Germain
75240 Paris Cedex 05, France
Tel: 53-1-44-41-46—16 (French books)
Tel: 53-1-44-41-11-87 (English books)
Fax: 55-1-44-41-11-44
Email: distribution@eyrolles.com
INQUIRIES

Editions O’Reilly
18 rue Séguier
75006 Paris, France
Tel: 53-1-40-51-52-50
Fax: 33—1-40—51-52-51
Email: france@editions-oreilly.fr

GERMANY, SWITZERLAND,
AUSTRIA, EASTERN EUROPE,
LUXEMBOURG, ANO LIECHTENSTEIN
INQUIRIES & ORDERS
O’Reilly Verlag
Balthasarstr. 81
050670 K6111
Germany
Telephone: 49-221-973160—91
Fax: 49-221—973160—8
Email: anfragen©oreillyde (inquiries)
Email: order@oreilly:de (orders)

CANAOA (FRENCH LANGUAGE BOUKS)
Les Editions Elammarion ltée
375, Avenue Laurier Quest
Montreal (Quebec) H2V 2K3
Tel: 00—1-514-277—8807
Fax: 00-1-514-278—2085
Email: info@flammarion.qc.ca

HONG KONG
City Discount Subscription Service, Ltd.
Unit D, 3rd Floor, Yan’s Tower
27 Wong Chuk Hang Road
Aberdeen, Hong Kong
Tel: 852-2580-5539
Fax: 852—580-6465
Email: citydis@ppn.comrhk

KOREA
» Hanbit Media, Inc.

Sonyoung Bldg. 202
Yeksam-dong 756-36
Kangnam-ku
Seoul, Korea
Tel: 822-554-9610
Fax: 822-556-0563
Email: hant93@chollian.dacom.co.kr

PHILIPPINES
Mutual Books, Inc.
429-D Shaw Boulevard
Mandaluyong City, Metro
Manila, Philippines
Tel: 632-725-7538
Fax: 632-721-5056
Email: mbikikog@nu11.sequel.net

TAIWAN
O’Reilly Taiwan
No. 3, Lane 131
Hang-Chow South Road
Section 1, Taipei, Taiwan
Tel: 886-2-25968990
Fax: 886-2-23968916
Email: taiwan®oreillycom

CHINA
O’Reilly Beijing
Room 2410

160, FuXingMenNeiDaJie
XiCheng District
Beijing
China PR 100031
Tel: 86-10-66412305
Fax: 86-10-86651007
Email: beijing@oreilly.com

OgREILLY®

INDIA
Computer Bookshop (India) Pvt. Ltd.
190 Dr. D.N, Road, Fort
Bombay 400 001 India
Tel: 91-22-207-0989
Fax: 91-22-262-3551
Email: cbsbom@giasbm01.vsnl.net.in

JAPAN
O’Reilly japan, lnc.
Kiyoshige Building 2F
IZ-Bancho, Sanei-cho
Shinjuku-ku
Tokyo 160-0008 Japan
Tel: 3316—5556-5227
Fax: 81-3-3356-5261
Email: japan@oreilly.com

ALL OTHER ASIAN COUNTRIES
O’Reilly & Associates, Inc.
101 Morris Street

Sebastopol, CA 95472 USA
Tel: 707-829-0515
Fax: 707-829-0104
Email: order@oreilly.com

AUSTRALIA
WoodsLane Pty, Ltd.
7/5 Vuko Place
Warriowood NSW 2102
Australia
Tel: 61-2-9970—51 11
Fax: 61-2-9970-5002
Email: info@woodslane.com.au

NEW ZEALANO
Woodslane New Zealand, Ltd,
21 Cooks Street (R0. Box 575)
Waganui, New Zealand
Tel: 646-547-6545
Fax: 646-545-4840
Email: info@woodslane.com.au

LATIN AMERICA
McGraw-Hill Interamericana
Editores, SA. de C.V.
Cedro No. 512

Col. Atlampa
06450, Mexico, D.E
Tel: 525—547-6777
Fax: 525-547-3336
Email: mcgraw—hill@infosel.net.mx

TO ORDER: 300-998-9938 0 arder@areilly.com v hi!p://www.oreilly.I:OTII/
OUR PROOUOTS ARE AVAILABLE ATA BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FDR/NFUHMAT/UN: 800-998-9938 - 707-829-0515 a info@areilly.com

Page 236 of 238

1-800-998-9958 Visitusonlz'neat: orders@om.com101MorrisStreet l1ttp://\V'ww.ora.com/Sebastopol,CA95472—9902OERElLLY" O‘Reilly8rAssociatesInc.

Which book did this card come from?

Where did you buy this book?
LI Bookstore

C] Direct from O‘Reilly
LJ Computer Store
E] Class/seminar

D Bundled with hardware/software
C] Other

What is your job description?
D System Administrator
3 Network Administrator

3 Web Developer
3 Other

D ProgrammerCl Educator/1'eacher

What operating system do you use?
a UNIX
Cl Windows Mr
C] Other

D Macintosh
D l'C(Windows/DOS)

L! Please send me O’Reilly’s catalog, containing

a complete listing of O’Reilly books and
software.

Compuny/Orgmiilotion

City Zip/Postal Code Country

Telenhone Internet or other entail address (specify network)

Page 237 of 238

Nineteenth century wood engraving
of a hear from the O‘Reilly 8:
Associates Nutshell Handbook®
Using 6 Managing Ul/CP.

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

' BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O’Reilly 8: ASsociates, Inc.
101 Morris Street

Sebastopol, CA 95472-9902

Page 238 of 238

Java/lnternet Programming

JAVA IN A NUTSHELL

This bestselling book is an essential quick reference for all Java pro—

grammers. It contains an accelerated introduction to the Java lan-

guage and its key APIs, so seasoned programmers can start writing

‘ Java code right away. The third edition of jam in a Nutshell covers

versions 1.2 and 1.5 beta of the Java 2 platform and includes:

A description of the syntax of the Java language, written in a tight, concise

style, tha can serve as both a fastipaced tutorial and a language reference

An explanation of the object—oriented features of Java that doesn’t assume any

prior objectioriented programming experience

An overview of the essential Java APIs that shows how to perform common

tasks, such as string manipulation, input/output, and thread handling, with the

classes and interfaces that comprise the Java 2 platform

0 Documentation for the Java development tools shipped with Sun’s Java SDK

This book also includes O’Reilly’s classic—style, quick—reference material for all the

classes in the essential Java packages, including javalang, jaw/MO, javabemis,

javamatb, javanet, jauasecun'ty, javarext, jamutz’l, and javaxaypto. This refer

ence material covers all the new classes in Java 1.2 and 1.3. Once you’ve learned

Java, you’ll keep this book next to your keyboard for handy reference while you
program.

This book is part of the two-volume set of quick references that every Java pro—

grammer needs. It is an essential companion to java Foundation Classes in a

Nuts/yell, which covers the graphics and graphical user interface APIs in the Java 2

platform, including Swing, AWT, and Java 2D. A third volume, java Enterprise in a

Nutshell, focuses on the Java Enterprise APIs and is of interest to programmers

working on server—side or enterprise Java applications.

M375 EWBEBB

us $29.95 O’REILD , “:l
ISBN 1—56592—487—8 CAN $43.95 .

-— (34112351 1

ill i llilllllllllll! llll llll lilllill if ill I
l

XOOOYXAl-iAR

. Java in a Nutshell
New

9 II—l'

A NUTSHELLo

o “wont: 92487 6 HANDBOOK

