
IDWILEY

Getting Down
to Business with
Mobile Code

Gary McGraw

Edward W. Felten

Page 1 of 121 GOOGLE EXHIBIT 1020

Praise for Securing Jovo ...

.. This second edition is mandatory up-to-date reading for every user and devel
oper of Webware. Its eye-opening analysis of the security risks provides timely
realism amidst an otherwise mad dash to universal Net use:'

-Peter G. Neumann
Principal Scientist
Computer Science Lab, SRI International
Moderator of the Risks Forum
Author of Computer-Related Risks

"This book cuts through the hype and clears up the confusion surrounding Java
and security:'

-Bill Venners
Author of Inside the Java Virtual Machine

"McGraw and Felten give Java's designers their due for trying to create a secure
Internet programming language, but they cut through a lot of the hype-both posi
tive and negative-about how secure it really is. Since Java pervades many aspects
of Internet commerce, knowing the true risks is important for anyone who plans
to do business on the Net:'

-David Carr
Senior Editor
Internet World

"Security is a part of modem networking that often gets ignored until it's too late
Gary and Ed's book is a clear explanation of the situation, chock full of details and
useful advice. A must-read book for anyone who is considering mobile code as part
of their mission-critical infrastructure:'

-Marcus J. Ranum
CEO, Network Flight Recorder, Inc.

Page 2 of 121

Prai~e for the First edition: Java Security ...

"One of the best treatments of Java security issues I have ever had the pleasure to
read. The advice offered in this book is sound and reasonable:'

Thomas A. Longstaff
Manager of Research & Development
CERT Coordination Center

"A provocative and useful discussion of security issues around Java and the
Internet to date"

Li Gong, Ph.D.
Java Security Archited
Java Soft

~is book is mandatory reading for every user and developer of webware. Its
eye-opening analysis of the security risks provides timely realism amidst an other
wise mad dash to universal net browsing.

Java is hot. Java is cool.
Its use is riddled with risks that fool.
Jovo Security takes us all back to school:'

Peter G. Neumann, Principal Scientist, Computer Science Lab,
SRI International; Moderator of the Risks Forum; Author of
Computer-Related Risks

" ... a tour de force clear and comprehensive discussions of the Java security
model and various problems with its numerous implementations. It will make for
enjoyable, and profitable, reading by all system administrators, webmasters, and
programmers--particularly in the corporate world. If you surf, or if you maintain a
website, this book is for you. This is an enormously useful book. Buy it!

Gregory J. E. Rawlins,
Associate professor, Indiana University;
author of Moths to the Flome: The Seductions of Computer Technology

"McGraw and Felten do a great job of presenting a thorough and understandable
treatment of the complex security issues surrounding Java and other Web-related
languages This book is a must for anyone who uses Web browsers and related
software, written by the experts who have practically defined the field of Java
security:'

Michael Shoffner, Java developer, Prominance.com

Page 3 of 121

Securing Java:
Getting Down to Busin~ss

with Mobile Code _

WILEY COMPUTER PUBLISHING

John Wiley & Sons, Inc.
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Page 4 of 121

Publisher: Robert Ipsen
Editor: Marjorie Spencer

For our parents.

Assistant Editor: Margaret Hendrey
Managing Editor: Frank Grazioli
Composition: Benchmark Productions Inc., Boston

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LEITERS. Readers, however
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper. i§

Copyright© 1999 by Gary McGraw and Edward W. Felten. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or trans
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Pub
lisher, or authorization through payment of the appropriate per-copy fee to the Copy
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012, (212) 850-6011, fax {212) 850-6008, E-Mail: PERMREQ@ WILEY.COM.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pu
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be
sought.

Library of Congress Cataloging-in-Publication Data:
McGraw, Gary, 196~

Securing Java : getting down to business with mobile code
McGraw, Edward W. Felten, - 2nd ed.

P· em.
Originally published under title: Java security. 1997.
Includes bibliographical references and index.
ISBN 0-471-31952-X (paper/online : alk. paper)
1. Java (Computer program language) 2. Computer security.

I. Felten, Edward, 1963- . IT. McGraw, Gary, 196~ Java
security. ill. Title.
QA76.73.J38M354 1999
005.8-dc21 98-49151

CIP

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Page 5 of 121

Chapter 1

Chapter 2

Mobile Code and Secu~ Why Java Security
Is Important
Who Cares?
Mobile Code
The Power of Networking
Downloading Code: Not a New Problem
Java in a Demitasse
Securing Java
How Does Java Security Stack Up?
Where to Find More Information on Java
Mobile Code Has Its Price
Assessing the Risks

The Base Java Security Model: The Original
Applet Sandbox
Potential Tiueats
What Untrusted Java Code Can't Do
What Untrusted Java Code Can Do
The Java Language and Security
The Tiuee Parts of the Default Sandbox
The Verifier
The Class Loader Architecture
The Security Manager
Different Classes of Security
Type Safety
Browser-Specific Security Rules
The Fundamental Tradeoff
Is There Really a Java Security Policy?

1
2
5
7

13
15
24
25
31
33
35

37
38
46
48
48
50
52
59
67
71
74
77
78
78

Page 6 of 121

[vi 1

Chapter 3 Beyond the Sandbox: Signed Code and Java 2 81
What's the Main Goal? 82
Security Enhancements inJDK 1.1 83
Signed Code 88
Trust 92
An Introduction to Java 2 Security 95
Access Control and Stack Inspection 97
New Security Mechanisms in Sun's Java 2 101
Outside the Sandbox 113

Chapter 4 Malicious Applets: Avoiding a Common Nuisance 115
What Is a Malicious Applet? 117
Annoying Applets 121
Denial of Service 127
Opening Untrusted Windows 130
Stealing Cycles 132
Forging Mail 133
Killing Off the Competition 135
Malicious Applets on the Web 136
The Implications 138

Chapter 5 Attack Applets: Exploiting Holes in the Security Model 139
Implementation Errors or Specification Errors? 140
Attack Applets 143
What Applets Aren't Supposed to Do 143
A Chronology of Problems 144
Jumping the Firewall 147
Slash and Burn 153
You're Not My Type 156
Applets Running Wild 158
Casting Caution to the Wind 163
Tag-TeamApplets 165
Big Attacks Come in Small Packages 167
Steal This IP Number 169
Cache Cramming 171
Virtual Voodoo 172
The Magic Coat 172
Verifying the Verifier 174
The Vacuum Bug 177
Look Over There 178
Beat the System 182
What These Problems Teach Us 184

Chapter 6 Securing Java: Improvements, Solutions, and Snake Oil 187
Improving the Platform 188
Writing Safer Code: A Defensive Stance 199
Third-Party Solutions or Snake Oil? 200
Risks That Third-Party Vendors Can Address 204
Risks That Third-Party Vendors Can't Address 208
Assess Your Risks 211

Page 7 of 121

vii

Chapter 7 Java Security Guidelines: Developing and
Using Java More Securely 213
Guidelines for Java Developers 214
Guidelines for Java Users 221
Guidelines Are Never Perfect 226

Chapter 8 Java Card Security: How Smart Cards and Java Mix 227
Java Security Goes Both Ways 228
What Is a Smart Card? 229
Why Put Java on a Smart Card? 231
How Can Java Fit on a Card? 232
How Secure Are Smart Cards? 233
What Role Can Smart Cards Play in 239
E-Commerce Systems?
How Does the Use of Java Impact Smart Card Security? 240
Managing Risks 244

Chapter 9 The Future of Java Security:
Challenges Facing Mobile Code 245
Lessons from the Trenches 245
Challenges for Secure Mobile Code 247
Software Assurance for Java 251
Should You Use Java? 252

Appendix A Frequently Asked Questions:
Java Security Java versus ActiveX 255
Java Security 255
Security Tradeoffs: Java versus ActiveX 260

Appendix B The Java Security Hotlist 265
Books 266
Researchers 267
FAQs 269
Papers 271
Talks I Articles 274
Hostile Applets 277
Commercial 279
Mostly Harmless 281

Appendix C How to Sign Java Code 283
Signing Classes with the Netscape Object Signing Tool 284
Signing Java Applets with Microsoft's Authenticode 292
Comparing Authenticode to Netscape Object Signing 297
Signing Code with Sun's JDK l.l.x 297
Differences Between Netscape Object Signing and 303
JDK l.l.x javakey 303
Signing Code with Sun's Java 2 303
Differences betweenJDK 1.1 Code Signing 311
and Java 2 Code Signing 311
In Conclusion 312

References 313

Index 319

Page 8 of 121

J
ava has grown by leaps and bounds since its introduction in 1996, and is now
among the most popular computing platforms on the planet. Java has evolved and
changed so much that at a mere two-years old, our original work, Java Security:
Hostile Applets, Holes, and Antidotes, found itself in serious need of revision and
expansion. This book is the result of several years of thinking about mobile code

viii

and security, and includes many things we have discovered while working on
real-world systems with businesses and government agencies. Our goal is to
present enough information to help you separate fact from fiction when it comes
to mobile code security.
Java has become much more complicated and multifaceted than it was when it
was introduced. No longer simply a client-side language for applets, Java can now
be found on everything from enterprise application servers to embedded devices
like smart cards. We have tried to address security factors from throughout the
entire Java range in this book.
We hope this book appeals to geeks and grandmothers alike (not that some grand
mothers aren't geeks). Although it gets technical in places, we hope the messages
are clear enough that even the casual Web user comes away with a broader under
standing of the security issues surrounding mobile code. We kept four groups in
mind as we wrote this book: Web users, developers, system administrators, and
business decision-makers. Many of the issues of mobile code security cut across
these groups. As Java integrates itself into the foundations of electronic commerce,
Java security issues take on more urgency.

Page 9 of 121

ix

Java is only one kind of mobile code among many. Other systems immersed in the
same security dilemma include ActiveX, JavaScript, and Word Macros. It is essen
tial not to get the wrong message from this book. Our focus on Java is no accident.
We believe Java is the most viable mobile code system created to date. Don't
believe that through our work we imply that other systems are any more secure
than Java. Just the opposite is true.
With the introduction of code signing to Java (in JDK 1.1) and its enhancement
with access control (in Java 2), securing Java became much harder. Java's position
along the security I functionality tradeoff has moved significantly toward func
tionality, to the detriment of security. This is good if you want more functionality,
which most businesses and developers seem to need, but it is bad if you are
charged with managing security risks. Forming an intelligent Java use policy is
more important than ever, but doing so is more complicated than it used to be.
The computer field moves so fast that people have begun to refer to Internet time to
grapple with its constantly accelerating speed. Three months is a year in Internet
time. Java is directly involved in the speed of the field, and has done its share to
make things move even more quickly. One tricky aspect of writing a topical book
relating to the Web is figuring out when to stop the action. This process can be
likened to freeze-framing a picture of a movie. In that sense, this book is a snapshot
of Java security. We hope we have succeeded in making it a useful way to learn
about Java security. For up-to-date information, see the book's companion Web
site at www.rstcorp.com/java-security.html.
As we went to press, Sun Microsystems renamed JDK 1.2 and called it Java 2. We
have attempted to use correct version numbers throughout and apologize for any
confusion.
Chapter 1, "Mobile Code and Security: Why Java Security Is Important,"," sets the
stage with a discussion of the four intended audiences. As Java matures, it is mak
ing important inroads into the enterprise world. That means Java security is now as
important to business people and system administrators as it is to Web users and
Java developers. For the uninitiated, Chapter 1 provides a quick and cursory intro
duction to Java. Pointers are provided to more through Java texts that cover the ins
and outs of the entire Java language in more detail. This is, after all, not a book on
Java per se, but is instead a book on Java security. We also spend some time dis
cussing why the once-important distinction between applets and applications has
been superceded by concerns about trust. It turns out that under the Java 2 archi
tecture, applets can be completely trusted and applications can be completely
untrusted. In fact, every kind of Java code can be doled out different amounts of
trust, depending on what the user's policy says. Finally, we cover some other pop
ular forms of mobile code and discuss how their security stacks up against Java.
The main purpose of this chapter is to provide some context for the later discussion
of Java's critical security implications and to introduce the central idea of the book:
weighing the benefits of Java use against the risks.
Chapter 2, "The Base Java Security Model: The Original Applet Sandbox," exam
ines the base Java security model in some detail. As a prelude to our discussion, we
introduce four categories of attacks, ranging from the very serious to the merely
annoying: system modification, invasion of privacy, denial of service, and antago-

Page 10 of 121

nism. We then discuss Java's programming-languages approach to security and
introduce the three parts of the original applet sandbox. These include the Verifier,
~~~~~~~~~~~~~~~~~~ 
idea that Java security fundamentally relies on ensuring type safety. The base sand
box provides the foundation of Java's new trust-based security model. Starting 
with a restrictive sandbox for untrusted code, restrictions can be lifted little by little 
until code takes on complete trust and is awarded full run of the entire system. 
Chapter 3, "Beyond the Sandbox: Signed Code and Java 2," examines Java's new 
trust-based security model. With the addition of code signing in JDK 1.1, Java's 
security architecture underwent a large shift. Java 2 completed the transformation 
with the addition of access control. It is now possible to create complex security pol
icy for mobile code written in Java and have the Java system itself enforce the pol
icy. The change certainly affords more power to mobile code than ever before, but 
it also introduces a major new risk to Java: a human-centered policy management 
risk. Setting up and managing a mobile code policy will be a complex and error
prone undertaking requiring security experience. JDK 1.1 and Java 2 rest on the 
notion of trust, which leverages the technological power of code signing. Under
standing the new model requires understanding the way code signing and trust 
interact, and discounting some of the common myths associated with it. Chapter 3 
ends with a discussion of stack inspection and the Java 2 code-signing API. (Appen
dix C, "How to Sign Java Code," is a code-signing tutorial covering Microsoft, 
Netscape, and Sun's three different code signing schemes.) 
Chapter 4, "Malicious Applets: Avoiding a Common Nuisance," begins to discuss 
what happens when the Java security model is abused by hostile applets. Hostile 
applets come in two forms: very dangerous attack applets that involve security 
breaches, and merely annoying malicious applets that are more of a nuisance than 
anything else. Chapter 4 is all about malicious applets. Malicious applets are quite 
easy to create, and they are equally easy to find on the Web. Unfortunately, there 
are just as many unscrupulous individuals on the Net as there are in the rest of the 
world. Bad guys are more than happy to include Java in their list of offensive 
weapons. Our mission is to make Java users aware of common classes of attacks. 
Chapter 5, "Attack Applets: Exploiting Holes in the Security Model," delves more 
deeply into the Java security model by focusing attention on some of the well-pub
licized security holes that have been discovered. This is where our discussion of 
hostile applets turns more serious. Securing Java is a difficult job, especially when 
it comes to implementing complicated models. Attack applets have been created 
in the lab that exploit the holes we discuss. Some of the holes are simple imple
mentation bugs, while others indicate more serious design flaws. The good news 
is that Sun and other licensees take Java security very seriously and they respond 
quickly to fix any holes once they are discovered. We think discussing these holes 
is important since it emphasizes the true nature of computer security. 
Chapter 6, "Securing Java: Improvements, Solutions, and Snake Oil,'' has two 
overall goals, both of which are meant to impact the Java security situation posi
tively. The first is to suggest some high-level antidotes for Java security concerns 
that are not tied to particular attacks. Experts in computer security have pointed 
out several global deficiencies in the Java approach to security. Fixing some of 

Page 11 of 121



xi 

these would certainly improve the model. High-level concerns addressed in Chap
ter 6 include programming language issues, formal analysis of Java, applet log
ging, trust, decompilation, applet monitoring, and policy management. Hopefully, 
some of the high-level concerns we raise will eventually be addressed in the Java 
platform itself. In the meantime, a number of third-party vendors are eager to 
help. The second goal of Chapter 6 is to introduce the players briefly and to discuss 
what risks third-party vendors can and cannot address. The computer security 
field has its share of snake oil, and complex issues such as mobile code security 
tend to be easy to exploit. One of our goals is to bring some realism to the table and 
arm you with the right questions to ask. 
If you only read one chapter of this book, read Chapter 7, "Java Security Guidelines: 
Developing and Using Java More Securely." This chapter presents two sets of guide
lines: one for Java developers and one for Java users. Writing security-critical code is 
not easy, and developers need all the help they can get. We offer 12 rules for writing 
safer Java. Although the rules get a bit technical, it is worth spending some time to 
figure them out. By contrast, our guidelines for Java users are simple to understand 
and follow; in fact, most of them are simply common sense. 
Chapter 8, "Java Card Security: How Smart Cards and Java Mix," is devoted to 
Java on smart cards. We decided to include this chapter since Java Cards are likely 
to show up in millions of consumer wallets in the next few years. Smart card secu
rity is really too big an issue to cover in a single chapter, so we focus primarily on 
the security impact of putting a Java Virtual Machine on a card. Chapter 8 covers 
six key questions, including: What is a smart card?, Why put Java on a smart card?, 
and How does the use of Java impact smart card security? 
We conclude by covering some of the challenges to mobile code that remain to be 
conquered. Chapter 9, "The Future of Java Security: Challenges Facing Mobile 
Code," presents a concise set of six central lessons we have learned during our 
time in the Java security trenches. We go on to discuss several open research issues 
that you're likely to hear about again. Finally, we discuss the notion of security 
assurance, an important strategy in securing Java. 
We hope that this book is both informative and useful. Making intelligent deci
sions regarding the use of Java (especially in business and other mission-critical 
systems) requires some know ledge of the current risks. Our goal is to disclose 
those risks-and countermeasures to curtail them-as clearly and objectively as 
possible. Armed with the knowledge that we present in this book, Java users, site 
managers, and business decision-makers can make better Java use policies. 

Acknowledgments 
This book is a collaborative effort in more ways than one. Not only did the au
thors work together closely, but we also sought input from many other people. 
We are grateful for the help we received. 
Reliable Software Technologies (www.rstcorp.com) remains a great place to work. 
The intellectually stimulating environment makes going to work interesting and 
fun. Many people at RST read drafts of the book or helped in other ways. They 
include John Viega (intrepid proofreader and co-author of the code-signing tutorial 

Page 12 of 121



xii 

in Appendix C), Tom O'Connor (who also read the entire manuscript more than 
once and co-wrote the code-signing tutorial), Anup Ghosh (fellow security 
researcher), Peggy Wallace (travel, anyone?), Lora Kassab (one-time RST intern 
whose code from the first edition lives on), Jeff Payne (RST's forward-thinking 
CEO), Jon Beskin, Matt Schmidt, Brad Arkin, Andi Bruno (who herds the market
ing cats and makes us be nice), and JeffVoas (who continues to lead RST's excellent 
research group by example). 
The members of Princeton University's Secure Internet Programming Team 
(www.cs.princeton.edu/sip) also provided valuable input. Besides wading through 
several drafts, the Princeton team was responsible for raising many of the key 
issues in Java security. Special thanks to Drew Dean and Dan Wallach (cofounders 
of the Princeton team) and Dirk Balfanz. Dan is now a professor at Rice University. 
Drew is a research scientist at Xerox PARC. Princeton's Computer Science depart
ment provides a wonderful environment for discovering and exploring new 
research topics. 
We would also like to thank Tom Cargill, independent consultant and discoverer 
of two security flaws; David Hopwood, discoverer of several attack applets; Mark 
LaDue, creator of the Hostile Applets Home Page (keep 'em honest, Mark); Dennis 
Volpano of the Naval Postgraduate School; Tom Longstaff, research director at the 
CERT Coordination Center; Roland Schemers, JavaSoft security implementation 
wizard (who helped with code-signing tool questions); Marianne Mueller, Java 
developer, security expert, and long-suffering target of press inquiries at JavaSoft; 
Jim Roskind, Netscape's Java security expert; Andrew Herbert, APM's Chief Sci
entist in the real Cambridge; Ken Ayer, chip card security manager at Visa; Don 
Byrd, UMass research associate and careful proofreader of the first edition; 
Hideyuki Hayashi, who translated the first edition into Japanese (and did an 
excellent job according to friends at Sumitomo in New York); Kieran Murphy, edi
tor at developer.com; Chuck Howell, now at Mitretek; and Mike Shoffner, Java 
developer at Prominence Dot Com. Li Gong, security architect at JavaSoft, has 
been a particularly valuable help, both as a research colleague and as a sane point
of-view atJavaSoft. More power to you, Li. 
Wiley's staff did an excellent job shepherding this book through the editing and 
production process. Special thanks to Marjorie Spencer and Frank Grazioli, who 
went out of their way to make this project go smoothly. Thanks to Margaret Hen
drey for playing fast and loose with extensions (don't tell anybody). Also thanks to 
the rest of the team at Wiley. 
Finally, and most importantly, we're grateful to our families for putting up with us 
while we worked on the book, again. Amy Barley, Jack, and Eli seem to have 
adjusted to Gary's persistent book-writing. Laura Felten and Claire suspect that 
Ed's book-writing has become an addiction. Without the support of our families, 
this book would not have been possible. 

Page 13 of 121



Mobile Code and Secu 
Why Java Securi~ 
Is Important 

J
ava security is more important than ever. Since its introduction in 1995, Java 
has become one of the most popular development platforms on the planet. In 
fact, Java has been widely adopted more quickly than any other computer 
language. It now easily tops the list of preferred platforms for Internet-savvy 
mobile code. There are tens of thousands of Java developers (some say hun-
dreds of thousands), and demand for Java skills appears to be growing. Java 
is definitely here to stay. 

Java holds great promise as a platform for component-based software, 
embedded systems, and smart cards. This means Java is poised to play an 
important enabling role in e-commerce as these systems move from ether
ware to reality. Java components (aka JavaBeans) are appearing at a rapid 
pace and encapsulate critical functionality for transaction-based systems. 
Java smart cards fore-commerce will debut soon. 

But what of the hue and cry over security? Should people be so concerned 
about the security implications of Java that they disable Java in their 
browsers? Should developers avoid using Java in their systems in favor of 
other languages like C++? Should system administrators block Java content 
at the firewall (or better yet, can they)? Should business people avoid Java 
because of security problems? These are the some of the questions this book 
answers. The answers are nontrivial, and the issues are as complex as they 
are important. 

1 

Page 14 of 121



- ~l 

Java security is important to a number of distinct sets of people: 

Web users, including one of the authors' 89-year-old grandmother, need to 
understand the risks of using a Java-enabled browser. 

Developers of Java code that lives and works on the Internet need to keep 
security in mind when they are writing programs. 

System administrators need to think carefully about how mobile code, includ
ing Java, impacts the security of the systems they run. 

Business people need to understand what Java security risks are so they can 
make informed business decisions based on fact and not fiction. 

As you can see, Java security issues are multifaceted. This book has useful 
information for all four groups, whose interests overlap in many ways. 

Java security is a hot topic, but that does not make it an easy one. By itself, 
computer security is not well understood. Throw Java into the mix and 
things become even murkier. There is much confusion and misinformation 
floating around about Java and security. Beware of snake oil, impossible 
claims, and consultants who pretend to have all the answers. Also be aware 
that major vendors are just as capable of misinformation as fly-by-night com
panies. Skepticism, Rene Descartes' 300-year-old philosophical insight, is 
strangely relevant to computer security at the turn of the millennium. In fact, 
skepticism turns out to be an excellent strategy. Ask hard questions; you 
might be surprised by the answers. 

Browser Beware 
The most pressing security concerns surrounding Java impact millions of 
people-that is, anyone who browses the Web. Given that there are tens of 
millions of Netscape Navigator and Microsoft Internet Explorer users, the 
client security issue is no minor detail.1 It turns out that a majority of the 
users of these browsers are also Java users, whether they know it or not. Java 
is built in to Netscape Navigator and Internet Explorer, so if you use either of 
these products, you are a Java user. 

Just as all Internet users are taking security risks, all Java users are taking 
security risks. Because of the way Java works, computer security issues are a 
fundamental concern. Most Java code is automatically downloaded across 

1 Both the popular Netscape Navigator browser and the Microsoft Internet Explorer browser 
are capable of running Java applets. 

Page 15 of 121



3 

the network and runs on your machine. This makes it very important to limit 
the sorts of things that Web-based Java programs can do. Silnply put, a hos
tile Java program could trash your machine. Because Java is inherently Web
based, it provides crackers with an easy way to ilnplement a Trojan Horse-a 
program that may seem innocent enough on the surface, but is actually filled 
with well-armed Greeks. Also of concern is the problem of computer virus 
propagation. Fortunately, the creators of Java have made a good effort to pro
tect users from these hazards. For example, writing a Web-based Java virus as 
an applet would be very hard. (Writing a Microsoft Word macro virus like the 
concept virus is, by contrast, easy.) Because mobile code security is new, diffi
cult, and complicated, Java's masters have not always been successful at pro
tecting everyone all the time. 

One goal of this book is to educate Java users about the risks that they incur 
by surfing the World Wide Web with Java-enabled browsers. This chapter 
provides a gentle introduction to Java and explains why Java is potentially 
dangerous. 

Developer Concerns 
Java security is essential to developers as well. As a platform, Java has much 
to offer in terms of security: 

• Java has advanced cryptography Application Program Interfaces (APis) 
and class libraries. 

• Java includes language-level security mechanisms that can help make 
developing secure code easier. 

• Some aspects of Java that make it more difficult to write insecure (unsafe) 
code. 

This book explains how to use the security features built in to the Java envi
ronment inside your own programs. 

That's not to say that developing secure programs with Java is trivial or auto
matic. Anyone who reads the newspapers or the trade press can see how 
often skilled programmers write code with security bugs. You can make 
almost as many gaffes developing security-critical code in Java as in any 
other language. Because of Java's security APis and its position as a leading 
e-commerce platform, it is likely that Java will be used to carry out some very 
important activities. That means developers need to learn as much as they 
can about Java security. Know your enemy. Think about what might confront 
your code in terms of malicious attacks. Mitigate risks by designing, coding, 
and testing carefully. 

Page 16 of 121



I 4 1 
A second goal of this book is to teach Java developers and project managers 
about the sorts of things that will confront their code in "the wild." If you' re 
a seasoned Java developer (something that it was impossible to be a mere 
handful of years ago), this book will show you in great detail how the secu
rity model works. There are lessons to be learned from the Java attacks we 
cover. After all, like you, Java's designers and developers were serious about 
what they were doing. As we have seen, however, even the most subtle bug 
can be turned into a security disaster. 

System Administration and Java 
Today's system administrator is seriously overworked, and security is a big part 
of the problem. The days of the isolated Local Area Network (LAN) are behind 
us. Now, most networks are connected directly to the Internet, which means 
security is more important than ever. Some early adopters and sites with a lot to 
lose try to protect themselves with advanced security mechanisms such as fire
walls, secure shells, and virtual private networks. Many sites, however, have a 
long way to go before they are usecure enough" (whatever that means). Mobile 
code systems, including Java, make administering site security trickier. 

The problem is that users want Java content, but system administrators don't 
want to take on unnecessary risks. This is a classic example of the well
known tradeoff in computer security between functionality and security. 
Computer security boils down to managing risks, which in turn implies that 
the way to make better-informed decisions is to get a handle on the risks. 

A third goal of this book is to present an informed discussion of the real risks 
of mobile code. Burying your head in the sand like an ostrich is not a good 
solution, because security problems are unlikely to miraculously disappear. 
However, the risks do not necessarily warrant throwing the Java baby out 
with the bath water. Such a move may leave your users high and dry. 

Even if the risks turn out to be too much to bear (a decision that is very much 
context dependent), system administrators need to be wary of snake-oil 
"solutions" to the mobile code problem. There are a number of products on 
the market that purport to improve Java security. The question is, do they 
work? We will delve into these issues as well. 

Java Gets Down to Business 
Making informed business decisions at the edge of the technology curve has 
never been an easy task. In addition to the technological concerns discussed ear
lier, there are often intangible factors to consider. What impact will perceived 
security risks (whether justifiable or imagined) have on potential customers? Is 
Java the best platform to use when designing e-commerce systems? How will 

Page 17 of 121



the use of Java within an enterprise affect security risks? What are the security 
challenges in designing-and deploying database-backed Web servers and three
tier applications? 

It is surprising that some of the same companies that disallow the use of Java 
(often for silly reasons) expect their customers and business partners not to 
disallow Java. The information in this book can help business managers and 
leaders make better decisions about Java security. Good data are essential to 
decision-making, but sometimes good data are hard to find_ 

Mobile Code 

The Java programming environment from Sun Microsystems is designed for 
developing programs that run on many different kinds of networked computers. 
Because of its multiplatforrn capabilities, Java shows great promise for relieving 
many of the headaches that developers encounter when they are forced to 
migrate code between different types of operating systems. Code that is written 
in Java should run on all of the most popular platfo~verything ranging 
from Macintosh and Windows/Intel machines to Linux and Solaris boxes. 

Recently, the cross-platform capabilities of Java have been called into question. 
This has led Sun's marketing phrase "write once, run anywhere" to be reinter
preted by skeptics as "write once, test everywhere." Part of the problem is that 
not all implementations of Java are completely interoperable with Sun's ver
sion. Disagreement over what constitutes Java has generated at least one high
profile lawsuit. Most people, including a majority of Java developers, would 
like to see Java become a standard so that what happened to C (which was 
itself supposed to be a cross-platform language) doesn't happen to Java. 

In any case, a nice side effect of Java's built-in portability is that one special 
kind of Java program (popularly known as an applet) can be attached to a Web 
page. More technically speaking, applets are embedded into a Web page's 
hypertext markup language (HTML) definition and executed by Java-savvy 
browsers.2 Such Java-enabled browsers automatically download and begin 
running any Java applet they find embedded in a Web page. Java code's abil
ity to run on many diverse platforms makes such "magic" possible. 

The ability to dynamically download and run Java code over the Net has led 
some computer pundits to proclaim that the age of truly component-based soft
ware development may actually have arrived. The idea is that instead of buying 
huge monolithic word processing behemoths with hundreds of obscure features 

2 Java has some competition as an envirorunent for creating executable content. Other lan
guages with a similar bent are JavaScript, Safe-Tel, Telescript, Word macros, Excel macros, 
ActiveX, and Postscript. Many of the security lessons in this book apply to those languages as 
well. Later in this chapter we will examine ActiveX security issues more closely. 

Page 18 of 121



that most users will never need, users can instead "create" a personal word 
processor on the fly out of Java building blocks. This modem sort of program
ming is akin to building a large toy ship out of Legos blocks. Or, ·more realisti
cally, the process of creating a component-based software product could be 
likened to building a highway bridge out of standardized structural components. 

Sun is advocating a Java component architecture called favaBeans. A number 
of companies are creating sets of Java Beans for various purposes. If these 
efforts are successful, developers will be able to create programs by putting 
together sets of prefabricated Beans as illustrated in Figure 1.1. Microsoft's 
Component Object Model (COM) is very much oriented this way, although it 
is not specifically designed to use Java. Component-based software has its 
own interesting security implications and open questions. For example, how 
can the developer of a system trust a component manufacturer not to have 
(purposefully or accidentally) introduced security holes into the system? 
How can a component manufacturer anticipate all uses to which a compo
nent will be put? And so on. These sorts of questions are the topic of current 
research, including some by the authors of this book. 

Thinking even farther into the future, one can imagine a fundamentally new 
kind of computer document that contains the word processing, spreadsheet, 
and database software that was used to create it. Using a document's embed
ded components, a writer or editor could modify the document on any plat
form. The built-in components would allow different people using different 
machines to edit the document without worrying about the kind of computer 
they are using or file type compatibility issues. If Java is developed to its full 
potential, this future world may not be far off. 

The new idea behind all of these exciting aspects of Java is simple: the ability 
to send data that can be automatically executed wherever it arrives, anywhere 
on the Net. Java is an implementation of executable content, or mobile code. This 

Payroll Component 

Math Component 

Figure 1.1 Component-based software allows a designer to create large applications 
from standardized building-blocks. 
Components in Java are known as JavaBeans. The idea of using pre-fabricated components to build large
scale applications will likely do for software what the Industrial Revolution did for manufacturing. 

Page 19 of 121



powerful idea opens up many new possibilities on the World Wide Web. For 
the first time it is possible to have users download from the Web and locally 
run a program written in a truly common programming language. 

These features of Java are certainly exciting; however, Java's fantastic potential 
is mitigated by serious security concerns. Security is always an issue when com
puters are networked. Realistically speaking, no computer system is 100-percent 
secure. Users of networked computers must weigh the benefits of being con
nected to the world against the risks that they incur simply by connecting. In 
practice, the goal of a security policy is to make such tradeoffs wisely. 

One of the key selling points of Java is its use as a "cross-platform" language 
for creating executable content in the highly interconnected world of the 
Internet. Simply by using a Web browser, a Web surfer can take advantage of 
Java's cross-platform capability. Of course, the activity of locally running 
code created and compiled somewhere else has important security implica
tions. These implications are one focus of this book. 

The same risks and benefits that apply to connecting to the Internet itself 
directly apply to using the Java language. As you will see, these concerns 
become particularly critical when "surfing the Web." The same technology that 
allows Java applets to enliven once-static Web pages also allows unscrupulous 
applet designers to invade an unsuspecting Java user's machine. With Java 
applets showing up everywhere, and many millions of people using Java
enabled browsers, it pays to know where you are pointing your browser. 

The Power of Networking 

Networking has changed the face of computing. We once thought of comput
ers as calculating machines, but now most people rightly view them primar
ily as communication tools. An Internet connection is as essential a part of 
today's computer as a disk drive. The move toward a globally networked 
world has been significantly furth~red by Java. 

The Internet: A World of Connections 
Since its birth in the early 1970s as a 12-node network called the ARPANET/ the 
Internet has exponentially exploded into a worldwide network that provides a 
central piece of the planet's information infrastructure. Figure 1.2 shows the 
growth pattern of the Internet from its humble 12-host beginning through today' s 
some 30-million registered addresses. 

3 ARPA (now DARPA) is an acronym for the United States Department of Defense's Advanced 
Research Project Agency that sponsored initial research on networking computers. DARPA cur
rently supports many research projects in computer security, including work by the authors. 

Page 20 of 121



a 

,...--

35000000 r-

30000000 
....._ 

25000000 -
-

20000000 - ,...--

,...--

15000000 r-

,..--

10000000 f-

-
-

5000000 - .---
I• 
II 

r--

I J J J .1. .1~1,.,1111n1nnnn 

Figure 1.2 Growth of the Internet since its early days as the ARPANEr. 

Data is from Network Wizards (W\111\N.nw.com). The Internet continues to grow at an astounding rate. 

Connecting computers together in a network allows computer users to share 
data, programs, and each others' computational resources. Once a computer is 
put on a network, it is possible to access a remote machine in order to retrieve 
data or to use its CPU cycles and other resources. Along with this ability comes 
concern about security. Computer security specialists worry about issues such as: 

• Who is allowed to connect to a particular machine 

• How to determine whether access credentials are being faked 

• Who can access which resources on a shared machine 

• How to protect data (especially in transit) using encryption 

• How and where to collect and store audit trails 

Whenever machines are networked, these concerns must be addressed. 

Page 21 of 121



The Internet~ the world's largest network of machines~ has encouraged 
research into these security issues. Mechanisms now in place go beyond sim
ple password authentication~ to firewalls and security checking tools such as 
SATAN, ISS~ and Ballista. New ideas in computer security are constantly 
becoming available on the Net. Security approaches currently in preliminary 
use include encryption-based authentication~ encrypted communications, 
and intrusion detection based on Artificial Intelligence (AI) [Hughes~ 1995; 
Garfinkel and Spafford~ 1996; Ghosh, 1998]. Computer security has recently 
matured into a substantial commercial enterprise as well. As in any new 
field, however~ there is as much hype as there are barrels of snake oil. If it 
sounds too good to be true~ it probably is. Buyer beware. 

The Web: Making the Internet Enticing 
One of the driving forces behind the exponential growth of the Internet in the 
last several years has been the introduction of the World Wide Web. In 1992, 
Tim Berners-Lee, a British researcher at the CERN physics facility in Europe, 
invented the Web, a new way to use the Internet. His invention introduced 
hypertext markup language (HTML) and Web browsing to the world. In 
1993~ Marc Andreessen helped to write the Mosaic Web browser while affili
ated with the National Center for Supercomputer Applications (NCSA). He 
later cofounded the company now known as Netscape Communications. 
Though it may be hard to believe, the Web is only a few years old. 

Before the invention of the Web, the Internet was ahnost exclusively text based. 
Researchers used it to transfer files to one another and to keep in touch via 
email. After the Web was invented, it suddenly became possible to see graphi
cal pages sent across the Net by Web servers. These Web pages can include pic
tures, sound, video, and text1 as well as hyper links to related pages. A Web 
browser provides an easy-to-use, intuitive interface for "surfing," or traveling 
around the Web, visiting other people's pages. Figure 1.3 shows how a typical 
Web page looks when viewed with the Netscape browser. 

Ease of use is partially responsible for the astonishing numbers of Web users, 
and perhaps for the sense of safety that most Web users seem to enjoy. In 
addition, creating Web pages is a relatively simple process. HTML editors 
like Netscape Navigator Gold and Microsoft FrontPage make the job espe
cially easy. Given one of these editors and a Web server, you have all the 
pieces you need to create your own Web site. An alternative to using an 
HTML editor is to write HTML code directly. Either way, this snazzy HTML 
facade makes the Internet more attractive than ever. 

As shown in Figure 1.4, the Web has grown just as quickly as the Internet 
itself. The figure charts a conservative estimate of the number of Web servers 
on the Net. It is these servers that allow people to make Web pages available 

Page 22 of 121



[!!] 

'""&•*ND',.,M'MNM!lPIIIPIIi"-m=t' ewaw•M&' ·P?t' 
Eite Edit Ylew $.iO !Pnmuni~ tJelp 

4 ~ l 11 .P' & ;$ 6& li -
Sad( Reload ..,_ Sasd> N~ f'lri Sectdjl -

.. }' llo!MN 'II tocaiion:lfli''-.....,.~ ::J~:.r\olhd:•Reloled 
!If p.,~ Alno04nt "'"'•• eJ ,,.._ ...l Loot."' ~ ~ 

Jailtl~4~: 
HostiW3tpPI~ /h/its, & Antidota 
'WA.:it _,~·~tlfi{Pr(IIJJI 
*~ Intwillil ll~.r 
ulllf'N,..flilkl ~. 

Figure 1.3 A view of this book's companion Web site (www.securingjava.com) as dis

played by Netscape Communicator. 
All current Web browsers include the capability of running mobile code automatically. 

to everyone. The figure does not properly reflect the number of Web pages 
that are out there, which some people number in the hundreds of millions. 
Keep in mind that a server has the potential to serve hundreds or even thou
sands of pages for multiple users simultaneously. 

Java: Spicing Up the Web 
HTML-based Web pages are certainly a big step up from using the obscure, 
text-based Unix incantations of ftp, news, gopher, wais, and telnet to get 
around on the Net; however, they also have a major drawback Much like the 
page that you are reading now, Web pages are static. Wouldn't it be better to 
have interactive Web pages that dynamically change themselves according to 
feedback from a user? Wouldn't it be better to program your Web pages to 
accept input, compute results, and then display them? 

Page 23 of 121



2,500,000 

2,000,000 

1,500,000 

1,000,000 

500,000 

Jun 9:3 Dec 9:3 Jun 94 Dec 94 Jun 95 Jan 96 Jun 96 Jan 97 Jun 97 Jan 98 Aug 98 

figure 1.4 Growth of the World Wide Web, shown as the number of Web servers, since 
its introduction in 1993. 
Data from the Internet Society (W\Illw.isoc.org). 

This sort of dynamic activity should ring a bell. After all, programming lan
guages allow people to program machines to do just these sorts of things. 
Why not make a programming language for the Web? 

That is the essence of Java. Java is a full-featured programming language that 
allows programmers to compose executable content for the Web. The Java lan
guage is designed to be usable on all platforms so that code can move fr<?m one 
machine to another and still work, regardless of the kind of machine it ends up 

Page 24 of 121



on. Cross-platform compatibility has always been a stumbling block in previous 
attempts to create programming languages for executable content. Mobile code 
can only truly be mobile if it can be executed on all platforms without porting 
and recompiling! 

In order to allow Java to run on a computer, the administrator must first install 
a Java Virtual Machine (JVM), or a browser that includes a Java VM. The JVM 
interprets Java instructions and translates them into machine-specific instruc
tions. This allows Java to be run on many different types of machines.4 For old 
timers, the whole idea is reminiscent of P-code from the 1970s. 

Having a well-defined, platform-independent definition allows Java to get 
around problems that have plagued the C programming language, making 
C less platform independent than its designers intended. Unlike C pro
grams, Java programs are not hampered by machine-dependent structures 
such as: 

• Byte ordering (low or high endian) 

• Pointer size (16 or 32 bit) 

• Integer size (16 bit, 32 bit, or 64 bit) 

Java's careful definition shields it from these platform-specific elements of 
programming. Each Java VM is written to a specific platform and translates 
the more generic Java instructions into platform-specific instructions. 

Java has upped the ante on the Web. The best Web pages now include Java 
applets that do everything from displaying selectable news tickers to provid
ing front-end graphical user interfaces (GUis) for internal databases. There 
are even some Web-based videogames written in Java. Java applets have 
become commonplace. 

The Promise of Java 
Java is by far the most popular implementation of Web-based mobile code. 
Lesser-known competitors include JavaScript, Safe-Tel, Telescript, Word 
macros, Excel macros, ActiveX, and Postscript. Each of these systems raises 
its own security issues. Any document-embedded scripting language that 
can be transferred around the Net and run on different machines falls 
under the classification of executable content.5 Propelled by the marketing 
powers of Sun Microsystems and IBM, the Java wave is still building. Java 
avoids the interactive content limitations that were built in to forms and 

4All Netscape Navigators since 2.0x and Microsoft Internet Explorers since 3.0 include a Java 
VM that can interpret the Java byte code making up a Java applet. 
5Note that many of the lessons of this book apply directly to all of these varieties of mobile code 
since the crux of the security problem is the idea of running untrusted code safely. 

Page 25 of 121



CGI (Common Gateway Interface) scripts.6 Java's power lies in the ability to 
program complete applications in a real programming language that can then 
be dynamically distributed and run by virtually any user over the Web. 

Downloading Code: Not a New Problem 

In the early days of the Internet, everyone agreed that downloading arbitrary 
binaries and executing them on your machine was a bad idea. Of course, 
most people did it anyway. By the mid 1980s, there was a lot of freeware and 
shareware out there to be downloaded. To find it, you could use archie, 
which provided a way to search a large index of anonymous ftp content. 
Once you dug up some leads (often several ASCII pages worth), you chose 
your target and ftp'ed what you needed. Then you installed and ran it. 

The risks of running some random person's downloaded-from-the-Net code 
on your machine are clear. If the code has a virus attached, your machine can 
be infected. If the program is a Trojan Horse that appears to be doing some
thing useful while it is actually doing something nefarious, your machine can 
become "owned" by someone else. This is especially dangerous for machines 
connected to the Net. How can we be sure that a program that someone says 
is useful hasn't been hijacked to do something nasty? 

When it works flawlessly, the Java security model provides one possible 
answer to this question, as it was designed to allow untrusted programs to be 
run on a computer safely. As we will see, the base Java security model is 
meant to counter the threat of viruses and other forms of attacks. But in the 
early days of the Net, Java did not yet exist. (To be completely accurate, Java 
was evolving in the early 1990s from an embedded platform called Oak that 
was meant to be used for smart devices like that Internet-enabled toaster 
you've heard so much about.) 

Back to our history ... The question in the late 1980s was, how could a user 
be sure that a program had not been hijacked (or Trojan'ed)? Checksumming 
provided part of the answer. A checksum is a simple computation performed 
on a piece of code to provide a digest, or "thumbprint," of a program. (Com
bine this with digital signatures and you have a system that can provide both 
data integrity and authentication, which is most desirable, as we will discover 
in Chapter 3.) 

Not many people were into checksums back then, but they existed for at least 
a few anonymously downloadable programs. Of course, who was to say that 

6These limitations had mainly to do with the fact that CGI scripts run on the server side, 
whereas Java applets run on the client side. CGI scripts trade off client-side security risks for 
risks induced on the Web server on which they reside. They are a common target of cracker 
attacks. See [Rubin et al., 1997] for more. 

Page 26 of 121



I 14 

a program's checksum hadn't been tampered with? In reality, most people 
either ignored the risks or chose to live with them. 

Skipping the advent of gopher, which most people pretty much ignored 
anyway, the next big thing was the Web. As discussed in the last section, the 
Web got its start in 1992. At first, the Web was static. Java changed all that, 
making it possible for a Web server to provide programs as content. Java 
applets are these programs. The dangers of mobile code and systems for 
addressing these dangers are the focus of this book. But there's still a draw
back, even with the power that Java adds to the Web-the only way to tell 
when new content has been added to a Web page is to surf back over and 
find out. That's where push technology comes in. 

Push: Too Much of a Good Thing? 
As if surfing the Web with a Java-enabled browser isn't bad enough security
wise, another new step in mobile code delivery appears to be "push" technol
ogy. Push provides a way to have information (including mobile code) 
automatically flow to your machine-without you even asking for it! (Well, 
you do have to set things up once in the beginning, but after that, no more 
clicking.) Now the inconvenience of clicking on a hyperlink is completely 
removed. Heck, you don't need to make any decisions at all. Just sit back and 
watch the content (which may include Java applets, ActiveX controls, and 
client-side scripts) come to you. With push it is possible to subscribe to 
"channels" that do things like provide constant stock information, news 
headlines, and (most dangerously of all) software updates. 

There are many push systems out there. Two of the most popular are Castanet by 
startup Marimba, and PointCast by PointCast, Inc. The security systems of Cas
tanet and PointCast are briefly covered in an article written by McGraw entitled 
"Don't Push Me: The Security Implications of Push," which is available at 
www.developer.com/techfocus/123097 _pushsec.html. Push channels are now 
available in both Internet Explorer 4.0 and Netscape Communicator. 

First off, push is not very well named. It should actually be called "timed 
pull." Most systems, including PointCast, work by having a tuner program, 
which functions like a fancy browser, issue HTIP requests for information 
from a push server. (This is the "pull" part.) Once requested, the information 
comes back across the Internet as HTML-based HTIP traffic and is eventu
ally displayed in a special window. PointCast is set up to take over the screen 
when the computer is not in use, much like a screensaver program. Every 
once in a while, the program will wake up and check for new information, 
which is grabbed in chunks and sometimes cached. (This is the "timed" part.) 

Page 27 of 121



15 

Let's get this straight: It is still a really bad idea to download and run arbi
trary binaries off the Internet. Automating things so that this happens more 
easily, behind the scenes, doesn't serve to make it any less dangerous. We've 
gone from having to request binaries through the text-based ftp interface and 
install them, through clicking on a hyperlink (the Java model), all the way to 
having content come to you. 

In the meantime, security issues have yet to be properly addressed. How do · 
you know that the information a push server is sending you is secure? How 
do you know that the update that was just pushed onto your PC is really from 
the company that developed the software? These questions are familiar ones 
to people interested in security. What we need to make push systems safe is 
strong authentication, foolproof data integrity, and trust in the broadcasters. 
Current push systems are only beginning to address security concerns. 

I 

Java in a Demitasse 

The security concerns raised in this book apply equally to both Java users 
and Java developers. Using Java is as easy as surfing the Web. The simple use 
of Netscape Navigator, Internet Explorer, or any other Java-enabled browser 

, to run Java applets is a risky activity. In order to really understand these 
risks, it is important to gain a deeper understanding of how Java really 
works. Here is a short but thorough introduction to the Java language. 

The Java development environment comprises three major components: 

1. A programming language that compiles into an intermediate, architec
turally neutral format called byte code 

2. The Java Virtual Machine that executes the byte code 

3. An execution environment that runs on the JVM and provides some base 
classes useful for building complete applications 

Figure 1.5 shows how these three parts of the Java environment work together 
to provide executable content for the Web. The Java Developers' Kit ODK) is 
provided free to all. It includes the three parts of the Java environment out
lined here. To get your own copy, point your browser to URL java. sun. com. 

Because Java byte code runs on the Java Virtual Machine, it is possible to run 
Java code on any platform to which the JVM has been ported. Some Web 
browsers, such as Netscape and Internet Explorer, include an encapsulated 
version of the JVM. Using their built-in VMs, such Java-ready browsers can 
automatically download and execute Java applets when a user accesses an 
HTML Web page including the <APPLET> tag. 

Page 28 of 121



[ 16 

..... -~"""""'0::...' .!.. .. ~ .. ' __ .....,.. ·. ' <JL ,..... A.. ' x_..._4,.•,-..'>.\. ·•'- ,,V·•'""" n -<.&. ~ 

I Applet Class I 
~ 1 We'rJBrowser 

~ + 2 3 
> ~ 

~ 
Web Page Byte-Code r- Applet Security 

~ ~. Verifier Class Loader Manager 
• •w '~ 

,. ,. ~ 

5 6 'i 
I Applet Class I ~ 

-~ 
4 ~ 

Namespaae 'l 
' 

~ Java Virtual Machine 
~ 

'>1! 
' ' "' 

~ . ,._. .. 
Figure 1.5 How Java implements the original sandbox approach to mobile code. 
Java source code is compiled into Java byte code which is transferred across the Web to the browser that 
requested it The HTML in a Web page specifies which code is to be fetched from the Web server. The request
ing Web browser, prompted into action when a user clicks on a hyperlink. (1) fetches the code from the Web, 
(2) verifies it, (3) instantiates it as a class or set of classes in a namespace. The applet executes and (4) 
invokes a dangerous method (5) causing the Security Manager to be consulted before the method runs. The 
Security Manager (6) performs runtime checks base on the calling class's origin and may veto some activities. 

The Java Language 
One of the first public introductions to Java came in the form of a whitepaper 
released by Sun (and since updated many times) [Sun Microsystems, 1995]. 
An especially pithy sentence from that document attempts to describe the 
fundamental aspects of Java all at once. It reads: 

Java: A simple, object-oriented, distributed, interpreted, robust, secure, architecture 
neutral, portable, high-performance, multi-threaded, and dynamic language. 

Quite a collection of buzzword~. In fact, some people joke that Java is ''buzz
word compliant." This book is concerned mostly with the security claim, of 
course, but in order to understand the implications of Java for computer secu
rity, you need to grasp the other important characteristics of the language first. 

As the quote claims, Java has many interesting features. They will be briefly 
introduced here. Pointers to more information on Java can be found on page 
31. The Java language is: 

Object-oriented: Unlike C++, which is an objectivized version of C, Java is intrinsi
cally object-oriented. This changes the focus of programming from the old proce
dural way of thinking (as inC and Pascal) to a new data-centric model. In this new 
model, data objects possess associated methods. Methods perform actions on data 
objects. Every Java program is composed of one or more classes. Classes are collec
tions of data objects and the methods that manipulate these data objects. Each class 
is one kind of object. Classes are arranged in a hierarchy such that a subclass inherits 

Page 29 of 121



behavior and structure from its superclass. Object-oriented languages were designed 
using the physical world as a metaphor. Classes communicate with each other in 
much the same way that real physical objects in the world interact. 

Strongly typed: This means that a Java program cannot arbitrarily access the host 
computer's memory. Memory access by Java programs is limited to specific, con
trolled areas having particular representations. Type safety is verified when code is 
loaded into the JVM by the Byte Code Verifier (see Chapter 2, "The Base Java Security 
Model: The Original Applet Sandbox"). In addition, runtime checks on type safety (such as 
checks for array bound overflow, type incompatibility, and local-versus-remote code 
security policy) are all handled by the Java Virtual Machine. As we shall see, type 
safety is essential for Java security. In fact, a majority of serious Java security attacks 
target the type system. 

Multi-threaded: Java programs can execute more than one task at the same time. For 
example, a multimedia Java applet may want to play a sound file, display a picture, and 
download a file all at once. Since Java is multi-threaded, it supports the conarrrent execu
tion of many lightweight processes. An obvious benefit of this capability is that it improves 
the performance of multimedia applications at the user end. Java's built-in support for 
threads makes designing such applications far easier than it is inC and C++. Primitives for 
synchronization are also provided in Java. 

Java has other important characteristics adapted from modem programming 
languages such as Scheme (a popular dialect of Lisp) and ML. In particular, 
Java uses: 

Garbage collection: Memory management is usually handled in one of two ways. 
The old-fashioned approach is to have a program allocate and deallocate memory 
itself. This approach allows all sorts of insidious errors and hard-to-squash bugs. C, 
for instance, uses this method. By contrast, Lisp introduced the modem concept of 
garbage collection in 1959! Garbage collection requires the system (rather than the 
programmer) to keep track of memory usage, providing a way to reference objects. 
When items are no longer needed, the memory where they live is automatically 
freed so it is available for other uses. Java provides a garbage collector that uses a 
low-priority thread to run silently in the background. Java's memory management 
approach has important implications for the security model since it prevents prob
lems associated with dangling pointers. 

No pointers: This is also a feature of Java's modem memory management scheme. 
Instead of allowing access to memory through pointers, memory is managed by refer
ence. The crucial difference between references and pointers is that references cannot 
be manipulated through arithmetical means (as can pointers). This eliminates many 
potential bugs. Pointers are one of the most bug-prone aspects of C and C++. Eliminat
ing pointers has the effect of making Java a much more reliable and safer language. 

Exception handling: This defines how the program will manage an error condition. 
For example, if a Java program tries to open a file that it has no privilege to read, an 
exception will be thrown. Exception throwing and catching is a system for gracefully 
managing runtime errors that might otherwise crash a system. This is a good idea if 
you are concerned about security. 

Dynamic linking: Software modules (classes in Java) are linked together as they are 
needed. The Java language knows where it should look for classes that need to be 

Page 30 of 121



linked while a Java program runs. By contrast, C has a linking phase during which all 
needed constructs are linked before the program is run. The linking phase in C is sta
tic since library functions are assembled together with other code into a complete exe
cutable at compile time. Dynamic linking makes it easier to keep Java programs 
up-to-date since the latest version of a class will always be used. This can tum out to 
be a problem for programs that expect a class to behave the way it has in the past and 
are surprised when a new version appears. Version control and software assurance 
become much more complicated with dynamic linking too. Java finds classes that it 
needs by searching for them in locations specified in the CLASSPATH environment vari
able (though the system is undergoing revision for Java 2). (As we will discuss in 
Chapter 2, it turns out to be very hard to ensure type safety when dynamic class load
ing is allowed.) 

Though it has more than doubled in size since its original introduction, Java 
is still a relatively simple language. This is especially apparent when Java is 
compared with C and C++ [Daconta, 1996]. InC, there are often many possi
ble ways in which to do the same thing. Java tries to provide only one lan
guage mechanism with which to perform a particular task. Also, Java 
provides no macro support. Although some programmers like using macros, 
macros often end up making programs much harder to read and debug. 

The designers of Java made their language simple by removing a number of 
features that can be found inC and C++. Things that were removed include 
the go to statement, the use of header files, the struct and union con
structs, operator overloading, and multiple inheritance. Together with the 
elimination of pointers, removal of these aspects of C and C++ makes Java 
easier to use. This should result in more reliable code? 

We will revisit the impact that Java's features as a language have on security 
in Chapter 2. 

Portable Byte Code and the Java Virtual Machine 
The second major component of the Java development environment is the 
Java Virtual Machine. The VM makes Java's cross-platform capabilities possi
ble. In order to run Java byte code on a new platform, all that is required is a 
working VM. Once the VM has been ported to a platform, all Java byte code 
should run properly. 

Making a byte code/VM pair that works well on many varied platforms 
involves setting a few things in stone. Java has variables that are of fixed size 
and of fixed format. An integer in Java is always 32 bits, no matter what 
the word size of the machine running Java. Making data formats machine 
independent and compiler independent is crucial to making Java truly 

7Some experts' opinions about Java and reliability differ, however. For an interesting critique of 
Java, see [Lewis, 1996). 

Page 31 of 121



19 

portable. The very different way in which variables are managed on different 
C platforms causes no end of portability problems for C programmers. 

The VM also makes use of symbolic data stored inside of Java byte code files. 
Java byte code contains enough symbolic information to allow some analysis 
of the byte code before it is run. This is one way the Java environment ensures 
that Java's language rules have been followed by the compiler-something 
critical to security. Rules checked include, for example, type safety rules, and 
ensuring that certain things claiming to be of a certain type actually are of that 
type. Since the Java byte code Verifier is a critical part of the security model, it 
is discussed in detail in Chapter 2. 

Using a VIrtual Machine has obvious important repercussions for the Java 
approach. The VM makes portability possible, and it helps to ensure some of 
Java's security features. Since Java is often implemented using an interpreter, 
speed can be an issue. Interpreted languages are inherently slow because each 
command must be translated to native machine code before it can be run. With a 
compiler, this work is all done ahead of time, when an executable is created for 
some particular platform. Without just-in-time (JIT) and hotspot compilers, Java's 
interpreted code is about 20 times slower than native C code. When this new tech
nology is used, Java speeds begin to approach native C. 

Reusable Class Modules 

The third part of the Java development environment is a set of predefined 
classes that implement basic functionality. The "personal" version of the 
JDK includes, for example, an Abstract Windowing Toolkit (AWT). These 
classes provide a set of graphical user interface (GUI) tools for creating 
windows, dialogue boxes, scrollbars, buttons, and so forth. Java also 
includes classes for full network support that provide application program 
interfaces (APis) for sockets, streams, URLs, and datagrams. A POSIX-like 
1/0 system with APis for files, streams, and pipes makes the environment 
comfortable for experienced Unix programmers. Classes are grouped 
together into packages according to their functionality. Table l.llists the 
packages included in the Java Developers' Kit (JDK) version 1.1. Note that 
Java's core classes have grown significantly in the last few years. 

The predefined Java classes provide enough functionality to write full
fledged programs in Java. Using the predefined classes as primitives, it is 
possible to construct higher-level classes and packages. Many such home 
grown packages are available both commercially and for free on the Net. 

Page 32 of 121



Table 1.1 Packages Supplied by the JDK (version 1.1) Provide Multiplatform Primitives 
·from Which Complete Applications Can Be Assembled 
Java In A Nutshell [Flanagan, 1997] is an excellent reference describing these packages 

PACKAGE DESCRIPTION 

java.applet 

java.awt 

java.awt.datatransfer 

java.awt.event 

java.awt.image 

java.awt.peer 

java.beans 

java.io 

java.lang 

java.lang.reflect 

java. math 

java.net 

java.rmi 

java.rmi.dgc 

java.rmi.registry 

java.rmi.server 

java.security 

java.security.acl 

java.security.interfaces 

java.sql 

java.text 

java.util 

java.util.zip 

The applet class. 

Abstract Windowing Toolkit: The AWT provides graphics, 
GUI components, and layout managers. A new event 
model was introduced with JDK 1.1. 

Inter-application data transfer support, including clipboard 
cut-and-paste. 

Classes and interfaces for the new AWT event handler. 

Image processing classes. 

Interface definitions for GUI components and platforms. 

The JavaBeans API for creating reusable software 
components. 

Input/output classes: A relatively large number of classes 
for 1/0. 

Central Java language classes: Defines Object, Class, 
and primitive types. 

Classes that allow a Java program to examine Java classes 
and to ul'eflect" on its own structure. 

Two classes that support arithmetic on arbitrary-size inte
gers and arbitrary-precision floating-point numbers 
(important for cryptography). 

Networking classes. 

Classes and interfaces for Remote Method Invocation. 

Distributed garbage collection. 
-

Classes and interfaces for tracking, naming, and advertis-
ing remote objects. 

The heart of the RMI system. 

Cla.sses and interfaces that define fundamental crypto
graphic services. (See Chapter 3.) 

Access control list interfaces. 

Interfaces required for the Java Security API's 
implementation-independent design. 

Java Database Connectivity (JDBC) API. 

Classes and interfaces for internationalization. 

Miscellaneous but critical classes. These classes are 
required for many others. 

Classes for manipulating zlib, ZIP, and GZIP file formats. 

Page 33 of 121



The World of Java Applications 
In the early days of Java's popularity/ most Java programs took the form of 
applets, small programs that were attached to Web pages and loaded and run 
in Web browsers. As Java developed/ people began to write substantial appli
cations in Java, using it simply as an improved version of traditional lan
guages such as C. 

Java has always been good for more than writing applets, and the world is 
now catching on to that fact. Java is really a good platform for any applica
tion that needs to be extended or customized, perhaps across the network, 
after it is deployed. A browser is only one example of such an application. 

Another increasingly popular use of Java is in Web servers. Many servers 
have extension mechanisms, but the Java Servlet API provides a particularly 
flexible and compelling vehicle for extending a server with new application
specific or site-specific functions. Most major Web servers now support the 
Java Servlet API. Compared to browsers, servers present more difficult secu
rity challenges, since servers have more stringent reliability requirements and 
store more valuable data. 

Java's features also make it a good platform for creating new server-type appli
cations. With natural support for multithreading, database access, and network
ing, Java gives developers a natural leg up in designing such applications. For 
these reasons, Java is being used increasingly in enterprise computing. 

One common structure for such systems uses a "three-tier" architecture. A 
traditional database server acts as the ''back end" tier, storing and managing 
the data needed to support a business application. The middle tier is a Java
enabled specialized server that interacts with the database and implements 
the "business logic" needed to manage client interactions with the system. 
The "front end" tier is a Java applet that runs in the client's Web browser and 
provides a convenient user interface so that users can interact naturally with 
the system. Three-tier systems put together several uses of Java and, as a 
result, face a wide array of security issues. 

In addition to all of these applications in traditional computers, Java is being 
deployed in embedded devices such as smart cards, key rings, and pagers. 
Embedded applications are often involved in electronic commerce systems, 
adding yet another series of twists to our security story. 

The growing variety of applications is reflected in the subject matter of this 
book. While the first edition focused almost exclusively on applet security 
issues, this edition encompasses the full breadth of today's Java applications. 
We want to provide you with the information you need to know to maintain 
security while building, deploying, managing, and using up-to-date, Java
based systems. As Java has gotten down to business, so has this book. 

Page 34 of 121



Trust,_Applets, and Applications 
Java is much more than simply a language for creating applets. In the early 
days of Java (less than a handful of years ago), it was important to distin
guish applet code (which was typically treated as untrusted and relegated to 
the sandbox) and application code (which was typically treated as fully 
trusted built-in code). This distinction is no longer a useful one. 

An alternative way to carve up the Java program space is to think about code 
in terms of levels of trust. Programs that are more trusted can be allowed to 
carry out potentially dangerous acts (like writing files). Programs that are less 
trusted will have their powers and permissions curtailed. 

If we think about Java programs this way, it is still possible to make sense of 
the old distinction between applets and applications. Java applets are usually, 
though not necessarily, small programs meant to be run in the context of a 
Web browser. Obviously, applets involve the most client-side (or user) secu
rity concerns of any Java programs. In fact, Java's security policies originally 
existed in order to make applets feasible. The Java runtime enforces severe 
limitations on the things that applet classes may do [McGraw and Felten, 
1996]. See www.javasoft.com/sfaq and Chapter 2 for details. In terms of the new 
trust-based distinction, applets are clearly treated as untrusted. This makes 
sense, since the origin of an applet is often unknown or unfamiliar. 

In the early days of Java, Java applications had no such restrictions. In terms 
of our trust distinction, applications in Java before Java 2 were treated as 
completely trusted code. That meant applications could use the complete 
power of Java, including potentially dangerous functionality. 

The reason the old distinction between applets and applications no longer makes 
sense is that today, applets can be tully trusted and applications can be com
pletely untrusted. (Note the use of the word can in the previous sentence; we 
don't mean to say that applets are always trusted or that applications are never 
trusted.) In fact, depending on the situation, each and every Java program can be 
trusted, partially trusted, or untrusted. Sound complicated? That's because it is. 

With the introduction of Java 2, Java includes the ability to create and man
age security policies that treat programs according to their trust level. The 
mechanisms making up the base sandbox are still under there somewhere, 
but they serve merely as a default situation to handle code that warrants no 
trust. The interesting thing is that code that is partially trusted can be placed 
in a specially constructed custom sandbox. That means a partially trusted 
applet can be allowed to, say, read and write a particular file or make a net
work connection to a particular server. This is good news for Java developers 
who were chafing under the constraints of the restrictive original sandbox. 

Page 35 of 121



TRUSTED 

Application 

Signed 
Applet 

Figure 1.6 From black-and-white to shades-of-gray. 

Application 

The distinction between applets and applications found to be useful during the JDK 1.0.2 days no longer 
applies to mobile Java code based on the Java 2 model. In fact, all along the real distinction behind the 
scenes was between fully trusted code and fully untrusted code. A black-and-white distinction between 
trusted code and untrusted code underlies both JDK 1.0.2 and JDK 1.1. By contrast, the Java 2 approach to 
trust management implements a policy-oriented shades-of-gray architecture. Under Java 2, code can be 
constrained or unconstrained regardless of whether it is applet or application code. 

Figure 1.6 illustrates the way in which the old applet/ application distinction 
can be recast in terms of black-and-white trust. It also shows the impact that 
Java 2 has on the black-and-white trust model, transforming it into a shades
of-gray trust model. 

The Many Flavors of Java 
Currently, a large and growing number of Java systems are running the 
gamut from Java gizmos (including Java rings), through smart cards with 
built-in Java interpreters, to complete Java Development Kits and IDEs. As 
with any platform meant to interact in a networked world, there are security 
concerns with each flavor of Java. This book discusses security risks that 
apply to all flavors of Java, but will focus on Java 2 and Card Java 2.0. 

Page 36 of 121



Counterintuitively, Java is both growing and shrinking at the same time. The 
JDK, now up to Java 2, is doubling in size with each major release. At the 
same time, embedded Java systems like Card Java 2.0 are stripping Java func
tionality down to bare bones. Both of these moves have important security 
implications. Java 2 involves fundamental changes to the Java security model 
as the Java sandbox is metamorphosing into a trust-based system built on 
code signing. Card Java 2.0 removes much of the sandbox, leaving smart card 
applets more room to misbehave. 

All of Java's built-in security functionality, including the recently added 
authentication and encryption features (which began to appear with JDK 1.1), 
are available to Java application developers. This functionality makes it possi
ble for an application to establish its own security policy. In fact, Java-enabled 
browsers do just that, determining the security policy by which all applets 
that run inside them must abide. For obvious reasons, an applet is not allowed 
to change the browser's (or for that matter, any application's) security model! 

Security risks fall into four basic categories: system modification, invasion of 
privacy, denial of service, and antagonism. These four categories of risk are 
discussed in detail in Chapter 2. The first two of our risk categories are han
dled moderately well by Java; the second two are not. Risks are particularly 
egregious in Java since exploiting vulnerabilities is simply a matter of booby
trapping a Web page with a malicious applet or two. Chapter 4, "Malicious 
Applets: Avoiding a Common Nuisance," and Chapter 5, "Attack Applets: 
Exploiting Holes in the Security Model," discuss two distinct forms of hostile 
applets. Java applets with bad intentions-exploit scripts-are the equivalent 
of every security administrator's nightmare [Garfinkel and Spafford, 1996]. 

Java's designers are well aware of many of the risks associated with mobile 
code. To combat these risks, Java was specifically designed with security con
cerns in mind. The main goal was to address the security issue head-on so that 
na'ive users (most of the millions of Netscape Navigator and Internet Explorer 
users) would not have to become security experts just to surf the Web. 

In its default form, Java presents a multitiered approach to security. At a gen
eral level, the tiers include: 

• Restricted access to file systems and the network 

• Restricted access to browser internals 

Page 37 of 121



• A set of load time and runtime checks to verify that byte code is following 
the rules 

• A system for signing code and assigning it some level of capability 

The Java security model will be detailed in Chapter 2 and Chapter 3. Many 
claims have been made about the security of the Java language. We will try to 
separate reality from marketing hype in order to better understand the Java 
security model. 

Java also provides a set of tools with which a developer can produce security
critical code (for both applets and applications). In addition to a number of 
advanced language features like array bounds checking and byte code vali
dation, Java provides: 

• A set of cryptographic APis for standard algorithms 

• Cryptography engines that provide the guts for a small subset of the APis 

• A strong, stack-based security system 

Although this book is not just a guide to Java's security APis, we will discuss 
Java's security functionality in detail. In particular,, we will emphasize that no 
computer language as powerful as Java makes writing security-critical code 
automatic or easy. 

How Does Java Security Stack Up? 

As we have mentioned, Java is not the only game in town when it comes to 
mobile code. Other mobile code systems include JavaScript, Safe-Tel, Tele
script, Word macros, Excel macros, ActiveX, and Postscript. Of these systems, 
the one most often touted as a direct competitor to Java is Microsoft's 
ActiveX (sometimes called DNA depending on the whim of Microsoft marke
teers). So what does ActiveX do for security, and how does it compare with 
Java's approach? Besides ActiveX, what other mobile code systems present 
security risks? 

ActiveX Security Issues 
The first thing to know about ActiveX is that it does not have an enforcement
related security model. It has a trust model that may be able to help you 
implement your own security policy. So the real question is: How does a trust 
model like ActiveX's compare with a sandbox like Java's? 

Page 38 of 121



26 

Sandboxes and Signatures 

There are two major approaches addressing the security concerns raised by 
mobile code systems: sandboxing and code signing. The first of these 
approaches, sandboxing, is an idea embraced by early implementations of 
Java (say, JDK 1.0.2). We extensively cover the Java sandbox in Chapter 2. The 
idea is simple: Make untrusted code run inside a box and limit its ability to 
do risky things. That is exactly what the Java security model aims to do. 

The second approach, code signing, is how the ActiveX Authenticode system 
works. Binary files, such as ActiveX controls or Java class files, can be digi
tally signed by someone who "vouches" for the code. If you know and trust 
that person or organization, you may choose to trust the code that they vouch 
for. It is important to stress the fact that code signing is completely a matter 
of trust; there is no enforcement mechanism protecting you once you decide 
to trust a piece of code. The trust model implements authentication and autho
rization. What this means is that there is no such thing as ActiveX security 
enforcement! That's not to say signature-based trust models are not useful. 
They are. In fact, trust models will play an integral role in future security mod
els for mobile code. Much more detail on code signing, especially as it relates to 
Java, is found in Chapter 3, "Beyond The Sandbox: Signed Code and Java 2." 

Code Signing and ActiveX 

ActiveX is a high-profile form of mobile code promoted by Microsoft. Note 
that in practice its "mobility" is completely constrained to one platform, 
however. As it is actually used today, ActiveX is language independent, but 
not platform independent, meaning that real ActiveX controls work only on 
Microsoft's Win32 platform (Windows 95, Windows 98, and Windows NT). 
Technically, these controls could be recompiled for other platforms, but virtu
ally nobody currently produces controls for non-Win32 platforms. 

One caveat: Comparing ActiveX and Java is somewhat like comparing apples 
and oranges, even though everyone does it. ActiveX is a component-based 
software model while Java is a language/platform. ActiveX should really be 
compared with Java components, JavaBeans. (In fact, some argue that the real 
religious Holy War between Java and ActiveX is destined to take place in the 
middleware arena and will be decided by the battle of component models 
[Lewis, 1998].) 

ActiveX has been roundly criticized by computer security professionals since 
its approach to security is seen as lacking. Unlike the base Java security situa
tion, in which an applet has to run in the sandbox and is limited in the sorts 
of things it can do, an ActiveX control has no limitations on its behavior once 
it is invoked. The upshot is that users of ActiveX must be very careful only to 

Page 39 of 121



run completely trusted code. On the other hand, Java users have the luxury of 
running untrusted code fairly safely. 

The ActiveX approach relies on digital signatures, a kind of encryption tech
nology in which arbitrary binary files can be "signed" by a developer, distrib
utor, or certifier. Because a digital signature has special mathematical 
properties, it is very difficult to forge. That means a program like your 
browser can verify a signature, allowing you to be fairly certain who 
vouched for a piece of code (as long as people are carefully guarding and 
managing the private keys used to sign code). To make things easy, you can 
instruct your browser always to accept code signed by some party that you 
trust, or always to reject code signed by some party that you don't trust. The 
signature also supplies data integrity, meaning it can ensure that the code you 
received is the same as the code that was originally signed. Signed code can
not be easily hijacked and modified into a Trojan Horse. 

The ActiveX system provides a black-and-white trust model: Either you trust 
the code completely and allow it to run unhampered on your machine, or 
you don't. That means trusting the wrong sort of code just once is all it takes. 
Once an attack control runs on your system, it can rewrite your security policy 
in such a way that all future attacks will work. Of course, it can do anything 
at all, so this is only one of zillions of attack scenarios. Serious attacks using 
ActiveX have been seen in the wild (although their use is not widespread). 
For an explanation of these attacks and more on ActiveX insecurity, see An up 
Ghosh's book E-Commerce Security: Weak Links, Best Defenses [Ghosh, 1998]. 

Sandboxes versus Signatures 

Do digital signatures make ActiveX more attractive security-wise than Java? No, 
especially in light of the fact that digital signature capability became available in 
Java's JDK 1.1 and, in combination with fine-grained access control, plays a 
major role in Java 2 security. That means in Java, you get everything that 
ActiveX is doing for security plus the ability to run untrusted code fairly safely. 

Another significant factor is that the sandbox approach is more robust in the 
face of accidental bugs in mobile programs. Even if the sandbox isn't bullet
proof, it will most likely prevent a bug in a mobile program from trouncing 
important data or programs by mistake. 

As we shall see in Chapter 3, when combined with access control, code sign
ing allows applets to step outside the security sandbox gradually. In fact, the 
entire meaning of sandbox becomes a bit vague. As an example of how Java 
code-signing might work, an applet designed for use in an Intranet setting 
could be allowed to read and write to a particular company database as long 
as it was signed by the system administrator. Such a relaxation of the security 

. model is important for developers who are chomping at the bit for their 

Page 40 of 121



applets to do more. Writing code that works within the tight restrictions of 
the sandbox is a pain, and the original sandbox is very restrictive. 

Microsoft's Authenticode and Security Zones 

When a signed ActiveX control is downloaded, the browser detaches the sig
nature block (which is a signed one-way hash of the control packaged 
together with a standard X.509 certificate issued by a certificate authority) 
and performs checks on the identity of the signer using Authenticode. This is 
a two-step process. First the certificate is examined by checking the certificate 
authority's identity. Then the one-way hash is checked to ensure that the 
same code that was signed was the code that arrived. Note that these checks 
say nothing at all about whether a control will or will not behave maliciously. 
They only check the identity of the signer and that the code has not changed 
since signing. 

Microsoft Internet Explorer 4.x implements a security zone concept meant to ease 
the management of security policies for signed content such as ActiveX controls 
and Java applets. The system organizes Web sites into four "zones of trust" (or 
more if you customize): Local intranet zone, Trusted sites zone, Internet zone, 
and Restricted sites zone. Each zone can be configured with security levels of: 

Figure 1.7 Authenticode's signature-based trust model implements the concept of 
security zones in order to aid in managing mobile code. 
Microsoft Internet Explorer provides a dialog box that users can access to manage security zones. Though 
the importance of powerful policy management tools cannot be overstated, some security professionals 
complain that allowing a user to set security levels is not a good idea-especially if high security correlates 
with high level of annoyance (through implementing, for example, too many security queries). 

Page 41 of 121



High (most secure), Medium (more secure), Low, or Custom. The idea is to 
divide Web sites into these zones and assign the zones varying levels of trust. 

Figure 1.7 shows a dialog box from Microsoft Internet Explorer (MSIE) that 
allows a user to manage Authenticode security zones. 

Zones are a useful tool that can help make a security policy more coherent. The 
concept may be particularly useful in non black-and-white policy situations 
currently beyond the scope of ActiveX. We think security zones are a useful 
tool that Java security systems beyond Microsoft's should support as well. 

In ActiveX with security zones, the security policy itself remains black and 
white: A mobile program is either fully privileged or completely banned 
from the system. Since most users are inclined to run cool-sounding code 
just to check it out regardless of the risk, popping a dialog box in front of a 
user and requiring an instant security decision is not a good idea. As one of 
the authors (Felten) is known to say, "Given a choice between dancing pigs 
and security, users will pick dancing pigs every time." The Princeton team 
correctly warns that relying completely on a human-judgment-based 
approach to security in not likely to be as successful as blending judgment 
with technology-based enforcement, as newer Java systems do. See Figure 1.8. 

Figure 1.8 "Given the choice between dancing pigs and security, the world will pick 
dancing pigs every time:' 
The dancing pigs applet, available through the book's Web site (www.securingjava.com), demonstrates the 
use of digital signatures in Java. See Appendix C. 

Page 42 of 121



30 

One way in which Authenticode addresses this problem is to put the security 
decisions in the hands of a system administrator. Using the MSIE Administra
tion Kit (lEAK), an administrator can preinstall a list of permitted certificates 
and block the installation of others. This is a step toward centralizing security 
policy management (which is something most corporate users demand). How
ever, in the end, the ActiveX model is still only a trust model. Just for the record, 
Netscape now includes a similar site-wide policy administration system. 

We discuss these issues of trust, identity, and signatures again in more detail 
in Chapter 3, though the focus is on Java and not ActiveX. 

More on ActiveX Security 

The Princeton Team has written an FAQ, reprinted in Appendix A, called 
Security Tradeoffs: Java versus ActiveX, in which a number of common ques
tions about Java and ActiveX are answered. On the Web, the FAQ can be 
found at www.cs.princeton.edu/sip/java-vs-activex.html. 

Two other good places to look are in Chapter 2 of E-Commerce Security by 
Anup Ghosh [Ghosh, 1998] and page 18 of Web Security Sourcebook by A vi 
Rubin, Dan Geer, and Marcus Ranum [Rubin, Geer, and Ranum, 1997]. 

Java Script 
Another mobile code system is J avaScript (Microsoft's version is called 
JScript). Note that other than the four letters-J, A, v, and A-JavaScript has 
nothing in common with Java. In the early days, JavaScript was known as 
LiveConnect, but once the marketing folks at Netscape saw the Java wave 
building, they decided to ride along. JavaScript allows code to be directly 
contained in HTML documents themselves, code that can dynamically 
change the HTML that a Web user ultimately sees through a browser. 

JavaScript has its own security headaches. Though it is not an ultra-powerful 
scripting language, JavaScript can easily be used to carry out denial of service 
and invasion of privacy attac~s. Much more discussion about denial of ser
vice is found in Chapter 2. JavaScript was used extensively in the Princeton 
Team's Web Spoofing attack [Felten, et. al., 1997]. 

To find out more about JavaScript security, a good place to start is at John 
LoVerso's JavaScript security site: www.oaforg/~loverso/javascript/. On his 
JavaScript Problems I've Discovered page, LoVerso describes JavaScript 
attacks that: 

Page 43 of 121



• Track a surfer's history, secretly keeping tabs on all sites visited by a user 
and reporting back to a collection site 

• Read directory listings, learning about a Web surfer's file system and 
reporting back to a collection site 

• Steal files, mailing the stolen goods back to an attacker 

• Construct Java tags, circumventing systems that attempt to block Java 
applets by removing the <APPLET> tag. (For more on why this approach to 
stopping Java applets is silly, see Chapter 6.) 

Make sure that your mobile code security policy (you have one, right?) 
addresses JavaScript as well as Java. 

What Does All This Have to Do with Java? 

The important take-home message of this section is that Java security cqn
cems do not exist in a vacuum. If someone tells you that you should disable 
Java, but pays no attention to these other threats, he or she is not doing you 
much of a favor. The truth is, much scarier things than Java are out there. In 
fact, many of the attacks we have touched on here pale in comparison to 
security concerns raised by a Windows 95 PC connected to the Internet. Try 
to put all of the security concerns relevant to you on the same scale, and 
address the biggest risks first. 

Where to Find More Information on Java 

Java is growing rapidly, and keeping up with it requires as much energy as 
looking after a herd of two-year-olds (believe us, we know). Keeping up with 
the edge is just as important for security purposes as it is for any other. Here 
are some resources that can help make a time investment worth it. 

Java on the Web 

An excellent place to start learning about Java is the Web itself. The first 
URL to check is JavaSoft (java.sun.com). Also useful are developer.com 
(www.developer.com) and Java World (www.javaworld.com). MindQ sells a set 
of excellent CD-ROMs that provides a multimedia introduction to program
ming Java applets and applications (among other issues). See its Web page 
for details at www.mindq.com. (MindQ produced the authors' Java Security 
CD-ROM as well.) To discover some of the many other Java resources 
on the Net, search for Java at Yahoo! (www.yahoo.com) or on AltaVista 
(www.altavista.com). Also see two collections of security-related Java 

Page 44 of 121



32 

links put together by the authors at www.securingjava.com and at 
www.cs.princeton.edu/sip. The references section of this book includes a 
complete listing of all URLs cited throughout the book. 

Java Books 
The number of books on Java is growing almost as fast as the Web itself, and 
the Java shelf is groaning under their combined weight. For a comprehensive 
list, see lightyear.ncsa.uiuc.edu/~srp!java/javabooks.html. We have had a chance to 
use a few of them as Java coders. Here are four, with a brief review for each: 

Core Java Volume 1-Fundamentals [Horstmann and Cornell, 1997]. This is a good 
book; big, but definitely useful. In fact, Core Java got so big that it split into two vol
umes for the JDK 1.1 edition. It is full of comparisons to C++ and Visual Basic, 
including useful pictures. The authors provide implementations for other classes 
that are not in the Java libraries, but are commonly used. 

Inside the Java Virtual Machine Specification [Venners, 1997]. For anyone interested in 
the inner workings of Java's Virtual Machine, this is the book to get. As we'll see, 
Java applet security boils down to what byte code is allowed to do and how its 
behavior can be constrained. That means that learning about how the VM does its 
thing is a useful exercise for those people concerned about security. 

Java in a Nutshell, second edition [Flanagan, 1997]. This book remains everyone's 
favorite (well, every developer anyway), probably because it is so useful. O'Reilly is 
famous for its API books and, true to form, this book provides an extensive API for 
the packages provided by Java. This makes it excellent for a quick desk-side refer
ence. There are some examples, but if you learn best by examples, you should con
sider Java Examples in a Nutshell [Flanagan, 1997]. Both books are equally useful for 
beginners and more advanced Java programmers. 

Java Network Programming [Hughes, Shoffner, and Winslow, 1997]. One of the best 
reasons to use Java as a development platform is to take advantage of its built-in net
working ability. This excellent book is filled with hands-on examples that are 
included on a CD-ROM. Of particular interest to security buffs, a number of cryptog
raphy algorithms are presented. Note that there is an O'Reilly book of the same title 
(this one is from Manning); however, this is the one to get. 

Java Security Resources 
We're glad to say the amount of information available on Java security is also 
growing. There are both a number of books available and a large number of 
Web sites. On the Web, we provide the most comprehensive and up-to-date 
hotlist-the Java Security Hotlist-at www.securingjava.com. The hotlist, which 
has over 100 links divided into 9 categories, has been reproduced as Appen
dix B, "The Java Security Hotlist." Of course URLs are notoriously dynamic, 
and Java security is a fast-moving field. For the latest version of the hotlist, 
see the Web site. 

Page 45 of 121



33 

The Secure Internet Programming Lab at Princeton also maintains a site with 
information on security alerts and ongoing Java Security research at 
www.cs.princeton.edu/sip/. 

Java Security Books 
For at least a year, the first edition of this book, Java Security: Hostile Applets, 
Holes, & Antidotes, was the only available book on Java security. Since that 
time, a number of other books have come out that address the topic. Of 
course, we are biased about which one is best, but we thought you might 
appreciate our opinions about the others anyway: 

Java Security: Hostile Applets, Holes, & Antidotes [McGraw and Felten, 1996]. The first 
book on Java security. This book was intended to educate Web users about the risks 
of Java security. It includes a discussion of the base Java security model and the orig
inal Java security holes. We're glad we wrote it. 

Java Network Security [Macgregor, et al., 1998]. This book appeared in 1998 and 
includes information on JDK 1.1, but nothing on Java 2. The book has a number of 
technical errors and unintentionally misleading claims about security as well. If you 
want a copy of everything ever written on Java security, get a copy; otherwise this 
one is skippable. 

Java Security [Oaks:, 1998]. O'Reilly is well known for its developer-oriented books. 
This book fits the bill, as it provides both an API reference guide and a number of 
code samples. It is almost up to date (the switch to the doPrivileged () API dis
cussed in Chapter 3 is not covered by Oaks) and carefully details Java 2 functionality. 
One caveat: Oaks is an employee of Sun Microsystems and certainly toes the party 
line. The discussion of security risks and implications reflects this fact. Also missing 
is any treatment of Java security holes. Nevertheless, if you are a developer who 
wants to learn about the APis and you don't care too much about the bigger picture, 
this book is for you. 

The Web Security Sourcebook [Rubin, Geer, and Ranum, 1997]. Although this is not a 
Java security book per se, many of the lessons this book teaches are entirely relevant 
to people interested in Java security. This is a practical, hands-on book that covers 
Web server security, mobile code, CGI, and more, written by security experts of the 
highest caliber. 

£-Commerce Security [Ghosh, 1998]. Java is often put to use in e-commerce systems, 
and of course, e-commerce systems must take security very seriously. This book pro
vides essential data for securing your e-commerce system. It discusses common 
errors, real attack targets, and solutions. 

Mobile Code Has Its Price 

Having programs embedded in Web pages that can run on any platform is an 
excellent idea. But in order to get this power, users take a great deal of risk. 

Page 46 of 121



34 

A Web surfer can click over to a Web page with an embedded applet that 
immediately and automatically begins executing. Often, the user doesn't 
even know this is happening. This situation might not be so bad if' the Java 
environment being used were 100-percent secure. However, to make Java 
really secure would require making it completely impotent.8 

There is a price that must be paid for the power of executable content. 
This price is very similar to the price that must be paid in order to con
nect to the Internet in the first place. (In fact, if you decide Java security 
risks are too much to bear, you should ask yourself what you are doing 
connected to the Internet at all!) The bill is payable in terms of risk and 
exposure to attack. The question is, how much risk are you willing to 
take? How critical is the information on your machine? Our goal in writ
ing this book is to arm the reader with the data that are needed to make 
an informed, intelligent decision about Java, both as a system for mobile 
code and as a development platform. 

Downloading Mystery Code 

How often do you download executable code from various unknown sites on 
the Net? Do you think about where the code is coming from and who wrote 
it? Do you know what it will do before you run it? 

Even if you are particularly cautious about downloading binaries from the 
Net, the answers to the questions raised will undoubtedly soon change. 
Applets are cropping up everywhere. At the moment, surfing the Web with a 
Java-enabled browser is tantamount to downloading and running arbitrary 
binaries, albeit with some level of security provided by Java. Deciding 
whether this is a good idea is an important decision that is as personal as a 
financial investment strategy. 

It is worth repeating that there is no such thing as perfect security. This is true 
for any system on the Internet, not just systems using Java. Someone will 
always be probing Java security, trying to find new ways around or through 
the existing system. In the real world, all you can expect is reasonable secu
rity. The solution to this conundrum is finding an acceptable tradeoff 
between functionality and security. 

8 Keep in mind that the most secure machine is a machine that is kept "off" at all times, has its 
hard disk wiped, and is buried in a hole filled with concrete. Of course a machine this secure is 
also useless. 

Page 47 of 121



Playing the Cost/Benefit Game 

The Internet can be a dangerous playground. Java offers an intriguing 
approach to the problem of security by neither ignoring it entirely (as most 
languages do) nor being completely paralyzed by it. Deciding what level of 
risk to incur is really a matter of weighing the potential costs of using Java 
against the clear benefits of using Java. Making an informed and intelligent 
decision requires understanding both aspects of the situation. Business peo
ple are always weighing costs and benefits when making complicated deci
sions. The same sort of careful consideration that goes into forming a 
business plan should also go into the formulation of a Java use policy. 

The Java hype machine has been exceptionally good at broadcasting the ben
efits of Java. It has been successful largely because Java really does have vast 
potential. On the other hand, the advertising has been slightly less straight
forward about the risks. (To this day we hear claims that Java is 100-percent 
secure, or that there is no need to worry about Java security.) This may be 
because the risks are complicated and sometimes difficult to understand. 
Computer security is a new field to many users, and few people are aware of 
all the issues. As Java applets become ubiquitous, it behooves us to become 
more aware of security issues. Ignorance is not bliss. 

Assessing the Risks 

Now that the basics of the Java environment have been covered, you are 
ready to examine Java security in earnest. It is only after understanding what 
the security model is, how it works, and how it doesn't, that you can truly 
begin to assess the security situation. 

People should think carefully about using Java even casually with a Java
enabled browser. This book will present some of the facts associated with 
Java security so that you may decide when, where, and how to use Java. 
Unfortunately, there is no black-and-white answer to the question: How and 
when should I use Java? 

Page 48 of 121



Beyond the Sandb 
1p • ..,~::;1H;'J":j'rr.li 

Signed Code 
and Java 2 

J
ava has outgrown the original restrictive sandbox. The anticipated futme of 
mobile code security, a complex mix of sandboxing and code signing, is now 
upon us with Java 2. 1n essence, the three parts of the sandbox explained in the 
previous chapter implement a language-based security enforcer. This enforce
ment model has been hybridized and expanded to include fine-grained notions 
of trust and permission built on digital signatures. That means major changes to 
Java securHy. This chapter centers on those changes. 

Chapter 1, "Mobile Code and Security: Why Java Security Is Important," 
briefly introduced the notion of code signing and mobile code policy through 
the discussion of ActiveX. The ActiveX trust model is suited onJy to run com
pletely trusted code. At the core of that kind of trust model is a black-and
white decision either to trust the code or not. Such a decision can be 
influenced by determining who vouches for the code. Digital signatures are 
used fo r the vouching. 

Java's approach to trust is also based on digital signatures. However, instead 
of allowing only black-and-white trust decisions a la ActiveX, Java 2 allows 
fine-grained access control decisions to be made. With the introduction of 
code signing in JDK 1.1, Java's sandbox model underwent a state transition 
from a required model applied equally to all Java applets to a malleable sys
tem that could be expanded and personalized on an applet-by-applet basis. 
Java 2 fwthe1· complicates the picture with the addition of access control 

81 

Page 49 of 121



1 a1 

When combined with access control, code signing allows applets to step out
side the security sandbox gradually. In fact, the entire meaning of sa11dbox 
becomes a bit vague. As an example of how Java code signing might work, 
an applet designed for use in an Intranet setting could be allowed to read and 
write to a particular company database as long as it was s igned by the system 
administrator. Such a relaxation of the security model is important for devel
opers who have complained about Java's restrictive sandbox. Writing code 
that works within the tight restrictions of the sandbox is a pain, and the origi
nal sandbox is very restrictive. 

'111e addition of code signing to Java complicates things. AsH now s tands, the 
Java sandbox has been reduced to a default. The whole game has d1.anged. 
Tracing the history of this change as we do in this chapter can lend some 
important perspective. 

Before we dig into the complex issues of code signing and trust models, it 
does us good to review what it is we're trying to achieve in the first place. 
After all, the point of all this highfalutin' architecture is not to make the 
world's most complicated system. The real objective is securing mobile code. 

After we remind ourselves of the main goal of the new security model, we 
are ready to trace its evolution. We will begin by explaining the enhance
ments added to Java with the release of JOK 1.1, and go on to discuss the Java 
2 model in detail. 

Everyone agrees that code signing makes the Java security model a lot more 
complicated, not to mention actually using the new system. Where security is 
concerned, complexity is bad since it increases the odds of an error in the sys
tem's design or implementation. If we're going to add all of this complexity, 
what exact1y is it that we are gaining? What's the main goal? 

The main goal is to gain better control over the security of mobile code. We can 
achieve this goal by winning the battle on three fronts. 'By adding code signing 
and expanding beyond a black-and-white trust model, we hope to gain: 

1. The ability to grant privileges when they're needed. 

2. The ability to have code operate with the mjnimum necessary privileges. 

3. The ability to closely manage the system's security configu ration. 

We can judge thejDK 1.1 and Java 2 security models by how well they meet 
these objectives. 

Page 50 of 121



8l 

The first objective is simple: We want to give trusted code the privileges it 
needs to get its job done. A word-processing applet needs the ability to read 
and write files, so we want to grant this privilege if we have enough faith 
that the applet won't misbehave. In general, users want to be able to grant 
any privileges at all to any code they choose, as long as the benefits of doing 
so outweigh the risks. 

The second objective is to have code that operates with the minimum neces
sary privileges at all times. Security experts call this the "principle of least 
privilege." This is a common-sense idea-why use a chain saw when a butter 
knife is sharp enough for the job-butit has profound jmplications if we 
carry it to its logicaJ conclusion. One simple implication is Hlat we want pro
granuners to have a way to renounce their privileges when they aren't 
needed and reenable the privileges when they are needed. The principle of 
least privilege can be applied in many places throughout the system: 

• We want to grant each applet or application the minimum privileges it 
needs. 

• Rather than assigning a given applet's entire collection of prj,rileges to all 
of its classes, we want each class to get just what it needs. 

• We want a class's privileges to be "turned off" except for brief periods of 
time. 

• We even want to reduce the privileges of some of the built-in system 
classes. 

The third objective is manageability. Tiris is a tricky one. Some might think 
that the ultimate in management power is when all possible options are pre
sented to the user. (Power users, developers, and other gurus tend to think 
along these lines.) But in reality, users are overwhelmed and irritated when 
they are confronted with too many big complicated dialog boxes. Somehow 
the choices must be boiled down so that users get just the control they need 
without being asked any unnecessary questions. 

As we see in the rest of this chapter, the Java security model is still a work in 
progress. Nobody knows yet how to achieve aU of these goals, or even how 
they trade off against each other. Today's models are pretty good, but they 
are a far cry from perfect. 

Security Enhancements in JDK 1.1 

]DK 1.1 appeared in the early Spring of 1997 and included a number of improve
ments and changes to the base Java security model ofJDK 1.0.2. fortunately, none 

Page 51 of 121



of the material about the base Java security model covered in the last chapter (or 
for that matter, things you learned from the previous edition of this book) was 
outdated or replaced; rather, the Java security architecture was changed through a 
process of enhancement and addition. 

From a security perspective, the most important changes introduced in JDK 
1.1 were the addition of authentication and simple access-control mecha
nisms that rely on the use of cryptography. Remember, security is much more 
than just cryptography. Think of cryptography as a means to an end-an 
important part of the puzzle, but onJy a parl. A side effect of the need for 
cryptographicfunctionality inside the model itself was the creation of a 
crypto API. The crypto API, also introduced with JDK 1.1, provides a basic 
toolkit of cryptography algorithms that developers can use in their programs. 

The Crypto API 

Today, Java includes a cryptography toolkit that includes both an API and some 
packages implementing a portion of the functionality behind the API. Gasses in 
the java . security package, the package implementing the cryptographic 
functionality, have a dual purpose. One pwpose is to provide the cryptographic 
methods that Java's designers used to implement the JDK 1.1 and Java 2 security 
models. The second purpose is to provide cryptography functionality to Java 
developers charged with creating secure applications. 

Parts of a crypto API were released with JDK 1.1. The parts included both 
one-way hash functions and digital signature capability. DES encryption 
tools were released only as an extension to North American users. 

Encryption tools and their mathematically related cousins (such as digital 
signing) change the way Java use policies are mnnaged. Digital signatures, 
which are discussed n.ext, make it possible to authenticate who has vouched 
for il piece of code, and potentially check it for tampering. If you dedde to 
trust c1 particular person, you can set things up so that you automatically 
trust programs that person signs. (Note that with the right tools, anyone can 
sign any piece of code. Whether or not a piece of code is written, released, or 
supported by the person who signed it is not something digital signatures 
can tell you.) Because the signature is a mechanism for vouching and spread
ing trus t aroWld, if you trust some experts in the field who agree to approve 
lava programs based on their analysis, you can trust any code that they sign 
as well. Digital signing paves the way for a true community of trust to 
develop. We think digital signing is important enough to warrant an entire 
section itself. See page 88. 

Beyond digital signatures, the crypto API released with TDK 1.1 includes a 
couple of other capabilities. One-way hash functions provide a way to finger-

Page 52 of 121



85 

print a program or data so that you can verily that it has not been changed 
since being created. Fingerprinting hash functions such as MDS and SHA 
make clistribulion over the Net easier to swallow. If you are certain that a 
program you are downloading from the Net is the original program (and not 
a Trojan Horse masquerading as the original), you will probably be more 
likely to use it. Many archives on the Web today make use of MOS. 

Fingerprinting, also called message digesting, works by performing a one-way 
hash over a series of bytes. Given a program (which is really just a bunch of 
ones and zeros), it is possible to compute a hash that ends up being many 
times smaller than the original program, but (hopefully) represen ts only that 
program. The main trick is to avoid collisions, whereby the same fingerprint 
is computedior different programs, and to come up with a hash function that 
can't be run in the opposite direction. MDS and SHA are systems for comput
ing one-way hashes over a binary file. The crypto API p rovides a way for 
Java programs to include this functionality. 

MDS and SHA are useful when it comes to signing code because the act of 
signing is actually a complicated function of a secret crypto key and the data 
to be signed. The math is hairy enough that it is a m uch better idea to com
pute it using a program's hash instead of the program itself. Remember, the 
hash is many times smaller than the program it represents. Figure 3.1 shows 
the important role that one-way hash functions play in code signing. 

Another function that appeared as part of the crypto API (at least in the pack
age available only in the United States, and known as the Java Cryptography 
Extension, or JCE) was DES encryption. DES, an acronym for Digital Encryp
tion Standard, js a venerable old encryption algorithm that can in some cases 
be deciphered (given enough effort and a small enough key). DES is certainly 
much more secure than plain text, but does not provide the best available 
security. 1n 1998, the EFF created a specia1-purpose machine to crack DES 
messages. The purpose of the machine was to emphasize just how vulnerable 
DES really is. (For more on the DES cracker, see W\-vw.eff.org/descracker/.) 

Most Unix machines use a variant of DES to encrypt user passwords stored in the 
I etc/passwd file.lf 56-bit (or smaller) keys are used for DES, then the U.S. gov
ernment will allow its export and use outside the United States. There is also a 
variant calJed h·iple DES that effectively has a 112-bit key; which will be safe 
against brute-force searching for a long time. The ease of "breaking" DES is 
directly related to the length of its key. 

Certificates 

Another feature that appeared in JDK 1.1 is certificate technology based on 
the X.509v3 open standard. Certificates provide an authentication mechanism 

Page 53 of 121



86 

by which one site can securely recognize another. Sites that recognize each 
other have an opportunity to trust each other as well. When a secure socket 
layer (SSL) connection initializes between two machines, they handshake by 
exchanging certificates. SSL is discussed in the next section. 

A certificate is a piece of identification (credentiaJ) much like a driver 's 
license. [nformation stored inside a typical certificate file includes the sub
ject's name, the subject's public key, the certificate's issuer, the issuer's digital 
signature, an expiration date, and a serial number. 

So the question is, who gives out these certificates? Someone (or some thing) 
called a certification authority (CA). There are a handful of companies that 
have set themselves up as CAs in the world. These include Nctscape, GTE, 
Verisign, and a few others. But why should you trust them? Good question. 
(See page 92.) 

Secure Communication 

Java 2 now includes a package for secure socket layer (SSL) communication. 
Similar to Netscape's SSL, the Java SSL provides a secure communications 
channel by using encryption. SSL works by providing a mechanism for 
encrypting packets on the sending end, sending them over an untrusted 
channel, and decrypting them at the receiving end. SSL is useful for many 
business applications, including the transmjssion of proprietary information 
and electronk currency. 

Most Web servers and browsers now support SSL, aUowing a browser to 
communicate with a Web server without anyone else overhearing the conver
sation. (Well, an outsider might overhear a conversation, but he or she cer
tainly won't understand it.) Though SSL is commonly used over the Web, it 
can actually be used to protect virtually any sort of network h·ansaction. 

Most browsers support SSL by providing a "Secure HTI'P Connection" service 
that looks to the user just like a normaJ Web connection, but uses SSL underneath. 
This allows you to reap the benefits of SSL without having to team anything 
except how the browser tells you whether a connection is secure. 

The encryption technology underlying SSL is generally betieved to be secure, 
but there are two potential problems. First, the U.S. government restricts the 
export of strong cryptography software. If your browser version includes 
dumbed-dov.rn exportable cryptography software, your communications 
might not be as secure as you think. Second, SSL is good at providing secure 
communications, but it is not as good at establishing who you are communi
cating with. 'IlUs leads into all the problems of authentication and key distri
bution discussed on page 90. 

Page 54 of 121



A. 

B. 

Binary 
Code 

Signer's 
Private Key 

Signer's 
Public Key 

Signed 
Hash 

2 

Figure 3.1 How code is digitally signed (A) and digital signatures are verified (B). 

87 

(A) Signing code takes several distinct operations: (1) a one-way hash calculation is run on a piece of 
binary code, resulting in a small ¥thumbprint" of the code; (2) the hash is signed using the signer's private 
key; (3) the signed hash and the original binary code are placed together (potentially along with other 
signed and unsigned code) in an archive JAR. Now the JAR can be shipped around as mobile code. 

(B) Validating signed code also takes several steps: ( 1) a piece of binary code and its associated signed 
hash are removed from the JAR; (2) a new hash is calculated using the same one-way hash algorithm that 
the signer used to create the signed hash; (3) the signature carried by the signed hash is cryptographically 
validated with the signer's public key (possibly with reference to certificate authorities and trust chains); (4) 
if the signature checks out, the now decrypted original hash is available for comparison with the new hash. 
Though all three Java code signing schemes (Sun, Microsoft, and Netscape) share these two processes, 
there ilre enough differences that the systems do not inter-operate. See Appendix C for examples of how to 
sign Java code under eilch implementation. 

Page 55 of 121



88 

Signed Code 

The capability to digitally sign Java byte code (at least byte code files placed 
in a Java archive, called a jAR file) was introduced with JDK 1.1 and greatly 
expanded with Java 2. Digital signing capability is an important part of the 
new Java security regimen. This is exciting because digital signing radically 
alters the amount of trust you can place in a piece of code. A Tutorial on sign
ing Java code with the current tools from Microsoft, Netscape, and Sun can 
be found inAppcndix C. 

One particular kind of cryptography tool allows a chunk of digital informa
tion (including, of course, Java byte code) to be signed by a person or organi
zation. See Figure 3.1. ~ecause a digital signature has special mathematical 
properties, it is difficult to forge. Your browser can verify a signature, allow
ing you to be fairly certain that a particular person or organization vouches 
for the code. That means you can instruct your browser always to accept 
applets signed by some party that you trust, or always to reject applets 
signed by some party that you don't trust. Same thing goes for a non
browser-based VM, which can be instructed (through policy) how to treat 
application code signed by particular entities. 

It is important to recognize that even if you know exactly which Web pages 
you are visiting and who created them, you probably don't know w ho wrote 
each applet that appears on the pages you visit. Applcts are shuffled <~round 
on the Net like Beanie Babies in a fifth-grade classroom. 

Contrary to popular belief, you don't always know where information is 
coming from on the Internet. A nasty attack called IP spoofing alJows a bad 
guy to send you network traffic that claims to come from someplace else. For 
ix1stance, you might think the traffic is coming from "whitehouse.gov", when 
it's really coming from "cracker.org". IP spoofing used to be considered.just a 
theoretical possibility, but it has actually happened in recent years. The best
known example is an attack by the infamous cracker Kevin Mitnick on a 
machine managed by compu ter security worker Tsutomu Shimomura. 
Mitnick's attack led to his eventual capture and conviction [Shimomura and 
Markoff, 1996]. 

An attack known as Web spoofing shows that even in the absence of fP spoof
ing, it is not always clear that you are visiting the site you may think you're 
visiting [Felten, et al., 1997). An attacker can lure you into a "false Web" that 
looks just like the real one, except that the attacker can see everything you do, 
including anything you type into a form, and the attacker can modify the 
traffic between you and any Web server. All of this is possible even if your 
browser tells you that you have a "secure" connection. See Figure 3.2. 

Page 56 of 121



VIct im's 
Browser 

4 Cha"ge 
P;~ge 

www.server.com 

89 

Figure 3.1 A Web Spoofing attack can be carried out with extensive use of a browser's 
mobile code capability. 
The Princeton Team has implemented a demonstration of Web Spoofing that makes eKtensive use of 
Java Script Once an attacker has lured the victim to the attack server (shown as www.attacker.org), the 
attacker can control the victim's view of the Web by acting as a rewriting proxy. Clever use of JavaScript 
makes all changes invisible to the victim and can even appear to offer encrypted traffic. 

Even if you ignore the possibility of spoofing, using the return address of an 
applet (that is, knowing the Web site where you got the applet code) still isn't 
good enough to base a trust decision on. A digital signature holds much more 
information. For example, such a signature could tell you that although the 
applet is being redistributed by a site you don't trust, it was originally signed 
by someone you do trust. Or it can tell you that although the applet was writ
ten and distributed by someone you don't know, your friend has signed the 
applet, attesting that it is safe. Or perhaps it can simply tell you which of the 
thousands of users at aol.com signed the applet. 

Digital Signatures 
So how do you sign a piece of code? The key to certification and authentica
tion is the use of digital signatures. The idea is simple: to provide a way for 
people to sign electronic documents so that these signatures can be used in 
the same way we use signatures on paper documents. In order to be useful, a 
digital signature should satisfy five pwperties [Schneier, 1995]. It should be: 

1. Verifiable: Anyone should be able to validate a signature. 

2. Unforgeable: It should be impossible for anyone but you to attach your 
signature to a document. 

Page 57 of 121



90 

3. Nonreusable: It should be impossible to "lift" a signature off one docu
ment and attach it to another. 

4. Unalterable: It should be impossible for anyone to change the document 
after it has been signed, without making the signature invalid. 

5. Nondeniable: It should be impossible for the signer to disavow the signa
ture once it is created. 

Mathematicians and computer scientists have dt?vised severa l digital signa
ture schemes that appear to work quite well. The full details are very tedmi
caJ. If you're intet·ested in learning more abc>ut such schemes, Bruce Schneier's 
exceJJent book, Applied Cryptography, is a good place to starl [Schneier, 1995]. 

The digital signatures used for Java code are based on public-key cryptography. 
If Alice wants to be able to sign docwnents, she must first use a special mathe
matical technique to generate two large numbers: her own private key, and her 
public key. As the names suggest, Alice keeps her private key to herself. Keep
ing it secret is essential. Her public key, however, is announced to the world. 

Alice's private key is used for signing electronic documents. Her public key 
is used to verify those signatures. See Figure 3.1. Anyone who knows the pri
vate key (hopefully only Alice!) can run a special computation involving the 
document and Alice's private key. The result of this process is a digitally 
signed version of the document. 

Anyone who knows Alice's public key can verify her signature by running a 
special computation involving the signed document and AJice's public key. 
Since only Alice knows the private key, she is the only one who can put her 
signature on documents. Since everyone knows her public key, anyone can 
verify that the signature is hers. 

Everything sounds great. You tell your browser to trust applets signed by 
Alice by registering Alice's public key. Whenever applets claim to come from 
Alice, the browser can verify that claim by comparing the registered public 
key to the signed applet. If the applet is not from Alice, it can be rejected. 

Key Distribution 
But how do you know what Alice's public key is? 

If you know Alice, she can call you on the phone and telJ you her public key. 1n 
this case, you will know the key is valid because you recognize Alice's voice. 
This doesn' t work if you don't know Alice. How do you know the person on 
the other end of the phone .is Alice? Maybe it's Alice's e\'iJ twin Zelda, trying to 
pass off Zelda's public key as Alice's so she can forge Alice's signature. 

Page 58 of 121



9 1 

One way arormd this problem is to ask Alice's twin brother Allan to help. 
Alice can create a document containing her public key and have Allan sign 
that document. If you trust Allan and you know Allan's public key, then the 
document tells you reliably what Alice's public key is. 

But 1"10w do you know Allan's public key? You can't ask Alice and Allan to 
vouch for each other's public keys, because Zelda could create a false Alice 
key and a false Allan key and use them to sign documents vouching for each 
other! This leaves us stuck with a chicken-and-egg problem. 

The usual solution .is to use a certification authority (CA). TheCA, Oaire in our 
example, is in the business of certifying keys. Alice goes to the CP: s office with 
her birth certificate, passport, driver's license, and DNA sample. Once she has 
convinced Oaire that she really is Alice, she tells Oaire her public key, and Claire 
signs an elecb:onic document that contains Alice's public key. That docwnent 
serves as an electronic credential for Alice. 

After Alice has a credential, key distribution is much easier. Alice can plaster 
copies of her credential everywhere: on bulletin boards, on her homepage, and 
at the end of every email message she sends. Better yet, whenever Alice signs a 
docwnent, she can attach a copy of her credential to the signed document. On 
receiving the document, you can first check the credential by verifying Claire's 
signature, and then verify Alice's signature using the public key included with 
the documen t. Zelda can't trick you into accepting a bogus public key for Alice, 
because she can't forge Claire's signature. fjgure 3.3 shows the process by 
which a signature on a piece of signed code can be validated. 

The beauty of this approach is that if everyone can visit Oaire and get a creden
tial, then no one has to remember any keys except for his or her own private key 

Thlng1 

Figure 3.3 Validating a signature on signed code. 
In this example, a piece of code is signed by the private key of thing 1. lhe corresponding!ublic key. available 
on thingl's certificate can be used to validate the signature carried by the code. For adde security and to make 
key management more reasonable, browsers typically validate theCA signature carried on the certificate. 

Page 59 of 121



92 

(to sign documents), and Oaire's public key (to verify credentials). There are 
still two problems, though. Everyone must trust Claire. As the authority, she can 
impersonate anyone. And you still need a reliable way to get Claire's public key. 
[t doesn't help to have Claire get a credential from Oaire's mom, Elena. You 
would have no more reliable way of knowing who Elena is. 

There is no technological solution to this. Oaire's key will probably be hard
wired into your browser software, or entered by support staff at install time. As 
long as you get a valid copy of the browser, and no one has messed with your 
hard disk, everything will be okay. How do you know you hnve a valid copy of 
the browser? It will be signed by the browser vendor. How do you know the 
browser vendor's signature is vaHd? Don't ask-there lies madness. 

What Signing Can't Do 

Even if the signing and signature-checking mechanisms work perfectly and 
are able to reveal who signed each applet, a huge unsolved problem still 
remains. Technology can tell you who signed an applet, but it can't tell you 
whether that person is trustworthy. That's a decision you have to make based 
on human judgment. And you'd better make the right decision. 

Trust 

Once a code signing infrastructure is in place, you will be able to know reli
ably who vouches for each Java program. The next link in the chain is figur
ing out what to do with that knowledge. 

One thing you can certainly do is to relax Java's security rules for opplets that 
you trust. For example, with the default sandbox java normally prohibjtc; any 
access to files in order to prevent an applet from corrupting your hard drive or 
reading your private data. If you trust applets from particuJar sources, though, 
you mlght want to allow them to read files. Introducing permissions granted 
according to trust level opens up vast new application areas, including things 
like spreadsheet applets, games with stored high scores, Web sites that recall 
your preferences, a host of different remote management possibililies, and so on. 

Besides access to files, there are many other capabilities you might want to grant 
a trusted applet or application: access to your machine's microphone and cam
era, freedom to make network connections, and maybe even freedom to label 
other code as trusted. Tt all depends on your decision to trust and how much to 
trust a signed program. There are several ways you can make these decisions. 

Page 60 of 121



Who Do You Trust? 

The first decision is whether to use a black-and-white or a shades-of-gray 
policy. A black-and-white policy is one that divides aU programs into two 
groups: trusted and untrusted. This was the only sort of trust policy that was 
easy to implement using JDK l.l. java 2, however, changed all that. Java 2 
makes it possible to create a shades-of-gray policy, allowing you to assign 
any degree of partial trust to a Java program. (Recall Figure 1.6 in Chapter 1.) 

Before Java came along, most Internet software worked on a black-and-whlte 
model. If someone offered to let you download a program, you had two 
choices: either you downloaded the program or you didn't. If you did, you 
were trusting the program completely since there was nothing to stop it from 
running wild on your machine. If you rudn't download the program, you 
were treating it as completely untrusted. Java, with its security policies as 
implemented in the base sandbox, changed the rules a bit by making it easier 
to decide what to download in the fixst place. If an untrusted applet can't bite 
you, you might as well check it out. 

The black-and-white model is sometimes called thesltr ink-wmp model because 
it's similar to sofhvare you purchase. If you buy a software package from a 
reputable software store, you can reasonably assume that the software is safe 
to load on to your machine. People who use the term shri11k-wrap model tend 
to assume that no one would ever want to run software that wasn't written 
by a large software company. We don't agree with that implication, so we'll 
stick with the term blnck-aud-wl1ite. 

It might seem that the shades-of-gray model is better than the black-and
white model, because black-and-white only allows you to label programs as 
completely trusted or completely untrusted. On the other hand, shades-of
gray gives you more choices. You may still label an applet as completely 
trusted or completely untrusted if you wish. 

Choices are not always good, as anyone who has encountered the cereal aisle 
of a large supermarket can attest. Making choices takes up time that you 
would probably rather spend doing something else. Frequent decision
making saps your attention span, so you are more likely to make a mistake, 
thus opening yourself up to attack. Finally, having more options saddles your 
browser with more complicated record-keeping duties to keep track of all of 
your decisions. This extra complexity might lead to bugs in the browser, 
possibly jeopardizing security yet again. 

Which model is better, black-and-white or shades-of-gray? It depends on 
how people react to the two systems, which is ha.rd to predict. Mostly likely, 
competing browsers will offer different models, and the models will fight it 
out in the marketplace. The decision is ultimately one of user prefel'ence. 

Page 61 of 121



94 

Free the Trusted Code! 

Once you've decided who to trust, the next issue is what you aU ow trusted pro
grams to do. If you' reusing the black-and-white model, then you have to decide 
whether to aUow untrusted programs, like applets off unknown Web sites, to run 
at all. You also have to decide what extra capabilities, if any, you want to give to 
trusted programs. You might decide to let trusted programs do whatever they 
want, with no restrictions at all Or you might decide to run trusted programs 
under the restrictive Java security rules of JOK 1.0.2. The choices depend on your 
tasle for risk, and what kinds of programs you want to rw1. With black-and-white 
secw·ity, however, all the programs you trust receive the sarne Jevel of trust. 

rf you're using a shades~of-gray model, you face more choices. You may decide 
on a program-by-program (or signer-by-signer) basis exactly which capabilities 
to grant. Rather than presenting you with a huge laundry list of possible capa
bilities for each program and forcing you to tick items off the list, a good 
browser will probably provide a way for you to grant certain prepackaged sets 
of capabilities. For example, there might be a set of permissions for videocon
ferencing applets, which would include things like permission to use the cam
era, the microphone, the speaker, the display, and networking access. Perhaps 
there would be another set of document-editing applet permissions, which 
would include file-creation, file-reading, and file-modification capabilities. 

There are two basic ways to group the mapping of program (or programs) to 
permission (or permissions). Microsoft's Authenticode system, introduced in 
Chapter 1, defines security zones, which are ways of grouping programs 
together. For example, all programs from a compan y intranet signed by the 
system administrator's key migh t comprise a zone. (These zones might well 
involve multiple keys and origins.) Policies can then be defined on a per-zone 
basis. Netscape defines m.acro tatgets, which are groups of permissions (as 
sketched in the previous paragraph ). For example, a macro target ought be 
called "typical game privileges'' and define the permissions typical ly needed 
by a network-enabled game. 

Sun has a system of implication in which permission for code to use one 
resource can imply permission to use another resource. Ln their model, each 
resource is required to define an implies () method that can be used to ask 
a resource whether it implies a particular other permission. (More detail is 
provided later in this chapter.) 

All of these are examples of grouping s1gners or privtleges together and treat
ing the group as a unit. Grouping is generaUy a good idea in security man
agement because it reduces the number of decisions that the user (or other 
policy-maker) faces. Fewer decisions means more attention paid to each deci
sion and hence, better decisions. 

Page 62 of 121



95 

JDK 1.1, which introduced the concept of a signed applet, provides a black
and-white model. A digitatly signed applet can be treated as trusted local 
code as long as the signature key is recognized as trusted by the system 
finally running the code. Java 2 provides a shades-of-gray model. 

An Introduction to Java 2 Security 

Signatures alone don't provide the infrastructure needed to allow Java code 
out of the sandbox gradually. Access control mechanisms are required as well. 
InJDK 1.1, for example, applet code signed by a trusted party can be treated 
as trusted local code, but not as partially trusted code (without an inordinate 
amount of extra programming). There is no notion of access control beyond 
the one-a(ld-only trust decision made per class. That means in practice, JDK 
1.1 offers a black-and-white trust model much like ActiveX (although with the 
dear advantage that untrusted code must stay in the sandbox). 

The new security architecture in Java 2 has four central capabilities [Gong 
and Schemers, 1998]: 

Fine-grained access control: The ability to specify that code with proper per
missions is allowed to step outside the sandbox constraints gradually (for 
example, an applet signed by a trusted key might be allowed to open arbi
trary network connections). 

Configurable security policy: The ability for application builders and Java 
users to configure and manage complex security policies. 

Extensible access control structure: The ability to allow typed permissions 
and to group such permissions in logical, policy-oriented constructs. 

Security checks for all Java p rograms: A departure from the concept that 
built-in code should be completely trusted. (It is this capability that serves 
to erase the once-important distinction between applets and applications.) 

It is important to note that the first three of these four capabilities are not 
really new to Java. Java is a powerful programming language, and it has 
always been possible to implement complex, configurable, extensible security 
policies based on fine-grained access control. It was just exceptionally tricky. 
Java 2 serves to make this task possible for mere mortals. 

A View from 50,000 Feet 

At its heart, the Java 2 security model has a simple idea: Make all code run 
under a security policy that grants different amounts of privilege to different 
programs. While the idea may be simple, in practice, creating a coherent policy 

Page 63 of 121



96 

• Stack lm~pcction 

Figure 3.4 Mobile c;ode in Java 2 interacts with user defined policy through the 
AccessController. 
Byte code may make calls to potentially-dangerous functionality. When such c.alls are made, the 
Acces&Controller (new to Java 2) consults policy and uses stack inspection to decide whether 
to allow or disallow a call. Decisions are based on the identity of the code. 

is quite difficult. Figure 3.4 shows the role that mobile code identity and policy 
play in Java 2. 

)a\ a 2 code running on the new Java VMs can be granted special permissions 
and have its access checked against policy as it runs. The cornerstone of the 
system is policy (something that will not surprise security practitioners in the 
leas t). Policy can be set by the user (usuaUy a bad idea) or by the system 
administrator, and is represented in the dass java. security . Policy. 
Herein rests the Achilles' Heel of Java 2 security. Setting up a coherent policy 
at a fine-grained level takes experience and security expertise. Today's har
ried system administrators are not likely to enjoy this added responsibility. 
On the other band, if policy management is left up to users, mistakes are 
bound to be made. Users have a tendency to prefer "cool" to "secw·e." (Recall 
the dancing pigs of Chapter 1.) 

Executable code is categorized based on its URL o( origin and the private keys 
used to sign the code. The security policy maps a set of access permissions to 
code characterized by particular origin/signature information. Protection 
domains can be created on demand and are tied to code with particular 
Code Base and SignedBy properties. If this paragraph confuses you, imagine 
trying to create and manage a coherent mobile code security policy! 

Code can be signed with multiple keys and can potentially match multiple 
policy entries. In this case, permissions are granted in an c1dd.itive fashion. 

A Simple Example 

An easy example of how this works in practice is helpful. First, imagine a policy 
representing the statement "code from "www.rstcorp.com/" applet signed by 

Page 64 of 121



97 

'self' is given permission to read and write files in the directory I applet/ tmp 
and connect to any host in the rstcorp. com domain." Next, a class that is 
signed by "self'' and that originates from "www.rstcorp.com/" applet arrives. 
As the code runs, access control decisions are made based on the permissions 
defined in the policy. The permissions are stored in permission objects tracked 
by the Java runtime system. Technically, access control decisions are made with 
reference to the runtime caJl stack associated with a thread of computation 
(more on this later). 

Access Control and Stack Inspection 

The idea of access control js not a new one in computer security For decades, 
researchers have built on the fundamental concept of grouping and permis
sions. The idea is to define a logical system in which entities known as principals 
(often corresponding one to one with code owned by users or groups of users) 
are authorized to access a nwnber of particular protected objects (often system 
resources such as files). To make this less esoteric, consider that the familiar ]DK 
1.0.2 Java sandbox is a primitive kind of access control. In the default case, 
applets (which serve as principals in our example) are aU owed to access all 
objects irlside the sandbox, but none outside the sandbox. 

So what we're talklng about here is a way of setting up logical groupings. 
Then we can start talking about separating groups from each other and grant
ing groups particular permissions. Security is all about separation. Readers 
familiar witl1 the Unix or NT file system will see clear similarities to the n otion 
of user IDs and file permissions. 

Sometimes a Java application (like, say, a Web browser) needs to run untrusted 
code within itself. Tn this case, Java system libraries need some way of ctistin
guishing between calls originating in untrusted code and calls originating from 
the trusted application itsetf. Oearly, the calls originating in nntrusted code 
need to be restricted to prevent hostile activities. By contrast, calls originating 
in the application itself should be allowed to proceed (as long as they follow 
any security rules that the operating system mandates). The question is, how 
can we implement a system that does this? 

Java implements such a system by allowing security-checking code to exam
ine the runtime stack for frames executing untrusted code. Each thread of 
execution has its own runtime stack (see Figure 3.5). Security decisions can 
be made with reference to this check. This is called stack i11spection [Wallach, 
et al., 1997]. AJI the major vendors have adopted stack inspection to meet the 
demand for more flexible security policies than those originally allowed 
under the old sandbox model. Stack inspection is used by Netscape Naviga
tor 4.0, Microsoft Internet Explorer 4.0, and Sun Microsystems' Java 2. 

Page 65 of 121



98 

~ . 

• • • ··~ <oc" ,.,._-.._- - ;: 

T method5 

u method4 

T method3 

T methot:l2 

T method1 
, 

. .,., ~ 
NEW 

' ~ 

OLD 

Figure l.S Each Java program thread includes a runtime stack that tracks method calls. 
The purpose of the stack is to keep track of which method calls which other method in order to be able to 
return to the appropriate program location when an invoked method has Finished its work. The stack grows 
and shrinks during typical program operation. Java 2 inspects the stack in order to make access control 
decisions. In this example, each stack frame indudes both a method call and a trust label (T for trusted, U 
for untrust.ed). 

(Interestingly, Java is thus the most widespread use of stack inspection for 
security ever. You can think of it as a very big security-critical experiment.) 

Simple Stack Inspection 
Netscape 3.0's stack-inspection-based model (and every other black-and-white 
security model) is a simple access control system with two principals: system 
and untmsted. Just to keep things simple, the only privilege available is full. 

In this model, every stack frame is labeled with a principal (syste111 if the 
frame is executing code that is part of the VM or the built-in libraries and 
untrusfed otherwise). Each stack frame also includes a flag that specifies 
whether privilege is full. A system class can set this flag, thus enabling its 
privilege. This need only be done when something dangerous must occur
something that not every piece of code should be allowed to do. Untrusted 
code is not a11owed to set the flag. Whenever a stack frame completes its 
work, its flag (if it has one) disappears. 

Every method about to do something potentially dangerous is forced to submit 
to a stack inspection. The stack inspection is used to decide whether the dan
gerous activity should be allowed. The stack inspection algorithm searches the 
frames on the caller's stack in sequence from the newest to the oldest. If the 
search encounters an untrusted stack frame (which as we know can never get a 
privilege flag) the search terminates, access is forbidden, and an exception is 
thrown. The search also terminates if a system stack frame with a privilege flag 
is encountered. In this case, access is allowed (see Figure 3.6). 

Page 66 of 121



SETS 
FLAG 

, .,, .. 

-~ System 

' . 
' . System , 

Untrust&l 

• • • 
file. open (cache) 

uri. open 

applet.main 
., 

~~ 

Flag Principal Method 

STACK A 
PASSES 

' 

!'. ' 

i 
~ ~ i 

f 

-
System 

Syatem 

Untrusted 
""Ql'"' -'....,.... '"' 

• • • ' 

file.open 

url.open 

a~plet.main 

-
Flag Principal Method 

SiACKB 
FAILS 

Figure 3.6 Two examples of simple stack inspection. 

99 I 

~ 
., 

Each slack is made of frames wfth three parts: a privilege flag (where full privilege is denoted by an X), a 
principal entry (untrusted or system), and a method. In STACK A, an untrusted applet is attempting to use 
the url. open 1 ) method to access a me in the browser's cache. The VM makes a decision regarding 
whether to set the privilege flag (which it does) by looking at the parameters in the actual method invoca
tion. Since the file in this case is a cache file, access is allowed. In short, a system-level method is doing 
something potentially-dangerous on the behalf of untrusted code. In STACK B, an untrusted apple! is also 
attempting to use the url . open 1) method, however in this case, the file argument is not a browser cache 
file but a normal file in the filesystem. Untrusted code is not allowed to do this, so the privilege flag is not 
set by the VM and access is denied. 

Real Stack Inspection 
The simple example of stack inspection just given is only powerful enough to 
implement black-and-white trust models. Code is either fully trusted (and 
granted full permission at the same level as the application) or untrusted (and 
allowed no permission to carry out dangerous operations). However, what we 
want is the ability to create a shades-of-gray trust model. How can we do that? 

lt htrns out that if we generalize the simple model we get what we need. The 
first step is to add the abHHy to have multiple principals. Then we need to 
have many more specific permissions than full. These two capabilities allow 
us to have a complex system in which different principals can have different 
degrees of permission in (and hence, access to) the system. 

Research into stack inspection shows that four basic primitives are aU that are 
required to implement a real stack inspection system. In particular, see Dan 
WaJJach's Ph.D. thesis at Princeton and the paper Understanding Java Stack 
Inspection [Wallach and Felten, 1998]. Each of the major vendors uses differ
ent names for these primitives, but they all boil down to the same four essen
tial operations (all explained more fully in the foJlowing discussions): 

enablePrivilege() 

disablePrivilege() 

check.Pri vilege() 

revertPrivilege() 

Page 67 of 121



100 

Some resources such as the file system or network sockets need to be pro
tected from use (and possible abuse) by untrusted code. These resources are 
protected by permissions. Before code (trusted or otherwise) is allowed 
access to one of these resources, say, R, the system must make sure to call 
checkPrivilege (R). 

If you recall our discussion of the Security Manager from the previous chap
ter, you11 remember that the Java libraries are set up in such a way that dan
gerous operations must go through a Security Manager check before they can 
occur. As we snid, the Java API provides all ca lls necessary to implement a vir
tual OS, thus making isolation of all required security checks possible within 
the AP I. When a dangerous call is made to the Java API, the Security Manager 
is queried by the code defining the base classes. The checkPri vi lege ( ) 
method is used to help make behind-the-scenes access control decisions in a 
very similar fashion. To achieve backwards compatibility, the Security Man
ager can be implemented using the four stack inspection primitives. 

When code wants to make use of some resource R, it must first call 
enablePri vi lege (R) . When this method is invoked, a check of local 
policy occurs that determines whether the caller is permitted to use R.ll 
the u::.e is permitted, the current stack frame is annotated with an enabled
privilege(R) mark. This allows the code to use the resource normally. 

Perrnission to use the resource does not last forever; if it did, the system would 
not work. There are two ways in which the privilege annotation is discarded. 
One way is for the call to return. 1n this case, the annotation is discarded along 
with the stack frame. The second way is for the code to make an explicit call to 
revertPrivilege (R) or disablePrivilege ( R). The latter call creates a 
stack annotation that can hide an earlier enabled privilege. The former simply 
removes am10tations from the current stack frame. 

AU three mojor Java vendors implement n very similar (and simple) stack 
inspection algori thm. A generalization of this algorithm, after Wallach, is 
shown in Listing 3.1 [Wallach and Felten, 1998]. 

The algorithm searches stack frames on the caller's stack in order from newest 
to oldest. If the search finds a stack frame with the appropriate enabled
privilege armotation, it terminates, allowing access. If the search finds a stack 
frame that is forbidden from accessing the target by local policy, or has explic
itly disabled its privileges, the search terminates, forbidding access. 

lt may seem st1·ange that the vendors take different actions when the search 
reaches the end of the stack without meeting any of the conditions (sometimes 
called fnlling off the end of the stack). Netscape denies permission, while both 
Mia-osoft and Sun allow permission. This difference has to do with backward 
compatibility. The Netscape choice causes legacy code to be treated like an 
old-fashioned applet, and confined to the sandbox. The Microsoft/Sun choice 

Page 68 of 121



Listing 3.1 An algorithm for stack inspection. 

checkPrivilege(target){ 
II loop, newest to oldest stack frame 

foreach stackFrame{ 

J 

if (local po~icy forbids access to target 
by class executing in stackFrarne) 

throw ForbiddenExceRtion; 
if (stackFrame has enabled privilege for target) 

return; II allow access 
if (stackFrame has disabled privilege for target) 

throw ForbiddenExceptionr 

II if we reach here, we have fallen off the end of the stack 
if {Netscape 4 0) 

throw ForbiddenException; 
if !Microsoft rE 4.0 II Sun JDK 1 . 21 

return; II allow .access) 

r 101 1 

allows a signed Java application to use its privileges even without explicitly 
marking its stack frames, thus making it easy to migrate existing applications. 
Since Netscape did not support applications, they felt no need to follow the 
Microsoft/Sun approach and instead chose the more conservative course of 
denying permission. For more implementation detail on the three vendors' 
different code signing schemes, see Appendix C. 

Formalizing Stack Inspection 
Members of Princeton's Secure Internet Programming team (in particular, 
Dan Wallach and Edward Felten) have created a formal model of Java's stack 
inspection system in a belief logic known as ABPL (designed by Abadi, 
Burrows, Lampson, and Plotkin) fAbadi, et al., 1993]. Using the model, the 
Princeton team demonstrates how Java's access control decisions correspond 
to proving statements inABPL. Besides putting Java's stack inspection system 
on solid theoretical footing. the work demonstrates a very efficient way to 
implement stack inspection systems as pushdown automata using security
passing style. Interested readers should see [Wallach and Felten, 1998], which 
is available through the Princeton Web site at cs.princeton.edu/sip/pub/ 
oakland98.html. A more recent paper on how to implement stack inspection 
more efficiently is also available on the Princeton site. 

New Security Mechanisms in Sun's Java 2 

Now that we have covered the basic concepts and the underlying mechanisms 
of Java 2 security, we can delve into the details of the system. Essential 

Page 69 of 121



101 

mecba.nisms include many of the things we have already discussed: identity, 
permissions, implies, policy, protection domains, access contml, and privi
lege. Sources for the information presented here include [Gong, et. aL, 1997; 
Gong and Schemers, 1998]. 

This section describes Sun's version of stack inspection. Netscape and 
Microsoft each have their own version, but we decided to forgo a lengthy dis
cussion of all three systems. Though the vendors claim they are very differ
ent, we think the three systems are really quite similar. Perhaps one day they 
will all converge, making developers' and managers' lives much easier. 

Identity 

Every piece of code needs a specific identity that serves as a basis for security 
decisions.ln Java 2, each piece of code has two identity-defining characteris
tics: origin and signature. These two characteristics are represented in the class 
java. security. Code Source, which allows the use of wildcard entries to 
denote "anywhere" for origin and "tmsigned'' for signature. 

Origin boils down to the location th.e code came from specified as a URL. This 
is the same sort of identity used in separation of applets in the JDK 1.0.2 class 
loading scheme. In fact, Java 2 identity is really an extension of thot idea. 

Signature is a bit more complicated. Remember, public/private keys come in 
pairs. As we know, code can be digitally signed by a person or organization 
who vouches for it. 1he key used to actually sjgn the code is the signer's pri
vate key. The key used to check the signature for validity is the signer's public 
key. So, the public key corresponding to the private key used to sign a piece of 
code is the second identity characteristic. (In practice, implementations actually 
use an alias for the public key corresponding to the private key used to sign 
the code.) 

Many people say that a signature on code tells you "who wrote the code" or 
"where the code came from" (we've been guilty of this faux pas ourselves in 
days gone by), but this is not true. AU a s ignature tells you is who signed the 
code. The author, distributor, and signer of the code may all be different par
ties. All you know for sure is that the signer vouches for the code. And since 
it makes perfect sense for several people to vouch for the same piece of code, 
a good signature scheme ou,ght to allow a piece of code to carry several sig
natures; then each recipient can decide which of the signers (if any) should 
be trusted. 

Permissions 

Requests to perform a particular operation (most notably a dangerous one) can 
be encapsulated as a permission. A policy says which pennissions are granted to 

Page 70 of 121



103 

which prindpals. The abstract class java. security. Permission types and 
parameterizes a set of access permissions granted to classes. Permissions can 
be subdassed from this class (and its subclasses). Good practice dictates that 
a permission class should belong to the package in which it is used. Java 2 
defines access methods and parameters for many of the resources con
trolled by the VM. 

Permissions include: 

java . io. FilePermission for file system access 

java.net. SocketPermission for network access 

java .lang. PropertyPerrnission for Java properties 

java . lang . RuntirnePermissi on for access to runtime system resources 

java. security .Net Permission for authentication 

java. awt . AWTPermission for access to graphical resources such 
as windows 

Permissions usually include a target and an action. For file access, a target can 
be a file or a directory specified as file, directory, directory /file, 
directory I*, ot directory/-. The * denotes all fHes in the specified 
directory. The - denotes all files under the associated fiJe system subtree 
(meaning all by itself, - denotes aU files jn the entire system). Actions for file 
access include read, write, execute, and delete. 

An example of a file permission is: 

p =new FiiePermission(''/applet.s/tmp/scratch", "read''); 

For network access, a target can be an IP address, hostname, or generalized 
set of hostnames and a range of port numbers. The target argument takes the 
form "hostname:port-range". Actions for network access include: connect, 
listen, and accept. An example of a socket permission is: 

p = new SocketPerrnission("bigbrother.rstcorp.com:-1023", 
"connect" l; 

For getting and setting properties, a target is the property (where* denotes 
aU properties). Actions are get and set. Runtime system resource targets 
include createClassLoader, exit, setFactory, thread, multicast, 
fileDescriptor . rea~ fileDescriptor.write,andsoon.A~ 

permission targets include topLevelWi ndow, sys t emCl i pboardr and 
eventQueue. 

Fully trusted Java applications can add new categories of permissions. 

Page 71 of 121



104 

Implies 

Each Permission class must include the abstract method implies. The 
idea is straightforward: having permission x automatically implies having 
permission y. We denote this x. implies (y) == true in code. A permis
sion x implies another permission y if and onJy if both the target of x implies 
the target of y and the action of x implies tht! action of y. 

Consider the permission "'read file /applets/tmp/scratch," which can be 
written as: 

p = new FilePermission( "/applets / tmp/scratch", "reacl") ; 

A permission allowing a read on any file in / applets/ tmp; that is, a per
mission denoted by tne pair (lapplets/ tmp/ *,read) implies our example 
permission p, but not vice versa. Similarly, a given socket permission s 
implies another socket permission t if and only if t covers the same IP 
address and port numbers for the same set of actions. 

Alert readers might have noticed something funny about the implies method: 
Each permission class says which other pemtissions it implies. This is a bit 
like johnny writing himself a note saying he can drive Dad's car. It seems 
safer to require Dad's signah.ITe on the note. Similarly, it would be safer if 
permission for A to imply B had to be granted by B. 

Policy 
Security policy in Java 2 can be set by a user (which is a bad idea since, as we 
know, users like dancing pigs) or a system administrator (which in. a Catch-
22-like situation is also a bad idea since system administrators are severely 
overworked). TI1e policy is represented by a poHcy object as instantiated from 
the class java. security. Pol icy. 

The policy is a mapp ing from identity (as defined earlier) to a set of access 
permissions granted to the code. The policy object is a runtime representation 
of policy usuaUy set up by the VM at startup time (much like the Security 
Manager). 

An example policy object (in plaintext form) is shown here: 

grant CodeBas~ •https : t/~w.rstcorp.com/users/gem•, SignedBy • • · I 
permission java.~o.FilePermission ·read,wriLc ' , "/applets/~1~·: 

permission java.net.SocketPe~ssion • connect•, ·• .rstcorp.com•; 

I: 

This policy states that any applet that arrives from the Web URL "www.rstcorp 
.com/users/ gem", whether signed or unsigned, can read and write any file in 

Page 72 of 121



the directory I apple ts 1 tmp/ * as well as make a socket connection to any host 
in the domain rstcorp. com. Policies are usually made of many grant clauses. 

In practice, policy is set in a plaintext configuration file and is loaded into 
the VM at startup. tn these policies, a public key (usually a very long string 
of bits) is signified by an alias. The alias is the name of a signer represented 
as a string. For example, a popular aJias is the string "self", meaning your 
own private key. Primitive mechanisms are included to create and import 
public keys and certificates into the Java 2 system. (See Appendix C for 
the details.) 

By default, Sun's VM expects to find a system policy in the file <java . home> I 
lib/security/java. policy (where <java. home> is a configurable Java 
property). This policy can be extended on a per-user basis. User policy files can 
be found in a user's home directory in the file . java. policy. The VM loads 
the system policy at startup and then loads any relevant user's policy. Jfneither 
policy can be found, a built-in default is used. The built-in default policy imple
ments the base Java sandbox model. 

It is possible to specify a particular policy to use when invoking an applica
tion. This is carried out by using the Java-property-defining -D flag as fol
lows (for the example, our application is the appletviewer): 

appletviewer - Djava .policy=/ home/users/gemlpol i cy <applet> 

Note that when application policy is defined in this way, neither the system 
policy nor any user policy is enforced. 

Mapping Policy 

Code's identity is checked against the entries of a policy object to determine 
what permission(s) a piece of code should be given. At the most basic level of 
Wlderstanding, a match is made when both the origin and the signah.ue 
match. In terms of origin, this means the URL defining the origin for a piece 
of code is a prefix of a policy entry's CodeBase pair. In terms of signature, 
this means one public key corresponding to the signature carried by the code 
matches the key of a signer in the policy. Verification of signatures makes use 
of functionality in the java. security. cert package, which is a Java 
implementation of X.509v3 certificates. 

Code can be signed with multiple signahrres. In case the signatures a piece of 
code carries have different policy entries, all entries apply in an additive fash
ion. That means code is gjven the union of all permissions in every match 
(see Figure 3.7). 

Consider the program X show-n here. In one case, X is signed only by thingl. 
ln another, code is signed by both thingl and thing2. In the second case, the 

Page 73 of 121



toe 1 

CodeX 

thing 1 thing 1 

thing 2 

Figure 3.7 The danger of additive policy. 
Consider the program X shown here. In one case., X is signed by thingl , In another, code is signed by both 
thing 1 and thing2. In the second case, the policies of both thing 1 and thing2 apply to the code (meaning in 
this case that it has more permission to do dangerous activities). A policy administrator may forget to antici
pate what happens when code is signed by multiple keys. 

policies of both thingl and thing2 apply to the code (meaning in this case that 
it has more permjssion to do dangerous activities). A polky administrator 
may forget to anticipate what happens when code is sjgned by multiple keys. 

Protection Domains 

Sun says that classes and objects .in Java 2 java belong to protection donmins. In 
fact, protection domain is just a fancy name for a bunch of classes that should 
be treated alike because they came from the same place and were signed by 
the same people. (The fact that protection domni11 means something completely 
different to people familiar with the security literature is reason enough to 
avoid the term .) An object or class belongs to one and only one protection 
domain. This should ring a bell, since classes can have one and only one class 
loader (the one that loaded them). So really thjs is a new way of describing a 
somewhat familiar logical construct for grouping classes together. A class 
belongs to the protection domain associated with the class loader that loaded 
the class. 

Permissions are granted to protection domains and not directly to classes and 
objects, as Figure 3.8 reflects. The class java. security . ProtectionDomain 
is private in its package and is used internally to implement protection 
domains. As we discussed earlier, a domain is made up of a set of objects 
belonging to a principal. In Java 2, protection domains are based on identity 
and can be created "on demand." The Java runtime maintains a mapping 
from code to protection domains to permissions (see Figure 3.8). 

System security policy specifies which prolection domains should be created 
and which protection domains should be granted what permissions. 

Page 74 of 121



107 

Running Classes Policy 

Figure 3.8 Grouping classes together to map them to policy. 
Classes map into what Sun calls protection domains which In turn map to permissions. Policy is defined In 
terms of protection domains. 

There is one protection domain that is special: the system domain. The sys
tem domain includes all system code loaded with the Primordial Class 
Loader. This includes classes jn the CLASSPAJH. The system domain is given 
special privileges. 

Access Control 

The java. s ecurity. Accesscontroller class implements a stack 
inspection algorithm similar to the one we described earlier. Any code is 
allowed to query this class, which performs a dynamic inspection of the rele
vant thread's runtime stack. The method used to implement the check is 
checkPe rmission (), whlch takes as its argument a Permission object. If 
the caU returns silently, permission is granted and the potentially dangerous 
computation can proceed. If the call fails, an AccessControlException 
is thrown. 

Using the Access Controller 

Access control under JDKs previous to Java 2 typically used the Class 
Loader and Security Manager to ma.ke access control decisions. For example, 
the following code snippet checks whether a file I tmp / junk can be read in 
the old-fashioned way: 

Classuoader loader = this .getClass( ) .getClassLoader(); 
if (loader !~ null) { 

Secur i tyManager s m = Systen1.get:See1.1ri tyManager (); 

if (sm I= null) ( 

sm . checY.read (• t cmp/Junk"); 

Page 75 of 121



108 

Here's how to do the same thing in Java 2 fashion (using the Access Controller): 

filePermission p =new FilePermiss i on("/tmp/junk", ·read"); 

AccessController.checkPermission(p); 

The Access Controller call performs the appropriate stack inspection. 

Privilege 
Up through JDK 1.2beta3, Sun's JDK used the primitives beginPri vileged 
and endPrivileged as versions of the stack inspection primitives 
enablePrivilege and disablePrivilege we described b1 our discus
sion of stack il'lspection. These are the calls that a piece of privileged system 
code (that is aUowed to do things like perform file access) was supposed to 
use to grant temporary permission to less-trusted code. These calls were fea
tured in a number of technical publications from Sun [Gong, et. al., 1997; 
Gong and Schemers, 1998]. 

The idea is to encapsulate potentially dangerous operations that l"equire extra 
privilege into the smallest possible self-contained code blocks. The Java 
libraries make extensive use of these calls internally, but partially h·usted 
application code written using the Java 2 model will be required to make use 
of them, too. 

Correct use of the JDK primitives required using a standard t ry I f i nal l y 
block is as follows: 

<normal code> 
try 

AccessController.beginPrivlleged() ; 
<inser t danger ous code here> 

fina lly { 
AccessCon troller.endPrivi l eged(); 

<mor e normal code> 

This usage was required to address the problem of asynchronous exceptions 
(though there was still some possibility of an asynchronous exception being 
thrown in the f i nal ly clause sometime before the endPrivileged () call). 

WaUach and Felten first explained a particularly efficient way to implement 
stack inspection algorithms in [Wallach and Felten, 1998]. Unfortunately, Sun 
decided to abandon the multiprirnltive approach to stack inspection (which 
could benefit from Princeton's security-passing style implementation). In fact, 
JDK 1.2beta4 mtroduced a completely new API for privileged blocks. The new 
API removes the need for a developer to: 1) make sure to use t ry/ final ly 
properly, and 2) remember to cal1 endPri vi leged (). The t ry/finally 

Page 76 of 121



usage was symptomatic of a problem that could only really be fixed with 
some changes to the VM specification and its resulting implementations. 

109 

In order to properly implement the early APt VMs would have been forced 
to keep track of the beginPrivileged () call (unless they adopted a secu
rity-passing style approach). This requires tracking a stack frame (the one 
where the beginPr ivilege is mentioned) and matching the beginning of a 
privileged block to its corresponding end-every time a privileged block is 
used. Doing all this bookkeeping is inefficient and thwarts optimization 
tricks that compilers like to play. For example, just in time GIT) compilation 
approaches are hard to adapt to this model. Plus it turns out that security 
boundaries are crossed many thousands of times a second, so even a slight 
delay gets magnified quickly. 

Bookkeeping would slow the VM down, which is about the last~ thing Java VMs 
need now as they near native C speeds. A Sun document explaining the change 
(from which some of the material here was drawn) is on the Web at 11T«Jw.javnsofl 
.com/products!jdk/1.2/docs/gttide/security/doprivileged.htm/. 

The new API interface wraps the complete enable-disable cycle in a single 
interface accessed through a new Acc essControlle r method called 
doPr i vi leged ( ) .That means the VM can effidently guarantee that privi
leges are revoked once the method has completed, even in the face of asyn
chronous exceptions. 

Here's what the new usage looks like. Note the use of Java's new inner 
classes capability: 

s<>meme. t:hod () { 
<normal code> 
Accesscont~oller.doPrivileged (new PrivilegedAction() 

p u bli c Ob j ect r un ( ) f 

} ) : 

<ins ert dangerous code he r e> 
return nu ll: 

<more normal code> 

Ironically, one of our developer rules for writing more secure Java code is to 
avoid using inner classes (see Chapter 7, "Java Security Guidelines: Develop
ing and Using Java More Securely")! But if you want to include privileged 
blocks in your Java 2 code, you are encouraged to use them. In addition to 
the inner~class problem, verbosity is also a problem with the new API. 

Page 77 of 121



It turns out that using the new API is not always straightforward. That's 
because anonymous i.rmer classes require any local variables that are accessed 
to be final. A small diversion can help explain why this is. 

Closures 

The new API is doing its best to simulate what programming languages 
researchers caU closures. The problem is, Java doesn't have closures. So what 
are they anyway? And why are they useful? 

Functions in most progranurUng language use variables. For example, the 
function f (x} =x+y adds the value of the formal parameter x to the value of 
variable y. The function f has one free variable, y. That means f may be eval
uated (run) in different environments in which the varjable y takes on differ
ent values. In one environment, El, y could be bound to 2. In another 
environment, E2, y could be bound to 40. If we evaluate f (2) in El, we get 
the answer 4.lf we evaJuate f (2) in E2, we get the answer 42. 

Sometimes we want a function to retain certain bindings that its free vari
ables had when it was created. That way we can always get the same answer 
from the expression. In terms of our example, we need to make sure y always 
takes on a certain value. What '"'e want is a closed package that can be used 
independent of the environment in which it is eventually used. That ls what a 
closure is. In order to be self-contained, a closure .must contain a .function 
body, a list of variables, and the bindings of its variables. A closure for our 
second example might Jook like this: 

({y=40;} f(2) =2+y] 

Closure is particularly useful in languages with first-class functions (like 
Scheme and ML). In these and other related languages, functions can be 
passed to and returned from other functions, as well as stored in data struc
tures. Closure makes it possible to evaluate a function in a location and exter
nal environment that may differ from where it was created. For more on this 
issue, see [Friedman, eta!., 1992; Fellisen and Friedman, 1998]. 

As we said before, Java does not have closures. Java's anonymous inner 
classes come as close to being closures as Java gets. A real closure might 
include bindings for the variables that can be evaluated sometime in the 
future. In an anonymous inner class, however, all state must be made final 
(frozen) before it is passed in. That is, the final state is the only visible state 
inside the inner class. 'Ibis is one reason anonymous inner classes are not true 
closures. The p roblem of making everything final hu1'\S out to have strong 
implications for the use of the new privileged block API. 

Page 78 of 121



11 1 

Local Variables 

For example, in the following code, the variable lib must be declared finaJ if 
it is to be used inside the privileged block 

randornmethod (} ( 
<normal code> 
final String l ib: •awt•; 
AccessControll er.doPrivilegecl(new PrivilegedAction(} l 

) l : 

public Object run() £ 
System.loadLibrary(lib); 
return nul l; 

<more normal code> 

Making all local variables that are to be accessed in the block final is a pain, 
especially if an existing variable can't be made fina l. Tn the latter case, the 
trick is to create a new final va1·iable and set it to the non-final variable 
jusl before the call to doPri vi leged. We predict this will be a source of both 
headaches and errors. Errors may lead to security problems. 

What Comes Out 

Another problematic issue with the .new interface is the fact that the imler 
class always returns an Object (a retum type seen throughout the Java lan
guage). TI1at means if a call to a piece of privileged code (for example, a call to 
Sys tern . get Property ())usually returns something other than an Object 
(for example a String), it will have to be dynamically cast to the usual type. 
Using a final variable to pass types out is possible, too. Unfortunately, both 
of these operations will incur a nmtime performance hit (especially tasting}. 
The retums-only-obj ect problem is another source of potential errors. 

Whence the Change 

It is good that VM vendors want their machines to be fast and efficient; how
ever, pmely in terms of security, it is unclear whether the decision to change 
the API was a good one. Not that the previous API was perfect, but the new 
one seems to introduce several places in which errors are bound to be made 
by developers charged with actually using VMs. The real answer to the prob
lem is introducing closures to Java. Oosures are something to look for in 
future JDK versions. 

Page 79 of 121



It turns out that using the new API is not always straightforward. That's 
because anonymous inner classes require any local variables that are accessed 
to be final. A small diversion can help explain why this is. 

Closures 

The new API is doing its best to simulate what programming languages 
researchers call closures. The problem is, Java doesn't have closures. So what 
are they anyway? Al:ld why are they useful? 

Functions in most programming language use variables. For example, the 
function f (x) =x+y adds the value of the formal parameter x to the value of 
variable y. The function f has one free variable, y. That means f may be eval
uated (run) in different environments in which the variable y takes on differ
ent values. In one environment, El, y could be bound to 2. In another 
environment, E2, y could be bound to 40. If we evaluate E ( 2) in El, we get 
the answer 4. If we evaluate f ( 2) in E2, we get the answer 42. 

Sometimes we want a function to retain certain bindings that its free vari
ables had when it was created. That way we can always get the same answer 
from the expression. In terms of our example, we need to make sure y always 
takes on a certain value. What we want is a closed package that can be used 
independent of the environment in which it is cventuaUy used. That is what a 
closure is. In order to be self-contained, a closure must contain a function 
body, a list of variables, and the bindings of its variables. A closure for our 
second example might look like this: 

[{y=401} f(2):2+y] 

Closure is particularly useful in languages with first-class functions (like 
Scheme and ML). In these and other related languages, functions can be 
passed to and returned from other functions, as well as stored in data struc
tures. Closure makes it possible to evaluate a function in a location and exter
nal environment that may differ from where it was created. For more on this 
issue, see [Friedman, et al., 1992; Fellisen and Friedman, 1998]. 

As we said before, Java does not have closures. Java's anonymous inner 
classes come as close to being closures as Java gets. A real closure might 
include bindings for the variables that can be evaluated sometime in the 
future. In an anonymous inner class, however, all state must be made final 
(frozen) before it is passed in. That is, the final state is the only visible state 
inside the inner class. This is one reason anonymous inner classes are not true 
closures. The problem of making everything final turns out to have strong 
unplicat:ions for the use of the new privileged block API. 

Page 80 of 121



11 1 

Local Variables 

For example, in the following code, the variable lib must be declared final if 
it is to be used inside the privileged block: 

r andommet:hod() { 
<normal code > 
final String l ib = • awt• ; 
AccessController . doPrivileged(new PrivilegedAct ion() 

) I : 

publ i c Object run () { 
Sys tem. loadLibrary(l ib): 
r e turn nul l; 

<more normal code> 

Making all local variables that are to be accessed in the block f i nal is a pain, 
especially if an existing variable can't be made final. ln the latter case, the 
trick is to create a new final variable a.nd set it to the non-final variable 
just before the caU to doPri vileged. We predict this will be a source of both 
headaches and errors. Errors may lead to security problems. 

What Comes Out 

Another problematic issue with the new interface is the fact that the inner 
class always returns an Object (a return type seen throughout the Java lan
guage). That means if a call to a piece of privileged code (for example, a call to 
Sys tern. get Property ())usually returns something other than an Object 
(for example a String), it will have to be dynamically cast to the usual type. 
Using a final variable to pass types out is possible, too. Unfortunately, both 
of these operations will incur a runtime performance hit (especially casting). 
The retums-o.nly-obj ect problem is another source of potential errors. 

Whence the Change 

It is good that VM vendors want their machines to be fast and efficient; how
ever, purely in terms of security, it is unclear whether the decision to change 
the API was a good one. Not that the previous API was perfect, but the new 
one seems to introduce several places in which errors are bound to be made 
by developers charged with actually using V1v1s. The real answer to the prob
lem is introducing closures to Java. Oosures are something to look for in 
future JDK versions. 

Page 81 of 121



1 111 

The Security Manager Revisited 
As we described in Chapter 2, "The Base Java Security Model: The Original 
Applet Sandbox/' the Security Manager up until JDK 1.1 invoked a direct 
check ( ) method for dangerous resource access control. This method was 
responsible for evaluating the request and denying m· granting access. The 
new Security Manager in Java 2 still supports the use of check ( ) methods, 
but now many of these calls are actually implemented to make use of the 
Access Controller and Permission objects (whenever possible). 

It would be best to dispense entirely with the Security Manager, but history 
dictates that jt remain available for reasons of backwards compatibility. 
Breaking all existing JDK 1.1 code in order to introduce a new security design 
is not an economically viable approach for Java. 

The Secure Class Loader 
Java 2 introduces the class java .security. SecureClassLoader, which 
is a concrete implementation of the abstract ClassLoader class. It tracks the 
code somce and signatures of each class, and hence assigns classes to protec
tion domains. All Java code Is loaded by a Secure Class Loader (except for 
code loaded by the Primordial Class Loader) either directly or indirectly (that 
is, by another class loader that was itself loaded by the Secure Class Loader). 
For more on class loading, refer to Chapter 2. 

Sandboxing Java Applications 
Now that the security enforcement mechanisms are more complex and do 
not rely on the distinction between applet code and built-in code (as in the 
early days)f it is possible (and desirable!) to force Java applications, in 
addition to applets, to run within the (highly mutable) sandbox. This 
means application code can be made tQ cohere with locally defined secu
rity policy. java 2 provides a mechanism for doing this with the class 
java. security .Main. The implementation ensures that local applica
tions stored in the java. app. class. path are loaded with the Secure 
Class Loader. It is a good idea to have applications run from this location 
as opposed to placing them in the CLASSPATH where they will be treated as 
built-in code. 

Adding Permissions 
It is possible to add new permissions to Java that are tailored to yow· 
specific needs. This is done by subc1assing and extending the 
java. security. Permission class we detailed earlier. The new 

Page 82 of 121



permission classes that you create should be stored in the application 
package where they apply. 

Next, a representation of the permission (that is, a string representing a pol
icy entry) needs to be added to the policy file. This ensures that the permis
sion is ''automatically'' configured for each domain. 

Finally, the application code itself may include a section that manages 
resources. This section of code should make use of the checkPennission () 
method of the AccessController class (explained earlier). Use of this 
method obviates the need to think about Class Loaders and Security Managers. 

Outside the Sandbox 

Java 2 clearly introduces significant changes to the Java security landscape. It 
is likely that the days of black-and-white security policy for mobile code are 
numbered. With the major changes to Java's security architecture come a 
number of important responsibilities, the most important of which is mobile 
code policy creation and management. The tools are still primitive, but the 
policy itself is essential. 

Also essential to any mobile code system that makes use of code signing is 
solid key management capability. Although the subject of public key infra
structure (PKI) is really beyond the scope of this book, we at least invoke some 
Important concepts. Managers responsible for setting and maintaining poli
cies based on signed code will encoWlter issues including choice of certificate 
authority, who to issue keys to, how to ensure that private keys are kept pri
vate, whether to get a corporate key and how to protect it, how to disable keys 
of employees who leave an organization, where to store keys, and so on. 
These are nontrivial issues that have yet to be worked out in the real world. 

Hopefully, widespread support for code-signing systems will quickly appear 
on consumer desktops worldwide. Truthful1y, the PKI is much less matur:e 
than many security researchers and pundits predicted it would be by now. 
This is partly because deploying an effective PKI is much more difficult than 
it sow1ds. But it is also at least partially due to the greed of certificate authori
ties who chose to charge developers for identities (pttblic/private key pairs) 
instead of issuing them for free and charging elsewhere for their use. Without 
a solid P.Kl, systems like Java 2 Java may take a while to catch on. We predict 
that signed mobile code will find its most pervasive use among early 
adopters as an intranet technology (as opposed to an Internet technology). Of 
course, we're very weU prepared to be wrong about that. 

for a long time, Java developers have wanted some way in which less restric
tion could be placed on their applets. At the same time, managers in many 

Page 83 of 121



enterprises have been searching for ways to manage code (not just mobile 
code, but any code) more securely. In its Java 2 guise, Java offers a powerful 
answer to these needs. 

We would be irresponsible not to note that with code signing comes a host of 
new risks to manage. Most notable among the risks are two: first, that the 
implementation will have holes (JDK 1.1 code signing has already fallen prey 
to this risk); and second, that security policies will get too complicated to 
understand and manage. 

Page 84 of 121



How to Sign Java Code 

This tutorial was put together by John Viega and Tom O'Connor, both research 
associates at Reliable Software Technologies. The four major sections each 
describe a separate vendor's code-signing tools, including: 

Netscape's Object Signing 

Microsoft's Authenticode 

Sun's JDK 1.1 Code Signing 

Sun's Java 2 Code Signing 

Some of the tools are tricky to figure out and use. 'This tutorial should help. 

Before you dig into this tutorial, you should read Chapter 3, ''Beyond the Sand
box: Signed Code and Java 2," which discusses the major impact that signed 
code has on the Java security architecture. Of special interest are the sections 
entitled Signed Code (see page 88) and Trust (see page 92). The material there dis
cusses the notions of trust, digital signatures, and certificate authorities. 

Page 85 of 121



Signing Classes with the Netscape Object Signing Tool 

First in our tutorial, we'll take on Netscape's Object Signing Tool that cru1 be 
used to sign Java code (among other things). As in all of these systems, step 
one is obtaining an identity. 

Getting a Certificate 
Most digital signature schemes (PGP being a notable exception) involve the 
use of a Certificate Authority (CA)-an organization that can vouch for 
someone's signature. After all, why trust code just because it carries a signa
ture? We need an objective third party to make sure people are who they say 
they are. That means the first task in code signing is to obtain the proper cre
dentials from a CA. There are many CAs that can sell you certificates for 
signing Java code. 

Netscape has links to CAs that support their Netscape Object Signing Tool at 
https://certs.netscape.com. You can visit that page and pick a CA. Make sure 
that the CAyou choose provides a certificate that can be used to sign objects 
(some certificates can't). 

VeriSign (www.verisign.com) offers many flavors of DigitaJ IDs. It heads up 
Netscape's list of CAs. We'll use VeriSign as an example for obtaining a cer
tificate; however, note that the process will differ depending on theCA that 
you choose. To get a VeriSign certificate for Netscape Object Signing, select 
Software Developer ID from the popup list at the top of VeriSign's home
page. Choose Netscape Object Signing from the page that follows. There are 
two kinds of Software Developer IDs: a Class 2 Individual ID, and a Class 3 
Commercial ID. The Class 2ID costs $20 aru1ua1Jy, while the Class 3 ID is a 
whopping $400 annually. For our purposes, we'll focus on Class 2 certificates. 
After selecting Class 2, fill out the information form that asks who will be 
identified by the certificate (making sure to include the all-important billing 
information). 

VeriSign will do a limited background check on you before it will issue a cer
tificate. For example, it checks the data you enter against information pub
licly available on you through a credit check. If your request for a certificate 
is accepted, VeriSign will email you a PIN and a URL that you can use to 
retrieve the certificate. For an individual Class 2 certificate, the verification 
process is usually close to instantaneous. 

Page 86 of 121



-
l8S 

Once you receive that information, open the Ul~L with Netscape Communi
cator and then enter your PIN. Communicator will install the certificate in 
itself automatically. If you are using a shared version of Communicator, 
someone may have already entered a password for the certificate database 
that is stored in your browser. You will need this password before you can 
download and install your certificate; otherwise, you will be prompted to 
enter a password for the certificate database. AJthough this password is 
optional, it does prevent people from starting up your version of Netscape 
and stealing your certificate by exporting it. You definitely don' t want your 
certificate stolen, because then ofuer people can sign applets as you. Pass
word information can be found in the Security Info box of the Communicator 
menu, under Passwords. 

(f everything is successful, your certifica te Will appear in the Security fufo 
box; check by going to Yours under Certificates. 

There are several things to know as you sign up for a certificate: 

1. You do not want a Class 1 certificate, as it cannot be used to sign objects. 

2. Use Netscape Communicator (4.x), even though you are allowed to 
request and download a certificate using Netscape Navigator 3.x, because 
the support for certificates .in 3.x is not as good as it is in later browsers. 
For example, object signing tools may not be able to locate your certificate 
inside Netscape 3.x. Also, you may not be able to export your certificate, 
which is useful if you want to sign code from a machine other than the 
one from which you originaUy downloadl:'d the certificate. 

3. Use the same browser on the same computer both to request and to 
retrieve the certificate. If the browser is set up with multiple user profiles, 
make sure you use the same user profile as well; otherwise, you will likely 
be unable to retrieve your certificate. 

4. Flnally1 note that many versions ofNetscape Communicator will be 
unable to verify your certificate (assuming you got a VeriSign certificate). 
Unfortunately, .information concerning this problem seems to have disap
peared from the Netscape Web site. 

Exporting and Importing Certificates 

It is a good idea to export your certificate to a file, just in case you install a 
new version of Communicator over your old one. Doing so also allows your 
certificate to follow you to other machines. 

Page 87 of 121



To export a 'Certificate, bring up Communicator's Security Info dialog box. 
Select the certificate you wish to export by clicking on its name. Then, click 
on the Export button. At this point, you may be asked to enter the password 
that protects your local browser's certificate database. Next, you will be 
asked to enter a password to protect the certificate data. This password is 
used to make sure that no one can s teal your certificate if he or she sees an 
exported copy of it somewhere (unless that person is able to crack your pass
word, so choose wisely!). To make sure you typed the password in correctly, 
you will be asked to enter it again. Assuming you've entered th~ same pass
word both times, Netscape will prompt you for a filename, which it will use 
to store the certificate. Once you enter the filenamef you're fil.iished exporting 
the certificate. You can copy that file to another machine so you can sign code 
from there as well. 

To import a certificate into a new browser, bring up Communicator's Security 
Info box. Click on Yours, which is a sub item of Certificates. Press the button, 
Import a Certificate. If you have not previously entered the password pro
tecting the certificate database of the local copy of Netscape, you will now be 
prompted to enter it. After you enter the correct password, a file dialog box 
will come up; use it to select the fi le containing yom certificate. 

Once you have selected the file, you will be prompted for the password used 
to protect the certificate, which is the password that you entered when you 
exported the certificate. At this point, assuming all has gone well, you should 
get a dialog box indicating success. 

Netscape Object Signing Tool 1 .1 

The Netscape Object Signing Tool is a command line program that creates 
digital signatures for files. These signatures aren't stored in the files them
selves; they're stored in the JAR file in which you bundle your applet. Note 
that since digital signature information is transmitted in JAR files, you must 
package your applets in a JAR file in order to sign them, even if they consist 
only of a s ingle class. The important syntax for using a JAR file with the 
HIML APPLET tag is: 

<A?PLET CODE= •somefile . class · ARCHIVE=·jarfile.jar"> 

where somefile.dass is the class in the JAR file where execution should begin, 
and jarfile.jar is the URL of the JAR file. 

The Netscape Object Signing Tool may be downloaded from developer 
.netscnpe.com/software/sig,zedobj/jnrpack.Ttt llll. 

Page 88 of 121



The tool is available for most operating systems. While, as of this writing, ver
sion 1.0 is still available for download, we recommend that you use version 1.1. 

After the download is complete, unpack the archive file in a directory. 
Included are three files: readme. t x t, license . txt, and signtool. To 
make signing objects easier, put the directory that contains sign tool in your 
PATH environment variable, as per your operating system. For example, a 
Wmdows 95 user who unpacked the tooJ to c : \ nos would run the following 
line (and then add it to the au t oexec . bat file): 

PATH=tPATH%;C: \ nos 

Before attempting to sign anything, check to see if sign tool is able to locate 
the certificate that will be used to sign objects. Unix .flavors of sign tool look for 
certificates in the $HOME / . ne ts cape . If your local. Netscape files are kept 
somewhere else, or if you are using the Wm32 version, sign tool must be explic
itly told the path to the certificates. Ths is done with the -d flag. On Win32, this 
pathis commonly c: \Program Files\Ne t s cape\Us ers \ name, where 
name is the name of your Netscape Profile. To verify that your signing 
certificate was installed properly, run s i gn tool -1 or, if your certificate 
cannot be found, 

signtool -d"<pa tb to cer tificates>" - 1 

For exampJe, if your certificates were stored inc: \nos , you would type: 

signtool -d"C : \nos" -1 

U your certificate still does not appear in the listing, verify that the certificate 
is installed in Netscape properly. (See the instructions given earlier). Also 
check that the path to the Netscape . db files was properly specified . If all 
else fails, check with Netscape and the issuing Certificate Authority. Make 
note of the full name of your certificate as it appears in the listing, you will 
need these data when it comes time to sign. 

Create a directory in which to put all the class files for the applet you wish to 
sign. Once aU the class files that make up the app1et are in the right place, the 
signtool program can create a signed JAR file in one step. 

Navigate :into the directory cont<ti.ning the soon-to-be signed classes. To sign 
the classes and create a JAR file in one s tep, issue the command: 

signtool -d"<path to cercificate> " -k"<name of ce rtificate>" 
- e " . class" -z myjar . jar . 

If your Communicator Certificate Database is password protected, signtool 
will prompt for the password before signing the classes. The " ." at the end of 

Page 89 of 121



the command should be the last thing to appear. It specifies that the signing 
should begin in the current working directory. The sign tool command 
recursively signs files by defauJt. To keep the tool from recursing through 
directories, add - -norecurse to the command line. 

Here's a brief explanation of the flags used in the previous example, as well 
as some of the other more useful flags for signing applets: 

-k "certificate name": Specifies the certificate with which you would like 
to sign. This flag is necessary when signing an applet. The certificate name 
should be the entire name of the certificate as it appeared as the output of 
sign too 1 -1. Since the certificate name is likely to have spaces in it, 
make sure you place it in quotes; otnerwise, the signing will fail. 

-e".extension"; Specifies the file extensions to sign. If you don't include 
this flag, the tool will sign all fiJes, as opposed to the preceding example, 
which uses this flag to sign . class files only. 

-x"name": Allows you to sign all fJJes except a particular file or directory. 
An example where this might be useful is when you are using an 
untrusted Jibrary in your applet. You probably will not want to vouch for 
code you did not write! 

-Z''jarfile'': Specifies the name of the JAR file to create. If you omit this 
option, you will have to JAR everything up yourself. 

When the JAR file is created, sign tool can be used to test the validity of the 
signatures. This is done by issuing the command: 

signtool - d"<path to cert:ific ate>" -v myjar.jar 

sign tool will list the contents of the JAR and verify that they have been 
sign.ed, and that they have not been tampered with since the signature was 
created. 

You may also check to see who signed the JAR file: 

signtool - d"<path co certificate>" -w myjar . jar 

sign tool can be used to sign anything, not just Java files. In fact, it can 
extract JavaScript from HTML files, and sign just the JavaScript; however, 
that functionality is outside the scope of this tutorial. Documentation on sign
tool is avflilable from Netscape at developer.netscape.com/docs/manuals/ 
signedobj/signtool/. 

Page 90 of 121



Adding Capabilities to Your Classes 
As Chapter 3 describes, signing a Java applet does much more than just allow 
people to verify that you signed it. It can also give your applets the chance to 
step outside the Java sandbox. If your applet has a digital signature vouching 
for it, then the applet may request special privileges, such as accessing the file 
system. However, the user of the applet doesn't have to let your applet do 
what you request just because you sign it. 

The special privUeges an applet can request are called capabilities by Netscape.1 

Predictably, no two browsers support flexible privileges in quite the same way, 
so privilege-management code will only work with one browser. (So much for 
"write once, run anywhere"!) As a result, while Netscape keeps its own intemal 
version of these classes, in order to actually compile and test an applet that can 
request them, you must download the library from developer.netscape.com/ docs/ 
mmzuals)signedobj/capsapi_classes.zip 

Put the zip file in your CLASSPATI-1 (or otherwise edit the CLASSPAIH). Now you will 
be able to develop code that requests extra privileges in Netscape. Note that you 
should not include these classes with your applet; the Netscape browser running 
on the remote machine will use its internal version of the classes. 

The Capabilities library provides a class called the Privilege Manager that 
handles requests from the program to turn on and off privileges. When the 
first reques t to enable a certain privilege is made, the Privilege Manager 
prompts the browser's user, showing the certificate used to sign the code 
requesting the privilege, and asking whether the privilege should be granted. 
See Figure C.l. If the user agrees to grant the privilege, the privilege is 
granted for the lifetime of the applet. However, once the applet has obtained 
a privilege, it can turn the privilege off and on at its discretion. 

To request a particular privilege to be enabled, you use the static method 
enablePrivilege () of class netscape . security. PrivilegeManager. 
The method takes a single String argument, which is the name of the privi
lege to enable. Some useful privileges include: 

Universal File Access: This privilege gives the applet the ability to access any 
hle available to the user. It will enable the applet to call most things in the 
java. io package related to file manipulation. This privilege is a superset of 
other file manipulation privileges that may be requested individually, such 
as UniversalFileRead, UniversalFUeWrite, and UniversalFileDelete. 

UniversalSendMail: This privilege allows the applet to send email on 
behalf of the user. 

1 Although Netscape and some other vendors use the term Cllpabilities to refer to this system, this is 
not really a correct use of the term Cllpability, which is a technical tem1 in the security Uteralure. 

Page 91 of 121



HelP, 

Figure C.l Netscape Navigator's Privilege Manager alerts a browser user with 
this window. 
The dialog box explains which dangerous privileges have been requested and who is vouching for the 
applet (through a digital signature). Clicking the "Remember this decision• is probably a bad idea. 

UniversalExitAccess: Allows the Java applet to shut down the Netscape 
browser. 

UniversalExecAccess: Enables the applet to run programs already stored 
on the user's local computer. 

PrivateRegistryAccess: Grants access to application-specific portions of 
the computer's registry (Win32 only). 

There are many more privileges that an applet can request. For a full list, see 
the documentation for the Capabilities API at developer.netscape.comjdocs/ 
manuals/signedobj/capabilities/Olcap.htm. 

A call to enablePrivilege will throw an exception that the applet must 
catch if the user decides not to grant the privilege specified in the call. Thus, 
the applet must be prepared to catch instances of nets cape. security 
.ForbiddenTarget Exception. 

Page 92 of 121



I 291 j 

Here's a sample applet caJJed Firs tTry. java that uses enablePri vi lege 

import java.applet.•: 
import java.awt.~; 
iroport netscape.security.PrivilegeManager; 
import netscape . security.ForbiddenTargetException; 

public class FirstTry extends Applet { 

private TextArea ta =new TextArea(lO,lOO); 

pu.blic void init() 
this.add(ta); 
this. show( l; 
try { 
Privilegel'!a.nager .enablePrivilege( •universalFileRead"); 
ta.appendText ("Read enabled! \n "): 
} 

catch (ForbiddenTargetException fte) 
ta.ap'PendText ("Read not. enabled. \n") ; 
t:a. appendText ( fte. toString () ) ; 
) 

catch (Exception e) t 
ta.appendText(•unexpected exception! \n"ll 
} 

public void paint:(Graphics g) 

The Firs tTry applet doesn' t do anything with the privilege it asks for, even 
if it is granted. However, it would be able to read any file, including the sys
tem password file on a Unix system, if it tried. That could be consjdered an 
abuse of privilege. Another potentially bad thing this applet could do would 
be to put the enablePrivilege call inside the paint method. Doing this 
will cause the browser to continually prompt the user for permission every 
time paint is called, which will happen until permission is granted, or until 
the browser is killed. Actually, the Netscape Grant/Deny window has a 
checkbox that says "Remember this decision." Checking the deny box will 
make this pop-up never appear again. The take home message is that signed 
applets can be hostile too, 

When you enable a privilege, it does not have to stay enabled for the entire 
execution of the applet. There are a couple of ways to tum privileges 
off (which is always a good idea). First, when the method that calls 
enablePrivilege retums, the privHege will automatically be disabled. As 

Page 93 of 121



(j9~J 

a result you should not use a helper method to enable a privilege, because 
once execution returns from that method, the privilege will no longer be 
enabled. Second, you can call rever t Pri vi lege, which also takes the 
name of a privilege as an argument. Finally, you can call disablePr i vi
lege, which turns off a particular privilege. In no case will the granting of 
the privilege be revoked; the applet can turn the privilege back on by simply 
calling enablePri vi lege again. To see an example of a signed applet, surf 
to www.rstcorp.com/javasecurity/applets/dpig/netscape.html, 

Signing Java Applets with Microsoft's Authenticode 

Next in our tutorial, we'll take on Microsoft's code-signing system for Java. 
It's a bit peculiar since it does not interact with the JDK 1.1 or Java 2 security 
models in an intuitive fashion. As usual, step one is securing an identity. 

Getting an Authenticode Certificate 

There are several ways to get a certificate for Microsoft Authenticode. One of 
the things you can do is generate "test certificates,'' which allows you to try 
things out. We'll tell you how to do that in a bit, if you just want to play 
around. However, if you plan on distributing any code, you're going to want 
to get a real digital ID. This costs money A number of vendors distribute cer
tificates, one of them being VeriSign, which we'll use in our examples. 

To obtain a VeriSign certificate for Authenticode, point futemet Explorer to 
digitalid. verisign.com/developer /ms _pick.htm. 

Select a flavor of ID. For personal use, select a Class 2 ID. For business use, 
select Class 3. 

You'll be given a form to fill out. Note that the personal Class 21D is $20, and 
you'll have to pay by charge card. Once you submit the form, VeriSign will 
try to verify you are who you say you are1 mainly by running a credit check. 
Sometimes the credit check won't have up-to-date information, so if you get 
rejected and you can remember the address for the last place you lived 
(which is the most common problem), you might want to try it again using 
old information, pretending you never moved. (Not that we condone this 
strategy, 1nind you.) 

Once your data are approved, VeriSign will send you an email with instruc
tions on picking up the certificate. When downloading your certificater two 
files will need to be saved: your ptivate key file, and your certificate file. You 
should probably save these files to a floppy disk instead of your hard drive, 

Page 94 of 121



so that someone can't just snag your certificate off your computer (although, 
without knowing the password you use to protect your private key, snagging 
the files alone may not do a bad guy much good). Remember the password 
used to protect the private key; it wiU be needed wh en it comes time to sign 
code. For the sake of simplicity, we'll assume you saved your certificate as 
a: \Cert . spc and your private key as a: \Key . pvc. 

Getting the Signing Software 
Before signing anything with the new certi£icates, download and install the 
Microsoft Java SDK It's located at W'lmu.microsoft.com/msdoumload/java/sdk/ 
31f/SDK~]AVA.asp. 

We'll assume you installed the Java SDK in the directory c: \SDK-Java . 31. 

All of the programs we're going to need for signing Java code live in 
c: \SDK-Java. 31 \Bin \PackSign, so you should p robably add that direc~ 
tory to your PATH. Under Windows 95/98, running the following command at 
the DOS prompt will fix up your PATH for the current session: 

PATH=%PATH%;C: \SDK-Java.31\ Bin\PackSign 

You can add that command to your autoexec .bat file to make the change 
persist through a reboot. 

Cabinet Files 
Unlike Netscape's Object Signing and Sun's signing tools (which work on 
JAR files), Authenticode signing will only work on cabinet (CAB) files. 
There's nothing special abou t the CAB format; it's just another way of archiv
ing m.any files into one. However, it's the only archive format IE supports for 
signing Java code. 

Say we have an applet that consists of two files: filel. class and 
file2. class. We can create a CAB file in the same directory by typing the 
following at the DOS prompt: 

cabarc N tesc.cab filel.class file2.class 

If there are no other class fiJes in the directory, we can also type: 

cabarc N test.cab • . class 

Page 95 of 121



Security Zones 

In order to tmderstand what we're doing when we sign a CAB file.~ we need 
to know a little something about what an IE "security zone'' is. By default, a 
security zone is a group of Web sites. Each zone is assigned a security level, 
which may be Low, Medium, High, or Custom. We won't cover Custom 
zones, except to say that they can .implement arbitrary security policies. For 
more on security zones, see Chapter 1, 11Mobile Code and Security; Why Java 
Security Is Important." 

There's a default zone called Trusted Sites, into which a user can put any server. 
All code from that z one will be completely trusted (i.e., the zone has a Low secu
rity level). Similarl_Yt there's a Restricted Sites zone. Any sites the user puts in this 
zone will need explicit permission before they can run anything "outside the 
sandbox." By default, most everything else falls into the Internet zone, which js 
assigned a Medium security level. Code can run outside the Java sandbox in a 
very limited manner. For example( code can use up to 1 megabyte of data on 
yow· hard drive by using the API com.ms. i o. clientstor age, which is 
included with Microsoft VMs only. (So much for 1'write once, run anywhere'1 !) 
Unlike fully trusted applets.~ applets restricted to the Medium sa'Urity level 
should not otherwise be able to use your file system. 

We're going to sign our cabinet file, requesting to run either with Medium or 
High privileges (we can also request Low privileges, but since we'll always 
be allowed to run in the sandbox, doing so is mainly useful only to show you 
vouch for the CAB file). If our code ends up in a Low security zone, our code 
will always run without prompting the user for permission. If our code ends 
up in a Medium security zone, then before code that requests Medium level 
p rivileges can run, the user will be prompted as to whether to let the code 
run. If our code ends up in a High security zone, all code that wants to run 
outside the sandbox will need to be approved through a dialog with the user. 
See Figure C.2 .. 

Signing CAB Files 

To sign test.cab, we're going to use the s i gn code command, which is 
included in the Java SDK Here1s a typical command line: 

signco de -j JavaSign.dll -jp High - sp c a : \Cert. spc -v a:\Key.pvk 
- n "My Ap p l e t.'1 -i http : //www. mywebpage.com/ t e s t .ca b 

The flags here are a bit arcane. If you want your CAB file to request permis
sions, the - j flag should always be there, and take J a v aSign. dll as a 
parameter, unless you're signing something other than Jav a code (the same 

Page 96 of 121



Security Warning lt3 

Do you want {oJnst-all and run "SOme Program" signed on, 
an unknown date/time and dlstri~yj~d,by: 

JohnVrega ·. 

Publisher aUthenticity verified by VerjSig_n lndiV~ 
Software PUblishers CA 

Caution! :Jol(ln VJ~ga· asserli th~ this Cbl'itent·is\$afe. ~9u 
should onll' ln~tall/vlew thi$ ~tit(:!tlflf :.Yii!il truslJ6bn Vi~ 
to make .tHat assertion. ' 

SIGNED WITH PERMISSIONS 
System Property Permission 
Reflection 'Permission 
User lntelfaf;e--p..ermission 
File 1/0 Pennissron 
Network 1/0 Permissien 
Thread Permission 

81ways trust con\ent from John Viefld 

Figure C.l The security warning dialog used by Microsoft Internet Explorer's 
Authenticode system. 
This dialog explains who has vouched for the code (by signing it) and what permissions are being 
requested. Clicking "Always trust content from <user>" is probably a bad idea. 

command can be used to sign ActiveX controls and other mobile code, too). 
The -jp flag passes a parameter to the DLL. For Java signing, that's how we 
request High privileges. The -spc flag and -v flag are used to specify the 
location of your certificate and private key, respectively. The -n option needs 
to be present and it specifies the name of the software, which is displayed to 
the user before the user decides whether to run your code. The - i option 
specifies where to go for more information about the product, which also gets 
displayed when the user is prompted to give your code permission to run. 

You can also " timestamp" your signature, so that after your certificate 
expires, your applet will still work. However, doing so requires a time
stamp server, which isn't covered here. For more information onAuthenti
code for Java, visit www.microsoft.com/java/securitt;. 

Page 97 of 121



To confirm that everything has worked properly so far, run the command: 

chkjava test . cab 

A window should appear similar to the one an end user will see when IE 
asks if the application should be allowed to run. 

Making Test Certificates 
To avoid putting down some cash for a real certificate from a CA and still be 
able to play around with Authenticode, you can make a test certificate. The 
first step is to create the certificate with the command: 

makecert -sk Key.pvk -n "CN=Your Name" Cert . cer 

That command makes a certificate and a private key you can use in other 
applications, but it won't work for code signing. To get it to work with code 
signing, convert it to a Software Publisher Certificate (SPC) by typing: 

cert2spc Cert . cer Cert.spc 

When you're finished with that, you can use Key . pvk and Cert. spc for 
testing purposes in the same way as if they came from a CA. 

Special HTML Tag 
When deploying a signed CAB file in an HTML page, a slight variation on 
the <APPLET> tag is necessary. As with all applets, the name of the cla.ss that 
extends java. applet. Applet goes in the CODE attribute. However, 
instead of putting the name of the CAB file in the ARCHIVE attribute as is 
done with JAR files, CAB files signed with Authenticode are passed using the 
PARAM tag. As an illustration, the tag to embed into a web page the signed 
applet "MyApplet" stored in myapp. cab would look like: 

<APPLET CODE="MyApplet.class"> <PA.RAM name:"cabbase" 
VALUE="myapp. cab"></APPLET> 

The named prameter "cabbase" is how Internet Explorer finds the CAB file 
containing the class specified in the CODE attribute. 

Page 98 of 121



297 

Comparing Authenticode to Netscape Object Signing 

Microsoft's Authenticode model is somewhat simpler than the Communica
tor model for the end user. Assuming the user doesn't know anything about 
zones, lots of stuH runs without asking the user for permission; the user is 
prompted only to approve code generally when the code requests full access, 
and doesn't already have permission. Less interaction generally means less 
hassle for the user. You can make more dialog boxes disappear if you check 
boxes like, ''always trust code from this person," and "always trust code from 
this site," which appear in the window that announces that code is trying to 
gain pem1issions. However, spreading trust around so easily just to avoid 
dialog boxes can have bad consequences. 

Authenticode is also simpler for the developer. There's no need for calls to a 
Capabilities library, meaning you can simply request an access level, as 
opposed to requesting a set of pTivileges. However, Netscape is capable of 
finer-grained access control, which allows the applet to secure only the 
resources it needs to run without a user feeling thE! need to give a program 
complete access to the computer. 

Another convenience of Authenticode over Object Signing is that the user 
only gets prompted at most once per applet. Netscape prompts the user 
whenever new privileges are requested (which is usually during execution). 
While the Netscape model is more intrusive, it does afford the user a bit more 
control over what privilege is granted to an applet. 

Signing Code with Sun's JDK l.l.x 

Sun makes its own set of signing tools. The tools have evolved along with the 
JDK. We'll briefly cover both the JDK 1.1 tools and the Java 2 tools. 

The JDK ships with a command-line tool called javakey. lts job is to man
age a database of entities (people, companies, etc.) and their public/private 
keys and certificates. It is also supposed to generate and verify signatures for 
archive files; however, verification is not implemented as ofJDK 1.1.7. 

As Chapter 3 describes, an applet contained within a digitally signed JAR file is 
allowed to leave the bounds of the Java sandbox under certain circumstances. In 
JDK 1.1, if a JAR is signed and the user who has browsed to the Web site con
taining the applet has a policy stating that he or she trusts the per5on who 
signed the JAR, the applet can do anything at all that Java code is capable of. 
For example, it can read and write from the file system, start another process 

Page 99 of 121



runn.ing on the computer (outside of the browser), open a network connection 
to an arbitrary machine, or myriad other tasks that applets are not normally 
allowed to do. In other words, trusted signed code under JDK 1.1 is as powerful 
as Java application code from the JDK 1.0.2 days. Remember, under }DK 1.1, 
were operating under a black-and-white security model. 

To get going with code signing in JDK 1.1, there are few things to gather. On 
the development side, an applet that tries to perform actions that aren't nor
mally allowed by the Java sandbox is needed (or at least one that can be aug
mented to attempt such an action). The most rudimentary operation that a 
signed applet can do that an unsigned applet can't do is read the user .name 
System property. An example applet follows: 

publ i c class UserApplet extends java.applet.Applet { 
public void ini t() { 

) 

String username = •user: "; 
try { 

username += System.get'Property( •user .name "); 
} catch {SecurityException se) ( 
username +="cannot read•; 

sbowStatus (username)•; 
} 

A signed applet containing the preceding code (running in a browser of a user 
who trusts the entity that signed the applet) will be able retrieve the name of 
the user running the applet and display it in the status bar of the browser. 

Once the applet to be signed and its containing Web page have been created, 
the class files that contain the applet must be put into a JAR file. Even if the 
applet in question is only one class, it must be placed inside a JAR file. It is 
not possible to sign standalone class files. 

In order to sign Java code w:ith j avakey, a signing certificate needs to be cre
ated. Once this certificate is created, it can be used to sign the JAR file and dis
tributed to users who wish to allow the signer's applet full access to their system. 

Creating a Signing Certificate 
A file called ident i tydb. obj stores all certificate information and lives in 
the directory specified by the Java System Property value user. horne. For 
Unix Java users, this value evaluates to $HOME. For Win32 users, user. horne 
can take a number of values. Different VMs assign the value of user_ horne 
either to the OSERPROFILE directory, to the HOMEDRIVE \ HOMEPATH direc-

Page 100 of 121



299 

tory, or when all else fails, to the value of the java. home System Property. 
To clear up any ambiguity, write and run a simple Java containing the line: 

System.out .println("user.home= " + 

System.getProperty("user.home")) ; 

Regardless of user. home, the location of identi tydb. obj can be set 
explicitly by adding an identity .database entry to the java . security 
file that lives in the lib subdirectory of the java installation, wherever that 
may be on the system. 

First, the signer's identity must be created in the database. To create an iden
tity, signername, that will be able to sjgn objects, run the following com
mand on the command line: 

javakey cs signername true 

Now that a signer has been created, that signer's public and private keys 
must be initialized. Keys can be between 512- and 1024-bits long. To initialize 
public and private keys for a signer, run the following conunand (where # js 
a number between 512 and 1024): 

javakey g)c signername DSA # 

Higher numbers mean more security. We recommend always using 1024-bit 
keys. The parameter DSA signifies the algorithm used to generate tl1e keys. 
The JDK only comes with the DSA algorithm by default. 

To verify that all has gone well so far, run: 

javakey ld 

This command will list all the information in the current identity database. 
The entry for signernarne should identify it as a trusted signer as well as 
noting that the p ublic and private keys have been initialized. The next step 
generates a certificate that will be valid for signing JAR files. This is different 
fromNetscape Object Signing in that there is no Certificate Authority 
involved. 

First, a directives file must be created. The directives file is a Java Properties 
file that provides values used during certificate generation. H ere are the con
tents of an example directives file: 

issuer.name=signername 
subject.name~signername 

subjecc . real .name=Sol S. Signer 
subjeot .country=US 

Page 101 of 121



subject. or9""'Signing Corp 
subject.org.unit=Development 
start.date=22 Jul 1 998 
end .date=l6 Aug 1999 
serial . number=41 

To generate the certificate once the d irectives file exists, run: 

javakey gc directives fi l e 

To verify that the certificate was generated properly, run: 

j avakey ld 

Look for the signername entry to have the s ub j ect . * inforn;1.ation from the 
directives file listed. 

Everything is now finally set for sigrung. The command actually used to sign 
a JAR file also requires a directives file. This is a different directives file than 
the one used to generate the signing certificate. The first directives file used 
to generate the certificate will no longer be needed, unless a different certifi
cate needs to be generated. The second kind of directives file is used when
ever a JAR gets signed, and should be kept handy. An example directives file 
for sjgniilg a JAR looks like this: 

signer=signername 
# look at j avakey ld for c ertificate number s, should be 1 

cert =l 
# chain unsupported, must have as value=O 
chain=O 
# must be 8 characters or less and not conflict wi t h any other 
# digit a l s i gnatures that could be inserted into the JAR 
signature . file=anything 
out.fi l e=Si gned. jar 

Once the signingdirective file has been created, run the command: 

javakey gs signingdirectiv e Un signedApp let . j a r 

Running this command will generate Signed. j ar, which will be a signed 
version ofunsi gned.Appl et. jar. Putting Signed . jar in the ARCE-ITVE 
field of the APPLET tag in an HTML page will cau,se a Java-enabled browser 
to bring the JAR file over the network and execute the signed code contained 
within. For more information on j av akeyJ the official Sun documentation 
for Solaris can be found at java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/ 
javakey.html. 

Page 102 of 121



The Win32 specific version can be found at javn.sun.com/prodttcts/jdk/1.1/ 
docs/tooldocs/win3 2/javakey.ll t mI. 

Testing the Signed Applet 

301 

Now that a signed applet exists, and it is embedded within a Web page, Ws 
ready for testing before release. Testing requires either applet.viewer or a 
Web browser that knows how to validate JARs signed by j avakey and 
allows signed JARs to leave the sandbox. Unfortunately, neither of the two 
major browsers (Netscape Communicator and Microsoft Internet Explorer) 
support javakey-signed JARs. 

HotJava and the apple t viewer program that comes with the JDK can 
validate JARs signed by j avakey. They will allow signed applets out of the 
sandbox if the signature is valid and the policy states that the user whose 
signature appears is trusted. Both of these programs search for the 
iden ti tydb. obj in the same manner that java key does. 

The problem is that no one should be surfing the Net with HotJava (too dan
gerous), and the appletvi ewer carmot be used to browse the Internet. Since 
the VMs in Communicator and Internet Explorer do not support javakey 
signing, in order run javakey-signed applets with those browsers, users must 
download and install Sun's Java Plug-In. 

Java Plug-In for Communicator and Internet Explorer 
Java Plug-Tn can be used to run applets instead of the browser's default VM. 
The Java Plug-In can be configured to use the most recent version of the Java 
Runtime Environment available from Sw1. When an applet is run through the 
Java Plug-In instead of the browser's default VM, javakey-signed JARs can 
be verified and can step outside of the sandbox (if policy allows). 

Users must download the Plug-In from Sun and install it on their system. The 
download page for the Plug-In is javn.sun.com/products/plugin/index.7Itml. 

Applet developers also need to modify the HTML pages that contain their 
applets and modify the <APPLET> tag. Applets that are in Web pages using the 
standard <APPLET> tag will still be run by the browser's default page. The 
Plug-In will runapplets only when it detects a different set of 1-TIML tags 
that specify an applet. Sun provides an application called HTMLConverter, 
which can convert pages with the <APPLET> tag into pages containing tags 
that will launch applets using the Plug-in. The HTMLConverter homepage is 
java.sun.conz/pmducts/plugin/converter)ltlnl. 

Page 103 of 121



Two things to note about using the Plug-ln. On Solaris, JavaScript rrzust be 
enabled for the Plug-In to work properly. With JavaSc:ript disabled, applets did 
not load or run when we tested the Plug-In with Communicator 4.02 and 4.06. 

On Win32, the Java Plug-In did not find the identi tydb. obj file in the 
same place that j avak:ey did. This has to do with different versions of the 
VM setting different values of the user. home Property. If you run into trou
ble, try moving the identi tydb. obj file to a different location. Places to try 
are mentioned in the section, Creating A Signing Certificate (see page 298). 

Distributing Public Keys and Certificates 
In order for someone to verify who signed a signed JAR, he or she needs the 
public key of the entity who signed the JAR in the first place. Until the public 
key is distributed to people other than i.ts owner, no one but the owner can 
verify that an applet is signed and by whom. Once the sig11ed applet has 
been tested and has proven to be functional, it can be placed on a Web site for 
use by others. 

In order for the applet to escape the sandbox imposed by other people's 
browsers, users must have the public l<ey or certificate of the entity that 
signed the applet. Also, the user must tell the identity database that he or she 
trusts the entity that signed the appJet. Trusting the entity that signed the 
applet allows the applet complete access to the host. Here's how to create a 
trusted entry: 

javakey c signername true 

To import the signer's public key contained in keyfile, run: 

javakey ik signername keyfile 

To import the signer's certificate (which contains the signer's public key) 
from certfile, run: 

javakey ic signername certfile 

The identity must be created in the database before trying to import either 
the public key or certificate. In order to verify the signature on a signed JAR, 
you need only the public key of the signer. Certificates include the public key. 

The signer of the applet must make his or her public key (or certificate) avail
able to users of the applet in some way. It could be linked from a Web site, 
phoned in, or delivered through email. Whichever way it is done, the identity 
must first be extracted from the identity database. To extract a public key 
£rom the database to a file keyfile, use the command: 

Page 104 of 121



I 303 

javakey ek signername keyfile 

To extract signemame's certificate number 1 to a file certfile, use the command: 

javakey ec signername 1 certfile 

The information in the key fi le or certfile should be given to those 
who want to create a policy that allows applets signed wjth the identity to 
)eave the sandbox. 

Differences Between Netscape Object Signing and 
JDK 1.1.x javakey 

There are five major differences between Netscape and SLm's approach to 
code signing: 

1. Netscape Object Signing only works within Communicator. JDK 1.1 
signed applets can work in any browser, although Netscape Navigator 
and Microsoft Internet Explorer both require the installation of the Java 
Plug-In for the app1et to leave the sandbox. 

2. Netscape Obj&,--t Signing requires getting a certificate from a certificate 
authority suCh as VeriSign. JDK 1.1 users can generate their own certificates. 

3. Netscape Object Signing requires no modifications to HfML tags. If the 
Plug-In is needed for JDK 1.1 (in case you want to use IE or Netscape), the 
<APPLET> tag must be changed by HlMLConverter. 

4. Netscape Object Signing uses Netscape's own classes to step outside of the 
sandbox. A Netscape-specific exception ls thrown when permission to leave 
the sandbox is denied. JDK 1.1 javakey-signed applets do not need to 
include calls to any other non-java.* classes to leave the sandbox, and 
java. lang. Secur i tyE:xception is thrown when permission is denied. 

5. Netscape Object Signing prompts the user when an applet attempts to 
leave the sandbox, asking the user for permission to cany out the danger
ous act. Actions are grouped, so the user can allow some actions (file 
reads) but not others (file writes). JOK 1.1 javakey-sjgned applets that are 
trusted get complete access to the host. 

Signing Code with Sun's Java 2 

The javakey tool fromJDK 1.1 has been replaced by two tools in Java2. 
On.e tool manages keys and certificates in a database. The other is responsible 
for signing and verifying JAR files. Both tools require access to a keystore 

Page 105 of 121



that contains certificate and key information to operate. The keystore replaces 
the identitydb. obj from ]DK 1.1. New to Java 2 is the notion of policy, 
which controls what resources applets are granted access to outside of the 
sandbox (see Chapter 3). 

The j avakey replacement tools are both command-line dr.iven, and nei
ther requires the use of the awkward directive files required in JDK l.Lx. 
Management of keystores, and the generation of keys and certificates, is car
ried out by keytool. jarsigner uses certificates to sign. JAR files and to 
verify the signatures found on signed JAR files. 

Getting Started with Keytool 

The first step in working with Java 2 is getting the latest beta version .from 
Sun. Members of the Java Developers Connection (JDC) can download Early 
Access releases of Java 2 software. Membership in the JDC is free with regis
tration. Once registered, point your browser to developer.java.sun.com/ 
detleloper/earlyAccess/jdkl2/index.html. 

The Win32 version of JDK 1.2beta4 comes with the latest version oi the Java 
Plug-.li:\, which supports Java 2. During thelnstall, answer yes when it wants 
to know if the JRE and the Plug-In should be installed as well-it will be 
needed later. 

The key tool command operates on a keystore file. The name of the keys tore 
file is . keys tore by default, and it is located in the directory named by the 
user. horne Java System Property. It is possib1e to have multiple keystores. 
Changing the keystore on which the current keytool command will operate 
is done through the -keystore <path to keystore> option. 

Documentation from the Sun Java Web pages states that Java 2 VMs will run 
and properly authenticate JARs signed with JDK l.l's keytool. It also states 
that the last beta release of JDK 1.2 does not yet support 1.1-signed JARs. The 
keytool utility also supposedLy allows porting keys and certificates from 1.1 
identitydb. obj files into a Java 2 keystore. According to the documenta
tion, the command to perform the translation is: 

keytool -identittydb -file <path to identitydb.obj file> 

Unfortunately, an identitydb. obj file created withJD.K 1.1.6 did not· suc
cessfully import into the keystore when we tested the keytool from JDK 1.2 
beta4-we tried on both Win32 and Unix platforms. The error message 
retumed from keytool mentions an InvalidClassError and states that 
a dass used in key management became obsolete,1·esulting in a serialization 
error. Until this problem works itself out in later beta and production 

Page 106 of 121



305 

versions, the certificates and keys used under 1.1 cannot be used in Java 2. 
New certificates and keys will need to be generated for use with jarsigner 
andkeytooL 

Generating a public and private key pair and self-signed certificate can be 
performed from the command line in one shot without the need to create any 
directives files. All keys and certificates stored in the keystore are accessible 
through an alias. An alias is a name associated with a certificate entry that 
keytool uses to uniquely identify each certificate under its control. To gener
ate a certificate keyed by the alias keyname, run the command: 

keytool -alias keyname -genkey 

keytool will begin prompting for information. The first prompt is for a key
store password, which will be needed for all further keytool and j arsigner 
operations on this keystore.lt must be at least six characters long and is unfortu
nately echoed to the screen as it is typed. This means that the keystore password 
can be leaked to casual observers whenever keytool or jarsigner is used. 

Once the password has been entered, keytool prompts for some personal 
information, sud1 as name, company name, city, state, and country. All this 
information is stored in the generated self-signed certificate, which is saved 
in the default keys tore location. All the personal iniormation is displayed for 
verification before key tool generates the keys and certificate. After the cer
tificate and keys are generated, keytool prompts for another password. 
Each certificate has its own password, separate from the keystore password. 
Entering nothing does not give the key an empty password. It gives the cer
tificate the same password as the keystore. j arsigner will not prompt for 
the passwords of certificates that have the same password as the keys tore, so 
it may appear that a certificate has no password. However, if the password 
of the keystore changes, the passwords of the certificates do not change, so 
j arsigner will start prompting for not only the password of the keystore, 
but for the certificate as well. The command to change the password of a 
keystore is: 

keytool -storepasswd 

keytool will prompt for the old password, and the new password twice, all in 
cleartext. This command does not affect the passwords of certificates in the key
store, including those that happen to have the same password as the keystore. 

An apparent weakness of thekeytool certificate generation system is that a 
user can accept all the default values for the personal information prompted 
for before certificate generation. The default value for all the questions is 

Page 107 of 121



"Unknown." So keytool will generate a valid certificate that can be used to 
sign JAR files, but is filled with bogus information. No data validation is per
formed by keytool, so it is possible to, say, create a certificate for Elvis. 

Certificates generated by the system will be valid for just tmder one year by 
default. To change the length of validity for a certificate ton days, add the 
flag -validity n to the keytool-genkey command. 

To view the fingerprints of certificates in the keystore, use the command: 

keytool -list 

To view the personal information about the issuer and owner of the certi..fi
cate, run: 

keytool -list -v 

Signing a JAR 

Once a private key has been generated, j arsigner can be used to mark a 
JAR file with the public key of the signer. The command to sign a JAR file 
called SignMe. jar with the keyname private key generated previously is: 

jarsigner SignMe.jar keyname 

j arsigner will prompt for the keystore password and the private key pass
word if different than the keys tore password before signing the JAR file. To 
monitor the progress of the signing process, run: 

jarsigner -verbose SignMe.jar keyname 

jars igner can also be used to verify that a JAR has or has not been signed, 
and by whom. For a simple signed/not signed answer for a JAR file 
Unknown. jar, run: 

jarsigner -verify unknown.jar 

To get more information from the verification process, such as the signing 
status of each file in the JAR file, the personal information from the certifi
cates used to sign each file in the JAR, and whether or not the certificate js 
known in the default keystore, run: 

jarsigner -verify -verbose -certs Unknown.jar 

Page 108 of 121



307 

After each signed file, in the listing will be the personal information encoded 
in the certificate for the entity that signed the file. If that certificate is known 
in the keys tore, the name it is known by will appear in parentheses after the 
certificate's personal information. 

Enter theCA 

So far, the only changes from JDK 1.1 are the syntax and the names of the 
commands. Certificates can be generated by keytool with any personal 
information at all. There is nothing to stop anyone from creating a certi ficate 
that claims that it is owned by someone else and signing a JAR with it. What 
a Certificate Authority can provide is a level of assurance that a certificate 
truly represents the individual that it claims to represent. That is, of course, if 
you trust that a Certificate Authority isn't being spoofed, and is properly 
checking the certificates it vouches for. (Recall, this way madness lies.) 

Certificates generated by key tool can be exported in a form sujtable for 
submission to a Certificate Authority such as YeriSign. This can be accom
plished by rUili'Ung: 

keycool -certreq -alias keyname -file reguestfile 

TI1at command puts a Certificate Sigrung Request into requestfile for the cer
tificate know by the keynaroe alias. However, there is no information as to 
how to submit this data to a CA for validation. According to the keytool 
documentation, theCA will validate the certificate and return something that 
must be imported into the keystore. Although we haven' t tested it, the com
mand to import the response from the CA into the keys tore is supposed to be= 

keytool - import -alias newalias -trustcacerts -file response 

That command imports the response from the CA stored in a file called 
response into the keystore under the name newalias, whjch must not 
already exist in the keys tore. The -trus tcacerts flag tells keytool to 
check the resp onse certificate against the five VeriSign certificates that come 
shipped with Java 2 (at least there were five in JDK 1.2beta4}. 

Turning Over the Keys 

Until the certificate used to sign the JAR is made public, no one can grant any 
permissions to the enclosed applet. To retrieve a copy of the keyname certifi
cate from the keystote into a file mycert, use: 

keytool -exporc -alias keyname -fil~ mycert 

Page 109 of 121



As usual, keytool will prompt for the appropriate passwords. When the 
command finishes, the filemycert can be distributed to users who wish to 
grant additional privileges to applets signed by that certificate. 

As inJDK 1.1, there is currently limited support for aJAR signed with the 
JDK tools. Again, Sun provides support through the Java Plug-In. Plug-In 
version 1.1.1 does not necessarily support Java 2. Although the Java Plug-In 
can be configured to use different VMs installed on the local system, the Plug
In hangs the browser when pointed to a Java 2 VM 0~1. Solaris. Documentation 
for the Win32 version of the Plug-In mentions running a program off the Start 
menu to configure the Plug-In. The installation script does not create a program 
group for a Plug-In Control Panel as advertised under Windows NT unless the 
user performing the installation has permission to create program groups. 

An Early Access version of Plug-In version Java 2 for Solaris is available to 
members of the Java Developer's Connection. The latest version of the Plug
In for Win32 ships withJDK 1.2beta4. 

As with JDK 1.1, any HTML pages that contain Java 2-signed JAR files must 
be converted using the same HTMLConverter used in JDK 1.1. Converting 
the HTML ensures that the applet will nm .in the Plug-In. and not :in the 
browser's default VM. See the section on JDK 1.1 JAR signing for information 
on where to get the HTMLConverter. 

Running a Signed Applet 
The first step upon encountering a signed applet is to locate the certificate of the 
entity that signed the JAR file and import it into the local keystore. Assuming 
that the certificate can be located and placed into a file called acert, run: 

keytool - import -alias analias -file acert 

An entry in the keystore is created keyed by the name ana lias for the cer
tificate stored in acert. This is now a trusted entity. Whereas in JDK 1.1, 
aliases could either be trusted or untrusted, all aliases in Java 2 keystores are 
trusted. However, in JDK 1.1, trusted aliases could do anything they wanted; 
aliases in Java 2 cannot do anything unless granted permission. Permissions 
are granted to aliases through the use of policy files (see Chaptet 3). 

Creating a Simple Policy for Signed Applets 
Java 2 introduces the notion of policy. Creating, understanding, and manag
ing security policy for signed mobile code is a difficult and complex problem. 
Since this discussion is about signing code and not about constructing policy, 

Page 110 of 121



an extremely simple example of how to cotlstruct policy is presented. Creat
ing good policy is beyond the scope of this tutorial. The example policy is 
strong enough to allow an applet limited file access to the host machine. 

Java policy files can be created with the newpolicytool. This application has 
a GUI to guide users though the many tw:ists and turns encountered when cre
ating policy files. It's a very simplistic CUI with no online help. In its current 
form as of beta4, it is only useful if one does not know the syntax of a policy file. 

Policy files are plaintext files that follow a format outlined at java.sun.com/ 
products/jdk/1.2/docs/guide/security/Policy.Files.htntl. 

1ne default security policy system first reads a system-level policy file from 
the lib/security I subdirectory under the Java installation directory. It 
tl1en tries to read a .java. policy file from the current user's user. borne 
directory. In this file, users specify their personal security policy, which 
merges with the system secutity policy. Permissions that can be granted in a 
Java policy file are outlined at java.sun.com/products/jdk/1.2/docs/guide/security 
/permissions.html, as well as in Chapter 3. 

If the policy file is to make reference to a certificate stored in a keystore, a 
keystore entry must appear in the policy file. The keys tore enhy specifies the 
path relative to the policy file itself and the name of the keystore file. To keep 
things simple and use the default keystore file, add the following line to the 
. java.policy file in the user. home directory: 

keys tore " . keys tore" ; 

To grant an applet permission to write or create any file in the c: \ tmp direc
tory, assuming the applet comes from www.friendly.com/-mybuddy/npplets/ 
and is signed by a certiiicate known in the default keystore as friend, add to 
the . java. policy file: 

keystore •. keystore•; 
grant signedBy • Erieod •, 

codeBase "http://www.friendly.com/-mybuddy/applets/" 
pennission java. io .PilePermission "c: \\tmp\\*", •write "; 

J; 

Note the double backslashes. All Win32 pathnames must use double back
slashes to indicate directories. Unix pathnames use regular singleton forward 
slashes. Code Base follows URL syntax. 

Page 111 of 121



Sign Only Privileged Code 
Applets that request permission to leave the sandbox are usually built for 
greater purposes than saving a high-score list on the local drive. Applets that do 
serious business and hence require access to the local system are most likely 
some of the larger applets in existence. It is wilikely that these applets will be 
built completely by one developer or one software company. 01ances are some 
of the components of an appJet will be bits of utility code found on the Internet 
or purchased from a tool vendor. A smart organization wants to sign only code 
that it produces; third-party utility code cannot be safely vouched for. 

If al1 the code is signed, then any code can leave the sandbox based on the 
policy. However, if some code in an applet is from a third party, it should not 
be signed unless the individual signing the code is willing to vouch that the 
third-party code won't try to do anything malicious (or introduce a security 
hole that others can exploit). To say the least, we don't recommend signing 
code you don' t completely understand. 

Java 2 presents an API for privileged blocks. Privileged blocks are meant 
to be small sections of code that have a higher privilege than the code that 
.invoked them. JDK 1.2beta4 introduced a new APl for privileged blocks. Using 
this API, the only code that needs to be signed is the code that invokes the 
AccessController class, and the code that performs the privileged action. 

A11 other code can remain unsigned, preventing jt from leaving the sandbox 
on its own (or tempting others to attack it). Documentation on the new API can 
be found at java.sun.com/products/jdk/1.2/docs/grdde/sewrity/doprivileged.html. 

There are two things to consider when writing signed code that will be inte
grated with unsigned code. First, make the code in the privileged block as 
small as possible. The less code that is privileged, the less chance that grant
ing i t higher privilege will result in nasty and unwanted. sJde effects. Second, 
to prevent mix-and-match attacks, ali the code for the applet should Live in 
one JAR file, even if the third-party libraries that are used by the applet live 
in their own JAR. (See Guidelines for Java Developers in Chapter 7, 11]ava Secu
rity Guidelines: Developing and Using Java More Securely.") 

To sign some portions of a JAR file and leave others unsigned takes a number 
of steps we'] I cover now. First, create a JAR file containing all classes that 
need to be signed. 

jar cvf MyApp . jar Signmel.class Si9nme2.class 

List all the classes that need to be signed in the previous command. Once 
the JAR containing classes that need to be signed is created, sign. the JAR 
with jarsigner. 

Page 112 of 121



jarsigner MyApp. j ar mykey 

Now, add the remainder of the classes in the application to MyApp. jar. The 
Java 2 version of jar added the v flag~ which allows TAR files to be updated. 
with new files. 

jar uvf MyApp.jar Otherl.class Others . class 

List the remaining classes in the application in this step. If parts of the appli
cation are already in a JAR or ZIP file, they will need to be unarchived before 
being JARed into the new partially signed JAR file. To verify that all went 
correctly, use j arsigner to verify the contents. 

jarsigner -verify -verbose MyApp . jar 

Only the classes that were added before j arsigner was invoked the firs t 
time to create the signature will be marked as signed. Ali the other classes will 
be listed, but no certificate or signature will be associated with their listing. 

If j arsigner fails to verify the entire JAR, or classes that are supposed to be 
signed appear not to be, use the jar command to list the contents of the JAR 

jar tvf MyApp.jar 

The fust entry in the JAR must beMETA-INF /MANIFEST .MF . If the manifest 
file is missing or not in the first position in the file, the JAR will not verify 
properly. Following the MANIFEST . MF file should be a . SF and . DSA (or 
. RSA) file. lf either of those files is missing, then the signature is missing 
from the JAR. Remove the JAR file and start over. If the commands listed ear
lier still move the META- INF / MANIFEST . MF file out of the first position in 
the file, it may not be possible to create a JAR containing signed and 
unsigned code. (The JAR command with)DK 1.2beta4 did not move the 
META-INF /MANIFEST. MF file around in the JARs we created.) 

Differences between JDK 1.1 Code Signing 
and Java 2 Code Signing 

There are a number of major differences between Sun's approach to code 
signing in JDK 1.1 and Java 2: 

1. JDK 1.1 trusts code completely or does not trust it at all; Java 2 allows pol
icy to define what code can and cannot do. 'This reflects the change from 
black-and-white trust to shades-of-gray. 

Page 113 of 121



2. JDK 1.1 has one tool, j avakey, for all code-signing related functions; Java 
2 has keytool for certificate management and jarsigner for signing 
and verifying JARs. 

3. JDK 1.1 does not support certificates from Certificate Authorities; Java 2 
does allow Certificate Authorities to sign generated certificates, however 
it is unclear if any CAs currently offer this service. 

Both Netscape and Microsoft have provided browser-specific methods for 
leaving their sandboxes. Both rely on external Certificate Authorities to man
age identities, but the same certificate used for Netscape cannot be used for 
Microsoft. Netscape requires applets to use special classes to take advantage 
of code signing. Microsoft also provides a vendor-specific API for certain 
capabilities. Both take a similar approach when it comes to prompting the 
browser's user when certain applets attempt to leave the sandbox. 

Sun has moved .from a black-and-white security policy that allowed trusted 
code to do anything it wants to a shades-of-gray security policy by which only 
certain code from certain people can do certain things, depending upon config
uration. However, in Java 2, unsigned code can be granted free reign of the sys
tem as well if the policy is configured as such. Havmg tmSigned code play 
outside the sandbox is something that none of the other schemes allow. 

Each of the four Java code-signing techniques discussed in this tutorial vary 
in their complexity level, have their own special tools for signing and key 
management, have different levels of support from VM to VM, and take dif
ferent approaches to the user's interface to security controls. Considering that 
Java is meant to be a portable, mobile code system, the large number of com
patibility issues surrounding code signing is worrisome. Developers want 
their applets to do more than the original JDK 1.0.2 sandbox model allowed, 
but with each vendor providing different ways for code to leave the sandbox, 
the goal of "sign once, leave the sandbox anywhere" seems highly unlikely. 

Page 114 of 121



References 

Abadi, M., Bu.rrows, M., Lampson, B., and Plotkin, G. (1993) A Calculus for Access 
Control in Distributed Systems. ACM Trnnsactio11s 011 Programming Languages and 
Systems,l5(4):706-734, September 1993. 

Anderson, Rand Kuhn, M. (1996) Tamper Resistance-A Cautionary Note. ln The 
Second USENIX Workshop on Electronic Commerce 
Proceedings, pp.l-ll.Also available on the Web at 
W\.VW.cl.cam.ac.uk/users/cm213/.Publications/ tamper.htrnl. 

Badger, L. and Kohli, M. (1995) Java: Holds Great Potential-But Also Security Con
cerns. Dnla Security Letter, 3:12-15. Tbe Data Security Letter (DSL) is published by 
Trustedlnfo1mation Systems (TIS). 

Boneh, D., DeMilio, A, and Lipton, R. (1997) On the Importance of Checking Crypto
graphic Protocols for Faults. In W. Funny (ed) Advances in Cryptology
Eurocrypt'97, Volume 1233 of Lecture Notes in Computer Science, pp. 37-51, 
Springer-Verlag. Also available on the Web at 
theory.stanford.edu/ -dabo/ papers/ faults .ps.gz. 

CERT (1996a) CA-96.05: Java Applet Security Manager. See URL www.cert.org/ 
advisories/index.htrnl. 

CERT (1996b) CA-96.07: Java Security Bytecode Verifier. See URL 
www.cert.org/ advisories/ index.html. 

Daconta, M. (1996) ]a1mjor C++ Programmers. John Wiley & Sons, 
New York, NY. 

Dean, D., Felten, E., and Wallach D. (1996) Java Security: From Hot}ava to Netscape 
and Beyond. In Proceedings of the 1996 IEEE Symposium 011 Security and Privacy, 
pp. 190-200, Oakland, CA. 

Dean, D. (1998) Fonnal Aspects of Mobile Code Security. Ph.D. dissertation, Department 
of Computer Science, Princeton UniversJty. 

DrossopouJou, S. and Eisenbach, S. (1998) 1bwards an Operations Semantics and Proof 
of type Soundness for Java. A technical paper to be included in an as yet unnamed 
book. Available on the Web at outoften.doc.ic.ac.uk/p.rojects/slurp/papers.htrnl. 

Erdos, M., Hartman, B., and Mueller, M. (1996) Security Reference Model for the Java 
Developer's Kit 1.0.2.Available from Sun Microsystems and also as a Web document 
at www.javasoft.com/security /SRM.html. 

Fellisen, M. and Friedman, D. (1998) A Little Java, A Few Patterns. MIT Press, 
Cambridge, MA. 

Felten, E., Balfanz, D., Dean, D., and Wallach, D. (1997) Web Spoofing: An Internet 
Con Game. In Proceedi11gs of tiie 20'~ Nationallnfonnation Systems SecurihJ Conference, 
Baltimore, 1\IID. An early version appeared as technical report 540-96 (revised}, 
Department of Computer Science, Princeton University. 

Flanagan, D. (1997) java in a Nutshell, Second Edition. O'Reilly & Associates, 
Sebastopol, CA. 

Flanagan, D. (1997) ]arm Examples in a Nutshell. O'Reilly & Associates, Sebastopol, CA. 

Friedman, D., Wand, M., and Haynes, C. (1 992) Essentials of Programming l.tmguages. MIT 
Press/ McGraw-Hill, Cambridge, MA. 

[ sn l 

Page 115 of 121



314 

Garfinkel, S. and SpaHord, G. (1996) Practical Unix & Internet Security, Second Edition. 
O'Reilly & Associates, Sebastopol, CA. 

Ghosh, A. (1998) £-Commerce Security: Weak Links, Best Defenses. John Wiley & Sons, 
New York, NY. 

Gong, L. (1998) Secure Java Class Loading. IEEE lntemet Comp11ti11g-, 2(6):56-61, 
November /December 1998. 

Gong, L., Mueller, M., Prafullchandra, H., and Schemers, R. (1997) Going Beyond the 
Sandbox: An Overview of the New Security Architecture in the Java Development Kit 
1.2. In Proceedings of the USENJX Symposium on Tntemet Teclznologies and Systems. 
Monterey, CA. 

Gong, L. and Schemers, R. (1998) Implementing Protection Domains .in the Java Devel
opment Kit 1.2.1n Proceedings of the lntemet Societr; Symposium on Network and Distrib
uted S}!stem Securif:IJ, San Diego, CA. 

Hastings, R. and JoyceJ B. (1992) Purify: Past Detection of Memory Leaks and Access 
Errors. In Proceedings of tl1e Winter USEN1X Crmference, ACM Press. 

Horstm~ C. and Cornell, G. (1997) Core Java Volume l<EFundamentals. SunSoft Press, 
Mountain View, CA. 

Hughes, L. J. (1995) Actually Useful Intemet Security Techniques. New Riders, 
Indianapolis, IN. 

Hughes, M., Shoffner, M., and Winslow, M. (1997) Java Network Programming. 
Manning, Greenwich, CT. 

IS07816 (1987) International Staudards Organization, International Standard ISO 
7816-1 through 7816-6 "Identification Cards-Integrated Circuit(s) Cards with 
Contacts." Available through ISO, New York, NY. 

LaDue, M. (1996) Java Secuxity: Whose Business Is It? Published by Online Business 
Consultants and available as a Web document at www.rstcorp.com/ 
hostile-applets/ OBCArticle I Article.html. 

Lewis, T. (1996) What's Wrong with Java? IEEE Software, 29(6):8. Lewis' letter to the 
editor was in response to Java criticism originally printed by him in "The NC 
Phenomena: Scenes From Your Living Room," IEEE Software, 29(2):~10. 

Lewis, T. (1998) Java Holy War '98. IEEE Computer, 31(3):126-128. 

Macgregor, R., Durbin, D., Ow lett, J ., and Yeomans, A. (1998) java Network Secunty. 
Prentice Hall, Saddle River, NJ. 

Martin, D., Rajagopalan, S., and Rubin, A. (1997) Blocking Java Applets at the Firewall. 
Proceedings of the 1997 Network and Distributed System Secutily Symposium. San Diego. 
CA. March 1997. Also available on the Web at www.cs.bu.edu/techreports/ 
96-026-ja va-firew a Us. ps.Z. 

McGraw, G. and Felten, E. (1996) java Security: Hostile Applets, Holes, and Antidotes. 
John Wiley & Sons, New York, NY. (The first edition of this book.) 

McGraw, G. (1998) Testing for Security During Development: Why We Should Scrap 
Penetrate and Patch. TEEE Aerospace and Electronic Systems, 13(4):13-15, Apri11998: 

Neumann, P. (1995) Computer Related Risks. Addison-Wesley, 
Reading, MA. 

Oaks, S. (1998) Java Security. O'Reilly & Associatesr Sebastopol, CA. 
'Rubin, A., Geer, D., and Ranum, M. (1997) The Web Security Sourcebook. John Wiley & 

Sons, New York, NY 

Page 116 of 121



Schneier, B. (1995) Applied Cryptography; Protocols, Algorithms, and Source Code in C, 
Second Edition. John Wuey & Sons, New York, NY. 

Shimomura, T. and Markoff, J. (1996) Tnkedown: The Pursuit and Capture of Kevin 
Mitnick, America's Most Wanted Computer Outlaw-By the Man Who Did It 
Hyperion, New York, NY. 

Spafford, E. (1989) The Internet Worm Program: AnAnalysis. Computer Communiet1tions 
Revie-w, 19(1):17-57. 

Stata., R. and Abadi, M. (1998) A Type System for Java Bytecode Subroutines .. In 
Proceedings of the 25'h ACM Symposium on Principles of Programming Languages, 
pp. 149-160, January 1998. 

Sun Microsystems (1995) The Java Language: An Overview. Available from Sun 
and also as a Web document at java.sun.com/ docs/ overvlews/java/java
overview-l.html. 

Sun Microsysterns (1996b) The Java Virtual Machine Specification. Web document at 
www.javasoft.com/ docs/ books I vmspec/ html/VMSpecTOC.doc.h tml. Available 
as a book by Lindholm and Yellin from Addison-Wesley. 

Sun Microsystems (1996c) Low-level Security in Java. Web document at URL 
www.javaso.ft.com/ sfaq/ verilier.html/ by Frank Yellin. 

Sun Microsystems (1997) Java Card 2.0 Programming Concepts, Revision 1.0 Fina1. Web 
document at URL www.javasoft.com/products/ 
java card/ index.html. 

Venners, B. (1998) Inside tire Java Virtttal Machine. McGraw-Hilt New York, NY. 
Voas, J. and McGraw, G. (1998) Software Faun injection: Inoculating Programs Against 

Errors. John Wiley and Sons. New York, NY. See the Web site at 
www.rstcorp.com/ fault-injection.htrnl. 

Wallach, D., Balfanz, D., Dean, D., and Felten, E. (1997) Extensible Security Architec
tures for Java. In Proceedings of the 16'• Symposium on Operating Systems Principles 
(Saint~Malo, France), October 1997. 

Wallach, D. and Felten, E. (1998) Understanding Java Stack Inspection. In Proceedings of 
the 1998 IEEE Symposium on Security and Privacy, pp. 52-63, Oakland, CA. 

Wallach, D. (1998) A New Approach to Mobile Code Security. Ph.D. dissertation, Depart
ment of Computer Science, Princeton University. 

Young, Boebert, and Kain (1985) Article in an 1EEE Tutorial on Computer Network 
Security. IEEE Press. 

Web Sites Referenced in the Text 
All of the following links can be fotmd on a page of the companion Web site 
for this book at www.rstcorp.com/java-security.html. 

Chapter 1 
www.developer.com/news/ techfocus/ 123097 _pushs.ec.html 

"Don't Push Me: The Security Implications of Pvsh." developer. com Tech.Focus arti
cle by Gary McGraw. 

java .. sun.com 
java Developer's Kit (JDK) available free from JavaSoft. Also other official Java 
information. 

Page 117 of 121



316 

www.ja vasoft.com/ sfaq 
JavaSoft'sPrequently Asked Questions: Applet Security. · 

wwwcs.princeton.edu/sip/java-vs-activex.html 
Security. Tradeoffs: Java ve.rsusActiveX. Princeton Safe Internet Programming 
FAQ. Also see Appendix A. 

www.oaf.org/ -loverso/javascript/ 
JavaScript Problems I've Discovered. John LoVerso's JavaScript Security site. 

www.developer.com 
de:veloper.com, an online publication for Java developers. 

www.javaworld.com 
java World, an online publication for Java enthusiasts and developers. 

www.minq.com 
MindQ, an online training company specializing in Java . 

www.yahoo.com 
Yahoo! An excellent starting point for Web surfing. A large Web index. 

www.altavista.com 
AltaVista. One of the top search engines on the Web. 

www.rstcorp.com/javasecurity /links.html 
Java Security Hotlist. Also see Appendix B. 

www.cs.princeton.edu/sip 
Princeton's Secure Internet Programming Team.lncludes the Java Security FAQ. 

Hghtyear.ncsa.uiu.c.edu/ -srp /java/javabooks.html 
'The Java Books list. An extensive list of all books published about Java (way too 
many). 

www.rstcorp.com/java-security.html 
The Java Security Web Site. This book's companion Web site. (ncludes the Java 
SecurihJ Hotlist. 

Chapter l 
www.rstcorp.com/hostile-applets/ 

The Hostile Applets Home Page. A collection of hostile applets written by Mark 
LaDue. 

Chapter 3 
www.cs.princeton.edu/ sip I pub I oakland98.htm1 

"Under-standing Java Stack Inspection,'' by Wallach and Felten. 
www.javasoft.com/ products/jdk/1.2/ docs/ guide/ security I dopriviledged.html 

Sun's document explaining the security API change. 

Chapter 4 
www.rstcorp.com/hostile-applets 

The HostileApplets Home Page. 
www.digicrime.com 

DigiCrime (disable Java and JavaScript before you surf this site). 
www.rstcorp.com/ ja vasecurity I applets.htmJ 

The Java Security Hotlist: Hostile Applets and Other Toys. 

www.digicrime.com/ exploits/javawin 
Digic.r.ime's Blue Scr·een of Death page. 

www.digicrime.com/ surprise/hi uescreen.class 
The actual byte code of the bl uescreen applet. 

Page 118 of 121



www.ahpah.com 
AJ1pah software makes the SourceAgain decompiler. 

www.gamelan.com 
Earth web's Java applet database. 

java.sun.coml sfaq 
Sun Microsystems' Frequently Asked Questions-Java Security. 

www.cs. princeton.edul sip I java-faq .html 
Princeton's Java Security: Frequently Asked Questions (included as Appendix A). 

www.cs. princeton.edul sip ljava-vs-activex.html 
Princeton's Security Tradeoffs: Java vs. ActiveX (included as Appendix: A). 

www.rstcorp.com/java-security.html 
The Java Security Web Site, companion Web site for this book. 

Chapter 5 
geek-girl.com/bugtraq 

An archive of the security-related bugtraq archive. 
java.javasoft.coml sfaq 

JavaSoft's Frequently Asked Questions: Java Security. 
www.cs.princeton.edu/ sip /java-faq.html 

Princeton Secure Internet Programming Team's Java Security FAQ. (Also see 
Appendix A). 

vvww.a lcrypto.co. uk/java/ 
Major Malfunction and Ben Law:ie explain the security holes they discovered, 

www.cs.princeton.edulsip 
Princeton's Secure internet Programming Team. 

kirnera..cs·. washington.edu 
University of Washington's Kimera Project. 

kimera.cs. washington.edu/ tlaws/ sunflaws0423.html 
Type safety problems discovered in Sun's Verifier by the Kimera Project. 

kimera.cs. wash.ington.edu/ flaws I msflaws0423.htrnl 
Flaws discovered in Microsoft's Verifier by the Kimera Project. 

neurosis.hungry.com/ ~ben/ rosie_bug 
Ben Mesander's appletWhereDoYouWantToGoToday. 

Chapter 6 
www.cs.princeton.edu/sip /pub/secure961ltm.l 

Princeton's seminal paper, java Security: From Hotfava to Netscape and Bet;ond , 
www.cJLcon1/ software/ djvm/index.html 

Formalizing the JVM at Computational Logic, Inc. 
www.javasoft.com/ security /SRM.html 

JavaSoft's Security Reference Model for [OK 1.0.2. 
www.isbe.ch/-wvrwin.fo/sclcb/tex/jasmin.lguide.html 

The Jasmin bytecode assembler. 
www.ahpah.com 

Ahpah Software sells the SourceAgain Java Decompiler. 
www.finjan.com 

Finjan Software, Ltd. 
www.rstcorp.com/hostile-appletslrube.html 

Mark LaDue takes on Finjan. 

Page 119 of 121



318 

www.rstcorp.com/hostile-applets/ drowning.html 
Mark La Due takes on Finjan again. 

w"vw.digitivlty.com 
Digitivity. 

www.security7.com 
Security?. 

www. withinreach.co.il 
WithinReach. 

www.cultdeadcow.com 
Cult of the Dead Cow produces tlce Back Orifice exploit 

www.esafe.com. 
eSafe 

www.cs.princeton.edu/ sip /JavaFiJ ter 
Princeton Secure Internet Programming Team's Java Filter Oass Loader. 

www.icsa.net 
futernational Computer Security Association. 

www.clark.net/pub/mjt/pubs/fwtest/index.htmJ 
Marcus Ranum discusses firewall certification. 

www.rstcorp.com/hostile~applets/Rube/HAMGen.java 
Mark LaDue's Hostile Applet Mutation Generator. 

Chapter 7 
www.rstcorp.com/java-security.htmJ 

The Java Security Web Site, companion site for this book. 
www.rstcorp.com/javasecurity /links.html 

The Java Security Hotlist. 
www.javasoft.com/ sfaq 

Sun's Java Security FAQ. 
www.cs.bu.edu/teclu·eports/96-026-java-firewalls.ps.Z 

Martinet al.'s paper Blocking Java Applets at the Firewall. 

Chapter 8 
www.gempJus.com/javacard/index.htm 

Gemplus: JavaCard, and Gem.Xpresso. 
www.cyberflex.slb.com 

Schlumberger: (;yberflex. 
www.javasoft.com/products/javacard/index.html 

JavaSoft: Java Card Tedmology, specifications for Card Java can be found here. 
theorystanford.edu/-dabo I papers/ faults. ps.gz 

Boneh, DeMilio, and Lipton's On tfze Jmportmtce of Checking Cryptographic Protocols 
for Faults . 

www.cl.cam.ac. uk/ users I cm213 /Publications/ tamper.html 
Anderson and Kuhn's Tamper Resistanc~A Cautionary Note. 

WW\'\T.cryptography.com/ dpa/ technical/ index.hbnJ 
Cryptography Research, Inc. information on Differential Power Analysis. 

Page 120 of 121



Information Security/Java $34.99 USA/$54.50 CAN 

"This book is mandatory reading for every user and developer of Webware." 
- Peter G. Neumann, Moderator of the Risks Forum, from his review of the first edition 

Securing Java 
Java security is more important now 
than ever before. As Java matures and 
moves into the enterprise, security 
takes a more prominent role. But as 
Java evolves, its security issues and 
architedures get more complicated. 
Written by the world's leading 
experts on mobile code sec:urlty, this 
updated and expanded edition of the 
groundbreaking guide to Java security 
includes lessons for Web users, devel· 
opers, system administrators, and 
business dedsion·makers alike. This 
book navigates the uncharted waters 
of mobile code security and arms the 
reader wHh the knowledge required 
for securing Java. It provides In-depth 
coverage of: 

• The base Java security sandbox, 
made up of the Verifier, Class 
Loaders, and the Security Manager 

• Code signing, stack inspection, and 
the new Java 2 security architectm·e 

• The pros and cons of language-based 
enforcement models and trust models 

I I 
7 23812 31952 7 

• Alllrnown Java security holes and 
the attack applets that exploit them 

• Techniques commonly used in mali
cious applets 

• Twelve rules for developing more 
secure Java code, with explicit 
examples 

• Hard questions to ask third-party 
Java security tools vendors 

• Analysis of competing systems for 
mobile code, including ActiveX and 
JavaScript 

• Card Java security, sman card risks, 
and their impact on e-comrnerce 
security 

On the companion Web site 
www.securingjava.com you'll find: 

• The Java Security Hotlist: Over 
100 categorized and annotated Java 
security-related Web links 

• An e-mail list to keep subscribers 
abreast of breaking Java security 
news 

• A complete electronic edition of 
this book 

GARY McGRAW is Vice President 
and Senior Research Scientist with 
Reliable Software Technologies and 
an international authority on Java 
security. Dr. McGraw is the author 
of over 50 peer-reviewed technical 
publications, consults with major e
commerce vendors including Visa, 
and is the principal investigator on 
several U.S. govenunent research 
grants. 

EDWARD W. FElTEN is Professor of 
Computer Science at Princeton 
University where he leads the 
world-renowned Secure Internet 
Programming team. Professor 
Felten discovered many of Java's 
security holes and is actively 
involved in designing more secure 
approaches to mobile code. 

Visit our Web site at www.wiley.com/compbooks/ 

Series Design: Howard Crossman 

John Wiley & Sons, Inc. 
Professional/Trade Division 
605 Third Avenue, New York, N.Y. 10158-0012 
New York • Chichester • Weinheim 
Brisbane • Singapore • Toronto 

. . 

ISBN 0-471-31952-X 

9 7 0471 319528 

T99 

- -. . - . - . -. - ·-~ -· " - -~ 

Page 121 of 121




