
Page 1001 of 1415
GOOGLE EXHIBIT 1004

Part 3 of 3

determining whether the one or more APIs to which the software application requires

access includes a sensitive API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and

signature identification where the one or more APls to which the software application requires

access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software application access to the one or more APis comprises the

steps of:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

denying the sofiware application access to the sensitive API where the one or more APES

to which the software application requires access includes a sensitive API, the software

application includes an authentic glohai signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive APl.

£12. (New) A code signing system for controlling access to application programming

interfaces (APIs) having signature identificaters by software applications, the code signing

system comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the APIs where the signature identifications correspond with the

signature identificaters of the respective APIs and where a digital signature for a software

application is generated with a. signature identification eerresponding to a signature identificater

to access at least one API; and

a controi system for allowing access to at least one of the APIs where the digital signature

provided by the software application is authenticated by the verification system.

113. (New) The code signing system of claim 112, wherein a virtual machine comprises the

verification system and the control system.

Cib 1513306V2

Page 1002 of 1415

114. (New) The code signing system of claim 113, wherein the virtual machine is a Java

virtual machine instailed on a mobile device.

115. (New) The code signing system of claim 112, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APis.

116. (New) The code signing system of claim 1i2, wherein the code signing system is

installed on a mobile device and the software application is a Java application for a mobile

device.

117. (New) The code- signing system of claim 112, wherein the digital signature and the

signature identification of the software appiication are generated by a code signing authority.

liS. (New) The code signing system of claim 112, wherein the APIs access at ieast one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (U1).

119. (New) The code signing system of clairn 112, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

120. (New) The code signing system of ciaini 119, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, appiying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

CLl— 1513306V2

Page 1003 of 1415

12 l. (New) The code signing system of claim 1 12, wherein at least one of the ANS further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs,

122. (New) The code signing system of claim 112, wherein the APis provides access to at

least one of one or more core functions of a mobile device, an operating system, and hardware on

a mobile device.

123. (New) The code signing system of claim 1i2, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APls.

124. (New) A method ofcontrolling access to application programing interfaces (APIs)

having signature identifiers by software applications, the method comprising:

authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the respective APEs and where a digital signature for a software application is generated with a

signature identification corresponding to a signature identifier to access at least one API; and

allowing access to at least one of the APis where the digital signature provided by the

software application is authenticated.

125. (New) The method of claim 124, wherein one digital signature and one signature

identification are provided by the software application access a library of at least one of the

APIs.

l26. (New) The method of claim 1.24, wherein the digital signature and the signature

identification ofthe software application are generated by a code signing authority.

127'. (New) The method of claim 124, wherein the APIs access at least one of a cryptographic

module that implements cryptographic algorithms, 3 data store, a proprietary data modei, and a

user interface (U1).

CLE- 15 i3306v2

Page 1004 of 1415

128. (New) The method of claim 124, wherein the digital signature is generated using a

private signature key under a signature scheme associated with the signature identification, and a

public signature key is used to authenticate the digital signature.

129. (New) The method of claim 128, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digitai signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

130. (New) The method of claim 124, wherein at ieast one of the APIs thither comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APls.

131. (New) The method of claim 124, wherein the APIs provides access to at least one of one

or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

132. (New) The method ofciaiin 124, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs

133. (New) A management system for controlling access by software applications to

application programming interfaces (APIs) having at least one signature identifier on a subset of

a plurality of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

software applications that require access to at ieast one of the APIs with a signature identifier on

the subset of the plurality of mobile devices, where a digital signature for a software application

is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

Ci J- 15133 GGVZ

Page 1005 of 1415

identifications that correspond to the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device ofthe subset of the plurality of

mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to acoess respective APls where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of

the APIS where the digital signatures provided by the respective software applications are

authenticated by the verification system.

134. (New) The management system of claim 133, wherein a virtual machine comprises the

verification system and the control system.

135. (New) The management system of claim 134, wherein the virtual machine is a Java

virtual machine and the software applications are Java applications.

136. (New) The management system of claim 133, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APls.

137. (New) The management system of claim 133: wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (U1).

138. (New) The management system of claim 133, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digitai

signature.

139. (New) The management system of claim 138, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

CLI- 1513306v2

Page 1006 of 1415

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

140. (New) The management system of claim 133, wherein at least one of the APls further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APls.

141. (New) The management system of claim 133, wherein the subset of the plurality of

mobile devices comprises mobile devices under the control of at least one of a corporation and a

carrier.

142. (New) The management system of claim 133, wherein a global digital signature provided

by the software application has to be authenticated before the software application is allowed

access to any of the ANS on a mobile device of the subset of the plurality of mobiie devices.

143. (New) A method of controlling access by software applications to application

programming interfaces (APIs) having at least one signature identifier on a subset of a plurality

of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIS on the subset ofthe piurality of mobile devices,

where the signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantially only on

the subset of the plurality of mobile devices; wherein each mobile device of the subset of the

plurality of mobile devices comprises

CLI- 1513306v2

Page 1007 of 1415

a verification system for authenticating digitai signatures provided by the reSpective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIS; and

a control system for allowing the software application to access at least one of the AFIS

where the digital signature provided by the software application is authenticated by the

verification system.

144. (New) The method ofclaim 143, wherein a virtuai machine comprises the verification

system and the control system.

145. (New) The method of claim 144, wherein the virtual} machine is a Java virtual machine

and the software applications are Java applications.

146. (New) The method of claim 143, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the ANS.

147. (New) The method of claim 143, wherein the APIs access at ieast one of a cryptographic

module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

148. (New) The method of claim 143, wherein at ieast one of the digital signatures is

generated using a private signature key under a signature scheme associated with a signature

identification, and the verification system uses a public signature keys to authenticate said at

least one of the digital signatures.

149. (New) The method of claim 148, wherein:

at least one of the digitai signatures is generated by applying the private signature key to

a hash of a software appiication under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by

generating a hash of the software appiication to obtain a generated hash, applying the public

CLl— 1513306v2

Page 1008 of 1415

signature key to said at least one of the digitai signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

150. (New) The method of claim E43, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

151. (New) The method of claim 143, wherein the subset of the plurality of mobile devices

comprises mobile devices under the control of at least one of a corporation and a carrier.

152. (New) A mobile device for a subset of a plurality ofmobile devices, the mobiie device

comprising:

an application platform having appiication programming interfaces (APIS);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

a controi system for allowing a software application to access at least one of the APIS

where a digital signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority provides digitai signatures and signature identifications

to software applications that require access to at ieast one of the APis such that the digital

signature for the software application is generated according to a signature scheme of a signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to aiiow access on

the subset of the pluraiity of mobile devices.

153. (New) The mobile device of claim 152, wherein a virtual machine comprises the

verification system and the control system

154. (New) The mobile device of claim 153, wherein the virtual machine is a Java virtuai

machine and the software application is a Java application.

CiJv 1513306v2

Page 1009 of 1415

155. (New) The mobile device of claim 152, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the A913.

156. (New) The mobile device of claim 152, wherein the APls of the application platform

access at least one of a cryptographic module, which implements cryptographic algorithms, a

data store, a proprietary data model, and a user interface (U1).

157. (New) The mobile device of claim 152, wherein the digital signature is generated using a

private signature key under the signature scheme, and the verification system uses a public

signature key to authenticate the digital signature.

158. (New) The mobile device of claim 157, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

l59. (New) The mobile device of claim 152, wherein at least one of the APIs further

eomprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

160. (New) A method of controlling access to application programming interfaces (APls) of

an application platform of a mobile device for a subset of a plurality of mobile devices, the

method comprising:

receiving digital signatures and signature identifications from software applications that

require to access the APIs

authenticating the digital signatures and the signature identifications; and

CLE- 15133G6v2

Page 1010 of 1415

allowing a software application to access at least one of the APIs where a digital

signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require access to at least one of the APIs such

that the digital signature for the software application is generated according to a signature

scheme of a signature identification, and wherein the signature identifications provided to the

software applications comprise those signature identifications that are snbstantiaily only

authorized to ailow access on the subset of the pluraiity ofmobile devices.

161. (New) The method of claim 160, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APis.

i62, (New) The method of claim 160, wherein the APis ofthe application piatform access at

least one of a cryptographic module, which implements cryptographic algorithms, 3 data store, a

proprietary data modei, and a user interface (Ui).

163. (New) The method of ciaim 160, wherein the digital signature is generated using a

private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

164. (New) The method of claim 163, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application. under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifiing that the generated hash with the recovered hash are the same.

CLI- 15E3306v2

Page 1011 of 1415

165. (New) The method of claim I60, wherein at ieast one of the APIS further comprises:

a description string that is dispiayed to a user when the software application attempts to

access said at least one of the AMS.

CLim 1513306V2

Page 1012 of 1415

REMARKS

This paper reSponds to the notice of n0n~e0mpliant amendment mailed May 21, 2007.
The examiner is invited to contact the undersigned in case there are any questions or comments.

Respeetfilliy submit,

Johm V; iernacki

Regjo. 40,511
Jon , Day
North Point

90} Lakeside Avenue

Cleveland, OH 44114-1190

(216) 586-7747

C11- 15 E3306v2

Page 1013 of 1415

Electronic Acknowledgement Receipt

EFS ID: 1811276

Application Number: 10381219

Title of Invention: Software code signing system and method

David B Cochran

Jones Day

North Point

Correspondence Address: 901 Lakeside Avenue

Cleveland 44114-1190

US

Filer Authorized By: Stephen D. Scanlon

Attorney Docket Number: 555255012423

Receipt Date: 25-MAY-2007

Filing Date: 20-MAR-2003

Time Stamp: 11:27:25

Application Type: US. National Stage under 35 USC 371

Payment information:

Submitted with Payment

File Listing:

Page 1014 of 1415

Document Document Description File Name File Size(Bytes) Part/zip (if app”

Document Description

Preliminary Amendment

Applicant Arguments/Remarks Made in an Amendment

Warnings:

Information:

Total Files Size (in bytes): 731624

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt
similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see
37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date
shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions
of 35 U.S.C. 371 and other applicable requirements a Form PCT/D0/EO/903 indicating acceptance of the
application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt,
in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary
components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the
International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due
course, subiect to prescriptions concerning national security, and the date shown on this Acknowledgement
Receipt will establish the international filing date of the application.

Page 1015 of 1415

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

PO. Box I450 ‘
Alexandria. Virginia 22313- I450
wwwiusplo.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION N0.

l0/381,2l9 03/20/2003 David P Yach 555255012423 976i

7590 05/2 I/2007
_ EXAMINER

DaVId B Cochran

Jones Day , AVERY, JEREMIAH L
North Point
90] Lakeside Avenue

Cleveland, OH 44114-1190 ' 2m

ART UNIT PAPER NUMBER

MAIL DATE DELIVERY MODE

05/21/2007 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

Page 1016 of 1415

'
Notice of Non-Compliant 10381219 YACH ET AL.

Jeremiah Ave 2131

— The MAILING DA TE of thls communication appears on the cover sheet with the correspondence address --

The amendment document filed on 03 May 2007 is considered non-compliant because it has failed to meet the

requirements of 37 CFR 1.121 or 1.4. In order for the amendment document to be compliant, correction of the following
item(s) is required.

THE FOLLOWING MARKED (X) ITEM(S) CAUSE THE AMENDMENT DOCUMENT TO BE NON-COMPLIANT:
E] 1. Amendments to the specification:

[:1 A. Amended paragraph(s) do not include markings.
C] B. New paragraph(s) should not be underlined.
[I C. Other

[3 2. Abstract:
[:1 A. Not presented on a separate sheet. 37 CFR 1.72.
E] B. Other

[I 3. Amendments to the drawings:

1:! A. The drawings are 'not properly identified in the top margin as “Replacement Sheet," “New Sheet." or
“Annotated Sheet" as required by 37 CFR 1.121(d).

[:1 B. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings
showing amended figures, without markings, in compliance with 37 CFR 1.84 are required.

[:1 C. Other___ .

E] 4. Amendments to the claims:
[I A. A complete listing of all of the claims is not present.
[:1 B. The listing of claims does not include the text of all pending claims (including withdrawn claims)
[I C. Each claim has not been provided with the proper status identifier, and as such, the individual status

of each claim cannot be identified. Note: the status of every claim must be indicated after its claim
number by using one of the following status identifiers: (Original), (Currently amended), (Canceled),
(Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).

[:1 D. The claims of this amendment paper have not been presented in ascending numerical order.
[:1 E. Other:

8 5. Other (e.g., the amendment is unsigned or not signed in accordance with 37 CFR 1.4):
Claims section should start on a seg’arate page from page 1.

For further explanation of the amendment format required by 37 CFR 1.121, see MPEP § 714.

TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:

1-. Applicant is given no new time period if the non-compliant amendment is an after-final amendment, an amendment
filed after allowance, or a drawing submission (only). If applicant wishes to resubmit the non-compliant after-final
amendment with corrections, the entire corrected amendment must be resubmitted.

Applicant is given one month, or thirty (30) days, whichever is longer, from the mail date of this notice to supply the
correction, if the non-compliant amendment is one of the following: a preliminary amendment, a non-final amendment

(including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental
amendment filed within a suspension period under 37 CFR 1.103(a) or (c), and an amendment filed in response to a

Quay/e action. If any of above boxes 1. to 4. are checked, the correction required is only the corrected section of the
non-compliant amendment in compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) only if the non-compliant amendment is a non-final
amendment or an amendment filed in response to a Quayle action.

Failure to timely respond to this notice will result in:
Abandonment of the application if the non-compliant amendment is a non-final amendment or an amendment
filed in response to a Quay/e action; or
Non-entry of the amendment if the non-compliant amendment is a preliminary amendment or supplemental
amendment.

Leal Instruments Examiner LIE if a licable Telehone No.
U.S. Patent and Trademark Office Part of Paper No.

Page 1017 of 1415

»‘ Continuation Sheet (PTOL-324) Application No.
PTOL-324 (04—06) Notice of Non-Compliant Amendment (37 CFR 1.121)

Page 1018 of 1415

v

‘ Co'qtlnuanon Sheet (PTOL-324) Application No.

Page 1019 of 1415

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of 2 David P. Yach; Michael S. Brown; Herbert A. Littie

Internat'l. Appl'n‘ No. : PCT/CA01/01344

Internat'l. Fiiing Date : 09/20/2001

US. Serial No. : 10/381,219

US. Filing Date : 03/20f2003

Priority Date Claimed: 09/21f2000

Title : Software Code Signing System And Method

Art Unit : 213 l

Examiner : J. Avery

Docket No. : 55525 5012423

Commissioner for Patents

Washington, DC. 20231

Preiiminary Amendment

This paper responds to the notice ofnonucornpliant amendment rnailed April 3, 2007.

Any fees due should be charged to Jones Day Deposit Account No. 501432, ref: 555255-012423.

Prior to taking up this case for initial examination, please amend the application as
follows.

The Claims

Please oancei original oiaims 1—56.

Please add the foliowing new claims 57—165.

57, (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification, where the digital signature is associated

with the signature identification, comprising:

Gil—15 I 3306Vl

Page 1020 of 1415

an application platform;

an application programing interface (API) having an associated signature identifier, the

A131 is configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the AH by the software application where the signature identifier corresponds to the

signature identification.

58. (New) The code signing system of claim 57, wherein the virtual machine denies the

software application access to the API if the digital signature is not authenticated.

59. (New) The code signing system of claim 57, wherein the virtual machine purges the

software application if the digital signature is not authenticated.

60. (New) The code signing system of ciairn 57, wherein the code signing system is installed

on a mobile device.

61. (New) The code signing system of claim 57, wherein the digital signature is generated by

a code signing authority.

62. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification where the digital signature is associated

with the signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature

identifier, each configured to link the software application with a resource on the application

platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification corresponds to

the signature identifier,

wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

CLi-l513306v1

Page 1021 of 1415

63. (New) The code signing system of claim 62, wherein the plurality of APIs are included

in an AP! library.

64. (New) The code signing system of claim 62, wherein one or more of the plurality of

A1915 is classified as sensitive and having an associated signature identifier, and wherein the

virtual machine uses the digital signature and the signature identification to control access to the

sensitive APIs.

65. (New) The code signing system of claim 64, wherein the code signing system operates

in. conjunction with a plurality of software applications, wherein one or more of the plurality of

software applications has a digital signature and a signature identification, and wherein the

virtual machine verifies the authenticity of the digital signature of each of the one or more of the

plurality of software applications, where the signature identification corresponds to the signature

identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

66. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a wireless communication system.

67. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a cryptographic module which implements cryptographic algorithms.

68. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a data store.

69. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a user interface (U1).

70. (New) The code signing system of claim 57, further comprising:

CLE-lSifBGévi

Page 1022 of 1415

a plurality ofAPI libraries, each of the plurality of APE libraries includes a plurality of

APis, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

71. (New) The code signing system of claim 70, wherein at least one of the plurality of API

libraries is classified as sensitive;

wherein access to a sensitive API library requires a digital signature associated with a

signature identification where the signature identification corresponds to a signature identifier

associated with the sensitive APE library;

wherein the software application includes at least one digital signature and at least one

associated signature identification for accessing sensitive APi libraries; and

wherein the virtual rnachine authenticates the software application for accessing the

sensitive API library by verifying the one digital signature included in the software application

that has a signature identification corresponding to the signature identifier of the sensitive APl

library.

72. (New) The code signing system of claim 57, wherein the digital signature is generated

using a private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature

73. (New) The code signing system of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the viitual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

74. (New) The code signing system of claim 60, wherein the API fiirther comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

GEL-15 l3306vl

Page 1023 of 1415

75. (New) The code signing system of claim 57, wherein the application platform comprises

an operating system.

76 (New) The code signing system ofclaim 57, wherein the application platform comprises

one or more core functions of a mobile device.

77. (New) The code signing system of claim 57, wherein the application platform comprises

hardware on a mobile device.

78. (New) The code signing system ofclaim 57, wherein the hardware comprises a

subscriber identity module (SIM) card.

79. (New) The code signing system ofciairn 57, wherein the software application is a Java

application for a mobile device.

80. (New) The code signing system of ciaim 57, wherein the API interfaces with a

cryptographic routine on the application piatform.

33. (New) The code signing system of claim 57, wherein the API interfaces with a

proprietary data model on the application platform.

82. (New) The code signing system of claim 57, wherein the virtual machine is a Java virtue}

machine installed on a mobile device.

83. (New) A method of controlling access to sensitive application programming interfaces

on a mobile device, comprising the steps of:

feeding a software application on the mobile device that requires access to a sensitive

application programming interface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and

CiJ-i 5l3306vl

Page 1024 of 1415

denying the software application access to the sensitive APE where the signature

identification does not correspond with the signature identifier.

84. (New) The method of claim 83, comprising the additional step of:

purging the software application from the mobiie device where the signature

identification does not correspond with the signature identifier.

85. (New) The method of claim 83, wherein the digital signature and the signature

identification are generated by a code signing authority.

86. (New) The method of claim 83, comprising the additional steps of:

verifying the authenticity of the digital signature where the signature identification

corresponds with the signature identifier.; and

denying the software application access to the sensitive AM where the digitai signature is

not authenticated.

87. (New) The method of ciaim 86, comprising the additional step of:

purging the software application from the mobile device where the digital signature is not

authenticated.

88. (New) The method of claim 86, wherein the digital signature is generated by applying a

private signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the steps of:

storing a pubiic signature key that corresponds to the private signature key on the mobile

device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

89. (New) The method of claim 88, wherein the digital signature is generated by caiculating

a hash of the software application and applying the private signature key.

CLI~15i3306vt

Page 1025 of 1415

90. (New) The method of claim 83, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

91. (New) The method of claim 90, comprising the additional step of:

receiving a command from the user granting or denying the software application access

to the sensitive APE.

92. (New) A method of controlling access to an application programming interface (API)

having a signature identifier on a mobile device by a software application created by a software

developer, comprising the steps of:

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the software application

where the software application satisfies at least one criterion;

verifying the authenticity of the digital signature appended to the software application

where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

93. (New) The method of claim 92, wherein the step of determining whether the software

appiication satisfies at least one criterion is performed by a code signing authority.

94. (New) The method of claim 92, wherein the step ofappending the digital signature and

the signature identification to the software application inciudes generating the digital signature

comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

CLiaiSBSGévl

Page 1026 of 1415

95. (New) The method of claim 94, wherein the hash of the software application is

calculated using the Secure Hash Algorithm (Si-1A1).

96. (New) The method of claim 94, wherein the step of verifying the authenticity of the

digital signature comprises the steps of:

previding a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

caiculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

authenticating the digital signature by comparing the calculated hash with the recovered

hash.

97. (New) The method of ciaim 96, comprising the further step of denying the software

application access to the API where the digital signature is not authenticated.

98. (New) The method of claim 96, wherein the signature key is a private signature key and

the corresponding signature key is a public signature key.

99. (New) A method of controlling access to a sensitive application programming interface

(API) having a signature identifier on a mobile device, comprising the steps of:

registering one or more software developers that are trusted to develop software

applications which access the sensitive AP};

receiving a hash ofa soflware application;

determining whether the hash was sent by a registered software developer; and

generating a digitai signature using the hash of the software application and a. signature

identification corresponding to the signature identifier where the hash was sent by the registered

software deveioper;

wherein

the digital signature and the signature identification are appended to the software

application; and

CLE-15E3306vi

Page 1027 of 1415

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application where the signature identification

corresponds with the signature identifier.

100‘ (New) The method of claim 99, wherein the step of generating the digital signature is

performed by a code signing authority.

lOi. (New) The method of claim 99, wherein the step of generating the digitai signature is

performed by apptying a signature key to the hash of the software application.

102. (New) The method of claim 10], wherein the mobile device verifies the authenticity of

the digital signature by performing the additionai steps of:

providing a corresponding signature key on the mobiie device;

caiculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash;

determining whether the digital signature is authentic by comparing the calculated hash

with the recovered hash; and

denying the software appiication access to the sensitive A?! where the digitai signature is

not authenticated.

103. (New) A method of restricting access to application programming interfaces on a mobile

device, comprising the steps of:

loading a software application having a digital signature and a signature identification on

the mobile device that requires access to one or more application programming interfaces (APIS)

having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with

the signature identifier; and

denying the software application access to the one or more APIs where the software

application does not include an authentic digitai signature .

CLi-l513306vl

Page 1028 of 1415

104. (New) The method of ciaim 103= wherein the digital signature and signature

identification are associated with a type of mobile device.

105. (New) The method of claim 103, comprising the additionai step of:

purging the software application from the mobile device where the software application

does not inciudc an authentic digital signature. .

106. (New) The method of claim 103, wherein:

the software application includes a plurality of digital signatures and signature

identifications; and

the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

107. (New) The method of claim 106, wherein each of the pluraiity of digital signatures and

associated signature identifications are generated by a respective corresponding code signing

authority.

108. (New) The method of ciaim 103, wherein the step of determining whether the software

application includes an authentic digitai signature comprises the additional steps of:

verifying the authenticity of the digitai signature where the signature identification

corresponds with respective ones of the at least one signature identifier.

109. (New) The method of claim 107, wherein each ofthe piurality of digital signatures and

signature identifications are generated by its corresponding code signing authority by applying a

respective private signature key associated with the code signing authority to a hash of the

software appiication.

CLI—1513306V1

Page 1029 of 1415

110. (New) The method of claim 103, wherein the step of authenticating the digital signature

where the signature identification corresponds with the signature identifier comprises the steps
of:

verifying that the signature identification corresponds with the signature identifier authenticating

the digital signature where signature identification corresponds with the signature identifier

comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature

key associated with the code signing authority which generates the digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

(New) The method of claim 103, wherein:

the mobile device includes a plurality of APIS;

at least one of the plurality of APIs is classified as sensitive;

access to any of the plurality of APIs requires an authentic global signature;

access to each of the plurality of sensitive APls requires an authentic global signature and

an authentic digital signature associated with a signature identification;

the step of determining whether the software application includes an authentic digital

signature and signature identification comprises the steps of:

determining whether the one or more APls to which the software application requires

access includes a sensitive API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and

signature identification where the one or more A913 to which the software application requires

access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software appli cation access to the one or more APls comprises the

steps of:

denying the software application access to the one or more APls where the software

application does not include an authentic global signature; and

CLi~lSl33fl6vl

Page 1030 of 1415

denying the software application access to the sensitive APE where the one or more APIs

to which the software application requires access includes a sensitive API, the software

appiication includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive API.

112. (New) A code signing system for controiiing access to application programming

interfaces (APIs) having signature identificaters by software appiications, the code signing

system comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the ANS where the signature identifications correspond with the

signature identificaters of the respective APis and where a digital signature for a software

application is generated with a signature identification corresponding to a signature identificater

to access at least one API; and

a control system for aliowing access to at least one of the APIs where the digital signature

provided by the software appiication is authenticated by the verification system.

113. (New) The code signing system of claim 112, wherein a virtual machine comprises the

verification system and the control system.

114. (New) The code signing system of claim 113, wherein the virtual machine is a Java

virtual machine installed on a mobile device.

I 35. (New) The code signing system of claim 112, wherein the control system requires one

digital signature and one signature identification for each iibrary of at least one of the APIs.

116. (New) The code signing system of claim 1 12, wherein the code signing system is

instailcd on a mobile device and the software application is a Java application for a mobile

device.

H7. (New) The code signing system of ciaim 1:2, wherein the digital signature and the

signature identification of the software appiication are generated by a code signing authority.

Cid-1513306“

Page 1031 of 1415

118, (New) The code signing system of claim 112, wherein the APis access at ieast one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (U1).

119. (New) The code signing system of claim £12, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a pnbiic signature key to authenticate the digital

signature.

120. (New) The code signing system of claim 119? wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digitai

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

12E. (New) The code signing system of claim 112, wherein at least one of the APis further

comprises:

a description string that is displayed to a user when the software appiication attempts to

access said at least one of the APIs.

122. (New) The code signing system ofclaim 112, wherein the Ai’is provides access to at

least one of one or more core functions ofa mobile device, an operating system, and hardware on

a mobile device.

123. (New) The code signing system of claim 112, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APIS.

Cid-153330611

Page 1032 of 1415

124. (New) A method of controlling access to application programing interfaces (APls)

having signature identifiers by software applications, the method comprising:

authenticating digital signatures provided by the respective software appiications to

access the APIS where the signature identifications correspond with the signature identifiers of

the respective APIs and where a digital signature for a software application is generated with a

signature identification corresponding to a signature identifier to access at least one API; and

ailowing access to at least one of the ANS where the digital signature provided by the

software application is authenticated.

125. (New) The method of claim 124, wherein one digital signature and one signature

identification are provided by the software application access a library of at least one of the

APis.

126. (New) The method of claim 124, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

327. (New) The method of claim 124, wherein the APIs access at least one ofa cryptographic

module that implements cryptographic aigorithrns, a data store, a proprietary data model, and a

user interface (Ui).

128. (New) The method of claim 124, wherein the digital signature is generated using a

private signature key under a signature scheme associated with the signature identification, and a

public signature key is used to authenticate the digital signature.

129. (New) The method of claim 128, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

CLl—1513306Vl

Page 1033 of 1415

130. (New) The method of ciaim 124, wherein at least one of the APIs further comprises:

a description string that is dispiayed to a user when the software application attempts to

access said at ieast one of the APIs.

l3 1. (New) "i‘he method of ciaim i24, wherein the APIS provides access to at least one of one

or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

132. (New) The method of claim 124, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APis

133. mew) A management system for controlling access by software applications to

application programming interfaces (APIS) having at least one signature identifier on a subset of

a plurality ofmobile devices, the management system comprising:

a code signing authority for providing digitai signatures and signature identifications to

software applications that require access to at ieast one of the APIS with a signature identifier on

the subset of the pituality ofmobile devices, where a digital signature for a software application

is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

identifications that correspond to the signature identifiers that are substantiaily oniy on the subset

of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of

mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers ofthe respective APis; and

a control system for ailowing the reSpective software applications to access at least one of

the ANS where the digital signatures provided by the respective software applications are

authenticated by the verification system.

134. (New) The management system of claim 133, wherein a virtual machine comprises the

verification system and the control system.

CLI-ESI33Gfivl

Page 1034 of 1415

135‘ (New) The management system of claim 134, wherein the virtual machine is a Java

virtual machine and the sofiware applications are lava appiications.

136. (New) The management system of claim 133, wherein the control system requires one

digital signature and one signature identification for each iibrary of at ieast one of the APIs.

137. (New) The management system of claim 133, wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (U1).

:38. (New) The management system of claim 133, wherein the digitai signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

139. (New) The management system of claim 138, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

140. (New) The management system of claim 133, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APls.

CLI—lSl330fivi

Page 1035 of 1415

14L (New) The management system of claim 133, wherein the subset of the plurality of

mobile devices comprises mobile devices under the control ofat least one of a corporation and a

carrier.

142. (New) The management system of claim 133: wherein a giobal digitai signature provided

by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

143. (New) A method of controlling access by software applications to application

programming interfaces (APls) having at least one signature identifier on a subset of a plurality

of mobile devices, the method comprising:

generating digital signatures for software appiications with signature identifications

corresponding to respective signature identifiers of the APIS; and

providing the digitai signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subset of the plurality of mobite devices,

where the signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantiaily only on

the subset of the plurality of mobile devices; wherein each mobile device of the subset of the

piurality of mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a centre}. system for allowing the software application to access at least one of the APIs

where the digitai signature provided by the software appiication is authenticated by the

verification system.

144. (New) The method of ciaim 143, wherein a virtual machine comprises the verification

system and the control system.

E45. (New) The method of claim 144, wherein the virtuai machine is a Java virtual machine

and the software appiications are Java applications.

Cle1513306v3

Page 1036 of 1415

146, (New) The method of claim E43, wherein the control system requires one digital

signature and one signature identification for each library of at least one ofthe APIs.

147. (New) The method of claim 143, wherein the APIS access at least one of a cryptographic

module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (U1).

148. New) The method of claim 143, wherein at least one of the digital signatures is

generated using a private signature key under a signature scheme associated with a signature

identification, and the verification system uses a public signature keys to anthenticate said at

least one of the digital signatures.

E49. (New) The method of ciaim 148, wherein:

at least one of the digital signatures is generated by applying the private signature key to

a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by

generating a hash of the software appiication to obtain a generated hash, applying the pubiic

signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

150. (New) The method of claim 143, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software appiication attempts to

access said at least one of the APIs.

151. (New) The method of claim 143, wherein the subset of the plurality of mobiie devices

comprises mobiie devices under the control of at least one of a corporation and a carrier.

152. (New) A mobiie device for a subset of a plurality ofmobile devices, the mobile device

comprising:

an application platform having application programming interfaces (APIS);

[TU-l Sl3306v1

Page 1037 of 1415

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

a control system for allowing a software application to access at least one of the APIs

where a digitai signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority provides digital signatures and signature identifications

to software applications that require access to at least one of the A1313 such that the digital

signature for the software application is generated according to a signature scheme of a signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantialiy only authorized to allow access on

the subset of the plurality of mobiie devices.

353. (New) The mobile device of claim 152, wherein a virtual machine comprises the

verification system and the control system.

154. (New) The mobile device of ciaim 153, wherein the virtual machine is a Java virtuai

machine and the software application is a Java appiicatiori.

155. (New) The mobiie device of claim 152, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

156. (New) The mobile device of claim 152, wherein the APIS of the application platform

access at least one of a cryptographic module, which. implements cryptographic algorithms, a

data store, a proprietary data model, and a user interface (U3).

157. (New) The mobiie device of claim 152, wherein the digital signature is generated using a

private signature key under the signature scheme, and the verification system uses a public

signature key to authenticate the digital signature,

158. (New) The mobile device of ciaim £57, wherein:

CLI—iS-lfiflévi

Page 1038 of 1415

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digitai signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

159. (New) The mobile device of claim 152, wherein at least one of the APls further

comprises:

a description string that is displayed to a user when the software appiication attempts to

access said at least one of the APis.

160. (New) A method of controlling access to application programming interfaces (APis) of

an application platform of a mobile device for a subset of a plurality of mobiie devices, the

method comprising:

receiving digitai signatures and signature identifications from software applications that

require to access the APIs

authenticating the digital signatures and the signature identifications; and

ailowing a software application to access at least one of the APIs where a digital

signature provided by the software appiication is authenticated;

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require access to at icast one of the A915 such

that the digital signature for the software appiication is generated according to a signature

scheme of a signature identification, and wherein the signature identifications provided to the

software applications comprise those signature identifications that are substantially oniy

authorized to allow access on the subset of the plurality of mobile devices.

161. (New) The method of claim 160, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APis.

(11-151330le

Page 1039 of 1415

E62. (New) The method of claim 160, wherein the APIs of the application platform access at

least one of a cryptographic module, which impiements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UI).

163. (New) The method of claim E60, wherein the digitai signature is generated using a

private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

164. (New) The method of claim 163, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

165. (New) The method of claim 160, wherein at least one of the APIS further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

Respm submitted,
i , ,

John V. garnacki
Reg. Ng:40,5ii

Jones, ay
North Point

901 Lakeside Avenue

Cleveland, OH 44114—1 i 90

Chi-i 5i3306vl

Page 1040 of 1415

Electronic Acknowledgement Receipt

EFS ID: 1740440

Application Number: 10381219

Title of Invention: Software code signing system and method

David B Cochran

Jones Day

North Point

Correspondence Address: 901 Lakeside Avenue

Cleveland 44114-1190

US

Attorney Docket Number: 555255012423

Receipt Date: os-MAY-2007

Filing Date: 20-MAR-2003

Time Stamp: 12:14:53

Application Type: US. National Stage under 35 USC 371

Payment information:

Submitted with Payment

File Listing:

Page 1041 of 1415

Document

Number Document Description File Name File Size(Bytes) Part /.zip (if appl.)

Preliminary Amendment 10289USPCTPre|im.pdf 729990

Warnings:

Information:

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt
similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see
37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date
shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
It a timely submission to enter the national stage of an international application is compliant with the conditions
of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the
application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt,
in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary
components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the
International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due
course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement
Receipt will establish the international filing date of the application.

Page 1042 of 1415

UNITED STATES PATENT AND TRADEMARK OFFICE W——..————_._—.___—____
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTSPO. Box 1450 ’

Alexandria. Virginia 22313-1450
wwwiusptagov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

10/381,2l9 03/20/2003 David P Yach 555255012423 9761

7590 04/03/2007
David B Cochran

Jones Day AVERY, JEREMIAH L
North Point ‘

901 Lakeside Avenue
Cleveland, OH 44114-1190 2131

SHORTENED STATUTORY PERIOD OF RESPONSE DELIVERY MODE
3 MONTHS 04/03/2007 ' PAPER

EXAMINER

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS
from the mailing date of this communication.

PTOL-90A (Rev. 10/06)

Page 1043 of 1415

Notice of Non-Compliant 10/381,219 YACH ET AL.

Amendment (37 CFR 1.121) Banner A" Unit -Jeremiah Ave 2131

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

The amendment document filed on 20 March 2003 is considered non-compliant because it has failed to meet the
requirements of 37 CFR 1.121 or 1.4. In order for the amendment document to be compliant, correction of the following,
item(s) is required.

THE FOLLOWING MARKED (X) ITEM(S) CAUSE THE AMENDMENT DOCUMENT TO BE NON—COMPLIANT:
[:l 1. Amendments to the specification:

E] A. Amended paragraph(s) do not include markings.
[I B. New paragraph(s) should not be underlined.
[I C. Other

’ I] 2. Abstract:

D A. Not presented on a separate sheet. 37 CFR 1.72.
[:l B. Other_ .

E] 3. Amendments to the drawings:
D A. The drawings are not properly identified in the top margin as “Replacement Sheet," “New Sheet," or

“Annotated Sheet” as required by 37 CFR 1.121(d).

E] B. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings
showing amended figures, without markings, in compliance with 37 CFR 1.84 are required.

[I C. Other_

E 4. Amendments to the claims:

|:I A. A complete listing of all of the claims is not present. '
[I B. The listing of claims does not include the text of all pending claims (including withdrawn claims)
E] C. Each claim has not been provided with the proper status identifier, and as such, the individual status

of each claim cannot be identified. Note: the status of every claim must be indicated after its claim
number by using one of the following status identifiers: (Original), (Currently amended), (Canceled),
(Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).

[:1 D. The claims of this amendment paper have not been presented in ascending numerical order.
E. Other: See Continuation Sheet.

|:I 5. Other (e.g., the amendment is unsigned or not signed in accordance with 37 CFR 1.4):

For further explanation of the amendment format required by 37 CFR 1.121, see MPEP § 714.

TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:

1. Applicant is given no new time period if the non-compliant amendment is an after-final amendment or an amendment
filed after allowance. If applicant wishes to resubmit the non—compliant after-final amendment with corrections, the
entire corrected amendment must be resubmitted.

Applicant is given one month, or thirty (30) days, whichever is longer, from the mail date of this notice to supply the
correction, if the non-compliant amendment is one of the following: a preliminary amendment, a non-final amendment
(including a submission fora request for continued examination (RCE) under 37 CFR 1.114), a supplemental
amendment filed within a suspension period under 37 CFR 1.103(a) or (c), 'and an amendment filed in response to a
Quayle action. If any of above boxes 1. to 4. are checked, the correction required is only the corrected section of the
non-compliant amendment in compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) o_n|y if the non-compliant amendment is a non-final
amendment or an amendment filed in response to a Quay/e action.

Failure to timely respond to this notice will result in:
Abandonment of the application if the non-compliant amendment is a non-final amendment or an amendment
filed in response to a Quayle action; or
Non-entry of the amendment if the non-compliant amendment is a preliminary amendment or supplemental
amendment.

Le al Instruments Examiner LIE , if a Iicable Telehone No.
US. Patent and Trademark Office Part of Paper No. 20070327

Page 1044 of 1415

m
y \ -. '

Continuation Sheet (PTOL-324) Application No. 10/381,219

Continuation of 4(e) Other: The numbering of the claims within the preliminary amendment is improper. Claims 1-56 were cancelled and
then claims 1-109 were added. However, MPEP 714 states, inter alia, that "The original numbering of the claims must be preserved
throughout the prosecution. When claims are canceled, the remaining claims must not be renumbered. For example, when applicant
cancels all of the claims in the original specification and adds a new set of claims, the claim listing must include all of the canceled claims
with the status identifier (canceled) (the canceled claims may be aggregated into one statement). The new claims must be numbered
consecutively beginning with the number next following the highest numbered claim previously presented (whether entered or not) in
compliance with 37 CFR 1.126." Thus, the new set of claims cannot begin with claim 1, but must start with claim 57 and ascend in proper
numerical order.

AYAZ SHE",

SUPERVISORY PATENT EXHJINER
TECHHOLOGY CENTER 2100

Page 1045 of 1415

[/fl/VPATENT Q ’3]
Attorney Docket No. 555255012423

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: David P. Yach, et al.

Serial No.: 10/381,219

Filed: March 20, 2003

For: SOFTWARE CODE SIGNING SYSTEM AND METHOD

ArtUnit: 2131

Examiner: Avery, Jeremiah L.

Commissioner For Patents

PO. Box 1450

Alexandria, VA 22313 -1450

Sir:

In accordance with the duty of disclosure imposed by 37 C.F.R. § 1.56, applicants hereby

advise the United States Patent and Trademark Office of certain references which may be

material to the determination of patentability of the above—identified application. The references

are identified on the attached Form PTO-1449 and copies of the references are enclosed, if

required. Applicants respectfully request that these references be considered and made of record

in the present application by completing and returning the enclosed Form PTO—1449.

No fee is believed to be due for entry of this Information Disclosure Statement.

However, if any fee should be required, please charge such fee to Jones Day's Deposit Account

No. 501432, Reference No. 555255-012423.

Respectfully submitted,

I hereby writ; M (his mum / ‘ I
it hem «posited May with the l' ' '

Sum Pom! Service as rim elm on 32:11]: €90$122211]
‘0 m'dorc addressed to: Committing? [a
Puenu. P.0. Box 1450. Menus“, I; JONES DAY
1111le 3 North Point
on / 901 Lakeside Avenue

‘ fl Cleveland, Ohio 44114
3?- (216) 586-3939

Page 1 of 1CLl-l 146631v1

Page 1046 of 1415

PTO/SBIOBB (0893)
Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Oti‘ice; u.s. DEPARTMENT OF COMMERCE
« aerwork Reduction Act of 1995 no ersons are reuired to resend to a collection of information unless it contains a valid OMB control number.

Complete if Known_

ORMATION DISCLOSURE
STATEMENT BY APPLICANT

(Use as many sheets as necessary)

Initials‘ the item (book, magazine. journal, serial, symposium. catalog, etc), date, page(s), volume-issue
Examiner Cite1 Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate). title ofNo.

o ublisher, crt and/or count where ublished.

Communication of Notices of Opposition (R. 57(1) EPC) dated 26-09-2006

and Working Translation, 16 pages

lSO/IEC FCD 7816-9 "Identification cards Part 9: Additional interindustry
commands and security attributes", 17.06.1999, 8. 8 bis 13, 29 bis 31 (D5), 12 pages

ISO/IEC FDIS 7816-8 "Identification cards Part 8: Security related

interindustry commands", 25.06.1998, 8. 2, 3, 6 bis 13 (DS), 13 pages

ISO/IEC 7816-4 "Information Technology - Identification Cards...", Part 4:

Interindustry Commands for Interchange", 1995, S. 12 bis 16 (D7), 6 pages

Handbuch der Chipkarten, W. RanklNV. Effing, 3. Auflage Hanser—Verlag

Munchen, 1999, S. 197 bis 203, 261 bis 272, 740, 795 bis 797 (D8), 18 pages
Examiner

Signature Considered
‘EXAMINER: Initial if reference considered. whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant.
1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here it English language Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain 0r retain a benefit by the public which is to tile (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing. and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the
amount of time you require to complete this form and/or suggestions for reducing this burden. should be sent to the Chief Information Officer. US. Patent and
Trademark Office. PO Box 1450. Alexandria, VA 22313-1450. DO NOT SEND FEES 0R COMPLETED FORMS TO THIS ADDRESS. SEND To:
Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form. call 1-800PTO-9199 {1-800-786-9199) and select option 2.

Page 1047 of 1415

‘ “morn than 160 in museum:
m.w.mwm.

.(Le'ffr'wsnoey '

Page 1048 of 1415

Application 0r Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD '
Effective January 1, 2003 l o I 2 l 4

CLAIMS AS FILED - PART I ' SMALL sum-v OTHER THAN
TYPE :I on SMALLEan

— "
_WWW - '

0R

MULTIPLE DEPENDENT CLAIM PRESENT D

‘ If the diflerence in column 1 is less than zéI-o, enter '0' in column 2

CLAIMS AS AMENDED - PART II OTHER THAN
‘ 0R SMALL ENTITY

I HES‘I’ ADDL

PirEUVTOBEQLY TIONAL RATE TIONALPAIDFOR FEE

" ‘- m- x59= -
I- III-—
FIRST PRESENTATION I F MULTIPLE DEPENDENCLA I

EIII

AMENDMENTA
TOT

OR ADDIT, FEE

FEE

-

HIGHES AUDIREMAINING NUMBER FRESENT '
AFTER PREV|QUSLY EXTRA HATE TIONAL RATE TIONAL

AMENDMENT PAID FOR FEE FEE

__
FIRST PRESENTAT|ON OF MULTIPLE DEPENDENT CLAIM -

AMENDMENT6
ADDIT FEE

Column 1 Column 2
CLAIMS HIGHEST

REMAINING NUMBER PRESENT
AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL

AMENDMENT PAID FOR FEE FEE

IndonendnnlMENDMENTC

Page 1049 of 1415

PATENT q:

Attorney Docket No. 555255012423

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: David P. Yach, et a1.

Serial No.: 10/381,219

Filed: March 20, 2003

For: CODE SIGNING SYSTEM AND METHOD

RECEIVED
DEC 1 7 2003

yCenter2100

Art Unit: 2131

Examiner: Not yet assigned

Commissioner For Patents

PO. Box 1450

Alexandria, VA 22313-1450

. . x, f
Sir. ‘\ 3%/

In accordance with the duty of disclosure imposed by 37 CPR. § 1.56, applicant‘s~ I ‘ \
‘~

advise the United States Patent and Trademark Office of certain references which may be

material to the determination of patentability of the above-identified application. The references

are identified on the attached Form PTO-1449 and Copies of the references are enclosed.

Applicants respectfully request that these references be considered and made of record in the

present application by completing and returning the enclosed Form PTO-1449.

No fee is believed to be due for entry of this Information Disclosure Statement.

However, if any fee should be required, please charge such fee to Jones Day's Deposit Account

No. 501432, Reference No. 555255012423,

Respectfully submitted,

I hereby certify that this correspondence

is being deposited today with the L'nited
States Posxal Service as first class mail in

an envelope addressed to: Commissioner for Davi B. Cochran
Patents. P.O. Box 1450. Alexandria. VA Reg. No. 39,142
22313-1450 JONES DAY

on North Point
\ ’ 90] Lakeside Avenue

WW Cleveland, Ohio 44114
(216) 586-3939

Page 1 of 1CLl-l l46631vl

Page 1050 of 1415

FORM PTO-1449 (Modified) Atty Docket No.: 555255012423
US. DEPARTMENT OF COMMERCE , I
PATENT AND TRADEMARK OFFICE Apphcatlon N0-= 10/381,219

Applicants: David P. Yach, et a1.

STATEMENT BY APPLIC A ". ' , Filin Date:

(Use several sheets if necessary)2? r“ Degtgi- g
Group:

§Hn:3" Np N O0DJ

('37 CFR 1.98(b))

Name Class Subclass Filing Date

Apperson et a1.

._r_., 0Fa.A N-fl02 D2.
LI.) _,‘-

-.(D9 :5 a: —. n

FOREIGN PATENT OR PUBLISHED FOREIGN PATENT APPLICATION

Publication
Date of the Country or Patent

Document Number Grant Office Class Subclass Yes

02/04/1999 WO

07/21/1999 EP>>H2 HEEHIE Ia
O

3

>
a
EIIIIII

ii llII

EXAMINER: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of
this form with next communication to applicant.

CLl-l l46628vl

Page 1051 of 1415

WORLD lN'lELLECl'UAh PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 = (11) International Publication Number: WO 99/05600

Gm 1M”) (43) International Publication Date: 4 February 1999 (04.02.99)

(21) International Application Number: PCT/USQS/ 15340 (81) Designated States: CA, JP. European patent (AT, BE. CH, CY,
DE, DK, ES, FI, FR. GB. GR. IE, IT. LU, MC, NL, PT,

(22) International Filing Date: 24 July 1998 (24.07.98) SE).

(30) Priority Data: Published
08/901,776 28 July 1997 (28.07.97) US . Without international search report and to be republished

upon receipt of that report.

(71) Applicant: APPLE COMPUTER, INC. [US/US]; law DepL,
lws; 38-PAT, 1 Infinite Loop, Cupertino, CA 95014 (US).

(72) Inventors: GARST, Blaine; 3307 Bay Court. Belmont, CA
94002 (US). SERLEI‘, Remand; 218 Colorado Avenue.
Palo Alto, CA 94301 (US).

(74) Agents: HECKER. Gary, A. et aL; Hooker & Harriman, 'Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
(US).

(54) Title: METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICWSES

(57) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API). a toolkit, a framework. a mntime library, a dynamic link library (DLL), an applet (e.g. a Java or Active'X applet),
or any other reusable resource. The present invention allows the resource library to be selectively used only by authorized end user software
program. The present invention out be used to enforce a "per-program" licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment. a license text string and a corresponding license
key areembeddedinaprograrndlathasbeenlicensed touse aresourcelibrary. 'l'helicense text stringandthelicense keyaresupplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text suing includes information about the terms of the license under which the end user program is allowed to use
the resource library. 'Ihe license key is used to authenticate the license text string. The resource library in turn is provided with means for
reading the license text string and the licensekey, and for determining, using the license key. whether the license text string is authentic
and whether the license text string has been altered. Resource library functions are made available only to a program having an authentic
and unaltered license text string.

Page 1052 of 1415

Codes used to identify Sums pany to tho PCl‘ on the front pages of pamphlets publishing international applications under the PCI‘.

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
[E
[L
IS
IT
JP
KE
KG
KP

KR
K2
[1:
LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland

13
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
9
SE
86

mod!)
Lithuania
lmnmhoutg
min
Monnco
quublic of Moldova
Madagascar
11: former Yugoslav
chublic of Macedonia
Mali
Mongolia
aniunia
Malawi
Mexico
Niger
Netherlands
Norway
New Inland
Poland

ééfifififidii’dgéfififim
2

SI .
Slovakia
Seam!
Swaziland
Chad
Togo
Tajikistan
'l'mkmenisun
W
W and Tobago
Ukraine
Ugnndn
Uniwd Sum: of America
Uzbetimn
Vic: Nam

Yugoslavia
Zimbabwe

Page 1053 of 1415

WO 99/05600 PCTIUS98/15340

METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

ON

F LD F THE NTION

The present invention relates generally to the distribution of computer

software, and more particularly to a method and apparatus for automated

enforcement of computer software licenses.

QAQKQBQUND ART

Some computer software programs use so—called "resource libraries" to

provide part of their functionality. There is usually a license fee required to

use a resource library. Under current schemes, it is not always possible to

charge the license fee to all users of a resource library. This problem can be

understood by comparing software structures that use resource libraries with”

basic software structures that do not.

MW

Figure 1 illustrates a basic software structure. In the example of Figure

1, the software comprises two layers. These layers are the operating system

110, and the application program 120. Operating system 110 is responsible for

controlling the allocation and usage of hardware resources such as memory,

central processing unit (CPU) time, disk space, and peripheral devices.

Operating system 110 provides a variety of specific functions that can be

Page 1054 of 1415

WO 99/05600 PCTIUS98!1 5340

utilized by a variety of software programs such as application program 120.

Application program 120 provides specific end user functions, such as word

processing, database management, and others. Application program 120

communicates with the computer hardware via functions provided by

operating system 110. Operating system 110 provides an interface between

hardware 100 and application program 120.

Figure 2 illustrates a second software structure. The software structure

of Figure 2 contains an additional layer of software, resource library 215,

interposed between application program 220 and operating system 110.

Resource library 215 provides a pre-packaged set of resources or routines that

can be accessed by software programs such as application program 220 during

execution. These resources provide higher level functions than those

provided by operating system 210. For example, these resources may provide

routines for managing a graphical user interface, for communicating with

other computers via a network, or for passing messages between program

objects. Typically, resource library 215 provides one or more resources or

functions that can be used by many different software programs. By using the

pre-packaged resources provided by resource library 215, a software program

such as application program 220 can be made smaller and program

development time can be shortened because the program itself need not

include code to provide the functions provided by resource library 215.

Page 1055 of 1415

W0 99/0560!) PCTIUS98/15340

In addition to application programs, resource libraries are used by other

types of software programs, including device drivers, utility programs and

other resource libraries.

Resource library 215 constitutes any set of one or more resources that

exists separately from an application program or other software program and

that can be used by more than one software program. For example, resource

library 215 may comprise an application program interface (API), a toolkit, a

framework, a resource library, a dynamic link library (DLL), an applet, or any

other reusable resource, including an application program that can be accessed

by another program (e.g. by using object linking and embedding (OLE)).

Examples of resource libraries include Windows DLL's (DLL's used with the

Microsoft Windows (TM) operating environment), the Apple Macintosh (TM)

toolkit, the OpenStep API from NeXT Software, Inc., OLE enabled application

programs such as Microsoft Word (TM), Java packages, and ActiveX applets;

A software program typically utilizes a resource provided by a resource

library by sending an appropriate message to the resource library and

supplying the parameters” required for the resource to be executed. Assuming

the appropriate parameters have been supplied, the resource executes, and an

appropriate response message is returned to the requesting program.

A software program may use resources provided by several different

resource libraries, a resource library may be used'by several different programs,

and a resource library may itself use other resource libraries. Figure 3

illustrates a computer system that includes several programs and several

resource libraries. In the example of Figure 3, there are two application

Page 1056 of 1415

WO 99105600 PCT/US98/15340

programs 300 and 310, and three resource libraries 320, 330, and 340.

Application program 300 uses resources provided by operating system 110 and

by resource libraries 320 and 330. Application program 310 uses resources

provided by operating system 110 and by resource libraries 330 and 340. The

resources of resource library 330 are thus shared by application programs 300

and 310.

License ee

Generally, computer software is licensed to an end user for a fee. The

end user pays a single purchase price or license fee in exchange for the right to

use the end user program on a computer system. Resource libraries are often

packaged or "bundled" with an end user program by the maker of the program

such that the end user receives a copy of resource libraries required by a

program when the end user buys a copy of the program. The price of the

resource library is built into the end user program price. The end user

program developer, in turn, pays a royalty to the resource library vendor for

the right to bundle and resell the resource library.

Since a resource library can be used with multiple end user programs,

once the end user receives a copy of the resource library, the end user can use

the resource library with any other program that is compatible with the

resource library. In this case, the resource library vendor receives no

additional revenue when the vendor's resource library is used with additional

25 programs. Accordingly, it would be desirable for a resource library vendor to

be able to ensure that an end user can use the resource library only with

programs for which a license fee has been paid to the vendor for use of the

Page 1057 of 1415

WO 99/05600 - PCT/U898/] 5340

resource library. Thus there is a need for a software mechanism for enforcing

software license agreements that automatically ensures that a resource library

can only be used by programs that have been licensed for use with the

resource library by the resource library vendor.

Page 1058 of 1415

WO 99/05600 PCT/US98/15340

SUMMARY OF T E I ENTION

The present invention comprises a method and apparatus for enforcing

software licenses for resource libraries. The term "resource library" as used

herein refers to any reusable software resource that is usable by more than one

program or other resource library. The term "resource library" includes, but is

not limited to, an application program interface (API), a toolkit, a framework,

a runtime library, a dynamic link library (DLL), an applet (e.g. a Java or

ActiveX applet), an application program whose functionality can be accessed

by other programs (e.g. using OLE) or any other reusable resource. The present

invention allows the resource library to be selectively used only by authorized

end user software programs. The present invention can be used to enforce a

"per-program" licensing scheme for a resource library whereby the resource

library is licensed only for use with particular software programs, as well as

site licenses and other licensing schemes.

In one embodiment, an access authorization indicator such as a license

text string and a corresponding license key are embedded in a program that

has been licensed to use a resource library. The license text string and the

license key are supplied, for example, by a resource library vendor to a

program developer who wants to use the resource library with an end user

program being developed.

The license text string includes information about the terms of the

license under which the end user program is allowed to use the resource

library. In one embodiment, the license key is an algorithmic derivation, such

as, for example, a digital signature, of the license text string that is used to

Page 1059 of 1415

WO 99/05600 PCT/US98/15340

authenticate the license text string. The resource library in turn is provided

with a checking r0utine that includes means for reading the license text string

and the license key, and for determining, using the license key, whether the

license text string is authentic and whether the license text string has been

altered. Resource library functions are made available only to a program

having an authentic and unaltered license text string.

In one embodiment, the license key constitutes the resource library

vendor's digital signature of the license text string. The resource library has a

checking routing for verifying the resource library vendor's digital signature.

The resource library is unlocked and made available for use with the

requesting program only if the license text string is verifiedvas authentic by the

resource library. For a given program, only the resource library proprietor. can

produce a license key for a particular license agreement that will unlock the

resource library for that program. and that program only. Any modification of

the license key or the license agreement text string in the requesting software

program is detected by the checking routine, causing the resource library to

remain locked. The license text string may also specify an expiration date for

the license, in which case the resource library is unlocked only if the

expiration date has not yet occurred.

In one embodiment, a per-site enforcement method is provided, in

which any software program present at a given user site works with the

resource library once the resource library is provided with the proper per-site

license key.

Page 1060 of 1415

WO 99/05600 PCT/US98/1534O

BRIEF DESCRIPTION OF THE DRAWINQS

Figure 1 illustrates an example of a software structure.

Figure 2 illustrates an example of a software structure including a

resource library.

Figure 3 illustrates an example of a software structure including several

application programs and resource libraries.

Figure 4 illustrates an embodiment of a computer system that can be

used with the present invention.

Figure'5 illustrates a software structure of one embodiment of the

present invention.

Figure 6 illustrates a software structure of one embodiment of the

present invention.

Figure 7 is a flow chart illustrating the operation of one embodiment of

the present invention.

Figure 8 illustrates a software structure of one embodiment of the

present invention.

Figure 9 illustrates a software structure of one embodiment of the

present invention.

Page 1061 of 1415

15

WO 99/05600 PCT/U898/15340

Figure 10 is a flow start illustrating the operation of one embodiment of

the present invention.

Figure 11 is a flow start illustrating the operation of one embodiment of

the present invention.

Figure 12 is a flow start illustrating the Operation of one embodiment of

the present invention.

Figure 13 illustrates a software structure of an embodiment of the

present invention using the OpenStep API.

Figure 14 illustrates an embodiment of the invention in which the

resource library is an applet.

Page 1062 of 1415

WO 99/05600 PCT/US98/15340

DETAILED DESCRIPTION OF THE INVEN llQN

A method and apparatus for enforcing software licenses is described. In

the following description, numerous specific details are set forth in order to

provide a more thorough description of the present invention. It will be

apparent, however, to one skilled in the art, that the present invention may be

practiced without these specific details. In other instances, well—known

features have not been described in detail so as not to obscure the invention.

The present invention can be implemented on any of a variety of

computer systems, including, without limitation, network computers, special

purpose computers, and general purpose computers such as the general

purpose computer illustrated in Figure 4. The computer system shown in

Figure 4 includes a CPU unit 400 that includes a central processor, main

memory, peripheral interfaces, input—output devices, power supply, and

associated circuitry and devices; a display device 410 which may be a cathode

ray tube display, LCD display, gas-plasma display, or any other computer

display; an input device 430, which may include a keyboard, mouse, digitizer,

or other input device; non-volatile storage 420, which may include magnetic,

re—writable optical, or other mass storage devices; a transportable media drive

425, which may include magnetic, re-writable optical, or other removable,

transportable media, and a printer 450. The computer system may also

include a network interface 440, which may include a modem, allowing the

computer system to communicate with other systems over a communications

network such as the Internet. Any of a variety of other configurations of

Page 1063 of 1415

WO 99/05600 PCT/US98/15340

computer systems may also be used. In one embodiment, the computer

system comprises an Intel Pentium (tm) CPU and'runs the Microsoft

Windows 95 (tm) operating environment. In another embodiment, the

computer system comprises a Motorola 68OX0 series CPU and runs the

NeXTStep operating system.

When a computer system executes the processes and process flows

described herein, it is a means for enforcing software licenses.

The invention can be implemented in computer program code in any

desired computer programming language.

dul

Figure 5 is a block diagram illustrating software components of one _;

embodiment of the present invention. As shown in Figure 5, this

embodiment, like the prior art embodiment of Figure 2, includes computer

hardware 100, operating system 110, application program 220 and resource

library 215. However, the present invention adds two additional components:

Program licensing module 500 and resource library licensing module 510.

These modules are shown in greater detail in Figure 6.

Figure 6 illustrates program licensing module 500 and resource library

licensing module 510 in one embodiment of the present invention. As

shown in Figure 6, program licensing module 500 contains license text string

600 and license key 610. License text string 600 contains data specifying terms

of the software license agreement under which the resource library vendor

Page 1064 of 1415

WO 99/05600 PCT/US98115340

has licensed the program containing program licensing module 510 to use the

vendor's resource library. For example, license text string 600 may include the

following text:

Table 1; Example License Text String

" (c) Copyright 1997. Resource Library Vendor, Inc. Program A is
licensed to use Resource Library D. No expiration date. This
license may not be legally copied or transferred to another
program. "

In the example shown in Table 1, license text string 600 specifies the name of

the resource library vendor ("Resource Library Vendor, Inc.), the name of the

program licensed to use the resource library ("Program A"), and the name of

the resource library that has been licensed ("Resource Library D"). License text

string 600 also indicates that the license has "No expiration date."

License key 610 is algorithmically derived from license text string 600.

In one embodiment, license key 610 comprises a digital signature of the

resource library vendor.

A digital signature is a mechanism that has been developed to help

ensure the integrity of electronic messages. A digital signature used to

authenticate an electronic message and to determine whether an electronic

message has been altered.

One form of digital signature uses a message digest. A message digest is

a value that is generated when an electronic message is passed through a one

way encryption process ("digesting process") such as a hashing routine. An

ideal digesting process is one for which the probability that two different

electronic messages will generate the same message digest is near zero. In this

Page 1065 of 1415

WO 99/05600 . PCTIUS98l15340

form of digital signature, both the originator and the recipient need to know

which digesting process is being used. The originator generates the electronic

message, and generates a message digest by passing the electronic message

through the digesting process. The originator digitally signs the resulting

message digest, for example by performing an algorithmic operation on the

message digest using the originator's private key. Alternatively, instead of

generating a message digest and signing the message digest, a sender may sign

the message itself.

To verify the authenticity of a digitally signed message, the recipient :

obtains the electronic message and the digital signature of the sender. The I

recipient verifies the digital signature using an appropriate verification

process. For example, in one embodiment, the recipient verifies the digital

signature by performing an algorithmic process on the digital signature using

the sender's public key. The verification process verifies that the electronic

message was (1) digitally signed by the sender, and (2) that the electronic 1

message content was not changed from the time that it was signed to the time

that the digital signature was verified.

In the present embodiment of the invention, the "message" that is

digitally signed is license text string 600. The signer is the resource library

vendor. The result is license key 610.

License text string 600 and license key 610 are used by resource library

licensing module 510 to verify that a requesting program has been licensed to

use the resource library. As shown in Figure 6, resource library licensing

module 510 includes a license verification module 620. When a program

Page 1066 of 1415

WO 99/05600 PCT/US98/15340

requests access to the resource library, resource library licensing module 510

reads license text string 600 and license key 610 from the requesting program.

In one embodiment, license text string 600 and license key 610 are sent to the

resource library by the requesting program along with a request for access to

the resource library. In another embodiment, resource library licensing .

module 510 reads license text string 600 and license key 610 from a constant

definition section of the requesting program.

Resource library licensing module 510 uses license key 610 to verify the

content of license text string 600 in the same manner as' a digital signature is

used to verify an electronic message. Using license verification module 620,

resource library licensing module 510 verifies that license text string 600 is

authentic (i.e. was generated by the resource library vendor) and unaltered. If

the verification process is unsuccessful, indicating that the digital signature is

not good, resource library licensing module 510 refuses the requesting

program's request for access to the resource library. If the verification process

issuccessful, resource library licensing module 510 inspects the license to

determine any license limitations included in license text string 600.

The example license text string 600 shown in Table 1 above identifies

"Program A" as the program that is licensed to use the resource library, and

states that the license has "No expiration date. Resource library licensing

module 510 obtains the name of "Program A" from license text string 600, and

checks whether the requesting program is Program A. If the requesting

program is a program other than Program A,_access to the resource library is

denied.

Page 1067 of 1415

WO 99/05600 PCT/U898/15340

Rather than specifying "No expiration date" as in the present example,

license text string 600 may specify an expiration date and/or a beginning date

for the license. If any such dates are specified in license text string 600,

resource library licensing module 510 checks to make sure that the current

date falls within the period of validity of the license prior to granting access to

the resource library. If the current date is not within the license's period of

validity, the requesting program is denied access to the resource library.

Access Procedure

The process used by a resource library to grant or deny access to a

requesting program in one embodiment of the invention is illustrated in

Figure 7. In one embodiment, this process occurs the first time a program ‘

requests access to a resource library. In another embodiment, this process ~ _

occurs each time the resource library receives a request for access.

As shown in Figure 7, the process begins with a requesting program

making a request to use the resource library at step 700. At step 705, the

resource library obtains the requesting program's license text and license key.

The license text and license key may, for example, be included in the request,

or the resource library may read the license text and license key from a

constant declaration area of the requesting program, or the resource library

may obtain the license text and license key by some othermeans.

After obtaining the license text and license key, the resource library

verifies the authenticity of the license text, using the license key, at step 710.

At step 725, a the resource library determines whether the verification is

Page 1068 of 1415

WO 99/05600 PCTIUS98/15340

successful. If the authenticity of the license text is not verified, access to the

resource library is denied at step 730.

If the verification of the authenticity of the license text is successful, the

resource library checks the license terms included in the license text at step

735. At step 740, the resource library determines whether a limited validity

period is specified in the license text. If no validity period is specified, the

process continues on to step 755. If a validity period is specified, the resource

library checks whether the validity period has expired at step 745. The validity

period will have expired either if the current date is before a beginning date

specified in the license text or if the current date is after an expiration date

specified in the license text. If the validity period has expired, access to the

resource library is denied at step 750.

If the validity period has not expired, processing continua to step 755.

At step 755, the resource library determines whether the requesting program is

the same program as the program specified in the license text. If the

requesting program is not the program specified in the license text, access to

the resource library is denied at step 760. If the requesting program is the

program specified in the license text, the resource library checks whether there

are any other license terms contained in the license text at step 765. If there are

no other license terms, access to the resource library is granted at step 770. If

there are other license terms, the resource library checks whether those terms

are satisfied at step 775. If the terms are not satisfied, access to the resource

library is denied at step 780. If the terms are satisfied, access to the resource

library is granted at step 785.

Page 1069 of 1415

WO 99/05600 PCT/US98/15340

The invention may be implemented in the Objective-C language.

Objective-C is essentially the ANSI C language with object messaging

extensions. A full description of the Objective-C language appears in "Object-

Oriented Programming and the Objective-C Language," published by Addison-

Wesley (ISBN 0-201-63251—9) (1993), and incorporated by reference herein.

However, the invention can also be implemented in any other suitable

computer programming language.

As described below, the invention can be implemented by embedding

appropriate segments of program code in the source code of a program that

uses a resource library and in the source code of the resource library itself.; (The

resource library is compiled to produce an executable implementation which

can be linked to a compiled and executable version of the program.

Application Prggram Interface (APIi

In one embodiment of the invention, the resource library is an

application program interface ("API"). An API has three major functions: it

receives requests from an application program to carry out fundamental

operations such as receiving user input or displaying output; it converts each

request into a form understandable by the particular operating system then in

use; and it receives responses and results from the operating system, formats

them in a uniform way, and returns them to the application program.

APIs generally are prepared in an executable implementation which is

compiled Specifically for the underlying operating system. This is necessary

because different operating systems provide different calling mechanisms and

Page 1070 of 1415

WO 99/05600 PCI‘IUS98/15340

communications methods for such primitive operations as reading and

writing a mass storage device. For example, an API may provide a "draw(x,y)"

function that can be called by an application program to draw a point at

coordinates (x,y) on the display device of a computer system. Upon receipt of a

draw(x,y) request from an application program, the API converts the request

into a command or function call specific to the operating system then in use.

For example, the API might convert the draw(x,y) request into a series of

machine instructions to load registers with the x,y values and call an

operating system function or generate an interrupt. The person writing the

application program need not worry about such details.

In some cases the API refers to or calls functions located in an external

function library such as a set of device drivers rather than directly calling the

operating system. Device drivers are small executable programs that enable

the operating system to address and work with particular hardware devices

such as video adapters and printers. Device drivers also constitute a form of

resource library.

Depending on the operating system, the API can be prepared in any of

several executable formats such as a runtime library, device linked library

(DLL), or other executable file. The API is provided to the end user in one of

these object code versions, or "implementations," of the API. In industry

usage the term API can refer to a definition or specification of functions in the

API, to the source code of the API that implements such functions, or to the

executable version of such source code which is ultimately distributed to and

used by end users. Examples of APIs are the OpenStep API, available from

Page 1071 of 1415

WO 99/05600 PCT/US98/15340

NeXT Software, Inc., Redwood City, California, and the Visual Basic DLL

available from Microsoft Corporation, Redmond, Washington.

The term API as used herein also includes the Java programming

language. Rather than being distributed in executable form, Java programs are

distributed as packages of "bytecodes." The bytecodes are compiled at runtime

into executable code by a Java Virtual Machine (JVM) resident on the

computer on which the Java program is run. Different JVM's are used for

different computer processors and operating systems. However, all JVM's

read the same bytecode. Accordingly, Java bytecode programs and packages are

platform independent. Java bytecode programs and packages need only be

written in one form. The JVM's take care of adapting the bytecode to different

computer platforms. Packages of Java bytecode can be used by different Java

programs, and, as such, constitute resource libraries.

Generally the end user can buy the executable version of the API 1

implementation separately from any particular application program from its

creator or vendor, or the end user may buy the API implementation bundled

with an application program that requires and uses the API to run.

In either case, the API implementation is installed in executable form

in the end user's computer system (typically by copying it to a mass storage '

device such as a hard disk). After the API implementation is installed, the

end user can launch (begin running) an application program which uses the

' API implementation. The application program locates the API

implementation on the hard disk and references, calls, or is linked to the API

implementation. In operation, when the application program needs to carry

Page 1072 of 1415

WO 99/05600 PCT/US98/ 1 5340

out an operation implemented in the API implementation, such as drawing a

line on the screen, the application program calls the appropriate function in

the API implementation. The appropriate function in turn tells the operating

system (or the device independent windowing extensions, or another device

driver) how to execute the desired operation.

A significant advantage of the use of APIs is that an application

program, such as a word processor, can be written to communicate only with

the API, and not with the operating system. Such an application program can

be moved or ported to a different operating system without modifying the

program source code. Because of this, application programs written for APIs

are said to 'be operating system independent, meaning that the application

program source code can be moved without modification to another

computer system having a different operating system, and recompiled and

linked with an API implementation prepared for that operating system. The

ability to move unmodified application source code to different operating

systems is a key advantage of using APIs.

However, from the point of view of API vendors, APIs also have the

significant disadvantage that an end user needs only one copy of the API to

run multiple application programs which are compatible with the API. Since

the API provides generic input, output, and processing functions, it will work

with a variety of different end user application programs. Some software

vendors desire to restrict use of their API implementations to one application,

or to require the end user to purchase a key to the API for each application

acquired by the end user, so that the end user pays a different or larger fee to

use additional application programs.

Page 1073 of 1415

WO 99/05600 PCT/US98/15340

The present invention provides a way to arrange a resource library such

as an API to work only with particular authorized application or other end

user programs.

AEI License Embodiment

As is well known in the art, the source code of a computer program can

be divided into several components including 3 variables declaration area, a

constant declaration area, and a procedure definition area. Figure 9 illustrates

an embodiment of the present invention that is used with an API. As shown

in Figure 9, in this embodiment, an application program 900 is provided with

a LicenseKeyString constant 902 and a LicenseAgreementString constant 904

in the constant declarations area 901 of the application program's source code. _

In the embodiment of Figure 9, LicenseKeyString 902 and

LicenseAgreementString 904 are declared as global string constants.

In one embodiment, LicenseAgreementString 904 contains a text string,

prepared by the vendor of the API, that describes in human readable text the

license restrictions concerning use of the API applicable to the application

program. For example, the LicenseAgreementString may read, "This API is

licensed for individual internal use only for concurrent use only with Word

Processor application program." The specific text of the

LicenseAgreementString is prepared by the licensor of the API. The text can be

any arbitrary combination of words, symbols, or numbers.

Page 1074 of 1415

WO 99/05600 PCT/U898!15340

The LicenseKeyString 904 contains a key corresponding to and based

upon the LicenseAgreementString 902. For example, the LicenseKeyString

can be a digital signature of the LicenseAgreementString prepared by

providing the LicenseAgreementString and a private key of the API vendor to

a digital signature process. The precise method of generating the

LicenseKeyString is not critical, provided that only the licensor of the API can

generate a unique LicenseKeyString corresponding to the

LicenseAgreementString. The values of the two strings are created by the

vendor of the API and are provided to the person or company that is

developing the end user application program (for example, the API vendor

can send the two string values to the application program developer by e-

mail). The application program developer is instructed by the API vendor to

place the string declarations in the source code of the developer's end user

application program. The two values may be public, so the API vendor or

developer need not keep the values secret or hidden from users of the end

user application program. The two strings are compiled into the executable

form (or, in the case of Java, the bytecode packages) of the application program.

This binds the LicenseKeyString and LicenseAgreementString into the

executable code (or bytecode) of the application program.

As further shown in Figure 9, API 920 is provided with an UNLOCK

function 923 and a CHECK LICENSE function 921 for testing whether the

LicenseKeyString matches the LicenseAgreementString. In the embodiment

of Figure 9, the CHECK LICENSE function 921 includes sub-function CHECK

922.

Page 1075 of 1415

WO 99/05600 PCT/US98l15340

API r cedure

Figure 10 is a flow diagram of processing steps of the UNLOCK function

923. The process of Figure 10 may, for example, be carried out at runtime,

when both the application program and the API are compiled, linked, and

running.

The UNLOCK function is called by the API upon initialization of the

API, for example, upon being called by application program 900 or by some

other calling function, object, or program (the "calling entity"). Processing

begins at step 1002. The UNLOCK function first checks to see whether theAPI

has been provided with a site license that allows the API to be used with any

calling entity on the computer in which the API has been installed. In this

embodiment, a site license is indicated by adding an appropriate

LicenseKeyString and LicenseAgreementString to the API when the API is

installed. This process is described in greater detail below. An appropriate.

LicenseAgreementString may, for example, be "API site license granted. This

API may be used with any application program at the site at which it is

installed." The corresponding appropriate LicenseKeyString may, for

example, be derived by applying the API vendor's private key and a digital

signature process to the LicenseAgreementString.

The process of checking for a site license begins at step 1004 where the

UNLOCK function locates and extracts (to the extent they have been provided

to the API) a LicenseKeyString and a LicenseAgreementString from within the

API. Control is then passed to step 1006 where the function testswhether the

API is licensed under a site license for unrestricted use with any application

Page 1076 of 1415

PCT/U898/15340WO 99/05600

24

program. The test of step 1006 is accomplished by verifying the authenticity of
the LicenseKeyString and LicenseAgreementStn'ng extracted from the API,
and, if authentic, determining whether the LicenseAgreementString indicates
that a site license has been granted.

The authenticity of the LicenseAgreementString and LicenseKeyString
is determined by passing the LicenseAgreementString, the LicenseKeyString,
and a copy of the API vendor's public key stored in the API implementation to
the CHECK process 922. CHECK process 922 uses a digital signature
authentication ("DSA") process to verify the authenticity of the
LicenseAgreementString.

The DSA process used by CHECK process 922 can be any digital

signature authentication process capable of reading an input string and a key
purportedly representing the digital signature of the input string, applying an
appropriate authentication process, and determining the validity of the input
string by testing whether the key constitutes the signatory's digital signature of
the input string. An exemplary DSA process is disclosed, for example, in US.
Patent Application Serial No. 08/484,264, "Method and Apparatus for Digital
Signature Authentication," assigned to the assignee hereof. The DSA

technology of RSA Data Security, Inc. also can be adapted for use with the

invention. A per-session cache can be used to improve execution speed of the
CHECK process.

If the LicenseKeyString isdetermined to be the API vendor's valid

digital signature of the LicenseAgreementString, the LicenseAgreementString
is inspected to determine whether it indicates that a site license has been

Page 1077 of 1415

WO 99/05600 PCT/US98/1 5340

25

granted. If the LicenseAgreementString does so indicate, the test of step 1006

succeeds and control is passed to step 1014. At this point the UNLOCK

function returns a positive result to the calling entity, and allows the calling
entity to use the API.

If the test of step 1006 fails, control is passed to step 1008 where the

UNLOCK function extracts and reads the LicenseKeyString and

LicenseAgreementString from a data segment (for example, the compiled

constant declarations area) of the calling entity. Alternatively, the calling

entity may transmit the LicenseKeyString and the LicenseAgreementString to

the API. Having obtained the calling entity‘s LicenseKeyString and

LicenseAgreementString, control is passed to step 1010 where the function ’

tests whether the calling entity is licensed to use the API. This test comprises

two parts. One part, using CHECK process 922 as described above, determines

whether the LicenseAgreementString is a LicenseAgreementString validly

issued by the API vendor. A second part examines the

LicenseAgreementString for the terms of the included license, and determines

whether those terms are met. If the result is positive then control is passed to

step 1014. At this point, use of the API with the calling entity is authorized

and the API returns control to the calling entity so that the calling entity
resumes normal execution.

If the result is negative then the calling entity is not licensed to use the

API, and control is passed to step 1012. At step 1012 the API generates an error

message such as "API Not Licensed For Use With This Application program,"

and declines access to the calling entity.

Page 1078 of 1415

05600 PCT/US98I15340W0 99/

26

Steps 1006 and 1010 carry out the license tests by calling the CHECK

LICENSE function 921 show in Figure 9 and Figure 11. Processing steps of
the CHECK LICENSE function 921 are illustrated in Figure 11.

The process flow of the CHECK LICENSE function starts at step 1102.

arguments are passed to the CHECK function at step 1108.

If the CHECK function (described in greater detail below) retums a FAIL

or false state, control is passed to step 1124 and the CHECK LICENSE function

itself returns a fail state. If the CHECK function returns a PASS or true state,

control is passed to step 1112 where the CHECK LICENSE function checks the

same as the name of the licensed entity specified in the

LicenseAgreementStI-ing. If the name of the calling entity is incorrect, control

passes to step 1124, where a fail message is passed to the UNLOCK function.

date at step 1116. An expiration date can be placed in the '

LicenseAgreementStx-ing by the API vendor to establish a termination date

after which use of the API by the calling entity is no longer allowed. CHECK

Page 1079 of 1415

PCT/US98/15340WO 99/05600

LICENSE may, for example, test for an expiration date by searching for a text
string that indicates an expiration date, such as, for example, "expiration date"
or "valid until."

If the test of step 1116 is positive, control is passed to step 1118 where the
CHECK LICENSE function tests whether the current date, as maintained, for
example by a computer clock or operating system, is greater than the

expiration date found in the LicenseAgreementString. If the test of step 1118
passes, control is passed to step 1120. If the test of step 1118 fails, then CHECK

10 LICENSE returns a FAIL message at block 1124.

At step 1120, the CHECK LICENSE function checks whether the

LicenseAgreementString specifies any additional license terms. If there are no
other terms, CHECK LICENSE returns a PASS message at block 1126. If there'
are other terms, CHECK LICENSE determines whether those terms are met at

block 1122. If any of the other terms are not met, CHECK LICENSE returns a
FAIL message at block 1124. If all of the additional terms are met, CHECK
LICENSE returns a PASS message at block 1126.

25

Page 1080 of 1415

WO 99/05600 - ' PCT/US98/15340

is well known in the field of cryptography. For example, key generation using

Fast Elliptical Encryption (FEE) can be done, or Diffie-Hellman key generation

can be used.

In step 1204 the CHECK function verifies that the LicenseKeyString

comprises the digital signature of the LicenseAgreementString. In step 1208,

the CHECK function tests whether the verification of step 1204 successfully

verified the LicenseKeyString as comprising the digital signature of the

LicenseAgreementString. If so, the LicenseAgreementString is valid, and

CHIECK returns a Boolean true or pass value. If not, the

LicenseAgreementString is invalid, and CHECK returns false or failure.

Since the LicenseKeyString of the present embodiment comprises the

digital signature of the LicenseAgreementString, the LicenseAgreementString

cannot be changed in any way without the change being detected. Stated more

generally, because the identifier (e.g. the LicenseKeyString) of the invention is

a unique key mathematically derived from a particular text string that

specifies license terms for a particular end user program (e.g. the

IicenseAgreementString), the identifier can be used to detect any changes to

the license terms. This prevents unauthorized modification of the text string

from extending use of a resource library to an unlicensed program. For

example, if an end user attempts to modify the expiration date using a

debugger or machine language editor, the identifier will no longer match the

license text string. Without knowing the private key of the vendor, the end

user cannot generate a matching identifier.

Page 1081 of 1415

0 , PCT/[1898115340W0 99/0560

29

When a 127-bit private key‘s is used by the vendor to create the

identifier used in the present invention, a determined hacker attempting to
forge the private key would need to exhaustively search the 127-bit space,
requiring extensive computing resources and an impractical amount of time.

Thus, the protection provided by the present invention cannot easily be
cracked and the security of the invention as a whole is extremely high.

In addition to allowing per program resource library licensing, if the
API vendor or licensor desires to grant a site license for the API to the end

user, so that the API is licensed for use with any number of application

signature of a site license agreement string created by the API vendor. The site

license agreement string may be pre-embedded in the API by the vendor.

During installation of the API, an installation program provided with the API
asks the end user whether a site license key is known. If so, the end user

enters the site license key, and the installation program writes the site license

Page 1082 of 1415

WO 99/05600 PCT/US98/15340

enSt API

In one embodiment of the invention, the API used is the object-

oriented OpenStep API 820 shown in Figure 8. A specification of the

OpenStep API has been published by NeXT Software, Inc. under the title

"OPENSTEP SPECIFICATION," dated October 18, 1994. Implementations of

the OpenStep API include implementations for the Windows NT and Solaris

operating systems that are available from NeXT Software, Inc. and SunSoft,

Inc, respectively.

As shown in Figure 8, the OpenStep API 820 comprises computer

program code organized as an Application Kit 802, Foundation Kit 808, and

Display PostscriptTM system 804. (Display PostscriptTM is a trademark of Adobe

Systems Incorporated.)

Application Kit 802 provides basic resources for interactive application

programs that use windows, draw on the screen, and respond to user actions

on the keyboard and mouse. Application Kit 802 contains components that

define the user interface. These components include classes, protocols, C

language functions, constants and data types that are designed to be used by

virtually every application running under the OpenStep API. A principal

purpose of Application Kit 802 is to provide a framework for implementing a

graphical, event-driven application.

Foundation Kit 808 provides fundamental software functions or

building blocks that application programs use to manage data and resources.

Foundation Kit 808 defines basic utility classes and facilities for handling

Page 1083 of 1415

WO 99/05600 PCT[US98/15340

multi-byte character sets, object persistency and distribution, and provides an

interface to common operating system facilities. Foundation Kit 808 thus

provides a level of operating system independence, enhancing the developer's

ability to port an application program from one operating system to another.

Display Postscript system 804 provides a device-independent imaging

model for displaying documents on a computer screen. Display Postscript is

defined by Adobe Systems Incorporated. Display Postscript system 804

provides an application-independent interface to Postscript.

Separate from the API 820, but also logically located between the

application program 800 and the operating system 810, is a set of device 1

dependent windowing extensions 806. Extensions 806 enable Display

Postscript system 804 to communicate with specific graphics and display

hardware in the end user‘s computer system, such as the video memory or

other video display hardware.

Figure 13 illustrates an embodiment of the invention used with the

OpenStep API of Figure 8. As shown in Figure 13, in this embodiment, the

20 license text string and the license key string of the invention are implemented

in a property list area 1302 (Info.plist) of the application program code 800.

Two string properties are added to the property list area 1302:

NSLicenseAgreement 1304, that stores the software license terms applicable to

application program 800, and NSLicenseKey 1306, that stores the license key

corresponding to NSLicenseAgreement 1304. In this embodiment, as in the

embodiment of Figure 9, NSLicenseKey 1306 is derived from the

Page 1084 of 1415

WO 99105600 PCT/US98/15340

NSLicenseAgreement string 1304 generated from the license agreement string

using a digital signature process and a vendor's private key.

Example values of the two strings placed in the Info.plist are shown in

Table 2.

Table 2 - Infoplist Sg’ngs

NSLicenseKey = “Ab76LY2beOOGqK2KY17BqHy35";

NSLicenseAgreement " (c) Copyright 1996, EOF AddOnTools
Inc., ReportWriter licensing agreement: This is
demonstration software valid until November 2, 1996.
This software cannot be legally copied." ;

In the OpenStep embodiment of Figure 13, the UNLOCK function 1308

is implemented as part of Application Kit 802. In one embodiment, UNLOCK

function 1308 is implemented by adding appropriate code to a non-redefinable

private Application Kit function (such as, for example, _NXAppZone() in

NSApplication.rn). An example of source code that may be added is shown in 1
Table 3.

Table 3 - UNLOCK Code added in OpenStep API implementation

static BOOL licenseChecked = NO;

if (! licenseChecked)
{
NSDictionary *info;
NSString *key, *agreement;
/* First check the unlimited (per—site) license */
info = [NSDictionary

dictionaryWithContentsOfFile:@“/0penStep/AppKit.dll/Info
.plist“]; // real path TBD

key = [info objectForKey:@TNSLicenseKey'];
agreement = [info

objectForKey:@‘NSLicenseAgreement'1;
if (lNSCheckLicense(key, agreement))

{

/* now check for the per—app license */
info = [[NSBundle mainBundle] infoDictionary];

Page 1085 of 1415

WO 99/05600 PCT/US98/15340

key : [info objectForKey:@"NSLicenseKey"];
agreement = [info

obj ectForKey: @ "NSLicenseAgreement "] ;
if (INSCheckLicenseUcey, agreement))

{

NSLog(@"*** Sorry no valid license for
%@" , [NSApp appName]) ,-

l
}

licenseChecked = YES;

l

The NSCheckLicenseO function, which is called twice in the code

segment of Table 3, as shown in Figure 13, is implemented in the Foundation

Kit portion 808 of the OpenStep API 820. The NSCheckLicense function 1310

corresponds to the CI-IECK LICENSE function 921 illustrated in Figure 9. The

NSCheckLicense function 1310 verifies NSLicenseAgreement string 1304

using NSLicenseKey string 1306 and a digital signature authentication process.

The NSCheckLicense function 1310 has the following definition:

extern BOOL NSCheckLicense(NSString *licenseKey,

NSString *licenseAgreement) ;

The NSCheckLicense function 1310, like the Check License function 921 of

Figure 9, applies a CHECK function 1312 to NSLicenseAgreement string 1304

and NSLicenseKey 1306, using the API vendor's public key, to determine the

validity of NSLicenseAgreement string 1304. In the embodiment of Figure 13,

CHECK function 1312 includes in its code a copy of the API vendor's public

key 1314.

In the embodiment of Figure 13, API 820 includes a "GEN" process 1316

that can be used by an API vendor to rapidly generate license key strings for

use by CHECK function 1312. GEN process 1316 receives as input a license

agreement string and a secret private key, and produces as output a licensing

Page 1086 of 1415

WO 99/05600 PCT/U898/15340

key string, using a digital signature generating process. The private key may,

for example, be a 127-bit private key, although any other size private key may

be used. The signature generating process used by GEN process 1316 is

compatible with the digital signature authentication process used by CHECK

function 1312. GEN process 1316 itself can be made entirely public and

implemented in the API provided that the private key 'of the API vendor is

maintained in secrecy. For example, the GEN process can be part of the

OpenStep API Foundation Kit 808 as shown in Figure 13. GEN also can be

maintained in a separate program module.

The logical relationship between GEN and CHECK is:

CHECK(GEN(LicenseAgreementString, PrivateKey), Public Key,
LicenseAgreementStrmg) => YES

CHECK(random1, random2) => NO with a very high probability

In one embodiment of the invention, a shell is provided for the GEN

process. The shell can receive as input a license agreement template string,

such as:

(c) Copyright 1995, %@, %@ licensing agreement; Demo
software valid until %@; This agreement cannot be
legally copied

where %@ represents additional data to be provided by the API vendor. The

shell then asks the user (i.e. the API vendor). to input the additional data, for

example a company name, a product name, an expiration date, from which

the shell generates a specific license agreement string. The shell then asks for

the private key and applies GEN to create a corresponding license key.

Page 1087 of 1415

WO 99/05600 PCT/US98/15340

The same shell can be used for per-program license keys or per-site

license keys, using different templates.

In one embodiment of the invention, an installer program is provided

for installing a resource library on an end user computer. The installer

program is provided with a feature enabling the end user to provide a site

license key during installation. For example, if the resource library is the

OpenStep API, additional code is added to the OpenStep API installer

program. The user is asked during the installation of the resource library if

the user has obtained a per-site license. If the user replies yes, the user is asked

to enter the site license key string. In one embodiment, the user is also asked

to enter the site license agreement string. In another embodiment, the site

license agreement string is stored in the resource library, such as, for example,

in the OpenStep API DLL Application Kit's Info.plist resource file. The site

license key. and site license agreement are validated by the CHECK LICENSE
function as described above. Use of the resource library is permitted only if

the site license key string input by the user corresponds to (i.e. is found to

comprise the resource library vendor's digital signature of) the site license

agreement string.

The present invention may be used with resource libraries such as Java

class files, Java applets, and Java bytecode packages. Figure 14 illustrates an

embodiment of the invention in which the resource library is a Java applet.

In the embodiment shown in Figure 14, an applet is called from an

page 1402 via applet tag 1404. Applet tag 1404 includes the name of the

Page 1088 of 1415

wo 99/05600 PCT/US98/15340

36

applet‘s class file and applet parameters 1406. Applet parameters 1406 include

a license agreement string parameter 1408 and a license key string parameter

1410. License agreement string parameter 1408 specifies a license agreement

string that contains terms of a license to use the called for applet. License key

string parameter 1410 specifies a license key used to authenticate the license

agreement string. As in other embodiments of the invention, in this

embodiment, the license key string comprises a digital signature by the

resource library (applet) vendor of the license agreement string. Table 4

illustrates an example of applet tag 1404.

II able 4

<APPLET CODE="Applet.class' WIDTH=250 HEIGHT=75>
<PARAM NAME=LicenseAgreementString VALUE="Web page
orderfom.html licensed to use applet: 'Applet.c1ass'>
<PARAM NAME=LicenseKeyString VALUE="4kd094kak2rtx0kzq">
</APPLET>

In the example of Table 4, the license agreement string specifies the

20 name of the HTML page ("orderformhtml") and the name of the licensed

applet ("applet.class").

As shown in Figure 14, applet 1434 is accessed when HTML page 1402 is

loaded by a HTML browser 1430 running in a client computer 1420. In the

embodiment of Figure 14, HTML browser 1430 runs on top of an API 1424

which in turn runs on top of operating system 1422. HTML browser 1430

1 includes a Java virtual machine 1432 for running Java applets.

Upon encountering applet tag 1404 while loading HTML page 1402,

HTML browser 1430 retrieves the class files that constitute applet 1434 from

storage locations on client computer 1420 and/or from one or more server

Page 1089 of 1415

WO 99/05600 PCT/US98115340

computers, as applicable. One of the class files includes CheckLicense class file

1436. After HTML browser 1430 has retrieved all the required components of

applet 1434, applet 1434 is initialized. During initialization, or at a later time,

the CheckLicense function provided by CheckLicense class file 1436 is called.

As in other embodiments of the invention, the CheckLicense function

determines whether the requesting entity (HTML page 1402) possesses a valid

license to use the requested resource (applet 1434) by testing the authenticity of

the license specified by LicenseAgreementString parameter 1408 using the

license key specified by LicenseKeyString parameter 1410 and the applet

vendor's public key 1438. If the CheckLicense function determines that HTML

page 1402 possesses a valid license, applet 1434 is allowed to execute. If not,

execution of applet 1434 is terminated, and an error message is sent to HTML

browser 1430.

Thus, an improved method and apparatus for enforcing software

licenses has been presented. Although the present invention has been '-

described with respect to certain example embodiments, it will be apparent to

those skilled in the art that the present invention is not limited to these

specific embodiments. For example, although the invention has been

described for use in stand-alone computer systems, the invention can be used

to enforce licenses in a network environment as well. Further, although the

operation of certain embodiments has been described in detail using specific

software programs and certain detailed process steps, different software may be

used, and some of the steps may be omitted or other similar steps may be

substituted, without departing from the scope of the invention. Other

embodiments incorporating the inventive features of the present invention

will be apparent to those skilled in the art.

Page 1090 of 1415

WO 99/05600 PCT/US98/15340

CLAIMS

1. In a computer operating environment comprising a software

program and a software resource, an apparatus for limiting use of said

software resource comprising: 1

an access authorization indicator associated with said software program;

means in said software resource for reading said access authorization

indicator;

means in said software resource for determining whether said access

authorization indicator is valid;

means for allowing access by said software program to said software

resource only if said access authorization indicator is determined to be valid.

2. The apparatus of claim 1 wherein said access authorization

indicator comprises terms of a license for use of said software resource.

3. The apparatus of claim 1 wherein said access authorization

indicator comprises terms of a site license.

4. The apparatus of claim 1 wherein said access authorization

indicator is embedded in said software program.

5. The apparatus of claim 1 wherein said software resource

25 comprises an API.

Page 1091 of 1415

WO 99/05600 PCT/U598” 5340

6. The apparatus of claim 1 wherein said software resource

comprises a runtime library.

7. The apparatus of claim 1 wherein said software resource

comprises a dynamic link library.

8. The apparatus of claim 1 wherein said software resource

comprises an applet.

9. The apparatus of claim 1 wherein said software resource

comprises a bytecode package.

10. The apparatus of claim 1 wherein said software resource

comprises an OLE enabled application program.

11. The apparatus of claim 4 wherein said access authorization -

indicator is specified in a constant declaration area of said software program.

12. The apparatus of claim 4 wherein said access authorization

20 indicator comprises a property of a property list of said software program.

13. The apparatus of claim 1 further comprising an identifier

associated with said access authorization indicator and wherein said means for

determining the validity of said access authorization indicator comprises

means for determining whether said access authorization indicator is valid

based on said identifier.

Page 1092 of 1415

WO 99105600 ' PCT/US98/15340

14. The apparatus of claim 13 further comprising means for

receiving said identifier from an end user.

15. The apparatus of claim 14 further comprising means for storing

said identifier in said software resource.

16. The apparatus of claim 13 wherein said identifier is embedded in

said software program.

17. The apparatus of claim 13 wherein said identifier comprises a

digital signature of said access authorization indicator.

18. The apparatus of claim 16 wherein said identifier is specified in a

constant declaration area of said software program.

19. p The apparatus of claim 16 wherein said identifier comprises a

property of a property list of said software program.

20. The apparatus of claim 17 wherein said means for determining

whether said access authorization indicator is valid based upon said identifier

comprises a means for digital signature authentication.

21. The apparatus of claim 2 further comprising means for

determining whether said terms of said license are met.

Page 1093 of 1415

WO 99/05600 ’ PCT/U598/1 5340

22. The apparatus of claim 13 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises terms of a license for use

of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

23. In a computer operating environment, a method for limiting use

of a software resource comprising:

receiving a request from a software program to use said resource; L

obtaining an access authorization indicator associated with said

software program;

determining whether said access authorization indicator is valid;

15 allowing said software program to use said software resource only if

said access authorization indicator is determined to be valid.

24. The method of claim 23 wherein said access authorization

indicator comprises terms of a license for use of said software resource.

25. The method of claim 24 wherein said license comprises a site

license.

26. The method of claim 23 wherein said access authorization

25 indicator is embedded in said software program.

Page 1094 of 1415

WO 99/05600 PCT/US98I15340

27. The method of claim 23 wherein said software resource

comprises an API.

28. The method of claim 23 wherein said software resource

comprises a runtime library.

29. The method of claim 23 wherein said software resource

comprises a dynamic link library.

30. The method of claim 23 wherein said software resource

comprises an applet.

31. The method of claim 23 wherein said software resource

comprises a bytecode package.

32. The method of claim 23 wherein said software resource

comprises an OLE enabled application program.

33. The method of claim 26 wherein said access authorization

indicator is specified in a constant declaration area of said software program.

34. The method of claim 26 wherein said access authorization

indicator comprises a property of a property list area of said software program.

Page 1095 of 1415

WO 99/05600 PCT/U898/15340

35. The method of claim 23 wherein said determining the validity of

said access authorization indicator comprises determining whether said access

authorization indicator is valid based on an identifier associated with said

access authorization indicator.

36. The method of claim 35 further comprising accepting said

identifier from a user.

37. The method of claim 36 further comprising storing said identifier

in said software resource.

38. The method of claim 35 wherein said identifier is embedded in

said software program.

39. The method of claim 35 wherein said identifier comprises a

digital signature of said access authorization indicator.

40. The method of claim 38 wherein said identifier is specified in a

constant declaration area of said software program.

41. The method of claim 38 wherein said identifier comprises a

property of a property list area of said software program.

42. The method of claim 35 wherein a digital signature

authentication means is used in determining whether said access

authorization indicator is valid based upon said identifier.

Page 1096 of 1415

WO 99/05600 PCT/US98/15340

43. The method of claim 24 further comprising determining

whether said terms of said license are met.

44. The method of claim 35 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises terms of a license for use

of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

45. A program storage device readable by a machine, tangibly

embodying a program of instructions executable by the machine to perform a

method for limiting use of a software resource, said method comprising:

receiving a request from a software program to use said resource;

obtaining an access authorization indicator associated with said

software program;

determining whether said access authorization indicator is valid;

allowing said software program to use said software resource only if

said access authorization indicator is determined to be valid.

46. The program storage device of claim 45 wherein said access

authorization indicator comprises terms of a license for use of said software

resource.

47. The program storage device of claim 46 wherein said license

comprises a site license.

Page 1097 of 1415

W0 99/0560!) PCTIUS98/15340

48. The program storage device of claim 45 wherein said access

authorization indicator is embedded in said software program.

49. The program storage device of claim 45 wherein said software

resource comprises an API.

50. The program storage device of claim 45 wherein said software

resource comprises a runtirne library.

51. The program storage device of claim 45 wherein said software

resource comprises a dynamic link library.

52. The program storage device of claim 45 wherein said software

15 resource comprises an applet.

53. The program storage device of claim 45 wherein said software

resource comprises a bytecode package.

54. The program storage device of claim 45 wherein said software

resource comprises an OLE enabled application program.

55. The method of claim 48 wherein said access authorization

indicator is specified in a constant declaration area of said software program.

Page 1098 of 1415

WO 99/05600 PCT/US98/15340

56. The program storage device of claim 48 wherein said access

authorization indicator comprises a property of a property list area of said

software program.

57. The program storage device of claim 45 wherein said

determining the validity of said access authorization indicator comprises

determining whether said access authorization indicator is valid based on an

identifier associated with said access authorization indicator.

58. The program storage device of claim 57 wherein said method

further comprises accepting said identifier from a user.

59. The program storage device of claim 58 wherein said method

further comprises storing said identifier in said software resource.

60. The program storage device of claim 57 wherein said identifier is

embedded in said software program.

61. The program storage device of claim 57 wherein said identifier

20 comprises a digital signature of said access authorization indicator.

62. The program storage device of claim 60 wherein said identifier is

specified in a constant declaration area of said software program.

63’. The program storage device of claim 60 wherein said identifier

comprises a property of a prOperty list area of said software program.

Page 1099 of 1415

WO 99/05600 PCT/US98/l 5340

64. The program storage device of claim 57 wherein a digital

signature authentication means is used in determining whether said access

authorization indicator is valid based upon said identifier.

65. The program storage device of claim 46 in which said method

further comprises determining whether said terms of said license are met.

66. The program storage device of claim 57 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises terms of a license foréuse

of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

67. An article of manufacture comprising:

a computer readable medium having computer readable program code

embodied therein for accessing a resource library, said computer readable

program code in said article of manufacture comprising:

computer readable program code embodying an access authorization

indicator for accessing said resource library.

68. The article of manufacture of claim 67 wherein said access

authorization indicator comprises terms of a license for use of said software

resource.

Page 1100 of 1415

WO 99/05600 PCT/US98/15340

69. The article of manufacture of claim 67 wherein said computer

readable program code comprises a software program and wherein said access

authorization indicator is embedded in said software program.

70. The article of manufacture of claim 67 wherein said software

resource comprises an API.

71. The article of manufacture of claim 67 wherein said software

resource comprises a runtime library.

72. The article of manufacture of claim 67 wherein said software

resource comprises a dynamic link library.

73. The article of manufacture of claim 67 wherein said software

15 resource comprises an applet.

74. The article of manufacture of claim 67 wherein said software

resource comprises a bytecode package.

75. The article of manufacture of claim 67 wherein said software

resource comprises an OLE enabled application program.

76. The article of manufacture of claim 69 wherein said access

authorization indicator is specified in a constant declaration area of said

25 software program.

Page 1101 of 1415

WO 99/05600 PCTIU598/ l 5340

77. The article of manufacture of claim 69 wherein said access

authorization indicator comprises a property of a property list of said software

program.

78. The article of manufacture of claim 67 further comprising

computer readable program code embodying an identifier associated with said

access authorization indicator.

79. The article of manufacture of claim 78 wherein said identifier is

embedded in said software program.

80. The article of manufacture of claim 78 wherein said identifier

comprises a digital signature of said access authorization indicator.

81. The article of manufacture of claim 78 wherein said identifier is

specified in a constant declaration area of said software program.

82. The article of manufacture of claim 78 wherein said identifier

comprises a property of a property list of said software program.

83. The article of manufacture of claim 78 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises terms of a license for use

25 of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

Page 1102 of 1415

WO 99/05600 PCT/US98/15340

1/12

{_———_——I

Application Program

Operating System

Computer Hardware

Application Program

| Resource Library
Operating System '

Computer Hardware

SUBSTITUTE SHEET (RULE 26)

Page 1103 of 1415

WO 99/05600 PCT/US98/15340

Resource

Library 1 '

Operating System _

Computer Hardware

SUBSTITUTE SHEET (RULE 26)

Page 1104 of 1415

WO 99/05600 ' PCT/US98/15340

Network -
interface

Mass storage

mp“t dewce Removable
Media

SUBSTITUTE SHEET (RULE 26)

Page 1105 of 1415

WO 99/05600 r PCT/U398/15340

Application Program

Prog. Lic. Mod.

510
50

FLL. Lic. Mod.

Resource Library
215

Operating System

Compmer Hardware

Prog. Lic. Mod.

Lic. Text Sir.

License Ke

License
Verification

R.L. Lic. Mod.

SUBSTITUTE SHEET (RULE 26)

Page 1106 of 1415

WO 99/05600 PCT/US98/15340

5/12

760

Reg. __C_fi
program
ident. in

Program sends text?
request message
to resource library

Access denied

R.L. obtains

program's licence
text and license key

Access granted

R.L. verifies license

Access denied

Verification
9

uccesslul. N0
Access granted

Access denied

Check License
Terms

Limited . _

validity Period .
period? expired? Access Denied

SUBSTITUTE SHEET (RULE 26)

Page 1107 of 1415

WO 99/05600 PCT[U898/15340

Application Program

Application Kit

Display Postscript
System

Foundation
Kit

Device-Dependent
Windowing
Extensions

Operating System

SUBSTITUTE SHEET (RULE 25)

Page 1108 of 1415

WO 99/05600 PCT/US98/15340

Application Program

Constant DeclaratiOns

LicenseKeyStn‘ng

LicenseAg reementString

UNLOCK

Operating System

SUBSTITUTE SHEET (RULE 25)

Page 1109 of 1415

WO 99/05600 PCT[U898/15340

Start UNLOCK
function

Read LicenseKey~

String and License-
AgreementString
from API

Site
License?

Read LicenseKey-

String and License-
AgreementString
from calling entity

Entity
Licensed?

Return FaiV Return Success/

Deny Access Grant Access

SUBSTITUTE SHEET (RULE 26)

Page 1110 of 1415

WO 99/05600 PCT/US98/15340

Stan CHECK 2
LICENSE function

1102

A LicenseAgreementStnng K

Assemble Public Key. \904

LicenseKeyString LicenseKeyString
and License-

AgreementString V P r K 902 FIG. 11as argument —‘5ndorUblc By
1106

Call CHECK
function

CHECK

function Current

pass? date
valid?

Check licence terms

Date
limited?

Return FAIL Return PASS

1126

SUBSTITUTE SHEET (RULE 25)

Page 1111 of 1415

WO 99/05600 PCT/US98/15340

Stan CHECK
function

Receive

LicenseKeyString.
LicenseAgmtString,
and vendor pub.key

Verify that
LicenseKeyString
comprises digital
signature of
LicenseAgmtString

Verification
uccessful?

Return PASS Retum FAIL

SUBSTITUTE SHEET (RULE 26)

Page 1112 of 1415

WO 99/05600 PCT/US98/15340

Application Program

NSLicenseA - reementNSLicenseKey

Application Kit

Foundation
Kit

Display Postscript NSCheck
System License

Device-Dependent
Windowing
Extensions

Operating System

i SUBSTITUTE SHEET (RULE 26)

Page 1113 of 1415

WO 99/05600 PCT/U898/15340

HTML Page HTML Browser

Applet Tag CheckLicense

App|et Parameters Vend. Pub. Key

LicAgmtString | Java Virtual Machine
LicenseKeyString

Operating System

Client Compmer

SUBSTITUTE SHEET (RULE 26)

Page 1114 of 1415

Page 1115 of 1415

worm) memo PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International publication Number: WO 99/05600

Go“ “00’ 9M6 (43) International Publication Date: 4 February 1999 (04.02.99)

(21) International Application Number: PCT/US98/15340 (81) Ddgnated States: CA. JP. European patent (AT, BE. CH, CY,DE, DK, ES, FI, FR. GB. GR. IE. IT. LU. MC. NL. PT.

(22) International Filing Date: 24 July 1998 (24.07.98) SE).

(30) Priority Data: Published
08/901.776 28 July 1997 (23-07-97) US With international search report.

Before the expiration of the time limit for amending the claims

(71) Applicant. APPLE COMPUTER INC [US/US]. Law Dch and to be republished in the event ofthe receipt ofamendments.
MIS: 38—PAT. 1 Infinite Loop. Cupertino, CA 95014 (US).

(88) Date of publication of the international search report:
(72) Inventors: GARST. Blaine; 3307 Bay Court, Belmont, CA 14 May 1999 (14.05.99)

94002 (US). SERLEI‘. Bertrand; 218 Colorado Avenue,
Palo Alto. CA 94301 (US). '

(74) Agents: HECKER, Gary, A. et aI.; Hecker & Harriman. Suite
2300, 1925 Century Park East. Los Angeles, CA 90067
(US).

(54) Title: METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

License
Verification

(57) Abstract

The present invention comprises a method and apparatus far enforcing software licenses for resource libraries such as an application
prop-am interface (API). a toolkit. a framework, 3 nmtime library. a dynamic link library ('DLL). an applet (e.g. a Java or ActiveX applet).
oranycuterretsable resource. The present iaVenticn allows meresomcelibrary to be selectivelyusedonly by aurhorizedenduscrsoftware
programs. he present invention can be used to enforce a "per—program" licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text suing and a corresponding license
keyareembeddedurapmgramdrathasbeenlicenscdtousearesomcelibrary. mucensetensuirrgandtltelicensekeyaresupplied.
forexample. by aresorucelibmyvendortoaprogmn developer-who wants touscthe resomcelibrary with anarduserprogram being
developed. Thclicensc text suing includes informationabcmure terms ofthe licenseunderwhichtheend userprogram is all wedtouse
utcresourcelibrary. Thelicensekeyisusedtoanmemicatelhelicensetextsuing. 'l'heresourcelrbraryinnunisprovidedwithmeansfor
reading the license text string and the license key. and for determining. using the license key. whether the license text string is authentic
and whether the license text suing has been altered. Resource library functions are made available only to a program having an authentic
and maltered license text string.

Page 1116 of 1415

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI‘ on the from pages of pamphlets publishing international applications under the PCT.

Slovmia
Slovakia
Senegalhmhoug

Latvia
Monm

Bosnia and Hemegovina ' Rwublic of Moldova
Barbados MW
Belgium ' Til: fame: Yugoslav
Burkim Faso Republic of Macedonia

3331:3335?!”
81113th mi:Beam

Uniicd States of America
U I I .
Vie: Nam
Yugoslavia
ZimbabweSE=8§§ESE‘WV’FEEgzgaaegaaanesaz sasggazazaaaggai

Page 1117 of 1415

INTELMNUONALSEARCHREPORT

CLASSIFICATION OF SUBJECT MATTER

IPC 6 GOGFl/OO GO6F9/46

lnle

_PCT/US 98/15340

onel Application No

According to lnlemationel Patent Classification iIPC) or to both national classification and iPC
B. FIELDS SEARCHED
Minimum dowmentation searched (classification system lollowed by classmcation syrmOIS)

IPC 6 GOGF

Documentation searched ether than minimum documentation to the extent that such comments are included in the fields searched

Eledronic data base consulted during the international search (name of data base and. where practical. search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ‘ Citation ol element. with indication. where appropriate. of the relevem passages
Relevant to claim No.

EP 0 667 572 A (IBM) 16 August 1995
see abstract; figure 4

see page 4, line 53 - page 5, line 27
see claims 1-9

EP 0 570 123 A (FISCHER ADDISON M)
18 November 1993

see abstract; figure 30
see claims 1-57

NO 97 14087 A (ERICKSON JOHN S)

17 April 1997
see abstract; figures 1,4,10,12
see page 7, paragraph 2 - page 9
paragraph 1

EP 0 778 512 A (SUN MICROSYSTEMS
11 June 1997

D Further documents are listed in the continuation of box CV
° Special categonee ol cited documents :

‘A' cement defining the general state or the art which is not
considered to be or particular relevance

'6' earlier document but published on or alter "to international
tiling date

'1‘ document which may throw doubts on priority claimls) orwhich is cited to establish the pmlication date oi another
citation or other special reason (a: specular!)

'0" document relerring to an oral diecloeure. use. exhbition orother means
'P' cement pmtished prior to the intemational tiling date but

later than the priority date dairned

Date oi the acne! oomletion oi the hemational search

12 March 1999

Name and mailing address oi the ISA
European Patent Otlloe. PB. 5818 Patentlaan 2
ML - m0 HV Hijawlik

Tel. (o31-70)340—2040.Tx. 31 651 epo nl.
Fax: (.31-70) 340-3016

Form Pctnsmio (uoond the!) (My 1992)

INC)

E Patent family members are listed in annex
'T" later document published alter the international liiing date

or priority date and not in conflict with the application but
cited to understand the princ‘ple or theory underlying theinvention

'X' document oi particular relevance: the claimed invemion
cannot be considered novel or cannot be considered to
involve an inventive aep when the comment is taken alone

'Y‘ document oi particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document Is contorted with one or more other such docu-

ments. such combination being obvious to a person skilled
the an.

'5' comment merrtaer of the same patent tarnin

Date 01 mailing of the international search report

19/03/1999

Auttionzed‘ officer

Powell, 0

Page 1118 of 1415

INTERNA'I ‘IAL SEARCH REPORT

.ntormmon on patent family members
lme: anal Applicauon No

PCT/US 98/15340

Publication
date

7230380 29-08—1995
5673315 30-09-1997

5412717 02-05-1995
3820993 18-11-1993
2095087 ' 16-11-1993
6103058 15-04-1994
5311591 10-05-1994

5765152 09-06-1998
7662496 30-04-1997

5708709 13-01-1998
9288575 04-11-1997

Faun PCT/ISM“) [MINI hflly m1) (July 1992)

Page 1119 of 1415

EP0930793A1

Europaisches Patentamt

European Patent Office

Office européen des br v ts
(19) ~a)

Hll

(11) EP 0 930 793 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
21.07.1999 Bulletin 1999/29

(21) Application number: 98310312.8

(22) Date offiling: 16.12.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 22.12.1997 us 995606

(71) Applicant: TEXAS INSTRUMENTS INC.
Dallas, Texas 75243 (US)

(72) Inventors:
- McMahon, Michael (NMI)

Plano, Texas 75074 (US)

(51) Int CLG: H040 7/32, H04B 1/38,
GOGF 9/38

- Lineberry, Marion C.
Dallas, Texas 75218 (US)

- Woolsey, Matthews A.
Plano, Texas 75023 (US)

- Chauvel, Gerard (NMI)
06600 Antlbes (FR)

(74) Representative: Potter. Julian Mark et al
D. Young 8: 00.,
21 New Fetter Lane

London E64A 1DA (G B)

(54) Mobile equipment with a plurality of processors

(57) A wireless data platform (10) comprises a plu-
rality of processors (12. 16). Channels of communica-
tion are set up between processors such that they may
communicate information as tasks are performed. A dy-
namic cross compiler (80) executed on one processor
compiles code into native processing code tor another

processor. A dynamic cross linker (82) links the com-
piled code tor other processor. Native code may also be
downloaded to the platform through use of a JAVA Bean
(90) (or other language type) which encapsulates the
native code. The JAVA Bean can be encrypted and dig-
itally signed for security purposes.

Prmedby Jews, 75%| PARIS (FR)

Page 1120 of 1415

EP 0 930 793 A1

Description

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

ni
[met] This invention relates in general to mobile electro...
ware platform for mobile electronic devices.

DESCRIPTION OF THE RELATED ART

[0002] Handheld portable devices are gaining popularity as the power and, hence, functionality of the devices in-
creases. Personal Digital Assistants (PDAs) are currently in widespread use and Smartphones, which combine some
of the capabilities of a cellular phone and a PDA, are expected to have a significant impact on communications in the
near future.

[0003] Some devrces currently incorporate one or more DSPs (digital signal processor) or other coprocessors for
providing certain discrete features, such as voice recognition, and a general purpose processor for other data process-
ing functions. The code for the DSP and the code for the general purpose processor is generally stored in ROMs or
other nonvolatile memories. Mitch are not easily modified. Thus, as improvements and new features become available,
it is often not possible to upgrade the capabilities of the device. In particular. it is not possible to maximize the use of
the DSPs or other coprocessor which may be present in the device.
[0004] Therefore, a need exists for a data processing architecture which can be upgraded and optimizes use of
multiple processors and coprocessors.

BRIEF SUMMARY OF THE INVENTION

[0005] The teachings of the present application disclose a mobile electronic device that comprises a coprocessor
for executing native code. a host processor system operable to execute native code cerresponding to the host processor
system and processor independent code. The host processor system is operable to dynamically change the tasks
performed by the digital signal coprocessor. Communication circuitry provides for communication between the host
processor system and the coprocessor.
[0006] This mobile electronic device significant advantages over the prior art. Because the host processor system
can dynamically allocate the tasks being performed by the coprocessor. which may be a digitalsignal processor. to
fully use the coprocessor. The host processor system may direct a routine to one of a plurality of ooprocessors, de-
pending upon a variety of factors, such the present capabilities of each processor.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0007] For a more complete understanding of the present invention. and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with the accompanying drawings, in which:

Figure 1 illustrates a block diagram of a platform architecture particularly suited for general wireless data process-
ing;

Figure 2 illustrates a functional block diagram of the platform of Figure 1;

Figure 3 illustrates a functional block diagram of dynamic cross compiling and dynamic cross linking functions;

Figure 4 illustrate an embodiment of native code for execution on a processor being encapsulated in a JAVA Bean
wrapper for downloading to a device;

Figure 5 illustrates the operation of transferring the encapsulated native code to a processor on a device from a
JAVA Bean located on a remote s rver; and

Figur 6 illustrates a flow diagram describing security featur 5 associated with the operation of Figure 5.

Page 1121 of 1415

EP 0 930 793 A1

DETAILED DESCRIPTION OF THE INVENTION

[0008] Figure 1 illustrates a preferred embodiment of a general wireless data platform architecture, which could be
used for example. in the implementation of a Smartphone or PDA. The wireless data platform 10 includes a general

purpose (Host) processor 12 coupled to bus structure 14. including data bus 14a. address bus 14b and control bus
14c. One or more DSPs (or other coprocessors) 16, including the core processor 16a and the peripheral interface 16b.
are coupled to bus 14 and to memory and traffic controller 18, which includes a DSP cache memory 18a, a CPU cache
18b, and a MMU (memory management unit) 18c. Hardware accelerator circuit 20 (for accelerating a portable language
such as JAVA) and a video and LCD controller 22 are also coupled to the memory and traffic controller 18. The output
of the video and LCD controller is coupled to an LCD or video display 24.

[0009] Memory & traffic controller 18 is coupled to bus 14 and to the main memory 26, shown as an SDRAM (syn-
chronous dynamic random access memory). Bus 14 is also connected to l/O controller 26. interface 30. and RAM
ROM 32. A plurality of devices could be coupled to the wireless data platform 10, such as smartcard 34. keyboard 36,
mouse 38, or one or more serial ports 40. such as a USB (universal serial bus) port or an R8232 serial port. Interface
30 can couple to a flash memory card 42 and/or a DFlAM card 44. The peripheral interface 16b can couple the, DSP
16 to a DAC (digital to analog convener) 46, a network interface 48 or to other devices.

[0010] The wireless data platform 10 of Figure 1 utilizes both a general purpose processor 12 and a DSP 16. Unlike
current devices in which the DSP 16 is dedicated to specific fixed functions, the DSP 16 of Figure 1 can be used for

any number of functions. This allows the user to derive the full benefit of the DSP 16.
[0011] One main area in which the DSP 16 can be used is in connection with the man-machine interface (MMI).
Imponantly. functions like speech recognition. image and video compression and decompression, data encryption,
text-to-speech conversion. and so on, can be performed much more efficiently using the DSP 16. The proposed ar-
chitecture allows new functions and enhancements to be easily added to wireless data platform 10.

[0012] it should be noted that the wireless data platform 10 is a general block diagram and many modifications could
be made. For example, Figure 1 illustrates separate DSP and processor caches 188 and 16b. As would be known to
one skilled in the art, a unified cache could also be used. Further, the hardware acceleration circuit 20 is an optional

item. Such devices speed the execution of languages such as JAVA; however. the circuit is not necessary for operation
of the device. Further, although the illustrated embodiment shows a single DSP, multiple DSPs (or other coprocessors)
could be coupled to the buses. -.

[0013] Figure 2 illustrates a functional software architecture for the wireless data platform 10. This block diagram
presumes the use of JAVA; it should be noted that languages other than JAVA could be used as well. Functionally. the
software is divided into two groups, Host processor software and DSP software. The Host software includes one or
more applets 41 . The DSP API class 43 is a JAVA API package for JAVA applications or applets to access the func-
tionality of the DSP API 50 and Host DSP interface Layer 52. A JAVA virtual machine (VM) 45 interprets the applets.
The JAVA native interface 47 is the method which the JAVA VM executes host processor or platform specific code.

Native tasks 49 are non-JAVA programs which can be executed by the Host processor 12 without using the JAVA
native interface. The DSP API 50, described in greater detail hereinbelow, is an API (application program interface)
used the Host 12 to call to make use of the capabilities of the DSP 16. The Host—DSP Interface Layer 52 provides an
API for the Host 12 and DSP 16 to communicate with each other, with other tasks, or other hardware using channels
via the Host-DSP Communication Protocol. The DSP device driver 54 is the Host based device driver for the Host

FlTOS 56 (real time operating system) to communicate with the DSP 16. The Host FlTOS 56 is an operating system.
such as NUCLEUS PLUS by Accelerated Technology Incorporated.

[0014] Alternatively a non-real time operating system. such as WINDOWS CE by Microsoft Corporation, could b
used. The DSP Library 58 contains programs stored for execution on the DSP 16.
[0015] On the DSP side, one or more tasks 60 can be stored in memory for execution by the DSP16. As described
below, the tasks can be moved in and out of the memory as desired, such that the functionality of the DSP is dynamic,
rather than static. The Host-DSP Interface layer 62 on the DSP side performs the same function as the Host-DSP
Interface layer 52 on the Host side, namely it allows the Host 12 and DSP 16 to communicate. The DSP RTOS 64 is
the operating system for the DSP processor. The Host Device driver 66 is a DSP based device driver for the DSP
RTOS 64 to communicate with the Host 12. The Host-DSP Interface 70 couples the DSP 16 and Host 12.

[0016] In operation, the software architecture shown in Figure 2 uses the DSP 16 as a variable function device, rather
than a fixed function device as in the prior art.

[0017] Accordingly, the DSP functions can be downloaded to the mobile device incorporating the architectur of
Figm 2 to allow the DSP 16 to perform various signal processing functions for the Host 12.
[0018] Th DSP-API provides a device indep ndent interfac from the Host 12mm DSP 16. Th functions provide
the Host 12 with th ability to load and schedule tasks on th DSP 16 and to control and communicat with those tasks.
Th API functions include calls to: determine th DSP‘s available resources, creat and control Host 12 and DSP tasks,
create and control data channels between Host 12 and DSP tasks. and communicat with tasks. These functions are

Page 1122 of 1415

EP 0 930 793 A1

described below. Each function returns a BOOLean result, which will be SUCCESS for a successful operation, or
FAILURE If the result is FAILURE, the errcode should be checked to determine which error occurred

DSP_G t_MlPS .

BOOL DSP_Get_MIPS(T_DeviceID Dev/D, U32 'mI'ps, U16 'errcode);

[0019] This function returns the current MIPS available on the DSP. This consists of the MIPS capability of the DSP
16 minus a base MIPS value (the MIPS value with no additional dynamic tasks, i.e. the kernel plus API code plus
drivers), minus the sum of the MIPS ratings for all loaded dynamic tasks. The errcoa'e parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_Get_Memory_Available

BOOL DSP_GeLMemory_Availab/e(T_DeviceID DevID, T_Size 'progmem, T_Size 'datamem, U16 'errcode);
[0020] This function will query the DSP 16 specified by DevIDfor the amounts of available memory for both program
memory and data memory. The resultant values are returned in the progmem and datamem parameters. The sizes
are specified in T_DSP_Words. The errcode parameter will contain the following possible results:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_AIIoc_Mem

BOOL DSP_AIIoc_Mem(T_Device/D DeVID, U16 mempage, T_Size size, T_DSP_Word "memptr, U16 'err—
code);

[0021] This function will allocate a block of memory on a DSP 16. The Dev/D specifies which device on which to
allocate the memory. The mempage is O for program space, and 1 for data space. The size parameter specifies the
memory block size in T_DSP_Words. The returned memptr will be a pointer to the memory block on the DSP 16, or
NULL on failure. The erroode parameter will contain the following possible results:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_NOT_ENOUGH_MEMOFIY
DSP_Free_Mem

BOOL DSP_Free_Mem(T_DevicefD DevID, U16 mempage, T_DSP_ Word 'memptr, U16 'errcode);
[0022] This function will free a block of memory on a DSP that was allocated with the DSP_Alloc_Mem function. The
Dele specifies on which device the memory resides. The mempage is 0 for program space, and 1 for data space.
The memptr parameter is the pointer to the memory block. The errcode parameter will contain the following possibleresults:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_MEMBLOCK_NOT_FOUND

DSP_Get_Code_lnfo

BOOL DSP_Gef_Code_Info(char 'Name, T_CodeHdr 'codehdr, U16 'erroode);
[0023] This function will access the DSP Library table and return the code header for the DSP function code specified
by the Name parameter. On return. the location pointed to by the codehdr parameter will contain the code header
information. The errcode parameter will contain the following possible results:

DSP_SUCCESS

DSP_NAMED_FUNC_NOT_FOUND
DSP_Llnk_Code

BOOL DSPfiLink_Code(T_Devioe/D Der/ID, T_CodeHdr ‘codehdr. T_ TaskCreate 'tcs, U16 'errcode);
[0024] This function will link DSP function code so that it will run at a specified address on the DSP specified by
Dev/D. The oodehdrparam ter points to th code header fOr th function. Th dynamic cross link r will link th code
bas don information inthecod h ader, and in th cod (COFFfiI). The dynamic cross link rwillallocat th memory
as n eded, and link and load th code to the DSP 16. Th tcs param t r is a point r to th task creation structure
needed in the DSP_Cr ate_Task function. DSP_Link_Code will fill in th code ntry points, priority, and quantum fi Ids
of the structur in preparation for creating a task. Th errcode paramet r will contain the following possible results:DSP_SUCCESS

Page 1123 of 1415

EP 0 930 793 A1

DSP_DEVlD_NOT_FOUND
DSP_DEVID_NOT_FIESPONDING
DSP_NOT_ENOUGH_PROG_MEMORY
DSP_NOT_ENOUGH_DATA_MEMORY
DSP_COULD_NOT_LOAD_CODE

DSP_Put_BLOB

BOOL DSP_Put_BLOB(T_DeviceID Dev/D, T_HostPIr srcaddr, T_DSP_Ptr destaddr, U 16 mempage, T_Size
size, U16 'errcode);

[0025] This function will copy a specified Binary Large Object (BLOB) to the DSP 16. The Dele specifies on which
DSP 16 to copy the object. The srcaddrparameter is a pointer to the object in Host memory. The destaddris a pointer
tothe location to which to copy the object on the DSP 16. The mempage is 0 for program space, and 1 for data space.
The size parameter specifies the size of the object in T_DSP_Words. The errcode parameter will contain the following
possible results :

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_FIESPONDING
DSP_INVALID_MEMPAGE

DSP_Create_Task

BOOL DSP_Creare_Task(T_DeviceID DevID, T_TaskCreate 'tcs, T_ TaskID 'TaskID, U16 'erroode);
[0026] DSP_Create_Task requests the DSP 16 to create a task given the task parameters and the code locations
in the DSP's program space. The Task Creation Structure is show in Table 1:

Table 1.

Task Creetlon Structure.

T_DSP_Name Name User defined name for the task.
U82 MIPS MIPS used by the task.

T_ChanlD Chanln The channel ID used for task input.

T_ChanID ChanOut The channel ID used tor task output
T_StrmlD Strmln The stream ID used tor task input

T_StrmlD StrmOut The stream ID used for task output.

U16 Priority The task's priority.
U32 Quantum The task's timeslice in system ticks.

T_Size StackFleq The amount of stack required.

T_DSP_Ptr Mngandler Pointer to code to handle messages to the task.
T_HOST_Ptr CallBack Pointer to Host code to handle messages trom the task.

T_DSP_Ptr Create Pointer to code to execute when task is created.
T_DSP_Ptr Start Pointer to code to execute when task is started.

T_DSP_Ptr Suspend Pointer to code to execute when task is suspended.

T_DSP_Ptr Resume Pointer to code to execute when task is resumed.

T_DSP_Ptr Stop Pointer to code to execute when task is stopped.

[0027] Once the task is created, the Create entry point will be called, giving the task the opportunity to do any nec-
essary preliminary initialization. The Create. Suspend, Resume, and Stop entry points can be NULL. The resultant
TaskID contains both the device ID (Dele), and the USPS task ID. It the Task/D is NULL, the create failed. The errcode
parameter will contain the following possible results: ‘

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RE$PONDING
DSP_INVALID_PRIORITY
DSP_CHANNEL_NOT-FOUND
DSP_ALLOCATION_EFIROFI

DSP_Start_Ta k
BOOL DSP_Stan__ Task(T_ TaskID TaskID, U16 'erroode); .

[0028] This tunction will start a DSP task sp cified by 7215le. Execution will b gin at th task‘s Start ntry point. The

Page 1124 of 1415

EP 0 930 793 A1

errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEV|D_NOT~FOUND
DSP_DEVID_NOT_FiESPONDING
DSP_TASK_NOT_FOUND

DSP_Suspend_Task
BOOL DSP_Suspend_ Task(T_ 7'35le Tasle, U16 ‘errcode),‘

[0029] This function will suspend a DSP task specified by Task/D. Prior to being suspended, the task's Suspend
entry point will be called to give the task a chance to perform any necessary housekeeping. The errcode parameter
will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_fiesume_Task

BOOL DSP_Resume_ Task(T_ Tasle TaskID, U16 'errcode);
[0030] This function will resume a DSP task that was suspended by DSP_Suspend_Task. Prior to being resumed,
the task's Resume entry point will be called to give the task a chance to perform any necessary housekeeping. The
errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDlNG
DSP_TASK_NOT_FOUND
DSP_TASK_NOT_SUSPENDED

DSP_DeIete_Task

BOOL DSP_DeIete_Task(T_Tasle Task/D, U16 ‘errcode);
[0031] This function will delete a DSP task specified by Task/D. Prior to the deletion, the tasks Stop entry point will
be called to give the task a chance to perform any necessary cleanup. This should include freeing any memory that
was allocated by the task, and returning any resources the task acquired. The encode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVlD_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Change_Task_Priority
BOOL DSP_Change_ Task_Pn‘on'ty(T_ Task/D Tasle, U16 newpriority, U16 ‘oldpriority, U16 'errcode);

[0032] This function will change the priority of a DSP task specified by Tasle_ The priority will be changed to newp-
rion‘ty. The possible values of newpn'ority are RTOS dependent. Upon return, the oldpn'ority parameter will he s t to
the previous priority of the task. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_FlESPONDlNG
DSP_TASK_NOT_FOUND
DSP_INVALID_PRIOFlITY

DSP_Get_Task_$tatus

BOOL DSP_GeL Task_Status(T_ Task/D Task/D, U16 ‘status, U16 'prion'ty, T_ChanfD 'Input, T_ChanID 'Output,
U16 ‘errcode): .
[0033] This function returns the status tor a DSP task specified by Task/D. The status will be one of the following
values:

DSP_TASK_RUNNING
DSP_TASK_SUSPENDED
DSP_TASK_WAITFOFl_SEM
DSP_TASK_WAITFOH_QUEUE
DSP_TASK_WAITFOR_M$G

[0034] The priority parameter will contain th task‘s priority, and the Input and Output paramet rs will contain the
task's input and output charm I IDs= respectively. The encode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND

Page 1125 of 1415

EP 0 930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Get_lD_From_Narne
BOOL DSP_GeL/D_From_Name(T_Device/D Dev/D, T_DSP_Name Name, T_DSP_ID '10, U 16 'errcode):

[0035] This function returns the lD for a named object on the DSP 16. The named object may be a channel, a task,
a memory block, or any other supported named DSP object. The errcode parameter will contain the following possible
results:

DSP_SUCCESS
DSP_DEVlD_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NAME_NOT_FOUND

DSP_Dbg_Read_Mem
BOOL DSP_Dbg_Head_Mem(DEVICE_ ID Dev/D, U8 mempage. DSP_ PTR addi: U32 count, DSP_ WOFID 'buf,

U16 'errcode):
[0036] This function requests a block of memory. The mempage specifies program memory (0) or data memory (1).
The addr parameter specifies the memory starting address, and the count indicates how many T_DSP__Words to read.
The bufparameter is a pointerto a caller provided buffer to which the memory should be copied. The errcode parameter
will contain the following possible results:

DSP_SUCCESS
DSP_DEV|D_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Dbg_WrIte_Mem
BOOL DSP_Dbg_ Write_Mem(T_Device/D Dev/D, U 16 mempage, T DSP_PIr addi; T_Count count,

T_DSP_ Word 'buf. U16 'errcode):

[0037] This function writes a block of memory The mempage specifies program memory (0) or data memory (1).

The addrparameter specifies the memory starting address, and the count indicates how many T_DSP_Words to write.
The bu! parameter is a pointer the buffer containing the memory to write. The erroode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP-INVALID_MEMPAGE

DSP_Dbg_Read_Reg
BOOL DSP_Dbg_Head_Reg(T_DeviceID Deva, U16 Reg/D, T_DSP_ Word 'regvalue, U16 'errcode);

[0038] This function reads a DSP register and returns the value in regvalue. The RegID parameter specifies which
register to return. If the Reg/D is -1. then all of the register values are returned The regvalue parameter, which is a
pointer to a caller provided buffer, should point to sufficient storage to hold all of the values. The register IDs are DSP
specific and will depend on a particular implementation. The errcode parameter will contain the following possible
results:

DSP_SUCCESS
DSP_DEVID_NOT__FOUN D
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_FlEGlSTEH

DSP_Dbg_erte_Reg
BOOL DSP_Dbg_Wrire_Reg('T_DeviceID Dev/D, U16 Reg/D, T_DSP_ Word regvafue, U16 'erroode);

[0039] This function writes a DSP register. The Reng parameter specifies which registerto modify. regvalue contains
the new value to write. The register IDs are DSP specific and will depend on a particular implementation. The encode
parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGlSTEFl

DSP_Db'g_Sot_Break
BOOL DSP_Dbg_Sef_Break(T_Device/D Dev/D, DSP_Pfraddr, U16 'errcode); This function sets a br ak point

at the giv n cod addr ss (addr). Th erroode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND

Page 1126 of 1415

EP 0 930 793 A1

DSP,DEVID_NOT_RESPONDING
DSP_Dbg_Clr_Break

BOOL DSP_Dbg_C/LBreak(T_DeviceID Dev/D, T_DSP_ Fir addr, U16 ‘errcode);
[0040] This function clears a break point that was previously set by DSP_Dbg_Set_Break at the given code address
(addr). The errcode parameter will contain the following possible results:

DSP_SUCCESS

DSP_DEV!D_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BP_DID_NOT_EXIST

[0041] The DSP Device Driver 54 handles communications from the Host 12 to the DSP 16. The driver functions will
take the communication requests as specified in the Host-DSP Communications Protocol and handle the transmission
of the information via the available hardware interface. The device driver is RTOS dependent and communications
hardware dependent. .
[0042] The DSP Library 58 contains the blocks of code that can be downloaded to the DSP 16 for execution. Each
block of code will be previously unlinked, or relocatably linked as a library, so that the dynamic cross linker can resolve
all address relerences. Each code block will also include information about the block‘s requirements for DSP MIPS
(millions of instructions per second), priority, time slice quantum, and memory. The format for the code block header

is shown in Table 2. The program memory and data memory sizes are approximations to give the Host 12 a quick
check on whether the DSP can support the task's memory requirements. If there appears to be sufficient space, the
dynamic cross linker can then attempt to link and load the code. It should be noted that the dynamic CI'OSS linker could
still fail, due to page alignment and contiguity requirements. in the preferred embodiment, the code is in a version 2
COFF file format.

Table 2.

Code Block Header.

U16 Processor The target processor type.
T_DSP_Name Name Task's name.

U32 MIPS Worst case MIPS required by the task.

T_Size ProgSize Total program memory size needed.
T_Size DataSize Total data memory size needed.

T_Size lnFrameSize Size of a frame in the task's input channel.

T_Size OutFrameSize Size of a frame in the task's output channel.

T_Size lnStrmSize Size of the task‘s input stream FIFO.

T_Size OutStnnSize Size of the task‘s output stream FlFO.
U16 Priority Task's priority.

U32 Quantum Task's time slice quantum (number of system ticks).
T_Size StackReq Stack required.
T_Size CoflSize Total size of the COFF file.

T_DSP_Ptr Mngandler Offset to a message handler entry point for the task.

T_DSP_Ptr Create Offset to a create entry point that is called when the task is created.
T_DSP_Ptr Stan Offset to the start of the task's code.

T_DSP_Ptr Suspend Offset to a suspend entry point that is called prior to the task being suspended.
T_DSP_Ptr Offset to a resume entry point that is called prior to the task being resumed.
T_DSP_Ptr Offset to a stop entry point that is called prior to the task being deleted,
T_Host__Ptr Pointer to the location of the COFF data in the DSP Library.

[0043] A procedure for converting portable (processor independent) code, such as JAVA code, into linked target
code is shown in Figure 3. The procedure uses two functions, a dynamic cross compiler 80 and a dynamic cross linker
82. Each function is impl m nted on the host proc ssor 12. The dynamic cross linker is part of the DSP-API in the
preferr d embodiment. The cross compil r may also be part of th DSP-API.

[0044] Th dynamic cross compil r 80 conv its portable code into unlinked, executable target proc ssor cod . The
dynamic cross linker 82 convene the unlinked, executable target processor cod into linked, ex cutabl target proc-
essor code. To do so, it must resolve addresses within a block of cod . prior to leading on the DSP 16. The dynamic

Page 1127 of 1415

EP 0 930 793 A1

cross linker 82 links the code segments and data segments of the function, allocates the memory on the DSP 16, and
loads the code and constant data to the DSP 16. The functions are referred to as 'cross' compiling and 'cross“ linking,
because the functions (compiling and linking) occur on a different processor (is, the host processor 12) from the target
processor which executes the code (i.e.. the DSP 16).
[0045] The dynamic cross compiler 80 accepts previously unlinked code loaded on demand by a user or a user agent
(such as a browser). The code is processed to either (1) identify 'tagged' sections of the code or (2) analyze untagged

code segments for suitability of execution on the DSP 16. A tagged section of source code could delineate source
targetable to a DSP by predetermined markers such as '<start DSP code>' and <end DSP code>' embedded in the
source code. If a tagged section is identified either directly or through analysis, a decision is made to either cross
compile or not based on the current processing state of the DSP 16. If a decision is made to compile, the section of
code processed by compiling software that outputs unlinked, executable target processor code, using well known
compiling methods. A decision not to compile could be made if for example. the DSP has insufficient available process-
ing capacity (generally stated as available MIPS - million of instructions per second) or insufficient available memory.
due to other tasks being executed by the DSP 16. The compiled code can be passed to the dynamic cross linker 82
for immediate use in the DSP 16, or could be saved in the DSP library 58.
[0046] The dynamic cross linker82 accepts previously unlinked code, which is either (1)statically stored in connection
with the host processor 12 or (2) dynamically downloaded to the host processor 12 over a network connection (including
global networks such as the lntemet) or (3) dynamically generated by the dynamic cross compiler 80. The dynamic
cross linker 82 links the input code for a memory starting address of the DSP 16 determined at runtime. The memory
starting address can be determined from a memory map or memory table stored on and managed by either the host
processor 12 or DSP 16. The dynamic cross linker 82 convert referenced memory locations in the code to actual
memory locations in the DSP 16. These memory locations could include, for example, branch addresses in the code
or references to locations of data in the code.

[0047] In the preferred embodiment, the portable code is in a COFF (common object file format) which contains all
information about the code, including whether it is linked or unlinked. if it is unlinked, symbol tables define the address
which must be changed for linking the code. .
[0048] The conversion process described above has several significant advantages over the prior art. First, the

dynamic cross compiler 80 allows run-time decisions to be made about where to execute the downloaded portable
code. For example, in a system with multiple target processors (such as two DSPs 16), the dynamic cross compiler
80 could compile the portable code to any one of the target processors based on available resources or capabilities.
The dynamic cross linker 82 provides for linking code to run on a target processor which does not support relocatable

code. Since the code is linked at run-time, memory locations in the DSP 16 (or other target processor) do not need to
be reserved, allowing optimum efficiency of use of all computing resources in the device. Because the compiling is
accomplished with knowledge of the architecture of the platform 10, the compiling can take advantage of processor
and platform specific features. such as intelligent cache architectures in one or both processors 12 and 16.
[0049] Thus, the DSP 16 can have various functions which are changed dynamically to fully use its processing
capabilities. For example, the user may wish to 12 load a user interface including voice recognition. At that time, the
host processor 12 could download software and dynamically cross compile and cross Iinkthe voice recognition software
for execution in the DSP 16. Alternatively, previously compiled software in the DSP library 58 could be dynamically
cross linked, based on the current status of the DSP 16, for execution.

[0050] The Host Device Driver handles communications from the DSP 16 to the Host Processor 12. The driver
functions takes the communication requests as specified in the Host-DSP Communications Protocol and handles trans-

mission of the information via the available hardware interface. The device driver is Fl'TOS dependent and communi-
cations hardware dependent. _
[0051] The Host-DSP Communications Protocol governs the communications of commands and data between the
Host 12 and the DSP 16. The communications consist of several paths: messages, data channels, and streams. Mes-
sages are used to send initialization parameters and commands to the tasks. Data channels carry large amounts of
data between tasks and between the DSP 16 and Host 12, in the form of data frames. Streams are used to pass
streamed data between tasks and between the DSP 16 and Host 12.

[0052] Each task has an entry point to a message handler, which handles messages. The messages are userdefined
and will include initialization parameters for the task's function. and commands for controlling the task. The tasks send

messages to the Host 12 via the callback specified when the task is created. The prototype for the task's message
handler and the prototype for the Host's callback are shown here:

void TaskMngandIer(T_RepIyRef replyref, T_MsgID MsgID, T_Count count, T_DSP_Word 'buf);
void HostCaiIBack(T_FteplyRef replyref T_MsgID MsgID, T_Count count, T_DSP_ Word ’buf);

[0053] The replyref param ter r fers to an implementation dependent referenc value, which is used to route th

Page 1128 of 1415

EP 0 930 793 A1

reply back to the sender. For every Send_Message call, the recipient must call Reply_Message using the reply/e!
parameter. The actual messages may appear as follows:

m
nmm

The multiword data is sent least-significant word first.
[0054] A Tasleof 0 in the Send_Message function indicates a system level message. The system level messages
are used to implement the DSP-API functions
[0055] Following are the Message functions:

Send_-Message
BOOL Send_Message(T_TaskID TaskID, T_MsgID MsgID, T_Count count, T__DSP_ Word 'msgbuf,

T_DSP_Word 'replybuf, T_Size replybufsize, T_Count replyoount, U16 'errcode);
[0056] This function will send a user defined message to atask specified by Tasle. The MsgID defines the message,
and the msgbufcontains the actual message data. The message size is count T_DSP_Words. The reply to the message
will be contained in the repfybufparameter, which points to a buffer of size replybufsize, provided by the caller. It should

be of sufficient size to handle the reply for the particular message. The errcode parameter will contain the following
possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVlD_NOT_RESPONDING
DSP_TASK_NOT_FOUND

Reply_Message
BOOL RepIy_Message(T_FieplyRef replyref, T_Count count, T_DSP_Wcrd *buf, U16 ‘errcode);

[0057] This function is used to reply to messages. The replyrefparameter is a reference used to route the reply back
to the sender of the original message, and is implementation specific. The reply is contained in the buf parameter and
its size is count T_DSP_Words. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPOND|NG
DSP_BAD_REPLY_HEF

[0058] The concept of channels is used to transmit frame-based data from one processor to another, or betw en
tasks on the same processor. When created, a channel allocates a specified number and size of frames to contain the
data. Initially, the channel will contain a list of empty frames. Tasks that produce data will request empty frames in
which to put the data, then once filled, the frame is returned to the channel. Tasks that consume data will request full
frames from the channel, and once emptied, the frame is returned to the channel. This requesting and returning of
frame buffers allows data to move about with a minimum of copying.
[0059] Each task has a specified Input and Output channel. Once a channel is created, it should be designated as
the input to one task, and the output to another task. A channel's ID includes a device ID, so channels can pass data
between processors. Channel data flow across the Host-DSP interface may appear as follows:

ChanPktFlag Channel lDm

The following are the channel functions:
Create_Chennel

BOOL Create_ Channel(T_DeviceID DevID, T_Size Iramesize, T_ Count numframes, T_ChanID ‘CnanneIlD, U16
‘errcode);
[0060] This function creates a data frame-based communication channel. This creates a channel control structure.

which maintains control of a set of frame buffers, whose count and size are specified in the numframes and framesim
parameters, respectively. When created. the channel allocates the data frames, and adds them to its list of empty
frames. ChannelID will return the ID of the new channel. It the Dele is not that of the calling processor, a channel
control structure is created on both the calling processor and th Dev/D proc ssor. to control data flowing across the
communications int rfac . Th errcode param ter will contain th following possibl results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING

Page 1129 of 1415

EP 0 930 793 A1

CHAN_ALLOCATION_ERROR
Delete_Chennel

BOOL Delete_Channe/(T_ChanlD Channel/D, U16 'erroode);

[0061] This function deletes an existing channel specified by Channel/D. The encode parameter will contain the
following possible results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT RESPONDING
CHAN_CHANNEL_NOT_FOUND

Request_Empty_Frame
BOOL Request_Empfy_Frame(T“Loca/ChanlD Chn, T_DSP_Word “bufpfr, BOOL WaifFlag, U16 'errcode);

[0062] This function requests an empty frame from the specified local channel ID. If Chn is NULL. then the task's
output channel is used. Upon return. the bufpfrparameter will contain the pointer to the frame buffer, If the WailF/ag
is TRUE, and there is no frame buffer available, the caller will be suspended until a buffer becomes available. If the

WaitF/ag is FALSE. the function will return regardless. The encode parameter will contain the following possible results:
CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFEFl_UNAVAILABLE

Return_Full_Frame

BOOL Hefum_Fu/I_F/ame(T_LowlChanID Chn, T_DSP_Word 'bufpfr, U16 ‘errcode);
[0063] Once a task has filled a frame buffer. it returns is to the channel using this function. The buffer pointed to by
bufptr is returned to the channel ID specified. If Chn is NULL, then the task's output channel is used, The errcode
parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFEFl_CTFtL_EFlFlOFt

Request_Full_Freme ‘ ‘
BOOL Request_Fu/I_Frame(T_Lom/ChanID Chn, T_DSP_ Word "bufptr, BOOL WaitFIag, U16 'errcode);

[0064] This function requests a full frame of data from the specified local channel ID. If Chn is NULL, then the task‘s
input channel is used. Upon return. the bufpfr parameter will contain the pointer to the frame buffer. If the WaitFlag is
TRUE, and there are no full frame buffers available. the caller will be suspended until a buffer becomes availabl . If

the WaifFIag is FALSE, the function will return regardless. The erroode parameter will contain the following possible
results: .

CHAN_S UCCESS ”
CHAN_CHANNEL_NOT_FOUND '
CHAN_BUFFER_UNAVAILABLE

Fleturn_Empty_Frame
BOOL Refurn_Empty_Frame(T_Loca/ChanID Chn, T_DSP_Word 'bufpfr, U16 'erroode);

[0065] Once a task has used the data from a frame buffer. it should return the buffer to the channel using this function.
The buffer pointed to by bufpfr is returned to the channel ID specified. If Chn is NULL. then the task's input charm I is
used. The errcode parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_EHFlOFl

Set_Task_Input_Chennel
BOOL Set_Task_Inpuf__Channe/(T_Task ‘TaskID, T_ChanID Chan/D, U16 'erroode);

[0066] This function sets a task's input channel to the specified channel In The errcode parameter will contain the
following possible results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_FiESPONDlNG
CHAN_TASK__NOT_FOUND
CHAN_CHANNEL_NOT_FOUND

Sef_Task_Ompm_Chennel
BOOL Sel_Task_0ufput_Channe/(T_ Task 'TaskID, T_ ChanID ChanlD, U16 'erroode);

[0067] This function 5 ts a task's output channel to the specified channel lb. The errcode parameter will contain the
following possible results:

CHAN_SUCCESS

Page 1130 of 1415

EP 0 930 793 A1

CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING
CHAN_TASK_NOT_FOUND
CHAN_CHANNEL»NOT-FOUND

[0068] Streams are used for data which can not be broken into frames. but which continuously flow into and out of
a task. A stream will consist of a circular buffer (FIFO) with associated head and tail pointers to track the data as it
flows in and out. Each task can have a designated input and output stream. Stream data flow across the Host-DSP
interface may appear as follows:

Following are the stream functions:
Create_Stream

BOOL Create_Stream(T_DeviceID Dev/D: T_Size FIFOsize, T_StrmID 'StreamID, U16*errcode);
[0069] This function creates a FlFO-based communication stream. This creates a stream control structure, which
maintains control of a FIFO of size FIFOsize. When created. the stteam allocates an empty FIFO, and initializes head
and tail pointers to handle data flow into and out of the stream. StreamID will return the ID of the new stream. If the

Dele is not that of the calling processor, a stream control structure is created on both the calling processor and the
Dev/D processor, to control data flowing across the communications interface. The encode parameter will contain the
following possible results:

STFIM_SUCCESS
STHM_DEVID_NOT_FOUND
STHM_DEVID_NOT_RESPONDING
STHM_ALLOCATION_ERROFI

Delete_Channel

BOOL De!ete_Stream(T_StrmID StreamID, U16 'erroode);
[0070] This function deletes an existing stream specified by Stream/D. The encode parameter will contain the fol-
lowing possible results:

STRM_SUCCESS
STHM_DEVID_NOT_FOUND
STFIM_DEVID_NOT_RESPONDING
STFIM_STFIEAM_NOT_FOUND

Get_Stream_Count
BOOL Get_$tream_Count(T_LocaIStrm/D StmtlD, T_Count ‘count, U16 'errcode);

[0071] This function requests the count of T_DSP_Words currently in the stream FIFO specified by StrmID. The
count parameter will contain the number upon return. The encode parameter will contain the following possible results:

STHM_SUCCESS
STFIM_STFiEAM_NOT_FOUND

Write_Stream

BOOL Write_Stream(T_Loca/StnnID Strm, T_DSP_Word ’bufptr, T_Count count, T_Count 'oountwn'tten, U16
'errcode);
[0072] This function will write countnumber of T_DSP_Words to the stream specified by the Strm. If Strm is NULL,
the task's Output stream is used. The data is pointed to by the bufptrparameter. Upon return, countwritten will contain
the number of T_DSP_Words actually written. The encode parameter will contain the following possible results:

STFIM_SUCCESS
STRM_DEVID_NOT_FOUND
STHM_DEVID_NOT_RESPONDING
STRM_STFIEAM_NOT_FOUND
STFIM_STREAM_OVERFLOW

Read_Stream

BOOL Read_Stream(T_Loca/StrmlD Stnn, T_DSP_Word 'bufptr, T_Count maxoount, BOOL WaitFlag, T_Count
'countread, U16 'errcodefi

[0073] This function reads data from the stream sp cified by Strm. If Stnn is NULL. th task's input stream is used.
Th data will be stored in the butler pointed to by bufptr. Up to maxoountT_DSP_Words will b r ad from the stream.
The countread parameter will contain the actual count ol th data read. Th encode parameter will contain the following
possible r suits:

STFIM_SUCCESS

Page 1131 of 1415

EP 0 930 793 A1

STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND

Set_Task_lnput-Str am
BOOL Set_ Task_lnput_Stream(T_ Task 'Tasle, T_StrmID StrmID. U16 'e/rcode):

[0074] This function sets a task's input stream to the specified stream ID The encode parameter will contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

Set_Task_Output_Stream
BOOL Set_ Task_0utput_Stream(T_ Task 'Task/D, T__StrmlD StrmlD, U16 'errcode);

[0075] This function sets a task's output stream to the specified stream ID. The erroode parameter will contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_FlESPONDING
STFtM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

[0076] Data types used herein are defined in Table 3:

Table 3

‘
Signed 8-bit integer. l

y
Signed 16-bit integer.

6 Unsigned 16-bit integer.

2

-

U1

Cm

l-lE’

m'—

Page 1132 of 1415

EP 0 930 793 A1

Table 3 (continued)

TA DSP Name Name for DSP objects (RTOS dependent)

T_CodeHdr Code header structure tor a DSP Library entry,

T_TaskCreate Task creation structure.

[0077] These tables define the messages passing between devices (ie Host to DSP 16). The device le present
as parameters in the corresponding lunction calls are not incorporated in the messages since they are used to actually
route the message to the devices Similarly. task IDs that include a device lD as their upper half for the function call will
not include the devrce ID in the message. but only the DSP's local task ID portion.

GET_MlPS

ALLOC_MEM U16 mempage
T_Size size

FREE_MEM U16 mempage
T_DSP_Word ‘memptr

PUT_BLOB T_DSP_Ptr destaddr U16 erroode

U16 mempage
T_Size size

T_DSP_Word BLOB[size]

CREATE_TASK T_TaskCreate tcs T_Tasle Tasle U16 errcode

START_TASK T_Tasle Tasle U16 errcode

SUSPEND_TASK T_Tasle Tasle U16 errcode

Table 4

DSP-AP! Messages

Direction Host :2
DSP

Reply Parameters

U32 mips

T_Size progmem
T_Size datamem

T_DSP_Word ‘memptr
U 16 erroode

U16 erroode

RESUME_TASK T_Tasle Tasle U16 errcode

DELETE_TASK T Tasle Tasle U16 errcode

CHANGE_PRIORIT Y T_Tasle Tasle U16 U16 oldpriority U16 errcode
newpriority

GET_TASK_STATUS T_Tasle Tasle U16 status
U16 priority
T_ChanlD input
T_ChanlD Output
U16 errcode

G ET_ID T_DSP_Name Name T_DSP_I D D
U16 errcode

DSP Interta e Layer I Channel Interface Lay r Messages

Send Parameters Fteply Parameters Direction Host a DSP
CREATE_CHANNEL T_Size tramesize T_ChanlD ChanneIlD

I T_Countnumtrames U16 rrcode

Page 1133 of 1415

EP 0 930 793 A1

Table 5 (continued)

DSP Interface Layer I Channel Interface Layer Messages

Send Parameters Fleply Parameters Direction Host es DSP

DELETE_CHANNEL T_ChanlD ChannellD U16 encode

CREATE_STREAM T_Size FIFOsize T_StrmlD StreamlD
U16 encode

DELETE_STREAM |_StrmlD StreamlD U16 encode

Debug Messages

Message Send Parameters Reply Parameters Direction Host c: DSP

READ_MEM U16 mempage T_DSP_Word mem[count]
T_DSP_Ptr addr U16 encode
T_Count count

WRITE_MEM U16 mempage U16 encode —)
T_DSP_Ptr addr

T_Count count

T_DSP_Word mem[count]

HEAD_FtEG U16 Reng DSP_WOFID regvalue -—->
U16 encode

WRITE_HEG U16 Fieng U16 encode —)
T_DSP Word regvalue

SET_BREAK T_DSP_Ptraddr _)
CLFLBFtEAK T_DSP_Ptraddr —;
BREAK_H IT T_DSP_Ptr addr U16 ACK 4—

[0078] Figures 4 - 6 illustrate an embodiment lor downloading native code to a target processor 0.9., the host 12 or
DSP 16) in a secure and etficient manner. This embodiment tor downloading code could be used. tor example, in
downloading code from the lntemet, or other global network, from a Local or Wide Area Network, or from a peripheral
device, such as a PC Card or Smartcard.

[0079] In Figure 4, an embodiment of a JAVA Bean 90 is shown. where the Bean 90 acts as a wrapper lor native
code 92. The Bean further includes several attributes 94, listed as a Code Type attribute 94a. a Code Size attribute

94b and a MIPS Required attribute 94c. The Bean 90 has several actions 96. including 3 Load Code action 963, a
Load Parameters action 96b and an Execute Parameter BBC.

[0080] In operation, the Load Code action 963 is used to load external native code (native to the target processor)
into the Bean. Since JAVA Beans have persistence, the Bean 90 can store its internal state. including the native code
92 and the attributes 94. The Load Parameters action 96b retrieves parameters irom the native code 92 (using, lor

example, the COFF file tormat described above) and stores the parameters as attributes 94a-c. The Execute action
960 executes tasks installed in the USP 16.

[0081] Figure 5 illustrates use oi the Bean 90 to download code to the target processor. In this example, it is assumed
that the target processor is the DSP 16 (or one ol multiple DSPs 16), although it could be used to download native
code to the host processor 12 as well. Further. it is assumed that the desired Bean 90 is resident in a network server.
such as a LAN server or an lntemei server. although the Bean could be resident in any device in communication with

the platform 10, such as a Smartcard. For a wireless data platlorm 10. the connection to the network server 100 will
often be wireless,

[0082] In Figure 5, the platform 10 is coupled to a network server 100. Th host processor 12. as shown in greater
detail in Figure 2. may ex cuts on or more JAVA applets 41 through a JAVA virtual machine 45. In ord r to download
new code. the host 12 leads an applet 41 containing the Bean 90 from the network 5 rver 100 or the Bean, without
the containing applet. an be downloaded lrom the 5 war 100. Once the wrapper Bean 90 has been retrieved. it can
be queried tor the size ol the native code, code type (for which proceSSOr is the code int nded) and MlPs r quired. ll

Page 1134 of 1415

EP 0 930 793 A1

the intended processor has sufficient resources to run the code 92, the code 92 can be installed to execute on the

intended processor. either the host processor 12 or DSP 16 in the architecture shown in Figure 5. Typically. the native
code 92 will be unlinked. compiled code Thus, the crOss linker 82 of the DSP-AF’l 50 will link the code to an available
memory location. The Bean would pass the binary native code 92 to the dynamic cross linker 82. which would install
and execute the code.

[0083] A typical manner in which a download of native code might occur is when the user is running an applet 41 in
which a DSP function is desired. First, the applet 41 would check to see if the desired code was installed as a task 60
in the DSP or was available in the DSP Library 58. If so, the task could be executed without a download
[0084] If the task is not stored in the DSP 16 or the DSP library 58. an object (referred to as the ' DSPLoader' object
herein) could be created to load the Bean 90. If the DSPLoader class is local on the host 12, JAVA will check to see if
the Bean is available locally as well. In a first instance, there may be a Bean with the code stored locally It so. the
code from the Bean is installed to the DSP 16 (or to whichever processor specified by the Code Type). If 6 Bean without
the code is stored locally, the Bean can retrieve the code from the appropriate server
[0085] On the other hand, it the DSPLoader object is not local, then JAVA will load the Bean 90 from the server that
wrote the applet 41. The code from the Bean will then be installed as described above.
[0086] While the downloading of native code is described in connection with the use of a JAVA Bean, it could also
be accomplished by wrapping the code within another language, such as an ActiveX applet.
[0087] Using a JAVA Bean (or other applet) as a wrapper to the native code has significant advantages. First, it
allows a simple, standard method for loading code onto one of a plurality of processors. The Bean is created. code is
loaded into the Bean and the code is linked to the appropriate processor Without wrapping the code within the Bean,
the process may take several hundred steps. Second, it allows multiple pieces of native code to be combined by a
single applet, providing for complex applications to be generated from multiple discrete routines using a single applet
to combine the routines as desired, Third, it takes advantage of the language's security features, thereby protecting
not only the JAVA code in the Bean 90, but the native code 92 as well. Other languages, such as ActiveX, have security
features as well.

[0088] Two of the most important security features are digital signing and encryption. A JAVA Bean or ActiveX applet
may be signed by the source of the code; when the Bean or applet is downloaded. the signature is verified by the
receiving application, which has a list of trusted sources, it the Bean or applet is signed by a trusted source, it can be
decrypted using standard techniques. Accordingly: the native code is encrypted during transmission along with the
code of the Bean or app let. preventing unauthorized modification oi the code. Because the native code is secure and
comes from a trusted source. the attributes can also be trusted as accurate.

[0089] Figure 6 illustrates a flow chart describing the process of downloading native code for a processor using a
JAVA Bean, it being understood that the native code could be wrapped in an applet of a different language using similar
techniques. In step 110, the encrypted, digitally signed Bean 90 is downloaded to a device running a JAVA virtual
machine. In step 112, the signature is verified. ll it is not from a source listed as a trusted source, exception processing
is enabled in step 114. In the case of the Bean coming from a trusted source, the exception processing function may
give the user an opportunity to accept the Bean, it the user is comfortable with the source. If the signature is invalid.
the exception processing may delete the Bean 90 and send an appropriate error message to the user.
[0090] It the signature is valid and comes from a trusted source, the Bean is decrypted in step 116. This step decrypts
both the JAVA code and the native code in the Bean. In step 118, the attributes are retrieved from the Bean 90 and in
step 120 the applet determines whether the appropriate processor has sufficient resources to run the code. It not. th
exception processing step 114 may decline to install the native code, or steps may be taken to free resources. If there
are sufficient resources, the code is linked using the cross—linker and installed on the desired processor in step 122.
in step 124. the native code is executed.
[0091] Sample JAVA script fora Bean 90 is provided hereinbelow:

Page 1135 of 1415

EP 0 930 793 A1

package ti.dsp.loadcr;

import java.awt.‘;

import javaio. ‘;
import java.net.‘;

public class NativeBean extends Canvas implements Serializablc
{

public NaficheanO {

sctBackground(Color.white);

funcData = new BytcAmyOutputStrcamO;

try{

}

catch (MalfonnchRLExccption e) {

funcCochasc = new URLC'hupzlllocalhost");

Page 1136 of 1415

EP 0 930 793 A1

}

public Dimension getMinimumSich {

\.
retum new Dimensionfifi, 50 ,

}

public void loadCoch {

URL bachRL = null;

try {

bachRL = new URL(fiJncCochasc.toStringO + "I" + myFunction);
}

catch (MalfomichRLException c) {
}

DataInputStrcam source = null;
int read;

bytcfl buffer;

bufi’cr = ncw bytcf [024];
W l

source = new DataInputSu-eamaachRancnStreamO);
}

catch (IOException e) {

SystcmoutprintlnCIOExccption creating streams: " + c);
}

cochizc = 0i

funcDaqucsctO;

try {
whflc (true) {

read = sourccmdauffcr);

if(rcad == .1)
break;

fimcData.wr‘itc(bufl’cr, 0, read);
}

}

catch (IOExccption c) (

System.outprimlnC'IOExccption: " + e);
}

Page 1137 of 1415

EP 0 930 793 A1

codeSize = funcDatasich;

System.out.println('Codc size = " + cochizc);

W {
source.c105c0;

}

catch (lOExccption c) (

System.out.println("IOException closing: " + c);
l

}

public synchronized String getFunctionNach {

return myFunction;

3

public void sctFunctionNamdString function) {

myFunction = function;

}

public synchronized String getCodeBaseO {

return fimcCochasctoStringO;

}

public void sctCochasc(Su-ing nchase) {

try {

funcCochasc = new URMnchaSC);
}

catch (MalformchRLExccption e) {
}

}

public void installCoch {

FilcOutpmSu'eam destination = null;
File libFilc = new File(myFuncfion);

W l
destination = new FilcOutputStreamflibFilc);

} ,

catch (IOException c) '

System.ouLprintln("IOException creating su'cams: " + e);
l

if (dsfinafion != null) {

Page 1138 of 1415

EP 0 930 793 A1

‘17 t

fimcData.wnteTo(destination);
l

catch (IOExccption c) { _

Systemout.println("10 Exception installing native code: ” + e);1I

}

linkCodc(funcData)

public void loadPammetcrsO {
}

public void executeO {
}

public synchronized int getCodeSizeO {

return codeSize;
}

public synchronized int gctCodeTypcO {

return codc'l'ypc;
}

public van setCodeType(int nchype) {

codeType - newType;
}

private int codeSizc = 0;

private int code'l'ype = 1;
private String myFunction = '"';
private URL fimcCodeBase = null;

private ByteAmyOutputStream funcData = null;

[0092] In the script set torth above, the NativeBean() routine creates the Bean 90 which will hold the native code.

The loadCode() routine gets the native code from the server The getFunctionNameo and getCodeBase() routines
retrieve attributes The installCode() routine calls the cross linker to link the native code to the DSP and to load the
linked code. The IoadParameters() routine instructs the Bean to examine the native code and determine its attribut s.

The getCodesizeO and getCodetypeO routines transfer the attributes to the requesting applet.
[0093] Although the teachings disclosed herein have been directed to certain exemplary embodiments, various mod-
ifications of these embodiments, as well as altemative embodiments, will be suggested to those skilled in the art.

[0094] Further and particular embodiments of the invention will now be enumerated with reference to the followingnumbered clauses.

1A A mobil electronic device, conprising:

a coprocessor for xecuting nativ code;

a host proc ssor system operable to execute native code corresponding to the host processor syst m and
processor independent code, said host processor system operable to dynamically change the tasks performed

Page 1139 of 1415

EP 0 930 793 A1

by the digital signal coprocessor; and
circuitry for communicating between said host processor system and said coprocessor.

2. The mobile electronic device of clause 1 and further comprising network interface circuitry for receiving data
trom a network.

3. The mobile electronic device of clause 2 wherein said network interface circuitry comprises wireless network

circuitry.

4. The mobile electronic device of clause 3 wherein said network interface circuitry comprises circuitry for inter-

facing with a global network.

5. A method of controlling a mobile electronic device comprising the steps of:

executing native code in a coprocessor;
executing both native code and processor independent code in a host processor system;
dynamically changing the tasks performed by the digital signal coprocessor with said host processor system;
and

communicating between said host processor system and said coprocessor.

6. The method of clause 5 and further comprising the step of receiving code through a network interface.

7. The method of clause 6 and further comprising the step of receiving code through a wireless network interface,

8. The method of clause 6 or 7 and further comprising the step ct receiving code through a wireless network
interface from a global network.

9, A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code;

identify one or more sections of source code to be executed on one or more of said coprocessors; and
for each identified section of source code, determining a corresponding coprocessor; and
tor each identified section of source code. compile said identified section of code into the native code
associated with said corresponding coprocessor and install said native code onto said corresponding
coprocessor, and

circuitry for communicating between said host processor system and said coprocessors.

10. The mobile electronic device of clause 9 wherein one or more of said coprocessors comprise digital signal
processors.

Claims

1. A mobile electronic device, comprising:

a coprocessor for executing native code;

a host processor operable to execute native code corresponding to the host processor and processor inde-
pendent code, said host processor operable to dynamically change the tasks performed by the digital signal
coprocessor; and
circuitry tor communicating between said host processor and said coproc ssor.

2. Th mobile electronic d vice of Claim 1. wherein said coprocessor compris s a digital signal processor.

3. The mobile el ctronic device of Claim 1 or Claim 2. wherein said processor ind pendent code compris s JAVA.

Page 1140 of 1415

EP 0 930 793 A1

The mobile electronic device of any preceding claim , wherein said host processor system is arranged to generate
native code for said coprocessor.

The mobile electronic device of any preceding claim. wherein said host processor is arranged to generate native
code for said coprocessor by compiling processor independent source code.

The mobile electronic device of any preceding claim, wherein said host processor is arranged to compile identified
blocks of source code.

The mobile electronic device of any preceding claim. wherein said host processor system is arranged to identity
blocks of source code that could be executed on the coprocessor and to compile said blocks of code.

The mobile electronic device of any preceding claims, further comprising:
a memory for storing a library of routines that can be downloaded to said coprocessor for execution.

The mobile electronic device of any preceding claim further comprising a hardware language accelerator

. The mobile electronic device of any preceding claim wherein said hardware accelerator comprises a JAVA accel-
erator.

. The mobile electronic device of any preceding claim further comprising network interface circuitry for receiving
data from a network.

. A method of controlling a mobile electronic device comprising of:

executing native code in a coprocessor;
executing both native code and processor independent code in a host processor
dynamically changing the tasks performed by the digital signal coprocessor with said host processor and
communicating between said host processor system and said coprocessor.

. The method of claim 12 wherein said step of executing native code in a coprocessor comprises executing native
code in a digital signal processor.

. The method of claims 12 and 13further comprising generating native code for coprocessor in said general process-
ing system.

. The method of claim 14 wherein said step of generating native code comprises the step of generating native code
by compiling processor independent source code.

. The method of any of claims 12 to 15 further comprising identifying blocks of said source code to compile for
execution on said coprocessor.

. The method of any of claims 1246 further comprising storing a library of routines tor downloading from said host
processor system to said coprocessor for execution.

. A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to;

execute source code;

identify one or more portions of source code to be executed on one or more of said coprocessors; and
for each identified portion of source code. determining a corresponding coprocessor; and
for each id ntifi d portion of sourc cod , compil said id ntitied portion of cod into th nativ code
associated with said corresponding coprocessor and install said native code onto said corr spending
coprocessor, and

circuitry for communicating between said host processor syst m and said coprocessors.

Page 1141 of 1415

EP 0 930 793 A1

19. A method of controlling a mobile electronic device, comprising:

executing source code on a host processor system:
identifying one or more portions of source code to be executed on one or more coprocessors: and
for each identified portion of source code. determining a corresponding coprocessor: and
for each identified portion ot source code, compiling said identified portion of code into the native code asso-
ciated with said corresponding coprocessor and installing said native code onto said corresponding coproc-
essor; and

communicating between said host processor system and said coprocessors.

Page 1142 of 1415

EP 0 930 793 A1

,. 53: 5_
- Vivmaajx:

Page 1143 of 1415

EP 0 930 793 A1

Page 1144 of 1415

EP 0 930 793 A1

“am-a m an
ammonium “WK

Page 1145 of 1415

EP0930793A1

Appucnlon Numbov

0 E“'°""“ PM“ EUROPEAN SEARCH REPORTOffice EP 98 31 0312

DOCUMENTS CONSIDERED TO BE RELEVANT

Cme Ulnlon 0! document wilh indiralion. where apptoprialo. Relevant CLASSFICATION OF THE9 i at rdevanl [255a :5 to claim APPUCATION (WSW)

H0 98 40978 A (SAGEM ;DEMEURE JEAN ANDRE H0407/32
(FR); DIMECH JEAN MARC (FR)) HD4BI/38
17 September 1998 606F9/38
t page 4, line 22 - line 27 *
t page 5, line 25 - line 28 *
* page 8, line 26 - line 29 *

EP 0 869 691 A (DEUTSCHE TELEKOM AG)
7 October 1998

* column 2, line 4 - line 22 t

58 2 310 575 A (WESTINGHOUSE ELECTRIC
CORP) 27 August 1997
* page 5, line 16 - line 25 *

H0 97 26750 A (CELLPORT LABS INC)
24 July 1997
* page 18. line 6 - page 22, l1ne 26 *

g; tuggitflllgsg (FETTE BRUCE A ET AL) gigglfigna‘ficm
* column 4, line 49 - line 58 1 H040
* column 13, line 14 - line 18 1: Hom---— GOéF

Puma! rural Dana! DRWMOHP. gunk minnow

BERLIN .31 May 1999 Leouffre, M
CATEGORY a: CITED DOCUMENTS T:1h-ory o! pdm‘qale underlying the imem‘mE ; caller pawn mam-lam. hm puinlmsd on. or

Xmanimlarlyrdavammuenam afterlhcfi‘nudale
V 2M rdaanlflml'med with mom: 02mm"th themmdmmcflou L. otherreasons
A :luznlulogical Wound .
0 :mn-miflan lide : 01 m- m palm! lamly, conespmdngP :‘rlcrmod do Gammon! 13mlEN)FOE“Humour-once!)

Page 1146 of 1415

EP0930793A1

ANNEXTOTHEEUROPEANSEARCHREPORT
ONEUROPEANPATENTAPPUCKHONNO. EP983103H

Thls annex nisis the patent iamin mombersvelaling to in: pater“ oocumems cited in me ancva-mamxanad European search raped.
The members are as contained in the Europem Palmi Office EDP file on
The European Paiani Office is in no way liable for than parficuials which are moron given for 1h. purpose of [Man-nation.

31-05-1999

Faun! dawmeni Publicaiion Patent famin Publicaiion
and n snatch (span dais mamban’s) daie

NO 9840978 A 17-09-1998 FR 2760917 A 18-09—1998
FR 2760918 A 18-09-1998
AU 6921998 A 29-09-1998

EP 0869691 A 07-10-1998 DE 19713965 A 08-10-1998

GB 2310575 A 27-08-1997 AU 1264397 A 28-08-1997

NO 9726750 A 24-07-1997 US 5732074 A 24-03-1998
AU 1525197 A 11-08-1997
CA 2243454 A 24-07-1997
EP 0875111 A 04-11-1998

US 4862407 A 29-08-1989 NONE

a.n
am

ou
ou.in For mor- details Iboui his annex :soo Ofllchl Janna! of he European Paw-11 Office. No. 12/82

Page 1147 of 1415

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of
the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

TEXT CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT

ILLEGIBLE TEXT

SKEWED/SLANTED IMAGES

COLORED PHOTOS

BLACK OR VERY BLACK AND WHITE DARK PHOTOS

GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,

please do not report the images to the

Problem Image Mailbox.

Page 1148 of 1415

7/0" .V t iMflgg’dPCI/PTO 21 AUG 2003 PC?»
AUG‘Z‘I-DB 15:10 FRDM=JONES DAY CLEVELAND ID=215 575 212 PAGE 1/3

Facsimile Transmission

North Point. 901 Lakeside Avenue - Cl veland. Ohio 44114-1190 - (216) 586-3939
Facsimile: (216) 579-0212

dlpejeau®jonesday.com

August 21 , 2003

Please hand deliver the following facsimile to:

Name: Office of initial Patent Examination's Facsimile No.: 703-746-9195
Filing Receipt Corrections .

Company: United States Patent & Trademark Number of pages (including this page): 3
Office '

Telephone No.: From: Debra L. Pejeau

Title: Patent & Trademark Assistant

Send Copies To: Direct Telephone No.: (216) 586-7387

JP No.: JP259360

Ci Copies distributed #— CAM No.: 555255-012—423ott'ulof;?‘i1l'r3ll

He:

Originals Will Not Follow

NOTICE: This communication is intended to be confidential to the person to whom it is addressed and it is subject to copyright

protection. If you are not the intended recipient or the agent of the intended recipient or if yOu are unable to deliver this
communication to the intended recipient, please do not read, copy or use this communication or show it to any other person, but
notify the sender immediately by telephone at the direct telephone number noted above. ’

Message:

Application Number 10/381,219 (lnt'l Filing Date 09/20/2001)

Dear Sir or Madam.

Please correct the application title on the attached Filing Receipt as indicated and issue a
Corrected Filing Receipt. Thank you.

~ Respectfully submitted.
Debra L. Pejeau

Pl ase call us immediately if th facsimile you receiv is incomplete or illegible. Please ask for
the facsimile operator.
CLl-1052528v1

Jones. Day. Reavis & Pogu. mm-.. - amnum an en:- um _ rm Humid. . DALLAS . numgrum' , none none . Houston . "tva . LONDON . L05 ANGELSS

Receivedlrorllii1lilit212> alsi21l034:17:19 Pill [Eastem Daylight Time} - "t‘JPds'm'itiEW MW - - - ' mm -

Page 1149 of 1415

s

AIS‘ZG-2l- 3 18:13 FROM:JONES DAY CLEVELAND IDI215 573 212

'i ‘ UNITED S'm'es Rtmzm- AND Mom Omoe
’3 urcmm srn'us Dm’n ut‘lsuwr or commence:Uuhnl fiunm. P-Ln-o no". 'i‘rp'l‘ymnyh (urn-.1

mew COM MIME D? PATENTS AND TRADEMARKS
m .u .Nth! I. mu-mo"trump"

10/381,219 03/20/2003 2131 3258 ' 555255012423 7 109 12

CONFIRMATION NO. 9761

David B Cochran . FILING RECEIPT

$17,535:. llllllllllllllllllillllllillllllllIlllllillllllllllllllllllllllllllll
901 Lakeside A’vanue ‘00000000010312502‘
Cleveland, OH 44114-1190

Date M ai led: 06/25/2003

Receipt is acknmvledged of this regular Patent Application. It will be considered in its order and you wil': be
ntrilfit‘ul Zl‘S to My result“, of the examination. We sure ’0 pic-for; the L13. . PPi EXTINJ l‘" " --’ Ff‘ i'ELlW ‘
NAME Oi: APPLICANT, anti TITLE OF lNViiN'ilQN when inquiring about this applicalon. lees, "Etiiunlliluc by
check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt, If an
error is noted on this Filing Receipt, please write to the Office of Initial Patent Examinafion's Filing
Receipt Corrections, facsimile number 703-746-9195. Please provide a copy of this Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts" for this application. please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested ('orrecf’ions (if
appiopriete). '

Applicanus)

David P Yach. Waterloo, ON, CANADA; .

Michael S Brown. Waterloo. ON, CANADA;
Herbert A Little. Waterloo. ON. CANADA:

Dumastic Priority data as claimed by applicant

This application is a 371 of PCT/CA01/01344 09/20/2001
which claims benefit MOD/234.152 09/21 12000
and claims benefit of 60/235,354 09/26/2000
and claims benefit of 601270.663 02/20/2001

Foreign Applications

Projected Publication Date: 09/25/2003

Non-Publication Request: No

Early Publication Request: No

Tm“ $o£+wmr6

A Code signing system and method

Received lrom < 2165790212 > at 801113 4:17:19 PM [Easlem Daylight Tlme]

Page 1150 of 1415

A I
nI

AWG-2l-D3 16:13 FRDM=JONES DAY CLEVELAND 19:21.5 578 @212J
‘1

Preliminary Class

LICENSE FOR FOREIGN FiLlNG UNDER

Title 35, United States Code. Section 184

Title 37, Code of Federal Regulations, 5.11 8. 5.15

GRAN [E];

The applicant has been granted a license under 35 U.S.C. 184. if the phrase "1F REQUIRED. FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form, Such licenses are issued in all applications where
the conditions for issuance of a license have been met. regardless of whether or not a license may be required as
set forth in 37 CFR 5 15. The scope and limitations of this license are set forth in 37 CFR 515(3) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been grantedunder 37 CFR 5.13 or 5.14.

iris in.“ r ..c 15:0 in. it Mined by the licensee urn: “my nausea at any time on or after the ctiLLtlv’G datetrrereot
unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR
1.53(d). This license is not retroactive. '

Th grant of a license dees not in any way lessen the responsibility of a licensee for the security of the subject
matter as impased by any Government contract or the provisions of existing laws relating to espionage and the
national seetrrity or the export of technical data. Licensees should apprise themselves of current regulations
95159013“)! with respect to certain countries. of other agencies, particularly the Office of Defense Trade Controls,
Depanment 0i Stale (with respect to Arms, Munitions and Implements of War (22 CFR 121—128)); the Office of
Exde Administration, Department of Commerce (15 CFR 370.10 (1)); the Office of Foreign Assets Control,
Department of Treasury (31 CFR Parts 500+) and the Departrrrent of Energy. '

DIOT GRANTEQ

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "lF REOUlRED, FOREIGN FlLING
LICENSE GRANTED" DOES NOT appear on this forth. Applicant may still petition for a license under 37 CFR
5.12. if a license is desired before the expiration of 6 months from the filing date of the application. if 6 months
has lapsed from the filing date of this applition and the licensee has not receiVed any indication of a secrecy
order under 35 U.S.C. 181 . the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

Received 1mm < 2165790212 > at 8121103 4:17:19 P11 [Eastern Daylight Time]

Page 1151 of 1415

UNITED S'I‘KI‘ES PATENT AND TRADEW Omar:
UNITED STATES DEPARTMENT OF COMMERCE
United Sung: Patent und Trude-flunk Office.
Address: COMMISSIONER OF PATENTS AND TRADEMARKSPO. Box 1450

Altmvminiu 22313-1450wwmwptuguv

U 3. APPLICATION NUIVIBE‘R NO FIRST NAMED APPLICANT A'ITY. DOCKET NO.

10/381 ,2 I '9 David P Yach 555255012423
INTERNATIONAL APPLICATION NO

PCT/CAO 1 l0 1 344

Davrd B Cochran 1A, FILING DATEJones Day
North point 09/20/2001 09/21/2000
901 Lakeside Avenue

Cleveland, OH 44114—1190 CONFIRMATION NO. 9761
371 ACCEPTANCE LETTER

lllIllllllllllIllllllllllllllllllllllll'OC000000010312504‘

Date Mailed: 06/25/2003

NOTICE OF ACCEPTANCE OF APPLICATION UNDER 35 U.S.C 371 AND 37 CFR 1.495

The applicant is hereby advised that the United States Patent and Trademark Office in its capacity as a
Designated / Elected Office (37 CFR 1.495), has determined that the above identified international application has
met the requirements of 35 U.S.C. 371. and is ACCEPTED for national paientability examination in the United
States Patent and Trademark Office.

The United States Application Number assigned to the application is shown above and the relevant dates are:

03/20/2003 03/20/2003

DATE OF RECEIPT OF 35 U.S.C. 371(c)(1), (c)(2) and DATE OF RECEIPT OF ALL 35 U.S.C. 371
(c)(4) REQUIREMENTS REQUIREMENTS

A Filing Receipt (PTO-103X) will be issued torthe present application in due course. THE DATE APPEARING
ON THE FILING RECEIPT AS THE " FILING DATE" IS THE DATE ON WHICH THE LAST OF THE 35 U.S.C.

371 REQUIREMENTS HAS BEEN RECEIVED IN THE OFFICE. THIS DATE IS SHOWN ABOVE. The filing date
of the above identified application is the international filing date of the international application (Article 11(3) and
35 U.S.C. 363). Once the Filing Receipt has been received, send all correspondence to the Group Art Unit
designated thereon.

The following items have been received:

Copy of the International Application filed on 03/20/2003

Copy of the International Search Report filed on 03/20/2003

Copy of IPE Report filed on 03/20/2003
Preliminary Amendments filed on 03/20/2003
Oath or Declaration filed on 03/20/2003

Request for Immediate Examination filed on 03/20/2003

Copy of references cited in ISR filed on 03/20/2003
US. Basic National Fees filed on 03/20/2003

Assignee Statement filed on 03/20/2003

Page 1152 of 1415

Telephone: (703) 30535483

PART 3 — OFFICE COPY
FORM PCT/DO/EO/903 (371 Acceptance Notice)

Page 1153 of 1415

DTlB Rec’d PCT/PTO ‘2 0 MR 2th
Express Mail No. EV 243791125 US
March 20, 2003

FORM PTO-1390 u_s. DEPARTMB‘IT or COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY '5 DocK51- NUMBER(REV. omooJ)

TRANSMITTAL LETTER TO THE UNITED STATES 555255012423

DESIGNATED/ELECTED OFFICE (DO/EO/US) its-(WWW

CONCERNING A FILING UNDER 35 U.S.C. 371 10 I 38 l 2 I, 9
INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED

21. mo
TITLE OF INVENTION

SOFTWARE CODE SIGNING SYSTEM AND METHOD

APPLICANT(S) FOR DO/EO/US
David P. Yach' Michael S. Brown' Herbert A ., ,-

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. E This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.

2. D This is a SECOND or SUBSEQUENT submission ofiterns concerning a filing under 35 U.S.C. 371.

3. E This is an express request to begin national examination procedures (35 U.S.C. 371(0). The submission must include
items (5), (6), (9) and (21) indicated below.

4. E] The US has been elected (Article 31).

5. E A copy ofthc International Application as filed (35 U.S.C. 371(c)(2))

a. E’ is attached hereto (required only if not communicated by the Intemational Bureau).
b. E] has been communicated by the International Bureau.

6. D is not required, as the application was filed in the United States Receiving Office (RO/US).

6. E] An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).

a. E] is attached hereto.

b- D has been previously submitted under 35 U.S.C. lS4(d)(4).

7. [:1 Amendments to the claims of the lntemational Application under PCT Article 19 (3S U.S.C. 371(c)(3))

a. E] are attached hereto (required only if not communicated by the Intemational Bureau).

b. D have been communicated by the International Bureau.

c. D have not been made; however, the time limit for making such amendments has NOT expired.

d. C] have not been made and will not be made.

8. D An English language translation of the amendments to the claims under PCT Article l9 (35 U.S.C. 371 (e)(3)).

9. E An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). (3
10. D An English language translation of the annexes of the International Preliminary Examination Report under PCT

Article 36 (35 U.S.C. 371(c)(5)).

Items)1 to 20 below concern document(s) or information included:
An Information Disclosure Statement under 37 CFR [.97 and 1.98.

An assignment document for recording. A separate cover sheet in compliance with 37 FR 3.28 and 3.31 is included.

A preliminary amendment. {92/ 5 S)
An Application Data Sheet under 37 CFR 1.76.

A substitute specification.

A power of attorneyWW. (2’
A computer-readable form of the sequence listing in accordance with PCT Rule l3ler.2 and 37 CFR 1.821 - 1.825.

A second copy of the published international application under 35 U.S.C. 154(d)(4).

A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).

Other items or information:

page l of 2

Page 1154 of 1415

dudehaew'»
2LE The following fees are submitted:
BASIC NATIONAL FEE (37 CFR 1.492 (a) (l) - (5)):

Neither international preliminary examination fee (37 CFR 1.482)
nor international search fee (37 CFR l,445(a)(2)) paid to USPTO
and International Search Report not prepared by the EPO or JPO , $1060“)

International preliminary examination fee (37 CFR 1482) not paid to
USPTO but International Search Report prepared by the EPO or JPO $900.00

International preliminary examination fee (37 CFR 1.482) not paid to USPTO
but international search fee (37 CFR I.445(a)(2)) paid to USPTO $750.00

International preliminary examination fee (37 CFR 1.482) paid to USPTO
but all claims did not satisfy provisions ofPCT Article 33(1)-(4)

lntemational preliminary examination fee (37 CFR 1.482) paid to USPTO
and all claims satisfied provisions of PCT Article 33(1)—(4) . , , $100.00

ENTER APPROPRIATE BASIC FEE AMOUNT

Surcharge of $130.00 for fumishing the oath or declaration later than 30 months
from the earliest claimed priority date (37 CFR l.492(e)).

CLAIMS NUMBER FILED N

Total claims 109 -20 =

Independent claims X $84.00
MULTIPLE DEPENDENT CLAIM(S) (if applicable) + $280.00

TOTAL OF ABOVE CALCULATIONS =

Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above
are reduced by 1/2.

$720.00

UMBER EXTRA — m

x $18.00

El +

SUBTOTAL =

{1% the En lish translation later than 30 months(7 CFR 492(0).

TOTAL NATIONAL FEE =

Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be
accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). $40.00 per property +

TOTAL FEES ENCLOSED =

Processing fee of $130.00 for furnishi
from the earliest claimed priority date

a. D Acheck in the amount of S

ha Please charge my Deposit Account No. 501432
A duplicate copy of this sheet is enclosed.

in the amount of$ 3298
1':

*f'f(ref. 555255012423)

CALCULATIONS PTO USE ONLY

56beon
N

lillllillll||||||||||||||||||||||||||||||||||ea
40

$ 3298
Amount to be

refunded:

charged:

to cover the above fees is enclosed.

to cover the above fees.

The Commissioner is hereby authorized to char e giny additional fees which may be required, or credit any
overpayment to Deposit Account No. 5014 2 . A duplicate copy of this sheet

is enclosed.

d. E] Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit cardinformation should not be included on this form. Provide credit card information and authorization on PTO-2038.

NOTE: Where an appropriate time limit under 37 CFR 1.495 has not been met, a petition to revive (37 CFR 1.137 (a)
or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

David B. Cochran, Esq.
Jones Day
901 Lakeside Ave./North Point
Cleveland, Ohio 44114

GNATU

NAME

r

RE

David B. Cochran

39,142
REGBTRANONNUMBER

FORM PTO-l3?!) (REV 01-2003) pageZon

Page 1155 of 1415

10/381219
Willie-ti PCT/PTO 20 MAR 2003

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of ; David P. Yach; Michael s. Brown; Herbert A. Little EV 243791125 us
“Express Mail” Mailing Label No.

Date of Deposit March 2L2003

Internat'l. Filing Date : 09/20/2001 thereby testify121151.»; ti orfaes is
being deposited. , A t ; ,"ortal

Internat'l. Appl'n. N0. : PCT/CA01/01344

U.S. Serial No. : Not yet assigned 3:335: I

U.S. Filing Date : 03/20/2003

Priority Date Claimed: 09/21/2000

Title : Software Code Signing System And Method

Art Unit : Not yet assigned

Examiner : Not yet assigned

Docket No. : 555255012243

Date: March 20, 2003

Commissioner for Patents

Washington, DC. 20231

Preliminary Amendment

Prior to taking up this case for initial examination, please amend the application as
follows.

The Claims

Please cancel original claims 1-5 6.

Please a_d_d the following new claims 1-109.

1. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification, where the digital signature is associated

with the signature identification, comprising:

an application platform;

CLH 069294vl

Page 1156 of 1415

an application programming interface (API) having an associated signature identifier, the

API is configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application where the signature identifier corresponds to the

signature identification.

2. (New) The code signing system of claim 1, wherein the virtual machine denies the

software application access to the API if the digital signature is not authenticated.

3. (New) The code signing system of claim 1, wherein the virtual machine purges the

software application if the digital signature is not authenticated.

4. (New) The code signing system of claim 1, wherein the code signing system is installed

on a mobile device.

5. (New) The code signing system of claim 1, wherein the digital signature is generated by

a code signing authority.

6. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification where the digital signature is associated

with the signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature

identifier, each configured to link the software application with a resource on the application

platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification corresponds to

the signature identifier,

wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

CLl-1069294vl

Page 1157 of 1415

7. (New) The code signing system of claim 6, wherein the plurality of APIs are included in

an API library.

8. (New) The code signing system of claim 6, wherein one or more of the plurality of APIs

is classified as sensitive and having an associated signature identifier, and wherein the virtual

machine uses the digital signature and the signature identification to control access to the

sensitive APIs.

9. (New) The code signing system of claim 8, wherein the code signing system operates in

conjunction with a plurality of software applications, wherein one or more of the plurality of

software applications has a digital signature and a signature identification, and wherein the

Virtual machine verifies the authenticity of the digital signature of each of the one or more of the

plurality of software applications, where the signature identification corresponds to the signature

identifier of the respective sensitive APls, in order to control access to the sensitive APls by each

of the plurality of software applications.

10. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a wireless communication system.

11. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a cryptographic module which implements cryptographic algorithms.

12. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a data store.

13. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a user interface (U1).

14. (New) The code signing system of claim 1, further comprising:

CLl-1069294vl

Page 1158 of 1415

a plurality of API libraries, each of the plurality ofAPI libraries includes a plurality of

APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

15. (New) The code signing system of claim 14, wherein at least one of the plurality of API

libraries is classified as sensitive;

wherein access to a sensitive API library requires a digital signature associated with a

signature identification where the signature identification corresponds to a signature identifier

associated with the sensitive API library;

wherein the software application includes at least one digital signature and at least one

associated signature identification for accessing sensitive API libraries; and

wherein the virtual machine authenticates the software application for accessing the

sensitive API library by verifying the one digital signature included in the software application

that has a signature identification corresponding to the signature identifier of the sensitive API

library.

16. (New) The code signing system of claim 1, wherein the digital signature is generated

using a private signature key, and the viltual machine uses a public signature key to verify the

authenticity of the digital signature.

1?. (New) The code Sigiing system of claim 16, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

18. (New) The code signing system of claim 4, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

CLl-l 069294vl

Page 1159 of 1415

19. (New) The code signing system of claim 1, wherein the application platform comprises

an operating system.

20. (New) The code signing system of claim 1, wherein the application platform comprises

one or more core functions of a mobile device.

21. (New) The code signing system of claim 1, wherein the application platform comprises

hardware on a mobile device.

22. (New) The code signing system of claim 21, wherein the hardware comprises a

subscriber identity module (SIM) card.

23. (New) The code signing system of claim 1, wherein the software application is a Java

application for a mobile device.

24. (New) The code signing system of claim 1, wherein the API interfaces with a

cryptographic routine on the application platform.

25. (New) The code signing system of claim 1, wherein the API interfaces with a proprietary

data model on the application platform.

26. (New) The code signing system of claim 1, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

27. (New) A method of controlling access to sensitive application programming interfaces

on a mobile device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

application programming interface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and

CLI-1069294v1

Page 1160 of 1415

denying the software application access to the sensitive API where the signature

identification does not correspond with the signature identifier.

28. (New) The method of claim 27, comprising the additional step of:

purging the sofiware application from the mobile device where the signature

identification does not correspond with the signature identifier.

29. (New) The method of claim 27, wherein the digital signature and the signature

identification are generated by a code signing authority.

30. (New) The method of claim 27, comprising the additional steps of:

verifying the authenticity of the digital signature where the signature identification

corresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

31. (New) The method of claim 30, comprising the additional step of:

purging the software application from the mobile device where the digital signature is not

authenticated.

32. (New) The method of claim 30, wherein the digital signature is generated by applying a

private signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile

device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

33. (New) The method of claim 32, wherein the digital signature is generated by calculating

a hash of the software application and applying the private signature key.

CLl—1069294vl

Page 1161 of 1415

34. (New) The method of claim 27, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

35. (New) The method of claim 34, comprising the additional step of:

receiving a command from the user granting or denying the software application access

to the sensitive API.

36. (New) A method of controlling access to an application programming interface (API)

having a signature identifier on a mobile device by a software application created by a software

developer, comprising the steps of:

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the software application

where the software application satisfies at least one criterion;;

verifying the authenticity of the digital signature appended to the software application

where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

37. (New) The method of claim 36, wherein the step of determining whether the software

application satisfies at least one criterion is performed by a code signing authority.

38. (New) The method of claim 36, wherein the step of appending the digital signature and

the signature identification to the software application includes generating the digital signature

comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

CLl-l069294vl

Page 1162 of 1415

39. (New) The method of claim 38, wherein the hash of the software application is

calculated using the Secure Hash Algorithm (SHAl).

40. (New) The method of claim 38, wherein the step of verifying the authenticity of the

digital signature comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

authenticating the digital signature by comparing the calculated hash with the recovered

hash.

41. (New) The method of claim 40, comprising the further step of denying the software

application access to the API where the digital signature is not authenticated.

42. (New) The method of claim 40, wherein the signature key is a private signature key and

the corresponding signature key is a public signature key.

43. (New) A method of controlling access to a sensitive application programming interface

(API) having a signature identifier on a mobile device, comprising the steps of:

registering one or more software developers that are trusted to develop software

applications which access the sensitive API;

receiving a hash of a software application;

determining Whether the hash was sent by a registered software developer; and

generating a digital signature using the hash of the software application and a signature

identification corresponding to the signature identifier where the hash was sent by the registered

software developer;

wherein

the digital signature and the signature identification are appended to the software

application; and

CLl-1069294vl

Page 1163 of 1415

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application where the signature identification

corresponds with the signature identifier.

44. (New) The method of claim 43, wherein the step of generating the digital signature is

performed by a code signing authority.

45. (New) The method of claim 43, wherein the step of generating the digital signature is

performed by applying a signature key to the hash of the software application.

46. (New) The method of claim 45, wherein the mobile device verifies the authenticity of the

digital signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash;

determining whether the digital signature is authentic by comparing the calculated hash

with the recovered hash; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

47. (New) A method of restricting access to application programming interfaces on a mobile

device, comprising the steps of:

loading a software application having a digital signature and a signature identification on

the mobile device that requires access to one or more application programming interfaces (APIs)

having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with

the signature identifier; and

denying the software application access to the one or more APIs where the software

application does not include an authentic digital signature .

CLl-1069294v1

Page 1164 of 1415

48. (New) The method of claim 47, wherein the digital signature and signature identification

are associated with a type of mobile device.

49. (New) The method of claim 47, comprising the additional step of:

purging the software application from the mobile device where the software application

does not include an authentic digital signature. .

50. (New) The method of claim 47, wherein:

the software application includes a plurality of digital signatures and signature

identifications; and

the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

51. (New) The method of claim 50, wherein each of the plurality of digital signatures and

associated signature identifications are generated by a respective corresponding code signing

authority.

52. (New) The method of claim 47, wherein the step of determining whether the software

application includes an authentic digital signature comprises the additional steps of:

verifying the authenticity of the digital signature where the signature identification

corresponds with respective ones of the at least one signature identifier.

53. (New) The method of claim 51, wherein each of the plurality of digital signatures and

signature identifications are generated by its corresponding code signing authority by applying a

respective private signature key associated with the code signing authority to a hash of the

software application.

CLl-1069294vl

Page 1165 of 1415

54. (New) The method of claim 47, wherein the step of authenticating the digital signature

where the signature identification corresponds with the signature identifier comprises the steps

of:

verifying that the signature identification corresponds with the signature identifier authenticating

the digital signature where signature identification corresponds with the signature identifier

comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature

key associated with the code signing authority which generates the digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

(New) The method of claim 47, wherein:

the mobile device includes a plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any of the plurality of APIs requires an authentic global signature;

access to each of the plurality of sensitive APIs requires an authentic global signature and

an authentic digital signature associated with a signature identification;

the step of determining whether the software application includes an authentic digital

signature and signature identification comprises the steps of:

determining whether the one or more APIs to which the software application requires

access includes a sensitive API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and

signature identification where the one or more APIs to which the software application requires

access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software application access to the one or more APIs comprises the

steps of:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

CLI-1069294vl

Page 1166 of 1415

denying the software application access to the sensitive API where the one or more APIs

to which the software application requires access includes a sensitive API, the software

application includes an authentic global signature, and the soflware application does not include

an authentic digital signature and signature identifier required to access the sensitive API.

56. (New) A code signing system for controlling access to application programming

interfaces (APIs) having signature identificaters by software applications, the code signing

system comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the APIs where the signature identifications correspond with the

signature identificaters of the respective APIs and where a digital signature for a software

application is generated with a signature identification corresponding to a signature identificater

to access at least one API; and

a control system for allowing access to at least one of the APIs where the digital signature

provided by the software application is authenticated by the verification system.

57. (New) The code signing system of claim 56, wherein a virtual machine comprises the

verification system and the control system.

58. (New) The code signing system of claim 5 7, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

59. (New) The code signing system of claim 56, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

60. (New) The code signing system of claim 56, wherein the code signing system is installed

on a mobile device and the software application is a Java application for a mobile device.

61. (New) The code signing system of claim 56, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

CLl-1069294vl

Page 1167 of 1415

62. (New) The code signing system of claim 56, wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (U1).

63. (New) The code signing system of claim 56, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

64. (New) The code signing system of claim 63, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

65. (New) The code signing system of claim 56, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

66. (New) The code signing system of claim 56, wherein the APIs provides access to at least

one of one or more core functions of a mobile device, an operating system, and hardware on a

mobile device.

67. (New) The code signing system of claim 56, wherein verification of a global digital

signature provided by the sofiware application is required for accessing any of the APIs.

68. (New) A method of controlling access to application programming interfaces (APIs)

having signature identifiers by software applications, the method comprising:

CLl-l069294vl

Page 1168 of 1415

authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the respective APIs and where a digital signature for a software application is generated with a

signature identification corresponding to a signature identifier to access at least one API; and

allowing access to at least one of the APIs where the digital signature provided by the

software application is authenticated.

69. (New) The method of claim 68, wherein one digital signature and one signature

identification are provided by the software application access a library of at least one of the

APIs.

70. (New) The method of claim 68, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

71. (New) The method of claim 68, wherein the APIs access at least one of a cryptographic

module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (U1).

72. (New) The method of claim 68, wherein the digital signature is generated using a private

signature key under a signature scheme associated with the signature identification, and a public

signature key is used to authenticate the digital signature.

73. (New) The method of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

74. (New) The method of claim 68, wherein at least one of the APIs further comprises:

CLI-lO69294vl

Page 1169 of 1415

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs

75. (New) The method of claim 68, wherein the APIs provides access to at least one of one

or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

76. (New) The method of claim 68, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs

77. (New) A management system for controlling access by software applications to

application programming interfaces (APIs) having at least one signature identifier on a subset of

a plurality of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

sofiware applications that require access to at least one of the APIs with a signature identifier on

the subset of the plurality of mobile devices, where a digital signature for a software application

is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

identifications that correspond to the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of

mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of

the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

78. (New) The management system of claim 77, wherein a virtual machine comprises the

verification system and the control system.

CLl-1069294vl

Page 1170 of 1415

79. (New) The management system of claim 78, wherein the virtual machine is a Java virtual

machine and the software applications are Java applications.

80. (New) The management system of claim 77, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APls.

81. (New) The management system of claim 77, wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UT).

82. (New) The management system of claim 77, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

83. (New) The management system of claim 82, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

84. (New) The management system of claim 77, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

85. (New) The management system of claim 77, wherein the subset of the plurality of mobile

devices comprises mobile devices under the control of at least one of a corporation and a carrier.

CLl-1069294vl

Page 1171 of 1415

86. (New) The management system of claim 77, wherein a global digital signature provided

by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

87. (New) A method of controlling access by software applications to application

programming interfaces (APIs) having at least one signature identifier on a subset of a plurality

of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subset of the plurality of mobile devices,

where the signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantially only on

the subset of the plurality of mobile devices; wherein each mobile device of the subset of the

plurality of mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APls

where the digital signature provided by the software application is authenticated by the

verification system.

88. (New) The method of claim 87, wherein a virtual machine comprises the verification

system and the control system.

89. (New) The method of claim 88, wherein the virtual machine is a Java virtual machine

and the software applications are Java applications.

90. (New) The method of claim 87, wherein the control system requires one digital signature

and one signature identification for each library of at least one of the APIs.

CLl~1069294vl

Page 1172 of 1415

91. (New) The method of claim 87, wherein the APIs access at least one of a cryptographic

module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

92. (New) The method of claim 87, wherein at least one of the digital signatures is generated

using a private signature key under a signature scheme associated with a signature identification,

and the verification system uses a public signature keys to authenticate said at least one of the

digital signatures.

93. (New) The method of claim 92, wherein:

at least one of the digital signatures is generated by applying the private signature key to

a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by

generating a hash of the software application to obtain a generated hash, applying the public

signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

94. (New) The method of claim 87, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

95. (New) The method of claim 87, wherein the subset of the plurality of mobile devices

comprises mobile devices under the control of at least one of a corporation and a carrier.

96. (New) A mobile device for a subset of a plurality of mobile devices, the mobile device

comprising:

an application platform having application programming interfaces (APIs);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

CLl-l069294vl

Page 1173 of 1415

a control system for allowing a software application to access at least one of the APIs

where a digital signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority provides digital signatures and signature identifications

to software applications that require access to at least one of the APIs such that the digital

signature for the sofiware application is generated according to a signature scheme of a signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

97. (New) The mobile device of claim 96, wherein a virtual machine comprises the

verification system and the control system.

98. (New) The mobile device of claim 97, wherein the virtual machine is a Java virtual

machine and the software application is a Java application.

99. (New) The mobile device of claim 96, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

100. (New) The mobile device of claim 96, wherein the APIs of the application platform

access at least one of a cryptographic module, which implements cryptographic algorithms, 21

data store, a proprietary data model, and a user interface (U1).

101. (New) The mobile device of claim 96, wherein the digital signature is generated using a

private signature key under the signature scheme, and the verification system uses a public

signature key to authenticate the digital signature.

102. (New) The mobile device of claim 101, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

CLl-1069294vl

Page 1174 of 1415

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

103. (New) The mobile device of claim 96, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

104. (New) A method of controlling access to application programming interfaces (APIs) of

an application platform of a mobile device for a subset of a plurality of mobile devices, the

method comprising:

receiving digital signatures and signature identifications from software applications that

require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to access at least one of the APIs where a digital

signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require access to at least one of the APIs such

that the digital signature for the software application is generated according to a signature

scheme of a signature identification, and wherein the signature identifications provided to the

software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

105. (New) The method of claim 104, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APIs.

106. (New) The method of claim 104, wherein the APIs of the application platform access at

least one of a cryptographic module, which implements cryptographic algorithms, 3 data store, a

proprietary data model, and a user interface (UI).

CLl-l069294vl

Page 1175 of 1415

107. (New) The method of claim 104, wherein the digital signature is generated using a

private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

108. (New) The method of claim 107, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

109. New) The method of claim 104, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

Respectfully submitted,

QMW
a 1d B. Cochran

Reg. No. 39,142

Jones, Day
North Point

901 Lakeside Avenue

Cleveland, OH 441 14-1 190

CLl-l069294vl

Page 1176 of 1415

‘U/fiwtfll

WO 02/25409

' Code Signing System And Methodwv-VV ~—- —"‘-—————________

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from and is related to the following prior applications:

"Code Signing System And Method," United States Provisional Application No. 60/234,152,

filed September 21, 2000; "Code Signing-System And Method," United States Provisional

Application No. 60/235,354, filed September 26, 2000; and "Code Signing System And

Method," United States Provisional Application No. 60/270,663, filed February 20, 2001.

W

FIELD OF THE INVENTION

This invention relates generally to the field of security protocols for software

applications. More particularly, the invention provides a code signing system and method that is

particularly well suited for JavaTM applications for mobile communication devices, such as

Personal Digital Assistants, cellular telephones, and wireless two-way communication devices

(collectively referred to hereinafter as "mobile devices" or simply “devices”).

DESCRIPTION OF THE RELATED ART

0

Security protocols involving software code signing schemes are known. Typically, such ,

security protocols are used to ensure the reliability of software applications that are downloaded

from the Internet. In a typical software code signing scheme, a digital signature is attached to a

software application that identifies the software developer. Once the software is downloaded by

a user, the user typically must use his or her judgment to determine whether or not the software

1

Page 1177 of 1415

WO 02/25409 PCT/CA01/013-H

application is reliable. based solely on his or her knowledge of the software developer's

reputation. This type of code signing scheme does not ensure that a software application written

by a third party for a mobile device will properly interact with the device's native applications

and other resources. Because typical code signing protocols are not secure and rely solely on the

5 judgment of the user, there is a serious risk that destructive, "Trojan horse'h type software

applications may be downloaded and installed onto a mobile device.

There also remains a need for network operators to have a system and method to maintain

control over which software applications are activated on mobile devices.

There remains a further need in 2.56 and 3G networks where corporate clients or

network operators would like to control the types of software on the devices issued to its

employees.

SUNIMARY

A code signing system‘ and method is provided. The code signing system operates in

conjunction with a software application having a digital signature and includes an application

platform, an application programming interface (API), and a virtual machine. The API is

configured to link the software application with the application platform. The virtual machine

verifies the authenticity of the digital signature in order to control access to the API by the

software application.

A code signing system for operation in conjunction with a software application having a

digital signature, according to another embodiment of the inventiOn comprises an application

platform, a plurality of APIs, each configured to link the software application with a resource on

Page 1178 of 1415

WO 02/25409 PCT/CA01/01344

the application platform, and a virtual machine that verifies the authenticity of the digital

signature in order to control access to the API by the software application, wherein the virtual

machine verifies the authenticity of the digital signature in order to control access to the plurality

of APIs by the software application.

According to a further embodiment of the invention, a method of controlling access to

sensitive application programming interfaces on a mobile device comprises the steps of loading a

software application on the mobile device that requires access to a sensitive API, determining

whether or not the software application includes a digital signature associated with the sensitive

API, and if the software application does not include a digital signature associated with the

sensitive API, then denying the software application access to the sensitive API.

In another embodiment of the invention, a method of controlling access to an application

programming interface (API) on a mobile device by a software application created by a software

developer comprises the steps of receiving the software application from the software developer,

reviewing the software application to determine if it may access the API, if the software

application may- access the API, then appending a digital signature to the software application, ‘

verifying the authenticity of a digital signature appended to a software application, and providing

access to the API to software applications for which theappended digital signature is authentic.

A method of restricting access to a sensitive API on a mobile device, according to a

further embodiment of the invention, comprises the steps of registering one or more software

developers that are trusted to design software applications which access the sensitive API,

receiving a hash of a software application, determining if the software application was designed

by one of the registered software developers, and if the software application was designed by one

Page 1179 of 1415

W0 (DZ/25409 PCT/CA01/013-H

of the registered software developers, then generating a digital signature using the hash of the

software application, wherein the digital signature may be appended to the software application,

and the mobile device verifies the authenticity of the digital signature in order to control access

to the sensitive API by the software application. ‘

In a still further embodiment, a method of restricting access to application programming

interfaces on a mobile device comprises the steps of loading a software application on the mobile

device that requires access to one‘or more AP], determining whether or not the software

application includes a digital signature associated with the mobile device, and if the software

application does not include a digital signature associated with the mobile device, then denying

the software application access to the one or more APIs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram illustrating a code signing protocol according to one embodiment of

the invention;

Fig. 2 is a flow diagram of the code signing protocol described above with reference to

Fig. 1;

Fig. 3 is a block diagram of a code signing system on a mobile device;

Fig. 3A is a block diagram of a code signing system on a plurality of mobile devices;

Fig. 4 is a flow diagram illustrating the operation of the code signing system described

above with reference to Fig. 3 and Fig. 3A;

Fig. 5 is a flow diagram illustrating the management of the code signing authorities

described with reference to Fig. 3A; and

Page 1180 of 1415

WO 02/25409 PCT/CA01/01344

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented.

W

Referring now to the drawing figures, Fig. 1 is a diagram illustrating a code signing

protocol according to one embodiment of the invention. An application developer 12 creates a

software application 14 (application Y) for a mobile device that requires access to one or more

sensitive APIs on the mobile device. The software application Y 14 may, for example, be a Java

application that operates on a Java virtual machine installed on the mobile device. An API

enables the software application Y to interface with an application platform that may include, for .

example, resources such as the device hardware, operating system and core software and data

models. In order to make function calls to or otherwise interact with such device resources, a

software application Y must access one or more APIs. APIs can thereby effectively “bridge” a

software application and associated device resources. In this description and the appended

claims, references to API access should be interpreted to include access of an API in such a way

as to allow a software application Y to interact with one or more corresponding device resources.

Providing access to any Al’I therefore allows a software application Y to interact with associated

device resources, whereas denying access to an API prevents the software application Y from

interacting with the associated resources. For example, a database API may communicate with a

device file or data storage system, and access to the database API would provide for interaction

' between a software application Y and the file or data storage system. A user interface (U1) API ‘

would communicate with controllers and/or control software for such device components as a

Page 1181 of 1415

WO 02/25409 PCT/CA01/01344

screen, a keyboard, and any other device components that provide output to a user or accept

input from a user. In a mobile device, a radio API may also be provided as an interface to

wireless communication resources such as a transmitter and receiver. Similarly, a cryptographic

API may be provided to interact with a crypto module which implements crypto algorithms on a

device. These are merely illustrative examples of APIs that may be provided on a device. A

device may include any of these example APIs, or different APIs instead of or in addition to

those described above.

Preferably, any API may be classified as sensitive by a mobile device manufacturer, or

possibly by an API author, a wireless network operator, a device owner or operator, or some

other entity that may be affected by a virus or malicious code in a device software application.

For instance, a mobile device manufacturer may classify as sensitive those APIs that interface

with cryptographic routines, wireless communication functions, or proprietary data models such

as address book or calendar entries. To protect against unauthorized access to these sensitive

APIs, the application developer 12 is required to obtain one or more digital signatures from the

mobile device manufacturer or other entity that classified any APIs as sensitive, or from a code

signing authority 16 acting on behalf of the manufacturer or other entity with an interest in

protecting access to sensitive device APIs, and append the signature(s) to the software

application Y 14.

In one embodiment, a digital signature is obtained for each sensitive API or library that

includes a sensitive API to which the software application requires access. In some cases,

multiple signatures are desirable. This would allow a service provider, company or network

operator to restrict some or all software applications loaded or updated onto a particular set of

Page 1182 of 1415

WO 02/25409 PCT/CADl/01344

mobile devices. In this multiple—signature scenario, all APIs are restricted and locked until a

“global” signature is verified for a software application. For example, a company may wish to

prevent its employees from executing any software applications onto their devices without first

obtaining permission from a corporate information technology (IT) or computer services

department. All such corporate mobile devices may then be configured to require verification of

at least a global signature before a software application can be executed. Access to sensitive

device APIs and libraries, if any, could then be further restricted, dependent upon verification of

respective corresponding digital signatures.

The binary executable representation of software application Y 14 may be independent of

the particular type of mobile device or model of a mobile device. Software application Y 14 may

for example be in a write—once-run-anywhere binary format such as is the case with Java

software applications. However, it may be desirable to have a digital signature for each mobile

device type or model, or alternatively for each mobile device platform or manufacturer.

Therefore, software application Y 14 may be submitted to several code signing authorities if

software application Y 14 targets several mobile devices.

Software application Y 14 is sent from the application developer 12 to the code signing .

authority 16. In the embodiment shown in Fig. 1, the code signing authority 16 reviews the

software application Y 14, although’as described in further detail below, it is contemplated that

the code signing authority 16 may also or instead consider the identity of the application

developer 12 to determine whether or not the software application Y 14 should be signed. The

code signing authority 16 is preferably one or more representatives from the mobile device

Page 1183 of 1415

WO 02/25409 PCT/CA01/01344

manufacturer, the authors of any sensitive APls, or possibly others that have knovvledge of the

operation of the sensitive APIs to which the software application needs access.

If the code signing authority 16 determines that software application Y 14 may access the

sensitive AP] and therefore should be signed, then a signature (not shown) for the software

application Y 14 is generated by the code signing authority 16 and appended to the software

application Y 14. The signed software application Y 22, comprising the software application Y

14 and the digital signature, is then returned to the application developer 12. The digital

signature is preferably a tag that is generated using a private signature key'lS maintained solely

by the code signing authority 16. For example, according to one signature scheme, a hash of the

software application Y 14 may be generated, using a hashing algorithm such as the Secure Hash

Algorithm SHAl, and then used with the private signature key 18 to create the digital signature.

In some signature schemes, the private signature key is used to encrypt a hash of information to

be signed, such as software application Y 14, whereas in other schemes, the private key may be

used in other ways to generate a signature from the information to be signed or a transformed

version of the information.

The signed. software application Y 22 may then be sent to a mobile device 28 or

downloaded by the mobile device 28 over a wireless network 24. It should be understood,

however, that a code signing protocol according to the present invention is not limited to

software applications that are downloaded over a wireless network. For instance, in alternative

embodiments, the signed software application Y 22 may be downloaded to a personal computer

via a computer network and loaded to the mobile device through a serial link, or may be acquired

from the application developer 12 in any other manner and loaded onto the mobile device. Once

Page 1184 of 1415

WO 02/25409 PCT/CAOIIOIJ-H

the signed software application Y 22 is loaded on the mobile device 28, each digital signature is

preferably verified with a public signature key 20 before the software application Y 14 is granted

access to a sensitive API library. Although the signed software application Y 22 is loaded onto a

device, it should be appreciated that the software application that may eventually be executed on

the device is the software application Y 14. As described above, the signed software application

Y 22 includes the software application Y 14 and one or more appended digital signatures (not

shown). When the signatures are verified, the software application Y 14 can be executed on the

device and access any APIs for which corresponding signatures have been verified.

The public signature key 20 corresponds to the private signature key 18 maintained by

the code signing authority 16, and is preferably installed on the mobile device along with the

sensitive API. However, the public key 10 may instead be obtained from a public key repository

(not shown), using the device 28 or possibly a personal computer system, and installed on the

device 28 as needed. According to one embodiment of a signature scheme, the mobile device 28

calculates a hash of the software application Y 14 in the signed software application Y 22, using

the same hashing algorithm asithe code signing authority 16, and uses the digital signature and

the public signature key 20 to recover the hash calculated by the signing authority 16. The

resultant locally calculated hash and the hash recovered from the digital signature are then

compared, and if the hashes are the same, the signature is verified. The software application Y

14 can then be executed on the device 28 and access any sensitive APIs for which the

corresponding signature(s) have been verified. As described above, the invention is in no way

limited to this particular illustrative example signature scheme. Other signature schemes,

Page 1185 of 1415

WO 02/25409 PCT/CA01/01344

including further public key signature schemes, may also be used in conjunction with the code

signing methods and systems described herein.

Fig. 2 is a flow diagram 30 of the code signing protocol described above with reference

to Fig. 1. The protocol begins at step 32. At step 34, a software developer writes the software

application Y for a mobile device that requires access to a sensitive API or library that exposes a

sensitive API (API library A). As discussed above, some or all APIs on a mobile device may be

classified as sensitive, thus requiring verification of a chgital signature 'for access by any software

application such as software application Y. In step 36, application Y is tested by the software

deVeloper, preferably using a device simulator in which the digital signature verification function

has been disabled. In this manner, the software developer may debug the software application Y

before the digital signature is acquired from the code signing authority. Once the software

application Y has been written and debugged, it is forwarded to the code signing authority in step

38.

In steps 40 and 42, the code signing authority reviews the software application Y to

determine whether or not it should be given access to the sensitive API, and either accepts or

rejects the software application. The code signing authority may apply a number of criteria to

determine whether or not to grant the software application access to the sensitive API including,

for example, the size of the software application, the device resources accessed by the API, the

perceived utility of the software application, the interaction with other software applications, the

inclusion of a virus or other destructive code, and whether or not the developer has a contractual

obligation or other business arrangement with the mobile device manufacturer. Further details of

managing code signing authorities and developers are deSCribed below in reference to Fig. 5.

Page 1186 of 1415

WO 02/25409 PCT/CA01/01344

If the code signing authority accepts the software application Y, then a digital signature,

and preferably a signature identification, are appended to the software application Y in step 46.

As described above, the digital signature may be generated by using a hash of the software

application Y and a private signature key 18. The signature identification is described below

with reference to Figs. 3 and 4. Once the digital signature and signature identification are

appended to the software application Y to generate a signed software application, the signed

software application Y is returned to the software developer in step 48. The software developer

may then license the signed software application Y to be loaded onto a mobile device (step 50).

If the code signing authority rejects the software application Y, however, then a rejection

notification is preferably sent to the software developer (step 44), and the software application Y

will be unable to access any API(s) associated with the signature.

In an alternative embodiment, the software developer may provide the code signing

authority with only a hash of the software application Y, or provide the software application Y in

some type of abridged format. If the software application Y is a Java application, then the device

independent binary *.class files may be used in the hashing operation, although devicc dependent

files such as *.cod files used by the assignee of the present application may instead be used in

hashing or other digital signature operations when software applications are intended for

operation on particular devices or device types. By providing only a hash or abridged version of

the software application Y, the software developer may have the software application Y signed

without revealing proprietary code to the code signing authority. The hash of the software

application Y, along with the private signature key 18, may then be used by the code signing

authority to generate the digital signature. If an otherwise abridged version of the software

Page 1187 of 1415

W0 02/25409 PCT/CA01101344

application Y is sent to the code signing authority, then the abridged version may similarly be

used to generate the digital signature, provided that the abridging scheme or algorithm, like a

hashing algorithm, generates different outputs for different inputs. This ensures that every

software application will have a different abridged version and thus a different signature that can

only be verified when appended to the particular corresponding software application from which

the abridged version was generated. Because this embodiment does not enable the code signing

authority to thoroughly review the software application for viruses or other destructive code,

however, a registration process betWeen the software developer and the code signing authority

may also be required. For instance, the code signing authority may agree in advance to provide a

trusted software developer access to a limited set of sensitive APIs.

In still another alternative embodiment, a software application Y may be submitted to

more than one signing authority. Each signing authority may for example be responsible for

signing software applications for particular sensitive APIs 'or APIs on a particular model of

mobile device or set of mobile devices that supports the sensitive APIs required by a software

application. A manufacturer, mobile communication network operator, service provider, or

corporate client for example may thereby have signing authority over the use of sensitive APIs

for their particular mobile device model(s), or the mobile devices operating on a particular

network, subscribing to one or more particular services, or distributed to corporate employees.

A signed software application may then include a software application and at least one appended

digital signature appended from each of the signing authorities. Even though these signing

authorities in this example would be generating a signature for the same software application,

Page 1188 of 1415

WO 02/25409 PCT/CA01/01344

different signing and signature verification schemes may be associated with the different signing

authorities.

Fig. 3 is a block diagram of a code signing system 60_ on a mobile device 62. The system

60 includes a virtual machine 64, a plurality of software applications 66—70, a plurality of API

_ libraries 72-78, and an application platform 80. The application platform 80 preferably includes

all of the resources on_the mobile device 62 that may be accessed by the software applications '

66—70. For instance, the application platform may include device hardware 82, the mobile

device's operating system 84, or core software and data models 86. Each API library 72—78

preferably includes a plurality of APIs that interface with a resource available in the application

platform. For instance, one API library might include all of the APIS that interface with a

calendar program and calendar entry data models. Another API library might include all of the

APIs that interface with the transmission circuitry and functions of the mobile device 62. Yet

another API library might include all of the APIs capable of interfacing with lower-level services

performed by the mobile device's operating system 84. In addition, the plurality of API libraries

72—78 may include both libraries that expose a sensitive API 74 and 78, such as an interface to a

cryptographic function, and libraries 72 and 76, that may be accessed without exposing sensitive

APIs. Similarly, the plurality of software applications 66-70 may include both signed software

applications 66 and 70 that require access to one or more sensitive APIs, and unsigned software

applications such as 68. The virtual machine 64 is preferably an object oriented run-time

environment such as Sun Micro System's JZMETM (Java 2 Platform, Micro Edition), which

manages the execution of all of the software applications 66-70 operating on the mobile device

62, and links the software applications 66—70 to the various API libraries 72-78.

Page 1189 of 1415

WO 02125409 PCT/CA01/01344

Software application Y 70 is an example of a signed software application. Each signed

software application preferably includes an actual software application such as software

application Y comprising for example software code that can be executed on the application

platform 80, one or more signature identifications 94 and one or more corresponding digital

signatures 96. Preferably each digital signature 96 and associated signature identification 94 in a

signed software application 66 or 70 corresponds to a sensitive API library 74 or 78 to which the

software application X or software application Y requires access. The sensitive API library 74 or

78 may include one or more sensitive APIs. In an alternative embodiment, the signed software

applications 66 and 70 may include a digital signature 96 for each sensitive API within an API

library 74 or 78. The signature identifications 94 may be unique integers or some other means of

relating a digital signature 96 to a specific API library 74 or 78, APT, application platform 80, or

model of mobile device 62.

API library A 78 is an example of an API library that exposes a sensitive API. Each API

library 74 and 78 including a Sensitive API should preferably include a description string 88, a

public signature key 20, and a signature identifier 92. The signature identifier 92 preferably

corresponds to a signature identification 94 in a signed software application 66 or 70, and

enables the virtual machine 64 to quickly match a digital signature 96 with an API library 74 or

78. The public signature key 20 corresponds to the private signature key 18 maintained by the

code signing authority, and is used to verify the authenticity of a digital signature 96. The

description string 88 may for example be a textual message that is displayed on the mobile

device when a signed software application 66 or 70 is loaded, or alternatively when a software '

application X or Y attempts to acceSS a sensitive API. 7

Page 1190 of 1415

WO 02/25409 PCT/CA01/01344

Operationally, when a signed software application 68-70, respectively including a

software application X, Z, or Y, that requires access to a sensitive API library 74 or 78 is loaded

onto a mobile device, the virtual machine 64 searches the signed for an appended digital

signature 96 associated with the API library 74 or 78. Preferably, the appropriate digital

signature 96 is located by the virtual machine 64 by matching the signature identifier 92 in the

API library 74 or 78 with a signature identification 94 on the signed software application. If the

signed software application includes the appropriate digital signature 96, then the virtual

machine 64 verifies its authenticity using the public signature key 20. Then, once the

appropriate digital signature 96 has been located and verified, the description string 88 is

preferably displayed on the mobile device before the software application X or Y is executed and

accesses the sensitive API. For instance, the description string 88 may display a message stating

that "Application Y is attempting to access API Library A," and thereby provide the mobile

device user with the final control to grant or deny access to the sensitive API.

Fig. 3A is a block diagram of a code signing system 61 on a plurality of mobile devices

62E, 62F and 626 The system 61 includes a plurality of mobile devices each of which only

three are illustrated, mobile devices 62E, 62F and 62G. Also shown is a signed software

application 70, including a software application Y to which two digital signatures 96B and 96F

with corresponding signature identifications 94B and 94F have been appended. In the example

system 61, each pair composed of a digital signature and identification, 94E/96E and 94F/96F,

corresponds to a model of mobile device 62, API library 78, or associated platform 80. If

signature identifications 94E and 94F correspond to different models of mobile device 62, then

when a signed software application 70 which includes a software application Y that requires

Page 1191 of 1415

WO 02/25409 PCT/CA01/01344

access to a sensitive API library 78 is loaded onto mobile device 6213, the virtual machine 64

searches the signed software application 70 for a digital signature 96E associated with the API

library 78 by matching identifier 94E with signature identifier 92. Similarly, when a signed

software application 70 including a software application Y that requires access to a sensitive API

library 78 is loaded onto a mobile device 62F, the virtual machine 64 in device 62F searches the

signed software application 70 for a digital signature 96F associated with the API library 78.

However, when a software application Y in a signed software application 70 that requires access

7 to a sensitive API library 78 is loaded onto a mobile device model for which the application

developer has not obtained a digital signature, device 62G in the example of Fig. 3A, the virtual

machine 64 in the device 646 does not find a digital signature appended to the software

application Y and consequently, access .to the API library 78 is denied on device 62G. It should

be appreciated from the foregoing description that a software application such as software

application Y may have multiple device—specific, library-specific, or API—specific signatures or

some combination of such signatures appended thereto. Similarly, different signature

verification requirements may be c0nfigured for the different devices. For example, device 62E

may require verification of both a global signature, as well as additional signatures for any

sensitive APIs-to which a software applicationrequires access in order for the software

application to be executed, whereas device 62F may" require verification of only a global

signature and device 620 may require verification of signatures only for its sensitive APIs. It

should also be apparent that a communication system may include devices (not shown) on which

a software application Y received as part of a signed software application such as 70 may

execute without any signature verification. Although a signed software application has one or

Page 1192 of 1415

WO 02/25409 PCT/CA01/01344

more signatures appended thereto, the software application Y might possibly be executed on

some devices without first having any of its signature(s) verified. Signing of a software

application preferably does not interfere with its execution on devices in which digital signature

verification is not implemented.

Fig. 4 is a flow diagram 100 illustrating the operation of the code signing system

described above with reference to Figs. 3 and 3A. In step 102, a software application is loaded

ontoia mobile device. Once the software application is loaded, the device, preferably using a

virtual machine, determines whether or not the software application requires access to any API

libraries that expose a sensitive API (step 104). If not, then the software application is linked

with all of its required API libraries and executed (step 118). If the software applicatiOn does

require access to a sensitive API, however, then the virtual machine verifies that the software

application includes a valid digital signature associated any sensitive APIs to which access is

required, in steps 106-116.

In step 106, the virtual machine retrieves the public signature key 20 and signature

identifier 92 from the sensitive API library. The signature identifier 92 is then used by the

virtual machine in step 108 to determine whether or not the software application has an appended

digital signature 96 with a corresponding signature identification 94. If not, then the software

application has not been approved for access to the sensitive API by a code signing authority,

and the software application is preferably prevented from being executed in step 116. In

alternative embodiments, a software application without a pr0per digital signature 96 may be

purged from the mobile device, or may be denied access to the API library exposing the sensitive

API but executed to the extent possible without access to the API library. It is also contemplated

Page 1193 of 1415

WO 02/25409 PCT/CA01/01344

that a user may be prompted for an input when signature verification fails, thereby providing for

uscr control of such subsequent operations as purging of the software application from the

device.

If a digital signature 96 corresponding to the sensitive API library is appended to the

software application and located by the virtual machine, then the virtual machine uses the public

key 20 to verify the authenticity of the digital signature 96 in step 110. This step may be

performed, for example, by using the signature verification scheme described above or other

alternative signature schemes. If the digital signature 96 is not authentic, then the software

application is preferably either not executed, purged, or restricted from accessing the sensitive

API as described above with reference to step 116. If the digital signature is authentic, however,

then the description string 88 is preferably displayed in step 112, warning the mobile device user

that the software application requires access to a sensitive API, and possibly prompting the user

for authorization to execute or load the software application (step 114). When more than one

signature is to be verified for a software application, then the steps 104~110 are preferably

repeated for each signature before the user is prompted in step 112. If the mobile device user in

step 114 authorizes the software application, then it may be executed and linked to the sensitive

API library in step 118.

Fig. 5 is a flow diagram 200 illustrating the management of the code signing authorities

described with reference to 3A. At step 210, an application developer has developed a new

software application which is intended to be executable one or more target device models or

types. The target devices may include sets of devices from different manufacturers, sets of

device models or types from the same manufacturer, or generally any sets of devices having

Page 1194 of 1415

WO 02/25409 PCT/CAOI/OIS-N

particular signature and verification requirements. The term “target device” refers to any such

set of devices having a common signature requirement. For example, a set of devices requiring

verification of a device—specific global signature for execution of all software applications may

comprise a target device, and devices that require both a global signature and further signatures

for sensitive APIs may be part of more than one target device set. The software application may

be written in a device independent manner by using at least one known API, supported on at least

one target device with an API library. Preferably, the developed software application is intended

to be executable on several target devices, each of which has its own at least one API library.

At step 220, a code signing authority for one target device receives a target-signing

request from the developer. The target signing request includes the software application or a

hash of the software application, a developer identifier, as well as at least one target device

identifier which identifies the target device for which a signature is being requested. At step 230,

the signing authority consults a developer database 235 or other records to determine whether or

not to trust developer 220. This determination can be made according to several criteria

discussed above, such as whether or not the deve10per has a contractual obligation or has entered

into some other type of business arrangement with a device manufacturer, network operator,

service provider, or device manufacturer. If the developer is trusted, then the method proceeds at

step 240. However, if the developer is not trusted, then the software application is rejected (250)

and not signed by the signing authority. Assuming the developer was trusted, at step 240 the

signing authority determines if it has the target private key corresponding to the submitted target

identifier by consulting a private key store such as a target private key database 245. If the target

private key is found, then a digital signature for the software application is generated at step 260

Page 1195 of 1415

WO 02/25409 PCT/CA01/0134-l

and the digital signature or a signed software application including the digital signature appended

to the software application is returned to the developer at step 280. However, if the target private

key is not found at step 240, then the software application is rejected at step 270 and no digital

signature is generated for the software application.

Advantageously, if target signing authorities follow compatible embodiments of the

method outlined in Pig. 5, a network of target signing authorities may be established in order to

expediently manage code signing authorities and a developer community code signing process

providing signed software applications for multiple targets with low likelihood of destructive

code.

Should any destructive or otherwise problematic code be found in a software application

or suspectedbecause of behavior exhibited when a software application is executed on a device,

then the registration or privileges of the corresponding application deveIOper With any or all

signing authorities may also be suspended or revoked, since the digital signature provides an

audit trail through which the developer of a problematic software application may be identified.

In 'such an event, devices may be informed of the revocation by being configured to periodically

download signature revocation lists, for example. If software applications! for which the

corresponding digital signatures have been revoked are running on a device, the device may then

halt execution of any such software application and possibly purge the software application from

its local storage. If preferred, devices may also be configured to re-execute digital signature

verifications, for instance periodically or when a new revocation list is downloaded.

Although a digital signature generated by a signing authority is dependent upon

authentication of the application developer and confirmation that the application developer has

Page 1196 of 1415

WO 02/25409 PCT/CA01/013-H

been properly registered, the digital signature is preferably generated from a hash or otherwise

transformed version of the software application and is therefore application-specific. This

contrasts with known code signing schemes, in which API access is granted to any software

applications arriving from trusted application developers or authors. In the code signing systems

and methods described herein, API access is granted on an application—by-application basis and

thus can be more strictly controlled or regulated.

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented. The mobile communication device 610 is preferably al

two—way communication device having at least voice and data communication capabilities. The

device preferably ‘has the capability to communicate with other computer systems on the Internet.

Depending on the functionality provided by the device, the device may be referred to as a data

messaging device, a two—way pager, a cellular telephone with data messaging capabilities, a

wireless Internet appliance or a data communication device (with or without telephony

capabilities).

Where the device 610 is enabled ‘for two—way communications, the device will

incorporate a communication subsystem 611, including a receiver 612, a transmitter 614, and

associated components such as one or more, preferably embedded or internal, antenna elements

616 and 618, local oscillators (LOs) 613, and a processing module such as a digital signal

processor (DSP) 620. As will be apparent to those skilled in the field of cemmunications, the

particular design of the communication subsystem 611 will be dependent upon the

communication network in which the device is intended to operate. For example, a device 610

destined for a North American market may include a communication subsystem 611 designed to

Page 1197 of 1415

WO 02/25409 ‘ PCT/CA01/013-l4

operate within the MobitexTM mobile communication system or DataTACTM mobile

communication system, whereas a device 610 intended for use in Europe may incorporate a

General Packet Radio Service (GPRS) communication subsystem 611.

Network access requirements will also vary depending upon the type of network 919. For

example, in the Mobitex and DataTAC networks, mobile devices such as 610 are registered on

the network using a unique identification number associated with each device. In GPRS

networks however, network access is associated with a subscriber or user of a device 610. A

GPRS,_device therefore requires a subscriber identity module (not shown), commonly referred to

as a SIM card, in order to operate on a GPRS network. Without a SIM card, a GPRS device will

not be fully functional. Local or non—network communication functions (if any) may be operable,

but the device 610 will be unable-to carry out any functions involving communications over

network 619, other than any legally required operations such as “911” emergency calling.

When required network registration or activation procedures have been completed, a

device 610 may send and receive communication signals over the network 619. Signals received

by the antenna 616 through a communication network 619 are input to the receiver 612, which

may perform such common receiver functions as signal amplification, frequency down

conversion, filtering, channel selection and the like, and in the example system shown in Fig. 6,

analog to digital conversion. Analog to digital conversion of a received signal allows more

complex communication functions such as demodulation and decoding to be performed inthe

DSP 620. In a similar manner, signals to be transmitted are processed, including modulation and

encoding for example, by the DSP 620 and input to the transmitter 614 for digital to analog

Page 1198 of 1415

WO 02/25409 PCT/CAlll/OIS-H

conversion, frequency up conversion, filtering, amplification and transmission over the

communication network 619 via the antenna 618.

The DSP 620 not only processes communication signals, but also provides for receiver

and transmitter control. For example, the gains applied to communication signals in the receiver

612 and transmitter 614' may be adaptively controlled through automatic gain control algorithms

implemented in the DSP 620.

The device 610 preferably includes a microprocessor 638 which controls the overall

operation of the device. Communication functions, including at least data and voice

communications, are performed through the communication subsystem 611. The microprocessor

638 also interacts with further device subsystems or resources such as the display 622, flash

memory 624, random access memory (RAM) 626, auxiliary input/output (I/O) subsystems 628,

serial port 630, keyboard 632, speaker 634, microphone 636, a short—range communications

subsystem 640 and any other device subsystems generally designated as 642. APIs, including

sensitive APIs requiring verification of one or more corresponding digital signatures before

access is granted, may be provided on the device 610 to interface between software applications

and any of the resources shown in Fig. 6.

Some of the subsystems shown in Fig. 6 perform communication—related functions,

whereas other subsystems may provide “resident” or on—device functions. Notably, some

subsystems, such as keyboard 632 and display 622 for example, may be used for both

communication—related functions, such as entering a text message for transmission over a

communication network, and device-resident functions such as a calculator or task list.

Page 1199 of 1415

WO 02/25409 PCT/CA01/01344

Operating system software used by the microprocessor 63S, and possibly APIs to be

accessed by software applications, is preferably stored in a persistent store such as flash memory

624, which may instead be a read only memory (ROM) or similar storage element (not shown).

Those skilled in the art will appreciate that the operating system, specific device software

applications, or parts thereof, may be temporarily loaded into a volatile store such as RAM 626.

It is contemplated that received and transmitted communication signals may also be stored to

RAM 626.

The microprocessor 638, in addition to its operating system functions, preferably enables

execution of software applications on the device. A predetermined set of applications which

control basic device operations, including at least data and voice communication applications for

example, will normally be installed on the device 610 during manufacture. A preferred

application that may be loaded onto the device may be a personal information manager (PIM)

application having the ability to organize and manage data items relating to the device user such

as, but not limited to e—mail, calendar events, voice mails, appointments, and task items.

Naturally, one or more memory stores would be available on the device to facilitate storage of

PIM data items on the device. Such PHVI application would preferably have the ability to send

and receive data items, via the wireless network. In a preferred embodiment, the PIM data items

are seamlessly integrated, synchronized and updated, via the wireless network, with the device

user’s corresponding data items stored or associated with a host computer system thereby

creating a mirrored host computer on the mobile device with respect to the data items at least.

This would be especially advantageous in the case where the host computer system is the mobile

device user’s office computer system. Further applications, including signed software

Page 1200 of 1415

WO 02/25409 PCT/CA01/01344

applications as described above, may also be loaded onto the device 610 through the network

619, an auxiliary I/O subsystem 628, serial port 630, short—range communications subsystem 640

or any other suitable subsystem 642. The device microprocessor 638 may then verify any digital

signatures, possibly including both “global” device signatures and API—specific signatures,

appended to such a software application before the software application can be executed by the

microprocessor 638 and/or access any associated sensitive APIs. Such flexibility in application

installation increases the functionality of the device and may provide enhanced on—device

functions, communication—related functions, or both. For example, secure communication

applications may enable electronic commerce functions and other such financial transactions to

be performed using the device 610, through a crypto API and a crypto module which implements

crypto algorithms on the device (not shown).

In a data communication mode, a received signal such as a text message or web page

download will be processed by the communication subsystem 611 and input to the

microprocessor 638, which will preferably further process the received signal for output to the

display 622, or alternatively to an auxiliary I/O device 628. A user of device 610 may also

compose data items such as email messages for example, using the keyboard 632, which is

preferably a complete alphanumeric keyboard or telephone-type keypad, in conjunction with the

diSplay 622 and possibly an auxiliary I/O device 628. Such composed items may then be

transmitted over a communication network through the communication subsystem 611.

For voice communications, overall operation of the device 610 is substantially similar,

except that received signals would preferably be output to a speaker 634 and signals for

transmission would be generated by a microphone 636. Alternative voice or audio I/O

Page 1201 of 1415

W0 (DZ/25409 PCT/CA01/01344

subsystems such as a voice message recording subsystem may also be implemented on the

device 610. Although voice or audio signal output is preferably accomplished primarily through

the speaker 634, the display 622 may also be used to provide an indication of the identity of a

calling party, the duration of a voice call, or other voice call related information for example.

The serial port 630 in Fig. 6 would normally be implemented in a personal digital

assistant (PDA)—type communication device for which synchronization with a user’s desktop

computer (not shown) may be desirable, but is an optional device component. Such a port 630

would enable a user to set preferences through an external device or software application and

would extend the capabilities of the device by providing for information or software downloads

to the device 610 other than through a wireless communication network. The alternate download

path'may for example be used to load an encryption key onto the device through a direct and thus

reliable and trusted connection to thereby enable secure device communication.

A short—range communications subsystem 640 is a further optional component which

may provide for communication between the device 624 and different systems or devices, which

need not necessarily be similar devices. For example, the subsystem 640 may include an infrared

device and associated circuits and components or a BluetoothTM communication module to

provide for communication with similarly-enabled systems and devices.

The embodiments described herein are examples of structures, systems or methods

having elements corresponding to the elements of the invention recited in the claims. This

written description may enable those skilled in the art to make and use embodiments having

alternative elements that likewise correspond to the elements of the invention recited in the

claims. The intended scope of the invention thus includes other structures, systems or methods

Page 1202 of 1415

WO 02/25409 PCT/CA01/0134-l

that do not differ from the literal language of the claims, and further includes other structures,

systems or methods with insubstantial differences from the literal language of the claims.

For example, when a software application is rejected at step 250 in the method shown in

Fig. 5, the signing authority may request that the developer sign a contract or enter into a

business relationship with a device-manufacturer or other entity on whose behalf the signing

authority acts. Similarly, if a software application is rejected at step 270, authority to sign the

software application may be delegated to a different signing authority. The signing of a software

application following delegation of signing of the software application to the different authority ,

can proceed substantially as shown in Fig. 5, wherein the target signing authority that received

the original request from the trusted developer at step 220 requests that the software application

be signed by the different signing authority on behalf of the trusted developer from the target

signing authority. Once a trust relationship has been established between code signing

authorities, target private code signing keys could be shared between code signing authofities to

improve performance of the method at step 240, or a device may be configured to validate digital

signatures from either of the trusted signing authorities.

In addition, although described primarily in the context of software applications, code

signing systems and methods according to the present invention may also be applied to other

device-related components, including but in no way limited to, commands and associated

command arguments, and libraries configured to interface with device resources. Such

commands and libraries may be sent to mobile devices by device manufacturers, device owners,

network operators, service providers, software application developers and the like. It would be

desirable to control the execution of any command that may affect device operation, web as a

Page 1203 of 1415

WO 02/25409 PCT/CA01/01344

command to change a device identification code or wireless communication network addxess for

example, by requiring verification of one or more digital signatures before a command can be

executed on a device, in accordance with the code signing systems and methods described. and

claimed herein.

Page 1204 of 1415

WO 02/25409 PCT/CA01/01344

We claim:

1. A code signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

an application programming interface (API) configured to link the software application

with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application.

2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authentic.

3. The code signing system of claim 1, wherein the virtual machine purges the software

application if the digital signature is not authentic.

4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

signing authority.

Page 1205 of 1415

WO 02/25409 PCT/CAOIIOIS-H

6. A code signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

a plurality of application programming interfaces (APIs), each configured to link the

software application with a resource on the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application,

wherein the virtual machine verifies the authenticity of the digital signature in order to control

access to the plurality of APIs by the software application.

I

7. The code signing system of claim 6, wherein the plurality of APls are included in an API

library. ‘

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified

as sensitive, and wherein the virtual machine uses the digital signature to control access to the

sensitive APIs.

9." The code signing system of claim 8, for operation in conjunction with a plurality of software

applications, wherein one or more of the plurality of software applications has a digital signature,

and wherein the virtual machine verifies the authenticity of the digital signature of each of the

one or more of the plurality of software applications in order to control access to the sensitive

APIs by each of the plurality of software applications.

Page 1206 of 1415

WO 02/25409 PCT/CA01/01344

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system.

5 11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

comprises a data store.
I

13. The code signing system of claim 6, wherein the resource on the application platform
I

comprises a user interface (U1).

14. The code signing system of‘claim 1, further comprising:

a plurality of API libraries each including a plurality of APIs, wherein the virtual

machine controls access to the plurality of API libraries by the software application.

15. The code signing system of claim 14, wherein one or more of the plurality of API libraries is

classified as sensitive, and wherein the virtual machine uses the digital signature to control

access to the sensitive API libraries by the software application.

Page 1207 of 1415

WO 02/25409 PCT/CA01/013-H

16. The code signing system of claim 15, wherein the software application includes a unique

digital signature for each sensitive API library.

17. The code signing system of claim 16, wherein:

the software application includes a signature identification for each unique digital

signature;

each sensitive API library includes a signature identifier; and

the virtual machine compares the signature identification and the signature identifier to

match the unique digital signatures with sensitive API libraries.

18. The code signing system of claim 1, wherein the digital signature is generated using a

private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

19. The code signing system of claim 18, wherein: ‘

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

Page 1208 of 1415

20

WO 02/25409 PCT/CA01/013-H

20. The code signing system of claim 1, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

21. The code signing system of claim 1, wherein the application platform comprises an

operating system.

22. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

23. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

24. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

module (SIM) card.

25. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.

26. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

Page 1209 of 1415

WO 02/25409 PCT/CA01/013-l4

27. The code signing system of claim 1, wherein the API interfaces with a pr0prietary data

model on the application platform.

28. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

installed on a mobile device.

29. A method of controlling access to sensitive application programming interfaces on a mobile

device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

application prograan interface (API);

determining whether or not the software application includes a digital signature

associated with the sensitive API; and

if the software application does not include a digital signature associated With the

sensitive API, then denying the software application access to the sensitive API.

30. The method of claim 29, comprising the additional step of:

if the software application does not include a digital signature associated with the

sensitive API, then purging the software application from the mobile device.

31. The method of claim 29, wherein the digital signature is generated by a code signing

authority.

Page 1210 of 1415

WO 02/25409 PCT/CA01/013-l4

32. The method of claim 29, comprising the additional steps of:

if the software application includes a digital signature associated with the sensitive API,

then verifying the authenticity of the digital signature; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

33. The method of claim 32, comprising the additional step of:

if the digital signature is not authentic, then purging the software application from the

mobile device.

34. The method of claim 32, wherein the digital signature is generated by applying a private

signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile

device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

35. The method of claim 34, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

Page 1211 of 1415

WO 02/25409 PCT/CA01/013-H

36. The method of claim 29, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

37. The method of claim 36, comprising the additional step of:

receiving a command from the user granting or denying the software application access

to the sensitive API.

38. A method of controlling access to an application programming interface (API) on a mobile

device by a software application created by a software developer, comprising the steps of:

receiving the software application from the software developer;

reviewing the software application to determine if it may access the API;

if the software application may access the API, then appending a digital signature to the

software application;

verifying the authenticity of a digital signature appended to a software application; and

providing access to the API to software applications for which the appended digital

signature is authentic.

39. The method of claim 38, wherein the step of reviewing the software application is performed

by a code signing authority.

Page 1212 of 1415

WO (DZ/25409 PCT/CA01/01344

40. The method of claim 38, wherein the step of appending the digital Signature to the software

application is performed by a method comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

41. The method of claim 40, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHA 1).

42. The method of claim 40, wherein the step of verifying the authenticity of a digital signature

comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash.

43. The method of claim 42, comprising the further step of, if the digital signature is not

authentic, then denying the software application access to the API.

Page 1213 of 1415

WO 02/25409 PCT/CA01/013-H

44. The method of claim 42, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

45, A method of controlling access to a sensitive application programming interface (API) on a

mobile device, comprising the steps of:

registering one or more software deVelopers that are trusted to design software

applications which access the sensitive API;

receiving a hash of a software application;

determining if the software application was designed by one of the registered software

developers; and

if the software application was designed by one of the registered software developers,

then generating a digital signature using the hash of the software application, .

wherein

the digital signature may be appended to the software application; and

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application.

46. The method of claim 45, wherein the step of generating the digital signature is performed by

a code signing authority.

47. The method of claim 45, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

Page 1214 of 1415

WO 02/25409 PCT/CA01/01344

48. The method of claim 47, wherein the mobile device verifies the authenticity of the digital

signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

4

determining if the digital signature is authentic by compaiing the calculated hash with the

recovered hash; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

49. A method of restricting access to application programming interfaces on a mobile device,

comprising the steps of;

loading a software application on the mobile device that requires access to one or more

application programming interface (API);

determining whether or not the software application includes an authentic digital

signature associated with the mobile device; and

if the software application does not include an authentic digital signature associated with

the mobile device, then denying the software application access to the one or more APIs.

Page 1215 of 1415

20

WO 02/25409 PCT/CA01/01344

50. The method of claim 49, comprising the additional step of:

if the software application doesnot include an authentic digital signature associated with

the mobile device, then purging the software application from the mobile device.

51. The method of claim 49, wherein:

the software application includes a plurality of digital signatures; and

the plurality of digital signatures includes digital signatures respectively associated with

different types of mobile devices.

52. The method of claim 51, wherein each of the plurality of digital signatures is generated by a

respective corresponding code signing authority.

53. The method of claim 49, wherein the step of determining whether or not the software

application includes an authentic digital signature associated with the mobile device comprises

the additional steps of:

determining if the software application includes a digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signature.

54. The method of claim 53, wherein the one or more APIs includes one or more APIs classified

as sensitive, and the method further comprises the steps of, for each sensitive API:

determining whether or not the software application includes an authentic digital

signature associated with the sensitive API; and

40

Page 1216 of 1415

WO 02/25409 PCT/CA01/01344

if the software application does not include an authentic digital signature associated with

the sensitive API, then denying the software applicatiOn access to the sensitive API.

55. The method of claim 52, wherein each of the plurality of digital signatures is generated by

its corre5ponding code signing authority by applying a respective private signature key

associated with the code signing authority to a hash of the software application.

56. The method of claim 55, wherein the step of determining whether or notthe software

application includes an authentic digital signature associated with the mobile device comprises

the steps of:

determining if the software application includes a digital signature associated with the

mobile device; and

if so, then Verifying the authenticity of the digital signature,

wherein the step of verifying the authenticity of the digital signature is performed by a method

comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature

key associated with the code signing authority which generates the signature associated with the

mobile device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

Page 1217 of 1415

WO02/25409A2

(12) INTERNATIONAL APPLICATION PUBLISH ED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organ ization
International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

(51) International Patent Classification": G06F l/00

(21) InternationalApplication Number: PCT/CADI/Ol344

(22) International Filing Date:
20 September 2001 (20.09.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/234,152
60/235,354
60/270,663

21 September 2000 (21.09.2000) ' US
26 September 2000 (26.09.2000) US

20 February 2001 (20.02.2001) US

Applicant (for all designated States except US): RE-
SEARCH IN MOTION LIMITED [CA/CA]; 295 Phillip
Street, Waterloo, Ontario N2L 3W8 (CA).

(54) Title: CODE SIGNING SYSTEM AND METHOD

Application
Y

/’ Application
Developer Y Code Signer

Signed
ApplicafionY

Signed
Application

Y

llllllIlllllllllllllllllllllIll

(10) International Publication Number

WO 02/25409 A2

(72) Inventors; and
(75) Inventors/Applicants (for US only): YACH, David, P.

[CA/CA]; 254 Castlefield Avenue, Waterloo, Ontario N2K
2N1 (CA). BROWN, Michael, S. [CA/CA]; 7 Danube
Street, Heidelberg, Ontario NOB 1Y0 (CA). LI'I'I‘LE,
Herbert, A. [CA/CA]; 504 Old Oak Place, Waterloo,
Ontario N2T 2V8 (CA).

Agent: PATHIYAL, Krishna, K; Research In Motion
Limited, 295 Phillip Street, Waterloo, Ontario N2L 3W8
(CA).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, M2, NO, NZ, PL, PT, RO, RU, SD, SE, 36, SI, SK,

[Continued on new page]

(57) Abstract: A code signing system and method is pro—
vided. The code signing system operates in conjunction with
a signed software application having a digital signature and
includes an application platform, an application programming
interface (API), and a virtual machine. The API is configured
to link the software application with the application platform.
The virtual machine verifies the authenticity of the digital sig-
nature in order to control access to the API by the software
application.

Page 1218 of 1415

WO 02/25409

Application

Developer Y

S”

“y‘v“‘-—-’I'IllIz-.-. V‘V

Wireless

Network

Signed

Application
Y

Application
Y

Signed

Application
Y

10113912119

PCT/CA01/01344

Code signer

p

Page 1219 of 1415

iQ/BMQW

WO 02/25409 PCT/CA01/0134-l

Application Y uses
. LibraryA

Figu re 2

3

0\ Test Application Yin device simulator
with no signature

verification.

Application Y
forwarded toCode
Signing Authority

Application Y
reviewad by Code
Signing Authority

Code Signing
Authority signs

Application Y with
Digital Signature

Rejection
Notification to Accept Code?Software

Developer

Return Application
Y to Soflware
Developer with

Appended Digital
Signature

Application Y
loaded on Mobile

Device.

Page 1220 of 1415

1013 811 2 fig

WO 02/25409 PCT/CA01/01344

API Library D

API Library C with sensitive API Application X (signed)

Application Plattorm API Library E Application 2

API Library A with sensitive API Application Y (signed)

78 70

Operating System
Signature identification -A

Digital Signature - A. r Public Key .
Description 10 Venn, Signature

Core Software & 81mg Signature Identifier ignature Identification C

Data Models Digital Signature- C |

Virtual Machine

Mobile Device

Figu re 3 ‘

Page 1221 of 1415

'.‘ in“ “-4 “1‘4"”? IV 5Vmeg mitt; 4; g , a, 1 0/591]. 2 19
WO 02/25409 PCT/CA01/01344

Application Library with sensitive API Application Y
Platform (‘82 (signed)

Device 94E 96E
Hardware

' Signature lD-E

Description PUbhc key Signature Signature - E
to verify

string signature Identifier Signature ID _ F

Sigflature - F

Virtual Machine

Mobile Device. . r
L_______ _._ ___.__________________________________ .._u ..__.___--.a l 'i .

/ Mobile Device
l 'I
‘L..ll. . .

\\Mobile Device
62E

Figure 3A

Page 1222 of 1415

WO 02/25409

Figu rep 4

100\

Application Not
Loaded or
Executed

Application Loaded
on Mobile Device

Does Application
Need Access to Sensitive

APl Library?

Virtual Machine
Retrieves Public

Key and Signature
Identifier from API

Library

Proper
Signature on
Application?

Signature
Verifi ed’?

User Prompted

Execute
Application?

Virtual Machine
executes

Application and
linkds with API

Library

16/383,219
PCT/CA01/01344

Page 1223 of 1415

flfii/BBELZMD

’ 92/25409 PCT/CA01/01344{A

Application

Developed

Receive .Target

Signing Request

Develo er Developer
' p ' Trusted by Reject Application
Database .

Authority?

Target

Private Key ' _ Havfie—l—irget Reject Application
Database y‘

Sign Application

Return

Signature

Page 1224 of 1415

m939;

2252:3800£3385mmcmméocm83mm550

PCT/CA01/013-H

63:00

EEmcmc.
29.9w,m5

mo.—

96393222

 NS_

63:00,

vmm

,n_o828$.58%mI
229m

m8Emofimx0.8‘toa_m:mw

Microprocessor

Q.am___§<

WO 02/25409

Page 1225 of 1415

Express Mail No. EV 243791125 US
March 20, 2003

PTO/$3101 (03-01)
Approved for use through 10/31/2002. 0MB 0651-0032

U.Si Patent and Trademark Office; US. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act oi 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorn Dock tNumb r

DECLARATION FOR UTILITY OR

DESIGN

PATENT APPLICATION COMPLETE IF KNOWN

(37 CFR 1.63) Application Nomber
Filin Date

Declaration i:i Declaration gR
Submitted 0 Submitted after Initial Group Art Unit
With Initial Filing (surcharge

Filing (37 CFR 1.16 (9))required) Examiner Name

First Nam d lnv ntor 03"” P' YACH

March 20 , 2003

As a below named inventor, I hereby declare that:

My residence. mailing address. and citizenship are as stated below next to my name.

I believe I am the original. first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural
names are listed below of the sub'ect matter which is claimed and for which a atom is souht on the invention entitled:

SOFTWARE CODE SIGNING SYSTEM AND METHOD

7 (Title of the Invention)
the specification of which

is attached hereto
OR

'3 was filed on (MM/DD/YYYY) as United States Application Number or PCT International

Application Number|::] and was amended on (MM/DD/YYYY):(if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims. as
amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentabillty as defined in 37 CFR 1.56, including for continuation-

inépart applications, material information which became available between the filing date of the prior application and the national orP T international filing date of the continuation-in-part application.

I hereby claim foreign priority benefits under 35 U.S.C. 119(a)—(d) or (f), or 365(b) of any foreign application(s) for patent, inventors
or plant breeder's rights ceitificate(s), or 365(a) of any PCT international application which designated at least one country other
than the United States of America, listed below and have also identified below, by checking the box, any foreign application for
patent, inventor's or plant breeder's rights oertificate(s), or any PCT international application having a filing date before that of thealication on which ' ' is claimed.

Prior Foreign Application Foreign Filing Date Priority Certified Copy Attached?
Number(s) Country MM/DD Not Claimed YES No

Cl
E

El

D
E] Additional forei n a lication numbers are listed on a su lemental riori data sheet PTO/SB/OZB attached hereto:

[Page 1 of 2]

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needs of the individual case. Any comments on
the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents. Washington, DC 20231. ‘

Page 1226 of 1415

PTOISEIOt (03~Ot)
Approved for use through 10/31I2002. 0MB 0651-0032

US, Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

DECLARATION — Utility or Design Patent Application

Direct all correspondence to: [:l Exagrgfidgugzzlr :] 0R Correspondence address below

David B. Cochran, Esq.H

JONES DAx

Address WHEEL—WW

Cl el d Oh'o -
Ci flak State— l ZIP

Count Telephone Fax

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

NAME OF SOLE OR FIRST INVENTOR : E] A petition has been filed for this unsigned inventor

Given Name Ely—ML Family Name EL
(first and middle [if any]) or Surname

Inventor’s ~Sinature w C Date 17 March 2003
Waterloo Ontario CANADA Canadian

Residence: City Cw State Country Citizenship

295 Phillip Street
Mailin Address

I Waterloo Ontario N2L 3W8 CANADA
City State ZIP Country

NAME OF SECOND lNVENTOR: D A petition has been filed for this unsigned inventor

Given Name MiChaEI 5- Family Name BROWN
(first and middle‘IIFa‘rfiD" or Surname

Inventor’s c l W .signawm M5.1 Date/‘é/l {0 Z003

Waterloo fl Ontario CANADA CanadianResidence: City Country Citizenship
Mailing Address 295 Phillip Street

City - State ZIP Country

Additional inventors are being named on the 1 supplemental Additional lnventor(s) sheetis) PTO/SBIOZA attached hereto.
[Page 2 of 2]

Name

Page 1227 of 1415

PTO/SBIOZA (10—00)
Approved for use through 10/31/2002. OMB 0651—0032

U.S. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
persons are required to respond to a collection of information unless it contains a valid OMB control number.

ADDITIONAL INVENTOR(S)
Supplemental Sheet

Page 1_ of l_

I] A petition has been filed for this unsigned inventor

LIIILE
Family Name
or Surname

I t //_m_Inventors . , KSinature t‘fifi ’ CA Dat I 1200?.

Reside\r%e'.”CW‘ State Count Citizenshi -

295 Phillip Street
Mailing Address

Mailing Address

City Waterloo ZIPN2L 3W8 CountryCANADA

Family Name
or Surname

_Si nature

Mm
Mailin Address

Mailin Address

Name Of Additiona' Jomt Inventor! if any: D A petition has been filed for this unsigned inventor

Family Name
or Surname

Inventor's

Mailin - Address

Mailing Address

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needs of the individual case. Any commentshis form should be sent to the Chief Information Officer. US. Patent and Trademark Office, Washington.on the amount of time you are required to complete t
DC 20231. DO NOT SEND FEES 0R COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

Page 1228 of 1415

Express Mail No. EV 243791125 US

March 20‘03
PTO/$3181 (02411)

Approved for use through 10/31I2002. OMB 0651 ~0035
u.s. Patent and Trademark Office: us. DEPARTMENT OF COMMERCE

Under the Paperwoflt Reduction Act of 1995, no persons are required to respond to a collection of information unless It display a valid OMB control number.

Please type a plus sign (+) inside this box —>

Application Number
FiIIn Date

First Named Inventor I 1

POWER OF ATTORNEY OR We

AUTHORIZATION OF AGENT
Examiner Narne

Attorney Docket Number

I hereby appoint:
Place Customer

[:I Practitioners at Customer Number [:3———p Number Bar Code
OR Label here

Practitioner(s) named below:

—_ Reistration Number
Krishna K. Pathi al Es. 44435

Robert C. Liang, Esq. 48091

*“Please see attached sheer“ _

as mylour attorney(s) or agent(s) to prosecute the application identified above, and to transact all
business in the United States Patent and Trademark Office connected therewith.

Please change the correspondence address for the above-identified application to:

[:1 The above-mentioned Customer Number.
OR Place Customer

E] Practitioners at Customer Number I::I ———> NUmW'Ba'COdeLabel here
OR

JONES DAY
North Point, 901 Lakeside Avenue

Q!

I am the:

[:1 Applicant/Inventor.

Assignee of record of the entire interest. See 37 CFR 3.71.
Statement under 37 CFR 3. 73(b) is enclosed. (Form PTO/SBI96).

SIGNATURE of A o - licant or Assi : nee of Record

a idis, President and Co-CEO, on behalf of Research In Motion Limited

“35¢:
'ltME—

- r assignees of record of the entire interest or their representative(s) are required. Submit multiple
forms if more than one 5' nature is required. see below‘.

'Total of 2 forms are submitted. (PTO/SW81 (02m) and 'Supptememel Page Listing Additional Agents of Record)
Burden Hour Statement: This form is estimated to take 3 minutes to complete. Time will vary dependin upon the needs of the individual case. Any comments on
the amount of time you are required to complete this term should be sent to the Chief Information 0 rear. U.S. Patent and Trademark Office. Washington, DC
20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents. Washington. DC 20231.

Page 1229 of 1415

555255012423

SOFI WARE CODE SIGNING SYSTEM AND METHOD

* SUPPLEMENTAL PAGE LISTING ADDITIONAL AGENTS OF RECORD

ADAMO, Kenneth R., Reg. No. 27,299

ARNDT, Barbara E., Reg. No. 37,768

ASAM, Michael R. Reg. No. 51,417

BIERNACKI, John V., Reg. No. 40,511

COCHRAN, David 13., Reg. No. 39,142

COOPER, Lorri W., Reg. No. 40,038

FAY, Regan J., Reg. No. 26,878

FEELING, F. Drexel, Reg. No. 40.602

FRANZ, Paul E., Reg. No. 45,910

GRIFFITH, Calvin P., Reg No. 34,831

MAIORANA, David M., Reg. No. 41,449

O‘HEARN, TimothyJ., Reg. No. 31,552

ROSE, Mitchell, Reg. No. 47,906

SAUER, Joseph M., Reg. No. 47,919

SCANLON, Stephen D., Reg. No. 32,755

SERRA, Wayne M., Reg. No. 51,138

SHEAFFER, Jenny L., Reg. No. 45,099

SWITZER, H. Duane, Reg. No. 22,431

VARY, Michael W., Reg. No. 30,811

WAMSLEY, III, James L., Reg. No. 31,578

all of JONES DAY
North Point

901 Lakeside Avenue

Cleveland, Ohio 44114
US

Page 1230 of 1415

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

PTO-1556

(5/87)

‘UVS, Govemmenl Printing Office: 2W1 — 481-697/59173

Page 1231 of 1415

TOTALCHARGEABLE CLAIMS*

PATENT APPLICATION FEE DETER ' INATION-_RE§O‘RD
Effective October 1, 2001 ‘

CLAIMS AS FILED ' PART ' SMALL ENTITY OTHER THAN
TYPE :1 OR SMALL ENTITY

RAT

. plication or Docket Number

rn 1.1 m ITI

BASIC FEE l

“SE
:19_'

O :U

INDEPENDENT CLAIMS M
MULTIPLE DEPENDENT CLAIM PRESENT D

OR +280:

* If the difference in column 1 is less than zero. enter “0" in column 2 OR TOTAL

CLAIMS AS AMENDED - PART II . - . OTHER THAN

Column 1 - Column 2 SMALL ENTITY OR SMALL ENTITY
CLAIMS I '5 , HIGHEST. . ADDI-REMAINING ~- _ ~ NUMBER anSENT , ..
AFTER , ‘ » ,,_ u pREVIOUSLY ExrRA . RATE TIONAL RATE- -

FEE

O:0

OL. 33.‘f
§<35 II$3m

ADDI
TIONAL

FEE

>U9H-I11Omi‘mr-

V4 AMENDMENT V T ‘ PAID FOR

OR X$18=AMENDMENTA
+280;

CLAIMS " ‘ IHIGHEST
REMAINING ' , NUMBER ADDI- ADDI-

AFTER PREVIOUSLY RATE TIONAL RATE TIONAL
AMENDMENT _-; PAIDFOR FEE . FEE

0R X$18='

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
0:0 X

II

0:0 S3—4'0
A

an:

AMENDMENTB

CLAIMS ; : .' ' ‘ HIGHEST
REMAINING . NUMBER

AFTER PREVIOUSLY TE
AMENDMENT PAID FOR

Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

ADDI—

TIONAL
FEE

AMENDMENTC (D
II 0,

:0

§x
g-I

g;3IT
mF

' Ifthe entry In column 1 IS Iessthan th ntry In column 2. write ‘0' in column 3.
“ If the 'High st Number Prevlously Paid For' IN THIS SPACE Is less than 20. enter '20.‘ ADD”; FEE
“It the 'Highest Number Previoust PaId For" IN THIS SPACE is less than 3. nter '3.‘

Th 'Highest Number Previoust Paid For' (Total or Independent) Is the high St number found In the appropriate box In column 1.

FORM PTO-875 (Rev. 8/01) Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE‘Am 5 cm m1 «247. l sum

Page 1232 of 1415

M COMMERCE

FILING DATE

./t.r’1/I]1]I..rlaJIi17i/II;/0/l..II
Pm: and Trademark Offluus. cast

,‘LE71470123d.567..I470n.NDII-t,‘III it.II/
III

._

123‘557391345571.67I1457890

GERIAL NO.

APPUCANT S)

WWM)
“SENEGAL 835094.81,
CESSGNATEU 0:9qu "
(763)115-5482?

AFTER

‘MAY BE USED FOR ADDITIONAL ms 0]! WHEN?!

AFTER
1:1 AMENDMENT 2nd AMENDMENT

MULTIPLE DEPENDENT CLAIM
FEE CALCULATION SHEET
(FOR USE WITH FORM PTO-87,6)

I»
I.
‘
I
I
9

Page 1233 of 1415

FILINB DATE

us. can MENT .71 00Pm»: lfld ‘I’rldornark Offic-

235657.vI7..0
51L

mnun—unnum—=——==——=——=============Hm=_l_============_=======_==pm.123579123.567,89123461-1236790u.
APPLICANTfi)

twin

SERIAL NO

AFTER

WHALEGAJ 89$r‘

[733) 315-5483
D. ,IGNATEUotncg

'MAYEB 0881) FOR ADDITIONAL OMS OR AMBNDMBNTS

AFTER
1:: AMENDMENT 2nd AMENDMENT

MULTIPLE DEPENDENT CLAIM
FEE CALCULATION SHEET
(m1; USE WITH FORM PTO-87.5)

ILID

m
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
_
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

i

i
l

PTO-1380 (3-78)

Page 1234 of 1415

ATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicants or agents file reference F RTHER see Notification of Transmittal of International Search Report
FOR U (Form PCT/ISAI220) as well as, where applicable, item 5 below.

PEA-0445 ACTION
lntemational application No. international filing date (day/monm/year) (Earliest) Priority Date (day/monrh/year)

PCT/CA 01/ 01344 20/09/2001 21/09/2000
Applicant

RESEARCH IN MOTION LIMITED -
t

This lntemational Search Report has been prepared this International Searching Authority and is transmitted to the applicant
according to Article 18. A copy is being transmitted to the International Bureau.

This lntemational Search Report consists of a total of 3 sheets.

[I] It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report

a. With regard to the language, the international search was carried out on the basis of the international application in the
language in which I! was filed, unless otherwise indicated under this item.

the lntemational search was carried out on the basis at a translation of the international application furnished to this
Authority (Rule 23.1 (b)).

b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search
was carried out on the basis of the sequence listing :

contained in the international application in written form.

filed together with the international application in computer readable torm.

furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readble form.

the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the
international application as filed has been furnished.

the statement that the information recorded in computer readable form is identical to the written sequence listing has been
furnished

Certain claims were found unsearchable (See Box l).

Unity of invention is lacking (see Box ll).

With regard to the title,

[3 the text is approved as submitted by ihe applicant.

[1] the text has been established by this Authority to read as follows:
SOFTWARE CODE SIGNING SYSTEM AND METHOD

With regard to the abstract,

[3] the text is approved as submitted by the applicant.

D the text has been established. according to Rule 38.2(b), by this Authority as it appears in Box Ill. The applicant may,within one month from the date of mailing of this international search report. submit comments to this Authority.

The figure of the drawings to be published with the abstract is Figure No. Z_______

D as suggested by the applicant. D None oi the figures.
[X] because the applicant failed to suggest a figure.

B because this figure better characterizes the invention.

Form PCT/lSA/210 (first sheet) (July 1998)

Page 1235 of 1415

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF UBJECT M ‘
IPC 7 GO6F1 00

lntematlonal Application No

A 01/01344

According to international Patent Classification (lPC) or to both national classification and lPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the tields searched

Electronic data base consulted during the international search (name of data base and, where practical. search terms used)

EPO—Internal, NPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° Citation of document, with indication, where appropriate. of the relevant passages Relevant to claim No.

no 99 05600 A (APPLE COMPUTER)
4 February 1999 (1999—02—04)

abstract; figures 5,6,9
page 6, line 1 — line 15
page 19, iine 4 — line 14
Page
Page
page

24, iine 6 - tine 23
25, line 23 — tine 26

m Further documents are listed in the continuation of box C.
° Special categories of cited documents :

'A' document defining the general state of the art which is not
considered to be of particular relevance

'E' earlier document but published on or aiterthe intematlonal
filing date

'L’ document which may throw doubts on priority ctaim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

'0' document referring to an oral disclosure, use. exhibition orother means
'P' document published prior to the international filing date but

later than the priority date claimed

Date of the actual completion of the intemationai search

12 April 2002

Name and mailing address of the ISA
European Patent Office, PB. 5818 Patentlaan 2
NL — 2280 HV Riiswijk

Tel. (+31—70) 340—2040, TX, 31 651 epo nl.
Fax: (+31-70) 340-3016

Form PCT/ISA/Zto (second sheet) (July 1992)

1,2,6,7.
12—15,
21,26,
27,29,32

20, iine 19 —page 21, line 4

11,18,
19,26,
31,38—56

Patent family members are listed in annex.
'T' later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying theinvention

'X' document of particular relevance: the claimed inventioncannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y' document of particular relevance: the claimed invention
cannot be considered to involve an inventive step when thedocument is combined with one or more other such docu—
ments. such combination being obvious to a person skilledin the an.

'&' document member oi the same patent family

Date of mailing of the international search repon

22/04/2002
Authorized officer

Powell, 0

page 1 of 2

Page 1236 of 1415

INTERNAHONALSEARCHREPORT Inte atlonal Applicatlon No

' A 01/01344

C.(Comlnuatlon) DOCUMENTS CONSI I RED TO BE RELEVANT

Calegory ° Cnation of document. with indication,where appropriate, or the relevant passages Relevant to claim No.

EP 0 930 793 A (TEXAS INSTRUMENTS INC) 1,3-6,

21 July 1999 (1999—07—21) 8—10,20,
22—24,
28—33,
36,37

abstract; figure 6
page 15, Tine 54 —page 16, Tine 5
page 16, Iine 32 — Tine 44

34,35

US 6 157 721 A (SIBERT W OLIN ET AL) 11,18,
5 December 2000 (2000-12-05) 19,26,

31,34,
35,38—56

abstract; figures 2,3,5,8,14
c01umn 2, Tine 27 — Tine 65
coTumn 11, Tine 7 — line 19
coTumn 15, Tine 23 - 11ne 41
& AU 36815 97 A (INTERTRUST TECHNOLOGIES

CORP) 19 February 1998 (1998-02-19)

US 5 978 484 A (APPERSON NORMAN ET AL)
2 November 1999 (1999~11—02)

abstract; figure 5
coTumn 2, Tine 41 — Tine 60
column 3, Tine 44 — Tine 57
column 8, Tine 17 — line 25

Form PCTVISNZTO (confirmation 01 sound sheet) (July 1992)

page 2 of 2

Page 1237 of 1415

INTEFNHATKDNA¢.SEIU3CPIREPCMRT
anon on patent family members

Internatlonal Appllcallon No

. ' A 01/01344

Patent document Publicafion Patent family Publication
cited in search repofl date member(s) date

NO 9905600

US 6157721

A

A

A

Form PCTASAl210 (pawnt family annex) (July 1992)

04-02-1999

21—07—1999

05-12-2000

6188995
1023664
9905600

1249643
0930793

11312152

3205797
3681597
1225739
0898777

2001501763
9743761
6292569

2002023214

13-02-2001
02-08-2000
04-02—1999

05-04-2000
21-07-1999
09—11-1999

05-12-1997
19-02—1998
11—08*1999
03-03-1999
06~02~2001
20-11-1997
18—09—2001
21-02-2002

Page 1238 of 1415

PCT/CA01/01344

‘ENT COOPERATION TREAT
From the INTERNATIONAL BUREAU

PCT

Commissioner

NOTIFICATION OF ELECTION US Department of Commerce
United States Patent and Trademark

(PCT Rule 61.2) Office, PCT
2011 South Clark Place Room
CP2/5C24

. “we, , Arlington, VA 22202
‘ ‘TTUnitedStateseof America/wk

in its capacity as elected Office

International application No. Applicant's or agent's file reference

PCT/CA01/01344 PCA-0445

International filing date (day/month/year) Priority date (day/month/year)

20 September 2001 (20.09 01) 21 September 2000 (21.09.00)

Applicant

YACH, David, P. et al

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:
22 April 2002 (22.04.02)

D in a notice effecting later election filed with the International Bureau on:

2. Theelection was

D wasnot

made before the expiration of19 months from the priority date or, where Rule 32 applies, within the time limit under
Rule 32.2(b).

Auth r' d ff‘ r
The International Bureau ofWIPO o ‘ze a we

34, chemin des Colomben s Denise POSPIEZNY
1211 Geneva 20. Switzerland

Facsimile No.: (41-22) 740.14.35 Telephone No.: (41-22) 338.83.38

Form PCT/IB/33'l (July 1992) CA0101344

Page 1239 of 1415

WO02/25409‘A3

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

, (19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

(51) International Patent Classification7: G06F 1/00

(2]) InternationalApplication Number: PCT/CAOl/Ol344

(22) International Filing Date:
20 September 2001 (2009200))

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/234.152
601235.354
60/270,663

2| September 2000 (21.09.2000)
26 September 2000 (26.09.2000)

20 February 2001 (20.02.2001)

US
US
US

Applicant (for all designated States except US): RE—
SEARCH IN MOTION LIMITED [CA/CA]: 295 Phillip
Street, Waterloo. Ontario N2L 3W8 (CA).

lIIIIIlllllllllllllllllllllIlllllllllllllllllllIlllllllllllllIllllllllllllllllll

(10) International Publication Number

WO 02/25409 A3

(72) Inventors; and
(75) Inventors/Applicants (for US only): YACH, David, P.

[CA/CA]: 254 Castlefield Avenue. Waterloo. Ontario N2K
2Nl (CA). BROWN. Michael, S. [CA/CA]; 7 Danube
Street. Heidelberg. Ontario NOB 1Y0 (CA). LITTLE,
Herbert, A. [CA/CA]: 504 Old Oak Place. Waterloo.
Ontario N2T 2V8 (CA).

Agent: PATHIYAL, Krishna, K.; Research In Motion
Limited. 295 Phillip Street, Waterloo. Ontario N2L 3W8
(CA).

Designated States (national): AE. AG. AL. AM. AT. AU.
AZ. BA, BB, BG. BR. BY. BZ. CA, CH, CN. CO. CR, CU.
CZ. DE. DK. DM. DZ. EC. EE, ES. FI. GB, GD. GE. GH.
GM. HR. HU, ID. IL, IN. [S.JP, KE. KG. KP. KR. KZ. LC.
LK. LR. LS. LT. LU. LV. MA. MD, MG. MK. MN, MW.
MX. M2. NO, NZ, PL. PT, RO. RU. SD. SE, SG, SI. SK.
SL. TJ. TM, TR, TT. TZ. UA. UG. US, UZ, VN. YU, ZA.
ZW.

[Continued on next page]

(54) Title: SOFTWARE CODE SIGNING SYSTEM AND METHOD

(57) Abstract: A code signing system and method is provided.
The code signing system operates in conjunction with a signed
software application having a digital signature and includes
an application platform, an application programming interface
(API), and a virtual machine. The API is configured to link the
software application with the application platform. The virtual
machine verifies the authenticity of the digital signature in
order to control access to the AH by the software application.

Page 1240 of 1415

WO 02/25409 A3 lllllllllllmmllllllllllllflllllllIlllllllllllllllllllllllll{IllIlllllll
(84) Designated States (regional): ARIPO patent (GH. GM.

KE. LS. MW. MZ. SD. SL. SZ. TZ. UC. ZW). Eurasian
palem (AM. AZ. BY. KG. KZ, MD. RU.TJ. TM). European
patent (AT. BE. CH. CY. DE. DK. ES. FI, FR. GB. GR. IE.
1T. LU. MC. NL. PT. SE. TR). OAP] patent (BF, BJ. CF.
CG, CI. CM, GA. GN. GQ. GW. ML. MR. NE. SN. TD.
TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
13 June 2002

For m'o-letler codes and other abbreviations. refer to the "Guid-
ance Notes on Codes and A bbrevz'ations" appearing at the begin-
ning ofeach regular issue ofthe PCT Gazette.

Page 1241 of 1415

PATENT COOPERATION TREATb
PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicants or agent‘s tile reference FOR FURTHER see Notification of Transmittal of International Search Report
(Form PCT/lSA/220) as well as, where applicable, item 5 below.

PCA—0445 ACTION

International application NO. International filing date (day/month/year) (Earliest) Priority Date (day/monlh/year)

PCT/ CA 01/ 01344 20/09/2001 21/09/2000
Applicant

RESEARCH IN MOTION LIMITED

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicantaccording to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists at a total of 3 sheets.

m It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report

a. With regard to the language, the international search was carried out on the basis of the international application in thelanguage in which it was tiled, unless othenivise indicated under this item.

B the international search was carried out on the basis of a translation of the international application furnished to thisAuthority (Rule 23.1(b)).

b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search
was carried out on the basis of the sequence listing :

contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readble form.

the statement that the subsequently turnished written sequence listing does not go beyond the disclosure in theinternational application as filed has been furnished.

the statement that the information recorded in computer readable term is identical to the written sequence listing has beenfurnished

Certain claims were found unsearchable (See Box I).

Unity of invention is lacking (See Box ll).

With regard to the title,

|:] the text is approved as submitted by the applicant.

m the text has been established by this Authority to read as follows:
SOFTWARE CODE SIGNING SYSTEM AND METHOD

With regard to the abstract,

m the text is approved as submitted by the applicant.

E] the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box In. The applicant may,
within one month from the date of mailing of this international search report, submit comments to this Authority.

The figure of the drawings to be published with the abstract is Figure No. 2

D as suggested by the applicant. D None of the figures.
[8] because the applicant failed to suggest a figure.
1:] because this ligure better characterizes the invention.

Form PCT/ISN21O (first sheet) (July 1993)

Page 1242 of 1415

jNTEFHflATK)NA1.SEAflRCfIREFKDRTI national Application No

/CA 01/01344
CLASSIFICATION OF

ire 7 eoer1

According to International Patent Classification (IPC) orlo both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system tollowed by classification symbots)
IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and. where practical. search terms used)

EPO—Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED To BE RELEVANT

Citation of document, with indication, where appropriate, of the relevant passages
N0 99 05600 A (APPLE COMPUTER) 1,2,6,7,
4 February 1999 (1999—02—04) 12-15,

21,26,
27,29,32

abstract; figures 5,6,9
pme6,lme1—lflm15
page 19, line 4 — line 14
page 20, line 19 —page 21, line 4
page 24, line 6 - line 23
page 25, line 23 — line 26

11,18,
19,26,
31,38—56

m Funher documents are listed in the continuation of box C. E Patent family members are listed in annex.
° Special categories of cited documents :

"I" later document published after the international filing date
or priority date and not in conflict with the application but'A' document defining the general state of the art which is not - - - t

considered ‘0 be of panicula’ relevance fit/eed'art‘tnderstand the pnnctple or theory underlying the
'E' eanier document but published on or afterthe international .X. documem 0t panicular remvance; the claimed invemion“mg “3‘6 cannot be considered novel or cannot be considered to
'L' document which may throw doubts on priority claim(s) or involve an inventive step when the document ‘3 taken alone

which is Che“ ‘0 es‘apum "‘9 Puwca‘io" qa‘e 0' ano‘her 'Y' document ot particular relevance; the claimed invention
c'm'o“ or °‘he' spec'a’ "335°" (35 spew“) cannot be considered to involve an inventive step when the'0' document referring to an oral disclosure. use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled

'P' document published prior to the intemationat filing date but i" "'9 3“
later than the priority date claimed '&‘ document member of the same patent family

Dale of the actual completion ol the international search Date of mailing of the international search report

12 April 2002 22/04/2002

Name and mailing address of the ISA - Authorized officer
European Patent Oftice. PB. 5818 Patentlaan 2
NL - 2280 HV Rijswiik

Tel. (+31—70) 340—2040. Tx. 31 651 epo nI,
Fax: (+31—70)340—3016 POWEI] , D

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Page 1243 of 1415

INTEFHNATKJNAi.SEJURCPIREPCH?T ,_
,‘ ('national Application No

'T/CA 01/01 344
C.(Ccnlinualion) DOCUMENTS C ‘ ’ ERED TO BE RELEVANT

Ciialion of document, vmn indicationmhere appropriate, oi the relevam passages Relevant to claim No.
EP 0 930 793 A (TEXAS INSTRUMENTS INC) 1,3—6,
21 July 1999 (1999—07—21) 8—10,20,

22—24,
28—33,
36,37

abstract; figure 6
page 15, Tine 54 —page 16, Tine 5
page 16, Tine 32 - line 44

34,35

US 6 157 721 A (SIBERT W OLIN ET AL) 11,18,
5 December 2000 (2000-12—05) 19,26,

31,34,
35,38-56

abstract; figures 2,3,5,8,14
column 2, line 27 — line 65
column 11, line 7 - line 19
coiumn 15, line 23 — iine 41
& AU 36815 97 A (INTERTRUST TECHNOLOGIES

CORP) 19 February 1998 (1998-02—19)

US 5 978 484 A (APPERSON NORMAN ET AL)
2 November 1999 (1999—11—02)

abstract; figure 5
coiumn 2, Tine 41 — line 60
coiumn 3, Tine 44 — line 57
coiumn 8, Tine 17 — line 25

Form PCT/ISAIEIO (coniinuaiion 01 second Sim!) (July I992)

page 2 of 2

Page 1244 of 1415

'flfTEFHWAJ1CHflAL.SEUXRCHiIREFKDRT
," national Appllcaflon NoInformation on patent lamin members

T/CA 01/01344

Patent document “ Publication Patem tarnin Publication
cited in search report date membens) date

NO 9905600

US 6157721

A

A

A

Form PCTHSAIZID (paienl Iamiry annex) (Jury 1992)

04—02-1999

21-07—1999

05-12—2000

US 6188995
1023664
9905600

1249643
0930793

11312152

3205797
3681597
1225739
0898777

2001501763
9743761
6292569

2002023214

13-02—2001
02-08-2000
04—02-1999

05—04-2000
21-07—1999
09—11—1999

05—12-1997
19—02—1998
11-08—1999
03—03-1999
06-02-2001
20-11—1997
18*09-2001
21-02-2002

Page 1245 of 1415

WO 02/25409 A2

SL, TJ, TM, TR, ’l'I‘, 'I‘Z, UA, UG, US, UZ, VN, YU, ZA,
ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, ’17., UG, ZW.), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

llllllllllllllllIIIIIIIIIu lllllllllllllllllllIllllIllllllllllllllllllllll

Published:

7 without international search report and to be republished
upon receipt ofthat report

For two-letter codes and other abbreviations. re/er to the "Guid—
once Notes on Codes andA bbreviations " appearing at the begin-
ning ofeach regular issue ofthe PCT Gazette.

Page 1246 of 1415

7 Express/Mail No. EV 243791125 us
March 20, 1219

DMQRec'dPCT/PTO 2 0 Mist 2003
SOFTWARE CODE SIGNING SYSTEM AND METHOD

Evau37aiiasug

CROSS—REFERENCE TO RELATED APPLICATIONS

This application claims priority from and is related to the following prior applications:

"Code Signing System And Method," United States Provisional Application No. 60/234,152,

filed September 21, 2000; "Code Signing System And Method," United States Provisional

Application No. 60/235,354, filed September 26, 2000; and "Code Signing System And

Method," United States Provisional Application No. 60/270,663, filed February 20, 2001.

BACKGROUND

FIELD OF THE INVENTION

This invention relates generally to the field of security protocols for software

applications. More particularly, the invention provides a code signing system and method that is

particularly well suited for Javam‘applications for mobile communication devices, such as

Personal Digital Assistants, cellular telephones, and wireless two-way communication devices

(collectively referred to hereinafter as "mobile devices" or simply “devices”).

DESCISIPTION OF THE RELATED'ART

Security protocols involving software code signing schemes are known. Typically, such

Security protocols are used to ensure the reliability of software applications that are downloaded

from the Internet. In a typical software code signing scheme, a digital signature is attached to a

software application that identifies the software developer. Once the software is‘dOWnloaded by

a user, the user typically must use his or her judgment to determine whether or not the software

1

Page 1247 of 1415

application is reliable,_ based solely on his or her knowledge of the software developer's

reputation. This type of code signing scheme does not ensure that a software application written

by a third party for a mobile device will properly interact with the device's native applications

and other resources. Because typical code signing protocols are not secure and rely solely on the

5 judgment of the user, there is a serious risk that destructive, "Trojan horse" type software

applications may be downloaded and installed onto a mobile device.

There also remains a need for network operators to have a system and method to maintain

control over which software applications are activated on mobile devices. I' "r-

There remains a further need in 2.5G and 3G networks where corporate clients or

network operators would like-to control the types of software on the devices issued to its

employees.

SUMMARY. ‘ ’

A code signing system and method is provided. The code signing system operates in

-- conjunction with a softwareapplication having a digital signature and includes an application

platform, an application programming interface (API), and a virtual machine. The API is

configured to link the software application with the application platform. The virtual machine

verifies the authenticity of the digital signature in order to control access to the API by the

software application.

A code signing system for operation in conjunction with a software application having a

digital signature, according to another embodiment of the invention comprises an application

platform, a plurality of APIs, each configured to link the software application with a resource on

Page 1248 of 1415

the application platform, and a virtual machine that verifies the authenticity of the digital

signature in order to control access to the API by the, software application, wherein'the virtual

maChine verifies the authenticity of the digital signature in order to control access to the plurality.

of APIs by the software application.

According to a further embodiment of the invention, a method of controlling access to

sensitive application programming interfaces on a mobile device comprises the steps of loading a

software application on the mobile device that requires access to a sensitive API, determining

whether or not the software application includes a digital signature associated with the sensitive

API, and if the software application does not include a digital signature associated with the

sensitive API, then denying the software application access to the sensitive API.

In another embodiment of the invention, a method of controlling access to an application

programming interface (API) on a mobile device by a software application created by a software

developer comprises the steps of receiving the software application from the software developer,

reviewing the software application to determine if it may access the API, if the software

application may access the API, then appending a digital signature to the software application,

verifying the authenticity of a digital signature appended to a software application, and providing -

access to the API to software applications for which the appended digital signature is authentic.

- A method of restricting access to a sensitive API on a mobile device, according to'a

further embodiment of the invention, comprises the steps of registering one or more software

developers that are trusted to design software applications which access the sensitive API,

receiving a hash of a software application, determining if the software application was designed

by one of the registered software developers, and if the software application was designed by one

Page 1249 of 1415

of the registered software developers, then generating a digital signature using the hash of the

software application, wherein the digital signature may be appended to the software application,

and the mobile device verifies the authenticity‘of the digital signature in order to control access

to the sensitive API by the software application.

In a still further embodiment, a method of restricting access to application programming

interfaces on a mobile device comprises the steps of loading a software application on the mobile

device that requires access to one or more API, determining whether or not the software

application includes a digital signature associated with the mobile device, and if the software

application does not include a digital,signature associated with the mobile device, then denying

the software application access to the one or more APIs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 isa diagram illustrating a code signing protocol according to one embodiment of

the invention;

Fig. 2 is a flow diagram of the code signing protocol described above with reference to

I Fig; My. - p . i. "i

Fig. 3 is a block diagram of a code signing system on a mobile device;

Fig. 3A is a block diagram of a code signing system on a plurality of mobile devices;

. Fig. 4 is a flow diagram illustrating the operation of the code signing system described

above with reference to Fig. 3 and Fig. 3A;

Fig. 5 is a flow diagram illustrating the management of the code signing authorities

described with reference to Fig. 3A; and

Page 1250 of 1415

Fig 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented.

W-

Referring now to the drawing figures, Fig. 1 is a diagram illustrating a code signing

protocol according to one embodiment of the invention. An application developer 12 creates a

software application 14 (application Y) for a mobile device that requires access to one or more

sensitive APIs on the mobile device. The software application Y 14 may, for example, be a Java

application that operates on a Java virtual machine installed on the mobile device. An API

enables the software application Y to interface with an application platform that may include, for

example, resources such as the device hardware, operating system and core software and data

models. In order to make function calls to or otherwise interact with such device resources, a

software application Y must access one or more APIs. APIs can thereby effectively “bridge” a

software application and associated device resources. In this description and the appended

claims, references to API access should be interpreted to include access of an API in such a way,

as to allow a software application. Y to interact with one or more corresponding device resources.

Providing access to any API therefore allows a software application Y to interact with associated

device resources, whereas denying access to an API prevents the software application from

interacting with the associated resources. For example, a database API may communicate

device file or data storage system, and access to the database API would provide for interaction

between a software application Y and the file or data storage system. A user interface (U1) API

would communicate with controllers and/or control software for such device components as a

Page 1251 of 1415

. .,.-

screen, a keyboard, and any other device components that provide output to a user or accept

input from a user. In a mobile device, a radio API may also be provided as an interface to

wireless communication resources such_as a transmitter and receiver. Similarly, a cryptographic

API may be provided to interact with a crypto module which implementscrypto algorithms on a

device. These are merely illustrative examples of APIs that may be provided on a device. A

device may include any of these example APIs, or different APIs instead of or in addition to

those described above.

Preferably, any API may be classified as sensitive by a mobile device manufacturer, or

possibly by an API author, a wireless network operator, a device owner or operator, or some

other entity that may be affected by a virus or malicious code in a device software application.

For instance, a mobile device manufacturer may classify as sensitive those APIs that interface

with cryptographic routines, wireless communication functions, or proprietary data models such

as address book or calendar entries. To protect against unauthorized access to these sensitive

APIs, the application developer 12 is required to obtain one or more digital signatures from the

mobile device manufacturer or other entity that classified any APIs as sensitive, or from a code

signing authority 16 "acting on behalf of the manufacturer or other entity with an interest in

protecting access to sensitive device APIs, and append the signature(s) to the software

application Y 174.

In one embodiment, a digital signature is obtained for each sensitive API or library that

includes a sensitive API to which the software application requires access. In some cases,

multiple signatures are desirable. This would allow a service provider, company or network

operator to restrict some or all software applications loaded or updated onto a particular set of

Page 1252 of 1415

mobile devices. In this multiple—signature scenario, all APIs are restricted and locked until a

“globa ” signature is verified for a software application. For example, a company may wish to

prevent its employees from executing any software applications onto their devices _without first

obtaining permission from a corporate information technology (IT) or computer services

department. All such corporate mobile devices may then be configured to require verification of

at least a global signature before a software application can be executed. Access to sensitive

device APIs and libraries, if any, could then be further restricted, dependent upon verification of

respective corresponding digital signatures.

The binary executable representation of software application Y 14 may be independent of

the particular type of mobile device or model of a mobile device. Software application Y 14 may

for example be in a write-once-run-anywhere binary format such as is the case with Java

software applications. However, it may be desirable to have a digital signature for each mobile

device type or model, or alternatively for each mobile device platform _or manufacturer. ’

Therefore, software application Y 14 may be submitted to several code signing authorities if

software application Y 14 targets several mobile devices.

.- Software application Y 14 is sent from the application developer 12 to the code signing
authority 16. In the embodiment shown in Fig. 1, the code signing authority 16 reviews the

software application Y 14, although as described in further detail below, it is contemplated that

the code signing authority 16 may also or instead consider the identity of the application

developer 12 to determine whether or not the software application Y 14 should be signed. The

code signing authority 16 is preferably one or more representatives from the mobile device

Page 1253 of 1415

manufacturer, the authors of any sensitive APIs, or possibly others that have knowledge of the

operation of the sensitive APIs to which the software application needs access.

If the code signing authority 16 determines that software application Y 14 may access the

sensitive API and therefore should bevsigned, then a signature (not shown) for the software

application Y 14 is generated by the code signing authority 16 and appended to the software

application Y 14. The signed software application Y 22, comprising the software application Y

14 and the digital signature, is then returned to the application developer 12. The digital

signature is preferably a tag that is generated using a private signature key 18 maintained solely

by the code signing authority 16. For example, according to one signature scheme, a hash of the

software application Y 14 may be generated, using a hashing algorithm such as the Secure Hash

Algorithm SHAl, and then used with the private signature key 18 to create the digital signature.

In some signature schemes, the private signature key is used to encrypt a hash of information to

be signed, such as software application Y 14, whereas in other schemes, the private key may be

used in other ways to generate a signature from the information to be signed or a transformed

7 version of the information.

, The signed software application Y 22 may then be sent to a mobile device 28 or

downloaded by the mobile device 28 over'a wireless network 24. It should be understood,

however, that a code signing protocol according to the present invention is not limited to

software applications that are doWnloaded over a wireless network. For instance, in alternative

embodiments, the signed software application Y 22 may be downloaded to a personal computer

via a computer network and loaded to the mobile device through a serial link, or may be acquired

from the application developer 12 in any other manner and loaded onto the mobile device. Once

Page 1254 of 1415

the signed software application Y 22 is loaded on the mobile device 28, each digital signature is

preferably verified with a public signature key 20 before the software application Y 14 is granted

access to a sensitive API library. Although the signed software application Y 22 is loaded onto a

device, it should be appreciated that the software application that may eventually be executed on

the device is the software application Y 14. As described above, the signed software application

Y 22 includes the software application Y 14 and one or more appended digital signatures (not

shown). When the signatures are verified, the software application Y 14 can be executed on the

device and access any APIs for which corresponding signatures have been verified.

The public signature key 20 corresponds to the private signature key 18 maintained by

the code signing authority 16, and is preferably installed on the mobile device along with the

sensitive API. However, the public key 10 may instead be obtained from a public key repository

(not shown), using the device 28 or possibly a personal computer system, and installed on the

device 28 as needed. According to one embodiment of a signature scheme, the mobile device 28

calculates a hash of the software application Y 14 in the signed software application Y 22, using

the same hashing algorithm asthe code signing authority 16, and uses the digital signature and

the public signaturekey‘ 20 to recover the hashcalculated by the signing authority 16. The

resultant locally calculated‘hash and the hash recovered from the digital signature are then

compared, and if the hashes are the same, the signature is verified. The software application Y

14 can then be executed on the device 28 and access any sensitive APIs for which the

_ corresponding signature(s) have been verified. As described above, the invention is in no way

limited to this particular illustrative example signature scheme. Other signature schemes,

Page 1255 of 1415

’ including further public key signature schemes, may also be used in conjunction with the code

signing methods and systems deson'bed herein.

Fig. 2 is a flow diagram 30' of the code signing protocol described above with reference

to Fig. 1. The protocol begins at step 32. At“sépw 34,:a software developer writes the software

application Y for a mobile device that requires access to a sensitive API or library that exposes a

sensitive API (AH library A). As discussed above, or all APIs on a mobile device may be

classified as sensitive, thus requiring verification of a digital signature for access by any software

application such as'softWare applicatiorihY. In step 36, application Y is tested by the software

developer, preferably using a device simulator in which the digital signature verification function

has been. disabled. In this manner, the softWare developer may debug the software application Y

before the digital signature is acquired from the code signing authority. Once the software

application Y has been written and debugged, it is forwarded to the code signing authority in step
’38. I i

In steps 40 and 42, the code signing authority reviews the software application Y to

I detennine,.whether or notitshould be given access to thepsensitive API, and either accepts or

_ rejects the software application. The code signingsatithority may apply“’a“number of criteria to

determine whether or not to grant the software application-access to the sensitive API including,

for example, the size of the software application, the device resources accessed by the API, them.—

perceived 'utility of the software application, the interaction with other software applications, the

inclusion of a virus or other destructive code, and whether or not the developer has a contractual

obligation or other business arrangement with the mobile device manufacturer. Further details of

managing code signing authorities and developers are described below in reference to Fig. 5.

Page 1256 of 1415

f.

If the code signing authority accepts the software application Y, then a digital signature,

and preferably a signature identification, are appended to the software application Y in step 46.

As described above, the digital signature may be generated by using 'a hash of the software

application Y and a private signature key 18. The signature identification is described below

with reference to Figs. 3 and 4. Once the digital signature and signature identification are

appended to the software application Y to generate a signed software application, the signed

software application Y is returned to the software developer in step 48. The software developer

may then license the signed software application Y to be loaded onto a mobile device (step 50).

If the code signing authority rejects the software application Y, however, then a rejection

notification is preferably sent to the software developer (step 44), and the software application Y

will be unable to access any API(s) associated with the signature.

In an alternative embodiment, the software developer may provide the code signing

authority with only a hash of the software application Y, or provide the software application Y in

some type of abridged format. If the software application Y is a Java application, then the device

independent binary *.class files may be used in the hashing operation, although device dependent

files such as *.cod_ files used by the assignee of the present application may instead be used in

hashing or other digital signature operations when software applications are intended for

operation on particular devices or device types. By providing only a hash or abridged version of

the software application Y, the software developer may have the software application Y signed

without revealing proprietary code to the code signing authority. The hash of the software

application Y, along with the private signature key 18, may then be used by the code signing

authority to generate the digital signature. If an otherwise abridged version of the software

Page 1257 of 1415

application Y is sent to the code signing authority, then the abridged version may similarly be

used to generate the digital signature, provided that the abridging scheme or algorithm, like a

hashing algorithm, generates different outputs for different inputs. This ensures that every

software application will have a different abridged version and thus a different signature that can

only be verified when appended to the particular corresponding software application from which

the abridged version was generated. Because this embodiment does not enable the code signing

authority to thoroughly review the software application for viruses or other destructive code,

however, a registration process between the software developer and the code signing authority

may also be required. For instance, the code signing authority may agree in advance to provide a

' trusted software developer access to a limited set of sensitive APIs.

In still another alternative embodiment, a software application Y may be submitted to

more than one signing authority. Each signing authority may for example be responsible for

signing software applications for particular sensitive APIs or APIs on a particular model of

mobile device or set of mobile devices that supports the sensitive APIs required by a software

" application. A manufacturer, mobile communication network operator, service provider, or

corporate client for example may thereby have signing authority over the use of sensitiveAPIs

for their particular mobile device’model(s), or the mobile devices operating on a particular

network, subscribing to one or more particular services, or distributed to corporate employees.

A signed software application may then include a software application and at least one appended

digital signature appended from each of the signing authorities. Even though these signing

authorities in this example would be generating a signature for the same software application,

Page 1258 of 1415

different signing and signature verification schemes may be associated with the different signing

authorities.

Fig. 3 is a block diagram of a code signing system 60 on a mobile device 62. The system

60 includes a virtual machine 64, a plurality of software applications 6670, a plurality of API

libraries 72-78, and an application platform 80. The application platform 80 preferably includes

all of the resources on the mobile device 62 that may be accessed by the software applications

6670. For instance, the application platform may include device hardware 82, the mobile

device's operating system 84, or core. software and data models 86. Each API library 72—78

preferably includes a plurality of APIs that interface with a resource available in the application

platform. For instance, one API library might include all of the APIs that interface with a

calendar program and calendar entry data models. Another API library might include all of the

APIs that interface with the transmission circuitry and functions oft-the mobile device 62. Yet

another API library might include all of the APIs capable of interfacing with lower-level services

performed by the mobile device's operating system 84. In addition, the plurality of API libraries

72-78 may include both libraries that expose a sensitive API 74 and 78, such as an interface to a

cryptographic function, and libraries 72 and 76, that may be accessed without exposing sensitive

APIs. Similarly, the plurality of software applications 66-70 may include both signed software

applications 66 and 70 that require access to one or more sensitive APIs, and unsigned software

applications such as 68. The virtual machine 64 is preferably an object oriented run-time

environment such as Sun Micro System's J2METM (Java 2 Platform, Micro Edition), which

manages the execution of all of the software applications 66-70 operating on the mobile device

62, and links the software applications 66-70 to the various API libraries 72—78.

Page 1259 of 1415

Software application Y 70 is an example of a signed software application. Each signed ‘

software application preferably includes -an actual software application such as software

application Y comprising for example software code that can be executed on the application

platform 80, one or more signature identifications 94rand one or more corresponding digital

signatures 96. Preferably each digital signature 96'and associated signature identification 94 in a

signed software application 66 or 70 corresponds to a sensitive API library 74 or 78'to which the

software application X or software application Y requires access. The sensitive API library 74 or

78 may include one or more sensitive APIs. In an alternative embodiment, the signed software

applications 66 and 70 may include a digital signature 96 for each sensitive API within API

library 74 or 78. The signature identifications 94 may be unique integers or some other means of

relating a digital signature 96 to a specific API library 74 or 78, API, application platform 80, or

model of mobile device 62.

API library A 78 is an example of an API library that exposes a sensitive API. Each API

library 74 and 78 including a sensitive API should preferably include a description string 88, a

public signature key 20, and a, signature identifier 92. The signature identifier 92 preferably

corresponds to a signature identification 94 in a signed software application 66 or 70, and

enables the virtual machine 64 to quickly match a digital signature 96 with an API library 74 or

78. The public signature key 20 corresponds to the private signature key 18 maintained by the

code signing authority, and used to verify the authenticity of a digital signature 96. The

description string 88 may for example be a textual message that is displayed on the mobile

device when a signed software application 66 or 70 is loaded, or alternatively when a software

application X or Y attempts to access a sensitive API.

Page 1260 of 1415

Operationally, when a signed software application 68-70, respectively including a

software application X, Z, or Y, that requires access to a sensitive API library 74 or 78 is loaded

onto a mobile device, the virtual machine 64 searches the signed for an appended digital

signature 96 associated with the API library 74 or 78. Preferably, the appropriate digital

signature 96 is located by the virtual machine 64 by matching the signature identifier 92 in the

API library 74 or 78 with a signature identification 94 on the signed software application. If the

signed software application includes the appropriate digital signature 96, then the virtual

machine 64 verifies its authenticity-using the public signature key 20. Then, once the

appropriate digital signature 96 has been located and verified, the description string 88 is

preferably displayed on the mobile device before the software application X or Y is executed and

accesses the sensitive API. For instance, the description string 88 may display a message stating

that “Application Y is attempting to access API Library A," and thereby provide the mobile

device user with the final control to grant or deny access to the sensitive API.

Fig. 3A is a block diagram of a code signing system 61 on a plurality of mobile devices

62E, 62F and 62G. The system 61 includes a plurality of mobile devices each of which only

three” are illustrated, mobile devices 62E, 62F and 62G. Also shown is a signed software,

application 70, including a software application Y to which two digital signatures 96B and 96F

with corresponding signature identifications 94E and 94F have been appended. In the example

'system 61, each pair composed of a digital signature and identification, 94FJ96E and 94F/96F,

corresponds to a model of mobile device 62, API library 78, or associated platform 80. If

signature identifications 94B and 94F correspond to different models of mobile device 62, then

when a signed software application 70 which includes a software application Y that requires

Page 1261 of 1415

access to a sensitive API library 78 is loaded onto mobile device 62E, the virtual machine 64

searches the signed software application 70 for a digital signature 96E associated with the API

library 78 by matching identifier 94E with signature identifier 92. Similarly, when a signed

software application 70 including a software. application Y that requires access to a sensitive API

library 78 is loaded onto a mobile device 62F; the virtual machine 64 in device 62F searches the

signed software application 70 for a digital signature 96F associated with the API library 78.

However, when a software application Y in a signed software application 70 that requires access

to a sensitive API library 78 is loaded onto a mobile device model for which the application

developer has not obtained a digital signature, device 620 in the example of Fig. 3A, the virtual

machine 64 in the device 64G does not find a digital signature appended to the software

application Y and consequently, access to the API library 78 is denied on device 62G. It should

be appreciated from the foregoing description that a software. application such as software

application Y may have multiple device-specific, library-specific, or API-specific signatures or

some combination of such signatures appended thereto. Similarly, different signature

verification.requirements» may be configured for the different devices.‘ For example, device 62E

may require verification of botha global signature, as well as additional signatures for any

sensitive APIs to which a software application requires access inorder for the software

application to be executed, whereas device 62F may require verification of only a global

signature and device 62G may require verification of signatures only for its sensitive APIs. It

should also be apparent that a communication system may include devices (not shown) on which

a software application Y received as part of a signed software application such as 70 may

execute without any signature verification. Although a signed software application has one or

Page 1262 of 1415

more signatures appended thereto, the software application Y might possibly be executed on

some devices without first having any of its signature(s) verified. Signing of a software

application preferably does not interfere with its execution on devices in which digital signature

verification is not implemented.

Fig. 4 is a flow diagram 100 illustrating the operation of the code signing system

described above with reference to Figs. 3 and 3A. In step 102, a software application is loaded

onto a mobile device. Once the software application is loaded, the device, preferably using a

virtual machine, determines whether or not the software application requires access to any API

libraries that expose a sensitive API (step 104). If not, then the software application is linked

with all of its required API libraries and executed (step 118). If the software application does

require access to a sensitive API, however, then the virtual machine verifies that the software

application includes a valid digital signature associated any~ sensitive APIs to which access is

required, in steps. 106-116. . ,

In step 106, the virtual machine retrieves the public signature key 20 and signature

identifier 92 from the sensitive API library., The signature identifier 92 is then used'by the

virtual machine in step 108 to determine whether or not the software application has an appended

digital signature 96 with a corresponding signature identification 94. If not, then the softWare

application has not been apprc'wed' for access to the sensitive API by a code signing authority,

and the software application is preferably prevented from being executed in step 116. In

alternative embodiments, a software application without a proper digital signature 96 may be

purged from the mobile device, or may be denied access to the API library exposing the sensitive

API but executed to the extent possible without access to the API library. It is also contemplated

Page 1263 of 1415

that a user may be prompted for an input when signature verification fails, thereby providing for

user control of such subsequent operations as purging of the software application from the

device.

If a digital signature 96 corresponding to the sensitive API'library is appended to the

software application and located by the virtual machine, then the virtual machine uses the public

key 20 to verify the authenticity of the digital signature 96 in step 110. This step may be

performed, for example, by using the signature verification scheme described above or other

alternative signature schemes. If the digital signature 96 is not authentic, then the software

application is preferably either not executed, purged, or restricted from accessing the sensitive

API as described above with reference to step 116. If the digital signature is authentic, however,

then the description string 88 is preferably displayed in step 112, warning the mobile device user

that the software application requires access to a sensitive A131, and possibly prompting the user

for'authorization to execute or load the software application (step 114). When more than one

signature is to be verified for a software application, then the steps 104-110 are preferably

repeated for each signature before the user is prompted in step 112. If themobile device user in

step 114 authorizes the software application, then it maybe executed and linked to the sensitive

API library in step’118.

Fig. 5 is a flow diagram 200 illustrating the management of the code .signing authorities

described with reference to 'Fig. 3A. At step 910, an application developer has developed a new

software application which is intended to be executable one or more target device models or

types. The target devices may include sets of devices from different manufacturers, sets of

device models or types from the same manufacturer, or generally any sets of devices having

Page 1264 of 1415

particular signature and verification requirements. The term “target device” refers to any such

set of devices having a common signature requirement. For example, a set of devices requiring

verification of a device-specific global signature for.execution of all software applications may

comprise a target device, and devices that require both a global signature and further signaturesw.

for sensitive APIs may be part of more'tha'n'one target device set. The software application may=—

be written in a device independent manner by using at least one known API, supported on at least

one target device with an API library. Preferably, the developed software application is intended

to be executable on several target devices, each of which has its own at least one API library.

At step 220, a code signing authority for one target deVice receives a target—signing

request from the developer.’ The target signing request includes the software application or a

hash of the software application, a developer identifier, as well as at least one target device

identifier which identifies the'ta’rget device for which a signature is being requested. _At step 230,

the signing authority consults a developer database 235 or other records to determine—whether or

not to trust developer 220. This determination can be made according to several criteria

discussed above, such as Whether or not the developer has a contractual obligation or has entered

~ into some other type of buSiness._,arrangement with adevice manufacturer, network Voperator,

service provider, or device manufacturer. If the developer is trusted, then the method proceedsa‘tfl“

step 240. However, if the developer is not trusted, then the software application is rejected (250)

and not signed by the authority. Assuming the developer was trusted, at step 240 the

signing authority determines if it has the target private key corresponding to the submitted target

identifier by consulting a private key store such as a target private key database 245. If the target

private key is found, then a digital signature for the software application is generated at step 260

Page 1265 of 1415

and the digital signature or a signed software application including the digital signature appended

to the software application is returned to the developer at step 280. However, if the target private

key is not found at step 240, then the software application is'rejected at step 270 and no digital

signature is generated for the software application. 7'

_ Advantageously, if target signing authorities follow compatible embodiments of the

method outlined in Fig. 5, a network 'of target signing autho'rfiiesrnay be established in order to

expediently manage code signing authorities and a developer community code signingprocess

providing signed software applications for multiple targets with low likelihood of‘ destructive

code.

Should any destructive 'Or otherwise problematic code be found in a software application

or suspected because of behavior exhibited when a software application is executed on a device,

then there-gistration or privileges of the-corresponding aple-icationqdeveloper with any oriall i’

signing authorities may also be'suspended or revoked, since the digital signature provides an,

audit trail through which the developer of a problematic software application may be identified.

In such an event, devices may be informed of the revocation by being configured to periodically '

download signature revocation lists, for example. If software’applications for which the- Z ,7

corresponding digital signatures hagebeen revoked are running on a device, the device may then

halt execution of any such software application and possibly purge the software application'from

its local. storage. If preferred, devices may also be configured to re-execute digital signature

verifications, for instance periodically or when a new revocation list is downloaded. ‘

Although a digital signature generated by a signing authority is dependent upon

authentication of the application developer and confirmation that the application developer has

Page 1266 of 1415

been properly registered, the digital signature is preferably generated from a hash or otherwise

transformed version of the software application and is therefore application-specific. This

contrasts with known code signing schemes, in which API access is granted to any software

applications arriving from trusted application developers or authors. In the code signing systems

and methods described herein, API access is granted on an application-by—application basis and

thusican be more strictly controlled or regulated. _

Fig. 6 is a block diagram ofa mobile communication device in which a code signing

system and method may be implemented; _The mobile communication device 610 is preferably a

two-way communication device having at least voice and data communication capabilities. The

device preferably has the capability to communicate with other computer systems on the Internet.

Depending on the’functionality provided by the device, the device may be referred to as a data

messaging device, a‘two-way pager, a cellular telephone with data messaging capabilities, a

wireless Internet..appliance or a data comrriunication device (with or without telephony

capabilities).

Where the device 610 is enabled for two—way communicatignsgglhe device will

incorporate a communication subsystem 611, including a receiver. 6-12,"a transmitter 614, and

associated components such as one or more, preferably embedded or internal, antenna elements

616 and 618, local oscillators (LOs) 613, and a processing module such as a digital signal

processor (D3?) 620. As will be apparent to those skilled in the field of communications, the

particular design of the communication subsystem 611 will be dependent upon the

communication network in which the device is intended to operate. For example, a device 610

destined for a North American market may include a communication subsystem 611 designed to

Page 1267 of 1415

TM mobile communication system or DataTACTM mobileoperate within the Mobitex

communication system, whereas a device 610 intended for use in Europe may incorporate a

General Packet Radio Service (GPRS) communication subsystem 611.

Network access requirements will also vary depending upon the type of network 919. For

5 example, in the Mobitex and DataTAC networks, mobile devices such as 610 are registered on

the netwgrk using a unique identification number. associated with each device. In GPRS

networks however, network access is associated with a subscriber or user of a device 610. A

GPRS device therefore requires a subscriber identity module (not shown), commonly referred to

L . as a card, in order to operateon a GPRS network. Without a SIM card, a GPRS device will
10 ' not be fully functional. Local or non-network communication functions (if any) may be operable,

,but the device 610 will be unable to carry out any functions involving communications over

network 619, other than any legally required operations such as “911” emergency calling.

When required, network. registration or activation procedures have been completed, a

device 610 may send and receive communication signals over the network 619. Signals received

15 l by the antenna 616 through a communication network 619 are input to the receiver 612, which

may perform such common receiver functions as signal amplification, frequency down

conversion, filtering, channel selection and the like, and in the example system shownin Fig. 6,

~ analog to digital conversion. Analog to digital conversion of a received signal allows more

complex communication functions such as demodulation ‘and decoding to be performed in the

20 DSP 620. In a similar manner, signals to be transmitted are processed, including modulation and

encoding for example, by the DSP 620 and input to the transmitter 614 for digital to analog
4...... »

Page 1268 of 1415

conversion, frequency up conversion, filtering, amplification and transmission over the

communication network 619 via the antenna 618.

The DSP 620 not only processes communication signals, but also provides for receiver

and transmitter control. For example, the gains applied to communication signals in the receiver

612 and transmitter 614 may be adaptively controlled through automatic gain control algorithms

implemented in the DSP 620.- l-

The device 610 preferably includes a microprocessor 638 which controls the overall

operation of the device. Communication functions, including at least data and voice

communications, are performed through the communication subsystem 611. The microprocessor

638 also interacts with further device subsystems or resources such as the display 622, flash

memory 624, random access memory (RAM) 626, auxiliary input/output (1/0) subsystems 628,

serial port 630, keyboard 632, speaker 634, microphone 636, a short—range communications

subsystem 640 and any other device subsystems generally designated as 642. APIs, including

sensitive APIs requiring verification of one or more corresponding digital signatures before

access is granted, may be provided on the device 610 to interface between software applications

and any of the resources shown in Fig. 6.

Some of the subsystems shown in Fig. 6 perform communication-related functions,

whereas other subsystems may provide “resident” or on-device functions. Notably, some

subsystems, such as keyboard 632 and display 622 for example, may be used for both

communication—related functions, such as entering a text message for transmission over a

communication network, and device-resident functions such as a calculator or task list.

Page 1269 of 1415

Operating system software used by the microprocessor 638, and possibly APIs to be

accessed by software applications, is preferably stored in a persistent store such as flash memory

624, which may instead be a read only memory (ROM) or similar storage element (not shown).

Those skilled in the .art will appreciate that the Aoperating system, specific device software

applications, or parts thereof, may be temporarily loaded mtg-a volatile store such as RAM 626.

It is contemplated that received-and transmitted communication signals may also be stored to

RAM 626.

The microprocessor 638, in addition to its operating system functions, preferably enables

execution of software applications on the device, A predetermined set of applications which

control basic device operations, including at least data and voice communication applications for

example, will normally be installed on the device 610 during manufacture. preferred

application that may be loaded onto the device may be a personal information manager (PIM)

application having the ability to organize and manage data items relating to the device user such

as, but not limited to e-mail, calendar events, voice mails, appointments, and task items.

Naturally, one or more memory stores would be available on the device to facilitate-storage of

PIM data items on the device. Such PlM application would preferably have the ability to send

7 and receive data items, via the wireless network. In a preferred embodiment,.therPIM data items

are seamlessly integrated, synchronized and updated, via the wireless network, with the device

user’s corresponding data items stored or associatediwith a host computer system thereby

creating a mirrored host computer on the mobile device with respect to the data items at least.

This would be especially advantageous in the case where the host computer system is the mobile

device user’s office computer system. Further applications, including signed software

Page 1270 of 1415

“3.
[K “A

applications as described above, may also be loaded onto the device 610 through the network

619, an auxiliary I/O subsystem 628, serial port 630, short-range communications subsystem 640

or any other suitable subsystem 642. The device microprocessor 638 may then verify any digital

signatures, possibly including both “globa ” device signatures and API-specific signatures,

appended to such a software application before the software application can be executed by the'—l_

microprocessor 638 and/or access any associated sensitive APIs. Such flexibility in application

installation increases the functionality of the device and may provide enhanced on-device.kp «-

functions, communication—related functions, or both. For example, secure communication

applications may enable electronic commerce functions and other such financial transactions to

be performed using the device 610, through a crypto API and a crypto module which implements

crypto algorithms on the device (not shown).

7 "In a data communication mode, a received signal such as a text message or web page:

download will be processed by, the communication subsystem 611 and input to the

microprocessor 638, which will preferably further process the received signal for output to the

display 622, or alternatively to an auxiliary I/O device 628. user of device 610 may also i '

compose data items such as email messages for example, using the keyboard 632, which is

preferablyva complete alphanumeric keyboard or telephone-type keypad, in conjunction with the H

display 622 and possibly an auxiliary I/O device 628. Such composed items may thenbe

transmitted over a communication network through the communication subsystem 611.

For voice communications, overall operation of the device 610 is substantially similar,

except that received signals would preferably be output to a speaker 634 and signals for

transmission would be generated by a microphone 636. Alternative voice or audio I/O

Page 1271 of 1415

subsystems such as a voice message recording subsystem may also be implemented on the

device 610. Although voice or audio signal output is preferably accomplished primarily through

:Lmthe speaker 635}, the display 622 may also be used to provide an indication of the identity of a

calling party, the duration of a voice call, or other voiCe call related information for example.

The serial port 630 in Fig. 6 would normally be implemented in a personal digital

assistant (PDA)-type communication device fer which synchronization with a user’s desktop

V computer (not shown) may be desirable, but is an optional device component. Such a port 630

would enable a user to set preferences through an external device or software application and

would extend the capabilities of the device by providing for information or software downloads

to the device 610 other than through a wireless communication network. The alternate download

path may for example be used to load an encryption key onto the device through a direct and thus

reliable and trusted connection to thereby enable secure device communication.

A short—range communications subsystem 640 is a further optional component which

may provide for communication between the device 624 and different systems or devices, which

need not necessarily be similar devices. For example, the subsystem 640 may include an infrared

device and associatedrcircuits and components or a BluetoothTM communication module to

provide for communication with similarly-enabled systems and devices.

The embodiments described herein are examples of structures, systems or methods

having elements corresponding to the elements of the invention recited in the claims. This

written description may enable those skilled in the art to make and use embodiments having

alternative elements that likewise correspond to the elements of the invention recited in the

claims. The intended scope of the invention thus includes other structures, systems or methods

Page 1272 of 1415

f“:

'iII'
that do not differ from the literal language of the claims, and further includes other structures,

systems or methods with insubstantial differences from the literal language of the claims.

For example, when a software application is rejected at step 250 in the method shown in

‘Fig. 5, the signing authority may. request that the developer sign a contract or enter into a

business relationship with a device manufacturer or other entity on whose behalf the signing

authority acts. Similarly, if .alsoftware application is rejected at step 270, authority to sign the

software application may bedelegated to a different signing authority. The signing of a software

application following delegation of signing of the software application to the different authority

can proceed substantially‘as shown in Fig. 5, wherein the target signing authority that received

the original request from the trusted developer at step 220 requests that the software application

be signed by the different signing authority on behalf of the trusted developer from the target

signing authority. Once a trust relationship has been established between code signing

authorities, target private code signing keys could be shared between code signing authorities to

improve performance of the method at step 240, or a device may be configured to validate digital

signatures from either of the trusted signing authorities.

'In addition, although described primarily in the-context of software applications, code

signing systems and methods according to the present invention may also be applied to» other

device-related components, including but in no way limited to, commands and associated

command arguments, and libraries configured to interface with device resources. Such

commands and libraries may be sent to mobile devices by device manufacturers, device owners,

network operators, service providers, software application developers and the like. It would be

desirable to control the execution of any command that may affect device operation, such as a

Page 1273 of 1415

command to change a device identification code or wireless communication network address for

example, by requiring verification of one or more digital signatures before a command can be

executed on a device,,in accordance with the code signing systems and methods described and

claimed herein.

Page 1274 of 1415

0109 830’ 611910 20 MAR 2003
We claim: .

l. A code signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

an application programming interface (API) configured to link the software application

with the application platform; and 7 ~

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by‘the software application.

2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authentic.

3. The code signing system of claim 1, wherein the virtual machine purges the software

application if the digital signature is not authentic.

4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

signing authority.

Page 1275 of 1415

6. A code signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

a plurality of application programming interfaces (APIs), each configured to link the

software application with a resource on the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application,

wherein the virtual machine verifies the authenticity of the digital signature in order to control

access to the plurality of APIs by the software application.

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library;

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified

as "sensitive, and wherein the virtual machine uses the digital signature to control access to .the

sensitive APIs.

9. The code signing system of claim 8, for operation in conjunction with a plurality of software-

applications, wherein one or more of the plurality of software applications has a digital signature;

and wherein the virtual machine verifies the authenticity of the digital signature of each of the

one or more of the plurality of software applications in order to control access to the sensitive

APIs by each of the plurality of software applications.

Page 1276 of 1415

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system. _

11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

. comprises a data store.

13. The code signing system of claim 6, wherein the resource on the application platform

comprises a user interface (UI).

14. The code signing system of claim 1, further comprising:

a plurality of API libraries each including a plurality of APIs, wherein the virtual

machine controls access to the plurality of API libraries by the software application.

15. The code signing system of claim 14, wherein one or more of the plurality of API libraries is

classified as sensitive, and wherein the virtual machine uses the digital signature to control

access to the sensitive API libraries by the software application.

Page 1277 of 1415

16. The code signing system of claim 15, wherein the software application includes a unique

digital signature for each sensitive API_library.

17. The code signing system of claim 16, wherein:

the software application includes a signature identification for each unique digital

signature;

__each sensitive API library includes a signature‘identifier; and

the virtual machine compares the signature identification and the signature identifier to

match the unique digital signatures with sensitive API libraries.

18. The code signing system of claim 1, wherein the digital signature is generated using a

private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

19. The code signing system of claim 18, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the Virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

Page 1278 of 1415

, '7“

20. The code signing system of claim 1, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

21. The code signing system of claim 1, wherein the application platform comprises an

operating system.

22. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

23. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

24. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

module (SIM) card.

25. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.

26. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

Page 1279 of 1415

/‘\x

.‘

27. The code signing system of claim 1, wherein the API interfaces with a proprietary data

model on the application platform.

28. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

installed on a mobile device.

29. A method of controlling access to sensitive application programming interfaces on a mobile

device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

application programming interface (API);

determining whether or not the software application includes a digital signature

.4 associated with the sensitive API; and

if the software application does not include a digital signature associated with the

sensitive API, then denying the software application access to the sensitive API.

30. The method of claim 29, comprising the additional step of:

if the software application does not include a digital signature associated with the

sensitive API, then purging the software application from the mobile device.

31. The method of claim 29, wherein the digital signature is generated by a code signing

authority.

Page 1280 of 1415

32. The method of claim 29, comprising the additional steps of:

if the software application includes a digital signature associated with the sensitive API,

then verifying the authenticity of the digital signature; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

33. The method of claim 32, comprising the additional step of:

if the digital signature is not authentic, then purging the software application from the

mobile device.

34. The method of claim 32, wherein the digital signature is generated by applying a private

signaturekey to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile

device;

generating a hash of the software application to obtain a generated. hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

35'. The method of claim 34, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

Page 1281 of 1415

36. The method of claim 29, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

37. The method of claim 36, comprising the additional step of:

receiving a command from the user granting or denying the software application access

to the sensitive API.

38. A method of controlling access to an application programming interface (API) on a mobile

device by a software application created by a software developer, comprising the steps of:

receiving the software application from the software developer;

reviewing the software application to determine if it may access the API;

if the software application may access the API, then appending a digital signature to the

software application;

verifying the authenticity of a digital signature appended to a software application; and

providing access to the API to software applications for which the appended digital

signature is authentic.

‘ 39. The method of claim 38, wherein the step of reviewing the software application is performed

by a code signing authority.

Page 1282 of 1415

40. The method of claim 38, whereinthestep of appending the digital signature to the software

application is performed by a method comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

41. The method of claim 40, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHAl).

42. The method of claim 40, wherein the step ofverifying the authenticity of a digital signature

comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash.

43. The method of claim 42, comprising the further step of, if the digital signature is not

authentic, then denying the software application access to the API.

Page 1283 of 1415

44. The method of claim 42, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

45. A method of controlling access to a sensitive application programming interface (API) on a

mobile device, comprising the steps of:

registering one or more software developers that are trusted to design software

applications which access the sensitive API;

receiving a hash of a software application;

determining if the software application was designed by one of the registered software

developers; and

if the software application was designed by one of the registered software developers,

then generating a‘digita] signature using the hash of the software application,

wherein

the digital signature may be appended to the software application; and

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application.

46. The method of claim 45, wherein the step of generating the digital signature is performed by

a code signing authority.

47. The method of claim 45, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

Page 1284 of 1415

I ‘ x,

48. The method of claim 47, wherein the mobile device verifies the authenticity of the digital

signature by perfomiing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

49. A method of restricting access to application programming interfaces on a mobile device,

comprising the steps of:

loading a software application on the mobile device that requires access to one or more

application programming interface (API);

determining whether or not the software application includes an authentic digital

signature associated with the mobile device; and

if the software application does not include an authentic digital signature associated with

the mobile device, then denying the software application access to the one or more APIs.

Page 1285 of 1415

50. The method of claim 49, comprising the additional step of:

if the software application does not include an authentic digital signature associated with

the mobile device, then purging the software application from the mobile device.

51. The method of claim 49, wherein:

the software application includes a plurality of digital signatures; and

the plurality of digital signatures includes digital signatures respectively associated with

different types of mobile devices.

52. The method of claim 51, wherein each of the plurality of digital signatures is generated by a

respective corresponding code signing authority.

53. The method of claim 49, wherein the step of determining whether or not the software

application includes an authentic digital signature associated with the mobile device comprises

the additional steps of:

determining if the software application includes a digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signature.

54. The method of claim 53, wherein the one or more APIs includes one or more APIs classified

as sensitive, and the method further comprises the steps of, for each sensitive API;

determining whether or not the software application includes an authentic digital

signature associated with the sensitive API; and

40

Page 1286 of 1415

if the software application does not include an authentic digital signature associated with

the sensitive API, then denying the software application access to the sensitive API.

55. The method of claim 32, wherein each of the plurality of digital signaturesis generated by

its corresponding code signing authority by applying a respective private signature key

associated with the code signing authority to a hash of the software application.

56. The method of claim 55, wherein the step of determining whether or not the software

application includes an authentic digital signature associated with the mobile device comprises

the steps of:

determining if the software application includes a digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signaturez “

wherein the step of verifying the authenticity of the digital signature is performed by a method

comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature

key associated with the code signing authority which generates the signature associated with the

mobile device; I

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

Page 1287 of 1415

ABSTRACT __ 4.-

A code signing system and method is provided. The code signing system operates in

conjunction with a signed software application having a digital signature and includes an‘ ‘II-‘C.

application platform, an application programming interface (API), and a virtual machine. The

API is configured to link the software application with the application platform. The virtual

machine verifies the authenticity of the digital signature in order to control access to the API by

the software application.

Page 1288 of 1415

Application

Developer Y

V

I;'III_';---,‘I‘\‘U“I‘-—
Wireless

Network

Signed

Application
Y

Application
Y ,

Signed

Application
Y

Figure 1

10/381219

Code signer

JD

Page 1289 of 1415

Rejection
Notification to

Software
Developer

Application Y uses
LibraryA

Test Application Y
in device simulator
with no signature

verification.

Application Y
forwarded toOode

Signing Authority

Application Y
reviewed by Code
Signing Authority

Accept Code?

Code Signing
Authority signs

Application Y with
Digital SignatLre

Return Application
Y to Software
Developer with

Appended Digital
Signature

Application Y
loaded on Mobile

Device.

Page 1290 of 1415

Application Platform

Core Software 8.
Data Models

API Library D

API Library C with sensitive API

API Library B

API Library A with sensitive API

78

Public Key
to Ve rify

Signature

Signature
Identifier

\firtual Machine _

Mobile Device

10/381219

Application X (signed)

ApplieationZ

Application Y (signed)

70

Signature Identification - A

Digital Signature- A

Page 1291 of 1415

Application
Platform 82

Device

Hardware

Operating

System

Core Software

& Data Models

Library with sensitive API

Description

string

Public key

to verify

signature

Signature
identifier

Application Y
(signed)

94E 96E

Signature lD-E '
' Signature - E

Signature ID - F

Signature - F

Virtual Machine

Mobile Device

Mobile Device

Mobile Device

62E

Figure 3A

Page 1292 of 1415

Application Not
Loaded or
Executed

Application Loaded
on Mobile Device

Does Application
Need Access to Sensitive

API Library?

\firtual Machine
Retrieves Public

Key and Signature
Identifier from API

Library

Proper
Signature on
Application?

Signature
Verifi ed?

User Prompted

Execute

Application?

\firtual Machine
executes

Application and
iinkds with API

Library

10/381219

Page 1293 of 1415

Developer
Database

Target

Private Key
Database

Receive Target

Signing Request

Developer

Trusted by

Authority?

Have Target

Key?

Sign Application

Return I

Signature

Figure 5

10/381219

Reject Application

Reject Application

Page 1294 of 1415

o939“.

10/381219

826258800megawanmmcmméocmoo_>mn_550
65:00

5E529...

229m

0mm203203

65:00#8__SoI52QO
.86me_ own2956 .m

NmoEmogox,0mmtomfitmm

Microprocessor

wmmQ.am___vs<

Page 1295 of 1415

, ATENT COOPERATION TR

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant 5 or agents me reference See Notification of Transmittal of International

pwo_0445 FOR FURTHER ACTION Preliminary Examination Report (Form PCT/lPEA/416)

lntemational application No. International filing date (day/month/year) Priority date (day/month/year)

PCT/CAO1/O1344 20/09/2001 21/09/2000

lntemational Patent Classification (I PC) or natIOnaI classification and IPC
G06F1/OO

Applicant

RESEARCH IN MOTION LIMITED et al.

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority
and is transmitted to the applicant according to Article 36.

This REPORT consists of a total of 4 sheets, including this cover sheet.

D This report is also accompanied by ANNEXES, i.e. sheets of the desoription, claims and/or drawings which have
been amended and are the basis for this report and/or sheets containing rectifications made before this Authority
(see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of sheets.

This report contains indications relating to the following items:

I Basis of the report

II Priority

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

lV Lack of unity of invention

V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
citations and explanations suporting such statement

VI Certain documents cited

Certain defects in the international application

Certain observations on the international application

Date of submission of the demand Date of completion of this report

1 8/04/2002 15.11.2002

Name and mailing address of the international Authorized officer
preliminary examining authority:
—’ European Patent Office

D-30293 Munich Kerschbaumer, JTel. +49 89 2399 - 0 Tx: 523656 epmu cl

Fax: +49 89 2399 - 4465 Telephone No +49 89 2399 2999
Form PCT/IPEA/409 (cover sheet) (January 1994)

Page 1296 of 1415

INTERNATIONAL PRELIMINARY

EXAMINATION REPORT International application No. PCT/CA01/O1344

I. Basis of the report

1. With regard to the elements of the international application (Replacement sheets which have been furnished to

the receiving Office in response to an invitation under Article 14 are referred to in this repon‘ as "originally filed”
and are not annexed to this report since they do not contain amendments (Rules 70.16 and 70.1 7)):
Description, pages:

Q

1-28 as originally filed

Claims, No.:

1—109 as received on 28/06/2002 with letter of 28/06/2002

Drawings, sheets:

1/7-7/7 as originally filed

. With regard to the language, all the elements marked above were available or furnished to this Authority in the
language in which the international application was filed, unless othenNise indicated under this item.

These elements were available or furnished to this Authority in the following language: , which is:

El the language of a translation furnished for the purposes of the international search (under Rule 23.1 (b)).

E! the language of publication of the international application (under Rule 4B.3(b)).

El the language of a translation furnished for the purposes of international preliminary examination (under Rule
55.2 and/or 55.3).

. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the
international preliminary examination was carried out on the basis of the sequence listing:

contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readable form.

The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in
the international application as filed has been furnished.

0

The statement that the information recorded in computer readable form is identical to the written sequence
listing has been furnished.

4. The amendments have resulted in the cancellation of:

El the description, pages:

D the claims, Nos:

Form PCT/lPEA/409 (Boxes l-Vlll. Sheet 1) (July 1998)

Page 1297 of 1415

INTERNATIONAL PRELIMINARY

EXAMINATION REPORT international application No. PCT/CAO1/O1344

[I] the drawings, sheets:

5. [II This report has been established as if (some of) the amendments had not been made, since they have been
considered to go beyond the disclosure as filed (Rule 70.2(c)):

(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this
report.)

6. Additional observations, it necessary:

III. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

1. The questions whether the claimed invention appears to be novel, to involve an inventive step (to be non-
obvious), or to be industrially applicable have not been examined in respect of:

E the entire international application.

Ci claims Nos. .

because:

D the said international application, or the said claims Nos. relate to the following subject matter which does
not require an international preliminary examination (specify):

the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear
that no meaningful opinion could be formed (specify):
see separate sheet

E] the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion
could be formed.

[:1 no international search report has been established for the said claims Nos. .

2. A meaningful international preliminary examination cannot be carried out due to the failure of the nucleotide
and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative
instructions:

El the written form has not been furnished or does not comply with the standard.

Ci the computer readable form has not been furnished or does not comply with the standard.

Form PCT/lPEA/409 (Boxes l-VIII. Sheet 2) (July 1998)

Page 1298 of 1415

INTERNATIONAL PRELIMINARY International application No. PCT/CA01/01344
EXAMINATION REPORT - SEPARATE SHEET

Re Item lll

Although system claims 1, 6, 56, 77 and method claims 27, 36, 43, 47, 68, 87, 104

have been drafted as separate independent claims, they appear to relate effectively to

the same subject-matter and to differ from each other only with regard to the definition

of the subject-matter for which protection is sought or in respect of the terminology

used for the features of that subject-matter. The aforementioned claims therefore lack

conciseness. Moreover, lack of clarity of the claims as a whole arises, since the plurality

of independent claims makes it impossible to determine the matter for which protection

is sought, and places an undue burden on others seeking to establish the extent of the

protection.

Hence, system claims 1, 6, 56, 77 and method claims 27, 36, 43, 47, 68, 87, 104 do not

meet the requirements of Article 6 PCT.

Form PCT/Separate Sheet/409 (Sheet 1) (EPO-Apn'l 1997)

Page 1299 of 1415

cw..-”

0407-12002 --——-"V ’ ———-—‘_:—_fCAO101344

We claim:

1. A code signing system for operation in conjunction with a software application having a

digital signature and a signature identification, where the digital signature is associated with the

signature identification, comprising:

an application platform;

an application programming interface (API) having an associated signature identifier, the

API is configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application where the signature identifier corresponds to the

signature identification.

2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authenticated.

3. The code signing system of claim 1, wherein the virtual machine purges the software

application if the digital signature is not authenticated.

4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code.

signing authority.

6. A code signing system for operation in conjunction with a software application having a

digital signature and a signature identification where the digital signature is associated with the

signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature

identifier, each configured to link the software application with a resource on the application

' platform; and

AMENDED SHEET

Page 1300 of 1415

{04:07:2002

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification corresponds to

the signature identifier,

wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library.

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified

as sensitive and having an associated signature identifier, and wherein the virtual machine uses

the digital signature and the signature identification to control access to the sensitive APIs.

9. The code signing system of claim 8, wherein the code signing system operates in

conjunction with a plurality of software applications, wherein one or more of the plurality of

software applications has a digital signature and a signature identification, and wherein the

virtual machine verifies the authenticity of the digital signature of each of the one or more of the

plurality of software applications, where the signature identification corresponds to the signature

identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

10. The code signing system ofclaim 6, wherein the resource on the application platform

comprises a wireless communication system.

11 . The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

comprises a data store.

AMENDED SHEET

Page 1301 of 1415

- CA010134:

13. The code signing system of claim 6, wherein the resource on the application platform

comprises a user interface (U1). p > _ _

14. The code signing system of claim 1, further comprising:

a plurality of API libraries, each of the plurality of API libraries includes a plurality of

APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

15. The code signing system of claim 14, wherein at least one of the plurality of API

libraries is classified as sensitive,

wherein access to a sensitive API library requires a digital signature associated with a signature

identification where the signature identification corresponds to a signature identifier associated

with the sensitive API library;

wherein the software application includes at least one digital signature and at least one

associated signature identification for accessing sensitive API libraries; and

wherein the virtual machine authenticates the software application for accessing the

sensitive API library by verifying the one digital signature included in the software application

that has a signature identification corresponding to the signature identifier of the sensitive API

library.

16. The code signing system of claim 1, wherein the digital signature is generated using a

private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

17. The code signing system of claim 16, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the publid‘si‘gnature key to the

3

AMENDED SHEET

Page 1302 of 1415

04-07-é002 ‘ CAO101344

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

18. The code signing system of claim 4, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

19. The code signing system of claim 1, wherein the application platform comprises an

operating system.

20. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

21. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

22. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

module (SIM) card.

23. The code signing system of claim 1, wherein the Software application is a Java application
for a mobile device.

24. The code signing system of claim 1, wherein the API interfaces with a Cryptographic routine

on the application platform.

25. The code signing system of claim 1, wherein the API interfaces with a pmpn'etary data

model on the application platform.

26. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

installed on a mobile device.

AMENDED SHEET

Page 1303 of 1415

104-0732002 {@0101344

27. A method of controlling access to sensitive application programming interfaces on a mobile

device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

application programming interface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and

denying the software application access to the sensitive API where the signature

identification does not correspond with the signature identifier. .

28. The method of claim 27, comprising the additional step of:

purging the software application from the mobile device where the signature

identification docs not correspond with the signature identifier..

29. The method of claim 27, wherein the digital signature and the signature identification are

generated by a code signing authority.

30. The method of claim 27, comprising the additional steps of:

verifying the authenticity of the digital signature where the signature identification

corresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

31. The method of claim 30, comprising the additional step of:

purging the software application fiom the mobile device where the digital signature is not

authenticated. -

32. The method of claim 30, wherein the digital signature is generated by applying a private

signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the ‘steps'ofi‘

5

AMENDED SHEET

Page 1304 of 1415

"5§§7:2002 ' ,_ ' CA0101-3zf4

storing a public signature key that corresponds to the private signature key on the mobile

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

device;

comparing the generated hash with the recovered hash.

33. The method of claim 32, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

34. The method of claim 27, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

35. The method of claim 34, comprising the additional step of:

receiving a command from the user granting or denying the software application access

to the sensitive API.

36. A method of controlling access to an application programming interface (API) having a

signature identifier on a mobile device by a software application created by a software developer,

comprising the steps of: .

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the softwareapplication

where the software application satisfies at least one criterion;

verifying the authenticity of the digital signature appended to the software application

where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

AMENDED SHEET

Page 1305 of 1415

._ —___.__‘___....

'64-07-"2002‘——-—"j'"‘ ' ‘ * CAO101344

37. The method of claim 36, wherein the step of determining whether the software application

satisfies at least one criterion is performed by a code signing authority.

38. The method of claim 36, wherein the step of appending the digital signature and the

signature identification to the software application includes generating the digital signature

comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

39. The method of claim 38, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHAI).

40. .The method of claim 38, wherein the step of verifying the authenticity of the digital

signature comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

authenticating the digital signature by comparing the calculated hash with the recovered

hash.

41. The method of claim 40, comprising the further step of denying the software application

access to the API where the digital signature is not authenticated.

42. The method of claim 40, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

AMENDED SHEET

Page 1306 of 1415

34-07-5002 , ' CA0101344

43. A method of controlling access to a sensitive application programming interface (API)

having a signature identifier on a mobile device, comprising the steps of:

registering one or more software deve10pers that are trusted to develop software

applications which access the sensitive API;

receiving a hash of a software application;

determining whether the hash was sent by a registered software developer; and

generating a digital signature using the hash of the software application and a signature

identification corresponding to the signature identifier where the hash was sent by the registered

software developer;,

wherein

the digital signature and the signature identification are appended to the software

application; and

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application where the signature identification

corresponds with the signature identifier.

44. The method of claim 43, wherein the step of generating the digital signature is performed by

a code signing authority.

45. The method of claim 43, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

46. The method of claim 45, wherein the mobile device verifies the authenticity of the digital

signature by.performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash;

AMENDED SHEET

Page 1307 of 1415

‘304-0712002 _ fin ' ' *efibfi‘l‘

determining whether the digital signature is authentic by comparing the calculated hash

with the recovered hash; and

denying the software application access to'the sensitive API where the digital signature is

not authenticated.

47. A method of restricting access to application programming interfaces on a mobile device,

comprising the steps of:

loading a software application having a digital signature and a signature identification on

the mobile device that requires access to one or more application programming interfaces (APIs)

having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with

the signature identifier; and

denying the software application access to the one or more APIs where the software

application does not include an authentic digital signature .

48. The method of claim 47, wherein the digital signature and signature identification are

associated with a type of mobile device.

49. The method of claim 47, comprising the additional step of:

purging the software application from the mobile device where the software application

does not include an authentic digital signature. .

50. The method of claim 47, wherein:

the software application includes a plurality of digital signatures and signature

identifications; and

the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

AMENDED SHEET

Page 1308 of 1415

54:0755962f ‘ I ~ CA01O134I'

51. The method of claim 50, wherein each of the plurality of digital signatures and associated

signature identifications are generated by a respectiyepcorresponding code signing authority.

52. The method of claim 47, wherein the step of determining whether the software application

includes an authentic digital signature comprises the additional steps of:

verifying the authenticity of the digital signature wherethe signature identification

corresponds with respective ones of the at least one signature identifier.

53. The method of claim 51, wherein each of the plurality of digital signatures and signature

identifications are generated by its corresponding code signing authority by applying a respective

private signature key associated with the code signing authority to a hash of the software

application.

54. The method of claim47, wherein the step of authenticating the digital signature where the

signature identification corresponds with the signature identifier comprises the steps of:

verifying that the signature identification corresponds with the signature identifier authenticating

the digital signature where signature identification corresponds with the signature identifier

comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature

key associated with the code signing authority which generates the digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

The method of claim 47, wherein:

the mobile device includes a plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any. of the plurality of APIs requires an authentic global signature;

access to each of the plurality of sensitive APIs requires an authentic global signature and

an authentic digital signature associated with a signature identification;

10

AMENDED SHEET

Page 1309 of 1415

'04L07J2002 . _ ~ CAO101 344

the step of determining whether the software application includes an authentic digital

signature signature identification comprises the steps of:
determining whether the one or more APIs to which the software application reduires

access includes a sensitiVe API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and

signature identification‘where the one or more APIs to which the software application requires v

access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software application access to the one or more APIs comprises the

steps of:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

denying the software application access to the sensitive API where the one or more APIs

to which the software application requires access includes a sensitive API, the software

application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive API.

56. _A code signing system for controlling access to application programming interfaces

(APIs) having signature identificaters by software applications, the code signing system

comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the APIs where the signature identifications correspond with the

signature identificaters of the respective APIs and where a digital signature for a software

application is generated with a signature identification corresponding to a signature identificater

to access at least one API; and

a control system for allowing access to at least one of the APIs where the digital signature

provided by the software application is authenticated by the verification system.

AMENDED SHEET

Page 1310 of 1415

. “WW . -.

"04-0732002 'szfCA010134i

57. The code signing system of claim 56, wherein a virtual machine comprises the

verification system and the control system.

58. The code signing system of claim 57, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

59. The code signing system of claim 56, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

60. The code signing system of claim 56, wherein the code signing system is installed on a

mobile device and the software application is a Java application for a mobile device.

61. The code signing system of claim 56, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

62. The code signing system of claim 56, wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (U1).

63. The code signing system of claim 56, wherein the digital signature is generated using a

private signature key under a signature scheme associated with the signature identification, and

the verification system uses a public signature key to authenticate the digital signature.

64. The code signing system of claim 63, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash arevthe same.

AMENDED SHEET

Page 1311 of 1415

few-752002 . . ~ CAoifi’ifrb‘

65. The code signing system of claim 56, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

66. The code signing system of claim 56, wherein the APIs provides access to at least one of

one or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

67.. The code signing system of claim 56, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs.

68. A method of controlling access to application programming interfaces (APIs) having

signature identifiers by software applications, the method comprising:

authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the resPective APIs and where a digital signature for a software application is generated with a

signature identification corresponding to a signature identifier to access at least one API; and

allowing access to at least one of the APIs where the digital signature provided by the

software application is authenticated.

‘ 69. The method of claim 68, wherein one digital signature and one signature identification

are provided by the software application access a library of at least one of the APIs.

70. The method of claim 68, wherein the digital signature and the signature identification of

the software application are generated by a code signing authority.

71. The method of claim 68, wherein the APIs access at least one of a cryptographic module

that implements cryptographic algorithms, a data store, a proprietary data model, and a user

-~ interface (UDE

AMENDED SHEET

Page 1312 of 1415

64-07-2032??? _ p CA0101344

72. The method of claim 68, wherein the digital signature is generated using a private

signature lcey under a signature scheme associated with the signature identification, and a public

signature key is used to authenticate the digital signature.

73. The method of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

74. The method of claim 68, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

75. The method of claim 68, wherein the APIs provides access to at least one of one or more

core functions of a mobile device, an operating system, and hardware on a mobile device.

76. The method of claim 68, wherein verification of a global digital signature provided by the

software application is required for accessing any of the APIs

77. A management system for controlling access by software applications to application

programming interfaces (APIs) having at least one signature identifier on a subset of a plurality

of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

software applications that require access to at least one of the APIs with a signature identifier on

the subset of the plurality of mobile devices, where a digital signature for a software application

is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

14

AMENDED SHEET

Page 1313 of 1415

64-0752002 CA010134I

identifications that correspond to the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device of the subset of the plurality. of

mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of

the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

78. The management system of claim 77, wherein a virtual machine comprises the

verification system and the control system.

79. The management system of claim 78, wherein the virtual machine is a Java virtual

machine and the software applications are Java applications.

80. The management system of claim ‘77, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

81. The management system of claim 77, wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, 'a data store, a proprietary

data model, and a user interface (U1).

82. The management system of claim 77, wherein the digital signature is generated using a

private signature key under a signature scheme associated with the signature identification, and

the verification system uses a public signature key to authenticate the digital signature.

83. The management system of claim 82, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application underthe signature scheme; and

15

AMENDED SHEET

Page 1314 of 1415

-_._,v,‘,.____

'04-0732002 _-—-—~—~'_' _‘j —:’"er-1-01344

the verification system authenticates the digital signature by generating a hash of the

software application to obtain augenfirated hash, applying the public signature key to the_ _

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

84. The management system of claim 77, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

85. The management system ofclaim 77, wherein the subset of the plurality of mobile

devices comprises mobile devices under the control of at least one of a corporation and a carrier.

86. The management system of claim'77, wherein a global digital signature provided by the

software application has to be authenticated before the software application is allowed access to

any of the APls on a mobile device of the subset of the plurality of mobile devices.

87. A method of controlling access by software applications to application programming

interfaces (APIs) having at least one signature identifier on a subset of a plurality of mobile

devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subset of the plurality ofmobile devices,

where the signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantially only on

the subset of the plurality ofmobile devices; wherein each mobile device of the subsct of the

plurality of mobile devices comprises ‘

a verification system for authenticating digital signatures provided by the respective

software applications to access respectiVe APIs where the digital identifications correspond to

the digitalidentifiers of the respective-I-APIS; and 4

16

AMENDED SHEET

Page 1315 of 1415

a control system for allowing the software application to access at least one of the APIs

where the digital signature provided by the software application is authenticated by the

verification system.

5 88. The method of claim 87, wherein a virtual machine comprises the verification system and

the control system.

89. The method of claim 88, wherein the virtual machine is a Java virtual machine and the

software applications are Java applications.

90. The method of claim 87, wherein the control system requires one digital signature and

one signature identification for each library of at least one of the APIs.

91. The method of claim 87, wherein the APIs access at least one of a cryptographic module,

which implements cryptographic algorithms, a data store, a proprietary data model, and a user

interface (U1).

92. The method of claim 87, wherein at least one of the digital signatures is generated using a

private signature key under a signature scheme associated with a signature identification, and the

verification system uses a public signature keys to authenticate said at least one of the digital

signatures.

93. The method of claim 92, wherein:

at least one of the digital signatures is generated by applying the private signature key to

a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by

generating a hash of the software application to obtain a generated hash, applying the public

signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

AMENDED SHEET

Page 1316 of 1415

._,___

int-0732002 L __ I CA010134:

94. ' The method of claim 87, wherein at least one of the APIs further comprises:

n andescription string that is displayed to a user when the software application attempts to
access said at least one of the APIs.

95. The method of claim 87, wherein the subset of the plurality of mobile devices comprises

mobile devices under the control of at least one of a corporation and a carrier.

96. A mobile device for a subset of a plurality of mobile devices, the mobile device

comprising: i

an application platform having application programming interfaces (APIs);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

a control system for allowing a software application to access at least one of the APIs

where a digital signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority provides digital signatures and signature identifications

to software applications that require access to at least one of the APIs such that the digital

signature for the software application is generated according to a signature scheme of a signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

97. The mobile device of claim 96, wherein a virtual machine comprises the verification

system and the control system.

98. The mobile device of claim 97, wherein the virtual machine is a Java virtual machine and

the software application is a Java application.

99. The mobile device of claim 96, wherein the control system requires one digital signature

and one signature identification for each library of at least one of the APIs. '

18

AMENDED SHEET

Page 1317 of 1415

'04-07-‘2002 —-~—-—f‘_ja »_ » CA010134

100. The mobile devige—ofclaim 96, wherein the APIs of the application platform access at

least one of a cryptographic module, which implements cryptographic algorithms, a data. store, a

proprietary data model, and a user interface (UT).

101. The mobile device of claim 96, wherein the digital signature is generated using a private

signature key under the signature scheme, and the verification system uses a public signature key

to authenticate the digital signature.

102. The mobile device of claim 101, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

103. The mobile device of claim 96, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the~ software application attempts to

access said at least one of the APIs.

104. A method of controlling access to application programming interfaces (APIs) of an

application platform of a mobile device for a subset of a plurality of mobile devices, the method

comprising:

receiving digital signatures and signature identifications from software applications that

require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to access at least one of the APIs where a digital

signature provided by the software application is authenticated;

AMENDED SHEET

Page 1318 of 1415

5.. .. ’ '

~‘b4’-d7—‘2002 . _ if _ . “3.8??3134“

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications thatreguire access to at least one of the APIs such “ _ _ u” _
that the digital signature for the software application is generated according to a signature

scheme of a signature identification, and wherein the signature identifications provided to the U

software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

105. The method of claim 104, wherein one digital signature and one signature identification

is required for accessing each library of at least one of the APIs.

106. The method of claim 104, wherein the APIs of the application platform access at least

one of a cryptographic module, which implements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UI).

107. The method of claim 104, wherein the digital signature is generated using a private

signature key under the signature scheme, and a public signature key is used to authenticate the

digital signature.

_108. The method of claim 107, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

109. The method of claim 104, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to
access said at least one of the APIs.

AMENDED SHEET

Page 1319 of 1415

EP0930793A1

I

(19) ‘0)
Europaisches Patentamt

Europ an Patent Otfic

Offi eeurop’ n des br vets

llllIll

(11) EP 0 930 793 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
21.07.1999 Bulletin 1999/29

(21) Application number: 983103123

(22) Date of filing: 16.12.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 22.12.1997 US 995606

(71) Applicant: TEXAS INSTRUMENTS INC.
Dallas, Texas 75243 (US)

(72) Inventors:
. McMahon, Michael (NMI)

Plano, Texas 75074 (US)

(51) lntClF: H040 7/32, H04B 1/38,
GOSF 9/38

- Lineberry, Marion C.
Dallas, Texas 75218 (US)

- Woolsey, Matthews A.
Plano, Texas 75023 (US)

I Chauvel, Gerard (NMI)
06600 Antibes (FR)

(74) Representative: Potter, Julian Mark et al
D. Young & 00.,
21 New Fetter Lane

London EC4A 1DA (GB)

(54) Mobile equipment with a plurality of processors

(57) A wireless data platform (10) comprises a p|u~
rality of processors (12. 16). Channels of communica-
tion are set up between processors such that they may
communicate inlormation as tasks are perlormed. A dy-
namic cross compiler (80) executed on one processor
compiles code into native processing code for another

Name-at
‘ii Iranians

processor. A dynamic cross linker (82) links the com-
piled code for other processor. Native code may also be
downloaded to the platform through use of a JAVA Bean
(90) (or other language type) which encapsulates the
native code. The JAVA Bean can be encrypted and dig-
itally signed for security purposes.

Printed by Jauve. 750m mars (FR)

BNSDOCID: <EP__0930793A1_I_>

Page 1320 of 1415

EP 0 930 793 A1

Description

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

[0001] This invention relates in general to mobile electronic devices and, more particularly, to a hardware and soft-
ware platform for mobile electronic devices.

DESCRIPTION OF THE RELATED ART

[0002] Handheld portable devices are gaining popularity as the power and, hence, functionality of the devices in-
creases, Personal Digital Assistants (PDAs) are currently in widespread use and Smartphones, which combine some
of the capabilities of a cellular phone and a PDA, are expected to have a significant impact on communications in the
near future.

[0003] Some devices currently Incorporate one or more DSPs (digital signal processor) or other coprocessors for
providing certain discrete features, such as voice recognition, and a general purpose processor for other data process-
ing functions. The code for the DSP and the code for the general purpose processor is generally stored in ROMS or
other nonvolatile memories, which are not easily modified. Thus, as improvements and new features become available,
it is olten not possible to upgrade the capabilities of the device, In particular, it is not possible to maximize the use of
the USPS or other coprocessor which may be present in the device.
[0004] Therefore. a need exists for a data processing architecture which can be upgraded and optimizes use of
multiple processors and coprocessors.

BRIEF SUMMARY OF THE INVENTION

[0005] The teachings of the present application disclose a mobile electronic device that comprises a coprocessor
for executing native code, a host processor system operable to execute native code corresponding to the host processor
system and processor independent code. The host processor system is operable to dynamically change the tasks
performed by the digital signal coprocessor. Communication circuitry provides for communication between the host
processor system and the coprocessor
[0006] This mobile electronic device significant advantages over the prior art Because the host processor system
can dynamically allocate the tasks being performed by the coprocessor, which may be a digital signal processor, to
fully use the coprocessor. The host processor system may direct a routine to one of a plurality of coprocessors, de—
pending upon a variety of factors. such the present capabilities of each processor.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0007] For a more complete understanding of the present invention. and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with the accompanying drawings, in which:

Figure 1 illustrates a block diagram of a platform architecture particularly suited for general wireless data process-
ing;

Figure 2 illustrates a functional block diagram of the platform of Figure 1;

Figure 3 illustrates a functional block diagram of dynamic cross compiling and dynamic cross linking functions;

Figure 4 illustrate an embodiment of native code for execution on a processor being encapsulated in a JAVA Bean
wrapper for downloading to a device;

Figure 5 illustrates the operation of transferring the encapsulated native code to a processor on a device from a
JAVA Bean located on a remote sewer; and

Figure 6 illustrates a flow diagram describing security features associated with the operation of Figure 5.

BNSDOCID: <EP_0930793A1_I_>

Page 1321 of 1415

EP 0 930 793 A1

DETAILED DESCRIPTION OF THE INVENTION

[0008] Figure 1 illustrates a preferred embodiment of a general wireless data platform architecture, which could be
used for example, in the implementation of a Smartphone or PDA. The wireless data platform 10 includes a general
purpose (Host) processor 12 coupled to bus structure 14, including data bus 14a, address bus 14b and control bus
140. One or more DSPs (or other coprocessors) 16, including the core processor 16a and the peripheral interface 16b,
are coupled to bus 14 and to memory and traffic controller 18, which includes a DSP cache memory 18a, 3 CPU cache
18b, and a MMU (memory management unit) 18c. Hardware accelerator circuit 20 (for accelerating a portable language
such as JAVA) and a video and LCD controller 22 are also coupled to the memory and traffic controller 18. The output
of the video and LCD controller is coupled to an LCD or video display 24.

[0009] Memory & traffic controller 18 is coupled to bus 14 and to the main memory 26, shown as an SDRAM (syn-
chronous dynamic random access memory). Bus 14 is also connected to l/O controller 28, interface 30, and RAM/
ROM 32. A plurality of devices could be coupled to the wireless data platform 10, such as smarfcard 34, keyboard 36,
mouse 38, or one or more serial ports 40, such as a USB (universal serial bus) port or an RS232 serial port. Interface
30 can couple to a flash memory card 42 and/or a DRAM card 44. The peripheral interface 16b can couple the DSP
16 to a DAC (digital to analog converter) 46, a network interface 48 or to other devices.
[0010] The wireless data platform 10 of Figure 1 utilizes both a general purpose processor 12 and a DSP 16. Unlike
current devices in which the DSP 16 is dedicated to specific fixed functions, the DSP 16 of Figure 1 can be used for

any number of functions. This allows the user to derive the full benefit of the DSP 16.
[0011] One main area in which the DSP 16 can be used is in connection with the man—machine interface (MMI).
lmportantly, functions like speech recognition, image and video compression and decompression, data encryption,
text-to-speech conversion, and so on, can be performed much more efficiently using the DSP 16. The proposed ar-
chitecture allows new functions and enhancements to be easily added to wireless data platform 10.

[0012] It should be noted that the wireless data platform 10 is a general block diagram and many modifications could
be made. For example, Figure 1 illustrates separate DSP and processor caches 18a and 18b. As would be known to
one skilled in the art, a unified cache could also be used. Further, the hardware acceleration circuit 20 is an optional
item. Such devices speed the execution of languages such as JAVA; however, the circuit is not necessary for operation
of the device. Further, although the illustrated embodiment shows a single DSP, multiple DSPs (or other coprocessors)
could be coupled to the buses.

[0013] Figure 2 illustrates a functional software architecture for the wireless data platform 10. This block diagram
presumes the use of JAVA; it should be noted that languages other than JAVA could be used as well. Functionally, the
software is divided into two groups, Host processor software and DSP software. The Host software includes one or
more applets 41 . The DSP API class 43 is a JAVA API package for JAVA applications or applets to access the func-
tionality of the DSP API 50 and Host DSP Interface Layer 52. A JAVA virtual machine (VM) 45 interprets the applets.
The JAVA native interface 47 is the method which the JAVA VM executes host processor or platform specific code.
Native tasks 49 are non-JAVA programs which can be executed by the Host processor 12 without using the JAVA
native interface. The DSP API 50, described in greater detail hereinbelow, is an API (application program interface)
used the Host 12 to call to make use of the capabilities of the DSP 16. The Host—DSP Interface Layer 52 provides an
API for the Host 12 and DSP 16 to communicate with each other, with other tasks, or other hardware using channels
via the Host-DSP Communication Protocol. The DSP device driver 54 is the Host based device driver for the Host

RTOS 58 (real time operating system) to communicate with the DSP 16. The Host FiTOS 56 is an operating system,
such as NUCLEUS PLUS by Accelerated Technology Incorporated.

[0014] Alternatively a non-real time operating system, such as WINDOWS CE by Microsoft Corporation, could be
used. The DSP Library 58 contains programs stored for execution on the DSP 16.
[0015] On the DSP side, one or more tasks 60 can be stored in memory for execution by the DSP16. As described
below, the tasks can be moved in and out of the memory as desired, such that the functionality of the DSP is dynamic,
rather than static. The Host-DSP Interface layer 62 on the DSP side performs the same function as the Host-DSP
Interface layer 52 on the Host side, namely it allows the Host 12 and DSP 16 to communicate. The DSP RTOS 64 is
the operating system for the DSP processor The Host Device driver 66 is a DSP based device driver for the DSP
RTOS 64 to communicate with the Host 12. The Host—DSP Interface 70 couples the DSP 16 and Host 12.

[0016] In operation, the software architecture shown in Figure 2 uses the DSP 16 as a variable function device, rather
than a fixed function device as in the prior art.

[0017] Accordingly, the DSP functions can be downloaded to the mobile device incorporating the architecture of
Figure 2 to allow the DSP 16 to perform various signal processing functions for the Host 12.
[0018] The DSP—API provides a device independent interface from the Host 12 to the DSP 16. The functions provide
the Host 12 with the ability to load and schedule tasks on the DSP 16 and to control and communicate with those tasks.
The API functions include calls to: determine the DSP‘s available resources, create and control Host 12 and DSP tasks,
create and control data channels between Host 12 and DSP tasks, and communicate with tasks. These functions are

BNSDOC ID: < EP_,0930793A1_l_>

Page 1322 of 1415

EP 0 930 793 A1

described below. Each function returns a BOOLean result, which will be SUCCESS for a successful operation, or
FAILURE If the result is FAILURE, the errcode should be checked to determine which error occurred.

DSP_Get_MlPs

BOOL DSP~Get_MIPS(T_DeviceID Dev/D, U32 'mips, U16 ‘errcode);
[0019] This function returns the current MIPS available on the DSP. This consists of the MIPS capability of the DSP
16 minus a base MIPS value (the MIPS value with no additional dynamic tasks, i.e. the kernel plus API code plus
drivers), minus the sum of the MIPS ratings for all loaded dynamic tasks. The errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_Get_Memory_Available

BOOL DSP_GeLMemory_Available(T_Dev/celD Dev/D, T_S/‘ze ’progmem, T_Size 'datamem, U16 ’errcode);
[0020] This function will query the DSP 16 specified by Deleforthe amounts of available memory for both program
memory and data memory. The resultant values are returned in the progmem and datamem parameters The sizes
are specified in T_DSP_Words. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_Alloc__Mem

BOOL DSP_A/loc_Mem(T_Device/D Dev/D, U16 mempage, T_SIZe size, T_DSP_ Word “memptr, U16 *err-
code);
[0021] This function will allocate a block of memory on a DSP 16. The Dev/D specifies Which device on which to
allocate the memory. The mempage is 0 for program space, and t for data space. The size parameter specifies the
memory block size in T_DSP_Words. The returned memptr will be a pointer to the memory block on the DSP 16, or
NULL on failure. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT‘HESPONDING
DSP_INVALID_MEMPAGE
DSP_NOT~ENOUG H_MEMORY

DSP_Free_Mem

BOOL DSPiFree“Mem(T,DevicelD Dev/D, U16 mempage, T_DSP_ Word 'memptr, U16 'errcode);
[0022] This function will free a block of memory on a DSP that was allocated with the DSP_AIIoc_Mem function. The

Dele specifies on which device the memory resides. The mempage is 0 for program space, and 1 for data space.
The memptr parameter is the pointer to the memory block. The errcode parameter will contain the following possible
results:

DSP_SUCCESS
DSPgDEVlD_NOT_FOUND
DSP_DEVID_NOT’RESPONDING
DSP_INVALID_MEMPAGE
DSP_MEMBLOCK_NOT_FOUND

DSP_Get__Code_lnfo
BOOL DSP_GeLCode_Info(char 'Name, T_CodeHdr 'codehdr, U16 'errcode);

[0023] This function will access the DSP Library table and return the code header for the DSP function code specified
by the Name parameter. On return, the location pointed to by the codehdr parameter will contain the code header
information. The errcode parameter will contain the following possible results:

DSP.SUCCESS
DSPgNAMED_FUNC_NOT_FOUND

DSP_Link_Code

BOOL DSP_Link_ Code(T__DeviceID Dele, T_CodeHdr ‘codehdr, T_TaskCreate *tcs, U16 ‘errwde);
[0024] This function will link DSP function code so that it will run at a specified address on the DSP specified by
Dele. The oodehdr parameter points to the code header for the function. The dynamic cross linker will link the code
based on information in the code header, and in the code (COFF file). The dynamic cross linker will allocate the memory
as needed, and link and load the code to the DSP 16. The tcs parameter is a pointer to the task creation structure
needed in the DSP_C reate_Task function. DSP_Link_Code will fill in the code entry points, priority, and quantum fields
of the structure in preparation for creating a task. The encode parameter will contain the following possible results:

DSP,SUCCESS

BNSDOCI D: <EP~_0930793A1_|_>

Page 1323 of 1415

EP 0 930 793 A1

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NOT_ENOUGH_PFtOG_MEMOFtY
DSP_NOT_ENOUGH_DATA_MEMOFtY
DSP_COULD_NOT,LOAD_CODE

DSP_Put_BLOB
BOOL DSP_Put_BLOB(T_Device/D DeVID, T‘HostPtr srcaddr, T_DSPthr destaddr, U16 mempage, T_Size

size, U16 ‘errcode);
[0025] This function will copy a specified Binary Large Object (BLOB) to the DSP 16. The DeVID specifies on which
DSP 16 to copy the object. The srcaddrparameter is a pointer to the object in Host memory. The destaa'dris a pointer
to the location to which to copy the object on the DSP 16. The mempage is O for program space, and 1 for data space.
The size parameter specifies the size of the object in T_DSP_Words. The errcode parameter will contain the following
possible results :

DSP‘SUCCESS
DSP-DEVID_NOT#FOUND
DSP_DEVID_NOT_RESPONDING
DSP__INVALID_MEMPAGE

DSP,Create__Task
BOOL DSP_Create_ Task(f_DevicelD Dele, T_ TaskCreate 'tcs, T_ Task/D *TaskID, U16 *errcode);

[0026] DSP__Create__Task requests the DSP 16 to create a task given the task parameters and the code locations
in the DSP's program space. The Task Creation Structure is show in Table 1:

Table 1.

Task Creation Structure.

T_DSP_Name Name User defined name for the task.

U32 MIPS MIPS used by the task.
T_Chan|D Chanln The channel ID used tor task input.
T_ChanlD ChanOut The channel ID used tor task output
T__StrmlD Strmln The stream ID used for task input
T_StrmID StrmOut The stream ID used for task output.

U16 Priority The task's priority.
U32 Quantum The task's timeslice in system ticks.

T_Size StackReq The amount of stack required.
T_DSP_Ptr Mngandler Pointer to code to handle messages to the task.
T_HOST_Ptr CallBack Pointer to Host code to handle messages irom the task.
T_DSP_Ptr Create Pointer to code to execute when task is created.
T_DSP_Ptr Start Pointer to code to execute when task is started.

T__DSP_Ptr Suspend Pointer to code to execute when task is suspended.
T_DSP~Ptr Resume Pointer to code to execute when task is resumed.

T_DSP_Ptr Stop Pointer to code to execute when task is stopped.

[0027] Once the task is created, the Create entry point will be called, giving the task the opportunity to do any nec-
essary preliminary initialization. The Create. Suspend, Resume, and Stop entry points can be NULL. The resultant
TaskIDcontains both the device ID (Devl D), and the USPS task ID. If the Tasle is NULL, the create tailed. The errcode
parameter will contain the following possible results:

DSP_SUCCESS
DSP‘DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_PFIIORITY
DSP_CHANNEL_NOT_FOUND
DSP_ALLOCATION_ERROR

DSP_Start_Task
BOOL DSP_Start_Task(T_Task/D TaskID, U16 *errcode);

[0028] This function will start a DSP task specified by Tasle. Execution will begin at the task‘s Start entry point The

BNSDOCI D: <E P__0930793A1_I_>

Page 1324 of 1415

EP 0 930 793 A1

encode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVIDflNOT_FOUND
DSP_DEVID_NOT_HESPONDING
DSP_TASK_NOT,FOUND

DSP_Suspend_Task
BOOL DSP_Suspend_ Task(T_ Task/D Task/D, U16 ‘errcode);

[0029] This function will suspend a DSP task specified by Task/D. Prior to being suspended, the task's Suspend
entry point will be called to give the task a chance to perform any necessary housekeeping. The errcode parameter
will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Hesume_Task
BOOL DSP_FIesume_ Task(T__ Tasle Tasle, U16 ’errcode);

[0030] This function will resume a DSP task that was suspended by DSP_Suspend_Task. Prior to being resumed,
the task's Resume entry point will be called to give the task a chance to perform any necessary housekeeping The
errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSPRDEVID_NOT‘RESPONDING
DSP_TASK_NOT_FOUND
DSP_TASK_NOT_SUSPENDED

DSP_Delete__Task

BOOL DSP_De/ere_Task(T_ Task/D Task/D, U16 *erroode);
[0031] This function will delete a DSP task specified by Task/D. Prior to the deletion, the task's Stop entry point will
be called to give the task a chance to perform any necessary cleanup, This should include freeing any memory that
was allocated by the task, and returning any resources the task acquired The errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP-DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Change_Task‘Priority
BOOL DSP_ Change_ Task_Priority(T_ TaskID Task/D, U16 newpriority, U16 ’oldpriority, U16 'errcode);

[0032] This function will change the priority of a DSP task specified by Task/D. The priority will be changed to newp-
riority. The possible values of newpriority are FtTOS dependent. Upon return, the oldpn'ority parameter will be set to
the previous priority of the task. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVlDfiNOT_FOUND
DSP_DEVID_NOT_HESPONDING
DSP_TASK_NOTWFOUND
DSP_INVALID_PFlIOFtlTY

DSP_Get_Task_Status

BOOL DSPflGeL Task_Status(T_ Task/D TaskID, U16 ’status, U16 'prion'ty, T_ChanlD 'Input, T_ ChanID *Oufput,
U16 *errcode);
[0033] This function returns the status for a DSP task specified by Task/D. The status will be one of the following
values:

DSP_TASK_FtUNNING
DSP_TASK_SUSPENDED
DSP_TASK_WAITFOFl_SEM
DSP_TASK_WAITFOR__QUEUE
DSP_TASK_WAITFOH_MSG

[0034] The priority parameter will contain the task's priority, and the Input and Output parameters will contain the
task's input and output channel IDs, respectively. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND

BNSDcch: <EF___0930793A1_L>

Page 1325 of 1415

EP 0 930 793 A1

DSP_DEVlD_NOT_RESPONDlNG
DS P_TASK_NOT_FOUND

D$P_Get_lD_From_Nam
BOOL DSP_GeL/D_FromfiName(T_DeviceID Dev/D, T_DSP_Name Name, T_DSP_ID *ID, U16 ‘errcode),'

[0035] This function returns the ID for a named object on the DSP 16. The named object may be a channel. atask,
a memory block, or any other supported named DSP object. The errcode parameter will contain the following possible
results:

DSPgSUCCESS
DSP‘DEVID_NOT_FOUN D
DSP_DEVID_NOT_RESPONDING
DSP_NAME_NOT_FOUND

DSP_Dbg__Head__Mem
BOOL DSP_Dbg_FIead.Mem(DE VICE_ID Dele, U8 mempage, DSP_ PTRaddr, U32 count, DSP_ WORD ’buf,

U16 'errcode);
[0036] This function requests a block of memory. The mempage specifies program memory (0) or data memory (1).
The addr parameter specifies the memory starting address, and the count Indicates how many T_DSP_Words to read.
The bufparameter is a pointerto a caller provided buffer to which the memory should be copied. The errcode parameter
will contain the following possible results:

DSP_SUCCESS
DSP_DEVlD7NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Dbg_Write_Mem
BOOL DSP_Dbg_ Write_Mem(T_DeviceID Dev/D, U16 mempage,

T_DSP_ Word ’buf, U16 'errcode);
[0037] This function writes a block of memory. The mempage specifies program memory (0) or data memory (1).
The addrparameter specifies the memory starting address, and the count indicates how many T_DSP_Words to write.
The but parameter is a pointer the buffer containing the memory to write. The errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP,DEVID_NOT#FOUND
DSP_DEVlD_NOT_RESPONDlNG
DSP_INVALID_MEMPAGE

DSP_Dbg_Read_Fteg
BOOL DSP_Dbg_Read_Fr‘eg{T_DevicelD Dele, U16 Reg/D, T_DSP_Word ‘regvalue, U 16 *errcode);

[0038] This function reads a DSP register and returns the value in regvalue. The Reg/D parameter specifies which
register to return. if the Reng is -1, then all of the register values are returned. The regvalue parameter, which is a
pointer to a caller provided buffer, should point to sufficient storage to hold all of the values. The register IDs are DSP
specific and will depend on a particular implementation. The errcode parameter will contain the following possible
results:

T DSP_Ptr addr, T_Count count,

DSP_SUCCESS
DSP_DEVID_NOT;FOUND
DSP_DEVlD_NOT_RESPONDlNG
DSP_lNVALlD_REGlSTEFl

DSP_Dbg_Write_Reg
BOOL DSP_Dbg_Write_Fteg(T_DeviceID DevID, U 16 Heng, T_DSP_Word regvalue, U16 ‘errcode);

[0039] This function writes a DSP register. The Fieng parameter specifies which register to modify. regvalue contains
the new value to write. The register IDs are DSP specific and will depend on a particular implementation. The errcode
parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEV|D_NOT_FOUND
DSP_DEV|D_NOT_RESPONDING
DSP_lNVALID_FtEGlSTEFt

DSP__Dbg_Set_Break
BOOL DSP_Dbg_Set_Break(T_DevicelD Dele, DSP_Ptr addr, U76 'errcode); This function sets a break point

at the given code address {addr}. The errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEV|D_NOT_FOUN D

BNSDOCID: <EP__0930793A1_I_>

Page 1326 of 1415

EP 0 930 793 A1

DSP_DEVtD_NOT_FtESPONDlNG
DSP_Dbg_Clr_Break
BOOL DSP_Dbg_Ch;Break(T_DevicelD DevID, T_DSP_ Ptr addr, U16 ‘errcode);

[0040] This function clears a break point that was previously set by DSP_Dbg_Set__Break at the given code address
(addr). The errcode parameter will contain the following possible results:

DSP-SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BP_Dl D_NOT_EXl ST

[0041] The DSP Device Driver 54 handles communications from the Host 12 to the DSP 16. The driver functions will
take the communication requests as specified in the Host-DSP Communications Protocol and handle the transmission
of the information via the available hardware interface. The device driver is HTOS dependent and communications
hardware dependent.
[0042] The DSP Library 58 contains the blocks of code that can be downloaded to the DSP 16 for execution. Each
block of code will be previously unlinked, or retocatably linked as a library, so that the dynamic cross linker can resolve
all address reterences. Each code block will also include information about the block's requirements lor DSP MIPS
(millions of instructions per second), priority, time slice quantum, and memory. The format for the code block header
is shown in Table 2. The program memory and data memory sizes are approximations to give the Host 12 a quick
check on whether the DSP can support the task's memory requirements. If there appears to be sufficient space, the
dynamic cross linker can then attempt to link and load the code. it should be noted that the dynamic cross linker could
still fail, due to page alignment and contiguity requirements. In the preferred embodiment, the code is in a version 2
COFF file format,

Table 2.

Code Block Header.

U16 Processor The target processor type.
T‘DSP_Name Name Task's name.

U32 MIPS Worst case MIPS required by the task.
T_Size ProgSiZe Total program memory size needed.
T_Size DataSize Total data memory size needed.
T_Size lnFrameSize Size of a frame in the task's input channel.

T_Size OutFrameSize Size of a frame in the task‘s output channel.
T_Size InStrmSize Size of the task's input stream FIFO.
T_Size OutStrmSize Size of the task's output stream FlFO.
U16 Priority Task's priority.
U32 Quantum Task's time slice quantum (number of system ticks).
T_Size StackFteq Stack required.
T‘Size CoffSize Total size of the COFF tile.

T_DSP_Ptr Mngandler Offset to a message handler entry point for the task.
T_DSP_Ptr Create Offset to a create entry point that is called when the task is created.
T_DSP_Ptr Start Offset to the start of the task‘s code.

T_DSP_Ptr Suspend OffSet to a suspend entry point that is called prior to the task being suspended.
T_DSP_Ptr Resume Ofiset to a resume entry point that is called prior to the task being resumed.
T_DSP_Ptr Stop Offset to a stop entry point that is called prior to the task being deleted.
T_Host_Ptr CoftPtr Pointer to the location of the COFF data in the DSP Library.

[0043] A procedure for converting portable (processor independent) code, such as JAVA code, into linked target
code is shown in Figure 3. The procedure uses two functions, a dynamic cross compiler 80 and a dynamic cross linker
82. Each function is implemented on the host processor 12. The dynamic cross linker is part of the DSP-APl in the
preferred embodiment. The cross compiler may also be part of the DSP-APl.
[0044] The dynamic cross compiler 80 converts portable code into unlinked, executable target processor code, The
dynamic cross linker 82 converts the unlinked, executable target processor code into linked, executable target proc-
essor code. To do so, it must resolve addresses within a block of code, prior to loading on the DSP 16. The dynamic

BNSDOCI D: <EP_0930793A1‘I_>

Page 1327 of 1415

EP 0 930 793 A1

cross linker 82 links the code segments and data segments of the function, allocates the memory on the DSP 16, and
loads the code and constant data to the DSP 16. The functions are referred to as "cross' compiling and "cross" linking,
because the functions (compiling and linking) occur on a different processor tie, the host processor 12) lrom the target
processor which executes the code (i.e.. the DSP 16).
[0045] The dynamic cross compiler 60 accepts previously unlinked code loaded on demand by a user or a user agent
(such as a browser). The code is processed to either (1) identity "tagged" sections of the code or (2) analyze untagged
code segments for suitability of execution on the DSP 16, A tagged section of source code could delineate source
targetable to a DSP by predetermined markers such as “<start DSP code>" and <end DSP code>" embedded in the
source code. If a tagged section is identified either directly or through analysis, a decision is made to either cross
compile or not based on the current processing state of the DSP 16. If a decision is made to compile, the section of
code processed by compiling software that outputs unlinked, executable target processor code, using well known
compiling methods. A decision not to compile could be made it for example, the DSP has insufficient aVailable process-
ing capacity (generally stated as available MIPS - million of instructions per second) or insufficient available memory,
due to other tasks being executed by the DSP 16. The compiled code can be passed to the dynamic cross linker 82
for immediate use in the DSP 16, or could be saved in the DSP library 56.
[0046] The dynamic cross linker 82 accepts previously unlinked code, which is either (1) statically stored in connection
with the host processor 12 or (2) dynamically downloaded to the host processor 12 over a network connection (including
global networks such as the lntemet) or (3) dynamically generated by the dynamic cross compiler 80. The dynamic
cross linker 82 links the input code for a memOry staning address of the USP 16 determined at runtime. The memory
starting address can be determined from a memory map or memory table stored on and managed by either the host
processor 12 or DSP 16. The dynamic cross linker 82 convert referenced memory locations in the code to actual
memory locations in the DSP 16. These memory locations could include, for example, branch addresses in the code
or references to locations of data in the code.

[0047] in the preferred embodiment, the portable code is in a COFF (common object file format) which contains all
information about the code, including whether it is linked or unlinked. if it is unlinked, symbol tables define the address
which must be changed for linking the code.
[0048] The conversion process described above has several significant advantages over the prior art. First, the
dynamic cross compiler 80 allows run-time decisions to be made about where to execute the downloaded portable
code. For example, in a system with multiple target processors (such as two DSPs 16), the dynamic cross compiler
80 could compile the portable code to any one of the target processors based on available resources or capabilities
The dynamic cross linker 82 provides for linking code to run on a target processor which does not support relocatable
code. Since the code is linked at run—time. memory locations in the DSP 16 (or other target processor) do not need to
be reserved, allowing optimum efficiency of use 01 all computing resources in the device. Because the compiling is
accomplished with knowledge of the architecture of the platform 10, the compiling can take advantage ot processor
and platform specific features, such as intelligent cache architectures in one or both processors 12 and 16.
[0049] Thus. the DSP 16 can have various functions which are changed dynamically to fully use its processing
capabilities. For example, the user may wish to 12 load a user interface including voice recognition. At that time, the
host processor 12 could download software and dynamically cross compile and cross link the voice recognition software
for execution in the DSP 16. Alternatively, previously compiled software in the DSP library 58 could be dynamically
cross linked, based on the current status of the DSP 16, for execution.

[0050] The Host Device Driver handles communications from the DSP 16 to the Host Processor 12. The driver
functions takes the communication requests as specified in the Host~DSP Communications Protocol and handles trans-
mission of the information via the available hardware interface. The devrce driver is RTOS dependent and communi—
cations hardware dependent.
[0051] The Host—DSP Communications Protocol governs the communications of commands and data between the
Host 12 and the DSP 16. The communications consist of several paths: messages, data channels, and streams. Mes-
sages are used to send initialization parameters and commands to the tasks. Data channels carry large amounts of
data between tasks and between the DSP 16 and Host 12, in the form of data frames. Streams are used to pass
streamed data between tasks and between the DSP 16 and Host 12.

[0052] Each task has an entry point to a message handler, which handles messages. The messages are user defined
and will include initialization parameters for the task's function, and commands for controlling the task. The tasks send
messages to the Host 12 via the callback specified when the task is created. The prototype for the task‘s message
handler and the prototype for the Host's callback are shown here:

void TaskMngandler(T_RepInyef rep/yref, T_Msng MsgID, T_Count count, T_DSP_ Word ’bul);
void HostCal/BackU_FtepIyBef replyer T_Msng MsgID, T_ Count count, T,_DSP_ Word 'buf);

[0053] The replyref parameter refers to an implementation dependent reference value, which is used to route the

BNSDOCID' <EP_0930793A1_I_>

Page 1328 of 1415

EP 0 930 793 A1

reply back to the sender. For every Send_Message call, the recipient must call Reply_Message using the replyref
parameter. The actual messages may appear as follows:

Reply message MsngtFlag replyret buf[.....]

The multiword data is sent least-significant word first.
[0054] A Task/Dot O in the Send_Message function indicates a system level message. The system level messages
are used to implement the DSP—APl functions
[0055] Following are the Message functions:

Send_Message

BOOL Send_Message(T_Task/D TaskID, T_Msng Msng, T_Count count, T_DSP_Word 'msgbuf,
T_DSP_Word 'replybuf, T_Size replybufsize, T_Count rep/ycount, U16 'errcode);
[0056] This function will send a user defined message to a task specified by Task/D, The Msngdefines the message,
and the msgbufconfains the actual message data. The message size is count T_DSP_Words. The reply tothe message
will be contained in the replybufparameter, which points to a buffer of size replybufsize, provided by the caller. It should
be of sufficient size to handle the reply for the particular message. The errcoa’e parameter will contain the following
possible results:

DSP_SUCCESS
DSP_DEVID_NOT__FOUND
DSP_DEVID_NOT__FlESPONDlNG
DSP_TASK_NOT_FOUND

Reply_Message
BOOL Repfy_Message(T_ReplyRef rep/yref, T_Counf count, T_DSP_Word 'buf. U16 ’errcode);

[0057] This function is used to reply to messages. The replyrefparameter is a reference used to route the reply back
to the sender of the original message, and is implementation specific. The reply is contained in the buf parameter and
its size is count T_DSP_Words. The errcode parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVlD_NOT_FOUND
DSP_DEVlD_NOT_FlESPONDlNG
DSP_BAD_REPLY_HEF

[0058] The concept of channels is used to transmit frame-based data from one processor to another, or between
tasks on the same processor. When created, a channel allocates a specified number and size of frames to contain the
data. Initially, the channel will contain a list of empty frames. Tasks that produce data will request empty frames in
which to put the data, then once filled, the frame is returned to the channel. Tasks that consume data will request full
frames from the channel, and once emptied, the frame is returned to the channel. This requesting and returning of
frame buffers allows data to move about with a minimum of copying.
[0059] Each task has a specified input and Output channel. Once a channel is created, it should be designated as
the input to one task, and the output to another task. A channel's ID includes a device ID, so channels can pass data
between processors. Channel data flow across the Host-DSP interface may appear as follows:

ChanPktFlag Channel lD Data[...]

The following are the channel functions:
Create__Channel
BOOL Create_0hannel(T_Device/D Dev/D, T_Si'ze framesize, T_Countnumframes, T_ChanID ‘Channe/ID, U16

‘errcode);
[0060] This function creates a data frame-based communication channel. This creates a channel control structure,
which maintains control of a set of frame buffers, whose count and size are specified in the numframes and framesize
parameters, respectively. When created, the channel allocates the data frames, and adds them to its list of empty
frames. Channel/D will return the ID of the new channel. If the Deva is not that of the calling processor, a channel
control structure is created on both the calling processor and the Dev/D processor, to control data flowing across the
communications interface. The errcode parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_DEVlD_NOT_FOUND
CHAN_DEVlD_NOT_RESPONDING

BNSDOCI D: < E P__0930793A1_l_>

Page 1329 of 1415

EP 0 930 793 A1

CHAN_ALLOCATlON_EFlROFl
Del te_Channel
BOOL Delete_Channe/(T_ChanlD Channel/D, U16 'errcode);

[0061] This function deletes an existing channel specified by Channel/D. The errcode parameter will contain the
following possible results:

CHAN_SUCCESS
CHANwDEVlD_NOT_FOUND
CHAN_DEVlD_NOT RESPONDING
CHANfiCHANNEL_NOT_FOUND

RequesLEmptygFrame
BOOL Request_Empty_ Frame(T¢LocalChan/D Chn, T_ DSP_ Word "bufptr, BOOL WaitFlag, U16 ‘errcode),'

[0062] This function requests an empty frame from the specified local channel ID. If Chn is NULL, then the task's
output channel is used. Upon return, the bufptr parameter will contain the pointer to the frame buffer. If the WaitF/ag
is TRUE, and there is no frame buffer available, the caller will be suspended until a buffer becomes available. If the
WaitF/ag is FALSE, the function will return regardless. The errcode parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_UNAVAILABLE

Return_Full_Frarne
BOOL Heturn_Fu/I_Frame(T_Loca/ChaniD Chn, T_DSP_ Word ’bulptr, U16 'errcode);

[0063] Once a task has filled a frame buffer, it returns is to the channel using this function. The buffer pointed to by
bufptr is returned to the channel ID specified. If Chn is NULL, then the task's output channel is used. The errcode
parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR

Request_Full_Frame

BOOL HequesLFuILFrame(T_Loca/ChanlD Chn, T_DSP__ Word “bufptr, BOOL WaitFlag, U16_*errcode);
[0064] This function requests a full frame of data from the specified local channel ID. If Chn is NULL, then the task's
input channel is used. Upon return, the bufplrparameter will contain the pointer to the frame buffer. if the WaitFLag is
TRUE, and there are no full frame buffers available, the caller will be suspended until a buffer becomes available. If
the WaitF/ag is FALSE, the function will return regardless. The errcode parameter will contain the following possible
results:

CHAN,SUCCESS
CHANflCHANNEL_NOT_FOUND
CHANABUFFEFLUNAVAILABLE

ReturnvEmpty_Frame
BOOL Return_EmptyVFrame(T_LocalChanID Chn, T_DSPfiWord *bufptr, U16 ’errcode);

[0065] Once a task has used the datafrom aframe buffer, it should return the buffer to the channel using thisfunction.
The buffer pointed to by bufptr is returned to the channel ID specified. If Chn is NULL, then the task‘s input channel is
used. The errcode parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFEFI_CTRL_ERFiOFl

Set_Task_lnput_Channel
BOOL Set_Task_lnpuLChannef(T_Task 'TaskID, T~ChanID Chan/D, U16 'errcode);

[0066] This function sets a task's input channel to the specified channel D. The errcode parameter will contain the
following possible results;

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_FtESPONDlNG
CHAN_TASK_NOT_FOUND
CHAN_CHANNEL_NOT_FOUND

Set_Tesk_0utput_Channel
BOOL SeLTask_Ou(put_Channe/(T_ Task *TaskID, T_ChanlD Chan/D, U16 ’errcode);

[0067] This function sets a task's output channel to the specified channel ID. The errcode parameter will contain the
following possible results:

CHAN_SUCCESS

BNSDOClD: <EP_0930793A1_I_>

Page 1330 of 1415

EP 0 930 793 A1

CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING
CHAN_TASK_NOT_FOUND
CHAN,CHANNEL~NOT_FOUND

[0068] Streams are used for data. which can not be broken into frames, but which continuously flow into and out of
a task. A stream will consist of a circular buffer (FIFO) with associated head and tail pointers to track the data as it
flows in and out. Each task can have a designated input and output stream. Stream data flow across the HostDSP
interface may appear as follows:

StrmPktFlag Stream ID m

Following are the stream functions:
Createisueam

BOOL Create_8tream(T_Device/D DeVlD, T_Size FIFOsize, T_StrmID ’SfreamID, U16*errcode);
[0069] This function creates a FIFO—based communication stream. This creates a stream control structure, which
maintains control of a FIFO of size FlFOsize. When created, the stream allocates an empty FIFO, and initializes head
and tail pointers to handle data flow into and out of the stream. Stream/D will return the ID of the new stream. If the
Dev/D is not that of the calling processor, a stream control structure is created on both the calling processor and the
Dele processor, to control data flowing across the communications interface. The errcode parameter will contain the
following possible results:

STRM_SUCCESS
STFlM_DEV|D.NOT_FOUND
STRM_DEVID_NOT_FIESPONDING
STHM_ALLOCATION_ERROH

Delete_Channel

BOOL Delete.8tream(T~StrmID Stream/D, U16 ‘errcode);
[0070] This function deletes an existing stream specified by Stream/D. The errcode parameter will contain the fol—
lowing possible results;

STHM_SUCCESS
STHM_DEVID_NOT_FOUND
STHM_DEVID_NOT_FtESPONDING
STHM_STHEAM_NOT_FOUND

Get_Stream_Count

BOOL Get_Straam_Count(T~LocalStrm/D StrmlD, T_Count ’counf, U16 ‘errcode);
[0071] This function requests the count of T_DSP_Words currently in the stream FIFO specified by SlrmID. The
count parameter willcontain the number upon return. The errcode parameter will contain the following possible results:

STRM_SUCCESS
STHM_STREAM_NOT_FOUND

Write__Stream
BOOL Write_Stream(T_LocalStrmID Strm, T_DSP_Word 'bufptr, T_Count count, T_Count ‘countwritten, U16

'errcode);

[0072] This function will write countnumber of T‘DSP_Words to the stream specified by the Strm. If Sfrm is NULL,
the task's output stream is used. The data is pointed to by the bufptr parameter. Upon return, countwritten will contain
the number of T_DSP_Words actually written. The encode parameter will contain the following possible results:

STRM_SUCCESS
STHM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDlNG
STRM_STREAM_NOT_FOUND
STFIM_STREAM_OVEHFLOW

Read_Stream

BOOL Read_8!ream(T.Loca/StrmID Stn'n, T_DSP_ Word ’bufpfr, T_Counfmaxcount, BOOL WaitF/ag, T_Count
'counfread, U16 'errcode);
[0073] This function reads data from the stream specified by Strm. If Sfrm is NULL, the task‘s input stream is used.
The data will be stored in the buffer pointed to by bufpfr. Up to maxcountT_DSP_Words will be read from the stream.

The countread parameter will contain the actual count of the data read. The errcode parameter will contain the following
possible results:

STRM_SUCCESS

BNSDOCID: <5P_0930793A1_i_>

Page 1331 of 1415

EP 0 930 793 A1

STFtM_DEVlD_NOT_FOUND
STRM_DEVID_NOT,RESPONDING
STFiM_STFlEAM_NOT_FOUND

S t_Task_lnput_Stream
BOOL SeLTaskanuLSIream(T_Task ‘TaskID, TAStrmID StrmID. U16 *errcode);

[0074] This function sets a task‘s input stream to the specified stream ID. The errcode parameter will contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

Set_Task_Outpu1_Stream
BOOL Se!_ Task_0utput_Stream(T_ Task *7IaskID, T_StrmlD SirmlD, U16 ‘errcode);

[0075] This function sets a task's output stream to the specified stream |D. The errcode parameter will contain the
following possible results:

STRM_SUCCESS
STFlM_DEVID_NOT__FOUND
STRM_DEVID_NOT,RESPONDING
STRM_TASK_NOT_FOUND
STRM_STHEAM_NOT_FOUND

[0076] Data types used herein are defined in Table 3:

Table 3

Description

88 Signed 8-bit integer.

U8 Unsigned 8—bit integer.

816 Signed 16-bit integer.

U16 Unsigned 16-bit integer.

832 Signed 32-bit integer.

U32 Unsigned 32-bit integer.

TgHostWord A word on the Host processor.

T_DSP_Word A word on the DSP processor.

BOOL Boolean value (TRUE or FALSE).

T_HostPtr Pointer on the Host processor.

T_DSP_Ptr Pointer on the DSP processor.

TfiDevicelD Processor device |D.

T_Tasle A structure containing fields for a device ID and a processor local task |D.

T_ChanlD A structure containing fields for a device l0 and a processor local channel lD.

T_Msng Message ID.

T_DSP_ID An object ID on the DSP.

T_Count Data type for a count.

T‘Size Data type for a size.

T_HostCallBack Value used when tasks send message back to the Host.

T_ReplyRef Message reply reference.

T_Loca|Tasle Local task |D.

T_LocalChanlD Local channel |D.

BNSDOCID: <EP_0930793A1_L>

Page 1332 of 1415

EP 0 930 793 A1

Table 3 (continued)

[0077] These tables define the messages passing between devices (is. Host to USP 16). The device IDs present
as parameters in the correspondinglunction calls are not incorporated in the messages since they are used to actually
route the message to the device. Similarly, task IDs that include a device ID as their upper half for the function call will
not include the device ID in the message, but only the DSP's local task ID portion.

Table 4

DSP-AP! Messages

DSP

GET_MEM_AVAIL T_Size progmem —>
T_Size datamem

ALLOCJVIEM U16 mempage T_DSP_Word *memptr —>
T_Size size U16 errcode

FREE_MEM U16 mempage U16 errcode —>
T_DSP_Word ‘memptr

PUT_BLOB T_DSP_Ptr destaddr U16 errcode —>
U 1 6 mempage
T_Size size
T_DSP_Word BLOB[size]

—
—
_
—
_

CHANGE_PRIOFilT Y T_TaskID Tasle U16 U16 oldpriority U16 errcode
newpriority

GET_TASK_STATUS T_TaskID TaskID U16 status —9

U16 priority
T_ChanID Input
T_ChanID Output
U16 errcode

GET_lD T_DSP_Name Name T_DSP__ID ID I ——>
U16 errcode

DSP Interface Layer l Channel Interface Layer Messages

CREATE_CHANNEL T__Size framesize T_ChanlD ChannelID —>
T_Count numframes U16 encode

i

I

i

l

I

I

BNSDOCID: <EP_09307§3A1_!_>

Page 1333 of 1415

EP 0 930 793 A1

Table 5 (continued)

DSP Interface Layer I Chann I Interface Layer Messages

Send Parameters Reply Parameters Direction Host a DSP
DELETE_CHANNEL T_Chan|D ChanneIlD U16 errcode

CREATE_STREAM T_Size FlFOsize T_StrmlD StreamlD —>
U16 errcode

DELETE_STREAM |__StrmlD StreamlD U16 errcode

Debug Messages

Send Parameters Reply Parameters Direction Host 4: DSP
READ_MEM U16 mempage T_DSP_Word mem[count] —>

T_DSP_Ptr addr U16 errcode
T_Count count

WRITE_MEM U16 mempage U16 errcode <—>
T_DSP_Ptr addr

T_Count count
T_DSP_Word mem[count]

HEAD_REG U16 Fleng DSP_WORD regvalue —>
U16 errcode

WRITE_REG U16 Reng U16 errcode
T_DSP_Word regvalue

BREAK_HIT T_DSP_Ptraddr U16ACK

[0078] Figures 4 - 6 illustrate an embodiment for downloading native code to a target processor (i.e., the host 12 or
DSP 16) in a secure and efficient manner. This embodiment for downloading code could be used, for example, in
downloading code from the Internet. or other global network, from a Local or Wide Area Network, or from a peripheral
device, such as a PC Card or Smartcard.

[0079] in Figure 4, an embodiment of a JAVA Bean 90 is shown, where the Bean 90 acts as a wrapper for native
code 92. The Bean further includes several attributes 94, listed as a Code Type attribute 94a, a Code Size attribute
94b and a MIPS Required attribute 940. The Bean 90 has several actions 96, including a Load Code action 96a, a
Load Parameters action 96b and an Execute Parameter 96c.

[0080] in operation, the Load Code action 96a is used to load external native code (native to the target processor)
into the Bean. Since JAVA Beans have persistence, the Bean 90 can store its internal state, including the native code
92 and the attributes 94. The Load Parameters action 96b retrieves parameters from the native code 92 (using, for

example, the COFF file format described above) and stores the parameters as attributes 94ac The Execute action
96c executes tasks installed in the DSP 16,

[0081] Figure 5 illustrates use of the Bean 90 to download code to the target processor. In this example, it is assumed
that the target processor is the DSP 16 (or one 01 multiple DSPs 16), although it could be used to download native
code to the host processor 12 as well. Further, it is assumed that the desired Bean 90 is resident in a network server,
such as a LAN server or an Internet server, although the Bean could be resident in any device in communication with

the platform 10, such as a Smartcard. For a wireless data platform 10, the connection to the network server 100 will
often be wireless.

[0082] In Figure 5, the platform 10 is coupled to a network server 100. The host processor 12, as shown in greater
detail in Figure 2, may execute one or more JAVA applets 41 through a JAVA virtual machine 45. In order to download
new code, the host 12 loads an applet 41 containing the Bean 90 from the network server 100 or the Bean, without
the containing applet, can be downloaded from the server 100. Once the wrapper Bean 90 has been retrieved, it can
be queried for the size of the native code, code type (for which processor is the code intended) and MlPs required, If

BNSDOCI D: <EP_0930793A1A|_>

Page 1334 of 1415

EP 0 930 793 A1

the intended processor has sufficient resources to run the code 92. the code 92 can be installed to execute on the
intended processor. eitherthe host processor 12 or DSP 16 in the architecture shown in Figure 5. Typically. the native

code 92 will be unlinked. compiled code. Thus. the cross linker 82 of the DSP-API 50 will link the code to an available
memory location. The Bean would pass the binary native code 92 to the dynamic cross linker 82, which would install
and execute the code.

[0083] A typical manner in which a download of native code might occur is when the user is running an applet 41 in
which a DSP function is desired. First, the applet 41 would check to see if the desired code was installed as a task 60
in the DSP or was available in the DSP Library 58. If so. the task could be executed without a download.
[0084] if the task is not stored in the DSP 16 orthe DSP library 58, an object (referred to as the " DSPLoader" object
herein) could be created to load the Bean 90. If the DSPLoader class is local on the host 12, JAVA will check to see if
the Bean is available locally as well. In a first instance, there may be a Bean with the code stored locally, if so, the
codefrom the Bean is installed tothe DSP 16 (or to whichever processor specified by the Code Type), If a Bean without
the code is stored locally, the Bean can retrieve the code from the appropriate server.
[0085] On the other hand. it the DSPLoader object is not local. then JAVA will load the Bean 90 from the server that
wrote the applet 41. The code from the Bean will then be installed as described above.
[0086] While the downloading of native code is described in connection with the use of a JAVA Bean. it could also
be accomplished by wrapping the code within another language, such as an ActiveX applet.
[0087] Using a JAVA Bean (or other applet) as a wrapper to the native code has significant advantages. First, it
allows a simple, standard method for loading code onto one of a plurality of processors. The Bean is created. code is
loaded into the Bean and the code is linked to the appropriate processor. Without wrapping the code within the Bean,
the process may take several hundred steps. Second. it allows multiple pieces of native code to be combined by a
single applet. providing for complex applications to be generated from multiple discrete routines using a single applet
to combine the routines as desired. Third, it takes advantage of the language's security features, thereby protecting
not only the JAVA code in the Bean 90, but the native code 92 as well. Other languages, such as ActiveX. have security
features as well.

[0088] Two of the most important security features are digital signing and encryption. A JAVA Bean or ActiveX applet
may be signed by the source of the code; when the Bean or applet is downloaded. the signature is verified by the
receiving application. which has a list of trusted sources. If the Bean or applet is signed by a trusted source. it can be
decrypted using standard techniques. Accordingly. the native code is encrypted during transmission along with the
code of the Bean or applet. preventing unauthorized modification of the code. Because the native code is secure and
comes from a trusted source. the attributes can also be trusted as accurate.

[0089] Figure 6 illustrates a flow chart describing the process of downloading native code for a processor using a
JAVA Bean. it being understood that the native code could be wrapped in an applet of a different language using similar
techniques. In step 110, the encrypted. digitally signed Bean 90 is downloaded to a device running a JAVA virtual
machine. In step 11 2, the signature is verified. If it is not from a source listed as a trusted source, exception processing
is enabled in step 114. In the case of the Bean coming from a trusted source. the exception processing function may
give the user an opportunity to accept the Bean. if the user is comfortable with the source. If the signature is invalid.
the exception processing may delete the Bean 90 and send an appropriate error message to the user.
[0090] If the signature is valid and comes from a trusted source. the Bean is decrypted in step 11 6. This step decrypts
both the JAVA code and the native code in the Bean. In step 118, the attributes are retrieved from the Bean 90 and in
step 120 the applet determines whether the appropriate processor has sufficient resources to run the code. If not. the
exception processing step 114 may decline to install the native code, or steps may be taken to free resources. If there
are sufficient resources, the code is linked using the cross-linker and installed on the desired processor in step 122.
In step 124, the native code is executed.
[0091] Sample JAVA script for a Bean 90 is provided hereinbelow:

BNSDOCI D: <EP_0930793A1_I_>

Page 1335 of 1415

EP 0 930 793 A1

package ti.dsp.loader;

import java.awt_";
importjava.io.‘;

import java.nct.‘;

public class NativeBean extends Canvas implements Serializable
{

public NativeBeanO {

setBackground(Color.whitc);

funcData = new ByteAmyOutputSu'eamO;

try (
funcCochasc = new URLC‘httpzlllocalhost");

}

catch (MalformedURLExccption e) {

BNSDOCI D: <EP_0930793A1_L>

Page 1336 of 1415

EP 0 930 793 A1

}

public Dimension getMinimumSich {

return new Dimension(50, 50);
}

public void loadCoch {

URL baseURL = null;

try {

bachRL = new URL(fimcCodeBase.toString() + "I" + myFunction);
}

catch (MalformedURLExccption e) {
}

DatalnputStrcam source = null;
in: read;

bytcfl buffer,

buffer = new byte[1024];
try {

source = new DataInputStreamfbaseURLOpenStrcamO);
}

catch (IOExccpu'on e) {

System.out.pfintln("IOException creating streams: " + e);
}

codeSize = 03

funcDatercsetO;

try {

while (true) {

read = sonrcc.rcad(buffcr);

if (read = ~l)
break;

fimcData.write(buffcr, 0, read);
}

}

catch (IOException e) (

System.out.println("IOExccption: " + e);
}

BNSDOCID: (EP 0930793Al_|_>

Page 1337 of 1415

EP 0 930 793 A1

cochize = funcDatn.size0:

System.out.println("Code size = " + codeSize);

11'! {
source.close();

}

catch (IOExccption e) {

System.out.println("IOExccption closing: " + e);
l

}

public synchronized String getFunctionNach {

retum myFunction;

}

public void sctFunctionNamc(Su-ing fimction) {

myFunction = function;
}

public synchronized String getCodeBaseO {

return fimcCodeBase.toSu-ing0;

}

public void setCodeBase(Sm'ng newBase) {

to! l
funcCodeBase = new URL(newBase);

} .
catch (MalformedURLException e) {
}

}

public void installCodeO {

FileOutputStream destination = null;
File libFilc = new Filc(myFunction);

try {
destination = new FileOutputStreamOibFile);

} _

catch (IOException e)
System.out.println("IOException creating streams: " + e);

}

if (destination != null) {

BNSDOCID; <EP_0930793A1 _I_>

Page 1338 of 1415

EP 0 930 793 A1

to! (

mncData.wntcTo(destination);
)

catch (IOExccption e) {

System.out.println(”10 Exception installing native code: " + c);
}

}

linkCode(funcData)

public void loadParametersO {
}

public void executeO {
}

public synchronized int getCodeSizeO {

return cochizc;
}

public synchronized int gctCode'l'ypeO {

return code'l‘ypc;
}

public void setCodcType(int nchypc) {

codeType = newTypc;
}

private int codeSizc = 0;

private int codc'l'ypc = 1;
private String myFm-iction = "";
private URL funcCodeBase = null;

private ByteAmyOutputStrcam funcData = null;

[0092] In the script set forth above, the NativeBeanO routine creates the Bean 90 which will hold the native code.
The IoadCode() routine gets the native code from the server The getFunctionName() and getCodeBaseo routines
retrieve attributes. The installCode() routine calls the cross linker to link the native code to the DSP and to load the
linked code. The |oadParameters() routine instructs the Bean to examine the native code and determine its attributes.
The getCodesizeO and getCodetype() routines transfer the attributes to the requesting applet.
[0093] Although the teachings disclosed herein have been directed to certain exemplary embodiments, various mod-
ifications of these embodiments. as well as alternative embodiments, will be suggested to those skilled in the art.
[0094] Further and particular embodiments of the invention will now be enumerated with reference to the following
numbered clauses.

1. A mobile electronic device, comprising:

a coprocessor for executing native code;
a host processor system operable to execute native code corresponding to the host processor system and
processor independent code, said host processor system operable to dynamically change the tasks periormed

BNSDOClD'. <EP_0830793A1_I_>

Page 1339 of 1415

EP 0 930 793 A1

by the digital signal coprocessor; and
circuitry for communicating between said host processor system and said coprocessor

2. The mobile electronic device of clause 1 and further comprising network interface circuitry for receiving data
from a network.

3. The mobile electronic device of clause 2 wherein said network interface circuitry comprises wireless network

circuitry.

4. The mobile electronic device of clause 3 wherein said network interface circuitry comprises circuitry tor inter-

facing with a global network.

5. A method of controlling a mobile electronic device comprising the steps of:

executing native code in a coprocessor;
executing both native code and processor independent code in a host processor system;
dynamically changing the tasks performed by the digital signal coprocessor with said host processor system;
and

communicating between said host processor system and said coprocessor.

6. The method of clause 5 and further comprising the step of receiving code through a network interface.

7. The method of clause 6 and tu rther comprising the step of receiving code through a wireless network interface.

8. The method of clause 6 or 7 and further comprising the step 01 receiving code through a wireless network
interface from a global network.

9. A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code:

identify one or more sections of source code to be executed on one or more 01 said coprocessors; and
for each identified section of source code, determining a corresponding coprocessor; and
for each identified section oi source code, compile said identified section of code into the native code
associated with said corresponding coprocessor and install said native code onto said corresponding
coprocessor; and

circuitry for communicating between said host processor system and said coprocessors.

10. The mobile electronic device of clause 9 wherein one or more of said coprocessors comprise digital signal
processors.

Claims

1. A mobile electronic device, comprising:

a coprocessor for executing native code;
a host processor operable to execute native code corresponding to the host processor and processor inde-
pendent code, said host processor operable to dynamically change the tasks performed by the digital signal
coprocessor; and
circuitry for communicating between said host processor and said coprocessor.

2. The mobile electronic device of Claim 1, wherein said coprocessor comprises a digital signal processor.

3. The mobile electronic device of Claim 1 or Claim 2, wherein said processor independent code comprises JAVA.

BNSDCDI D: <EP_0930793A1_I_>

Page 1340 of 1415

EP 0 930 793 A1

The mobile electronic device of any preceding claim , wherein said host processor system is arranged to generate
native code for said coprocessor.

The mobile electronic device of any preceding claim, wherein said host processor is arranged to generate native
code for said coprocessor by compiling processor independent source code.

The mobile electronic device of any preceding claim, wherein said host processor is arranged to compile identifiedblocks of source code.

The mobile electronic device of any preceding claim, wherein said host processor system is arranged to identify
blocks of source code that could be executed on the coprocessor and to compile said blocks of code.

The mobile electronic device of any preceding claims, further comprising:
a memory for storing a library of routines that can be downloaded to said coprocessor for execution.

The mobile electronic device of any preceding claim further comprising a hardware language accelerator.

. The mobile electronic device of any preceding claim wherein said hardware accelerator comprises a JAVA accel-erator.

. The mobile electronic device of any preceding claim further comprising network interface circuitry for receivingdata from a network.

. A method of controlling a mobile electronic device comprising of:

executing native code in a coprocessor;

executing both native code and processor independent code in a host processor
dynamically changing the tasks performed by the digital signal coprocessor with said host processor and
communicating between said host processor system and said coprocessor.

. The method of claim 12 wherein said step of executing native code in a coprocessor comprises executing native
code in a digital signal processor.

. The method of claims 12 and 13further comprising generating native code for coprocessor in said general process—
ing system.

. The method of claim 14 wherein said step of generating native code comprises the step of generating native code
by compiling processor independent source code.

. The method of any of claims 12 to 15 further comprising identitying blocks of said source code to compile for
execution on said coprocessor.

. The method of any of claims 12-16 further comprising storing a library of routines for downloading from said host
processor system to said coprocessor for execution.

. A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code;

identify one or more portions of source code to be executed on one or more of said coprocessors; and
for each identified portion of source code, determining a corresponding coprocessor; and
for each identified portion of source code, compile said identified portion of code into the native cod

associated with said corresponding coprocessor and install said native code onto said correspondingcoprocessor; and

circuitry for communicating between said host processor system and said coprocessors.

BNSDOCID: <E P__0980793A1_I_>

Page 1341 of 1415

EP 0 930 793 A1

19. A method 01 controlling a mobile electronic device, comprising:

executing source code on a host processor system;
identifying one or more portions of source code to be executed on one or more coprocessors; and
for each identified portion of source code, determining a corresponding coprocessor; and
for each identified portion of source code, compiling said identified portion of code into the native code asso-
ciated with said corresponding coprocessor and installing said native code onto said corresponding coproc-
essor; and

communicating between said host processor system and said coprocessors.

BNSDOCID: <EP_0930793A1_|_>

Page 1342 of 1415

EP 0 930 793 A1

BNSDOCI D: < EF’_0930793A1_L>

Page 1343 of 1415

EP 0 930 793 A1

h".ch

BNSDOCID: <EP_0930793A1 _l_>

Page 1344 of 1415

EP 0 930 793 A1

500'.“ 1'9 mm '
908:2601

am 0:06 0’
comsmuum Ocarina

BNSDOCID: <EP_0930793A1_I__>

Page 1345 of 1415

EP 0 930 793 A1

Appllcntlon Number
EUROPEANSEARCHREPORT

EP 98 31 0312

DOCUMENTS CONSIDERED TO BE RELEVANT
Cliaflon ol dncument with inclination, where applopriale, Relavanl CLASSIFICATION OF THE

0! relevant passa as to claim APPLICATION (Intel-5)

we 98 40978 A (SAGEM ;DEMEURE JEAN ANDRE H0407/32
(FR); DIMECH JEAN MARC (FR)) H04Bl/38
17 September 1998 606F9/38
* page 4, line 22 — line 27 *
* page 5, line 25 — line 28 *
* page 8, line 26 — line 29 *

EP 0 869 691 A (DEUTSCHE TELEKOM AG)
7 October 1998

* column 2, line 4 — line 22 *

GB 2 310 575 A (WESTINGHOUSE ELECTRIC
CORP) 27 August 1997
* page 5, line 16 - line 25 *

H0 97 26750 A (CELLPORT LABS INC)
24 July 1997
* page 18, line 6 — page 22, line 26 *

lélg zugggtflfgsg (FETTE BRUCE A ET AL) 'srgfigfég-Hflzficm
* column 4, line 49 - line 58 * H040
* column 13, line 14 — line 18 * HD4M

————- GOBF

The present search report has been drawn up tor all claims
Place ul scum Dale 0‘! sample! on oi 1h: search Examiner

BERLIN 31 May 1999 Leouffre, M
CATEGORY OF CITED DOCUMENTS T: theory or principle underlying the invemionE : earlier palenl doeumenl. but published on. or

X :parfiwlany relevant“ taken alone afier the filing dale
Y :panimlarly relevanl it combined wllh anumer D : documenl med In lhc applicationdOCLI'TIBUI of the same calegory L : documenl cued lor other reasons
A iled'lnologil‘al background
O ; nonowritten disclosure 3. : member 0! the same patem lamlly. oovrespcndingP : lmermed‘ata dammeni ducumenl

EPOFORM150303,82(PMCOI)

BNSDOCID <EP_0930793A 1_l_>

Page 1346 of 1415

EP 0 930 793 A1

ANNEXTOTHEEUROPEANSEARCHREPORT
ON EUROPEAN PATENT APPLICATION NO. EP 98 31 0312

This annex lists ".9 paiem family members ralallng to he pawm documents chad In me above—manilanad European search report
The members are as contained in the European Paianl Olfice EDP file on
The European Patent Office is in no way liable for these pafllculars which are merely given for the purpose of Information

31-05~1999

Patent dowmanl Publication lent family Publication
chad in search repon dale ember(s) date

Pa
m

NO 9840978 A 17—09-1998 FR 2760917 18-09-1998
FR 2760918 18-09-1998

6921998 29-09-1998>>>
08-10-1998

GB 2310575 27—08-1997 1264397 28-08-1997

07-10-1998 19713965

>>
5732074 24-03-1998
1525197 11-08-1997
2243454 24—07-1997
0875111 04-11-1998

US 4862407 29—08-1989

a:II)Vau.
E[IOu
0u.in For more details about this annex : see Ofllclal Journal of the Eumpaan Patent Office, No 12/82

BNSDOCID: <EP_0930793A1,_I_>

Page 1347 of 1415

.vonm INTELLECTUAL mommy ORGANIZATIO.International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 = (11) International Publication Number: WO 99/05600

G05F 12/00 (43) International Publication Date: 4 February 1999 (04.02.99)

(21) International Application Number: PCP/US98/15340 (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) International Filing Date: 24 July 1998 (24.07.98) SE).

(30) Priority Data: Published
08/901,776 28 July 1997 (28.0797) US Without international search report and to be republished

upon receipt of that report.

(71) Applicant: APPLE COMPUTER, INC. [US/US]; Law Dept.,
M/S: 38—PAT, 1 Infinite Loop, Cupertino, CA 95014 (US).

(72) Inventors: GARST, Blaine; 3307 Bay Court, Belmont, CA
94002 (US). SERLET, Bertrand; 218 Colorado Avenue,
Palo Alto, CA 9430) (US).

(74) Agents: HECKER, Gary, A. et 31.; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
(US).

(54) Title: METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

(57) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API), a toolkit, a framework, a runtime library, a dynamic link library (DLL), an applet (tag. a Java or Activex applet),
or any other reusable resource. The present invention allows the resource library to be selectively used only by authorized end user software
programs. The present invention can be used to enforce a 'per—pmgram" licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text string and a corresponding license
key are embedded in a program that has been licensed to use a resource library. The license text string and the license key are supplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text string includes information about the terms of the license under which the end user program is allowed to use
the resource library. The license key is used to authenticate the license text string. The resource library in turn is provided with means for
reading the license text string and the licensevkcy, and for determining, using the license key, whether the license text string is authentic
and whether the license text string has been altered. Resource library functions are made available only to a program having an authentic
and unaltered license text string.

BNSDOCID‘ <WO_9905600A2VI_>

Page 1348 of 1415

Codes usod to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
C6te d’lvoire
Cameroon
China
Cuba
Czech Republic
Germany
Denmark
Estonia

BNSDUJI D: <W0___9905600A2_|_>

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
[L
IS
IT
JP
KE
KG
KP

FOR THE PURPOSES OF INFORMATION ONLY

Spain
leand
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
llaly
Japan
Kenya
Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kaukstan
Saint Lucia
Liechienstein
Sri Lankn
Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco
Republic of Moldova
Madagascar
The former Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

SI
SK
SN
51
TD
TG
TJ
TM
TR
'I'l‘
UA
UG
US
UZ
VN
YU
ZW

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Wenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

Page 1349 of 1415

WO 99105600 PCTlUS98/15340

METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates generally to the distribution of computer

software, and more particularly to a method and apparatus for automated

enforcement of computer software licenses.

BACKGROUND ART

Some computer software programs use so-called "resource libraries" to

provide part of their functionality. There is usually a license fee required to

use a resource library. Under current schemes, it is not always possible to

charge the license fee to all users of a resource library. This problem can be

understood by comparing software structures that use resource libraries with

basic software structures that do not.

Figure 1 illustrates a basic software structure. In the example of Figure

1, the software comprises two layers. These layers are the operating system

110, and the application program 120. Operating system 110 is respOnsible for

controlling the allocation and usage of hardware resources such as memory,

central processing unit (CPU) time, disk space, and peripheral devices.

Operating system 110 provides a variety of specific functions that can be

BNSDOCID‘ <W0__9905600A2_I_>

Page 1350 of 1415

WO 99/05600 PCTlUS98/15340

utilized by a variety of software programs such as application program 120.

Application program 120 provides specific end user functions, such as word

processing, database management, and others. Application program 120

communicates with the computer hardware via functions provided by

operating system 110. Operating system 110 provides an interface between

hardware 100 and application program 120.

Resource Libraries

Figure 2 illustrates a second software structure. The software structure

of Figure 2 contains an additional layer of software, resource library 215,

interposed between application program 220 and operating system 110.

Resource library 215 provides a pre-packaged set of resources or routines that

can be accessed by software programs such as application program 220 during

execution. These resources provide higher level functions than those

provided by operating system 210. For example, these resources may provide

routines for managing a graphical user interface, for communicating with

other computers via a network, or for passing messages between program

objects. Typically, resource library 215 provides one or more resources or

functions that can be used by many different software programs. By using the

pre-packaged resources provided by resource library 215, a software program

such as application program 220 can be made smaller and program

development time can be shortened because the program itself need not

include code to provide the functions provided by resource library 215.

ensnocm; <WO___9905600A2_I_>

Page 1351 of 1415

WO 99/05600 PCTIUS98/15340

In addition to application programs, resource libraries are used by other

types of software programs, including device drivers, utility programs and

other resource libraries.

Resource library 215 constitutes any set of one or more resources that

exists separately from an application program or other software program and

that can be used by more than one software program. For example, resource

library 215 may comprise an application program interface (API), a toolkit, a

framework, a resource library, a dynamic link library (DLL), an applet, or any

other reusable resource, including an application program that can be accessed

by another program (e.g. by using object linking and embedding (OLE)).

Examples of resource libraries include Windows DLL's (DLL's used with the

Microsoft Windows (TM) operating environment), the Apple Macintosh (TM)

toolkit, the OpenStep API from NeXT Software, Inc., OLE enabled application

programs such as Microsoft Word (TM), Java packages, and ActiveX applets.

A software program typically utilizes a resource provided by a resource

library by sending an appropriate message to the resource library and

supplying the parameters required for the resource to be executed. Assuming

the appropriate parameters have been supplied, the resource executes, and an

appropriate response message is returned to the requesting program.

A software program may use resources provided by several different

resource libraries, a resource library may be used by several different programs,

and a resource library may itself use other resource libraries. Figure 3

illustrates a computer system that includes several programs and several

resource libraries. In the example of Figure 3, there are two application

stDOCID- <WO__9905600A2_I_>

Page 1352 of 1415

Page 1353 of 1415

Page 1354 of 1415

Page 1355 of 1415

Page 1356 of 1415

Page 1357 of 1415

Page 1358 of 1415

Page 1359 of 1415

Page 1360 of 1415

Page 1361 of 1415

Page 1362 of 1415

Page 1363 of 1415

Page 1364 of 1415

Page 1365 of 1415

Page 1366 of 1415

Page 1367 of 1415

Page 1368 of 1415

Page 1369 of 1415

Page 1370 of 1415

Page 1371 of 1415

Page 1372 of 1415

Page 1373 of 1415

Page 1374 of 1415

Page 1375 of 1415

Page 1376 of 1415

Page 1377 of 1415

Page 1378 of 1415

Page 1379 of 1415

Page 1380 of 1415

Page 1381 of 1415

Page 1382 of 1415

Page 1383 of 1415

Page 1384 of 1415

Page 1385 of 1415

Page 1386 of 1415

Page 1387 of 1415

Page 1388 of 1415

Page 1389 of 1415

Page 1390 of 1415

Page 1391 of 1415

Page 1392 of 1415

Page 1393 of 1415

Page 1394 of 1415

Page 1395 of 1415

Page 1396 of 1415

Page 1397 of 1415

Page 1398 of 1415

Page 1399 of 1415

Page 1400 of 1415

Page 1401 of 1415

Page 1402 of 1415

Page 1403 of 1415

Page 1404 of 1415

Page 1405 of 1415

Page 1406 of 1415

Page 1407 of 1415

Page 1408 of 1415

Page 1409 of 1415

Page 1410 of 1415

Page 1411 of 1415

Page 1412 of 1415

Page 1413 of 1415

Page 1414 of 1415

Page 1415 of 1415

