United States Patent 9
Gudmundson et al.

US005680619A

5,680,619
Oct. 21, 1997

(111 Patent Number:
1451 Date of Patent:

[541 HIERARCHICAL ENCAPSULATION OF
INSTANTIATED OBJECTS IN A
MULTIMEDIA AUTHORING SYSTEM

[75] Inventors: Norman K. Gudmundson, San Mateo;
R. Hamish Forsythe, Palo Alto;
‘Wayne A. Lee, San Mateo, all of Calif.

[73] Assignee: mFactory, Inc., Burlingame, Calif.

[21] Appl. No.: 415,848

[22] Filed: Apr. 3, 1995
[51] Int. CL® GOGF 9/40
[52] U.S. ClL 3957701
[58] Field of Searchecovreveeceemeerecrenes 395/650, 700,
395/701
[56] References Cited
U.S. PATENT DOCUMENTS
5,287,447 2/1994 Miller et al. ...ceeererreensriessennee 395/157
5423,041 6/1995 Burke et al. . .. 395/700
5,493,680 2/1996 Danforth 3957700
5499,333 3/1996 Doudnikoff et al. . .. 395/600
5499371 3/1996 Henninger et al.oocorverrernneeee 3957700
OTHER PUBLICATIONS

Booch, “Elements of the Object Model”, Object Oriented
Analysis and Design with Applications, 2nd Ed. 1994, pp.
40-77.

Primary Examiner—Kevin A. Kriess
Assistant Examiner—John L Chavis
Attorney, Agent, or Firm—Daniel R. Siegel; Ariel Reich

101

PROJECT P

102;

[57] ABSTRACT

An application development system, optimized for author-
ing multimedia titles, enables its users to create selectively
reusable object containers merely by defining links among
instantiated objects. Employing a technique known as Hier-
archical Encapsulation, the system automatically isolates the
external dependencies of the object containers created by its
users, thereby facilitating reusability of object containers
and the objects they contain in other container environ-
ments. Authors create two basic types of objects: Elements,
which are the key actors within an application, and
Modifiers, which modify an Element’s characteristics. The
object containers (Elements and Behaviors—i.e., Modifier
containers) created by authors spawn hierarchies of objects,
including the Structural Hierarchy of Elements within
Elements, and the Behavioral Hierarchy, within an Element,
of Behaviors (and other Modifiers) within Behaviors. The
system utilizes an Element’s dual hierarchies to make that
Element an environmental frame of reference to the objects
it contains. Through techniques known as Hierarchical Mes-
sage Broadcasting, Hierarchical Variable Scoping and Hier-
archical Relative Positioning, objects automatically receive
messages sent to their object container and access data
known to their object container. An Element’s position is
even determined relative to the position of its parent Ele-
ment container. The system is highly extensible through a
Component API in which Modifiers and Services that sup- .
port them can be added and integrated seamlessly into the
system. The system’s architecture is substantially platform-
independent, automatically allowing most author’s titles to
run on multiple platforms. In addition, the entire authoring
environment can be ported relatively easily to a variety of
platforms due to the isolation a platform-dependent layer
within the system.

48 Claims, 46 Drawing Sheets

103

SECTION S1

104

107-

SUBSECTION SS1

SHARED SCENE
5CO

SCENE SC1

108 109

SECTION 52

VARIABLE 112
V1

05

SECTION SS2

ELEMENT E1

ELEMENT E2

ELEMENT E3

LRAEN _

ELEMENT E4

Page 1 of 88

GOOGLE EXHIBIT 1022

U.S. Patent Oct. 21, 1997 Sheet 1 of 46 5,680,619

101~
FIG. | PROJECT P
102 \ 103
SECTION St SECTION 52
[
VARIABLE] ~112
104~ Vi
105
SUBSECTION SS1
SECTION SS2
VARIABLE
107~ 106~ ARG NP
SCO
108— 109~ 110~
ELEMENT E1 ELEMENT E2 ELEMENT E£3
111 _~118
MOD| [BEHAVIOR
ELEMENT £4 |[MOD| [moD| [MOD] | M4 B!

M1 M2 | | M3 j/\\
117
114 115/116/

MOD | |BEHAVIOR | | VARIABLE

M5 B2 V3
”9/120/A 121~

/ MOD MOD
M6 M7
122

123/

Page 2 of 88

5,680,619

Sheet 2 of 46

Oct. 21, 1997

U.S. Patent

¢ Old

8Usds pafpun

Gee nmm _nm mmn LeE

\ ,
ﬁ@ 10407 001] 8 Jm 3 i Q :\uoasgns papun | /e
E 120 [001 "\oI E H L X auads vm:;c:_ a\.

N AT 7 9z¢-"
9¢
[bse
99e~1g § 598 LES~
10) Jjun
9L~ | —Cg¢ (S
: A ,< 1 ~8¢¢
445 28~
@mm/m.ﬂ@f 3U33s pajjijun |1 AU0ND3SqNS P3[3AUN |la UONOBS nw_ﬁc: q\omm
0yzs Nl .
IM %s pelg0 efuewy jeuoq W3 64 =
Ve
s "7 Y A Ay Y

Ysee mmmm J8ee agee PBLY 98EC 9gee 0gee

Page 3 of 88

5,680,619

Sheet 3 of 46

Oct. 21, 1997

U.S. Patent

¢ Ol

ole

& I
3 NOLLNG MouaY — 4
' x\\. BLE
N
P9ig
NOLIE_NOYSY EIER NOLLNE V30 T
qglg
’ ‘ cm:n/@ an
. |
29) \
£ xtn}(..,o.u .—.tml(=|.V 2
ANOJTVE e IERE ST18YD ENERR T
3
N -
T | R I o T
DA IR
U1g s bLig T 1] | 221 — wlely]ls
_ L] N3OS GVHS | | oo o
\ ISENS QIUIING_Jif o ANOLDIS/QIUIINA | ¥3040 ¥V
= == SEEIREMMES==_—-————>-— o
N : \\ \ \\ \\ \ \\ LY . |
oyl ~ 1 f—simos
oni zig OGIE oy|g i
ohig api¢

Page 4 of 88

U.S. Patent Oct. 21, 1997 Sheet 4 of 46 | 5,680,619

2] Untitied-1 : Structure ==]
30207 [Untitled—1 —— 303 i

302b 4> [é' untitled section" S04

302¢ - 305 _,@ untitled subsection
302d -1~ 305/@ untitled scene

308-~—J_J] Graphic Modifier
302e-7 307/%untitled scene
30264 309~ J untitled graphic

< >

<l

Close Box
- 1727 Library Name
726
L E====x= Sampl [brary =—=—=33
Trash Can — P te— Save Pop-Up
728 7290-1% |Collision Messenger O 730

729b-1E £ &) Color Table Modifier

Items 729¢— <) i Return Modifier
729d Point Property
72%e /“E":l Change Scene Modifier

‘=il Bob's Movie

729f -l
N\
FIG. 6 0

Ol

Page 5 of 88

U.S. Patent

Oct. 21, 1997 Sheet 5 of 46

754b
{

754¢
!

7f|)2

753 ———=

5,680,619

o
PICT DIE (]| AFF ()| PicT () 1A%
Cables Factory Frog Return &)
FIG. 5
854
PR —— M“ =———-“=ﬁ
851——1=f]
8520—'@ Coliision Messenger(5)-853q ks
852b4 Color Table Modifier(1)-853b
B852¢c 4 Return Modifier(1)-853c
8524+] Point Property(1)-853d
852e‘ Change Scene Modifier{1)-853¢ \80
852 ,1 Bob's Movie(1)~853f %
FIG. 7
423 422 412‘!
el Untifed-1 Message Log == M=
424—1 57 Enable logging
¥
4254280 I Meditator sent Mouse Down to Toon <>
428—{~” Toon recelved Mouse Down
428 A~ Messenger sent Author Event 1 to Graphic Element
426 » Graphic Element received Author Event 1
428d - Scene Transition Modifier received Author Event 1
427 Image Effect Modifier received Author Event 1
L~ Movie received Author Event 1
4283‘/,::7 Behavior received Author Event 1
428f 1 Miniscript Modifier received Author Event 1
<
L (o=@

Page 6 of 88

FIG. 8

420

U.S.

901

811

Patent

Oct. 21, 1997

Sheet 6 of 46

. FIG. 9(a)

5,680,619

Page 7 of 88

905
Show: I Al 3 v]@
.............................. S 2. E—
. Jdumping
: Climbing
New Range.., \
: 900
<
e
FIG. 9(c)
Path: Kitly:Projects:MF:Interf = = Con =
atn: Rulty:Projects:MF:Interface: .
'l EIe%enté:Toon r:r(;c;)rél:pressor
002 Dog Walking 00007 PICS Ky || 92!-f-iAnimation 5!
003 Dog.008 y PICT| Depth: _
004 Dog.009 PICT 922#256 Colors IS
002 Dogq.004 PICT 3
002 Dog.003 PICT 923 @Qizﬁtg;mly Accessible 528
002 Dog.004 PICT F“
002 Dog.003 Fier o least Low Medum High Mast
a= }m (Cancel)
912 913 914 915 934 924 925
Name Start End
Untitled—1 000] 000 834
930 || {l Sliding 002 | 004 935
Walking 001 [008
Climbing 004 | 009
FlG- 9(d) Stalking 004 [007 | || Cancel)
. 4 I Cox)
932 933

U.S. Patent Oct. 21, 1997 Sheet 7 of 46 5,680,619

951
)
7= Element Info
95\2~ i —
é Fish
95& Source File Path: Macintosh HD:Earth Folder:
, Ocean Folder:Fish
964
Initial State ',)
954
1 ! 959
™[] tidden 9;(;/‘[:] Loop [] wute Volume: LI s
955~~/"D Paused \/ﬂ Back and forth 100%
Options
956 962
“H1 '.D Play every frame Raote: 4 Layer:
957 .
\’/bD Cache bilmap 15 fps 2 ‘———\9‘61
958~~/"D Direct to screen
L Cancel j L 0K]

9505
FIG. 10

Page 8 of 88

5,680,619

Sheet 8 of 46

Oct. 21, 1997

U.S. Patent

[l "Old

<]] <>
O
soadg juawaly ajono)
] e
V) 1 3
(vj 8ziS ayopdn o
(S) g7 || PgYE
) 9zZIS [pIjiur
(£) |7 - 38yg
4 uonop Boug
() = 98¢
A AU juaiodsupi)]
W] - 08ys
jJuawa(3 sjopdn PLYE
= PSUDIS 8uddg 2L¥E
g pe|qou3 Jauipjuo) qye
o Bupjona| asnop 0/¥¢
, - 149
(o) [o]] . cho
‘UsYM 3|qosI(] :uaym ajqouy
w.ao;é;m@ . Jooysg i 122%
— W
=[] Jopeyeg == = E
ovt L+E Tve £he

Page 9 of 88

U.S. Patent Oct. 21, 1997 Sheet 9 of 46 5,680,619

1001 1000

\ {

= \ Integer Variable

- 123 Integer Varigble

1002 ~

z

Value

1003 —Thdw | o

k\
1004) 1035
FIG. 12(a)
1021 | (1020

\ Integer Variable

1022 _t1™1...n| || Integer Range Variable

Value
Start: End:
1023~ H—w o o

L Cancel] L 0K j
A
1024 - 1025\

FIG. 12(b)

Page 10 of 88

5,680,619

U.S. Patent Oct. 21, 1997 Sheet 10 of 46
1041 1040
: ~
= Vector Variable
[
1042~} Vector Variable
Value
1043 7 [
Angle: Magnitude:
0 e | D
[Cancel] [0K]
= C
1044 1045
FIG. 12(c)
1061 1060
1 4
Boolean Variable
' .
1062— - {| Boolean Variable

[concel J [[ok]
—

Page 11 of 88

106(4 (
FIG. 12(d)

U.S. Patent Oct. 21, 1997 Sheet 11 of 46 5,680,619

1121 1120
/ 4

: Point Variable
122~ y ,
T Yl% Point Variable
_ Value
X Y:
0 0
L Cancel] L 0K j
4
/
. 1124 1125
FIG. 12(q)
1141 1140
4
N Time Variable
L]
“42/\\' 1:00| |f Time Variable

| Value
1143 _H
00:00.00

=
e

1144 145

FIG. 12(h)

Page 12 of 88

U.S. Patent Oct. 21,1997 Sheet 12 of 46 5,680,619
1081 /‘080
String Variable
i
1082 | grlabec| |[String Variable]
Values
"MTropolis” @
/—‘*-\
1083 |y Iy
- LCancel j [0K j
— A
]
1084 10%5
FIG. 12(e)
1101 1100
— ; Floating Point Variable
0z T 0.0 Elouting PointVo-r‘icble j
Yalue

1103 T

Page 13 of 88

0

) &)

]
1104 1105

FIG. 12(f)

U.S. Patent Oct. 21, 1997 Sheet 13 of 46 5,680,619

1200
12\?1 /
z Messenger
- Y
1202 _Lp- 46: { Messenger]
Execute when:
1203 Nly-f Mouse Up <
Message
1204 Event/Command: With: :
\l.- None < (I | None - ~ 1206
Destination
(el G e
1205 — Element
N
LCuncel H-Q 0K !l
1207
Message Options
! Elmmediote E Cascade @ Relay
1209 - l +
1208
\]Cuncelj “ 0K II-T_/
; 7
1210 1211

FIG. 13(a)

Page 14 of 88

U.S. Patent Oct. 21, 1997 Sheet 14 of 46 5,680,619

1221 1220
If Messenger
—X
1222t if | |[IF Messenger]
Execute when:
1223 ~gr| Mouse Up <
—If
true G.
1224\/ ,_L
\%
Message
Event/Command: With:
1225—, -
None < None - ~ 1226
Destination
1927 '/T Element ~
N
[Cancel Hﬂ OKj
1228
Message Options
| @Immediale E Cascade E Relay
1230 1Ny 4
1229
LCancﬂ “ OKjH‘\/

J 7
1231 1239

FIG. 13(b)

Page 15 of 88

U.S. Patent Oct. 21, 1997 Sheet 15 of 46 5,680,619

1240
12\:11 /
; Timer Messenger
1242_U-(0| |[Wessenger]
Execule when: ‘ Terminate when: 7
1243 Nigr| Mouse Up < || | None o~ | ‘B“
r Delay For
. 1246
1245 | 00:00.00 X Loop timer T~
Message
ou7 Event/Command: With:
124 1
" | None > || | Mone ~ 1249
Destination
fom -
1248] Element |
N
[Cance! Hﬂ OK i'
- 1250
AN
Message Options
: Immedicte Cascade Rela
125”\‘@ X % y
[] {1251
(CuncN\ LOK J ~—
7

4
1253 1254

FIG. 13(c)

Page 16 of 88

U.S. Patent

Oct. 21, 1997

Sheet 16 of 46

5,680,619

1260
1261
: 4
—i Boundary Detection Messenger
12(&/J> *$”| |[Boundary Detection Messen_ |
Enable when: Disable when: 1364
1263 ’\r Parent Enabled <7 || | None 4 ||
—— Delay Element's Parent’s Borders 7766 »
_—~ a— | [11267
128 |l L > @on first detection O While detected O Exiting T
Message Specifications
Message/Command: With:

1268__ |

w1 | None = None - ~

L Destination 1 2}75

<
1269 —1 Element
\va
1274
LCancel] I[0K]H\/
N—1273
_IN
Message Options
1270,_\' [X) Immediate [X] Cascade [X Relay
I~ ,__\t.‘
1272
LCuncte | oK |
t
12n

Page 17 of 88

FIG. 13(d)

U.S. Patent Oct. 21, 1997 Sheet 17 of 46 5,680,619

1291 -

1280
f 12\181 /
Collision Messenger
1282 i1 @lison Messenger |
1284
Enable When; Disable When: /
1283 “~\{p-{ Parent Enabled <7 || | None a7 \v4
Collide With: Detect €] ¢
1285 stect Elements
~—1[" Any Element <
’.[y Eleme @® On first contact 4111293
Detect tayer ————— (O While in contact —— }{-1299
128 L+ X Fro},.. <] Behind (O Exiting 1295
1287 Message Specifications
1288 Message,/Command: With: //1289
~H11 None ™ <7 |l | None -’ ||o
1290} .. ;
O To collision elements(s) @ To other destination 1292
/rD First element only Element ‘_/ 4

A4

LCuncelJ l[0K I-T_Bw
r_

1296

Message Options

g Immediate g Cascade E Relay
'\'

1279 ~_or

(o)

12981

1
1299

FIG. 13(e)

Page 18 of 88

U.S. Patent Oct. 21, 1997 Sheet 18 of 46 5,68.0,619

1300
1301
: [
* Hypertext Messenger
@pertext Messenger |
Execute when: : On: 1,303
1302 “~iy-| Mouse Down < | Al e A4
Apply
/L Highlight Effect: A 1305
1304 |, None ~ || [] Remain highlighted
Message
Event/Command: With:
1306
™ None < | | Nore - ||V
Destination (1 307
{ AV
1308 — Element
o
1313
(cancel } ([ok Jjat>
A_—

~1312

Message Options

i E Immediate g Cascade E Relay
13087 Nypr 4

131 1/LCanceﬂ “ 0K II

1

T
1310

FIG. 13(f)

Page 19 of 88

U.S. Patent Oct. 21, 1997 Sheet 19 of 46 5,680,619
1 3\21 / 1320
Keyboard Messenger
1322 "\,,,é: { Keyboard Messenger]
— Execute When
— Key — Key State
P Any] ~] @ Down ~H
AT [:] Control D Command Oup 1324
1323
ke | [Oetion [] st O Repeat —
Message
Event/Command: With:
1325
—\} None < || | None - ||¥
Destination 1327
N
1326 —1 Element ~
VY 1332
[Ence!] | COK I ~—
A
RS
Message Options
13084 @ Immediate @ Cascade & Relay
v 4 /\/‘
\ 1330 | Cancel ll 0K 'l
]
1329

Page 20 of 88

FIG. 13(g)

U.S. Patent Oct. 21, 1997

Sheet 20 of 46 5,680,619
1401
/1400
Change Scene Modiler =——

1402 --—--L |Change Scene Modifier |

Execute When:

1403 [Mouse Up I]H

FSpeciﬁcoﬁons
4 @) Next scene in subsection

1404 —‘<: (O Previous scene in subsection
\'POSpecify scene:
1405 ISection 1 1=

{Subsection 1 | H
[Scene 1] E

@ Add to destination background 1406
E]Add to retumn Iiét - 1407
@ Wrap around - 1408
(Cancel) qu
-+
1409 1410

FIG. 14(a)

1421

Retum Modifler
1422 [l@tum Modifier [I

Execute When:

1423 [Mouse Up HB
(Cancel J{[ok)

1424

FIG. 14(b)

1425

Page 21 of 88

U.S. Patent Oct. 21, 1997 Sheet 21 of 46 5,680,619
1441 1440
Scene Transition Modifier
1442 = Scene Transition Modifier |
_Execute When: Disable When:
1443—e|| Mouse Up ﬂ@ [[None -]]El
Specifications h 1444
_Transition: Steps:
1445 =T Siide = B @—14v
Direction: Rate:
1446 [Down I [foo_ | @)=— 1448
((Cancel) ok)
1449 1450
FIG. 14(c)
Scene A
\ G\ Scene Change Modifier
, 1505
Scene B
\E':icene Change Modifier with "Add to Return List® sel;agtlesd'
Scene C
~Scene Change Modifier
15007 Scene! D 1525
%0 L] [__—‘HN ene Change Modifier
\ 1535
1510~ Scene E ' d
~ Return Modifier
1545
1520~
1530~
1540~

Page 22 of 88

FIG. 15

5,680,619

Sheet 22 of 46

Oct. 21, 1997

U.S. Patent

6291

|

(9)9l

8291

Ol

\d | 4
Ees -
N\. W
‘)
jpaap O joyuozucH O auoN @
3] e 3 3 <
4By Mol ‘woyog :dog
julosisuo) jo uibio L
juasod o} ubgsuo)
§U01}DI1198dg—

[IL

V\

TUays 3|qosig

2uoN] [

9z9l

ajqouy juaiog = -
:Uaup arqouy

Jayipoy uonop bBoig

(p)al "ol

0191 6091
| |
Y u
(5] (o)
8091 —» @E =1 14by | 9091
Y “co_«uvho
L0391 —» @! =1 auads o | 5091
1sda)g *UCHON
suonDaiedg = 091
m:_ > auoN]| m_ l dn_asnop || =—£09}
*UBLAY 9JDUILLB] (UBYM 3IN2ax]
| 1syipon uonop adwis]l 7 |4— 2091

A
Eggﬂ
: 1

00gL~"

1091

Page 23 of 88

U.S. Patent

1542-——l

1643——=|| Mouse Up

1644

Oct. 21, 1997 Sheet 23 of 46

1641 1640

-Emmm%

. " Path Motion Modifier "
Execute When:

Terminate When:

jﬁ]@ n__None)

I

5,680,619

1647

—=Specifications
Posntron Cel:
of 9 ‘.of 12
1645—K
Mﬂ@L 10
)
V -
\ /
1646 =
& —
yaN
==More Specifications =
Rate: Dﬁockwurds -
— 15
1649 Loop Dﬂock and forth
1650 @ Return to first positio
1651 (O Continue from last positio
L\
1652 1653
FIG. 16(c)
1661 1660
e Vector Motion Modifier
1662 —m Ef Vector Motion Modifier
Execute When: Terminate: When:
1663 —f»-Mouse _Up =] [None =
1664 —| — —
Specifications
With; .
1665 —{—fie- None [[=]
(owee) (o)
4]
1666 1667

Page 24 of 88

FIG. 16(d)

1648

1654

U.S. Patent Oct. 21, 1997 Sheet 24 of 46 5,680,619
1701 _//,1700
= Graphic Madifier
1702 = || [Graphic Modifier l
Apply When: Remove When:
1703——"1«[7’uren.t Enf]bled j@ [Mone - j@ 1704
r=Specifications
Ink:
1705 — -4 [[Copy 1= @“_ 1708
Matte:
1706 ———L[@ne [[]e—1700
Shape:
1707—~Hlmectungle = e < 1710
A4
VAN
=== More Specifications
— Border —=———y Shadows ===
1711 Shape: —
Matte:
o 1@ I 1714
FIG. 17(a)
1721 1720
Color Tabla Modlfier
: =
1722 Bll || Color Table Modifier I
Apply When: Remove When:
1723 =ﬂ§:ene Started ﬂ@ ﬂNone ~— jl@
= Specifications - 1724
Color Table:
1725 » [System ﬂ@
l Cancel] |0K |
T

1727

FIG. I7(b)

Page 25 of 88

U.S. Patent Oct. 21, 1997 Sheet 25 of 46 5,680,619

1741 1740
Gradient Modifier
1742 » 1| |[Gradient Modifier 1
Apply When: Remove When:
1743—e-|| Parent Enabled [l lf {[None - [+
= Specifications 1744
_ =="Style Colors =——;
1745 . [E‘"" 1746
LCuncel] L 0K]]
1747 1748
FIG. 17(c) "
1761
/1760
Image Effect Modifler
1762 —tr»|™|1 I Image Effect Modifier |
Apply When: Remove When:
1763 =|Tf’arent Enabled :]]@ [Mouse Qown e 1764
== Specifications
Image Effect: Bevel Width: Tone Amount
1765 [Deselected Bevels i~ i[|
Kextend to marqgins _ 1766
1767
(Cancel }{(_ok_))

1768 F'G. I?(d) 1769 1770

Page 26 of 88

U.S. Patent Oct. 21, 1997 Sheet 26 of 46 5,680,619

1801 1800
{ - 4 =
= Sound Modifier
:ﬁ
1802\—/+ <19 |[Sound Modifier |
I Execute When: Terminate Wheﬁ’/—\ 1804
1803 —1™'Vouse Down ~ 1 | None 4
Specifications
Sound
1805 /”T System Beep v
[Cancel) ILOK jl
: > ES
1806 (
1807 1808
FIG. 18(a)
1!821 1820
= Sound Fade Modifier
Iu
1822} |<i4| |[Sound Fade Modifier]
Execute When: Terminate When: /—“\.1_.}24
1823-/".” Parent Enabled > None » v
Specifications
Fade to: Duration:
1825"\~r 100% 00:03.00
ZL LCanceI] 'L OKjI
- x

» ;
1826) ?

1827 1828

FIG. 18(b)

Page 27 of 88

U.S. Patent Oct. 21, 1997 Sheet 27 of 46 5,680,619

1901 /1900
Type Style Modifier
1902 —TL 84,1 || Type Style Modifier
Apply When: Remove When:
1903 — e Parent_Enabled IH | None _
P X 1904
r—=Specifications
_Font: —Style
1905 TGeneva 1| Bold
Alignment: Italic 1910
1906 et = Underiine |
Size: Outiine
1907 112 pt ‘ I || & shadow
Condensed
Extended
LCuncel) l[0K jl
[}
FIG. 19 151 112
1921
| /1920
1922,——*L C'ursor Modifier
Apply When: Remove When;
1923 »{[Mouse Over IH |None ﬂ@
= : X 1924
Specifications
Cursor: }
1925 R [ISvstem Pointer HH
(Cancet] ((_ox_J
4

FIG. 20 ™ ™

Page 28 of 88

U.S. Patent Oct. 21, 1997 Sheet 28 of 46 5,680,619

1981 1982
1980
=[] Miniscript Modiier =
1985— =35 | Miniscript Modifier | Compile
Execute When:)
None_ M
Script: \
»
set my Float to 4.555 —
1983 —
- 1984
¥/
| |

FIG. 2|

Page 29 of 88

U.S. Patent Oct. 21, 1997 Sheet 29 of 46 5,680,619

1941 /.1940 1945
Classification Modifier
1942 mL || || Classification Modifier
Apply When: Remove When:y
1943 —ft>{|Parent_Enabled ___|||[~]| [[None =
‘ Classification
1944 Parent’s Class ||+
[}

FlG. 22 1946 1947

1961 /1960
=————1= Set Value Modlifler ===
—Y
1962 DSet Vaolue Modifier
Execute When:
1963 [Mouse Up e
W SpBCiﬁCOtiOﬂS'—-—'—»-w L IIII T
Set:
1964 [Incoming Data =
To:
1965 | None [l
@oncel] L 0K]
1966 1967

FIG. 23

Page 30 of 88

U.S. Patent

EDIT MODE FUNCTIONALITY

Oct. 21, 1997

FIG. 24

Sheet 30 of 46

- RUNTIME FUNCTIONALITY

5,680,619

TILE CONTENT

- [WORLD MANAGER
TITLE ASSET MANAGER : ASSET LOGIC
BUILDER : CLASSES
5177 | 1 1
LIBRARIES ALIAS MANAGER : MEDIA PLAY- MEDIA
; ER CLASSES
\52 g~] ~12 L2
TOON HYPERTEXT SUPPORT MESSAGING DISPLAY
EDITOR : MANAGEMENT
N85 97 3 “3 ~3
THREAD MANAGER! RENDERING SPEAKER
: MANAGER
187 | ~14 4
SYMBOL MANAGER MEMORY KEYBOARD
: MANAGER
197 G7 ~5
SOUND OBJECT MOUSE
VIEWS MANAGER LOADER
STRUCTURE LAYERS Cis 16 Ng
VIEW VIEW
33 31
BEHAVIOR LAYOUT :
VIEW VIEW :
N34 32 | 10 :\
30 | [COMPONENT MANAGER)| \-100
AUTHORING GUI SERVICE COMPONENT | |
DRAG & LINKING MANAGER API
DROP 23 21
~43 41 :
MORPHING MESSAGING SERVICES MODIFIERS y
L0G A
~ 44 ~42 || 24T 27 |
40 - ~20
CROSS—PLATFORM ARCHITECTURE
~~50

Page 31 of 88

5,680,619

Sheet 31 of 46

Oct. 21, 1997

U.S. Patent

14!

€9} Z91 191
j ~ N
Y3I4IQON N3L4IA0N NIHIQON
091 a 65t a 8¢ *
N HIddViM QO |ee——— HIddViM ‘GO [e— Middv¥M QoW
L | |
961 Sl
$S30V
\ . £5l « 26l
—— e e sy ey 7 N
INLLVY3d0 0 INIWTT3 e ININ3T3 e
G4 _]
\ ¥IAYTd 161 | I
\{ (3AN30S)
ININT T3
051 r
ﬂ (NOLL3SENS)

G2 9ld

ININ3T3

Page 32 of 88

U.S. Patent

Page 33 of 88

164

Oct. 21,1997 Sheet 32 of 46

FIG. 26

5,680,619

SERVICE
WRAPPER

SERVICE

~165

SERVICE
WRAPPER

SERVICE

166

SERVICE
WRAPPER

SERVICE

~167

~170

U.S. Patent

175

SCENE 1 %

SCENE 2 <

SCENE 3 <

Page 34 of 88

Oct. 21, 1997 Sheet 33 of 46 5,680,619
APPLICATION

176

STRUCTURAL ELEMENTS
177
TABLE OF ASSETS 178
SCENE 1 OBJECTS 179
BACKGROUND PICTURE o
TABLE OF ASSETS 181
SCENE 2 OBJECTS 182

. ASSETS
TABLE OF ASSETS 183
SCENE 3 OBJECTS 184
Y

Y

U.S. Patent

Oct. 21, 1997

Sheet 34 of 46

35,680,619

PENDING
SYSTEM MESSAGE
PROCESSING TO SERVICE/
< MODIFER
WP ;
Y
e
POST MODIFIER/
SERVICE
THREAD

\
256

ANIMATE
SHARED SCENE

\
¢ 257

ANIMATE
ACTIVE SCENE

l 58

PERFORM SERVICE/

PROCESS
POSTED MODIFIER/
SERVICE THREADS

MODIFIER
PROCESSING 259
254
PERFORM ALL
PENDING DRAWS
~~
250
NOTIFY THOSE ELE?ANELTS
ELEMENTS NEED TO KNOW
DRAW COMPLETE OF DRAW
)
262
PERFORM _
END PLAY
PROCEDURES
A
264

Page 35 of 88

FIG. 28

RELINQUISH
CONTROL
?

5,680,619

Sheet 35 of 46

Oct. 21, 1997

U.S. Patent

12 e
IV 66 o
INGNOJNOD 3402 ONHORIAY
WNDIRES - L T ol o | [
Zk IN3NOJNOJ | | THoR | /1
Are~| somas C4—+ |1 N
]
: \ _ . | | | /|
gl SSY1D | | M39VNVA
2PN 0SS B2 yadavam] 3omu3s | | | Y
174 uosﬁm%:l X _“
N\ D] | | 96— | /]
oKz gon _|§\ 2"] 'V
N\ 3013 % | | | ™ Y3LI0ON [| “
22Z~] -gow “ | |
» L] s e
22| oo 4R N N S | [/ (10) QILLNN
: il SSVI0 || ININTT A T
X¢Z~] ‘Con \ | H3ddvam || M “ @
: = ot 1y
: b (A3
22z~ qon KA 5 . sissvio] | “
R | || s3ssvio wnd| | 1
QNN/ “GOW \\\ H “ “ 135SY VIT3W “ “
| /|
iz aow pA+— - =hd

Page 36 of 88

5,680,619

Sheet 36 of 46

Oct. 21, 1997

U.S. Patent

- Og "OId

2821

J18vIA

SAOHLIN
/]
Z67|
: :
\
P6Z1L
\
2621
d N
a6z! ¥OLONYLSNOD dWOD
\
DT L
621

7
4821

7
oget

8VIA

8¢l

S3gvL
40
JgvL
4138
~ D
2921
S8V.IA
~ g
\\\ qgci
LCL
~ v
09cl
\

9C1

Page 37 of 88

U.S. Patent

Page 38 of 88

Oct. 21, 1997

Sheet 37 of 46

275

SCAN
RESOURCES
DIRECTORY

\\
‘ 276

IDENTIFY
KIT FILES

\
l 277

COUNT
COMPONENTS

\
l 278

BUILD
COMPONENT

TABLES

\
279

LOAD KIT,
INITIALIZE
SELF RECORDS

™~
l 280

INITIALIZE
METHODS

\
‘ 281

BUILD TABLES
AND

RESOLVE SIZES
\

FIG. 3l

5,680,619

U.S. Patent

S Fle Edt

Oct. 21, 1997

Format Amange

Sheet 38 of 46

/38
Oblet View Window

5,680,619

320

| {{Unlitled Section
S JE=—=———— NEW SNAXE : Struchwre

Wb |Untitled Subsection

Untitled Scene

¥] [¢] 9

m_é

v 450 [OJ] SnokeHead

451 Graphic Modifier
452 SnokeheadVector
453 {Z] SnakeheadMotion
454 SnakeHit Sound

455 Boundary Detection Messenger

460 [CJ] SnakeMiddle

461 Graphic Modifier
462 Full Motion Modifier

463 Timer Messenger
470 [CJ] SnakeMiddle

330
g

450

471 l:] Graphic Modifier

472 Full Motion Modifier
473 [&y] Timer Messenger
480 [CJ] SnokeMiddie

481 Graphic Modifier
482 Full Motion Madifier

483 Timer Messenger
490 |J] Snake Tail

491 Graphic Modifier
492 Messenger

493 Full Motion Modifier
494 Timer Messenger

o

Page 39 of 88

FIG. 32

U.S. Patent Oct. 21, 1997. Sheet 39 of 46 5,680,619

/38

S Fle Edt Fomat Amange Obet View Runtime

=

= ' 7350 [E Scene—-A
{ Sectior- V‘} { soenyra V§ 351 @ SchoolingProbability

Scene-A 350 : 352 @ SwitchProbability

@ @ [Ps' @ EE—\'J 353 @ TopBottom

351 352 353 354 355 356 354 [E] LeftRight -

355 [125] MaxSwitchangte
356 [E’ Graphic Modifier

o 30 [Fordoon 1]

361 Transparent
362 [Z] MyVelocity
> 360 363 NewVelocity
364 Drag Motion Modifier

365 Veclor Motion Modifier
m 366 [(7] Tick Messenger
400

< 370 B StayInTank

......

3N ﬂ B Border Detection Messenger
372 LR Border Detection Messenger| |
373 _Q_,J BounceOffBorder —
374 E’&] BounceSound

< 380 B Trend—Setting Behavior

381 DecideToRandomlySwitch

Ho 382 __J InvokeRandombDirsction
391 _] Schooling Decision
392 Delayed MyHeading Broadcast

......

\ 396 IE LeftCelRange

397 RightCelRange
320
330 e

398 _S_'} Miniscript Modifier
<l | [

FIG. 33

<

Page 40 of 88

U.S. Patent Oct. 21, 1997 Sheet 40 of 46 5,680,619

rj‘m 0 2240
| Window X _| | Window X |
FIG. 34(a) ™ FIG. 34(b) =
23%(_)'\ 234& [5420
| Window X | Window X"]
FIG. 34(c) == FIG. 34(d)
2520 2620
~ ~ ~
| Window X | | Window X |
| 2500 2600
FIG. 34(e) FIG. 34(f)
272& 2740
| Windlow X |

FIG. 34(g) "o

Page 41 of 88

U.S. Patent Oct. 21, 1997 Sheet 41 of 46 5,680,619

< WINDOW Example 2000
< EI Window Selection 2010
v ﬂ Window Subsection 2020
[O] Window Shored Scene 2030

v @ Window Scene 2040
v O [Window X] 2100
[c] Name 2101

BoundingRect_Topleft 2102

BoundingRect_BottomRight 2103

Graphic Modifier 2104

Image Effect Modifier 2105

Su| CREATE Window 2106

TitieBar 2120

@ Text Style Modifier 2121

Graphic Modifier 2122

TitleRect_TopLeft 2123

TitleRect_BottomRight 2124

Su| CREATE TitleBar 2125

FIG. 35(a)

Page 42 of 88

U.S. Patent

v

qv

Page 43 of 88

Oct. 21, 1997

Sheet 42 of 46

@ Window X + MinMax

& 2 DGR

=

A

Name
BoundingRect_TopLeft
BoundingRect_BottomRight
Graphic Modifier
Image Effect Modifier
CREATE Window
MinMaxResponse
Max Response
Min Response
TitleBar
841 Text Style Modifier
Graphic Modifier
: TitleRect_TopLeft
TitleRect_BottomRight
S| CREATE TitteBar
®! MinMaxResponse
MinBox
Image Effect Modifier
Graphic Modifier
MinFlag
BoxRect_Topleft
%] BoxRect BottomRight
MinICONDimensions
Su| CREATE MinBox
®| MinMaxBehavior

_%j DetectMinBoxSelect
S| MinMax Response

FIG. 35(b)

35,680,619

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2220
2221
2222
2223
2224
2225
2226
2240
2241
2242
2243
2244
2245
2246
2247
2248

2249
2250

U.S. Patent Oct. 21, 1997 Sheet 43 of 46
4 @ Window X +MinMax + Drag
Nome
BoundingRect_TopLeft

BoundingRect_BottomRight
Graphic Modifier

Image Effect Modifier
CREATE Window
MinMaxResponse

Window DRAG Behavior
Follow Mouge

A4 TitleBar

Text Style Modifier
Graphic Modifier
TitieRect_Topleft
TitleRect_BottomRight
CREATE TitieBar
MinMaxResponse
TitleBar DRAG Behavior
MouseOffset
MouseDown
CalcMouseOffset
TitleBarMouseTracking

el ONERR
ha

¢ ¢ e FFGIE

HE 2 RE

MouseUp

b @ MinBox |
FIG. 35(c)

AV @ Window X’

Name
BoundingRect_TopLeft
BoundingRect_BottomRight
Graphic Modifier

CREATE Window

TitieBar

FIG. 35(d)

Pl] [F [F

Page 44 of 88

2300
2301

2302
2303

2304
2305
2306
2307
2308
2309

2320

2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2340

2400
2401
2402
2403
2404
2405
2420

5,680,619

U.S. Patent Oct. 21, 1997 Sheet 44 of 46 5,680,619

N [CJ] Window X'+ WindowShade 2500
Name 2501
BoundingRect_TopLeft 2502
BoundingRect_BottomRight 2503
Graphic Modifier 2504
$u] CREATE Window 2505

~ %] wINDOW WinShadeResponse 2506

ShadeDown Response 2507

ShadeUp Response 2508

- [A] TitieBar 2520
[ﬂ] Text Style Modifier 2521

Graphic Modifier 2522

TitleRect_TopLeft 2523
TitleRect_BottomRight 2524

Sw| CREATE TitieBar 2525

< ﬁ] WinShadeBehavior 4 2526
Y] WinShadeFlag 2527

<I§ WinShade Sound 2528

Sl INITFIag 2529

< ®| DetectDoubleClick 2530
F%] CickFlag 2531

S| INITFIag 2532

SW] MouseUpResponse 2533

‘®&] Clicktimer 2534

S| SingleClick 2535

FIG. 35(e)

Page 45 of 88

U.S. Patent Oct. 21, 1997 Sheet 45 of 46

A4 @ Window X + WindowShade + Drag
aPel Name

BoundingRect_Topleft
BoundingRect_BottomRight

Graphic Modifier

"
ias
i~ Image Effect Modifier
S| CREATE Window

b %| WINDOW WinShadeResponse
Rl
[A]

Window DRAG Behavior
TitleBar

Text Style Modifier
Graphic Modifier
TitleRect_TopLeft
TitleRect_BottomRight
CREATE TitleBar
WinShadeBehavior
TitleBar DRAG Behavior

& & [[FAFEDE

FIG. 35(f)

Page 46 of 88

3,680,619

2600
2601
2602
2603
2604
2605
2606
2607
2608
2620
2621
2622
2623
2624
2625
2626
2627

U.S. Patent Oct. 21, 1997 Sheet 46 of 46 5,680,619

v O av 2700
Name 2701
BoundingRect_TopLeft 2702
BoundingRect_BottomRight 2703
Graphic Modifier 2704
Image Effect Modifier 2705
Su| CREATE Window 2706

D @u' MinMaxResponse 2707

D ®| WINDOW WinShadeResponse 2708

b ®| Window DRAG Behavior 2709

N4 TitteBar 2720

B4 Text Style Modifier 2121
Graphic Modifier 2722
[G] TitleRect TopLeft 2723
TitleRect_BottomRight 2734
S| CREATE TitieBar 2725

D &) MinMaxResponse 2726

D ®| WinShadeBehavior 2727

D | TitleBar DRAG Behavior 2728

N [OO] MinBox 2740

Image Effect Modifier 2741
[<] Graphic Modifier 2742
MinFlag 2743
BoxRect__Topleft 2744
BoxRect_BottomRight 2745
MinICONDimensions 2746
S| CREATE MinBox 2747
D ®| MinMaxBehavior 2748
b ®| MINBOX WinShadeResponse 2749

FIG. 35(g)

Page 47 of 88

5,680,619

1

HIERARCHICAL ENCAPSULATION OF
INSTANTIATED OBJECTS IN A
MULTIMEDIA AUTHORING SYSTEM

L BACKGROUND

A. Field of the Invention
B. Description of the Related Axt

1. Reusability and the Modular Interface
2. Encapsulation and the Object Interface

3. The Need for Selective Reusability of “User Objects”
a. An OOP Windowing Example

4. The Lack of Selective Reusability in Multimedia
Authoring Systems

IL. SUMMARY OF THE INVENTION
III. BRIEF DESCRIPTION OF THE DRAWINGS
IV. DETAILED DESCRIPTION

A. External Architecture—*“Author’s-Eye View”
1. Objects: Elements and Modifiers
2. Object Containers: Elements and Behaviors
3. Object Hierarchies: Structural Hierarchy and Behav-
ioral Hierarchy
a. Types of Elements in the Structural Hierarchy
(1) Projects
(2) Sections
(3) Subsections
(4) Scenes
(5) Media Elements
b. Isolation of External Dependencies of Object Con-
tainers
(1) Hierarchical Message Broadcasting
(2) Hierarchical Variable Scoping
(3) Hierarchical Relative Positioning
c. Selective Reusability through Adoption and Trans-
plantation ’
4. Object Authoring Interface
a. Layout View
b. Layers View
c. Structure View
d. Asset Palette
e. Library
f. Alias Palette
g. Messaging Log
h. mToon Editor
i. Modifier Palettes
j- Drag and Drop
5. Object Messaging
a. Categories of Messages
(1) Author Messages
(2) Environment Messages
(3) Commands
b. Parts of a Message
(1) Message Name
(2) Message Destination
(3) Message Data
(4) Message Path
6. Object Configuration
a. Elements
b. Modifiers
(1) Behavior
(2) Variables
(3) Capabilities
B. Core System Architecture
1. Edit Mode Functionality
a. Connecting Objects
(1) Element To Element Connection

Page 48 of 88

10

15

20

25

30

35

45

50

55

65

2
(2) Modifier Connections
(3) Player and Asset Connections
(4) Touch-Up Process
b. Aliasing
2. Saving Projects and Titles
3. Runtime Functionality
a. Message Targeting and Dispatching
b. Event Loop Processing
C. Component API— Programmer’s-Eye View”
1. Object Model
2. Component Methods
3. Registration Process
4. Core and Service Utilities

D. Examples

1. Snake

2. Fish

3. Windowing System

TABLES

Table I System Messages And Commands
Table II. Message Destinations

Table III. Message Data Structure

Table IV. Base Component Class Functions
Table V. Sample Instance Data Structure
FIGURES

FIG. 1 Dual Hierarchy

FIG. 2 Layout View With Tool, Object Information And
Modifier Palettes

FIG. 3 Layers View

FIG. 4 Structure View

FIG. 5 Asset Palette

FIG. 6 Library

FIG. 7 Alias Palette

FIG. 8 Messaging Log

FIGS. %a)~(d) mToon Editor

FIG. 10 Element Configuration Dialog
FIG. 11 Behavior Interface

FIGS. 12(a)—(h) Variable Interfaces
FIGS. 13(a)—~(g) Messenger Interfaces
FIGS. 14(a)~(c) Scene-Based Modifier Interfaces
FIG. 15 Scene Change And Return Modifiers
FIGS. 16(a)—(d) Motion Modifier Dialogs
FIGS. 17(a)—(d) Visual Modifier Dialogs
FIGS. 18(a)—(d) Sound Modifier Dialogs
FIG. 19 Style Modifier Dialog

FIG. 20 Cursor Modifier Dialog

FIG. 21 Miniscript Modifier Dialog
FIG. 22 Classification Modifier Dialog
FIG. 23 Set Value Modifier Dialog

FIG. 24 System Architecture

FIG. 25 Object Interconnections

FIG. 26 Service Connections

FIG. 27 Title Storage

FIG. 28 Event Loop Processing

FIG. 29 Interfaces Architecture

FIG. 30 Operation Of Object Model
FIG. 31 Loading Of Components

FIG. 32 Implementation Of A Snake
FIG. 33 Implementation Of Fish

5,680,619

3
FIGS. 34(a)~(g) Selectively Reusable Windows Example
FIGS. 35(a)—(g) Implementation Of Windows Example

I. BACKGROUND

A. Field of the Invention

This invention relates to application development systems
generally, and in particular to systems for authoring inter-
active multimedia applications.

B. Description of the Related Art

Since the advent of computers many decades ago, com-
puter scientists have labored to build increasingly powerful
computer hardware that is faster and cheaper to build than its
predecessors. Today’s computers can perform, in one
second, many millions of *add,” “shift,” “load,” *“store” and
other relatively simple functions.

To perform tasks of any significant complexity, however,
one must somehow cause computers to perform vast num-
bers of these simple functions in some sequence. Computer
software, in its most basic form, comprises programs or
sequences of instructions, each of which directs a computer
to perform the function corresponding to that instruction.

Yet, even as computers have become more powerful,
developers of computer software continue to struggle to
create complex programs without having to “reinvent the
wheel” for each task they direct computers to perform. This
need for “reusability” permeates virtually every aspect of
software development, and is driven ultimately by the end
user’s desire for “ease of use.”

1. Reusability and the Modular Interface.

Although there are many varied approaches to this basic
problem of reusability, one technique remains constant—
“modular programming,” i.e., the “bootstrapping” of mul-
tiple simple functions into “modules” of greater and greater
complexity that can be reused through higher-level “modu-
lar interfaces.” Virtually all software relies on modular
programming to some extent.

For example, assemblers and compilers enable program-
mers to bootstrap from the machine language defined by a
computer’s instruction set to a higher-level, more human-
readable language. Similarly, operating systems perform
many of the low-level support tasks commonly needed by
applications software developers (e.g., file system, memory
management, basic GUI routines, etc.), and then provide
developers with a library of “reusable” modules.

In essence, all application development systems provide
to their users a language, an application programming inter-
face (“API”), or some other form of modular interface
designed to facilitate development of general purpose or
highly specialized applications. Such modular interfaces
provide reusability of the “hidden” functionality which
implements that interface.

2. Encapsulation and the Object Interface.

One of the most popular current trends designed to
promote the creation of reusable software is in the field of
object-oriented programming (“OOP”). There are a variety
of QOP languages and application development tools on the
market today (e.g., C++ and Kaleida Labs’ “ScriptX™”), as
well as a number of “pseudo-OOP” tools (e.g., “Hyper-
Card™” from Apple Computer and “Visual Basic™” from
Microsoft which borrow some, but not all, of the basic
principles of OOP.

OOP systems generally are intended to extend reusability
to all portions of a computer program, not just to particular
modules. This is accomplished by distributing control of the
various tasks performed by a program to individual
“objects” with well-defined modular interfaces. These

Page 49 of 88

10

20

25

30

35

45

50

60

65

4
objects typically communicate by directly calling one anoth-
er’s capabilities or “methods.”

OOP application development systems generally require
their users to define abstract “classes” of objects that define
the characteristics of the objects in that class. The actual
objects in the user’s application are instantiated as needed at
“runtime” from this class “template.” Such systems also
typically include certain built-in reusable class libraries to
provide the user with an initial base of functionality.

The instantiated objects that perform the various tasks
within the user’s application are reusable in large part due to
a process known as “encapsulation.” Encapsulation involves
defining a class of objects with a well-defined external
interface, and “hiding” within the objects the code and data
necessary to implement that interface. In other words, the
implementation of an object’s interface is “encapsulated”
entirely within the object.

Thus, programmers can reuse objects in various different
contexts within their application. All other objects that are
aware of this interface can “reuse” this object because its
external dependencies are isolated within its modular
“object interface.” ’

Programmers also can use a process known as “inherit-
ance” to “specialize” or modularly extend an object’s func-
tionality by reusing some or all of that object’s character-
istics via its interface or class definition—i.e. , the public
methods and data structures that define the template for
instances of that class. For example, programmers may wish
to extend the base functionality of an existing class (whether
created by the programmer or provided in a reusable class
library) by adding a new method to objects in that class, or
replacing (i.e., overriding) or supplementing (i.e.,
overloading) an existing method.

By defining a sub-class of objects that “inherit” the
characteristics of the “parent” class, the programmer can
reuse (as well as add to, replace or supplement) those
inherited characteristics. For example, a “car” or “bus”
sub-class might inherit characteristics from a more general
“vehicle” class. A caris a “kind of” vehicle, and may inberit,
for example, a vehicle’s color and speed properties, as well
as steering and braking methods.

3. The Need for Selective Reusability of “User Objects”.

Despite their facilities for reusability of objects, OOP
application development systems remain difficult to use. It is
far simpler for application developers to create and config-
ure instantiated objects directly, as opposed to defining
abstract classes each time they need to create a slightly
different object or to model the relationships or interaction
among existing objects.

This problem is exacerbated when an application devel-
oper creates and desires to rense compound or aggregate
“user objects”—i.e., a group of objects that are related in the
context of a particular application, but do not necessarily
share common characteristics. These “user objects,” in addi-
tion to requiring extensive inter-object communication,
often involve “part of” or “container” relationships that
occur frequently in any modularly designed application.

Inheritance and encapsulation are well-suited to model
“kind of” relationships to further specialize the atomic
objects from which an application will be built. All modular
systems require certain atomic “building blocks™ which are
reusable and provide sufficient performance, even if difficult
to modify.

To create applications of any significant complexity,
however, one must combine these atomic objects into more
complex “user objects” that interact with one another. It is
this common modular process that illustrates the significant
limitations on reusability imposed by traditional OOP sys-
tems.

5,680,619

5

OOP systems allow developers to “reuse” an existing
class of objects by: (i) creating a class of objects that inherits
from and “specializes” that existing class; (i) creating a
class of objects that encapsulates that existing class within
its private (hidden) data structures and methods; or (iii)
creating a distinct class of objects that communicates with
(i.e., invokes methods of) that existing class of objects.

Yet, in all three cases, the new class of objects is tightly
coupled to, and thus highly dependent upon, the existing
class of objects. Mere communication among otherwise
unrelated objects provides virtually no reusability, and cre-
ates many explicit dependencies. Although inheritance and
encapsulation provide reusability of objects at various levels
of complexity, a class of objects at any given level of
complexity remains highly dependent upon the particular
characteristics it encapsulates or inherits from its less com-
plex superclasses.

It therefore remains quite difficult, if not impossible, to
“selectively reuse” characteristics from (and interaction
among) complex “user objects” in new environments. One
cannot, for example, easily “mix and match” object charac-
teristics across class libraries and choose “some from col-
umn A and some from column B.” At any given level of
complexity, a developer cannot simply replace undesired
characteristics of a complex object from one class library
with the more desirable characteristics of another complex
object from a different class library. Until such selective
reusability is achieved, the ultimate promise of OOP cannot
be considered fulfilled.

a. An OOP Windowing Example.

Consider the following example involving simple win-
dowing functionality, a very common application for tradi-
tional OOP systems. Imagine two independent developers
(“A” and “B”) creating windowing systems in a typical OOP
development environment.

Developer A might create a “Window” class of window
objects with a2 name (“Window X), a particular size
(specified by a bounding rectangle), a title bar (specified by
another bounding rectangle), a color and a beveled border.
Its only functionality might be to create, destroy and draw
these window objects, via three respective methods.

To enhance the functionality of these window objects in
a modular manner, Developer A might create a “Minimize”
subclass that inherits from the Window class and adds a
“minimize” capability. When a user clicks on the small
minimize box in the upper right hand corner of the window,
the minimize object transforms the window object into a
small icon at the bottom of the screen. When the user clicks
on the icon, the window is restored.

This Minimize subclass would require “minimize” and
“maximize” methods to perform these functions, as well as
a minimize box (specified by a bounding rectange), a
minimize flag (indicating the state of the window—i.e. ,
whether it is currently minimized), and data for a minimize
icon (pattern, size, position, etc.). In addition, the Minimize
subclass would overload the create, destroy and draw meth-
ods of the Window class—i.e., to cream, destroy and draw
the minimize box and/or icon as well as the window.

Finally, Developer A might add additional “drag” func-
tionality to these window objects, which would enable the
user to drag the window by its title bar. This subclass could
inherit all data and methods from the Minimize subclass
(which itseft inherits from the Window class), and simply
add a “drag” method.

Developer B independently might take a similar
approach. But, the class of Window objects created by
Developer B (named Window X') might not include the

Page 50 of 88

10

20

25

30

35

40

45

55

65

6

beveled border. Moreover, Developer B might add a “win-
dow shade” capability that differs slightly from the minimize
capability created by Developer A. When the user “double
clicks” on the title bar of Window X', the Window might
“roll up,” showing only the title bar. Developer B might
implement this capability by creating a “Window Shade”
subclass that inherits from (and overloads the methods of)
the Window class, and adds a drag method to implement this
“window shade” capability. That subclass might also include
a flag to track whether the window currently is “pulled up.”

Assume that Developers A and B distribute their respec-
tive object classes in class libraries containing the public
interface (i.e., the methods and data identified above), but
not the private code and data that implements that interface.
Selective reusability would allow Developer “C” to reuse all
or any modular portion of the functionality created by
Developers A and B, without recompiling these classes or
obtaining access to any such private code.

It is true that Developer C could reuse the Window class,
the Minimize subclass or the Drag subclass, thereby reusing
functionality at various levels of abstraction. But, what if
Developer C wanted to reuse the window and the drag
capability created by Developer A, but integrate the window
shade capability of Window X' in lieu of the minimize
capability of Window X?

In short, Developer C cannot easily accomplish this task.
The problem is that the private data and methods of the
Minimize and Drag subclasses are dependent upon the
public data and methods of the- classes from which they
inherit. The code might not even link.

The Drag subclass inherits from, and thus assumes the
existence of, the Minimize class. The drag method might, for
example, modify the bounding rectangle of a Minimize
object to “move” that object (as well as the rest of the
window) across the screen as the user drags the window.
This dependency effectively prevents Developer C from
replacing the Minimize class with the Window Shade class.
The drag method would attempt to modify data that no
longer exists.

Developer C would be forced to rewrite the Window
Shade and Drag classes (potentially a significant amount of
code) merely to reuse the Window class. Reusability there-
fore is substantially impaired by the external (inter-class or
inter-object) dependencies of a subclass on its superclass. As
noted above, encapsulating these dependencies or invoking
other objects’ methods within a class’ private methods (as
opposed to relying on inheritance) creates similar depen-
dencies and perhaps even less rensability.

Any system of reasonable complexity will contain many
levels of these external dependencies, making selective
reusability of complex “user objects” across class libraries
extremely difficult, if not practically impossible. As dis-
cussed below, today’s application development systems
create similar external dependencies that impair selective
reusability.

4. The Lack of Selective Reusability in Multimedia Author-
ing Systems.

Consider, for example, the ficld of multimedia authoring
systems to which an embodiment of the present invention is
directed. Although there exist many such systems with
almost as many different techniques, these systems all
impose significant limitations on the author’s ability to
selectively reuse complex “user objects” across different
environments.

" Certain systems, such as Macromedia’s Director,™
employ traditional metaphors with which authors are famil-
iar and quite comfortable. Director employs a frame-based

5,680,619

7

metaphor that requires authors to determine precisely which
objects will be present in each frame of a sequence. This
metaphor is familiar to animators, and frequently is used for
constructing sequential animation sequences containing
relatively little interactivity.

Constructing highly interactive applications, however, is
quite difficult within the confines of a frame-based environ-
ment. Even with a scripting language included to provide
greater control over the sequence in which characters
appear, interactivity frequently is limited to that provided by
one or more scripts within a frame.

It is quite difficult to reuse any of the characteristics of a
particular object, because the object is highly dependent
upon its environment (i.e., the scripts of other objects that
“call” it, as well as the confines of the frames in which it
appears, relative to other objects). Extensive reliance on
scripting to model interactivity makes it difficult to isolate an
object’s external dependencies within a single script, and
virtually impossible to isolate such dependencies across
multiple scripts.

Rigorous OOP tools (such as the ScriptX™ language
from Kaleida Labs and the more visually oriented Quest™
from Allen Communication) still require significant pro-
gramming expertise on the part of their users. Despite
offering extensive libraries of reusable “high-level” objects,
such products remain relatively low-level development
tools—i.e., OOP programming languages (or perhaps visual
programming languages), as opposed to authoring tools.

As noted above, such tools impair selective reusability by
creating external (inter-object) dependencies as a result of
inheritance and encapsulation. Visual programming tech-
niques facilitate the author’s task of creating complex
applications, but still frequently require scripting and/or
programming to modify an object’s characteristics or to
model inter-object communication. The visual interface, at
best, masks the programming that controls the user’s appli-
cation beneath the surface. In any event, the external depen-
dencies remain, and reusability is impaired.

Other systems employ “pseudo-OOP” techniques in an
attempt to combine the power of reusable objects with the
flexibility of customizing the characteristics of particular
objects and modeling inter-object communication. Forms-
based authoring systems, such as Apple Computer’s Hyper-
Card™ and Microsoft’s Visual Basic™, provide authors
with significant freedom to create and configure individual
objects using highly visual interfaces. Yet, such systems still
rely heavily on scripting to implement an object’s
functionality, as well as inter-object communication and
other forms of interaction.

Though these systems often contain many built-in types
of objects, it is extremely difficult to create new object types.
An object’s unique characteristics therefore are determined
by its script. Because objects communicate with one another
directly via scripts, these scripts are highly dependent upon
one another, and cannot easily be reused in other environ-
ments. Moving an object from one environment to another
generally requires reading the scripts not only for that object,
but for other objects in its former environment.

One category of products (e.g., Apple Computer’s Apple
Media Tool™) provides a highly visual approach to author-
ing with virtually no scripting or programming involved. In
other words, as opposed to visual programming languages
(which, in essence, are merely “easy to use” scripting
languages), such products provide true ‘“object-based
authoring”—i.e., the author creates and configures actual
instantiated objects (or pseudo-objects) with little or no
scripting or programming,.

Page 51 of 88

10

15

20

25

30

35

40

45

50

55

60

65

8

One problem with such tools is that they are extremely
limited and inflexible. Authors typically cannot create cus-
tom events or messages, much less add functionality to an
existing object or group objects together in any meaningful
way. Moreover, such systems provide no mechanism for
modeling modular “container” relationships among objects,
and reusing these more complex “user objects” in different
container environments.

All of the approaches noted above suffer from a lack of
support for the creation of complex “user objects” that can
be selectively reused in other environments. An object is
only reusable to the extent that its dependencies on its
external environment are isolated within (i.e., known to) that
object. An object is only selectively reusable to the extent
that it is loosely coupled to the objects it contains, thereby
permitting authors to modify this relationship.

What is needed is a system that models this “container”
relationship among objects in a manner that permits authors
to selectively reuse object containers and the objects they
contain across different container environments.

II. SUMMARY OF THE INVENTION

The present invention encompasses an application devel-
opment system that enables its users to create reusable
“object containers” merely by defining links among instan-
tiated objects. Employing a technique referred to herein as
Hierarchical Encapsulation, the system automatically iso-
lates the external dependencies of the object containers
created by its users. This isolation of external dependencies
resolves the problems addressed above regarding selective
reusability of “user objects,” thereby facilitating the devel-
opment of applications of increasing complexity.

Objects contained within other objects are not “hidden”
within or tightly coupled to their object container environ-
ments. Rather, they are loosely coupled with those
environments, and therefore can more easily be reused in
other environments. By virtue of being contained within
another object, the contained object automatically is
afforded access to its environment. Its object container is, in
essence, an “environmental frame of reference” for the
objects it contains. For example, unless overridden by the
author, objects automatically receive messages sent to their
object container. They automatically can access data known
to their object container. Their position is even determined
relative to their object container.

Moreover, objects are decoupled from their characteris-
tics. By defining two distinct types of objects (one of which
modifies the characteristics of the other), and loosely cou-
pling (i.e., temporarily linking) these two types of objects,
the system provides a mechanism for authors to modify an
object’s characteristics merely by deeming one object to be
contained within another. Removing that object from its
container removes that characteristic. In this manner,
authors easily can modify an object’s characteristics and
reuse it in other environments.

In one embodiment described herein, the system is opti-
mized for the development of interactive multimedia-appli-
cations or “titles.” This multimedia authoring system pro-
vides its users (“authors™) with a visual authoring interface
that requires little, if any, scripting or programming. The
system employs a form of object-based authoring in which
authors create and configure instantiated objects directly,
typically by “dragging and dropping” icons and configuring
dialog boxes.

Authors can create two basic types of objects: Elements
and Modifiers. Elements represent the actual characters or

5,680,619

9

actors that interact with one another in the author’s title.
Elements generally can be linked to external media (such as
text, sounds, pictures, animations and movies), and possess
certain inherent characteristics relating to that media.

Authors can supplement an Element’s inherent character-
istics by incorporating Modifiers within that Element. These
Modifiers provide the Element with properties (known as
Variables) that further define what the Element is and
capabilities that further determine what the Element does. A
special type of Modifier, known as a Behavior, can contain
additional Behaviors and other Modifiers, providing the
author with a mechanism to create a complex Element
“personality.”

Both Elements and Behaviors are “object containers”—in
this embodiment, object instances that can “contain” (i.e., be
linked to) other object instances. Elements can contain
Modifiers as well as other Elements; and Behaviors can
contain Modifiers, including other Behaviors.

By incorporating Elements within Elements, authors cre-
ate a Structural Hierarchy of Elements, each Element pro-
viding an environmental “frame of reference” for the Ele-
ments it contains. These “parent” Elements enable authors to
provide structure for their titles and to model relationships
among their Elements.

Elements can communicate with one another at a high
“Element level,” without regard to their child Elements. In
one respect, Elements “encapsulate” their child Elements by
creating a modular interface through which an Element’s
child Elements can communicate with objects external to
that Element container.

Similarly, by incorporating Behaviors (and other
Modifiers) within Behaviors, all inside an Flement, authors
create a Behavioral Hierarchy within the Element—i.e., the
Element’s internal “personality.” Within the context of an
Element “personality,” each Behavior provides an environ-
mental “frame of reference™ for the Modifiers it contains.
These “parent” Behaviors enable authors to model the
relationships among the various Behaviors within an
Element’s overall personality.

Elements, in effect, “inherit” the characteristics provided
by their internal Behavioral Hierarchy. Because Elements
and Modifiers are distinct, loosely coupled objects, authors
can modify an Element’s characteristics merely by adding
Modifiers to (or removing Modifiers from) an Element.

The system provides for significant reusability of object
containers by utilizing the Structural and Behavioral Hier-
archies to isolate the external dependencies of Elements and
Behaviors. In essence, the system automatically “encapsu-
lates” an author’s object containers. Once encapsulated, they
can bereused in other “environments.” Moreover, by loosely
coupling an Element to the Modifiers it contains, the system
enables authors to modify their Elements so as to “inherit”
and “disinherit” characteristics while maintaining an evolv-
ing hierarchical encapsulation vis-a-vis the Element’s exter-
nal environment.

Using a technique known as Adoption, an author can
cause an Element to be “adopted” by a new parent Element.
Using a similar technique known as Transplantation, an
author can “transplant” an Element’s Behavior (or its entire
“personality”) into another Element.

Because Hierarchical Encapsulation is integrated into the
Structural and Behavioral Hierarchies determined by the
author’s object containers, authors obtain the benefits of this
technique automatically. Their Elements and Behaviors are
thus selectively reusable.

For example, a mechanism known as Hierarchical Mes-
sage Broadcasting provides a structured messaging system

Page 52 of 88

15

20

25

35

45

55

65

10

that broadcasts messages from their initial destination down
the Structural and Behavioral Hierarchies to all descendant
Elements and Modifiers. This mechanism isolates an object
container as a centralized abstract destination for all mes-
sages intended for “any object within that object container.”
This mechanism facilitates reusability of object containers in
other environments in that an object container’s new “par-
ent” Element will provide it with messages automatically.

Another mechanism, known as Hierarchical Variable
Scoping, makes a Variable accessible automatically to all
descendant objects of the Variable’s parent Element or
Behavior. This mechanism isolates an object container’s
dependencies on Variables that are external to that object
container, but still within its ancestral “environment.” By
making such Variables “known” to those objects in the
object container that rely on that Variable, the object con-
tainer can be moved to another environment with a well-
defined external interface that “knows” which external Vari-
ables are assumed to be present in that environment.

Yet another mechanism, known as Hierarchical Relative
Positioning, determines the position of a child Element
relative to the position of its parent Element. As a result, the
child Element moves with its parent Element automatically.
This mechanism isolates an Element’s external positional
dependencies—i.e., the effects of an Element’s environment
on the Element’s position.

In addition to the “built-in” Elements and Modifiers, the
system is quite extensible via a “Component APL” This
Component API enables programmers to seamlessly inte-
grate new Modifiers (and “Services” that support them) into
the system.

Finally, the architecture of the system. is substantially
platform-independent. Titles can be “played” on multiple
platforms. Moreover, the entire authoring environment can
be ported to a variety of platforms with relatively little
modification due to the isolation of a platform-dependent
layer within the system.

III. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of the dual hierarchy (Structural
and Behavioral) underlying the principles of the present
invention.

FIG. 2 is a screen display showing the layout view
window, tool palette, object information palette and menus
of the graphical user interface of the implementation of one
embodiment of the present invention.

FIG. 3 is screen display showing the layers view window
of the graphical user interface under one embodiment of the
invention.

FIG. 4 is a screen display showing the structure view
window of the graphical user interface under one embodi-
ment of the invention.

FIG. § is a screen display showing the asset palette of the
graphical user interface under one embodiment of the inven-
tion.

FIG. 6 is a screen display of showing a library window in
the graphical user interface under one embodiment of the
invention.

FIG. 7 is a screen display showing the alias palette of the
graphical user interface under one embodiment of the inven-
tion.

FIG. 8 is a screen display showing the messaging log
window of the graphical user interface under one embodi-
ment of the invention.

FIGS. 9(a)~(d) are screen displays showing the mToon
editor windows of the graphical user interface under one
embodiment of the invention.

5,680,619

1

FIG. 10 is a screen display. showing the Element con-
figuration dialog of the graphical user interface under one
embodiment of the invention.

FIG. 11 is a screen display of a Behavior configuration
dialog in the graphical user interface under one embodiment
of the invention. .

FIGS. 12(a)—(h) are screen displays showing the Modifier
configuration dialogs for Variables in the graphical user
interface under one embodiment of the invention.

FIGS. 13(a)(g) are screen displays showing the Modifier
configuration dialogs for Messengers in the graphical user
interface under one embodiment of the invention.

FIGS. 14(a)-(c) are screen displays showing the Modifier
configuration dialogs for Scene-based Modifiers in the
graphical user interface under one embodiment of the inven-
tion.

FIG. 15 is a diagram showing the operation of the Scene
change Modifier of FIG. 14(a) in conjunction with the return
Scene Modifier of FIG. 14(b).

FIGS. 16(a)—(d) are screen displays showing the Modifier
configuration dialogs for Motion Modifiers in the graphical
user interface under one embodiment of the invention.

FIGS. 17(a)—(d) are screen displays showing the Modifier
configuration dialogs for Graphics Modifiers in the graphical
user interface under one embodiment of the invention.

FIGS. 18(a)—(b) are screen displays showing the Modifier
configuration dialogs for Sound Modifiers in the graphical
user interface under one embodiment of the invention.

FIG. 19 is a screen display showing the Modifier con-
figuration dialog for the style Modifier in the graphical user
interface under one embodiment of the invention.

FIG. 20 is a screen display showing the Modifier con-
figuration dialog for the cursor Modifier in the graphical user
interface under one embodiment of the invention.

FIG. 21 is a screen display showing the Modifier con-
figuration dialog for the set Miniscript Modifier in the
graphical user interface under one embodiment of the inven-
tion.

FIG. 22 is a screen display showing the Modifier con-
figuration dialog for the classification Modifier in the graphi-
cal user interface under one embodiment of the invention.

FIG. 23 is a screen display showing the Modifier con-
figuration dialog for the set value Modifier in the graphical
user interface under one embodiment of the invention.

FIG. 24 is a high level block diagram of the implemen-
tation of one embodiment of the present invention.

FIG. 25 is a diagram showing the interconnection of the
various classes in the object model of the present invention.

FIG. 26 is a diagram showing the interconnection of the
Service classes in the object model of the present invention.

FIG. 27 is a diagram showing the storage layout for a
multimedia title in one embodiment of the present invention.

FIG. 28 is a flowchart showing the event processing loop
under one embodiment of the invention.

FIG. 29 is a diagram showing the architecture of both the
Component API and authoring GUI according to the present
invention.

FIG. 30 is a diagram showing the operation of the object
model of the present invention.

FIG. 31 is a flowchart showing the loading of Compo-
nents (Modifiers, Services) at boot-up time of the program
under one embodiment of the invention.

FIG. 32 is a screen display showing an implementation of
a snake.

Page 53 of 88

10

15

20

25

35

45

65

12
FIG. 33 is a screen display showing an implementation of
a school of fish.
FIGS. 34(a)-(g) are screen displays of a selectively
reusable windowing system.
FIGS. 35(a)~(g) are diagrams showing the implementa-
tion of the selectively reusable windowing system.

IV. DETAILED DESCRIPTION

A. External Architecture—"“Author’s-Eye View”.

Before discussing the underlying implementation of the
authoring system of the present invention, it is helpful to
examine its external architecture—i.e., that portion of the
system which is visible to the author.

It is through this external architecture that authors create
end-user applications or “titles.” As is explained in greater
detail below, programmers can extend the functionality of
this external architecture, seamlessly, via an interface to the
“core” of the system. Moreover, the platform-independent
nature of the system’s implementation facilitates portability
of the efforts of authors and programmers to a wide variety
of computing platforms.

1. Objects: Elements and Modifiers.

In one embodiment of this invention, the author can create
two basic types of objects: Elements and Modifiers. To use
the metaphor of a_ stage play, the Elements comprise the
play’s structure (e.g., acts and scenes) and its actors, and the
Modifiers comprise the stage directions, the motivations the
director imbues in the actors to behave the way they do, and
other modifications to the characteristics of the play’s struc-
ture and its actors.

The system enables authors to create various types of
Elements and to assign particular characteristics to each
Element. These characteristics include properties (e.g.,
weight, color, etc.) that define what the Element is and
capabilities (e.g., send messages, move along a path, etc.)
that determine what the Element does.

Authors assign characteristics to an Element by incorpo-
rating Modifiers within that Element. As is illustrated below,
the process of creating and configuring Elements and Modi-
fiers is highly visual and intuitive, typically involving “drag-
ging and dropping” icons representing Elements and
Modifiers, selecting menu items and configuring dialog
boxes. Little, if any, scripting or programming is required.

The system is, however, quite extensible via the “Com-
ponent APL” discussed in greater detail below. Programmers
can use the Component API to create “Components” that
become fully integrated Modifiers and “Services” (which
“service” Modifiers but are not accessible directly to
authors). Once created, Components are indistinguishable
from the system’s “built-in” Modifiers and Services.

In this embodiment, there are three general categories of
Modifiers: (i) Variables that simply store data of various
types; (ii) Capabilities that perform actions on behalf of the
Element; and (iii) Behaviors that “contain” additional
Behaviors and other Modifiers. In another embodiment, a
hybrid Variable/Capability Modifier could both store data
and perform actions.

An author can create two general categories of Elements:
(i) Structural Elements (including Projects, Sections and
Subsections, discussed in greater detail below) that serve
only to “contain” other Elements and Modifiers; and (ii)
Media Elements (including Scenes, discussed below) that
not only can contain other Media Elements and Modifiers,
but also can be “linked” to raw media, such as text, sounds,
pictures, animations and movies.

There are three basic types of Media Elements that an
anthor can create: (i) Graphic Elements (including still

5,680,619

13

pictures, animations and videos), Text Elements and Sound
Elements. An author can then link raw media of a particular
format to the Element, causing that Element to attain certain
inherent capabilities (e.g., to make a sound, display a
picture, or play a movie).

By linking raw media of a particular format to a Graphic,
Text or Sound Element, the author causes the system to
“morph” the Element into a more specific type of Element
(and among specific types) related to that format. For
example, the author could create an “AIFF” sound, an
“ASCII” sentence, a “PICT” picture, a “QuickTime” movie
or an “mToon” (a built-in animation format). The morphing
process is described in greater detail below with respect to
the system’s implementation.

Elements of a given type also have certain built-in prop-
erties known as Attributes. An Element’s Attributes include
properties applicable to the type of media to which the
Element is linked (e.g., position, cel number, rate, etc.).

Thus, an Element’s properties are defined by its Attributes
and its author-created Variables. An Element’s capabilities
are determined by the type of media, if any, to which it is
linked, and by its author-created Behaviors and Capabilities
(i.e., its non-Variable Modifiers). Together, these properties
and capabilities define an Element’s individual
characteristics—i.e., what the Element is and what the
Element does.

In addition to creating Elements and assigning them
individual characteristics, an anthor can specify the manner
in which these Elements interact with one another, via an
integrated object messaging mechanism. This messaging
mechanism is accessible to authors via Modifiers, as is
described in greater detail below.

2. Object Containers: Elements and Behaviors.

Unlike simple “leaf” objects, Elements and Behaviors are
“object containers” that can comprise a hierarchy of objects.
These object hierarchies provide “environments” (ecach
enclosed by an object container) in which the system can
isolate external dependencies. This isolation of an object
container’s external dependencies, referred to herein as
“Hierarchical Encapsulation,” results in a significant degree
of reusability of the Elements and Behaviors created by an
author.

As is illustrated below, authors can construct complex
environments comprising a hierarchy of “Elements within
Elements” interacting with one another. Within an Element,
authors can create equally complex internal environments
(together representing the Element’s “personality”) com-
prising a hierarchy of interrelated “Behaviors and other
Modifiers within Behaviors.”

Authors can selectively reuse these modular Element and
Behavior object containers at virtually any level of com-
plexity. Moreover, authors can “mix and match” Elements
and Modifiers from differing environments at practically any
level of the Structural and Behavioral Hierarchies.
Furthermore, a team of authors can collaborate to create and
test an entire application while individual authors refine their
own modular, serf-contained environments.

For example, multiple authors might collaborate to build
a complex model of a “car” Element that contains one
“engine,” four “wheel” and various other Elements, as well
as a “driving” Behavior that contains “steering,” “braking”
and various other Behaviors. Individual authors each might
create one or more of these self-contained Elements and
Behaviors, and then collaborate with one another to test all
or a portion of the “car” and refine the desired interaction
among the various Elements and Behaviors.

Moreover, a subsequent author working on a different
application could reuse the entire “car” Element or merely

Page 54 of 88

20

25

35

40

45

55

65

14

one or more of the Elements or Behaviors contained therein.
For example, the author might apply the “braking” Behavior
to a “horse” or “airplane” Element in another application.

To create complex objects, authors need not create
abstract “classes” or object templates that serve to relate
objects to one another with respect to their characteristics.
Elements, Behaviors and other Modifiers created by the
author are object instances. To permit Elements and Behav-
iors to “contain” other objects, the system links the Element
and Behavior object instances to the other object instances
contained within them (as is explained in greater detail
below with respect to the system’s implementation).

Thus, Elements and Behaviors are object containers—in
this embodiment, object instances that can “contain” (i.e., be
linked to) other object instances. To some extent, however,
Elements do attain (at least temporarily) the characteristics
they contain. Yet Elements merely provide an environmental
frame of reference to their descendant Elements. Elements
and Behaviors do not actually “inherit” the characteristics of
the objects they contain. .

Many embodiments of this “object container” relationship
among objects are possible, including intersecting families
of objects, multiple-parent relationships and various com-
binations of “ome-to-many” and “many-to-many” child-
parent relationships. In any event, by spawning object
hierarchies, object containers provide the environments that
facilitate their reusability via Hierarchical Encapsulation,
discussed below.

Authors are thus free to create and work directly with
objects that represent, at any level of complexity, the char-
acters in their application and the individual characteristics
“contained within” those characters, as well as the all-
encompassing “environmental factors™ that “contain” those
characters and determine the nature of their interaction.

3. Object Hierarchies: Structural Hierarchy and Behavioral
Hierarchy.

When an Element contains another object within it, the
Element object is called a parent and the other object is
called its child. If the child object in turn contains another
object, the child object is considered the parent of the object
it contains, and so on.

This chain of parents and children is called an Element or
(Structural) Hierarchy. In one embodiment, each parent can
have multiple children, but each child has exactly one
parent. Elements above and below a particular Element in
the Structural Hierarchy can be referred to, respectively, as
ancestors and descendants of that Element. Children of the
same parent are called siblings.

Just as an Element can contain other Elements in the
Structural Hierarchy, each Element also contains its own
Modifier or Behavioral Hierarchy of Behaviors and “leaf”
Modifiers (i.e. the Element’s personality). These Modifiers
modify the characteristics of the Element (e.g., by storing
data in the Element or performing actions on behalf of the
Element), often in response to messages from other Modi-
fiers inside the same or another Element.

In the context of the Structural Hierarchy, an Element can
be viewed as an environmental “frame of reference” for its
descendant Elements. It is within that Element’s environ-
ment thatits descendant Elements exhibit their personalities.
The Structural Hierarchy determines the manner in which
those descendant Elements interact with one another within
that Element’s environment.

Similarly, the Behavioral Hierarchy determines the man-
ner of interaction among an Element’s internal Behaviors. In
the context of the Element’s overall personality, a Behavior
also can be viewed as an environmental “frame of reference”
for its descendant Behaviors and other Modifiers.

5,680,619

15

Continuing our “car” example, the “car” Element pro-
vides the environment in which the “engine” Element func-
tions. If the car moves, the engine will move with the car
automatically (as it would in a real car). Yet, the engine
Element need not have any internal “movement” Behavior.
By acting as the local coordinate system for its child
Elements, the car becomes the engine’s environmental
frame of reference. This particular manner of isolating
positional dependencies of Elements within the Structural
Hierarchy, referred to as Hierarchical Relative Positioning,
is discussed in greater detail below.

Similarly, the “driving” Behavior provides the environ-
ment in which the “braking” Behavior functions. If the
driver does not step on the brakes, the “braking” Behavior
will not be invoked—i.e., it will not receive a “brake pedal
depressed” message from its parent “driving” Behavior. By
acting as the “gatekeeper” for messages intended for its
child Behaviors, the parent “driving” Behavior becomes the
“braking” Behavior’s environmental frame of reference.
This particular manner of isolating messaging dependencies
of Elements and Behaviors (and other Modifiers) within the
Structural and Behavioral Hierarchies, referred to as Hier-
archical Message Broadcasting, is discussed in greater detail
below.

Continuing the example, the “driving” Behavior must
monitor the cat’s speed for a variety of reasons, as must the
driver of areal car (e.g., to know when to release the brake).
The speed of the car could be stored in a “car speed”
Variable inside the Element, but not necessarily inside the
“driving” Behavior because other Behaviors (e.g., an “Air
Bag” Behavior detecting massive deceleration) may need to
access this Variable. By making its child Variables acces-
sible to its descendants, the car becomes the frame of
reference for the “driving” Behavior. This particular manner
of isolating data dependencies of Elements and Behaviors
(and other Modifiers) within the Structural and Behavioral
Hierarchies, referred to as Hierarchical Variable Scoping,
also is discussed in greater detail below.

a. Types of Elements in the Structural Hierarchy.

As noted above, there exist two basic categories of
Elements in this embodiment—Structural Elements and
Media Elements.

Authors can utilize Structural Elements to group the
contents of a title into organized sections, like the chapters
of a book or the acts in a play. In this embodiment, the purely
Structural Elements comprise Projects, Sections and Sub-
sections. .

Media Elements (including the Modifiers contained
within them) comprise the primary content of an author’s
application. They typically are the characters or actors
within a “Scene” (a special Media Element the primary
purpose of which is structural—to contain other Media
Elements). Any Media Element can be used structurally, as
containers for other Media Elements, to form a more com-
plex Element. Media Elements as their name suggests,
typically are linked to raw media, such as text, sounds,
pictures, movies or animations, in order to communicate
with the user of the title.

(1) Projects.

A Project is a Structural Element that contains the entire
title. Its children are Sections, which are described below. A
Project also can contain Modifiers (including Behaviors)
that store data or perform actions on behalf of the entire
Project. The score of a game, for example, could be stored
in the Project so as to be available to all other Elements and
Modifiers.

Page 55 of 88

15

25

30

45

65

16

(2) Sections.

A Section is a Structural Element that can be used by the
author to organize logical portions of his title. It is most
analogous to an act in a play or a chapter in a book. For
example, an author of a U.S. travel game might create a
Section for all Elements and Modifiers relating specifically
to the state of California. Sections are parents to
Subsections, as described below. As with Projects, Sections
also can contain Modifiers. A “time-in-state” Behavior
might, for example, track the amount of time the user spent
in a particular state.

(3) Subsections.

A Subsection is a Structural Element that can be used by
the author to further organize logical portions of a Section.
Continuing the above example, the author of the travel game
might create a Subsection for all Elements and Modifiers
relating specifically to the San Francisco Bay Area. Subsec-
tions are parents to Scenes, and also can contain Modifiers.

(4) Scenes.

A Scene is a special Media Element that not only further
organizes logical portions of a Subsection, but also contains
other (non-Scene) Media Elements and Modifiers. Much
like the scenes in a play, the Scene Element contains those
Media Elements and Modifiers the anthor deems necessary
to impart to the user a portion of the interactive experience
provided by the parent Subsection. Continuing our travel
game example, one Scene might take place on the Pacific
Coast, while another occurs further inland in the city of Palo
Alto.

In one embodiment, there exists a special type of Scene
Element known as a Shared Scene. A Shared Scene is used
to organize Elements that will be visible across multiple
Scenes, such as a background picture or an animated char-
acter that travels from Scene to Scene.

In a more refined embodiment, the author can share
visible Elements across Subsections and Sections by having
multiple Shared Scenes, or being able to select one or more
Shared Scenes dynamically. In the latter case, rather than
designating a Shared Scene statically at “authoring time,”
the author can, dynamically at “runtime,” designate any
Scene (or perhaps multiple Scenes) as a current Shared
Scene.

(5) Media Elements.

Media Elements comprise the primary characters or actors
in a Scene. They can contain other Elements (to form a more
complex Element) and can be linked to raw media. A Media
Element also can contain Modifiers, and thus Behaviors,
which together constitute the Element’s personality. As
illustrated below, it is an Element’s “dual hierarchy” that
provides the environmental framework in which descendant
Elements interact with one another and exhibit their own
individual “personality.” '

b. Isolation of External Dependencies of Object Contain-
ers.

Elements and Behaviors are object containers that spawn
hierarchies of descendant objects. Consider the sample illus-
tration of the Structural and Behavioral Hierarchies in FIG.
1. When Media Elements are created, they are positioned
automatically below the Scene in the Project’s Structural
Hierarchy. Thus, Element E1 108 is a child of Scene Sc1 106
in Subsection SS1 104 in Section S1 102 in Project P 101.
Element E4 111 is a child of Element E1 108.

By isolating the external dependencies of the environment
created by an Element or Behavior object container, the
system provides for a significant degree of selective reus-
ability of that Element or Behavior (or any object contained
therein) in other environments, as is further demonstrated

5,680,619

17

below. It is this isolation of an object container’s external
dependencies that allows the Elements and Behaviors cre-
ated by an author to become an “environmental frame of
reference” for their descendant Elements, Behaviors and
other Modifiers, as was demonstrated in the “car” example
discussed above. :

In one embodiment of this system, three mechanisms are
employed to isolate external dependencies within object
containers: (i) Hierarchical Message Broadcasting—
messages that are received by an Element or Behavior
typically are “broadcast” down the Structural and Behav-
ioral Hierarchies to its descendant Elements and Modifiers
(though this effect can be overridden); (ii) Hierarchical
Variable Scoping—Variables are accessible to all descen-
dant Elements and Modifiers of that Variable’s parent Ele-
ment or Behavior; and (iii) Hierarchical Relative
Positioning—an Element’s position in the Scene is deter-
mined relative to the position of (ie., using the local
coordinate system of) its parent Element, and therefore
changes as the position of its parent Element changes.

(1) Hierarchical Message Broadcasting.

A message sent to an Element or Behavior typically will
be broadcast down the Structural and Behavioral Hierar-
chies. Elements pass down messages to their children, be
they Modifiers or other Elements. Behavior pass down
messages to their child Modifiers. The precise manner in
which the various types of messages propagate down the
Structural and Behavioral Hierarchies is discussed in greater
detail below with respect to object messaging generally.

In one embodiment, the order in which messages are
broadcast among Elements, Behaviors and other Modifiers
at any given level of the Structural and Behavioral Hierar-
chies is determined by the order in which those objects
appear in the “structure view window” (see, e.g., structure
view window 330 in FIG. 4). Initially, this is the order in
which they are created. The author can modify this order
simply by “dragging and dropping” or “cutting and pasting”
the object’s icon in the structure view window.

For example, referring again to FIG. 1, a message sent to
Scene Scl 106, under one embodiment, initially would be
sent down to Element E1 108 (but not to any sibling
Elements of Scene Scl 106, such as Shared Scene Sc0 107).
It would then be sent down to Element E4 111, and then to
Element E2 109. From there it would be sent down to
Modifiers M1 114, M2 115 and M3 116, and then to Element
E3 110. It would then be sent down to Modifier M4 117,
Behavior B1 118 and then down to Modifier MS 119.
Finally, it would be sent to Behavior B2 120 and then down
to Modifiers M6 122 and M7 123.

Note that, in this embodiment, Variables such as Variable
V3 121 solely store data and thus do not respond to
messages. Their data, however, can be read and written by
other Modifiers, as for example, the Miniscript Modifier.

In this manner, a message sent to an Element or Behavior
typically will be broadcast to all objects contained within
that Element or Behavior. Upon receiving the message,
those objects (Elements, Behaviors and other Modifiers) can
then respond appropriately, performing whatever actions are
specified by their current configuration.

By providing for the sending of messages to an Element
or Behavior object container, and the broadcasting of those
messages to the objects within that container, the system
facilitates the isolation of messaging traffic to and from that
container. In essence, the container becomes a higher-level
abstract destination for messages intended not only for the
container itself, but for “objects within the container.”

Continuing the above example of the travel game, assume
that Section S1 102 represents California, Section S2 103

Page 56 of 88

20

25

30

35

45

50

55

60

65

18

represents Kansas and Subsection SS1 104 represents the
San Francisco Bay Area. The author could create Behaviors
to simulate the different weather patterns in these two states.

A “Midwest Weather” Behavior in Section S2 103 could
simulate the weather in Kansas and periodically update a
“temperature” Variable and send a “check temperature”
message to that Section S2 103, which would be broadcast
down the Structural and Behavioral Hierarchies to all Ele-
ments and Modifiers in each Scene in Kansas. This Behavior
and the temperature Variable could both be contained at the
Section S2 103 level of the Structural Hierarchy to simulate
relatively constant weather throughout the state of Kansas.

Conversely, within California, Subsection SS1 104 (the
San Francisco Bay Area) could contain two Scenes, one
representing the Pacific Coast and the other representing
Palo Alto. These Scenes could contain “Coast Weather” and
“Inland Weather” Behaviors, respectively, each updating
their own “temperature” Variable and sending a “check
temperature” message to their respective Scenes. These
separate Behaviors could simulate the differing weather
patterns that occur even within a relatively small region of
California.

“People” Elements in the various Scenes within the two
states might be very complex, perhaps containing five or ten
different Behaviors, including a Jogging, Swimming and a
“Check Temperature” Behavior that check the temperature
in response to a “check temperature” message. If the tem-
perature deviates too far from the average temperature, the
Check Temperature Behavior might send a “Very High
Temperature” or “Very Low Temperature” message to its
person Element, which will be broadcast down to the
Swimming and Jogging Behaviors. The Swimming Behav-
ior might be enabled by *“Very High Temperatures” and
disabled by “Very Low Temperature” and vice-versa for the
Jogging Behavior.

By permitting the various “weather” Behaviors to broad-
cast their messages down the Structural and Behavioral
Hierarchies (from the Section level in Kansas, and from the
Scene level in California), the people Elements in either
state will receive this message from their respective parent
Scenes. The “weather” Behaviors need not target their
message directly to a particular person Element, or even
know which type of Element might respond to their “check
temperature” message (e.g., person, animal, etc.).

The people Elements, therefore, could be moved from any
Scene in Kansas to any other Scene in Kansas or California,
and still respond appropriately to the temperature in that
region. Even though the “check temperature” message is
sent to a different environment or level of the Structural
Hierarchy in Kansas (Section) than in California (Scene), it
still reaches all relevant people Elements.

This degree of reusability of Elements and Behaviors is
facilitated by the system’s Hierarchical Message Broadcast-
ing mechanism, which broadcasts messages sent to an object
container to the objects it contains. This mechanism isolates
the dependencies of a message at the abstract level of the
environment represented by the object container to which
that message is sent, as opposed to requiring the author to
target the message directly to a particular “leaf™ object.

As is discussed below, direct targeting of messages
remains an option in this embodiment in the event that the
author elects to forego a degree of reusability in favor of
explicit target naming.

(2) Hierarchical Variable Scoping.

As demonstrated above, Elements and Behaviors are
dependent upon messages to enable, disable and trigger
certain actions, including those of their descendant Modifi-

5,680,619

19

ers. Those Modifiers frequently are dependent upon Vari-
ables to perform actions on behalf of their parent Elements.
Isolating Variable dependencies within Elements and
Behaviors also facilitates reusability of those object con-
tainers.

The scope of Variables (data) accessible to a Modifier is
another manifestation of that Modifier’s environment. Vari-
ables are accessible to all descendant objects of that Vari-
able’s parent Element or Behavior. In other words, Variables
are accessible within their parent’s environment.

Hierarchical Variable Scoping serves to isolate an object
container’s dependencies on external Variables. By making
Variables accessible to descendant objects of the Variable’s
parent, those descendant objects automatically “know
about” those external Variables. A descendant Element or
Behavior therefore becomes reusable in that the external
Variables upon which it depends are isolated within (*known
t0”) that Element or Behavior.

Returning to our travel game example, the “temperature”
Variable in Kansas is accessible to the “Check Temperature”
Behavior within any person Element of any Scene in Kan-
sas. Because the “temperature” Variable is located at the
Section S2 103 level, its descendant Elements include all
Subsections therein, each Scene contained within those
Subsections, each Element in each such Scene (including
any people Elements), and finally the “Check Temperature”
Behavior contained within such people Elements.

Moreover, if a person Element was moved from a Scene
in Kansas to the Pacific Coast Scene in California, the
“temperature” Variable in that Scene would be accessible,
automatically, to that person Element and to its “Check
Temperature” Behavior. This degree of reusability is a direct
result of the Hierarchical Variable Scoping mechanism.

In the above example, this mechanism isolates “tempera-
ture” Variable dependencies at the Section level in Kansas
and at the Scene level within the San Francisco Bay Area in
California. As noted above, the Hierarchical Message
Broadcasting mechanism also isolates messaging dependen-
cies (in particular the “check temperature” message) at those
same levels of the Structural Hierarchy. Thus, in this
example, these two mechanisms together make object con-
tainers below that level (such as the person Element) reus-
able across Sections of a Project.

(3) Hierarchical Relative Positioning.

Another environmental dependency of object containers,
in this case limited to Elements, is the position of an Element
relative to that of its ancestors. Rather than require the
author to model the common circumstance in which the
movement of one Element must be relative to the movement
of another Element, the system, by default, determines an
Element’s position in the Scene relative to the position of
(i.e., using the local coordinate system of) its parent Ele-
ment.

In another embodiment, this effect could be made
optional. In any event, a child Element can, as part of its own
personality, move on its own initiative. Its position never-
theless remains relative to its parent Element. It therefore
also will continue to move as its parent Element moves.

Thus, a child Element moves (changes position) within
the Scene as its parent Element moves. This effect filters
down the Structural Hierarchy below the Scene level. A
common use of Hierarchical Relative Positioning is to
model Elements physically contained within or attached to
other Elements (e.g., a toy in a box or the wings of a bird).
It also can be used to model Elements that, for one reason
or another, tend to follow other Elements (e.g., planets
orbiting the sun, or packs of animals that tend to move
together).

Page 57 of 88

10

20

25

35

45

50

55

60

65

20

Hierarchical Relative Positioning also serves to isolate an
Element’s dependencies on its environment, in that an
author need not modetl this “follow my parent” movement.
Upon reusing or reattaching an Element to another parent
Element, the system automatically recalculates that
Element’s position relative to its new parent Element.

¢. Selective Reusability through Adoption and Transplan-
fation.

The selective reusability of object containers discussed
above frequently takes one of two forms. If Elements are to
be reused, they often will be placed in a new environment— -
i.e., given a new parent Element in the Structural Hierarchy.
This process is referred to as “Adoption.” In other words, the
child Element has been “adopted” by a new parent Element.

The underlying implementation of Adoption is discussed
in greater detail below. From the author’s perspective,
Adoption is a simple process at authoring time. For example,
referring to FIG. 2, the author can break its current link and
create a new link with the link tool 365 on the tool palette
36 with another Element in the layout view window 320.
Alternatively, the author can drag and drop the Element’s
icon to the icon representing its new parent Element in the
Structure Window 33.

Authors also may desire to move a Behavior or other
Modifier from within its parent Element or Behavior to
another parent Element or Behavior. This process is referred
to as “Transplantation.” In other words, a Behavior or other
Maodifier, and its associated capabilities, are “transplanted”
to a new Element or Behavior, which then acquires those
capabilities. Transplantation also can be accomplished quite
easily at authoring time, by dragging and dropping the icon
representing the Behavior or Modifier from its old parent to
its new parent, either in the Layout Window 320 or in the
Structure Window 33.

Adoption and Transplantation are quite similar, both from
the author’s perspective and in view of the manner in which
they are implemented, as is discussed in greater detail below.
Both involve the transfer of an Element or Modifier to a new
parent Element or Behavior. In other words, both involve the
selective reusability of an Element or Modifier in new
environments.

In a more refined embodiment, Adoption and/or Trans-
plantation can be performed dynamically, at runtime. One
author might, for example, desire to model certain gravita-
tional forces that cause an Element “planet” orbiting another
Element “star” to begin to orbit a new parent Element “rogue
star” that passes nearby. Another author might desire to
model a change in a person’s behavior, in effect by trans-
planting a Behavior Modifier within the Element represent-
ing that person.

As is discussed in greater detail below with respect to the
system’s implementation, this process is quite similar
whether performed at authoring time (referred to as “Edit
Mode™) or at runtime (referred to as “Runtime Mode”).
Depending upon the nature of the Adoption or Transplan-
tation the author desires (or perhaps desires to provide to the
user), different functions can be accessed via the Component
APL

Similarly, a programmer can, via the Component APL
provide dynamic (runtime) instantiation of objects, such as
Elements and Modifiers. This process, referred to as
“Dynamic Creation,” also is discussed below with respect to
the system’s implementation.

4. Object Authoring Interface.

FIGS. 2-9 show some of the features of the object
authoring interface. They include the layers view window
310 (FIG. 3), layout view window 320 (FIG. 2), structure

5,680,619

21
view window 330 (FIG. 4), modifier palettes 35a and 355
(FIG. 9), tool palette 36 (FIG. 2), object information palette
37 (FIG. 2), menus 38 (FIG. 2), asset palette 70 (FIG. 5),
alias palette 80 (FIG. 7), mToon editor windows 900, 910,
920 and 930 (FIG. 9), and messaging log window 420 (FIG.
8).

With reference to FIG. 2, the tool palette 36 is provided
with a variety of functions, including: (i) a pointer 361 for
selecting, clicking, dragging, scrolling, etc.; (ii) a graphic
tool 362 for creating Graphic Elements; (iii) a text place-
holder tool 363 for creating Text Elements; (iv) a cropping
tool 364 to crop and link non-animated Graphic Elements;
(v) alinking tool 365 for linking Elements into a parent/child
relationship; (vi) a hand tool 366 to offset media within
Elements, as well as (vii) a background/foreground color
tool 367 for selecting the background and foreground colors
of an Element.

The object information palette 37 displays an Element’s
position in x 328 and y 329 coordinates, size in x 336 and
¥ 331 coordinates, scale in x 332 and y 333 coordinates, and
other data related to a selected Element, such as the
Element’s name 326, the name of its parent 327, its layer
order number 335 and, in the case of an mToon, its cel
number 334. In the “Hierarchical Relative Positioning”
embodiment discussed herein, the position of the Element is
given relative to its parent.

The menus 38 allow access to all other functions not
accessible otherwise from the present on-screen features.
Menu 3384 is the “Apple” menu under the Macintosh™
operating system with its well known features. The functions
of the remaining menus are described below.

“File” menu 3385 allows authors to create new Projects,
libraries and mToons, to open existing Projects, to close
windows, to save projects under the current or another name,
to link Elements to media in a particular file or resources
folder. Menu 3385 further allows authors to break media
links, to run a Project from either the start or from a given
selection, to build a title from the current Project, or to quit
the application.

“Edit” menu 3384 allows authors to perform the usual
undo, cut, copy, paste, clear, “select all” and duplicate
functions, as well as create author messages and set appli-
cation and Project preferences.

“Format” menu 3384 allows authors to set font, font size,
font style and text alignment characteristics for selected text.

“Arrange” menu 338e allows authors to align objects, to
adjust their sizes, to move them completely forward or
backward in the layer order, or incrementally so, as well as
to adjust for any gaps in layer order created by such
operations.

“Object” menu 338/ allows authors to create new
Sections, Subsections, Scenes, Graphic Elements, Sound
Elements and Text Elements, to access the Element infor-
mation dialog 950 (FIG. 10), to revert to the default size of
an object, to lock an object’s settings, to find items by name,
as well as to make and break aliases.

“View” menu 338g allows authors to open the layout view
window 320, the structure view window 330, the layer view
window 3180, the tool palette 36, the modifier palettes 354
and 35b, the alias palette 80, the asset palette 70, the object
information palette 37 and the messaging log window 420.
In addition, authors can use menu 338g to preview the
effects of selecting different color tables, to show or hide
Element frames, Modifier icons, object names, low resolu-
tion (draft) object images, the Shared Scene, as well as to
synchronize all windows to reflect information for the same
object.

Page 58 of 88

20

25

30

35

40

45

50

55

60

65

22

“Window” menu 3384 allows authors to access all cur-
rently open windows.

a. Layout View.

The layout view 32 is used to edit a Scene of a Project.
Again with reference to FIG. 2, the basic operation of the
layout view 32, through layout view window 320, is as
follows. The layout view window 320 represents Projects at
a Scene level, thus acting as a stage in which authors can
arrange their Media Elements. To bring the appropriate
Scene into the layout view window 320, pop-up menus 321,
322 and 323 are provided to navigate, respectively, among
a Project’s Sections, Subsections and Scenes. These pop-up
menus 321, 322 and 323 also have “New Section”, “New
Subsection” and “New Scene” items, as an alternative to
using Object menu 338f to create such Structural Elements.
Back arrow 324¢ and forward arrow 324b are an alternate
means of accessing the previous and next Scenes within the
current Subsection. Forward arrow 324b is dimmed to
indicate that the current Scene is the last Scene in the current
Subsection. Shown within the content region of layout view
window 320 is a Graphic Element 337 containing Graphic
Modifier 338.

b. Layers View. :

The layers view 31 is used to edit Projects a Section at a
time through the layers view window 310. With reference to
FIG. 3, the basic operation of the layers view window 310
is now described. The layers view window 310 presents a
matrix of Media Elements, arranged by Scene order on the
horizontal axis and layer order on the vertical. Layer order
is the order in which Elements are drawn on the screen,
meaning that a Scene is layer order 0, and all the Scene’s
contained Elements progress in increments of 1 therefrom.
Layer order is particularly useful to create the illusion that
the two dimensional (X,Y) screen has a depth (Z)
dimension, an effect referred to as “2.5D.” The layer order
can easily be changed by dragging and dropping an Element
over another Element, although this may also be accom-
plished through menus 38. Either way, the user performs
such operations as bring to front (make layer order the
highest), send to back (make layer order 1), bring forward
(exchange layer order with next highest) or bring backward
(exchange layer order with next lowest). Scenes are assigned
layer order 0, which cannot be changed by the author, and
are thus always in the background.

The layers view window 310 contains pop-up menus 311
and 312 that navigate among a Project’s Section and
Subsections, respectively, in a manner similar to the pop-up
menus 321 and 322 of the layout view window 320.
Furthermore, back and forward arrows 3134 and 3135 act to
select Subsections much as arrows 324a and 324b navigate
through Scenes in the layout view window 320.

Thus, in this example, one can see columns arranged
horizontally for Shared Scene 314a, Scene 1 3145, Scene 2
314c and Scene 3 314d. Vertically, one can see rows for layer
order 0 (Scene) 318¢, layer order 1 3185 and layer order 2
318c¢. Along row 318a, one can see the background pictures
for the respective Scenes 315a, 3155, 315¢ and 3154, as well
as four non-Scene Media Elements (Element 3164 and 3164
under Scene 1 3155, Element 3165 under Scene 2 315¢, and
Element 316¢ under Scene 3 315d). Modifiers are also
shown within Elements (with Modifiers 3172, 317b and
317¢ in Shared Scene 314a, Modifiers 3174, 317e and 317f
in Scene 3 3154, Modifier 317g in Scene 1 315b, Modifier
317h in Scene 2 315¢, Modifiers 317; and 317/ in Element
3164, and Modifier 317k in Element 316c¢).

Elements and Modifiers can be dragged and dropped
within layers view window 310. In particular, an Flement’s

5,680,619

23

layer order can be modified easily by dragging and dropping
it onto an Element in another layer, causing all Elements to
be “pushed up” one layer higher.

c. Structure View.

The structure view 33 allows authors to move Elements
and Modifiers throughout the Structural and Behavioral
Hierarchies—i.e., across Projects, Subsections and Scenes,
as well as within Elements and Behaviors. Structure view 33
generates and controls the operation of structure view win-
dow 330, shown in FIG. 4. The Structural Hierarchy is
plainly evident in that Project “Untitled-1” 303 is at the top,
with Section “untitled section” 304 immediately below and
indented with respect to the Project 303 icon, Subsection
“untitled subsection” 305 immediately below and indented
with respect to the section 304 icon, Scene “untitled Scene™
306 immediately below and indented with respect to the
Subsection 305 icon. In this instance the Scene 306 icon
represents a Shared Scene, to which a Graphic Modifier 308
is attached. The Subsection 305 has another child Scene 307,
being the actual first Scene, which is represented as equally
indented as its sibling Scene 306. Under this Scene 307 is
Media Element 300. Knobs 302a, 3020, 302¢, 302d, 302¢
and 302f are used to reveal or conceal the objects beneath
Elements 303, 304, 305, 306, 307 and 309, respectively, in
the Structural Hierarchy. This is particularly useful for an
author who wishes to concentrate on only part of the Project
at a given time.

Changing the hierarchical relationship through the struc-
ture view window 330 is particularly simple. Elements may
be dragged up and down and dropped into the Structural
Hierarchy at will, subject to a few limitations. For example,
a Media Element cannot be dropped directly into a Project,
Section or Subsection. Similarly, Scenes cannot be dropped
into to a Section or Project. In addition, only Modifiers can
be dropped into Behaviors.

d. Asset Palette.

The Asset Manager 7, operating through the Asset Palette
70, illustrated in FIG. 5, is a visual database of the media that
have been linked to a Project. This palette makes linking,
storing, and copying Graphic and Sound Elements easy and
convenient. Bach item can then be dragged and dropped onto
Scenes from this central location. Each time a new asset is
added to the Project, it gets added to the Asset Manager 7,
which adds it to the Asset Palette 70 in a manner that is
transparent to the anthor.

Once an asset is in the Asset Palette 70, it can be used by
multiple objects in the Project. For example, a single ani-
mation file can be linked simultaneously to multiple Ele-
ments. Each Element can use this animation without regard
to the other Elements. Each entry in the Asset Palette 70
includes an associated count of the number of objects which
use that asset. When an asset is no longer in use (i.e. its count
becomes zero), it still remains in the Asset Palette 70.
 Bach time the author performs a link to media, an asset
appears in the Asset Palette 70. “Show” pop-up menu 751
displays media files by selected types (e.g., all types, all
graphics types, PICTs, mToons, sounds, QuickTime™
movies, or color tables). “View” pop-up menu 752 displays
assets either as icons or as small or large thumbnails. Trash
can icon 753 allows authors to remove assets from the
palette by dragging them to the trash can. There are multiple
assets 754a, 754b, 754¢, 754d shown here. For example,
asset 754c is a sound, represented by a sound icon and
having a preview button to allow the author to hear the
sound.

e. Library.

Libraries offer a convenient place to store Elements and
Modifiers for use across Projects. Authors can create mul-

Page 59 of 88

20

25

30

35

40

45

55

60

65

24

tiple libraries, and can have more than one open at once.
Authors can move Elements and Modifiers freely between
any Project and any library. Any object, from a simple
Modifier to an entire Scene, Subsection, Section, or Project
(at any stage of development) can be dragged between
libraries and Projects.

With reference to FIG. 6, the operation of a view 520 of
one of the libraries 52 is shown. It includes the library’s
name 726, a close box 727, a trash can icon 728 which
allows authors to remove items from the library by dragging
them to the trash can, a “save” pop-up menu which allows
authors to save the library to disk, and, as shown here,
muitiple objects 729a, 729b, 729¢, 729d, 729¢ and 729f in
the library.

f. Alias Palette.

An alias is a programming tool that enables authors to
maintain identical settings across multiple Modifiers. When
a Modifier is “aliased” initially, a master copy is placed in
the Alias Palette 80. Authors can create additional aliases
that refer to that master copy merely by duplicating any
aliased Modifier. The advantage of using aliases lies in the
fact that they are globally updatable. Changing the settings
of one “instance” of an alias alters the settings of its master
copy in the Alias Palette 80 and automatically updates the
settings of each of the other instances of that alias through-
out the Project.

Variables are good candidates for aliasing. For example,
a game score can be stored and aliased. This Variable can
then be strategically placed in Elements far apart in the
Structural Hierarchy. Messengers and Miniscript Modifiers
in these Elements can access and update their “local copy”
of this Variable, which in turn will access the master copy,
thereby ensuring synchronization across all “local copies” of
this Variable. In this manner, various Elements, regardless of
their location in the Structural Hierarchy, will have access to
the updated score as the value of this Variable changes
during the game. Breaking an alias causes the formerly
aliased Modifier to become an independent Modifier, no
longer updated when its former aliases are modified.

With reference to FIG. 7, Alias Palette 80, controlled by
Alias Manager 8, includes a close box 854, a trash can icon
851 which allows authors to remove aliases from the palette
by dragging them to the trash can, and, as shown here,
multiple aliases 852a, 852b, 852c, 8524, 852¢ and 852f, with
respective user counts 853a, 853b, 853c, 8534, 853¢ and
853f. The user count reveals the number of instances of such
alias within the current Project. Thus, if a new alias is
created, a new entry in the Alias Palette 80 is added. If a
modifier is de-aliased or deleted, the corresponding user
count on the Alias Palette 80 is decremented.

g. Messaging Log.

Messaging Log 42 allows authors to “debug” their
Projects by maintaining for authors a log of particular
messages sent to selected objects during Runtime execution.
It displays these messages in messaging log window 420, as
illustrated in FIG. 8.

The “Enable Logging” checkbox 424 displays the path of
messages that have been passed to selected objects during a
Runtime execution, such objects having been selected by the
author through the structure view window 330. First, one
sees a message 425 sent, specifying the sender 423, the
message type 422 and the recipient 421. What follows is the
chain of messages that arise from message 425. For
example, message 426 caused, in particular, a chain to occur
with received messages 427. Turn knobs 428a, 428b, 428¢,
4284, 428¢ and 428f allow the corresponding message lines
to be revealed or hidden, thereby allowing the author to

5,680,619

25

concentrate on the area of interest. More refined embodi-
ments could easily include other standard debugging
features, such as breakpoints, stepped execution and exami-
nation of selected data, as are well known in the art.

h. mToon Editor.

An mToon is a continuous series of images compiled by
the system into a single file. Any animation files created in
a3D program, or in 22D animation program which has been
saved as or converted to PICT or PICS files, can be imported
to the mToon Editor 53 and processed as an mToon. mToons
are cel-based and very fiexible. In addition to being able to
specify the playback rate and duration of an mToon, a
selected cel or range of cels in the mToon can be specified
for playback. These ranges can be dynamically set during
Runtime, opening new creative possibilities to the multime-
dia author.

For example, the sitting, walking, and running motions of
a rabbit can be compiled into a single mToon linked to an
Element. During Runtime, Messengers or the Miniscript
Modifier can be used to specify which cels of the animation
to play back according to predefined conditions. Thus,
mToons abstract physical action with frame-by-frame con-
trol.

The system maintains a link to the actual picture images
that make up the individual frames of the mToon. Thus, if
any of these images is updated, as verified by the system
through the modification date, the system asks the user
whether the mToon should be recreated with the new
images. This “hot link™ feature is ideal when additions or
adjustments are made frequently to individual frames.

Authors can import single or multiple PICS or PICT files
into the mToon Editor, and then edit, compress and save
them as an mToon. Authors also can open and edit existing
mToons in this window. Moreover, authors can define ranges
of eels within each animation and name them as a subset of
the mToon. In the current embodiment, these cel ranges are
a sequential range of integers; however, there is nothing to
preclude cel ranges from being completely discontiguous
and in any order. Once defined, authors can access these
ranges by name via Messengers or Miniscript Modifiers
during Runtime.

With reference to FIGS. %(a)—(d), the operation of mToon
editor 53 is shown. In FIG. %(a), mToon editor window 900
is shown, having a registration point 901 which establishes
the upper left corner of an inserted animation cel, a cel
number field 902 which shows the number of the current cel,
and a selection field 903 which displays the range of cels
selected for editing. It has an mToon controller 904, which
is used to preview the animation (which may assist the
author in selecting a range of cels for editing), and has step
buttons to step forward or backwards through the animation,
cel by cel. Finally “show” pop-up menu 905 allows the
author to select a specific range of cels, referenced by name
to be played.

In FIG. 9(b), the mToon source file information dialog
910 is shown. Thus, the file path 911 is displayed, along with
the cel numbers 912, the original file names for the cel
contents 913, the index number 914, if any, when the cel is
a PICS file, and the file format 915 (e.g. PICT, PICS).

In FIG. 9(c), the compression settings dialog 920 is
shown. The compression type pop-up menu 921 specifies the
compression method to be used (e.g., none, Animation,
Cinepak, Graphics, Photo-JPEG, or Video). The color depth
pop-up menu 922 sets the number of colors used by an
mToon, which defaults to 256. A “random access” checkbox
923 provides authors with random access to individual cels
despite compression. This is necessary for an mToon to be

Page 60 of 88

15

20

25

30

40

45

50

55

65

26

played backwards or forwards, cel by cel, or at a constant
speed. The compression quality slider 926 controls the
quality of the chosen compression method, with lower
quality imparting artifacts into the mToon.

In FIG. %(d), the ranges dialog 930 is shown. It permits the
naming of sequences of cels, so that they may be accessed
by name, as for example, by the Miniscript Modifier. The
name field 931 shows the name assigned to the range; the
start field 932 shows the cel number at the start of the range;
the end field 933 shows the end; the delete button 934 allows
a selected (highlighted) range to be deleted; and the “new”
button allows a new range to be created.

i. Modifier Palettes.

With further reference to FIG. 2, modifier palettes 35a and
35b are shown. As discussed below, the system’s extensible
architecture enables programmers to create and insert addi-
tional Modifiers into the system, possibly necessitating
additional modifier palettes. Each entry in a modifier palette
allows an instance of a Modifier to be created and incorpo-
rated within (i.e., linked to the instance of a particular
Element (Element, Scene, etc.) through a simple click, drag
and drop procedure.

Modifier palettes 35a and 356 include (as discussed in
greater detail below) icons for the behavior 340, the mini-
script Modifier 1980, the MESSENGERS [(basic) 1200, if
messenger 1220, timer 1240, border detection 1260, colli-
sion 1280, hypertext 1300 (at bottom right) and keyboard
1320]; the VARIABLES [integer 1000, integer range 1020,
vector 1040, boolean 1060, string 1080, floating point 1100,
point 1120 and time 1140]; the SCENE MODIFIERS
[change Scene 1400, return 1420 and Scene transition
1440]; the MOTION MODIFIERS [simple 1600, drag 1620,
path 1640 and vector 1660]; the VISUAL MODIFIERS
[graphic 1700, color table 1720, gradient 1740 and image
effect 1760]; the SOUND MODIFIERS [sound effect 1800
and audio fade 1820]; the style modifier 1900, and the cursor
modifier 1920. The classification Modifier 1940 (FIG. 22)
and set value Modifier 1960 (FIG. 23) are not shown.

j- Drag and Drop.

As will be discussed below, files containing code for
Components (Modifiers and Services) may be added freely
to the system by dragging and dropping them inside a special
resource folder just as easily as instantiated Modifiers are
dragged and dropped into Projects. As discussed herein,
Elements and Modifiers may be freely dragged from win-
dow to window within a Project, or into libraries or other
Projects.

5. Object Messaging.

The object messaging mechanism is integrated into the
system so as to be accessible to authors via the configuration
of Modifiers. Authors can use this mechanism to specify the
manner in which their Elements and Modifiers will com-
municate with one another.

As is discussed in greater detail in the next section,
authors can configure their Modifiers in Edit Mode to
perform actions in response to messages received during
Runtime Mode. These messages are created and sent either
by the system itseft or by a special type of Modifier known
as a “Messenger” (i.e., any Modifier capable of sending a
message).

For example, during Edit Mode, an author could configure
the simple Messenger Modifier 1200 depicted in FIG. 13(a)
to respond to a “Mouse Up” message 1203. This message
typically would be sent by the system during Runtime Mode
when the user clicks on the Element containing this Mes-
senger Modifier 1200. By configuring pop-up menu 1204
with a “Hide” message (a type of message known as a

5,680,619

27

“Command,” discussed below), the author will cause Mes-
senger Modifier 1200 to respond to the “*Mouse Up” mes-
sage during Runtime Mode by sending the “Hide” Com-
mand to the Element, which in turn will cause the Element
to hide itself from view. Thus, when the user clicks on the
Element during Runtime Mode, it will disappear.

a. Categories of Messages.

In one embodiment, there are three general categories of
messages from which anthors can select to configure their
Modifiers: (i) “Author Messages; (ii) “Environment Mes-
sages;” and (iii) “Commands.”

Authors can configure their non-Variable Modifiers to
respond to these messages by performing a particular action.
Some Modifiers respond by triggering a single performance
of an action (e.g., send a message), whereas others respond
by enabling or disabling a continuous action (e.g., start or
stop motion). Numerous other variations are possible when
creating a Modifier via the Component AP, as discussed in
greater detail below with respect to the system’s implemen-
tation.

(1) Author Messages.

Author Messages are messages created by an author and
sent from a Messenger for the purpose of enabling, disabling
or triggering other Modifiers. Authors can provide mne-
monic names describing the purpose of a message, which
typically is to notify other Modifiers that a particular “event”
has occurred or that a particular “action” is desired.

It should be noted that reusability is enhanced to the
extent the author specifies general “events,” as opposed to
desired “actions,” as this makes fewer assumptions regard-
ing the destination Modifier. For example, a message indi-
cating that a “collision” occurred is more likely to be
reusable than one requesting the destination Modifier to
“beep.” Some authors, however, may prefer more specific
message names and be willing to sacrifice some degree of
reusability.

As discussed below, Author Messages are (by default)
“broadcast” from their specified destination down the Struc-
tural and Behavioral Hierarchies. This Hierarchical Message
Broadcasting mechanism, as noted above, significantly
enhances the reusability of Elements and Behaviors. This
mechanism is discussed in greater detail below.

Authors can create and name Author Messages either
from a special Messenger pop-up menu (described below) or
from a dialog box generated by a menu item selected in Edit
Mode. In either event, authors can provide mnemonic names
describing the purpose of a message.

In addition to using the dialog box to create and name
Author Messages, authors also can use this dialog box to
create and name message “groups” and rearrange their
Author Messages among these groups. By organizing
Author Messages in this manner, authors can select an
Author Message from an organized hierarchical list inte-
grated into the Messenger pop-up menu. As a result, authors
can limit their view to the particular Author Messages within
any one group, thereby simplifying the authoring process.
Other embodiments include multiple levels of “sub-groups™
and “one-to-many” and “many-to-many” relationships
between Author Messages and groups/sub-groups.

(2) Environment Messages.

Environment Messages are messages created and sent by
the system to reflect changes in the state of the runtime
environment, whether due to user events (e.g., depressing
the mouse or a key on the keyboard), application events
(e.g., a Scene change) or other internal state changes
detected by the system (e.g., the “enabling” by the system of
an object container). Upon detecting such an “environment

Page 61 of 88

20

25

35

40

45

50

55

65

28

event,” the system sends an Environment Message to the
appropriate Element in the Structural Hierarchy (e.g.,
“Mouse Up” to the Element clicked on by the user, or
“Project Started” to the Project upon activation of the
Project during Runtime Mode).

That message is then broadcast in a limited fashion solely
to the Behaviors and other Modifiers within that destination
Element. In other words, the message does not “cascade” to
any child Elements contained within that destination
Element, as described in greater detail below. Thus, such
messages are broadcast down the Element’s Behavioral
Hierarchy, but not its Structural Hierarchy.

Authors also can configure a Messenger to send Environ-
ment Messages to any destination, even though the actual
environment event represented by the Environment Message
never occurred. In other words, the system provides authors
with a mechanism to “fake” or simulate the occurrence of
environment events.

For example, a “button” Element might contain a Modi-
fier that emits a “click” sound when pressed (i.e., when the
user releases the mouse button on that Element and the
system sends a “Mouse Up” Environment Message to that
Element). The author might want to simulate a user’s mouse
click in another situation (e.g., in an animated help screen
showing the user how to activate that Element). By config-
uring a Messenger to send a “Mouse Up” Environment
Message to the “button” Element at the desired time, the
author can simulate that environment event and cause the
“putton” Element to respond exactly as it would had the user
released the mouse button on that Element.

By default, Environment Messages sent by Messengers
are (unlike those sent by the system) broadcast down the
Structural as well as Behavioral Hierarchies. Thus, they are
sent to all Elements and Modifiers, if any, contained within
a destination Element or Behavior.

As will be discussed in greater detail below with respect
to the system’s implementation, many aspects of the Runt-
ime environment are available during Edit Mode. In this
regard, the system sends certain Environment Messages (not
“visible” to authors) during Edit Mode to enable authors to
see the effects of particular actions, such as setting the color
and other graphic properties of an Element, without having
to run their title.

(3) Commands.

A Command is a special type of message that automati-
cally invokes one of an Element’s inherent capabilities. If an
Element does not have that particular capability, or is not an
appropriate state to respond, the Command is ignored.

Unlike a Modifier that can be configured to respond only
to particular Author or Environment messages, Elements
cannot be configured to elect whether to respond to a
Command. They respond automatically upon receiving a
Command.

For example, a QuickTime™ movie Element inherently is
capable of playing the QuickTime movie to which it is
linked. Upon receiving a “Play” Command, the Element
starts playing the movie. If, however, an author sends a
“Play” Command to a Text Element, the Command is
ignored because Text Elements do not know how to “play”
media. Similarly, a QuickTime™ movie Element that
already is in its “play” state (discussed below) will ignore a
“Play” Command.

Commands are sent only by authors (via a Messenger
pop-up menu, described below), and affect only Elements
(i.e., they are ignored if sent to Modifiers). Unlike Author
and Environment Messages, Commands are never broad-
cast. Once the destination Element responds to the

5,680,619

29
Command, the Command is “deactivated” and is not passed
down the Structural or Behavioral Hierarchies.

However, certain Commands cause Elements to change
“state,” which in turn causes the system to generate and
broadcast a related Environment Message. For example, at
any given time, an animation or movie Element may be in
a particular state, such as “play,” “stop,” or “pause.” A
“Play” Command from a Messenger might cause an Element
to transition from a “stop” or “pause” state to a “play” state.
If so, the system detects this state transition and sends a
“Played” Environment Message to the Element. That Envi-
ronment Message sent by the system is broadcast down only
the Behavioral Hierarchy, to all Behaviors and other Modi-
fiers contained within the Element.

In this embodiment, the author cannot “fake” Environ-
ment Messages that are gemerated in response to an
Element’s state transition. Yet, given that the author config-
ured a Messenger to send the Command that caused the
system to generate this Environment Message, the “event”
(i.e., the Element’s execution of the Command) actually
occurred, and therefore need not be “faked.”

This state transition mechanism is described in greater
detail below with respect to the system’s implementation.

b. Parts of a Message.

As noted above, messages are sent only by the system and
by Messenger Modifiers. From the author’s perspective,
they are sent by “name” and can be received by any Modifier
configured to respond to that name.

When configuring a Messenger to send a message, the
author also specifies a destination for the message and
(optionally) some data to be sent along with the message. In
addition, the author can alter a message’s path after reaching
its targeted destination (e.g., by restricting the broadcasting
of an Author Message to the initial destination Element and
its Modifiers).

These various parts of a message are described below in
the context of the Messenger pop-up menus that are avail-
able to all Messengers. The data structures and other imple-
mentation details regarding these parts of a message are
described in greater detail below with respect to the system’s
implementation. .

(1) Message Name.

All non-Variable Modifiers typically are enabled,
disabled, and/or triggered in response to a message. They
therefore typically include one or more “Message” pop-up
menus from which the author can select the name of the
particular Author or Environment Message to which that
Modifier will respond. Message pop-up menus do not

include Commands because, as noted above, only Elements

respond to Commands.

As is discussed in greater detail below, certain Modifiers
contain multiple Message pop-up menus (e.g., one to enable
an action and another to disable that action, or one to apply
a particular effect and another to remove that effect). The
programmer that creates the Modifier has, via the Compo-
nent APL, a wide range of “inherited” functionality from
which to choose (including as many instantiations of Mes-
sage pop-up menus as is desired).

When configuring a Messenger Modifier to send a
message, however, the author typically will select that
message from a “Message/Command” pop-up menu, which
is similar to the Message pop-up menu, but also includes
Commands (for sending to an Element). Typically, Messen-
gers contain only one Message/Command pop-up menu for
sending a single message. If multiple messages must be sent,
the author simply can create a second Messenger that
responds to the same message. In another embodiment,

Page 62 of 88

10

20

25

30

35

45

50

55

65

30

however, a programmer could create a Modifier capable of
sending multiple messages using the Component API dis-
cussed below.

The Message and Message/Command pop-up menus are
quite similar in nature, and therefore are discussed together
with reference to Table I. From either menu, the author can
select “None” (not shown) to indicate that no message is
selected (to be sent or to invoke the Modifier). In addition,
the author can create or select an Author Message from a
hierarchical “Author Messages” menu item (also not shown)
that lists all Author Messages used anywhere in the Project
(organized by groups, as noted above). The system main-
tains this list of Author Messages and makes it available to
Modifiers dynamically so that their Message and Message/
Command pop-up menus automatically contain all Author
Messages.

The remaining choices include Environment Messages
(from either menu) and Commands (from the Message/
Command pop-up menu only). As noted above, many Com-
mands will cause an Element to change state, resulting in the
generation of an Environment Message being broadcast
throughout the Element. The Message pop-up menu there-
fore includes these Environment Messages in place of the
corresponding Commands present in the Message/
Command pop-up menu. Commands are italicized on the
Message/Command pop-up menu for easy identification by
the author.

For efficiency, the Environment Messages and Commands
on both menus are illustrated together in Table L The “Type”
and “Message/Command” columns represent the two-level
hierarchical nature of these menus. Commands are italicized
in this table, as in the actual menus. Whenever the two
menus differ, both the Environment Message (from the
Message pop-up menu) and the corresponding Command
(from the Message/Command pop-up menu) are shown with
a “slash” between them. When the Message pop-up menu
has no Environment Message corresponding to the Com-
mand on the Message/Command pop-up menu, the italicized
Command is “greyed out” on the Message pop-up menu (not
shown in this table) to indicate that it cannot be selected by
the author.

TABLE I
ENVIRONMENT MESSAGES AND COMMANDS

Type Message/Command Description
Mouse Mouse Down Environment Message sent in
Mouse Up response to a user’s mouse actions.
Mouse Up Inside
Mouse Up Outside
Mouse Over
Mouse Outside
Mouse Tracking
Tracked Mouse
Outside
Tracked Mouse Back
Inside
Element Shown/Show Environment Message/Command
Hidden/Hide used to indicate that an Element has
been (or “command” an Element to
be) concealed or revealed
Selected/Select Environment Message/Command
Deselected/Deselect used to indicate that an Element’s
Toggle Select “selected”” state has been (or
“command” an Element’s
“selected” state to be) set or reset.
Also Command to “toggle” that
state
Edit Element Command to Text Element to toggle

5,680,619

TABLE I-continued TABLE I-continued
ENVIRONMENT MESSAGES AND COMMANDS ENVIRONMENT MESSAGES AND COMMANDS
Type Message/Command Description 5 Type Message/Command Description
Edit Done whether user allowed to enter or Get/Set Layer
Update Calculated edit its text, and related Get/Set Text *Command to read or write Text
Fields Environment Message to indicate Get/Set Layer Element Attributes
that user’s text editing is complete. Get/Set Height Command to read or write mToon
Also Command to update calculation 10 Get/Set Position animation Element Attributes
of value of Variables inside text Get/Set Width
fields Get/Set Layer
Scroll Up Command to move content of Get/Set Cel
Scroll Down Element within its frame in a Get/Set Range
Scroll Left particular direction. An Integer Get/Set Rate
Scroll Right Variable determines how far to 15 Get/Set Paused
move Element content (in pixels) Get/Set Height Command to read or write
Preload Element Used to preload media file into Get/Set Position QuickTime ™ movie Element
RAM for optimal playback (only for Get/Set Width Attributes
PICTs, mToons and AIFF sounds) Get/Set Layer
Play Played/Play Environment Message/Command Get/Set Cel
Control Stopped/Stop used to indicate that a movie, 20 Get/Set Range
animation or Sound Element has Get/Set Rate
been {(or “command” such an Get/Set Paused
Element to be) played once, leaving Get/Set keyFrame
last cel on screen (expept Sound), or Get/Set Volume
stopped Get/Set timeValue
Play-Shown/Play- Environment Message/Command Get/Set Rate Command to read or write Sound
Show used to indicate that a hidden 25 Get/Set Volume Element Attributes
Stop-Hidden/Stop- animation or still graphic has been Get/Set Command to read or write Project
Hide (or “command” such an Element to masterVolume Element Attributes
be) played once/shown, leaving last Get/Set User
cel on screen (except Sound), or Timeout
stopped/hidden Marks Execute Marks Command to execute a particular
Paused/Pause Eavironment Message/Command 30 Begin Marks “mark” chosen by the author, or
‘Unpaused/Unpause used to indicate that a movie, End Marks begin or end execution of all
Toggle Pause animation or Sound Element has “marks” within an ATFF-formatted
been (or “command” such an soundtmek linked to a Sound
Element to be) paused or unpaused. Element
Also Command to toggle the
“paused” state of such an Element. 35 L .
At First Cel/ Environment Message/Command As is illustrated in Table I above, authors can configure
At First Cel used to indicate that an mToon their Modifiers to send or be invoked by a wide variety of
ﬁ: i”: gei’ animal “;’sd?‘m;m h“gl““gd (or Environment Messages and Commands (as well as create
ast e r::cnl';nhs frot op Tast ol to their own Author Messages).
Play Forward Comrmand used to cause movie or 0 For example, in this embodiment, authors can select
Play Backward animation Elements to play forwards Environment Messages representing: (i) the state of users’
)) or backwards o mouse movements (e.g., “Mouse Up,” “Mounse Down,”
Motion' Motion Started Environment Message to indicate “Mouse Tracking,” etc.); (ii) the state of a Media Element’s
Motion Ended ;l;a: :éle dElemcnt s motion has started “playing” of media (e.g., “Shown,” “Hidden,” “Paused,”
& 2% : : : & :
Transition Transition Started Environment Message to indicate Stoppgd, ?tc.) or its rnotlgn mthe Scene (e.g., “Motion
Transition Ended that an Element's transition has 45 Started” or “Motion Ended”); (iii) the state of Structural
started or ended Elements such as a Scene (e.g., “Scene Changed”) or the
Parent gmnt gl?a:‘:fsd fhmmeﬂt.Mefsag" to mgfcate entire Project (e.g., “Project Started™); and even (iv) the state
arent Dis at the Modifier’s parent object of an Modifier’s Parent object container (e.g., “Parent
container has been enabled or - ¢ s '
disabled Enabled” or “Parent Disabled”™).
Scene Scene Started Environment Message to indicate 50 A wide variety of Commands also is made available to
zeﬂe %‘;d"d ; that a S;:ne has ‘;Wﬂ s‘m?dvted enable authors to access the inherent Attributes and capa-
Soome Re:ﬁg::zd ended, deactivated or reactiva bilities of their Elements, including: (i) causing a Media
Shared Returned to Scene Enviromment Message to indicate to Element to .Changc its state of “Playiﬂg"’. its mCd-‘a (e.g.,
Scene Scene Changed a Shared Scene that control has “Show,” “Hide,” “Pause,” “Stop,” etc.); (ii) causing a Text
Scene Time Expired returned to or changed ﬁ'°mk:d 55 Element to toggle its “editable” state (e.g., “Edit Element™)
No Next Scene Scene, or that time has exp or update calculations on Variables contained in its text field
No Previous Scene within a Scene, or that, with respect o . oy, s .
to the current Scene, there is 10 (e.g., “Update Calculated Fields”); (iii) causing a Sound
previous or next Scene Element to sync to “marked” locations within its linked
. . Y
Project g:gse Tisﬂe Cton(lit:lﬂnd 10‘310&; a Pml?tct or soundtrack (e.g., “Execute Marks™); (iv) causing an Element
ject Started standalone “title” (i.e., qui P N . . _
User Timeonut Runtime Mods) and Bnvi - 60 to preload ‘1‘ts linked sound or 'ammatlon for_ optimal play
Message to indicate that a Project back (e.g., Prel?ad Elf:ment),_and (v) causing an Element
has started or that the specified user to read or write its various Attributes (e.g., “Get Cel” of an
Emt pte:dod has ?Plfsd without animation or movie, “Set Position” of any Graphic Element,
expected action by the user <, » .
Get/Set Get/Set Height Command to read or write PICT Get Master Volume” of the Project, etc.).
Attribute Get/Set Position Attributes 65 As is apparent from the above discussion, another
Get/Set Width embodiment of this system could make virtually any internal

Page 63 of 88

state transition or event known to the system available to

5,680,619

33

authors as an Environment Message, as well as any addi-
tional Commands to which Elements are capable of respond-
ing.
(2) Message Destination.

When configuring a Messenger to send a message,
authors must specify a “destination” Element or Modifier to
which that message will be sent initially. As noted above
(and discussed in greater detail below with respect to the
message path), the message may propagate further and be
“broadcast” down the Structural and/or Behavioral Hierar-
chies.

In any event, authors specify their desired message des-
tination by configuring their Messenger’s Destination” pop-
up menu, illustrated below in Table II. Using a mechanism
referred to as “Relative Targeting,” an author can specify a
‘“relative” destination in the Structural and Behavioral
Hierarchies—e.g., any object container containing that
Messenger, including “Project,” “Section,” “Subsection,”
“Scene,” “Element’s Parent” and “Messenger’s Parent.”
This mechanism provides the author with a significant
degree of reusability of that Messenger.

For example, by specifying “Parent” as the destination for
a message sent by a Messenger, the author can use that
Messenger inside a different object container (i.e., another
Element or Behavior) without modification. It will always
send that message to its “Parent” object container.

Authors also can specify the “Next Element” and “Pre-
vious Element,” which are siblings of the Element contain-
ing the Messenger. This too is a form of Relative Targeting,
in that the destination Element is not determined precisely at
authoring time. Instead, it is determined at Runtime relative
to the Messenger’s position in the Structural and Behavioral
Hierarchies. '

Authors also can specify certain destinations known to the
system during Runtime Mode, such as the “Active Scene,”
the “Shared Scene,” and the “Sender’s Parent.” These too
are a form of Relative Targeting, in that these destinations
are determined based upon the state of the runtime environ-
ment.

An author also may employ “Direct Targeting” to select,
as a message destination, particular Elements or Modifiers
made available to the author based upon the system’s
knowledge of the Structural and Behavioral Hierarchies
(e.g., “Messenger’s Siblings” or “Element’s Siblings”). In
this case, however, the author selects the actnal name of a
particular Element or Modifier, and thus targets that Element
or Modifier directly. During Runtime Mode, the message
will be sent to that particular Element or Modifier (provided
that the system can still locate that Element or Modifier).

Both the Direct Targeting mechanism (in which the sys-
tem resolves the destination name into an “ID” during Edit
Mode) and the Relative Targeting mechanism (in which the
system resolves the destination “name” dynamically at
Runtime) are described in greater detail below with respect
to the system’s implementation.

TABLE IT

MESSAGE DESTINATIONS

Destination Comments

Project Message sent initially to Project Element
containing Messenger

Section Message sent initially to Section Element
containing Messenger

Subsection Message sent initially to Subsection Element
containing Messenger

Page 64 of 88

10

15

20

25

30

35

40

45

55

65

34

TABLE II-continued

MESSAGE DESTINATIONS

Destination Comments

Scene . Message sent initially io Scene Element
containing Messenger

Message sent initially to Parent of
Messenger’s “Parent Element”

Message sent initially to Messenger’s
Parent object container (Element or
Behavior)

Message sent initially to Element “next in
line” (in the Structural Hierarchy)

after Messenger's “Parent Element”
Message sent initially to Element
“previously in line” (in the Structural
Hierarchy) before Messenger’s

“Parent Element”

Message sent initially to Active Scene
(visible to user at time message is sent)
Message sent initially to Shared Scene
(visible to user at time message is sent)
Message sent initially to Parent object
container of the “source’” Messenger
(i.e., the Messenger that sent the message
which invoked the Messenger sending
this message)

Element’s Parent

Messenger’s Parent

Next Element

Previous Element

Active Scene

Shared Scene

Source’s Parent

Messenger’s Siblings Message sent initially to actual Modifier

(DIRECT TARGETING) selected by name from submenu (containing
Messenger’s siblings)

Element’s Siblings Message sent initially to actual Element

(DIRECT TARGETING) selected by name from submenu (containing
siblings of Messenger’s “Parent Element”)

Parents Message sent initially to Element or

(DIRECT TARGETING) Behavior selected by name from submenu
(containing Messenger’s ancestors)

(3) Message Data.

In addition to specifying the message name and destina-
tion in the Messenger’s dialog box, authors also can con-
figure Messengers to include certain data with their mes-
sage. Authors specify such data using the “With” pop-up
menu, discussed below.

Authors can avoid this option entirely by selecting
“None” from the With pop-up menu. Authors also can select
“Enter Value” which generates a dialog box containing a
field into which authors can enter any desired value. By
selecting “Incoming Value,” this Messenger will “pass on”
to the destination the data received with the message that
invoked this Messenger. The system determines the value of
such data dynamically during Runtime Mode.

Finally, authors can select any Variable shown on the With
pop-up menu. All Variables within the Messenger’s “scope”
are included. As discussed above with respect to Hierarchi-
cal Variable Scoping, a Variable is accessible to all descen-
dants of its parent object container. Thus, the Messenger can
access any Variable whose parent object container also
contains that Messenger.

(4) Message Path.

As noted above, Author Messages and Environment Mes-
sages sent by Messengers will, by default, be “broadcast” to
all objects, if any, contained within that destination Element
or Modifier (i.e., they will propagate from the destination
down both the Structural and Behavioral Hierarchies). The
only exception is a “switchable” Behavior which, when
switched off, prevents further broadcasting of a message to
its child objects. As a general rule, Environment Messages
sent by the system will be broadcast solely to Behaviors and
other Modifiers within the destination Element. Certain
Environment Messages, however (e.g., “Scene Started” and
“Parent Enabled”) are of sufficient interest to most Elements

5,680,619

35

to merit being broadcast down from the Scene. Commands,
on the other hand, are sent initially to an Element (or else
ignored) and will propagate no further. Authors can modify
the default message path of the messages they send via
Messengers, as discussed below.

(a) Broadcasting of Messages.

Hierarchical Message Broadcasting, as discussed above,
involves the traversal of the Structural and Behavioral
Hierarchies in an order determined by the order of the
objects as represented in the Structure View Window (see,
e.g., Structure View Window 330 in FIG. 2), initially deter-
mined by the order in which such objects were created.
Authors can modify this order by “dragging and dropping”
icons within the Structure View Window 339.

For example, the message is broadcast first down the
Behavioral Hierarchy of the Element or Behavior object
container—i.e., to all child Behaviors and other Modifiers of
that Element or Behavior. By default, it is sent from Modifier
to Modifier within the Behavioral Hierarchy. At any given
level, the order is determined, as noted above, by the order
in the Structure Window. Upon reaching a Behavior, it is
sent down to the child Behaviors and other Modifiers
contained within that Behavior. Upon reaching a non-
Behavior Modifier, it is sent to a sibling Behavior or other
Modifier (if any), and so on. Even if a particular Modifier
responds to the message, the message is “relayed” to the
next Modifier in the Behavioral Hierarchy until all Modifiers
within the original Element or Behavior object container
have received the message.

Of course, if the original destination was a non-Behavior
Modifier, no further propagation of the message would
occur. Yet, if the original destination was an Element, the
message would, by default, “cascade” down the Structural
Hierarchy to the child Elements contained within that Ele-
ment. The message would be sent down the Behavioral
Hierarchy of each such child Element as discussed above,
and then propagate to the next child Element until all
Elements (and objects contained within them) within the
original Element object container have received the mes-
sage.

Thus, as noted above, Author and Environment Messages
sent by Messengers are, by default, broadcast down both the
Structural and Behavioral Hierarchies. Authors may,
however, configure a Messenger to limit or optimize this
default path to avoid unnecessary (and perhaps undesired)
message traffic or otherwise minimize potential performance
bottlenecks.

(b) Immediate.

As is discussed in greater detail below with respect to the
system’s implementation, messages are delivered to Ele-
ments and Modifiers in “threads” of execution during Runt-
ime Mode. Despite the message dispatching efficiencies that
result from routing messages along the Structural and
Behavioral Hierarchies, an author can impact system per-
formance in certain situations, for example, by broadcasting
a message to a large number of Elements and Modifiers.

In this regard, authors are provided with an option to
configure a Messenger to postpone the default “immediate”
processing of the message sent by that Messenger until after
the current “chain of activities” has concluded. In other
words, rather than process this message “immediately” as it
is encountered, the system can complete its more time-
critical tasks and wait until an “idle” cycle to process this
message.

(c) Cascade.

Another mechanism provided to the author to optimize
. performance is the option to configure a Messenger to limit

Page 65 of 88

20

25

30

35

40

45

50

55

60

65

36

the default broadcasting of a message sent to an Element
object container to the Behavioral Hierarchy within that
destination Element. In other words, the message will not
“cascade” to child Elements within the destination Element.
It will be processed in a manner similar to that of Environ-
ment Messages sent by the system. This feature will be
illustrated in the snake example discussed below.

(d) Relay.

A final mechanism provided to the author to optimize
performance is the option to configure a Messenger to limit
the default broadcasting of a message to the first Modifier
that is configured to respond to that message. In other words,
once a Modifier responds to the message, the message will
not be “relayed” to another Modifier and will not “cascade”
to another Element. It will just stop.

6. Object Configuration.

a. Elements.

Each Element is a state machine, and in the current
embodiment, has six states: (i) initial (construction); (ii)
begin play; (iii) play; (iv) end play; (v) duration (what to do
after play); and (vi) last (destruction). Not all these states
have any particular meaning when connected with various
media. For example, for a PICT, there really only is the play
state. End play might signify releasing a cached bitmap.

The author configures a Media Element through the
Element configuration dialog 950 as shown in FIG. 10.
Dialog 950 includes the Element title 951 and Element type
icon 952 (showing that the Element is either an unlinked
Graphic Element or linked to a PICT, mToon, QuickTime™
movie, Text Element, or Sound Element in AIFF or snd
format), and source file path 953. There are a variety of
check boxes to configure the initial state. Thus, “Hidden”
checkbox 954 determines whether the Element is initially
hidden at Runtime, “Paused” checkbox 955 determines
whether movies, mToons and sounds are initially paused.
“Loop” checkbox 959 determines whether an mToon will
continue replaying. “Back and Forth” checkbox 960 deter-
mines whether the mToon is played backwards after being
played forwards (before possibly repeating itself in accor-
dance with “Loop” checkbox 959). “Mute” checkbox 964
determines whether a sound is initially muted. Also data
entry area 963 allows one to override a sound file’s original
volume.

Other options are configured through the “Play Every
Frame” checkbox 956 (which overrides QuickTime’s fea-
ture of dropping frames to ensure sound synchronization),
the “Cache Bitmap” checkbox 957 (which converts the
Element’s screen display format to a bitmap, obviating the
need to perform the complex instructions which created such
display) and the “Direct to Screen” checkbox 958 which
overrides layer order and draws the Element on top of
at/others. Finally, the data entry area 962 allows the mToon
rate to be adjusted and the data entry area 961 allows the
layer order number to be adjusted.

b. Modifiers.

The primary means for “modifying” an Element’s inher-
ent characteristics is provided by Modifier configuration
dialogs. As was discussed above, little or no scripting or
programming is required; rather, it is a visually-driven
authoring environment.

Each of the Modifiers has its own configuration dialog.
The types of data present in such dialogs reflect the infor-
mation required to properly configure the modifier. Thus, it
is useful to understand how to “program” the Modifiers—
Behaviors, Variables and Capabilities.

(1) Behavior.

The Behavior, by containing additional Behaviors and
other Modifiers, acts as the structural backbone of the

5,680,619

37

Behavioral Hierarchy. As such, the Behavior view 34
produces, with reference to FIG. 11, a dialog box 340 to
configure and display various data items thereof. The Behav-
ior dialog box 340 includes a name field 343, a modifier icon
344, an “enable when” pop-up menu 345 for specifying an
enabling message, and a “disable when” pop-up menu 346
for specifying a disabling message. Also included are a
“clean up” button 341, a switch check box 342, a set of
message lines 347a, 347b, 347¢, 3474, as well as a set of
contained Modifiers 348a, 3485, 348c, 3484, 348¢. The
switch check box 342 is used to allow an author to enable
and disable the Behavior via the enable and disable pop-up
menus 345 and 346.

The enabling and disabling messages thus specify an
operational “window” for the Behavior. The name field 343
can represent, as a mnemonic aid, the Behavior’s conceptual
function (e.g., “steering” Behavior). The Modifier icon 344
represents the Modifier type (in this case, Behavior). Each of
the contained Modifiers 348a, 348b, 348c, 3484, 348¢ are
represented by their name, icon and ordinal number (the
number in parentheses), which is the order in which each of
the Modifiers is executed within the Behavior. By default,
these ordinal numbers are the creation order of the contained
Modifier, but can be overridden by a special pop-up menu
(not shown). These Modifiers may be rearranged around the
dialog box 340 by clicking and dragging. The “clean up”
button 341 serves to automatically rearrange the contained
Modifiers according to their messaging order. The message
lines 347a, 3475, 347¢ and 347d represent the messages to
and from the contained Modifiers 348a, 348b, 348¢, 3484,
348e.

Thus, for example, Modifier 3484 is enabled by the mouse
tracking message 347q, represented by the vertical arrow
pointing to the Modifier, and sends an update Flement
message 3474, represented by the vertical arrow pointing to
the message line. In the embodiment discussed here, a
purple arrow is used to represent a message emanating from
a contained Modifier, a green arrow is used to represent a
message received by a contained Modifier that executes,
applies or enables that Modifier, and a red arrow is used to
represent a message received by a contained Modifier that
terminates, removes or disables that Modifier. Thus, in this
example, one can see that messenger modifiers 348¢ and
3484 are each responsible for creating the “Update Element”
message 347d, which serves to enable Miniscript Modifier
“Calculate Element Specs” 348e.

(2) Variables.

Variable Modifiers store values, such as numbers and
strings. These values can be configured to act as variables
(changeable values) or constants (non-changeable values).
These values may be referenced by Messengers and sent
with messages. In addition, authors can write scripts using
the Miniscript Modifier to reference and modify these values
as well as include them with messages.

The location of a Variable within the Structural and
Behavioral Hierarchies determines its scope; that is the
group of objects which can access that Variable. Put simply,
a Variable is accessible to all descendants of its parent. For
example, a Variable placed on a Section is available to any
Modifier on the Section, and all other descendants of that
Section.

A Variable whose parent is the Project is called a global.
Global Variables can be accessed by any appropriate Modi-
fier in the entire Project. A “special-purpose” scope may be
created through aliasing, as was discussed above.

Variables are either simple or compound. Simple Vari-
ables store a single value, whereas compound Variables store

Page 66 of 88

10

20

30

35

45

50

65

38

at least two values. For example, an integer Variable stores
a single integer, so it is a simple Variable. On the other hand,
a point Variable scores two values (the x and y coordinates),
so it is a compound Variable.

With reference to FIGS. 12(a)—(h), the dialog boxes for
the various Variable Modifiers (integer 1000, integer range
1020, vector 1040, boolean 1060, string 1080, fioating point
1100, point 1120 and time 1140) each respectively includes
atitle 1001, 1021, 1041, 1061, 1081, 1101, 1121, 1141; icon
1002, 1022, 1042, 1062, 1082, 1102, 1122, 1142; “Cancel”
button 1004, 1024, 1044, 1064, 1084, 1104, 1124, 1144; and
“OK” button 1005, 1025, 1045, 1065, 1085, 1105, 1125,
1145. The “Cancel” button is used to discard any editing
changes, while the “OK” button commits such changes to
memory.

(a) Integer.

An Integer Variable is used to store an integer value (e.g.,
7). Integer Variables range in value from —32767 to 32767.
In FIG. 12(a), one can see a data entry area 1003 comprising
an entry position for an integer.

(b) Integer Range.

An Integer Range Variable is used to store an integer
range value (e.g., 4. . . 8). In FIG. 12(&), one can see a data
entry area 1023 comprising an entry position for two
integers, the starting integer of the range and the ending
integer of the range.

(¢) Vector.

A Vector Variable is used to store vector values in degrees
(angle) and inches per second (magnitude). In FIG. 12(c),
one can see a data entry area 1043 comprising an entry
position for an angle, and one for a magnitude.

(d) Boolean.

A Boolean Variable stores a true/false value. In FIG.
12(d), one can see a data entry area 1063 comprising two
radio buttons, one for true and one for false.

(e) String.

A String Variable stores a string (e.g., “Bob Brown”). In
FIG. 12(e), one can see a data entry area 1083 comprising an
entry position for a string of up to 255 characters.

(f) Floating Point.

A Floating Point Variable stores a floating point value
(e.g., 3.14159). In FIG. 12(f), one can see a data entry area
1103 comprising an entry position for a floating point
number.

(g) Point.

A Point Variable stores point values (e.g., (25,45)). In
FIG. 12(g), one can sce a data entry area 1123 comprising an
entry position for two integers, the x-coordinate of the point
and the y-coordinate of the point. ’

(h) Time.

A Time Variable stores time in the format: “minutes:sec-
onds.milliseconds.” In FIG. 12(k) one can see a data entry
area 1083 comprising an entry position for the time in such
format.

(3) Capabilities.

As noted above, Capabilities are modifiers that perform
actions on behalf of the Element. In the current embodiment,
that would include Messengers and Effects, as well as three
singletons: the Miniscript Modifier, the Classification Modi-
fier and the Set Value Modifier.

(a) Messengers.

Messengers are used to send messages and (optionally)
accompanying data to Elements and Modifiers. They can be
enabled, disabled and triggered upon receipt of messages as
can all other non-Variable Modifiers. Although each has
unique functionality, there are some similarities among them
worth noting.

5,680,619

39

With reference to FIGS. 13(a)—(g), one notes that the
dialog boxes for the various Messengers [(basic) 1200, if
messenger 1220, timer 1240, border detection 1260, colli-
sion 1280, hypertext 1300 and keyboard 1320] each respec-
tively has a title 1201, 1221, 1241, 1261, 1281, 1301 and
1321, an icon 1202, 1222, 1242, 1262, 1282, 1302 and 1322,
a “Cancel” button 1207, 1228, 1250, 1273, 1296, 1312 and
- 1331, and an “OK” button 1208, 1229, 1251, 1274, 1297,
1313 and 1332.

As Messengers, each respectively has a messaging block
comprising (i) a Message/Command pop-up menu 1204,
1225, 1247, 1268, 1288, 1306 and 1325, (ii) a With pop-up
menu 1206, 1226, 1249, 1275, 1289, 1307 and 1327, and
(iif) a Destination pop-up menu 1205, 1227, 1248, 1269,
1292, 1308 and 1326. Furthermore, each has messaging
checkboxes for (i) immediate messages 1209, 1230, 1252,
1270, 1298, 1309 and 1328, (ii) cascaded messages 1210,
1231, 1253, 1271, 1299, 1310 and 1330, and (iii) relayed
messages 1211, 1232, 1254, 1272, 1279, 1311 and 1331.

It is critical that a Messenger specify the type and desti-
nation for its message. Thus, the Destination pop-up menu
permits the author to designate targets in accordance with
the range of Elements specified in Table I above. The
Message/Command pop-up menu allows the user to specify
the type of message to be transmitted. The With pop-up
menu permits various types of data to be attached to the
message. The messaging option check boxes allow the
message to be configured, respectively, for immediate
transmission, cascading or relaying, as discussed above.

Most Messengers have an “enable when” pop-up menu
and a “disable when” pop-up menu, which together specify
a window of events in between which the Messenger is
active (and conditionally sends messages). Other Messen-
gers have an “execute when” pop-up menu which is con-
figured to “fire and forget,” i.ec., conditionally send the
message once upon receiving the triggering event.

i) Basic Messenger.

The Basic Messenger 1200, illustrated in FIG. 13(a),
simply sends a message with optional author-supplied data
when a particular message is detected.

ii) If Messenger.

If Messenger 1220, illustrated in FIG. 13(5), allows
conditional sending of messages using Boolean logic. In
addition to the “execute when” pop-up menu 1223, a data
entry area 1224 allows the author to impose a condition
which must be met for the message to be sent (using the
same syntax as is used by the Miniscript Modifier discussed
below).

iii) Timer Messenger.

The Timer Messenger 1240, illustrated in FIG. 13(c),
waits an author-specified period of time before sending a
message. One can see “execute when” 1243 and “terminate
when” 1244 pop-up menus, a data entry area 1245 for
expressing a countdown time in the format of
“minutes:seconds.milliseconds,” with a loop timer checkbox
1246 to send the timed message repeatedly.

iv) Boundary Detection Messenger.

The Boundary Detection Messenger 1260, illustrated in
FIG. 13(d), detects collisions with enclosures. One can see
“enable when” 1263 and “disable when” 1264 pop-up
menus, and three radio buttons to specify the detection
conditions for collisions with the Element’s parent’s bor-
ders: (i) on first detection only 1265, (ii) while continually
detected 1266, and (iii) while exiting enclosure only 1267.

v) Collision Messenger.

The Collision Messenger 1280, illustrated in FIG. 13(e),
detects collisions with Elements. One can see “enable when”

Page 67 of 88

10

20

25

35

45

55

65

40

1283 and “disable when” 1284 pop-up menus. The “collide
with” pop-up menu 1285 can be used to designate Elements
that can be collided with, e.g., Elements which are “solid.”
This can be specified using the Classification Modifier,
described below. The detect “in front” and “behind” check
boxes 1286 and 1287 can be used to filter out Elements from
different layers. The detect buttons 1293, 1294, and 1295
can be used, respectively, to configure messaging only upon
first contact of the Elements; continually while two Ele-
ments are in contact; or when the two Elements cease being
in contact with each other. Collisions suggest a special target
for a message, apart from the normal range of targets
provided through destination pop-up menu 1292 discussed
above, namely the actual Elements collided with. This is
made available through the “Collision Elements” destination
button 1290, which allows the author to toggle between the
normal mode of messaging to a specified destination, and
this special mode of targeting only collided Elements. The
first Element collided with may be specified exclusively
through the use of the “First Element Only” checkbox 1291.

vi) Hypertext Messenger.

Hypertext Messenger 1300, illustrated in FIG. 13(f), links
the sending of a message with a user’s mouse actions. When
a Hypertext Messenger is dropped into a Text Element, any
hypertext libel that has been assigned to text within the
Element appears on the “On” pop-up menu 1303. The
Messenger will thus trigger upon receipt of the specified
message, indicating a user’s mouse action on such “hot”
text. Furthermore, through the highlight effect pop-up menu
1304, the following effects to the “hot” text may be applied:
none, underline, invert, highlight, tone up, tone down or
squiggly underline. This effect may be sustained through
application of the “Remain highlighted” checkbox 1305.

vii) Keyboard Messenger.

Keyboard Messenger 1320 detects and responds to key-
board events. Instead of being triggered upon receipt of a
message (as are most non-Variable Modifiers), it is triggered
by author-specified (via controls 1323) user key or key
combinations, including the control, command, option and
shift keys. The key state of the trigger may be specified
through radio buttons 1324 as down, up or repeating.

b) Effects.

In general, Modifiers grouped under the category of
Effects modify the visible characteristics of their parent
Elements.

With reference to FIGS. 14(a)-(c), 16{a)«d), 17(a)—{(d),
18(a)~(b), 19 and 20, the categories of effects include: the
Scene Modifiers (change Scene 1400, return 142¢ and Scene
transition 1440); the Motion Modifiers (simple 1600, drag
1620, path 1640 and vector 1660); the Visual Modifiers
(graphic 1700, color table 1720, gradient 1740 and image
effect 1760); the Sound Modifiers (sound effect 1800 and
audio fade 1820); the style Modifier 1900, and the cursor
modifier 1920. These Modifiers respectively have a title
1401, 1421, 1441, 1601, 1621, 1641, 1661, 1701, 1721,
1741, 1761, 1801, 1821, 1901 and 1921 and an icon 1402,
1422, 1442, 1602, 1622, 1642, 1662, 1702, 1722, 1742,
1762, 1802, 1822, 1902 and 1922. All but the path Modifier
1640 and Graphic Modifier 1700 have, respectively, a “Can-
cel” button 1409, 1424, 1449, 1609, 1628, 1666, 1726, 1747,
1769, 1807, 1827, 1911 and 1926 and an “OK” button 1410,
1425, 1450, 1610, 1629, 1667, 1727, 1748, 1770, 1808,
1828, 1912 and 1927.

i) Scene.

With reference to FIG. 14(a). the Change Scene Modifier
1400 is used to change the currently visible Scene during
Runtime (the “Active Scene”) from one Scene to another. It

5,680,619

41

is executed when the message specified in pop-up menu
1403 is received. Radio buttons 1404 designate that the
Active Scene should be switched to: (i) the next Scene in the
Subsection, (ii) the previous Scene in the Subsection, or (jii)
a particular Scene. When the last radio button of 1404 has
been selected, pop-up menus 1405 allow the particular
Section, Subsection and Scene to be specified. Checkbox
1406 allows the Active Scene to be mixed in with the
destination Scene, through pop-up menus 1405, Checkbox
1407 adds this Scene to the “return list” of a future Scene
with a return Modifier, as discussed below. Checkbox 1408
designates that switching to a previous or next Scene will
wrap around, if necessary, through the Scenes of the Sub-
section.

With reference to FIG. 14(b), the Return Modifier 1420
works in association with a Change Scene Modifier with its
“add to return list” option selected. The Return Modifier
returns to the Scene which has been added to the return list
when the message specified in pop-up menu 1423 is
received.

The operation of the “Return list” using Scene change and
return Modifiers is illustrated in FIG. 15. Therein, Scene A
1500, Scene B 1510, Scene C 1520, Scene D 1530 and Scene
E 1540 each includes, respectively, Scene Change Modifiers
1505, 1515, 1525, 1535 and Return Modifier 1545. Scene
Change Modifier 1515 on Scene B 1510 has its “Add to
return list” checkbox 1407 set. Thus, when Return Modifier
1545 is executed, the Active Scene changes from Scene E
1540 to Scene B 1510, skipping intermediate Scene D 1530
and Scene C 1520.

With reference to FIG. 14(c), Scene Transition Modifier
1440 creates one of a variety of transitions for a change of
Scene. Upon receiving the messages set through pop-up
menus 1443 and 1444, respectively, the Modifier in essence,
registers (and revokes registration of) the selected transition
with the system (to take effect upon an actual change of
Scene). The type of transition is specified through pop-up
menu 1445, and includes pattern dissolve, random dissolve,
fade, push, slide, wipe or zoom. The number of steps
required to accomplish this transition is specified through
data entry area 1447. Certain transition effects specified
through pop-up menu 1445 require further specification of a
direction, which is accomplished through pop-up menu
1446. The rate at which the transition takes place, in steps
per second, is entered through data entry area 1448.

ii) Motion.

With reference to FIG. 16(a), the Simple Motion Modifier
1600 initiates a simple motion path. It commences and
terminates execution of such motion when the messages set
through pop-up menus 1603 and 1604, respectively, are
received. The types of motion available are set through
pop-up menu 1605 and include: (i) “Into Scene” which
moves the Element into the Scene from its current position;
(ii) “Out of Scene” which moves the Element off the Scene
from its current position; and (iif) “Random Bounce” which
bounces the object at random angles within the boundary of
its parent Element. Direction in the first two instances of
motion is specified through pop-up menu 1606. The number
of steps and rate to accomplish this motion path are specified
through pop-up menus 1607 and 1608, respectively.

With reference to FIG. 16(?), the Drag Motion Modifier
1620 allows the user to drag the Element at Runtime. [All
Media Elements have this capability during Edit Mode in the
layout view window 320.] This feature is respectively
enabled and disabled when the messages set through pop-up
menus 1623 and 1624, respectively, are received. A check-
box 1625 controls whether the Element will be constrained

Page 68 of 88

10

20

25

30

40

45

55

65

42

to remain within the boundaries of its parent. A set of data
entry areas 1626 designate the top, bottom, left and right
constraints. A set of radio buttons 1627 designate whether
dragging is unconstrained, or constrained to the horizontal
or vertical directions.

With reference to FIG. 16(c), the Path Motion Modifier
1640 controls the motion paths of Elements, and in particu-
lar animations. It commences and terminates execution of
such motion when the messages set through pop-up menus
1643 and 1644, respectively, are received. The editing
buttons 1645 allow the author to set down a polygonal path
for the Element to follow, the path being followed by the
upper left hand corner of the Element’s enclosure. Data
entry area 1647 allows the position in the path to be
specified, with data entry area 1648 indicating the corre-
sponding mToon cel which should be played at that position.
Slider control 1646 allows an author to step or play through
the positions, forward or backwards, thus providing a pre-
viewing capability while the dialog box 1640 is open. The
rate at which the animation is played over the path is
configured through data entry 1649. The author also can
specify whether the animation will always begin at the first
position set (through radio button 1650) or whether it will
continue from its then-current Runtime position (through
radio button 1651). Checkboxes 1652, 1653 and 1654
respectively control whether the animation is to be looped
indefinitely, repeated forwards and then backwards, or just
played backwards.

With reference to FIG. 16(d), the Vector Motion Modifier
1660 initiates vector motion in degrees and inches per
second. It commences and terminates execution of such
motion when the messages set through pop-up menus 1663
and 1664, respectively, are received. The actual vector for
the motion is specified through pop-up menu 1665.

iii) Visual.

With reference to FIG. 17(a), the Graphic Modifier 1700
modifies graphic attributes of Elements. It is applied and
removed when the messages set through pop-up menus 1703
and 1704, respectively, are received. The type of ink effect
(copy, background transparent, invisible, blend, transparent,
ghost, reverse copy, reverse transparent, reverse ghost, cha-
meleon dark, chameleon light) is specified through pop-up
menu 1705. A matte may be applied through pop-up menu
1706 with Graphic Elements having a solid background
color, such matte function making the specified color trans-
parent. This matting color is specified through matte color
box 1709, which brings up a color palette. The “hot” region
shape of an Element, i.e., that portion of an Element that will
respond to mouse messages, is configured through pop-up
menu 1707, and includes rectangle, round rectangle, oval,
star and polygon. A polygon requires use of tools 1710 to
create and edit the end points thereof. The background and
foreground colors of the Element can be selected through
boxes 1708, which bring up color palettes. The border size
of a defined Element shape, the shadow and shadow of the
matte can be adjusted through data entry areas 1711, 1713
and 1714, respectively.

With reference to FIG. 17(), the Color Table Modifier
1720 manages color tables. It is applied and removed when
the messages set through pop-up menus 1723 and 1724,
respectively, are received. The color table is specified
through pop-up menu 1725.

With reference to FIG. 17(c), the Gradient Modifier 1740
creates color gradients in Elements that have not been linked
to an external media file. It is applied and removed when the
messages set through pop-up menus 1743 and 1744,
respectively, are received. The gradient style butions 1745

5,680,619

43
specify the direction or type of gradient (e.g. vertical,
horizontal, diagonal, central). The Start and End color boxes
1746 specify the colors which comprise the beginning and
end of the color gradient, accessible through pop-up color
palettes.

With reference to FIG. 17(d), the Image Effect Modifier
1760 creates image effects, particularly useful for imple-
menting buttons within a project. It is applied and removed
when the messages set through pop-up menus 1763 and
1764, respectively, are received. The image effect is desig-
nated through pop-up menu 1765 (e.g. invert, select bevel,
unselect bevel, tone up, tone down). The width of bevel
effects is specified through data entry area 1766. Tone
amount is specified through data entry area 1767. The
checkbox 1768 controls whether image effects operate out-
side any margins set by a graphic modifier, as discussed
above.

iv) Sound.

With reference to FIG. 18(a), the Sound Modifier 1800
plays sound effects. It commences and terminates execution
of such sound effect when the messages set through pop-up
menus 1803 and 1804, respectively, are received. The actual
sound is specified through pop-up menu 1805, with a
preview capability provided through button 1806.

With reference to FIG. 18(%), Sound Fade Modifier 1820
decreases or increases the default volume level of a sound.
It commences and terminates execution of such sound effect
when the messages set through pop-up menus 1823 and
1824, respectively, are received. The percentage of the
sound fading is specified through data entry area 1825, while
the duration of the fade is specified through data entry area
1826.

v) Text.

With reference to FIG. 19, the Style Modifier 1900 is used
to modify text styles. It is applied and removed when the
messages set through pop-up menus 1903 and 1904,
respectively, are received. The font type, alignment and size
are specified through pop-up menus 1905, 1906 and 1907,
respectively. The font style (e.g., bold, italics, underline,
outline, shadow, condensed and extended) is specified
through checkboxes 1910.

vi) Cursor.

With reference to FIG. 20, the Cursor Modifier 1920 is
used to change the mouse cursor icon. It is applied and
removed when the messages set through pop-up menus 1923
and 1924, respectively, are received. The type of cursor is
specified through pop-up menu 1925.

(c) Miniscript.

The Miniscript Modifier bears special mention. Although
the current embodiment emphasizes a visually-driven
authoring environment, there are times when authoring a
short script is more convenient than programming a special-
purpose modifier. At some point, however, frequently used
constructs suggest the creation of a separate modifier. The
“If” Messenger is a good example. It is used to trigger a
message on a simple boolean expression handled much like
the Miniscript Modifier, but with the special messaging
mechanisms presented like any other Messenger. In the
current embodiment, the Miniscript Modifier allows access
to internal Attributes of Elements (e.g. position) not other-
wise accessible directly by authors.

With reference to FIG. 21, the Miniscript Modifier 1980
has a title 1981 and an icon 1982. It is executed npon receipt
of a message as configured via pop-up menu 1983, The data
entry area 1984 permits the author to enter the script using
the Miniscript scripting language. The compile button 1982
compiles any changes made in the data entry area 1984.

Page 69 of 88

20

25

30

35

40

45

50

55

60

65

44

The syntax of the Miniscript Modifier is based on the
following keywords: (i) “set”, “of” and “to” (used to set
Variables); (ii) “if”, “then”, “else” and “end if” (to form
conditional structures); and (iii) “send” and “with” (for
message dispatching). The Miniscript Modifier also can
access and manipulate the inherent Attributes of Elements,
e.g., for an mToon, its height, position, width, cel, range, rate
and paused fields. It permits Relative Targeting of messages
through tag names, such as Project, Section, Scene, Element,
Element’s Parent, activeScene, sharedScene and parent. The
Miniscript language also has access to various mathematical
functions, such as absolute value (abs), arctangent (atn),
random (rnd), and so on.

The Miniscript Modifier in the current embodiment is not
implemented as a p-code (interpreted pseudocode) system;
rather, it is a compiled, atom-based execution system. Thus,
the miniscript is broken down into atoms, allowing the
arguments for each to be loaded and executed by calling the
appropriate function, which in most cases is the method of
another Modifier. Implementations of scripting languages
are well known in the art. Morcover, additional scripting
functionality could be added to the system via the Compo-
nent API, discussed below with respect to the system’s
implementation.

(d) Classification.

With reference to FIG. 22, the Classification Modifier
1940 establishes a classification scheme which allows
authors to create and name classes and group any objects
into one or more of these classes. In one sense, the Classi-
fication Modifier 1940 implements a set-based, rather than a
family-based hierarchy. In other words, one can target sets
of Elements, rather than families. However, as can be readily
understood, the current embodiment is optimized to service
a family hierarchy.

The Classification Modifier 1940 has a title 1941 and an
icon 1942. It is applied and removed when the messages set
through pop-up menus 1943 and 1945, respectively, are
received. The classification is specified through pop-up
menu 1944.

An example application of the Classification Modifier
1940 is in conjunction with the Collision Messenger 1280
(see FIG. 13(e)). The Collision Messenger’s “Collide With”
pop-up menu 1285 can be configured to “Parent’s Class,”
meaning that its parent Element will detect collisions only
with other Elements in the same class. Thus, authors could
configure bouncing ball Elements that would only bounce
off one another.

(e) Set Value Modifier.

With reference to FIG. 23, the Set Value Modifier 1960 is
used to reset the value of a Variable Modifier. It has a title
1961 and an icon 1962. It is executed upon receipt of the
message specified via pop-up menu 1963. The author can
select the source of the data to be written via pop-up menu
1965, and the target Variable or incoming data to be changed
via pop-up menu 1964.

B. Core System Architecture.

The overall architecture of a system 100 embodying the
principles of the invention is presented in FIG. 24. The
major modules of system 100 are separated into those
governing the actual title content, Runtime functionality, and
Edit Mode functionality. This system 100 interacts through
hardware peripherals, such as a display 3, speakers 4,
keyboard 5, and mouse 6 or other joystick-like apparatus. As
shown by the stretched rectangles, there are modules which
straddle the Runtime/Edit Mode boundary, and are thus
present in both.

Under the classification of “title content” are those mod-
ules that are specific to a particular tifle. They include the

5,680,619

45
logic 1, which is the storage for the project itseft, including
all Elements and Modifiers, and the media 2, which is the
storage for all media linked into the project.

There is certain functionality available to the author only
in Edit Mode, such as access to windows, dialogs, etc.
However, there is very little difference between Edit Mode
and Runtime Mode in the current embodiment, In both
modes, certain background Environment Messages (not
visible to the author) are issued by system 100, which trigger
Modifiers to perform certain functions, such as updating
Element positions on-screen. Certain functionality acces-
sible to authors through Modifiers also is realized during
Edit Mode. For example, the system updates an Element’s
graphic attributes in accordance with the author’s configu-
ration of the Graphic Modifier, and steps through an author-
specified path, configured via the Path Motion Modifier.
Most Runtime functionality, however (such as the sending of
messages throughout the Structural and Behavioral Hierar-
chies to trigger Modifiers), is suppressed during Runtime
Mode.

In an alternative embodiment, rather than suppressing
most Runtime functionality during the Edit Mode, such
Runtime functionality could proceed at a significantly
slower rate. This would give the author the impression of
how the Project would proceed at normal speed, while
allowing the author sufficient time to reconfigure Elements
and Modifiers without interrupting the flow.

1. Edit Mode Functionality.

The modules comprising the Edit Mode functionality in
this embodiment include the title builder 51, the libraries 52,
the mToon editor 53, the views manager 30 and the author-
ing GUI support 40, as well as the asset manager 7, the alias
manager 8, the hypertext support 9 and the cross-platform
architecture 50 that are shared with the Runtime function-
ality.

The title builder 51 is the module which transforms a
project into a standalone title, severing the Edit Mode
functionality. In view of the cross-platform architecture 50
discussed below, this task can be accomplished for various
target platforms with minimal difficulty.

The libraries 52 provide centralized storage for Elements
and Modifiers, in contrast to external media resources con-
trolled by the asset manager 7. As discussed below with
reference to FIG. 6, the libraries module 52 generates and
controls the library windows 520.

The mToon editor 53 allows manipulation of the propri-
etary “mToon” animation format, as well as the conversion
of other formats, such as QuickTime™, into the mToon
format. As discussed above with reference to FIGS. %(a)-
(d), this module controls the mToon editor window 900, the
source file dialog 910, the compression settings dialog 920
and the mToon ranges dialog 930.

The views manager 30 controls and presents to the author
various views of the Project, which include a layers view 31,
a layout view 32, a structure view 33 and a behavior view
34. The layers view 31 is used to edit projects a Subsection
at a time, with the various Scenes projected along one axis,
and the Elements with their layer order on the other. It
controls, with reference to FIG. 3, the layers view window
310.

The layout view 32 is used to edit a Scene and is the view
closest in representation to the actual running of the Project.
It controls, with reference to FIG. 2, the layout view window
320.

The structure view 33 shows and allows the manipulation
of the Structural Hierarchy of Project, Section, Subsection,
Scenes and Media Elements, as well as the Behavioral

Page 70 of 88

10

20

25

30

35

45

50

55

65

46

Hierarchy of Behaviors and other Modifiers. It controls, with
reference to FIG. 4, the structure view window 330. It
should be noted that Modifiers may be edited in all three
views (layers view 31, layout view 32 and structure view
33), as discussed below. The Behavior view 34 shows (via
Behavior Window 390 shown in FIG. 11) and allows the
author to control the messaging connections among a
Behavior’s child Modifiers.

The asset manager 7 is a database system that provides
centralized access to all external resources (such as pictures,
animations, text and fonts) stored externally in the media 1
(e.g. on hard disk). The asset manager 7 is implemented as
a flat-file database, having a search engine for files. The asset
manager 7 has the ability to follow assets as they may be
moved around a file system. If the asset manager 7 does not
find an asset in the prescribed directory, it will first deter-
mine if other assets that used to be in the same directory as
the asset in question have been moved to another directory.
If so, the asset manager 7 will ask the author whether to
pursue that other directory for such asset. Otherwise, it will
continue to seek other “candidate” directories among the
moved assets. If the asset manager 7 then fails in this
process, the author will be prompted either to relink the
media at its new location or to link to other media, or simply
ignore this lack of media linkage. In the latter case, the
Element in question simply will not “play” any media.

The alias manager 8 handles the aliasing of Modifiers. For
Variables, such as integers, this link of data is maintained at
Runtime. Thus, changes to one instance of the aliased
Variable are reflected in all other such instances during
Runtime Mode. In one embodiment, aliasing affects other
non-Variable Modifiers only during Edit Mode. Invocation
of one instance of an aliased Modifier (e.g., in response to
a message) does not result in the invocation of other such
instances. However, nothing in the embodiment discussed
here precludes implementing aliasing such that all Modifiers
are linked dynamically, and thus are invoked simultaneously
during the Runtime Mode.

The hypertext support 9 implements hypertext capability,
whereby any part of a Text Element’s text may be trans-
formed into a “label.” Hypertext labels are tags that can be
applied to the entire text or to blocks of text within Text
Elements.

The authoring GUI support 40 controls various aspects of
the graphical user interface, including the features of media
linking 41, messaging log 42, drag and drop 43 and mor-
phing 44.

The media linking module 41 controls mapping of exter-
nal media 2 resources to Elements within a Project. It also
permits “thumbnails”, which are draft mode, low resolution
representations of such media that are substituted for the
actual media. This saves space and thus makes Projects more
transportable, a useful feature during title development.
Moreover, a title could even be executed over a network
(e.g., the Interact) with significant savings in bandwidth due
to the replacement of large media files.

The messaging log 42 provides debugging information in
the form of messages sent and received by various Elements
of the Project. The messaging log 42 traps all message traffic
during Runtime and presents the author with the desired
filtered view thereof through the messaging log window 420
(see FIG. 8).

The drag and drop module 43 provide the visual paradigm
for transferring, e.g., Elements and Modifiers from one part
of a Project to another, or even to other Projects, by pressing
the mouse 6 button down on the object and dragging it to its
desired destination. The implementation of drag and drop

5,680,619

47

behavior is well-known in the art. The consequences of
particular drag and drop actions, such as Adoption, Trans-
plantation and hierarchical object linking, are handled by
particular core modules, as discussed below. The drag and
drop module 43 will indicate a disallowed action by moving
an outline of the object’s icon back to its criginal position.

The morphing module 44 controls the type of link to
external media, thus allowing an mToon Graphic Element to
be transformed into a PICT Graphic Element, for example.
It does so by creating an instantiation of the new Media
Element, copying over the structure pointers, ID numbers,
etc. (as explained below), and setting up the appropriate icon
for the new media. It does not, however, destroy the original
Element until the author performs another operation, after
which “undo” capability is lost.

a. Connecting Objects.

As discussed in greater detail below, Elements, Modifiers,
“Players” and “Assets” are implemented as classes of
objects. When the author creates an Element or Modifier, or
links an Element to external media, the system 100 instan-
tiates objects from these classes. The author may then
configure and connect these objects to form the working
Project.

(1) Element To Element Connection.

The connection of objects underlying this authoring pro-
cess is illustrated in FIG. 25. It must be stressed that the
particular connections shown are for purposes of demon-
stration by example, and the principles underlying the
present invention are not limited to the actual connections
shown. One sees a portion of the Structural Hierarchy
represented by Scene Element 151 pointing to its first child
Element 152, which points to and is in turn pointed back to
by its sibling Element 153. Both Elements 152 and 153 point
back to their parent Scene Element 151. The Scene Element
151 is pointed to and points back to its parent Subsection
Element 150. The Structural Hierarchy continues, though
not shown, through the Section level up to the Project level.

Had the author decided to make Element 153 a child of
Element 152 instead of a sibling, the next sibling and
previous sibling pointers of Element 152 and Element 153
would have been respectively voided, the first child pointer
of Element 152 would be set to point to Element 153 and the
parent pointer of Element 153 reset to point to Element 152.
Adding new Elements would proceed in an analogous
fashion.

Thus, an Element has (i.e., in its instance data structure)
pointers to: (i) its parent Element; (ii) its first child Element;
(iii) its previous sibling Element; (iv) its next sibling Ele-
ment; and (v) its first child Modifier.

(2) Modifier Connections.

The Modifier objects shown in FIG. 25, namely 161, 162
and 163 (and Services 168, 169 and 170 in FIG. 26) are not
implemented as conventional C++ classes, as is the rest of
the core 99 (and thus are represented specially as double
rectangles). These Components (Modifier and Services) are
special classes of objects designed to extend the function-
ality of the external architecture discussed above. They will
be discussed in more detail below in connection with the
Component API. To bridge the core 99 architecture with the
Component API, a “wrapper” class interfaces with each
Component class. There are thus wrappers for Modifiers and
wrappers for Services (discussed in greater detail below with
respect to the Component APT). The Modifier wrappers thus
have pointers to: (i) the Modifier; (ii) its parent Element; (iii)
its parent Behavior, if any; (iv) its first child Modifier, if any;
and (v) its next sibling Modifier.

When an author drags and drops a Modifier into an
Element, a Modifier object is created. In other words, a

Page 71 of 88

15

20

25

30

35

40

60

65

48

Modifier wrapper object is instantiated from a Modifier
wrapper class (as is a corresponding special Modifier object,
such as Modifiers 161, 162 and 163, discussed in greater
detail below with respect to the Component APT). These
Modifier wrapper objects are instantiated from a general
wrapper class, except for Behavior Modifiers, whose wrap-
per objects are instantiated from a Behavior wrapper class.
These wrapper classes provide for the Modifiers a backbone
of methods to read and write data, to obtain and draw the
Modifier’s icon, to open and close the dialog editor, to copy
data, and to send messages throughout the Structural and
Behavioral Hierarchies.

Focusing now downwards from Element 153, one can see
that it points to its first child Modifier 161 through Modifier
wrapper 158, which in turn points to the second child
Modifier 162 through wrapper 159, which in turn points to
the third child Modifier 163 through wrapper 160. Element
153 is itseft pointed to by the Modifier wrappers 158, 159
and 160. Thus, the Element 153 knows of its first child
Modifier 161, and all three sibling Modifiers 161, 162 and
163 know of their parent, Element 153.

With the sibling pointers going in only one direction
(right), one can see that the Modifier wrappers 158, 159 and
160 form a singly-linked list. This is distinguished from the
sibling Elements 152 and 153 which form a doubly-linked
list. This slight difference in the implementation of the
Structural and Behavioral Hierarchies is due to a subjective
judgment that, in practice, it is more often necessary to know
one’s previous sibling Element than one’s previous sibling
Modifier.

As will be discussed below, messages are passed among
Modifiers from “left” to “right,” i.e., along the sibling chain.
If need be, one can always record the pointer to the present
Modifier, proceed up through the parent and then cycle
forward from the first sibling, recording each pointer in turn
until the present Modifier is encountered again. Allowing
authors to move Modifiers within the Behavioral Hierarchy
requires analogous updating of pointers as described above
with respect to Structural Hierarchy changes.

(3) Player and Asset Connections.

‘When an author creates a new Element (e.g., a Graphic
Element), an Element object is instantiated from a general
Graphic Element class. In addition, corresponding “player”
and “asset” objects are instantiated from their core classes.
From Element 153, one can also see attached a player 154
and asset 155. The player 154 knows how to “play” media
of a particular type, e.g. a PICT, a sound, or a QuickTime™
movie. The asset 155 is a pointer to the actual media, which
is represented as stored on disk 157. Of course, the operating
system 156 provides the necessary interface between the
asset 155 and media 157. In the embodiment discussed here,
player 154 performs the bulk of the interaction with Element
153, while asset 155 only exchanges ID reference numbers
with the Element 153.

The process by which an Element is linked to a player is
as follows. When the media file 157 is selected by the author
through a standard file dialog box, the asset manager 7 is
asked whether it knows about that particular asset. If so, that
asset 155 is used and connected as shown. Otherwise, a
database entry is created in asset manager 7, the asset 155 is
established and the file description is passed on to player
154. if the author decides to switch the type of media
entirely, a new player object would be instantiated, with all
the pointer information carried over from player 154. This
morphing process is controlled by the morphing 44 module.
Similar to the process of originally creating an asset, a new
asset would replace asset 155, while asset 155 would remain

5,680,619

49

as an entry in the asset manager 7. The asset manager 7
would simply decrement the user count in its Asset Palette
70 display, even if that meant that the user count was now
ZET0.

(4) Touch-Up Process.

‘When an author initiates Adoptions or Transplantations,
the system 100 attaches and detaches Elements or Modifiers,
as the case may be, as discussed above. In order to complete
either process, and enable the Element or Modifier to operate
in its new environment, a few additional measures are
required.

When an author moves an Element or Modifier from one
environment to another, the system 100 broadcasts an Envi-
ronment Message from the Project level. As will be under-
stood more fully below, Messaging Management 13 dis-
patches messages along the Structural and Behavioral
Hierarchies not only to Elements and Modifiers, but also to
all views, palettes, and certain other “system objects,” in
order that they also may respond appropriately. The message
specifies the relevant object and type of change. This change
can be as subtle as requesting a view window to highlight an
icon selected by the author.

When an object is moved to a new environment, a “touch
up” process takes place. This process applies not only to
Elements and Modifiers, and each of the objects they
contain, but also to assets, symbol IDs, mToon ranges, sound
ranges, etc. The system 100, throngh the Symbol Manager
19, asks each entity to identify by name its “external
dependencies” from its previous environment, e.g., Author
Messages, Variables, aliases, mToon symbols and sound
symbols.

If the name is present in the new environment, and the ID
number supplied by the Symbol Manager 19 differs, the
system replaces the entity’s old ID number with the ID
number from the new environment. If the name is not
present, yet the ID number conflicts with an existing ID
number, the entity is assigned a new, non-conflicting ID
number.

The implementation of Hierarchical Element Positioning
(i.e. that a child Element moves with its parent Element),
necessitates its own type of “touch up” process. In the
current embodiment, position (an Attribute) only applies to
Graphic and Text Elements (although one could envisage
and readily implement “stereo” sound Elements, where the
Element’s position would reflect the relative amplitude
between the left and right speakers).

In any event, when a parent Element moves, the position
of each of its child Elements (and their child Elements, and
so forth) must be modified. The coordinates of the child
Element are readjusted in a straightforward manner by the
system, which subtracts the old parent’s coordinates (saved
when detached) from the Element’s coordinates and adds the
new parent’s coordinates to the Element’s coordinates. FIG.
25 illustrates how to access a parent’s data structures, and
thus in particular, its position Attribute.

b. Aliasing.

The alias manager 8 works with all Modifiers and oper-
ates by maintaining a list of all aliases, along with the users
of such aliases. In the current embodiment, all manifesta-
tions of an alias are separate instantiations of a Modifier
which are kept in sync with each other. Thus, the relation-
ship of an aliased Modifier to the objects it connects with
(pointers to Elements, parent Behaviors, sibling and child
Modifiers, etc.) is kept intact.

Each instantiated Modifier has an alias ID code which is
set to zero if not an alias, and will share the same non-zero
alias ID code when aliased together with others. Thus, if one

Page 72 of 88

10

25

30

35

45

50

55

65

50

of the Modifiers under an alias is changed, the Modifier state
data is written out and the alias manager 8 transmits the data
to the other Modifiers under the alias. For Variables, this can
and does occur in Runtime Mode. For all other Modifiers,
this occurs only in Edit Mode. This accounts for the ability
of aliased Variables to circumvent their normal scope. Of
course, it should be noted that this is an implementational
decision only, and anyone of ordinary skill in the art would
realize that non-Variable Modifiers could easily be synchro-
nized at Runtime as well.

2. Saving Projects and Titles.

As was discussed above, the Project’s Elements and
Modifiers are stored in Logic 1, while the various files may
be dispersed in whatever fashion in the storage for media 2
(e.g., directories for files stored on magnetic media,
CD-ROM, etc.). It is worth noting how the title builder 51
actually allocates storage (on a medium such as CD-ROM)
for a standalone title, rather than a Project under
development, such that the object loader 16 can efficiently
load objects into memory. With the slow seek and read
access time of CD-ROM, it is important to advantageously
arrange data thereupon so as to minimize the amount of
read-head thrashing.

In one embodiment, the logic 1 and various media 2 files
are all placed in one file container, which is a contiguous
arrangement of all the files, and which only has to be opened
by the operating system once, always a costly operation in
terms of time. Each asset will be written to disk in its rawest
form, as nothing but the application itself will need to access
the asset. Thus, a picture will be a compressed bitmap, rather
than a PICT. It is thus imperative that the computer running
the title be able to know where everything is within this file
container, as it cannot resort to the operating system file
utilities.

Thus, with reference to FIG. 27, one can see a cross-
section of the available tracks on the CD-ROM 175
(neglecting the track curvature here for clarity). The actual
application code 176 precedes all other data and is loaded
into memory first. The Runtime engine embodied in the
application code 176 would include all used players,
Modifiers, Services, etc. Thereafter, the Structural Elements
177 (i.e. Project, Sections, Subsections), as well as Scenes,
are stored and are all loaded in memory for the entirety of
the title operation. The actual act of loading instantiates each
of the objects in this embodiment.

The assets of individual Scenes are stored, each in turn,
with the table of assets for the given Scene as a “hidden”
asset. These tables of assets written to disk by the title
builder 51 would be stripped of everything unnecessary for
the title. Thus, unused assets as well as the user count are
discarded. The asset manager 7, in conjunction with the title
builder 51, also would have scanned the Scenes and corre-
lated the order in the asset manager 7 database with layer
order number for each of the Elements in the Scene before
writing these assets and the tables of assets to disk.

In this example, there are three Scenes (Scene 1, Scene 2
and Scene 3), each with a table of assets 178, 181 and 183,
respectively, which provides indices to all the assets within
the given Scene. These are loaded, respectively, immediately
preceding the beginning of the playing of their correspond-
ing Scene. A flag in the table of assets determines whether
an asset should be preloaded, meaning that the asset will be
loaded immediately after the asset table is loaded and
inspected, and memory allocated to the asset locked down.
Following each of those tables are all of the objects
(Elements and Modifiers) 179, 182 and 184, respectively,
associated with each Scene. Thereafter would be stored

5,680,619

51
individual media, as for example shown here for Scene 1, a
background picture 180.

Typically, to save space, assets are stored in only one
place on the CD-ROM 175. However, in order to minimize
the read-head movement, and thus enhance Runtime
performance, the asset manager 7 may be configured, during
the authoring process, to store assets used more than once in
multiple separate places. The order in which the media are
presented in the asset manager 7 is the order in which the
title builder 51 writes out the title for CD-ROM. It is thus
also advantageous if the assets which are to be preloaded be
up at the front of the asset manager 7, for the reasons
discussed above.

3. Runtime Functionality.

Under the classification of Runtime functionality with
reference to FIG. 24, one finds a world manager 10, a
component manager 20, and the cross-platform architecture
50. The world manager 10 and component manager 20 can
be referred to collectively as the core 99 (see FIG. 29).

The world manager 10 controls the overall processing of
the Runtime functions and includes an asset manager 7, an
alias manager 8, hypertext support 9, asset classes 11, media
player classes 12, messaging management 13, a rendering
manager 14, a sound manager 15, an object loader 16,
memory manager 17, thread manager 18 and symbol man-
ager 19, some already discussed above.

The asset classes 11 are the basic classes which describe
the external resources, as for example fonts, pictures,
movies, sounds, etc.

The media player classes 12 govern the low-level Runt-
ime operation of a Project or title. They include picture
players, movie players, sound players, etc.

The messaging management 13, discussed in more detail
below, is the subsystem which controls the dispatch and
- targeting of messages among objects. Rather than operating
on a method-to-method call basis, which often is unwieldy
and slow, messages are dispatched through a communication
network, relying heavily on the Structural and Behavioral
Hierarchies, with these destinations resolved and optimized
at Runtime.

The rendering manager 14 renders bitmaps to the display
3. The rendering manager 14 may also maintain alternate
off-screen buffers, or “GWorlds.” All draw commands are
accumulated for optimal concuirent drawing operation dur-
ing idle processor cycles, as discussed below.

The sound manager 15 controls the audio signal that is
transmitted through the speaker 4.

The object loader 16 reads in definitions of the various
objects (e.g. the instantiated Elements and Modifiers) for the
particular title/Project from the logic 1 storage.

The memory manager 17 performs the low-levet alloca-
tion of memory for the system.

The thread manager 18, as discussed more fully below,
controls the multitasking threads of system 100, whether
posted by the system 100 itself, by the Modifiers 22, or by
the user interacting through the keyboard 5 or mouse 6 or
other peripheral. In one embodiment, for the Apple Macin-
tosh™ operating system, all threads are cooperative or
real-time, cooperative meaning all other operations are sus-
pended until a thread declares itseft done, and real time
meaning that they operate at a fixed time by invoking an
interrupt. The former type is implemented with a list of
timers, with regular checks to see if the timer has expired,
and if so, processing the corresponding thread as soon as
practicable. The latter type under the Macintosh operating
system should only be used for short tasks; otherwise the
system is likely to fail.

Page 73 of 88

20

25

35

40

45

50

55

60

65

52

The symbol manager 19 associates names of objects with
internal reference IDs. Given one, it will return the other. It
is called upon by various modules throughout the system
100 to produce lists of messages, Elements, Modifiers, etc.

The component manager 20 (discussed in greater detail
below) implements the extensibility of the architecture in
accordance with the present invention, and includes the
component API 21, a plurality of Modifier classes 22, the
Service manager 23, and a plurality of Service classes 24.

Both the Modifier 22 and Service classes 24 are coupled
to the system through the Component API 21, which is the
application programmer’s interface that enables the core 99
of the system 100 to communicate with the various Com-
ponents (Modifiers and Services) created by programmers.
The Component manager 20 permits programmers to add
custom Modifiers and Services to the system. The Compo-
nent APT 21 actually permits Modifiers 22 and Services 24
to interface with each other as well as with core functions.

The service manager 23 inventories and manages the
various Services 24, controlling, for example, how Modifi-
ers become (or are removed as) clients of particular Ser-
vices.

The Services 24 are, generally speaking, groups of func-
tions or functionality accessible by a Modifier. Some key
Services implement such vital functions as determining an
object’s parent, detecting collisions of Elements or provid-
ing time-of-day functionality.

The ability to add additional Services represents enor-
mous extensibility of the functionality present in the system.
For example, one could write an AppleScript™ Service
which would allow scripts to be written through an Apple-
Script Modifier and give access to the already-developed
capabilities of the AppleScript language. Another example,
discussed in more detail below, is to provide a “gravita-
tional” service, with a gravity Modifier giving “mass” to its
Elements.

Both Modifiers 22 and Services 24 use a form of dynamic
binding, resolved at Runtime, implemented using the object
model hereinafter described. This yields enormous flexibil-
ity in the overall design. For example, patch code can be
provided separately and be incorporated into the system 100
during the Runtime binding process, overriding the existing
code.

Finally, the cross-platform architecture 50 controls the
access to low-level features that are platform-dependent. For
each function that must be performed on the display 3 or
through the operating system, a generic method call is made,
which in turn makes the platform-dependent method call.
This generic call may invoke a real function which prepares
whatever overhead is required for the particular platform, or
it may be simply a macro which invokes the platform-
dependent function directly. The former scenario would
occur where structures are not easily reconciled between
platforms, as for example a window under the Apple Macin-
tosh™ operating system as compared with one under
Microsoft Windows™, Under these most extreme
circumstances, a placeholder class is created to handle both
implementations.

Thus, under the present invention, a titie need not be
“ported” to another platform—i.e., the code targeted for one
platform need not be rewritten to run for a new platform. For
example, the title can be built by title builder 51 in accor-
dance with the platform-dependent methods for the various
platforms supported by the system (e.g., Apple Macintosh™
68K, PowerPC and Microsoft Windows™). In one
embodiment, the particulars of dialog screens, for example
the Modifier configuration dialogs discussed in depth earlier,

5,680,619

53

are stored as device-independent scripts within the
application, thus providing the dialogs for each platform
transparently. This overall design philosophy prevents the
various abstract functions from becoming too tightly bound
to the implementations of a particular platform, which is the
typical headache of the normal porting process. Typically,
software quality assurance approaches would be fixated
upon concentrating on only one platform implementation at
a time, and freezing features until the overall structure is
stable. The multi-platform approach here resolves this port-
ing problem.

The functionality of the Runtime environment involves
two major processes: (i) message targeting and dispatching,
and (i) event loop processing, both of which merit further
discussion.

a. Message Targeting and Dispatching.

Typically object-oriented authoring systems provide no
special mechanism for dispatching messages among objects.
They simply rely on method-to-method function calls which
necessitate a laborious search through function tables to
access the proper methods. By contrast, under the principles
of the present invention, messaging is accomplished by
means more akin to a communication packet-switching
system.

The problem posed in optimizing performance with
regard to messaging is how to account for target destinations
which may not yet exist at the time of authoring, yet not
incur a time penalty for each message when the system
searches tables for the proper target. This problem is exac-
erbated by the freedom afforded under the present invention
to drag and drop objects from one environment to another.

The data structure for messaging in one embodiment of
the invention is presented in Table IIL

TABLE II

MESSAGE DATA STRUCTURE
Member Type Description
f_info long Flags describing the characteristics
of the message, including whether the message
be sent immediately, cascaded or relayed.
f_keysig long Special password for accessing proprietary
Modifiers.
f_sender void* Identifies the sender of the message.
f_event long The ID code corresponding to the message
: name.
f_eventinfo long Adds any additional information for the
message.
f_targetinfo struct The destination target information.
£ data union The various kinds of data (e.g. vector,

another event) that can be sent
with the message.

Referring back to FIG. 1, consider the scenario in which
the author desires that a Modifier M4 117 on Element E3 110
send a message to Element E2 109. Thus, the first step is to
make available all possible destinations for Modifier M2 115
to the author in Edit Mode, as for example, through the
Destination pop-up menu of the Modifier dialog. The Mes-
saging Management 13 accesses the data structure of Modi-
fier M4 117. Under the embodiment here, recalling the
discussion above with respect to FIG. 25, one can readily
understand how the Messaging Management 13 can access
the ID cede of its parent, in this case Element E3 110.
Knowing Element E3 110 allows Messaging Management
13 to access its data structure, yielding the ID code of parent
Scene Sc1 106. It is clear that this process can thus be readily
bootstrapped, to reproduce the entire Structural and Behav-
ioral Hierarchies. Yet, in this embodiment, Messaging Man-

Page 74 of 88

10

15

35

40

45

50

55

65

54

agement 13 only proceeds further to discern the chain of
ancestors, from Scene Sc1 106 to Subsection SS1 104,
Section S1 102 and Project 101. Element E3 110 could also
yield its previous sibling, namely Element E2 109. However,
in the current embodiment, the siblings of Element E3 108
are obtained in a different manner.

Knowing the parent Scene Scl 106, one can obtain the
pointer to its first child, namely E1 108. Then, Messaging
Management 13 proceeds down the sibling list, namely
Element E1 108, Element E2 109 and ending here with
Element E3 110. Messaging Management 13 does this by
broadcasting an identification request message to the Scene
Sc1 106, which filters down one level so that the children of
Scene Scl 106 identify themselves as well. The process of
locating the siblings of modifier M4 117 employs an analo-
gous identification request broadeast, this time to Element
E3 110.

The actual translation of ID codes into names for presen-
tation to the author is accomplished by the Symbol Manager
19, which maintains all such name-ID code correspon-
dences. Thus, the Destination pop-up menu is populated
with all the actual names of these Elements and Modifiers,
including Element E2 109. Thus, when the author references
a target by name, the appropriate ID code is stuffed directly
into the f_targetinfo piece of the message data structure.
This whole process was referred to above as Direct Target-
ing.

However, the author might not want to reference by name,
as for example, in the interests of reusability. Thus, the
author can reference a target by “tag,” a stand-in for most of
those very same destinations presented in the Destination
pop-up by name, and as described above as Relative Tar-
geting in conjunction with Table IL Unlike the bootstrapping
process discussed above, this process resolves the ID codes
by proceeding directly up through the Structural and Behav-
ioral Hierarchies, accessing the nearest-neighbor sibling
Elements directly from the Element’s next and previous
Element pointers, rather than by the “identification request
broadcast” procedure. Once the proper ID code has been
resolved at Runtime in the first instance, the ID code can be
stuffed into f_targetinfo, allowing the messaging to proceed
in a targeted manner thereafter.

The embodiment discussed above permits targeted mes-
saging to initial destinations within a somewhat fixed scope.
It is suitable in most instances where there is a close
relationship among Elements, or the number of Elements is
rather small. To communicate to an Element outside this
small family of Elements, in this embodiment, requires
targeting the most recent common ancestor Element. The
message will cascade down to that Element’s progeny,
including the real target Element.

For example, Modifier M2 115 could not target Element
E4 111 directly in this embodiment, because the parent of
Modifier M2 115 (Element E2 109) is neither an ancestor,
child or sibling of Flement E4 111; rather it is only an
“ancle” of Element E4 111. Thus, Modifier M2 115 could
target the most common ancestor of Element E2 109 and
Element E4 111, that being Scene Scl 106. Thus, Scene Scl
106 would pass the message 1o its children, Elements E1
108, E2 109 and E3 110. It is worth noting that in the
embodiment discussed here, Element E1 110 would pass the
message to Element E4 111 before the message is passed
from Element E1 108 to Element E2 109 (showing a
preference for one’s children over one’s siblings).

In an alternate embodiment, however, it may be desirable
to modify the Structural and Behavioral Hierarchies at
Runtime, through Dypamic Creation (i.e., instantiation of

5,680,619

55

objects), Transplantation or Adoption. Under this scenario,
the destination might best be resolved each time the message
needs to be sent. This would allow Relative Targeting to
work, even though we have, in essence, “moving targets.”
To permit an author to achieve these dynamic functions, one
merely need create a set of Modifiers which specify the
conditions under which such events can occur.

b. Event Loop Processing.

The management of all tasks related to the execution of an
application requires allocation of processor time among such
tasks. Thus, with reference to FIG. 28, this process starting
from block 250 may be described. In one embodiment,
utilizing the Apple Macintosh™ operating system, various
tasks may operate concurrently under what is known as
cooperative multitasking, meaning that a task must surren-
der use of the computer’s processor in order that another task
may be serviced (as opposed to pre-emptive multitasking,
where the processor may be usurped by another task without
a declared surrender by the fast task). Thus, the decision box
251 represents the release of the processor by the operating
system (including other applications and background net-
work functions, for example) to system 100, which then
performs pending tasks if the operating system is in what is
termed here as an “idle cycle.”

If the processor is not idle, and the operating system itself
is not running some other task, the World Manager 1¢
determines whether there are any pending messages to any
active Services or Modifiers at step 252. If there are any
active Services or Modifiers, these Services and/or Modifi-
ers are queried to determine whether processing such a
message may be deferred at step 253. This is a decision that
may be based on a lack of urgency, or whether the process-
ing prompted by such message would hamper performance
were it done at a time-critical moment, or various other
factors. Thus, processing that needs to be done immediately
is done at step 254 while deferred processing is scheduled
through the posting of a thread at step 256 by the thread
manager 18. One may even envisage a hybrid situation
where some small amount of critical processing is done
immediately while the rest is deferred through a posted
thread. The final step 255 of the “non-idle” state is to
relinquish the processor to the operating system to perform
all its other tasks.

The idle cycle commences by a trigger for the animation
of the Shared Scene 257. This step does not perform the
actual drawing; rather, it is an opportunity to post draw
commands for later implementation. This streamlines the
actual drawing process, e.g., eliminating the need to draw
portions of the display 3 due to motion in one layer when a
covering layer that obscures the Element in the first layer
continues to cover that portion of the display 3. It should be
noted here that, whenever an Element is moved, prompting
a draw command to show such movement, each of the
Element’s children is notified that the parent was redrawn,
so each child Element can then post its own redraw com-
mand. Thus, children Elements can follow their parent
Elements in accordance with the Hierarchical Relative Posi-
tioning mechanism discussed above. Next, animation of the
currently active Scene is triggered at step 258 and similarly
handled.

Next, all previously posted threads (either posted by
Modifiers or Services at step 256, or by the system 100
itself) are processed at step 259. Thus, all motion Modifiers
would proceed to move their Elements according to their
prescribed manner of motion. Messenger Modifiers, if
triggered, would post new messages to the system 100.
Services would perform their “idle” processing, and so on.

Page 75 of 88

20

25

30

40

45

55

65

56

Thereafter, all accumulated draw requests are performed
at step 260. Each redraw command is specified by invali-
dating the old and new visible regions of the corresponding
Element. As described above, that may be driven by posted
requests from the Elements, or by Motion Modifiers, etc.
There may be instances where particular Elements need to
be notified that such drawing operations occurred. This
decision is represented by step 261. For example, a Quick-
Time™ movie needs to know when to start its sound. Thus,
such Elements would be so notified at step 262.

A similar housekeeping function is step 263, which
inquires whether any sound files that were previously play-
ing have actually ended. If so, then any necessary “end play”
procedures can be executed (e.g., deallocating the memory
taken up by the sound file). In other words, the correspond-
ing Element receives this Environment Message and tran-
sitions to its “end play” state.

Finally, step 265 decides whether the idle process should
relinquish control of the processor. There are titles, such as
games, that have a significant amount of user interaction and
screen updating that necessitate the use of a large fraction of
the total processor time. On the other hand, a networked
computer needs to perform regular background tasks to keep
the network connection up and running. Thus, a sliding scale
is established by the title’s author, or set by a user, between
the extremes of never giving up control (squeezing out all
other tasks) and always giving up control (and suffering a
performance penalty). The outcome of this decision step 265
is determined in accordance with this sliding scale.

When no system time is made available, the World
Manager 10 must do the checking for the mouse 6 and
keyboard 5 events. When a mouse down event occurs, the
‘World Manager 10 will continue to track the mouse 6 while
it is being dragged, althongh it will intermittently give up
time to other threads, including the idle process. It is up to
the World Manager 10, which knows the positions of all
Elements, to determine which Element was selected in this
mananer.

C. Component API—"“Programmer’s-Eye View”.

The current embodiment of the invention is geared toward
almost unlimited extensibility. Programmers can add Com-
ponents (Modifiers and Services that support them) that
extend the system’s architecture. These Components are
indistinguishable from the system’s built-in Modifiers and
Services, which implement much of the system’s external
architecture discussed above. Thus, from the author’s
perspective, the system is extended seamlessly by the addi-
tion of new Modifiers (and supporting Services) to which the
author has full access.

With reference to FIG. 29, one sees a plurality of modi-
fiers 22a, 22b, 22¢, . . . , 22z and a plurality of services 24a,
24b, 24c, . . . , 24z coupled to the core 99 of system 100
through the component API 21 as plug-in Components.

The core 99 in this embodiment is implemented through
ordinary C++ classes. However, the modifiers 22 and Ser-
vices 24 are not ordinary C++ classes. To permit extensi-
bility of the system, they are implemented through the
“MOM?” object model described below. In order to handle
these “new” Modifier/Service classes, “wrapper” classes 94
and 95 of the ordinary C++ type are provided to interface
with them as was discussed above in the context of FIGS. 25
and 26. Through these wrapper classes, the Service manager
23 controls the Services 24 and the world manager 10 and
Component manager 20 instantiates Modifiers, such as
Modifier 96 illustrated in FIG. 29. The world manager 10
also instantiates Elements, such as Element 97, which are
coupled to corresponding instances of a media player class
12 and an asset class 11.

5,680,619

57
It will be well understood to those of ordinary skill in the
art that the media player classes could themselves be
migrated out of the core 99, operating under the object
model of the present invention and connected through a

wrapper class and an API analogous to the Component APT'

21, making the types of media the system 100 can interact
with an extensible feature as well.
1. Object Model.

The object model underlying this invention can be
described as “shock proof.” It lies along a spectrum in
between “rugged” and “fragile” object models. A rugged
object model would permit a programmer to change dynami-
" cally virtually any aspect of the class hierarchy (e.g., adding,
modifying or deleting parent classes, subclasses or interme-
diate classes) without requiring recompilation or other modi-
fications of existing classes. A fragile object model, on the
other hand, would not permit a programmer to make any
such changes dynamically.

The mFactory Object Model (“MOM?”) of this embodi-
ment represents a compromise between these two extremes.
Rather than incurring the overhead and performance penal-
ties of a rugged object model, MOM permits a programmer
dynamically to add subclasses, or add methods and/or fields
to or otherwise augment superclasses, provided that the
order in the class hierarchy is preserved. In this manner,
most of the functionality that a user/author would desire as
. extensions to the system can be provided with minimal
overhead, as compared to a rugged object model.

One aspect of MOM is that, at compilation time, each
class identifies its associated superclasses and their esti-
mated sizes. At Runtime, the class hierarchy is verified,
particularly whether the sequence of classes is preserved. If
it is preserved, then MOM adjusts for any differences in the
sizes of the class structures by changing the offset ficld for
each class structure to reflect the new difference in size. This
permits new fields to be added to each class structure or
entries to be added to the virtual function table (vtable)
dynamically without global recompilation. If the class
sequence is not preserved, the system will not crash; rather,
the affected object(s) simply will not run.

Another aspect of MOM is its use of virtual tables.
Programmers can access the virtual tables of their classes as
well as the virtual tables of the superclasses above. The
tables are created by the system and resolved upon loading.
One can add fields and methods, though one cannot later
rearrange them without a full recompile. One key advantage
of this construct is that adding fields and methods to a
superclass does not require recompilation of its subclass
below.

With reference now to FIG. 30, the operation of MOM is
described in detail. In FIG. 30, one sees a class hierarchy of
classes “A”, “B” and “C” represented by “self” class struc-
tures 126a for base class “A”, 126b for class “B”, and 126¢
for class “C”. Prepended to each of the class structures is a
pointer to the class’ entry in vtabs 127, a table with pointers
to each of the virtual tables present in the A/B/C class
structure. In one embodiment, the pointer preceding the
“self” structure is not directly accessed by the programmer,
but rather is provided indirectly through a function call,
relieving the programmer from the implementational details
thereof.

From the pointer to the class structure 126¢ for class “C”,
for example, the pointer to its corresponding entry in vtabs
127 is obtained. From the appropriate pointer in vtabs 127
one can then recover the pointer into the appropriate vtable
128c¢ for class “C”. With such a pointer, one can then obtain
the actual function pointer in the methods storage 129 to the

Page 76 of 88

20

30

35

45

50

55

60

65

58

appropriate method 129a, 1296, 129¢, etc. In one
embodiment, the vtable contains not only the function
pointer, but the slot number of the class containing the
version of the method that class “C” will call. Thus, if vtable
128¢ had for a particular function a slot number of “2”, it
would mean “C’s” function would be called; if it had a slot
number of “1”, “B’s” function would be called, and thus a
slot number of “0” would designate the use of “A’s”
function, i.e. no overriding.

It is thus clear how the system is polymorphic, in that you
can both override (replace the existing functionality) and
overload (add to the existing functionality) methods of a
subclass. As our example of overloading, for the “Comp-
Constructor” method 1295 shown here (which represents the
method that creates or “constructs” a Component instantia-
tion for class “C”), one could perform all the construction
necessitated by class “C” itseft, but rely on the construction
performed by class “B” through an “Inherit” function which
invokes “B’s” class through its slot number. In the embodi-
ment discussed here, the programmer’s selection of either
overloading or overriding is invoked through a function call,
sparing the programmer from the implementational details
of this bootstrapping. In actuality, the base class methods are
accessed through C-function calls which reference the base
class method through the corresponding slot number in the
vtable.

With the above mechanism in place, it is clear how the
“shock proof” mechanism of MOM works. If a programmer
wished to add a new method 129z, say, to class “B”, such
method would be appended to the end of the existing
methods 129a, 1295, 129c¢, etc. (though this time for class
“B”). A new entry pointing to this method would be made in
vtable 1285, at the end of that list. This would necessitate
expanding the size of vtable 1285, and thus subsequent
vtables (in this case vtable 128c) would be pushed back
accordingly. The corresponding entries in vtabs 127 for the
vtables subsequent to class “B” would thus also be updated
to reflect this offset change. Changes in any of the class self
data structures 126 themselves will be discussed in the
context of Modifiers below.

A further advantage of this implementation is that a
programmer can write Components as “C” functions, and
MOM will treat these functions as methods of an inherited
subclass. All the apparatus, as mentioned above, for main-
taining this class hierarchy is hidden to such programmers
through function calls.

2. Component Methods.

On an object-oriented level, Components comprise a
MOM class hierarchy. The base Component class,
“_Component”, provides for three mandatory methods: (i)
a creation/instantiation routine; (ii) a duplication routine;
and (iii) a deletion routine. The mandatory methods are
those which the core provides no default for, or for which the
class would have no independent meaning absent its own
method.

In accordance with the object authoring interface dis-
cussed above, these would be invoked, for example, when:
a Modifier is dragged from the Modifier palettes 35a or 35b;
an existing Modifier is selected and the “Duplicate” menu
item is selected or the “Command-D” key sequence is typed;
or, when an existing Modifier is selected and the “Delete”
key is typed. The various Components are either direct
subclasses of __Component, or themselves may form a
hierarchy, such as the Messenger Modifier having as a
subclass the If Messenger.

In addition to the mandatory methods listed above, a
typical Modifier would include at least two more methods:

5,680,619

59

(i) presenting the author with the Modifier’s configuration
settings; and (ii) committing the author’s modifications of
those settings to memory. These would be invoked,
respectively, when the author double-clicked on the Modi-
fier’s icon to bring up the Modifier’s dialog box, and when
the author clicked the “OK” button in lieu of the “Cancel”
button to save all author changes.

A representative sample of the virtual functions of
__Component in the current embodiment are described in

Table IV as follows.

TABLE IV

BASE COMPONENT CILASS FUNCTIONS

Name Description Comments
Complnit entry point to Component Mandatory
methods (main function methods
in C program).
CompConstructor Create Component.
CompCopyConstructor Duplicate Component.
CompDestructor Destroy Component.
CompEditorOpen Prepare for Modifier edit. Editor methods
CompEditorAccept Commit edits to
Modifier.
CompProcessMessage Act on message received. Message
CompEventCount Query Component as to processing
the number of events it methods
responds to.
CompGetEvent Query Component as o a
particular event it
responds
CompSetEvent Set Component to
respond to a particular
event.
CompGetService Get pointer to Service. Service
CompAddClient Register Component to methods
Service.
CompDeleteClient Unregister Component
from Service.
CompGetProperty Get stored Variable. Variable
CompGetPropertyCount Get number of stored methods
Variables.
CompSetProperty Store Variable.
CompGetSaveInfo Asks a Component what Save/Restore
revision it is, and its size. methods
CompRestoreComponent Restores the state of the
Component as previously
saved.
CompSaveComponent Saves the state of the
Component upon exiting
application.
CompAddThread Adds a new thread for Thread
execution. methods
CompKIlThread Deletes a given thread
from further execution.
CompCalculateDrawParams ~ Particular drawing Miscellaneocus
CompDrawDeviceContext functionalities, especially methods
CompDrawMedia to alternate screen
CompGetClipRegion “GWorld”.
CompGetMargins
CompPostDrawMedia
CompDrawGWorld
CompPostDrawGWorld
CompPreDrawWorld
CompEditorAcceptChanges Particular editor
CompEditorDeclineChanges functionalities.
CompEditoridle
CompEditorItemAdjustCursor
CompEditorItemChanged
CompEditorCustomDraw
CompEditorCustomClick
CompEditorTtemTyping
CompEditorItemTyping
CompEditorValidateChanges

Page 77 of 88

15

20

25

30

35

45

50

55

65

60

TABLE IV-continued

BASE COMPONENT CLASS FUNCTIONS

Name Description Comments
CompOpenMediaStream Access to particular

location in file of stream

created by another

When a Component is first registered (as discussed
below), a structure is created containing any class-wide data
(in C language syntax):

typedef struct {
struct** f__vtabs;
long* f_soffsets;
short f _cindx;
} MFCDRec;

where “f_vtabs” represents the pointer to the vtabs table, i.e.
the table which points to all virtual tables, from which the
class’ virtual table may be derived; “f_soffsets” is a table of
offsets from the root of each self record in each of the base
classes; and “f__cindx” is the Component index, which is an
index maintained by the Component Manager 20 which
allows the Component to access common information about
such Component, such as its name. This structure is
appended with the instance data.

An offset is used to allow for any changes in the size of
structures of classes above it. Thus, the offsets are calculated
at registration time (described below), allowing pointers to
be calculated up the class hierarchy through the f_soffsets
table. It should be noted that £ vtabs is assigned at the end
of registration, when the objects have been loaded and all
offsets in vtable sizes have been adjusted accordingly.

In actuality, the embodiment of MFCDRec in the Apple
Macintosh™ 68K implementation contains one more struc-
ture member, “f__A4”, which is a long integer. One draw-
back of the 68K system is the inability of code resources to
have their own globals, such as strings or initialized vari-
ables. A normal application can have such globals, with
register AS pointing to the top of such global data. Thus,
particular globals would be accessed via offsets with respect
to AS.

Register A4 is used as the pointer to a code resource.
Thus, if one code resource calls another’s code resource, one .
could not know where that code resource’s globals were, as
there was no way of knowing what that code resource’s A4
value was. Thus, dynamic loading on the 68K could not
include globals, unless one was prepared to save and restore
A4 pointers each time one code resource called another.

In the present embodiment, the Component can store the
Ad4 value as well as the slot number of the vtable methods.
Thus, there is no need to bracket method calls from one
Component to another which set up and restore the values
for Ad. Thus, a transparent mechanism is provided to access
globals within each Component.

An example of an instance data structure is presented in
the case of a “gravity” Modifier, which would add “mass” to
Elements, prompting them to “fall” in the presence of the
gravitational “force,” implemented as discussed below,
through a Service. Thus, the structure for the instance data
could be as described in Table V:

5,680,619

61
TABLE V
SAMPLE INSTANCE DATA STRUCTURE
Member Submember Type Description
f_enableEvent f_type short Specifies the enabling event.
f_event long
f_event_info long
f_disableEvent f_type short Specifies the disabling event.
f_event long
f_event_info long
f_mass f_type short Specifies the Element’s
f_value double “mass”,
f_lastvector f_type short Specifies the Element’s
f_angle double “position”.
f_magnitude double
f_pixelvelocity £ type short Specifies the Element’s
f_value PNTX short “velocity” in pixels.
f_value PNTY short
f_totalMoved PNTX short Specifies the total
PNTY short displacement since the
Element started falling.
f_startTime — long Specifies the time the
Element started falling.

For the class-wide data one
language syntax):

could have simply (in C

typedef struct {
double £ constant;
} MYClassRec, *MFClassPtr;

where g constant is the gravitational “constant,” expressing
the overall strength of the gravitational force. By making it
class-wide data, one could then easily override this data
(e.g., with the electrical “constant,” turning the gravity
Modifier into an “electrical force” Modifier, the mass being
replaced by electrical charge), yet leaving undisturbed all
other mechanisms of the gravitational Modifier.

3. Registration Process.

Having explained what Components are and how they are
created, the process of seamlessly integrating them into the
system is now described.

In one embodiment of the invention, Components are
loaded into the system at boot-up time. They are stored in
“kits”, special files containing code resources. In the Apple
Macintosh™ 68K operating system, these code resources
would be designated of type “XOBI,” each code resource
accessible through its identification number and name. In the
Macintosh PowerPC™ system, they would be stored as code
fragments. Under Microsoft Windows™, these kits would
be dynamic-link libraries (DLL’s) with a particular file
extension, e.g. “MOM.”

The process by which each Component becomes known
to the core 99 is called registration. Each Component is
identified through a unique 16 character ID string. In one
embodiment, this ID string is the numeric representation of
the exact time the Component was first created. The revision
number of a particular Component is controlling in the event
the application encounters the same Component (as evi-
denced by its ID string) among multiple kits. This is a very
useful feature in the event patch code, bug fixes or enhance-
ments for such Component are provided. If the core 99
encounters Components with identical ID string and revision
numbers, then the system will retain the first one registered.

The actual registration or Component loading process is
now described, with reference to FIG. 31. The process,
which starts at step 275, first scans a directory or directories
for kit files in step 276. In one embodiment, this would be

Page 78 of 88

10

1

W

20

25

30

35

40

45

50

55

65

62

a special directory named “Resources” at the same level in
the directory structure as the application. Next, all kit files
are identified at step 277. The file types for the various
platforms provide the identifying mechanism as discussed
earlier, The total number of Components is determined in
step 278. Then, allocating the tables for accomodating all the
Components counted is done at step 279.

Steps 280-283 represent a subprocess which loops, in
three passes, through each of the kits identified at step 277
above. In step 280, the system initializes the serf records for
each Component from the given kit, based on the Compo-
nent’s stored values for the sizes therefor and its class
structure order. In step 281, the system initializes each of the
methods for each Component as necessary, i.e. filling in the
methods that are being overridden by such Component. In
step 282, the virtnal tables and vtabs table are created, with
slot numbers inserted into the virtual tables, and actual sizes
of self records established by walking up the chain of the
real self records in the class hierarchy. The decision at step
283 determines whether the process should loop back to
process further kits. Otherwise, the process terminates at
step 284.

It can thus be understood, as an additional advantage, how
this object model compensates for platform migration in that
readjustments are made in the structure offsets that owe to
the difference in byte alignments in data structure packing on
one platform as compared with another.

4. Core and Service Utilities.

Services can be thought of as providing two basic types of
functions: (i) as a repository of common functionality that
can be accessed by different Modifiers; and (ii) as a server,
by which various subscribed client Components are ser-
viced. However, Modifiers as well as Services could be
configured as servers, clients or both.

An example of the former would be a Service performing
common housekeeping functions, or a library of mathemati-
cal or string functions. An example of the latter would be a
collision Service that needs to know where all Elements are
positioned in order to decide whether any two Elements
have collided. The collision Messenger is the client of the
collision Service for an Element that desires to be informed
of collisions.

The Graphic Modifier, for example, requires no Service to
provide color to its parent Element. However, if one wanted
to ensure that the colors of all on-screen objects do not
“clash”, one might write a “fashion” Service that monitored
all such colors and informed an “enhanced” Graphic Modi-
fier of a clash.

One advantage of delegating a lot of functionality to a
Service is that it keeps the Modifier’s size down, certainly a
concern when Modifiers will be multiply instantiated.
Another advantage of being a Service is that it may be
referenced in Modifier methods by name when set up to be
a server, rather than applying slot numbers through vtables
to be accessed.

As was seen above, Modifiers and Services interact in a
very simple manner. Modifiers may be “users” of a particu-
lar Service. Therefore, they must notify the Service when to
add or delete them from the list of active users thereof. For
example, to write a gravitational Service, one must take into
account how all objects with “mass” interact with one
another, and so such a Service must know which Elements
are “massive”, i.e. contain a gravitational Modifier. Thus, the
gravitational Service, knowing all the masses and positions,
can apply the law of gravitation to change the positions of
each massive Element according to the time slice involved.
The List class, which maintains a dynamic list of clients,
would reflect the active “users” or clients of the gravitational
service.

5,680,619

63

As discussed above, the class structures and registration
processes are entirely analogous for Services as they were
for Modifiers. In fact, the only distinction between Services
and Modifiers, from a data structure viewpoint, is that a
Modifier has a flag set which indicates that it should be
added to a Modifier Palette 35a or 35b, while a Service has
this flag clear.

While Modifiers may be multiply instantiated as the need
arises, it would be atypical that a Service be instantiated
more than once. A notable exception would be to instantiate
a “GWorld,” an offscreen graphics world, as often as needed,
especially for applications that are very graphics-intensive.

Referring once more to FIG. 26, one can see that the
instantiated Services 168, 169 and 170 (again represented by
double rectangles to signify their special class nature) are
accessed through service wrappers 165, 166 and 167,
respectively. The Services are thus referenced through a list
164, preferably maintained by the Service manager 23.

Because Services are not part of the Behavioral Hierarchy
and are not visible to authors (as are Modifiers), they need
not maintain the same pointers linking them together. In
essence, they are independent objects called upon by Modi-
fiers for support.

The MOM architecture above permits many modules
inside the core 99 to be migrated easily into Components.
For example, there is nothing to preclude the media player
classes 12, the draw engine for the rendering manager 14,
the memory manager 17, the file /O for the object loader 16
or the database management system for the asset manager 7
from being implemented as a Service rather than being in the
core 99. Thus, if one needed to scale up the system to handle
an enormous number of objects, one could replace the
database system of the asset manager 7 with a heavy-duty
relational database system.

D. Examples.

Now that the functionality of an embodiment of the
present invention has been explained, the true power of this
invention, with respect to its ease of design and reusability,
can be illustrated through particular working examples.

1. Snake.

This example serves to demonstrate how “Hierarchical
Relative Positioning” and Relative Targeting of messages
can be used to great advantage in producing a chained object
whose overall motion is complicated, yet is achieved by
simple motion and coordination between adjacent links in
the chain.

In this example, illustrated in FIG. 32, an implementation
of a snake is explained. In the layout view window 320, one
notes five ovals representing the segments of the snake
(SnakeHead 450, SnakeMiddle (1) 460, SnakeMiddle (2)
470, SnakeMiddle (3) 470 and SnakeTail 490). One may
note that each segment has a Graphic Modifier, respectively
451, 461, 471, 481 and 491, that can be configured with a
distinct color for eye-pleasing effect.

With respect to the Structural Hierarchy, SnakeHead 450
is the parent of SnakeMiddle (1) 460, which in turn is the
parent of SnakeMiddle (2) 470, which in turn is the parent
of SnakeMiddle (3) 470, which itself is the parent of
SnakeTail 490. Thus, in accordance with Hierarchical Rela-
tive Positioning, movement by SnakeHead 450 is “added” to
that of SnakeMiddle (1) 460, both of which “add” to the
motion of SnakeMiddle (2) 470, and so on, until SnakeTail
490 is at the mercy of the motion of all its ancestors.

Each of SnakeMiddle (1) 460, SnakeMiddle (2) 470,
SnakeMiddle (3) 470 and SnakeTail 490 is equipped with an
identically configured Full Motion Modifier, respectively
parts 462, 472, 482 and 492. Each has a path that consists of

Page 79 of 88

30

35

45

60

64

a sixteen step are which starts from the horizontal baseline
(where the segment is lined up with its parent), takes four
increments to rotate 45° about its parent, eight more to bring
it to —45° of its parent, and then four more increments back
to the baseline. These motions are out of phase in order to
avoid the cumulative curling that could rotate the snake into
a circle!

Thus, timer messengers are placed on each of these
segments, respectively 463, 473, 483 and 494. Each is set to
delay for one-half second and then transmit a “Previou-
sLinkStarted” message to its parent, with the cascade option
turned off. With each of these segments triggered to start its
Full Motion Modifier upon receipt of this same message, it
is clear how a half-second time lag in the motion builds up
in the snake. Notice that by turning off the cascade option,
the middle segments are not confused by the message they
sent and the message they received, even though named
identically for reusability. It is clear that one could use
different names for each segment’s communication with the
following one. Yet, one of the strengths of this design, its
reusability, shows that one could add an indefinite number of
“SnakeMiddle” segments and the snake would still work.

It is important to provide a mechanism to start the
wriggling process. Thus, a Messenger 492 sitting on the
SnakeTail 490 acts as a detector, waiting for a MouseDown
event on that segment (as if one stepped on the snake). This
Messenger 492 is programmed to send the PreviousLink-
Started message to SnakeTail 490 itseft, thus “faking” the
propagation of this message from a non-existent segment
behind.

On the SnakeHead 450, the PreviousLinkStarted message
is interpreted differently. Rather than triggering an arcing
motion, it triggers the SnakeHeadMotion 453 vector motion
Modifier, which causes the entire snake to propagate in the
direction of SnakeHeadVector 452. Thus, once the whole
snake starts wriggling, it can start actually moving ahead. A
Boundary Detection Messenger 455 detects whether the
spake hits a wall, triggering a WallHit message which
disables SnakeHeadMotion 453 and causes SnakeHit Sound
454 to echo the event.

It is clear that this design is very much an abstraction of
a snake. Certainly, one could replace the ovals and arc
motion with separate mToon sequences showing each snake
segment swaying back and forth, each out of phase but
joining smoothly with the adjacent segment so that it looks
like one continuous snake. This would certainly build very
easily on the architecture provided.

2. Fish.

This example serves to illustrtate how an object may
encapsulate differing Behaviors which are in competition
with one another, yet coordinate with similar objects to
produce a global or “collective” Behavior. In this example,
illustrated in FIG. 33, an implementation of a school of fish
is explained. In the layout view window 320, one notes three
fish 360, 400 and 440 in Scene-A 350. The Graphic Modifier
356 is present simply to give the aquarium a pleasant sea
color.

Before proceeding further into the implementation, it is
useful to consider the physical model upor which this
example is based. Fish have a tendency to school. Thus,
there must be a certain probability that a fish, seeing another
fish proceed in one direction, will follow that other fish. On
the other hand, fish may spontaneously change direction.
This may be due to the perception of a threat, food, another
fish approaching too close, sheer caprice, etc. Thus, these
two tendencies, to school or to change direction, are in
tension with one another. Furthermore, if a fish is con-

5,680,619

65

strained to an aquarium, it must at some point reverse
direction, otherwise it will crash into a wall. For simplicity’s
sake, the speed, though not direction, of each fish is constant.

Each of these fish 360, 400 and 440 is an mToon Element
with an identical Behavioral Hierarchy, hence personality.
Thus, the representation of the Behavioral Hierarchy from
Modifier 361 through 398, contained in fish 360 and seen in
the structure view window 330 is the same for fishes 440 and
440. Each fish has four Behaviors: StayInTank 370, Trend-
Setting Behavior 380, Schooling Behavior 390 and Chan-
geVector 395. Most of these Behaviors, as will be seen, are
driven by the Tick Messenger 366, which is like the “heart
beat” of the fish, sending out a “Tick” message once per
second.

There are two vector Variables (MyVelocity 362 and
NewVelocity 363) which respectively define the fish’s
present and future headings. The actual motion is performed
by the Vector Motion Modifier 365, which is keyed to
MyVelocity 362. The Drag Motion Modifier 364 is simply
there to allow the user to drag the fish around at will during
Runtime. Finally, the Transparent Graphic Modifier 361 is
there to give the background of the mToon the aquarium
color.

There are some significant Variables placed at the Scene
level which govern overall fish behavior: SchoolingProb-
ability 351, SwitchProbability 352 and MaxSwitchAngle
355. These could probably be incorporated into the fish so
that one could have different types of fish with slightly
different swimming characteristics. SchoolingProbability
351 is the probability a fish will follow another, given its
heading. SwitchProbability 352 is the probability that a fish
will strike out on its own new heading. MaxSwitchAngle
355 defines a maximum change in angle if a fish does strike
out on its own. Thus, if MaxSwitchAngle 355 was equal to
forty-five degrees, then the new heading of the fish would be
within #45° of its original heading. Two less significant
Variables, TopBottom 353 and LeftRight 354, are simply
used as mnemonics for whether a fish has reached the
vertical or horizontal constraints of the tank, respectively.

The StayInTank 370 Behavior constrains the fish to stay
in the tank. Thus, TB Border Detection Messenger 371 and
LR Border Detection Messenger 372 respectively detect
whether the fish has reached the vertical and horizontat
borders of Scene-A 350. When either happens, the respec-
tive Messenger would send a HitBorder message to the fish,
with data equal to the values of TopBottom 353 or LeftRight
354, respectively. The BounceOffBorder 373 Miniscript
Modifier, based on a HitBorder message, executes the fol-
lowing script:

if incoming = TopBottom then

set New Velocity.angle to (360-MyVelocity.angle)
else if incoming = LeftRight then

set New Velocity.angle to (180-My Velocity.angle
end if
send “ChangeVector” to Element

Thus, the new heading is a reflection off the aquarium wall
of the present heading, and such new heading is communi-
cated to the fish. A BounceSound 374 sound Modifier,
triggered also by the HitBorder message, is added for extra
effect.

The Trend-Setting Behavior 380 implements how a fish
strikes out on its own. The if Messenger DecideToRan-
domlySwitch 381, triggered every time the Tick message is
received from Tick Messenger 366, sends a message Switch-
Direction to the Element when the SwitchProbability 352

Page 80 of 88

10

20

25

35

40

5

50

55

60

65

66

exceeds a random number from 1 to 100. The miniscript
Modifier InvokeRandomDirection 382, triggered by the
SwitchDirection message, executes this script:

set NewVelocity.angle to (MyVelocity.angle + md(2*MaxSwitchAngle) -
MaxSwitchAngle)
send “ChangeVector” to Element

Thus, the new heading varies from the present heading by as
much as MaxSwitchAngle 355, and such new heading is
communicated to the fish.

The Schooling Behavior 390 implements the tendency to
conform. It is premised on the fact that each fish would
notice the heading of other fish in the school. To simulate
this, each fish broadcasts to Scene-A 350 a “MyHeading”
message with the actual vector My Velocity 363 as data. It is
triggered upon the receipt of the Tick message, plus an
additional time delay, via the DelayedMyHeadingBroadcast
timer Messenger 392. This delay simulates a “reaction time”
for the other fish. By virtue of the broadcast to Scene-A 350,
each fish will get this MyHeading message. This triggers the
Schooling Decision 391 miniscript:

if tnd(99) < SchoolingProbability then

set New Velocity.angle to incoming.angle
end if
send “ChangeVector” to Element

Thus, the new heading will be equal to the heading of the
other fish that sent the MyHeading message, with such new
heading communicated to the fish.

The ChangeVector 395 behavior actually implements a
change in heading, based on the ChangeVector message
issued by any of StayInTank 370, Trend-Setting Behavior
380 or Schooling Behavior 390. It executes the following
miniscript Modifier 398 script:

if NewVelocity.angle < O then
set New Velocity.angle to (360 + New Velocity.angle)

end if

if ((NewVelocity.angle > 90) and (NewVelocity.angle < 270)) then
set Element.range to LeftCelRange

else.
set Element.range to RightCelRange

end if

set My Velocity.angle to New Velocity.angle

NeWVelocity 363 is fast corrected to be within 0 to 360
degrees. Then, the script determines whether the new head-
ing is directed to the left, in which case a left-swimming
range of animation cels of the mToon specified by LeftCel-
Range 396 is used; otherwise, the right-swimming range,
RightCelRange 397 is used. Finally, the New Velocity 363 is
committed to the fish’s actual velocity, MyVelocity 362.

It is clear that this fish could be improved by allowing for
a more continuous range of animation cels based more
closely on the fish’s heading, and this can certainly be done
in a straightforward fashion. One could also have schools
form into “superschools,” where each fish has a fictitious
parent, its school, which itseft has a heading, say the average
heading of all fish in the school. The school would then
broadcast to other schools. Thus, each school might infiu-
ence the other schools to follow them, though with less
probability than one fish within a school influences a sibling
school member. This would allow a lot of the mechanisms
built into the fish to be recycled at the school level. if one
were dissatisfied with this fiction of the school parent, one

5,680,619

67
could simply build a more complex schooling behavior into
the fish, such as being influenced less by the headings of
more distant fish than closer ones. The possibilities are
certainly endless.
3. Windowing System.

This final example illustrates how the present invention
provides selective reusability of object containers in new
environments. As was discussed earlier, the difficulty of
“mixing and matching” objects across different environ-
ments is a fundamental limitation of conventional OOP
systems.

This example presents two similar, yet distinct, imple-
mentations of simple windowing systems created with an
embodiment of the present invention. Each system develops
complex functionality in a modular manner. The example
then illustrates how easily individual modules of one system
can be reused in the environment of the other system, with
little or no effort (much less programming) on the part of the
author.

The example intentionally mimics the public data struc-
tures and methods likely to be present in a traditional OOP
implementation of a similar system (such as the windowing
system described earlier with respect to the background of
this invention). In this manner, the distinctions between the
interdependencies of classes in an OOP class hierarchy and
this system’s isolation of an object container’s dependencies
on its external environment, should become quite evident.

With reference to FIGS. 34(a)-34(g), this example will
now be discussed in detail. A bevelled window 2100 with
title bar 2120, labelled “Window X,” is shown in FIG. 34(a).
It can be analogized to the public interface to the base class
of the window class hierarchy described above. Analogizing
to a derived class, 2 minimize box 2240 is added to the
bevelled window 2200, with title bar 2220, as illustrated in
FIG. 34(b). Clicking on the minimize box 2240 reduces the
window 2200, together with the title bar 2220, to a small
icon (not shown). Finally, dragging capability is added,
again analogous to a derived class from a minimize class
which in turn was derived from the bevelled window class.
In this regard, bevelled window 2300 can be dragged on
display 3 by clicking and dragging a mouse 6 on titie bar
2320.

The alternative windowing system, illustrated in FIG.
34(d), includes a simple window 2400 (no bevel) with title
bar 2420, labelled “Window X” to denote its pedigree
separate from “Window X”. In lieu of the minimize capa-
bility of the first windowing system, a “window shade”
capability is added to window 2500 with title bar 2520.
Double clicking this title bar 2520 causes the window 2500
to be hidden, reducing the display 3 area taken up by the
window by an alternative means to icon minimization.

In FIG. 34(f), the bevelled window 2600, with title bar
2620, operates with functionality from both systems. The
window 2600 may be dragged around freely via title bar
2620 as in the initial system, but the minimize capability has
been replaced with the “window shade” feature from the
second system.

Finally, FIG. 34(g) shows the full hybridization of the two
systems. The minimize capability is added back im, in
addition to the “window shade” feature. Bevelled window
2700 may be dragged around by its title bar 2720, minimized
to an icon by clicking on minimize box 2740, and may be
“drawn up” in shade fashion through a double click on title
bar 2720.

All features continue to operate in their new environment,
with very little integration required beyond simple interface
issues. The isolation of dependencies at each step of the
process are of particular interest.

Page 81 of 88

10

20

25

30

35

45

55

65

68

The implementation of these windowing systems is
described below in detail with reference to FIGS. 35(a)-35
(g). Apart from the purely structural Elements of Project
“WINDOW Example” 2000 (namely Window Section 2010,
Window Subsection 2020, Window Shared Scene 2030 and
Window Scene 2040), Window X 2100 (illustrated in FIG.
35(a)) contains various Modifiers analogous to the “public
interface” of an OOP class.

For example, the name of Window X 2100 is stored in
string Variable Modifier Name 2101. The coordinates of its
bounding rectangle are stored in Point Variable Modifiers
BoundingRect_TopLeft 2102 and BoundingRect 2103,
while Graphic Modifier 2104 provides its color, and Image
Effect Modifier 2105 its bevelled appearance.

Miniscript Modifier “CREATE Window” provides a func-
tion akin to a creation or initialization method which often
is executed at the beginning of the Scene 2040:

set position.x to BoundingRect__TopLeft.x
set position.y to BoundingRect_ TopLeft.y

set height to BoundingRect_BottomRight.y—
BoundingRect TopLeft.y
set width to BoundingRect__BottomRight.x—
BoundingRect_ TopLeft.x
The position of Window X 2100 is set to the bounding
rectangle’s upper left-hand corner, and it’s dimensions are
set by the bounding rectangle’s height and width.

The title bar “TitleBar” 2120 is a child of Window X
2100, and it too has a “public interface” comprised of point
Variable Modifiers TitleRect_TopLeft 2123 and TitleRect__
BottomRight 2124, which form the bounding rectangle of
title bar 2120, with Text Style Modifier 2121 which sets the
title’s font size and style, a Graphic Modifier 2122 which
sets its foreground and background colors (black and white,
respectively). .

The Miniscript Modifier “CREATE TitleBar” 2125 is the
creation “method” for TitleBar 2120 and is executed at the
beginning of Scene 2040.

set text to Name

set TitleRect_TopLeft.x to 0

set TitleRect_TopLeft.y to 0

set TitleRect_BottomRight.x to BoundingRect__

BottomRight.x—BoundingRect TopLeft.x
set TitleRect__BottomRight.y to 20
set position.x to (TitleRect_TopLeft.x+TitleRect__
BottomRight.x—width)/2
set position.y to (TitleRect_TopLeft.y+TitleRect__
BottomRight.y—height)/2
The text of TitleBar 2120 is set to Name 2101. The bounding
rectangle of the title “area” is set to the top 20 pixels of
Window X 2100, and the position of the TitleBar 2120 is
centered within such bounding rectangle. Thus, the non-
functional appearance of window 2120 in FIG. 34(a) is
obtained.

Minimize box “MinBox” 2240, illustrated in FIG. 35(b),
is then added to window “Window X+MinMax” 2200 with
TitleBar 2200. The functions of all Modifiers 2201-2206
and 2221-2225 are identical to the corresponding Modifiers
2101-2106 and 2121-2125, and thus need not be repeated
here.

However, both window “Window X+MinMax” 2200 and
TitleBar 2226 have identical (in this example, aliased)
versions, respectively 2207 and 2226, of Behavior Modifier
MinMaxResponse. Its purpose will be understood in con-
junction with a description of MinBox 2240. It too has a
public interface comprised of a Boolean Variable Modifier

5,680,619

69
MinFlag 2243 (which indicates whether the window 2200 is
minimized or not), point Variable Modifiers BoxRect__
TopLeft 2244 and BoxRect_ BottomRight 2245 (which
define the bounding rectangle of MinBox 2240), MinICON-
Dimensions 2246 and the height and width of the minimized
icon, the Image Effect Modifier 2241 (which gives MinBox
2240 a bevelled appearance when clicked on), and Graphic
Modifier 2242 (to set its color.

Miniscript Modifier “CREATE MinBox” 2247 initializes
MinBox 2240 at the beginning of Scene 2040 as follows:

set MinFlag to false

set width to 20

set height to 20

set BoxRect__TopLeft.x to BoundingRect__

BottomRight. x—BoundingRect_ TopLeft.x—width

set BoxRect_TopLeft.y to O

set BoxRect_BottomRight.x to BoxRect_TopLeft.x+

width

set BoxRect_BottomRight.y to BoxRect_TopLeft.y+

height

set position to BoxRect_ TopLeft

set MinICONDimensions to (40,40)

MinBox 2240 is initially maximized (as indicated by the flag
being set to false), 20 pixels on a side, at the upper right hand
corner of window 2260, with an iconized state of 40 pixels
on a side.

MinMaxBehavior Modifier 2248 controls the minimizing
operation. Receipt of a mouse down within the bounding
rectangle of MinBox 2240 causes Miniscript Modifier
DetectMinBoxSelect 2249 to be executed:

set MinFlag to not MinFlag

send “MinBoxActivated” with MinFlag to element’s par-

ent

The state of MinFlag 2243 is toggled and the message
“MinBoxActivated” is sent, along with the new state of
MinFlag 2243, to the parent of MinBox 2240, in a Relative
Targeting fashion. This turns out to be the window 2200
itself. Thus, this message triggers the two instances of
MinMaxResponse 2207 and 2226 on window 2200 and
TitleBar 2200, respectively.

As seen under MinMaxResponse 2207, this aliased
Behavior has two If Messenger Modifiers under it, “Max
Response” 2208 and “Min Response” 2209. They each
command the Element to be shown or hidden. Thus, window
2200 and TitleBar 2200 will either reappear or disappear
when the MinBox 2240 is clicked. The receipt of the
message “MinBoxActivated” by MinMaxBehavior 2248
causes Miniscript Modifier “MinMax Response” 2250 to be
invoked:

if incoming = true then
set width to MinICONDimensions.x
set height to MinfCONDimensions.y
set positionx to - (element’s parent.position.x)
set position.y to scene.height - element’s parent.position.y -
MinICONDimensions.y
else
send “Scene Started” to element
end if

If MinFlag 2243 is true (as the incoming data), MinBox
2240 is minimized by setting its dimensions to the icon
dimensions MinfCONDimensions 2246, and is placed in the
lower left hand corner of Scene 2040 (including calculations
of the relative coordinates of Parent window 2200). If
MinFlag 2243 is false, a “Scene Started” Environment

Page 82 of 88

10

15

20

25

35

40

45

50

55

65

70
Message is sent to the Element, which is a shorthand way to
reinvoke the initialization Miniscript Modifier “Create Min-
Box” 2247.

The window “Window X+MinMax+Drag” 2300 adds the
dragging functionality to TitleBar 2320. MinBox 2340 is a
passive beneficiary of this dragging ability by virtue of its
status as a child of window 2300, thus being dragged due to
Hierarchical Relative Positioning. Its implementation is
identical to MinBox 2240 (including all its contained
Modifiers), and thus need not be repeated again. Also,
Modifiers 2301-2307 and 23212326 are identical to Modi-
fiers 22012207 and 2221-2226 (including any contained
Modifiers), respectively, and need not be described again.

The dragging ability is implemented through TitleBar
DRAG Behavior 2327. Had TitleBar 2320 been the parent of
window 2300 instead of its child, Hierarchical Relative
Positioning would have handled the movement of window
2300 automatically. In any event, upon receiving a mouse
down within TitleBar 2320, Messenger MouseDown 2329
sends a TitleBarMouseDown message to its Element’s
parent, namely window 2300. Similarly, a successive mouse
up event will cause.the TitleBarMouseUp message to be
transmitted to window 2300. A mouse down also invokes the
Miniscript Modifier CalcMouseOffset 2330, which calcu-
lates the offset, stored as point Variable MouseOffset 2328,
between the mouse down and window 2300 positions.

set MouseOffset to mouse—element’s parent.position.

Timer Messenger TitleBarMouseTracking 2331, which is
respectively emabled and disabled by mouse downs and
mouse ups, loops repeatedly with no time delay (meaning no
delay within the limits of idle cycling) and sends the
message TitleBarMouseTracking with MouseQffset 2328 as
data.

The primary purpose of the TitleBar Drag Behavior 2327
is to invoke the Window Drag Behavior 2308 between the
TitleBarMouseDown and TitleBarMounseUp messages,
through its Follow Mouse Miniscript Modifier 2309, whose
simple script is as follows:

set position to mouse—incoming.

Thus, resetting the position of window 2300 in accordance
with MouseOffset 2328 (which was passed as data) brings
the window 2300 into the position it would have been had
it been dragged directly via a Drag Motion Modifier.

FIG. 35(d) introduces the implementation of the alterna-
tive windowing system, namely that built upon Window X'
2400. It is virtually identical to Window X, particularly with
respect its use of Modifiers Name 2400, BoundingRect__
TopLeft 2402, BoundingRect BottomRight 2403, Graphic
Modifier 2404, CREATE Window 2405, as well as Modi-
fiers under TitleBar 2420. The sole difference is the lack of
Image Effect Modifier 2105, and thus no beveling, as
illustrated in FIG. 34(d).

The window “Window X'+WindowShade” 2500 intro-
duces the “window shade” feature, as seen in FIG. 35(¢).
Modifiers 2501-2505 and 2521-2525 are familiar incarna-
tions of previous windows and need not be described again.
The window shade feature is implemented through Win-
ShadeBehavior 2526 which relies on Window WinShade
Response 2506. Thus, Boolean Variable Modifier Win-
ShadeFlag 2527 stores the window shade “state” (up=true,
down=false) of window, 2500, with Miniscript Modifier
INITFlag 2529 simply initializing this state to false.

The invocation of the window shade feature is accom-
plished by a double mouse click on TitleBar 2520. The
DetectDoubleClick Behavior 2530 detects a double mouse
click. An INITFlag Miniscript Modifier 2532 sets a Boolean
Variable Modifier ClickFlag 2531 to false at the beginning

5,680,619

71
of Scene 2040. Upon the detection of a Mouse Up event
inside TitleBar 2520, the MouseUpResponse Miniscript
Modifier 2533 is run with the following script:

if ClickFlag = true then
set WinShadeFlag to not WinShadeFlag
send “WindowShadeActivated” with WinShadeFlag to element’s

parent

set ClickFlag to false
else

set ClickFlag to true
end if

Thus, the state of ClickFlag 2531 is toggled. If it was true,
the state of WinShadeFlag 2527 is toggled and sent with
message “WindowShadeActivated” to window 2500. Click
Timer 2534 tracks the maximum length of time allowed in
between single clicks of a double click, and is also invoked
by the Mouse up event inside TitleBar 2520. When Clock
Timer 2534 times out, it sends the message SingleClick,
which invokes the SingleClick Miniscript Modifier 2535
which sets ClickFlag 2531 to false. In other words, if
MouseUpResponse 2533 is not invoked before SingleClick
2535 is triggered, then the WindowShadeActivated message
will not be sent.

The WindowShadeActivated message is received by the
“WINDOW WinShadeResponse” Behavior 2506, which
either triggers the If Messenger “ShadeDown Response”
2507 which commands the window 2500 to show or the If
Messenger “ShadeUp Response” 2508 which commands the
window 2500 to hide, depending on the state of WinShade-
Flag 2527 (transmitted as data).

Finally, WinShade Sound 2528 provides a “window shad-
ing” sound effect, invoked when the TitleBar 2520 itself
receives the WindowShadeActivated message, regardless of
the state of WinShadeFlag 2527.

FIG. 35(f) illustrates how easily the minimizing feature in
window 2300 can be replaced by the window shade feature
from window 2500 and integrated into window “Window
X+WindowShade+Drag” 2600, despite the fact that they
come from two different environments (analogous to two
different “class hierarchies™).

“WINDOW WinShadeResponse” 2607 replaces Min-
MaxResponse 2307, WinShadeBehavior 2626 replaces Min-
MaxResponse 2326 within TitleBar 2620, and MinBox 2340
is removed. All other Modifiers (2601-2606, 2608,
2621-2625 and 2627) continue to operate as do their coun-
terparts in the previous windows. And the window 2600
somehow just “works”.

Though it utilizes MinBox 2340, Window 2600
(including its Window Drag Behavior 2308 and TitleBar
Drag Behavior 2327) was not dependent on the existence of
MinBox 2340. The fact that messages no longer cascade
down to a MinBox does not affect the operation of the
window, unlike the situation in which an OOP superclass is
replaced, causing its tightly coupled former subclass to
“break” in an effort to locate the missing (inherited) methods
and data structures. Even had an explicit reference to a
MinBox Modifier been left behind, this windowing system
would not break. The affected Modifier would simply stop
working until this dependency was identified and resolved (a
task that still would not require the author to have access to
the private data structures or methods of any object).

FIG. 35(g) shows how a window ALL 2700 could in fact
incorporate both the features of window 2300 and 2500, i.c.
have the window shade as well as the minimize feature. With
comparison to window 2600 in FIG. 35(f), the MinMaxRe-
sponse 2707 has returned under window 2700, as has

Page 83 of 88

10

15

25

30

35

45

50

55

65

72
MinMaxResponse 2726 under TitleBar 2720. MinBox 2740
has been reintroduced, though with the addition of a “MIN-
BOX WinShadeResponse” Behavior 2749 identical in func-
tion to the Window WinShadeReponse 2708. AH Modifiers
2701-2706, 2708, 2709, 2721-2728, and 2741-2748 again
operate as do their counterparts in previous windows.

In summary, this example illustrates the modularity of the
Elements and Behaviors of the current invention. In one
respect, these object containers are quite independent of one
another, relying on message broadcasting within the rela-
tively narrow confines of the Structural and Behavioral
Hierarchies. Adding a new Behavior from a foreign envi-
ronment often requires either no additional work or the
relatively simple integration of a copy of an existing Behav-
ior within an existing Element. Even where dependencies
exist, they are evident from the surface (i.e., the configura-
tion of the Elements and Modifiers being transferred), as
opposed to being inextricably intertwined with their former
container environments, which often requires recompilation,
access to third-party source code and, ultimately, fairly
extensive programming.

Although the invention has been described in detail with
reference to its presently preferred embodiments, it will be
understood by one of ordinary skill in the art that various
modifications can be made, without departing from the spirit
and the scope of the invention. Accordingly, it is not
intended that the invention be limited except as by the
appended claims.

We claim:

1. An application development system comprising:

(a) a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element
object in the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Modifier object in the second class;

(c) an instantiation mechanism that enables a first Element
and a second Element to be instantiated from the first
class of Element objects, and further enables a first
Modifier to be instantiated from the second class of
Modifier objects;

(d) a first hierarchical linking mechanism that enables an
author to link the first Element as a parent to the first
Modifier, the first Element attaining the second set of
characteristics while the first Element and the first
Modifier remain linked; and

(e) a second hierarchical linking mechanism that enables
an author to link the first Element as a parent to the
second Element, the first Element providing an envi-
ronmental frame of reference for the second Element
and the first Modifier.

2. An application development system comprising:

(a) a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Modifier in the second class;

(c) a third class of Element objects from which one or
more Elements can be instantiated, the third class
defining a third set of characteristics inherent to each
Element in the third class;

5,680,619

73

(d) an instantiation mechanism that enables a first Ele-
ment to be instantiated from the first class, and further
enables a second Element to be instantiated from the
third class, and further enables a first Modifier to be
instantiated from the second class;

(e) a first hierarchical linking mechanism that enables the
first Element to be linked to the first Modifier, the first
Element providing an environmental frame of refer-
ence for the first Modifier, and attaining the second set
of characteristics, while the first Element and first
Modifier remain linked; and

(f) a second hierarchical linking mechanism that enables
the first Element to be linked to the second Element, the
first Element providing an environmental frame of
reference for the second Element while the first and
second Elements remain linked,

whereby the system enables the creation of an object hier-
archy.

3. The application development system of claim 2

wherein the first and third classes are equivalent.

4. The application development system of claim 2 or 3

wherein: '

(a) the first Element’s set of characteristics includes a
current position of the first Element;

(b) the second Element’s set of characteristics includes a
current position of the second Element; and)

(c) the environmental frame of reference provided by the
first Element is manifested at least in part by a Hier-
archical Relative Positioning mechanism that deter-
mines the current position of the second Element
relative to the current position of the first Element.

§. An application development system comprising:

(a) a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Modifier in the second class;

(c) an instantiation mechanism that enables a first Element
to be instantiated from the first class, and further
enables a first Modifier to be instantiated from the
second class; and

(d) a hierarchical linking mechanism that enables the first

' Element to be linked to the first Modifier, the first
Element attaining the second set of characteristics
while the first Element and first Modifier remain linked,

whereby the system enables a form of object-based author-
ing through the modification of the behavior of an object
without modifying the system’s underlying class hierarchy.

6. The application development system of claim 5

wherein:

(a) the first Element’s set of characteristics includes a
current position of the first Element that is visually
perceptible to a user of the system; and

(b) the first Modifier’s set of characteristics includes the

45

50

55

ability to detect when the current position of the first 6o

Element crosses a predetermined boundary.

7. The application development system of claim 5
wherein the first Modifier’s set of characteristics includes
the ability to detect a collision between the first Element and
another Element.

8. The application development system of claim 5
wherein:

Page 84 of 88

74

(a) the first Element constitutes a first object container
containing the first Modifier while the first Element and
first Modifier remain linked; and -

(b) the system can discern automatically dependencies of
that first object container.

9. The application development system of claim 8

wherein:

(a) the first Element’s set of characteristics includes a

current position of the first Element;

(b) the system further comprises a relative positioning
mechanism that determines the current position of the
first Element relative to a current position of an ances-
tor Element of the first Element; and

(c) the dependencies of the first object container include
the current position of the first Element.

10. The application development system of claim 8

wherein:

(a) the system further comprises an object configuration
and messaging mechanism that allows the first Modi-
fier to be configured to perform an action in response to
the receipt of a specified message; and

(b) the dependencies of the first object container include
the specified message to which the first Modifier is
configured to respond.

11. The application development system of claim 8

wherein:

(a) the system further comprises Variable Modifiers hav-
ing a third set of characteristics inherent to each Vari-
able Modifier, the third set of characteristics including
the ability to store data on behalf of an Element;

(b) the system further comprises an object configuration
and variable scoping mechanism that allows the first
Modifier to be configured to access a second Variable
Modifier, provided that the second Variable Modifier
stores data on behalf of the first Element or an ancestor
Element of the first Element; and

(c) the dependencies of the first object container include
the data stored by the second Variable Modifier.

12. An application development system comprising:

(a) a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Modifier in the second class;

(c) aninstantiation mechanism that enables a first Element
to be instantiated from the first class, and further
enables a first Modifier to be instantiated from the
second class; and

(d) a hierarchical linking mechanism that enables the first
Element to be linked to the first Modifier, the first
Element providing an environmental frame of refer-
ence for the first Modifier while the first Element and
first Modifier remain linked,

whereby the system enables the behavior of an Element to
be modified.

13. The application development system of claim 2 or 12

wherein:

(a) the system further comprises a messaging mechanism
that sends messages to Elements and Modifiers; and
(b) the environmental frame of reference provided by the

first Element is manifested at least in part by a Hier-

5,680,619

75

archical Message Broadcasting mechanism that uses
the messaging mechanism to broadcast a message sent
to the first Element to descendants of the first Element.

14. The application development system of claims 2 or 12

wherein:

(a) the system further comprises Variable Modifiers hav-
ing a fourth set of characteristics inherent to each
Variable Modifier, the fourth set of characteristics
including the ability to store data on behalf of an
Element; and

(b) the environmental frame of reference provided by the
first Element is manifested at least in part by a Hier-
archical Variable Scoping mechanism that renders data
stored in a Variable Modifier on behalf of the first
Element accessible to descendants of the first Element.

15. The application development system of claim 5 or 12

wherein:

(a) the first Element’s set of characteristics includes a
current position and a graphic representation of the first
Element that are visually perceptible to a user of the
system; and

(b) the first Modifier’s set of characteristics includes the
ability to change the current position of the first Ele-
ment over time.

16. The application development system of claim 5 or 12

wherein:

(a) the first Element’s set of characteristics includes a
graphic representation of the first Element that is visu-
ally perceptible to a user of the system; and

(b) the first Modifier’s set of characteristics includes
graphic attributes that alter the first Element’s graphic
representation.

17. An application development system comprising:

(a) a first class of Behavior objects from which one or
more Behaviors can be instantiated, the first class
defining a first set of characteristics inherent to each
Behavior in the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Modifier in the second class;

(c) an instantiation mechanism that enables a first Behav-
ior to be instantiated from the first class, and further
enables a first Modifier to be instantiated from the
second class; and

(d) a hierarchical linking mechanism that enables the first
Behavior to be linked to the first Modifier, the first
Behavior providing an environmental frame of refer-
ence for the first Modifier while the first Behavior and
first Modifier remain linked,

whereby the system enables a behavioral hierarchy of Modi-
fiers to be created.

18. The application development system of claim 17

wherein: i

(2) the system further comprises a messaging mechanism
that sends messages to Behaviors and Modifiers; and

(b) the environmental frame of reference provided by the
first Behavior is manifested at least in part by a Hier-
archical Message Broadcasting mechanism that uses
the messaging mechanism to broadcast a message sent
to the first Behavior to descendants of the first Behav-
ior.

19. The application development system of claim 17

wherein:

(a) the system further comprises Variable Modifiers hav-
ing a fourth set of characteristics inherent to each

Page 85 of 88

76
Variable Modifier, the fourth set of characteristics
including the ability to store data on behalf of a
Behavior; and

(b) the environmental frame of reference provided by the

5 first Behavior is manifested at least in part by a Hier-
archical Variable Scoping mechanism that renders data
stored in a Variable Modifier on behalf of the first
Behavior accessible to descendants of the first Behav-
ior.

20. The application development system of claim 7, 12 or
17 wherein the second set of characteristics includes the
ability to send a message to another Modifier.

21. An application development system comprising:

(a) a first class of Element objects from which one or more

~ Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Modifier in the second class;

(c) a third class of Behavior objects from which one or
more Behaviors can be instantiated, the third class
defining a third set of characteristics inherent to each
Behavior in the third class;

{(d) a fourth class of Modifier objects from which one or
more Modifiers can be instantiated, the fourth class
defining a fourth set of characteristics inherent to each
Modifier in the fourth class;

(e) an instantiation mechanism that enables a first Element
to be instantiated from the first class, and further
enables a first Modifier to be instantiated from the
second class, and further enables a first Behavior to be
instantiated from the third class, and further enables a
second Modifier to be instantiated from the fourth
class; and

(f) a hierarchical linking mechanism that enables:
(1) linking of the first Element to the first Modifier and
the first Behavior; and
(2) linking of the first Behavior to the second Modifier,
wherein the first Behavior attains the fourth set of
characteristics while the first Behavior and second
Modifier remain linked, and the first Element attains
the second, third and fourth sets of characteristics,
while the first Element, first Behavior and first and
second Modifiers remain linked,
whereby the first, second, third and fourth sets of charac-
teristics define the first Element’s personality.
22. An application development system comprising:
(a) a plurality of object classes from which one or more
objects can be instantiated, each class defining a set of
characteristics inherent to each object in that class;

(b) an instantiation mechanism that enables a first object
having a first set of characteristics to be instantiated
from the plurality of object classes, and further enables
a second object having a second set of characteristics to
be instantiated from the plurality of object classes, and
further enables a third object having a third set of
characteristics to be instantiated from the plurality of
object classes, and further enables a fourth object
having a fourth set of characteristics to be instantiated
from the plurality of object classes; and

(c) a hierarchical linking mechanism that enables:

(i) creation of a first object container by linking the first
object to the second object, wherein the first object

20

25

45

50

5,680,619

77

provides an environmental frame of reference for the
second object while the first and second objects
remain linked,;

(ii) creation of a second object container by linking the
second object to the third object, wherein the second
object provides an environmental frame of reference
for the third object while the second and third objects
temain linked; and

(iii) replacement of the second object with the fourth
object by breaking the links between the second
object and the first and third objects, and establishing
corresponding links between the fourth object and
the first and third objects, such that the first object
provides an environmental frame of reference for the
fourth object, which in turn provides an environmen-
tal frame of reference for the third object, while the
first, third and fourth objects remain linked,

whereby the system enables selective reusability of an object
container and the objects it contains.

23. The application development system of claim 22
wherein the first, second, third and fourth objects are Ele-
ments.

24. The application development system of claim 22
wherein the first and second objects are Elements, and the
third object is a Modifier, and wherein the second object
attains the third set of characteristics while the second and
third objects remain linked.

25. The application development system of claim 22
wherein the first object is an Element, the second object is
a Behavior and the third object is a Modifier, and wherein
the first object attains the second and third sets of charac-
teristics while the first, second and third objects remain
linked.

26. The application development system of claim 22
wherein the first and second objects are Behaviors, and the
third object is a Modifier, and wherein the first object attains
the second and third sets of characteristics while the first,
second and third objects remain linked.

27. An application development system comprising:

() a plurality of object classes from which one or more
objects can be instantiated, each class defining a set of
characteristics inherent to each object in that class; and

(b) an instantiation mechanism that enables a first object
having a first set of characteristics to be instantiated
from the plurality of object classes, and further enables
a second object having a second set of characteristics to
be instantiated from the plurality of object classes, and
further enables a third object having a third set of
characteristics to be instantiated from the plurality of
object classes; and

(c) a hierarchical linking mechanism that enables creation
of:

(1) a first object container by linking the first object to
the second object, wherein the first object provides
an environmental frame of reference for the second
object while the first and second objects remain
linked; and

(i) a second object container, replacing the first object
with the third object, by breaking the link between
the second object and the first object, and establish-
ing a corresponding link between the second object
and the third object, such that the third object pro-
vides an environmental frame of reference for the
second object while the objects remain linked,

whereby the system enables selection of a new object
container for an object.

28. The application development system of claim 27
wherein the first, second and third objects are Elements.

Page 86 of 88

10

20

25

35

45

50

55

78

29. The application development system of claim 27
wherein each of the first and third objects is either an
Element or Behavior, and the second object is either a
Behavior or Modifier.

30. The application development system of claim 27
wherein the dynamic object configuration and hierarchical
linking mechanism allows configuration of the second object
such that the replacement of the first object with the third
object occurs dynamically, at runtime, upon the occurrence
of a specified condition.

31. The application development system of claim 27
wherein the hierarchical linking mechanism further includes
a touch-up mechanism that, upon the replacement of the first
object with the third object, automatically identifies and
resolves dependencies of the first, second and third objects.

32. The application development system of claim 31
wherein the dependencies include a current position of the
first and third objects.

33. The application development system of claim 31
wherein the dependencies include a Variable accessed by the
second object.

34. The application development system of claim 31
wherein the dependencies include a message to which the
second object responds.

3S. The application development system of claim 31
wherein:

(a) the dependencies include a first asset constituting a
dependency of the second object and a second asset
constituting a dependency of the third object, the sys-
tem referencing each of the first and second assets both
by a name and by a unique identifier; and

(b) the touch-up mechanism, upon the replacement of the
first object with the third object, resolves name and
unique identifier conflicts by:

(i) replacing the unique identifier of the first asset with
the unique identifier of the second asset, if the name
of the first and second assets are equivalent; and

(ii) assigning a new unique identifier to the first asset if
the unique identifiers, but not the names, of the first
and second assets are equivalent.

36. An application development system comprising:

(a) a plurality of object classes from which one or more
objects can be instantiated, each class defining a set of
characteristics inherent to each object in that class;

(b) an instantiation mechanism that enables a first object,
a second object and a third object to be instantiated
from the plurality of object classes; and

(c) a hierarchical linking mechanism that enables creation
of: ‘

(i) a first object container, by linking the first object to
the second object, wherein the first object provides
an environmental frame of reference for the second
object while the first and second objects remain
linked; and

(i) a first object hierarchy within the first object
container, by linking the second object to the third
object, thereby creating a second object container
wherein the second object provides an environmen-
tal frame of reference for the third object while the
second and third objects remain linked; and

(d) a Hierarchical Message Broadcasting mechanism that
broadcasts a message sent to the first object container
to the second and third objects included within the first
object hierarchy,

whereby the system enables the broadcasting of messages
within an object hierarchy.

79

37. The application development system of claim 36
wherein:

(a) the instantiation mechanism further enables a fourth
object to be instantiated from the plurality of object
classes;

(b) the hierarchical linking mechanism further enables
linking of the first object to the fourth object, wherein
the first object provides an environmental frame of
reference for the fourth object while the first and fourth
objects remain linked;

(c) the system further comprises an object configuration
and messaging mechanism that enables the third object
to be configured to send a message to a runtime object
container that contains the third object when the mes-
sage is sent at runtime; and

(d) if the first object is.a runtime object container of both
the third and fourth objects, the message sent by the
third object to the first object will be broadcast to the
fourth object by the Hierarchical Message Broadcast-
ing mechanism,

whereby an object can be configured to send a message to
another object by relatively targeting the lowest common
ancestor of the two objects.

38. The application development system of claim 36
further comprising an object configuration and messaging
mechanism that enables an object to be configured to send
a message to a specified destination Element and limit its
broadcasting, via the Hierarchical Message Broadcasting
mechanism, such that the message will not cascade to any
Elements contained within the destination Element.

39. The application development system of claim 36
further comprising an object configuration and messaging
mechanism that enables an object to be configured to send
a message to a specified destination object and limit its
broadcasting, via the Hierarchical Message Broadcasting
mechanism, such that the message will not be relayed
beyond the first object configured to respond to the message.

40. An application development system comprising:

(a) a plurality of object classes from which one or more
objects can be instantiated, each class defining a set of
characteristics inherent to each object in that class;

(b) an instantiatiOn mechanism that enables a first object
and a second object to be instantiated from the plurality
of object classes;

(c) a hierarchical linking mechanism that enables creation
of an object container by linking the first object to the
second object, wherein the first object provides an
environmental frame of reference for the second object
while the first and second objects remain linked; and

(d) an object configuration and messaging mechanism that
enables configuration of the second object to send a
message to a runtime object container that contains the
second object when the message is sent at runtime,

whereby the system enables the relative targeting of mes-
sage destinations.

41. An application development system comprising:

() a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

(b) a second class of Modifier objects from which one or
more Modifiers can be instantiated, the second class
defining a second set of characteristics inherent to each
Maodifier in the second class;

(c) an instantiation mechanism that enables a first Element
to be instantiated from the first class, and further
enables a first Modifier to be instantiated from the
second class;

Page 87 of 88

5,680,619

15

20

25

30

45

50

55

65

80
(d) a hierarchical linking mechanism that enables the first

Element to be linked to the first Modifier, the first

Element attaining the second set of characteristics

while the first Element and the first Modifier remain

linked; and
(e) a component API that enables:

(i) creation of a third class of Modifier objects, the third
class defining a third set of characteristics inherent to
each Modifier in the third class; and

(ii) integration of the third class of Modifiers into the
system such that the instantiation mechanism can be
used to instantiate a second Modifier from the third
class, and the hierarchical linking mechanism can be
used to link the first Element to the second Modifier,
wherein the first Element attains the third set of
characteristics while the first Element and second
Modifier remain linked,

whereby the system’s component API enables the function-
ality of the system to be extended.
42, The application development system of claim 41
wherein the third class is a subclass of the second class.
43. The application development system of claim 41
wherein:

(a) the system further comprises a fourth class of Modifier
objects from which one or more Modifiers can be
instantiated, the fourth class constituting a subclass of
the second class and inheriting at least some of the
second set of characteristics, and defining a fourth set
of characteristics inherent to each Modifier in the fourth
class; and

(b) the component API further enables:

(i) addition of one or more methods or data structures
to the second class, via the component API, without
access to or recompilation of source code defining
the second class, thereby defining a supplemental set
of characteristics, in addition to the second set of
characteristics, inherent to each Modifier in the
modified second class; and

(ii) integration of the modified second class of Modi-
fiers into the system such that the instantiation
mechanism can be used to instantiate a third Modi-
fier from the fourth class, and the hierarchical linking
mechanism can be used to link the first Element to
the third Modifier, wherein the first Element attains
the supplemental set of characteristics, in addition to
the fourth set of characteristics, while the first Ele-
ment and third Modifier remain linked,

whereby the system’s component API enables the function-
ality of an existing superclass of the system to be extended.

44. An application development system comprising:

(a) a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class; -

(b) an instantiation mechanism that enables a first Ele-
ment to be instantiated from the first class; and

(c) a media linking mechanism that enables:

(i) linking of the first Element to a first media item
having a first media data type, such that the first
Element will take on the appearance of the first
media item during runtime while the first Element
and first media item are linked;

(i) breaking of the link between the first Element and
the first media item; and

- (iii) linking of the first Element to a second media item

having a second media data type, such that the first

5,680,619

81

Element will take on the appearance of the second
media item during runtime while the first Element
and second media item are linked,
whereby the system enables an Element to be morphed
among different media data types.

45. The application development system of claim 44
wherein the media linking mechanism further comprises an
object configuration and dynamic linking mechanism that
enables configuration of the first Element such that the
system dynamically, upon the occurrence of a specified
runtime condition, breaks the link between the first Element
and the first media item and establishes a link between the
first Element and the second media item.

46. An application development system comprising:

(a) a first class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

(b) a second class of Element objects from which one or
more Elements can be instantiated, the second class
defining a second set of characteristics inherent to each
Element in the second class;

(c) a third class of Variable Modifier objects from which
one or more Variables can be instantiated, the third
class defining a third set of characteristics inherent to
each Variable in the third class, the third set of char-
acteristics including the ability to store data on behalf
of an Element;

(d) an instantiation mechanism that enables a first Ele-
ment to be instantiated from the first class, and further
enables a second Element to be instantiated from the
second class, and further enables a first Variable to be
instantiated from the third class;

(€) an alias mechanism that enables creation of an alias of
the first Variable having a first value, from which
aliased copies of the first Variable can be made; and

(f) a hierarchical linking mechanism that enables the first
Element to be linked to a first aliased copy of the first
Variable, and to link the second Element to a second
aliased copy of the first Variable, such that the first
aliased copy of the first Variable stores the first value on
behalf of the first Element, and the second aliased copy
of the first Variable stores the first value on behalf of the
second Element;

(g) wherein the alias mechanism causes any change at
runtime to the first value stored by the first aliased copy
of the first Variable to be reflected dynamically in the
second aliased copy of the first Variable, such that the
first and second aliased copies of the first Variable store
the same value at any give time during runtime,

whereby the system provides dynamically aliased Variables.

47. An application development system comprising:

(a) afirst class of Element objects from which one or more
Elements can be instantiated, the first class defining a
first set of characteristics inherent to each Element in
the first class;

Page 88 of 88

20

25

30

35

40

82

(b) an instantiation mechanism that enables a first Ele-
ment to be instantiated from the first class;

(c) a media linking mechanism that enables the first
Element be linked to a first media item having a
cel-based animation data format, such that the Element
will take on the appearance of the cels of the first media
item at a specified animation rate during runtime; and

(d) an object configuration and animation range selection
mechanism that enables the first Element to be config-
ured to play a specified range of cels of the first media
item during runtime upon the occurrence of a specified
condition,

whereby the system enables dynamic changes to a portion of
an animation that is played during runtime upon the occur-
rence of a specified condition.

48. An application development system comprising:

(a) a plurality of object classes from which one or more
objects can be instantiated, each class defining a set of
characteristics inherent to each object in that class;

(b) an instantiation mechanism that enables a first object,
a second object, a third object, a fourth object and a
fifth object to be instantiated from the plurality of
object classes; and

(c) a hierarchical linking mechanism that enables creation
of:

(D) a first object container in a first application, by
linking the first object to the second object, wherein
the first object provides an environmental frame of
reference for the second object while the first and
second objects remain linked;

(ii) a first object hierarchy within the first object
container, by linking the second object to the third
object, thereby creating a second object container
wherein the second object provides an environmen-
tal frame of reference for the third object while the
second and third objects remain linked; and

(iii) a third object container in a second application, by
linking the fourth object to the fifth object, wherein
the fourth object provides an environmental frame of
reference for the fifth object while the fourth and
fifth objects remain linked; and

{c) an object library mechanism that enables copying of:
(i) the second object container from the first application

into a first object library upon breaking the link
between the first and second objects; and

(ii) the second object container from the first object
library into the second application, and linking of the
fourth object using the hierarchical linking
mechanism, wherein the fourth object provides an
environmental frame of reference for the second
object container while the second, third and fourth
objects remain linked,

whereby the system enables selective reusability of object
containers across applications.

L T .

