
Page 1 of 275 GOOGLE EXHIBIT 1016

Inside Java’ 2

Platform Security
Architecture, API Design,

and eapreneentaten

... from the Source #4

Page 1 of 275 GOOGLEEXHIBIT 1016

Page 2 of 275

 NDISWUONPldZ.PAPLapIsuy
AVA

qeoS=ge

Og JAVA
Page 2 of 275

Page 3 of 275

Page 3 of 275

~ NORTH CAROLINA STATE UNIVERSITY Li

‘ AO
$01773199

AeteeAnealtenenetaentneteenessa

il

Page 4 of 275

Inside Java™ 2

Platform Security

This book is due on the date indicated
elow and is subject to an overdue

fine as posted at the circulation desk.
EXCEPTION: Date due will be
earlierif thisitemis RECALLED.

 FEB 0,89
OCHUEi009

KIN 2 Set"
HEF

aware 2 6 fheByars & NOC
= :
Ts ye4

SEP 2.5 2002

200M/06-99-991212

Page 4 of 275

Page 5 of 275Page 5 of 275

The Java™ Series

Lisa Friendly, Series Editor
Tim Lindholm, Technical Editor
Please see our website (http://www.awl.com /cseng/javaseries) for more information onthesetitles.

Ken Arnold and James Gosling, The Java™
Programming Language, Second Edition
ISBN 0-201-31006-6

Mary Campione and Kathy Walrath, The Java™
Tutorial, Second Edition: Object-Oriented
Programming for the Internet (Book/CD)
ISBN 0-201-31007-4

Mary Campione, Kathy Walrath, Alison Huml, and
the Tutorial Team, The Java™ Tutorial Continued:

The Rest of the JDK™ (Book/CD)
ISBN 0-201-48558-3

Patrick Chan, The Java™ Developers Almanac 1999
ISBN 0-201-43298-6

Patrick Chan and Rosanna Lee, The Java™ Class

Libraries, Second Edition, Volume 2: java.applet,
java.awt, java. beans
ISBN 0-201-31003-1

Patrick Chan, Rosanna Lee, and Doug Kramer,
The Java™ Class Libraries, Second Edition,

Volume I: java.io, java.lang, java.math,
java.net, java.text, java.util
ISBN 0-201-31002-3

Patrick Chan, Rosanna Lee, and Doug Kramer,
The Java™ Class Libraries, Second Edition,
Volume 1: Supplementfor the Java™ 2 Platform,
Standard Edition, v1.2
ISBN 0-201-48552-4

Li Gong, Inside the Java™ 2 Platform Security
Architecture: Cryptography, APIs, and
Implementation
ISBN 0-201-3 1000-7

James Gosling, Bill Joy, and Guy Steele,
The Java™ Language Specification
ISBN 0-201-6345 1-1

James Gosling, Frank Yellin, and The Java Team,
The Java™ Application Programming Interface,
Volume 1: Core Packages
ISBN 0-201-63453-8

James Gosling, Frank Yellin, and The Java Team,
The Java™ Application Programming Interface,
Volume 2: Window Toolkit and Applets
ISBN 0-201-63459-7

Jonni Kanerva, The Java™ FAQ
ISBN 0-201-63456-2

Doug Lea, Concurrent Programming in Java™:
Design Principles and Patterns
ISBN 0-201-69581-2

Sheng Liang, The Java™ Native Interface:
Programmer's Guide and Specification
ISBN 0-201-32577-2

Tim Lindholm and Frank Yellin, The Java™ Virtual

Machine Specification, Second Edition
ISBN 0-201-43294-3

Henry Sowizral, Kevin Rushforth, and Michael
Deering, The Java™ 3D API Specification
ISBN 0-201-32576-4

Kathy Walrath and Mary Campione, The JFC Swing
Tutorial: A Guide to Constructing GUIs
ISBN 0-201-43321-4

Seth White, MaydeneFisher, Rick Cattell, Graham
Hamilton, and Mark Hapner, JDBC™ API Tutorial
and Reference, Second Edition: Universal Data
Accessfor the Java™ 2 Platform
ISBN 0-201-43328-1

Page 6 of 275

Inside Java™ 2

Platform Security
Architecture, API Design,

and Implementation

Li Gong

A
vv

ADDISON-WESLEY

An imprint of Addison Wesley Longman,Inc.
Reading, Massachusetts + Harlow, England * Menlo Park, California

Berkeley, California * Don Mills, Ontario « Sydney
Bonn * Amsterdam * Tokyo * Mexico City

Page 6 of 275

Page 7 of 275

Page 7 of 275

Copyright © 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA, 94303, USA.
All rights reserved.

Duke™ designed by Joe Palrang.

Sun Microsystems,Inc. has intellectual property rights relating to implementations of the technology
described in this publication. In particular, and without limitation, these intellectual property rights
may include one or more U.S. patents, foreign patents, or pending applications. Sun, Sun
Microsystems, the Sun logo, and all Sun, Java, Jini, and Solaris based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company,Ltd.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGE-
MENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHI-
CAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION.
SUN MICROSYSTEMS, INC., MAY MAKE IMPROVEMENTS AND/OR CHANGESIN ANY
TECHNOLOGY, PRODUCT, OR PROGRAM DESCRIBED IN THIS PUBLICATION AT ANY
TIME.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,please
contact: Corporate, Governmentand Special Sales; Addison Wesley Longman,Inc.; One Jacob Way; Reading, Massa-
chusetts 01867.

ISBN: 0-201-31000-7
12345678 9-CRS-0302010099

First Printing, June 1999

 LSRSEEDSERSETET
RACECoRR

safeahReactsae
STURN

Page 8 of 275

Contents

Preface0.0000, cece eee Chee e erence reece seve e XE
How This Book Is Organized... 0.2.0... ccc ccc eece cece... xii
Acknowledgments... 00...ceeee ece cece, xiii

1 Computer and Network Security Fundamentals..............1
L.1 Cryptography versus Computer Security 6.022000. eee eee, 2
1.2 Threats and Protection... 6...eee ceee ee cec eee. 3
13° Perimeter Defense... 0.2...eeeeee ece cece. 4

13.1 Firewalls 200.ceeecece, 6
1.3.2 Inadequacies of Perimeter Defense Alone........................ 6

1.4 Access Control and Security Models 2.02... eee cece. 7
1.4.1 MAC and DAC Models... 0.0.6 cece cece. 7
1.4.2 Access to Data and Information.............................., 8
1.4.3 Static versus Dynamic Modelsan 9
1.4.4 Considerations Concerning the Use of Security Models............ 10

1.5 Using Cryptography«0... 11
1.5.1 One-Way Hash Functions... 0.2.0... 0. ec ec ccc eee cece, 12
1.5.2 Symmetric Ciphers «0.2.00... eeecece, 13
1.5.3 Asymmetric Ciphers .. 2.0.0...ecece! 14

1.6 Authentication 0...ee,15
1.7 Mobile Code 0.00.0...eee ec cccec ee. 17
1.8 Where Does Java Security FitIn..2...ee, 18

2 Basic Security for the Java Language...............00. wee 21
2.1 The Java Language and Platform ©... 2.0.00. ee cece cece cee. 22
2.2 Basic Security Architecture... 0...eee ece eee. 23
2.3 Bytecode Verification and Type Safety...2.eee. 25
2.4 Signed Applets 0.2.0...eeecece ccc cee 27
2.5 A Brief History of Security Bugs and Fixes... .2..000...0...0........ 28

Page 8 of 275

Page 9 of 275

Page 9 of 275

vi CONTENTS

3 JDK 1.2 Security Architecture........... cece ee eeees wee. 33
3.1 From the Beginning 0.0... ccc cc eee eee e eens 33
3.2 Why a New Security Architecture... 0... cece eee eee 34

3.2.1 Sandbox Restrictions on Applets Too Limiting................6. 34
3.2.2 Insufficient Separation Between Policy and Enforcement.......... 35
3.2.3 Security Checks Not Easily Extensible20005. 35
3.2.4 Locally Installed Applets Too Easily Trusted..............+.00 36
3.2.5 Internal Security Mechanisms Fragile--2 00000. 36
3.2.6 Summary..... 2.2.0...ccee eee eee eens 37

3.3 java.security.GeneralSecurityException cece ee eee 37

3.4 Security Policy... . 0... cece cc cee cee cee teen teen e eens 38
3.5 COUCSOUPCE 2... Le ccc cece eee ee eee een eee te neeene 41

3.5.1 Testing for Equality and Using Implication.................0005 43
3.6 Permission Hierarchy 0...ceeee eee 45

3.6.1 java.security.Permission 0... cece e ee ee eee 46
3.6.2 Permission Sets...... 2.2.0. c ec cee ee eee eee eee ne ens 48

3.6.3 java.security.UnresolvedPermission................0.. 50
3.6.4 java.io. FilePermission.. 12... 2... ce eee eee eens 52
3.6.5 java.net.SocketPermiSSiOn eee cee eee ees 55
3.6.6 java.security.BasicPermission 0.0 cee eee 59
3.6.7 java.util.PropertyPermisSSion 20. cee ee eee 59
3.6.8 java. lang.RuntimePermiSSiOn-.-. 2. eee ee eee 61
3.6.9 java.awt .AWTPermiSSion........ 0. ee cee eee cee eae 62
3.6.10 java.net.NetPermiSSion. 00... cece ce eee eens 63
3.6.11 java.lang.reflect.ReflectPermission06. 63
3.6.12 java.io.SerializablePermission..................000. 64
3.6.13 java.security.SecurityPermisSion...............0 00 64
3.6.14 java.security.Al]PermiSSION cee eee eee es 65
3.6.15 Implications of Permission Implications0005 66

3.7 Assigning Permissions0 6. cece eee cee ee tenet e eer eees 66
3.7.1 Positive versus Negative Permissions.0 00 cee vee eeee 68

3.8 ProtectiOnDOMAiNn cc eee eect ee eee eee eet een eee 69

3.9 Securely Loading Classes... 0... cece cee cee ce eee teeter ees 71
3.9.1 Class Loader Hierarchy-.... 00. e eee eee eee eee 72
3.9.2 java. lang.ClassLoader and Delegation4. 74
3.9.3 java.security.SecureClassLoader eee eee eee 719
3.9.4 java.net.URLClassLoader........... 0... eee eee eee ees 80
3.9.5 Classpaths . 02...cecece etree eens 81

3.10 java.lang.SecurityManager cee eee eee eee ene 83

3.10.1 Example Useof the Security Manager... 1.0.0.0... ccc eee ees 83
3.10.2 Unchanged APIs in JDK 1.2 0.0.0 eee eee 84
3.10.3 Deprecated Methods in JDK 1.2 2.0... ccc ccc ee cere 85

Page 10 of 275

CONTENTS , vii

3.11 java.security.AccessController00-00- 0. 90
3.11.1 Interface Design of AccessController 91
3.11.2 The Basic Access Control Algorithm .. 0.00.0... 0.0... cece eee 92
3.11.3 Method Inheritance... 0... cece cece cee eee ee, 94
3.11.4 Extending the Basic Algorithm with Privileged Operations... 95
3.11.5 Three Types of Privileged Actions.................-00-00..... 98
3.11.6 The Context of Access Control...........00...00--.eeee ee 101
3.11.7 The Full Access Control Algorithm020-...... 102
3.11.8 SecurityManager versus AccessController.............. 104
3.11.9 A Mini-History of Privileged Operations0..000. 105

3.12 Summary and Lessons Learned... 0000.0... cece eccececcce eee... 106

4 Deploying the Security Architecture...............0.. oe. 113
4.1 Installing IDK 1.2.0.0... eeeee ce cccececccece. 113
4.2 Policy Configuration....... 0.0.6.0. cece cece cee vececececce. 115

4.2.1 Configuring System-Wide and User-Specific Policies............ 115
4.2.2 Configuring Application-Specific Policies..................... 116
4.2.3 Configuring an Alternative Policy Class Implementation 117
4.2.4 Default Policy File Format0000.000 0000. cceceee sees. 118
4.2.5 Policy File Examples.....0...000.. 00 ec ceecccecece eee... 122
4.2.6 Property Expansion in Policy Files... 0.0... cc cece cece eee 123

4.3 Digital Certificates 0...cece cece ecece cee. 125
4.4 Helpful Security Tools... 00.0... eee ccc cece cee eeee cee. 130

4.4.1 Keystore Databases ©...6... cecccceee. 130
4.4.2 Keytool 0.0.0...cec eeceeeee bev ceeeeees 133
4.4.3 Policy Tool 0c eeee cece eceeeeececccece, 139
44.4 Jarsigner oo... cece cece cece ccc ee eee. 143
4.4.5 Code Signing Example000.. 000. cece cceec cece ee... 148

4.5 Managing Security Policies for Nonexperts 0.00... cece cece 150

5 Customizing the Security Architecture. sesecceceseeeee 153
5.1 Creating New Permission Types............00 0000 ccc ccc ceceeee eee 153
5.2 Composite Permissions... 0.6... eee cece cc ccc eee ceeeeeeee. 155
5.3 Customizing Security Policy... 0.0.0.0... 0.00 ccc cee c cece ececeee ee 156
5.4 Migrating JDK 1.1-Based Security Managers0.......0., 158

9.4.1 JDK 1.1 Security Manager Classes..............000.00000055. 158
5.4.2 Accommodating JDK 1.1 Security Managers on JDK 1.2......... 160
5.4.3 Modifying JDK 1.1 Security Managers for JDK 1.2.............. 163

6 Object Securityc..0cceecee ste eceeeeeenees 173
6.1 Security Exceptions... 00...cce cece ccccceee ce. 173
6.2 Fields and Methods... 20...ce cece cece cccecee cc. 174

Page 10 of 275

Page 11 of 275

Page 11 of 275

viii CONTENTS

6.3 Static Fields 0.0...ceeeee eee nee 176

6.4 Private Object State and Object immutability0.....0.....0.0. 176
6.5 Privileged Code .. 0...eecece einer e ee eee 178
6.6 Serialization 0... ceceeee eee eee eens 179

6.7 Inner Classes... 2...cececence nen e ences 181

6.8 Native Methods 0.0... eee eee ee eee eee e eens 182

6.9 Signing Objects... 0... cece ee eee e rete neces 182
6.10 Sealing Objects............ 0. cee ee eee ketene eee eee eens 185
6.11 Guarding Objects... 0... cee cee cee tee teenies 186

6.11.1 Examples of Using GuardedObject 0... eee eee 188

7 Programming Cryptography cece tence ees eeees 191
7.1 Design Principleseeete 192
7.2. Cryptographic Services and Service Providers0000005 193

7.2.1 Installing and Adding a Provider .-........ 0... cece eee ee eee 197
7.3 Cryptography Classes... ec cece ete ete erence eee 199

7.3.1 java.security.S@curity...... cece cece ee eee eee 199
7.3.2 java.security.Provider........... 2.0.0... eee eee eee 200
7.3.3 java.security.MessageDigeSt cee eee eee 200
7.34 jJava.security.Signature...... ieee ccc eee ees 201
7.3.5 Algorithm Parameters... 0.0.0.0... ee cee cee eee eee 204

TA

75

7.6

V7

7.3.6 java.security.Key and java.security.spec.KeySpec 207
73.7 java.security.KeyFactory and java. security.cert.

CertificateFactory 210
7.3.8 KeyPair and KeyPairGenerator........ ccc cece e cece e ences 212
7.3.9 java.security.KeyStore..... ce eee ce ee eens 214
Randomness and Seed Generators0 0000002 c eee eee 215

74.) java.security.SecureRandom00-000- 216
Code Examples... 0... ce ccc ce ee ete eee ene een eenes 217
7.5.1 Example 1: Computing a Message Digest0000- 217
7.5.2 Example 2: Generating a Public/Private Key Pair............... 218
7.5.3 Example 3: Generating and Verifying Signatures 219
7.5.4 Example 4: Reading a File That Contains Certificates............ 221
Standard Names... 0.2.0.0... cece ee ee ete eee eee 222

7.6.1 Message Digest Algorithms0 0.000000. cess eee 222
7.6.2 Key and Parameter Algorithms. 0... cece ec eee eee 222
7.6.3 Digital Signature Algorithms 0.0. c cece ee cee eens 223
7.6.4 Random Number Generation Algorithms.2.-.. 223
7.6.5 Certificate Types... 0... cee cece eee cee ener e nee 223
7.6.6 Keystore TypeS. 1... cece cee eee eee eee cence 224
Algorithm Specifications ... 0.2.0.0... ce ccc eeeeee 224
7.7.1 SHA-1 Message Digest Algorithm.00.....2.05. 225

Page 12 of 275

CONTENTS ix

7.7.2 MD2 Message Digest Algorithm.0.-0.00-000. 225
7.7.3 MDS Message Digest Algorithm.0..ccccccceecee 225
7.7.4 Digital Signature Algorithm0000 000000 c cece ceeeee 225
7.7.5 RSA-Based Signature Algorithms.............000000000-0005. 225
7.7.6 DSA KeyPair Generation Algorithm............0.0.000ccceeee. 226
7.7.7 RSA KeyPair Generation Algorithm................0.c0se0eee 227
7.7.8 DSA Parameter Generation Algorithm0.0020. 227

8 Future Directions see e cece esecenees 229
8.1 Security Management00000 00 ccc cece ec eceuevceenes 229
8.2 JDK Feature Enhancement00000 0. ccc ce cece cee eucucuenes 230
8.3 Java Authentication and Authorization Service0.0.008. 232

8.3.1 Subjects and Principals00.0000 000 cece cece ccc ee eens 234
8.3.2 Credentials...2.eccee ccc cee c een eeeeneees 234
8.3.3 Pluggable and Stacked Authentication0.0.0cccc cues 235
8.3.4 Callbacks. 0.0... cece cece ence te cece ceeeceeeees 239
8.3.5 Access Control... 0... ieee cece cece eee en eeneveeereees 239
8.3.6 JAAS Implementation000000 0. cece cece ceceuceeee. 241

8.4 Conclusion......PEEee eee eee eee ene eee e tne e eens 242

Bibliography ccc ccs e eee ce eee ec ence cee e cee s 245

Index...... sence eee eee eee necnarcsnccsece sec ecee 251

Page 12 of 275

Page 13 of 275

Preface

Give mea lever and a fulcrum, and I can move the globe.
—Archimedes

Since Java technology’s inception, and especially its public debutin the spring
of 1995, strong and growinginterest has developed regarding the security of the
Java. platform, as well as new security issues raised by the deployment of Java
technology. This level of attention to security is a fairly new phenomenonin com-
puting history. Most new computing technologies tend to ignore security consider-
ations when they emerge initially, and most are never made more secure
thereafter. Attempts made to do so typically are not very successful, as it is now
well knownthatretrofitting security is usually very difficult, if not impossible, and
often causes backward compatibility problems.

Thusit is extremely fortunate that when Java technology burst on the Internet
Scene, security was one of its primary design goals. Its initial security model,
although very simplistic, served as a great starting place, an Archimedean ful-
crum. The engineering talents and strong management team at JavaSoft are the
lever; together they made Java’s extensive security architecture a reality.

From a technology provider’s point of view, security on the Java platform
focuses on two aspects. Thefirstis to provide the Java platform,primarily through
the Java Development Kit, as a secure, platform on which to run Java-enabled
applications in a secure fashion. The secondis to provide security tools and ser-
vices implemented in the Java programming language that enable a wider range of
security-sensitive applications, for example, in the enterprise world.

I wrote this book with many purposes in mind. First, I wanted to equip the
reader with a brief but clear understanding of the overall picture of systems and
network security, especially in the context of the Internet environment within
which Java technologyplaysa central role, and how various security technologies
relate to each other.

Page 13 of 275

Page 14 of 275

Page 14 of 275

PREFACE

Second, I wanted to provide a comprehensive description of the current secu-
rity architecture on the Java platform. This includes language features, platform
APIs, security policies, and their enforcement mechanisms. Whenever appropri-
ate, I discuss not only howafeature functions, but also why it is designed in such
a way and the alternative approaches that we—the Java security development
team at Sun Microsystems—examined and rejected. When demonstrating the use
of a class or its methods, I use real-world code examples whenever appropriate.
Someof these examples are synthesized from the JDK 1.2 code sourcetree.

Third, I soughtto tell the reader about security deployment issues, both how
an individual or an enterprise manages security and how to customize, extend, and
enrich the existing security architecture.

Finally, I wanted to help developers avoid programmingerrors by discussing a
number of common mistakes and by providingtips for safe programming that can
be immediately applied to ongoing projects.

How This Book Is Organized

This book is organized as follows.

Chapter 1. A general background on computer, network, and information
security

Chapter 2. A review of the original Java security model, the sandbox

Chapter 3. An in-depth look at the new security architecture in JDK 1.2, which
is policy-driven and capable of enforcing fine-grained access controls

Chapter 4. An explanation of how to deploy and utilize the new security fea-
tures in JDK 1.2, including security policy management, digital certificates,
and various security tools

Chapter 5. A demonstration of how to customize various aspects of the secu-
rity architecture, including how to move legacy security code onto the JDK 1.
2 platform

Chapter 6. A review of techniques to make objects secure and tips for safe
programming

Chapter 7. An outline of the Java cryptography architecture along with usage
examples

Chapter 8. A look aheadto future directions for Java security

Page 15 of 275

PREFACE

This bookis primarily for serious Java programmers and for security profes-
sionals who wantto understand Java security issues both from a macro (architec-
tural) point of view as well as from a micro (design and implementation)
perspective. It is also suitable for nonexperts who are concerned about Internet
security as a whole, as this book clears up a number of misconceptions around
Java security,

Throughoutthis book, I assumethat the readeris familiar with the fundamen-
tals of the Java language. For those who wantto learn more about that language,
the book by Arnold and Gosling [2] is a good source.

This bookis not a complete API specification. For such details, please refer to
JDK 1.2 documentation,

Acknowledgments

It is a cliche to say that writing a book is not possible without the help of many
others, but it is true. I am very grateful to Dick Neiss, my manager at JavaSoft,
who encouraged meto write the book and regularly checked on my progress. Lisa
Friendly, the Addison-Wesley Java series editor, helped by guiding me through the
writing process while maintaining a constant but “friendly” pressure. The team at
Addison-Wesley was tremendously helpful. I’d like particularly to thank Mike
Hendrickson, Katherine Kwack, Marina Lang, Laura Michaels, Marty Rabinow-
itz, and Tracy Russ. They are always encouraging, keptfaith in me, and rescued
me wheneverI encountered obstacles.

This book is centered around JDK 1.2 security development, a project that
lasted fully two years, during which many people inside and outside of Sun
Microsystems contributed in one way or another to the design, implementation,
testing, and documentation ofthe final product. I would like to acknowledge Dirk
Balfanz, Bob Blakley, Josh Bloch, David Bowen, Gilad Bracha, David Brownell,
Eric Chu, David Connelly, Mary Dageforde, Drew Dean, Satya Dodda, Michal
Geva, Gadi Guy, Graham Hamilton, Mimi Hills, Larry Koved, Charlie Lai, Sheng
Liang, Tim Lindholm,Jan Luehe, Gary McGraw, Marianne Mueller, Tony Nadalin,
Don Neal, Jeff Nisewanger, Yu-Ching Peng, HemmaPrafullchandra, Benjamin
Renaud, Roger Riggs, Jim Roskind, Nakul Saraiya, Roland Schemers, Bill
Shannon, Tom van Vleck, Dan Wallach, and Frank Yellin. I also appreciate the
technical guidance from James Gosling and Jim Mitchell, as well as management
support from Dick Neiss, Jon Kannegaard, and Alan Baratz. I have had the pleasure
of chairing the Java Security Advisory Council, and I thank the external members,
Ed Felten, Peter Neumann, Jerome Saltzer, Fred Schneider, and Michael
Schroederfor their participation and superb insights into all matters that relate to
computer security.

Page 15 of 275

Page 16 of 275

Page 16 of 275

PREFACE

Isabel Cho, Lisa Friendly, Charlie Lai, Jan Luehe, Teresa Lunt, Laura
Michaels, Stephen Northcutt, Peter Neumann, and a number of anonymous
reviewers provided valuable comments on draft versions of this book.

G. H. Hardy once said that young men should prove theorems, while old men
should write books. It is now time to prove some moretheorems.

Li Gong
Los Altos, California
June 1999

Page 17 of 275

CHAPTER 1

Computer and Network
Security Fundamentals

The three golden rules to ensure computer security are: do not own
a computer; do notpowerit on; and do not useit.

—Robert (Bob) T. Morris

Security is all about ensuring that bad things do not happen.This brief statement
is deceptively simple.It can in fact have very complicated interpretations. Explor-
ing these can help in understanding whatsecurity really means.

Certain “rule-of-thumb”principles apply to the conceptof security in general.
First, security is alwaysrelatedto utility. To ensure that bad things do not happen,
you can simply do nothing. For example, a car stored in a garage cannot cause a
traffic accident. But doing nothing with the car is clearly not whatis intended. The
real goal is to ensure that bad things do not happen while good things do get done.

Second, security is relative to the threat that one considers. For example, the
effectiveness of your house’s securely locked front doorto prevent theft depends
heavily on the types of thieves against which you are guarding. While the lock
might deter a small-timethief, it might not pose a problem for a sophisticated one
equipped with the right tools.

Third, security must be considered from an overall systems point of view. It is
only as secure as the system’s weakestpoint. Thatis,it is not enoughto just secure
the front door. A smart thief will try to enter the house from all potentially weak
spots, and in particular those furthest away from where you haveinstalled strong
locks.

Fourth, security must be easy to accomplish.If it takes 30 minutes and great
effort every time to unlock a complicated lock, you will tend to ignore the lock

: and leave the door open.

Page 17 of 275

Page 18 of 275

Page 18 of 275

CRYPTOGRAPHYVERSUS COMPUTER SECURITY

Fifth, security must be affordable and cost effective. For example, it clearly
does not make sense to install a lock that is worth more than the contents it is

guarding. This is made more complex by the fact that different people tend to
value things differently.

Last but not least, security must be as simple as possible because, as experi-
ence indicates, the more complex a system is, the more error-prone it tends to be.
It is better to have something that is simpler but more dependable.

Throughout this book, you will see that these “rule-of-thumb” principles
apply equally well to computersecurity.

1.1 Cryptography versus Computer Security

Before moving on to specific topics, J want to clarify that cryptography and com-
puter security are two distinct subjects. Cryptography is the art of encoding
information in a secret format such that only the intended recipient can access the
encoded information. The use of cryptography has progressed extensively over a
long period of time, ranging from the ancient Caesar cipher, to cipher machines
widely used in World War II, to modern cryptosystems implemented with com-
puter hardware and software.

Computersecurity first became an issue only in the 1960s, when timesharing,
multiuser computer (operating) systems were first built, such as Cambridge’s
early computing system [80] and MIT’s Multics [69, newref 1]. After that, the
field of computer security remained relatively obscure for years, apart from a brief
active period in the mid-1970s [3, 32, 36, 75, newref 2, newref 3]. Security con-
cerns then were based mostly on military requirements. Commercial security did
not become fully mainstream until the Internet and electronic commerce
(e-commerce), and Java technology in particular, took center stage in the 1990s.

Security mechanisms often can benefit from the use of cryptography, such as
when running a network-based user login protocol. However, they do not neces-
sarily depend on the use of cryptography, such as when implementing UNIX-style
access control onfiles.

Yet cryptography does not exist in a vacuum. Cryptographic algorithms are
usually implemented in software or hardware; thus their correct operation depends
critically on whether there is an adequate level of system security. For example,if
lack of access control means that an attacker can modify the software that imple-
ments the algorithm, then the lack of security directly impacts the utilization of
cryptography.

Page 19 of 275

COMPUTER AND NETWORKSECURITY FUNDAMENTALS

1.2. Threats and Protection

In computer security literature, threats or attacks are usually classified into three
categories.

1. Secrecy attacks. The attacker attempts to steal confidential information, such
as passwords, medical records, electronic mail (e-mail) logs, and payroll data.
The methodsofattack vary, from bribing a security guard to exploiting a secu-
rity hole in the system or a weakness in a cryptographic algorithm.

2. Integrity attacks. The attacker attempts to illegally alter parts of the system.
For example, a bank employee modifies the deposit system to transfer custom-
er money into his own account, thus compromising transaction integrity [61].
Or, a college studentbreaksinto the college administration system to raise her
examination scores, thus compromising data integrity. An attacker might also
try to erase system logsin orderto hide his footprint.

3. Availability attacks. The attacker attempts to disrupt the normal operation of
a system. These are also commonlycalled denial-of-service attacks. For exam-
ple, bombarding a machine with a large numberof IP packets can effectively
isolate the machine from the rest of the network. A cyberterrorist might at-
temptto bring downthe national powergrid or causetraffic accidents by com-
promising the computer-operated control systems.

These three categories of attacks are intricately related;thatis, the techniques
and results of attacks in one category can often be usedto assist attacks in another.
For example, by compromising secrecy an attacker could obtain passwords and
thus compromise integrity by gaining access to and then modifying system
resources, which in turn could lead to successful denial-of-service attacks. When a
system failure occurs during an attack, most systems do not fail safe—that is,
enter into a state that is deemed secure—because they are not designed to doso.
For example, it has been shown that a system crash sometimes leads to a core
dump in a publicly readable directory, where the core can contain sensitive infor-
mation if the dumpoccursatthe right time.!

Similarly, protection mechanismsagainst these types of attacks in general are
related. Roughly speaking, the mechanisms are for one or more of the following

_| Ofcourse,attacks can be viewed from other perspectives. For example, there is widespread
public concern regarding the privacy of the unregulated and sometimesillegal collection
and distribution of personal data, such as birth dates and U.S. Social Security Numbers.

Page 19 of 275

Page 20 of 275

Page 20 of 275

PERIMETER DEFENSE

purposes: attack prevention, detection, or recovery. Notall of these purposes can
be fulfilled by the same mechanisms, as explained later in this chapter.

To protect data secrecy, you can store the data in an obscure place in the hope
that attackers will notfind it. Or you can install strict access control procedures to
guard against unauthorized access. Or you can use encryption technology to
encrypt the data such that attackers cannot access real data unless they can break
the cryptosystem, which could be extremely hard, or they can steal the encryption
key. Of course, multiple measures can be deployed at the same time. Notethat, for
secrecy, the most important technique is prevention. A loss of data is very hard to
detect, and lost data are impossible to recover.

To protect data integrity, once again you can use anyorall of the mechanisms
mentioned previously. However, in this case, detection is easier and recovery is
often possible. For example, for a file x, you could compute its hash value using a
well-known one-way functionf() and store f(x) separately. Now,if x is then modi-
fied to be x’, f(x) very likely will not be equaltof(x’), according to the properties of
JO. Thus you can recompute the hash value and compare it withAx). A mismatch
will indicate that integrity has been compromised.

Ofcourse, if the correspondingf(x) is also compromised, detection might not
be possible. If the place to store f(x) itself is not safe, you could use a keyed, one-
way hash function andstore f(k, x) together with x. If k is kept secret, then it will
still be difficult for attackers to modify x and the hash value in such a way as to
avoid detection [22, 52].

To be able to restore the data to its original form after an integrity compro-
mise, you can back up data and store the backup in a secure place [61]. Or you can
use more-complicated distributed computing techniques to back up the data in an
insecure network [34, 64, 73, 77].

Guarding against an availability attack is more complicated. This is because
apart from applying the usual techniques of prevention and detection, surviving
such attacks becomescritical. Here, computer security meets the field of fault-
tolerant computing. Someinteresting research results in this combined topic area,
sometimes called dependable systems, are available. For further reading, consult
the papers and their citations at [12, 24, 65, 73].

13 Perimeter Defense

Because of the multitude of potential weaknesses and the essentially unlimited
numberof attack scenarios, where eachscenario can be a combination of various
attack techniques, securing an entire system can be daunting, especially when the
system includes multiple host machines connected via a network. Because a sys-
tem is only as secure as its weakest link, the security coverage must be compre-

Page 21 of 275

COMPUTER AND NETWORK SECURITY FUNDAMENTALS

hensive. The task is further complicated by the fact that a system, for example the
internal network deployed within a large enterprise, typically consists of machines
of numerous different brands and types. These machines run different operating
systems anddifferent application software and are connected together with routers
and other networking gears from various vendorsoffering different features and
capabilities. In such a heterogeneous and evolving environment, examining the
entire system and securingall of its components takes a long timeif possible atall.

Faced with such a messypicture,it is no surprise that companiesfindit easier,
both psychologically and physically, to simply divide the world into two camps,
“Us” and “Them.” Usincludes all machines owned, operated, or in general trusted
by the concerned enterprise, while Them includes all other machines, which are
potentially hostile and cannotbe trusted. Oncethe borderis drawn,it is a matter of
keeping Them out and Usin. Such a defensive postureis often called perimeter
defense.

One approachto constructing a perimeter defense is simply not to connect Us
with Them.Indeed, somemilitary installations and commercialentities have inter-
nal networksthat are entirely separated from the wider area network, the Internet.
They might allow some isolated terminals or machines for outside connections,
but these special machinesare usually guarded to prevent their being connectedto
the internal network.

If the overall system contains machines scattered amongdifferent physical or
geographical locations, leased lines or dedicated network connections can link the
sites to form a private network.

If, however, the sites must communicate through the open network, then
encryption can be deployed between every two communicating sites so that these
sites form a virtual private network (VPN). This is depicted in the fictitious sce-
nario in Figure 1.1, where, although all four campuses are connectedto the Inter-
net, three sites (MIT, UT Austin, and UCLA) form a VPN so that network traffic
between them is automatically protected from eavesdropping from Stanford.

However,suchtotal isolation from the outside does not always work well. For
example, e-mail has become the “killer application” of the Internet as people
increasingly demand the ability to communicate with the outside world via the
Internet. The World Wide Web (Web) has made the Internet even more popular,
and browsing the Web to locate information is important to productivity (if used
judiciously, of course). These trends are driving previously closed enterprises to
selectively open up their border control. Here is where firewalls play a critical role
in constructing a more useful perimeter defense.

Page 21 of 275

Page 22 of 275Page 22 of 275

PERIMETER DEFENSE

1.3.1 Firewalls

Firewalls come in different shapes and sizes [6]. Generally speaking, a firewall is
a machinesitting between a private network and a public one.It functions asa fil-
ter for networktraffic, with the responsibility of selectively allowing certain traffic
through, in each direction, based on a security policy. A security policy can be
very simple or quite complicated. This is because, often, filtering decisions are
based on, for example, the source and destination of the traffic, the protocols used,
and the applications involved, among others factors. The firewall also might redi-
rect traffic, act as a proxy server, or even manipulate the traffic content before
allowingit to pass through. It further might also encrypt traffic—indeed, encrypt-
ing firewalls can be used to form a VPN. .

Perimeter defense as implemented by firewalls has been shownto be an effec-
tive security solution. A firewall provides a central point of control, where a cor-
porate policy can be more easily implemented and updated. But it has certain
problems. First of all, firewalls cannot filter or stop all network traffic. In fact,
traffic for protocols such as HTTPis often deliberately let through firewalls. Gen-
erally, there is tension between the firewall and mobile code, because the former
attempts to block or reduce incomingtraffic, including that concerning what the
latter is trying to achieve. A firewall can also be a bottleneck andasingle point of
communication failure for a large enterprise. Moreover, many applications on the
desktop have to be rewritten to use the firewall as a proxy. This problem is less
severe for new applications, which often have built-in proxy support.

1.3.2 Inadequacies of Perimeter Defense Alone

Perimeter defense alone is not sufficient, however, as a total security solution, for
several reasons. Locating and securing all perimeter points are quite difficult. For
example, in reported cases, direct telephone line-based connections are estab-
lished (for example, for diagnostic purposes) that can effectively puncture the
perimeter defense [61]. Further, when an enterprise supports allows its employees
to work remotely and from home, inspecting and ensuring that those remote
points of the internal network are adequately protected are impractical.

Even within an enterprise, controls are needed because not everything or
everyone can be fully trusted. The most devastating attacks often occur from
within. Such insider attacks usually incur comparatively large losses because
insiders have a significant advantage over external hackers. For example, the
accounting department must be protected so that only authorized employees may
issue purchase orders, while the patent department must be isolated to prevent
information leaks to competitors.

Page 23 of 275

COMPUTER AND NETWORK SECURITY FUNDAMENT,ALS 7

The remainderof this chapter reviews security models and techniquesthat are
useful both within the perimeter and across organizational boundaries.

1.4 Access Control and Security Models

A security modelis an abstraction of how one goes about controlling access to
protected data. Like firewalls, security models come in various shapes and sizes
because requirements candiffer vastly for different applications and their environ-
ments. Multiple ways to classify security models are available, including the
following:

¢ MAC and DAC models

¢ Data and information security models

¢ Static and dynamic models

1.4.1 MAC and DAC Models

Oneclassification of security models centers on the concept of mandatory access
control, or MAC. In a MACsecurity model, entities within a system are either
subjects (roughly correspondingto the notions of users, processes, machines, and
So on) or objects (roughly correspondingto the targets of control, such as files and
data records), Each entity is assigned a sensitivity level. Such levels normally
formalattice over a “dominate” relationship so that, for example,if there are two
levels, then either one dominates the other or the two are incompatible. For exam-
ple, levels of “unclassified,” “classified,” “secret,” and “top-secret” could have the
dominaterelationship shown in Figure 1.1.

MAC models meeting the requirements of multilevel security are exemplified
by the work of Bell and LaPadula [3] in which is described a mathematical model
for the security of the Multics system [69]. In the Bell-LaPadula model, a subject
may have read access to an objectif, and only if, its level dominates that of the
object and may have write access to an objectif, and only if, its level is dominated
by that of the object. This is called informally read-down and write-down, or more
precisely, no read-up and no write-down. Note that according to this model, two
entities may communicatein both directions only wheneither they are at the same
level or they do so via a trusted intermediary.

Non-MAC models are called discretionary access control, ot DAC, models.
The UNIX security model is similar to a DAC model in that the owner (user) of
each file can determine whoelse can accessit by setting the file’s permissionbits.
Someone whocanreadafile can also make a copyofit and then let everyone read
it. MAC models do not permit such discretionary decisions.

ee

Page 23 of 275

Page 24 of 275

Page 24 of 275

ACCESS CONTROL AND SECURITY MODELS

Stanford

Internet

UCLA UT Austin

Figure 1.1 MACsecurity model.

1.4.2. Access to Data and Information

So far the discussion of access control has focused on models that specify explicit
access to data, such as directly reading the content of a file stored onthe file sys-
tem. However, information can be transmitted implicitly, as experiences of human
life can testify. In particular, cooperating parties can communicate through so-
called covert channels, as compared to overt channels. For example,if two parties
share the same disk partition and one party fills the disk to its full capacity, then
the other party can notice this fact when a new file creation fails due to lack of
space. By filling ornot filling the disk, one party can transmit a “one” or a “zero”
to the other party.

Investigation of this scenario began with Lampson’s paper on the confinement
problem [43]. In that paper, Lampson discussed the difficulty of restricting an
application so that it cannot affect the outside world either directly or by transmit-
ting information.

How critical this type of attack is hinges on the level of one’s fear of infiltra-
tion by the enemy and on the perceived potential for severe damage that an insider
can cause. The mode ofinsider attack has a long tradition. The fall of Troy eventu-
ally led to the term Trojan horse, which in the computer security field means any
program that is planted on one’s machine for the purpose of causing harm. (The
premier computer security conference, the IEEE Symposium on Security and Pri-
vacy, has used a Trojan horseillustration on the cover of its proceedings.) Recent
examples of such infiltrations are the several high-level U.S. governmentofficials
and employees convicted for leaking national secrets to foreign agents.

Page 25 of 275

COMPUTER AND NETWORKSECURITY FUNDAMENTALS

Early research into the confinement problem led to security models that are
based on information flow instead of data access. In particular, the models put for-
ward by Goguen and Meseguer servedasthe basis for extensive theory work in
this area [18, 19]. Also, practical studies of covert-channel communication in real
systems have been done. For example, a team at Digital Equipment Corporation
constructed a case study in which two parties share the same disk. By placingfiles
in strategic locations, one party canselectively read onefile or another, which will
cause a detectable delay when another party tries to read a third file. The delay is
due to the speedof the disk-arm movement, and the twodifferent delay values can
be interpreted as 1 and 0. The value of such practical studies is mostly in deter-
mining the capacity, and therefore the usability andthreat, of covert channels. For
example, the disk-arm covert channelis usually a lot faster than the fill-up-disk-
partition covert channel.

Note that the practical utility of covert channels is difficult to gauge. First,
there is always the possibility of noise. For example, in the disk-arm caseathird
party independently accessing variousfiles on the disk could significantly reduce
the bandwidth of the covert channel. However, for very secret materials, such as
cryptographic keys, a slow covert channelis adequate for leaking those secrets.
Second, covert channelsare exploitable only when one can plant Trojan horse pro-
grams. When such penetration occurs, other forms of communicationthat are eas-
ier to exploit are often possible.

Moreover, defense against covert channels is effective only “within the sys-
tem.” For example, a computer system that does notallow aninsider to signal to
the outside world cannot prevent the insider from memorizing the secrets and
walking out with them. Nevertheless, some organizations, especially the U.S. gov-
ernment, take covert channels seriously. For example, researchers at the Naval
Research Laboratory have been developing an extensive system called the
“Pump”for the sole purpose of transmitting information with noorlimited leak-
age of information through covert channels. The Java Development Kit (JDK) 1.2
does not comprehensively address the presence of covert channels.

1.4.3 Static versus Dynamic Models

Atfirst glance, a security policy appears static. For example, an employee either
can or cannotread file A. There is no third way, andthatis that. In reality, security
policies are dynamic—they can change over time. Whenthat employee transfers
into a different department in the organization, she might then be given accessto a
file to which she was previously deniedaccess. In the MAC model, the sensitivity
level of the data and the clearancelevel of people can also change. A datum can be
upgraded or downgraded,or a person might gain or lose a particular level of secu-
rity clearance.

Page 25 of 275

Page 26 of 275

Page 26 of 275

10 ACCESS CONTROL AND SECURITY MODELS

Several notable security models exhibit this dynamism. One is the High-
Watermark model [44], in which the sensitivity level of a datum keeps moving up
according to the clearance level of the person who has had access to the data.

Another is the Chinese Wall model [8], which models the practice, especially
in consulting firms and financial institutions, of enacting Chinese Wall to avoid
conflicts of interest. For example, a consultant in the oil industry is available to
consult with oil companies A or B, both of which are clients of the firm. Thus the
consultant potentially can access materials related to either A or B. However, ortce
the consultant accesses A’s materials, access to B’s will be denied due to conflict

of interest. The Chinese Wall model attempts to represent suchreal-life policies.
Another dynamic model that hasits root in the financial industry is the Clark-

Wilson integrity model [11], which can be used to model the seciirity require-
ments for performing financial transactions. For example, transactions over a cer-
tain monetary limit must be cosigned by two different people and in a particular
order. This model was the first widely cited security model that clearly demon-
strated the need for security models beyondthose ofinterest to the military and to
government agencies, which were primarily MAC security models.

1.4.4 Considerations Concerning the Use of Security Models

A model can be used, for example, to drive or analyze the design of a computer
system or to form the basis of a system’s operation. These practical uses of models
resulted in a number of iriteresting issues that have been studied to various
degrees.

First is decidability. Thatis, can you decide if a system is secure, when given
a general security modelof a real system andaparticular requirementor condition
of security (such as, an employee must not be allowed to access file A directly or
indirectly). The answerto this question is no in the general case (see [32]). Later
research to resolve this issue has primarily involved efforts to restrict the model’s
generality so that the issue becomes decidable. In most such models, the computa-
tional complexity to answerthe security questionis still NP-complete [72].

The secondissueis that it often is impossible or infeasible to model, specify,
or analyze an entire system as a whole because a practical system tends to be
fairly large. This has led to work with composability. Here, a security modelis
constructed suchthat if various components satisfy some set of security properties
and are connected in some particular ways, then the overall system automatically
(via mathematical proof) satisfies another set of security properties [48, 57]. In
practice, the ability to develop secure and composable systemsis in the somewhat
distant future.

Third, the need to retrofit security mechanismsinto the so-called legacy sys-
tems, or at least to securely connect the systems together, means that the legacy

Page 27 of 275

COMPUTER AND NETWORK SECURITY FUNDAMENTALS

systems must be securely interoperable. Onedefinition of secure interoperability
is that the security properties of each legacy system must be preserved underits

_ Original definition. However, in this case deciding if a particular interoperationis
secure is often NP-complete [27] even under very simple models.

Finally, security does not mean only confidentiality. Modeling theintegrity of
a system is alsocritical. An early integrity model [Biba, 44] is the dual of the Bell-
LaPadula confidentiality model. One can also view integrity as an aspect of
dependability or correctness and thus can enlist the help of results from the field
of fault tolerance.

1.5 Using Cryptography

While cryptography concerns the encoding and decoding of information, crypt-
analysis is the reverse of cryptography andis the art of decoding, or “breaking,”
secretly encoded information without knowledge of the encryption keys. The term
cryptology (or crypto, for short) refers to the whole subjectfield.

Security and cryptology are related but different fields—many people confuse
them. They are orthogonal in the sense that each has its own utility without
depending on the other, although technology from one can help the other. For
example, all of the security models discussed so far do not need to use crypto at
all. Crypto can be used to enhance confidentiality and integrity. It also is a field
that can be studied in the abstract, without reference to computer security. How-
ever, modern crypto exists largely in the context of a computer and a communica-
tions system, in which features such as access control are useful in protecting the
access to cryptographic keys. In fact, the easiest Wayto attack a crypto system is
fo try to compromiseits key storage facility.

The most commonly used crypto concepts include these:

one-way hash functions

symmetric ciphers

asymmetric ciphers

Theseare discussed in the followingthree subsections.
Onefinal note about crypto in generalis that all except one crypto system are

theoretically insecure, according to theorems by Claude Shannon,in the sense that
an enemy with sufficient knowledge and computing power can always break the
crypto system. The only exception is a system called one-time pad, in which the
secret keyis as longas the plaintextitself andis never reused. A one-time pad sys-
tem is practical only when the sender and recipient have a secure way to exchange
the (potentially very large) key.

Page 27 of 275

11

7

Page 28 of 275

Page 28 of 275

12 USING CRYPTOGRAPHY

The most in-depth reference book currently available on this subject is Hand-
book ofApplied Cryptography [51]. For readers who do not want to dive into deep
background of cryptography and related research subjects, Applied Cryptography
[74] is more suitable.

1.5.1 One-Way Hash Functions

A one-way hash function is an important building block to help achieve data
integrity. Such functions are often used to protect data both in storage and in
transit.

According to Knuth [38], the idea of hashing originated in 1953 with two
groups of IBM researchers. The earliest reference I can find to the concept of one-
way function was by Wilkes in 1968 [80], when he referred to the invention of
one-way functions for the Cambridge Time-Sharing Computer System by
Needham.”

The concept of one-way hash functions also dates back many years. A num-
ber of researchers such as Merkle [52], Naor and Yung [58], and DamgSard [13]
have suggested definitions. Meyer and Schilling [54], Merkle [53], Rabin [64],
Rivest [67], and others have presented practical designs for such functions.

Manydifferent terms have been introduced relating to one way hash functions.
Someof theseare alternative names, and someare intended to emphasize differing
assumptions. Examples are one-way (hash) function, collision-free (hash) function,
fingerprinting function, modification detection code, and message authentication
code.

Informally, a one-way hash function is a function that is easy to compute but
difficult to reverse. Also, it is difficult to find two values with which the function

would compute the same output value. Such properties allow the protection of
integrity as follows. Suppose youstore a file on the disk and you suspect that it
might be tampered with. Using the file content as input, you can compute the hash
function value, which can be a lot shorter than the file content itself. Later, you
can take the current content of the file and feed it into the hash function.If the new

hash value is identical to the old hash value, then it is highly likely that the file
content has not been modified. In this case, the one-way hash function serves as an
unforgeable link between the file content and its hash value. Figure 1.2 illustrates
one way hash functions.

Designers often incorporate secret keys into the inputs of one-way hash func-
tions such that the hash value cannot be correctly computed or predicted without

2 Roger Needham later remembered that the idea was first discussed in The Eagle public
house in Cambridge in 1967. He also noted that it is a complimentto the hospitality of the
public house that nobody remembers exactly who madethe suggestion.

Page 29 of 275

COMPUTER AND NETWORKSECURITY FUNDAMENTALS

Internet

: Internal :
i network 7 ce:

cmpauntaon auencusarartegranong

Figure 1.2 One way hash functions,

knowingthe secret keys. In this case, such a keyed, one-way hash function serves
as an unforgeable link, not only between the file content and its hash value, but
also between the secret keys used (and thustheentities that possess the keys) and
the hash value.

1.5.2 Symmetric Ciphers

A symmetric cipher is a transformation, operated under a secret key, that can
translate its input, called plaintext,to its output, called ciphertext, in such a way
that (excluding cryptoanalysis) only those entities possessing the secret key can
recoverthe plaintext from the ciphertext (Figure 1.3).

Symmetric ciphers have a long history. Their first known use dates from the
early Caesar system [39]. They since have been widely used; for example, the
Data Encryption Standard (DES) [62], as well as the vast number of modern
designs such as IDEA.

Symmetric ciphers are also called secret-key ciphers because the two commu-
nicating parties must share a secret key. This creates somedifficulties in key man-
agement and key distribution. Moreover, because each pair of communicating

Page 29 of 275

13

Page 30 of 275

Page 30 of 275

14 USING CRYPTOGRAPHY

Read/write

Read only

Top secret

Write only

Read/write

Unclassified

Figure 1.3. Symmetric cipher.

parties must share a distinct secret key, when a large groupofparties talk to each
other, in theory an exponential numberof secret keys are needed.

Symmetric ciphers can be operated in different modes, such as various feed-
back modes. They can also be stacked to improve the crypto strength of the whole
system, such as in the case of triple-DES.

15.3 Asymmetric Ciphers

An asymmetric cipher is similar to a symmetric cipher, except that it depends on
a pair of keys(instead of just one key). One key ofthe pair is called the public key
and is used to encrypt plaintext. Another key is called the private key and is used
to decrypt ciphertext. See Figure 1.4. The keys are generated such thatit is easy to
deduce the public key, given the private key; the reverse, however, is very difficult.
This property enables people to exchange their public keys over public channels
and still conduct private communications. Compare this with symmetric cipher
systems, in which people must arrange a shared secret key via a private channel.
Notable asymmetric systems include Diffie-Hellman [14] and RSA [68]. Asym-
metric systems are often used to encrypt and exchange keys for symmetric
systems.

Another distinct property of some asymmetric systems is that the encryption
and decryption are reversible. This means that one can apply the decryption oper-
ation with the private key to the plaintext, and one can recover the plaintext by
applying the encryption operation with the public key to the ciphertext. In this
case, since the public key is public, no confidentiality protection is provided.
However, because only the holder of the private key can generate the ciphertext,

Page 31 of 275

COMPUTER AND NETWORK SECURITY FUNDAMENTALS

Figure 1.4 Asymmetric cipher.

the ciphertext can serve as a digital signature ofthe plaintext and anyone with the
public key can verify the authenticity of the signature. RSA is perhaps the most
Widely used asymmetric system that can also be used to produce digital signa-

" tures. Another system, Digital Signature Algorithm (DSA), defined as a national
standard by the U.S. government, can only perform digital signature functions;it
cannot be usedfor encryption.
Forone party to prove to anotherthatit is the real owner of a public key, the

proving party can presenta certificate for verification by the other party. A public-
keycertificate is a digitally signed statementfrom one entity, saying that the pub-
lic key (and some other information) of another entity has some specific value, A
chain ofcertificates is possible, whereby eachcertificate contains a public key that
is used to certify the public key in the succeeding certificate. Thefirst certificate,
often called the rootcertificate, does not have another public key to certify it.
Thus it normally is a self-signed certificate in that its own public key is used to
certify itself. Later chapters (especially Section 4.3) have more in-depth discus-
sion aboutcertificates.

1.6 Authentication

Anotherbasic security issue is authentication. Authentication is the process of
confirming the identity of the user (or machine operating on behalf of the user). It
first became an issue when timesharing systems beganto be deployedand the sys-
tem needed to know the identity of a user logging in to the system. This knowl-
edge is critical for enforcing access control policies, as most of the security
models mentioned previously are based on granting accessto certain users and not
to others.

15

Page 31 of 275

Page 32 of 275Page 32 of 275

16 AUTHENTICATION

The importance of authentication increased when networked computer sys-
tems started to surface. The network often is shared or public, so it is crucial to
authenticate or know the identity of the user at the other end of the wire. It is
equally important for the users to know the identity of the system they are con-
necting to.

Numerous authentication protocols exist, but many of these have subtle secu-
rity flaws, discovered even after many years of scrutiny by experts. As a result,
authentication has become a major study subject.

The basic approachis first to ask the user at the other end of the wire to
present a name and a password and then to check these against system records.
Such a simple-mindedsolution, which amazingly is still widely used when more
secure solutions are available, is vulnerable to eavesdropping and guessing attacks
[47]. Anyone whois monitoring networktraffic can learn the passwordanduseit
later. Variations of this approach exist, such as one-time passwords [40] and now
an Internet Engineering Task Force (IETF) standard called OTP (evolved from S/
Key) [31]. These are an improvementwith limitations because one can carry only
a limited numberof one-time passwords.

This basic approach can be generalized to one based on challenge and
response. It can also be extended to perform the function of key distribution such
that different entities need to share keys only with certain designated key distribu-
tion centers. These centers can dynamically establish secret keys between any
set of such entities that previously might not have communicated to each
other. The earliest work in network-based authentication is the well-known

Needham-Schroederprotocol [59]. As illustrated in Figure 1.5, with such a proto-
col, entities A and B can usethe key distribution center as a trusted third party to

Figure 1.5 Network authentication.

Page 33 of 275

COMPUTER AND NETWORK SECURITY FUNDAMENTALS

establish a short-term secure session. This protocol is the basis of the Kerberos
system implemented as part of the MIT Project Athena and later adoptedas part of
the DCE and as an IETF standard [56,60).

Protocol design is full of peril. The Needham-Schroeder protocol, among
many others, was later shown to be defective in a number of aspects [9, 26].
Attacks on security protocols include replay attacks and interleaving attacks,
where an attacker listens and records legitimate network traffic and then reuses
these messages (sometimes after some skillful modifications) to defeat security.
But these can easily slip a protocol designer’s mind and thereby lead to the possi-
bility of attack later. As a result, formal and informal protocol analysis techniques
have been suggested and applied [9, 15, 26, 50, 55], including the fairly recent
application of model-checking tools.

One especially serious issue involves authentication protocols designed for
use by human beings. These usually involve the use of passwordsthat people can
remember. This approach has the disadvantage that such passwordsare generally
chosen fromafairly small space (such as all words in a dictionary) that can be
mechanically searched and thus easily deduced. All of the authentication proto-
cols examined by the security research community that were published prior to
1989 suffer from this problem of easily guessed passwords. As a result, an
attacker who has monitored the network traffic and obtained a running record of
an authentication protocol can then guess each candidate password and verify if
the guess is correct, all off-line and thus undetectable. Technical solutions to this
problem started to appear in late 1989 [21, 47] and include also EKE and A-EKE
[4, 5]. Smartcards and other hardware-based security devices are often helpful in
avoiding to use guessable passwords.

1.7. Mobile Code

Mobile codeis not a fundamentally new concept—anything that causes a remote
system to behave differently can in theory be viewed as mobile code. Thus the
wholefield of distributed computing works on the premise of mobile code. This
includes data such as Domain Name Service (DNS) information, remote com-
mands such as Remote Procedure Cal] (RPC), and executable scripts such as
remote shell on UNIX. This section focuses on the last category: executable
scripts, code that travels from one machine to anotherand gets executed asit trav-
els. Such mobile code is widespread, partly becauseit helpsto distribute the com-
putation load amongclient as well as server machines and partly becauseit helps
to reduce demand on network bandwidth.

PostScript files belong to this category because when a PostScriptfile is dis-
played and viewed,it is the file contentthatis being executed. The sameis true for

Page 33 of 275

17

Page 34 of 275

Page 34 of 275

18 WHERE DOES JAVA SECURITY FIT IN

Microsoft Word documents that contain macros—the macros are interpreted as
the document is read. Another example is Lisp. Many people read their e-mail
from within Emacs, a powerful text editor. Emacs interprets Lisp programsasit
sees fit, so a Lisp program segment embedded in an e-mail message can become
active when viewed inside Emacs. Other kinds of active components include
ActiveX controls and Java applets.

Active contents do not pose a new category of threat. Instead, they help
expose the inadequacies of commonly deployed security mechanisms. For exam-
ple, when mobile code is a DNS update request, the interface is fairly narrow so
that its security implication is more easily understood. However, when fully gen-
eral mobile code such as an ActiveX control arrives, the interface becomes the

entire Win32 APIs and any security holes in those APIs might be exploited.
The increasing use of mobile code has resulted in two responses. On the one

hand, people try to enhance system security to better control and thusutilize the
attractive aspects of mobile code. On the other hand, people get scared and wantto
block mobile code at their perimeters. The latter is at best a gap-stopper. This is
because mobile code and active contents can travel through multiple channels
such as e-mailandfiltering every.e-mail message and removing parts of messages
is often unacceptable (to the e-mail users). One primary design goal of Java tech-
nology is to make Java a secure platform for mobile code.

1.8 Where Does Java Security Fit In

The previous sections painted, in rather broad strokes, the large security jigsaw
puzzle that today’s systems use, from firewalls to access control, from encryption
to authentication. Java security is a very important piece of this puzzle. This is
because Java is pervasive both as a platform-independent technology and as the
best vehicle to program mobile code and executable content for the Internet and
the Web. Therate of Java adoption is phenomenal.It is being deployed, for exam-
ple, in financial institutions, in on-line e-commerce software, and as part of other
critical applications. All these mean thatthe Java platform must fulfill its promise
as a safe Internet programming platform.

The Java platform can be viewed as a client-side application (such as when
running Java inside a browser), a server-side application (such as when running
server software programmed in Java), or an operating system (such as when run-
ning the JavaOS directly on MS-DOSor bare hardware). Because different usage

3 Tshould makeit clear that J:avaScript is not based on Javaandis related to it only by name.
JavaScript does not have the comprehensive security considerations and mechanismsthat
Java has.

Page 35 of 275

COMPUTER AND NETWORK SECURITY FUNDAMENT,ALS

scenarios might require different or even conflicting security features, IDK 1.2 is
designed to build in commonfunctionalities while leaving sufficient hooks so that
it can be extensible to handle specific requirements.

WhenJava technologyis available within an operating system such as Solaris
2.6 or Microsoft Windows95 or 98 (collectively called, “MS-Windows”),its pres-
ence does notalter the basic security characteristics of the underlying system. For
example, on Solaris 2.6 an instance of the Java virtual machine (IVM) will have
access only to resources that would be available to the user running the JVM.
However, if the entire application interface is limited to Java, then usually the
overall system security is improved.This is very obvious if one compares the lack
of security features on MS-Windowswith the rich security features available in
Java. If all applications on such a system are restricted to be 100 percent Java
code, then many security problems on MS-Windows suddenly disappear (actually,
they are hidden behind the Java interface and thus cannotbe exploited directly).

Finally, I want to emphasizethat security features on the Java platform are not
limited to what is available in JDK 1.2. Further versions of JDK no doubtwill con-
tinue to enrich the security features. In addition, a whole range of standard Java
interfaces have been orare being designed to include such functionality as cryp-
tography, secure sockets layer (SSL), user authentication, and others. ThusJava is
becoming notjust one but actually many pieces ofthe security puzzle. Just as SSL
and the browserfinally brought cryptography to the mass market, Java has played
an importantrole in pushing computer security into the technology mainstream.

Page 35 of 275

19

Page 36 of 275

CHAPTER 2

Basic Security for the
Java Language

Neverforget class struggle.
—Mao Ze-Dong

Since the inception of Java technology [30, 46], strong and growinginterest has
centered onits security, in part because this has been publicized as one ofits criti-
cal design goals andcited as a significant means of differentiating Java from other
technologies.

A new technology rarely includes reasonably goodsecurity featuresin its ini-
tial release. Thusthe positioning of Java as the best platform for secure Internet
programming hasattracted a lot of attention from both security professionals and
the computerindustry in general. Long-time security researchers, academics, and
students have poured over design details and source code ofthe JDK,which was
released by Sun Microsystems for just such purposes. Even the popular media
have caught the frenzy; both The Wall Street Journal and The New York Times
have coveredit prominently.!

From a technology provider’s point of view, Java security provides two
features [23]:

¢ The Java platform (primarily through JDK)as a secure, ready-made platform
on whichto run Java-enabledapplications in a secure fashion

* Security tools and services implemented in Java that enable a wider range of
security-sensitive applications in such arenasas enterprises

! Refer to [49] for some quotes andcitations.

Page 36 of 275

21

Page 37 of 275

22

Page 37 of 275

THE JAVA LANGUAGE AND PLATFORM

The deployment of the Java technology also raised an array of interesting
security issues, which are covered in later chapters. This chapter focusesprimarily
on the basic security features provided by the Java language andplatform.

2.1 The Java Languageand Platform

The Java language was designed originally for use in embedded consumer elec-
tronics applications such as handheld devices and set-top boxes. It is a general-
purpose object-oriented programming language and is simple enough that many
programmers can becomefluentin it fairly quickly. It is specifically designed to
be platform-independent so that application developers can write a program once
using Java and then run that program securely everywhere on the Internet.It is
related to C and C++,butit is rather different, with a numberof aspects of C and
C++ omitted and a few ideas from other languages included.

The Java languageis strongly typed. It does not include any unsafe constructs,
such as atray accesses without index checking, because such unsafe constructs
might result in unspecified and unpredictable program behavior.” It comes with
automatic storage management, typically done by a garbage collector. Further, it
avoids the safety problems, such as those posed by C’s “free” or C++’s “delete,”
concerning the explicit deallocation of memory that is no longer needed.

Java is normally compiled to a bytecoded instruction set and binary format
defined in the Java Virtual Machine Specification [30]. It also defines a number of
packages for more complete programming support. A Java program is normally
stored as binary files representing compiled classes and interfaces. The binary
class files are loaded into a JVM,andthen linked, initialized, and executed. Here
is an example of a simple program.

class Test {

public static void main(String[] args) {

for (int i = 0; i < args.length; i++)

System.out.print(i == @ ? args[i] :

System.out.printin();

uw
+ args[i]);

2 Arecent study concludedthat about 50 percent of all CERT-issuedalerts are due in part to
buffer-overflow errors.

Page 38 of 275

BASIC SECURITY FOR THE JAVA LANGUAGE

On a Sun workstation running the Solaris operating system, the class Test,
stored in the file Test.java, can be compiled and executed by giving these
commands:

javac Test.java
java Test Hello

The program will print out HeT1o.
The Java platform is network-centric and is born of the idea that the same

software should run on many different kinds of computers, consumer gadgets, and
other devices such as smart cards. With Java technology, you can use the same
application on a Sun SparcStation running the Solaris operating system, a per-
sonal computer (PC) running MS-Windows, a Macintosh computer, a network
computer, or even a cellular phone or an Internet screen phone.

The original HotJava browser demonstrated Java’s power by makingit possi-
ble to embed Java programs inside HTML pages. These programs,called applets,
are transparently downloaded, to be run inside the browser. The Java platform has
been incorporated into all major Web browsers and soon will be built into next-
generation telephones and TV set-top boxes. Java programscan also run directly
on a computer without depending on a browser and are being written to run on
servers and large mainframe computers.

The Java platform consists of the Java language, the JVM,andthe application
programming interfaces (API libraries), The JVM is an abstract computing
machine and does not assume any particular implementation technology or host
platform.It also knows nothing of the Java programming language; it knows only
ofa particularfile format, the classfile format. A class file contains JVM instruc-
tions (or bytecodes) and a symboltable, as well as ancillary information. Byte-
codes can beeither interpreted or compiled for a native platform. The JVM may
also be implementedeither in microcode or directly in silicon. The current release
of Sun’s implementation of the JVM,inside JDK 1.2, emulates the JVM on Win32
and Solaris platforms.

2.2 Basic Security Architecture

In the original Java release, the basic security architecture centered on allowing a
user to dynamically import and run Java applets without unduerisk to the user’s
system. An applet is loosely defined to be any code that does not reside on the
local system and must be downloadedto be run. Codethat does reside on the local
system is commonly called a Java application. Because applets are downloaded
dynamically and often without your awareness, and because you may not know
whothe applets, authors are, you cannot blindly trust an applet not to attemptto

23

Page 38 of 275

Page 39 of 275

Page 39 of 275

24 BASIC SECURITY ARCHITECTURE

cause harm. Thus a downloaded applet’s actionsare restricted to its sandbox, an
area of the Web browserallocated specifically to the applet. The applet may play
around within its sandbox but cannot reach beyondit. For example, it cannot read
or alter any file stored on the user’s system. In this way, if a user accidentally
imports a hostile applet, that applet cannot damage the user’s system. Thus this
sandbox model provides a very restricted environment in which to run untrusted
code(that is, applets) obtained from the open network.

In the sandbox model, all applications (as opposed to applets) are completely
trusted to have full accessto vital system resources (suchas the file system). Secu-
rity comes from maintaining physical control over the systems, for example by
preventing end-users from installing suspicious software. Note that the distinction
between an applet and an application, or “outside” versus “inside,” is not always
absolute. With a networked file system, a class file appearing to reside on the local
file system actually might be located thousands of miles away, whereas an applet
can be downloaded from within the local area network (LAN), possibly from the
same host on whichthe user is runningit.

The sandbox model is deployed through JDK 1.0.x and is generally adopted
by applications built with JDK, including Java-enabled Web browsers.

The original basic security architecture is enforced through a number of
mechanisms.First, the Java language is designed to be type safe and easy to use.
Thus the programmeris less likely to make subtle mistakes, compared with those
possible when using other programming languages such as C or C++. Language
features such as automatic memory management, garbage collection, and range
checking on strings and arrays are examples of how the language helps the pro-
grammerto write safer code.

Second, a bytecode verifier ensures that only legitimate Java code is executed.
A compilertranslates Java programs into a machine-independent bytecoderepre-
sentation. Before a newly downloaded appletis run, a bytecodeverifier is invoked
to check that the applet conformsto the Java language specification and that there
are no violations of the Java language rules or name spacerestrictions. This is
because, for the sake of security, the JVM imposes strong format and structural
constraints on the code in a class file. The verifier also checks for violations of

memory management, stack underflows or overflows, and illegal data type casts.
These might allow a hostile applet to corrupt part of the security mechanism or to
replace part of the system with its own code. The bytecode verifier, together with
the JVM,is designed to guarantee language type safety at runtime. For example,
Java uses a runtime type check whenstoring references in arrays to ensure com-
plete type safety.

Moreover, note that runtime activities include the loading and linking of the
classes needed to execute a program, any optional machine code generation and
dynamic optimization of the program, and the actual program execution. During

Page 40 of 275

BASIC SECURITY FOR THE JAVA LANGUAGE

this process, a class loaderdefines a local namespace, whichis used to ensure that
an untrusted applet cannotinterfere with the running of other Java programs.

Finally, access to crucial system resources is mediated by the JVM andis
checked in advance byasecurity managerclass thatrestricts to a minimum the
actions of untrusted code. Class loader and security managerclasses are discussed
in greater detail later in Section 3.8.

2.3 Bytecode Verification and Type Safety

This section takes a closer look at the generalissue of type safety andin particular
bytecode verification because this subject has been the focus of some well-
publicized discoveries of potential security holes. A review of specific bugs and
their fixes is in Section 2.4.

Although a trustworthy compiler can ensure that Java source code does not
violate safety rules, someone could use a rigged compiler to produce code that
does violate them. A web browser with Java enabled that can import code frag-
ments from anywhere does not know whether a code fragment comesfromatrust-
worthy compiler. Thus, before executing any code fragment, the runtime system
subjects it to a series oftests.

Thetests range from verifying that the format of the fragment is correctto
passing it through a simple theorem prover to establish that the code plays by the
rules. Approximately, the code is checked to ensure the following.

¢ It does not forge pointers.

@ It does not violate access restrictions. For example, a private field should not
be accessible from outside of the object.

* It accesses objects as whatthey are. (For example, the tests ensure that Input-
Stream objects are always used as InputStreams and neveras anything else.)

¢ It calls methods with appropriate arguments of the appropriate type and there
are no stack overflows.

¢ Noillegal data conversions are done, such as converting integers to pointers.

Note that a static bytecode verifier is not Strictly necessary to ensure type
safety because the JVM can,in theory, perform complete type checking during
runtime. However, runtime checks often can slow downthe execution ofa pro-
gram significantly because such checks have to be done repeatedly for each
method invocation. Thus moving some checks up front to class loading time,
where those checks are done only once, seems an appealing strategy. Knowing

Page 40 of 275

25

Page 41 of 275

Page 41 of 275

26 BYTECODE VERIFICATIONAND TYPE SAFETY

that any downloaded code satisfies these properties makes the runtime system
operate muchfaster becauseit does not have to check for them. Note that the veri-

fier is independent of the Java language or compiler, so it can also examine byte-
codethat is generated from non-Java source languages.

The five checked points above obviously do nottell the whole story and are
not meantto be formalor precise. Space limitations do not permit a description of
the considerable work that covers the finer details of the Java language design, the
inner workings of the JVM,the backgroundof flow analysis, and the art of theo-
rem proving, all of which are necessary background for a complete understanding
of how type safety is enforced.

For the present discussion,it is sufficient to understand the following points.
The most fundamental goal of the Java security architecture is to ensure that the
Java Language Specification and the Java Virtual Machine Specification are
observed and implemented correctly. One way to think about this is to imagine
that you are writing a calendar application. You typically will have interfaces that
expect to take an integer between 1 and 12 to represent a month within the year.
You mightalso have aninitialization interface that prompts the user to type in the
current date. Because yourother interfaces assume that the month integer will be
between 1 and 12,it is prudent that you check and ensure, from insidetheinitial-
ization procedure,that the user’s input is indeed a valid number. If you do not
check for this and as a result do not reject invalid numbers, your calendar applica-
tion might not work with an out-of-range month number and might behave in
strange ways.

This sameprinciple applies to the Java platform. The JVM expects the byte-
codethatit runs to have certain properties, andit is the job of the bytecodeverifier
to ensure that those properties are met. The JVM also decides to check additional

properties itself, perhaps because these are difficult or impossible to analyzestati-
cally by the bytecode verifier. There is no mystery in ensuring type safety, just
mountains of detail and tons of work.

You might ask what type safety has to do with computersecurity. This ques-
tion can be addressed in a couple of ways. First, type safety contributes toward
program correctness. If a program that is implementing some security functional-
ity does not accomplish whatit is intended to do, because the program cannot be
correctly executed, then security may not be provided correctly. For example, a
security decision may be embodiedin an equality test, of the following form.

if (the name is James Gosling) {
open the door to Hacker's Lounge

} else {

throw the person out

Page 42 of 275

BASIC SECURITY FOR THE JAVA LANGUAGE

Here, security reasoning is written and performed in the Java language. Thusit is
critical that a yes answeris not possible when a string such as James Goslingis
compared with a different string, say Scott McNealy. Otherwise, a trivial incor-
rectness in string comparison leadsto a security hole.

On the other hand,it is important to note that not all type safety problems
inevitably result in a security breach. For example,if a virtual machine implemen-
tation has a single bug that equates sting acegikmogsuwy with string
bdfhjInprtvxz, what security compromise this will cause is not immediately
clear. Nevertheless, the type safety issue needs close attention and should not be
left to chance.

Yellin, in an early paper, included somedetails of the verifier and other type
checking mechanisms[82]. However, you need a fairly good understanding of the
bytecode instructionsin orderto fully digest them. More recently, Liang and Bracha
wrote about a new mechanism, implemented in JDK 1.2,that solves a problem with
type safety regarding dynamicclass loading [45]. This subject of bytecode verifica-
tion is still evolving, with ongoing work oceurring within the JDK development
team, as well as at research labs and universities. A more formal and precise exposi-
tion ofthe enitire language type safety subjectis anticipated for the future.

2.4 Signed Applets

JDK 1.1 introducedthe concept of signed applets. Recall that in the original sand-
box model, all remote code—thatis, all applets—are automatically untrusted and
are restricted to running inside the sandbox. Suchrestrictions, although contribut-
ing to a safe computing environment, are too limiting for some applets. For exam-
ple, a company might deploy, within a LAN, an applet that is used to maintain
employee pension data. An employee who downloads and runs the applet to
changethe plan allocation would wantthe applet to automatically update his own
accounting record stored in his ownfile directory.

To facilitate such features, JDK 1.1 added support for digital signatures so that
an applet’s classfiles, after their development, could be signed and stored together
with their signatures in the JAR (Java Archive) format. For each JDK installation,
you can specify which signers (or their public keys) are trusted. When a correctly
digitally signed applet is downloaded,andifits signers can beverified and recog-
nized astrusted, the appletis treated asifit is trusted local code and is given full
system access (Figure 2.1).

Both the original sandbox model and the trusted applet model have been
extendedinto a new security architecture in JDK 1.2 that implementsfine-grained
access control based onsecurity policies and permissions. This new architectureis
covered extensively in Chapter3.

Page 42 of 275

27

Page 43 of 275

Page 43 of 275

28
A BRIEF HISTORY OF SECURITY BUGS AND FIXES

Figure 2.1 JDK 1.1 security model.

2.5 A Brief History of Security Bugs and Fixes

It is often said that those who forget history are bound to repeatit. As part of
understanding the new security architecture in JDK 1.2, you need to understand
the series of Java security-related bugs, what caused them, and what has been
done to fix them. This review, set out in the followinglist, is based on the archive
that JavaSoft keeps on its public Web site. All known bugs are fixed, normally
shortly after their discovery, and the fixes are issued in the next release of JDK.
Bugs and fixes that are technically obscure are not explained in detail here.
McGraw and Felten [49] provide additional background such as media coverage
and stock market movement that might have been related to some of the bug
reports.

It is worth emphasizingthatforall of the bugs discussed here, the problem is a
bug in the implementation of the security model, not with the model itself. As a
result, no major “surgery” is necessary and fixes are quickly developed and
deployed. Sun’s policy of “security through openness,” according to which all
source code is madeavailable for public review, has attracted very capable people to
invest their time and energy in Java security research. This policy, which has
resulted in security bugs being found and fixed more quickly, has been a greatsuccess.

Page 44 of 275

BASIC SECURITY FOR THE JAVA LANGUAGE

¢ February 1996. Drew Dean, Ed Felten, and Dan Wallach of Princeton Univer-
_ Sity (hereafter called “the Princeton team”) describedan attack that exploits the

way in whichthe applet security manager in JDK 1.0 uses the DNS (Domain
NameService) for hostname-to-IP address resolution. This attack is called the
DNSspoofing attack. Steve Gibbonsalso independently suggested this attack
scenario.

Theattack uses the fact that DNS allows one hostnameto matchto multiple IP
addresses. Thus a maliciousparty can take control of a DNS server and falsely
advertise its attack host with its actual IP address and a fake address, which
belongs to the target machine. The attack also exploits a weakness in the
applet security manager that allows an applet to connectto any of the IP
addresses associated with the nameof the computer from which it came. Thus
an applet from the attack host could open a connection to the fake address and
connect to the target machine, even thoughit was not supposedto.

Thefix for the applet security manageris to make it morestrict about deciding
to which computers an applet is allowed to connect. In particular, it notes the
actual IP address from which the applet truly came andthereafter allows the
applet to connect only to that exact same numerical address.

March 1996. David Hopwood at Oxford University found a bug in the
JDK 1.0 class loader that could be exploited to load illegal bytecode, which
could then be used to load a class referenced by. an absolute pathname. This
meantthat if in cases such as an FTP upload,the attacker could install a mali-
ciousclass file on the target system with a known pathname, then the attack
applet would beable to load the maliciousclassfile.

March 1996. The Princeton team found an implementation bug in the Java
bytecode verifier in JDK 1.0.1. Through a sophisticated attack, a malicious ap-
plet could exploit this bug to delete a file or do other damage.

April 1996. A security problem in JDK 1.0.1 was reported to JavaSoft by a
software engineer from Sprint. For a specific firewall-protected network con-
figuration, an outside applet downloaded by a client inside the firewall could
connect to a single specific host behindthe firewall. This was due to a bug in
the Uniform Resource Locator (URL) nameresolution code. Forthe attack to
succeed, the target network andthe attacker’s network must have an identical
domain name, with the attacker’s domain beingthe official (InterNIC), regis-
tered network. In other words, the target network must use an internal name
that has not been registered with InterNIC and the attacker must have control
overthe InterNIC-registered name.

Page 44 of 275

29

Page 45 of 275

Page 45 of 275

30 A BRIEF HISTORY OF SECURITY BUGS AND FIXES

May 1996. The Princeton team found another wayto get past system restric-
tions on creating a class loader in JDK 1.0.1. (Section 3.8 discusses thata class
loaderis a sensitive and powerful object, so you mustcarefully control who can
create instancesof a class loader.) This attack builds on earlier work done by
Tom Cargill.

June 1996. David Hopwood uncovered a bug in JDK 1.0.2, basedonillegal
type casting, to manipulate how objects are assigned and howthey collaborate.

March 1997. The JavaSoft engineering team cameacross a bug in the imple-
mentation of the JDK 1.1 bytecode verifier. To exploit this bug, someone
would have to handcraft specially formatted bytecode. The theoretical attack is
complex and appears extremelydifficult to accomplish.

March 1997. It was reported that an applet can call a method named
getLocalHost() to determine the IP address of the computer in which it is
running. This turned out to be a false alarm, even though the media showed
great interest. Since the May 1996 JDK 1.0.2 release, an applet that calls
getLocalHost() will get the loopback host ("Tocalhost/127.0..1") as
an answer. This is a generic handleto the local computer, which does not reveal
any private information.

April 1997. The Princeton team (now with a new member Dirk Balfanz) found
a flaw in the JDK 1.1.1 digital signature handling code used to manage identi-
ties of signers that signedclassfiles. The attack used digitally signed code for
impersonation, and madethe code appear to be signed by anyonefromthelist
of signers that were recordedin the Java runtime system.

May 1997, Brian Bershad, Sean McDirmid, and Emin Gun Sirer of the Uni-

versity of Washington (hereafter called “the Washington team’) discovered a
bug in the JDK 1.1.1 verifier. The verifier was not checking that the number of
arguments passed into a method invocationis less than the amountof spaceal-
located to local variables for that method. Thus an excessive number of argu-
ments could cause a stack overflow, mostlikely leading to the JVM’s crashing.
There was no knownsecurity attack based on this bug,but since the bug relates
to class loading, it was important enoughto fix immediately.

June 1997. The Washington team reported another implementation bugin the
JDK 1.1.2 bytecode verifier. This bug allowed a type-unsafe applet to execute
and to search and locate strings that are stored in the browser’s address space.

Page 46 of 275

BASIC SECURITY FOR THE JAVA LANGUAGE

¢ March 1999. Karsten Sohr, a graduate studentat the University of Marburg in
Germanydiscovered a bug in the implementation of the bytecodeverifier. This
bug could allow an untrusted applet to run with excess privileges, and affects
JDK 1.1.x and JDK 1.2.

In retrospect, these bugs have a high probability to be caught earlier by more
complete and careful design specification and quality assurance measures.

In summary, note the following points. First, there was a fair amount of confu-
sion overthe details of the sandbox security model. For example, applets were not
allowedto do certain actions. But the list of forbidden actions was not exhaustive
and was not given in precise language. Consequently, there was occasional debate
on whether something wasa security bug.

Second, not all Java bugs are security bugs, even though they potentially all
are. On the one hand, wetreat all bugs seriously; on the other hand, weall should
keep thingsin the right perspective.

Third, notall bugsare strictly Java security bugs because they interplay with
other aspects of the computing environment, such as the operating system, the
Web browser, Web spoofing, and someinstalled software. In fact, a lot of media
coverage has centered on bugs that have nothing to do with Java technology, but
because they are related to the Internet, some observers commonly issue warnings
aboutpotential Java security problems before the real causeof the problemsis dis-
covered. In addition, some people confuse ActiveX with Java, while others
(wrongly) think that JavaScript is the same as Java.

Finally, the current Java security technology does not attempt to monitor and
control resource consumption by applets and applications. For example,it is hard
to automatically tell the difference between an MPEG decompressorthat takes a
long time to execute and a hostile applet thatis intentionally wasting resources.
Note that resource consumption attacks can be mounted with or without Java and
sometimes do not require complicated programming. For example, a malicious
Web server can serve an infinitely long Web page, thus filling up the client
browser’s cache space. And a junk mailer can spam gigantic e-mail messages and
saturate a user’s mail box. Nevertheless, Sun recognizes that in somesituations, it
is desirable to control the impact of denial-of-service attacks, and it is actively
researching this subject area.

31

Page 46 of 275

Pe

Page 47 of 275

ee)

CHAPTER 3

JDK 1.2

Security Architecture

The state is nothing but an instrument of
oppression. ofone class by another.

—Friedrich Engels

This chapter focuses on the inner workings of the JDK 1.2 security architecture
that supports policy-driven, permission-based, flexible and extensible access con-
trol. I will go over the designs of the Policy and Permission classes, the internal
mechanismsfor secure class loading, and the access control algorithm. Butfirst I
will outline the motivations of the new architecture andits developmenttimeline.

3.1 From the Beginning

Planning for the JDK 1.2 security architecture started in late August 1996; actual
code developmentgot under way in the following February. Thefirst permission-
controlled Appletviewer appletviewer prototype ran in March,andthefirst-cut
feature completion was achieved by May 1997. This time line roughly coincides
with the publication of the new architectural directions for Java security. I pre-
sented a paper at IEEE COMPCONin February 1997 [29], which later was
revised and expanded for the JEEE Micro May/June issue [23]. During my Java-
Onetalk in April 1997, I wasable to confidently give sometechnical details based
on the prototype already in hand. For the subsequent twelve months, the security
architecture remained stable. The APIs, however, have been undergoing constant
refinement. An overview paper was presented at a USENIX conference in Decem-
ber 1997 [25], while aspects of implementation details were presented at an Inter-
net Society symposium in early 1998 [28].

Page 47 of 275

33

Page 48 of 275

Page 48 of 275

34 WHY A NEW SECURITY ARCHITECTURE

The JDK 1.2 security project was named “Gibraltar.”! This was because we,
that is, the Java security development team at Sun Microsystems, viewedit as an
important foundation stone for Java technology. But also, we anticipated major,
though not quite Herculean, efforts to complete it. We also intended to use the
other Herculeanpillar (called “Abyla”in ancient times and today known as Mount
Hacho)to namethe next major security project of this scale.

3.2 Why a New Security Architecture

Asdiscussed in Chapter 2, it wascritical that the original release of JDK 1.0 con-
sider security seriously and provide the sandbox security model. Not many tech-
nologies have security as a design goal, so Java technology, together with the
Internet and the promise of e-commerce, helpedto finally move security technol-
ogy into the mainstream ofthe computer industry. This was a significant achieve-
ment. The next step was to improve the original design to make the security
solutions on the Java platform easier to use, as well as more robust. The new
architecture corrects several limitations of earlier versions.

3.2.1 Sandbox Restrictions on Applets Too Limiting

By default, the sandbox model severely restricts the kind of activitics that an
applet may perform. Although this model was the catalyst that created the atmo-
sphere for safe Internet computing,it treats all applets as potentially suspicious.
Thus someapplets, such as those created by a corporation’s finance group to han-
dle internal transactions, are also limited in what they can do, even though they are
likely to be moretrustworthy than anarbitrary applet downloaded from an unfa-
miliar Website.

Such a blanketrestriction onall applets can be limiting. For example, suppose
a customer of Charles Schwab, a brokerage firm headquartered in San Francisco,
runs an applet loaded from Charles Schwab’s Web pageto make stock trades. This
customer might wantto let the applet update localfiles that contain her portfolio
at Charles Schwab; however, access to the client-side file system is prohibited by
the sandbox model. Thus this customer needs flexible access control, whereby
certain applets can haveaccessthatis outside of the sandboxorin other words, the
sandbox can be customized (for example, by the client system) to have flexible
shapes and boundaries.

| Gibraltar: The “calpe”of the ancients and oneofthe twopillars of Hercules, from Brewer's
Dictionary ofPhrase & Fable.

Page 49 of 275

JDK 1.2 SECURITY ARCHITECTURE 35

However, the Charles Schwab customer might also have Quicken software
installed on the local desktop that handles income tax issues. She mightnotfeel
comfortable letting the Charles Schwab applet have free reign on her entire desk-
top system. In this case, it would be best to confine the appletto limitedfile sys-
tem access, perhaps to only the Charles Schwab file folder. In other words, she
needsfine-grained access control.

Prior to JDK 1.2, one could, in theory, implement a more flexible and finer-
grained access control on the Java platform. To accomplish this, however, some-
one (such as an application writer) had to do substantial programming work, for
example by subclassing and customizing the SecurityManager, ClassLoader,
and other classes. The HotJava browser is an example of such efforts; it has a lim-
ited range of user-definable security properties. However, such programming is
extremely security-sensitive and requires in-depth knowledge of computer secu-
rity and robust programmingskills.

The JDK 1.2 architecture aims to eliminate the need to write custom security
code for all but a small number of environments, such as the military, which
requires special security properties (such as multilevel security [44]). And even
then, writing custom security code would be simpler andsafer.

3.2.2 Insufficient Separation Between Policy and Enforcement

The sandbox model, as codified by the SecurityManager class, implements a
specific security policy that is expressed in the software that does the policy
enforcement. This meansthat to enforce a different security policy, a special ver-
sion of the software must be used—clearly this is not desirable. Instead, what is
needed is an infrastructure that supports a range of easily configurable security
policies.

The JDK 1.2 security architecture cleanly separates the enforcement mecha-
nism from the security policy statement. In this way, application builders and
users can configure their own flavors of security policies without having to write
special programs.

3.2.3. Security Checks Not Easily Extensible

The original design hard coded the types of security checks that the JDK per-
forms. For example, to check if a file can be opened for reading, you would call
the checkRead() method on the SecurityManager class. Such a design is not
easily extensible because it does not accommodate the handling of new types of
checks that are introduced as after-market add-on to JDK.It also is not vety scal-
able. For example, to create a new access check, such as one that checks to see if
money can be withdrawn from a bank account, you would have to add a new

Page 49 of 275

Page 50 of 275

Page 50 of 275

36
WHY A NEW SECURITYARCHITECTURE

checkAccountWithdraw() method to the Secu rityManager class or one ofits
subclasses. Thousands of various kind of checks are possible. If methods were
created for this large number, they would overcrowd the Securi tyManager class.
In fact, because many checks are application-specific, not of all them can be
defined ‘within JDK. What is needed is an easily extensible access control
structure.

The JDK 1.2 architecture introduces typed access-control permissions and an
automatic permission handling mechanism to achieve extensibility and scalability.
In theory, no new method ever needsto be addedin the Secu rityManager class.
So far, throughout the development of JDK 1.2, when numerous new types of
security checks were introduced, we have not encountereda situation requiring a
new method. Instead, a single method, called checkPermissi on(), is now suffi-
cient to handle all security checks.

3.2.4 Locally Installed Applets Too Easily Trusted

The original security modelhas the built-in assumptionthat all locally installed
Java applicationsare fully trusted and therefore should run with full privileges. As
a result, the sandbox model applies only to downloaded applets. However, soft-
wareinstalled locally should notbe given full accessto all parts of the system. For
example, often a user installs a demo program on the local system andthen triesit
out. It is a good idea to limit the potential damage such a demo program could
cause by giving it less than full system access. In another example, caching
applets on the localfile system will improve performance, but caching should not
change the security model by treating cached applets as trusted code, even though
it now resides on the local system. Furthermore, the distinction between what is
local code and what is remote codeis fast becoming blurred. In the modern world
of software components, one application could utilize multiple components, such
as JavaBeans,that reside in all corners of the Internet. So security checks must be
extendedto all Java programs,to include applets as well as applications.

In the new architecture, local code is subjected to the same security controls
as applets, although users can choose to give full system accessto certain (orall)
local or remote code, thus running them effectively as completely trusted. Such a
choice can be made by simply configuring a suitable security policy.

3.2.5 Internal Security Mechanisms Fragile

In the original release JDK 1.0 and the subsequent JDK 1.1, a numberofinternal
security mechanisms are designed and implemented using techniques that are
rather fragile. Although they work reasonably well in those versions, maintaining

Page 51 of 275

JDK 1.2 SECURITY ARCHITECTURE

and extending them is difficult. Thus we made a few important internal structural
adjustments in order to reduce the risks of creating subtle security holes in pro-
grams. This involved revising the design and implementation of the Securi ty-
Manager and ClassLoader classes, as well as the underlying access control
checking mechanism. Later Sections 3.8 and 3.9 touch on somehistorical details.

3.2.6 Summary

To summarize, the need to support flexible and fine-grained access-control secu-
rity policies, with extensibility and scalability, called for a new and improved
security architecture. The result is JDK 1.2. This new architecture uses a security
policy to decide which individual access permissions are granted to running code.
These permissions are based on the code’s characteristics, for example where the
code is coming from, whether it is digitally signed, and if so by whom. Later,
attempts to access protected resources will invoke security checks that will com-
pare the granted permissions with the permissions needed for the attempted
access. If the former includes the latter, access will be permitted; otherwise,
access will be denied. If a security policy is not explicitly given, then the default
policy is the classic sandbox policy implemented in JDK 1.0 and JDK 1.1. There
are various caveats, refinements, and exceptionsto this model that are discussed in
later chapters.

The JDK 1.2 security architecture has not invented a new computer security
theory, even though we have had to design new ways to deal with many subtle
security issues that are unique to object oriented systems. Instead, it offers a real-
world example in which well-known security principles [17, 61, 63, 70] are put into
engineering practice to construct a practical and widely deployed secure system.

Thé remainder of this chapter describes the details of the implementation
classes. The major componentsofthe new security model include security policy,
access permission, protection domain, access control checking, privileged opera-
tion, and Javaclass loading andresolution. Security policy and access permissions
define what actions are allowed, whereas protection domain and access control
checking provide the actual enforcement. Privileged operation and class loading
andresolution are valuable assistants in the overall protection mechanisms.

3.3. java.security.General SecurityException

First, we specified a new exception class called GeneralSecurityException.
Why introduce this class when there was already java.lang.Security-
Exception? SecurityException and its subclasses are runtime exceptions that

Page 51 of 275

37

Page 52 of 275Page 52 of 275

38 SECURITY POLICY

are thrown only to signify that a security check has failed, for example when
someone attempts to illegally access a protected file. Such runtime exceptions are
not declared or checked and will cause the execution of a program to stop unless
application developers write code to explicitly catch them.

However, other error conditions, such as syntax errors, are related to the secu-
rity mechanisms but do not correspond to failed security checks. In these cases,
throwing a SecurityExceptionis inappropriate. Instead, a GeneralSecurity-
Exception should be thrown, For example, passing in an invalid Pol icy object is
security related but nonvital, and the exception here should probably not be a
security violation and should be caughtand dealt with by a developer.

GeneralSecurityExceptionis a subclass of java.Tang.Exception and
must be declared or caught. This exception should be thrown in all cases from
within the security packages, except when some sort of security violation is
detected, in which case a Securi tyException should be thrown.”

3.4 Security Policy

The security behavior of a Java runtime system is specified by its security policy.
In abstract terms, the security policy is a typical access-control matrix that says
what system resources can be accessed, in what fashion, and under what circum-
stances. For example, one entry in the matrix shown in Figure 3.1 says something

stat]Le) ats)

Figure 3.1 Policy matrix.

2 The java.security package contains two places in which exceptions thrown are
subclassed directly from java. Jang. Runti meException. These were introduced in JDK
1.1 and, to maintain backward compatibility, we do not change them to subclass from
GeneralSecurityException.

Page 53 of 275

JDK 1.2 SECURITY ARCHITECTURE

like “when running an applet downloaded from http://java.sun.com, allow it
to read the following file x.” More specifically, a security policy is a mapping
fromaset of properties that characterizes running codeto a set of access permis-
sions granted to the code.

When JDK 1.2 is run, a system security policy is in place thatis really com-
posedofaset of policies that can be configured by the user or by a system admin-
istrator. There can be multiple formsof representation of such a policy outside of
the Java runtime environment. For example, the default implementation of
JDK 1.2 uses an ASCII formatand the policy is stored in an ASCII file, The pol-
icy file can then be retrieved via HTTPor other protocols. The specification of the
formatofthe policy file is in Chapter 4,

So that the security mechanism inside the Java runtime environment can con-
sult the policy, the policy contents are necessarily represented internally in the
form of a Policy object, which is instantiated from a subclass of the class
java.security.Policy. Because there is no limitation on who can instantiate
such an object, multiple instances of the Policy object could exist at the same
time. Nevertheless, only one Policy object is in effect at any time, in the sense
thatit is the one of which the security mechanism asks questions.

The Policyclass is an abstract class, so a Policy object is instantiated not
from Policybut from oneofits subclasses. The security policy is represented by
a Policy subclassthat provides an implementation of the abstract methodsin this
Policy class. Following are Policy’s four most important methods:

public static Policy getPolicy();

public static void setPolicy(Policy policy);
public abstract Permissions getPermissions(CodeSource

codesource);
public abstract void refresh():

The currently installed Policy object can be obtained by calling the getPo] -
icy method. This object maintains a runtime representation of the policy and is
typically instantiated either at the JVM start-up time or when the security policy is
used forthe first time. It may be changed later via a secure mechanism, such as by
calling the setPoTlicy method.

The source location for the policy informationutilized by the Policy object is
up to Policy’s implementation.It may be stored, for example, as a flat ASCIIfile,
as a serialized binary file of Policy, or as a database.

The refresh method causes the Policy object to refresh or reloadits current
configuration. How this is done is implementation-dependent. For example, if the
Policy object stores its policy content in configuration files, a call to refresh
will typically causeit to reread the configuration policy files. However, the default
implementation in JDK 1.2 does not affect classes that have already been loaded

39

Page 53 of 275

Page 54 of 275

Page 54 of 275

40 SECURITY POLICY

in the sense that they retain the permissions they have already been granted, even
if these permissions may conflict with the new security policy. Also, new classes
that are loaded after the policy update may not be granted permissions under the
new policy, depending how the class loaders are implemented. For example, if
they cache the old policy content, then this content and not the new policy content
gets used. Section 3.6 further elaborates policy update issues.

The default Policy implementation can be changed by setting the value of the
policy.provider security property (in the Java security properties file) to the
fully qualified nameof the desired Policy implementation class. The Java secu-
rity properties file is located in the file named

JAVA-HOME/11b/security/java.security

where JAVA-HOMErefers to the directory in which the JRE (Java Runtime Envi-
ronment) is installed. For example, if you have JDK 1.2 installed on Solaris, the
security properties file is located in the file named

jdkl.2/jre/lib/security/java.security

If instead youinstalled JRE 1.2 on Solaris, the file is named

jrel.2/lib/security/java.security

We designed the policy componentas a provider structure because we wanted
to instill enough flexibility so that the policy content can be obtainedin arbitrary
ways. It would have been impossible to anticipate the various possible ways for
doing this and then design sufficient APIs for them.

Policy content can be sensitive, and the method getPoTicy() is public static
so that anyonecancall it. Thus a suitable security check is installed so that only
codethat has the permission to obtain the policy can successfully call the method.

Similarly, a security check is invoked when the setPoli cy() method is
called. If the calling code does not have the required permission, a Security-
Exception is thrown, thereby indicating that a security-sensitive operation was
attempted and then denied dueto insufficient access permission.

The security checks are based on the new security architecture introduced in
JDK 1.2 (so we practice what we preach) andareillustrated in the following code
segments. These code segments use the new permission model, details of which
are explained later in Sections 3.5, 3.7, 3.8, and 3.9.

public static Policy getPolicy() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(new

SecurityPermission ("getPolicy"));
return policy;

Page 55 of 275

JDK 1.2 SECURITY ARCHITECTURE

public static void setPolicy(Policy policy) {
SecurityManager sm = System.getSecurityManager():
if (sm != null) sm.checkPermission(new

SecurityPermission("setPolicy"));
Policy.policy = policy;

}

Note that because the getPermissions and refresh methods are abstract, they
must be implemented by a subclass of the Policyclass and in which the appropri-
ate security checks should be doneto protect the contents of the Poli cy object..

An example of how Policy is used is the following code fragment of
java.lang.ClassLoader, whose defineClass method indirectly executes as
follows whendefining a class that is granted with the default permissions.

Class c = defineClass@(name, b, off, len);
¢.setProtectionDomain0(getDefaultDomain());

where getDefau1tDomain() is implemented as follows.

CodeSource cs = new CodeSource(null, null):
PermissionCollection p = Policy. getPolicy().getPermissions(cs);
return new ProtectionDomain(cs, p);

3.5 CodeSource

Recall that the security policy is essentially an access control matrix that describes
code accordingto its characteristics and the permissionsit is granted. This section
examines how to describe code.

Currently, a piece of code is fully characterized by two things. Oneis its ori-
gin (its location as specified by a URL). Thesecondistheset of digital certificates
containing the public keys that correspondto the set of private keys that have been
usedto sign the code using one or moredigital signature algorithms. Such charac-
teristics are captured in the class java.security.CodeSource, which can be
viewed as a natural extension of the concept of a codebase within HTML.It is
important not to confuse the CodeSourceclass with the CodeBase tag in HTML.

For example, the CodeSource of an applet packaged in a JAR file called
foo. jar that resides at the Web address http://java.sun.com/classes/ con-
tains the URL

http://java.sun.com/classes/foo.jar

Page 55 of 275

41

Page 56 of 275

Page 56 of 275

42 CodeSource

If the JAR file is signed, it will contain digital signatures for individual entries in
the JARfile or for the entire JARfile itself. In this case, the corresponding Code-
Source will also contain the certificates that correspond to the signature Keys.
Note that if signatures cannot beverified, the JAR file will be viewed as unsigned
and the certificates will effectively be null. Verification could fail either because
the contentof the JARfile was modified so that an entry no longer matchesits sig-
nature or becausethe signature keys are unrecognizable.

Following are the most important methodcalls for the CodeSourceclass:

CodeSource(URL url, java.security.cert.Certificate certs[]);
public boolean equals(Object obj);
public boolean implies(CodeSource codesource):

Weintentionally made CodeSource immutable by including both the URL
and the certificates in the constructor and by making copies of the certificates
(instead of merely keeping references to those certificate objects). Note that the
URL itself is already immutable, so there is no need to make a cloneofit. Making
a CodeSource object immutable ensures that it can be passed around withoutits
integrity being compromised.Its integrity is important because, as I discuss in
Section 3.6, access control decisions are madepartly based on the CodeSource of
running code. For example, a code fragment from a designated CodeSource can
be allowed to write to the local file system, while code from other places is pro-
hibited local file system access. If a latter kind of CodeSource object can be
mutated, illegally, to become identical to the former CodeSource object, then
code from the latter would gain illegal access to the local file system, thereby
causing a security breach.

You might have noticed that because you need only private keysto create sig-
natures and only public keys to verify them, certificates are sometimes unneces-
sary. So why doesthe interface in CodeSource deal with only certificates and not
public keys? The answeris, for simplicity. In theory, both interfaces can exist,
where oneinterface deals with public keys and the other with certificates. But hav-
ing both is redundant and adds complexity to the underlying algorithm and code.
Until JDK 1.2 beta3, we decided to use public keys exclusively. From beta4
onward, we generalizedto using certificates exclusively.

Using certificates exclusively should not cause any problem because given
any public and private key pair, you can easily produce a self-signedcertificate
that encloses the public key. In fact, the tool used to generate keys in JDK 1.2,
called keytoo1, always generates a self-signed certificate when generating a key.
A self-signed certificate normally would not convey any significanceto the key
enclosedinside, except to serve as a medium to transport the key.

Moreover, using certificates instead of public keys makes it easier to carry
around important information that might be contained inside.a certificate but

Page 57 of 275

JDK 1,2 SECURITYARCHITECTURE

cannot be expressed by the public keyitself. For example, because CodeSource
objects contain not only certificates but also their supporting certificate chains,
one can validate an entire certificate chain all the way up to the root CA. Such val-
idation information is valuable for auditing purposes,

3.5.1 Testing for Equality and Using Implication

Testing for equality between two CodeSource objects is important because such a
comparison is central to security policy decision. Two CodeSource objects are
considered equal if their URL locations are identical andif the two sets ofcertifi-
cates contained in the two objects are identical. In other words, the twosets of cer-
tificates might not be stored in the same order (in the array), but the two sets must
be identical.

Sometimes,it is convenient to specify a first CodeSource object that is more
general than a second CodeSource object so that any code coming from the sec-
ond can be considered also coming from the first. In this case, the first
CodeSource “implies” the second CodeSource. For example, CodeSource of
http://java.sun.com/classes/ is more general than a more specific
CodeSource of http://java.sun.com/cl asses/foo. jar.

With sucharelationship based on “implication,” security policy can be sim-
plified by granting permissions to a general CodeSource object, which will
implicitly grant the same permissions to any more specific CodeSource object.
For example, you can give to http: //java.sun.com/classes/ permission to
accessthe localfile system, meaning that you give the same permissionto all code
residing on that Web page.

Obviously, strict and precise rules must be followed in order to determineif
one CodeSource object implies another. When the this. implies(CodeSource
codesource) method is called, it returns true if “this” CodeSource object
implies the specified codesource passed in as the parameter. More specifically,
this method makesthe following checks, in the following order. If any checkfails,
it returns false.If they all succeed,it returns true.

1. codesource mustnot be null.

2. If this object’s certificates are not null, then all of them must be present in
codesource’s certificates.

3. If this object’s location (getLocati on()) is not null, then the following
checks are madeagainstits location and codesource’s location.

a. codesource’s location mustnot be null.

b. If this object’s location equals codesource’s location, then immediately
return true. Otherwise, continue.

Page 57 of 275

43

—

Page 58 of 275

Page 58 of 275

44 CodeSource

OQ
. This object’s protocol (getLocation().getProtocol()) must be equal

to codesource’s protocol.

d. If this object’s host (getLocation().getHost()) is not null, then the
SocketPermission constructed with this object’s host must imply the
SocketPermission constructed with codesource’s host.

e. If this object’s port (getLocation().getPort()) is not equal to —1 (that
is, if a port is specified), it must equal codesource’s port.

f. If this object’s file (getLocation().getFile()) does not equal code-
source’s file, then the following checks are made.

* If this object’s file ends with a “/’, then codesource’sfile must contain
this object’s file as a prefix.

* Ifthis object’s file ends with “/*”, then codesource’sfile must reference

aclass or JARfile in the directory pointed by this object’sfile without the
trailing “*”,

* Ifthis object’s file ends with “/-”, then codesource’s file must reference

a class or JARfile in the directory pointed bythis object’s file without the
trailing “*” or recursively any of its subdirectories.

* In all other cases, codesource’s file must, as a prefix, contain this
object’s file with a “/” appended.

g. If this object’s reference (getLocation().getRef()) is not null, it must
equal codesource’s reference.

For example, consider CodeSource objects with the following locations and
null certificates:

http:

http://«.sun.com/

http: //java.sun.com/classes/

http://java.sun.com/classes/foo.jar

All of these imply the CodeSource object with the location http://
java.sun.com/classes/foo.jar and null certificates. This is because http:,
http://s.sun.com/, and http://java.sun.com/classes/ all include
http://java.sun.com/classes/foo. jaras a specialcase.

Two different CodeSourceobjects refer to the same code sourceif they imply
each other.

Because CodeSource implements the interface java. io.Serializable, we
provided customized methods writeObject() and readObject() for serialization.

Page 59 of 275

JDK 1.2 SECURITY ARCHITECTURE

Followingis a sample usage of the CodeSource class. When defining a class
that is loaded from either the local host or a remote host, you needto calculateits
code source in order to consult the security policy to figure out the permissions to
grant to the code. Thus the method findClass () in class java.net.URLClass-
Loader executesthe following code segment.

URLClassPath ucp = new URLClassPath(urls);

Resource res = ucp.getResource(path, false);

byte[] b = res.getBytes();

java.security.cert.Certificate[] certs = res.getCertificates();
CodeSource cs = new CodeSource(url, certs);

return defineClass(name, b, @, b. length, cs);

3.6 Permission Hierarchy

Theprevious sections introduced the security policy, as well as the code sourcethat
comprises half of the policycontent. The remainingpart of the policy describes the
permissions granted to each different code source. This section covers first the
design of the Permission class hierarchy and then the various specific permission
classes.

The permission classes represent access to system resources. Currently, all
permission classes are positive in that they represent approvals, rather than deni-
als, of access. This design choice greatly simplifies the implementation and
improves efficiency. The root class of the Permission class hierarchy,
java.security.Permission, is an abstract class andis subclassed, as appropri-
ate, to represent specific accesses. For example, the following Java code can be
used to produce a permission to read thefile named abc in the /tmp directory:

perm = new java.jo.FilePermission("/tmp/abc", “read");

New permissionsare subclassed either from the Permission class or one ofits
subclasses, such as java.security.BasicPermission (Figure 3.2). Subclassed
permissions (other than BasicPermission) generally belong to their own pack-
ages. Thus FilePermission, which describes access permissionfor the file sys-
tem, is found in the java.io package, which holds the APIs for file systemaccess.

Page 59 of 275

45

| vi marina

Page 60 of 275

Page 60 of 275

PERMISSION HIERARCHY

Figure 3.2. Permission subclasses.

3.6.1 java.security.Permission

Following are the constructor and the method calls of the Permissionclass at the
root of the Permission class hierarchy:

public Permission(String name);

public abstract boolean implies(Permission permission);
public abstract boolean equals(Object obj):
public String toString();

public PermissionCollection newPermissionCollection();

Each Permission instance is typically generated by passing one or morestring
parameters to the constructor. In a common case with two parameters, the first
parameter is usually the name of the target (such as the nameofa file for which
the permission is aimed) and the second parameteris the action (such as reading a
file). Generally, a set of actions can be specified as a comma-separated composite
string.

All permissionshave a target name, whoseinterpretations depend onthe sub-
class.It is conceivable that for certain types of permissions, the target name is of
no importance and is thus not interpreted. Permission objects are similar to
String objects in that they are immutable once they have been created. Sub-
classes should not provide methodsthat can changethestate of a permission once
it has been created.

Page 61 of 275

JDK 1.2 SECURITYARCHITECTURE

Whether two Permission objects are considered equalis left entirely up to
each subclass of the Permission class. The sameis true for those abstract meth-
ods for defining the semantics of the particular Permission subclass.

An important method that must be implemented by each subclass is the
implies method to compare permissions. Basically, “permission p1 implies per-
mission p2” means that if you are granted permission p1, you are naturally
granted permission p2. Thusthis is not really an equality test, but rather more of a
subsettest.

It is important to rememberthat object equality differs from permission equiv-
alence. Object equality is useful, for example, when you store objects in hash
tables and later need to determine if an entry already exists. This can be done by
calling the equals method. Permission equivalence, on the other hand, means that
two objects semantically represent the same permission. To determine permission
equivalence, you must use the imp1ies method and checkto see if one Permission
object implies another, and vice versa.

Most Permission objects also includealist that gives the actions thatare per-
mitted on the permission target. For example, for a java.io.FilePermission
object, the permission name (andtarget) is the pathnameofa file (or directory)
and the list of actions specifies which actions (such as read and wri te) are
granted for the specifiedfile (or for files in the specified directory).

The actionslist is optional for those Permission objects that do not need
such a list. One example is java. 1ang.RuntimePermi ssion, where the named
permission (such as "exitVM") is either granted or not. There is no further subdi-
vision of different actions. Admittedly, for these specialcases, quite often the
name embodies both the target of the permission (for example, VM is the target
from which to exit) and the action (exit). For simplicity, they are merged as one
string. The design of such permission classes typically subclasses from
java. security.BasicPermission.

Sometimes it is desirable to present a permission’s content in a human-
readable fashion. The toString() method returns a string describing the permis-
sion. The convention is to specify the class name, the permission name, and the
actions in the following format:

("ClassName" "name" "actions")

The Permission class implements two interfaces: Guard and
java.io.Serializab1e. For the latter, the intention is that Permi ssion objects
may be transported to remote machines, such as via RMI,and thus a Serializ-
able representation is useful. Guard, which is related to the class GuardedOb-
ject, is discussed in Chapter 6. Applications (and applets) are free to introduce
new categories of Permission classes beyond those that the system always sup-
ports. How to add such application-specific permissionsis discussed in Chapter5.

Page 61 of 275

47

Page 62 of 275

Page 62 of 275

48 PERMISSION HIERARCHY

The method newPermissionCollection() returns an empty Permission-
Collection object for a given Permission object, or null if a corresponding
PermissionCollection() class is not defined. The next section deals with per-
missionsets.

3.6.2 Permission Sets

Often it is more convenient to deal with sets of permissions rather than one per-
mission at a time. The abstract class java.security.PermissionCollection
represents a collection (thatis, a set that allows duplicates) of Permission objects
for a single category (such as file permissions), for ease of grouping. Each Per-
missionCollection object holds a homogeneouscollection of permissions. In
other words, each instance of the class holds only permissions of the same type.
Following are its more important methodcalls:

public abstract void add(Permission permission);
public abstract boolean implies(Permission permission);
public abstract Enumeration elements();
public void setReadOnly();

public boolean isReadOnly();

The add method adds a Permission object to the current collection of Per-
mission objects. Howthis is doneis left to each subclass. For example,file per-
missions can be added to a PermissionCol lection object in any order.

Similar to its purpose in the Permission class, the implies method here
checks whetherthe specified permission is implied by one or more ofthe permis-
sions in the current PermissionCol lection object. If so, we say that the permis-
sion is implied by the PermissionCollection object. Note that in this case, the
specified permission, say to read and write file x, might not be implied by any sin-
gle permission but rather by a collection of permissions in the Permission-
Collection object, such as one permission to readfile x and anotherto write file
x. Thus it is crucial that any concrete subclass of PermissionCollection
ensures that the correct semantics are followed when the implies method is
called.

The setReadOnly method marks this PermissionCollection object as
read-only. After this, no new Permission objects may be added to it using
addPermission.

To group a number of Permission objects of the same type, you shouldfirst
call the newPermissionCollection method on that particular type of
Permission object. The default behavior (from the Permission class) is simply
to return null. Sometimes, subclasses of Permission need to store their permis-
sions in a particular PermissionCollection object in order to provide the cor-

Page 63 of 275

JDK 1.2 SECURITY ARCHITECTURE

rect semantics when the PermissionCollection. implies method is called. In
this case, they override the method. If a non-null value is returned, that
PermissionCollection must be used. If null is returned, then the caller of
newPermissionCollection is free to store permissions of the given type in any
PermissionCol lection it chooses (one that uses a Hashtab] e, one that uses a
Vector, and so on).

The java.security.Permissionsclass represents a collection of collec-
tions of Permission objects, thatis, a super collection of heterogeneous permis-
sions. A subclass of PermissionCollection and final, it basically is a collection
of PermissionCollection objects. That is, it contains different types of
Permission objects organized into PermissionCollections. For example, any
java.io.FilePermission objects added to an instance of this class are all
stored in a single PermissionCol lection. This is the PermissionCol] ection
returned by a call to the newPermissionCollection method in the
Fi lePermissionclass. Similarly, any java. Tang. RuntimePermission objects
are stored in the PermissionCollection returned by a call to the
newPermissionCol lection method in the RuntimePermission class. Thus this
class represents a collection of PermissionCollections.

Following are two of the methods worth examining:

public void add(Permission permission);
public boolean implies(Permission permission);

Whenthe add methodis called to add a Permi ssion, the Permissionis stored in
the appropriate PermissionCollection. If no such collection yet exists, the
Permission object’s class is determined and the newPermissionCollection
methodis called on thatclass to create the PermissionCollection and add it to
the Permission object. If newPermissionCollecti on returns null, then a
default PermissionCol1ection that uses a hash table will be created and used.
Each hash table entry has a Permission object’s name as the key and the
Permission object as the value.

Similar to its action with PermissionCollecti on, the implies method
checksto seeif this object’s PermissionCollectionfor permissions of the spec-
ified permission’s type implies the permission expressed in the passed-in
Permission object. It returns true if the combination of permissions in the
appropriate PermissionCol lection (for example, a FilePermissionCollection
for a Fi lePermission) together imply the specified permission.

Note, neither of the two permission set classes is a subclass of
java.security. Permission.

Page 63 of 275

49

Page 64 of 275

Page 64 of 275

50 PERMISSION HIERARCHY

3.6.3 java.security.UnresolvedPermission

Recall that the policy for a Java runtime environment (specifying which permis-
sions are available for code from various code sources)is represented by a Policy
object..In particular,the internalstate of a security policy is normally expressed by
the Permission objects that are associated with each code source CodeSource.
Thus, whenever a Policy object is initialized or refreshed, Permission objects
of appropriate classes may needto be created for all permissions allowed by the
policy.

Many Permission class types referenced by the policy configuration exist
locally (that is, those that can be found on CLASSPATH). Objects for such permis-
sions can be instantiated during Policy initialization. For example, it is always
possible to instantiate a java.io.FilePermi ssion, since the FilePermission
class is found on CLASSPATH.

However, the dynamic nature of Java technology makesit possible that when
the Policy object is constructed, the actual code that implements a particular
Permission class has not yet been loaded (oris not even available for loading).
For example, areferenced Permission class might be in a JARfile that will later
be loaded. In this case, the Permission class cannot be defined in the Java runt-
ime environment at this point. For each such class, an UnresolvedPermission
object is instantiated instead, as a placeholder that contains information about the
permission. Thus the UnresolvedPermission class is used to hold such “unre-
solved” permissions. Similarly, the class UnresolvedPermissionCollection
stores a collection of UnresolvedPermission permissions.

Unresolved permissions ofa particular type are resolved when access control
decisions are made regarding a permission of the same type that was previously
unresolved, but whose class has since becomeavailable(it either is already loaded
or is now loadable). Thatis, for each such UnresolvedPermissi on, a new object
of the appropriate class type is instantiated, based on the information in the
UnresolvedPermission, This new object then replaces the stored Unresolved-
Permission. If the permission is still unresolvable at this time, it is considered
invalid in the sense that the permission is not granted and the request to access is
denied. Of course, an UnresolvedPermission may get resolved eventually (after
a few tries) whenthe relevant permission class finally becomesavailable.

Note that it is not necessary to instantiate all loadable permission classes at
Policyinitiation. This is because typically only a small portion of the Policy’s
contents is neededto run the virtual machine. Thusit is quite legitimate, and even
sometimes desirable for performance and efficiency, to make extensive use of
UnresolvedPermission even when the Permission class is loadable, thus
delaying the actual instantiation of the Permission objects until right before they
are used. Nevertheless, you must pay close attention to the complexity that Unre-

Page 65 of 275

JDK 1.2 SECURITY ARCHITECTURE

solvedPermission adds, especially when an UnresolvedPermission can be
resolved into different implementationsat different times.

A few methods in the UnresolvedPermission class need explaining:
public UnresolvedPermission(String type,

String name, String actions,

java.security.cert.Certificate certs[]);
public boolean implies(Permission Pp);
public boolean equals(Object obj);

Note that the constructor takes an array of certificates, which can be used to
verify the signatures on the Permission class binary files. This feature does not
exist for other Permission classes. This is because for permissions that are not
resident on CLASSPATHorother system paths, the permissions are more than likely
definedby a third party and are delivered as part of an extensionor application. In
this case, the authenticity of the Permission classes, such as whetherthey respect
the intentions of the root class java.secu rity.Permission and whethertheir
implementation is not malicious, can be questionable and are difficult to verify
from within an application. The certificates, if present, can provide additional
assurance. This assurance dependson the trust conveyedbythe signature keysthat
signed the Permission classes and on how an application choosesto interpret the
certificates.

Thecertificates also are useful when a Permission class does not reside
locally and is downloaded each timeit is used. On the one hand, ensuring that the
same classfile is downloaded each timeis often desirable. However, this could be
difficult to verify unless local storage is used to keep a copy orat least a finger-
print (a hash value) of a prior class file. On the other hand, software tends to get
upgraded often, so it is not uncommon to expect the same named Permission
class file to change overtime, albeit in a consistent way. But again this consis-
tencyis difficult to check by examiningthe classfiles. The certificates, which can
be usedto verify a class file’s digital signature, normally change less often and can
be managed moreefficiently than the actualclassfiles.

The by now familiar imp1ies() method always returns false for unresolved
permissions. This is because an UnresolvedPermissionis never considered to
imply another permission.

Finally, when comparing two UnresolvedPermission objects for equality,
you need to check that the second Permission object is also an Unresolved-
Permission and has the sametype (class) name, permission name, actions, and
certificates as the first object, the one doing the comparison.

Page 65 of 275

Page 66 of 275Page 66 of 275

PERMISSION HIERARCHY

3.6.4 java.io.FilePermission

The java.io.FilePermission class represents access to a file or directory. A
FilePermission consists of a path name anda set of actions valid for that path
name. The path nameis that of the file or directory on which the specified actions
are granted. It can be specified in the following ways, where directory names and
file namesarestrings that cannot contain whitespaces.

file The namedfile

directory Sameasdirectory /
directory/file The namedfile

directory/« All files in this directory
* Allfiles in the current directory

directory/- Allfiles in the file system underthis directory
- All files in the file system underthe currentdirectory
"<<ALL FILES>>" All files in the file system

In other words, a pathnamethat ends in “/x” indicates a directory and all of the
files contained in that directory. Here, “/” is the file separator character, imple-
mented as File.separatorChar. A pathname that ends with “/-” indicates a
directory and (recursively)all files and subdirectories containedin that directory.
A pathnameconsisting of the special token "<<ALL:FILES>>" matches any file.
Note that a pathnameconsistingof a single “+”indicates all of the files in the cur-
rent directory. A pathnameconsisting of a single “-”indicates all of the files in
the current directory and (recursively) all files and subdirectories contained in the
current directory.

The actions to be granted are passed to the constructor in a string containing a
list of zero or more comma-separated keywords. Following are the possible key-
words. The actions string is converted to lowercase before processing.

read refers to read permission.

write refers to write permission.

execute refers to execute permission, which allows Runtime.exec to be

called. It corresponds to the security check done within the Securi ty-
Manager. checkExec() method.

¢ deleterefers to delete permission, which allows File.delete to becalled.It
correspondsto the security check done within the SecurityManager . check-
Delete method.

Page 67 of 275

JDK 1.2 SECURITY ARCHITECTURE

Here are the important method calls in the java. io0.FilePermissionclass:

public FilePermission(String path, String actions);
public boolean implies(Permission p)
public boolean equals(Object obj)
public PermissionCollection newPermissi onCollection()

The implies() method checks to see if this FilePermission object implies
the specified permission. More specifically, this method returns true if p is an
instance of FilePermission, p’s actions are a proper subset of this object’s
actions, and p’s pathnameis implied by this object’s pathname. For example,
/tmp/* implies /tmp/foo, since/tmp/ encompasses the /tmp directory and all
files in that directory, including the one named foo.

When checking two FilePermission objects for equality using the equals
method, you must check that obj is a FilePermission and has the same path-
name and actions as the object on which equals is invoked. Slightly more com-
plicated is the method that returns a new PermissionCollection object for
storing FilePermission objects. FilePermission objects must be stored in a
manner that allows them to beinserted into the collection in any order and that
also enables the PermissionCollection’s implies() method to be imple-
mented in an efficient (and consistent) manner.

For example, suppose that you have two FilePermissions:

"/tmp/-" ' "read"
"/tmp/scratch/foo", "write"

and you are calling the imp1ies() method with this FilePermission:

“/tmp/scratch/foo", “read,write"

In this case, the implies method musttake into accountboth the /tmp/-, read
and the /tmp/scratch/foo,write permissions, so the effective permission
includes /tmp/scratch/foo, read,wri te, and implies returns true. The
semantics of the implies method for FilePermissions are handled properly by
the PermissionCollection object returned by this newPermission-
Collection method.

Note that "<<ALL FILES>>" is a special string denotingall files in the sys-
tem. On a UNIX system,this includesall files underthe root directory. On an MS-
DOSsystem, this includesallfiles on all drives.

Thus the following are valid code samplesfor creating file permissions.
import java.io.FilePermission;

FilePermission p = new FilePermission("myfile”, "read,write");
FilePermission p = new FilePermission("/home/gong/", “read"):

Page 67 of 275

53

Page 68 of 275

Page 68 of 275

54 PERMISSION HIERARCHY

FilePermission p = new Fi lePermission("/tmp/mytmp",
"read,delete");

FilePermission p = new FilePermission("bin/«", “execute");
FilePermission p = new FilePermission("«", “read");
FilePermission p = new FilePermission("/-", "read,execute""):
FilePermission p = new FilePermission("-", "read, execute”);
FilePermission p = new FilePermission("<<ALL FILES>>", "read");

The implies methodin this class correctly interprets the file system. For example,
FilePermission("/-", “read,execute") implies FilePermi ssion("/home/
gong/public-html/index.htm1", “read"), while FilePermission("bi n/x",
“execute") implies FilePermission("bin/emacs19. 31" » “execute”),

Note that mostof these strings are given in a platform-dependentformat. This,
unfortunately, will be necessary until a universal file description language is in
common use. For example, to represent read access to the file named foo in the
temp directory on the C drive of an MS-Windowssystem, you would use

FilePermission p = new FilePermission("c:\\temp\\foo", "read");

The double backslashes, “\\’, are necessary to represent a single backslash
because the strings are processed by a tokenizer (java.io.StreamTokenize r).
The tokenizerallows “""”to be used as an escapestring (for example, “"n”to indi-
cate a new line) and thus requires two backslashesto indicate a single backslash.
After the tokenizer has processed the FilePermission target string, converting
double backslashes to single backslashes, the end result is the actual path
"c:"temp" foo".

Note also that the use of meta symbols such as “*”and “—” precludes the use
of some specific file names with those symbols. We considerthis a small limita-
tion that can be tolerated for the moment.

Also note that “/-” and "<<ALL FILES>>" are the sametarget on UNIX Sys-
temsin that they both refer to the entire file system. They can refer to multiple
physicalfile systems that are organized as onevirtualfile system. Conversely, on a
Unix system that divides the file system into volumesorslices, “/—” mayrefer to
only the currentslice while "<<ALL FILES>>"refers toall slices. The twotargets
are potentially different on other operating systems, such as MS-Windows and
MacOS. |

Finally, note that a target name that specifies just a directory with a read
action, as in

FilePermission p = new FilePermission("/home/gong/", "read");

Page 69 of 275

JDK 1.2 SECURITY ARCHITECTURE 55

means that you are giving permission only to list the files in that directory, not to
read any of them. To allow read access to thefiles, you must specify either an
explicit filename or an “”or “-”, as in

FilePermission p = new FilePermission("/home/gong/myfile",
"read");

FilePermission p = new FilePermission("/home/gong/«",
"read");

FilePermission p = new FilePermission("/home/gong/-",
"read");

Toillustrate how file permissions are used in the real world, here is a code
segmentfrom the constructorof the class java. io.FileInputStream.

public FileInputStream(String name)
throws FileNotFoundException {

SecurityManager security = System. getSecurityManager():
if (security != null) {

security. checkRead(name) ;
}

(now open the file)
}

The corresponding checkRead() method in class SecurityManager does the
following.

public void checkRead(String file) {
checkPermission(new FilePermission(file, “read"));

}

This example shows how to create a corresponding file permission and useit
to invoke the security check. You could obtain the same result by bypassing
checkRead() and having the Fi leInputStream constructor call checkPermis-—
sion() directly. We chose to keep checkRead() in order to provide backward
compatibility. More is said on compatibility issues where the Securi tyManager
class is discussed in Section 3.10.

3.6.5 java.net.SocketPermission

The java.net.SocketPermission class represents access to a network via
sockets. A SocketPermission consists of a host specification and a setof actions
specifying ways to connectto that host.

Informally, the host can be given as hostname:port-range, where host-
name can be givenin the following ways:

Page 69 of 275

Page 70 of 275

56 PERMISSION HIERARCHY

hostname A single host
| IP address A single host

localhost The local machine

m Equivalent to localhost
hostname.domain A single host within the domain
hostname.subdomain.domain A single host within the domain
«. domain All hosts in the domain

«. subdomain.domain All hosts in the domain
* All hosts

Moteprecisely, the host is specified in BNF format as

host = (hostname | IPaddress)[:portrange]
portrange = portnumber |-portnumber | portnumber-[portnumber]

The host is expressed as a DNS name,as a numerical IP address, or as local-
host (for the local machine). The wildcard “x” may be included once in a DNS
host specification. If it is included, it must be in the leftmost position, as in
*. Sun.com.

portrangeis optional and can be given as follows:

N A single port

N- All ports numbered N and above

~N All ports numbered N and below

N1-N2 All ports between N1 and N2, inclusive

Here N, N1, and N2 are non-negative integers ranging from 0 to 65535.
The possible action by which to connect with a host are

accept

@ connect

¢ listen

¢ resolve

listen actions are meaningful only when used with localhost. Note that
implicitly, the action resolveis implied by accept, connect, and 1isten when
any of the other actions are present. In other words, anyone that can listen or
accept incoming connections from or initiate outgoing connections to a host
should be able to look up the nameof the remote host.

You might question why there is both a 1isten action and an acceptaction.
Whynot have just accept, which would imply 1isten? Both actions are necessary
because listen is an action that applies only to ports on the local host, whereas
acceptis an action that applies to ports on both the local and remote hosts.

Page 70 of 275

Page 71 of 275

JDK 1.2 SECURITY ARCHITECTURE

Following are the more interesting methods for the java.net. Socket-
Permissionclass:

public SocketPermission(String host, String action);
public boolean equals(Object obj);
public boolean implies(Permission p)3

Here are the various waysto construct socket permissions.

import java.net.SocketPermission:
SocketPermission p =

new SocketPermision("java.sun.com", “accept");
= new SocketPermi ssion("204.160.241.99","accept");
= new SocketPermission("*.com", “connect");
= new SocketPermission("*,.sun.com:80", "accept");

new SocketPermission("*.sun.com:-1023","accept");
= new SocketPermission("*.sun.com:1024", "connect");
= new SocketPermission("java.sun.com: 8000-9000",

“connect, accept");

p = new SocketPermission("localhost:1024-",
“accept,connect, listen");

TDoOUoTD ll

Supposeyoutry the following:

SocketPermission("java.sun.com: 80, 8080", "accept");
SocketPermission(“java.sun.com, javasun.sun.com", accept");

You will encounter a runtime exception, I] 1egalArgumentException. This is
because comma-separated lists are not acceptedin hostnamesor port ranges.

Checking two SocketPermission objects for equality is easy. You simply
check to see if both are of the type SocketPermission and have the samehost-
name and actions. Checking if this SocketPermission object implies another
specified permission is more complicated.

First, the implies method ensures that both of the following are true (and
returns falseif oneis not).

1, p is an instance of SocketPermission.

2. p’s actions are a proper subsetof this object’s actions, andits port rangeis in-
cluded in this portrange.

Then it checks the following, in order. Whenastated condition is true, it skips
the remaining checksandreturns true. If none are true,it returns false.

Page 71 of 275

57

Page 72 of 275

Page 72 of 275

58 PERMISSION HIERARCHY

1. If this object Was initialized with a numeric IP address and one of p’s IP ad-
dresses is equalto this object’s IP address

2. If this object is a wildcard domain (such as «.sun.com) and p’s canonical
name (the name without any preceding «) ends with this object’s canonical
hostname; for example, «.sun.com implies *.eng.sun.com

3. If this object wasinitialized with a host name(instead of a numeric address),
and one of the IP addresses corresponding to the host name equals one of p’s
IP addresses

4. If this canonical name equals p’s canonical name

Here it becomes clear that the meaning of having the same host name can be
subtle. When comparing host names, you sometimes must compare the corre-
sponding IP addresses instead. However, wheninitializing a SocketPermission
object, there is no need to do a DNSlookuprightthen.It is sufficient if you delay
the lookup until the implies methodis called, since that is when the authenticity
of the hostname and other information matters. Of course, if DNS records change
during the delay, the delayed check might yield unexpectedresults. If you choose
to use your own mechanism to compare two SocketPermission objects, you
should be wary of taking the host namesat their face value.

To illustrate how socket permissions are used in the real world, here is a code
segment from a constructor of the class java.io. Socket.

SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkConnect(address, port);
}

The corresponding checkConnect() method in the SecurityManager class
does the following.

public void checkConnect(String host, int port) {
if (port == -1) {

checkPermission(new SocketPermission(host, "resolve"));
} else {

checkPermission(new SocketPermission(host+":"+port,
“connect"));

}

Page 73 of 275

JDK 1.2 SECURITY ARCHITECTURE

3.6.6 java.security.BasicPermission

The java.security.BasicPermissionclass extends the Permission class and

offers a very simple naming conventionthat is often encountered when creating
permission classes. Jt can be used as the base class for other permission classes
that want to follow the same naming convention.

The name of a BasicPermission is the name of the given permission (for
example, exitVM, setFactory, and queuePrintJob). The naming convention
follows the hierarchical property naming convention. Anasterisk may appear at
the endof the name, following a “.”or by itself, to signify a wildcard match. For
example, java.« and »are valid but «java and a+b are invalid.

Thus BasicPermission is commonly used as the base class for namedper-
missions. A named permission is a permission that contains a name but no actions
list; you either have the named permission or you do not. BasicPermissionis an
abstract class, so you cannotreally construct it and must construct one-ofits sub-

classes instead. Subclasses may implementactions on top of BasicPermi ssi on,
if desired. Following are the subclasses of BasicPermission:

java.util.PropertyPermission

java. lang.RuntimePermission

java.awt.AWTPermission

java.net.NetPermission

java. lang.reflect.ReflectPermission

java.io.SerializablePermission

java.security.SecurityPermission.

Note that even though the action string (inherited from Permission) is
unused, you must provide a constructor for BasicPermission. Thus the follow-
ing two constructors are equivalent:

public BasicPermission(String name);
public BasicPermission(String name, String actions);

The implies() method checksto seeif the specified permission to be com-
pared with is an instance of BasicPermission, and if so, whether its name is
implied by the nameof the comparing permission. Here, name string comparison
takes into account of wildcards,so that, for example, "a.b.*" implies "a.b.c".

When checking two BasicPermission objects for equality, you check to see
if their namestrings are equal.

3.6.7 java.util.PropertyPermission

The java.util.PropertyPermissionclass represents the permission to access
Java properties set in various property files. For example, the property called
user. home is typically set to be the homedirectory of a user.

A subclass of BasicPermission, PropertyPermission, similar to a
FilePermission, contains a target and an action. Thetargets for this class are

Page 73 of 275

59

Page 74 of 275

Page 74 of 275

60 PERMISSION HIERARCHY

basically the names of Java properties, such as java.home and os.name. The
naming convention followsthe hierarchical property naming convention. Also, an
asterisk may appear at the end ofthe name, following a “.” or byitself, to signify a
wildcard match. For example, java.» and * are valid, while *xjava and axb are
invalid. Thus targets can be specified as * (any property), "a.«" (any property
whose namehas a prefix “a.”), "a.b.«", and so on.

This class is one of the BasicPermission subclasses that implements actions
on top of BasicPermission. The actions are read and write. Their meanings
are defined as follows.

¢ Read permission allows the getProperty() method in java. lang.System
to be called to get the property value.

Write permission allows the setProperty() method to be called to set the
property value.

There is nothing surprising about the methodsin this class, listed as follows:

public PropertyPermission(String name, String actions)
public boolean implies(Permission p)
public boolean equals(Object obj)

Theactionsto be granted are passed to the constructorin a string containing a
list of zero or more comma-separated keywords. The actionsstring is converted to
lowercase before processing.

The following code segment shows how this permission is used. The
java.System class implements twostatic methods, getProperties() and set-
Properties(), as follows.

public static String getProperty(String key) {
if (security != null) {

security. checkPermission(new

PropertyPermission(key, “read”));
t

return props.getProperty (key);
}

public static String setProperty(String key, String value) {
if (security != null)

security. checkPermission(new

PropertyPermission(key, "write"));

return (String) props.put(key, value);

Page 75 of 275

JDK 1.2 SECURITYARCHITECTURE

3.6.8 java.lang.RuntimePermission

The java.lang.RuntimePermission class is a straightforward subclass of
BasicPermission. The target for a RuntimePermission can be represented by
any string, and there is no action associated with the targets. For example, Run-
timePermission("exitVM'") denotes the permission to exit the JVM.

The naming convention follows the hierarchical property naming convention.
Also, an asterisk may appearat the end of the name, following a “.” or byitself, to
signify a wildcard match. For example, package. and « are valid, while
«package and axb are invalid.

Currently, the following target namesare used:

createClassLoader

getClassLoader
setContextClassLoader

createSecurityManager

setSecurityManager
ex7tVM

setFactory
setI0O

modi fyThread

modi fyThreadGroup
getProtectionDomain

readFi leDescriptor
writeFileDescriptor

loadLibrary.{library name}

accessClassInPackage.{package name}
defineClassInPackage. {package name}
accessDeclaredMembers.{class name}
queuePrintJob

stopThread

To see how this Permissionclass is used, considerthe situation in which
some code tries to link in a native library. A native library is not under JVM’s
supervision, so oncelinkedin, it can perform security sensitive tasks. Thuslinking
a native library must be a controlled operation.In the java. lang.Runtime class
is the following code segment.

public void loadLibrary(String libname) {

SecurityManager security = System.getSecurityManager();

Page 75 of 275

61

Page 76 of 275

Page 76 of 275

62 PERMISSION HIERARCHY

if (security != null)

security. checkLink(]libname);

}

The checkLink() method in Securi tyManager class is implementedas follows.

public void checkLink(String lib) {
checkPermission(new RuntimePermission("loadLibrary."'+1ib));

}

3.6.9 java.awt.AWTPermission

The java. awt .AWTPermission classis very similar to RuntimePermission. An
AwTPermission contains a name but no actionslist. Following are someof the
targets for this class:

showWi ndowwi thoutWarningBanner
accessClipboard
accessEventQueue

TistenToAllAWTEvents

readDisplayPixels

The naming convention followsthe hierarchical property naming convention.
Also,an asterisk may be used to represent all AWT permissions.

In the java. awt .Window class, creating a top-level window requires the fol-
lowing code segmentto beexercised.

SecurityManager sm = System. getSecurityManager();
if (sm t= null) {

if (!sm.checkTopLevelWindow(this)) {

I

}

This check methodtranslates into the following in the Securi tyManager class.

public boolean checkTopLevelWindow(Object - window) { .
try f{

checkPermission(topLevelWindowPermission):
return true;

Page 77 of 275

JDK 1.2 SECURITY ARCHITECTURE

} catch (SecurityException se) {
// Fall through to return false.

}

return false;
}

Note that this check method returns a booleanrather than either retuming
silently or throwing a security exception, as other check methods do. For back-
ward compatibility reasons, we did not changethis interface.

3.6.10 java.net.NetPermission

The java.net.NetPermission class is yet another subclass of BasicPermis-
sion that contains targets but no actions. The targets represent various network
permissions. The naming convention follows the hierarchical property naming
convention. Also, an asterisk may appear at the end of the name, following a ‘*.” or
by itself, to signify a wildcard match. For example, foo.» and * are valid, while
*foo and axb are invalid. Following are someofits targets:

setDefaultAuthenticator

speci fyStreamHandler
requestPasswordAuthenti cation

In the java.net.Authenticator class, the requestPasswordAuthenti-
cation() method asks the authenticator that has been registered with the system
for a password. Obviously, passwords must be safely guarded. Thus the following
check is performed.

SecurityManager sm = System. getSecurityManager();
if (sm != null) sm.checkPermission(new

NetPermission(“requestPasswordAuthentication”);

3.6.11 java.lang.reflect.ReflectPermission

The java. lang.reflect.ReflectPermission class is one more subclass of
BasicPermission andis used for reflective operations. A ReflectPermission
is a named permission (like RuntimePermission) and has no actions. The only
name currently defined is suppressAccessChecks, which allows you to suppress
the standard Java language access checks performed byreflected objects at their

Page 77 of 275

Page 78 of 275

Page 78 of 275

64 PERMISSION HIERARCHY

point of use. Normally, access checks are done when someonetries to access a
class’s public, default (package) access, protected, and private members.

In the java.lang.reflect.Accessib] eObject class is a convenience
method, setAccessible(), that sets the accessible flag for an array of objects
with a single security check (for efficiency). This method implements the follow-
ing check.

SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(new

ReflectPermission(“suppressAccessChecks”));

3.6.12 java.io.SerializablePermission

The java.io. SerializablePermissionclassis very similar to ReflectPer-
mission and contains the followingtargets and no actions:

enableSubclassImplementation
enableSubstitution

For example, in the java.io.ObjectOutputStream class, the following
code segment checks to see if a subclass can completely reimplement
ObjectOutputStream.

SecurityManager sm = System.getSecurityManager();
“if (sm != null) sm.checkPermission(new

SerializablePermission(“enableSubclassImplementation"));
enableSubclassImplementation = true;

3.6.13 java.security.SecurityPermission

The SecurityPermissionclass controls accessto security-related objects, such
as Security, Policy, Provider, Signer, and Identity. It contains the follow-
ing targets and no actions:

getPolicy

setPolicy

getProperty. {key}
setProperty. {key}

insertProvider.{provider name}
removeProvider.{provider name}
setSystemScope

setIdentityPublicKey
setIdentityInfo

Page 79 of 275

IDK 1.2 SECURITYARCHITECTURE 65

addIdentityCertificate

removeldentityCertificate

printIdentity

clearProviderProperties.{provider name}
putProviderProperty.{provider name}
removeProviderProperty.{provider name}
getSignerPrivateKey
setSignerKeyPair

The java.security.Policy class contains a static method to set the default
system Policy object. Because the Policy object now defines what sort of secu-
rity is enforced,this object cannot be changed without the appropriate permission.

public static Policy setPolicy() {

SecurityManager sm = System. getSecurityManager();
f (sm != null)

sm. checkPermission(new SecurityPermission("setPolicy"));

}

Note that the classes java.security.Identi ty and java.secu-
rity .Identi tyScope have been deprecated in JDK 1.2 and shouldnotbe used.

3.6.14 java.security.Al1]Permission

The new java.security.Al1Permission class represents all permissions. We
introduced it to simplify the work of system administrators who might need to
perform multiple tasks that require all (or numerous) permissions andit would be
inconvenient to require the security policy to iterate through all permissions.

Since A11Permission does not care about the actual targets and actions, its
constructors ignore all passed-in parameters. By definition, Al]Permission per-
mission implies all permissions. Moreover, two AllPermission objects are
always considered equal. Thus the Al]Permissionclass implements the follow-
ing two methods specially.

public boolean implies(Permission p) {
return true;

}

public boolean equals(Object obj) {
return (obj instanceof Al1Permission);

}

Page 79 of 275

a

Page 80 of 275

Page 80 of 275

66 ASSIGNING PERMISSIONS

Note that A11Permission also implies new permissions that are defined in
the future. Clearly, granting this permission must be done with caution.

3.6.15 Implications of Permission Implications

Recall that permissions are often compared with each other. To facilitate such
comparisons, each permission class must define an implies() method that
represents how the particular permission class relates to other permission
classes. For example, java.io.FilePermission("/tmp/x", "read") implies
java.io.FilePermission("/tmp/a.txt", "read"), but it does not imply any
java.net .NetPermission. However, there is another deeper implication that
mightnot be immediately obvious to somereaders.

Suppose that an applet is granted permission to write to the entirefile system.
Presumably,this allows the applet to replace the system binary, including the JVM
runtime environment. This effectively means that the applet has been grantedalli
permissions. Or suppose an applet is granted runtime permission to create class
loaders. It effectively is granted many more permissions, since a class loader can
perform sensitive operations.

Other permissionsthat are potentially dangerousto give out includethese:

¢ AliPermission(of course)

¢ Thosethatallowthesetting of system properties

¢ Runtime permissions for defining packages and for loading native codelibrar-
ies (because the Java security architectureis not designed to and does not pre-
vent malicious behaviorat the level of native code)

3.7 Assigning Permissions

Previous sections covered the basics of security policy, code source, and the
Permission class hierarchy. This section discusses how permissions are actually
granted to running code.

Whenloading a new class that originated from a particular CodeSource, the
security mechanism consults the Policy object to determine what permissions to
grant. It does this by calling the getPermissions() method of the Policy
object:

public abstract Permissions getPermissions(CodeSource
codesource) ;

Page 81 of 275

JDK 1.2 SECURITY ARCHITECTURE 67

In other words, the permissions are generally granted beforethe class is defined in
the Java runtime. There are a couple of exceptions.First,it is perfectly legitimate
to delay the instantiation of the granted permission classes and objects until a
security check occurs. This optimization allows a Java program that does notcall
for security checks to execute faster and with a smaller footprint. Even for a Java
program that does trigger a security check, this optimization allows it to start up
faster. Note that if the contentof the policy is changed between the time the policy
class is instantiated andthetimethefirst security check is invoked, the presenceof
this optimization technique will result in a Policy object’s having more up-to-
date content. Keeping the policy content up to date is of course a good thing. Sec-
tion 3.3 discusses policy update using the refresh method.

Second,it is possible that the permissions already granted to a class will be
‘changed or even withdrawnafter the class is defined, such as during a revocation
procedure after a security incident. Although the JDK 1.2 default implementation
does not alter permissions once they are granted, such alterations are considered
legal, as long as they are also controlled with the appropriate permissions.

It is worth emphasizing that permissions are granted to classes, which are
static Java code, and notto objects, which are instances of classes. The primary
reasonsfor this are to reduce complexity and increase manageability. Objects are
runtime entities, so they do not exist in a static state. But the security policy must
exist in a static state and independent ofany particular Java runtime environment,
so it cannot possibly refer to objects. Also, for the sort of security policies consid-
ered here, the same policy should be enforced no matter how objects are instanti-
ated. In addition, the numberof different classes tends to be a lot smaller than the
numberofdifferent objects. Even if you want to support a security policy thatis’
dependenton the runtime environment, the right wayis riot to grant permissions to
objects but rather to perform security checks that take into accountthe actual runt-
ime environment.?I return to this subject in Section 3,10.

Finally, recall that the security policy, in essence, can be represented with a
list of entries, each being of the form (codeSource, Permission), thereby indi-
cating that code from the named code source is given the named permission.
Clearly, for a given piece of code, its code source can match multiple entries in the
policy. In this case, the code is granted the union ofall permissions granted in
each matched entry in the policy. In other words, permission assignmentis addi-
tive. For example,if code signed with key A gets permission X and codesigned by
key B gets permission Y, then code signed by both A and B gets permissions X
and Y. Similarly, if the URL http: //java.sun.com is given permission X and

> The security policy can grant permissionsto interfaces, too, but this is immaterial, as inter-
faces alone donot getinstantiated into objects that cause security checks to occur.

Page 81 of 275

Page 82 of 275

Page 82 of 275

68
ASSIGNING PERMISSIONS

the URL http://java.sun. com/people is given permission Y, then an applet
from http://java.sun.com/peop] e/gong gets both X and Y (assuming that
the signers match).

Fordetails of the matchingalgorithm,refer to the implies() method in the
CodeSourcesection (Section 3.5). Note that URL matching here is purely syntac-
tic and does not deal with proxies or redirects. For example, a policy can give an
entry that specifies a URL ftp://ftp.sun.com. Such an entry is useful only
when you can obtain Java code directly from FTP for execution. If the Web server
redirects this URL to a different one, this policy entry might have no effect. To
specify URLs for the local file system, you can use a file URL. For example, to
specify files in the /home/gong/temp directory on a Solaris system, you can use
File:/home/gong/temp/«. To specify files in the temp directory on the C drive
on an MS-Windows system, you can use file: /c:/temp/*. One more note:
Code base URLsalwaysuse slashes (no backlashes), regardless of the platform to
which they apply. Of course, you can also use an absolute pathnamesuch as
/home/gong/bin/MyWonderful Java.

3.7.1 Positive versus Negative Permissions

It is important to observe that the Permission class hierarchy currently denotes
positive permissions only. This meansthat if a permission is present in the secu-
rity policy, the said permission is granted. The denial of a permission is implicitly
expressed by the absenceofthe said permission, rather than by the presence of a
“negative” permission. The lack of negative permissions today does not mean that
they cannot beintroduced in the future.

However,restricting oneself to only positive permissions hassignificant bene-
fits for simplicity and good performance. This is because no conflict can exist
between twopositive permissions in the sense that there is no danger that access
granted by one permission is denied by the other. Consequently, when you exam-
ine a security policy to decide what permissions to grant to some code, you do not
need to checkfor conflict. Section 3.10 discusses how to perform access control
checking and the need to examineif a set of permissions implies a particular per-
mission. Without negative permissions, you can determinethat the set implies the
said permission as soon as you find one permission within the set that implies the
said permission. These benefits to JDK implementation are also benefits to secu-
rity policy administration.

The lack of negative permissions, on the other hand, does not allow you to
specify a policy conveniently, such as “grantall file system access exceptforthis
particular file.” However, this loss of convenience is not really a loss of function-
ality because a negative can be expressed by the complement of a positive. It
seems that with additional “syntactic sugar” in more powerful policy processing

Page 83 of 275

JDK 1.2 SECURITY ARCHITECTURE

tools, one can preprocess a policy with negative permissions andtranslate the pol-
icy into one with only positive permissions. How this issue plays out in practice
remains to be seen.

3.8 ProtectionDomain

When implementing the permission assignment algorithm, you can follow the
straightforward approach of encapsulating all of the permissions granted to a
class, which are represented by various Permission objects, in a Permissions
object and then associating the permission set with the class via an interface in the
base class java. 1lang.Class. However, linking a permission set with a class so
directly leads to a rigid API that cannotbe easily extended. For example, suppose
that you want to perform access control checks based on not only permissions
granted to the class but also on the nameofthe principal(for example, a user) run-
ning the code. To do this, you would have to extend the Class class with addi-
tional interfaces, thus cluttering the baseclass.

Tofacilitate extensibility, JDK 1.2 allows permissions to be granted to protec-
tion domains; classes and objects belong to protection domains and indirectly
“inherit” the granted permissions. According to the classical definition of a pro-
tection domain [70], a domain is scoped bythe set of objects that is currently
directly accessible by a principal, where a principal is an entity in the computer
system to which authorizations (andas a result, accountability) are granted. Thus
the Java sandbox in JDK 1.0 is, in a sense, a protection domain with a fixed
boundary. In JDK 1.2, each class belongs to one and only one domain. The Java
runtime maintains the mapping from code(classes and objects) to their protection
domainsandthento their permissions. The mapping fromaclass to its domain is
set only once, before the class is usable, and cannot be changed during the lifetime
of the Class object.

The definition of the class java.security.ProtectionDomain is fairly
simple, as follows.

public ProtectionDomajn(CodeSource codesource,
PermissionCollecti permissions);

public boolean implies (Permission permission);
The implies () method checks toSee if the ProtectionDomain implies the per-
missions expressed in the Permission object.

The following code segment from java. 1ang.Classis one example of how
protection domainsare used.

Page 83 of 275

69

Page 84 of 275

Page 84 of 275

70 ProtectionDomain

public java.security.ProtectionDomain getProtectionDomain() {
SecurityManager sm = System.getSecurityManager():
if (sm != null) {

getPDperm = new RuntimePermission("getProtectionDomain");
sm. checkPermission(getPDperm);

}

return protectiondomain;
}

. Note that because a ProtectionDomain object may contain sensitive infor-
mation, accessto it is security checked with a runtime permission.

A numberof finer points are worth discussing. First, in JDK1.2 protection
domains are created on demandasnewclasses are loadedinto the runtime. In the
JDK 1.2 default implementation, classes belonging to the same domain are loaded
by the same class loader. This implementation detail is natural but not necessary.
Classes belonging to the same domain are granted the same permissions, but the
teverse is obviously not true, since there may be classes that have the same per-
missions but that are from different code sources and thus belong to different
domains.

Second, outof the many protection domains created during the lifetime of the
Java runtime, one protection domainis special: the system domain. The system
domain is a domain consisting of all code that is considered part of the system
core (or kernel, in operating system terminology). For historical reasons, system
code is always loaded by a primordial class loader that is written entirely in C.
This hasthe effect that system classes appear to be loaded with a special null class
loader. JDK 1.2 largely maintains this backward compatibility. Details of class
loading are covered in Section 3.9. For the time being, you need remember only
that code in the system domain is automatically granted all permissions. It is
important that all protected external resources, such as the file system, the net-
working facility, and the screen and keyboard, are directly accessible only via sys-
tem code, which mediates access requests made by less trustworthy code. Note
that although system classes have a special null class loader(this is discussed in
Section 3.9), their protection domain is a non-null object that has been granted
Al1Permission.

Moreover, the indirection between a class andits permissionsvia a protection
domain has an interesting benefit for Java vittual machine vendors to perform
implementation optimizations. For example, recall that it is desirable in some
cases to change the permissions granted to some code duringthelifetime of a Java
runtime. This can be achieved by changingthe contents but not the reference of
the ProtectionDomain object that is associated with a class. By maintaining
stability in the reference of the ProtectionDomain object, you can determine if
two classes belong to the same domain and then apply various optimization
techniques.

Page 85 of 275

JDK 1.2 SECURITYARCHITECTURE

Finally, note that the protection domains also serve as a convenient point for
grouping andisolating units of protection within the Java runtime. For example,
different domains may be prevented from interacting with each other. This can be
doneby using distinct class loaders to load classes belonging to different domains
in such a way that any permitted interaction must be either through system code or
explicitly allowed by the domains concerned. This is because in the JVM,a class
is distinguished by itself plus the ClassLoader instance that loaded theclass.
Thusa class loader defines a distinct name space.It can be used to isolate and pro-
tect code within one protection domain by refusing to load code from different
domains(and with different permissions).

This point brings up the issue of accessibility, that is, what is visible to an
object and what methods can an object invoke and on whatother objects. In defin-
ing the new security architecture, we examined existing coding practices that uti-
lize accessibility features that makes one objectvisible to another. We found that
accessibility needed to remain flexible, especially in server programs, without
regard to the particular security policy being enforced. So we decidedto maintain
existing accessibility customs and rules, thus making accessibility orthogonal to
security. In other words, it is up to the application programmer to decide if and
how objects and methods should be hidden from one another. In this sense, the
Java security mechanism is much morethana classical capability system.

Note that, technically, we could have enforced stricter isolation between
domains. However,this would have created a need for a new set of interfaces for
interdomain communication (similar to IPC, or interprocess communication).
Also, existing applications would have had to be rewritten to utilize the new inter-
faces. To enforce complete isolation, we might have hadto redesign some shared
system classes andtheir static fields [33]. Thus the decision to leave accessibility
separate from security is the best available solution.

3.9 Securely Hogding Classes
Dynamicclass loading is an important feature of the JVM becauseit provides the
Java platform with the ability to install software componentsat runtime [45]. This
feature has a numberof unique characteristics. Oneis lazy loading, which means
that classes are loaded on demand andat the last moment possible. Another is
dynamic class loading, which means that the type safety of the JVM is main-
tained by adding link-time checks, which are performed only once, while avoiding
additional runtime checks.

In addition, because class loaders are first-class objects, programmers can
define class loaders, for example,that specify the remote location from which cer-
tain classes are loaded. They also can assign appropriate security attributes to
class loaders.

71

Page 85 of 275

Page 86 of 275

Page 86 of 275

72 SECURELY LOADING CLASSES

Finally, class loaders can be used to provide separate namespaces for various
software components. For example, a browser can load applets from different Web
pages by using separate class loaders, thus maintaining a degree of isolation
between those applet classes. In fact, those applets may contain classes of the
same name; they are treated as distinct types by the JVM.

Section 2.3 briefly touched on language type safety, which is enforced by a
variety of techniques, including bytecode verification, class loading, and runtime
checks. This section focuses on the algorithms and APIs for locating the class
files, determining the appropriate class loaders to use, and assigning suitable secu-
rity attributes to loaded classes.

3.9.1 Class Loader Hierarchy

Whena class loaderloads Java software components, the smallest componentunit
is a class. A class is defined in a machine-independent, binary representation
called class file format. The representation of an individualclass is called a class
file, even though it need not bestored in an actualfile.

A class file may contain bytecode, as well as symbolic references to fields,
methods, and namesof other classes. An example is a class C declaredas follows:

class C f{

void f() f

Dd = new D();

}

}

The class file representing C contains a symbolic reference to class D. Such sym-
bolic references are resolved at link time (of class C) to actual class types. To do
this, the VM must loadthe class file of D and createthe class type.

A class loaderinstance L that loadsclass C is called the class’s defining class
loader. The actualtype ofthe class is fully qualified by both itself and its defining
class loader, <C, L>. In other words, two types in the Java runtime are equal if
both the class types are equal andtheir defining class loaders are identical. Fur-
ther, multiple instancesof class loader objects may exist in one JVM,so an impor-
tant question when loading a class is how to determine which class loader to use
as the defining loader.

As a further complication, JDK 1.2 introduces multiple class loader classes
that have distinct properties. Thus another important question to ask when loading
a class is what type of class loader you should use. The next subsection introduces
the class loader hierarchy and explains the similarities and differences between
classes within the hierarchy.

Page 87 of 275

JDK 1.2 SECURITYARCHITECTURE

Comparisons among the Class Loader Hierarchy

Recall that each class is loaded byits defining a class loader. Because each class
loaderis itself a class and must be loaded by anotherclass loader, a chicken-and-
egg question arises, that is, from where does the first class loader come. The
answeris, a primordialclass loaderthat bootstrapsthe class loading process. This
class loaderis generally written in a native language, such as C, and does not man-
ifest itself within the Java context in that it is not directly visible or accessible
from within the Java language. This primordial class loader often loads classes
from the local file system in a platform-dependent manner.

Someclasses, such as those defined in the java. « package, are essential for
the correct functioning of the JVM and Java runtime system, and are often
referred to as system classes. For historical reasons, all system classes have a
defining class loaderthat is a null object. This null class loader, sometimes called
the system class loader, is perhaps the only sign of the existence of a primordial
class loader. In fact, it is easier to simply view the null class loader as the primor-
dial class loader. Fairly late during JDK 1.2 development, there was a terminology
shift. All classes that reside on the CLASSPATH are now called system classes.
These classes are loaded by either the primordial (or null) class loader or a
non-null instance of a subclass of java. 1ang.ClassLoader. A new term, boot-
strap class loader, refers to the class loader that loads the classes necessary to
bootstrap the Java virtual machine. In the default implementation of JDK 1.2, the
bootstrap class loaderis the primordial class loader.

With all classes in one Java runtime environment, a class loading tree can eas-
ily be formedtoreflect the class loading relationship (Figure 3.3). Each class that

primordial class loader

oS

URLClassLoader 1

bootstrap classesN~

application classes URLClassLoader2

Figure 3.3 Class loadertree.

Page 87 of 275

73

Page 88 of 275

74 SECURELY LOADING CLASSES

| is not a class loaderis a leaf node. Each class’s parent nodeis its defining class |
loader, with the null class loader being the root class. Such a structure is a tree .

because there cannot be cycles; that is, a class loader cannot load its own ancestor |class loader.

Recall thatclass loaders are ordinary objects that can be defined in Java code.
The root of the class loader class hierarchy is an abstract class called
java. lang.ClassLoader, originally defined in JDK 1.0 and has since been
expanded (see Section 3.9.2). Class java.securi ty. SecureClassLoader,
introduced in JDK 1.2, is.a subclass and a concrete implementation ofthis abstract
ClassLoader class. The class java.net.URLClassLoader, also introduced in
JDK 1.2,is a critical componentof the extensions mechanism [1] and a subclass
of SecureClassLoader.

A utility program called appletviewer that is built with the IDK uses a pti-
vate class, sun.applet.AppletClassLoader, to load applets. In JDK 1.0,
AppletClassLoaderis a subclass and concrete implementation of ClassLoader.
In JDK 1.2, it is a subclass of URLClassLoader. Notethat interposing new classes
betweenan existing class andits subclass is binary backward compatible [30].

Whencreating a custom class loader class, you can subclass from any of the
class loader classes mentioned in this section, depending on the particular needs
of the custom class loader (Figure 3.4). Note that because the AppletClass-
Loader class is a private class defined in the sun. package, it is not supported
and is subject to change, so you shouldnot subclass from it.

3.9.2 java. lang.ClassLoader and Delegation

To understand how the abstract class java. lang.ClassLoader functions, you
needto understanda particular relationship existing among ClassLoader objects:
delegation.

Whenoneclassloaderis askedto load a class,it either loads the class itself or
asks another class loader to do so. In other words, the first class loader can dele-
gate to the second class loader. The delegation relationship is virtual in the sense
that it has nothing to do with which class loader loads which other class loader.
Instead, the delegation relationship is formed when ClassLoader objects are cre-
ated; it takes the form of a parent-child relationship. Nevertheless, the primordial
(or bootstrap) class loaderis the delegation root ancestorofall class loaders.

The first group of ClassLoader APIs concernsthe constructors:

protected ClassLoader(ClassLoader parent)
protected ClassLoader()

TnltEeee

Page 88 of 275

Page 89 of 275

JDK 1.2 SECURITYARCHITECTURE 75

primordial class loader

java.lang.ClassLoader

java.security.SecureClassLoader

 java.net. URLClassLoader

AppletClassLoader
Figure 3.4 Subclassing ClassLoader.

The first constructor creates a class loader, with a particular class loader as the
delegation parent. The second constructor uses a default delegation parent.
Because class loaders can perform sensitive operations such as defining classes,
you should strictly control who may create class loaders by invoking a security
check in the constructors, when a security manager is present. Becauseall class
loaders are subclasses of ClassLoader and constructors in the subclasses always
call the super() method, security checks placed here are always invoked.

The default \delegation parent is determined by the method call getSystem-
ClassLoader(), which is typically the class loader used to start the application.
You can obtain the parent of a class loader using the methodcall getParent().

\
public static\ClassLoader getSystemClassLoader()
public ClassLoader getParent()™

You also should tightly control who can successfully invoke these methods.
This is primarily because from within any object, you can call this.get-
Class.getClassLoader() to obtain its own defining class loader. With a refer-
ence to this class loader, you might attempt to “reach over” to its delegation
parents and then invoke methods on them. Uncontrolled reach-over is clearly

Page 89 of 275

Page 90 of 275

716 SECURELY LOADING CLASSES

undesirable. Thus if a security manager is present, the two methods will succeed
only if the caller’s class loaderis the sameas oris a delegation ancestorof the cur-
rent class loader, or if the caller has RuntimePermission("getClassLoader")
permission. Otherwise, a security exception will be thrown. Note that allowing a
delegation ancestor to have access is reasonable because a delegation child, upon
its creation, must designate its delegation parent. Obviously, one has to be very
careful about which parent to adopt.

For similar reasons, the same security check is placed in the method call
Class .getClassLoader() because you do not want anything with a reference to
a Class object to reach overto its ClassLoader object. This security check is
new to JDK 1.2.

The next group of methods deals with actual class loading:

public Class loadClass(String name)

protected synchronized Class loadClass(String name,
boolean resolve)

protected native final Class findLoadedClass(String name)
protected final Class findSystemClass(String name)
protected Class findClass(String name)
protected final void resolveClass(Class c)

Thefirst two methods take a class name as argumentand return a Class object
that is the runtime representation of a class type. The default implementation will
search for classes in the following order (Figure 3.5). If at any step a class is
located, the methods return theclass.

1. Call FindLoadedClass() to check if the class has already been loaded.

2. If the current class loader has a specified delegation parent, call the
loadClass() method of the parent to load the class. Otherwise, call the
FindSystemClass() method to see whether the class can be found among
system classes.

3. Call the findClass methodto find theclass.

Here, FindLoadedClass() looksinto the class loader’s local cache (or its equiva-
lent) to see if a loaded class matchesthe target class. However, it is critical for
type safety that the same class is not loaded more than once by the same class
loader. If the class is not among those already loaded, the currentclass loaderwill
attempt to delegate the task to the parent class loader; this can occur recursively.
This ensures that the appropriate class loader is used. For example, when locating
a system class the delegation process continues until the system class loader is

Page 90 of 275

Page 91 of 275

IDK 1.2 SECURITYARCHITECTURE 77

primordial class loader

delegation ancestor

delegation parent

requesting class loader

Figure 3.5 ClassLoader searching forclasses,

reached.If the target class is indeed a system class f7 ndSystemClass() uses the
null system class loader to load theclass.

The findClass() method provides a way to customize the mechanism for
looking for classes, thus a custom class loader can override this method to specify
how a class should be looked up. For example, an applet classloader can override
this method to go backto the applet host to try to locate the class file and loadit
over the network.

If the class was found using the previous steps and the resolveflag is true,
the JoadClass() method will then call the resolveClass() method on the
resulting Class object.

Yet anotherissueto be clarified concerningclass loading is which class loader
do youstart with whentrying to load the class, when given the nameof any class?
Following are the rules implemented in JDK 1.2.

¢ Whenthefirst “ of an application is being loaded, a new instance oftheURLClassLoader i used.
¢ Whenthefirst class of anappletis being loaded, a newinstanceofthe Applet-

ClassLoader is used.

¢ If the request to load a classis triggered by a referenceto it from an existing
class, the class loader for the existing class is asked to loadtheclass.

Page 91 of 275

Page 92 of 275

Page 92 of 275

78 SECURELY LOADING CLASSES

The rules about the use of URLClassLoader and AppletClassLoader
instances have exceptions and can vary depending on the particular system
environment. For example, a Web browser may choose to reuse an existing
AppletClassLoader to load appletclasses from the same Web page.

Thenext group of methods convert an array of bytes into an instance ofclass
Class:

protected final Class defineClass(String name, byte[] b,
int off, int len, ProtectionDomain protectionDomain)

protected final Class defineClass(String name, byte[] b,
int off, int len)

protected final void setSigners(Class c, Object[] signers)

Recall from Section 3.8 that access control permissions are granted to protec-
tion domains andthat each class belongs to one and only one protection domain.
The class loader, when defining a class, consults the security policy to obtain a
reference to the ProtectionDomain object that the class belongsto andthen calls
the defineClass() method with the ProtectionDomain object as a parameter.
Note that the second defineClass() method does not explicitly mention a
ProtectionDomain because this method existed before JDK 1.2. In this case, a
default ProtectionDomain is used. This domaintypically contains the set of per- —
missions granted when a call to Policy.getPolicy().getPermissions() is
made with a CodeSource of (nul1, nu11).

The result of class definition is that a class is marked as belonging to a spe-
cific protection domain. You can later query a class on its protection domain by
calling the Class.getProtectionDomain() method. Obviously, Protection-
Domain objects are sensitive, so you must be cautious regarding who can obtain
references to them. Thus, if a security manager is present the getProtection-
Domain() method invokes a security check to ensure that the caller has the Runt-
imePermission("getProtectionDomain") permission. If it does not, a
security exception is thrown.

Whena class file is correctly signed with one or more digital signatures, the
runtimeclass created from the class file is marked by its signers. This is done by
calling the method setSigners(). You can querya classforits signers by calling
the Class.getSigners() method. There is no security check placed in this
method becauseit is usually not a security risk to reveal who signed theclass.

The rest of the methods in the ClassLoader class are mostly related to find-
ing resources and packaging. They are given next but not explained further.

protected String findLibrary(String libname)
public URL getResource(String name)

public final Enumeration getResources(String name)

Page 93 of 275

JDK 1.2 SECURITYARCHITECTURE

public Enumeration findResources(String name)
public URL findResource(String name)
public static URL getSystemResource(String name)
public static Enumeration getSystemResources (String name)
public InputStream getResourceAsStream(String name)
public static InputStream

getSystemResourceAsStream(String name)
protected Package definePackage(...)
protected Package getPackage(String name)
protected Package[] getPackages()

3.9.3 java.security.SecureClassLoader

The java.security.SecureClassLoader class extends ClassLoader with
additional support for defining classes with an associated code source. During
JDK 1.2 development,this classinitially had a richer design with a comprehensive
set of method calls. Gradually, those functionalities have been movedeitherto the
base class ClassLoader or to the newly created class URLClassLoader. The class
currently has two interesting methods:

protected PermissionCollection getPermissions(CodeSource
codesource)

protected final Class defineClass(String name, byte[] b,
int off, int len, CodeSource cs)

The first method returns the permissions for the given CodeSource object. The
default-implementation of this method invokes the Poli cy.getPermissions()
method to get he permissions granted by the policy to the specified codesource.
This method is thyoked by the defineClass method that takes a CodeSource

object as an ergumentwhen it is constructing the ProtectionDomain for the class
being defined. A class loader can override this method. For example, this method
in the AppletClassLoader automatically grants a permission that allows the
applet to connect back to the host from which the applet is downloaded, even
though the security policy does not specify this permission. The next section
describes how the URLClassLoader customizes this method.

The second method defines a class from a particular code source. In some
sense, this method duplicates certain functionality of the defineClass() method
in ClassLoader that takes a ProtectionDomain as an argument. However,
sometimes it is convenient not to have to worry about protection domains. For
example,the caller of this method might not be able to determine which protection
domain to use but mightstill want to define the class.In this case, codesourceis
the only piece of information available about the origin of the class that can be
used to determine the permissionsto be granted.

Page 93 of 275

719

Page 94 of 275

80 SECURELY LOADING CLASSES

3.9.4 java.net .URLClassLoader

The java.net .URLClassLoader class extends SecureClassLoader andis used

to load classes and resources from a search path of URLsreferring to both JAR
files and directories. Here are the two constructors:

public URLClassLoader(URL[] urls, ClassLoader parent)
public URLClassLoader(URL[] urls)

The first method constructs a new URLClassLoader for the given URLs. The
URLswill be searched in the order specified for classes and resources but only
after it first delegates to its parent by searchingin the specified parentclass loader.

The second method constructs a new URLClassLoader for the specified |
URLsusing the default delegation parentclass loader.

public Class loadMainClass() |

This method loads the main class for an application. The URL class path is
searchedfor thefirst JAR file containing a Main-Class manifestattribute specify-
ing the nameof the class to load for the application’s main method.It returns the
resulting class, or null if no Main-Class manifest attribute is found.

The java.net.URLClassLoader class also overrides the method find-

Class(String name) and a few resource-related loading methodsto find and
load the class or resource with the specified name from the URL search path. Any
URLsthat refer to JAR files are loaded and opened as needed until the class is
found.

Moreinteresting from a security perspective, this class overrides the method

protected PermissionCollection getPermissions(CodeSource cs)

This method, in returning the permissions for the given CodeSourceobject,first
calls super.getPermissions() to get the permissions granted by the security
policy. It also adds additional permissions based on the URL ofthe code source,
according to the followingrules.

¢ Ifthe protocol specified by the URL is “file” and the path specifiesa file, then
read permission to thatfile is granted.

¢ If the protocol specified by the URL is “file” and the path is a directory, read
permissionis granted to all files and (recursively)all files and subdirectories
contained in that directory.

¢ Ifthe protocol specified by the URLisnot“file,” then a permission to connect
to and accept connections from the URL’s network host is granted.

Page 94 of 275

Page 95 of 275

JDK 1,2 SECURITY ARCHITECTURE

In other words, by default, classes loaded by a URLClassLoader are granted per-
mission to access the URLsspecified when the URLC1lassLoader wascreated.

Another distinguishing feature of URLClassLoader is the pair of static meth-
ods to create new URLClassLoader instances:

public static URLClassLoader newInstance(URL[] urls,
ClassLoader parent)

public static URLClassLoader newInstance(URL[] urls)

As stated earlier in the chapter, security concerns compelsevere restrictions
on whocan create ClassLoader instances. However,it is convenientto provide a
mechanism for applications or applets to specify URL locations, and to load
classes or resources from them. Thesestatic methods allow any program to create
instances of the URLClassLoader class, although not other types of class loaders.
This is considered acceptable, given the available public methods and the delega-
tion mechanism. Notethat an application or appletstill cannot call the protected
methods in URLClassLoader orits super classes.

Typically in a Web browserandspecifically in appletvi ewer, an applet class
loader is used to load classes and resources needed for applets. In JDK 1.2, this
class is defined in the private sun .+ package and is a straightforward subclass of
URLCTassLoader.

3.9.5 Classpaths

The class loader classes described previously provide programmable ways to
loca and load classes and resources. To simplify the task of installing software

on a Java-enabled system, commonanduser-specific places are avail-
able in which ut such componentsin order to allow them to be automatically
discovered by the Java runtime system.

In JDK 1.0 and 1.1 is a well-known,built-in, system-wide search path called
CLASSPATHthatis set in a platform-specific way. For example, on UNIX systems
CLASSPATH can beset via the Shell environment variable CLASSPATH. Essen-
tially, all classes or JAR files containing classes on the local file system must
reside on this path to be discovered.It also is whereall system classes reside. As a
result, all classes from the localfile system are treated as system classes and are
given full privileges to accessall resources. In other words, those localclasses that
really belong to the system code are not distinguished from other local classes that
are merely part of somelocally installed applications.

This is clearly not perfect. One can imagine manyscenarios in which a locally
installed application should not be given full system privilege, for example, a
demo program newly received in the mail. As another example, when displaying
an important document you might wantto run the display application in read--only

Page 95 of 275

81

Page 96 of 275

Page 96 of 275

82 SECURELY LOADING CLASSES

modeto ensure that the content of the documentis notaltered or lost due to soft-
ware bugsin the application.

Thesecurity architecture in JDK 1.2 includes provisionsto treat locally resi-
dentclasses in the same way as remotely downloaded applet classes, that is, by
granting them specific and fine-grained permissions. For this to work,true system
classes mustbe distinguishable from all other classes. The JDK 1.2 approachis to
have separateclass paths, one for system classes and onefortherest.

Theearliest design for this path separation, which wasreleased in a beta ver-
sion of JDK 1.2, called for a search path—the application class path—in addition
to the existing CLASSPATH. As with JDK 1.1, all classes on CLASSPATH were
treated as system classes. All classes on the application class path are nonsystem
classes, however, and are loaded with instances of the SecureClassLoade r,
which grants them permissions according to the security policy. The application
class path can be specified by either setting a Java property called
java.app.class.pathor using a command-line option when invoking the appli-
cation. Command-line options and other deployment issues are discussed in
Chapter 4.

This design has the advantage thatit is fully backward compatible. An exist-
ing application can be migrated from sitting on CLASSPATHto the new application
class path at its own pace and withoutaffecting other installed software compo-
nents. Before migration, the application runs exactly as in JDK 1.0 and JDK 1.1.
Once migrated, the application become subject to fine-grained access control.
However, it can be argued that such migration effort should not be placed on the
shoulders of users. Also, the backward compatibility might simply lead users to
do nothing atall; thus they would miss out on a muchbetter security architecture
and a very powerful extensions mechanism.

Because of such concerns, in the eventual design of JDK 1.2 CLASSPATHis
interpreted as the application class path. Thus deployed applications do not have
to be moved. When JDK 1.2 is installed, classes on this path are loaded by
instances of the URLClassLoader. The security policy can be configured to grant
different permissionsto different classes on the application path.

As the system class path, a new path Xbootclasspath has been created.
Users or developers should rarely or never haveto install classes on this path
except those classes included in JDK. Note, this design might not provide full
backward compatibility for some existing applications, even though the numberof
such applicationsis expected to be very small. This is because up to and including
JDK 1.1, all classes on CLASSPATH were treated as system classes and were loaded
with the null class loader. In JDK 1.2, they are loaded with instances of URL-
ClassLoader. An application that checks for null class loaders might needto be
upgradedto reflect the presence of URLClassLoader.

Page 97 of 275

JDK 1.2 SECURITY ARCHITECTURE

You might question why there remains a separate system class path. If system
classes need all permissions, why not simply use the policy to grant them
Al1Permission andthustreat them as just a special kind of application. The real
situation is somewhat more complicated than this. As noted, system classes are
accustomed to being loaded bythe null class loader. Determining whethera class
is a system class by whetherit has a null class loader is not good practice, yet
there remains legacy codethatis best not broken in the new security architecture.
Moreover, there are bootstrapping and otherissues that can be technically solved,
but the solutions are judged to be too destabilizing to attempt for JDK 1.2. We
hopethat, in the future, different parts of the system classes can be granted only
those fine-grained permissionsthat they really need. This subdivision of system
classes will constrain the power of each system component and further reduce the
consequenceof a programming error in system classes.

3.10 java. lang.SecurityManager

The java. lang.SecurityManager class, designed into the original release of
JDK 1.0, is the focal point of access control. Recall that the bytecode verifier, the
class loader, and other runtime checks ensure type safety. The security manageris
called whenever you decide whetherto grant or deny a requestfor accessing sensi-
tive resources. For example, this class implements the sandbox security model in
JDK 1.0. Recall from Chapter 1 that according to this model, applications (classes
residing on the local file system) are given full system access, while applets
(remote classes loaded over the network) are denied all but the most essential
privileges.

This class went through perhaps the biggest conceptual change during the
development of JDK 1.2. This section explains the APIs that existed in JDK 1.1
and remain unchanged in JDK 1.2 and covers a few methodsthat have been depre-
cated in JDK 1.2. Then it covers newly introduced APIs and how they relate to
existing ones.

3.10.1 Example Use of the Security Manager

A program idiom for performing a security check is first to see if a Security-
Manager isinstalled, andif so, to call the appropriate check() method onit. For
example, the following code segmentcheckstosee if you have permission to read
a file before openingit.

public FileInputStream(String name) throws
FileNotFoundException {

Page 97 of 275

83

Page 98 of 275

$4 java. lang.SecurityManager

SecurityManager security = System.getSecurityManager();
if (security != null) f{

security.checkRead(name) ;

}

(proceed to open the file for read)

| }

ceeu
The SecurityManager is thereby given an opportunity to prevent completion
of the operation by throwing an exception. A SecurityManager routine, such
as checkRead(), simply returnsif the operation is permitted, but it throws
a SecurityException if the operation is not permitted. Note that because a
SecurityExceptionis a runtime exception,it is not declared, although it can be
caught.

3.10.2, Unchanged APIs in JDK 1.2

Following are the APIs existing in JDK 1.1 that remain unchanged in JDK 1.2,
exceptthat the constructor has been changed from protected to public:

public SecurityManager()

protected native Class[] getClassContext()

public Object getSecurityContext()

Prior to JDK 1.2, the SecurityManager class was abstract, so a vendor must

subclass it and create a concrete implementation. This is inconvenient. In JDK 1.2,
the class is concrete, with a public constructor. A security check is placed in the
constructor because SecurityManager hassensitive methodssothat not just any-
one can invoke them. The required permission to pass the security check is
RuntimePermission("createSecurityManager"),

The getClassContext() method returns the current execution stack as an

array of classes. The length ofthe array is the number of methods on the execution
stack. The elementat index @ is the class of the currently executing method, the
elementat index 1 is the class of that method’s caller, and so on. Such a contextis
useful for determining the current method calling sequence, which is essential
knowledge for making an access control decision. This method is necessarily
native because introspection should not disturb the Java execution context.

The getSecurityContext() method creates an object that encapsulates the
current execution environment. Its purpose is to create a snapshotof the context so
that later you can query whether a security check would have passed if invoked
within that context. The default implementation of this method is to return an
AccessControlContext object. The special context class AccessControl-
Context is explained later in Sections 3.10.3.1 and 3.11.6.

Page 98 of 275

Page 99 of 275

|

JDK 1.2 SECURITY ARCHITECTURE 85

Recall that there may be a system-wide security manager. The
java. lang. System class managesthis security manager, with the following rele-
vant methodcalls:

public static synchronized void

setSecuri tyManager(SecurityManager s)
public static SecurityManager getSecurityManager()

In the set method,if a security manager has not been established forthe cur-
rently running Java application, the argumentpassed in is established as the cur-
rent security manager. This process is sometimes called installing the security
manager. If the argument passed in is null and no security manager has been
established, then no action is taken and the method simply returns. If a security
managerhas already been installed, a security check is invokedto seeif the caller
has the permission RuntimePermission("setSecurityManager"). If it does,
the passed-in argument is installed as the new security manager. Otherwise, a
SecurityException is thrown. Note that prior to JDK 1.2, the system-wide
security manager could be set only once—this can be limiting in some cases.

The get method returns the establishedor installed security manager, or null
if no security managerhas been installed. Allowing a security managerto be null
is not a perfect design; its shortcomings are discussedlater in the chapter. But this
design feature has becomea sort of de facto API, so we decided not to changeit.

3.10.3. Deprecated Methods in JDK 1.2

The following APIs have been deprecated in JDK 1.2.

public boolean getInCheck()

protected boolean inClass(String name)
protected Class currentLoadedClass()

protected native ClassLoader currentClassLoader()
protected native int classDepth(String name)

These methods were used for determining which class made a particular
method call. This generally was done on an inconsistent and often ad-hoc basis.
Typically, it involved determining whether a class somewhereonthe stack existed
that was defined by a non-null class loader and/or determining how deep—thatis,
how many method calls—a class was from the current method. This led to very
fragile code.

It also led to several security holes in the past. For example, in object-oriented
programming,an extra layerof indirection or interface is often added between two
existing method calls. But inserting another method call into the call chain
changes the class depth. Thusit is very difficult to use the class depth as a reliable
indicator, especially when the software codeis frequently revised. As one poten-

Page 99 of 275

Page 100 of 275

Page 100 of 275

86
java. Jang. SecurityManager

tial consequence, a miscalculated class depth can makeit appear that the codetry-
ing to access a protected resourceis trusted system code whenin factit is really an
untrusted applet.

The new security architecture in JDK 1.2 completely eliminates the need for
these deprecated methods. While we have not removed but only deprecated
them—for backward compatibility reasons—we strongly recommendthat you do
not use them.

SecurityManager contains 29 methods that have namesthat begin with the
word “check.” These check methods are called by various methods in the Java
libraries before they perform certain potentially sensitive operations. The only
exception to this convention is checkTopLeve1Window, which returns a boolean
value. Following are the check methods.

public void checkCreateClassLoader()
public void checkAccess(Thread t)

public void checkAccess(ThreadGroup g)
public void checkExit(int status)
public void checkExec(String cmd)
public void checkLink(String lib)
public void checkRead(FileDescriptor fd)
public void checkRead(String file)
public void checkRead(String file, Object context)
public void checkWrite(FileDescriptor fd)
public void checkWrite(String file)
public void checkDelete(String file)
public void checkConnect(String host, int port)
public void checkConnect(String host, int port, Object context)
public void checkListen(int port)
public void checkAccept(String host, int port)
public void checkMulticast(InetAddress maddr)
public void checkMulticast(InetAddress maddr, byte tt1)
public void checkPropertiesAccess()

public void checkPropertyAccess(String key)
public boolean checkTopLevelWindow(Object window)
public void checkPrintJobAccess()
public void checkSystemClipboardAccess()
public void checkAwtEventQueueAccess()
public void checkPackageAccess(String pkg)
public void checkPackageDefinition(String pkg
public void checkSetFactory()
public void checkMemberAccess(Class clazz, int which)
public void checkSecurityAccess(String action)

Page 101 of 275

LL

JDK 1,2 SECURITY ARCHITECTURE ; 87

Most of these methods are self-explanatory by their names. Such a design
style with one distinctly named method for each different security check tends to
accumulate a large number of methods. A bigger problem is that, because each
existing method is designed for a particular type of resource, whenever a new type
of protected resource is added to the system, an appropriate security check is
needed but is normally not anticipated by the existing check methods. Thus a new
check method must be added to the Securi tyManager class. This is a serious
design flaw becauseit is often not possible to extend an existing Security-
Manager; an example is a Web browser with a fixed Secu rityManager class.
Thus an application cannot extend the runtime system with a new protected
resource without having to invent something similar to SecurityMan ager. Even
when extending Securi tyManager is feasible, the new security check method
often involves complicated JVM internal mechanisms andis difficult to imple-
ment, or implementcorrectly,

Such difficult situations can lead to the overloading of an existing. check
method. For example, in JDK 1.1 the System.setIn(InputStream) methodcall
invokes the checkExec() call, which is normally used to see if someone is
allowed to execute a file. Another overloaded method is the checkConnect()
method. Calling this method with a port of —1 means that the caller is attempting
to resolve an IP address to a host, or vice versa’ Overloading check methods is
extremely undesirable and indeed can be very dangerous.

In JDK 1.2, all check methods are reimplemented cleanly using the following
new methods:

public void checkPermission(Permission perm)
public void checkPermission(Permission perm, Object context)

checkPermission() with a single permission argument always performs secu-
rity checks within the context of the currently executing thread. When a security
checkis being invoked within a given context (for example from within a worker
thread A), often the check should actually be done against a different context
(such as thread B). In this case, checkPermission() should be used with an
appropriate context argument(such as the AccessControlContextofthread B).

In a sense,all existing check methods are superseded by checkPermission.
For backward compatibility, we did not deprecate the check methods. However,
we reimplemented them with checkPermission methods and removedall occur-
rences of check method overloading. The next subsections examine the new
checkPermission methods and then see how they relate to the existing check
methods.

Page 101 of 275

Page 102 of 275

Page 102 of 275

88 java. fang. SecurityManager

New checkPermission Methods

Thefirst method, public void checkPermission(Permission perm), checks
to see if the requested access, specified by the given permission, is permitted
based onthe current security policy.If it is permitted, the methodreturnssilently;
otherwise, it throws a security exception. The default implementation for-
wardsall calls to the checkPermission() method to java.security.Access-
Controller, which is explained in Section 3.11.

The second method, public void checkPermission(Permission perm,
Object context), checks to see if the requested access, specified by the given
permission, is permitted based on the current security policy, if the request is
issued in the execution context passed in. Recall that the method getSecurity-
Context () creates an object that encapsulates the current execution environment
and can return an AccessControlContext.If the context passed in is an instance
of AccessControlContext, the checkPermission method on that Context

object is called. If the request is permitted, the methodreturnssilently. Otherwise,
it throws a security exception.

AccessControlContexthas the following APIs:

public AccessControlContext(ProtectionDomain context[])
public void checkPermission(Permission perm)

The public constructor creates an AccessControlContext object with the given
set of ProtectionDomain objects, thus mimicking the execution context in which
objects, which instantiate classes from different protection domains, call each
other in the sequence given in the array. Thefirst element in the array corresponds
to the most recent class’s protection domain. Duplicate domains will be removed
from the context, and the context array must not be null.

A single checkPermission() method can replace the many check methods
because the semantics of the required check are no longer hard codedin the names
(and implementation code) of those methods. Instead, they are encoded in the per-
mission argument passed to the checkPermission() method. This simple idea
has a tremendous advantage. The implementation of the checkPermission()
call typically involves examining Java runtime internal state and performing com-
plicated algorithms. That implementation can now be reused for all permission
types, including those yet to be invented. Thus, to (dynamically) add a new pro-
tected resource, you can simply introduce a new Permission class and then place
a checkPermission() call in the appropriate place. The new Permission class
can be written entirely in the Java language, thereby resulting in the existing
SecurityManager class no longer needing to be modified.

To utilize the new checkPermission method, we must match each method

call with a suitable permission. Table 3.1 lists the check methods replaced by

Page 103 of 275

JDK 1.2 SECURITYARCHITECTURE

Table 3.1 Check Methods Replaced by checkPermission

Nameof Check Method Content of RuntimePermission
checkCreateClassLoader createClassLoader
checkExit exitVM
checkSetFactory setFactory
checkAccess(Thread) modi fyThread
checkAccess(ThreadGroup) modi fyThreadGroup
checkRead(FileDescriptor) readFileDescriptor
checkWrite(FileDescriptor) writeFileDescriptor
checkLink loadLibrary. {library name}
checkPackageAccess accessClassInPackage. {package name}
checkPackageDefinition defineClassInPackage. {package name}
checkMemberAccess accessDeclaredMembers
checkPrintJobAccess queuePrintJob
java. lang. System. {setIn, setOut, SetErr} setI0
eee

checkPermission with a suitable RuntimePermission. For each check method,
it lists the category (or type) of the permission, followed by the actions andtargets
of the permission, if any. Permission names are given within double quotation
marks, such as "fproperty nameg", to represent an actual property name.

As an example ofa permission translation, here is how checkLink() is reim-
plemented.

public void checkLink(String lib) {
checkPermission(new

RuntimePermission(''loadLibrary. ' "+1ib));
}

Table 3.2 lists the remaining check methodcalls that are matched.

Table 3.2 Matching the Check Method Calls

Method Name Permission Class Content of the Permission
checkPropertiesAccess PropertyPermission

checkPropertyAccess PropertyPermission {property name}
checkTopLeve lwindow AWTPermission showWi ndowWi thoutWarningBanner
checkSystemClipboardAccess AwTPermission accessClipboard
checkAwtEventQueueAccess AwTPermission accessEventQueue
checkSecurityAccess SecurityPermission {action}
checkExec FilePermission {file or directory pathname}

Page 103 of 275

89

Page 104 of 275

Page 104 of 275

90
java. security.AccessControl ler

Table 3.2. Matching the Check Method Calls (Continued)
eee

Method Name Permission Class Contentof the Permission

checkRead(String) FilePermission {file or directory pathname}
checkWrite (String) FilePermission {file or directory pathname}
checkDelete FilePermission {file or directory pathname}
checkConnect SocketPermission {host: port}
checkListen SocketPermission {host: port}
checkAccept SocketPermission {host:port}

—“—_--o—eS

Because JDK 1.2 has permission classes, such as NetPermissi on, that are
created for security checks new in JDK 1.2, these permission classes do not corre-
spond to any check methods in JDK 1.1.

One question that we expect many developers will ask is, when writing new
code to perform a security check, should they call the old check methodsorthe
new checkPermission method. This mostly concerns backward compatibility. If
you intend to defer security decisions to a pre-JDK 1.2-style customized security
manager, calling the old check methods is best because the security manager
might have overridden and customizedcertain check calls. In fact, for backward
compatibility, we did not revise JDK codethat calls the check methods. This is
because an existing application that installs a customized Securi tyManager
might have been expecting the appropriate JDK codeto call its own check meth-
ods. If we had revised the JDK codeto call the checkPermission method, the
customized SecurityManager would have been bypassed.

However,if you wantto ensurethat the new JDK 1.2-style security manageris
consulted, you should call the new checkPermission method. We recommend
the new methodfor new application code becauseit is safer and cleaner. But we
expect that, for the foreseeable future, all check() methods in Securi tyManager
will be supported.

3.11 java.security.AccessController

Although the SecurityManager class defines the.checkPermission class and the
check methods as interfaces to invoke an appropriate security check, these inter-
faces do not specify how the security checks are done. In particular, they do not
specify under what circumstances a request should be granted or denied. This is
necessary because it is almost impossible to anticipate all reasonable ways to”
enforce a security check. For example, one application might want to implement a
multilevel security policy [3], while another wants to implementsupport for separa-
tion-of-duty policies [44]. One way to achieve the goal of supporting multiple poli-
cies is to provide a Policy object with a sufficiently rich expressive power to
includeall possible policy specifications. This might not be possible, or at best, it

Page 105 of 275

 JDK 1.2 SECURITY ARCHITECTURE

might be very difficult. Another way is to override the check methods defined in
SecurityManager to implement particular flavors of the security policy and to
install the appropriate security managers depending on the application environment.

Notfully specifying how security checks are done has its drawbacks. Oneis
that developers might write security managers that have inconsistent behavior. For
example, two custom SecurityManager classes might implement totally oppo-
site semantics of a check method, thus resulting in inconsistent, ad-hoc, and possi-
bly dangerous behavior. Anotherproblem is that SecurityManager is difficult to
get right, especially for application developers whoare not deeply versed in secu-
rity. Some programmerstend to hard codea security policy in the check methods
without leaving enough room for smooth evolution, while others might commit
subtle security bugs.

Thus there is an urgent need to provide a default implementation that specifies
a complete access control algorithm andthat is general enough to be used in a
majority of applications. Developers can readily utilize such as implementation,
while users can expect consistent behavior across different applications and plat-
forms. The default implementation, introduced in JDK 1.2, is the Access-
Controller class. In other words, by default, Securi tyManager invokes
methods defined in AccessController and essentially delegates security deci-
sion making.

The next section examinesthe interface design of AccessContro] ler. Later
sections cover in detail the general access control algorithm that is embodied in
this new class.

3.11.1 Interface Design of AccessController

The AccessControl ler classis declared final, so it cannot be further subclassed.
It has no public constructor; thus no one caninstantiateit. It has only static meth-
ods,listed next:

public static void checkPermission(Permission perm)
public static native Object

doPrivileged(PrivilegedAction action)
public static native Object

doPrivi leged(PrivilegedAction action,
AccessControlContext context)

public static native Object

doPrivileged(PrivilegedExceptionAction action)
throws PrivilegedActionException

public static native Object

doPrivileged(PrivilegedExceptionAction action,
AccessControlContext context)

throws PrivilegedActionException
public static AccessControlContext getContext()

Page 105 of 275

91

Page 106 of 275

92 . java. security.AccessController

The now-familiar checkPermission() method checksto see if a requested
access, as specified by the permission argument, is allowed in the current execu-
tion context. If it is, the method returns silently. Otherwise, it throws an Access-
ControlException, which is a subclass of SecurityException and provides
details of the reason forfailure.

3.11.2 The Basic Access Control Algorithm

The decision of granting access to controlled resources can be made only within
the right context, which must provide answers to such questions as whois request-

| ing what and on whosebehalf. Often, a thread is the right context for access con-
trol. Less often, access control decisions must be carried out among multiple
threads that must cooperate in obtaining the right context information. A thread of
execution may occur completely within a single protection domain (that is, all
classes and objects involved in the thread belong to the identical protection
domain) or might involve multiple domains, such as an application domain and
also the system domain. For example, an application that prints a message will
have to interact with the system domain that is the only access point to an output
stream.

The current execution contextis entirely represented by its current sequence
of method invocations, where each method is defined in a class that belongs to a
protection domain. Thus you can form a sequenceof protection domainsfor the
execution context. The basic access-control algorithm can be summarized in one
sentence. That is, a request for access is grantedif, and only if, every protection
domain in the current execution context is granted the saidpermission.

Theterm caller is used to denote a protection domain within the contextof the
current execution, since a protection domain can be associated with multiple con-
texts. The basic algorithm.can be expressed in the following constructive manner.

for each caller in the current execution context {

if the caller does not have the requested permission
throw an AccessControlException

}

return normally

To examinethis basic algorithm, suppose a game applet has a method named
openHighScoreFile() that calls the constructor of FileInputStream to open
the high scorefile, the file that keeps the scores of the top ten players of the game.
The constructor calls checkRead(), which in turn calls the checkPermission QO
method inside the security manager. The security manager in turn calls the
checkPermission() method in AccessController. Atthis point, the execution
context lookslike the snapshot in Figure 3.6.

Page 106 of 275

Page 107 of 275

JDK 1.2 SECURITY ARCHITECTURE 93

Figure 3.6 Stack frame snapshot.

In this example, two distinct protection domains exist within the execution
context: the system domain and the domain assigned to the applet. The algorithm
says that the file can be openedif, and only if, both domains havethefile permis-
sion. Because the system domain by default hasall permissions, the algorithm is
reduced to checking whether the applet has been granted the file permission.If the
applet has not been granted the permission, the file will not be opened, even
though the applettries to enlist the help of system codeto do so.

This last pointis critical because an application domain should not gain addi-
tional permissions simply as a result of calling the system domain. Serious secu-
rity implications could result otherwise.

In a reverse situation, a system domain invokes a method from an application
domain.For example, the AWT system codecalls an applet’s paint() method to
display the applet. Suppose the applet then tries to open the high-score file from
within paint(). Figure 3.7 shows the execution context.

Again, even though it appears that the AWT code triggers the call to Fi leIn-
putStream, the file will not be openedif the applet has not been granted the nec-
essary file permission. Otherwise, the applet will gain immense power simply
because system codecalls back to its own code. The access control algorithm built
into the access controller in JDK 1.2 prevents such mishaps.

Thus a less powerful domain cannotgain additional permissionsas a result of
calling a more powerful domain, whereas a more powerful domain mustlose its
power whencalling a less powerful domain. This principle of least privilege is
applied to a thread that transverses multiple protection domains.

Prior to JDK 1.2, any code that performed an access control decision relied on
explicitly knowingits caller’s status (that is, whether the caller was system code or
applet code). This arrangement was fragile because, often, knowing only the
caller’s status is insufficiently secure. You frequently need also to know thestatus

Page 107 of 275

Page 108 of 275

Page 108 of 275

94 java. security.AccessControl ler

Figure 3.7 Stack frame execution context.

of the caller’s caller, and so on. At this point, placing this discovery process
explicitly on the typical programmer becomesa serious burden and can beerror-
prone. It also means that the AWT code writer must worry about scenarios under
which an applet might behave. The algorithm implemented in AccessControl-
ler relieves this burden by automating the access checking process.

3.11.3. Method Inheritance

The subtle issue of method inheritance needsclarification. The basic algorithm,
and its extended versions discussed later in the chapter, are defined in termsof a
sequenceof callers, each represented by a method invocation. The method invoca-
tion identifies the class in which the methodis defined; the class is linked to the
protection domain to which it belongs. The protection domain has been granted
permissions, against which an access control decision is made. Suppose class B is
a subclass of class A. Class A defines a method x(), which B inherits but does not
override. Further assumethat classes A and B belongto twodifferent protection
domains. When someone invokes a call on B.x(), whois the caller that corre-
spondsto this method invocation? Is it class A, which defined and implemented
this method?Oris it class B, which simply inherited the method unchanged?

Either choice might seem more reasonable than the other undercertain condi-
tions, but on balance, associating the caller according to where the method is
implemented is more natural. This is because a more powerful class can writeits
methods in a secure way that allows less powerful classes to inherit them and
accomplish tasks for which the less powerful classes themselves would not have

Page 109 of 275

JDK 1.2 SECURITY ARCHITECTURE

Class A

Subclass
scenario 1

Subclass
scenario 2

Class B Class B

Figure 3.8 Method inheritance,

had the permissions. Thus, in the scenario just given, class A is regarded as the
real caller and its protection domainis examinedfor the necessary access permis-
sions. Note that if, in class B, method x() was overridden but otherwise does
nothing other than call its parent’s x(), then the caller for B -x() would be B
instead of A, even though the override will not have changed the implementation
of the method. This is because once a subclass overrides a method call, the super-
class cannot be held responsible for the eventual implementation of the method
call. In other words, B could have changed the implementation of x() in arbitrary
ways, so its protection domain should be examined. Both of these scenarios are
depicted in Figure 3.8.

3.11.4 Extending the Basic Algorithm with Privileged Operations

The basic algorithm is simple and secure because all code involvedin the compu-
tation must be granted sufficient permission for the requested access. However,
the algorithm can betoorestrictive. For example, consider a password-changing
application. Whena piece of user codecalls this application, the user is prompted
to type a new password twice (to ensure that the correct passwordis entered) and
then to enter ‘the old password.If the old password matches the one stored in the
passwordfile, the new passwordis stored in the updated passwordfile. Note that
the application needs to open the password file for read and write access, and
assume that the application has been granted sufficient access. Under the basic
algorithm,the application cannot open the passwordfile becauseitis called by the

95

Page 109 of 275

Page 110 of 275

Page 110 of 275

96 java.security.AccessController

user code, which doesnot (and should not) have permission to directly access the
passwordfile. In this case, the application should be given a way to opt out of the
basic algorithm in order to open the file, knowing full well whatit is doing.

In another, similar, example, an applet might not have direct access to certain
system ‘properties, but the system code servicing the applet might need to obtain
some properties in order to complete its tasks.

To deal with such exceptional cases, the AccessController class includes a
static method, doPrivileged(). A piece of code that calls doPrivileged() is
telling the Java runtime system to ignore the statusof its callers and thatit itself is
taking responsibility in exercising its own permissions. Following is an extended
access control algorithm that takes into accountprivilege status.

for each caller in the current execution context {

if the caller does not have the requested permission
throw an AccessControlException;

if the caller is privileged, return normally;
}

return normally

In this extended algorithm,callers must be checked in the same orderthat they call
eachother, starting with the most recentcaller.

Armed with the call to “invoke one’s own privilege,” the password-changing
application can use the following code segmentto openthefile, even if the user
code does not have access permission.

public void changePassword() {

// Use own privilege to open the password file.
AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

// Open file for reading and writing.

return null;

$

3 :

// Nerify user's old and new passwords.

}

Here is a detailed look at doPrivileged. When executing this method, the
JVM marks the calling thread’s stack frame asprivileged. In the previous exam-
ple, the stack frame corresponding to the changePassword() method is marked
privileged. Just before completing the execution of this method, the JVM unmarks
the calling thread’s stack frame, thereby indicatingit is no longerprivileged.

Page 111 of 275

nn

JDK 1.2 SECURITY ARCHITECTURE

By calling doPrivileged, the caller is merely enabling privileges it already
has. This is important to understand. A block of code never gains more permis-
sions than the set of permissionsit has been granted. Beingprivileged simply tells
AccessController to ignoreits callers. For example, AccessController can
stop checking after it has already verified that the privileged code holds the
requested permission.

Moreover, a privileged block is specific to the thread that enabled its privi-
leges. Thatis, the effect of some code’s being privileged in one thread does not
have any impact on other concurrently running threads, even though those other
threads might be executing codethat belong to the sameprotection domain.

Anothersubtlety to consideris that the doPrivil eged method can be invoked
reflectively by using java. lang. reflect.Method. invoke(). In this case, the
privileges granted in privileged mode are not those of Method. invoke() but
those of the nonreflective code that invokedit. Otherwise, system privileges could
erroneously (or maliciously) be conferred on user code.

Let us dig a little deeper into the proper and careful use of doPrivileged. In
the password-changing application example, suppose that the code to open the
password file is actually in another method named openPasswordFile(), which
opens the password file and returns the object referenceto the file input stream.
The example code would become the following.

public void changePassword() {
// Use own privilege to open the password file.
AccessControl ler.doPrivi leged(new PrivilegedAction() {

public Object run() {

// Open file for reading and writing.
f = openPasswordFile();
return null;

}

#5

// Verify user's old and new passwords.

}

This code should operate exactly as before. Calling doPrivilege from inside
openPasswordFi1le() would be a mistake. Why? Because the user code can then
call it directly. Further, because of the privilege inside that method, the user code
gets a reference to the password file. The lesson here is that a method, such as
openPasswordFi 1e(), should not invoke its own privilegeif it does not know or
havefull control over whocan callit, since the method returns some resource that
is protected. On the other hand, changePassword() may safely invoke its own
privilege, even if anyone can call it. This is becauseit takes care not to reveal the

Page 111 of 275

97

Page 112 of 275

Page 112 of 275

98
java.security.AccessControl] ler

password file to the outside world and will process it internally only after pass-
word checking succeeds.

You mighthavenoticed that the design ofthe privilege featureis asymmetri-
cal. That is, you can chooseto exercise your own privilege andtell the access con-
troller to ignore those callers before your method, but you cannottell the access
controller to ignore those callers that you subsequently call (after you enable your
privilege). Thus if you later call a method whose corresponding protection domain
does not have a permission, that method call cannot gain the permission evenif
you have it. This asymmetry is designed to protect you. If the access controller
also ignores those callers that you subsequently call, then you effectively have
granted your permissions to those callers. You might have control over which
caller you call directly but not over who that caller will call later. Your privileges
and granted permissions could be misused or abused if any of those callers are
maliciousor incompetent.It is a very badideatotrust a series of unknown parties.
Thealgorithm is designed to prevent you from accidentally falling into suchtraps.

3.11.5 Three Types of Privileged Actions

The code example in the previous section demonstrates the simplest usage of
doPrivileged by passing in a PrivilegedAction interface as the argument.
That usagepattern, repeated next, is useful only when the code within the privi-
leged block does notneedto return a value.

somemethod() {

-.-Normal code here...

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

/f Privileged code goes here, for example:
System. loadLibrary("awt");
return null; // Nothing to return.

}

h);

»..normal code here...

}

Here, PrivilegedAction is an interface with a single method, named run, that
returns an Object. The example shows a concrete implementation of the run
method is supplied. Whenthe call to doPrivileged is made, an instance of the
Privi legedAction implementation is passed to it. The doPrivi leged method
calls the run method from the PrivilegedAction implementation after enabling

Page 113 of 275

JDK 1.2 SECURITYARCHITECTURE 99

privileges and then returns the method’s return value as the doPrivileged return
value (which is ignoredin this example).

If the code from within the privileged block needs to return a value, the fol-
lowing is one way to write the code.

somemethod() {
...normal code here...

String user = (String) AccessController.doPrivi leged(new
PrivilegedAction() {

public Object run() {

return System.getProperty("user.name');
}

4);
...normal code here...

}

This usage requires a dynamic cast on the value returned by doPrivileged.
An alternative is to use a final local variable as follows.

somemethod() {
...normal code here...

final String user[] = {null};

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

user[@] = System.getProperty("user.name'");
return null; // Stil] need this.

}

});
...normal code here...

}

A third solution is to write a nonanonymousclass that handles typing informa-
tion safely, such as the following.

somemethod() {
...normal code here...

GetPropertyAction gpa = new GetPropertyAction("user.name");
AccessController.doPrivileged(gpa);

String user = gpa.getValue();
...normal code here...

Page 113 of 275

Page 114 of 275

Page 114 of 275

100
java. security.AccessController

class GetPropertyAction implements PrivilegedAction {
private String property;
private String value;

- public GetPropertyAction(String prop) {
property = prop;

}

public Object run() {

value = System. getProperty(property);
return value;

public String getValue() {
return value;

3

}

In this example, there is no type cast. Since the run methodstill returns a
value, you can abbreviate somemethod to the following.

somemethod() {

---normal code here...

String user = (String) AccessController.doPrivi leged(new
GetPropertyAction("user.name")):

-..normal code here...
}

Finally, the interface Privi legedActionis for privileged code that does not
throw checked exceptions (such as Fi leNotFoundException). If the code can
throw such an exception, which must be declared in the throws clause of a
method, then you must use Privil egedExceptionActioninstead.

somemethod() throws FileNotFoundException {
-.-Normal code here...

try {

‘FileInputStream fis = (Fi leInputStream)
AccessContro] ler. doPrivi leged (new

PrivilegedExceptionAction() {
public Object run() throws FileNotFoundException {

return new FileInputStream("someFile");
}

4);

Page 115 of 275

JDK 1.2 SECURITY ARCHITECTURE

} catch (PrivilegedActionException e) {
// e.getException() should be an instance of

// FileNotFoundException, as only "checked" exceptions
// will be "wrapped" in a PrivilegedActionException.
throw (FileNotFoundException) e.getException():

..normal code here...

}

The use of doPrivileged is cumbersome. But thereis a reason for this. The
rationale behind this design choice is discussed in Section 3.11.9. Meanwhile,
rememberthat privileged operations should be used with great care because they
utilize your own granted permissions even though you might be acting on behalf
of untrusted code. The privileged code block should be as small as possible, and
all code that can be executedoutside of the block should notbe inside the block.

3.11.6 The Context of Access Control

As mentionedearlier in the chapter, getContext() takes a snapshotofthe current
execution context, placesit in an AccessControlContextobject, and returnsthat
object. In the Java runtime system, a piece of code canstart any numberof child
threads, which can then start their own child threads, and so on. When a new
threadis created, the JVM creates a fresh execution stack, but ensuresthat the cur-
rent execution contextis inherited by the new child thread. In other words, as far
as the security context of the child thread is concerned,it goes back all the way to
includeall ancestors’ contexts. Morespecifically, the snapshot of the current exe-
cution contextincludesthe current thread’s inherited AccessControlContext.

Note that, strictly speaking, the JVM doesnot have to force a thread to recur-
sively inherit its parent context, since not inheriting it does not necessarily pose a
security problem. However, our experience shows that a typical programmer
expects the security context to be inherited—and surprising the programmeris
undesirable. Automatic inheritance is in fact quite convenient in some cases. For
example,in a server application a master thread mightcreate slave threads to handle
individual incoming requests when it would have been a burden to manually write
the code forthe slave threads to take into account the master’s security context.

Another point that needs emphasizingis that the inherited context is the exact
context in the parent thread at the moment whenthechild thread is created. The
inherited context is essentially frozen for further references, and the parent thread
is free to continue and change its context afterwards without impacting the content
of the inherited context.

Page 115 of 275

101

Page 116 of 275Page 116 of 275

102
java. security.AccessController

The doPrivileged method that takes an AccessControl Context as argu-
ment marks the calling thread’s stack frame as privi] eged andassociatesthe given
AccessControlContext with the privileged frame. The context will be includedin
all future access control checks and will be checkedafter the privileged frame’s
ProtectionDomain is checked. Understandingthe use of this method might be eas-
ier after you read the full access-control algorithm, discussed in the next subsection.
Its use is illustrated next, where acc is the AccessControl Context object.

somemethod() {

AccessControl ler. doPrivi leged(new PrivilegedAction() {
public Object run() {

// Code goes here. Any permission checks from this
// point forward require both the current context
// and the snapshot's context to have the desired
// permission.

}

}, acc);

-..normal code here...

3.11.7 The Full Access Control Algorithm

Suppose the current thread traverses m callers in the order caller 1 to caller 2 to
caller m. Then caller m invokes the checkPermission method, which determines
whether accessis granted or denied based on the following algorithm.

i=m;

while (ij <> ®) {

if (caller i's domain does not have the permission)
throw AccessControlException;

if (caller i is marked as privileged) {
if (a context was specified in the call to doPrivileged)

context. checkPermission(permission);
return;

The full algorithm is slightly more complicated than the extended algorithm
given in Section 3.10.4. They differ only in one way. Whena privileged frameis
being checked and an access control context is specified in the call to
doPrivileged(PrivilegedAction, AccessControlContext), the security

Page 117 of 275

JDK 1.2 SECURITY ARCHITECTURE

check will pass only if the requested permission is allowable in that specified
access control context.

Thus doPrivileged(PrivilegedAction, AccessControl Context) can
be used to enable a privileged frame, but only for those permissions that would
have been grantedin the specified access control context. In other words, this fea-
ture can be usedto further restrict the extent of the privilege coverage. Without a
context’s being specified, a privileged frame may exercise all of the permissions
grantedto the caller. With a context specified, the exercisable permissions are fur-
ther limited to those that would have been permitted within the specified context.

From a theoretical and abstract level, the access control algorithm saysthat, at
any point in a thread of computation,the effective permissionis the intersection of
the permissions of all protection domains transversed by the execution thread,
with the privilege status (andits associated access control context, if any) as well
as inherited access control context taken into account. Manystrategies for imple-
menting this algorithm are possible. The two most obvious are discussed here:
eager evaluation and lazy evaluation. ,

In an eager evaluation implementation, whenever a thread enters a new pro-
tection domain or exits from an existing one, the set of effective permissions is
updated dynamically. The benefit is that checking whether a permission is allowed
is simplified and can be faster in many cases. The disadvantage is that because
permission checking occurs much less often than cross-domain calls, a large per-
centage of permission updates mightbe useless effort.

In the lazy evaluation implementation, which is what JDK 1.2 uses, whenever
permission checking is requested, the thread state (as reflected by the current
thread stack or its equivalent) is examinedanda decision is reachedeitherto deny
or to grant the particular access requested. One potential downside of this
approach is the performance penalty at permission checking time. However, this
penalty would be incurred as well in the “eager evaluation” implementation(albeit
at earlier times and spread out among each cross-domain call). In the JDK 1.2
implementation, performanceofthis algorithm is quite acceptable, so we feel that
lazy evaluation is the most economical approach overall.4

Note that because access control is based on the protection domains associ-
ated with the current execution context, the context must be preserved intact when
optimizing a static, or just-in-time (JIT), compiler, or a particular implementation
of the JVM. For example, methodinlining must be done with care so that protec-
tion domain information is not lost and the AccessContro1ler class can be cor-
rectly implemented.

* Fordetails of the implementation of protection domainsand a discussion on performance
and optimization techniques, see [28].

Page 117 of 275

103

Page 118 of 275

104

Page 118 of 275

java.security.AccessController

3.11.8 SecurityManager versus AccessController

Recall from earlier in this chapter the difference, when invoking a security check,
between calling checkPermission() and calling the other check methods
defined. in the SecurityManager class. The choice then was contingent on
whether you depended on any pre-JDK 1.2 security manager classes. Now you
have another choice, that of calling the checkPermission() method defined in
SecurityManager or in AccessController. These methodsdiffer in two major
ways.

First, sometimesno installed SecurityManager exists, so you cannot invoke
check methods onit. By contrast, the static methods in AccessController are
always available to be called. Recall the following idiom for calling Security-
Manager.

SecurityManager sm = System.getSecurityManager();
if (sm != null)

sm. checkPermission(permission);

But you can alwayscall

AccessControl ler. checkPermission(permission);

Thus, if you wantto ensure that your security check is always invoked (regardless
of whether a system-wide SecurityManager has been installed), you should call
AccessControl ler. Note, however, that some existing applications test whether
there is an installed instance of Securi tyManager. Then, based on the result of
this test, which signifies one or the other security states, these applications take
different actions. For the backward compatibility of these applications, calling
SecurityManager is more appropriate.

The second difference is that calling SecurityManager doesnot guarantee a
particular access control algorithm—someone might have extended it and
installed a custom security manager. By contrast, calling AccessController
guaranteesthat the full access control algorithm specified earlier is used. Thus, if
you do not wantto delegate yoursecurity check to a custom security manager, you
should call AccessContro1 ler directly. Otherwise, call Securi tyManager.

Also be warned that because the SecurityManager class defines a general
interface for security checks, it does not provide the privilege mechanism that
AccessController has defined. In fact, if you use the privilege mechanism in
your codebutlater call SecurityManager to perform a security check,the privi-
lege status might not be taken into accountif the security manager youinstalled is
not the one provided by JDK 1.2 and does not consult AccessController orits
equivalent.

You might wonder why we provide these choices. Isn’t one way of doing
things good enough? These choices are based on experience. A balanced tradeoff

Page 119 of 275

JDK 1.2 SECURITY ARCHITECTURE

between generality and consistency is needed. In the long run, we expect that cus-
tom security managers will not often be needed, and even when they are defined,
they will be built on existing functionality in AccessController. In particular,
they will provide additional functionality rather than promote incompatible behav-
ior. Nevertheless, in a special environment in which a vastly different sort of secu-
rity policy must be enforced, a customized security manager conceivably might
not be ableto utilize the algorithms implemented by AccessController.

3.11.9 A Mini-History of Privileged Operations

To cap the discussion on the AccessContro1ler class,this section provides more
background on how the design of the privilege methods developed. The main
goals were to help programmerswrite secure code and to guarantee security when
a programmer makes a mistake.

It is helpful to compare the desired result with UNIX’s setuid facility. Com-
pared with such operating systems as MS-DOS and MS-Windows, UNIX hastra-
ditionally given security somewhat more comprehensive consideration. It limits
whata user-invoked program/application may do to a user’s privileges. In some
cases, though,theselimits are too restricting. The setuid mechanism is designed to
circumvent those limits. However, the entire setuid-ed program is “armed,”in that
any software bug in a part of the (often large) program can potentially lead to a
security hole. We wantedto avoid this possibility in JDK 1.2, so we created APIs
that enable a programmerto limit, to just a few methodcalls, either the scope of
the dangerousoperations or the duration of the “armed” period. In this way, bugs
outside of those sensitive methodsare less likely to cause unintended harm.

We considered several design proposals. One was to extend the language with
a method modifier, perhaps called “privileged.” Privilege would be granted when
entering the method and revoked uponreturning from it. This was by far the clean-
est design, but it required a major addition to the Java language that in tum
required compiler vendors to update their compilers. Such a change cannot be
madelightly. Moreover, a method modifier cannot take a context argument. So we
decided against it. We also rejected a numberof other proposals, which would
have either changed the existing semantics of nonsecurity code or required sup-
port in the JVM that would have been difficult to implementonall platforms.

Up to JDK 1.2 beta3, we went with a design by which we providedthe follow-
ing two methodcalls in the AccessController class:

public static native void beginPrivileged()
public static native void endPrivileged()

Declaring a block ofcodeto be privileged wasto occuras follows.

Page 119 of 275

105

Page 120 of 275

106

Page 120 of 275

knowntry-finally block construct. Its downside was that the call to endPrivi-
leged() could have been made only in the same method frame as the begin-
Privileged() call and optimally would have beencalled as soon as the privilege
was no longer needed. Thislimited the privilege period to one method invocation
and ensuredthat the privilege was reversed as soon as possible. In the event a pro-
grammer accidentally forgot to call endPrivileged(), we built in a number of
measures and checksto prevent mismatch between invocations of these begin and
end methods from within different frames. For example, we would have reversed
a privilege status if it was clear that the programmershould have reversed it but
forgot to do so. In the end, the requirement to match frames was considered diffi-
cult to specify and enforce precisely in a platform-independent manner, so we
abandonedthat design in favor of the doPrivilegedinterface.

added complexity in programming. We expect to improve the design later, for
example, when suitable language constructs are madeavailable.

3.12 Summary and Lessons Learned

As a summary of the overall process of how the JDK 1.2 security architecture
works,this section takes you through the handling of an applet or application. The
following steps occur when viewing an applet, cither through a Web browser or
appletvi ewer, or running a Java application, possibly from the commandline by
invoking the program called java.

SUMMARYAND LESSONS LEARNED

somemethod() {

(normal code here)

try {

AccessController.beginPrivi leged();
// Privileged code goes here, for example:
System. loadLibrary("awt");

} finally {

AccessController.endPrivileged():
}

(more normal code here)
}

This design had the advantageof being fairly simple to use within the well-

The design we eventually adopted works reasonably well, exceptfor slightly

1. A classfile is obtained and acceptedif it passes preliminary bytecode verifica-
tion.

Page 121 of 275

JDK 1.2 SECURITYARCHITECTURE

2. The class’s code source is determined. This step includes signature verifica-
tion, if the code appears to be signed.

3. The security policy is consulted, and the set ofpermissionsto be grantedto this
class is determined, based on the class’s code source. In this step, the Policy
object is constructed,if it has not been already.

4. A protection domain is created to mark the code source and to holdthe permis-
sion set. Then the class is loaded and definedto be associated with the protec-
tion domain. If a suitable domain has already been created, then that
ProtectionDomain object is reused and no new permissionsetis created.

5. The class may beinstantiated into objects, and their methods executed. The
run-time type safety check continues.

6. When a security check is invoked and one or more methodsofthis class are in
the call chain, the access controller examines the protection domain, and in
particular, its permission set, to see if sufficient permission has been granted
for the requested access.If it has been granted, the execution continues. Oth-
erwise, a security exception is thrown. (This check is doneforall classes whose
methods are involved in a thread. See Section 3.11.7 for the complete algo-
rithm.)

7. Whena security exception, which is a runtime exception, is thrown and not
caught, the JVM aborts.

There are variations to this flow of actions. For example, in a lazy approach,
the creation of the Policy object, protection domains, and permissions can be
delayed until the first security check occurs. This delaying tactic helps to reduce
start-up time andthe footprint of the runtime because objects are not instantiated
until they must be used.

The fundamental ideas adopted in the new security architecture have roots in
the last 40 years of computer security research; for example, the overall idea ofthe
access controllist [newref 1, 42]. We followed some of the UNIX conventions in
specifying access permissionsto the file system and other system resources. But
significantly, our design was inspired by the concept of protection domains and
the work dealing with mutually suspicious programs in Multics [69, 75) and
“tights amplification” in Hydra [36, 81].

One novelfeature not present in operating systems such as UNIX or MS-DOS
is the implementationofthe least-privilege principle by automatically intersecting
the sets of permissions granted to protection domainsthat are involved in a call
sequence. In this way, a programmingerror in system or application software is
less likely to be exploitable as a security hole.

Page 121 of 275

107

Page 122 of 275

Page 122 of 275

108 SUMMARYAND LESSONS LEARNED

Note that although the JVM typically runs over another host operating system
such as Solaris, it also may run directly over hardware, as in the case of the net-
work computer JavaStation running JavaOS [66]. To maintain platform indepen-
dence, the JDK 1.2 architecture does not depend on security features provided by
an underlying operating system.

Furthermore, this architecture does not override the protection mechanismsin
the underlying operating system. For example, by configuring a fine-grained
access control policy, a user may grant specific permissions to certain software.
This is effective, however, only if the underlying operating systemitself has
granted the user those permissions.

Anothersignificant characteristic is that JDK 1.2’s protection mechanismsare
language-based, within a single address space. A major distinction from moretra-
ditional operating systems, this feature is very much related to recent work on
software-based protection and safe kernel extensions (for example, [7, 10, 76]),
wherebyvarious research teams havelately aimed for some ofthe same goals but
by using different programmingtechniques. In a typical operating system, a cross-
domaincall tends to be quite expensive. In JDK 1.2, a cross-domaincall is just
another method invocation andis as cheap asit can get.

The new design has the following significant benefits that are worth
highlighting.

1. The contentof the security policy is totally separated from not only the imple-
mentation mechanism butalsothe interfaces. This leaves maximum room for
evolution.It also allows the policy to be configured entirely separately from the
runtime environment, thus reducing the complexity of system administration.

2. The access control algorithm is cleanly separated from the semantics of the
permissionsthatit is checking. This allows the reuse of the access controller
code with (perhaps application-specific) permission classes that are introduced
after JDK 1.2’s release. ,

3. The introduction of a hierarchy of permission classes bringsthefull powerof
object orientation (and especially encapsulation) to bear. This meansthat ac-
cess control permissions can be expressedboth statically and dynamically and
that each Permission class may define its own semantics, for example howit
relates to a permission ofits own typeorofa different type or how to interpret
wildcard symbols and other peculiarities that are specifictoit.

4. The secure class loading mechanism coupled with the extensions mechanism
extends security coverage to Java applications, thus resulting in a uniform se-
curity architecture and policy for any andall Java code, whateverits origin or
status.

Page 123 of 275

JDK 1.2 SECURITY ARCHITECTURE 109

In addition to those technical benefits, we paid great attention to goodinter-
face design. We worked extensively on API design issues, such as the properdivi-
sion of labor among various classes. We also tried to maintain a minimal set of
classes and APIs, kept as manyclasses private as possible, created suitable names
for classes and methods, and kept the names as short and concise as possible. We
did not start prototyping the code until we had a good grasp of the APIs. All of
this effort paid off well. We were able to respond to comments and suggestions,
and we made extensive revisions to APIs throughoutthe project, all without much
difficulty and without jeopardizing code quality or project delivery. Further, we
superseded some fragile features, such as those methods we deprecated in the
SecurityManager class, with more robust architecture.

One major goal for good interface design is ease of use. In this area, the JDK
1.2 design is superior to a few others proposed. An example ofoneofthe others is
a commercial browser that implements features similar to JDK 1.2’s privileged
methodcalls. However, it requires that an application explicitly enable its granted
privilege in order to use it. In this case, to open a file for reading to whichthe
application has been granted read access, the application cannot just open a
FileInputStream. Instead, the application first must call a specific method—
basically announcing,“I will now exercise myright to readthis file’—and then
proceedto openthe file. Without the prior declaration, the subsequent open opera-
tion will fail [79]. Such an interface design has a number of drawbacks.

1. If JOK 1.2 had adopted such a design,all existing applications and applets
would havehad to be rewritten to explicitly make the declarations. This would
haveseriously broken backward compatibility.

nw - In a multitier application environment, a commonscenario involves a request
made bythe top tier application to obtain a document. This request might be met
by the bottom tier application in a numberof ways, suchas by obtainingthe doc-
ument from the file system, retrieving it from a database, or downloading it
from a Webserver.In this case, no easy way exists for the top tier application
to know aheadof time whetherit should enable the privilege for the bottom tier
application to reada file, to access a database, or to make a network connection.

However, if the application uses JDK 1.2 features, it does not need to decide
which privilege to enable. The request will be served in any one ofthe three
ways, as long as the application has been granted the appropriate permissions.
In other words, requiring a declaration ofintent to exercise privilege does not
work well in a complex environment, even though it might work reasonably
well in a one-tier application situation.

w . If a new orrevised security check is placed on a protected resource, any exist-
ing application or applet code must be rewritten to enable this new privilege by

Page 123 of 275

Page 124 of 275

Page 124 of 275

110 SUMMARYAND LESSONS LEARNED

a new declaration before it can run asit did previously. This meansthat the ap-
plication or applet must be recompiled and redeployed just to continue access-
ing the same resource. This is a nightmare maintenance scenario.

Bycontrast, in JDK 1.2, you needonly to revise the security policy to grant one
more permission to the application. The application or applet will run as before.

Wedid encountertwoartifacts in JDK 1.0 which, although inconvenient, were
not changed.First, system classes have been traditionally loaded with a primordial
class loader, whichis typically written in native code. As a result, all system classes
(now called bootstrap classes in JDK 1.2) are loaded from within the Java runtime
with a null system class loader. This particular implementation feature, however,
becamea sort of de facto API. Some programmersstarted to test for the existence
of class loaders as a wayto distinguish between system and nonsystem classes,
especially as part of the security decision making process. For backward compati-
bility, JDK 1.2 provides that system classes (or at least those classes necessary for
bootstrapping the Java virtual machine)are loaded by the null class loader.

This association between system classes and the null class loader coupled
with the difference in treatment of classes based on their class loader types, how-
ever, makesit difficult to subdivide system classes into various packages or JAR
files and then give them separate sets of permissions. Such a subdivision can
effectively reduce the amount of code you needto trust completely, as well as
reduce the amountoftrustin that code. In JDK 1.2, application classes residing on
the localfile system must now be loaded with non-null class loaders as part of the
extension mechanism. Further, under the new security architecture a class being
loaded with a non-null class loader does not say anything aboutits status, since
the class might have been granted Al1Permission. Hindsight tells us that it
would have been mucheasierto evolve the designif all system classes were origi-
nally loaded with a special, but non-null, class loader.

The secondartifact in JDK 1.0 that is not changedis that the runtime system
does not always have a security managerinstalled, andin this case, a call to Sys-
tem. getSecurityManager() results in a null security manager. Again, for back-
ward compatibility, we did not change this in JDK 1.2. However, this oddity has
caused a few unnecessary complexities. For example, everywhere you invoke a
security check, you musttest for a null security manage; this clutters the code.
Moreover, programmers soonstarted testing for this null security manager as a
way to determine the state of the universe, rather like trying to distinguish the
world before and after the so-called “big bang.” This has led to unwarranted
assumptions of how a virtual machine should behave when the security manageris
null, partly because nosecurity checks can be invoked on a null security manager.
These assumptions should not have been madeat a general level, but nevertheless
they are being made by some programmers. Thepresence of such assumptions
creates backward compatibility pressure.

Page 125 of 275

JDK 1.2 SECURITYARCHITECTURE

The AccessController. class introduced in JDK 1.2 makesit possible to
invoke security checks in the absence of a security manager, but such checks
might need to be deployed gingerly for fear of breaking backward compatibility. It
would have been easier for us if the security manager had alwaysbeeninstalled
(that is, immediately after the bootstrap process), even though its behavior might
change over time.

The lesson we learned from these twoartifactsis that you cannoteasily evolve
the interface design of something that is null—and you definitely cannot invoke
methodcalls on somethingthatis null.

Page 125 of 275

111

Page 126 of 275

CHAPTER |

Deploying the Security
Architecture

Policy must be clear, consistent, and confident.
—Dwight D, Eisenhower

T. utilize the new security architecture provided in JDK 1.2, you must upgrade
your Java environmentto the latest version. Generally, new versions of operating
systemsor Internet browsers (for example, upgrades that you install or software
that comes with a new computer system) already support the latest JDK 1.2. How-
ever, to upgrade the JVM yourselfto the 1.2 version, you can downloadandinstall
either the Java runtime environment for running Java applications or applets, the
JDKitself for developmentuse, or the Java Plug-In that upgrades the JVM inside
Microsoft Internet Explorer (IE) and the Netscape Navigator (Navigator).

4.1 Installing JDK 1.2

JDK 1.2 versions for both the Win32 platform (MS-Windows or Windows NT)
and the SunSolaris platform are available from Sun Microsystem’s Java Website
at http://java.sun.com/products/jdk/1.2/. For demonstration purposes,
the instructions in this chapter assume that you are using a Sun Sparc workstation
running Solaris.

1. From the Website, choose the Solaris version of JDK 1.2 for download and
saveit in a file named jdk12-solaris2-sparc. sh.

2. Follow theinstallation instructionsat the site and unpack the downloaded soft-
ware as follows,

Page 126 of 275

113

Page 127 of 275

114

Ow

Page 127 of 275

INSTALLING JDK 1.2

% chmod a+x jdkl2-solaris2-sparc.sh
% ./jdk12-solaris2-sparc.sh

A dialog box displays, asking if you agree to the license terms. Click Accept
to proceed. Now you haveall of the necessary binary programs unpacked in
the directory ./jdk1.2/bin.

. Add the directory ./jdk1.2/bin to the search path by typing (in a shell
window)

% set path=($path ./jdk1.2/bin)

. If you wantto ensure that programsthat are part of the newly installed JDK are
located first by the UNIX shell, move the directory to the beginning of the
search path:

% set path=(./jdk1.2/bin $path)

and verify this by typing (again in a shell window)

% which java

-/jdk1.2/bin/java
%

. Next, you can test by running an applet with app] etvi ewer:

% appletviewer http: //java.sun.com/applets/other/Tumb1]ingDuke/
index.htm]

The command above should be typed on one line in a shell window (butit
does not fit under the type-setting system here). You also can run thetest
application described at the beginning of Chapter 2 from the commandline as
follows:

% java Test Hello

If you are using appletviewer or a new version of a browserthat deploys
this new security architecture, you can continue to do things in largely the same
wayas before. This meansthat the same sandbox policy in JDK 1.1.x will apply.
If you are a “power user,” you can use JDK 1.2’s built-in policytool utility (or
an equivalent tool shipped with the browser) to customizethe security policy, thus
utilizing the full benefit of the new security architecture. Such customization
might involve setting up a certificate store, which can be done using the keytool
utility, used to create and administer keystores. This utility is introduced later in
the chapter andis available for the Solaris and MS-Windowsplatforms.

Page 128 of 275

DEPLOYING THE SECURITY ARCHITECTURE 115

Application developers in general need to do nothing special to work with
JDK 1.2’s security features because when their applications run on top of JDK
1.2, those features are invoked automatically. A developer might want to use the
built-in tools to packagethe resulting application into JAR files and might choose
to digitally sign them.

A software library developer whose code controls certain resources might need
to extend the existing permission class hierarchy to create application-specific
permissions. The developer might also need to learn to use features provided by
the AccessControl ler class, such as the doPrivil egeinterface.

4.2 Policy Configuration

So far in the demonstration example, no security policy has been specified for run-
ning applets or applications. Thus the JVM will default to the pre-JDK 1.2 sand-
box security model, whereby remote applets are untrusted andlocal applications
are fully trusted. To utilize the new security model, you first must configure a
security policy and then specify which policy to use when running Java programs.

The design of the policy APIs in JDK 1.2 does not mandate how a security
policy is expressed externally to the Java runtime system.It specifies only the
APIs to the Policy object. Thus a JDK implementation can choose to store the
policy information in a database, a directory service, a file system, or other
location.

The default JDK implementation supports the specification of a security pol-
icy in a flat-file format. Configuring a security policy consists of specifying first
the location and then the contentof the policy file. Obviously, policy files should
be well protected against, for example, unauthorized modifications.

4.2.1 Configuring System-Wide and User-Specific Policies

The sourcelocation for the policy informationutilized by the Policy object. is up
to the Policy class implementation. JDK 1.2’s implementation obtainsits infor-
mation from thestatic locations at which policy configuration files can be found.
A policy file can be composedusing a simple text editor or policytool, whichis
a graphicaltool. The next section discusses the contentofa policyfile.

A single system-wide policy file and a single-user policy file have default
locations. The default system policyfile is located at

<java.home>/lib/security/java. policy

where <java.home> is a system property specifying the directory into which the
L/L JDK wasinstalled. The default user policyfile is located at

Page 128 of 275

Page 129 of 275

Page 129 of 275

116 POLICY CONFIGURATION

<user.home>/.java.policy

where <user.home> is a system property specifying the user’s homedirectory.
The default Policy object is initialized the first time its getPermissions

methodis called or whenever its refresh method is called. Initialization involves

parsing the policy configuration files and then populating the Policy object.
Whenthe Policy objectis initialized, the system policy is loadedin first followed
by the user policy. If neither policy is present, a built-in policy is used. This built-
in policy is the sameas the original sandbox policy.

Policy file locations are specified in the security properties file, which is
located at

<java.home>/lib/security/java.security

These locations are specified as the values of properties whose names are of the
form policy.url.n, where n is a number. For example, the default system and
user policy files are defined in the security propertiesfile as follows.

policy.url.i=${java.home}/lib/security/java.policy
policy.url.2=${user.home}/.java.policy

Here ${java.home} is a special designation for property expansion, whichis dis-
cussedlater in this chapter.

You can change the security properties file. For example, you can comment
out the secondline to skip the default user policyfile. You can also specify multi-
ple policy files to form a composite security policy. You do this by specifying sev-
eral URLs (including ones of the form http://) that refer to the file locations.
Then the contentof all of the designated policy files will be used to populate the
Policy object. .

Note that n in ur?.n must start with 1 and be consecutive integers. When the
Policy objectis initialized, the first policy file must be given by policy.ur1.1,
the second by policy.url.2, and so on until there are no more policyfiles.
If you specify, for example policy.url.1 and policy.ur1.3 but not
policy-ur1.2, then policy.url.3 is never read.

4.2.2 Configuring Application-Specific Policies

The policy files given in the security properties file (as described in the previous
section) are system-wide in the sense that the sameset of policy files will be used
when running any applet or application. You may specify an additional or a differ-
ent policy file when invoking the execution of an application. This can be done via
the -Djava.security.policy commandline argument, which sets the value of
the java.security.policy property; for example:

es

Page 130 of 275

DEPLOYING THE SECURITY ARCHITECTURE

java -Djava.security.manager -Djava.security.policy=someURL someApp

Here, someURL is a URL specifying the location of another policy file. In this
case, this policy file will be used in additionto all of the policy files specified in
the security propertiesfile.

The -Djava.security.manager argument ensuresthat the default security
manageris installed so that the application is run with a security policy in effect.
This option is not required if the application someAppitself installs a security
manager. Suppose you use the following (note the double equals signs):

java ~Djava.security.manager -Djava.security.policy==someURL someApp

Thenonly the specified policy file located at someURL will be used;all others will
be ignored.

Whenrunning applets using appletviewer, you can specify a policy using
the -Djava.security.policy argumentas follows:

appletviewer -Djava.security.policy=someURL someApplet

The policy file value given in the -Djava.security.policy option will be
ignored for both command java and appletviewer if the property, pol-
icy.allowSystemPropertyis set to false. This property, which can be set in
the security propertiesfile, is by default set to true.

4.2.3 Configuring an Alternative Policy Class Implementation

Analternative policy class can be given to replace the default policy class, as long
as this alternative class is a subclass of the abstract Policy class and implements
the getPermissions method (and other methodsas necessary).

You can change the default Policy implementation without changing the
JDK code. A property named policy.provider can be given in the security
properties file java.securityas follows:

policy.provider=PolicyClassName

Thedefault value of this property is

policy.provider=sun. security. provider. PolicyFile

By changing the property value to specify anotherclass, you substitute a new
Policyclass, as in

policy.provider=com.mycom.MyPolicy

Page 130 of 275

117

Page 131 of 275

Page 131 of 275

118 POLICY CONFIGURATION

When the Policy object is to be initialized, this class is used, rather than the
default implementation class PolicyFile. When indicating an alternative Poli cy
class, you must specify the fully qualified nameof the desired Policy implemen-
tation class, such as com.sun.security.MyPolicyClass.

4.2.4 Default Policy File Format

The policy configuration files for a JDK installation specify the permissions
(which types of system resource accesses) that are allowed by code from specified
code sources. For an applet or an application to be allowed to perform secured
actions (such as reading or writing a file), it must be granted permission forthat
particular action. In the default Policy implementation, that permission must be
granted by a grantentry in a policy configurationfile.!

The syntax of the default policy configuration file format includesalist of
entries. It contains zero or more entries that start with the grant keyword and
optionally a keystore entry. A keystore is a protected database of private keys
and their associated digital certificates, such as X.509 certificate chains, authenti-
cating the corresponding public keys. The default keystore implementation in
JDK 1.2 implementsthe keystore as a file. X.509 certificates are discussed in Sec-
tion 4.4. You can use keytoo] to create and administer keystores. The keystore
specified in a policy configuration file is used to look up the public keys of the
signers specified in the grant entries of the file. A keystore entry must appear in a
policy configuration file if any grant entries specify signeraliases.

Atthis time, only one keystore entry is allowedin the policy file—others after
the first one are ignored. The entry may appear anywhere outside ofthefile’s
grant entries and has the following syntax:

keystore “some-keystore-url", “keystore-type";

Here, "some-keystore-url" specifies the URL location of the keystore and
"keystore-type” specifies the keystore type. The URL is typicallyrelative to
the policy file location. Thus,if the policy file is specified in the security proper-
ties file as

policy.url.1=http://foo.bar.com/fum/some.policy

and that policy file has an entry keystore ".keystore", then the keystore will
be loaded from

' One exception is that code always automatically has permission to readfiles from its own
CodeSource and the subdirectories of that CodeSource.It does not need explicit permis-
sion to do so.

Page 132 of 275

DEPLOYING THE SECURITY ARCHITECTURE

http: //foo.bar.com/fum/ .keystore

The keystore URL can also be given as absolute, such as

keystore “http: //foo.bar.com/fum/.keystore".

A keystore type defines the storage and data format of the keystore informa-
tion, and the algorithms used to protect private keys in the keystore and the integ-
rity of the keystore itself. The default type supported in JDK 1.2 is a proprietary
keystore type named “JKS”,

Code being executed is always considered to come from a particular code
source (represented by an object of type CodeSou rece). The code source includes
not only the location (URL) from which the appletoriginated, but also a reference
to the certificates containing the public keys corresponding to the private keys
used to sign the code. Certificates in a code source are referenced by (symbolic)
alias names from the user’s keystore.

Each grant entry in a policy file consists essentially of a CodeSourceand its
permissions. To represent the set of certificates that may be part of a Code-
Source, apolicy file simply includea list of signer names, which arealiases that
map to the actual certificates via a keystore. Thealias design is useful because
certificates can be large and can contain binary data and unprintable characters,
while a policy file should be easy to view andto edit.

The permission segmentof each grant entry can include a numberof permis-
sion entries. Followingis the basic formatof a grantentry.

grant signedBy "“signer-names", codeBase “URL” {
permission permission-class—name “target-name", "action",

signedBy "signer-names";

permission permission-class~name "“target-name", "action",
signedBy “signer-names":

};

A grant entry must begin with the word “grant.” The signedBy and codeBase
name/value pairs are optional. The order ofthese fields does not matter,

The si gnedByfield is optionalin thatif it is omitted,it signifies “any signer,’
that is, whether the codeis signed and by whom does not matter.Its value, when
specified, is a string alias that is mapped (using the keystore) to a set of public
keys that are associated with the signers. These keysare usedto verify that classes
from the specified code sourceare really signed by these signers. This value can
be a/comma-separated string containing names of multiple signers, for example

119

Page 132 of 275

Page 133 of 275

120 POLICY CONFIGURATION

“Adam,Eve,Charles", which means “signed by Adam and Eve and Charles.” |
Note that the relationship is AND, not OR. i

Similarly, the absence of a codeBase entry signifies “any code,” that is, where
the code originates from does not matter.

An informal BNF grammarfor the policyfile format is given next (termsthat
are not capitalized are terminals).

PolicyFile --> PolicyEntry | PolicyEntry; PolicyFile
PolicyEntry --> grant {PermissionEntry}; |

grant SignerEntry {PermissionEntry} |

grant CodebaseEntry {PermissionEntry} |

grant SignerEntry, CodebaseEntry {Permission-Entry} |

grant CodebaseEntry, SignerEntry {PermissionEntry} |
keystore “url”

SignerEntry --> signedBy (a comma-separated list of strings)
CodebaseEntry --> codeBase (a string representation of a URL)

PermissionEntry --> OnePermission | OnePermission Permission-Entry
OnePermission --> permission permission-class-name

["target-name" J] [, "“action-list"] |
[, SignerEntry];

Note that a codeBase value is a URL and thus a forward slash “/”’ (never a
backslash, “V’) should always be used as the directory separator, even when the
code source is on an MS-Windowssystem. For example,if the source location for
code on an MS-Windowssystem is C:"somepath"app", then the policy code-
Base entry should look like this.

grant codeBase "file:/C:/somepath/api/" {

}

A permission entry must begin with the word “permission.” permission-
class-name in the previous grammar would actually be a specific permission
type, such as java.io.FilePermissionor java. lang.RuntimePermission,

The action, for example read, write, access, orother, is required for many
permission types, such as java.io.FilePermission (which specifies the type of
file access permitted). It is not required for categories for which it is not necessary,
such as java. lang. RuntimePermission—youeither have the permission speci-
fied by the "target-name" following permission-class-name, or youdonot.

Page 133 of 275

Page 134 of 275

 DEPLOYING THE SECURITY ARCHITECTURE

The si gnedBy name/value pair for a permission entry is optional. If present, it
indicates a signed permission. Thatis, the Permission classitself must be signed
by the given alias(es) in order for the permission to be granted. For example, sup-
pose you have the following grant entry.

grant {

permission Foo "foobar", signedBy "FooSoft";
}

This permission of type Foo is granted if the Foo.class permission has been
signed by the “FooSoft”alias, or if Foo.class is a system class, since system
classes are not subject to policy restrictions.

This per-permission signer field is included to prevent spoofing when a per-
mission class does not reside with the Java runtime installation. For example, a
copy of the com. abc. TVPermission class can be downloadedaspart of a remote
JARfile, and the user policy might include an entry that refers to it. Because the
archive is not long-lived, the second time that the com. abc. TVPermissionclass
is downloaded, possibly from a different Web site, the second copy absolutely
must be authentic. This is because the presence of the permission entry in the user
policy might reflect the user’s confidenceorbelief in the first copy of the class
bytecode.

Wechoseto use digital signatures to ensure authenticity, rather than storing (a
hashvalue of) the first copy of the bytecode andusing it to compare with the sec-
ond copy. We did this because the author of the Permission class can legiti-
mately update the classfile to reflect a new design or implementation.

Items in a Permission entry must appear in the following order:
(permission, permission-class-name, “target-name",
"action", signedBy "“signer-names").

An entry is terminated with a semicolon. Case is unimportant for the identifiers
(permission, signedBy, codeBase, and so on) but is significant for permis-
sion-class-nameor for any string that is passed in as a value.

In the specification of a java.io.FilePermission, "target-name"isa file
path. On an MS-Windowssystem, wheneverdirectly specifying a file path in a
string (but not in a codeBase URL), you needto include two backslashes “\\” for
each single backslash in the path, as in this example.

grant {

permission java.io.FilePermission

"C:\\users\\cathy\\foo.bat", "read":
35

Page 134 of 275

121

Page 135 of 275

122 POLICY CONFIGURATION

Tokenizer), which allows “\” to be used as an escape string. An example, is
“\n” to indicate a new line. Thus two backslashes are required to indicate a sin-
gle backslash. After the tokenizer has processed the abovefile path string, in the
process converting double backslashes to single backslashes, the result is
"C:\users\cathy\foo. bat". ,

| |

| This is because the strings are processed by a tokenizer (java. io.Stream-
|

| 4

4.2.5 Policy File Examples

This section offers several examples of policy files. Following are examples of
two entries in a policy configuration file. As with Java programs, lines preceded
with // are comments andare not interpreted.

// If the code is signed by "Duke", grant it read/write access
// to all files in /tmp:
grant signedBy "Duke" {

permission java.jo.FilePermission "/tmp/x", “read,write";
3

// Grant everyone the following permission:
grant {

permission java.util.PropertyPermission "java.vendor":
5

Here are the contents of another sample policy configurationfile.

grant signedBy “sysadmin", codeBase "file:/home/sysadmin/" {
permission java.security.SecurityPermission

“Security. insertProvider.«";

permission java.security.SecurityPermission
"Security.removeProvider. =";

permission java.security.SecurityPermission
"Security.setProperty.«":

3;

This example specifies that only applet code that was loaded from a signed JAR
file (whose signature can be verified using the public key referenced by the alias

| name “sysadmin” in the keystore) from beneath the /home/sysadmin/ directory
on the local file system can call methods in the Securityclass to add or remove
providers or to set security properties.

Since the code source contains two components, codeBase and signedBy, ~_
and either (or both) components may be omitted, the followingpolicyis still valid.

Page 135 of 275

Page 136 of 275

DEPLOYING THE SECURITY ARCHITECTURE 123

grant signedBy "sysadmin" {

permission java.security.SecurityPermission
"Security. insertProvider.«":

permission java.security.SecurityPermission
“Security.removeProvider. "5

This policy says that code that comes in a JARfile signed by “sysadmin” can add
or remove providers regardless of from where the JARfile originated. Here is an
example without a signer.

grant codeBase "file:/home/sysadmin/" {
permission java.security.SecurityPermission

"Security. insertProvider.«";
permission java.security.SecurityPermission

“Security.removeProvider.«":
3

In this case, code that comes from anywhere beneath the /home/sysadmin/ direc-
tory on the local file system can add or removeproviders. The code does not need
to be signed.

Following is an example that does not mention codeBaseor si gnedBy.
grant {

perfhission java.security.SecurityPermission
“Security. insertProvider.«";

permission java. security. SecurityPermission
"Security. removeProvider.«";

I;

Underthis security policy, any code (regardless of whereit originated, or whether
it is signed, or who signedit) can add or remove providers. Obviously,this policy
is too liberal for manysituations.

4.2.6 Property Expansionin Policy Files

To makepolicy configuration and specification easier, JDK 1.2 allows property
expansion both in policy files and in the security propertiesfile. Propeity expan-
sion is similar to expanding variables in a UNIX shell. That is, when a string of
the form {some. property} appears in a policy file or in the security properties
file, it will be expanded to the value of the system property. Suppose you have

permission java.io.FilePermission "${user.home}", "read":

Page 136 of 275

Page 137 of 275

Page 137 of 275

124 POLICY CONFIGURATION

This entry, when processed, will expand "§fuser.home}" to the value of the
user. home system property. If that property’s value is "/home/cathy", then the
previous permission line is equivalent to

permission java.io.FilePermission "/home/cathy", "read":

To assist in the creation of platform-independentpolicy files, JDK 1.2 intro-
ducesthe special notation "${/}" as a shortcut for "${file.separator}". Thus
you can write lines such as

permission java.io.FilePermission "${user.home}${/}=", "read";

If you are using a Solaris system andthe value of the user .home system prop-
erty is "/home/cathy", the previousline gets expanded to

permission java.io.FilePermission "fhome/cathy/«", "read";

If you are using an MS-Windows system and the user. home system value is
"C:\users\cathy", the expansion result is

permission java.io.FilePermission "C:\users\cathy\s", “read”;

Asa special case, if a property in a codeBase string, such as grant codeBase
"file:${java.home}/lib/ext/"is expanded, the system assumes that you are
on a UNIX system (dueto the use ofslashes) and then any file separator charac-
ters in that grant entry will be automatically expanded (or converted) to “/”. If
this entry is used on an MS-Windowssystem, the expansionresult is

grant codeBase "file:C:/jdk1.2/lib/ext/"

even if java.home is set to C:\jdk1.2. As a result, when specifying a codeBase
string, you should use ${/}.

Because property expansion can take place anywhere that a double-quoted
string is allowedin the policyfile, the fields "si gner-names", "URL", "target-
name", and "action" can all be expanded. You can disable property expansion
by setting to false the value of the policy. expandProperties property in the
security properties file. The default value ofthis property is true.

Nested properties do not expand properly. For example, "${user.${foo}}"
does notresult in ${user. home}, even if the foo property is set to "home". This
is because the property parser does not recognize nested properties. Rather, it sim-
ply looksforthefirst “${” and then keeps looking untilit finds the first “)”. It tries
to interpret the result (in this case, "${user.$foo}") asa property butfails when
there is no such property. N

Page 138 of 275

DEPLOYING THE SECURITY ARCHITECTURE 125

If a property expansion is given in a grant entry and property expansionfails,
the entry is ignored. For example, suppose the system property foo is not defined
and you havethe following.

grant codeBase "${foo}” {

permission ...;

permission ...;

#;

then all of the permissions in this grant entry are ignored.
Onthe other hand, if you have the following:

grant {

permission Foo "${foo}";

permission Bar;

33

then only the permission Foo entry is ignored and Permission Bar is granted.
If you have keystore "${foo}" and the system property foo is not defined,

then the entire keystore entry is ignored.
Expansion of a property in a string takes place after the tokenizer has pro-

cessedthestring, thus for string "${user.home}\\foo.bat", the tokenizerfirst
processes the string, converting the double backslashes to a single backslash, and
the result is "${user.home}\foo.bat". Then ${user.home}is expanded and
the end result ig "C:\users\cathy\foo.bat", assuming that the user.home
value is "C:\users\cathy”. In this example, to achieve platform independence,
the string should beinitially specified without any explicit slashes, that is, by
using the "${/}"property instead, as in "${user..home}${/}foo.bat".

4.3 Digital Certificates

Within a security policy, a signedBy keyword is used to specify that a piece of
code mustbe digitally signed by an entity. The entity may be a person, organiza-
tion, program, computer, business, bank, or other. si gnedBy merely gives an alias
of the entity, whereas a database called keystore maintains a mapping between|an
alias and its public key. In practice, the public key is oftenstored inside a public-
key certificate.

A public-keycertificate is a digitally signed statement from oneentity that
says the public key (and someother information) of another entity has some spe-
cific value. According to this description, a public key andits associated informa-
tion is certified by another public key. So there can be a chain ofcertificates,

Page 138 of 275

Page 139 of 275

Page 139 of 275

126 DIGITAL CERTIFICATES

Certificate {

Certificate 2

Certificate 3

Figure 4.1 Certificate chain.

depicted in Figure 4.1, in which each certificate contains a public key that is used
to certify the public key in the succeedingcertificate. Thefirst, top-level, certifi-
cate, often called the root certificate, does not have another public key to certify
it. Thus it normally is a self-signedcertificate in that its own public key is used to
certify itself.

Rootcertificates often are issued by a Certificate Authority, which can act as a
Trusted Third Party (TTP) to issue root certificates. A Certificate Authority (CA)
is an entity such as a business thatis trusted to sign (issue) digital certificates for
other entities. It is typically assumed that CAs will create only valid and reliable
certificates, as they are boundlegally to do so. Use of suchacertificate implies
that one trusts the entity that signedthe certificate. In some cases, such as root or
top-level CA certificates, the issuer signs its own certificate. Many public CAs are
available, for example VeriSign, Inc., but anyone can also run his or her own CA,
for example by using one ofthe readily available commercial server products.

To facilitate interoperability, the international body Comité Consultatif Inter-
national Téléphonique et Télégraphique (CCITT), which sets international com-
munication standards, created a standard certificate format. This certificate is
called X.509, the most recent version being X.509 v3. The most widely used for-
mat, it is especially popular in Web browsers such as Navigator and JE that sup-
port the SSL (secure sockets layer) protocol. SSL is a security protocol that
provides privacy and authentication for network traffic: and uses certificates to
negotiate and establish a secure communication channel between the browser and
the Webserver. It is defined by the IETF (Internet Engineering Task Force) andis
succeeded by the Transport Layer Security (TLS) protocol. X.509 certificates are
also used to sign JARfiles, in secure e-mail products such as PEM and S/MIME,
and in e-commerce protocols such as SET. a

All X.509 certificates have the following data, in addition to the signature.~

Page 140 of 275

DEPLOYING THE SECURITY ARCHITECTURE 127

¢ Version. The version of the X.509 standard that applies to this certificate. The
version affects what information can be specified in a certificate. So far, three
versions are defined.”

¢ Serial number. The serial number, assigned by the entity that created the cer-
tificate so as to distinguish it from othercertificates it issues. This information
is used in numerous ways, for example whena certificate is revoked, its serial
numberis placed in a Certificate Revocation List. A Certificate Revocation

List (CRL)is a time-stampedlist identifying revokedcertificates.It is signed
by a CA andoften made freely available in a public repository.

¢ Signature algorithm identifier. The algorithm used by the CAtosign the cer-
tificate.

¢ Issuer name. The X.500 nameofthe entity that signed the certificate. This is
normally a CA.

¢ Validity period. The time period for which thecertificate is valid. Each certif-

icate is valid for only a limited amountoftime. This period is described by a
start date and time and an end date and time and can be as short as a few sec-

onds or almostas long as a century. This is the expected period for which en-
tities can rely on the public value, provided the associated private key has not
been compromised. The validity period chosen depends on a numberof fac-
tors, such asthe strength of the private key usedto sign the certificate and/or
the amountoneis willing to pay for a certificate.

¢ Subject name. The name ofthe entity whose public keythe certificate identi-
fies. This name uses the X.500 standard,so it is intended to be unique across
the Internet.It is the Distinguished Name (DN)ofthe entity, for example:

CN=Java Duke, OU=Java Software, O=Sun Microsystems, C=US

These refer, respectively, to the subject’s common name(CN), organizational
unit (CU), organization (0), and country (C). Additional fields include Jocali-
tyName, the locality (city) name such as Palo Alto, and stateName, the
state or province name, such as California.

¢ Subject public key information. The public key of the entity being named,
together with an algorithm identifier that specifies to which public key crypto-
system this key belongs and any associated key parameters.

The IETF Public-Key Infrastructure (X.509) working group (PKIX)is in the process of de-
fining standards for the Internet Public Key Infrastructure.

Page 140 of 275

Page 141 of 275

128 DIGITAL CERTIFICATES

All of the data in a certificate is encoded using two related standards, ASN.1/
DER, Abstract Syntax Notation 1 (ASN.1) describes data. Definite Encoding
Rules (DER)describea single way to store and transferthat data.

Certificates are often stored using the printable encoding format defined by
the Internet RFC 1421 standard, instead of their binary encoding. This certificate
format, also called Base64 encoding, facilitates exporting certificates to other
applications (for example, via e-mail). In its Base64 encoding, the encoded certif-
icate is boundedat the beginning andthe end by, respectively, by

-o-+- BEGIN CERTIFICATE-----

and

----- END CERTIFICATE-----.

Three versions of X.509 are available.

— . X.509 v1, available since 1988, is widely deployed and the most generic.
ad X.509 v2 introduced the conceptof subject and issuer uniqueidentifiers to han-

dle the possibility of reuse of subject and/or issuer names. Mostcertificate pro-
file documents strongly recommend that names not be reused and that
certificates not make use of uniqueidentifiers. Version 2 certificates are not
widely used.

oe - X.509 v3 is the most recent(since 1996) and supports the notion of extensions.
Anyone may define an extension andincludeit in the certificate. Some com-
mon extensions in use today are

a. KeyUsage, which limits the use of the keys to particular purposes such as
signing only, and

b. AlternativeNames, which allows other identities to also be associated
with this public key, for example, DNS names, e-mail addresses, IP
addresses.

Extensions can be marked “critical” to indicate that the extension should be
checked and enforced/used. For example, if a certificate has the KeyUsage
extension markedcritical and set to keyCertSign, then if this certificate is
presented during SSL communication, it should be rejected, as the certificate
extension indicates that the associated private key should be used only for
signingcertificates and not for SSL use. Teeecae

Page 141 of 275

Page 142 of 275

|
DEPLOYING THE SECURITY ARCHITECTURE

Certificates are available in a number of ways. You can create a self-signed
certificate by using the right tools, such as keytool, which is explained later in
this chapter. However, some people will accept only certificates signed by a CA.
The value a CA providesis that of a neutral and trusted introduction service, based
in part onits verification requirements, which are openly published in its Certifi-
cation Service Practices (CSP).

Or you can requesta certificate from a CA.In this case, keytoo]1 can assist in
generating the request, called a Certificate Signing Request (CSR). Basically, to
obtain a certificate from a CA you need a matched pair of public and private keys,
which are often generated by a special tool such as keytoo] or by a browser. You
also need to provide information aboutthe entity being certified, such as name and
address. You will normally need to provide proof to show the correctness of this
information. You then submit the required information in a self-signed certificate
so that the CA can verify its integrity.

JDK 1.2 contains a rich set of Java APIs for accessing and managingcertifi-
cates. The certificate API, found in the java.security.cert package, includes
the followingclasses.

¢ CertificateFactory. Defines the functionality of a certificate factory,
whichis used to generate certificates (and associated CRL objects) from their
encoding.

¢ Certificate. An abstract class for managing a variety of certificates. It is an
abstraction for certificates that have different formats but important common
uses. For example, different typesofcertificates, such as X.509 certificates and

those obtained from the encryption tool Pretty Good Privacy (PGP), share gen-
eral certificate functionality (such as encoding and verifying) and some types
of information (such as the public key).

@ CRL. An abstract class for managing a variety of CRLs.

X509Certificate. An abstract class for X.509 certificates. It provides a stan-
dard way to accessall of the attributes of an X.509 certificate.

X5@9Extension. The interface for X.509 extensions, which are defined for

X.509 v3 certificates and X.509 v2 CRLs. These extensions provide mecha-
nisms for associating additional attributes with users or public keys, suchas for
managing the certification hierarchy and for managing CRL distribution.

Page 142 of 275

129

Page 143 of 275

| 130

Page 143 of 275

HELPFUL SECURITY TOOLS

@ X5@9CRL. An abstract class for an X.509 CRL.

X5Q@9CRLEntry. Anabstract class for a CRL entry.

The next section describes keytool, which generates, displays, imports, and
exportsX.509 certificates.

4.4 Helpful Security Tools

To assist developers, JDK 1.2 is delivered with these security tools: keytool,
policytool, and jarsigner. These are covered in this section. First, however, it
discusses keystore databases.

4.4.1 Keystore Databases

Recall from Section 4.2.4 that a keystore is a protected databasethat holds private
keys and certificates for an enterprise. The default keystore implementation in
JDK 1.2 implements the keystore as a file, as depicted in Figure 4.2. Access to a
keystore is guarded by a password, which is chosen atthe time the keystore is cre-
ated, normally by the person whocreatesthe keystore. A keystore so protected can
be changed only by someone whocan provide the current password.In addition,
each private key in a keystore can be guarded,for extra security, by its own pass-
word.

oY cates

Cert entry

DOM actay

Entries

protected by
passwords

Orea acatay

Key entry :
A oN

Figure 4.2 Keystore. Oe

Page 144 of 275

DEPLOYING THE SECURITYARCHITECTURE 131

Information from a keystore is used by other tools, such as jarsigner, to
generate or verify digital signatures for JAR files. A JARfile packagesclassfiles,
images, sounds, and/or other digital data in a single file. jarsigner verifies the
digital signature of a JAR file, using the certificate that comes with it (it is
included in the signature block file of the JAR file). It then checks whether the
public key ofthat certificate is trusted, that is, whetherit is contained in the speci-
fied keystore.?

A keystore contains two types of entries: key entries and a trusted certificate
entry. The key entry holds sensitive cryptographic key information and is stored in
a protected format to prevent unauthorized access. Typically, a key stored in this
type of entry is either a secret key or a private key accompanied bythecertificate
chain for the corresponding public key. keytool and jarsigner,as delivered in
JDK 1.2, do not handle secret keys.

Thetrusted certificate entry contains a single public key certificate belonging
to an entity. It is called a trusted certificate because the keystore owner, by accept-
ing this entry into the keystore, trusts that the public key in the certificate indeed
belongsto the identity identified by the subject—thatis, the owner—ofthecertifi-
cate. The issuerof the certificate vouches for this by signing the certificate.

All keystore entries (key and trusted certificate entries) are accessed via
uniquealiases. Aliases are case-insensitive; for example, the aliases “Hugo” and
“hugo” refer to the same keystore entry. You specify an alias when you add an
entity to the keystore using the —genkey commandto generate a keypair (public
and private key) or the -import commandto addacertificate or certificate chain to
the list of trusted certificates. Subsequent keytool. commands mustuse this same
alias to refer to the entity. For example, suppose you use thealias “duke” to gener-
ate a new public/private key pair and wrap the public key in a self-signed certifi-
cate via the following command:

keytool -genkey -alias duke ~-keypass dukekeypasswd

This commandspecifies an initial password of dukekeypasswd that will be
required by subsequent commandsto access the private key associated with the
alias “duke.” To change the private key password of duke, you use a command
like the following, which changes the password from dukekeypasswd to newpass:

3 The keytool and jarsigner tools replace the javakey tool provided in JDK 1.1. These
" new tools provide more features than javakey, including the ability to protect the keystore

and private keys with passwords andtheability to verify signatures, in addition to generat-
ing them.The new keystore architecture replaces the identity database that javakeycreated
and managed. You can import the information from an identity database into a keystore via
keytool’s —identitydb command.

Page 144 of 275

Page 145 of 275

Page 145 of 275

132
HELPFUL SECURITY TOOLS

keytool -keypasswd -alias duke -keypass dukekeypasswd —new newpass

For better security, a password should not be specified on a commandline or
in a script unless for testing purposes or you are on a secure system. If you do not
specify a required password option on a command line, you will be prompted forone.

Recall that a keystore by default is implemented as a file. Each keytool com-
mand has an option for specifying the name andlocation ofthis persistent key-
store file. During keystore creation, if you do not specify a —-keystoreoption,the
Keystore is by default stored in a file named . keystorein the user’s homedirec-
tory, as determined by the user.home system property. On a Solaris system,
user.home defaults to the user’s home directory. On an MS-Windows system,
given username uName, the user. home property value defaults as follows.

C:\Winnt\Profiles\uName On multiuser Windows NT systems
C:\Windows\Profiles\uName On multiuser Windows 95 systems
C:\Windows On single-user Windows 95 systems

Thus,if the username is cathy, user.home defaults to

C:\Winnt\Profiles\cathy On multiuser Windows NT systems
C:\Windows\Profiles\cathy On multiuser Windows 95 systems

The KeyStoreclass provided in the java.securi ty package supplies inter-
faces for accessing and modifying the information in a keystore. Nevertheless,
multiple different concrete implementations can be imagined, where each imple-
mentation is for a particular type of keystore. Also, keystore implementations are
provider-based. More specifically, the application interfaces supplied by
KeyStore are implemented in termsof a service providerinterface (SPI). A pro-
videris a packageora set of packagesthat supply a concrete implementation of a
subset of services that can be accessed from the Java security API. Thusa corre-
sponding abstract KeystoreSpi class, also in the java.security package,
defines the SPI methods that providers must implement. To provide a keystore
implementation, the client must implement a provider and supply a KeystoreSpi
subclass implementation. Chapter 7 describes how to implementa provider.

Applications can choose different types of keystore implementations from dif-
ferent providers, using the getInstance method supplied in the KeyStoreclass.
A keystore type defines the storage and data formatof the keystore information, as
well as the algorithmsused to protectprivate keys in the keystore and theintegrity
of the keystore itself. Keystore implementations of different types need not be
compatible in implementation details such as format. The JDK 1.2 default imple-
mentation of the keystore uses a proprietary keystoretype named “JKS.” Types
are notcase-sensitive; thus “jks” would be considered the-sameas “JKS.”

os

Page 146 of 275

DEPLOYING THE SECURITY ARCHITECTURE

keytool works on any file-based keystore implementation.It treats the key-
store location that is passedto it at the commandline as a filename and converts it
to a FileInputStream, from which it loads the keystore information. You also
can specify a keystore type at the command line. For example, if you have a pro-
vider packagethat supplies a keystore implementation for a keystore type called
“pkcs12,” you can use the command

keystore. type=pkcsi2

If you do not explicitly specify a keystore type, keytool chooses a keystore
implementation based on the value of the keystore. type property specified in
the security properties file. The KeyStore class defines a static method, get-
DefaultType, that lets applications and applets retrieve the value of the key-
store.type property. The following line of code creates an instance of the
default keystore type:

KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefault-Type());

44.2 Keytool

keytool can be used to create public/private key pairs and self-signedcertificates.
These keys and certificates are kept in a keystore, which can be managedalso
through the use of keytool. For example, you can display, import, and export
X.509 v1, v2, and v3 certificates stored asfiles and to generate new,self-signed v1
certificates.4

keytool allows users to specify any key pair generation and signature algo-
rithm supplied by any of the cryptographic service providers that are registered
with the Java runtime environment. The default key pair generation algorithm is
Digital Signature Algorithm (DSA). The size of a DSA key mustbe in the range
of 512 to 1,024 bits and must be a multiple of 64. The default key size for any
algorithm is 1,024 bits. The signature algorithm is derived from the algorithm of
the underlying private key. For example, if the underlying private key is of type
“DSA,”the default signature algorithm is SHA1withDSA,and if the underlying
private key is of type “RSA,”the default signature algorithm is MD5withRSA.

keytool’s default implementation currently handles X.509certificates. Given
a sample DNstring

4 Even though the underlying certificate package supports X.509 v3 format, keytool gener-
ates only X.509 v1-formatted certificates due to command-line complexity in dealing with
various extensions and options. One can easily imagine extended or customized keytoo1s
that take advantage of the v3 format.

Page 146 of 275

133

Page 147 of 275

Page 147 of 275

134
HELPFUL SECURITY TOOLS

"CN=Mark Smith, OU=JavaSoft, O=Sun, L=Palo Alto, S=CA, C=US"

you can use the following command (which mustbe typed on a single line) to gen-
erate a key for this DN:

keytool -genkey -dname "CN=Mark Smith, OU=JavaSoft, O=Sun,
L=Palo Alto, S=CA, C=US" alias mark

Keyword abbreviations are case-insensitive; for example, “CN,” “cn,” and
“Cn”are all treated the same. However, the order of the keywords does matter in
that each subcomponent must appear in the designated order CN, OU, 0, L, S, ©.
However, not all subcomponents need be present; subsets are allowed, for example:

CN=Mark Smith, OU=JavaSoft, O=Sun, C=US

If a DN componentstring is needed for a commandbutis not supplied on the
commandline, the user will be prompted forthe string.

keytool can create and manage keystore key entries that each contain a pri-
vate key and an associatedcertificate chain. Thefirst certificate in the chain con-
tains the public key corresponding to the private key. When a key is first
generated, the chain starts off containing a single element, a self-signed certifi-
cate. When a new public/private key pair is generated, the public key is wrapped
in a self-signed certificate. Later, after a CSR has been generated and sent toa CA,
the response from the CA is imported and the self-signed certificate is replaced by
a chain ofcertificates. At the bottom of the chain is the certificate (reply) issued
by the CA thatis authenticating the subject’s public key.

The nextcertificate in the chain authenticates the CA’s public key. Often, this
is a self-signed certificate and also thelast certificate in the chain, In other cases,
the CA might return a chain ofcertificates. Here, the bottom certificate in the
chain is the same, butthe secondcertificate in the chain is a certificate signed by a
different CA, which is authenticating the public key of the CA that received the
CSR. The next certificate authenticates the second CA’s key, and so on, until a
self-signed rootcertificate is reached. Eachcertificate in the chain (after the first)
thus authenticates the public key of the signer of the previous certificate in the
chain. ;

ManyCAsreturn only the issued certificate, with no supporting chain, espe-
cially when the hierarchyis flat, that is, there are no intermediate CAs. In this
case, the certificate chain must be established from trusted certificate information
already stored in the keystore.

An additional reply format, defined by the PKCS#7 standard, includes the
supporting certificate chain in addition tothe issued certificate. Both reply formats
can be handled by keytool. oN

N‘,

\

Page 148 of 275

DEPLOYING THE SECURITY ARCHITECTURE

The root CA certificate is self-signed. However, the trust aspect of the root’s
public key does not come from the rootcertificate itself because anybody could
generate a self-signedcertificate with the DN. Before you addthe root CA certifi-
cate to your keystore, you should ensureits authenticity. For example, suppose a
certificate is in a file named /tmp/cert. Before you consider adding the certifi-
cate to yourlist of trusted certificates, execute a -printcert command to view its
fingerprints, for example:

keytool ~-printcert ~-file /tmp/cert
Owner: CN=11, OU=117, O=11, L=11, S=11, C=11
Issuer: CN=11, OU=11, 0=11, L=11, S=11, C=11
Serial Number: 59092b34

Valid from: Thu Sep 25 18:01:13 PDT 1997 until: Wed Dec 24 17:01:13
PST 1997

Certificate Fingerprints:

MDS: 11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F

SHAL: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C@:37:13:0E:5E:FE

In fact, before addinga certificate to the list of trusted certificates in the keystore,
keytool prints out the certificate information and prompts youto verify it. You
then have the option of aborting the import operation.

keytool can import a certificate fromafile using, for example, in response to
the following command:

keytool --import --alias joe --file jcertfile.cer

This command imports the certificates in the file jcertfile.cer and storesit in
the keystore entry identified by thealias “joe.” Certificates read by the -import and
-printcert commandscan beeither in Base64 or binary-encoded. You can import
either a certificate to add it to a list of trusted certificates or a certificate reply
received from a CA as the result of submitting a CSR to that CA. Which is
imported is indicated by the value of the -alias option. If the alias exists in the
database and identifies an entry with a private key, then importing a certificate
reply is assumed. keytool checks whether the public key in thecertificate reply
matches the public key stored with the alias. If the alias identifies an existing cer-
tificate entry, the new certificate will not be imported. Otherwise, the alias will be
created and associated with the importedcertificate.

To export a certificate to a file, use the -export command,as in

keytool --export --alias jane --file janecertfile.cer

This commandexports jane’s certificateto the file janecertfile.cer. By default,
it outputs a binary-encodecertificate, but it also can output a Base64certificate.

Page 148 of 275

135

Page 149 of 275

136 HELPFUL SECURITY TOOLS

To print the contents of a keystore entry, you use the-list command,as in
keytool -list -alias joe

If an alias is not specified, the contents of the keystore are printed. The -list com-
mandby default prints the MDS fingerprint of a certificate. If the -verbose option
is specified,it prints the certificate in human-readable format.

keytool hasbuilt-in default values for the following options:
-alias “mykey"
-keyalg "DSA"

-keysize 1024

-validity 90

-keystore the file named . keystorein the user’s home directory
-File stdin if reading; stdout if writing

Refer to the on-line JDK 1.2 documentation for a detailed explanation of all com-
mandoptions in keytoo1. The following commandsalso output help information:

keytool

keytool -help

Keytool Usage Example

Following is an example to create and manage a keystore that has your public/
private key pair andcertificates from entities youtrust.

First, you needto create a keystore and generate the key pair. You can use the
following command,typed ona singleline:

keytool --genkey --dname "cn=Mark Smith, ou=JavaSoft, o=Sun,
c=US" --aljas business --keypass kpi135 --keystore /working/
mykeystore --storepass ab987c ~-validity 180

This command creates the keystore mykeystore in the working directory
(assuming it does not already exist) and assigns it the password (storepass)
ab987c.It generates a public/private key pair for the entity whose DN (dname) has
a common name Mark Smith, organizational unit JavaSoft, organization Sun,
and two-letter country code US. It uses the default DSA key generation algorithm
to create the keys, both 1,024 bits long.

The commandcreatesa self-signedcertificate (using the default SHA 1withDSA
signature algorithm) that includes thepublic key and the DN information. This
certificate will be valid for 180 days, es associated with the private key in akeystore entry referred to by the alias “business.” Theprivate key is assigned the
password kpil35. —~

ae
Page 149 of 275

Page 150 of 275

DEPLOYING THE SECURITYARCHITECTURE

The command can besignificantly shorter if option defaults are accepted,
since you are prompted for any required values that are not specified and have no
defaults. Thus you could simply type the following:

keytool --genkey

In this case, a keystore entry with alias “mykey”is created, with a newly gener-
ated key pair and a certificate that is valid for 90 days. Therest of the examplesin
this section assume you executedthe -genkey command without options specified
and that you responded to the prompts with values equal to those givenin the -genkey
command used at the beginning of this section.

So far, all you haveis a self-signedcertificate. A certificate is more likely to
be trusted by othersif it is signed by a CA. To get such a signature, you first gen-
erate a CSR, using the following command:

keytool --certreq --file MarkJ.csr

This command creates a CSR (for the entity identified by the defaultalias
“mykey”) and puts the request in the file named MarkJ.csr. You then submitthis
file to a CA. The CA will authenticate you as the requestor (usually, this is done
off-line) and return a certificate, signed byit, authenticating your public key. (In
somecases, it will return a chain of certificates.)

You need to replace your self-signedcertificate with a certificate chain, where
each certificate in the chain authenticates the public key of the signer of the previ-
ous certificate in the chain, up to the root CA. Before you import the certificate
reply from a CA, you need one or moretrusted certificates in your keystore. You
determine which oneas follows.

1. If the certificate reply is a certificate chain, you need only the top certificate of
the chain (thatis, the root CA certificate authenticating that CAs public key).

2. If the certificate reply is a single certificate, you needa certificate for the issu-
ing CA (the one that signed it), and if that certificate is not self-signed, you
need a certificate for its signer, and so on, up toaself-signed root CA
certificate.

The default keystore file in JDK 1.2 ships with five VeriSign root CA certifi-
cates, so you probably will not need to import a VeriSign certificate as a trusted
certificate in your keystore. Butif you requesta signedcertificate from a different
CA and your keystore does notcontain a certificate authenticating that CA’s pub-
lic key, you will need to import a trustedcertificate from the CA.

Page 150 of 275

137

Page 151 of 275

138

Page 151 of 275

HELPFUL SECURITY TOOLS

A certificate from a CA is usually either self-signed or signed by another CA
(in which case you also need a certificate duthenticating that CA’s public key).
Suppose company ABC,Inc., is a CA and you obtain a file named ABCCA. cer that
contains purportedly a self-signed certificate from ABC, authenticating that CA’s
public key. Be very careful to ensure the certificate is valid prior to importingit as
a trusted certificate. If you trust that the certificate is valid, then addit to your key-
store using the following command:

keytool --import --alias abc --file ABCCA.cer

This commandcreates a trusted certificate entry in the keystore, with the data
from the file ABCCA. cer, and assignsthe alias “abc”to the entry.

Once you have importeda certificate authenticating the public key of the CA
to which you submitted your CSR(or there is already suchacertificate in the
cacerts file), you can import the certificate reply, thereby replacing your self-
signedcertificate with a certificate chain. This is the chain returned by the CA in
response to your CSR (if the CA reply is a chain) or one constructed Gif the CA
reply is a single certificate) using the certificate reply and trusted certificates that
are already available in the keystore in which you imported the reply or in the
cacerts keystorefile.

For example, suppose you sent your CSR to VeriSign. You can then import the
reply by using the following command(assumethe returnedcertificate is named
VSMarkJ.cer):

keytool --import -trustcacerts --file VSMarkJ.cer

Suppose you have used jarsigner to sign a JARfile. Clients who wantto use
the file will want to authenticate your signature. They can import your public key
certificate into their keystore as a trusted entry, or you can export the certificate
and supply it to your clients. For example, you can copy yourcertificate to a file
named MJ.cer (assumethe entry is aliased by “mykey”):

keytool --export --alias mykey --file MJ.cer

Using that certificate and the signed JARfile, a client can use jarsigner to
authenticate your signature.

Suppose your DN changes, for example because you have changed depart-
ments or movedto a different city. You maystill use the same public/private key
while updating your DN. For example, suppose your name is Susan Miller and
you created yourinitial key entry withthe alias “sMiller” and this DN:

\

"cn=Susan Miller, ou=Finance eparenent o=BlueSoft, c=us"
NNN

SN

Page 152 of 275

 DEPLOYING THE SECURITYARCHITECTURE

if you later change from the Finance Departmentto the Accounting Department,
you can still use the previously generated public/private key pair but update your
DN by doing the following.

1. Copy (clone) your key entry:

keytool --keyclone --alias sMiller --dest sMillerNew

This command will prompt for the storepass password andforthe initial
and destination private key passwords,since they are not provided at the com-
mandline.

N . Change thecertificate chain associated with the copyso thatthefirst certificate
in the chain uses your new DN.Start by generating a self-signed certificate
with the appropriate name:

keytool --selfcert --alias sMillerNew -dname "“cn=Susan Miller,
ou=Accounting Department, o=BlueSoft, c=us"

3. Generate a CSR using the information in the new certificate:

keytool --certreq -alias sMillerNew

and import the CA certificate reply:

keytool --import --alias sMillerNew --file VSSMillerNew.cer

4. You might want to removethe initial key entry that used your old DN:
keytool --delete --alias sMiller

MS-Windowsalso includes a version of the keytool. On-line JDK 1.2 docu-
mentation explains its usage, which is essentially the same as the Solaris version
used in these examples.

44.3 Policy Tool

policytool enables youto create new policy files and modify existing ones. Start
policytool by typing the following at the commandline to display the Policy
Tool window (Figure 4.3):

policytool

When youstart the policy tool, the Policy Tool window displays, showing pol-
icy information for what is sometimes called the user policyfile. This information
includes the policy filename, the keystore URL (if any), and the codeBase and

Page 152 of 275

139

Page 153 of 275

140 HELPFUL SECURITY TOOLS

 |

ny
iq

:

|
i

 5
Q
:Figure 4,3 policytoo) snapshot,

signedByparts of each policy entry in the policy file. By default, this file is a file
named .java.policy in your home directory. If policytool cannotfindthis
file, it reports that fact and displays a blank Policy Tool window. (Thefirst time
you run policytool, a userpolicy file does notexist unless you have created one
manually.) You can then either open whatever policy file you want to work on or
create a new policy file, by adding policy entries, optionally specifying a keystore, :
and savingthefile. |

For example, suppose you wantto specify the keystore named “mykeystore” i
i

in the /tests/ directory. On a Solaris system, you would do the following.

1. Type the following URL into the text box labeled New KeyStore URL: |
file: /tests/mykeystore

policytool can read a keystore from any location that can be specified usinga URL.

/
/

2. Specify the keystore type, if needed, by typing the type into the text box New

KeyStore Type; for example, “JKS,” the proprietary keystore type supported
by Sun Microsystems. If you do not explicitly specify a keystore type, poli-

i

i

i
i

|
|

Page 153 of 275

Page 154 of 275

DEPLOYING THE SECURITY ARCHITECTURE 141

cytool chooses a keystore implementation based on the value of the
keystore. type property specified in the security propertiesfile.

. Click OK.Ww

The text box labeled Keystore shows the keystore URL and type.

To add a new policy entry, do the following.

pend, . Click the Add Policy Entry button in the Policy Tool window to display the
Policy Entry dialog box.

2. Usingthis dialog box, specify an optional codeBase entry indicating the URL
location from where the code originates. For example, to indicate code from
the local /JavaSoft/TESTS/ directory, type the following into the CodeBase
text box:

File: /JavaSoft/TESTS/

Also type into the text box the following:

a. An optional signedBy entry that is the alias name from the keystore used
to reference the signer whose private key was used to sign the code. For
example, to indicate the alias “duke,” type duke into the signedBy text
box.

b. One or more permission entries that indicate which permissions are granted
to the code from the source indicated by the codeBase and si gnedBy val-
ues (or to any code if no such valuesare specified).

To add a new permission,do the following:

_ . Click the Add Permission button in the Policy Entry dialog box to display the
Permissions dialog box. Thentypeor select the following:

a. A permission type. To specify a permission type defined by you orothers,
type the permission typeinto the text box. Or double-click one of the built-
in types from the drop-downlist labeled Permission.

The complete permission type name appearsin the text box to the right of
the drop-downlist.

b. A permission target name. If you selected a built-in permission type from
the Permission drop-downlist and permissions of that type have specific
target name values,then the drop-downlist labeled Target Namecontains a

Page 154 of 275

Page 155 of 275

Page 155 of 275

142
HELPFUL SECURITY TOOLS

list of those values from which you can choose. In the case that the target
name possibilities are infinite, but there are some built-in target name spec-
ifications that have special Meanings, such target names will appear in the
drop-downlist. For example, the special target name of “<<ALL FILES”
will appear in the list for File Permissions,

To specify a target namenotavailable in the drop-downlist, type the target
nameinto the text box to the right of the Target Name drop-downlist.

c. One or more actions, if actions are relevant. Some permissions have only
a target nameandnoactions. For these, leave the text box to the right of the
Actions drop-down list blank. (It will automatically be darkened and
unavailable for this type of built-in permission.) For permissions requiring
action specifications, type the comma-separatedlist of actions into the text
box or select them from the drop-downlist. For example, to specify both
read and write access to a file specified for a FilePermissi on, first select
read (or write—the order does not matter) from the list. The word read
appears in the text box. Then select write; the word write will be appended,
preceded by a commaanda space.

d. A signedByalias. Typethealias into the text box to the right of the Signed
Bylabel, if needed. The signedByvalue for a permission entry is optional.
If present,it indicates a signed permission. That is, the Permission class
itself must be signed by the given alias(es) in order for the permission to be
granted.

2. When you havefinished specifying the permission information,click OK.
The new permission appears in a line in the Policy Entry dialog box. Add
more permissions by following the same sequenceofsteps.

Once you havefinished adding policy entries, click Done in the Policy Entry
dialog box. The Policy Tool window displays, containing a line for each new pol-
icy entry. The lines contain only the codeBase and signedBy information (if
any). If neither wasspecified in the Policy Entry dialog box, all that displaysis
codeBase <ALL>.If the policy entry contains any signedBy aliases that do not
yet exist in your keystore, a warning displays to that effect when you close the
policy entry. In this case, click OK and either make a note to create such an alias
or edit the policy entry to fix thealias if it was wrong.

You also can edit or remove an existing permission. To edit an existing per-
mission, follow these steps. ~

Page 156 of 275

DEPLOYING THE SECURITYARCHITECTURE 143

1. In the Policy Entry dialog box,click the line for that permission and then click
the Edit Permission button. (Alternatively, you can double-click the line for
that permission.)

The Permissions dialog box displays. It looks as it does when you are adding a
new permission, except thatit is filled with the permission information for the
selected permission.

2. To change the information, either make new selections from the drop-down
lists or replace the information in the text boxes.

3. When you are done, click OK.

The Policy Entry dialog box displays the permission with any modifications
you made.

| To remove an existing permission, select the line for that permission in the
Policy Entry dialog box and then click the Remove Permission button.

If policytool reports that warnings have been stored in the Warning Log,
you can view that log by clicking the View Warning Log commandin the Edit
menu. For example, if you have a policy file with a keystore URL specifying a
keystore that does not yet exist, you will get such a warningat various times, for
example when you openthe file, that will be stored in the Log. You can continue
to work on the policy file even if warnings exist.

MS-Windowsincludes a version of policytoothat works essentially in the
same way.

4.4.4 Jarsigner

JDK 1.2 introduced a new tool called jarsigner. Recall that the JAR enables the
packaging ofclassfiles, images, sounds, and other data in a single file for faster
and easier distribution. A tool named jar enables developers to produce JARfiles.
jarsigner can sign JAR files and verify the signatures and integrity of signed
JARfiles. Attaching digital signatures to a JAR file helps to ensure that its authen-
ticity can be verified by recomputing the signature based on the current JAR con-
tent and comparing it with the stored signature. If the two do not match, this
meansthat either the content or the signature in the JAR file was modified. Thus,
as long as the private key is kept secret, someone withoutthe private key cannot
forge a signed JARfile.

jarsigner uses private key and certificate information from a keystore to
generate the digital signatures for JAR files. Thus, when using jarsigner to sign
a JARfile, you first must specify the keystore location as a URL, as well as the
alias for the keystore entry containing the private key needed to generate the sig-

a
|

Page 156 of 275

Page 157 of 275

Page 157 of 275

144
HELPFUL SECURITY TOOLS

nature. For example, the following will sign the JAR file named MyJARFile. jar
using the private key associated with the alias “duke” in the keystore named “mys-
tore” in the working directory. Since no output file is specified, it overwrites
MyJARFi le. jar with the signed JAR file.

jarsigner -keystore /working/mystore -storepass myspass
-keypass dukekeypasswd MyJARFile.jar duke

Because keystores may be ofdifferent types, if you do not explicitly specify a
keystore type, jarsigner chooses a keystore implementation based on the value
of the keystore.type property specified in the security propertiesfile.

Currently, JDK 1.2’s default implementation of jarsigner can sign only zip
files or JAR files created by the JDK jartool.> It signs a JARfile by using either
SHAIwithDSA or MD5withRSA. A SHA1withDSAalgorithm is available from
the default SUN provider. .

When jarsigner is used to sign a JARfile, the output signed JARfile is
exactly the sameas the input JARfile, exceptthatit has two additional files placed
in the META-INF directory: a signature file with a SF extension and a signature
block file with a DSA extension.

A signaturefile (the SF file) looks similar to the manifest file in that, for each
sourcefile included in the JARfile, it contains the filename, the nameof the digest
algorithm used (SHA), and a SHA digest value, each given on a separate line. In
the manifest file, the SHA digest value for each sourcefile is the digest (hash) of
the binary data in the sourcefile. In the SF file, however, the digest value for a
given sourcefile is the hash ofthe three lines in the manifest file for the source
file. The SF also, by default, includes a header containing a hash of the whole
manifest file. The presence of the header enables verification optimization, as
described later in the chapter.®

The SFfile is signed, and the signatureis placed in the DSAfile. The DSAfile
also contains, encoded within, the certificate or certificate chain from the keystore
that authenticates the public key corresponding to the private key usedfor signing.
jarsigner canusethecertificate (chain) to verify the signature.

A successful JAR file verification occurs if the signature(s) are valid and none
of the files that were in the JAR file when the signatures were generated were
changedsince then. JARfile verification involves the following steps.

> JAR files are the same as zip files, except they also have a META-INF/MANIFEST.MF file.
Sucha file will automatically be created\when jarsigner signsa zipfile.

6 The signed headercanalso be usedto assist insealing a Java software packagestored inside
a JAR such that no otherclass can belong to the same package unless the otherclass is
signed by the same signature key. ~~

Page 158 of 275

DEPLOYING THE SECURITYARCHITECTURE

1 . Verify the signature of the SF file itself. The verification ensures that the sig-
nature stored in each signature block (DSA)file was in fact generated using the
private key corresponding to the public key whosecertificate (or certificate
chain) also appearsin the DSAfile. It also ensures that the signature is a valid
signature of the corresponding signature (SF) file and thus that the SF file is
tamper-free.

2. Verify the digest listed in each entry in the SF file with each correspondingsec-

we

tion in the manifest. The SF file may include a header containing a hash of the
entire manifest file. When the headeris present, then the verification can sim-
ply check to see whetherthe hashin the header indeed matches the hash of the
manifestfile. If that is the case, verification proceeds to the next step. Other-
wise, the hash in each sourcefile information section in the SF file must be
checkedto determine whetherit equals the hash ofits corresponding section in
the manifestfile. The hash ofthe manifestfile that is stored in the SF fileheader
might not equalthe hash of the current manifestfile, for example when one or
more files are added to the JARfile (using the jartool) after the signature
(and thus the SF file) was generated. When the jartool is used to add files,
the manifestfile is changed (sections are addedto it for the new files), but the
SF file is not. Given thatthe interest here is in only those signedfiles, a verifi-
cation is still considered successful if signatures and hashes of these files
verify.

. Verify each file that is mentionedin the SF file. jartoo] reads eachfile in the
JARfile that has an entry in the SF file. While reading,it computesthefile’s
digest and then comparesthe result with the digest forthe file in the manifest
section. The digests should bethe same,orelse verificationfails. If any secu-
rity-sensitive verification failures occur during the verification process, the
process is stopped andasecurity exception is thrownthat is caught and dis-
played by jarsigner.

A JARfile can be signed by multiple people simply by running jarsigner on
the file multiple times, specifying the alias for a different person each time, as in
the following commandsequence:

Page 158

jarsigner myBundle.jar susan
jarsigner myBundle.jar kevin

145

of 275

Page 159 of 275

Page 159 of 275

146 HELPFUL SECURITY TOOLS

Whena JARfile is signed multiple times, the resulting JAR file will contain
multiple SF and DSAfiles, one pair of SF and DSA files for each signature. In the
previous example, the output JAR file includesfiles with the following names:

SUSAN. SF

SUSAN. DSA

KEVIN. SF

KEVIN.DSA

Refer to the JDK 1.2 on-line documentation for jarsigner’s options,

jarsigner Compatibility with JDK 1.1

In JDK 1.1, a tool called javakey was provided to perform jar signing tasks. The
tool was too simplistic for the complicated range of tasks it had to handle and so
has been replaced in JDK 1.2 by keytool and jarsigner. These new tools pro-
vide more features than javakey, including the abilities to protect the keystore
and private keys with passwords andto verify signatures in addition to generating
them.

javakey generated and managed an identity database that was a mixture
(speaking in JDK 1.2 terms) of security policy and keystore. The new keystore
architecture replaces the identity database and uses a more standard storage for-
mat. To ensure backward compatibility, JDK 1.2 has the following properties.

¢ Importing the information from anidentity databaseinto a keystore is possible,
via keytool’s -identitydb command. Only trusted identities in the identity
database may be imported into a JDK 1.2 keystore.

¢ jarsigner can sign JARfiles that were previously signed by using javakey.

* jarsigner can verify JARfiles signed by using javakey. Thusit recognizes
and can work with signeraliases that are from a JDK 1.1 identity databaserath-
er than a JDK 1.2 keystore.

Because the keystore plays a critical role in a security policy, the question
arises regarding how to integrate the binary-trust model—codified by javakey in
JDK 1.1—andthe fine-grained trust model in JDK 1.2. More specifically, when
the JVM encounters a JAR file/in an environment containing a mixture of identity
database, keystore, and secur policy, what permissions does the JVM granttothe classes inside the JAR file? A numberof other questions must be considered
whendecidingthis.

Page 160 of 275

DEPLOYING THE SECURITYARCHITECTURE 147

@ Q1: Is the JARfile signed?

¢ Q2:Is the verified signer present in the identity database? Is the signer trusted?

¢ Q3: Hasthe verified signer been imported from the identity databaseinto the
keystore?

-* Q4: Doesthe security policy explicitly grant permissionsto the verified signer?

Table 4.1 shows how JARfiles that were signed in JDK 1.1.x are treated in
JDK 1.2. Default permission denotes permissions that are granted to all code by
default, Policy permission denotes the permissions explicitly granted to a particu-
lar set of signers, and All permission denotes the permission that implies every
other permission. An entry containing yes/no meansit can beeither yes Or no.

A few points presented in the table are worth explaining. First, if a signer
(identity/alias) is mentionedin the policyfile, it must be present in the keystore in
order for the policy file to have any effect on the permissions granted. Second, the
policy file/keystore combination has precedence over a trusted identity in the iden-
tity database in that if such a combination exists, then the trusted signer is not
given all permission, as was the case in JDK 1.1. Third, untrusted identities |
declared in JDK 1.1’s identity database are ignored in JDK 1.2. If an untrusted
identity is also present in the keystore and mentionedin the policy, then JDK 1.2’s
policy is in effect and the entry in the identity database is ignored. Otherwise, the
JARfile is treated asifit is unsigned. Finally,if a trusted identity is not presentin
the keystore or is not mentioned in the policy, then the binary-trust model is
applied and the signeris given all permissions.

- Table 4.1—Permissions Granted when Mixing javakeyand Keystore
a Ql Q2 Q3 Q4 Permission

No Yes/no Yes/no Yes/no Default

Yes No Yes/no No Default

Yes No Yes Yes Default + policy
Yes Yes/untrusted Yes/no No Default

Yes Yes/untrusted No Yes Default

Yes Yes/untrusted Yes Yes Default + policy
"Yes Yes/trusted Yes/no No All

Yes Yes/trusted No Yes All

Yes Yes/trusted Yes Yes Default + policy-_eS

Page 160 of 275

Page 161 of 275

Page 161 of 275

148 HELPFUL SECURITY TOOLS

4.4.5 Code Signing Example

Here is an example of signing and verifying a JAR file. Suppose you have a JAR
file, bundle. jar, that you wantto sign by using the private key of the user whose
keystorealiasis “jane”in the keystore named “mystore” in the working directory.
Suppose the keystore password is myspass and the password for jane’s private key
is j638klm. You can use the following command(ona single line) to sign the JAR
file and namethe signed JARfile sbund1Je. jar.

jarsigner -keystore /working/mystore -storepass myspass
-keypass j638kIm -signedjar sbundle.jar bundle.jar JANE

The resulting SF and DSA files are JANE. SF and JANE.DSA.
To verify a signed JAR file, use a command such as

jarsigner -verify sbundle.jar

If the verification is successful, the message “jar verified.” displays. Otherwise, an
error message appears. You can get more information about the verification pro-
cess by using the -verbose option, as follows.

jarsigner -verify -verbose sbundle.jar

198 Fri Sep 26 16:14:06 PDT 1997 META-INF/MANIFEST.MF
199 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.SF

1013 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.DSA
smk 2752 Fri Sep 26 16:12:30 PDT 1997 AclEx.class

smk 849 Fri Sep 26 16:12:46 PDT 1997 test.class

S = Signature was verified

m= entry is listed in manifest
k = at least one certificate! was found in keystore

jar verified.

If, when verifying, you specify the -certs option along with the -verify and
-verbose options, the output includes

¢ certificate information for eachsigner of the JARfile, includingthecertificate
type, |

¢ the signer’s DN information (if, and only if, the certificate is an X.509), and,

* the keystore alias for the signer, in parentheses, if the public key certificate in
the JAR file matchesthat in a)keystore entry.

Page 162 of 275

DEPLOYING THE SECURITY ARCHITECTURE

Hereis an example.

jarsigner -keystore

198

199

1013

208

1087

smk 2752

Fri

Fri

Fri

Fri

Fri

Fri

Sep

Sep

Sep

Sep

Sep

Sep

mystore -verify

26

26

26

26

26

26

16

16:

16:

16:

16:

16:

:14

22:

22:

23:

23:

12:

:06

10

10

30

30

30

PDT

PDT

PDT

PDT

PDT

PDT

149

-verbose -certs myTest.jar

1997 META-INF/MANIFEST .MF

1997 META-INF/JANE.SF

1997 META-INF/JANE.DSA

1997 META-INF/JAVATEST.SF

1997 META-INF/JAVATEST.DSA
1997 Tst.class

X.509, CN=Test Group, OU=Java Software, O=Sun Microsystems, L=CUP,
S=CA, C=US (javatest)

X.5@9, CN=Jane Smith, QU=Java Software, O=Sun, L=cup, S=ca, C=us
(JANE)

wn ll

x3 ll

jar verified.

signature was verified

entry is listed in manifest

at least one certificate was found in keystore

If the certificate for a signer is not an X.509, no DN information is available.
In this case, just the certificate type and thealias are shown. For example,if the
certificate is a PGP certificate andthealiasis “bob,” you would get this as output:

PGP, (bob)

If a JARfile has been signed using the JDK 1.1 javakeytool, and thus the
Signer is an alias in an identity database, the verification output includes an “i”
symbol.If the JARfile has been signed by both an alias in an identity database and
an alias in a keystore, the output includes the symbols“i” and “k.” When the -certs
option is used, any identity database aliases are shown within square brackets
(such as “duke”in the following example) rather than within the parentheses used
for keystore aliases; for example:

jarsigner -keystore mystore -verify -verbose -certs writeFile.jar

198 Fri Sep 26 16:14:06 PDT 1997 META-INF/MANIFEST.MF
199 Fri Sep 26 16:22:18 PDT 1997 META-INF/JANE. SF

1013 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.DSA
199 Fri Sep 27 12:22:30 PDT 1997 META-INF/DUKE. SF

Page 162 of 275

Page 163 of 275

Page 163 of 275

150 MANAGINGSECURITY POLICIES FOR NONEXPERTS

1013 Fri Sep 27 12:22:3@ PDT 1997 META~INF/DUKE .DSA

smki 2752 Fri Sep 26 16:12:38 PDT 1997 writeFile. html

X.509, CN=Jane Smith, OU=Java Software, O=Sun, L=cup, S=ca, C=us
(JANE)

X.509, CN=Duke, OU=Java Software, O=Sun, L=cup, S=ca, C=us [duke]

= signature was verified

entry is listed in manifest

= at Teast one certificate was found in keystore
at least one certificate was found in identity scope

Fr2H it

ae
Wi

jar verified.

MS-Windowsincludes a version of jarsigner that works essentially in the
same way.

4.5 ManagingSecurity Policies for Nonexperts

This chapter has discussed the technical details of deploying the JDK 1.2 security
architecture, as well as how to configure security policies, create keys and certifi-
cates, and sign Java classes. The overall complexity might appear overwhelming
to the nonexpert computeruser. This complexity is the natural result of JDK 1.2’s
having a feature-rich security architecture that must cater to a wide range of needs,
such asthose that arise in programming secure enterprise applications.

Two approachesare useful for the nonexpert when dealing with this complex-
ity. Oneis to call in professional care and management. In the case ofan enter-
prise environment, system administrators and information resource departments
can be made responsible for establishing and deploying security policies on behalf
of other corporate employees. Technical details in this and preceding chapters
have shownthat the Java security architecture design has taken this into account
and has introduced a numberof waysfor the user to defer or delegate security pol-
icy decisions to another party. For example, employees can be instructed to con-
figure their. browsers to point to a centrally controlled Web page to obtain the
current security policy. Or the company might wantto customize a version of the
browser, which it then distributes to employees.

Developers of enterprise applications can also incorporate security policy
management in such a waythat the typical user does not haveto deal with, or even
be awareof, the underlying seturity managementfeatures. In the case of the indi-

vidual outside of the corporate environment, Internet Service Providers (SPs) are—

Page 164 of 275

DEPLOYING THE SECURITY ARCHITECTURE

also a good source for security advice and management.For example, many ISPs
already offer limited security mechanisms such as firewalls and junk mail filter-
ing. Thusit is quite reasonable for them to offer security policy managementhelp
regarding executable content and mobile code.

The second approach to security managementforthe nonexpert is to focus on
the humaninterface. Field experience and controlled studies have shown thatit is
extremely hard for the vast majority of computer and Internet users to understand
security issues, which range from terminology to solutions to consequences.
Moreover, different users interpret things so differently that it is very difficult to
describe security in the same wayto a diverse group of people. Thus JDK 1.2 has
not attempted to provide a uniform human-computerinterface to deal with secu-
rity policy and management. Instead, it expects that software vendors will inte-
grate such functionalities into their own system environments and customize the
contents and presentationsto suit the particular set of users of their systems,

For example, computer systems vendors have traditionally shipped security
management software with their operation systems. In the near future, many such
systems will have Java technology bundled with or integrated into them. In these
cases, the accompanying security management software likely will be enhanced
with suitable components to manage Java security issues. The benefit of this is
that those people who use the managementsoftware can continueto use a familiar
software with a familiar interface.

Moreover, application developers can choose to embed security solutions in
such a way that they are invisible to users. For example, imagine a Java-based
application that provides AOL-style Internet access and user experience. Such an
application might use many Java features, such as dynamic component upgrading,
and provide services such as secure access to e-mail messages. Thusthe applica-
tion will depend on extensive security technology, which calls for security man-
agement. In this case, the application can “lock in” the particular security policies
that are needed to make it work and not provide any customization capability in
this respect. As a result, apart from the initial login process, users do not have to
deal with any further security issues, and indeed might not even be aware that
complicated security decisions are being made throughout the application.

Security management and user interface remains an under-studied subject,
partly because the Internet brought security into the mainstream for thefirst time,
making it an everyday concern, and partly because older technologies have gener-
ally not had security as a design goal. As time goes by and extensive security solu-
tions are deployed ubiquitously, developers will gain valuable insight into this
importantaspect of security technology.

Page 164 of 275

151

Page 165 of 275

CHAPTER 5

Customizing the Security
Architecture

Theoffice ofgovernment is not to confer happiness,
but to give men opportunity to work out happiness for themselves.

—William Ellery Channing

Crapter 4 discussed various customization possibilities when deploying the
Java security architecture. This chapter goes a step further to investigate some
concrete customization examples.

5.1 Creating New Permission Types

Recall that JDK 1.2 introduced a new hierarchy of typed and parameterized access
permissions that is rooted by an abstract class, java.security.Permission.
Other permissions are subclassed either from the Permission class or oneofits
subclasses and generally should belong in packagesof their own. For example, the
permission representing file system access is located in the Java I/0 package, as
java.jo.FilePermission. is java.io Other permission classes that are new in
JDK 1.2 include

java.net.SocketPermissionfor access to network resources,

java. lang.RuntimePermissionfor access to runtime system resources such
as properties, and

. @ java.awt.AWTPermission for access to windowing resources.

153

Page 165 of 275

Page 166 of 275

154

| .|

Page 166 of 275

CREATING NEW PERMISSION TYPES

In other words, access methods and parameters to most of the controlled
resources, including access to Java properties and packages, are represented by the
new permission classes.

Applications are free to add new categories of permissions. However,it is
essential that, apart from official releases, no one extend the permissions that are
built into JDK, either by adding new functionality or by introducing additional
keywords into a class such as java.]ang.RuntimePermission. Refraining from
doing this maintains consistency. To create a new permission, the following steps
are recommended, as shown by an example.

Suppose an application developer from company ABC wantsto create a cus-
tomized permission to “watch TV.”The first question is can you use an existing
Permission object such as the catch-all RuntimePermission object or do you
need a custom object. Assume that you want to create a new permission class,
named com.abc.Permission, which extends the abstract class java.secu-
rity.Permission (or one ofits subclasses). You also design another new class,
com.abc.TVPermission, that extends com.abc.Permission.!

public class com.abc.Permission extends java.security. Per-
mission

public class com.abc.TVPermission extends com.abc.Permission

You must make sure that the implies() method, among other methods,
is correctly implemented. If more-elaborate TVPermissions, such as channel-
1:13 or channel -x, are allowed, then you might need to implement a TVPermis-
sionCollection object that knows how to deal with the semantics of these.
Then,you needto include these new permission classes with the application pack-
age so that when your application needs them, they can be foundby the class
loaders.

Next, you want the application’s resource management code, when checking
to see if a permission should begranted, to call AccessControl ler’s checkPer-
mission method, using a com.abc.TVPermission object as the parameter.

public void switchChannel(int channel) {
com.abc.TVPermission tvperm = new

com.abe.TVPermission(channel, "watch");
AccessController.checkPermission(tvperm);
a /

} /

Class com.abc. TVPermi wnieeten directly extend java. security. Permission as theintermediate com. abc. Perm ss7onis not always required.\

Page 167 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE 155

Finally, to grant this permission to applications andapplets, youneed to enter
appropriate entries into the security policy. How to configure thé policy was dis-
cussed in detail in previous chapters. Basically, you putthe string representation
of this permission in the policy file so that this permission can be automatically
configured for each domain granted the permission. An exampleofthe policy file
entry specifying permission to watch channel 5 is as follows, which grants to any
codethe privilege to watch channel 5.

grant {

permission com.abc.TVPermission "5", "watch";
}

Whenadding a new permission, you should create a new permission class and
not add a new methodto the security manager. Prior to JDK 1.2, in order to enable
checking of a new type of access, you had to add a new method to the Security-
Manager class. In JDK 1.2, the newly introduced checkPermission() method
applies to all permission types.

To exercise the built-in access control algorithm, your code should always
invoke a permission checkbydirectly calling the checkPermission() method of
the AccessControl ler class.It is not essential that you examine whetherthereis
a class loader or a security manager. Onthe other hand,if the access control algo-
rithm should be left to the installed SecurityManager class, then the method
SecurityManager.checkPermission() should be invoked instead. Although
the default implementation of SecurityManager.checkPermission() is to turn
around and call AccessController.checkPermission(), the SecurityMan-
ager class can be customized, as shownlater in this chapter.

5.2 Composite Permissions

An application might need to be granted many permissionssothatit can doits job.
Sometimesit is tedious to have to spell out, one by one, the permissions granted.
For example, a computer game might need permissionsthat includes socket per-
mission to connect to the game server, file permission to access a locally stored
high-scorefile, and property permission to look up the player’s expert level.

In this case, a “shorthand”that represents all of the said permissions would be
very helpful. One way to approachthis issue is to create a composite permission,
such as a MyGamePermission,that implies all of the required permissions. Then
the game software can be granted simply a MyGamePermission.

A composite permission may be implemented in any of several ways. A
PermissionCol lection class is one example that can imply a rangeofdifferent
types of permissions. Or a new class CompositePermission can be defined. In

Page 167 of 275

Page 168 of 275

escEINESINSSITETETO

Page 168 of 275

156 CUSTOMIZING SECURITY POLICY

fact, AllPermission is just such a composite permission that implies every
permission.”

However, there is a hidden complication in doing this. When searching a
given set of permissions to match a required permission, the default implementa-
tion ofAccessController optimizes the search by looking up the type of the
required permission and examining only those given permissions with the appro-
priate types. For example, whena file access is required, the AccessController
looks into all given FilePermissions and also knows to check if there is an

AllPermission. When a new type of permission is introduced that can imply a
different type of permission, the default AccessController does not know this
fact in advance. To solve this problem, JDK 1.2’s implementation could be
changed so that it always compares every given permission with the required per-
mission. This, however, would potentially have resulted in a big performancehit.
A better solution is to introduce a new type, say CompositePermission, and
require that all composite permissions must be of this type. Then the default
AccessController can be enhanced to look for all given CompositePermis-
sions.In this way, performance is affected only when a large number of Compos-
itePermissions are granted.

5.3 Customizing Security Policy

The security policyfirst is processed by the Policy class and then is enforced by
the SecurityManager, so customizing either class would customize the Poli cy
implementation. Asa first example, suppose you wantto allow file access only
during office hours, 9 AM to 5 PM. Thatis, during office hours the security policy
decides who can access whatfiles. Outside of office hours, no one can access any
file, no matter whatthe security policy says. To achieve this, you can implement a
TimeOfDaySecurityManager class, as follows.

public class TimeOfDaySecurityManager extends SecurityManager {
public void checkPermission(Permission perm) {

if (perm instanceof FilePermission) {
Date d = new Date();

int i = d.getHours();

if (Ci >= 9) && (i < 17))

super. che¢kPermission(perm) ;

2 Wecould have implemented a NoPermission (or ZeroPermi ssion), for completeness, but

wedid not manageto get this ih before code-freeze time.
\\

Page 169 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE

else

throw new SecurityException("Out of office hour");
} else super.checkPermission(perm);

}

The TimeOfDaySecurityManager checksto see if the permission to be checked
is a FilePermission.If it is, TimeOfDaySecurityManager computes the cur-
rent time.If the time is inside office hours, it invokes the built-in Securi tyMan-
ager to check the security policy. Otherwise, it throws a security exception. An
application that wishes to enforce the given office hour restriction should install
this TimeOfDaySecurityManager in place of the built-in Securi tyManager.

The next example concerns the need to keep a record of resource access that
was granted or denied, for audit purposes later. Suppose you design a simple
AuditingSecurityManager class as follows.

public class AuditSecurityManager extends SecurityManager {
public void checkPermission(Permission perm) {

Audit.enterRecord(perm);

super. checkPermission(perm);

}

Assumethat you also have an Audit class with a methodto store an audit record
in a safe place. A variation is to enter the audit record after checkPermission and

also record the access control result. To do that, you first must catch the potential
SecurityException thrown and then rethrowit later.

public class AuditSecurityManager extends SecurityManager {
public void checkPermission(Permission perm) {

try {

super. checkPermi ssion(perm);

Audit.enterRecord(perm, true);

}catch (SecurityException e) {

Audit.enterRecord(perm, false):
throw e;

}

To implement complex security policies, you need to spend potentially a lot
more effort. For example, if you want to enforce a multilevel security policy, you

Page 169 of 275

157

Page 170 of 275

Page 170 of 275

158
MIGRATING JDK 1.1-BASED SECURITY MANAGERS

first mustcreate sensitivity labels for each object.? The JVM also has to keep track
of interaction between objects and might have to change objectlabels dynamically
(as in a high water-mark model). Then the SecurityManager’s checkPermis—
sion methodwill base its decision on the labels ofthe objects involved in the cur-
rent thread of execution. As another example, to implement a Chinese Wall
(separation of duty) model the JVM mustnot only monitor object interaction but
also keep a history ofit. Much research and experimentation is neededin this area.

5.4 Migrating JDK 1.1-Based Security Managers

In JDK 1.1, the java. lang. Securi tyManager class was abstract. The default
implementations of the SecurityManager’s check methods always just threw
exceptions. The result was that developers who wanted their applications (such as
a browser) to install a security manager had to write their own security manager
and provide appropriate concrete implementations of the methods that threw
exceptions by default, primarily the check methods.

In JDK 1.2, SecurityManager is concrete so thatit can be used as-is as the
default security manager in applications. Moreover, its design is also greatly
improved. Thus developers who have written their own security manager classes
for their applications should consider migrating to JDK 1.2-based security
manager classes. In most cases, they should simply use the built-in default
implementation.

A numberof technical details must be done right in this migration process.
This section is devoted to such issues. It begins with a review of JDK 1.1-style
security manager classes and then examines JDK 1.2’s improvements.

5.4.1 JDK 1.1 Security ManagerClasses

In JDK 1.1, local applications and correctly digitally signed applets were trusted
to have full access to vital system resources, such as the file system, while
unsigned applets were not trusted and could access only limited resources. A
security manager was responsible for determining which resource accesses were
allowed. In both JDK 1.1 (and therefore in JOK 1.2), the SecurityManager class
contains many methods with namesthat begin with the word “check,” sometimes
called the check methods. Examples are checkRead and checkConnect. Various
methods in the Java libraries call’ a check method before performing each poten-
tially security-sensitive operation. A security manager routine simply returns if
the operation is permitted, but itithrows a security exception if the operation is not

3 This can be done perhaps most conyenialy by adding a security-level attribute to the baseclass, the Object class, but that would be a very significant change.
\

Page 171 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE 159 |
permitted. The security manager is thereby given an opportunity to prevent com-
pletion of the operation by throwing an exception. The only exception to this con-
vention is checkTopLevelWindow, which returns a boolean value instead.

The other methods contained in the SecurityManager class are those related
to class loader existence and depth:

currentClassLoader

currentLoadedClass '
inClassLoader

classLoaderDepth

It is important to understand these four methods, as JDK 1.1-style security
managers typically base access control decisions on twovariables:

1, Whethera class with a class loader(thatis, an applet in JDK 1.1) is on the stack

2. The class loader depth, that is, how far down the stack is the most recent:oc-
currence of a method from a class defined using a class loader

For example, a typical JDK 1.1-style security manager has a checkExit
methodlike the following.

public void checkExit(int status) {
if (inClassLoader()) {

throw new SecurityException();
}

}

Such a method would not allow Runtime.exit to be called when any class
defined with a class loader(that is, an applet) is on the stack.

Here is another example.

public void checkCreateClassLoader() {
if (classLoaderDepth() == 2) {

throw new SecurityException();
}

}

This method saysthat the class loader depth cannot be 2. Thatis, the methodthat
called the method that called checkCreateClassLoader must notbe in a class
defined with a class loader. For example, the constructor for java. 1 ang.Class-
Loader calls checkCreateClassLoader, which means the methodthat calls the
constructor for java.lang.ClassLoader must not have a class loader. Thus
applets cannotdirectly create class loaders.

Page 171 of 275

Page 172 of 275

Page 172 of 275

160 MIGRATING JDK I, 1-BASED SECURITY MANAGERS

There is a big difference between these two examples, even though both
attempt to prevent applets from performing actions. In the first example, check-
Exit will throw an exception if an applet is anywhere on the stack. Thus even
built-in JDK code cannotexit the JVM if it was called from an applet. In the sec-
ond example, JDK code is sometimes allowedto create a class loader (for exam-
ple, when class loader depth is not 2), even if it was called by an applet. That is
because the depth of a class with a class loader is used, and not the fact that there
is a class loader.

Previous chapters discussed how error-prone these class loader depth methods
can be. For the SecurityManager in JDK 1.2, these methods are deprecated and
are no longercalled by any check methods. They should not be used by any newly
written security managers and shouldbeeliminated from existing security manag-
ers as well. However, the interfaces are maintained for backward compatibility.

5.4.2 Accommodating JDK 1.1 Security Managers on JDK 1.2

Sometimes an application with an old JDK 1.1 security manager has to be run on
the new JDK 1.2 platform. To accommodate this, the implementation of some
methods in the SecurityManager class were changed to take into account new
features introduced in JDK 1.2.

The four methods mentioned in the previous section have all been modified in
three ways:

1. They skip system class loaders.

2. They stop checking after they reach a method on the stack that was marked
privileged.

3. Theytreat the current stack as fully trusted undercertain circumstances.

Skip System Class Loaders

A system class loader is defined as a class loader that is equal to the system class
loader (as returned by ClassLoader.getSystemClassLoader) or one ofits
ancestors. Since classes loaded by the system class loader include application
classes (loaded off of CLASSPATH), extension classes, and the built-in JDK classes,
this modification enables these methodsto ignore such code.

This change was made because if you run an application that installs a custom
security manager and that security manager is loaded off of CLASSPATH in JDK
1.2, it will have a system class loader associated with it. Recall that applicationclasses did not have a class loader in JDK 1.1. If you called a method such as
classLoaderDepth from within ‘the custom security manager and that method

N\

Page 173 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE 161

was not modified to ignore classes loaded by a system class loader, it would
always return 0, which would not be very useful. Similarly, if class loader meth-
ods were not changed so that they would skip system classes and a custom secu-
rity manager was loaded off of CLASSPATH,security holes might develop when the
security manager was making decisions based on, for example, disallowing an
operation if classLoaderDepth() ==

Stop Checking after Reaching a Privileged Method

These four methods stop checking after they reach a method onthe stack that was
marked privileged (according to JDK 1.2’s definition of privileged). This change
was needed because, for example, the JDK code need to open files for internal
use. Some JDK 1.1-style security managers have a checkRead methodthat looks
like the following.

public void checkRead(String file) {
if (inClassLoader()) {

throw new SecurityException(..);
}

}

Without the modifications, such a check invoked when running JDK 1.2
would cause a security exception to be thrown when the JDKitself tried to read a
file when a class with a nonsystem class loader was on the stack. Under the new
security model, all JDK code that tries to perform an operation thatits caller might
not be allowed to do has a doPrivileged block around it. Modifying inClass-
Loader just to examine the stack up to and including the frame containing the
privileged code results in the inClassLoader method’s returning false. This in
turn allows the read to occur when the codeat the top of the stack is JDK code and
is loaded by the system class loader or oneof its ancestors.

JDK 1.2 attempts to maintain the stack depth as used in JDK 1.1-style security
managers. For example, the constructor for java.security.SecureClass-
Loader has an explicit call to SecurityManager.checkCreateClassLoader,
even though the constructor for its super class (ClassLoader) also does. If the
check was not placed in the constructor for SecureClassLoader, then a JDK
1.1-style security manager would allow untrusted code to extend SecureClass-
Loader and construct class loaders, since the class loader depth would always be
greater than 2.

When you are porting an existing JDK 1.1-style security manager,first and
foremost you are advised to analyze all of your custom security manager methods
before running your security manager under JDK 1.2. Failure to do so could result
in a security hole or prevent the proper operation of the JDK. This is due to the

Page 173 of 275

Page 174 of 275

Page 174 of 275

162
MIGRATING JDK 1.1-BASED SECURITY MANAGERS

fragile nature of JDK 1.1-style security managers. Where possible, you should
just use the default implementation of the JDK 1.2 SecurityManager. This helps
give users and administrators consistent behavior. If this is not possible, you need
to take great care when extending the SecurityManager class and overriding
existing methods.

For example, if you override the checkRead(String file) method so thatit
always throws a security exception,then the JDKitself mightfail to operate prop-
erly. That is, if some JDK code needs to opena file (to read a properties file or
load a JARfile, for example), then throwing a security exception for every read
attempt would cause such opensto alwaysfail.

In general, you should override the default methods only if you intend to
loosen security, not to makeit stronger. To tighten security, you should modify the
default policy files and/or install a custom java.security.Policy class or
object. When overriding security manager methods, you should placeacall to the
super.check method at the point where your overridden check method would
throw an exception,as in the following example.

public class MySecurityManager extends SecurityManager {
public void checkRead(String file) {

if (someCustomSecuri tyCheckFails()) {
super. checkRead(file):

}

}

Here,if your custom security checkfails, then super. checkRead gets called. The
default implementation of checkRead invokes checkPermissi on, which by
default invokes the AccessController. This latter invocation enables system
code that has done an AccessController.doPrivil eged before trying to read a
file to succeed in readingthatfile, thereby allowing the JDKitself to function cor-
rectly. All other code will be subjected to the current policy in effect, and an
access control exception will be thrownif accessto thatfile has not been granted.
In other words, your JDK 1.1-style security manager code, by calling
super.check, will have given the JDK 1.2 built-in Secu rityManager and
AccessControl ler a chanceto handle situationsthat are particular to JDK 1.2.

Nevertheless, you should notcall super.check methods when overriding
some of the check methods. This is because the default implementation of these
methods might not beasstrict as the policy you are implementing in the overrid-
den method. For example, the default checkAccess(Th readGroup g) method
protects only the system thread group. If you intend to protect threadsin distinct
thread groups from each other (for example, applet thread groups), then you do
not want to call super. checkAc cegs() at the point you would normally throw aNN

Page 175 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE

security exception, as doing that would defeat the purpose of your customized
check. Instead, you place a call to super. checkAccess() asthefirst statementin
your overridden method, as in the following example.

public class MySecurityManager extends SecurityManager {

public void checkAccess(ThreadGroup g) {

// A call to super will throw an exception if someone

// is trying to modify the system thread group.

super.checkAccess(g);

// Now perform checks to seé if the current caller

// can modify thread group g, based on to which applet

// thread group the calter belongs.

Treat Current Stack as Fully Trusted

The third change is related to the second and gives these four methodsthe follow-
ing behavior. When they encounter a doPrivileged stack frame with a Securi-
tyContext (or AccessControlContext) that was granted Al1Permission, they
treat the current stack as fully trusted, or in JDK 1.1’s sense, as if there is no class
loader on the stack. This is because a doPrivileged frame with A11Permission
indicates that the caller of this method must be allowed to do anything it wants,
regardless of what its callers are. This fully privileged situation is equivalent to
when a call to checkPermission with java.security.Al1Permission does
not result in a security exception.

5.4.3 Modifying JDK 1.1 Security Managers for JDK 1.2

This sectionlists the changes made to java.]ang.SecurityManager methods in
JDK 1.2. Also included are suggestions regarding any overrides you might want to
make. When modifying your JDK 1.1-style security manager class for JDK 1.2,
you really should try to use the built-in JDK 1.2 security manageras is, if at all
possible.

To start, as mentioned earlier, the following methods have been deprecated
and should not be used:

public boolean getInCheck();

protected ClassLoader currentClassLoader();

protected Class currentLoadedClass();

Page 175 of 275

Page 176 of 275

Page 176 of 275

164
MIGRATING JDK 1.1-BASED SECURITY MANAGERS

protected int classDepth(Stri ng name);
protected int classLoaderDepth();
protected boolean inClass(String name);
protected boolean jnClassLoader();

Following are the other methods.

protected boolean inCheck;

This field is now deprecated, and any use of it within the JDK has been
removed. Instead of using inCheck, you should use checkPermission along
with doPrivileged.

public SecurityManager();

This constructor was modified to allow multiple SecurityManagers to be
created, assuming the caller has RuntimePermi ssion("createSecurity-
Manager") permission.

protected native Class[] getClassContext();

This methodis unchanged. A callto it can be used to emulate the 1.1 behavior
of the methods that have been changed in JDK 1.2 (currentClassLoader,
currentLoadedClass, classLoaderDepth, and inClassLoade r).
public Object getSecurityContext():

This method was modified to return a java. securi ty .AccessControlCon-
text object that is created with a call to java.secu rity.AccessContro]-
ler.getContext. In JDK 1.1, it returned null by default.

public void checkPermission(Permission perm);

This method is new in JDK 1.2. It calls java.security.AccessControtl-
ler.checkPermission with the given permission. Internally, the JDK
always calls SecurityManager.checkPermission instead of calling the
AccessController directly. This allows people to override this method to
provide additional functionality, such as auditing and graphical user interface
(GUI) dialog boxes.

public void che¢kPermission(Permission perm, Object context);
This method is ne} in JDK 1.2. If context is an instance of Access-
ControlContext, then the method AccessControlContext.checkPer-
mission will be invoked on the given context with the specified permission.
If context is not an\instance of AccessControl Context, then a security
exception is thrown.

Page 177 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE 165

public void checkCreateClassLoader();

This method was modified to call checkPermission with the permission
RuntimePermission("createClassLoader"). If this method is overrid-
den, then a cal] to super. checkCreateClassLoader should be madeat the

point the overridden method would normally throw an exception, as the sec-
ond example in Section 5.4.2.2.

@ public void checkAccess(Thread t);

This method was modified. If the thread argument is a system thread—a
thread that belongs to the thread group that has a null parent—then this
method calls checkPermission with the RuntimePermission("modi fy-
Thread") permission. Applications that wanta stricter policy should override
this method, where super. checkAccessorits equivalent shouldbe called by
the first statement in the overridden method. Moreover,the resulting method
also should check to see if the calling thread has the RuntimePermis-
sion("modifyThread") permission, and if it does, return silently. This is to
ensure that code granted that permission (such as the JDKitself) is allowed to
manipulate any thread.

An example overridden method implementation follows.

public class MySecurityManager extends SecurityManager {
public void checkAccess(Thread t) {

// A call. to super will throw an exception if someone
// is trying to modify a system thread.
super.checkAccess(t);

if (someCustomSecurityCheckForOtherThreadsFails()) {
// If the check fails, instead of throwing an
// exception, call checkPermission, which will

// throw an exception if needed.
checkPermission(new

RuntimePermi ssion("modi fyThread"));

}

public void checkAccess(ThreadGroup g);

This method was modified. If the thread group argumentis the system thread
group (that is, it has a null parent), then this method calls checkPermission

Page 177 of 275

Page 178 of 275

166

Page 178 of 275

MIGRATING JDK1.1-BASED SECURITY MANAGERS

with the RuntimePermission("modi fyThreadG roup”) permission. Appli-
cations that want a stricter policy should override this method, where
super. checkAccessorits equivalent should be called by the first statement
in the overridden method. Moreover, the resulting method also should check
to see if the caller has the RuntimePermi ssion("modi fyThreadGroup")
permission, andif it does, return silently. This is to ensure that code granted
that permission (such as the JDKitself) is allowed to manipulate any thread
group. ,

public void checkExit(int status);

This method was modified to call checkPermission with the Runtime-
Permission("exitVM") permission.If this method is overridden, then a call
to super.checkExit should be made atthe point the overridden method
would normally throw an exception.

public void checkExec(String cmd):

This method was modified to call checkPermission with a Fi lePermis-
sion. If cmd is an absolute path, thenit is passedas-is as the target for File-
Permission. If cmd is not absolute, then the special target <<ALL FILES>>is
used. This target is used becauseit is difficult to determine the actual path of
the commandthat will be executed on an individual platform due to such
things as environmentvariables. If this method is overridden, then a call to
super. checkExec should be madeat the point the overridden method would
normally throw an exception.

public void checkLink(String lib);

This method was modified to call checkPermission with the Runtime-
Permission("loadLibrary."+1ib) permission. If this method is overrid-
den, then a call to super.checkLink should be made at the point the
overridden method would normally throw an exception.
public void checkRead(FileDescriptor fd);

This method was modified to call checkPermission with the Runtime-
Permission("readFileDescriptor") permission. If this method is over-
ridden, then a call to super.checkRead should be made at the point the
overridden method would normally throw an exception.
public vaid check ead(String file);

This method was modilied to call checkPermission with the FilePermis-
sion(file,"read") Penaission If this method is overridden, then a call tosuper. checkRead should be madeat the point the overridden method would
normally throw an exception.

Page 179 of 275

CUSTOMIZING THE SECURITY ARCHITECTURE 167

@ public void checkRead(String file, Object context);

This method was modified. If context is an instance of AccessControl-

Context, then the AccessControlContext. checkPermission method will

be invoked on the given context with the FilePermission(file,"read")
permission. If contextis not an instance of AccessControlContext, then a
SecurityException is thrown. If this method is overridden, then a call to

super. checkRead should be made at the point the overridden method would
normally throw an exception.

public void checkWrite(FileDescriptor fd);

This method was modified to call checkPermission with the permission
RuntimePermission("writeFileDescriptor"). If this method is overrid-
den, then a call to super.checkWrite should be madeat the point the over-
ridden method would normally throw an exception.

@ public void checkWrite(String file);

This method was modified to call checkPermission with the permission
FilePermission(file,"write"). If this method is overridden, then a call
to super.checkWrite should be made at the point the overridden method
would normally throw an exception.

@ public void checkDelete(String file);

This method was modified to call checkPermission with the FilePermis-
sion(file,"delete") permission. If this method is overridden, then a call
to super.checkDelete should be made at the point the overridden method
would normally throw an exception.

@ public void checkConnect(String host, int port);

This method was modified to call the checkPermission method with the per-
mission SocketPermission(host+":"+port,''connect") if the port is not
-1 and with SocketPermission(host,"'resolve") otherwise. This behav-

ior is consistent with JDK 1.1, where a port equal to -1 indicates that an IP
address lookup is being performed.If this method is overridden, then a call to
super.checkConnect should be made at the point the overridden method
would normally throw an exception.

public void checkConnect(String host, int port, Object context);

This method was modified. If context is an instance of AccessControl-

Context and if the port is not -1, then this method invokes the method
AccessControlContext.checkPermission on the given context with the

Page 179 of 275

Page 180 of 275

Page 180 of 275

168
MIGRATING JDK I.1-BASED SECURITY MANAGERS

SocketPermission(host+":"+port, "connect") permission. If the port
is —1, it uses SocketPermission(host,"resolve"). If context is not an
instance of AccessControlContext, then a security exception is thrown. If
this method is overridden, then a call to super.checkConnect should be
madeat the point the overridden method would normally throw an exception.
public void checkListen(int port);

This method was modified. This method calls checkPermission with
SocketPermission("local host:"+port,"listen") if the port is not @
and with SocketPermission("localhost:1024—" , listen") otherwise.
If this method is overridden,a call to super. checkListen should be madeat
the point the overridden method would normally throw an exception.
public void checkAccept (String host, int port);

This method was modified to call checkPermission with the permission
SocketPermission(host+":"+port, “accept"). If this methodis overrid-
den, then a call to super. chec kAccept should be made at the point the over-
ridden method would normally throw an exception.

public void checkMulticast(InetAddress maddr);

This method was modified to call the checkPe rmission method with
the permission SocketPermission(maddr.getHostAddress(),"accept,
connect"). If this method is overridden, then a call to super. check-
Multicast should be madeat the point the overridden method would
normally throw an exception.

public void checkMulticast(InetAddress maddr, byte tt1);

This method was modified to call checkPermission with the permission
SocketPermission(maddr.getHostAddress() "accept, connect"). If this
methodis overridden, then a call to super. checkMulticast should be made at
the point the overridden method would normally throw an exception.
public void checkPropertiesAccess();

This method was modified to call checkPermission with the PropertyPer-
mission("*", "read,write") permission. If this method is overridden,
then a call to super..checkPropertiesAccess should be made at the point
the overridden method\would normally throw an exception.

\

public void checkPrepe rtyAccess(String key):
This method was modifiedto call checkPermission with the Prope rtyPer-
mission(key, "read'') perinission. If this method is overridden, then a call

a

Page 181 of 275

CUSTOMIZING THE SECURITYARCHITECTURE 169

to super. checkPropertyAccess should be madeat the point the overridden
method would normally throw an exception.

@ public boolean checkTopLevelWindow(Object window);

This method was modified to call checkPermission with the permission
AWTPermission("showWindowwithoutWarningBanner"). It returns true
if a SecurityExceptionis not thrown and false otherwise. If this methodis
overridden, then a call to super. checkTopLevelWindow should be madeat
the point the overridden method would normally return false and the value
of super. checkTopLeve1Wi ndow should be returned. For example:

public class MySecurityManager extends SecurityManager {
public void checkTopLevelWindow(Object window) {

if (someCustomSecurityCheckFails()) ¢{
return super.checkTopLeve1Window(window);

} else return true;

}

@ public void checkPrintJobAccess();

This method was modified to call checkPermission with the Runtime-

Permission("queuePrintJob") permission. If this method is overridden,
then a call to super. checkPrintJobAccess should be madeat the point the
overridden method would normally throw an exception.

@ public void checkSystemClipboardAccess();

This method was modified to call checkPermission with the AWTPermis-

sion("accessClipboard") permission.If this method is overridden, then a
call to super.checkSystemClipboardAccess should be made at the point
the overridden method would normally throw an exception.

@ public void checkAwtEventQueueAccess();

This method was modified to call checkPermission with the AWTPermis-

sion("accessEventQueue") permission. If this method is overridden, then
a call to super.checkAwtEventQueueAccess should be madeat the point
the overridden method would normally throw an exception.

@ public void checkPackageAccess(String pkg);

This method was modified. It first obtains a comma-separatedlist of restricted
packages via a call to java.security.Security.getProperty("pack-
age.access") and checks to see if pkg starts with or equals any of the

Page 181 of 275

Page 182 of 275Page 182 of 275

170
MIGRATING JDK 1.1-BASED SECURITY MANAGERS

packages. If it does, then checkPermission is called with the Runtime-
Permission("accessClassInPackage."+pkg) permission. If this method ~
is overridden, then super. checkPackageAccess should be called as thefirst
line in the overridden method.

public void checkPackageDefinition(String pkg);

This method was modified.It first obtains a comma-separatedlist of restricted
packages via a call to java.security. Security. getProperty("pack-
age.definition") and checksto see if pkg starts with or equals any of the
packages. If it does, then checkPermissiongets called with the Runtime-
Permission("defineClassInPackage."+pkg) permission. If this method
is overridden, then super. checkPackageDefini tion should be called as the
first line in the overridden method.

public void checkSetFactory();

This method was modified to call checkPermission with the Runtime-
Permission("setFactory") permission. If this methodis overridden, then
a call to super. checkSetFactory should be madeat the point the overrid-
den method would normally throw an exception.

public void checkMemberAccess(Class clazz, int which);

This method was modified. The default policy is to allow access to public
members, as well as access to classes that have the sameclass loader as the
caller. In all other cases, it calls checkPermission with the Runtime-
Permission("accessDeclaredMembers") permission. If this method is
overridden,then a call to super. checkMemberAccess cannot be made,as the
default implementation of checkMemberAccessrelies on the fact that the

. code being checked is at a location on the stack with depth 4, as in the
following.

someCaller[3]

java. lang.Class.someReflectionAPI [2]
java.lang.Class.checkMemberAccess [1]
SecurityManager.checkMemberAccess [0]

To emulate this behavior, /you would need to call getClassContext and
examine the class loader of the class at index 3, just as the default check-
MemberAccess method does.

if (which != Member . PUBLIC) {
Class stack[] = getClassContext();\\

\

Page 183 of 275

CUSTOMIZING THE SECURITYARCHITECTURE 171

if ((stack, length<4). | |

(stack[3].getClassLoader() != clazz.getClassLoader())) {
if C(checkMemberAccessPermission == null)

checkMemberAccessPermission =

new RuntimePermission("accessDeclaredMembers"):
checkPermission(checkMemberAccessPermission) ;

}

This is the only security manager method in JDK 1.2 thatis still based on a
caller’s depth. This is to allowacallerto reflect on classes from the sameclass
loader from whichit came.

@ public void checkSecurityAccess (String target);

This method was modified to call checkPermission with a Security-
Permission object for the given target. If this method is overridden, then a
call to super. checkSecurityAccess should be made atthe point the over-
ridden method would normally throw an exception.

public ThreadGroup getThreadGroup():;

This method is unchanged.

Page 183 of 275

Page 184 of 275

CHAPTER 6

Object Security

Ifwe cannot secureall ourrights, let us secure what we can.
—ThomasJefferson

A, you develop applications using the Java language and platform, and espe-
cially when you consider security features, you knowingly or unknowingly
depend on the underlying object orientation, such as data encapsulation, object
name space partition, and type safety. This dependenceis also evident in the pro-
tection of the runtime’sinternal state, which is often represented and maintained
as Java objects. For example, when using the Java RMI (Remote Method Invoca-
tion) package to build distributed Java applications that span across multiple
JVMs,you will sometimesfindit convenient or even necessary to protectthe state
of an object for integrity and confidentiality whenthestate is ‘transported from one
machine to another. Thesesecurity requirements exist when concerned objects are
inside a runtime system (for example,in memory), in transit (for example, stored
in IP packets), or stored externally (for example, saved on disk).

This meansthat there is a whole range of object-level security issues that must
be correctly dealt with during system development, in addition to code-signing
and policy-driven, fine-grained access control mechanisms. This chapter provides
a number of techniques for achieving secure programming in Java. It also
describes three new interfaces for signing, sealing (encrypting), and guarding Java
objects. It begins by discussing some good general practices.

6.1 Security Exceptions

It is not uncommonfora piece of codeto catch an exception thrown from lower-
level code and then either mask this by translating the exception into a higher-
level exception andrethrowing it or do some processing that results basically in its
“swallowing”the exception.

173

Page 184 of 275

Page 185 of 275Page 185 of 275

174 FIELDS AND METHODS

For example, suppose you write a class MyPasswordChecker that checks a
user’s password when the userlogs in. If the password check fails because the
username does notexist, it is bad practice to let the user know that the name has
been given wrongly, as doing this would help an attacker to guess available user-
names. Instead, a more general error message should be given, such as “login
failed.”

public class MyPasswordChecker {

public void check(String name, String password)
throws LoginFailureException {

try { ,
// Call the real password checking routine.

} catch (NoSuchUserException e) {

throw new LoginFailureException():
}

}

However, you should be extremely careful when writing code that masks
or swallows security exceptions (such as AccessControlException and
SecurityException) because such an action could potentially mask serious
security breaches. Sometimes developers get annoyed by a security exception and
take matters into their own hands bysubstituting their own security policy deci-
sion for that of AccessControl ler or SecurityManager. This attitude of “just-
make-the-code-work”is very dangerous, especially if the code being developed
might be run as system code andthusbefully trusted. Often, software design can
be improvedto avoid havingto catch and swallow undesirable exceptions.

6.2 Fields and Methods

The Java language provides four access modes, which should be used properly:
public, protected, package private, and private. A common example of improper
use is the inexperienced programmer who, when writing a time zoneclass, mis-
takenly declaresfields or jvariables that are publicly accessible:

public TimeZone de¢faultZone:

This design has a number of problems. First, any person or code (including

untrusted code) can aedess this field and directly change the value of the defaulttime zone. Second, because multiple threads can access this field, some synchro-
nization is needed. Following is a better design.

Page 186 of 275

OBJECT SECURITY 175
private TimeZone defaultZone= null;
public synchronized void setDefault(TimeZone zone) {

defaultZone = zone;
}

Supposethat after product release, you decidethat a security check is needed
to guard against unauthorized modification to the value of the default time zone,
defaultZone. You can add a couplelines of security code for the next release of
the product, as follows.

private TimeZone defaultZone= null;
public synchronized void setDefault(TimeZone zone) {

AccessController. checkPermission(new
TimeZonePermission("setDefault"));

defaultZone = zone;
}

A critical point aboutthis product updateis that it is done in a waythat does not
break backward compatibility. That is, a third-party application that runs on the
earlier version of the release will still have the same API available when running
on the newrelease. If the TimeZone was directly exposed as a public field, as in
the first design, a security check (or a synchronization feature) could not be added
without changing existing APIs.

To recap, never design public fields or variables that can be accessed directly.
Instead, declare these fields as private and provide public accessor methods that
mediate access to such fields. Moreover, decide carefully, for every single public
method, if any such access is sensitive and might require a security check. If a
field is intended to be a constant, it can be public but should be made static and
final, as discussed in the next section.

Even when methodsorfields are protected, as long as the class is not final a
subclass can access them. Because an attacker can easily provide a subclass, secu-
rity can be compromised. Similarly, package private methods andfields can be
accessed by any class in the same package. Unless the packageis sealed properly,
an attacker can easily write a class and declare thatclass to belong to the package
and thus gain access to the package’s private methodsandfields. Always review
all protected and package private methodsandfields to see if they should be made
private, and if not, whether they should be accessed via accessor methodsthat per-
form security checks.

Page 186 of 275

Page 187 of 275

Page 187 of 275

176 PRIVATE OBJECT STATE AND OBJECT IMMUTABILITY

6.3 Static Fields

Astatic field is a per-class field in the sensethatits value is shared by all objects
instantiated from the sameclass. Static fields are a minefield that can cause unin-
tended interactions between supposedly independent subsystems. They offer even
less protection than do per-object fields. This is because in the latter case, you
must have an object’s reference in order to access the field, whereas in the former
case, anyone can accessthefield simply by using the class namedirectly.

As a result, directly exposed, nonfinal public static variables are extremely
bad newsfor security. Never design a class with such variables. Instead, declare
them as static private, with appropriate public static accessor methods. Youstill
haveto decide carefully if these accessor methods should invoke security checks.

If you have a product already released with such dangerousvariables, you
should review all nonfinal public static variables and carefully assess the potential
damage they can cause. You should eliminate the worst offenders even though
doing so breaks backward compatibility. For the rest, if you must keep them for
backward compatibility, you can only hopethat no one can come upwith a way to
exploit them.

Another dangerousaspect ofstatic fields is that they can create type safety
problems if used casually. For example, a part of the system code might be
designedto sharea static field internally and have defineda static field Foo. If Foo
is typed too loosely, an untrusted applet or application can plant an object of a
subtype or a type that is incompatible with what the system programmerintended
(for example, when Foois declared to be of type java. lang .Object). This kind
of substitution can create very subtle security problems that are difficult to detect
and correct.

6.4 Private Object State and Object Immutability

Mostobjects have private, internal states that should not be randomly modified.
Often, other objects need to query the state information. Many programmers
implement the query method using a simple return statement, as in the following
example. /

public MyClass {| /
private poolean status = false;
public void setStatus(boolean s) {»\

status = s}

} \

Page 188 of 275

OBJECT SECURITY

public boolean getStatus() {
return s;

i

}

No problem so far. However, if status is not a simple boolean but rather an
atray of boolean,serious problemscan occur, as here.

public MyClass {

private boolean[] status = null;

public boolean[] getStatus() {
return s;

}

}

In this example, once another object obtains reference to status s, it can change
the value of s without MyClass’s consent. This is because, unlike boolean, an
array of booleans(or an array of anything) is mutable. Such a consequence might
not be what the designer of MyClass intended, since uncontrolled modification to
internal state can lead to incorrect or even maliciousresults.

There is a twist to this problem.In the example with an array of booleans, the
simplest way to implement the setStatus methodis as follows.

public void setStatus(boolean[] s) {
status = s;

}

Again, because s is mutable, even after MyClass has “taken possession of”it, the
object that supplied s to MyClasscan still change the value of s. Many program-
mers overlookthis possibility.

Thus you should never return a mutable objectto potentially malicious code.
Further, you should never directly store a mutable object (by assigning the array
reference to an internal variable) if the source of the object can be malicious.
Because any code can potentially be malicious, the best practice is to clone or
copythe objects before returningor storing them.

This discussion brings up the important point of being able to distinguish
immutable objects from mutable onesandofthe benefit of making objects immu-
table when possible. For example, array, Vector, and Hashtable are mutable.
Evenif an array contains only immutable objects (such as String), the arrayitself
is still mutable and anyone with a referenceto the array can changeentire objects
containedin the array.

Page 188 of 275

177

Page 189 of 275

Page 189 of 275

178 PRIVILEGED CODE

Figuring out whether an object is immutable is not always easy. This is
because immutability depends on what fields and methods are available and
whether objects used in those cases are also immutable. This analysis might need
to be donerecursively, until all loose ends are tracked down and resolved to be
immutable.

A final word on immutable objects. Because a password is typically seen as a
string of characters,it is common to see Java programs where a Stringis used to
represent a password. Given that a String is immutable, however, there is no way
for the application program to erase it whenit is no longer needed.Its fateisleft
entirely with the JVM’s garbage collector. For better security, you should use
char[] to represent passwords and wipe out the contentofthe array after use.

6.5 Privileged Code

Recall that you can use the PrivilegedActioninterface to mark a segmentof the
code as privileged in the sense that it can then make useof all of its own privi-
leges, independentofits callers’ privileges. If a piece of trusted code (such as Sys-
tem code) is privileged, it can load libraries (including native code), read anyfile,
read system properties, and so on. This privileged code segmentisa critical region
in which mistakes can be made and errors can becostly.

When writing privileged code, always try to keep it as short as possible. This
practice not only reduces the chance of making mistakes but also makes auditing
the code easier so as to ensure it is accessing only the minimal amountof pro-
tected resources.

Also, watch out for the use of tainted variables, that is, variables that are set
by the caller (that is, passed in as parameters) and thusare not underthe control of
the privileged code. For example, consider the following privileged code to open a
file.

public FileInputStream getFileToRead(String filename) {
FileInputStream fn =

(FileInputStream) AccessController.doPrivileged(new
PrivilegedAction() {

public Object run() {

return new FileInputStream(filename);
}

i;

Page 190 of 275

ES
OBJECT SECURITY

This code can be used to openafontfile when displaying images for applets, even
though the original calling applet classes would not have accessto the actual font
file. However, this example has two flaws. Oneis that the method is public, so
anyone can call it. The otheris that there is no sanity check on the filename, so the
code blindly opens any file requested by the caller. Either flaw alone can be a
problem.! Combined, they create the worst possible situation, as now anyone can
call this method to open any file desired (assuming the privileged code has the
appropriate permissions, which any system code does),

The problem does not stop at public methods. Evenif you change getFile-
ToRead to be nonpublic, another public ‘method can turn around and invoke
getFi leToRead.In this case, once again a tainted variable is used indirectly by
privileged code andsecurity could be compromised.

The most conservative way to design such methods is to make them private so
that they are not callable from outside of their ownclass.

6.6 Serialization

Serialization is a feature that allows a class’s or object’s nontransient state to be
serialized, for example for purposes of transporting the class or object to another
machineand then deserializing it at the destination. RMIusesserialization exten-
sively, as do other packages. Default implementations of two methods, write-
Object and readObject, are invoked for serialization and deserialization,
respectively. You also can write, for a serializable class, writeObject and
readObject methods to customize how serialization and deserialization are done.

Security-conscious implementors should keep in mind that a serializable
class’s readObject methodis, in effect, a public constructor that takes as input
the values for each ofthe serialized object’s nontransientfields and creates a new
object. As the input to readObject can be provided by an adversary whosegoalis
to compromise the object under construction, you cannot safely assumethat the
input content was generated via the serialization of a properly constructed object
of the correct type. As a result, if readObject blindly takes its input, various
security problemscan occur. This is true whether readObject is implicit (thatis,
default provided by the JDK implementation) or explicit (that is, provided by the
serializable class in question). In fact, the default implementation of readObject
does novalidity checking whatsoever.

In gooddefensive programming,if a class has any private or package private
fields on which it maintains invariants, an explicit readObject method should be

' A differentset of problemscan occurifuntrusted code can take advantageofthefirst prob-
lem and cause a large numberofarbitrary files to be opened.

Page 190 of 275

179

Page 191 of 275

| | 180 SERIALIZATION
provided that checks that these invariants are satisfied, as in the following
example.

private void readObject(ObjectInputStream s) throws
IOException, ClassNotFoundException {

s.defaultReadObject();

if (<invariants are not satisfied>)
throw new java.io.StreamCorruptedException();:

}

Further, if a class has any object reference fields that are private or package
private, and the class dependson the fact that these object references are not avail-
able outside of the class (or package), the objects referenced by those fields must
be defensively copied aspart of the deserialization process. That is, the subobjects
deserialized from the stream should be treated as untrusted input in that newly cre-
ated objects, initialized to have the same value as the deserialized subobjects,
should be substituted for the subobjects by the readObject method.

For example, suppose an object has a private byte array field, b, that must
remain private. Then b should be a clone of the result from readObject, as
follows.

private void readObject(ObjectInputStream s) throws

IOException, ClassNotFoundException {
s.defaultReadObject();
b = (byte[])b.clone();

if (<invariants are not satisfied>)

throw new java.io.StreamCorruptedException();
}

Notethat calling cloneis not always the right way to defensively copy a sub-
object. If the clone method cannotbe counted on to produce an independent copy
(and notto “steal” a reference to the copy), for example, whentheclass of the sub-
objectis notfinal, an alternative way should be used to produce the copy.

As a conservative alternative to using an explicit readObject method to
ensure the integrity of deserialized objects, you can use a readResolve method
instead, calling a public constructor from within that method. This absolutely
guaranteesthat the deserialized object is one that could have been produced with a
public constructor.

Here are some more points to remember when implementing a Serializ-
able interface. First, use the transient keyword for a field that contain direct
handles to system resources and information relative to an address space, Other-

1 wise, if a resource such asafile handle is not declared transient, then while the
objectis serialized, that part of the state can be altered. This results in the object,

Page 191 of 275

Page 192 of 275

OBJECT SECURITY 181

after being deserialized, having improper access to resources and thereby causing
security breachesorerrors. In fact, for correctness reasons, system-specific refer-
ences should be declared transient, since they make no sensein a different envi-
ronment in which the object is to be deserialized.

Second, as stated earlier in the section, you should guarantee that a deserial-
ized object does not have state that violates some invariants by havingaclass
define its own deserializing methods. Because deserializing an object is a kind of
object creation, if untrusted codehasa restriction regarding object creation, then
you must ensure that that untrusted code has the samerestriction when it deserial-

izes the object. To illustrate the problem,~consider the situation when an applet
creates a frame. Security requires that a frame always be created to include a
warning label “This is an applet window.”If the frame is serialized (by anyone,
including the applet) and then deserialized by an applet, you must ensure that the
frame comes back up with the same warning banner.

Finally, when the state of a serialized object is outside of the JVM, such as
whenbeing transported to another machine, the state can potentially be corrupted.
Although such corruption cannot be directly prevented by the Java security sys-
tem, measures can be taken to detect if corruption has occurred. One wayis to
encrypt the byte stream produced by serialization. Another way is to use
SignedObject and SealedObject, which are covered later in this chapter. How-
ever, such measures do not come free, as cryptographic keys must be managed,
andthis is far from a trivial task.

6.7 Inner Classes

The way inner class is currently defined has some security implications. Suppose
that class A hasa private field that is accessible only from within the classitself.
Further suppose that A is rewritten to use inner classes and now encloses an inner

class B that requires accessto the private field. During compilation, the compiler
automatically inserts into the definition of A a (packageprivate) access method to
the private field so that B can call this method. A side effect of this design is that
any class in the same package as A and B will be able to call the access method
and thus access the private field that had been forbiddento it prior to the use of
innerclasses. Transforminga field from private to package private does not natu-
rally lead to security problems, but you must take care to examine the conse-
quence of such transformations.

Theuse of innerclasses has anotherdesign side effect. Suppose that class B is
a protected memberof class A. After compilation, B’s classfile defines itself as a
public class, but an attribute in the class file correctly records the protection mode
bit. Similarly, if B is a private member ofA, B’s classfile definesitself as having

Page 192 of 275

Page 193 of 275

| 182

Page 193 of 275

SIGNING OBJECTS

package scope with an attribute that declares the true access protection mode. This
side effect is not a problem byitself. However, any implementation of the JVM
must perform the extra check and honorthetrue protection attributes.

6.8 Native Methods

Be careful when using native methods. Native methods, by definition, are outside
of the Java security system. Neither the security manager nor any other Java secu-
rity mechanism is designed to control the behavior of native code. Thuserrors or
security breaches in native code can be a lot more deadly. You should examine
native methodsfor the parameters they take and the values they return. In particu-
lar, if a native method does something that effectively bypasses Java security
checks, you must be very careful about the access mode of the method. If the
mode is public, then anyone can call the method. You must examine the conse-
quences and decideif that method should not be madeprivate.

6.9 Signing Objects

Recall the earlier discussion about the need to protect an object whenit is in seri-
alized state and duringtransit. In fact, quite a few situations exist when the authen-
ticity of an object andits state must be assured. Following are two examples.

¢ An object acting as an authentication or authorization token is passed around
internally to any Java runtimeas part of the security system functions. Such a
token mustbe unforgeable, and any (innocent or malicious) modificationto its
state must be detected.

¢ An object is transported across machines (JVMs), and its authenticity still
needsto be verified.

¢ An object’s state is stored outside of the Java runtime, for example, onto a disk
for JVM restarting purposes.

The class java.security.SignedObject defines interfaces to sign objects. A
series of nested SignedObjects can be used to constructa logical sequence of
signatures that resemble a chain of authorization and delegation.

A SignedObject contains the signed object and its signature. The signed
object must be serializable. Informally speaking, a Serializable object is an
object that implements the Serial izab1e interface. In this way, the interface sup-

Page 194 of 275

OBJECT SECURITY

Snapshot

Original object ohare:

Figure 6.1 Signed objects.

ports readObject() and writeObject() method calls that convert an object’s
in-memory representation to and from an “on-the-wire” format that can be trans-
mitted via input and outputstreams provided on the Java platform.

If the signature is not null, it contains a valid digital signature of the signed
object, as depicted in Figure 6.1.

The underlying signing algorithm can be, amongothers, the NIST standard
DSA,using DSA and SHA-1. The algorithm is specified using the same conven-
tion for signatures, such as SHA-IwithDSA. Sun’s JDK always has a built-in
implementation of DSAwithSHA-1.

The signed object is a “deep copy”(in serialized form) of an original object.
Once the copy is made, further manipulation of the original object has no side
effect on the copy. In fact, a SignedObject is immutable.

The signature of the SignedObjectclassis as follows. For brevity, exception
declarationsare not listed.

public SignedObject(Serializable object, PrivateKey signingKey,
Signature signingEngine)

public Object getObject();

public byte[] getSignature();
public String getAlgorithm():

public boolean verify(PublicKey veri ficationKkey,
Signature verificationEngine);

This class is intendedto be subclassed in the future so as to allow multiple sig-
natures on the same signed object. In this case, existing methodcalls in this base
class are fully compatible semantically. In particular, any get method returns the
uniquevalue if there is only one signature and an arbitrary value from the set of
signaturesif there is more than one signature.

The underlying signing algorithm is designated by a Signature parameter to
the sign and verify methodcalls. A typical usage for signing follows.

Page 194 of 275

183

Page 195 of 275

Page 195 of 275

184 SIGNING OBJECTS

Signature signingEngine =

Signature. getInstance(algorithm, provider);
SignedObject so =

new SignedObject(myobject, privatekey, signingEngine);

A typical usage for verification and object retrieval is as follows (having
received SignedObject so): ,

Signature verificationEngine =
Signature.getInstance(algorithm, provider);

if (so.verify(publickey, veri ficationEngine))
try { ,

Object myobj = so.getObject();
} catch (ClassNotFoundException e) {};

Obviously, for verification to succeed, the specified public key must be the
public key correspondingto the private key used to generate the signature. Also,
the security of SignedObject dependson the underlying digital signature algo-
rithm and key management system not having been compromised. The signing or
verification engine does not need to beinitialized, as it will be reinitialized inside
the verify method.

getObject() ina sense loses typing information by returning an object of the
type Object, so the signed objects likely will be used between collaborating par-
ties so that the correct casting can be done. For example, the previous code can be
changedas follows.

String myobject = new String("Greetings.");

if (so.verify(publickey, verificationEngine))
try f{

String myobj = (String) so.getObject();
} catch (ClassNotFoundException e) {};

In fact, it is probably more commonto subclass $i gnedObject so that the
correct casting is performed inside the subclass. In this way,static typing informa-
tion is better preserved.

More importantly, for flexibility reasons, the verify method allows custom-
ized signature engines, which can implement signature algorithms that are not
installed formally as part of a cryptography provider. However, it is crucial that
the programmer writing the verifier code be aware what Signature engine is
being used,as its own implementation of veri fy is invokedto verify a signature.
In other words, a malicious Signature might choose to always return true on
verification in an attempt to bypass security checks. For similar reasons, verify
in the SignedObject classis final.

Page 196 of 275

OBJECT SECURITY

Note that signing objects is different from signing JAR files that contain class
files, a feature that first appeared in JDK 1.1.x, Navigator 3.x, and IE 3.x. Signing
code facilitates the authentication of static code (bytecode in the case of Java tech-
nology, native code in the case of Microsoft’s Authenticode), while signing
objects deals with objects that might represent a complex transaction application
complete with active state information.

6.10 Sealing Objects

The previous section discussed the SignedObject class, which provides object
authenticity or integrity. The class SealedObject, on the other hand, protects an
object’s confidentiality.2 These two classes may be combinedto provide integrity
and confidentiality at the same time.In fact, from a technical design perspective,
designing the two classes into one would have been a better choice. In reality,
class SealedObject is not even in the java.security package. Instead,it is
included in the javax.crypto package as part of the Java Cryptography Exten-
sion (JCE) 1.2. This design choice was influenced solely by current U.S. regula-
tions regarding the exporting of encryption software.

Given any Serializable object, you can create a SealedObject that
embeds in its content the original object, in serialized format. Then, a crypto-
graphic algorithm, such as DES, can be applied to the content to protectits confi-
dentiality. The encrypted content can later be decrypted by using the
corresponding algorithm with the correct decryption key.

After decryption, the original content can be obtained in object form through
deserialization. The content, while encrypted, is not available to anyone who does
not possess the correct decryption key, assuming that the cryptosystem is secure.

The signature of the SealedObject class is as follows. Exception declara-
tions have beenleft out.

2 For those whoare interested in researching the history of secure objects, earlier work on
secure network objects using Modula-3 and Oblique [78]is related to SignedObject and
SealedObject in that there was the high-level abstraction of secure remote object invoca-
tion. However, this abstraction was implemented by establishing a secure communication
channel between the two end points and using this channel to send plain object and data.In
other words, there was no explicit concept of signing and sealing objects directly.
Experience in security system design indicates that blindly signing encrypted data is some-
times dangerous. Thus you should create and sign a SignedObjectfirst and then use that
SignedObject to create a SealedObject.

Page 196 of 275

185

Page 197 of 275

Page 197 of 275

186
GUARDING OBJECTS

public SealedObject(Serializable object, Cipher c);
public final Object getObject(Cipher, c);
public final Object getObject(Key, k)
public final Object getObject(Key, k, String provider);

A typical usageofthis class is illustrated with the following code segments.
First, a DES key is generated and the DES cipheris initialized.

KeyGenerator keyGen = KeyGenerator.getInstance("DES");
SecretKey desKey = keyGen.generateKey();
Cipher cipher = Cipher. getInstance("DES");
cipher. init(Cipher. ENCRYPT_MODE, desKey);

Next, a SealedObjectis created and encrypted. Note that the Cipher object
must be fully initialized with the correct algorithm, key, padding scheme, and so
on, before being applied to a SealedObject.

String s = new String("Greetings");
SealedObject so = new SealedObject(s, cipher);

Later, the original objectis decrypted andretrieved.

cipher. init(Cipher.DECRYPT_MODE, desKey);
try {

String s = (String) so.getObject(cipher):
} catch (ClassNotFoundException e) {};

As the case with SignedObject, SealedObject may be subclassed to pro-
vide better static typing information.

6.11 Guarding Objects

Apart from SignedObjectthat provides object authenticity, JDK 1.2 introduced an
interface, Guard, and a class, GuardedObject, that can be used for object-level
access control. A java.securi ty.GuardedObject is an object that is used to
protect access to another object. Once an object is encapsulated by a Guarded-
Object, access to that object is controlled by the getObject method. This
method controls access to the object by invoking the checkGuard method onthe
java. security.Guard objectthat is guarding access. If access is not allowed, a
SecurityException will be thrown. This is illustrated in Figure 6.2, where solid
lines represent method calls and dotted lines represent object references.

Page 198 of 275

OBJECT SECURITY 187

Requestor

Request
Lertt)

eliteaeltlee!

(ciiea)

re referenceoP

Protected object

Figure 6.2. Guard and GuardedObject.

Here, when a requestor asks for an object that is guarded by a GuardedObject
with a particular Guard, first the Guard is consulted, and then the reference to the
desired object is returned to the requestor, if the Guard allowsit.

One major motivation for having the GuardedObject class is that often the |
supplier of a resource is not in the same execution context (such as a thread) as the
consumerofthat resource. In this case, a security check within the security con-
text of the supplier is often inappropriate because the check should occur within
the security context of the consumer.

For example, whena file server thread respondsto a request to openafile for
reading and this request comes from a different environment, the decision to sup-
ply the file must take into account information about the requestor, such asits
AccessControlContext. However, sometimes the consumer cannot provide the
supplier with such information, for several reasons.

¢ The consumer program does not always know aheadof time whatinformation
should be provided(this is quite possible in a dynamically changing environ-
ment), and it is undesirable (for example, for performance reasons) to engage
in a dialog or negotiation for each request.

¢ The consumer regards information aboutits execution environmentas being
too security-sensitive to pass on to another party. |

¢ There is too much information or data to pass on.

¢ Information about the execution environmentof the consumercannot be inter-
preted by the supplier.

To make access control in these situations more uniform and easier to pro-

gram, GuardedObject was designed so that the supplier of the resource can cre-
ate an object representing the resource and a GuardedObject containing an
embedded resource object and then provide the GuardedObject to the consumer.
In creating the Gua rdedObject, the supplier also specifies a Guard object such

Page 198 of 275

Page 199 of 275

188 GUARDING OBJECTS ©

that anyone (including the consumer) can obtain the resource object only when
certain checks (for example, security checks) inside the Guard are satisfied.
Guardis an interface, so any object can choose to become a Guard.

Using GuardedObject has several benefits.

¢ You can correctly embedthe protection mechanism together with the protected
object so that accessto the object is guaranteed to occur in a context in which
the protection mechanism will allow it.

¢ You can delay an accesscontrol decision from time of request to time of actual
access, thus simplifying server programs.

¢ You can replace often used access controllists with object stores and simply
store a set of GuardedObjects.

¢ The designer of a class does not need to specify the class’s protection seman-
tics, as long as any object instantiated from this class is protected within a
GuardedObject and the associated Guard object implements the correct secu-
rity checks.

¢ The same programmingpattern can be used to encapsulate an object’s protec-
tion mechanisms, which can differ for the object’s different method invoca-
tions, all inside a Guard.

Note that because the built-in base class java.security.Permission
implements the Guard interface, all permissionsof this type, including all permis-
sions(on file, network, runtime, and other resources) defined in JDK,are instantly
usable as Guard objects.

The interface Guard contains only one method:

void checkGuard(Object object);

Following is the signature of the GuardedObjectclass.

public GuardedObject(Object object, Guard guard);
public Object getObject();

6.11.1 Examples of Using GuardedObject

The following example uses GuardedObject to encapsulate an object’s protection
semantics completely inside an appropriate Guard object. Note, this is just an
example. There is no plan to massively change such classes in JDK to use
GuardedObject.

Page 199 of 275

Page 200 of 275

OBJECT SECURITY 189

The class java. io.FileInputStream is used as an example, and a stream is
created with a given filename, as follows:

FileInputStream fis = new FileInputStream("/a/b/c");

The implementation of this constructor must be aware that a security check needs
to be done, must understand what sort of check is appropriate, and also must
sprinkle all constructors with the same (or similar) checks.

This class may be rewritten as follows.First, the class java.security.Pe r-
mission is made a Guard object by the addition of a new method defined as
follows.

public abstract Permission implements Guard {

public void checkGuard() {

AccessController.checkPermission(this);

}

This implementation ensures that a proper access control check takes place within

the consumer context, when access to the stream is first requested.
Nowthe provider side of the code can be simply as follows.

FileInputStream fis = new FileInputStream("/a/b/c");

FilePermission p = new FilePermission("/a/b/c", “read");

GuardedObject g = new GuardedObject(fis, p);

After object g is passed to the consumer, the following code will recover the
FileInputStream, but only if the consumer is permitted to obtain read access to
the file "/a/b/c".

FileInputStream fis = (FileInputStream) g.getObject();

Note that the implementation of FileInputStream itself need not be secu-
rity-aware (as long as it is always protected by a GuardedQbject). This design
does not further perform security checks once a Fi leInputStream is returned to
the consumer. This is the same behavior implemented in the FileInputStream
class today.

Another potential application of GuardedObject is in the implementation of
deferred object requests in the Java IDL (interface definition language) or a simi-
lar product. The obvious implementation of this CORBA-style API is to spin a
separate thread in the ORB implementation to actually make the (deferred)
request. This new thread is created by the ORB implementation, so any informa-
tion about what code originated the requestis lost, thereby making security check-
ing difficult, if not impossible. With GuardedObject, the new thread can simply

Page 200 of 275

Page 201 of 275

Page 201 of 275

190 GUARDING OBJECTS

return a properly guarded object. This forces a security check to occur when the
requestor attempts to retrieve the object.

Guard and GuardedObject can be extended (subclassed) to implementarbi-
trary guarding semantics. For example, the Guard object can check for signature
information onclassfiles, thus resulting in a design that is similar to the Gate pat-
tern and the Permit class in the Java Electronic Commerce Framework [20]. In
fact, the guard concept in GuardedObject is similar to the well-known guard con-
cept in programming language research.It has been used elsewhere,albeit mostly
in specialized forms, for example as a pattern [16]. Its combination with
java.security.Permissionis a novel feature that makes Guard very powerful
for access control on the Java platform.

As another example, hypothetically we can radically rewrite the FileInput- -
Stream class as follows. For every constructor that does not take a Guard object g
as the parameter, a suitable Guard is automatically generated. For every access
method (such as read(bytes)), the uniform security check in the form of
g.checkGuard() is invokedfirst.

As with SignedObject, subclassing GuardedObject can better preserve
static typing information, where the base classes are intended to be used between
cooperating parties so that the receiving party should know what type of object to
expect.

Page 202 of 275

——_,_—HF

CHAPTER |

Programming Cryptography

Security is the chiefpretenceofcivilization.
—George Bernard Shaw

Basie: chapters briefly covered some ofthe basic concepts of cryptography, as
well as code signing andthe use of certificates, which dependon public-key cryp-
tosystems. This chapter goes behind the scenes to look at the Java Cryptography
Architecture (JCA)that underlies the APIs andthetools.

JCA first appeared in JDK 1.1. It had fairly limited functionalities that
included APIs for digital signatures and message digests. JDK 1.2 significantly
extends the JCA into a framework for accessing and developing cryptographic
functionality for the Java platform. Loosely speaking, JCA encompasses the parts
of the JDK 1.2 security API thatis related to cryptography, such as the new certif-
icate management infrastructure that supports X.509 v3 certificates. It also
includes a provider architecture that allows for multiple and interoperable cryp-
tography implementations, as well as a set of associated conventions and specifi-
cations.

JCA logically covers both the crypto APIs defined in JDK 1.2 and the JCE
(Java Cryptography Extension) 1.2, which provides features for encryption, key
exchange, MAC (message authentication code), and a numberof other encryp-
tion-related classes. Thus the JDK and JCE together provide a comprehensive set
of platform-independent cryptography APIs. Atthis time, the JCEis released sep-
arately as an extension to the JDK,in accordance with U. S. regulations concern-
ing the export of cryptography. This chapter covers architectural issues that span
JDK and JCEbut focuses detailed discussion only on thoseinterfaces that are part
of JDK.

* A companion book on JCE 1.2is planned.

Page 202 of 275

191

Page 203 of 275

Page 203 of 275

192
DESIGN PRINCIPLES

7.1 Design Principles

The design of JCAis guided by two principles:

¢ Algorithm independence and extensibility
¢ Implementation independence and interoperability

The aim of JCAis to let users of the API utilize cryptographic concepts, such as
digital signatures and message digests, without concern for the implementations
or even the algorithms being used to implement these concepts. At the sametime,
JCA provides standardized APIs so that developers can request Specific algo-rithms andspecific implementations.

Algorithm independenceis achieved by defining types of cryptographic ser-
vices classes, called service classes,that provide the functionality of these crypto-
graphic algorithms. Examples include the MessageDigest, Signature, and
KeyFactoryclasses.

Implementation independence is achievedby usingaprovider-based architec-
ture. I discussed the general idea of providers in Chapter 4. A providerin the con-
text of JCA means a Cryptographic Service Provider (CSP), a packageorset of
packages that implementone or more JCA cryptography services, such as digital
signature algorithms, Inessagedigest algorithms, and key conversion services. An
application may simply request a particular type of object (such as a Signature
object) that implements a particular service (such as the DSA signature algorithm)
and receive an implementation from one of the installed providers, If desired, it
may instead request an implementation from a specific provider. Providers may be
updated transparently to the application, for example when faster or more secure
versionsare available.

An example is random aumber generation. JDK 1.1 contains a platform-
independent implementation that can beinefficient on some machines. In addi-
tion, the implementation is hard-coded and cannotbe easily customized. JDK 1.2
enables you to easily configure a customized service that utilizes good random
number sources available on a particular platform, such as Linux.

Giventhe general nature of the API design, implementation interoperability is
obtainedin the sense that even though various implementations mighthavediffer-
ent characteristics, they can work with each other, such as using each other’s keys
or verifying each other’s signatures, For example, when the appropriate key fac-
tory implementations are installed, for the same algorithm a key generated by one
provider would be usable by another and a signature generated by one provider
would be verifiable by another. This would apply even though one provider might
be implemented in software, while the other is implemented in hardware and one

Page 204 of 275

PROGRAMMING CRYPTOGRAPHY 193

Applications

CSP #1 CSP #2 CSP #3

Figure 7.1. JCA architecture.

mightbe platform-independent, while the otheris platform-specific. The interface
designis also extensible in that new algorithmsthatfit in one of the supported ser-
vice classes can easily be added.

Figure 7.1 depicts the architectural outline of JCA. By following the two
design principles given earlier, JCA brings major benefits to the cryptographic
software market. On the one hand,application software developers have only one
set of APIs (JCA)to worry about, no matter what algorithms they choose to use or
whatprovider packagesthey install. On the other hand, crypto toolkit or library
vendors can compete with each other in intellectual property (for example, pat-
ented algorithms and techniques) and performance optimization, while maintain-
ing full interoperability with each otherat the level of JCA APIs.

7.2 Cryptographic Services and Service Providers

JCAintroduces the notion of the CSP. In JDK 1.1, a provider could, for example,
contain an implementation of one or moredigital signature algorithms, message
digest algorithms, and key generation algorithms. JDK 1.2 addsfive services:

¢ Key factories

¢ Keystore creation and key management

¢ Algorithm parameter management

Page 204 of 275

Page 205 of 275

Page 205 of 275

194
CRYPTOGRAPHIC SERVICES AND SERVICE PROVIDERS

¢ Algorithm parameter generation

Certificate factories

JDK 1.2 also enables a provider to supply a random number generation (RNG)
algorithm.

Each JDKinstallation typically has one or more provider packagesinstalled,
and users may add new providers statically or dynamically. Each provider is
referred to by a unique name. Users may configure their runtimes with different
providers and specify a preference order for each. JCA offers a set of APIs that
allow users to query which providersare installed and what services they support.
If the application requests a specific provider, only objects from that provider are
returned. If no specific provider is given, then a default provider is chosen. When
multiple providers are available, a preference orderis established. This is the order
in which providers are searched for requested services. When a requested service
is not provided by the most preferred provider, the next desirable provider is
examined, and so on.

For example, suppose you have two providers installed in your JVM,
Provider! and Provider2. Further suppose that Providerl implements
SHAIwithDSA and MD5 while Provider2 implements SHAIwithDSA,
MD5withRSA, and MDS.

If Providerl has preference order 1 (the highest priority) and Provider2 has
preference order2, then the following behaviorwill occur.

¢ Ifyou are looking for an MDS5 implementation, and both providers supply
such an implementation, the Provider! implementation is returned because
Provider! has the highest priority and thus is searchedfirst.

¢ If you are looking for an MD5withRSA signature algorithm, Provider!is first
searched. No implementation is found, so Provider2 is searched. An imple-
mentation is found there and returned,

¢ If you are looking for a SHA1withRSAsignature algorithm, neither installed
provider implementsit, so a NoSuchAlgorithmExceptionis raised.

Sun’s version of the Java runtime environment comes standard with a default
provider, “SUN.” Other Java runtime environments might not necessarily supply

Page 206 of 275

PROGRAMMING CRYPTOGRAPHY

the “SUN”provider. The “SUN”provider package includes implementation of the
following:

¢ The Digital Signature Algorithm (DSA), described in NIST FIPS 186

¢ The MDS (RFC 1321) and SHA-1 (NIST FIPS 180-1) message digest algo-
rithms

¢ ADSAkeypair generator for generating a pair of public and private keys suit-
able for the DSA algorithm

¢ A DSAalgorithm parameter generator

¢ ADSAalgorithm parameter manager

¢ A DSA key factory providing bidirectional conversions between (opaque)
DSAprivate and public key objects and their underlying key material

¢ A proprietary SHA1PRNGpseudorandom numbergeneration algorithm, fol-
lowing the recommendationsin the IEEE P1363 standard

¢ A certificate factory for X.509 certificates and CRLs (Certificate Revocation
Lists)

¢ Akeystore for the proprietary keystore type named “JKS”

A service class defines a cryptographic service in an abstract fashion without
a concrete implementation. A cryptographic service is always associated with a
particular algorithm or type. It either

provides cryptographic operations (like those for digital signatures and mes-
sage digests),

generates or supplies the cryptographic material (keys or parameters) required
for cryptographic operations, or

¢ generates data objects (keystores or certificates) that encapsulate cryptograph-
ic keys (which can be used in a cryptographic operation) in a secure fashion.

An example service class is Signature. It provides access to the functionality
of a DSA. A DSAkey factory supplies a DSA private or public key (from its
encoding or transparent specification) in a format usable by the initSign or
initVerify methods, respectively, of a DSA Signature object.

Page 206 of 275

195

Page 207 of 275

196 CRYPTOGRAPHIC SERVICES AND SERVICE PROVIDERS

Programmers can request andutilize instances of the service classes to carry
out corresponding operations. The following service classes are defined in
JDK 1.2.

Sd
MessageDi gest. Used to calculate the message digest (hash) of specified data.

¢ Signature. Used to sign data and verify digital signatures.
°°

KeyPairGenerator. Usedto generate a pair of public and private keys suit-
able for a specified algorithm.

¢ KeyFactory. Used to convert opaque cryptographic keysof type “Key”into
key specifications(transparent representations ofthe underlying key material),
and vice versa.

¢ CertificateFactory. Usedto create public key certificates and CRLs.

 KeyStore. Used to create and manage a keystore.
°°

AlgorithmParameters. Used to manage the parameters for a particular algo-
rithm, including parameter encoding and decoding.

¢ AlgorithmParameterGenerator. Usedto generate a set of parameters suit-
| able for a specified algorithm.

¢ SecureRandom. Used to generate random or pseudorandom numbers,

A generator and a factory differ within the JCA context in that the formercre-
ates objects with new contents, whereas the latter creates objects from existing
material (for example, an encoding).

A service class provides the interface to the functionality of a specific type of
cryptographic service (independent of a particular cryptographic algorithm). It
defines APIs that allow applications to access the specific type of cryptographic
service it provides. The actual implementations (from one or more providers) are
those for specific algorithms.

The application interfaces supplied by a service class are implemented in
terms of a SPI (service provider interface). That is, for each service class, there is
a corresponding abstract SPI class that defines the SPI methods that cryptographic
service providers must implement.| The Signatureserviceclass, for example, provides access to the functional-
ity of a DSA. The actual implementation supplied in a SignatureSpi subclass| would bethat for a specific kind of signature algorithm, such as SHAIwithDSA,
SHAIwithRSA, or MDSwithRSA.

Page 207 of 275

Page 208 of 275

PROGRAMMING CRYPTOGRAPHY

API class

SPI class

Figure 7.2. API and SPlina
service class.

Aninstance of a service class—the API object (and of its corresponding SPI
class)—is created by a call to the getInstance method ofthe service class. The
instance encapsulates (as a private field) an instance of the corresponding SPT
class, the SPI object. All API methods of an API object are declared final, and
their implementations invoke the corresponding SPI methods of the encapsulated
SPI object (Figure 7.2).

The name of each SPIclass is the same as that of the corresponding service
class, followed by Spi. For example, the SPI class corresponding to the Signa-
ture service class is the SignatureSpi class. Each SPI class is abstract. To sup-

ply the implementation of a particular type of service, for a specific algorithm, a
provider must subclass the corresponding SPI class and provide implementations
for all of the abstract methods.

Another example of a service class is the MessageDi gest class, which pro-
vides access to a message digest algorithm. Its implementations, in Message-
DigestSpi subclasses, may be those of various message digest algorithms such as
SHA-1, MDS, or MD2.

As a final example, the KeyFactory service class supports the conversion
from opaque keys to transparent key specifications, and vice versa. The actual
implementation supplied in a KeyFactorySpi subclass is for a specific type of
key, for example, DSA public andprivate keys.

Implementation for various cryptography services are provided by JCA CSPs,
such as “SUN.” A provider may also implement services that are not generally
available, such as one of the RSA-based signature algorithms or the MD2 message
digest algorithm.

7.2.1 Installing and Adding a Provider

The basic mechanism for obtaining an appropriate object, for example a
Signature object, is as follows. Suppose you are a user and you request such an
object by calling the getInstance methodin the Signature class, specifying the

Page 208 of 275

197

Page 209 of 275

Page 209 of 275

198
CRYPTOGRAPHIC SERVICES AND SERVICE PROVIDERS

nameofa signature algorithm (such as SHAIwithDSA), and, optionally, the name
of the provider whose implementation is desired. For example, a government
agency might wantto use a provider implementation that has received government
certification.

Also suppose that the provider you want to use is not installed. When a
requested provideris not installed, a NoSuchProvide rExceptionis thrown, even
if a different installed provider implements the algorithm requested. So you need
to install a provider. This involves installing the provider packageclasses and con-
figuring the provider. There are two waysto install the providerclasses:

¢ Place a zip or JARfile containing the classes anywhere on CLASSPATH.
¢ Supply the provider JARfile as an installed or bundled extension.

Next, you need to add the providerto thelist of approved providers. You can
do this statically or dynamically. To do it statically, edit the Java security proper-
ties file. One property you can set there is

security.provider.n=masterClassName

This declares a provider and specifies its preference order, n. The preference order
is the order in which providers are searched for requested algorithms.

masterClassName specifies the provider’s master class, whichis specified in
the provider’s documentation. This class is always a subclass of the Provider
class. Its constructor sets the values of various properties that are required for the
JCA APIs to look up the algorithms or otherfacilities implemented by the pro-
vider. Suppose that the master class is COM. abcd. provider.Abcd and that you
wantto configure Abcd as yourthird preferred provider. To do so, you add the fol-
lowinglineto the security properties file:

security. provider. 3=COM. abcd. provider. Abcd

You also can register a provider dynamically by calling either the addPro-
vider or insertProviderAt method in the Securi ty class. This type of registra-
tion is not persistent and can be done only by trusted programs that are granted
sufficient permission. For example, the following policy specifies that only code
that is loaded from a signed JAR file from beneath the /home/sysadmin/ directory
on the local file system can call methods in the Secu rity class to add or remove
providers or to set security properties. (The JAR file’s signature can be verified
using the public key referenced by the alias “sysadmin”in the user’s keystore.)

grant signedBy "sysadmin", codeBase “file: /home/sysadmin/x" {
permission java. security. SecurityPermission

"Security. insertProvider.«";

Page 210 of 275

PROGRAMMING CRYPTOGRAPHY 199

permission java.security.SecurityPermission
"Security.removeProvider.#";

permission java.security.SecurityPermission
"Security.setProperty.+"5

#3

7.3 Cryptography Classes

This section describes the design and usageofclasses that are central to JCA.

7.3.1 java.security.Security

The Security class managesinstalled providers and security-wide properties. It
contains only static methods andis never instantiated.

public static String getAlgorithmProperty(String algName,
String propName)

public static int insertProviderAt(Provider provider,
int position)

public static int addProvider(Provider provider)
public static void removeProvider(String name)
public static Provider[] getProviders()
public static Provider getProvider(String name)
public static String getProperty(String key)
public static void setProperty(String key, String datum)

The getProviders() method returnsan array containing all of the installed
providers (technically, the Provider subclass for each package provider). The
order of the providers in the array is their preference order. The addProvider
methodadds a provider to the endofthelist of installed providers. It returns the
preferenceposition at which the provider was added,or —1if the provider was not
added because it was already installed.

The insertProviderAt methodattempts to add a new providerat a specified
position in the preference order in which providers are searched for requested
algorithms(if no specific provider is requested). A provider cannot be added again
if it is already installed. If the given provider getsinstalled at the requested posi-
tion, the provider that used to be at that position, as well as all providers with a
position greater than that position, are shifted down, toward the end ofthelist of
installed providers. This method returns the actual preference position at which
the provider was added,or —1 if the provider was not added becauseit was already
installed.

Page 210 of 275

Page 211 of 275

Page 211 of 275

200 CRYPTOGRAPHY CLASSES

The removeProvider method removes the named provider.It returns silently
if the Provider is not installed. When the specified provider is removed,all pro-
viders located at a position greater than where the specified provider was are
shifted up one position, toward the head of the list of installed providers. To
changethe preference position of an installed provider, you mustfirst removeit
and then reinsertit at the new preferenceposition.

7.3.2 java.security.Provider

Each Provider class instance has a name, a version number, and a string descrip-
tion of the provider andits services. You can query the Provider instance for this
information by calling the following methods:

public String getName()

public double getVersion()
public String getInfo()

7.3.3 java.security.MessageDigest

The MessageDigestclass is a serviceclass designed to provide the functionality
of cryptographically secure message digests such as SHA1 or MDS. A crypto-
graphically secure message digest takes arbitrary-sized input (a byte array) and
generates a fixed-size output, called a digest or hash.It should be computationally
infeasible to find two messagesthat hash to the same value, and the digest should
not reveal anything about the input that was used to generate it. Thus message
digests are sometimes called the “digital fingerprints”of data.

To compute a digest, you first create a message digest instance. As withall
service classes, a MessageDigest object for a particular type of message digest
algorithm is obtained by calling the getInstancestatic factory method on the
MessageDigest class:

public static MessageDigest getInstance(String algorithm)

The algorithm nameis case-insensitive. For example,all of the following calls are
equivalent:

MessageDigest.getInstance("SHA")
MessageDigest.getInstance("sha")
MessageDigest.getInstance("sHa")

A caller may optionally specify the nameofa provider, which will guarantee
that the implementation ofthe algorithm requested is from the named provider:

Page 212 of 275

PROGRAMMING CRYPTOGRAPHY 201

public static MessageDigest getInstance(String algorithm,

String provider)
A call to the getInstance method returns an initialized message digest

object; thus it does not need further initialization.
Next, to calculate the digest of some data, you supply the data to theinitial-

ized message digest object. This is done by making one or more calls to one of the
update methods:

public void update(byte input)

public void update(byte[] input)

public void update(byte[] input, int offset, int Ten)

After the data has been supplied by calls to update methods, the digest is com-
puted using a call to one of the digest methods:

public byte[] digest()

public byte[] digest(byte[] input)

public int digest(byte[] buf, int offset, int Ten)

The first two methods return the computed digest. The third stores the computed
digest in the provided buffer buf, starting at offset. 1en is the numberof bytes in
buf allotted for the digest. The method returns the numberofbytes actually stored
in buf. A call to the digest method that takes an input byte array argument is
equivalent to making a call to public void update(byte[] input) with the
specified input, followed by a call to the digest method without any arguments.

73.4 java.security.Signature

The Signature class is a service class designed to provide the functionality of a
cryptographic digital signature algorithm such as SHAIwithDSA and
MD5withRSA.A cryptographically secure signature algorithm takes arbitrary-sized
input and a private key and generates a relatively short (often fixed-size) string of
bytes, called the signature. The signature has the following properties.

1. Whenthe public key corresponding to the private key used to generate the sig-
nature is provided, it should be possible to verify the authenticity and integrity
of the input.

2. The signature and the public key do not reveal anything about the private key.

A Signature object can be used to sign data. It can also be used to verify
whether an alleged signature is in fact the authentic signature of the data associated

|
|

Page 212 of 275

Page 213 of 275

202 CRYPTOGRAPHYCLASSES

with it. Signature objects are modal objects. That is, a Signature objectis
always in a given state in which it may do only one type of operation. States are
represented as final integer constants defined in their respective classes (such as
Signature). A Signature object may have threestates:

1. UNINITIALIZED

2. SIGN

3. VERIFY

To sign or verify a signature, you create a Signature instance. As with all
service classes, a Signature object for a particular type of signature algorithm is
obtained by calling the getInstancestatic factory method on the Signature
class.

public static Signature getInstance(String algorithm)
public static Signature getInstance(String algorithm,

String provider)

A Signature object must be initialized before it can be used. Whenitis first
created, a Signatureobject is in the UNINITIALIZEDstate. The Signatureclass
defines two initialization methods, initSign and initVerify, which change the
State to SIGN and VERIFY, respectively. The initialization method depends on
whether the object is going to be first used for signing or for verification. If for
signing, the object mustfirst be initialized with the private key of the entity whose
signature is going to be generated. This initialization is done by calling the
initSign method:

public final void initSign(PrivateKey privateKey)

This method puts the Signature object in the SIGN state.
If the Signature object is going to be first used for verification, it must be

initialized with the public key of the entity whosesignature is going to be verified.
Thisinitialization is doneby calling the initVeri fy method:

public final void initVerify(PublicKey publicKey)

This method puts the Signature object in the VERIFYstate.
If the Signature object has been initialized for signing(if it is in the SIGN

state), the data to be signed can then be supplied to the object. This is done by
making one or morecalls to one of the update methods:

public final void update(byte b)

public final void update(byte[] data)
public final void update(byte[{] data, int off, int len)

Page 213 of 275

Page 214 of 275

PROGRAMMING CRYPTOGRAPHY

Calls to the update method(s) should be made until all of the data to be signed
has been supplied to the Signature object.

To generate the signature, simply call one of the sign methods:

public final byte[] sign()

public final int sign(byte[] outbuf, int offset, int Ten)

Thefirst method returns the signature result in a byte array. The second stores the
signature result in the provided buffer outbuf, starting at offset. len is the num-
ber of bytes in outbuf allotted for the signature. The method returns the number
of bytes actually stored. The signature is encoded as a standard ASN.1 sequence
of two integers, r ands.

A call to a sign method resets the Signature object to the state it was in
whenpreviously initialized for signing via a call to initSign. That is, the object
is reset and available to generate another signature with the same private key, if
desired, via new calls to update and sign. Alternatively, a new call can be made
to initSign specifying a different private key or to initVeri fy to initialize the
Signature object to verify a signature.

If the Signature object has been initialized for verification Git is in the
VERIFYstate), it can then verify whether an alleged signature is in fact the authen-
tic signature of the data associated with it. The process begins by supplying the
datato be verified (as opposedto the signatureitself) to the object. This is done by
making one or more calls to one of the update methods:

public final void update(byte b)

public final void update(byte[] data)

public final void update(byte[] data, int off, int len)

Calls to the update method(s) should be made until all of the data has been sup-
plied to the Signature object.

The signature can then be verified by calling the verify method:

public final boolean verify(byte[] encodedSignature)

The argument must be a byte array containing the signature encoded as a stan-
dard ASN.1 sequence of two integers, r and s. This is an often-used, standard
encoding. It is the same as that produced by the sign method. The verify
method returns a boolean indicating whether the encoded signature is the authen-
tic signature of the data supplied to the update method(s).

A call to the verify method resets the Signature object to thestate it was in
when previously initialized for verification via a call to initVerify. That is, the
object is reset and available to verify another signature from the identity whose
public key was specified in the call to initVerify. Alternatively, a new call can
be made either to initVerify specifying a different public key to initialize the

Page 214 of 275

203

Page 215 of 275

Page 215 of 275

204 CRYPTOGRAPHYCLASSES

Signatureobject for verifying a signature from a different entity or to initSign
to initialize the Signature object for generating a signature.

7.3.5 . Algorithm Parameters

JCA is designed to handle many crypto algorithms. These algorithms can be very
different. In particular, each tends to have unique requirements with regard to var-
ious parameters, such as key size and defined constant. To organize these parame-
ters, an algorithm parameter specification is defined for each algorithm and all
such specifications are divided into a small set of classes.

An algorithm parameter specification is a transparent representation of the
sets of parameters used with an algorithm. This meansthat you can access each
parameter value in the set individually, through oneof the get methods defined in
the corresponding specification class (for example, DSAParamete rSpec defines
getP, getQ, and getG methods, which access p, q, and g, respectively). By con-
trast, in an opaque representation, as supplied by the AlgorithmParameters
class, you have no direct access to the parameterfields. Rather, you can get only
the name of the algorithm associated with the parameterset (via getAlgorithm)
and some kind of encoding for the parameterset (via getEncoded). You cancail
the getParameterSpec method to convert an Al gorithmParameters object to a
transparent specification.

Algorithm Parameter Specification Interfaces and Classes

This section discusses the algorithm parameter specification interfaces and classes
in the java. security and java.securi ty. spec packages:

¢ AlgorithmParameterSpec

@ DSAParameterSpec

¢ AlgorithmParameters

+ AlgorithmParameterGenerator

AlgorithmParameterSpec. This interface is the base interface for the transpar-
ent specification of cryptographic parameters.It contains no methodsorconstants.
Its only purposeis to group (and provide type safety for) all parameter specifica-
tions. All parameter specifications must implementthis interface.
DSAParameterSpec. This class, which implements the AlgorithmParameter-
Spec interface, specifies the set of parameters used with the DSA algorithm.It has
the following methods:

Page 216 of 275

PROGRAMMING CRYPTOGRAPHY

public BigInteger getP().
public BigInteger getQ()

public BigInteger getG()

These return the DSA algorithm parameters: the prime p, the subprime q, and the
baseg.

AlgorithmParameters. This service class provides an opaque representation of
cryptographic parameters. As with all service classes, an object ofit for a particu-
lar type of algorithm is obtained by calling the getInstance static factory
method (with a case-insensitive argument) on this class. A caller may optionally
specify the name ofa provider, thereby guaranteeing thatthe algorithm parameter
implementation requested is from the namedprovider.

public static AlgorithmParameters getInstance(String algorithm)
public static AlgorithmParameters getInstance(String algorithm,

String provider)

Once an AlgorithmParameters objectis instantiated, it must beinitialized
via a call to init, using an appropriate parameter specification or parameter
encoding.

public void init(AlgorithmParameterSpec paramSpec)
public void init(byte[] params)

public void init(byte[] params, String format)

params is an array containing the encoded parameters, and formatis the name of
the decoding format. In the init method with a params argumentbut no format
argument, the primary decoding format for parameters is used. The primary
decoding format is ASN.1, if an ASN.1 specification for the parameters exists.
Note that AlgorithmParameters objects may be initialized only once and thus
are not meantfor reuse.

A byte encoding of the parameters represented in an AlgorithmParameters
object may be obtained viaa call to the getEncoded method:

public byte[] getEncoded()

This method returns the parameters in their primary encoding format.
To have the parameters returned in a specified encoding format, use this

getEncoded method:

public byte[] getEncoded(String format)

205

Page 216 of 275

Page 217 of 275

Page 217 of 275

206 CRYPTOGRAPHYCLASSES

If format is null, the primary encoding format for parameters is used, as in the
other getEncoded method.”

A transparent parameter specification for the algorithm parameters may be
obtained from an AlgorithmParametersobjectvia a call to the getParameter-
Spec method:

public AlgorithmParameterSpec getParameterSpec(Class paramSpec)

paramSpec identifies the specification class in which the parameters should be
returned. That class could be, for example, DSAParameterSpec.class to indi-
cate that the parameters should be returned in an instance of DSAParameterSpec
(whichis in the java.security.spec package).

AlgorithmParameterGenerator. This service class generates a set of parame-
ters suitable for the algorithm that is specified when an AlgorithmParameter-
Generator instance is created. To get an AlgorithmParameterGenerator
object for a particular type of algorithm, call the getInstancestatic factory
method on the AlgorithmParameterGenerator class.

public static AlgorithmParameterGenerator

getInstance(String algorithm)
public static AlgorithmParameterGenerator

getInstance(String algorithm, String provider)

The AlgorithmParameterGenerator object can be initialized in either of
two ways:

¢ Algorithm-independent

¢ Algorithm-specific

The algorithm-independent approach usesthe factthatall parameter genera-
tors share two concepts, those of a source of randomnessanda size. Althoughthe
conceptof size is universally shared by all algorithm parameters,it is interpreted
differently for different algorithms. For example, in the case of parameters for the
DSAalgorithm,the size is the prime modulus, in bits. Whenthis approachis used,
any algorithm-specific parameter generation values default to some standard
values.

2 In the default a1 gorithmParameters implementation, supplied by the “SUN”provider,
the format argumentis currently ignored.

Page 218 of 275

PROGRAMMING CRYPTOGRAPHY

An init method takes these two universally shared types of arguments. There
is also one that takes just a size argument; it uses a system-provided source of
randomness.

public void init(int size, SecureRandom random);
public void init(int size)

In the algorithm-specific approach, a parameter generator objectis initialized
using algorithm-specific semantics, which are represented by a set of algorithm-
specific parameter generation values supplied in an AlgorithmParameterSpec
object.

public void init(AlgorithmParameterSpec genParamSpec,
SecureRandom random)

public void init(AlgorithmParameterSpec genParamSpec)

In the generation of the system parameters in, for example, the Diffie-
Hellman scheme, the parameter generation values usually consist of the size of the
prime modulusand the size of the random exponent, both specified in bits. The
Diffie-Hellman algorithm is outside of the scope of JDK andis supplied as part of
JCE 1.2.

Once you have created andinitialized an AlgorithmParameterGenerator
object, you can generate the algorithm parameters using the generateParame-
ters method:

public AlgorithmParameters generateParameters()

73.6 java.security.Key and java.security. spec. KeySpec

This section describes the following interfaces andtheir subinterfaces:

Key :

@ Publickey

@ PrivateKey

@ KeySpec

Key

Key is the top-level interface for all opaque keys. It defines the functionality
shared by all opaque key objects. All opaque keys have three characteristics:

¢ Analgorithm—the key algorithm for that key

An encoded form

@ A format

Page 218 of 275

207

Page 219 of 275

Page 219 of 275

208 CRYPTOGRAPHY CLASSES

The key algorithm denotes the algorithm such as DSA or RSAassociated with
key that will work in combination with related algorithms such as MD5withRSA
and SHAlwithRSA. The nameofthe algorithm ofa key is obtained using the get
method

public String getAlgorithm()

The encoded form is an external encoded form for the key used whena stan-
dard representation of the key is needed outside of the JVM,as when transmitting
the key to some other party. The key is encoded according to a standard format
(such as X.509 or PKCS#8)andis returned using this get method:

public byte[] getEncoded()

The format is the format of the encoded key and is returned by this get
method:

public String getFormat()

Keys are generally obtained through key generators, certificates, key specifi-
cations (using a KeyFactory), or a KeyStore implementation that accesses a key-
store database used to manage keys. Using a KeyFactory, you can parse encoded
keys in an algorithm-specific manner. Similarly, you can use Certificate-
Factoryto parse certificates.

Publ icKey and PrivateKey

The PublicKey and PrivateKey interfaces both extend the Key interface. They
are methodlessinterfaces used for type safety and type identification.

A key specification is a transparent representation of the key material that
constitutes a key. If the key is stored on a hardware device,its specification may
contain information that helps identify the key on the device. A key’s being trans-
parent means that you can access each key material value individually, through
one of the get methods defined in the corresponding specification class. For
example, DSAPrivateKeySpec defines getX, getP, getQ, and getG methods to
access the private key x and the DSA algorithm parameters used to calculate the
key: the prime p, the subprime q, and the base g.

A key may bespecified either in an algorithm-specific way or in an algorithm-
independent encoding format such as ASN.1. For example, a DSA private key
maybe specified by its componentsx,p, q, and by using its DER encoding.

Page 220 of 275

PROGRAMMING CRYPTOGRAPHY

KeySpec

The KeySpec interface contains no methods or constants. Its only purpose is to
group (and provide type safety for) all key specifications. All key specifications
must implement this interface.

DSAPrivateKeySpec. This class implements the KeySpec interface, specifying
a DSAprivate key with its associated parameters. It has the following methods
that return the private key x and the DSA algorithm parametersused to calculate
the key: the primep, the subprimeg, andthe base g:

public BigInteger getXx()

public BigInteger getP()
public BigInteger getQ()
public BigInteger getG()

DSAPublicKeySpec. This class implements the KeySpec interface, specifying a
DSApublic key with its associated parameters. It has the following methodsthat
return the public key y and the DSA algorithm parameters used to calculate the
key: the primep, the subprimeg, and the baseg:

public BigInteger getY()

public BigInteger getP()
public BigInteger getQ()

public BigInteger getG()

RSAPrivateKeySpec. This class implements the KeySpec: interface, specifying
an RSAprivate key. It has the following methodsto return the RSA modulus n and
private exponentd valuesthat constitute the RSAprivate key:

public BigInteger getModulus()

public BigInteger getPrivateExponent()

RSAPrivateCrtKeySpec. This class extends the RSAP rivateKeySpec class and
specifies an RSA private key, as defined in the PKCS#1 standard, using the Chi-
nese Remainder Theorem (CRT)informationvalues.It has the following methods,
in addition to the methodsinherited from its superclass RSAPrivateKeySpec:

public BigInteger getPublicExponent()
public BigInteger getPrimeP()
public BigInteger getPrimeQ()

public BigInteger getPrimeExponentP()
public BigInteger getPrimeExponentQ()
public BigInteger getCrtCoefficient()

Page 220 of 275

209

Page 221 of 275

Page 221 of 275

210 CRYPTOGRAPHY CLASSES

These methods return the public exponent e and the CRT information integers: the
prime factor p of the modulus n,the primefactor q of n, the exponent d mod (p-
1), the exponent d mod (g — 1), and the CRT coefficient (inverse of g) mod p. An
RSAprivate key logically consists of only the modulus andtheprivate exponent.
Thepresence of the CRT values is intendedforefficiency.
RSAPublicKeySpec. This class implements the KeySpec interface and specifies
an RSA public key. It has the following methods that return the RSA modulus n
and public exponent e values that constitute the RSA public key:

public BigInteger getModulus()

public BigInteger getPublicExponent()

EncodedKeySpec. This abstract class implements the KeySpec interface and
represents a public or private key in encoded format. Its getEncoded and get-
Format methods return the encoded key and the nameof the encoding format,
respectively:

public abstract byte[] getEncoded():
public abstract String getFormat();

PKCS8EncodedKeySpec. This subclass of EncodedKeySpec represents the DER
encoding of a private key, according to the format specified in the PKCS#8 stan-
dard. Its getEncoded method returns the key bytes, encoded according to the
PKCS#8 standard. Its getFormat method returns the string "PKCS#8". The
X509EncodedKeySpecclass, which is a subclass of EncodedKeySpec,represents
the DER encodingof a public or private key, according to the format specified in
the X.509 standard. Its getEncoded method returns the key bytes, encoded
according to the X.509 standard. Its getFormat method returns the string
"X.509",

7.3.7 java.security.KeyFactory and
java. security. cert.Certifi cateFactory

This section reviews the factory classes for generating keys andcertificates.

KeyFactory

The KeyFactoryclass is a service class designed to provide conversions between
opaquecryptographic keys(of type Key) andkey specifications (transparent repre-
sentations of the underlying key material). Key factories are bidirectional. That is,
you can build an opaque Key object from a given key specification (key material)
or retrieve the underlying key material of a Key object.

Page 222 of 275

 PROGRAMMING CRYPTOGRAPHY

Multiple compatible key specifications may exist for the same key. For exam-
ple, a DSA public key may be specified by its componentsy, p, g, and g or by
using its DER encoding according to the X.509 standard. A key factory can be
used to translate between compatible key specifications. Key parsing can be
achieved through translation between compatible key specifications. For example,
when youtranslate from X5@9EncodedKeySpec to DSAPub1icKeySpec, you basi-
cally are parsing the encoded key into its components.

To get a KeyFactory object for a particular type of key algorithm, you call the
getInstancestatic factory method on the KeyFactoryclass.

public static KeyFactory getInstance(String algorithm)

public static KeyFactory getInstance(String algorithm,
String provider)

A caller may optionally specify the name of a provider, which will guarantee

that the implementation of the key factory requested is from the named provider of
the KeyFactory.

If you have a key specification for a public or private key, you can obtain an
opaque PublicKey or PrivateKey object from the specification by using the
generatePublic or generatePrivate method, respectively:

public PublicKey generatePublic(KeySpec keySpec)
public PrivateKey generatePrjivate(KeySpec keySpec)

Conversely, if you have a Key object, you can get a corresponding keySpec
object by calling the getKeySpec method:

public KeySpec getKeySpec(Key key, Class keySpec)

KeySpec identifies the specification class in which the key material should be
returned. It could be, for example, DSAPub1i cKeySpec.classto indicate that the
key material should be returned in an instance of the DSAPublicKeySpecclass.

CertificateFactory

The CertificateFactory classis a service class that defines the functionality of a
certificate factory. A certificate factory is used to generate certificate and CRL objects
from their encodings. A certificate factory for an X.509certificate must return certifi-

cates and CRLsthat are instances of java. security.cert.X509Certificate and
java.security.cert.X5Q9CRL, respectively,

Page 222 of 275

211

Page 223 of 275

Page 223 of 275

212 CRYPTOGRAPHYCLASSES

¢ To getaCertificateFactory object for a particular certificate or CRL type,
call the getInstancestatic factory method on the CertificateFactory
class:

public static CertificateFactory getInstance(String type)

¢ To specify a provider, use this getInstance method:

public static CertificateFactory getInstance(String type,
String provider)

¢ To generatea certificate object andinitialize it with the data read from an input
stream, use the generateCertificate method:

public final Certificate generateCertificate(InputStream is)

¢ Toreturn a (possibly empty) collection view ofthe certificates read from a giv-
en input stream, use the generateCertificates method:

public final Collection generateCertificates(InputStream is)

¢ To generate a CRL object andinitialize it with the data read from an input
stream, use the generateCRL method:

public final CRL generateCRL(InputStream is)

¢ To return a (possibly empty) collection view of the CRLsread from a givenin-
put stream, use the generateCRLs method:

public final Collection generateCRLs(InputStream is)

7.3.8 KeyPair and KeyPairGenerator

The KeyPair class is a holder for a key pair (a public key and a private key).It has
two public methods, one each for returning the private key and public key:

public PrivateKey getPrivate()

public PublicKey getPublic()

The KeyPairGenerator classis a service class used to generate pairs of pub-
lic and private keys. The generation can be algorithm-independent or algorithm-
specific, depending on how the objectis initialized.

All key pair generation starts with a KeyPairGenerator. A key pair genera-
tor for a particular algorithm creates a public/private key pair that can be used with

Page 224 of 275

PROGRAMMING CRYPTOGRAPHY 213

| this algorithm. It also associates algorithm-specific parameters with each of the
generated keys. To create a KeyPai Generator, use one ofthe factory methods:

public static KeyPairGenerator getInstance(String algorithm)
public static KeyPairGenerator getInstance(String algorithm,

String provider)

A key pair generator needsto beinitialized before it can generate keys. In
most cases, algorithm-independentinitialization is sufficient. All key pair genera-
tors share two concepts, those of a source of randomness and a key size. The key
size is interpreted differently for different algorithms. For example, in the case of
the DSA algorithm,the size is the length of the modulus.

One initialize method takes these two universally shared types of argu-
ments, while anotheronetakes just a key size argument becauseit uses a system-
provided source of randomness:

public void initialize(int keysize)

public void initialize(int keysize, SecureRandom random)

Since no other parameters are specified when youcall the above algorithm-
independent initialize methods, the provider must decide what to do about any
algorithm-specific parameters to be associated with each key. For example, if the

| algorithm is DSA and the modulussize (key size) is 512, 768, or 1,024, then the
“SUN?”provider uses a set of precomputedvaluesforthe p, g, and g parameters.If
the modulussize is not one of these values, the “SUN”provider creates a new set
of parameters. Other providers might have precomputed parameter sets for more
than just the three modulus sizes mentionedhere. Still others might not havea list
of precomputed parametersatall and instead always create new parametersets.

In some cases, you need an algorithm-specific initialization, for example
| whena set of algorithm-specific parameters already exists (as is the case for so-

called “community parameters” in DSA). Two initialize methods take an
AlgorithmParameterSpec argument. One does not take a SecureRandom argu-
ment, in which case its source of randomnessis provided by the system.

public void initialize(AlgorithmParameterSpec params)
public void initialize(AlgorithmParameterSpec params,

SecureRandom random)

To generate a key pair, call the following method from KeyPai rGenerator:

public KeyPair generateKeyPair()

Multiple calls to generateKeyPair yield different key pairs.

Page 224 of 275

Page 225 of 275

Page 225 of 275

214 CRYPTOGRAPHYCLASSES

7.3.9 java.security.KeyStore

The KeyStoreclass defines interfaces to access and modify the information in a
keystore. Chapter 4 described the keystore, which can be used to managea repos-
itory of keys andcertificates, and demonstratedits use by the keytoo] utility. This
section discusses KeyStore’s API design and implementation.

KeyStoreis used by keytool, jarsigner, and policytool. It is also used
by the default Policy implementation when it processes policy files. JDK users
can write additional security applications that use or extend KeyStore.

Multiple different concrete implementations are possible, where each imple-
mentation is for a particular type of keystore. For example, one implementation
might provide persistent keystores, while another can use smart cards. Thus key-
store implementations of different types are not meant to be compatible.

A KeyStore implementation is provider-based. A corresponding abstract
KeystoreSpi class specifies the SPI interfaces. The Provider class typically
subclasses from KeystoreSpi. JDK contains a default keystore implementation
of a proprietary keystore type (format) called “JKS.”

KeyStore represents an in-memory collection of keys and certificates and
manages two types of entries: key entry and trusted certificate entry. To create a
KeyStore object, call the getInstance static factory method on the KeyStore
class and optionally specify the name of a provider:

public static KeyStore getInstance(String type)

public static KeyStore getInstance(String type,

String provider)

Before a KeyStore object can be used, the actual keystore data must be
loaded into memory via the]oad method:

public final void load(InputStream stream, char[] password)

The optional password is used to check the integrity of the keystore data. If no
password is supplied, no integrity check is performed. If you want to create an
empty keystore, pass null as the InputStream argumentto the load method.

Each entry in a keystore is identified by a uniquealias string. An enumeration
of the alias names present in the keystore can be obtained as follows:

public final Enumeration aliases()

The following methods determine whether the entry specified by the given
alias is a key entry or a trusted certificate entry:.

public final boolean isKeyEntry(String alias)

public final boolean isCertificateEntry(String alias)

Page 226 of 275

PROGRAMMING CRYPTOGRAPHY 215

The following methods manipulate the contentof the keystore:

public final void setCertificateEntry(String alias,
Certificate cert)

public final void setKeyEntry(String alias, byte[] key,
Certificate[] chain)

public final void setKeyEntry(String alias, Key key,
char[] password, Certificate[] chain)

public final void deleteEntry(String alias)
public final Key getKey(String alias, char[] password)
public final Certificate getCertificate(String alias)
public final Certificate[] getCertificateChain(String alias)
public final String getCertificateAlias(Certificate cert)
public final void store(OutputStream stream, char[] password)

7.4 Randomness and Seed Generators

A basic concept of cryptography is random numbergeneration. This is because
randomness is the source of security in cryptography and is very useful (and
sometimes essential) when generating keys and providing unique identifiers (for
example, in challenge-response. protocols).

The base class of a random numbergenerator is java.util.Randon,intro-
duced in JDK 1.0. In the context here, the generator does not actually produce
pure random numbers;rather, it produces pseudorandom numbers.

Randomusesa 48-bit seed, which is modified using a linear congruent formula
[37]. Here are its interfaces:

public Random()

public Random(long seed)

void setSeed(long seed)

protected int next(int bits)

‘boolean nextBoolean()

void nextBytes(byte[] bytes)

double nextDouble()

float nextFloat()

double nextGaussian()

int nextInt()

int nextInt(int n)

long nextLong()

Page 226 of 275

Page 227 of 275

216 RANDOMNESS AND SEED GENERATORS

Basically, you can construct a Random object and assign it a seed either in the
constructor or via the setSeed method.If a seed is not assigned explicitly, it is by
default a value based on the time at which the object is created. After the object
has been initialized, various next methods can be called to obtain the next random

numberin different forms. The generator is deterministic in that if two instances
of Random are created with the same seed and if the same sequence of method
calls is made for each, both instances will generate and return identical sequences
of numbers. Subclasses of Random are permitted to use other algorithms.

Security savvy readers will have noticed by now that neither the default seed-
ing scheme nor the subsequent number generation algorithm produces numbers
that are as unpredictable as a security application would normally require. Thisis
why java.security.SecureRandom is needed—it provides a cryptographically
strong pseudorandom number generator (PRNG). This class is discussed next.

7.4.1 java.security.SecureRandom

Like other algorithm-based classes in JDK, the SecureRandom class provides
implementation-independent algorithms, whereby an application requests a partic-
ular PRNG algorithm and is handed back a SecureRandom object for that algo-
rithm. It can also request a particular algorithm from a specific provider. For
example, the default provider “SUN” supports a built-in algorithm named
SHAIPRNG.

public static SecureRandom getiInstance(String algorithm)

public static SecureRandom getInstance(String algorithm,

String provider)

public SecureRandom()

public SecureRandom(byte[] seed)

public void setSeed(byte[] seed)

public void setSeed(long seed)

protected final int next(int numBits)

public static byte[] getSeed(int numBytes)

Using getInstance is the preferred way to obtain SecureRandom objects,

even though public constructors canstill be called. If these constructors are called,
the default provider with the default algorithm is used.

The SecureRandom implementation attempts to completely randomize the
internal state of the generator itself. However, this seeding process does not hap-
pen until the first time that random output is needed, that is, when nextBytes is
called. Thus the caller can explicitly seed the SecureRandom object by calling
setSeed right after getInstance, as in this example.

ee

Page 227 of 275

Page 228 of 275

PROGRAMMING CRYPTOGRAPHY 217

SecureRandom random = SecureRandom.getInstance("SHALPRNG") ;
random.setSeed(seed); _

Once the SecureRandom objecthas been seeded,it attempts to producebits as
random as the original seeds. At any time, a SecureRandom object might be
reseeded using one of the setSeed methods. The newly given seed supplements
rather than replaces the existing seed. Thus repeated calls do not reduce random-
ness. SecureRandomitself can also help with seed generation, for example for
another SecureRandom object, via the generateSeed method.

7.5 Code Examples

This section presents several examples to further illustrate how you can use the
classes discussedin this chapter.

7.5.1 Example 1: Computing a Message Digest

The first example computes a messagedigest using the algorithm SHA. Suppose
you have a message composed ofthree byte arrays: 11, i2, and 73. First you cre-
ate a properly initialized message digest object. Then you run the three byte
arrays through the message digest object to calculate the hash, as follows.

MessageDigest sha = MessageDigest.getInstance("SHA");
sha.update(il);

sha. update(i2);

sha. update(i3);

byte[] hash = sha.digest();

Thecall to the method digest signals the end of the input message. It can
also take the last segment of the input as a parameter, as in the following.

sha.update(il);

sha.update(72);

byte[] hash = sha.digest(i3);

After the message digest has been calculated, the message digest object is
automatically reset and ready to receive new data and calculateits digest. All
formerstate (that is, the data supplied to update calls) is lost.

In some hash implementations, you can obtain intermediate hash values
through cloning. Suppose you wantto calculate separate hashes for three separate
messages of this form:

Page 228 of 275

Page 229 of 275

218 CODE EXAMPLES

| il

iland i2

1, i2, and 73

You can perform the computations as follows.

/* compute the hash for il #/

sha.update(il); |
byte[] ilHash = sha.clone().digest();

/* compute the hash for il and i2 «/

sha.update(i2);

byte[] i1l2Hash = sha.clone().digest();

/*x compute the hash for i1, i2 and 73 «/

sha.update(i3); :

byte[] i123hash = sha.digest();

This works only if the SHA implementation is cloneable. One way to deter-
mine whether cloning is possible is to attempt to clone the MessageDigest object
and see if the potential exception is thrown.

7.5.2 Example 2: Generating a Public/Private Key Pair

The second example generates a public/private key pair for the algorithm DSA.

Keys are generated with a 1,024-bit modulus, using a user-derived seed, called |
userSeed. First, you get a KeyPairGenerator object for generating keys for the
DSA algorithm. Then, to initialize the KeyPairGenerator, you need a random
seed, obtained from a SecureRandom object.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");
SecureRandom random =

/ SecureRandom. getInstance("SHALPRNG", "SUN");
| random. setSeed(userSeed); |

keyGen.initialize(1024, random); :
Suppose you already have a set of DSA-specific parameters—p, g, and g—

that you want to use to generate your key pair. Then the key pair generator should
beinitialized differently, as in the following example.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");

DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, g);

SecureRandom random = |
SecureRandom. getInstance("SHALPRNG", "SUN");

Page 229 of 275

Page 230 of 275

PROGRAMMING CRYPTOGRAPHY 219

random, setSeed(userSeed) ;
keyGen.initialize(dsaSpec, random) ;

Finally, you generate the key pair:

KeyPair pair = keyGen.generateKeyPair();

7.5.3. Example 3: Generating and Verifying Signatures

This example generates and verifies a signature using the key pair generated in
Example2. First, you create a Signature object. Then, using the key pair gener-
ated in Example 2, youinitialize the object with the private key and sign a byte
array called data.

Signature dsa = Signature.getInstance("SHAlwithDSA");
/x Initializing the object with a private key «/

PrivateKey priv = pair.getPrivate();

dsa.initSign(priv);

/» Update and sign the data «/

dsa.update(data);

byte[] sig = dsa.sign();

Verifying the signatureis straightforward.

/* Initializing the object with the public key «/

PublicKey pub = pair.getPublic();

dsa. initVeri fy (pub) ;

/« Update and verify the data «/

dsa.update(data);

boolean verifies = dsa.verify(sig);

System.out.printIn("signature verifies: " + verifies);

Supposethat rather than having a public/private key pair, you have only the
components of your DSA private key: x, p, q, and g (the base). Further suppose
that you want to use your private key to digitally sign some data, which is in a
byte array named someData. Then the following code should be used. This also
illustrates how to create a key specification and use a key factory to obtain a
PrivateKey from the key specification.

DSAPrivateKeySpec dsaPrivKeySpec =
new DSAPrivateKeySpec(x, p, q, g)3

Page 230 of 275

|

Page 231 of 275

CODE EXAMPLES

KeyFactory keyFactory = KeyFactory.getInstance("DSA");
PrivateKey privKey =

keyFactory.generatePrivate(dsaPrivkey-Spec);

Signature sig = Signature.getInstance("SHAlwithDSA");
sig.initSign(privKey);

sig.update(someData);

byte[] signature = sig.sign();

Now suppose that your personal attorney, Alice, wants to use the data you
signed.Forher to do so and sothat she can verify your signature, you need to send
her three things: the data, the signature, and the public key corresponding to the
private key youused to sign the data. You can store the someData bytes in onefile
and the signature bytes in another and sendboth files to Alice. For the public key,
assume, as in the previous signing example, that you have the components of the
DSApublic key corresponding to the DSA private key used to sign the data. Then
you can create a DSAPublicKeySpec from those components:

DSAPublicKeySpec dsaPubKeySpec =

new DSAPublicKeySpec(y, p, q, 9);

Youstill need to extract the key bytes so that you can put them inafile. To do
this, you first call the generatePublic method on the DSA key factory already
created in Example 2 andthen extract the (encoded)key bytes.

PublicKkey pubKey = keyFactory.generatePublic(dsaPubKeySpec):
byte[] encKey = pubKey.getEncoded();

You now can store these bytes in a file and send the file to Alice along with
the files containing the data andthe signature.

Once Alice receives thesefiles, she copies the data bytes from the data file to
a byte array named data, the signature bytes from the Signature file to a byte
array named signature, and the encoded public key bytes from the public key
file to a byte array named encodedPubkKey.To verify the signature, she runs the
following code, which uses a key factory to instantiate a DSA public Key from its
encoding.

X5@9EncodedKeySpec pubKeySpec =
new X509EncodedKeySpec (encodedPubKey);

KeyFactory keyFactory = KeyFactory.getInstance("DSA");
PublicKey pubKey = keyFactory.generatePublic(pubKeySpec):

Signature sig = Signature. getInstance("SHA1withDSA");
sig. initVerify(pubKey);

Page 231 of 275

Page 232 of 275

PROGRAMMING CRYPTOGRAPHY

sig.update(data);

sig.verify(signature);

Alice can also convert PublicKey to a DSAPublicKeySpec in order to access
the key components.

DSAPublicKeySpec dsaPubKeySpec =

(DSAPublicKeySpec) keyFactory.getKeySpec(pubKey,
DSAPub1icKeySpec.class)

dsaPubKeySpec.getY();
dsaPubKeySpec.getP();

dsaPubKeySpec.getQ();

dsaPubKeySpec.getG();

BigInteger y

BigInteger p

BigInteger q

BigInteger g

7.5.4 Example 4: Reading a File That Contains Certificates

The final example in this chapter readsa file that containscertificates. In thefirst,
the certificates are Base64-encoded. Such certificates are each bounded at the
beginning and the end, respectively, by

anon BEGIN CERTIFICATE-----

and

neon END CERTIFICATE-----.

In this process, you convert the FileInputStream, which does not support
the mark and reset methods, to a ByteArrayInputStream, which does support
those methods. You do this so that each call to generateCertificate consumes
only onecertificate and the read position of the input stream is positioned to the
nextcertificate in the file.

FileInputStream fis = new FileInputStream(filename);
DataInputStream dis = new DataInputStream(fis);
CertificateFactory cf =

CertificateFactory.getInstance("X.509"):

byte[] bytes = new byte[dis.available()]:
dis.readFully(bytes);

ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
while (bais.available() > @) {

Certificate cert = cf.generateCertificate(bais);
System.out.printIn(cert.toString());

Page 232 of 275

221

L_

Page 233 of 275

222

Page 233 of 275

STANDARD NAMES

Next, you parse a PKCS#7-formatted certificate reply stored in a file and
extract all of the certificates from it.

FileInputStream fis = new FileInputStream(filename);
CertificateFactory cf =

CertificateFactory.getInstance("X.509");

Collection c = cf.generateCertificates(fis);
Iterator i = c.iterator();

while (i.hasNext()) {

Certificate cert = (Certificate) i.next();
System, out.printIn(cert);

7.6 Standard Names

Whether in Java documentation or code, algorithms, certificates, and keystore
types are referred to by specialized names. These namesare not chosen randomly,
but rather according to adopted standards. This section lists the names used and
explains their backgrounds.

7.6.1 Message Digest Algorithms

Message digest algorithm names can be specified when generating an instance of
MessageDigest.

¢ SHA. The Secure Hash Algorithm as definedin Secure Hash Standard, NIST
FIPS 180-1 :

¢ MD2. The MD2 messagedigest algorithm as defined in RFC 1319

¢ MDS5. The MD5 messagedigest algorithm as defined in RFC 1321

7.6.2 Key and Parameter Algorithms

_ Key and parameter algorithm namescan be specified when generating an instance
of KeyPairGenerator, KeyFactory, AlgorithmParameterGenerator, and
AlgorithmParameters.

¢ RSA. The RSA encryption algorithm as defined in PKCS#1

¢ DSA.The Digital Signature Algorithm as defined in FIPS PUB 186

Page 234 of 275

PROGRAMMING CRYPTOGRAPHY 223

7.6.3 Digital Signature Algorithms

The DSA names can be specified when generating an instance of Signature.

¢ SHA-1withDSA. The DSA with SHA-1 signature algorithm, which uses the
SHA-1 digest algorithm and DSA to create and verify DSA digital signatures
as defined in FIPS PUB 186

¢ MD2withRSA. The MD2 with RSA encryption signature algorithm, which
uses the MD2 digest algorithm and RSAto create and verify RSA digital sig-
natures as defined in PKCS#1

¢ MD5withRSA. The MD5 with RSA encryption signature algorithm, which

uses the MDS digest algorithm and RSAto create and verify RSA digital sig-
natures as defined in PACS#L

¢ SHA-1withRSA.The signature algorithm with SHA-1 and the RSA encryp-
tion algorithm as defined in the OSI Interoperability Workshop, using the pad-
ding conventions described in PKCS#1

7.6.4 Random Number Generation Algorithms

Random number generation algorithm namescan be specified when generating an
instance of SecureRandom.

¢ SHAIPRNG. The name of the PRNG algorithm supplied by the “SUN”
provider

This implementation follows the IEEE P1363 standard (given in its Appendix
G.7, “Expansion of source bits”) and uses SHA-1 as the foundation of the PRNG.
It computes the SHA-1 hash over a true-random seed value concatenated with a
64-bit counter, which is incremented by 1 for each operation. Of the 160-bit SHA-1
output, only 64 bits are used.

7.6.5 Certificate Types

Certificate types can be specified when generating an instance of Certificate-
Factory.

¢ X.509. The certificate type defined in X.509

Page 234 of 275

Page 235 of 275

224 ALGORITHM SPECIFICATIONS

7.6.6 Keystore Types

Keystore types can be specified when generating an instance of KeyStore.

¢ JKS. The nameof the keystore implementation provided by the “SUN”pro-
vider

¢ PKCS12. The transfer syntax for personal identity information as defined in
PKCS#12

7.7 Algorithm Specifications

When implementing crypto algorithms, a provider should comply with existing
standard specifications. Following are some of these specifications andtheir rela-
tionships with JDK implementations. In particular, for each algorithm specifica-
tion, someorall of the following fields are given.

+ Name. The name by which the algorithm is known.This is the name passed to
the getInstance method (when requesting the algorithm) and returned by the
getAl gorithm method to determine the nameof an existing algorithm object.
These methods are in the service classes Signature, MessageDigest, Key-

PairGenerator, and AlgorithmParameterGenerator.

Type. The type of algorithm: Signature, MessageDigest, KeyPairGener-
ator, or ParameterGenerator.

¢ Description. General notes about the algorithm, including any standards im-
plemented bythe algorithm, applicable patents, and so on.

¢ Key Pair Algorithm (optional). The keypair algorithm for this algorithm.

¢ Key Size (optional). Legal key sizes for a keyed algorithm or key generation
algorithm.

+ Size (optional). Legal sizes for algorithm parameter generation for an algo-
rithm parameter generation algorithm.

¢ Parameter Defaults (optional). Default parameter values for a key generation
algorithm.

¢ Signature Format (optional). The format of the signature for a Signature
algorithm, that is, the input and output of the verify and sign methods,
respectively. i

Page 235 of 275

Page 236 of 275

PROGRAMMING CRYPTOGRAPHY

7.7.1 SHA-1 Message Digest Algorithm

Name: SHA

Type: MessageDigest
Description: The message digest algorithm as defined in NIST’s FIPS 180-1.

The outputof this algorithm is a 160-bit digest.

7.7.2 MD2 MessageDigest Algorithm

Name: MD2

Type: MessageDigest
Description: The message digest algorithm as defined in RFC 1319. The out-

put of this algorithm is a 128-bit (16-byte) digest.

7.7.3 MD5 Message Digest Algorithm

Name: MD5

Type: MessageDigest
Description: The message digest algorithm as defined in RFC 1321. The out-

put of this algorithm is a 128-bit (16-byte) digest.

7.7.4 Digital Signature Algorithm

Name: SHA-1withDSA

Type: Signature
Description: The signature algorithm described in NIST FIPS 186, using DSA

with the SHA-1 message digest algorithm.
Key Pair Algorithm: DSA
Signature Format: An ASN.1 sequence of two INTEGER valuesr and s,in that

order.

SEQUENCE ::= { r INTEGER, s INTEGER }

7.7.5 RSA-Based Signature Algorithms

Names: MD2withRSA, MD5withRSA, and SHA-1lwithRSA

Type: Signature
Description: The signature algorithms that use the MD2, MDS, and SHA-1

message digest algorithms (respectively) with RSA encryption.
Key Pair Algorithm: RSA

Page 236 of 275

225

Page 237 of 275

226 ALGORITHM SPECIFICATIONS

Signature Format: A DER-encoded PKCS#1 block. The data encrypted is the
digest of the data signed.

7.7.6 DSA KeyPair Generation Algorithm

Name: DSA

Type: KeyPairGenerator
Description: The key pair generation algorithm described in NIST FIPS 186

for DSA.

Key Size: The length,in bits, of the modulus p. This must range from 512 to
1,024 and mustbe a multiple of 64. The default key size is 1,024.

Parameter Defaults: The following default parameter values are used for key-
sizes of 512, 768, and 1,024 bits. The use of the parameter named counter is
explained in the FIPS document.

For 512-bit key parameters:

SEED = b869c82b 35d7@eib 1ff91b28 e37a62ec dc34409b

counter = 123

p= fca682ce 8el2caba 26efccf7 11@e526d bO78b@5e dechcdle
b4a208f3 ael617ae @1f35b91 a47e6df6 3413cSel 2ed0@899b
cd132acd 50d99151 bdc43ee7 37592e17

q = 962eddcc 369cba8e bb260ee6 b6a126d9 346e38c5

g = 678471b2 7a9cf44e e91a49c5 147db1a9 aaf244f@ 5a434d64
86931d2d 14271b9e 35030b71 fd73dal7 9069b32e 2935630e
1¢206235 4d@da20a 6c416e50 be794ca4

For 768-bit key parameters:

SEED = 77d0f8c4 dad15eb8 c4f2f8d6 726cefd9 6d5bb399

counter = 263

p = 29264259 9d355f37 c97FFd35 67120b8e 25c9cd43 e927b3a9
670fbec5 d8901419 22d2c3b3 ad248009 3799869d 1e846aab
A9fabQad 26d2ce6a 22219d47 O@bce7d77 7d4a21fb e9c270b5

7607002 f3cef839 3694cf45 ee3688c1 1a8c56ab 127a3dat

q = 9cdbd84c Oflac2f3 8d@f8OF4 2ab952e7 338bT511

g = 30470ad5 a@@5fb14 ce2d9dcd 87e38bc7 dibicSfa cbhaecbe9
5£19@aa7 a31d23c4 dbbche@6 17454440 la5b2c02 8965d8c2

bd2171d3 66844577 1f74baQ8 4d2029d8 3c1c1585 47f3a9f1
a2715be2 3d5lae4d 3e5alf6a 7064f316 933a346d 3f529252

Page 237 of 275

Page 238 of 275

PROGRAMMING CRYPTOGRAPHY

For 1,024-bit key parameters:

SEED = 8d515589 4229d5e6 89ee01e6 018a237e 2cae64cd

counter = 92

p = fd7f5381 1d751229
c3le3f8@ b6512669

Fécb9b55 6cd7813b

@47b1022 c24fbbad

83f6d3c5 1ec3@235

2203199d d14801c7

q = 9760508F 1523@bcc

g = f7e1a085 d69b3dde
F9574cOb 3d078267

167123e8 4c281613

e@a3aele 2bb3a675

cca4flbe 28519089

64014¢c3b fecf492a

52df4a9c

455d4022

801d346F

d7feb7c6

54135a16

b292b982

cbbcab5c

5159578e
b7cf0932

916ea37F

a883dfel

2eece4e7

51fb593d

F26660b7

Lbf83b57

9132f675

aZeb840b

36b857b9

bad4594Ff

8cc8a6el

@bfa2135

5ae59fO6

7.1.7 RSA KeyPair Generation Algorithm

Name: RSA

Type: KeyPairGenerator
Description: The key pair generation algorithm described in PKCS#1.
Key Size: Any integerthat is a multiple of 8, greater than or equal to 512.

7.7.8 DSA Parameter Generation Algorithm

Name: DSA

Type: ParameterGenerator
Description: The parameter generation algorithm described in NIST FIPS 186

for DSA.

Size: Thelength, in bits, of the modulus p. This must range from 512 to 1,024

#611b752 3cef4400

8d58fabF c5f5ba30

6b9950a5 a49f9fFe8

e7c6a8a6 150f04Tfb

f3ae2b61 d72aeff2

FO581cf5

7994afbb fa3aea82

e6710710 8180b449

3c167a8b 547c8d28

62F1Fb62 7a01243b

928b665e 8807b5525

and must be a multiple of 64. The default size is 1,024.

Page 238 of 275

227

Page 239 of 275

CHAPTER 8

Future Directions

All progress is precarious, and the solution of one problem
brings us face toface with another problem.

—Martin Luther King,Jr.

Wits the release of JDK 1.2 and JCE 1.2, Java security has entered an exciting
new phase. This is not the beginning of the end, but rather the end of the begin-
ning, as much remains to be done. This chapter touches on some future directions
anticipated for Java security technology.

8.1 Security Management

It is accepted wisdom that anything hard to use does not get used in practice.
Security is no exception. In JDK 1.2, the Java security development team at Sun
Microsystemstried to achieve the goal of simplicity. We designed only the mini-
mum APIs necessary to do a particular job. We distributed functionalities among
the classes in such a way that each class is logically self-contained and easy to
understand. And we chose simple class and method names while maintaining their
accuracy andclarity.

Another feature important to making the security architecture useful in the
real world is security management. Assaid in earlier chapters, JDKitself is not an
end-user product, so it might not be the best place to bundle security management
software. Instead, system vendors and application builders can create and present
the right interfaces (including GUIs) to their respective customers.

Nevertheless, Java Plug-In, a browser plug-in with a Java runtime environ-
ment, is increasingly being used directly by end users to upgrade the JVM intheir
browsers. As a result, the Java Plug-In, as a product directly derived from JDK,
can be improved with more management features. For example, it can use the
samecertificate database that is already presentin the browsers, thus eliminating
the need to maintain a separate certificate databaseforit.

Page 239 of 275

229

Page 240 of 275

Page 240 of 275

230 JDK FEATURE ENHANCEMENT

Also, when the plug-in encounters previously unknown applets and applica-
tions on the Internet, it needs a solution to give the applets their needed privileges
in order to run them as they are designed. One approachto this deploymentissue
is to design a way for the developer to specify the required permissions and a way
to help the browser user to understand the meaning and implications of granting
those permissions.!

Security managementis not just for end users. Application developers often
do not want to become experts in security simply to write secure applications.
They would benefit, for example, from interfaces that they can call to obtain secu-
rity services without having to know the specifics, such as encryption algorithms,
key sizes, and protocol types. Such simple security APIs should greatly increase
productivity, as well as the security quality of the resulting applications.

8.2. JDK Feature Enhancement

Several security features, according to customer feedback, are worth investigating
for a future version of the JDK. Oneis resource consumption management. Thisis
relatively easy to implementin some cases, for example when limiting the number
of windowsan application can pop up at any onetime, but a lot more difficult in
other cases, for example whenlimiting memory, CPU,orfile system usage in real
time and with good performance.

Another feature is the design of class loaders. Thesearestill very delicate in
termsof security implications; the current way the ClassLoader classes are spec-
ified can still be improved. Applets and applications can create class loaders only
if the system security policy is configured to allow this to happen, with the only
exception of URLClassLoader, Suchasevere restriction might impede the devel-
opmentof certain applications. Much research is needed onthis topic.

A third feature is instant revocation, whereby a granted privilege can be
revoked immediately after a change in security policy. Currently, the new policy
becomeseffective only after its content is refreshed and only for newly started
applications or applets. To implementinstant revocation might require the privi-
lege system to register itself (as listeners) with the Policy object (and perhaps
each Permission object, if permissions may change their content dynamically).
The Policyobject then would promise to notify the system if it changedits secu-
rity policy.

1 Fora not-so-good analogy for the specification of required permissions, consider that when
you buy shrink-wrapped software, the back of the box typically says things such as “16MB
RAMrequired, 32MB RAM recommended.”

Page 241 of 275

FUTURE DIRECTIONS 231

Another feature related to security policy is the composition of security poli-
cies. Currently, each security manager enforces a particular type of security pol-
icy. To enforce a new policy, which might be some combination of two existing
policies, you currently need to implement a new SecurityManager. Ideally, secu-
rity policies could be composed withouta total rewrite of existing security man-
ager classes.

JDK 1.2 introduced a conservative and robust access control algorithm that
can prevent some programming mistakes from turning into security holes. Addi-
tional techniquesthat further this effort are available. For example, recall that the
doPrivileged primitive in a sense “enables” all permissions granted to a piece of
code.In some cases, an application might want to enable only someofits granted
permissions. This selective enabling further reduces the security impact of making
a programming mistake. We can contemplate enriching the primitive so that it
takes an additional parameter, possibly of type Permission, Permission-
Collection, or Permissions,that specifies the permissions to be enabled.

Another way to reduce security liabilities is to subdivide the system domain.
For convenience, the system domain can be thoughtof as a single, large collection
of all system code. For better protection, however, system code should be run in
multiple system domains, where each domain protects a particular type of
resource and is given a special set of rights. For example,if file system code and
network system code run in separate domains, with the former having norights to
the networking resources and the latter having no rights to the file system
resources, the risks and consequences of an error or security flaw in one system
domain is more likely to be confined within its boundary.

Moreover, protection domains currently are created transparently as a result of
class loading. Providing explicit primitives to create a new domain mightbe use-
ful. Often, a domain supports inheritance in that a subdomain automatically inher-
its the parent domain’s security attributes, except in certain cases wherethe parent
further restricts or expands the subdomain explicitly.

Finally, a way to consistently handle nonclass content is needed. When
applets or applications are run with signed content (classes and other resources),
the JAR and Manifest specifications on code signing allow a very flexible for-
mat. The classes within the same archive can be unsigned, signed with onekey, or
signed with multiple keys. Other resources within the archive, such as audio clips
and graphic images, can also be signed or unsigned. However, it is unclear
whether images and audioclips should be required to be signed with the same key
if any class in the archive is signed. If images and audio files are signed with dif-
ferent keys, can they be placed in the same appletviewer (or browser page) or
should they be sent to different viewers? Such questions are not easy to answer.
Any response requires consistency across platforms and products in order to be
most effective. The current approach is to process all images and audio clips
whetheror not they are signed. This temporary solution should be improved once
a consensusis reached.

Page 241 of 275

Page 242 of 275

Page 242 of 275

232 JAVA AUTHENTICATION AND AUTHORIZATION SERVICE

8.3 Java Authentication and Authorization Service

When Java technology is used to construct not just a single desktop buta full-
fledged distributed system, a whole new range of distributed systems security
issues (such as those mentioned in Chapter 1) mustbe tackled. For example, addi-
tional mechanisms are needed to make RMIsecurein the presence ofhostile net-
work attacks. For Jini, Sun’s recently launched connection technology based on
Java that enables digital devices to simply connect together, service registration
and location must be securely managedif the environment contains coexisting but
potentially mutually hostile parties. A full set of higher-level services must be
secured, such as transactions for e-commerce. In addition, many lower-level secu-
rity protocols can be leveraged, such as the network security protocols Kerberos
and IPv6. This playing field is too large to speculate aboutin this. short section, but
a critical foundation for all of these issuesis a facility to authenticate users and to
use this information to perform access control.

Recall that JDK 1.2 uses a security policy to decide the granting of individual
access permissions to running code and that the decision depends on the code’s
characteristics, for example where the code is coming from and whetherit is digi-
tally signed and if so by whom. Such a code-centric style of access control is
unusual. Traditional security measures, most commonly found in sophisticated
operating systems, are user-centric, in that they apply control on the basis of who
is running an application and not on whichapplication is running. Code-centric
access controlis justified largely because a user surfing the Web and running exe-
cutable content it has encountered (for example, mobile code written in Java)
retains essentially a constant identity. On the other hand, the user mighttrust one
piece of mobile code more than others and would like to run this code with more
privileges. Thusit is natural to control the security of mobile code in a code-centric
style.

Nevertheless, Java is becoming widely used in a multiuser environment. For
example, a public Internet terminal, an enterprise application (such as the salary
tool at Sun Microsystems), or a server handling numerous rental Palm Pilot units
all must deal with different users, either concurrently or sequentially, and must
grant these users different privileges based on their identities.

The Java Authentication and Authorization Service (JAAS) is designed to
provide a standard programminginterface for authenticating users and for assign-
ing privileges.* Together with JDK 1.2, an- application can provide code-centric
access control, user-centric access control, or a combination of both. JAAS also

2 The JAAS specification outlined here is under public design review, so the descriptions are
subject to change.

Page 243 of 275

FUTURE DIRECTIONS

lays the groundwork to support a general mechanism for cross-protection domain
authorization and the “running-on-behalf-of” style delegation.

Authentication has been a topic of security research for decades. However, the
Java environment presents unique challenges. The design of JAAS was motivated
by the following requirements.

¢ Extensibility. A need exists for a small but well-groundedset of Java program-
ming interfaces for authentication and authorization that can easily be extended.

¢ Plugability. Different systems can easily incorporate their new or existing
authentication capabilities into the JAAS framework.

¢ Compatibility. The code-based access control architecture, introduced in JDK
1.2, and the new user-basedaccess control mechanism in JAAS can coexist in-

dependently and can also be seamlessly combined to implement sophisticated.
security policies.

Several existing standards support authentication, including the Generic Secu-
rity Services Application Programmer’s Interface (GSS-APDand Simple Authen-
tication and Security Layer Application Programmer’s Interface (SASL). SASL
represents a framework that provides authentication support for connection-based
protocols. Thus it caters to applications that perform network authentication. Like
JAAS, SASLalso has a modular architecture. GSS mechanisms such as Kerberos

or the Simple Public Key Mechanism (SPKM) may be plugged in under the SASL
framework. JAAS,on the other hand, also provides support for authentication in a
standalone nonconnection-oriented environment. Thus JAAS and SASL/GSS

complement each other to provide both local and network-based support for
authentication.

One scenario in which these architectures might coexist involves environ-
ments that rely on Kerberos (and possibly other services) for authentication. JAAS
login modules could be plugged under the login application to authenticate the
user, wheninitially logging in, to both the underlying operating system as well as
to Kerberos (to obtain the user’s Kerberos Ticket Granting ticket). By installing a
Kerberos login module, the user would not have to perform additional steps, such
as execute the command kinit at a later time to obtain the ticket. When the user

executes client applications that are attempting to authenticate across the network
to certain servers that use the Kerberos protocol, those applications could then use
SASL, which would presumably have the appropriate Kerberos mechanism
plugged in to perform the actual authentication.

Page 243 of 275

233

Page 244 of 275

Page 244 of 275

234 JAVA AUTHENTICATIONAND AUTHORIZATION SERVICE

8.3.1 Subjects and Principals

Users often depend on computing servicesto assist them in performing work. To
identify its users, a computing service typically relies on usernames. However,
users mightnot have the same namefor eachservice and in fact might even have a
different namefor each individual service. Furthermore, a service mightbe a user
of other services and subsequently might also have multiple names. JAASuses the
term subject to refer to any user of a computing service. Both users and computing
services, therefore, represent subjects. The term principal represents a name asso-
ciated with a subject. Since subjects may have multiple names (potentially one for
each service with whichit interacts), a subject essentially consists of a collection
of principals [35, 41].

Principals become associated with a subject only if that subject successfully
authenticates to a service. Authentication represents the process by which one ver-
ifies the identity of another and must be performed in a secure fashion; otherwise,
a perpetrator might impersonate others to gain unrestricted access to a system.
Authentication typically involves the subject’s demonstrating some form of evi-
dence to prove its identity. Such evidence might be information only the subject
would likely know (for example, a password or PIN)or have (for example, a fin-
gerprintor voice pattern).

Whena subject attempts to authenticate to a service, it typically provides the
proofofits identity along with its name. If the authentication attempt succeeds,
the service associates a service-specific principal, using the given name, with the
subject. Applications and services can then always determinethe identity of the
subject simply by referencing the relevant principal associated with that subject.

8.3.2 Credentials

Some services might wantto associate other security-related attributes and data
with a subject in addition to principal information. JAAScalls such generic secu-
rity-related attributes credentials. A credential might contain information that can
be used to authenticate the subject to additional services in the future. A Kerberos
ticket [60] represents such a credential. Credentials might also contain or refer-
ence data that simply enables the subject to perform certain activities. Crypto-
graphic keys, for example, represent credentials that enable the subject to sign or
encrypt data.

Although Kerberostickets and cryptographic keys exemplify common types
of credentials, credentials can represent a wider range of security-related data.
Applications running on behalf of users must coordinate with the services upon
which they depend so as to agree on the kinds of credentials that are needed and
that can be understoodor recognized during their interactions. Thus, while some

Page 245 of 275

FUTURE DIRECTIONS

credentials might be standard or well recognized, others might be application- and
service-specific. In addition, credential implementations do not necessarily have
to contain the actual security-related data: they might simply reference that data.
This occurs when the data must physically reside on a Separate server or hardware
device (for example, private keys on a smart card).

A subject must successfully authenticate to a service to obtain credentials.
Uponsuccessful authentication, the service creates the appropriate credential and
associates it with the subject. Once a subject has been populated with credentials,
applications running on behalf of the subject may (with the proper permissions)then access and use those credentials. JAAS does not impose any restrictions
Tegarding credential delegation to third parties. Rather, it either allows each cre-
dential implementation to specify its own delegation protocol (as Kerberos does)or leaves delegation decisions up to the applications.

8.3.3 Pluggable and Stacked Authentication

Application

eeepcrect atc en eounmummmeney

Figure 8.1 Pluggable authentication.

sie ein) Configuration

LCeel=teet3

Page 245 of 275

235

Page 246 of 275

Page 246 of 275

236 JAVA AUTHENTICATIONAND AUTHORIZATION SERVICE

When attempting to authenticate a subject, an application calls into the
authentication framework, which JAAS definesas a login context. The login con-
text consults a configuration, which determinesthe authentication service, or login
module, which gets plugged in under that application. Because the application
interfaces only with the login context, it remains completely independent of the
configured login module.

Each login module authenticates subjects uniquely. For example, a conven-
tional password-based login module prompts for a username andverifies a pass-
word; a smart card login module informsthe subjectto insert its card into the card
reader and verifies a PIN; and a biometric login module prompts for a username
and verifies the subject’s fingerprint. Depending on the security requirements of
the application, a system administrator configures the appropriate login module.
In fact, system administrators may also plug multiple login modules under an
application. This type of stacked configuration is depicted in Figure 8.2.

A subject authenticates to the login modules in the order specified by the con-
figuration. In general, regardless of whether a login modulefails, the subject con-
tinues to authenticate to the ensuing login modules onthe stack. This helps hide
the source offailure from potential attackers. Additional parameters within the
configuration allow for exceptions to this rule and also determine which login
modules must succeed for the overall authentication to succeed. Details on the
login configuration specifics appear on page 238.

Thelogin contextreports a successful authentication status back to the calling
application only if all of the necessary login modules(as determined bythe con-

Application

Configuration

Figure 8.2. Stacked authentication.

Page 247 of 275

FUTURE DIRECTIONS

figuration) succeed. To guarantee this, the login context performs the authentica-
tion steps in two phases. Both phases must complete successfully for the login
context to return an overall authentication status noting success.

1. The login context invokes each configured login module andinstructsit to ver-
ify the identity of the subject only. If all of the necessary login modules suc-
cessfully pass this phase, the login context then enters the second phase.

2. The login context invokes each configured login moduleagain,instructing it
to formally commit the authentication process. During this phase, each login
module associates any relevant principals, which hold the authenticated user-
names, and credentials with the subject.

Thus, once the overall authentication process has completed,the calling applica-
tion can traverse through a subject’s collection of principals to obtain its various
identities and can traverse through a subject’s credentials to access supplementary
data. Some login modules might associate only credentials (and not principals)
with the subject. A smart card module,for example, mightauthenticate the subject
by verifying a provided PIN and upon success simply associate with the subject a
credential referencing a cryptographic key on the card. The smart card module in
this case doesnot associate a principal with the subject.

If either the first or second phase fails, the login context invokes each config-
ured login module and instructs them to abort the entire authentication attempt.
Each login module then cleans up any relevantstate it had associated with the
authentication attempt.

During this two-phase process, if a particular login module fails it does not
sleep and it does not attempt to retry the authentication. Otherwise, the subject
attempting the authentication can detect which login modulefailed. The calling
application owns the responsibility of performing tasks such as retry and may
elect to perform them after each complete round (two phases) of authentication.

During the authentication process, login modules have the choice andability
to share information with each other; whether one does depends onits security
requirements. One motivation for sharing information is to help achieve single
sign-on. For example, stacked login modules may share username and password
information, thereby enabling users to enter that information only once butstill
get authenticated to multiple services. In the case of subjects’ having different
usernames and passwords for each service, login modules may also coordinate
with each other to map such information into the relevant service-specific infor-
mation. Thus, although the subject enters only a single username and password,
that information gets mapped into the respective service-specific usernames and

Page 247 of 275

237

Page 248 of 275

Page 248 of 275

238 JAVA AUTHENTICATION AND AUTHORIZATION SERVICE

passwords, thereby enabling the subject to again authenticate to multiple services
with relative ease.

Configuration

The JAASlogin configuration specifies the login modules to be plugged in under
a particular application. The configuration syntax is based on that defined by
PAM.Following is an example.

Login {

com. sun. security.auth.SampleLoginModule REQUIRED debug=true;

com.sun.security.auth.SolarisLoginModule REQUIRED;
}

Each entry in the configuration is indexed via an application name, Login in
this example, and containsa list of login modules configured for that application.
Authentication proceeds downthelist in the exact orderlisted, with the flag value
REQUIREDcontrolling the overall behavior.

Following is a description of the valid flag values.

REQUIRED.The login module is required to succeed. Regardless of whetherit
succeedsor fails, however, authentication still proceeds down the login mod-
ule list. It must continue, even when faced with failure, because aborting at
that point would give potential attackers useful information, such as which
module failed and why.

REQUISITE. The login module is required to succeed.If it succeeds, authenti-
cation continues downthe login modulelist. If it fails, control immediately re-
turns to the application (authentication does not proceed downthe login
modulelist).

SUFFICIENT. The login module is not required to succeed.If it does succeed,
control immediately returns to the application (authentication does not proceed
down the login modulelist). If it fails, authentication continues downthe login
module list.

OPTIONAL. The login module is not required to succeed.If it succeedsorfails,
authenticationstill proceeds down the login modulelist.

The overall authentication succeeds only if all REQUIRED and REQUISITE
login modules succeed. If no REQUIRED or REQUISITE login modules are config-
ured for an application, then at least one SUFFICIENT or OPTIONALlogin module
must succeed. You can also use a LoginModule to define options to support
debugging/testing capabilities. To do this, use the key-value pair debug=true.

Page 249 of 275

FUTURE DIRECTIONS

8.3.4 Callbacks

By using the login context, applications remain independent from underlying
login modules. However, login modules may be plugged underany typeof appli-
cation. Regardless of the type of application a login module gets plugged under,it
must be able to garner information from and display information to subjects via
the calling application. For example, a login module that requires username and
password information needs the ability to promptthe subject for such information
without knowing whether the calling application has a GUI.

The login context solves this problem by allowing applications to specify a
callback that underlying login modules may use to interact with subjects. Applica-
tions provide a callback implementation to the login context, which passes it
directly to each login module. Login modules may then invokethe callback to gar-
ner or display the relevant information. The callback, implemented by the applica-
tion, inherently knows whetherto construct a graphical windoworto simply use a
standard output stream. The callback design and usageis depicted in Figure8.3.

8.3.5 Access Control

The current JDK 1.2 SecurityManager class implementation enforces code
source-based access controls, controls based on where code came from and who

signed it. The JAAS SecurityManager implementation augments this security
manager with subject-based access controls, controls based on who runs code.
Both the code source-based checks and subject-based checks must pass in order
for the JAAS SecurityManager to grant access to sensitive resources.

Application

Figure 8.3 Callback design and usage.

Page 249 of 275

239

Page 250 of 275

Page 250 of 275

240 JAVA AUTHENTICATIONAND AUTHORIZATION SERVICE

Permission Granting

Authentication serves as the basis for authorization [41]. Specifically, once an
application knowsthe exact identity of a subject, it can then specify exactly what
set of operations that subject may perform. Since a subject simply represents a
nameless container holding relevant information for a user, while principals repre-
sent authenticated identities for that subject, the set of permissions granted to a
subject depends on the principals associated with that subject and not on the sub-

_ ject itself. In other words, permissions are granted to a subject based on its authen-
ticated principals [41]. The exact set of permissions granted can be configured
within an external access control policy.

The policy syntax that JAAS uses is a simple extension of the JDK 1.2 policy
syntax specified for code source-based access control, with the addition of a prin-
cipal entry to the grant statement. Thus the code source-based policy grants per-.
missions to code sources (a URL, together with a signer alias), whereas the JAAS
policy grants permissions to principals (identified by the principal classname and
the nameofthe principalitself).

grant Principal com.sun.security.auth.SolarisPrincipal "gong" {

permission java. lang.RuntimePermisston "queuePrintJob";

permission java.io.FilePermission "/home/gong", “read, write”;

}

Here, any subject with an associated SolarisPrincipal principal that has the
name “gong” is granted permission to queue print jobs, as well as permission toJQ?

read and write files from “gong’s” homedirectory.

Enforcing User-Centric Security Policies

In JAAS, applications associate subjects with a thread of operation in order to
have access controls enforced on that subject. When that operation executes, the
JAAS SecurityManager retrieves the associated subject and checks that it has
been granted the necessary permissions before permitting sensitive operations to
occur and before permitting access to sensitive resources. If the subject has not
been granted sufficient permissions, SecurityManager throws a Security-
Exception.

While executing, operations may invoke other operations, thereby creating a
sequence of nested operations. When this occurs, each nested operation gets
pushed onto a stack. When the JAAS SecurityManager must make an access
control decision, it investigates the stack and retrieves all of the subjects associ-
ated with the operations on the stack. It checks and ensures that every subject on
the stack is granted the necessary permissions. If one or more subjects do not have
the necessary permissions, SecurityManager throws a SecurityException. As

Page 251 of 275

FUTURE DIRECTIONS 241

a result, the overall permissions ofthe entire stack effectively equals the intersec-
tion of permissionsgranted to the individual subjects on the stack.

In some cases, an operation and associated subject might want to exercise
their own permissions and not be dependent, for overall access to be granted, on
previous operations on the stack also having the same permissions. This occurs
when an executing operation, with an associated subject, queries another opera-
tion, with a different associated subject, to perform a certain task on its behalf,
While the queried operation certainly has the necessary permissions to perform
the requested task, the initial operation typically does not. With the previously
described access control model, access would be denied. To overcomethis prob-
lem, the queried operation, if it has permission, may declare itself privileged.
Whenprivileged, the operation does not require its callers or requestors to have
been granted the same permissions as itself in order for overall access to a
resource to be granted. Onlythe operationitself, along with its associated subject,
needs to have the necessary permission.

Notethatif a privileged operation subsequently invokes a nonprivileged oper-
ation, then access control decisions again become based ontheintersection of per-
missions granted to both subjects associated with the privileged, and ensuing
nonprivileged, operations. The privileged operation in JAAS is modeledafter the
doPrivileged interface in JDK 1.2.

8.3.6 JAAS Implementation

The JAAS implementation consists of approximately 25 classes and interfaces
arranged within three packages.

@ javax.security.auth

This package contains the fundamental classes required by the JAAS frame-
work,including the Subject class and Credential interface. Although prin-
cipals are also a fundamental concept, they do not have a corresponding class
or interface in JAAS. Rather, JAASusesthe principal interface already pro-
vided by JDK, java.security.Principal. The packagealso includes the
basic classes required for authorization. Specifically, it includes a Securi ty-
Manager class and an access control Policyclass.

javax.security.auth. login

This package contains classes that support pluggable authentication. It
includes a LoginContext class, LoginModul1e interface, login Configu-
rationclass, and LoginExceptionclass (to report authentication failures).

Page 251 of 275

Page 252 of 275

Page 252 of 275

242 CONCLUSION

javax.security.auth.callback

This package contains different callback classes that login modules may use
to interact with subjects. This includes a Cal backHandJer class and Cal1-
back interface and several callback implementations, such as NameCal]back,
PasswordCal I back, TextInputCallback, and TextOutputCal Iback.

Also included among the packages, but not described here, are various
Permission classes for proper security checking and Exception classes for
propererror handling.

8.4 Conclusion

In this book, I took you on a tour inside the Java security architecture. The tour
includedthe various security features that the Java platform provides at multiple
layers—at the languagelevel, within the JVM,and throughoutcorelibraries and
extensions—as well as the customizations done by applications and applets. You
viewed such issues as type safety, object-level security, security policies, fine-
grained access control, and security deployment issues. And you visited Java
cryptography architecture, which includes support for digital signatures andcertif-
icates in JDK and the separately released JCE (Java Cryptography Extension).

The development of the JDK has progressed from the original JDK 1.0, to
JDK 1.1, to JDK 1.2, Somewhatparallel to this, separate security extensions also
have comeinto being—first JCE and then JAAS. Andthe road continues forward.

A few major Java technology trends underlie this development. Understand-
ing these help to see where Java security is headed.

First is that the industrial adoption of Java technology has moved from focus-
ing exclusively on the client side to being deployed also on the server side. Cou-
pled with this new focus is a growing need to handle security issues that are
commonplace within an enterprise environment, For example, treating one JVM
as ownedbya single user is no longer sufficient. Instead, a server application run-
ning inside one JVM can represent multiple users. As another example, mission-
critical applications must tolerate failure and survive denial-of-service attacks.
Thus resource control inside JVMs is becoming more important. As a result, the
future holds extensive improvement in security for this application space, with
JCE and JAASbeing just the start.

The secondtrendis that the world is getting smaller. Java technologyis being
deployed on information and Internet appliances such as smart cards, personal
digital assistants (PDAs), cell phones, pagers, Internet-capable screen phones, and
TV set-top boxes. These devices have unique requirements compared with the

Page 253 of 275

FUTURE DIRECTIONS 243

typical desktop system to which JDKis targeted. Being smallish in size and mem-
ory and relatively underpowered, they often adopt specialized Java platforms,
such as PersonalJava and EmbeddedJava. Further, the targeted application envi-
ronment for these devices have stronger, not weaker, security requirements. For
example, a cell phone manufacturer might allow a phone service provider com-
pany, as the original equipment manufacturer (OEM) of the phones, to add
vendor-specific features, while not wanting any party to be able to change the ker-
nel of the phone. ,

The situation can be more complicated when, for example,third parties such
as a hotel chain start to partner with the phone companyto offer loyalty programs.
Whena new software feature upgrade is dynamically downloaded from the hotel
chain to the phone over a wireless connection,it is crucial to ensure the authentic-
ity of the upgrade, the integrity of the wireless connection, and secure isolation
between the upgrade (and its sibling application software) and those other soft-
ware already installed.

To ensure that platforms such as PersonalJava and EmbeddedJavahave strong
security, one major challenge is to design security features that fit into a small
footprint. For example, to meet customer security requirements on set-top boxes
and others, the fine-grained access control architecture designed for JDK 1.2 has
been ported to PersonalJava.? It turns outthat the entire security package, includ-
ing the digital signature infrastructure (and particularly support for digital certifi-
cates), is too big; for example, X.509 was obviously not designed for devices
currently on the mass market that have small memories. Nevertheless, we man-
aged to achieve the goals because in JDK 1.2 the access control mechanism is

related to the signature and certificate infrastructure via a single interface,
java.security.cert.Certificate. There are no other API dependencies
between the two mechanisms. As a result, the crypto features can be made
optional, while the access control mechanism can be enhanced to work normallyif
the crypto features are available andto treat all code as unsignedif they are not.

A related trend is that the world is becoming more connected. This increases
the need for secure communication, secure mobile and disconnected operations,
secure on-line transactions, and so on.

Thelasttrendis that the hot points surrounding Java technology are no longer
just platform and infrastructure issues. More and more, applications coming to
market bring new kinds of security design issues that include security user inter-
face and policy management. Traditionally, security technology has focused more
on platforms (such as operating systems and networking protocols) and less on

3 A not-yet-publicly-available documentdescribesthis porting in more detail. L. Gong, Per-
sonalJava Security Architecture, Draft version 0.1, April 6, 1998.

Page 253 of 275

Page 254 of 275

Page 254 of 275

244 CONCLUSION

applications (most of which run as fully trusted). Thus substantial workstill
remains in this area.

It has taken thirty or so years for computer security to come of age and
become a mainstream technology,butstill there is a lot to do and many challenges
and opportunities to meet. Welive in interesting times.

Page 255 of 275

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

Bibliography

The Java Extensions Framework. JDK 1.2 documentation, Sun
Microsystems, Inc., 1998. http: //java.sun.com/products/jdk/1.2/
docs/guide/extensions.

K. Arnold and J. Gosling. The Java Programming Language, Second
Edition. Addison-Wesley, Reading, Mass., 1998.
D. E. Bell and L. J. LaPadula. Secure Computer Systems: A Mathematical
Model. Journal of Computer Security, 4(2-3):239~263, 1996. A modem
reprint of the sametitled technical report, ESD-TR-73-278, Vol. 2, The
MITRE Corporation, Bedford, Mass., 1973.
S. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks. Proceedings of the IEEE
Symposium on Research in Security and Privacy, 72-84, Oakland, Calif.,
May 1992.
S. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A
Password-Based Protocol Secure Against Dictionary Attacks and Password
File Compromise. Proceedings of the 1st ACM Conference on Computer and
Communications Security, 244-50, Fairfax, Va., November 1993.
S. M. Bellovin and W. R. Cheswick. Network Firewalls. JEEZ

Communications, 50~57, September 1994.
B.N.Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuchynski, D. Becker,
S. Eggers, and C. Chambers. Extensibility, Safety, and Performancein the
SPIN Operating System. Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 251-266, Copper Mountain Resort, Colo.,
December 1995. Published as ACM Operating System Review 29(5):251-
266, December 1995.

D. F. C. Brewer and M. J. Nash. The Chinese Wall Security Policy.
Proceedings of the IEEE Symposium on Security and Privacy, 206-214,
Oakland, Calif., April 1989.
M.Burrows, M. Abadi, and R. M. Needham. A Logic for Authentication.
ACMTransactions on Computer Systems, 8(1):18-36, February 1990.

[10] J. S. Chase, H. M. Levy, M.J. Feeley, and E. D. Lazowska. Sharing and
Protection in a Single-Address-Space Operating System. ACM Transactions
on Computer Systems, 12(4):271-307, November 1994.

Page 255 of 275

245

Page 256 of 275

Page 256 of 275

246
BIBLIOGRAPHY

[11] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. Proceedings ofthe IEEE Symposium on Security
and Privacy, 184-194, Oakland, Calif., April 1987.

[12] F. Cristian. Understanding Fault-Tolerant Distributed Systems.
‘Communicationsofthe ACM, 34(2):57-78, February 1991.

[13] I. B. DamgSard. Design Principles for Hash Functions. Advancesin
Cryptology: Proceedings of Crypto ’89, Vol. 435 of Lecture Notesin
Computer Science, 416-427. Springer-Verlag, New York, October 1989.

[14] W. Diffie and M. E. Hellman. New Directions in Cryptography. JEEE
Transactions on Information Theory, IT-22(6):644—-65, November 1976.

[15] D. Dolev and A. C. Yao. On the Security of Public Key Protocols.EEE
Transactions on Information Theory, TT-29(2):198-208, March 1983.

[16] E. Gamma, R. Helm, R. Johnson,andJ. Vlissides. Design Patterns. Addison-
Wesley, Reading, Mass., 1995.

[17] M. Gasser, Building a Secure Computer System. Van Nostrand Reinhold Co.,
New York,.1988.

[18] J. A. GoguenandJ. Meseguer. Security Policies and Security Models.
Proceedings of the IEEE Symposium on Security and Privacy, 11-20,
Oakland, Calif., April 1982.

[19] J. A. Goguen andJ. Meseguer. Unwinding and Inference Control.
Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
Calif., April 1984,

(20] T. C. Goldstein. The Gateway Security Modelin the Java Electronic
Commerce Framework. Proceedings ofFinancial Cryptography 97, 291—
304, Anguilla, British Virgin Island, February 1997.

[21] L. Gong, T. M. A. Lomas, R. M. Needham,and J. H.Saltzer. Protecting
Poorly Chosen Secrets from Guessing Attacks. IEEE Journal on Selected
Areas in Communications, 11(5):648-656, June 1993,

[22] L. Gong. Collisionful Keyed Hash Functions with Selectable Collisions.
Information Processing Letters, 55(3):167-170, August 1995.

[23] L. Gong. Java Security: Present and Near Future. JEEE Micro, 17(3):14-19,
May/June 1997.

[24] L. Gong,P. Lincoln,and J. Rushby. Byzantine Agreement with
Authentication: Observations and Applications in Tolerating Hybrid Faults.
Proceedings of the 5th IFIP Working Conference on Dependable Computing
for Critical Applications, 79-90, Urbana-Champaign,Ill., September 1995.

[25] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyondthe
Sandbox: An Overview of the New Security Architecture in the Java
Development Kit 1.2. Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 103-112, Monterey, Calif., December 1997.

[26] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in
Cryptographic Protocols. Proceedingsofthe IEEE Symposium on Research
in Security and Privacy, 234-248, Oakland, Calif., May 1990,

Page 257 of 275

BIBLIOGRAPHY 247

[27] L. Gong and X. Qian. Computational Issues of Secure Interoperation. IEEE
Transactions on Software Engineering, 22(1):43-52, January 1996.

[28] L. Gong and R. Schemers. Implementing Protection Domainsin the Java
DevelopmentKit 1.2. Proceedings of the Internet Society Symposium on
Network and Distributed System Security, 125-134, San Diego,Calif., March
1998.

[29] L. Gong. New Security Architectural Directions for Java (Extended
Abstract). Proceedings ofIEEE COMPCON,97-102, SanJose, Calif.,
February 1997.

[30] J. Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, Reading, Mass., August 1996.

[31] N. Haller, C. Metz, P. Nesser, and M. Straw. A One-Time Password System.
Request for Comments (RFC) 2289,Internet Engineering Task Force,
February 1998.

[32] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating
Systems. Communications of the ACM, 19(8):461-471, August 1976.

[33] C. Hawblitzel, C-C Chang, G. Czajkowski, D. Hu, and T. von Eicken,
Implementing Multiple Protection Domains in Java. Proceedingsofthe
USENIX AnnualTechnical Conference, New Orleans, La., June 1998.

[34] M. P. Herlihy and J. D. Tygar. How to Make Replicated Data Secure.
Advances in Cryptology. Proceedings of Crypto ’87, Vol. 293 of Lecture
Notes in Computer Science, 379-391. Springer-Verlag, New York, 1987.

[35] R. Housley, W.Ford, T. Polk, and D. Solo. Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. Request for Comments (RFC)
2459, Internet Engineering Task Force, January 1999:

[36] A. K. Jones. Protection in Programmed Systems. Ph.D.dissertation,
Carnegie-Mellon University, Pittsburgh, Penn., June 1973.

[37] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, Revised Edition. Addison-Wesley, Reading, Mass., 1969.

[38] D. E. Knuth. The Art of Computer Programming, Vol. 3: Searching and
Sorting. Addison-Wesley, Reading, Mass., 1973.

[39] A. G. Konheim. Cryptography: A Primer. John Wiley & Sons, Inc., New
York, 1981.

[40] L. Lamport. Password Authentication with Insecure Communication.
Communications of the ACM, 24(11):770-772, November 1981.

[41] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in
Distributed Systems: Theory and Practice. ACM Transactions on Computer
Systems, 10(4):265-310, November 1992.

[42] B. W. Lampson.Protection. Proceedings of the 5th Princeton Symposium on
Information Sciences and Systems, Princeton University, March 1971.
Reprinted in ACM Operating Systems Review, 8(1):18-24, January 1974.

[43] B. W. Lampson. A Note on the Confinement Problem. Communications of
the ACM, 16(10):613-615, October 1973.

Page 257 of 275

Page 258 of 275

Page 258 of 275

248 BIBLIOGRAPHY

[44] C. E. Landwehr. Formal Models for Computer Security. ACM Computing
Survey, 13(3):247— 278, September 1981.

[45] S. Liang and G. Bracha. Dynamic Class Loadingin the Java Virtual Machine.
Proceedings of the ACM Conference on Object Oriented Programming
Systems, Languages, andApplications, 36-44, Vancouver, British Columbia,
October 1998.

[46] T. Lindholm andF. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, Mass., 1997.

[47] T. M. A. Lomas, L. Gong,J. H. Saltzer, and R. M. Needham. Reducing Risks
from Poorly Chosen Keys. Proceedings ofthe 12th ACM Symposium on
Operating System Principles, Litchfield Park, Ariz. Published in ACM
Operating Systems Review, 23(5):14-18, December 1989.

[48] D. McCullough. A Hookup Theorem for Multilevel Security. JEEE
Transactions on Software Engineering, 16(6):563—568, June 1990.

[49] G. McGraw and E. W.Felten. Java Security: Hostile Applets, Holes, and
Antidotes. John Wiley & Sons, New York, 1997.

[50] C. Meadows. Using Narrowing in the Analysis of Key Management
Protocols. Proceedings ofthe IEEE Symposium on Security and Privacy,
138-147, Oakland, Calif., May 1989.

[51] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook ofApplied
Cryptography. CRC Press, New York, 1997.

[52] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis,
Stanford University, UMI Research Press, Mich., 1982. Revised from 1979
thesis.

[53] R. C. Merkle. A Fast Software One-Way Hash Function. Journal of
Cryptology, 3(1):43-58, 1990.

[54] C. H. Meyer and M.Schilling. Secure Program Load with Modification
Detection Code. Proceedings of the 5th Worldwide Congress on Computer
and Communication Security and Protection-SECURICOM 88, 111-130,
Paris, 1988.

{55] J. K. Millen, 8. C. Clark, and S. B. Freedman. The Interrogator: Protocol
Security Analysis. [EEE Transactions on Software Engineering,
SE-13(2):274—288, February 1987.

[56] S. P. Miller, C. Neuman,J. I. Schiller, and J. H. Saltzer. Kerberos
Authentication and Authorization System. Project Athena Technical Plan
Section E.2.1, Massachusetts Institute of Technology, October 1988.

[57] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong. Secure
Software Architectures. Proceedings ofthe IEEE Symposium on Security and
Privacy, 84-93, Oakland, Calif., May 1997.

[58] M. Naor and M. Yung. Universal One-Way Hash Functions and Their
Cryptographic Applications. Proceedings of the 21th Annual ACM
Symposium on Theory of Computing, 33-43, Seattle, Washington, May 1989.

Page 259 of 275

BIBLIOGRAPHY 249 . |

[59] R. M. Needham and M.D.Schroeder. Using Encryption for Authentication
in Large Networks of Computers. Communications of the ACM, 21(12):993—
999, December 1978.

[60] B. C. Neuman and T. Ts’o. Kerberos: An Authentication Service for
Computer Networks. IEEE Communications, 32(9):33-38, September 1994.

[61] P. G. Neumann. Computer-Related Risks. Addison-Wesley, Reading, Mass.,
1995.

[62] U.S. National Bureau of Standards. Data Encryption Standard, January
1977. U.S. Federal Information Processing Standards Publication, FIPS PUB
46.

[63] U.S. General Accounting Office. Information Security: Computer Attacks at
Department of Defense Pose Increasing Risks. Technical Report GAO/
AIMD-96-84, Washington, D. C., May 1996.

{64] M.O. Rabin. Fingerprinting by Random Polynomials. Technical Report
TR-15-81, Center for Research in Computing Technology, Harvard
University, Cambridge, MA, 1981.

[65] M.Reiter. Secure Agreement Protocols: Reliable and Atomic Group
Multicast in Rampart. Proceedings of the 2nd ACM Conference on Computer
and Communications Security, 68-80, Fairfax, Va., November 1994.

[66] S. Ritchie. Systems Programming in Java. IEEE Micro, 17(3):30-35, May/
June 1997.

[67] R. L. Rivest. The MD5 Message-Digest Algorithm. Request for Comments
(RFC) 1321, Internet Engineering Task Force, April 1992.

[68] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120-126, February 1978.

[69] J. H. Saltzer. Protection and the Control of Information Sharing in Multics.
Communications of the ACM, 17(7):388-402, July 1974.

[70] J. H. Saltzer and M. D. Schroeder. The Protection of Information in

Computer Systems. Proceedings of the IEEE, 63(9):1278-1308, September
1975.

[71] V. Samar and C. Lai. Making Login Services Independent from
Authentication Technologies. Proceedings of the SunSoft Developer's
Conference, March 1996.

[72] R. S. Sandhu. The Typed Access Matrix Model. Proceedings of the IEEE
Symposium on Research in Security and Privacy, 122-136, Oakland, Calif.,
May 1992.

[73] F. B. Schneider. Implementing Fault-Tolerant Services Using the State-
Machine Approach: A Tutorial. ACM Computing Surveys, 22(4):299-319,
December1990.

[74] B. Schneier. Applied Cryptography. John Wiley & Sons, New York, 1994.
[75] M. D. Schroeder. Cooperation ofMutually Suspicious Subsystems in a

Computer Utility. Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, Mass., September 1972.

Page 259 of 275

Page 260 of 275

Page 260 of 275

250 BIBLIOGRAPHY

[76] M.I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with Disaster:
Surviving Misbehaved Kernel Extensions. Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation, 213-227,
Seattle, Wash., October 1996. Published as ACM Operating Systems Review,
30, special winter issue, 1996.

[77] A. Shamir. How to Share a Secret. Communications ofthe ACM, 22(11):612—
613, November 1979.

[78] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. Secure Network
Objects. Proceedings of the IEEE Symposium in Security and Privacy, 211-
221, Oakland, Calif., May 1996.

[79] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible Security
Architectures for Java. Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 116-128, Saint-Malo, France, October 1997.

[80] M. V. Wilkes. Time-Sharing Computer Systems. MacDonald, London, 1968.
[81] W. A. Wulf, R. Levin, and S. P. Harbison. HYDRA/C.mmp—An

Experimental Computer System, McGraw-Hill, New York, 1981.
[82] F. Yellin. Low Level Security in Java. Proceedings of the 4th International

World Wide Web Conference, Boston, Mass., December 1995.

Page 261 of 275

* (asterisk), 52, 56, 58, 60-61, 63
\ (backslash), 54, 61, 121-122, 125
/ (forward slash), 52, 54, 68, 120, 124

A

Acceptaction, 56
Access control. See also Permissions

basic description of, 7-11
bytecode verification and, 24, 25-27, 29-31,

83

context of, 101-102
covert channels and, 8-9

fine-grained, 35, 37, 82, 146
JAASand, 239-240

AccessControlContext class, 84, 101-102, 164,
167-168

AccessControlException, 174
AccessController class, 88, 90-111, 115,

154-156, 162, 164, 174

Accessibility features, 71
Accessor methods, 176
ActiveX controls, 18, 31

Additive permission assignment, 67-68
add method, 48
addProvider method, 198

AlgorithmParameterGenerator class, 196, 204,
206-207

AlgorithmParameters class, 196, 204-215
AlgorithmParameterSpecclass, 204
AllPermission class, 46, 65-66, 70, 156, 163
AlternativeNames extension, 128
America Online, 151

AND operation, 120
ANS.1, 203, 205

Page 261 of 275

Index

AOL (America Online), 151
APIs (Application Program Interfaces), 23, 33,

175, 229, 243
certificate, 129

class loading and, 72, 74~79
CORBA-style, 189
cryptographic, 191-192, 196-198, 214
deprecated, in JDK 1.2, 85-87
permission sets and, 69
policy content and, 40
SecurityManagerclass and, 84-85
unchanged, in JDK 1.2, 84-85
Win32, 18, 23, 113

AppletClassLoaderclass, 74, 75, 77-78
Applets

basic description of, 23-24
locally installed, 36
signed, 27-28
too easily trusted, 36

Appletviewer, 33, 81, 114, 231
Architectures, security

basic description of, 33-111
basic security, 23-25
cryptographic, 191-228
customizing, 153-171
deploying, 113-152
new,reasons for, 34-37

providerbased, 192
signed applets and, 27

ASCTI (American Standard Code for Informa-
tion Interchange), 39

ASN(Abstract Syntax Notation), 128, 208
Asterisk (*), 52, 56, 58, 60-61, 63
Asymmetric ciphers, 11, 14-15

251

Page 262 of 275

Page 262 of 275

252

Attacks, brief history of, 28-31
AuditingSecurityManagerclass, 157
Authentication, 15-17, 232-242
Authenticatorclass, 63

Authenticode (Microsoft), 185
Authorization, 232-242
AWTPermissionclass, 46, 62-63, 153

B

Backslash (\), 54, 61, 121-122, 125
Backup methods, 4
Backward compatibility, 70, 87, 146, 176
Balfanz, Dirk, 30
Bank of America Website, 38

Base64 encoding, 128, 135, 221-222
BasicPermission class, 45, 46, 59, 63
beginPriviledged method, 106
Beil, D. E., 7, 11

Bell-LaPadula confidentiality model, 11
Bershad, Brian, 30

Binary-trust model, 146
BNF grammar, 56, 120
Boolean values, 86, 159, 177
Bootstrapping, 73-74, 83
ByteArrayInputStream, 221
Bytecode verification, 24, 25-27, 29-31, 83

Cc

CA (Certificate Authority), 126, 129, 134~138
CallbackHandler class, 242
Callback interface, 242
callbacks, 239, 242

Cambridge Time-Sharing Computer System,
12

Canonical names, 58

Case-sensitivity, 131, 205
CCITT,126
Certificate class, 129

CertificateFactory class, 129, 196, 208, 210~
211, 223-224

Certificates, digital
basic description of, 125-150
factory classes for generating, 210-212
jarsigner and, 143-147
naming conventions for, 223-224
reading files that contain, 221-222
revocation lists of (CRLs), 127, 129, 195,

211, 212

INDEX

changePassword method, 96, 97-98
‘Channing, William Ellery, 153-155
Charles Schwab Website, 34-35, 38
checkAccess method, 86, 89-90, 162-163,

165-166, 168
checkAccountWithdraw method, 36
checkAwtEventQueueAccess method, 89, 169
checkConnect method, 58, 86-87, 90, 158,

167-168

checkCreateClassLoader method, 86, 89, 165
checkDelete method, 52, 86, 90, 167
checkExec method, 52, 86, 87, 89, 166
checkExit method, 86, 89, 159, 166
checkGuard method, 186, 190
checkJobAccess method, 86
checkLink method, 62, 86, 89, 166
checkListen method, 90, 168
checkMemberAccess method, 86, 89, 170
check method, 83-90
checkMulticast method, 86, 168
checkPackageAccess method, 86, 89, 169-170
checkPackageDefinition method, 86, 89, 170
checkPermission method, 36, 55, 87-90,

92-93, 102, 104, 154-158, 162, 164—
167, 170

checkPrintJobAccess method, 89, 169
checkPropertiesAccess method, 168
checkProperties method, 86
checkPropertyAccess method, 86, 89, 168, 169
checkRead method, 35, 55, 84, 86, 89-90, 92-

93, 158, 161-162, 166-167
checkSecurityAccess method, 86, 89, 171
checkSetFactory method, 86, 89, 170
checkSystemClipboardAccess method, 86, 169
checkTopLevelWindow method,86, 89, 159,

169

checkWrite method, 86, 89, 90, 167
Chinese Remainder Theorem (CRT), 209-210
Chinese Wall (separation of duty) model, 10,

158

Cipher object, 186
Ciphertext, 13-14, 186
Clark-Wilson integrity model, 10
Class(es). See also Classes (listed by name)

file formats, 23, 72 ,
hierarchy, 45-46
inner, 181-182

loading, 71-83

Page 263 of 275

INDEX

classdepth method, 85 .
Classes (listed by name). See also Class(es)

AccessControlContext class, 84, 101-102,
164, 167-168

AccessController class, 88, 90-111, 115,
154-156, 162, 164, 174

AlgorithmParameterGeneratorclass, 196,
204, 206-207

AlgorithmParameters class, 196, 204-215
AlgorithmParameterSpecclass, 204
AliPermission class, 46, 65-66, 70, 156, 163
AppletClassLoaderclass, 74, 75, 77-78
AuditingSecurityManagerclass, 157
Authenticator class, 63
AWTPermission class, 46, 62-63, 153
BasicPermissionclass, 45, 46, 59, 63
CallbackHandlerclass, 242
Certificate class, 129

CertificateFactory class, 129, 196, 208,
210-211, 223-224

ClassLoaderclass, 35, 37, 41, 71, 73-74,
159-160, 230

CodeSourceclass, 41, 43-45, 50, 66, 80, 119
CompositePermission class, 155, 156
Context class, 88

DSAParameterSpec class, 204—205, 206
DSAPrivateKeySpec class, 208, 209
DSAPublicKeySpec class, 209, 211, 220
FileInputStream class, 55, 92, 93, 133,

189-190, 221
FilePermission class, 45, 50, 52-55, 46, 142,

156-157, 166

GeneralSecurityException class, 27-28
GuardedObjectclass, 47, 186-190
IdentityScope class, 65
KeyFactory class, 192, 196, 197, 208, 210-

211

KeyFactorySpiclass, 197
KeyPair class, 212-213
KeyPairGenerator class, 196, 212-213,

218-219, 226-227

KeyStore class, 119, 132-133, 125, 147,
196, 208, 214-215

KeystoreSpi class, 132
LoginContextclass, 241
MessageDigestclass, 192, 196-197,

200-201, 217-218, 222, 225
MyClassclass, 177

Page 263 of 275

MyGamePermissionclass, 155
MyPasswordCheckclass, 174
NetPermission class, 63-64, 90

ObjectOutputStream class, 64
Permission class, 33, 45-46, 66, 68-69, 88,

121, 142, 153, 190, 230-231
PermissionCollection class, 48-49, 155, 231
Permit class, 190
Policy class, 33, 39-41, 50, 66-67, 90-91,

117-118

PropertyPermission class, 46, 59-60, 168
ProtectionDomain class, 69-71, 78-79,

102-103

Provider class, 64-65, 198, 200, 214
Random class, 215-217
ReflectPermission class, 63-64

RSAPrivateCriKeySpec class, 209
RSAPrivateKeySpec class, 209
RSAPublicKeySpecclass, 210
RuntimePermission class, 46, 61-62, 89,

153-154, 165, 170

SealedObject class, 181, 185-186
SecureClassLoaderclass, 74-75, 79-80, 82,

161 :

SecureRandom class, 196, 216-218, 223
Security class, 122, 198, 199-200
SecurityException class, 37-38, 40, 85, 92,

157, 186, 240-241

SecurityManagerclass, 35-37, 52, 55, 58,
62-63, 83-91, 104-105, 155-156,
158-171, 174, 239-241

SecurityPermission class, 46, 64-65
SerializablePermission class, 64

Signature class, 192, 194-197, 201-204,
219-221, 226

SignatureSpiclass, 197
SignedObject class, 181-185
SocketPermission class, 46, 55-58, 153, 168
String class, 46, 178
Subject class, 241
System class, 60, 85
Test class, 23

TimeOfDaySecurityManagerclass, 156-157
TimeZoneclass, 175
UnresolvedPermission class, 50-51
URLClassLoaderclass, 45, 74-75, 77-82,

230

Window class, 62

253

Page 264 of 275

Page 264 of 275

254

Classes (Continued)
X509Certificate class, 129
X509CRL class, 130

X509CRLEntry class, 130
X509EncodedKeySpec class, 211
X509Extension class, 129

ClassLoaderclass, 35, 37, 41, 71, 73-74,
159-160, 230

classLoaderDepth method, 159, 160-161
CLASSPATH,50, 51, 73, 81-83, 160, 198
clone method, 180
codeBase, 120-125, 139, 141-142
CodeSourceclass, 41, 43-45, 50, 66, 80, 119
Comma-separated keywords, 52-53
Compatibility, 233. See also Backward.

compatibility
Complexity, reducing, 67
CompositePermission class, 155, 156
Composite permissions, 155-156
connectaction, 56
Context class, 88
CORBA,189
Covert channels, 8-9
Credential interface, 241
Credentials, 234-235, 241
CRLs(Certificate Revocation Lists), 127, 129,

195, 211, 212
CRT (Chinese Remainder Theorem), 209-210
Cryptography. See also encryption

basic description of, 2, 11-15, 191-228
covert channels and, 9

private key, 14, 42, 174~175, 207, 208
public key, 15, 42, 125-126, 148, 207-208
random number generation and, 215-217,

223-224

CSPs(Cryptographic Service Providers), 192,
193-199

currentClassLoader method,85, 159
currentLoadedClass method, 85, 159

D

DAC(discretionary access control) model, 7-8
Dean, Drew, 29. See also Princeton team

DEC encoding, 210
Decidability, 10
Decryption, reversible, 14-15
defaultZone, 175
defineClass method, 41, 78, 79

INDEX

delete permission, 52
Denial-of-service attacks, 3-4, 31

Dependability, 4, 11
Deprecated methods, 85-87
DER(Definite Encoding Rules), 128, 208, 226
DES(Data Encryption Standard)algorithm,

13-14, 185-186, 194

Diffie-Hellman algorithm, 14, 207
Digital certificates

basic description of, 125-150
factory classes for generating, 210-212
jarsigner and, 143-147
naming conventions for, 223-224
readingfiles that contain, 221-222
revocationlists of (CRLs), 127, 129, 195,

211, 212

Digital Equipment Corporation, 9
Digital signatures, 51, 121

attacks using, 30
basic description of, 15
class loading and, 78
generating, 219-221
signed objects and, 27, 184
verifying, 219-221

Directories, 40, 53-55, 80

DN(Distinguished Name), 127, 134-139, 148
DNS (Domain NameService), 17-18, 128

hostnamesand, 56

lookup, 58
spoofing attacks, 29

doPrivileged method, 96-97, 98-103, 161, 163,
231

DSA(Digital Signature Algorithm), 15, 133,
136, 144-146, 183, 192-194, 201-213,
218-222, 226-227

DSAParameterSpec class, 204-205, 206
DSAPrivateKeySpec class, 208, 209
DSAPublicKeySpec class, 209, 211, 220

E

Edit menu, 143
Edit Permission button, 143
Eisenhower, Dwight D., 113
Emacs, 18
E-mail, 18, 128, 151
EmbeddedJava, 243

Encryption, 3, 14~15. See also Cryptography
endPriviledged method, 106

Page 265 of 275

INDEX

Engels, Friderich, 31
Epsionage, 8
Equality, 43-45, 51
equals method, 47
Exceptions, 173, 186

FileNotFoundException, 100
NoSuchAlgorithmException, 194
NoSuchProviderException, 198

execute permission, 52
expandProperties property, 124
Extensibility, 35-36, 69, 233
Extensions, 74, 128

F

Felten, Ed, 28, 29. See also Princeton team
Fields

basic description of, 174-175
objectreference, 180
static, 176

File formats, 23, 72, 118-122

FileInputStream class, 55, 92, 93, 133, 189-
190, 221

File method, 49

FileNotFoundException, 100
FilePermission class, 45, 50, 52-55, 46, 142,

156-157, 166
findClass method, 45, 76~77
findLoadedClass method, 76
findSystemClass method, 76
Fine-grained access control, 35, 37, 82, 146

model, 146
Firewalls, 6, 7, 151
Forwardslash (/, 52, 54, 68, 120, 124
FTP (File Transfer Protocol), 29, 68
Functionality, 19, 79

G

Garbagecollection, 22
Gate pattern, 190
GeneralSecurityException class, 27-28
generateCertificate method, 212, 221
generateCRL method, 212
generatePrivate method, 211
generatePublic method, 220
Germany, 31
getClassContext method, 84, 164, 170
getClassLoader method, 76
getContext method, 101

Page 265 of 275

getDefaultType method, 133
getEncoded method, 205-206, 208, 210
getFile method, 44
getFileToRead method, 179
getFormat method, 208, 210
GetG method, 208

getHostAddress method, 168
getHost method, 44
getInCheck method, 85

getInstance method, 132, 197, 200-202,205,
212, 214, 216

getKeySpec method, 211
getLocalHost method, 30
getLocation method, 43-44
get method, 85

getObject method, 184, 186
getParent method, 75

getPermissions method, 66-67, 78-80,
116-117

getP method, 208
getPolicy method, 39, 40, 78
getPort method, 44
getProperty method, 60
getProtectionDomain method, 78
getProtocol method, 44
getProviders method, 199
getQ method, 208
getRef method, 44
getSecurityContext method, 84, 88, 164
getSigners method, 78
getSystemClassLoader method, 75
getThreadGroup method, 171
getX method, 208
Gibbons,Steve, 29
Goguen, J. A., 9
Government agencies, 8-9
grand keyword, 118

GSS-API (Generic Security Services Applica-
tion Programmer’s Interface), 233

GuardedObject class, 47, 186-190
Guard interface, 188

Guard object, 187-189, 190
GUI (graphical user interface), 164, 229, 239

H

High-Watermark model, 10
Hopwood, David, 29, 30
Hostnames, 55-56

255

Page 266 of 275

Page 266 of 275

256

HotJava browser, 23, 35

HTML (HyperText Markup Language), 23, 41
HTTP (HyperText Transfer Protocol), 6, 39

I

IBM (International Business Machines), 12
IDEA,13

Identity object, 64-65
IdentityScope class, 65
IDL(interface definition language), 189
IEEE(Institute of Electronic and Electrical

Engineers), 8, 33, 195, 223
IETF(Internet Engineering Task Force), 16, 17,

126

Immutability, 176-178
Implication, 43-45, 66
implies method, 47, 49, 51, 53, 57, 59, 66,

68-69, 154
inCheck method, 164
inClass method, 85
inClassLoader method, 159, 161
Inheritance, of methods, 94-95
Initialization, 26, 207, 213
initialize method, 213
init method, 207

initSign method, 195, 202-204
initVerify method, 195, 202, 203-204
insertProviderAt method, 198, 199
Installation, 85, 113-115

Instantiation, 67 ;
Institute of Electronic and Electrical Engineers

CIEE), 8, 33, 195, 223
Integrity, of data, 3-4, 10-11

Internet Engineering Task Force (IETF), 16, 17,
126

Internet Explorer browser, 113, 126, 185
Internet Protocol (IP), 56, 58, 128, 232
Internet Service Providers (ISPs), 150-151
Internet Society, 33
InterNIC, 29

Interoperability, 192
invoke method, 97

IP (Internet Protocol), 56, 58, 128, 232
IPv6 (Internet Protocol Version 6), 232
ISPs (Internet Service Providers), 150-151

J
JAAS (Java Authentication and Authorization

Service), 232-243

INDEX

janecertfile.cer, 135
JAR(Java Archive) format, 27-28, 44,

143-150, 231

class loading and, 80, 81
CodeSourceclass and, 41-42
digital certificates and, 126

files, signing/verifying, example of, 148-150
JCA and, 198
keystores and, 131
Permission class and, 50

object security and, 185
policyfiles and, 121, 122-123

jarsigner, 131, 146-147, 214
jartool, 144, 145
Java Electronic Commerce Framework, 190
javakey, 146-148
Java Plug-In, 229
JavaScript, 31
JavaSoft, 29, 30
Java Website, 39, 41-44, 67-68, 113

JCA (Java Cryptography Architecture),
191-228

JCE (Java Cryptography Extension), 185, 191,
229, 242

Jefferson, Thomas, 173

JIT (just-in-time) compilers, 103
JKS keystore type, 119, 140, 224
JRE (Java Runtime Environment), 40
Junk mail, 31, 151

JVM (Java virtual machine), 19, 22~31, 96,
103, 242

class loading and, 71, 72, 73
exiting, 61-62, 160
JCA and, 194, 208

permission implications and, 66
priviledged operations and, 105
protection domains and, 71
sensitivity labels and, 157-158
signed objects and, 182
upgrades, 113, 229

K

Kerberos system, 17, 232-235
Keyfactories, 192-193, 195-197, 208,

210-211

KeyFactory class, 192, 196, 197, 208, 210-211
KeyFactorySpi class, 197
Keyinterface, 207-208
KeyPair class, 212-213

Page 267 of 275

INDEX

KeyPairGeneratorclass, 196, 212-213,
218-219, 226-227

KeySpecinterface, 207, 209-210
KeyStore class, 119, 132-133, 125, 147, 196,

208, 214-215

keystores, 114, 118-119, 130-133, 193, 198,
224, See also Keystore class

KeystoreSpi class, 132
keytool, 42, 114, 118, 129, 131-139, 146, 214
KeyUsageextension, 128
Keywords, 52-—53
King, Martin Luther, Jr., 229
Knuth, D. E., 12

L

LANs(local area networks), 24, 27
LaPadula, L. J., 7

Lazy evaluation implementation, 103
Leaf nodes, 74

Leastprivilege, principle ofleast, 93
Legacy systems, 10-11
Libraries, 61, 66, 178-179
Linux, 192

Lisp, 18
listen action, 56

Loading classes, 71-83. See also ClassLoader
class

loadMainClass method, 80
Login

contexts, 236-237, 241
modules, 236-239, 241

LoginContextclass, 241
LoginModule interface, 241

M

MAC(mandatory access control) model, 7-8,
10,191

Macintosh, 54

Manageability, 67
Mao Ze-Dong, 21
Masterclasses, 198
masterClassName method, 198

McGraw, Gary, 28
MD2algorithm, 194, 197, 222, 225
MD2withRSAalgorithm, 194, 223, 225
MDSalgorithm, 136, 194-197, 200, 225
MD5withRSA algorithm, 144, 194, 196, 208,

223, 225

Page 267 of 275

257

Memory, 22
Meseguer,J., 9 .
MessageDigestclass, 192, 196-197, 200-201,

217-218, 222, 225

Methods. See also Methods(listed by name)
basic description of, 174-175
native, 182

Methods(listed by name). See also Methods
add method, 48
addProvider method, 198

beginPriviledged method, 106
changePassword method, 96, 97-98
checkAccess method, 86, 89-90, 162-163,

165-166, 168
checkAccountWithdraw method, 36
checkAwtEventQueueAccess method, 89,

169

checkConnect method, 58, 86-87, 90, 158,
167-168

checkCreateClassLoader method, 86, 89,
165

checkDelete method, 52, 86, 90, 167
checkExec method, 52, 86, 87, 89, 166
checkExit method, 86, 89, 159, 166
checkGuard method, 186, 190
checkJobAccess method, 86
checkLink method, 62, 86, 89, 166
checkListen method, 90, 168
checkMemberAccess method, 86, 89, 170
check method, 83-90

checkMulticast method, 86, 168
checkPackageAccess method, 86, 89, 169-

170

checkPackageDefinition method, 86, 89, 170
checkPermission method, 36, 55, 87-90,

92-93, 102, 104, 154-158, 162,
164-167, 170

checkPrintJobAccess method, 89, 169
checkPropertiesAccess method, 168
checkProperties method, 86
checkPropertyAccess method, 86, 89, 168,

169

checkRead method, 35, 55, 84, 86, 89-90,
92-93, 158, 161-162, 166-167

checkSecurityAccess method, 86, 89, 171
checkSetFactory method, 86, 89, 170
checkSystemClipboardAccess method, 86,

169

Page 268 of 275

Page 268 of 275

258

Methods (Continued)

checkTopLevelWindow method,86, 89, 159,
169

checkWrite method, 86, 89, 90, 167
classdepth method, 85
classLoaderDepth method, 159, 160-161
clone method, 180 :

currentClassLoader method, 85, 159
currentLoadedClass method, 85, 159
defineClass method, 41, 78, 79
doPrivileged method, 96-97, 98-103, 161,

163, 231

endPriviledged method, 106
equals method, 47
File method, 49
findClass method, 45, 76-77
findLoadedClass method, 76
findSystemClass method, 76
generateCertificate method, 212, 221
generateCRL method, 212
generatePrivate method, 211
generatePublic method, 220

getClassContext method, 84, 164, 170
getClassLoader method, 76
getContext method, 101

getDefaultType method, 133
getEncoded method, 205-206, 208, 210
getFile method, 44
getFileToRead method, 179
getFormat method, 208, 210
GetG method, 208

getHostAddress method, 168
getHost method, 44
getInCheck method, 85
getInstance method, 132, 197, 200-202, 205,

212, 214, 216

getKeySpec method, 211
getLocalHost method, 30
getLocation method, 43-44
get method, 85
getObject method, 184, 186
getParent method, 75

getPermissions method, 66-67, 78-80,
116-117

getP method, 208
getPolicy method, 39, 40, 78
getPort method, 44
getProperty method, 60
getProtectionDomain method, 78

INDEX

getProtocol method, 44
getProviders method, 199
getQ method, 208
getRef method, 44
getSecurityContext method, 84, 88, 164
getSigners method, 78
getSystemClassLoader method, 75
getThreadGroup method, 171
getX method, 208
implies method, 47, 49, 51, 53, 57, 59, 66,

68-69, 154
inCheck method, 164
inClass method, 85
inClassLoader method, 159, 161
initialize method, 213
init method, 207

initSign method, 195, 202-204
initVerify method, 195, 202, 203-204
insertProviderAt method, 198, 199
invoke method, 97
JoadMainClass method, 80
masterClassName method, 198
newPermissionCollection method, 48, 49, 53
openHighScoreFile method, 92
openPasswordFile method, 97
paint method, 93
read method, 190

readObject method, 44, 179-180, 183
readResolve method, 180
refresh method, 39, 67, 116
removeProvider method, 200
requestPasswordAuthentication method, 63
ResolveClass method, 77
setAccessible method, 64
setPolicy method, 39, 40
setProperty method, 60
setReadOnly method, 48
setSigners method, 78
sign method, 203, 224
super method, 75
toString method, 47
update method, 203
verify method, 184, 224
writeObject method, 44, 179, 183

Microsoft Windows, 19, 54, 68, 105
keytools and, 114, 139
policytool and, 143
use of a forward slash in, 120

Microsoft Word, 18

Page 269 of 275

INDEX

MIT (Massachusetts Institute of Technology),
2, 5, 8, 17 ‘

Mobile code, 17~18
Morris, Robert T., 1
MS-DOS,18, 53, 105

Multics system, 2, 7
MyClass class, 177
MyGamePermission class, 155
MyJARFile.jar, 144
mykeystore keystore, 136
MyPasswordCheckclass, 174

N

Named permissions, 59, 67-68
Naming conventions, 63, 222—224
National security, 8
Naval Research Laboratory, 9
Needham, Roger, 12
Needham-Schroederprotocol, 16-17
NetPermission class, 63-64, 90

Netscape Navigator browser, 113, 126, 185
newPermissionCollection method, 48, 49, 53
NISTstandards, 183, 195, 222, 226-227

NoSuchAlgorithmException, 194
NoSuchProviderException, 198
NP Complete, 10-11

O

ObjectOutputStream class, 64
Objects

basic description, 173-190
deep copiesof, 183
guarding, 186-190
immutability, 176-178
sealing, 185-186
signing, 182-185
states of, private, 176-178

openHighScoreFile method, 92
openPasswordFile method, 97
Optimization, 67, 70
OPTIONflag, 238
ORoperator, 120
Orthogonal domains, 71
Overt channels, 8-9
Oxford University, 29

P

Package private access mode, 174-175

Page 269 of 275

259

paint method, 93
Passwords, 17, 136

changing, 95-98
choosing, 17
exceptions and, 174
keystores and, 130-133, 214
privileged operations and, 95-98

Pathnames, 52
Permission class, 33, 45-46, 66, 68-69, 88,

121, 142, 153, 190, 230-231
PermissionCollection class, 48-49, 155, 231
Permissions

assigning, 66-69
class hierarchies and, 45-66

composite, 155-156
creating new types of, 153-155
DAC modeland, 7
default, 147

fine-grained, 35, 37, 82, 146
granted when mixing javakey and keystore,

147

JAASand, 240

positive versus negative, 68-69
sets of, 48-51

target names for, 141-142
Permit class, 190
PersonalJava, 243
PKCS#1 standard, 209, 223, 226, 227
PKCS#7 standard, 134, 222
PKCS#12 standard, 224
Plaintext, 13-14

Plugability, 233
Pointers, 25
Policies

basic description of, 38-31
configuration of, 115-125
default file formats for, 118-122

for nonexperts, 150-151
user-centric, enforcing, 240-241

Policy class, 33, 39-41, 50, 66-67, 90-91,
117-118

Policy Entry dialog box, 142-143
Policy object, 64-65, 115-116, 156, 162, 230,

241

policytool, 114-116, 139-143, 214
PostScript, 17-18
Primordial class loaders, 73-74, 75, 77
Princeton team, 29, 30

Page 270 of 275

Page 270 of 275

260

Principle, use of the term, 233
Private access mode, 174-175
Private key cryptography, 14, 42, 174-175,

207, 208. See also Cryptography
PrivateKey interface, 207, 208
PrivilegedAction interface, 98-101, 178-179
privileged methods, 161-163
Privileged operations, 98-106, 161-163,

178-179

PRNG(pseudorandom number generator) algo-
rithm, 216, 223

Properties
expanding, 123-125
naming conventions for, 61
policy files and, 123-125

PropertyPermission class, 46, 59-60, 168
Protected access mode, 174-175

ProtectionDomainclass, 69-71, 78-79, 102—
103

Protection domains, 69, 78, 103
Provider class, 64-65, 198, 200, 214
Public access mode, 174~175, 176
Public key cryptography, 15, 42, 125-126, 148,

207-208. See also Cryptography
PublicKey interface, 207, 208

Q
Quicken, 35

R

Random class, 215-217
Randomness, 215-217, 223-224
RC4 algorithm, 194
RCS algorithm, 194
Reach-over, 75-76
read method, 190
read permission, 52, 53-55
Read-down, 7

readObject method, 44, 179-180, 183
readResolve method, 180
ReflectPermission class, 63-64
refresh method, 39, 67, 116
Remove Permission button, 143
removeProvider method, 200

requestPasswordAuthentication method, 63
REQUIREDflag, 238
REQUISITEflag, 238
resolve action, 56

INDEX

ResolveClass method, 77

RFCs (Requests for Comment), 128, 195
RMI(Remote Method Invocation), 47, 173,

179, 232

Rootcertificates, 15, 42, 126

RPC (Remote Procedure Call), 17
RSAalgorithm, 14-15, 133, 194, 208-210,

222, 225, 227

RSAPrivateCrtKeySpec class, 209
RSAPrivateKeySpecclass, 209
RSAPublicKeySpecclass, 210
RuntimePermissionclass, 46, 61-62, 89,

153-154, 165, 170

S

Sandbox model, 24, 27, 31
limitations of, 34-35, 37
protection domains and, 69
restrictions on applets by, problems with,

34-35

SecurityManagerclass and, 83
SASL (Simple Authentication and Security

Layer Application
Programmer's Interface), 233
sbundle.jar, 148-150
Scalability, 36
SealedObject class, 181, 185-186
Secrecy attacks, 34
Secret-key ciphers, 13-14
SecureClassLoaderclass, 74-75, 79-80, 82,

161

SecureRandom class, 196, 216-218, 223
Security class, 122, 198, 199-200
SecurityException class, 37-38, 40, 85, 92,

157, 186,
240-241

SecurityManagerclass, 35-37, 52, 55, 58,
62-63, 83-91, 104-105, 155-156,
158-171, 174, 239-241

SecurityPermission class, 46, 64-65
Seed generators, 215-217
Self-signedcertificates, 15, 126
Sensitivity labels, 157-158
Serial numbers, 127

Serializable interface, 44, 47, 180-183, 185
SerializablePermission class, 64
Serialization, 44, 179-181
setAccessible method, 64

Page 271 of 275

INDEX

setPolicy method, 39, 40
setProperty method, 60
setReadOnly method, 48
setSigners method, 78
SHA (Secure Hash Algorithm), 194-197,

217-218, 222

SHAI algorithm, 195, 197, 200, 225
SHAIPRNGalgorithm, 195, 216, 223
SHA iwithDSAalgorithm, 133, 144, 183, 194,

196-198, 223, 225
Shannon, Claude, 11

Shaw, George Bernard, 191
sign method, 203, 224
SIGNstate, 202

Signature class, 192, 194-197, 201-204, 219-
221, 226

SignatureSpi class, 197
signedBy, 119-123, 125, 140, 142
SignedObjectclass, 181-185
Sirer, Emin Gun, 30
SNAI1withDSA algorithm, 136
SocketPermission class, 46, 55-58, 153, 168
Sohr, Karsten, 31
Solaris, 19, 23, 40, 113-115
spam, 31
SparcStation, 23
SPI (service providerinterface), 132, 196, 197,

214

SPKM (Simple Public Key Mechanism), 233
Sprint, 29
SSL (secure sockets layer), 19, 126, 128
String class, 46, 178
Subject, use of the term, 233
Subjectclass, 241
SUFFICIENTflag, 238
super method, 75
Symmetric ciphers, 11, 13-14
Symposium on Security and Privacy, 8
System class, 60, 85
System domains, 70

T
Test class, 23

TimeOfDaySecurityManagerclass, 156-157
TimeZoneclass, 175

TLS(Transport Layer Security), 126
Tokenizers, 54, 122, 125

toString method, 47
transient keyword, 180

Page 271 of 275

Transparent representation, 204
Trojan horses, 8, 9
True/false values, 51, 57, 184

Trusted applet model, 27
Trusted certificates, 131, 135

TTP (Trusted Third Party), 126

U

UCLA (University of California at Los
Angeles), 5-6, 8

UNINITIALIZEDstate, 202

University of Marburg, 31
UNIX, 2, 7, 17, 53-54, 114

CLASSPATHand, 81

expandingvariables in, 123
setuid facility, 105

UnresolvedPermission class, 50-51

update method, 203
URLClassLoaderclass, 45, 74-75, 77-82, 230

URLs (Uniform Resource Locators), 29, 41-45
class loading and, 45, 73-75, 77-82, 230
file, 68, 80

policy files and, 117-121, 139-141, 143-144
USENIX,33

Userpolicy file, 139-140
UT (University of Texas), 5, 8

Vv

Validity periods, 127
Variables

expanding, 123
static, 176
tainted, 178

verify method, 184, 224
VERIFY state, 202, 203

VeriSign, 137, 138
View Warning Log command, 143
VPNs(virtual private networks), 5, 6

WwW

Wallach, Dan, 29. See also Princeton team
Washington team, 30-31
Wildcard characters, 56, 58, 60-61, 63
Win32 APIs, 18, 23, 113
Windowclass, 62

Windows (Microsoft), 19, 54, 68, 105
keytools and, 114, 139
policytool and, 143
use of a forward slash in, 120

261

Page 272 of 275

Page 272 of 275

262

Word (Microsoft), 18
World War IE, 2
writeObject method, 44, 179, 183
write permission, 52, 53

x

X.500 standard, 19, 118, 126-136, 148, 191,
195, 211, 223, 243

X509Certificate class, 129

INDEX

X509CRL class, 130

X509CRLEntry class, 130
X509EncodedKeySpecclass, 211
X509Extension class, 129

Y

Yellin, F., 27

Page 273 of 275

The Addison-Wesley Java"

| The Java” Programming

ISBN Q-201-31006-6

the Java’ Yutorial

ISBN 0-201-31007-4

Series

The Java’ Tutorial

ISBN 0-201-48558-3

F
Second Edition :

sort Ost an Continued / 2
ijkOriePrograming Hest of the JDK. ALMANAC Mos |

| &

| ™Java” Developers SB

ISBN 0-201-43298-6

The Java" Class Ubraries

 |
ISBN 0-201-31003-1

 The Java"Class Libraries
Second Edition, Volume 1

javoio javaleng javemathjaenct jevatext jovauil

ISBN 0-201-31002-3

 Inside the Java 2 Vlatlorm
Security Architecture

Cyrptography, APIs,and Irplementilions

5 :

ISBN 0-201-31000-7

 The Java’ Virtual

Machine Specification
Second Edition

ISBN 0-201 -48552-4

ISBN 0-201-45294-3

The Java™ Language

Specification

ISBN 0-201-63451-1

 The Ja

%,
BG

 Application
Programming i

Interface, Volume 1 |Gare Packages

|

ISBN 0-201-63456-2

The Java’ 3D

APISpecification

ISBN 0-201 -32576-4

Concurrent

Programmingin JavaDesign Principles.
ISBN 0-201-69581-2

The FC
Swing Tutorial

ISBN 0-201-43321~4

 1 Javea”

Native InterfaceProgrammers 63

JDBC APH Tutorial and

Reference, Second Editionpita Aceess far
ISBN 0-201-43328-1

Please see our website (http://www.awl.com/cseng/javaseries)
for more information on thesetitles.

Page 273 of 275

Page 274 of 275

Page 274 of 275

Addison-Wesley Computer and Engineering Publishing Group

1. Visit our Web site

http://www.awl.com/cseng
When you think you’ve read enough, there's always more content foryou at

Addison-Wesley’s website, Our website containsa directory of complete
product information including:
+ Chapters
*. Exclusive author interviews

+ Links to authors’ pages
=-6 Tables of contents

+ Source code

You can also discover what tradeshows and conferences Addison-Wesleywill

be attending, read what others are saying aboutourtitles, and find out where

and when.you can meet our authors and have them sign your book.

2. Subscribe to Our Email Mailing Lists
Subscribeto our electronic mailing lists-and bethe first to know

when new books are publishing. Here's how it works: Sign up for our
electronic mailing at http://www.awl.com/cseng/mailinglists.html.
Just select the subject areas that interest you andyou will receive
otification via email when we publish a book in that area’:

We encourage you to patronize the manyfine retailers
who stock Addison-Wesleytitles. Visit our online directory

to find stores near youor visit our online store;

http://store.awl.com/or call 800-824-7799.

Addison Wesley Longman
Computer and Engineering Publishing Group

One Jacob Way, Reading, Massachusetts 01867 USA
TEL 781-944-3700 * FAX 781-942-3076

3. Contact Us via Email

cepubprof@awl.com

Ask general questions about our books.
-«.Sign upfor our electronic mailing lists.

Submit corrections for our website.

bexpress@awl.com

Request an Addison-Wesley catalog.
Get answers to questions regarding

yourorderor our products.

innovations@awl.com

Request a current Innovations Newsletter.

webmaster@awl.com

Send comments about our website.

mikeh@awl.com

Submit a book proposal.
Senderrata for an Addison-Wesley book.

cepubpublicity@awl.com

Request a review copy for a memberof the media

interested in reviewing new Addison-Wesley titles.

Page 275 of 275

Java/Security

“The book is of enormous consequence andpotential value. The Java™ 2
platform security represents an advance of major proportions, and the
information in this book is captured nowhereelse.”

—Peter G. Neumann,Principal Scientist, SRI International Computer
Science Lab, author of Computer-Related Risks, and Moderator of
the Risks Forum

“Profound! There are a large numberofsecurity pearls.] enjoyed and
was very impressed by both the depth and breadth ofthe book.”

—Stephen Northcutt, Director of Research for Intrusion Detection
and Response, SANSInstitute

Inside Java™ 2 Platform Security is the definitive and comprehensive
guide to the Java security platform. Written by the Chief Java Security
Architect at Sun, it provides a detailed look into the central workings of
the Java™ security architecture and describes security tools and tech-
niques for successful implementation.

This book features detailed descriptions of the many enhancements
incorporated within the security architecture that underlies the Java 2
platform.It also provides a practical guide to the deployment of Java
security, and shows how to customize, extend, and refine the core secu-
rily architecture. For those new to the topic, the book includes an
overview of computer and network security concepts and an explanation
of the basic Java security model.

You will find detailed discussions on such specific topics as:
+ The original Java sandbox security model
* The new Java 2 platform permission hierarchy
+ How Java security supports the secure loading of classes
* Java 2 access control mechanisms

* Policy configuration anddigital certificates
* Security tools, including Key Store and Jar Signer
* Ways to customize the Java security architecture with new

permission types
* How lo movelegacy security code onto the Java™ 2 platform

In addition, the book discusses techniques for preserving object security—
such as signing, sealing, and guarding objects—and outlines the Java
cryptography architecture. Throughout, the book points out common
mistakes and contains numerous code examples demonstrating the
usageof classes and methods.

Li Gong, internationally renowned computer security expert and
Chair of the Java Security Advisory Council, is Chief Java Security
Architect and a Distinguished Engineer at Sun Microsystems,Inc. He is an
Associate Editor of ACM Transactions on Information and System Security
and TheJournal of ComputerSecurity, and served as Program Chair of the
IEEE Symposium on Security and Privacy and the ACM Conference on
Computer and Communications Security.

http://java.sun.com/books/Series

Page 275 of 275

 eead aun Ny the
creatorsoftheJavaaweat

mation youtene uildrobust, and ortableEicon
he Serie

getingthe J a2Bea

&SUNmicrosystems

Cover design by Simone R. Payment
Cover art by Sara Connell
Text printed on recycled paper
vv ADDISON-WESLEY

Addison-Wesleyis an imprint
of Addison Wesley Longman,Inc.

UU OU)i
gor80201°3

ISBN O-20=31,000-7

$34.95 US
$52.50 CANADA

..from the Source™

