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Abstract 
This paper describes the motivation, architecture and 
performance of a distributed virtual machine (DVM) for 
networked computers. DVMs rely on a distributed service 
architecture to meet the manageability, security and 
uniformity requirements of  large, heterogeneous clusters of 
networked computers. In a DVM, system services, such as 
verification, security enforcement, compilation and 
optimization, are factored out of  clients and located on 
powerful network servers. This partitioning of  system 
functionality reduces resource requirements on network 
clients, improves site security through physical isolation 
and increases the manageability of  a large and 
heterogeneous network without sacrificing performance. 
Our DVM implements the Java virtual machine, runs on 
x86 and DEC Alpha processors and supports existing Java- 
enabled clients. 

1. Introduction 
Virtual machines (VMs) have the potential to play an 
important role in tomorrow's networked computing 
environments. Current trends indicate that future networks 
will likely be characterized by mobile code [Thorn 97], 
large numbers of networked hosts per domain [ISC 99] and 
large numbers of devices per user that span different 
hardware architectures and operating systems [Hennessy 
99, Weiser 93]. A new class of virtual machines, 
exemplified by systems such as Java and Inferno [Lindholm 
& Yellin 96, Dorward et al. 97], has recently emerged to 
meet the needs of such an environment. These modern 
virtual machines are compelling because they provide a 
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platform-independent binary format, a strong type-safety 
guarantee that facilitates the safe execution of untrusted 
code and an extensive set of programming interfaces that 
subsume those of a general-purpose operating system. The 
ability to dynamically load and safely execute untrusted 
code has already made the Java virtual machine a 
ubiquitous component in extensible systems ranging from 
web browsers and servers to database engines and office 
applications. The platform independence of modern virtual 
machines makes it feasible to run the same applications on 
a wide range of computing devices, including embedded 
systems, handheld organizers, conventional desktop 
platforms and high-end enterprise servers. In addition, a 
single execution platform offers the potential for unified 
management services, thereby enabling a small staff of 
system administrators to effectively administer thousands or 
even hundreds of thousands of devices. 

While modem virtual machines offer a promising 
future, the present is somewhat grim. For example, the Java 
virtual machine, despite its commercial success and 
ubiquity, exhibits major shortcomings. First, even though 
the Java virtual machine was explicitly designed for 
handheld devices and embedded systems, it has not been 
widely adopted in this domain due to its excessive 
processing and memory requirements [Webb 99]. Second, it 
is the exception, rather than the rule, to find a secure and 
reliable Java virtual machine [Dean et al. 97]. And third, 
rather than simplifying system administration, modem 
virtual machines, like Java, have created a substantial 
management problem [McGraw & Felten 96], leading many 
organizations to simply ban virtual machines altogether 
[CERT 96]. 

We assert that these symptoms are the result of  a much 
larger problem that is inherent in the design of modem 
virtual machines. Specifically, state of the art modem 
virtual machines rely on the monolithic architecture of their 
ancestors [Goldberg 73, Popek & Goldberg 74, IBMVM 
86, UCI 96]. All service components in a monolithic VM, 
such as verification, security management, compilation and 
optimization, reside locally on the host intended to run the 
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VM applications. Such a monolithic service architecture 
exhibits four shortcomings: 

1. Manageability: Since each modern virtual machine 
is a completely independent entity, there is no 
central point of control in an organization. 
Transparent and comprehensive methods for 
distributing security upgrades, capturing audit trails 
and pruning a network of rogue applications are 
difficult to implement. 

2. Performance: Modern virtual machine services, 
such as authentication, just-in-time compilation and 
verification, have substantial processing and 
memory requirements. Consequently, monolithic 
systems are not suitable for hosts, such as 
embedded devices, which lack the resources to 
support a complete virtual machine. 

3. Security: The trusted computing base (TCB) of 
modern VMs is not small, well-defined, or 
physically isolated from application code. A large 
TCB with ill-defined boundaries makes it difficult 
to construct and certify secure systems [Saltzer & 
Shroeder 75]. The lack of separation between 
virtual machine components means that a flaw in 
any component of the virtual machine can place the 
entire machine at risk [McGraw & Felten 99]. 
Further, co-location of VM services has resulted in 
non-modular systems that can exhibit complex 
inter-component interactions, as observed for 
monolithic operating systems [Accetta et al. 86, 
Bershad et al. 95, Engler et al. 95]. 

4. Scalability: Monolithic virtual machines are 
difficult to port across the diverse architectures and 
platforms found in a typical network [Seltzer 98]. 
In addition, they have had problems scaling over 
the different usage requirements encountered in 
organizations [Rayside et al. 98]. 

The goal of our research is to develop a virtual machine 
system that addresses the manageability, performance, 
security and scalability requirements of networked 
computing. In addition, such a system should preserve 
compatibility with the wide base of existing monolithic 
virtual machines in order to facilitate deployment. To this 
end, we focus on implementation techniques that preserve 
the external interfaces [Lindholm & Yellin 96] and platform 
APIs [Gosling & Yellin 96] of existing virtual machines. 

We address the problems of monolithic virtual 
machines with a novel distributed virtual machine 
architecture based on service factoring and distribution. A 
distributed service architecture factors virtual machine 
services into logical components, moves these services out 
of clients and distributes them throughout the network. We 
have designed and implemented a distributed virtual 
machine for Java based on this architecture. Our DVM 

includes a Java runtime, a verifier, an optimizer, a 
performance monitoring service and a security manager. It 
differs from existing systems in that these services are 
factored into well-defined components and centralized 
where necessary. 

The rest of the paper is structured as follows. The next 
section describes our architecture and provides an overview 
of our system. Section 3 describes the implementation of 
conventional virtual machine services under our 
architecture. Section 4 presents an evaluation of the 
architecture and Section 5 shows how a new optimization 
service can be accommodated under this architecture. 
Section 6 discusses related work; Section 7 concludes. 

2. Architecture overview 
The principal insight behind our work is that centralized 
services simplify service management by reducing the 
number and geographic distribution of the interfaces that 
must be accessed in order to manage the services. As 
illustrated by the widespread deployment of firewalls in the 
last decade [Mogul 89, Cheswick & Bellowin 94], it is far 
easier to manage a single, well-placed host in the network 
than to manage every client. Analogously, we break 
monolithic virtual machines up into their logical service 
components and factor these components out of clients into 
network servers. 

The service architecture for a virtual machine 
determines where, when and how services are performed. 
The location (i.e. where), the invocation time (i.e. when), 
and the implementation (i.e. how) of services are 
constrained by the manageability, integrity and performance 
requirements of the overall system, and intrinsically involve 
engineering tradeoffs. Monolithic virtual machines 
represent a particular design point where all services are 
located o n  the clients and most service functionality, 
including on the fly compilation and security checking, is 
performed during the run-time of applications. While this 
paper shows the advantages of locating services within the 
network, changing the location of services without regard 
for their implementation can significantly decrease 
performance as well. For instance, a simple approach to 
service distribution, where services are decomposed along 
existing interfaces and moved, intact, to remote hosts, is 
likely to be prohibitively expensive due to the cost of 
remote communication over potentially slow links and the 
frequency of inter-component interactions in monolithic 
virtual machines. We describe an alternative design where 
service functionality is factored out of clients by 
partitioning services into static and dynamic components 
and present an implementation strategy that achieves 
performance comparable to monolithic virtual machines. 

In our distributed virtual machine, services reside on 
centralized servers and perform most of their functionality 
statically, before the application is executed. Static service 
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Figure 1. The organization of static and dynamic service components in a distributed virtual machine. 

components, such as a verifier, compiler, auditor, profiler, 
and optimizer, examine the instruction segment of 
applications prior to execution to ensure that the application 
exhibits the desired service properties. For example, a 
verifier may check the code for type-safety, a security 
service may examine the statically determinable arguments 
to system calls, and an optimizer may check code structure 
for good performance along a particular path. 

The dynamic service components provide service 
functionality during the execution of applications. They 
complement static service components by providing the 
services that inherently need to be executed at application 
run-time in the context of a specific client. For example, a 
security service may check user-supplied arguments to 
system calls, a profiler may collect run time statistics, and 
an auditing service may generate audit events based on the 
execution of the application. 

The glue that ties the static and dynamic service 
components together is binary rewriting. When static 
service components encounter data-dependent operations 
that cannot be performed statically, they insert calls to the 
corresponding dynamic service components. For example, 
our static verification service checks applications for 
conformance against the Java VM specification. Where 
static checking cannot completely ascertain the safety of the 
program, the static verifier modifies the application so that 
it performs the requisite checks during its execution. The 

type 
safety 

for 
dynamic 
checks 

resulting application is consequently self-verifying because 
the checks embedded by the static service component are an 
integral part of the application code. 

Figure 1 illustrates our distributed virtual machine 
architecture. Static service components produce self- 
servicing applications, which require minimal functionality 
on the clients. Dynamic service components provide service 
functionality to clients during run-time as necessary. The 
static services in our architecture are arranged in a virtual 
pipeline that operates on application code, as shown in 
Figure 2. 

A distributed service architecture allows the bulk of VM 
service functionality to be placed where it is most 
convenient. A natural service placement strategy is to 
structure the static service components as a transparent 
network proxy, running on a physically secure host. Placed 
at a network trust boundary, like a firewall, such a proxy 
can transparently perform code transformations on all code 
that is introduced into an organization. In some 
environments, the integrity of the transformed applications 
cannot be guaranteed between the server and the clients, or 
users may introduce code into the network that has not been 
processed by the static services. In such environments, 
digital signatures attached by the static service components 
can ensure that the checks are inseparable from applications 
[Rivest et al. 78, Rivest 92], and clients can be instructed to 
redirect incorrectly signed or unsigned code to the 

/ 
collect data ~ chOck 

static to native code for on program ! / signatures 
rules format performance behavior [_ execute 
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Figure 2. The flow of code through a pipeline of static service components in a distributed virtual machine. The ordering of 
services in this pipeline may be modified to suit organizational or functional requirements. Further, the client runtime may 
communicate with the static service components for client-specific services. 
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centralized services [Spyglass 98]. 

A DVM introduces a modest amount of new 
functionality into the existing trusted computing base of an 
organization. A DVM client needs to trust that the static 
and dynamic service components it relies on for safety, 
including the proxy and binary rewriter, are implemented 
correctly. In addition, any service authentication scheme 
used in the clients, which may include a digital signature 
checker and a key manager, form part of the trusted 
computing base under our design. However, we believe the 
actual impact of these additions to the TCB to be small. 
Monolithic clients already trust all of the service 
components that form a traditional VM and often already 
have provisions for cryptographic protocols and digital 
signature checking to support their target applications 
[Gong 99]. Overall, a modest increase in the TCB enables 
DVM clients to migrate the trusted components to 
physically secure, professionally managed and administered 
hosts, which is critical to addressing the operational 
problems that have plagued monolithic VMs. 

Our service architecture is unique in several 
fundamental ways. First, the centralized services are 
mandatory for all clients in an organization. For example, 
security checks injected into incoming code are inseparable 
from applications at the time of their execution and are thus 
binding throughout the network. Second, there is a single 
logical point of control for all virtual machines within an 
organization. In the case of the security service, policies are 
specified and controlled from a single location; 
consequently, policy changes do not require the cooperation 
of unprivileged users. And third, using binary rewriting as a 
service implementation mechanism preserves compatibility 
with existing monolithic virtual machines. A monolithic 
virtual machine may subject the rewritten code to redundant 
checks or services, but it can take advantage of the added 
functionality without any modifications. 

While a distributed service architecture addresses the 
problems faced by monolithic virtual machines, it may also 
pose new challenges. Centralization can lead to a bottleneck 
in performance or result in a single point of failure within 
the network. These problems can be addressed by 
replicated or recoverable server implementations. The next 
section shows how the separation between static and 
dynamic service components can be used to delegate state- 
requiring functionality to clients. Section 4 shows that this 
implementation strategy does not pose a bottleneck for 
medium sized networks even in the worst possible case and 
can easily be replicated to accommodate large numbers of 
hosts. 

3. Services 
We have implemented the architecture described in the 
previous section to support a network of Java virtual 
machines (JVMs). In this section, we describe the 

implementation of conventional virtual machine services 
under our architecture and show that the distributed 
implementation of these services addresses the 
shortcomings of monolithic VMs outlined in the first 
section. Our services are derived from the Java VM 
specification, which broadly defines a type-safe, object- 
based execution environment. Typical implementations 
consist of a verifier, which checks object code for type- 
safety, an interpreter and a set of runtime libraries. In some 
implementations, the interpreter is augmented with a just- 
in-time compiler to improve performance. The following 
sections describe the design and implementation of the 
services we have built to supplant those found in traditional 
Java virtual machines. 

All of our services rely on a common proxy 
infrastructure that houses the static service components. 
The proxy transparently intercepts code requests from 
clients, parses JVM bytecodes and generates the 
instrumented program in the appropriate binary format. An 
internal filtering API allows the logically separate services 
described in this section to be composed on the proxy host. 
Parsing and code generation are performed only once for all 
static services, while structuring the services as independent 
code-transformation filters enables them tO be stacked 
according to site-specific requirements [Heidemann & 
Popek 94, O'Malley & Peterson 92]. The proxy uses a 
cache to avoid rewriting code shared between clients and 
generates an audit trail for the remote administration 
console. The code for the dynamic service components 
resides on the central proxy and is distributed to clients on 
demand. 

While the implementation details of our virtual machine 
services differ significantly, there are three common themes 
among all of them: 

• Location: Factoring VM services out of clients and 
locating them on servers improves manageability by 
reducing replicated state, aids integrity by isolating 
services from potentially malicious code and simplifies 
service development and deployment. 

• Service Structure: Partitioning services into static and 
dynamic components can enhance performance by 
amortizing the costly parts of a service across all hosts 
in the local network. 

• Implementation Technique: Binary rewriting is used to 
implement services transparently. Binary rewriting 
services can be designed to incur a relatively small 
performance overhead while retaining backward- 
compatibility with existing clients. 

3.1 Verification 
A comprehensive set of safety constraints allows a virtual 
machine to integrate potentially malicious code into a 
privileged base system [Stata & Abadi 98, Freund & 
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Mitchell 98]. Indeed, Java's appeal for network computing 
stems principally from its strong safety guarantees, which 
are enforced by the Java verifier. 

The task of verifying Java bytecode has been a 
challenge for monolithic virtual machines. First, since the 
Java specification is not formal in its description of the 
safety axioms, there are differences between verifier 
implementations. Verifiers from different vendors differ on 
underspecified issues such as constraints on the uses of 
uninitialized objects, subroutine calls, and cross-validation 
of redundant data in class files. Second, monolithic 
implementations tie the verifier to the rest of the VM, 
thereby prohibiting users from using stronger verifiers 
where necessary. Furthermore, monolithic verifiers make it 
difficult to propagate security patches to all deployed 
clients in a timely manner. As a case in point, 15% of all 
accesses to our web site originate from out-of-date browsers 
with well-known security holes for which many patches 
have been issued. Finally, the memory and processing 
requirements of verification render monolithic VMs 
unsuitable for resource limited clients, such as smart cards 
and embedded hosts [Cohen 97]. Some monolithic virtual 
machines for embedded and resource-limited systems have 
abandoned verification altogether for a restricted extension 
model based on trust [HP 99]. 

We address these shortcomings by decoupling 
verification from the rest of the VM, migrating its 
functionality out of clients into a network verification 
service and centralizing the administration of this service. 
Moving verification out of clients poses some challenges, 
however, because parts of the verification process require 
access to client namespaces and have traditionally required 
close coupling with the client JVM. Specifically, Java 
verification consists of four separate phases. The first three 
operate on a single class file in isolation, respectively 
making sure that the class file is internally consistent, that 

the code in the class file respects instruction integrity and 
that the code is type-safe. The fourth phase checks the 
interfaces that a class imports against the exported type 
signatures in its namespace, making sure that the 
assumptions that the class makes about other classes hold 
during linking. 

In our implementation, the first three phases of 
verification are performed statically in a network server, 
while the link-time checks are performed by a small 
dynamic component on the client. This partitioning of 
functionality eliminates unnecessary communication and 
simplifies service implementation. During the processing of 
the first three phases, the verification service collects all of 
the assumptions that a class makes about its environment 
and computes the scope of these assumptions. For example, 
fundamental assumptions, such as inheritance relationships, 
affect the validity of the entire class, whereas a field 
reference affects only the instructions that rely on the 
reference. Having determined these assumptions and their 
scope, the verification service modifies the code to perform 
the corresponding checks at runtime by invoking a simple 
service component (Figure 3). Since most safety axioms 
have been checked by this time, the functionality in the 
dynamic component is limited to a descriptor lookup and 
string comparison. This lazy scheme for deferring link 
phase checks ensures that the classes that make up an 
application are not fetched from a remote, potentially slow, 
server unless they are required for execution. 

The distributed verification service propagates any 
errors to the client by forwarding a replacement class that 
raises a verification exception during its initialization. 
Hence, verification errors are reflected to clients through 
the regular Java exception mechanisms. Since the Java VM 
specification intentionally leaves the time and manner of 
verification undefined except to say that the checks should 
be performed before any affected code is executed our 

class Hello 

} 

} 

{ 
static boolean mainChecked = false; / /  Inserted by the verifier 
public static void main() { 

if(mainChecked == false) { // Begin automatically generated code 
RTVeri f i er. CheckFi el d ( "java. lang. System", "out ", 

"java. io. OutputStream n) ; 
RTVeri f i er. CheckMethod ( "java. i o. OutputStream", "print ln ", 

" (Ljava/lang/String)V") ; 
mainChecked = true; 

// End automatically generated code 
System. out .println ( "hello world" ) ; 

Figure 3. The hello world example after it has been processed by our distributed verification service. The vast majority of safety axioms 
are checked statically. Remaining checks are deferred to execution time, as shown in italics. The first check ensures that the Sys tem 
class exports a field named " o u t "  of type O u t p u t S t r e a m ,  and the second check verifies that the class O u t p u t S t r e a m  
implements a method, " p r i n t l n , "  to print a string. The rewriting occurs at the bytecode level, though the example shows equivalent 
Java source code for clarity. 

206 

Page 5 of 15
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


