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Preface

When I first mentioned to a colleague of mine that I was writing a book on JavaT™
security, he immediately starting asking me questions about firewalls and Internet
DMZs. Another colleague overheard us and started asking about electronic
commerce, which piqued the interest of a third colleague who wanted to hear all
about virtual private networks. All this was interesting, but what I really wanted to
talk about was how a Java applet could be allowed to read a file.

Such is the danger of anything with the word “security” in its title: security is a
broad topic, and everyone has his or her own notion of what security means.
Complicating this issue is the fact that Java security and network security
(including Internet security) are complementary and sometimes overlapping
topics: you can send encrypted data over the network with Java, or you can set up
a virtual private network that encrypts all your network traffic and remove the
need for encryption within your Java programs.

This is a book about security from the perspective of a Java program. In this book,
we discuss the basic platform features of Java that provide security—the class
loader, the bytecode verifier, the security manager—and we discuss recent addi-
tions to Java that enhance this security model—digital signatures, security
providers, and the access controller. The ideas in this book are meant to provide
an understanding of the architecture of Java’s security model and how that model
can be used (both programmatically and administratively).
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Who Should Read This Book?

This book is intended primarily for programmers who want to write secure Java
applications. Much of the book is focused on various APIs within Java that provide
security; we discuss both how those APIs are used by standard Java-enabled
browsers and how they can be used in your own Java applications. From a
programming perspective, this latter case is the most interesting: Java-enabled
browsers have each adopted particular security models, but there’s not much a
programmer or administrator can do to alter those models. However, this is begin-
ning to change, as technologies like Sun Microsystems’ Activator bring Sun’s basic
security model to popular browsers.

For the end user or system administrator who is interested in Java security, this
book will provide knowledge of the facilities provided by the basic Java platform
and how those facilities are used by Java-enabled browsers and by Java applica-
tions. We do not delve into the specific security features of any Java-enabled
browser, although we do point out along the way which security features of Java
are subject to change by the companies that provide Java-enabled browsers.
Hence, end users and system administrators can read this book (and skip over
many of the programming examples) to gain an understanding of the funda-
mental security features of the Java platform, and they can understand from each
of its parts how the security feature might be administrated (especially for Java
applications). This is particularly true for end users and administrators who are
interested in assessing the risk of using Java: we give full details of the implementa-
tion of Java’s security model not only so that you can program within that model
(and adjust it if necessary), but also so that you have a deep understanding of how
it works and can assess for yourself whether or not Java meets your definition of
security.

From a programming perspective, we assume that developers who read this book
have a good knowledge of how to program in Java, and in particular how to write
Java applications. When we discuss advanced security features and cryptographic
algorithms, we do so assuming that the programmer is primarily interested in
using the API to perform certain tasks. Hence, we explain at a rudimentary level
what a digital signature is and how it is created and used, but we do not explain
the cryptographic theory behind a digital signature or prove that a digital signa-
ture is secure. For developers who are sufficiently versed in these matters, we also
show how the APIs may be extended to support new types of cryptographic algo-
rithms, but again we leave the mathematics and rigorous definitions of
cryptography for another book.
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Versions Used in This Book

Writing a book on Java security has been a challenge for a number of reasons, not
the least of which is that the security APIs have been radically changing over the
past year. Java 1.1 introduced many of the APIs we’ll be discussing in this book,
including the notion of a security provider that supplies an implementation of the
security package. Java 1.2 introduced significant changes to the security package
as well as a new fundamental security object called the “access controller,” which
takes on much of the responsibility that has resided with the security manager
since Java 1.0.

For the most part, we assume that developers using this book will be using Java
1.2, and our primary focus will be on the 1.2 release of the Java Development Kit
(JDK) from Sun Microsystems. However, for developers using 1.1, we will provide
full details of what’s available in 1.1, and what has changed in 1.2; in some cases,
this information has changed so radically that the information is relegated to an
appendix. The information in this book is based on the 1.2 beta release; there
may be slight differences in the 1.2 FCS release.

For the most part, we do not track changes between 1.0 and 1.1 in this book.

Most of the examples used in this book are available via ftp from the O’Reilly web
site, www.oreilly.com. A few of the examples have been withheld from the online
distribution because of U.S. restrictions on the export of cryptography.

Conventions Used in This Book

Constant width font is used for:

* Code examples

¢ (Class, variable, and method names within the text
Ttalicized font is used for:

e Filenames

¢ Host and domain names

e URLs

.When a new method or class is introduced, its definition will appear beginning
with italicized text like this:

public void checkAccess(Thread t)
Check whether the current thread is allowed to modify the state of the param-
eter thread.

Page 13 of 482
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In addition, one of the following symbols may appear next to a definition:

% Indicates.that the method/class is available only in 1.2.
v Indicates that the method/class has been deprecated in 1.2.

There are some examples of commands scattered through the book, especially in
sections and appendices that deal with administration. By convention, all exam-
ples are shown as they would be executed on a Unix system, e.g.:

piccolo% keytool -export -alias sdo -file /tmp/sdo.cer
Enter keystore password: ek
Certificate stored in file </tmp/sdo.cer>

In these examples, the text typed by the user or administrator is always shown in
bold font; the remaining text is output from the command (the string piccolo%
indicates a command prompt). On other systems, the names of the files would
have to be changed to conform to that system (e.g., C:\sdo.cer for a Windows
system). However, note that while Windows systems often use a forward-slash (/)
for command-line options, Java tools (even on those systems) universally use a
hyphen (-) to indicate command-line options. In these examples, then, only the
filenames are different between platforms.

Organization of This Book

This book is organized in a bottom-up fashion: we begin with the very low-level
aspects of Java security and then proceed to the more advanced features.

Chapter 1, Java Application Security

This chapter gives an overview of the security model (the Java sandbox) used
in Java applications and sets the stage for the rest of the book.

Chapter 2, Java Language Security

This chapter discusses the memory protections built into the Java language,
how those protections provide a measure of security, and how they are
enforced by the bytecode verifier.

Chapter 3, Java Class Loaders

This chapter discusses the class loader, which is the class that reads in Java -
class files and turns them into classes. From a security perspective, the class
loader is important in determining where classes originated and whether or
not they were digitally signed (and if so, by whom), so the topic of class load-
ers appears throughout this book.
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Chapter 4, The Security Manager Class

This chapter discusses the security manager, which is the primary interface to
application-level security in Java. The security manager is responsible for arbi-
trating access to all local resources: files, the network, printers, etc.

Chapter 5, The Access Controller

The access controller is the basis for security manager implementations in
Java 1.2. This chapter discusses how to use the access controller to achieve
fine-grained levels of security in your application.

Chapter 6, Implementing Security Policies

This chapter ties together the information on the security manager and the
access controller and shows how to implement one or both to achieve a
desired security policy in your application. '

Chapter 7, Introduction to Cryptography

This chapter provides an overview to the cryptographic algorithms of the Java
security package. It provides a background for the remaining chapters in the
book.

Chapter 8, Security Providers

This chapter discusses the architecture of the Java security package, and how
that architecture may be used to extend or supplant the default cryptographic
algorithms that come with the JDK.

Chapter 9, Message Digests

This chapter discusses message digests: how to create them, how to use them,
and how to implement them. h

Chapter 10, Keys and Certificates

This chapter discusses the APIs available to model cryptographic keys and cer-
tificates, and how those keys and certificates may be electronically transmitted.

Chapter 11, Key Management

This chapter discusses how keys can be managed within a Java program: how
and where they may be stored and how they can be retrieved and validated.

Chapter 12, Digital Signatures

This chapter discusses how to create, use, and implement digital signatures.
This chapter also contains a discussion of signed classes.
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Chapter 13, Encryption

This chapter discusses the Java Cryptography Extension, which allows develop-
ers to encrypt and decrypt arbitrary streams of traffic.

Appendix A, Security Tools

This appendix discusses the administrative tools that come with Java that
enable end users and administrators to work with the Java security model:
keytool, jarsigner, and policytool.

Appendix B, Identity-Based Key Management

Key managément in Java 1.1 was radically different than the systems we
explored in the main text. This appendix discusses how key management was
handled in Java 1.1; it uses classes that are still present (but not often used) in
1.2.

Appendix C, Security Resources

This appendix discusses how to keep up-to-date with information about
Java’s security implementation, including a discussion of Java security bugs
and general resources for further information.

Appendix D, Quick Reference

This appendix is a simple reference guide to the classes that are discussed in
this book.
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Java Application
Security

When Java was first released by Sun Microsystems, it attracted the attention of
programmers throughout the world. These developers were attracted to Java for
different reasons: some were drawn-to Java because of its cross-platform capabili-
ties, some because of its ease of programming (especially compared to object-
oriented Ianguages like C++), some because of its robustness and memory
management, some because of Java’'s security, and some for still other reasons.

Just as different developers came to Java with different expectations, so too did
they bring different expectations as to what was meant by the ubiquitous phrase
“Java is secure.” Security means different things to different people, and many
developers who had certain expectations about the word “security” were surprised
to find that their expectations were not necessarily shared by the designers of Java.

This book discusses the features of Java that make it secure. In this book, we’ll
discuss why Java is said to be secure, what that security means (and doesn’t mean),
and—most importantly—how to use the security features of the Java platform
within your own programs. This last point is actually the focus of this book: while
some of Java’s security features are automatically a part of all Java programs, many
of them are not. In this book, we'll learn about all those features, and how to
utilize them in our own Java applications. '

What Is Security?

The first thing that we must do to facilitate our discussion of Java security is to
discuss just what Java’s security goals are. The term “security” is somewhat vague
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unless it is discussed in some context; different expectations of the term “security”
might lead us to expect that Java programs would be:

o Safe from malevolent programs: Programs should not be allowed to harm a user’s
computing environment. This includes Trojan horses as well as harmful pro-
grams that can replicate themselves—computer viruses.

®  Non-intrusive: Programs should be prevented from discovering private infor-
mation on the host computer or the host computer’s network.

*  Authenticated: The identity of parties involved in the program should be veri-
fied.

¢ Encrypted: Data that the program sends and receives should be encrypted.
*  Audited: Potentially sensitive operations should always be logged.

¢ Well-defined: A well-defined security specification would be followed.

e Verified: Rules of operation should be set and verified.

e Well-behaved: Programs should be prevented from consuming too many system
resources.

® C2 or BI certified: Programs should have certification from the U.S. govern-
ment that certain security procedures are included.

In fact, while all of these features could be part of a secure system, only the first
two were within the province of Java’s 1.0 default security model. Other items in
the list have been introduced in later versions of Java: authentication was added in
1.1, encryption is available as an extension to 1.2, and auditing can be added to
any Java program by providing an auditing security manager. Still others of these
items will be added in the future. But the basic premise remains that Java security
was originally and fundamentally designed to protect the information on a
computer from being accessed or modified (including a modification that would
introduce a virus) while still allowing the Java program to run on that computer.

The point driving this notion of security is the new distribution model for Java
programs. One of the driving forces behind Java, of course, is its ability to down-
load programs over a network and run those programs on another machine
within the context of a Java-enabled browser (or within the context of other Java
applications). Coupled with the widespread growth of Internet use—and the
public-access nature of the Internet—]Java’s ability to bring programs to a user on
an as-needed, just-in-time basis has been a strong reason for its rapid deployment
and acceptance.

The nature of the Internet created a new and largely unprecedented requirement
for programs to be free of viruses and Trojan horses. Computer users had always
been used to purchasing shrink-wrapped software. Many soon began downloading
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software via ftp or other means and then running that software on their machines.
But widespread downloading also led to a pervasive problem of malevolent
attributes both in free and (ironically) in commercial software (a problem which
continues unabated). The introduction of Java into this equation had the poten-
tial to multiply this problem by orders of magnitude, as computer users now
download programs automatically and frequently.

For Java to succeed, it needed to circumvent the virus/trojan horse problems that
plagued other models of software distribution. Hence, the early work on Java
focused on just that issue: Java programs are considered safe because they cannot
install, run, or propagate viruses, and because the program itself cannot perform
any action that is harmful to the user’s computing environment. And in this
context, safety means security. This is not to say that the other issues in the above
list are not important—each has its place and its importance (in fact, we’ll spend
a great deal of time in this book on the third and fourth topics in that list). But
the issues of protecting information and preventing viruses were considered most
important; hence, features to provide that level of security were the first to be
adopted. Like all parts of Java, its security model is evolving (and has evolved
through its various releases); many of the notions about security in our list will
eventually make their way into Java.

One of the primary goals of this book, then, is to explain Java’s security model
and its evolution through releases. In the final analysis, whether or not Java is
secure is a subjective judgment that individual users will have to make based on
their own requirements. If all you want from Java is freedom from viruses, any
release of Java should meet your needs. If you need to introduce authentication
or encryption into your program, you’ll need to use a 1.1 or later release of Java.
If you have a requirement that all operations be audited, you’ll need to build that
auditing into your applications. If you really need conformance with a U.S. govern-
ment-approved definition of security, Java is not the platform for you. We take a
very pragmatic view of security in this book: the issue is not whether a system that
lacks a particular feature qualifies as “secure” according to someone’s definition
of security. The issue is whether Java possesses the features that meet your needs.

When Java security is discussed, the discussion typically centers around Java’s
applet-based security model—the security model that is embodied by Java-enabled
browsers. This model is designed for the Internet. For many users, this is not
necessarily the most appropriate model: it is somewhat restrictive, and the security
concerns on a private, corporate network are not the same as those on the
Internet.

In this book, we take a different tack: the goal of this book is to show how to use
the security model and how to write your own secure Java applications. While
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some of the information we present will be applicable to a browser environment,
the security of any particular browser is ultimately up to the provider of the
browser. Some browsers allow us to change the security policy the browser uses,
but many do not. Hence, reading about the security manager in this book may
help you understand how a particular browser works (and why it works that way),
but that won’t necessarily allow you to change the security model provided by that
browser.

The Java Sandbox

Discussions of Java’s security model often center around the idea of a sandbox
model. The idea behind this model is that when you allow a program to be hosted
on your computer, you want to provide an environment where the program can
play (i.e., run), but you want to confine the program’s play area within certain
bounds. You may decide to give the program certain toys to play with (i.e., you
may decide to let it have access to certain system resources), but in general, you
want to make sure that the program is confined to its sandbox.

This analogy works better when you consider it from the view of a close relative
rather than from the view of a parent. If you're a parent, you probably consider
the purpose of a sandbox to be to provide a safe environment for your child to
play in. When my niece Rachel visits me, however, I consider the purpose of a
sandbox not (only) to be to protect her, but also to protect my grandmother’s
china from her. I love my niece, but I can’t give her leave to run through my
house; I enjoy running the latest cool applet on the Internet, but I can’t give it
leave to run through my filesystem.

The Java sandbox is responsible for protecting a number of resources, and it does
so at a number of levels. Consider the resources of a typical machine as shown in
Figure 1-1. The user’s machine has access to many things:

e Internally, it has access to its local memory (the computer’s RAM).

o Externally, it has access to its filesystem and to other machines on the local
network.

¢ For running applets, it also has access to a web server, which may be on its
local (private) net, or may be on the Internet.

e Data flows through this entire model, from the user’s machine through the
network and (possibly) to disk.

Each of these resources needs to be protected, and those protections form the
basis of Java’s security model.
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Figure I-1. A machine has access to many resources

We can imagine a number of different-sized sandboxes in which a Java program
might run:

¢ Asandbox in which the program has access to the CPU, the screen, keyboard,
and mouse, and to its own memory. This is the minimal sandbox—it contains
just enough resources for a program to run.

e A sandbox in which the program has access to the CPU and its own memory
as well as access to the web server from which it was loaded. This is often
thought of as the default state for the sandbox.

e A sandbox in which the program has access to the CPU, its memory, its web
server, and to a set of program-specific resources (local files, local machines,
etc.). A word-processing program, for example, might have access to the docs
directory on the local filesystem, but not to any other files.

° An open sandbox, in which the program has access to whatever resources the
host machine normally has access to.

The sandbox, then, is not a one-size-fits-all model. Expanding the boundaries of
the sandbox is always based on the notion of trust: when my one-year-old niece
comes to visit, there’s very little in the sandbox for her to play with, but when my
six-year-old godchild comes to visit, I trust that I might give her more things to
play with. In the hands of some visitors, a toy with small removable parts would be
dangerous, but when I trust the recipient, it’s perfectly reasonable to include that
item in the sandbox. And so it is with Java programs: in some cases, I might trust
them to access my filesystem; in other cases, I might trust them to access only part
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of my filesystem; and in still other cases, I might not trust them to access my file-
system at all.

Applications, Applets, and Programs

It’s no accident that this chapter has the word “application” in its title, because
the Java security model is solely at the discretion of a Java application. When an
applet runs inside the HotJava browser, HotJava is the Java application that has
determined the security policy for that applet. And although other popular
browsers are not written in Java, they play the role of a Java application: it is still
the case that the choice of security model is up to the browser and cannot be
changed by the applet.

This makes the distinction between applications and applets a crucial one: applica-
tions can establish and modify their security policies while applets (generally)
cannot. However, this distinction has diminished over time. Beginning with Java
1.2, users of Java applications have the opportunity to run an application within a
sandbox that the user or system administrator has constructed. In the next
section, we’ll see how the same functionality can be achieved with Java 1.1 as well.
Under these scenarios, the Java security model for applications is solely at the
discretion of the user or system administrator.

This is a major change of perception for many users and developers of Java, who
are used to considering the security differences between applets and applications
as a significant differentiator between the two types of programs. There will, of
course, always be particular programming differences between applets and appli-
cations: an applet extends the java.applet.Applet class and is written as a series
of callbacks, while an application can be any class that has a static method called
main(). When this programming distinction is important, we’ll use the terms
“applet” and “application” as appropriate. But we’ll typically use the term
“program” to refer to the Java code that we’re running.

Anatomy of a Java Application

The anatomy of a typical Java application is shown in Figure 1-2. Each of the
features of the Java platform that appears in a rectangle plays a role in the develop-
ment of the Java sandbox. In particular, the elements of the Java sandbox are
comprised of:

The bytecode verifier
The bytecode verifier ensures that Java class files follow the rules of the Java
language. In terms of resources, the bytecode verifier helps enforce memory
protections for all Java programs. As the figure implies, not all files are subject
to bytecode verification.
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}

Security

Security Manager

Key Database |-

Figure 1-2. Anatomy of a Java application

The class loader
One or more class loaders load classes that are not found on the CLASSPATH.
In 1.2, class loaders are responsible for loading classes that are found on the
CLASSPATH as well.

The access controller
In Java 1.2, the access controller allows (or prevents) most access from the
core API to the operating system.

The security manager
The security manager is the primary interface between the core API and the
operating system; it has the ultimate responsibility for allowing or preventing
access to all system resources. In 1.2, the security manager uses the access
controller for most (but not all) of those decisions; in 1.0 and 1.1, the security
manager is solely responsible for those decisions.

The security package
The security package (that is, classes that are in the java.security package)
forms the basis for authenticating signed Java classes. Although it is only a
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small box in this diagram, the security package is a complex API, and discus-
sion of it is broken into several chapters of this book. This includes
discussions of:

* The security provider interface—the means by which different security
implementations may be plugged into the security package

® Message digests

¢ Keys and certificates

* Digital signatures

* Encryption (an optional extension to the security package)
The security package was initially available in Java 1.1.

The key database )
The key database is a set of keys used by the security manager and access
controller to verify the digital signature that accompanies a signed class file.
In the Java architecture, it is part of the security package, though it may be
manifested as an external file or database.

The last two items in this list have broad applicability beyond expanding the Java
sandbox. With respect to the sandbox, digital signatures play an important role,
because they provide authentication of who actually provided the Java class. As
we’ll see, this provides the ability for end users and system administrators to grant
very specific privileges to individual classes or signers. But a digital signature
might be used for other applications. Let’s say that you’re deploying a payroll
application throughout a large corporation. When an employee sends a request
to view his payroll information, you really want to make sure that the request
came from that employee rather than from someone else in the corporation.
Often, this type of application is secured by a simple password, but a more secure
systemn could require a digitially signed request before it sent out the payroll
information.

We’ll discuss security concerns in both these contexts in this book. In particular,
two different examples will form the theme of the examples that are developed
through this book:

* A browser-type program (called JavaRunner) that we’ll use to explore the
sandbox aspects of Java’s security model

¢ The payroll application of a large company (XYZ Corporation) that we’ll use -
to explore how the features of Java’s security model can be used for purposes
other than the sandbox (e.g., to sign a payroll request)

We’ll develop a full implementation of the first of these examples; while we won’t
provide a complete payroll application, we will provide a number of examples of
the security features required for such an application.
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Running a Java Application

The parameters of the Java sandbox that we’ve outlined are possible elements of a
Java application, but they are not required elements of an application. The
remainder of this book will show us how and when those elements can be intro-
duced into a Java application. First, however, we’re going to discuss the
techniques by which Java épplications can be run.

There are two techniques that we’ll introduce in this section: the JavaRunner tech-
nique and the Launcher technique. While both allow you to run an application
securely, the examples in this chapter do not provide any security. We’ll fill in the
security pieces bit by bit, while we flesh out the security story. At that point, we’ll
show how to run Java applications securely.*

Typically, we’re used to running Java applications simply by specifying on the
command line the name of a class that contains a main() method. Consider this
application that reads the file specified by a command-line argument:

public class Cat {
public static void main(String args[]) {

try {
String s;
FileReader fr = new FileReader (args[0]):;
BufferedReader br = new BufferedReader (fr);
while ((s = br.readLine()). != null)

System.out.println(s);

} catch (Exception e) {

System.out.println(e);

}

This is a regular Java application; if we wanted to run it and print out the contents
of the password file on a Unix system, we could run the command:

piccolo% java Cat /etc/passwd
root:x:0:1:0000-Admin (0000} :/:/usr/bin/csh
daemon:x:1:1:0000-Admin (0000) :/:
bin:x:2:2:0000-Admin(0000) : /usr/bin:

From a security point of view, this is a very rudimentary program. It contains none
of the elements of the sandbox that we just listed; it has the default (wide-open)
sandbox given by default to every Java application. This application can perform
any operation it wants.

* See, for example, the end of Chapter 6.
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Security and the Operating System

The security policy imposed by Java is augmented by the security features of
the operating system on which Java is running. A Java application with a
wide-open security policy may attempt to read the password file, but if the
user running the application does not normally have permission to read the
password file, the Java application will not succeed.

The actual security policy that is in effect for a Java application will be the
intersection of the security policy built into the application and the security
policy of the operating system when the application is run. For the purposes
of this book, we ignore the security features that the operating system may
provide.

There are two ways in which we can add security features to this application. One
way is to add to the application a class loader, a security manager, use of the
access controller, and so on. This additional programming would set the bounds
of the sandbox for this particular application.

The other route we can take is to run this application under the auspices of
another application that we’ll call JavaRunner. This is completely analogous to
the way in which we typically run applets: appletviewer is a Java application that
runs applets, and JavaRurnner is a Java application that runs other applications.
JavaRunner is responsible for establishing the parameters of the Java sandbox
(that is, it ensures that appropriate class loaders, a security manager, and the like
are all in place) before it invokes the target application, just as appletviewer
establishes the parameters of the Java sandbox before it invokes the target applet.

This technique removes the difference (in terms of security) between an applet
and an application: both types of programs are now subject to the Java sandbox.
There are a number of circumstances in which this is useful:

* If you download (or purchase) Java applications and want them to run in a
sandbox.

* If you want to ensure that your internally developed applications all run in
the desired sandbox (without having to include that code in every applica-
tion).

* Ifyou have a corporate or campus network and need to distribute Java applica-

tions under a new security model. Perhaps the new model will:

— Give different security permissions to programs downloaded from within
the corporate firewall than those from outside the corporate firewall
(without requiring internal classes to be signed)
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— Authenticate users on the corporate network before allowing sensitive
payroll data to be sent (even over the corporate network)

— Encrypt that payroll data, so internal spies can’t decipher it

— Allow the user greater discretion over the resources granted to a partic-
ular program

Although the JavaRunner program is designed to run other applications, there is
no reason why it cannot be modified to run applets as well. Such a modification
would require some extra code to parse the HTML containing the applet tag and
set up an instance of the AppletStub and AppletContext classes for the applet
itself. We’re not showing the code to do that only because it’s not really relevant
to the discussion of Java security—but the JavaRunner could easily be extended to
become an appletviewer (or, with an appropriate Java bean that interprets
HTML, a full-fledged browser). The advantage, of course, is that as author of the
browser you would have full control over the security model the browser employs.

Outline of the JavaRunner Application
Here’s the basic implementation of the JavaRunner application:

public class JavaRunner implements Runnable {
final static int numArgs = 1;
private Object argsl[];
private String className;

JavaRunner (String className, Object args[]) {

this.className = className;
this.args = args;

vold invokeMain (Class clazz) {

Class arglList[] = new Class[] { Stringl[].class };
Method mainMethod = null;
try {

mainMethod = clazz.getMethod("main", argList);

} catch (NoSuchMethodException nsme) {
System.out.println("No main method in " + clazz.getName());
System.exit (-1);

try {
mainMethod. invoke (null, args):;
} catch (Exception e) {
Throwable t;
if (e instanceof InvocationTargetException)
t = ((InvocationTargetException) e)
.getTargetException() ;
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else t = e;
System.out.println("Procedure exited with exception " + t);

t.printStackTrace();

public void run() {
Class target = null;
try {
target = Class.forName (className) ;
invokeMain (target) ;
} catch (ClassNotFoundException cnfe) {
System.out.printin("Can't load " + className);

static Object[] getArgs(String args(]) {
String passArgs[] = new Stringlargs.length - numArgs];
for (int i = numArgs; i < args.length; i++) .
passArgs[i - numArgs] = argsl[il;

Object wrapArgs[] = new Object[1];
wrapArgs[0] = passArgs;
return wrapArgs;

}

public static void main(String args([]) {

if (args.length < 1) { .
System.err.println("usage: JavaRunner classfile");
System.exit (-1);

}

ThreadGroup tg = new ThreadGroup ("JavaRunner Threadgroup");

Thread t = new Thread(tg,

new JavaRunner (args[0], getArgs(args))):;

t.start();

try {
t.join();

} catch (InterruptedException ie) {
System.out.println("Thread was interrupted"):;

}

This is a fully functional (if not full-featured) version of the JavaRunner program;
we can use it to run our Cat application like this:

piccolo% java JavaRunner Cat /etc/passwd
root:xX:0:1:0000-Admin (0000) :/: /usr/bin/csh
daemon:x:1:1:0000-Admin(0000):/:
bin:x:2:2:0000-Admin (0000) : /usr/bin:
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This will give us exactly the same results as when we ran the program by hand.
The invokeMain() method will use the Java reflection API to find the static
main() method of the Cat class and then construct an appropriate argument list
to pass to that method. Note that the use of the reflection API introduces a depen-
dency on Java 1.1 for this program. You can write a similar program under Java
1.0, but not without using the native (C) interface to Java.

Note also that we construct a new thread group and thread, and run the main()
method under control of that thread. The primary reason we do that will become
clear in Chapter 6 when we discuss thread security policies. But there’s no reason
why you couldn’t expand this example to run multiple targets simultaneously, in
which case each target should have its own thread and thread group anyway.

We’ve cheated a little bit here by using the forName () method of the Class class
to find our target application class—we’ll hear more about that in Chapter 3
when we discuss class loaders. For now, it will suffice to know that this will load
our target class (assuming that the target class is found on the CLASSPATH). In
addition, we still haven’t done anything to set up a security manager or to enable
the access controller. As a result, the sandbox for an application run under this
program is non-existent: the bytecodes will not be verified, and there will be no
restriction on any actions that the application may perform. But this is the
example that we’ll expand upon during the rest of this book as we add security
features to it.

Don’t think that the only function of a program like this is to run Java applica-
tions (or even Java applets). Consider the Java web server—it must dynamically
invoke servlets for different web requests as those requests come in. An RMI
server might operate similarly, perhaps even loading the code to perform its oper-
ations from a client machine. Although we stick with this example throughout the
book, the need for security in server applications parallels the need for security in
end-user applications.

Built-in Java Application Security

Beginning in Java 1.2, the Java platform itself comes with a security model built
into applications it runs. This model is based upon information in the user’s
CLASSPATH. Setting the CLASSPATH is the same operation in Java 1.1 and Java 1.2,
but in Java 1.2, classes that are found on the CLASSPATH may optionally be subject
to a security model. This allows you to run the application code in a user- or
administrator-defined sandbox: in particular, it uses the access controller of Java
1.2 to provide the same security environment for the target application as a Java-
enabled browser provides for an applet.
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The successful use of this facility depends upon the class loader that the built-in
application runner will use, as well as depending upon the environment set up by
the access controller and security manager. We’ll examine how these facilities
interact with this method of running applications in the next few chapters. For
now, we’ll just outline how this method operates.

As always, Java applications are run on the command line as follows:

piccolo% java Cat /etc/passwd
root:x:0:1:0000-Admin(0000):/:/usr/bin/csh
daemon:x:1:1:0000-Admin{(0000):/:
bin:x:2:2:0000~-Admin (0000) : /usr/bin:

This example loads the Cat.class file from the user’s CLASSPATH and runs the appli-
cation with the single argument /etc/passwd. As always, when an application is run
in this manner, the sandbox in which the application runs is unlimited: the appli-
cation can perform any activity it wants to.

There is a very important difference between running these examples in Java 1.1
and running them in 1.2: in 1.2, classes that are loaded from the CLASSPATH will
be loaded by a class loader. The addition of the class loader to the CLASSPATH
allows us to build a sandbox for the application. However, none of these examples
actually builds a sandbox yet. In order to build a sandbox for these examples, we
must specify the -usepolicy flag on the command line. This flag enables a secu-
rity manager and access controller to be installed; we’ll discuss the details of this
option in Chapter 6.

The -usepolicy flag is only available in Java 1.2. Without it, Java applications in
1.2 behave exactly as they do in 1.1: they have a wide-open sandbox.

For historical reasons (and because it makes describing this facility easier), we’ll
refer to the ability to run applications with an optional argument to specify a
sandbox as the Launcher. Given that the Launcher is a standard part of Java, you
might ask why we’re going to the trouble of implementing our own JavaRunner.
One reason is simply to make our discussion clearer: it is easiest to understand the
architecture of Java’s security policy in the context of JavaRunner. Other reasons
have to do with certain limitations that we’ll discover about the Launcher:

* The Launcher comes only with Java 1.2 and later releases; if you're still using
1.1, you’ll have to use the JavaRunner program.

* The Launcher can only run classes from the CLASSPATH—it cannot load
classes from the network or from another location. However, simply because
the program in question is an application does not mean we won’t want to -
load its classes from a server—but we’ll need JavaRunner to do that.
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Secure Applications in 1.2 and 1.2 beta 2

In releases of 1.2 up. through beta 2, running a secure application requires
use of a special class: the Launcher class (sun.misc.Launcher). To run an
application under control of the Launcher, you would execute this
command:

piccolo% java sun.misc.Launcher Cat /etc/passwd

In 1.2 beta, classes that are loaded from the CLASSPATH are not subject to the
sandbox. In order to load those classes through a class loader and subject them
to the sandbox, you must specify an alternate classpath for the classes that
make up the application:

piccolo% java -Djava.app.class.path=/classes sun.misc.Launcher \
Cat /etc/passwd

If the Cat class is found in /classes, it will be subject to the sandbox. If it is
found in the CLASSPATH, it will not.

Beginning in 1.2 beta 3, the Launcher class was incorporated into the virtual
machine itself.

¢ The security manager used by the Launcher does not have all the features we
might desire. While most of its features are configurable through the access
controller (also a feature of Java 1.2), there are certain advanced policies that
we cannot configure in that way. These features can only be achieved with
some programming on our part. ‘

Hence, both the Launcher and JavaRunner are useful mechanisms for running
Java applications; which one you use depends on your particular requirements.

Summary

Security is a multifaceted feature of the Java platform. There are a number of facil-
ities within Java that allow you to write a Java application that implements a
particular security policy, and this book will focus on each of those facilities in
turn. Java-enabled browsers (including those like HotJavaT™™ that are written in
Java) are the ultimate proof of these features: these browsers have used the
features of the Java platform to allow users to download and run code on their
local systems without fear of viruses or other corruption.

But the security features of Java need not be limited to the protections afforded to
Java applets running in a browser: they can be applied as necessary to your own
Java applications. This is done most easily by incorporating those features into a
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framework designed to run Java applications within a specified sandbox. The
ability to define and modify that framework is one of the primary examples of this
book. In addition, the security package allows us to create applications that use
generic security features—such as digital signatures—for many purposes aside
from expanding the Java sandbox. This other use of the security package will also
be a constant theme throughout this book.

In the next chapter, we’ll look into the security features of the Java language
itself—the first set of security features that are available to any Java application.



~ Java Language
Security

The first components of the Java sandbox that we will examine are those compo-
nents that are built into the Java language itself. These components primarily
protect memory resources on the user’s machine, although they have some
benefit to the Java API as well. Hence, they are primarily concerned with guaran-
teeing the integrity of the memory of the machine that is hosting a program: in a
nutshell, the security features within the Java language want to ensure that a
program will be unable to discern or modify sensitive information that may reside
in the memory of a user’s machine. In terms of applets, these protections also
mean that applets will be unable to determine information about each other;
each applet is given, in essence, its own memory space in which to operate.

In this chapter, we’ll look at the features of the Java language that provide this
type of security. We’ll also look at how these features are enforced, including a
look at Java’s bytecode verifier. With a few exceptions, the information in this
chapter is largely informational; because the features we are going to discuss are
immutable within the Java language, there are fewer programming considerations
than we’ll find in later chapters. However, the information we’ll present here is
crucial in understanding the entire Java security story; it is very helpful in
ensuring that your Java environment is secure and in assessing the security risks
that Java deployment might pose. The security of the Java environment is depen-
dent on the security of each of its pieces, and the Java language forms the first
fundamental piece of that security.

As we discuss the language features in this chapter, keep in mind that we’re only
dealing with the Java language itself—as is the common thread of this book, all
security features we’re going to discuss do not apply when the language in ques-
tion is not Java. If you use Java’'s native interface to run arbitrary C code, that C
code will be able to do pretty much anything it wants to do, even when it violates
the precepts we’re outlining in this chapter.

17
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Java Language Security Constructs

In this chapter, we’re going to be concerned primarily with how Java operates on
things that are in memory on a particular machine. Within a Java program, every
entity—that is, every object reference and every primitive data element—has an
access level associated with it. To review, this access level may be:

* private: The entity can only be accessed by code that is contained within the
class that defines the entity.

¢ Default (or package): The entity can be accessed by code that is contained
within the class that defines the entity, or by a class that is contained in the
same package as the class that defines the entity.

* protected: The entity can only be accessed by code that is contained within
the class that defines the entity, by classes within the same package as the
defining class, or by a subclass of the defining class.

* public: The entity can be accessed by code in any class.

The notion of assigning data entities an access level is certainly not exclusive to
Java; it’s a hallmark of many object-oriented languages. Since the Java language
borrows heavily from C++, it’s not surprising that it would borrow the basic notion
of these access levels from C++ as well (although there are slight differences
between the meanings of these access modifiers in Java and in C++).

As a result of this borrowing, the use of these access modifiers is generally thought
of in terms of the advantage such modifiers bring to program design: one of the
hallmarks of object-oriented design is that it permits data hiding and data encap-
sulation. This encapsulation ensures that objects may only be operated upon
through the interface the object provides to the world, instead of being operated
upon by directly manipulating the object’s data elements. These and other design-
related advantages are indeed important in developing large, robust, object-
oriented systems. But in Java, these advantages are only part of the story.

In a language like C++, if I create a CreditCard object that encapsulates my
mother’s maiden name and my account number, I would probably decide that
those entities should be private to the object and provide the appropriate
methods to operate on those entities. But nothing in C++ prevents me from
cheating and accessing those entities through a variety of back-door operations.
The C++ compiler is likely to complain if I write code that attempts to access a
private variable of another class, but the C++ runtime isn’t going to care if I
convert a pointer to that class into an arbitrary memory pointer and start scan-
ning through memory until I find a location that contains a string with 16 digits—
a possible account number. In C++ systems, no one typically worried about such
occurrences because all parts of the system were presumed to originate from the
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same place: it’s my program, and if I want to work around my data model to get
access to that data, so be it.*

Things change with Java. I might be surfing to play some cool game applet on
www.EvilSite.org, and then I might go shopping at www.Acme.com. When my Java
wallet applet runs, I'd hate for the applet that is still running from www.EvilSite.org
to be able to access the private CreditCard object that’s contained in my Java
wallet—and while it’s necessary for www.Acme.com to know that I have a valid Cred-
itCard object, I don’t necessarily feel comfortable telling them my mother’s
maiden name. Because I'm now in the midst of a dynamic system with active
programs from multiple sites, I need to make sure that the data entities are
accessed by only those objects that are supposed to have access to them. It’s
obvious that I want protection from EvilSite.org, whom I don’t want to know about
the CreditCard object contained in my Java wallet. But I also want to be
protected from Acme.com, a site I feel relatively comfortable about, but who
should not be granted access to all the data elements of an object that it must use.

This is only one example of why the Java platform must provide memory integ-
rity—that is, it must ensure that entities in memory are accessed only when they
are allowed to be, and that these entities cannot be somehow corrupted. To that
end, Java always enforces the following rules:

Access methods are strictly adhered to.
In Java, you cannot be allowed to treat a private entity as anything but
private: the intentions of the programmer must always be respected. Object
serialization involves an exception to this rule; we’ll give more details about
that a little bit later.

Programs cannot access arbitrary memory locations.
This is easy to ensure, as Java does not have the notion of a pointer. For
example, casting between an int and an Object is strictly illegal in Java.

Entities that are declared as £inal must not be changed.
Final variables in Java are considered constants; they are immutable once they
are initialized. Consider the havoc that could ensue if the final modifier were
not respected:

* A public final variable could be changed, drastically altering the
behavior of a program. If a rogue applet swapped the values of the vari-
ables EAST and WEST in the GridBagConstraints class, for example, any
new applets would be laid out incorrectly (and probably incomprehen-
sibly). That’s a rather benign example of what could potentially be a
dramatic security flaw.

* In a large project with multiple programmers, there’s a strong argument that such an attitude on the
part of an individual programmer is not to be dismissed so lightly, but we’ll let that pass.
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e A subclass could override a final method, altering the behavior of a
class. One of the features of the Java API is that threads are not allowed to
raise their priority above a certain maximum priority (typically, the
priority of the thread group to which the thread belongs). This feature is
enforced by the setPriority() method of the Thread class, which is a
final method; allowing that method to be overridden would defeat the
security mechanisms.

This feature is used for virtually all of Java’s security checks: performing
an operation requires calling a final method in a Java class; only that
final method can trap into the operating system to execute the opera-
tion. That final method is responsible for making sure the operation
does not proceed if it would violate the security policy in place.

e A subclass could be created from a final class, with similar results. In
Java, strings are considered as constants—their value may not be changed
once the string has been created. If the String class could be subclassed,
this rule could not be enforced.

Variables may not be used before they are initialized.

If a program were able to read the value of an uninitialized variable, the effect
would be the same as if it were able to read random memory locations. A Java
class wishing to exploit this defect might then declare a huge uninitialized
section of variables in an attempt to snoop the memory contents of the user’s
machine. To prevent this type of attack, all local variables in Java must be
initialized before they are used, and all instance variables in Java are automati-
cally initialized to a default value.

Array bounds must be checked on all array accesses.

Like the access modifiers that started this discussion, bounds checking is
generally thought of in terms other than security: the prime benefit to
bounds checking is that it leads to fewer bugs and more robust programs. But
it has security benefits as well: if an array of integers happens to reside in
memory next to a string (which, in memory, is an array of characters), writing
past the end of the array of integers would change the value of the string. The
effect of this is generally a bug, but it could be exploited as a security hole as
well: if the string held the destination account number for an electronic
funds transfer, we could change the destination account number by willfully
writing past the end of the array of integers.*

* This type of attack is not as far-fetched as it might seem; an early version of Netscape Navigator suffered
from just this type of security hole. When long URLs were typed into the Goto field, the Netscape C code
that read the string overwrote the bounds of the array where the characters were to be stored and clob-
bered a key location in memory, which allowed a security breach.
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Objects cannot be arbitrarily cast into other objects.
Given the class fragment:
public class CreditCard {
private String acctNo;
}
and the rogue class:

public class CreditCardSnoop {
public String acctNo;
}
then the following code cannot be allowed to execute:

CreditCard cc = Wallet.getCreditCard();
CreditCardSnoop snoop = (CreditCardSnoop) cc; .
System.out.println("Ha! Your account number is " + snoop.acctNo);

Hence, Java does not allow arbitrary casting between objects; an object can
only be cast to one of its superclasses or its subclasses (if, in the latter case, the
object actually is an instance of that subclass). Note that the Java virtual
machine is much stricter about this rule than the Java compiler is. In the
example above, the compiler would complain about an illegal cast. We could
satisfy the compiler by changing the code as follows:

Object cc = Wallet.getCreditCard();

CreditCardSnoop snoop = (CreditCardSnoop) oc:

Only the virtual machine will know if the returned object actually is of type
CreditCard or not. In this case, then, the virtual machine is responsible for
throwing a ClassCastException when the snoop variable is assigned to
thwart the attack.

These are the techniques by which the Java language ensures that memory loca-
tions are read and written only when such access should normally be allowed.
This restriction protects the user’s machine from the outside: if I download an
applet onto my machine, I don’t want that applet accessing the private variables
of my CreditCard class. However, if that applet has a private variable within it,
nothing prevents me (depending on my operating system) from using a program
outside of the browser to scan the memory on my system and figure out somehow
what value that particular variable has. Similarly, nothing prevents me from
having another program outside the browser change the value of a particular vari-
able that is held in memory on my machine.

If you're an applet developer and are worried about this type of problem, you're
pretty much on your own to come up with a solution to it. This might be particu-
larly troublesome if you had, say, a variable somewhere in your applet that held a
Boolean value indicating whether or not the user was licensed for a particular
operation; a very clever user can go outside the browser and manipulate the
machine’s memory so that the integrity of your licensing scheme is violated. This
problem is not new to Java, but it’s not solved by Java either.
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Object Serialization and Memory Integrity

There is one general exception to the rules about public, private, and protected
access in Java. Object serialization is a feature of Java that allows an object to be
written as a series of bytes; when those bytes are read someplace else, a new object
is created that has the same state as the original object. Object serialization has
two main purposes: it’s used extensively in the RMI API to allow clients and
servers to exchange objects, and it’s used whenever you need to save a particular
object to disk and want to recreate the object at some later point in time.

The murky issue here is just what constitutes an object’s state. In the case of our
CreditCard object, the account number is pretty basic to creating that object, but
it’s a variable that needs to be private for the reasons we’ve been discussing. In
order for object serialization to work, it must have access to those private variables
so it can correctly save and restore the object’s state. That’s why the object serial-
ization API can access and save all private variables of an object (as well as its
default, protected, and public variables). Similarly, the object serialization API is
able to store those values back into the private data members when the object is
actually reconstituted.

Depending on your perspective, this is a good thing or a bad thing. From a secu-
rity perspective, it can be a bad thing: if the CreditCard object is saved to disk,
something else can come along and read all that information from the disk file.
Worse yet, the file could be edited in such a way that the object will be recreated

in a completely different state than it originally had, with potentially damaging

results.

In theory, this is the same problem we just discussed about influences outside the
browser being able to read and write the private data of objects that are held in
memory (which may help to explain why object serialization works this way by
default). In practice, however, it’s much easier to change the data in a binary file
than to figure out how to access and change the value of an object in memory.
Hence, object serialization has two additional mechanisms associated with it that
make it more secure.

The first of these is that object serialization can only occur on objects that imple-
ment the Java.io.Serializable interface (or its subclass, the
java.io.Externalizable interface). The Serializable interface requires no
methods, so it can be thought of simply as a flag to the virtual machine that says:
“Hey, virtual machine—I've thought about the security aspects of this class, and
it’s okay if you serialize it by writing out all its data.” By default, an object is not
serializable, lest its internal private state be violated.

The second of these mechanisms is that object serialization respects the tran-
sient keyword associated with a variable: if our account number in the

2
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CreditCard class were declared as private transient, then object serialization
would not be allowed to read or write that particular variable. This lets us design
classes that can be stored and reconstituted without showing their private data to
the world. ' ‘

Of course, a CreditCard object without an account number is worthless; what we
really need is something that can save and reconstitute the transient data in such
a way that the data cannot be compromised. This can be achieved by having our
class implement the writeObject() and readObject() methods. The write-
Object () method is responsible for writing out the transient data to the given
output stream, while the readObject() method is responsible for reading the
data corresponding to the transient data and storing that data into the field. It’s
your decision how to save and reconstitute the data so that its integrity is
preserved, but typically this will mean that you’ll want to use one of the encryp-
tion APIs we’ll discuss in Chapter 13.

Storing and reconstituting the transient data can also be achieved by
implementing the Externmalizable interface and implementing the writeEx-
ternal() and the readExternal () methods of that interface. The difference in
this case is that these two methods are now responsible for saving and reconsti-
tuting the entire state of the object—no data is stored or reconstituted for you.

Using either of these techniques, you have the ability to protect any sensitive data
contained in your objects, even if you choose to share those objects over the
network or save those objects to some sort of persistent storage.

Enforcement of the Java Language Rules

The list of rules we outlined above are fine in theory, but they must be enforced
somehow. We've always been taught that overwriting the end of an array in C
code is a bad thing, but I somehow still manage to do it accidentally all the time.
There are also those who willfully attempt to overwrite the ends of arrays in an
attempt to breach the security of a system. Without mechanisms to enforce these
memory rules, they become simply guidelines and provide no sort of security at all.

This necessary enforcement happens at three different times in the development
and deployment of a Java program: at compile time, at link time (that is, when a
class is loaded into the virtual machine), and at runtime. Not all rules can be
checked at each of these points, but certain checks are necessary at each point in
order to ensure the memory security that we’re after. As we’ll see, enforcement of
these rules (which is really the construction of this part of the Java sandbox)
varies depending on the origin of the class in question.
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Compiler Enforcement

The Java compiler is the first thing that is tasked with the job of enforcing Java’s
language rules. In particular, the compiler is responsible for enforcing all of the
rules we outlined above except for the last two: the compiler cannot enforce array
bound checking nor can it enforce all cases of illegal object casts.

The compiler does enforce certain cases of illegal object casts—namely, casts
between objects that are known to be unrelated, such as the following code:

new Vector();
(String) v;

Vector v
String s

iwon

But the validity of a cast between an object of type X to type Y where Y is a subclass
of X cannot be known at compile time, so the compiler must let such a construct
pass.

The Bytecode Veriﬁér

Okay, the compiler has produced a Java program for us, and we’re about to run
the Java bytecode of that program. But if the program came from an unknown
source, how do we know that the bytecodes we’ve received are actually legal?

Bytecode Verification of Other Languages

Throughout this section, we’re discussing the bytecode verifier as if it were
tied to the Java language. This is somewhat imprecise: the bytecode verifier
is actually independent of the original source language of the program. If
we had a C++ compiler that generated Java bytecodes from C++ source, the
bytecode verifier would still be able to verify (or not) the bytecodes.

However, the verification of the bytecodes would still depend upon the
semantics of the Java language, and not the semantics of C++; just because
the bytecodes in question originated from C++ code is no reason that they
should suddenly be allowed to cast an arbitrary memory location into an
object.

For this reason, I prefer to think of the bytecodes in terms of the Java
language itself. There are tools to produce Java bytecodes from other
languages (like Scheme), but in general, producing Java bytecodes from
another language severely limits the constructs that can be written in that
other language.
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This brings us to the need for the bytecode verifier—the second link in the chain
of responsibility of enforcing the rules of the Java language. Normally when the
need for the bytecode verifier is discussed, it’s in terms of an evil compiler—that
is, a compiler that someone has written in such a way that the code produced by
the compiler is not legal Java code. The theory is that code from such a compiler
could be constructed in order to create and exploit a security hole by ignoring a
rule in the Java language. Such an attack might seem to be difficult to achieve, in
that it would require some detailed knowledge of the Java compiler.

It turns out that the evil compiler issue is a red herring—it doesn’t really matter
whether such an attack is likely or not, because it’s trivial to create non-
conforming Java code with any standard Java compiler. Assume that we have these
classes:

public class CreditCard {
public String acctNo = "0001 0002 0003 0004";

public class Test {
public static void main(String args[]) {-
CreditCard cc = new CreditCard();
SYstem.out.println("Your account number is " + cc.acctNo);

}

If we run this code, we’ll create a CreditCard object and print out its account
number. Now say that we realize the account number should really have been
private, so we go back and change the definition of acctNo to be private and
recompile only the CreditCard class. We then have two class files, and the Test
class file contains Java code that illegally accesses the private instance variable
acctNo of the CreditCard class.

The above example shows an innocent mistake, but a malicious programmer
could use just this technique to produce illegal Java bytecodes. In order to modify
the contents of a string, for example, all we need to do is:

1. Copy the java.lang.String source file into our CLASSPATH.

2. In the copy of the file, modify the definition of value—the private array that
holds the actual characters of the string—to be public.

3. Compile this modified class, and replace the String.class file in the JDK.

4. Compile some new code against this modified version of the String class.
The new code could include something like this:

public class CorruptString {
public static void modifyString(String src, String dst) {
for (int i = 0; i < src.length; i++) {
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if (i == dst.length)
return;
src.value[i] = dst.valuelil];

}

Now any time you want to modify a string in place, simply call this modi-
fyString () method with the string you want to corrupt (src) and the new
string you want it to have (dst).

5. Remove the modified version of the String class.

Now the CorruptString class can be referenced by a Java program, which can use
it to attempt to corrupt any string that it has a reference to. Even though the
program will run with the original version of the String class, the CorruptString
class will be able to access the private value array within the String class—unless
the bytecode verifier rejects the CorruptString class.

Inside the bytecode verifier

The bytecode verifier is an internal part of the Java virtual machine and has no
interface: programmers cannot access it and users cannot interact with it. The veri-
fier automatically examines most bytecodes as they are built into class objects by
the class loader of the virtual machine (see Figure 2-1). We’ll give just a brief over-
view of how the bytecode verifier actually works.

Figure 2-1. The bytecode verifier

The verifier is often referred to as a mini-theorem prover (a term first used in
several documents from Sun). This sounds somewhat more impressive than it is;
it’s not a generic, all-purpose theorem prover by any means. Instead, it’s a piece
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of code that can prove one (and only one) thing—that a given series of (Java)
bytecodes represents a legal set of (Java) instructions.

Spec1ﬁcally, the bytecode verifier can prove the following:

* The class file has the correct format. The full definition of the class file for-
mat may be found in the Java virtual machine specification; the bytecode veri-
fier is responsible for making sure that the class file has the right length, the
correct magic numbers in the correct places, and so on.

¢ Final classes are not subclassed, and final methods are not overridden.
* - Every class (except for java.lang.Object) has a single superclass.

® There is no illegal data conversion of primitive data types (e.g., int to
Object).

* No illegal data conversion of objects occurs. Because the casting of a super-
class to its subclass may be a valid operation (depending on the actual type of
the object being cast),. the verifier cannot ensure that such casting is not
attempted—it can only ensure that before each such attempt is made, the
legality of the cast is tested.

® There are no operand stack overflows or underflows.

In Java, there are two stacks for each thread. One stack holds a series of
method frames, where each method frame holds the local variables and other
storage for a particular method invocation. This stack is known as the data
stack and is what we normally think of as the stack within a traditional
program. The bytecode verifier cannot prevent overflow of this stack—an infi-
nitely recursive method call will cause this stack to overflow. However, each
method invocation requires a second stack (which itself is allocated on the
data stack) that is referred to as the operand stack; the operand stack holds
the values that the Java bytecodes operate on. This secondary stack is the stack
that the bytecode verifier can ensure will not overflow or underflow.

Hence, when the bytecode verifier has completed its task, we know that the code
in question follows many of the constraints of the Java language—including most
of the rules that the compiler was also responsible for ensuring. The remaining
rules are verified during the actual running of the program.

Delayed bytecode verification

When we began this section, we said that the bytecode verifier is responsible for
examining all the bytecodes of the class—we explicitly did not say that the verifier
is responsible for verifying all the bytecodes. This is because the bytecode verifier
may delay some of the checks it is responsible for, as long as those checks are
performed before the code is actually executed. In typical verifier implementa-
tions, the bytecode verifier does not immediately test to see if all field and method .
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accesses are legal according to the access modifiers associated with that field or
method. : :

This is. driven by a desire to be efficient—our Test class may reference the acctNo
field of our CreditCard class, but it may do so only if a particular branch in the
code is taken. In the following code, there’s no need to verify that the access to
acctNo is legal unless an I1legalArgumentException has been generated:

CreditCard cc = getCreditCard();

try {
Wallet.makePurchase(cc) ;

} catch (IllegalArgumentException iae) {
System.out.println({"Can’t process for account " + cc.acctNo);

}

Hence, the bytecode verifier delays all tests for field and method access until the
code is actually executed. The process by which this happens is implementation
independent; one technique that is often used is to ensure during verification
that all accesses test the validity of the field access. If the access is valid, the stan-
dard bytecodes are then replaced during execution with a special bytecode
indicating that the test has been performed and access to the field in question no
longer needs to be tested. On the other hand, if the validity test fails, the virtual
machine throws an IllegalAccessException.

This gives us the best of both worlds—verification of the access is performed
during the actual running of the program (after traditional bytecode verification
has occurred), but the verification is still only performed once (unlike the
runtime verification we’ll examine later).

Controlling bytecode verification

Bytecode verification seems like a great thing: not onIy can it help to prevent mali-
cious attacks from violating rules of the Java language, it can also help detect
simple programmer errors—such as when we changed the access modifier of
acctNo in our CreditCard class, but forgot to recompile our Test class.

Nonetheless, bytecode verification is not used on all classes. Like many security-
related features of Java, bytecode verification only applies to certain classes. In
Java 1.1 and earlier, classes that are loaded from the CLASSPATH are deemed to be
trusted and are not subject to bytecode verification, whereas classes that are
loaded from another location (e.g., a file- or HTTP-based URL) are not deemed
to be trusted and must be verified. In Java 1.2, this policy has changed and all
classes except those in the core Java API are verified. This difference really reflects
the class loader that is used to load the class, as we’ll see in the next chapter.
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In typical usage, this is a workable policy. Browsers always ensure that the code
imported to run an applet is verified, and Java applications are typically not veri-
fied. Of course, this may or may not be the perfect solution:

¢ If a remote site can talk an end user into installing a local class into the
browser’s CLASSPATH, the local class will not be verified and may violate the
rules we’ve discussed here. In 1.2, this is much harder, since the class must be
added to the zip file containing the core API classes.

¢ You may implicitly rely upon the verifier to help you keep files in sync so that
when one is changed, other files are verified against it.

As a user, you (theoretically) have limited control over the veriﬁer—though such
control depends on the browser you are using. If you are running a Java applica-
tion, you can run java with the -verify option, which will verify all classes.
Similarly, if you are using a browser written in Java—including the applet-
viewer—you can arrange for the java command to run with the -noverify
option, which turns verification off for all classes. Occasionally, a browser not
written in Java will allow the user to disable bytecode verification as well—e.g.,
Internet Explorer 3.0 for the Mac had this capability, although it was present only
because the bytecode verifier could not run in certain limited memory
configurations.

However, although these options to the virtual machine are well-documented,
they are not implemented on all platforms. One way to ensure that application
code is run through the bytecode verifier is to use the final version of the JavaRr-
unner program (once we add a class loader to it in the next chapter) or the
Launcher in Java 1.2.

Runtime Enforcement

Like the compiler, the bytecode verifier cannot completely guarantee that the
bytecodes follow all of the rules we outlined earlier in this chapter: it can only
ensure that the first four of them are followed. The virtual machine must still take
responsibility for ultimately determining that the Java bytecodes provide the secu-
rity we expect them to.

The remaining security protections of the Java language must be enforced at
runtime by the virtual machine: '

Array bounds checking
In theory, the bytecode verifier can detect certain cases of array bounds
checking, but in general, this check must take place at runtime. Consider the
following code:

void initArray(int al], int nItems) {
for {(int i = 0; i < nItems; i++) {
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ali} = 0;
}
}
Since nItems and a are parameters, the bytecode verifier has no way of deter-
mining whether this code is legal. Hence, array bounds checking is always
done at runtime. Failure to meet this rule results in an
ArrayIndexOutOfBoundsException.

Object casting

The verifier can and will detect the legality of certain types of casts, specifi-
cally, whenever unrelated.classes are cast to each other. The virtual machine
must monitor when a superclass is cast into a subclass and test that cast’s
validity; failure to execute a legal cast results in a ClassCastException. This
holds for casts involving interfaces as well, since objects that are defined as an
interface type (rather than a class type) are considered by the verifier to be of
type Object.

Summary

Because the notion of security in Java is pervasive, its implementation is equally
pervasive. In this chapter, we’ve explored the security mechanisms that are built
into the Java language itself. Essentially, at this level the security mechanisms are
concerned with establishing a set of rules for the Java language that creates an
environment where an object’s view of memory is wellknown and well-defined, so
that a developer can ensure that items in memory cannot be accidentally or inten-
tionally read, corrupted, or otherwise misused. We also took a brief look at Java’s
bytecode verifier, including why it is necessary, and why you should turn it on,
even for Java applications.

It’s important to keep in mind that the purpose of these security constraints is to
protect the user’s machine from a malicious piece of code and not to protect a
piece of code from a malicious user. Java does not (and could not) prevent a user
from acting on memory from outside the browser (with possibly harmful results).



Java Class Loaders

In this chapter, we’re going to explore Java’s class loading mechanism—the mech-
anism by which files containing Java bytecodes are read into the Java virtual
machine and converted into class definitions. The operation of Java programs
depends on the class loader; given Java’s desire to ensure security throughout its
architecture, it should come as no surprise that class loaders are also a very impor-
tant piece of the Java security story. The class loader normally works in
conjunction with the security manager and access controller to provide the bulk
of the protections associated with the Java sandbox.

The class loader is important in Java’s security model because initially, only the
class loader knows certain information about classes that have been loaded into
the virtual machine. Only the class loader knows where a particular class origi-
nated, and only the class loader knows whether or not a particular class was signed
(although the class loader arranges for the Class object itself to carry its signature
with it). Hence, one of the keys to writing a secure Java application is to under-
stand the role of the class loader and to write (or at least use) a secure class loader.’

We'll address both those points in this chapter. We begin with an overview of how
the class loader functions, and the features that its basic functions add to the
overall security of the Java platform. We’ll then look into writing our own class
loader, the motivation for which will vary depending on the release of Java you're
using and the type of application you are running.

As with the other elements of the Java sandbox, the ability to create and use a
class loader is limited to Java applications. Java applets use the class loader
provided for them by the browser in which they are running, and they are gener-
ally prohibited from creating their own class loader.

31
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Security and the Class Loader

There are two instances where the class loader plays an important role in the Java
security model: it must coordinate with Java’s security manager or access
controller, and it must enforce certain rules about the namespace used by Java
classes.

Class Loaders and Security Enforcement

The class loader must coordinate with the security manager and access controller
of the virtual machine in order to determine the security policy for a Java
program. We’ll explore this in more detail in the next few chapters when we
discuss these various security mechanisms; for now, we’ll just consider the motiva-
tion for the following connection.

As we know, a Java applet cannot (normally) read a file when the applet is being
run in a browser such as HotJava.* The HotJava browser itself, however, can read
files, even while it is also running applets. Both the browser and the applets are
using the same classes to (attempt to) read a file, so clearly there must be some-
thing that allows the java.io classes to determine that one case should fail while
the other case should succeed. That differentiation is the by-product of the class
loader: the class loader allows the security manager to find out particular informa-
tion about the class, which allows the security manager to apply the correct
security policy depending on the context of the request. When we discuss the secu-
rity manager, we’ll discuss the specific mechanics by which this can be achieved.
For now, it is only important to keep in mind that the class loader is the piece of
the Java architecture that is able to make this distinction. Since it loaded the class,
it knows if the class came from the network (i.e., the class is part of the applet and
should not be trusted) or if the class came from the local filesystem (i.e., the class
is part of the browser and should be trusted). It also knows if the class was deliv-
ered with a digital signature, and the exact location from which the class was
loaded. All these pieces of information may be used by the security manager and
access controller to establish a security policy.

Class Loaders and Namespaces

The second place where the class loader provides security in Java is more subtle
and has to do with Java’s namespace rules. Recall that the full name of a Java class
is qualified by the name of the package to which the class belongs; there is no
standard class called String in the Java API, but there is the class

* This is true of all Java-enabled browsers, of course, but the point is clearer when we consider the Hot-
Java browser since that browser is written in Java.
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java.lang.String. On the other hand, a class does not need to belong to a
package, in which case its full name is just the name of the class. It’s often said
that these classes are in the default package, but that’s slightly misleading: as it
turns out, there is a different default package for each class loader in use by the
virtual machine.

Consider what happens if you surf to a page at www.sun.com and load an applet
that uses a class called Car (with no package name); after that, you surf to a page
at www.ora.com and load a different applet that uses a class called Car (also with
no package name). Clearly, these are two different classes, but they have the same
fully qualified name—how can the virtual machine distinguish between these two
classes?

The answer to that question lies in the internal workings of the class loader. When
a class is loaded by a class loader, it is stored in a reference internal to that class
loader. A class loader in Java is simply an object whose type is some class that
extends the ClassLoader class. When the virtual machine needs access to a partic-
ular class, it asks the appropriate class loader. For example, when the virtual
machine is executing the code from sun.com and needs access to the Car class, it
asks the class loader that loaded the applet (r1 in Figure 3-1) to provide that class.

Class Loader r1_

~ Class Loader r2

= : wg‘:é@w .
ORA applet

U w e AT e e L e« o FEE G

Sun applet

Figure 3-1. Different instances of the class loaders help to disambiguate class names
In order for this scheme to work, the Car class from www.ora.com must be loaded

using a different class loader than that which loaded the Car class from
www.sun.com. That way, when the virtual machine asks the class loader r2 for the
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definition of the Car class, it will get back (correctly) the definition from ora.com.
The class loader does not need to be a different class; as this example implies, it
must merely be a different instance of the class. Hence, applets that have a
different CODEBASE (even if they originate on the same host) are always loaded by
different instances of the browser’s class loader. Applets on the same page with
the same CODEBASE, however, may use the same class loader so that they may share
class files (as well as sharing other information). Some browsers also allow applets
on different pages to be loaded by the same class loader as long as those applets
have the same CODEBASE, which is generally a more efficient and useful
implementation.

This differentiation between class files loaded from different class loaders occurs
no matter what packages are involved. Don’t be confused by the fact that there
were no explicit package names given in our example. A large computer company
might define a class named com. sun.Car, a large oil company might also define a
class called com.sun.Car, and the two classes need to be considered as distinct
classes—which they will be if (and only if) they are loaded by different instances
of the class loader.

So far we've given a logical reason why the class loader is involved in the
namespace resolution of Java classes. You might think that if everyone were to
follow the convention that the beginning of their package name must be their
Internet domain in reverse order—e.g., com. sun for Sun Microsystems—this idea
of different class loaders wouldn’t be necessary. But there are security reasons for
this namespace separation as well.

In Java, classes that are members of the same package have certain privileges that
other classes do not have—they can access all the classes of the package that have
the default protection (that is, the classes that are neither public, private, nor
protected). Additionally, they can access any instance variable of classes in the
package if the instance variable also has the default protection. As we discussed in
Chapter 2, the ability to reference only those items to which a class has access is a
key part of the security restrictions Java places on a program to ensure memory
and API integrity.

So let’s assume that no class loader based package separation exists, and that we
rely on Sun Microsystems to name its classes com.sun.Car and so on. Everything
would proceed reasonably, until we surf to www.EvilSite.org, where someone has
placed a class called com.sun.DoSomethingEvil. Without the namespace separa-
tion introduced by the class loader, this class would suddenly have access to all the
default protected classes and default protected variables of every class that had
been downloaded from Sun. Worse, that site could supply a class called
com. sun.Car with a much different implementation than Sun’s—such that when
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the user (metaphorically, of course) applied the car’s brakes, the new implementa-
tion sped up instead. Clearly, this is not a desirable situation.

Note too that with a badly written class loader, the hackers at EuilSite.org have the
potential to supply new classes to override the core classes of the Java API. When
the class loader that loaded the applet from EuvilSite is asked to provide the
java.lang.String class, it must provide the expected version of that class and
not some version from EvilSite.org. In practice, this is not a problem, because the
class loader is written to find and return the core class first.

Without enforcement of the namespace separation that we’ve just outlined, there
is no way to ensure that the hackers at EvilSite.org have not forged a class into the
com. sun package. The only way to prevent such forgeries would be to require that
every class be a signed class which authenticated that it did in fact come from
sun.com (or wherever its package name indicates that it should have come from).
Authenticated classes certainly have their place in Java’s security model, but it
would be unmanageable to require that every site sign and authenticate every
class on its site.

Hence, the separation of classes based on the class loader that loaded them—and
the convention that applets on different pages are loaded by different class
loaders—has its benefits for Java security as well as solving a messy logistical
problem. We’ll now look into the details of how the class loader actually works.

Anatomy of a Class Loader

When the Java virtual machine needs access to a particular class, it is up to a class
loader to provide the class. The class loader goes through the following steps to
load and define a class:

1. If the class loader has already loaded this class, it should find the previously
defined class object and return that object immediately.

2. The security manager is consulted to see if this program is allowed to access
the class in question. If it is not, a security exception is thrown. This step may
be considered optional.

3. Otherwise, an internal class loader is consulted to attempt to load the class

from the CLASSPATH. If that succeeds, the class loader returns. This ensures
that classes within the Java API will not be superseded by classes loaded from
the network (or other location).
The way this is done varies between 1.1 and 1.2. In 1.1, there is a single
method (the findSystemClass() method) that handles this step. In 1.2, a
class loader must delegate to another class loader to find classes that are on
the CLASSPATH and call the findSystemClass () method to find classes that
are in the core API.
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4. The security manager is consulted to see if this program is allowed to create
the class in question. If it is not, a security exception is thrown. This step may
be considered optional.

5. The class file is read into an array of bytes. The mechanism by which the class
loader reads the file and creates the byte array will vary depending on the
class loader (which, after all, is one of the points of having different class
loaders).

6. The byte codes are run through the bytecode verifier.

7. A Class object is constructed from the bytecodes. In the process, the
methods defining the class are created. In Java 1.1 and later, this process also
ensures that the name in the class file matches the name that the class loader
thought it was asked to load.

8. Before the class can be used, it must be resolved—which is to say that any
classes that it immediately references must also be found by this class loader.
The set of classes that are immediately referenced contains any classes that
the class extends as well as any classes used by the static initializers of the class.
Note that classes that are used only as instance variables, method parameters,
or local variables are not normally loaded in this phase: they are loaded when
the class actually references them (although certain compiler optimizations
may require that these classes be loaded when the class is resolved).

Step 5 of this process varies depending on the policy of the particular class
loader—the data for the class may be read from the network or the filesystem (or
from any other location, such as a database). The other steps of this process will
remain fixed for a well-defined class loader.

There are a number of class loaders that are used in Java programs, described in
the following sections.

The Internal Class Loader

All Java programs must have the capability of loading certain classes—the Java API
classes and any otherslocated in the user’s CLASSPATH. Some of these classes are
bootstrapped into the virtual machine. The first thing the virtual machine typi-
cally does is load the Java API class files (the classes.zip file) for future use.

The internal class loader uses the native operating system’s file access methods to
open and read the class files into byte arrays. When one of these classes contains a
reference to another class, the internal class loader is again consulted to load the
referenced class.

Unlike other class loaders we’ll explore, the internal class loader cannot be over-
ridden. Most of the internal class loader, in fact, is written in native code so that it
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can be accessed directly by the virtual machine (a requirement for the virtual
machine to be able to bootstrap the API classes).

The internal class loader is often referred to as the default class loader or the
primordial class loader. Due to some details of the Class class, we often speak of
classes that are loaded by the internal class loader as having no class loader at all
(and as a result, the internal class loader is sometimes called the null class loader).

There is a significant chénge in the use of the primordial class loader between
Java 1.1 and 1.2. In 1.1, the primordial class loader was used to load all classes on
the CLASSPATH. In 1.2, the primordial class loader is used only to load the Java API
class files; the virtual machine constructs an instance of the URLClassLoader class
- to load the classes from the CLASSPATH.

The Applet Class Loader

An applet needs the ability to load classes via HTTP from the network. Hence,
applet class loaders typically use the URL class to read in the data for a class file
from the applet’s CODEBASE host.

There is no standard applet class loader in the Java API—each Java browser is
responsible for implementing its own class loader. In practice, the class loaders of
various browsers are indistinguishable (and are usually based on the reference
class loader implemented in Sun’s appletviewer), but a Java programmer cannot
simply instantiate an applet class loader in a platform-independent way.*

The RMI Class Loader

Beginning with JDK 1.1, the Java API includes an RMI class loader that can be
used by any application. Despite its name, the RMI class loader needn’t be used in
an RMI application, and it is not truly a class loader—that is, it does not extend
the ClassLoader class. In function, the RMIClassLoader class
(java.mi.server.RMIClassLoader) is very similar to the applet class loader—it
uses the HTTP protocol to load the desired class file from a remote machine and
then defines the class from the data in that file.

The RMI class loader cannot be instantiated directly; you must use one of its static
methods to load a class. Once an initial class is loaded by the RMI class loader, any
classes it references will also be loaded by the RMI class loader. In addition, the
RMI class loader can only load classes from the URL specified by the

* Ifyou want, you can figure out which class in the JDK on your system is the applet class loader, instantiate
an instance of that class, and use it, but all virtual machines will not necessarily have that class available.
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java.rmi.server.codebase property, so it is not a generic solution to all applica-
tions where a class loader might be used.

If you are loading individual, unsigned classes (i.e., classes that are not in a JAR
file) from a single URL (i.e., a single directory, whether a file-based or an HTTP-
based URL), using the RMI class loader is the simplest option for Java 1.1 applica-
tions. For Java 1.2 applications, you can use the RMI class loader for this purpose,
or you can use the URL class loader; the URL class loader will offer you more
flexibility.

The Secure Class Loader

Beginning with Java 1.2, the Java APT includes a class loader in the java.security
package called SecureClassLoader. This class has a protected constructor, so its
real use is to provide the basis for the development of other class loaders. The
distinguishing feature of the secure class loader is that it associates a protection
domain with each class that it loads. Protection domains form the basis of the
operation of the access controller; we’ll see more about them in Chapter 5. For
now, just accept the fact that if you want to use the access controller to establish
your security policy, youw'll need to use a class loader that extends the Secure-
ClassLoader class.

The URL Class Loader

Also beginning with Java 1.2, the Java API includes a general-purpose class loader
that can load classes from a set of URLs: the URLClassLoader class
(java.net.URLClassLoader). This class is public and fully implemented, so for
1.2-based applications, it provides a truly useful, general purpose class loader:

public class URLClassLoader extends SecureClassLoader %
Load classes from a set of URLs. A URL in this set may be a directory-based
URL, in which case the class loader will attempt to locate individual class files
under that directory. A URL in this set may also be a JAR file, in which case
the JAR file will be loaded, and the class loader will attempt to find a class in
the JAR file.

An instance of the URLClassLoader class is created via one of these constructors:

public URLClassLoader(URL urls[]) %

public URLClassLoader(URL wrls[], ClassLoader parent) %
Construct a class loader based on the given array of URLs. This class loader
attempts to find a class by searching each URL in the order in which it
appears in the array.

The second of these constructors constructs a URL class loader that uses the
1.2-based delegation model for loading classes (which we discuss at the end of
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this chapter). In that case, the parent class loader will be asked to load the
class first; if it fails, this URL class loader proceeds to load the class. This is the
preferred constructor to use.

We can construct a URL class loader like this:

URL urls[] = new URL[2];

urls[0] = new URL("http://piccolo.East/~sdo/");

urls[l] = new URL({"file:/home/classes/LocalClasses.jar");
URLClassLoader ucl = new URLClassLoader (urls, parent);

When we use this class loader to load the class com. sdo.Car, the class loader first
attempts to load it via the URL http://piccolo.East/~sdo/com/sdo/Car.class; if that
fails, it looks for the class in the LocalClasses.jar file.

It should come as no surprise that this class is the basis for running the Launcher.
In that case, the array of URLs is created based on the list of URLs that make up
the CLASSPATH (but not including the core Java API classes).

Choosing the Right Class Loader

With all these class loaders to choose from, which is the better choice: an existing
class loader or your own custom class loader? The answer depends upon your
needs. It is better not to write your own class loader if an existing one can fit your
needs, but that’s not always possible. Here are some guidelines:

1. Start by trying to use an instance of the URLClassLoader class. This class can
load classes from multiple sites, using file-based and HTTP-based URLs. It can
process individual class files and JAR files (including signed JAR files, which
will become important later in our discussion). This class is the basis of the
Launcher, although with the Launcher itself, you're limited to file-based
URLs.

When would you not use the URL class loader? Here are some possible cases:

~— When you want to load classes other than via HTTP or the file system.
You may have classes that are held in a database, or you may want to
define the bytecodes for a class programmatically.

— When you want to load classes from different hosts and you have a priori
knowledge of which class is on which host. The URL class loader will
search for classes in its list of URLs sequentially; prior knowledge may
allow you to load classes more efficiently.*

* In the beta release of 1.2, URLClassLoader fails to handle multiple HTTP-based URLs correctly. It
is hoped that this will be fixed for FCS; if it is not and you need to load classes from multiple web servers,
you will need to use your own class loader—see the information about the MultiLoader class in the
section “Loading from Multiple Sites” later in this chapter .
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2. If you’re on a 1.1-based system and only need to load classes from a single
site, use the RMI class loader. Remember that you will have to define as a
property the location where those classes are found.

3. Otherwise, you’ll need to provide a custom class loader.

Loading Classes

We’ll now explore the details of how a class loader actually loads classes. There is
a single method of the ClassLoader class (and all its subclasses) that accom-
plishes this:

public Class loadClass(String name)
Load and resolve the named class. A ClassNotFoundException is thrown if
the class cannot be found.

This is the simplest way to use a class loader directly: it simply requires that the
class loader be instantiated and then be used via the loadClass () method. Once
the Class object has been constructed, there are four ways in which a method in
the class can be executed:

* A static method of the class can be executed using the native method inter-
face of the Java virtual machine. This is the technique the Java virtual
machine uses to execute the main() method of a Java application once the ini-
tial class has been loaded, but this is not generally a technique used by Java
applications.

*  An object of the class can be constructed using the newInstance () method of
the Class class, but only if the class has an accessible constructor that
requires no arguments. Once the object has been constructed, methods with
well-known signatures can be executed on the object. This is the technique
that a program like appletviewer uses: it loads the initial class of the applet,
constructs an instance of the applet (which calls the applet’s no-argument
constructor), and then calls the applet’s init () method (among other meth-

ods).

¢ Starting with JDK 1.1, the reflection API can be used to call a static method
on the class, or to construct instances of the object and execute methods on
that object. The reflection API allows more flexibility than the second choice,
since it allows arguments to be passed to the constructor of the object. This is
the technique that is used by our JavaRunner program.

¢ In the URLClassLoader class, the invokeClass() method may be called to
call the static main() method of the class (assuming that one exists), passing
it an array of strings. This is the technique the Launcher uses.
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The second case is more commonly implemented, if only because it’s simpler
(and it is applicable in all versions of Java). But consider the following modifica-
tions to our JavaRunner program:

public class JavaRunner implements Runnable {
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final static int numdrgs = 2;
ClassLoader cl;

String className;

Object argsl];

JavaRunner (Classloader cl, String clasgName, Object args[]) {
this.cl = cl;
this.className = className;
this.args = args;

void invokeMain{(Class clazz) {
. unchanged ..

public void run() {
Class target = null;

try {
target = cl.loadClass(className);
invokeMain (target);

} catch (ClassNotFoundException cnfe) {
System.out.println("Can't load " + className);

static Object[] getArgs(String args[]) {
. unchanged ..

public static void main(String args[])
throws ClassNotFoundException {

Class self = Clags.forName ("JavaRunner");
JavaRunnerLoader jrl = new

JavaRunnerloader (args[0], self.getClassLoader());
JavaRunnerloader jrl = new JavaRunnerloader(args{0], parent);
ThreadGroup tg = new ThreadGroup ("JavaRunner Threadgroup"):;
Thread t = new Thread(tg,

new JavaRunner(jrl, args[l], getArgs(args)));
t.start();
try {
t.join();
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} catch (InterruptedException ie) {
System.out.println("Thread was interrupted");

}

We've replaced the forName () method that we used in our example in Chapter 1
with the highlighted code here: now we construct a class loader (an instance of -
the JavaRunnerLoader class, the definition of which we’ll see in just a bit) and are
now using the loadClass () method to find our target class.

In Java 1.2, constructing the class loader requires that we find the class loader that
loaded our class and pass that to the constructor of the JavaRurmerLoader class.
In 1.1, we would not use the self instance variable.

We've also changed the arguments required to run this program, which is why
we’ve changed the definition of numArgs. Previously, we required the name of the
class and any arguments the class requires. Now we require an additional argu-
ment: the name of the URL from which to load all the classes. Hence, if our Cat
class was on the web server named piccolo, we could run our JavaRunner example
like this:

picdolq% java JavaRumner http://piccolo/ Cat /etc/passwd
root:x:0:1:0000-Admin (0000):/:/usr/bin/csh
daemon:x:1:1:0000-Admin (0000) :/:
bin:x:2:2:0000-Admin (0000) : /usxr/bin:

Note the difference between this implementation and the one we showed in
Chapter 1. In this case, the Cat class is loaded from the JavaRunner class loader,
and any classes the Cat class needs are dynamically loaded from that class loader.
In Chapter 1, what happened was a product of the release of Java. In 1.1, the Cat
class was loaded from the primordial class loader; any classes it required were
loaded from the primordial class loader as well. In 1.2, the Cat class was loaded
from an instance of the URLClassLoader class, and any classes it required were
loaded from that class loader as well.

The practical result is that the security manager and access controller will give
different permissions to the Cat class depending on which class loader loaded it:
the permissions that are assigned to a class may be different depending upon
whether the class was loaded from the URL class loader, the JavaRurmer class
loader, or the primordial class loader. Exactly how those permissions differ
depends upon the internal implementation of the class loader as well as the secu-
rity manager and access controller that are in effect. In a nutshell, these
differences will be based upon where the class loader found the class, and
whether or not that class was signed.
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Implementing a Class Loader

Part of the security implications of a class loader depend upon its internal imple-
mentation. When you implement a class loader, you have two basic choices: you
can extend the ClassLoader class, or you can extend the SecureClassLoader
class. The second choice is preferred, but it is not an option for Java 1.1. If you’re
programming in 1.2, you may choose to use the URL class loader rather than
implementing your own, but the information in this section will help you under-
stand the security features of the URL class loader. In this section, then; we’ll look
at how to implement both default and secure class loaders.

Implementing the ClassLoader Class

Aside from the primordial class loader, all Java class loaders must extend the
ClassLoader class (java.lang.ClassLoader). Since the ClassLoader class is
abstract, it is necessary to subclass it to create a class loader.

Protected methods in the ClassLoader class
In order to implement a class loader, we start with this method:

protected abstract Class loadClass(String name, boolean resolve) Y¢

protected Class loadClass(String name, boolean resolve) %
Using the rules of the class loader, find the class with the given name and, if
indicated by the resolve variable, ensure that the class is resolved. If the class
is not found, this method should throw a ClassNotFoundException. This
method is abstract in 1.1, but not in 1.2. In 1.2, you typically do not override
this method.

The loadClass() method is passed a fully qualified class name (e.g.,
java.lang.String or com.xyz.XYZPayrollApplet), and it is expected to return
a class object that represents the target class. If the class is not a system class, the
loadClass() method is responsible for loading the bytes that define the class
(e.g., from the network).

There are four final methods in the ClassLoader class that a class loader can use
to help it achieve its task:

protected final Class defineClass(String name, byte data[], int offset, int length)
Create a Class object from an array of bytecodes. The defineClass()
method runs the data through the bytecode verifier and then creates the
Class object. This method also ensures that the name in the class file is the
same as the name of the argument—that is, that the bytes actually define the
desired class.
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protected final Class findSystemClass(String name)

Attempt to find the named class by using the internal class loader to search
the user’s CLASSPATH. If the system class is not found, a ClassNotFoundExcep-
tionis generated. In 1.2, this method searches only the classes in the Java API.

protected final Class findLoadedClass(String name)

Find the class object for a class previously loaded by this class loader. If the

class is not found, a null reference is returned.

Finding Previously Loaded Classes

According to the Java specification, a class loader is required to cache the class-
es that it has previously loaded, so that when it is asked to load a particular
class, it is not supposed to re-read the class file. Not only is this more efficient,
it allows a simpler internal implementation of many methods, including the -
resolveClass () method.

The Java specification hedges this somewhat by stating that this requirement
may change in the future, when the classes will be cached by the virtual ma-
chine itself. Hence, the ClassLoader class in JDK 1.0 did not do any caching,
and it was up to concrete implementations of class loaders to perform this
caching.

Beginning with JDK 1.1, however, caching within the class loader was consid-
ered important enough that the base ClassLoader class now performs this
caching automatically: a class is put into the cache of the class loader in the de-
fineClass () method and may be retrieved from the cache with the find-
LoadedClass () method. Since these methods are final, and since the cache
itself is a private instance variable of the ClassLoader class, this permits a class
loader to be written without any knowledge of whether the class loader or the
virtual machine is doing the caching.

protected final void resolveClass(Class ¢)

For a given class, resolve all the immediately needed class references for the
class; this will result in recursively calling the class loader to ask it to load the
referenced class.

The loadClass() method is responsible for implementing the eight steps of the
class definition list given above. Typically, implementation of this method looks
like this:

protected Class loadClass(String name, boolean resolve) {
Class c¢;
SecurityManager sm = System.getSecurityManager():;

// Step 1 -- Check for a previously loaded class
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¢ = findLoadedClass (name) ;

Af (¢ != null)

return c;
// Step 2 -- Check to make sure that we can access this class
if (sm != null) {

int i = name.lastIndexOf('.');
if (i >= 0)
sm.checkPackageAccess (name. substring (0, 1));

}
// Step 3 -- Check for system class first
try {

// In 1.2 only, defer to another class loader if available
if (parent != null)

¢ = parent.loadClass (name, resolve);
else

// Call this method in both 1.1 and 1.2
¢ = findSystemClass (name) ;

if (¢ != null)
return c;
} catch (ClassNotFoundException cnfe) {
// Not a éystem class, simply continue
}

// Step 4 -- Check to make sure that we can define this class
if (sm .!= null) {
int i = name.lastIndexQf('."');
if (1 >= 0) '
sm.checkPackageDefinition (name.substring (0, i));

// Step 5 -- Read in the class file
byte datal]l = lookupData (name) ;

// Step 6 and 7 -- Define the class from the data; this also
// passes the data through the bytecode verifier
¢ = defineClass (name, data, 0, data.length);

// Step 8 -- Resolve the internal references of the class
if (resolve)

resolveClass(c);

return c;
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For most of the class loaders we’re interested in, this skeleton of a class loader is
sufficient, and all we need to change is the definition of the lookupData()
method (as well as the constructor of the class, which might need various initializa-
tion parameters).

This method might be used to implement a 1.1-based class loader, where the
loadClass () method is abstract. In 1.2, however, it is easier to use the existing
loadClass () method and override only the existing findLocalClass () method:.

protected Class findLocalClass(String name) %

Load the given class according to the internal rules of the class loader. This
method should assume that it is responsible for implementing only steps 5, 6,
and 7 in our list: that is, it should read the data and call the defineClass ()
method, but it needn’t look for an existing implementation of the class or
check to see if it is a system class. If the class cannot be found, this method
should return null (which is what the default implementation of this method
returns in all cases).

We’ll use this method in our example of a secure class loader. If you must imple-
ment a l.1-based class loader, you can use the code from that example to
implement a lookupData () method that could be used by the above implementa-
tion of the loadClass () method.

From a security point of view, the loadClass () method is important because it
codifies several aspects of how Java handles security. One example of this is that
the order in which the loadClass () method looks for classes is significant. Much
of the security within Java itself depends on classes in the Java API doing the
correct thing—e.g., the java.lang.String class is £inal and holds the array of
characters representing the string in a private instance variable; this allows strings
to be considered constants, which is importént to several aspects of Java security.
When a class loader is asked to find the java.lang.String class, it is very impor-
tant that it return the class from the Java API rather than returning a class (possibly
having different and insecure semantics) it loaded from a different location.

Hence, it is important that the class loader call the findSystemClass() method
immediately after it attempts (and fails) to find the class in its internal cache (via
the findLoadedClass () method). By codifying this behavior in the loadClass()
method, the ClassLoader class ensures that the class loader will have the correct
behavior to enforce the overall security of the virtual machine. This is why the
loadClass () method is no longer abstract in 1.2. This method really should be
made final now, but that would break compatibility with previously written class
loaders.

Violating security by returning the incorrect class would have required the cooper-
ation of the class loader. This might have happened accidentally, if the author of
the class loader did not provide a correct implementation. It might also have
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 Secure Class Loaders and the

defineClass() Method

When a class is defined by a secure class loader, one of the parameters that it
must specify is a CodeSource object or a ProtectionDomain object. A CodeS-
ource object encapsulates certain information about the class—where it was
loaded from and whether or not it was signed (and if so, by whom); a
ProtectionDomain object encapsulates information about the specific
permissions that have been granted to the class.

We're deferring discussion of these classes until Chapter 5, when we can
discuss them in their proper context. For now, we’ll just use the getCode- .
Source() method whenever a code source is necessary and trust it to
provide us with the correct object. : ‘

happened maliciously, if the author of the class loader intentionally wrote an
incorrect implementation. The new implementation solves the first problem, but
not the second: the author of the class loader can still override the loadClass ()
method directly to do whatever he wants. In general, you have to trust the author
of your class loader anyway, so the new implementation enhances security mostly
by assisting developers in writing more robust programs.

Implementing the SecureClassLoader Class

Starting with JDK 1.2, there is an extension of the ClassLoader class that any Java
developer can use as the superclass of her own class loader: the SecureClass-
Loader class (java.security.SecureClassLoader).

In terms of security, the benefit of the SecureClassLoader class comes because it
is fully integrated with the notion of protection domains that was introduced in
1.2. We’ll discuss this integration more fully in Chapter 5, when we have an under-
standing of what a protection domain is.

Protected methods of the SecureClassLoader class
The SecureClassLoader class provides these two new methods:

protected final Class defineClass(String name, byte buf[], int offset, int length,
CodeSource cs, Object signers[])

protected final Class defineClass(String name, byte buf], int offset, int length,
ProtectionDomain pd, Object signers[])
Define a class that is associated with the given code source or protection
domain and the given array of signers. Either of these last two parameters
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may be null; if both are null, this method is the equivalent of the define-
Class () method in the base ClasslLoader class.

protected CodeSource getCodeSource(URL wrl, Object signers[])
Construct a code source based on the given URL and signers; this is the code
source that would then be passed to the defineClass () method. It is prefer-
able to construct a code source via this method rather than directly
instantiating a code source object, since this method will keep a cache of code
source objects, which may be reused.

As our first example of a class loader, we’ll use the same paradigm for loading
classes that a Java-enabled browser uses, namely an HTTP connection to a web
server:

public class JavaRunnerLoader extends SecureClassLoader {
protected URL urlBase;
public boolean printlLoadMessages = true;

public JavaRunnerLoader (String base, ClassLoader parent) {

super (parent) ;
try {

if (! (base.endsWith("/")))

base = base + "/";

urlBase = new URL(base);
} catch (Exception e) {

throw new IllegalArgumentException(base);

byte[] getClassBytes (InputStream is) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
BufferedInputStream bis = new BufferedInputStream(is);
boolean eof = false; ’
while (l!eof) {

try {
int i = bis.read();
if (i == -1)

eof = true;
else baos.write(i);
} catch (IOException e) {
return null;

}
return baos.toByteArray();

protected Class findLocalClass(String name) {
String urlName = name.replace('.', '/');
byte buf(];
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Class cl;

SecurityManager sm = System.getSecurityManager ();
if (sm != null) {
int i = name.lastIndexOf('.');
if (i >= 0)
sm.checkPackageDefinition (name.substring (0, i));
}
try {
URL url = new URL(urlBase, urlName + ".class");
if (printLoadMessages)
System.out.println("Loading " + url);
InputStream is = url.openConnection{().getInputStream();
buf = getClassBytes(is):
CodeSource cs = getCodeSource(urlBase, null);
cl = defineClass(name, buf, 0, buf.length, cs, null);
return cl;
} catch (Exception e) {
System.out.println("Can't load " + name + ": " + e);
return null;

public void checkPackageAccess (String name) {
SecurityManager sm = System.getSecurityManager();
if (sm != null)
sm.checkPackageAccess (name) ;

}

The key decision in using this class loader is where the classes are located—that is,
the URL that needs to be passed to the constructor. If we were using this class
loader in a browser, that URL would be the applet’s CODEBASE; for an application,
this location is up to the application to decide, using whatever means it deems
appropriate (in the JavaRurmer application, we used a command-line argument
for that purpose). Note that the URL that is passed to the constructor must be a
directory; in order to compose that directory into a URL later in the findlocal-
Class () method, the name must end with a slash.

The logic of the findLocalClass() method itself is simple: we need to convert
the class name (e.g., com.XYZ.HRApplet) to a URL, which we can do by replacing
the package-separating periods with slashes. Once the URL has been created, we
simply obtain an input stream to the URL, read the bytes from that stream, and
pass the bytes to the defineClass () method.

Note that the findLocalClass() method encompasses most of the logic that is
necessary for the lookupData () method we’d need if we were writing a 1.1-based
class loader. The only difference for a 1.1-based class loader is that we would not
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need to call the defineClass () method, as that is called in our 1.1-based imple-
mentation of the loadClass () method.

The implementation we’ve just shown is the basis for the implementation of the
URLClassLoader class. The basic difference between the two is that our implemen-
tation operates on a single URL, while the URLClassLoader class operates on an
array of URLs. The URLClassLoader class can also read JAR files while our
present implementation can only read individual class files; we’ll remedy both
those situations in the next section.

Implementing Security Policies in the Class Loader

When we discussed the algorithm used to load classes, we mentioned that you
could test to see if the class loader was allowed to access or define the package
that the class belonged to. You might, for example, want to test whether the
program should be allowed to access classes in the sun package, or define classes
in the java package.

It is up to the author of the class loader to put these checks into the class loader—
even in 1.2. In 1.2, the loadClass () method does not call the checkPackageAc-
cess () method of the security manager directly (as we did in our skeleton of the
loadClass () method): instead, it calls the checkPackageAccess () method of the
ClassLoader class. In the ClassLoader class, the checkPackageAccess () method
simply returns. Hence, if you want to make the check for package access that we
showed earlier, you must override the checkPackageAccess() method in your
class loader and insert the appropriate call to the security manager. In 1.1, of
course, you have to write the loadClass () method from scratch, so you can call
the security manager or not as you deem appropriate.

In the case of defining a class in a package, the necessary code in a 1.2-based class
loader must be inserted into the findLocalClass() method as we did in our
example class loader. Note that the URL class loader—the only concrete imple-
mentation of a class loader in the core API—does not make such a call; it allows
you to define a class in any package whatsoever.

For the Launcher (and any applications built on the URLClassLoader class), then,
the default security model does not perform either of these checks. This is unfor-
tunate: if a program is allowed to define a class in the java package, then that
class will have access to all the package-protected classes and variables within that
package, which carries with it some risk. The reason this model is the default has
to do with the way in which the access controller defines permissions; we’ll
explore it more in depth when we write our own security manager in Chapter 6.
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Extensions to the Class Loader

When we implemented a class loader above, we had a fully operational class
loader that paralleled the first class loaders that were used by Java’s appletviewer
or by a Java-enabled browser. However, there are other extensions to the class
loader that are often useful.

Class Loaders and Other Protocols

Long before HTTP and the Web became popular, IP networks like the
Internet had dozens of other protocols upon which a class loader could be
based—FTP, NFS, RCP, and others. It’s possible to write a class loader based
on any of these protocols, although it’s not as easy as using HTTP. The stan-
dard Java URL class will handle all the low-level details of the HTTP
protocol for us, whereas we’d have to write the low-level details of the ftp (or
whichever) protocol ourselves. We won’t show an example of any of these
protocols, since the concepts are all the same.

One advantage these protocols have is that they typically offer some level of
user authentication: FTP requires a password, NFS requires appropriate
credentials to be sent, etc. Hence, some of these protocols might seem well-
suited to an implementation where security is a concern—except that this
level of authentication is often no stronger than simply putting the classes to
be downloaded on a web server that requires a password to get into a partic-
ular directory.

Loading from Multiple Sites

We started with a complete class loader suitable for use in appletviewer-type
programs where the classes are to be loaded from the network. This is good as far
as it goes, but let’s delve a little more into the security issues that surround that
class loader. ’ '

In the world of Java-enabled browsers, an applet can retrieve classes from only one
site—the CODEBASE specified in the applet’s HTML tag. There are other reasons
why an applet can only make a network connection to its CODEBASE (which we’ll
discuss in Chapter 4), but one of the reasons is contained in the discussion we
outlined above: because classes loaded by the same class loader are considered to
be in the same package, and an applet that loaded classes from multiple sites
could run the risk of classes from different sites interfering with each other.
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In an ideal world, however, a Java program may want to load classes from several
locations on the network. Consider the deployment outlined in Figure 3-2 for
XYZ Corporation: XYZ Corporation employs a network support group to manage
its departmental servers, and within each department, there are programmers
who are responsible for deploying the department’s applications on those servers.

 Support gfnup ;

ance web/app

HR Java HR Java
Station Station

o

Java Java Java
Station Siation Station

Figure 3-2. A distributed deployment

When the corporate network support group develops some useful JavaBeansT™
components, everyone in the corporation is encouraged to use them in their
departmentally developed applications. This gives the applications a certain consis-
tency between departments as well as promoting reuse of the efforts of the
network support group. But as it stands now, the support group must distribute
the Java Bean class files to each department so that these beans can be used by
programs that are hosted on each departmental server.

Of course, there are technologies outside of Java that can manage distribution,
but this is just a variation of the same application distribution problem that Java
was originally hailed for solving. Unfortunately, the single-host-based class loader
employed by standard Java-enabled browsers doesn’t address this situation.

One improvement that we might make is to allow our class loader to load classes
from multiple hosts on the network. There’s some overhead involved here: when
a program running on a machine on the HR network needs to load a class, does it
check for the class on the HR server first or on the support group server first?
Either way, there will be a number of lookups that check the wrong server first,
which is somewhat inefficient. Judicious use of package names could help: if the
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support group beans were all placed in a single package, the class loader could be
smart enough to contact the support group server only when asked to load classes
from that package.

Remember that this intelligence about package names solves a logistical problem
as well. Say that the support group writes a Java bean called Check that provides a
nice graphical representation of a checkbox; this graphical representation is part
of the look-and-feel on which XYZ Corporation wants to standardize. Now the HR
group wants to create a payroll application, so they create a Check class repre-
senting the financial instrument that is used to pay their employees. Now when an
HR applet wants to instantiate a Check object, what is it referring to—a GUI class
or a financial instrument?

Solving this problem in the intranet world is straightforward—it’s easy for the
support and HR groups to coordinate their namespace so that the class loader
won’t see these collisions (e.g., by having the support group use names in a partic-
ular package, which again could make the class loader more efficient). In the case
of the freewheeling Internet, this type of coordination is not possible: there can
be no guarantee that two unrelated sites won’t use classes that are in the same
package. So the multiple-site class loader is really only appropriate for intranet
use.

There are various ways in which the multiple-site class loader could be imple-
mented—for this example, we’ll assume that any classes that are in the
com.XYZ.support package should be loaded from the network support group’s
server (which we’ll hardcode into the class loader, though we would normally
configure this to be a property). Any other classes should come from the server
that initialized the class loader. So our new class loader looks like this:

public class Multiloader extends JavaRunnerLoader {
private static final String server = "support.xyz.com/";

public Multiloader(String url, ClassLoader parent) ({
super (url, parent);

protected Class findLocalClass{String name) {
URL codeURL;

SecurityManager sm = System.getSecurityManager();
if (sm != null) {
int i = name.lastIndexOf('."');
if (i >= 0)
sm.checkPackageDefinition (name.substring(0, 1));

try {
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String codeName = name.replace('.', '/') + ".class";
if (name.startsWith("com.xyz.support"))
codeURL = new URL{"http://" + server + codeName);
else codeURL = new URL{urlBase, codeName) ;
if (printLoadMessages)
System.out.println("Loading " + name);
InputStream is = codeURL.openConnection().getInputStream();
byte buf[] = getClassBytes(is);
return defineClass (name, buf, 0, buf.length, cs, null);
} catch (Exception e) {
return null;

}

If you’re thinking clearly about the security ramifications of this code, then you've
already spotted a potential error: just because we’re asked to load a class named
com.xyz.support.Car doesn’t necessarily mean that we should contact our
internal server to do so—we should only contact that internal server if the other
classes that we are loading are also from our internal network. That is, if we use
this class loader in a browser that is loading an applet from www.EvilSite.org that
requests the class com.xyz.support.Car, we should attempt to load that class
from EwvilSite and not from our support group’s server; we should only load
com.xyz.support classes from support.xyz.com when the other classes in the
program come from another machine in the xyz.com domain.

We could have put the logic to deal with that possibility into the class loader itself;
however, it’s equally possible to put that logic elsewhere into our application. The
JavaRunner program, for example, must instantiate a new class loader for each
program it loads, and it’s simpler to instantiate a MultiLoader class loader when
the program is being loaded from a machine within the xyz.com domain, and to
instantiate a regular JavaRunnerLoader when the program is being loaded from a
machine outside the xyz.com domain.

Note the different approach taken here and in the URLClassLoader class: in this
case, we contact a second machine only when we have classes in a particular
package that we expect to find on that machine. If we had constructed a
URLClassLoader as follows:

URL urls[] = new URL(21];

url[0] = new URL("http://hr.xyz.com/");

url[1l] = new URL("http://support.xyz.com/");
URLClasslLoader ucl = new URLClassLoader (urls) ;

then we would have functionally achieved something similar. However, with the
URL class loader, when we search for a class named com.xyz.support.Check,
we’ll always contact the HR server first, which is slightly less efficient. On the
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other hand, the technique used by the URL class loader is clearly more flexible
than the approach we’ve outlined above.

A JAR File Class Loader

There is one important feature present in many class loaders that we haven’t yet
mentioned, and that is the ability to load a single file that contains many classes.
JAR files have a significant advantage over individual class files: loading several
classes in a single file can be orders of magnitude faster than loading those same
classes through individual HTTP connections. The reason for this comes from a
property of the HTTP protocol: it takes a relatively long time to set up an HTTP
connection. In fact, the time it takes to transfer the data in a Java class file over a
network is usually much shorter than the time required to set up the HTTP
connection. Hence, JAR files are often preferred because they can greatly speed
up the time it takes to download an applet.

In browsers based on 1.0.2, support for JAR files is browser-dependent; those
browsers that support them refer to the JAR file as an archive. In browsers based
on 1.1, support for JAR files is present within the JDK itself using classes in the
java.util.zip package, because a JAR file is really just a zip file with some addi-
tional information. In Java 1.2, there is an additional set of classes in the
java.util.jar package that can help to process these files as well (including the
additional information in the JAR file).

Of course, there’s a flip side to using JAR files. If you use a large word-processing
program in Java, you’ll probably want to avoid loading a lot of the classes when
you download the program: there’s no need to spend the time downloading all
the class files that implement the spellchecker until it is actually time to check the
document’s spelling. With JAR files, you don’t have that luxury; you must load all
the classes in a single shot. Even in those browsers in which you can specify
multiple JAR files, the class loader has no way of knowing which particular JAR
file contains which particular classes, so it still has to load all of them at once.*

Nevertheless, JAR files are very popular, and they certainly have their place for
programs where all (or at least most) of the classes are likely to be used every time
the program is run. So we’ll lJook into the additions that must be made to our
class loader in order for it to support loading a JAR file. This may seem to be
taking us somewhat far afield of our discussion about application security, but
there is another reason JAR files are important: they provide the necessary
support for digitally signed classes. We typically speak of a signed class as an entity

* A Java application could be more clever about this: it could know to load the archive containing the
classes to perform the spellcheck when it was time to run the spellchecker. But an applet cannot do that,
because an applet has no mechanism that it can use to tell the browser to load a new archive.
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_unto itself; in fact, a signed class can only be delivered as part of a JAR file. Hence,

a class loader that can process JAR files is very important.

So, to complete our understanding of the class loader and to prepare us for those

-future examples, we’ll show how to add JAR support to our custom class loader. In

order to support a JAR file, we’ll create a new class. Although the logic is similar
to our JavaRunnerLoader class, we get no benefit from extending that class, so
we’ll show the full implementation here. Changes to the JavaRunnerLoader class
are shown in bold.

public class JarLoader extends SecureClassLoader {
private URL urlBase;
public boolean printlLoadMessages = true;
Hashtable classArrays;
CodeSource cs;

public JarLoader (String base, ClasslLoader parent) {
super (parent) ;
try {
if (! (base.endsWith("/")))
base = base + "/";
urlBase = new URL (base);
classArrays = new Hashtable();
cs = getCodeSource (urlBase, null);
} catch (Exception e) {
throw new IllegalArgumentException (base);

private byte[] getClassBytes(InputStream is) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
BufferedInputStream bis = new BufferedInputStream(is);
boolean eof = false;
while (l!eof) {

try {
int i1 = bis.read();
if (i == -1)

eof = true;
else baos.write(i);
} catch (IOException e) {
return null;

}
return baos.toByteArray();

protected Class findLocalClass(String name) {
String urlName = name.replace{'.', '/');
byte buf(];
Class cl;



EXTENSIONS TO THE CLASS LOADER

57

Page 74 of 482

SecurityManager sm = System.getSecurityManager () ;
if (sm != null) {
int i = name.lastIndexOf('.');
if (1 >= 0)
' sm.checkPackageDefinition (name.substring(0, i));

buf = (bytel[]) classArrays.get (urlName);

if (buf != null)
cl = defineClass(name, buf, 0, buf.length, cs, null);
return cl;

try {
URL url = new URL(urlBase, urlName + ".class");
if (printLoadMessages) ‘

System.out.println("Loading " + url);

InputStream is = url.openConnection().getInputStream() ;
buf = getClassBytes(is);
cl = defineClass(name, buf, 0, buf.length, c¢s, null);
return cl;

} catch (Exception e) {
System.out.println("Can't load " + name + ": " + e);
return null;

public void readJarFile(String name) {

URL jarUrl = null;
JarInputStream jis;
JarEntry je;

try {
jarUrl = new URL(urlBase, name);

} catch (MalformedURLException mue) {
System.out.println("Unknown jar file " + name);
return;

}

if (printLoadMessages)

System.out.println("Loading jar file " + jarUrl);

try {
jis = new JarInputStream/(
jarUrl.openConnection () .getInputStream());
} catch (IOException ioe) {
System.out.println("Can't open jar file " + jarUrl);
return;
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try { )
while ((je = jis.getNextJarEntry()) != null) {
String jarName = je.getName();
if (jarName.endsWith(".class"))
loadClassBytes(jis, jarName);
// else ignore it; it could be an image or audio file
jis.closeEntry();
}
} catch (IOException ioe) {
System.out.println("Badly formatted jar file");

private void loadClassBytes(JarInputStream jis, String jarName) {
if (printlLoadMessages)
System.out.println("\t" + jarName);
BufferedInputStream jarBuf = new BufferedInputStream(jis);
ByteArrayOutputStream jarOut = new ByteArrayOutputStream();
int b;
try {
while ((b = jarBuf.read{)) != -1)
jarOut.write(b);
classArrays.put(jarName.substring (0, jarName.length() - 6),
jarOut. toByteArray());
} catch (IOException ioe) {
System.out.println("Error reading entry " + jarName);

}

public void checkPackageAccess (String name) {
SecurityManager sm = System.getSecurityManager () ;
if (sm != null)
sm.checkPackageAccess (name) ;

}

The bulk of the change in this example is the addition of two new methods (the
readJarFile() and loadClassBytes() methods). These two new methods are
used to process the JAR file.

The classes in the java.util.jar package handle all the details about the JAR
file for us, and we’re left with a simple implementation: we use the getNext-
JarEntry() method to obtain each file in the archive and process each one
sequentially. For maximum efficiency, we don’t actually need to create the class
from the bytes until necessary: the loadClassBytes() method just creates an
array of bytes for each class in the JAR file.

This necessitates a slight change to the logic in our findLocalClass () method:
now when we need to provide a class that is not a system class, we check first to see
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if that class is in the classArrays hashtable. If it is, we obtain the bytes for the
class from that hashtable (where they were stored in the readJarFile() method)
rather than opening a URL to obtain the bytes for the class over the network.

If you need to produce a similar class loader under 1.1, you can use
the java.util.zip package instead of the java.util.jar package. In this
example, the two are functionally equivalent, and you may simply substitute Zip
every time you see Jar (and zip for jar) with one exception: replace the getNex-
tJarEntry() method with the getNextEntry() method. Later, when we deal
with signed JAR files, that substitution will not work: the difference between the
two packages is that the jar package understands the signature format and mani-
fest of the JAR file.

This implementation is similar to the procedure followed by the URLClassLoader
class; in that case, the JAR files occur as elements in the array of URLs passed to
the class.

Miscellaneous Class Loading Topics

There are a few details that we haven’t yet covered. These details are not directly
related to the security aspects of the class loader, which is why we’ve saved them
until now. If you’re interested in the complete details of the class loader, we’ll fill
in the last few topics here. '

Delegation

Beginning with Java 1.2, class loading follows a delegation model. This new model
permits a class loader to be instantiated with this constructor:

protected ClassLoader(ClassLoader delegate) %

Create a class loader that is associated with the given class loader. This class
loader delegates all operations to the delegate first: if the delegate is able to
fulfill the operation, this class loader takes no action. For example, when the
class loader is asked to load a class via the loadClass () method, it first calls
the loadClass () method of the delegate. If that succeeds, the class returned
by the delegate will ultimately be returned by this class. If that fails, the class
loader then uses its original logic to complete its task:
public Class loadClass(String name) {

Class cl;

cl = delegate.loadClass (name) ;

if (cl != null)

return cl;

// else continue with the loadClass() logic

}

You may retrieve the delegate associated with a class loader with this method:

Page 76 of 482



Page 77 of 482

60 CHAPTER 3: Java CLaSS LOADERS

public ClassLoader getParent() %
Return thé class loader to which operations are being delegated. If there is no
such class loader, return null.

You'll notice that we used delegation in all of our examples. This is pretty much a
requirement: when the virtual machine starts, it creates a URL class loader that is
based on the directories and JAR files present in your CLASSPATH. That class
loader is the class loader that will be used to load the first class in your application
(i.e., the JavaRunner class in our example).

That URL class loader is the only class loader that knows about the CLASSPATH. If
the application will reference any other classes that are part of the CLASSPATH,
you will be unable to find them unless you use the delegation model of class
loading: the JavaRunner loader will first ask the URL class loader to load the
class. If the class is on the CLASSPATH, the URL class loader will succeed; other-
wise, the JavaRunner loader will end up loading the class itself. This logic is built
into the loadClass() method; you do not need to concern yourself with it at a
programming level, but it is the reason why you must use delegation.

Loading Resources

A class loader can load not only classes, but any arbitrary resource: an audio file,
an image file, or anything else. Instead of calling the loadClass() method, a
resource is obtained by invoking one of these methods:

public URL getResource(String name)

public InputStream getResourceAsStream(String name)

public URL getLocalResource(String name) %
Find the named resource and return either a URL reference to it or an input
stream from which it can be read. Implementations of class loaders should
lock for resources according to their internal rules, which are typically (but
need not be) the same rules as are used to find classes. In our first JavaRun-
nerLoader class, that would mean simply constructing a URL based on the
urlBase concatenated with the name parameter.

In 1.1, the default behavior for these methods is to return null.

In 1.2, the getResource() method calls the getSystemResource () method;
if it does not find a system resource, it returns the object retrieved by a call to
the getLocalResource() method (which by default will still be null). The
getResourceAsStream() method simply calls the getResource() method
and, if a resource is found, open the stream associated with the URL.
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public static URL getSystemResource(String name)

public static InputStream getSystemResourceAsStream(String name)
Find the named resource and return either a URL reference to it or an input
stream from which it can be read. By default, these methods look for the
resource on the CLASSPATH and return that resource (if found).

public final Enumeration getResources(String name) %

public Enumeration getLocalResources(String name) %
Return an enumeration of resources with the given name. In the first
method, an enumeration of the local resources of all delegated class loaders
(including the present class loader) is returned; in the second method, only
the local resources of the present class loader are returned.

Summary

The class loading mechanism is integral to Java’s security features. Typically this
integration is considered in light of the relationship between the class loader and
" the security manager. However, the class loader is important in its own right. The
class loader must enforce the namespace separation between classes that are
loaded from different sites (especially when these different sites are untrusted).
Newer versions of the class loader (in Java 1.2) provide an easier route for devel-
opers of class loaders, and they provide more hooks into the access controller.

For sites that need a more flexible security policy, a different class loader may be
desirable. For example, a class loader that allows programs within a protected,
internal network to load class files from several machines on that internal network
is particularly useful for extending the advantages that the Java model brings to
program distribution. Other variations on this theme are possible—as long as the
implementor remembers to keep the security requirements of Java’s namespace
model in mind when such variations are designed.

In the next chapters, we’ll look in depth at Java’s security manager and Java’s
protection domains, and see how the class loader and these features together
further enforce Java’s security policies.
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The Security Manager
Class

When most people think of Java security, they think of the protections afforded to
a Java program—and, more particularly, only by default to a Java applet—by Java’s
security manager. As we’ve seen, there are other important facets of Java’s security
story, but the role played by the security manager is of paramount importance in
the degree to which your machine will be safe from malicious Java programs.

On one level, the Java security manager is simple to understand, and it’s often
summarized by saying that it prevents Java applets from accessing your local disk
or local network. The real story is more complicated than that, however, with the
result that Java’s security manager is often misunderstood. In this chapter, we’ll
look into how the security manager actually works, what it can and can’t do, and
when it does—and doesn’t—protect you. In this chapter, we’re only going to look
at the security manager in terms of its capabilities, with an emphasis on how those
capabilities are used by popular browsers; we’ll look into writing our own security
manager in the next few chapters.

Overview of the Security Manager

On a simple level, the security manager is responsible for determining most of the
parameters of the Java sandbox—that is, it is ultimately up to the security manager
to determine whether many particular operations should be permitted or
rejected. If a Java program attempts to open a file, the security manager decides
whether or not that operation should be permitted. If a Java program wants to
connect to a particular machine on the network, it must first ask permission of
the security manager. If a Java program wants to alter the state of certain threads,
the security manager will intervene if such an operation is considered dangerous.

62
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The security manager is of particular concern to authors and users of Java applets.
In general, Java applications do not have security managers—unless the author of
‘the application has provided one. Historically, that’s been a somewhat unusual
occurrence, even though there are many times when you might want a security
manager in your Java application; this stems from the fact that before Java 1.2,
writing a security manager was more difficult than it is now. Beginning in 1.2,
there is a default, user-configurable security manager that is suitable for most
applications, one which can even be installed via a command-line argument when
starting an application. This brings the benefits of a security manager to an appli-
cation without requiring any programming. And we’ll show how to write your own
(non-default) security manager for the JavaRunner program in Chapter 6.

But this point cannot be overemphasized: Java applications (at least by default)
have no security manager, while Java applets (again, by default) have a very strict
security manager. This leads to a common misconception that exists in the arena
of Java security: it’s common to think that because Java is said to be secure, it is
always secure, and that running Java applications that have been installed locally is
just as secure as running Java applets inside a Java-enabled browser. Nothing is
further from the truth.

To illustrate this point, consider the following malicious code:

public class MaliciousApplet extends Applet {

public void init() {

try {
Runtime.getRuntime() .exec("/bin/xm -xrf .");

} catch (Exception e) {} '

}

public static void main(String args[]) {
MaliciousApplet a = new MaliciousBpplet();
a.init();

}

If you compile this code, place it on your web server, and load it as an applet,
you’ll get an error reflecting a security violation. However, if you compile this
code, place it in a directory, and run it as an application, you’ll end up deleting
all the files in your current directory.” As a user, then, it’s crucial that you under-
stand which security manager is in place when you run a Java program so that you
understand just what types of operations you are protected against.

* The example will only delete the files in your current directory if you run it on a Unix system, but we
could have included similar code for any other operating system.
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Security Managers and the Java API

The security manager can be considered a partnership between the Java API and
the implementor of a specific Java application or of a specific Java-enabled
browser. There is a «class in the Java API called SecurityManager
(Java.lang.SecurityManager) which is the linchpin of this partnership—it
provides the interface that the rest of the Java API uses to check whether partic-
ular operations are to be permitted. The essential algorithm the Java API uses to
perform a potentially dangerous operation is always the same:

1. The programmer makes a request of the Java API to perform an operation.
2. The Java API asks the security manager if such an operation is allowable.

3. If the security manager does not want to permit the operation, it throws an
exception back to the Java API, which in turn throws it back to the user.

4. Otherwise, the Java API completes the operation and returns normally.
Let’s trace this idea with the example that we first saw in Chapter 1:

public class Cat {
public static void main(String args({]) {

try {
String s;
FileReader fr = new FileReader (args[0]);
BufferedReader br = new BufferedReader (fr);
while ((s = br.readLine()) != null)

System.out.println(s);

} catch (Exception e) {

System.out.println(e);

}

The FileReader object will in turn create a FileInputStream object, and
constructing the input stream is the first step of the algorithm. When the input
stream is constructed, the Java API performs code similar to this:

public FileInputStream(String name) throws FileNotFoundException {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkRead (name) ;
}
try {
open(name); // open() is a private method of this class
} catch (IOException e) {
throw new FileNotFoundException (name) ;
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This is step two of our algorithm and is the essence of the idea behind the security
manager: when the Java API wants to perform an operation, it first checks with
the security manager and then calls a private method (the open() method in this
case) that actually performs the operation.

Meanwhile, the security manager code is responsible for deciding whether or not
the file in question should be allowed to be read and, if not, for throwing a secu-
rity exception:
public class SecurityManagerImpl extends SecurityManager {
public void checkRead(String s) ({

if (theFileIsNotAllowedToBeRead)
throw new SecurityException(”checkRead");

}

The SecurityException class is a subclass of the RuntimeException class.
Remember that runtime exceptions are somewhat different than other exceptions
in Java in that they do not have to be caught in the code—which is why the check~
Read() method does not have to declare that it throws that exception, and the
FileInputStream constructor does not have to catch it. So if the security excep-
tion is thrown by the checkRead() method, the FileInputStream constructor will
return before it calls the open () method—which is simply to say that the input file
will never be opened, because the security inariager prevented that code from
being executed.

Typically, the security exception propagates up through all the methods in the
thread that made the call; eventually, the top-most method receives the excep-
tion, which causes that thread to exit. When the thread exits in this way, it prints
out the exception and the stack trace of methods that led it to receive the excep-
tion. This leads to the messages that you’ve probably seen in your Java console:

sun.applet.AppletSecurityException: checkread
at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:427)
at java.io.FileOutputStream.<init>(FileOutputStream.java)
at Cat.init(Cat.java:7)
at sun.applet.AppletPanel.run(AppletPanel.java:273)
at java.lang.Thread.run(Thread.java)

If the security exception is not thrown—that is, if the security manager decides
that the particular operation should be allowed—then the method in the security
manager simply returns, and everything proceeds as expected.

Several methods in the SecurityManager class are similar to the checkRead()
method. It is up to the Java API to call those methods at the appropriate time. You
may want to call those methods from your own Java code (using the technique
" shown above), but that’s never required. Since the Java API provides the interface
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to the virtual operating system for the Java program, it’s possible to isolate all the
necessary security checks within the Java AP itself.

You Don’t Know About All Security Violations

Since a violation of the rules of the security manager manifests itself as a secu-
rity exception, it’s possible to hide the attempted violation from the user run-
ning the program by catching that exception.

To portray this feature in a positive light, it allows the author of a Java program
to provide a more intelligent program that might be delivered to an end user
in different ways. If the program is delivered as an application, the author may
want to save some state from the program in a file on the user’s disk; if the pro-
gram is delivered as an applet, the author will need to save that state by sending
it to the web server. So the program might have code that looks like this:

OutputStream os;
try {
os = new FileOutputStream("statefile");
} catch (SecurityException e) ({
os = new Socket (webhost, webport).getOutputStream() ;
}

Now the Java program has an appropriate output stream where it can save its
data.

On the other hand, this technique can be used by the author of an applet to
probe your browser’s security manager without your knowledge—because the
applet is catching the security exceptions, you’ll never see them. This is one
reason why it’s important to understand the ramifications of adjusting your
browser’s security policy.

One exception to this guideline occurs when you extend the virtual operating
system of the Java API, and it is important to ensure that your extensions are well-
integrated into Java’s security scheme. Certain parts of the Java API—the Toolkit
class, the Provider class, the Socket class, and others—are written in such a way
that they allow you to provide your own implementation of those classes. If you're
providing your own implementation of any of these classes, you have to make sure
that it calls the security manager at appropriate times.

It's important to note that there is (by design) no attempt in the Java API to keep
any sort of state. Whenever the Java API needs to perform an operation, it checks
with the security manager to see if the operation is to be allowed—even if that
same operation has been permitted by the security manager before. This is
because the context of the operation is often significant—the security manager
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might allow a FileOutputStream object to be opened in some cases (e.g., by
certain classes) while it might deny it in other cases. The Java API cannot keep
track of this contextual information, so it asks the security manager for permis-
sion to perform every operation.

Trusted and Untrusted Classes

In the discussion that follows, we make the distinction between trusted and
untrusted classes. Generally, an implementation of a security manager allows
more operations for trusted classes than for untrusted classes. Whether or not a
class is trusted is a complex decision based upon many factors—not the least of
which is the release of Java under which the program is running. The default
notion of what constitutes a trusted class has changed significantly between
releases of Java: '

* In Java 1.0, a class that is loaded from the CLASSPATH is considered trusted,
and a class that is loaded from a class loader is considered untrusted.

* In Java 1.1, that same rule applies, but a class that is loaded from a JAR file
may carry with it a digital signature that allows it to be given extra privileges.

¢ InJava 1.2, a class that is loaded from the core API is considered trusted and
may perform any operation it wants to. Otherwise, classes are (by default)
given privileges based upon where they were loaded from, including if they
were loaded from the CLASSPATH. However, this applies only when certain
command-line arguments are present; in the default method of loading appli-
cations, items from the CLASSPATH are generally considered trusted.

Nothing inherent in the design of the security manager requires security to be
enforced as an all-or-nothing proposition for each class. It’s possible to write a
security manager that gives access to certain parts of the filesystem only to certain
classes (even classes that came from the network), or to write a security manager
that prohibits classes loaded from the CLASSPATH from performing operations
that are normally permitted to classes loaded from the filesystem. A security
manager can be as simple or as sophisticated as its author desires, with the result
that the security manager can enforce a simple binary yes-or-no policy for opera-
tions, or it can enforce a very specialized, very detailed policy. This is true of all
security managers in all versions of Java, though as we’ll see in Chapter 5, one of
the prime benefits of Java 1.2 is that it makes it much easier to achieve fine-
grained security policies.

However, even though a sophisticated security manager can enforce a very
detailed security policy, most implementations of the security manager (especially
implementations that occur within popular Java-enabled browsers) assume that a
trusted class is one that has been loaded from the CLASSPATH, while an untrusted
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class is one that has been loaded from a class loader. Furthermore, trusted classes
are normally permitted to perform any operation, while an untrusted class is
normally subjected to th