
Security

O'REILLYTN Scott Oaks

Page 1 of 482 GOOGLE EXHIBIT 1028

THE
JAVA..
SERIES

Java 1.2

O'REILLY"

Page 2 of 482

J ava™ Security

Page 3 of 482

Javam Security

THE
JAVA,.
SERIES

Exploring Java'"

Java'" Threads

Java'" Network Programming

Java'" Virtual Machine

Java'" A WT Reference

Java'" Language Reference

Java'" Fundamental Classes Reference

Database Programming with JDBC'" and Java'"

Developing Java Beans'"

Java'" Distributed Computing

Also from O'Reilly

Java'" in a Nutshell

Java'" in a Nutshell, Deluxe Edition

Java'" Examples in a Nutshell

Netscape IFC in a Nutshell

Page 4 of 482

J avaTM Security

Scott Oaks

O'REILLY'"
Cambridge • Koln • Paris • Sebastopol • Tokyo

Page 5 of 482

Java™ Security
by Scott Oaks

Copyright © 1998 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Mike Loukides

Production Editor: Jane Ellin

Printing History:
May 1998: First Edition

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks and The
JavaTM Series is a trademark of O'Reilly & Associates, Inc. The association of the image of a
bird's nest with the topic of Java ™ security is a trademark of O'Reilly & Associates, Inc. JavaTM
and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly & Associates, Inc. is
independent of Sun Microsystems.

Some material from Chapter 2 appeared previously in a different form in The java Report.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

@
This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
O'Reilly & Associates is committed to using paper with the highest recycled content available
consistent with high quality.

ISBN: 1-56592-403-7

Page 6 of 482

Table ofContents

Preface ... ix

l. Java Application Security .. 1

What Is Security? ... 1

The Java Sandbox .. 4

Applications, Applets, and Programs .. 6

Running aJavaApplication : ... 9

Summary .. 15

2. Java Language Security ... 17

Java Language Security Constructs ... 18

Enforcement of the Java Language Rules .. 23

Summary .. 30

3. Java Class Loaders ... 31

Security and the Class Loader ... 32

Anatomy of a Class Loader .. 35

Loading Classes ... 40

Implementing a Class Loader .. 43

Extensions to the Class Loader ... 51

Miscellaneous Class Loading Topics .. 59

Summary .. 61

v

Page 7 of 482

vi TABLE OF CONTENTS

4. The Security Manager Class ... 62

Overview of the Security Manager .. 62

Trusted and Untrusted Classes .. 67

Using the Security Manager ... 68

Summary ... ". 89

5. The Access Controller .. 90

The CodeSource Class .. 92

Permissions .. 93

The Policy Class ... 108

Protection Domains .. 114

The AccessController Class .. 116

Guarded Objects ... 121

Summary .. 122

6. Implementing Security Policies ... 124

Protected Methods of the Security Manager ... 125

Security Managers and the Class Loader ... 138

Implementation Techniques ... 140

Running Secure Applications .. 158

Summary .. 161

7. Introduction to Cryptography ... 162

The Need for Authentication .. 163

The Role of Authentication ... 168

Cryptographic Engines ... 169

Summary .. 175

8. Security Providers ... 177

The Architecture of Security Providers .. 178

The Provider Class .. 183

The Security Class ... 187

The Architecture of Engine Classes ... 192

Summary .. 194

Page 8 of 482

TABLE OF CONTENTS vii

9. Message Digests .. 195

Using the Message Digest Class ... 196

Message Digest Streams .. 201

Implementing a MessageDigest Class ... 204

Summary .. 209

10. Keys and Certificates ... 210

Keys ... · 211

The KeyPairGenerator Class .. 215

The Key Factory Class .. 220

Certificates ... 227

Keys, Certificates, and Object Serialization ... 240

Summary .. 241

11. Key Management ... 243

Overview of Key Management ... 244

Identities .. 245

The KeyS tore Class .. 253

A Key Management Example .. 260

Summary .. 265

12. Digital Signatures ... 266

The Signature Class .. 266

Signed Classes ... 277

Implementing a Signature Class ... 283

Summary .. 287

13. Encryption ... 289

Export Restrictions ... 289

The Sun Security Provider in the JCE .. 292

Key Types in the JCE ... 293

Secret Key Engines .. 296

Encrypting Data ... 302

Cipher Streams .. 315

Symmetric Key Agreement ... 320

Sealed Objects ... 326

Summary .. 327

Page 9 of 482

viii TABLE OF CONTENTS

A. Security Tools .. 329

B. Identity-Based Key Management .. 349

C. Security Resources .. 366

D. Quick Reference ... 375

Index ... 437

Page 10 of 482

Preface

When I first mentioned to a colleague of mine that I was writing a book on Java™
security, he immediately starting asking me questions about firewalls and Internet
DMZs. Another colleague overheard us and started asking about electronic
commerce, which piqued the interest of a third colleague who wanted to hear all
about virtual private networks. All this was interesting, but what I really wanted to
talk about was how a Java applet could be allowed to read a file.

Such is the danger of anything with the word "security" in its title: security is a
broad topic, and everyone has his or her own notion of what security means.
Complicating this issue is the fact that Java security and network security
(including Internet security) are complementary and sometimes overlapping
topics: you can send encrypted data over the network with Java, or you can set up
a virtual private network that encrypts all your network traffic and remove the
need for encryption within your Java programs.

This is a book about security from the perspective of a Java program. In this book,
we discuss the basic platform features of Java that provide security-the class
loader, the bytecode verifier, the security manager-and we discuss recent addi­
tions to Java that enhance this security model-digital signatures, security
providers, and the access controller. The ideas in this book are meant to provide
an understanding of the architecture of Java's security model and how that model
can be used (both programmatically and administratively).

ix

Page 11 of 482

X PREFACE

Who Should Read This Book?
This book is intended primarily for programmers who want to write secure Java
applications. Much of the book is focused on various APis within Java that provide
security; we discuss both how those APis are used by standard Java-enabled
browsers and how they can be used in your own Java applications. From a
programming perspective, this latter case is the most interesting: Java-enabled
browsers have each adopted particular security models, but there's not much a
programmer or administrator can do to alter those models. However, this is begin­
ning to change, as technologies like Sun Microsystems' Activator bring Sun's basic
security model to popular browsers.

For the end user or system administrator who is interested in Java security, this
book will provide knowledge of the facilities provided by the basic Java platform
and how those facilities are used by Java-enabled browsers and by Java applica­
tions. We do not delve into the specific security features of any Java-enabled
browser, although we do point out along the way which security features of Java
are subject to change by the companies that provide Java-enabled browsers.
Hence, end users and system administrators can read this book (and skip over
many of the programming examples) to gain an understanding of the funda­
mental security features of the Java platform, and they can understand from each
of its parts how the security feature might be administrated (especially for Java
applications). This is particularly true for end users and administrators who are
interested in assessing the risk of using Java: we give full details of the implementa­
tion of Java's security model not only so that you can program within that model
(and adjust it if necessary), but also so that you have a deep understanding of how
it works and can assess for yourself whether or not Java meets your definition of
security.

From a programming perspective, we assume that developers who read this book
have a good knowledge of how to program in Java, and in particular how to write
Java applications. When we discuss advanced security features and cryptographic
algorithms, we do so assuming that the programmer is primarily interested in
using the API to perform certain tasks. Hence, we explain at a rudimentary level
what a digital signature is and how it is created and used, but we do not explain
the cryptographic theory behind a digital signature or prove that a digital signa­
ture is secure. For developers who are sufficiently versed in these matters, we also
show how the APis may be extended to support new types of cryptographic algo­
rithms, but again we leave the mathematics and rigorous definitions of
cryptography for another book.

Page 12 of 482

PREFACE xi

Versions Used in This Book
Writing a book onJava security has been a challenge for a number of reasons, not
the least of which is that the security APis have been radically changing over the
past year. Java 1.1 introduced many of the APis we'll be discussing in this book,
including the notion of a security provider that supplies an implementation of the
security package. Java 1.2 introduced significant changes to the security package
as well as a new fundamental security object called the "access controller," which
takes on much of the responsibility that has resided with the security manager
sinceJava 1.0.

For the most part, we assume that developers using this book will be using Java
1.2, and our primary focus will be on the 1.2 release of the Java Development Kit
QDK) from Sun Microsystems. However, for developers using 1.1, we will provide
full details of what's available in 1.1, and what has changed in 1.2; in some cases,
this information has changed so radically that the information is relegated to an
appendix. The information in this book is based on the 1.2 beta release; there
may be slight differences in the 1.2 FCS release.

For the most part, we do not track changes between 1.0 and 1.1 in this book.

Most of the examples used in this book are available via ftp from the O'Reilly web
site, www.oreilly.com. A few of the examples have been withheld from the online
distribution because of U.S. restrictions on the export of cryptography.

Conventions Used in This Book
Constant width font is used for:

• Code examples

• Class, variable, and method names within the text

Italicized font is used for:

• Filenames

• Host and domain names

• URLs

When a new method or class is introduced, its definition will appear beginning
with italicized text like this:

public void checkAccess(Thread t)
Check whether the current thread is allowed to modify the state of the param­
eter thread.

Page 13 of 482

xii PREFACE

In addition, one of the following symbols may appear next to a definition:

* Indicates that the method/ class is available only in 1.2.
-k Indicates that the method/ class has been deprecated in 1.2.

There are some examples of commands scattered through the book, especially in
sections and appendices that deal with administration. By convention, all exam­
ples are shown as they would be executed on a Unix system, e.g.:

piccolo% keytool -export -alias sdo -file /tmp/sdo.cer

Enter keystore password: ******
Certificate stored in file </tmp/sdo.cer>

In these examples, the text typed by the user or administrator is always shown in
bold font; the remaining text is output from the command (the string piccolo%
indicates a command prompt). On other systems, the names of the files would
have to be changed to conform to that system (e.g., C:\sdo.cer for a Windows
system). However, note that while Windows systems often use a forward-slash (/)
for command-line options, Java tools (even on those systems) universally use a
hyphen (-) to indicate command-line options. In these examples, then, only the
filenames are different between platforms.

Organization ofThis Book
This book is organized in a bottom-up fashion: we begin with the very low-level
aspects of Java security and then proceed to the more advanced features.

Chapter 1, Java Application Security

This chapter gives an overview of the security model (the Java sandbox) used
in Java applications and sets the stage for the rest ofthe book.

Chapter 2,]ava Language Security

This chapter discusses the memory protections built into the Java language,
how those protections provide a measure of security, and how they are
enforced by the bytecode verifier.

Chapter 3, java Class Loaders

This chapter discusses the class loader, which is the class that reads in Java
class files and turns them into classes. From a security perspective, the class
loader is important in determining where classes originated and whether or
not they were digitally signed (and if so, by whom), so the topic of class load­
ers appears throughout this book.

Page 14 of 482

PREFACE xiii

Chapter 4, The Security Manager Class

This chapter discusses the security manager, which is the primary interface to
application-level security in Java. The security manager is responsible for arbi­
trating access to all local resources: files, the network, printers, etc.

Chapter 5, The Access Controller

The access controller is the basis for security manager implementations in
Java 1.2. This chapter discusses how to use the access controller to achieve
fine-grained levels of security in your application.

Chapter 6, Implementing Security Policies

This chapter ties together the information on the security manager and the
access controller and shows how to implement one or both to achieve a
desired security policy in your application.

Chapter 7, Introduction to Cryptography

This chapter provides an overview to the cryptographic algorithms of the Java
security package. It provides a background for the remaining chapters in the
book.

Chapter 8, Security Providers

This chapter discusses the architecture of the Java security package, and how
that architecture may be used to extend or supplant the default cryptographic
algorithms that come with the JDK

Chapter 9, Message Digests

This chapter discusses message digests: how to create them, how to use them,
and how to implement them.

Chapter 10, Keys and Certificates

This chapter discusses the APis available to model cryptographic keys and cer­
tificates, and how those keys and certificates may be electronically transmitted.

Chapter 11, Key Management

This chapter discusses how keys can be managed within a Java program: how
and where they may be stored and how they can be retrieved and validated.

Chapter 12, Digital Signatures

This chapter discusses how to create, use, and implement digital signatures.
This chapter also contains a discussion of signed classes.

Page 15 of 482

xiv PREFACE

Chapter 13, Encryption

This chapter discusses the Java Cryptography Extension, which allows develop­
ers to encrypt and decrypt arbitrary streams of traffic.

Appendix A, Security Tools

This appendix discusses the administrative tools that come with Java that
enable end users and administrators to work with the Java security model:
keytool, jarsigner, and policytool.

Appendix B, Identity-Based Key Management

Key management in Java 1.1 was radically different than the systems we
explored in the main text. This appendix discusses how key management was
handled in Java 1.1; it uses classes that are still present (but not often used) in
1.2.

Appendix C, Security Resources

This appendix discusses how to keep up-to-date with information about
Java's security implementation, including a discussion of Java security bugs
and general resources for further information.

Appendix D, Quick Reference

This appendix is a simple reference guide to the classes that are discussed in
this book.

Acknowledgments
I am grateful to the many people who have helped me with this book along the
way; this book is as much a reflection of their support as anything else. I offer my
heartfelt thanks to Mike Loukides for stewarding me through the editorial process.

Various drafts of this book were foisted upon my colleagues Mark Bordas, Charles
Francois, David Plotkin, and Henry Wong; I am indebted to each of them for
their feedback and support, and to Wendy Talmont for all her support. In addi­
tion, I was extremely fortunate to receive technical assistance from a highly
talented group of individuals: to Jim Farley, Li Gong, Jon Meyer, Michael
Norman, and especially to David Hopwood, I offer my deepest thanks for all your
input. Finally, I must thank Roland Schemers for handling my last-minute barrage
of questions with patience and insight.

The staff at O'Reilly & Associates was enormously helpful in producing this book,
including Jane Ellin, the Production Editor; Robert Romano, who created the
figures; Seth Maislin, who wrote the index; Hanna Dyer, the cover designer;

Page 16 of 482

PREFACE XV

Nancy Priest, the interior designer; Mike Sierra for Tools support; and Claire
Cloutier LeBlanc, Nancy Wolfe Kotary, and Sheryl Avruch for quality control.

Finally, I must offer my thanks to James for all his patience and support, and for
putting up with my continual state of distraction during phases of this process.

Feedback for the Author
I welcome any comments on the text that you might have; despite the contribu­
tions of the people I've just listed, any errors or omissions in the text are my
responsibility. Please send notice of these errors or any other feedback to
scott. oaks@sun. com.

Page 17 of 482

I

Java Application
Security

When Java was first released by Sun Microsystems, it attracted the attention of
programmers throughout the world. These developers were attracted to Java for
different reasons: some were drawn to Java because of its cross-platform capabili­
ties, some because of its ease of programming (especially compared to object­
oriented languages like C++), some because of its robustness and memory
management, some because of Java's security, and some for still other reasons.

Just as different developers came to Java with different expectations, so too did
they bring different expectations as to what was meant by the ubiquitous phrase
'Java is secure." Security means different things to different people, and many
developers who had certain expectations about the word "security" were surprised
to find that their expectations were not necessarily shared by the designers of Java.

This book discusses the features of Java that make it secure. In this book, we'll
discuss why Java is said to be secure, what that security means (and doesn't mean),
and-most importantly-how to use the security features of the Java platform
within your own programs. This last point is actually the focus of this book: while
some of Java's security features are automatically a part of all Java programs, many
of them are not. In this book, we'll learn about all those features, and how to
utilize them in our own Java applications.

What Is Security?
The first thing that we must do to facilitate our discussion of Java security is to
discuss just what Java's security goals are. The term "security" is somewhat vague

1

Page 18 of 482

2 CHAPTER 1: jAVA APPLICATION SECURITY

unless it is discussed in some context; different expectations of the term "security"
might lead us to expect that Java programs would be:

• Safe from malevolent programs: Programs should not be allowed to harm a user's
computing environment. This includes Trojan horses as well as harmful pro­
grams that can replicate themselves-computer viruses.

• Non-intrusive: Programs should be prevented from discovering private infor­
mation on the host computer or the host computer's network.

• Authenticated: The identity of parties involved in the program should be veri-
fied.

• Encrypted: Data that the program sends and receives should be encrypted.

• Audited: Potentially sensitive operations should always be logged.

• Well-defined: A well-defined security specification would be followed.

• Verified: Rules of operation should be set and verified.

• Well-behaved: Programs should be prevented from consuming too many system
resources.

• C2 or Bl certified: Programs should have certification from the U.S. govern-
ment that certain security procedures are included.

In fact, while all of these features could be part of a secure system, only the first
two were within the province of Java's 1.0 default security model. Other items in
the list have been introduced in later versions of Java: authentication was added in
1.1, encryption is available as an extension to 1.2, and auditing can be added to
any Java program by providing an auditing security manager. Still others of these
items will be added in the future. But the basic premise remains that Java security
was originally and fundamentally designed to protect the information on a
computer from being accessed or modified (including a modification that would
introduce a virus) while still allowing the Java program to run on that computer.

The point driving this notion of security is the new distribution model for Java
programs. One of the driving forces behind Java, of course, is its ability to down­
load programs over a network and run those programs on another machine
within the context of a Java-enabled browser (or within the context of other Java
applications). Coupled with the widespread growth of Internet use-and the
public-access nature of the Internet-Java's ability to bring programs to a user on
an as-needed, just-in-time basis has been a strong reason for its rapid deployment
and acceptance.

The nature of the Internet created a new and largely unprecedented requirement
for programs to be free of viruses and Trojan horses. Computer users had always
been used to purchasing shrink-wrapped software. Many soon began downloading

Page 19 of 482

WHAT Is SECURITY? 3

software via ftp or other means and then running that software on their machines.
But widespread downloading also led to a pervasive problem of malevolent
attributes both in free and (ironically) in commercial software (a problem which
continues unabated). The introduction of Java into this equation had the poten­
tial to multiply this problem by orders of magnitude, as computer users now
download programs automatically and frequently.

For Java to succeed, it needed to circumvent the virus/trojan horse problems that
plagued other models of software distribution. Hence, the early work on Java
focused on just that issue: Java programs are considered safe because they cannot
install, run, or propagate viruses, and because the program itself cannot perform
any action that is harmful to the user's computing environment. And in this
context, safety means security. This is not to say that the other issues in the above
list are not important-each has its place and its importance (in fact, we'll spend
a great deal of time in this book on the third and fourth topics in that list). But
the issues of protecting information and preventing viruses were considered most
important; hence, features to provide that level of security were the first to be
adopted. Like all parts of Java, its security model is evolving (and has evolved
through its various releases); many of the notions about security in our list will
eventually make their way into Java.

One of the primary goals of this book, then, is to explain Java's security model
and its evolution through releases. In the final analysis, whether or not Java is
secure is a subjective judgment that individual users will have to make based on
their own requirements. If all you want from Java is freedom from viruses, any
release of Java should meet your needs. If you need to introduce authentication
or encryption into your program, you'll need to use a 1.1 or later release of Java.
If you have a requirement that all operations be audited, you'll need to build that
auditing into your applications. If you really need conformance with a U.S. govern­
ment-approved definition of security, Java is not the platform for you. We take a
very pragmatic view of security in this book: the issue is not whether a system that
lacks a particular feature qualifies as "secure" according to someone's definition
of security. The issue is whether Java possesses the features that meet your needs.

When Java security is discussed, the discussion typically centers around Java's
applet-based security model-the security model that is embodied by Java-enabled
browsers. This model is designed for the Internet. For many users, this is not
necessarily the most appropriate model: it is somewhat restrictive, and the security
concerns on a private, corporate network are not the same as those on the
Internet.

In this book, we take a different tack: the goal of this book is to show how to use
the security model and how to write your own secure Java applications. While

Page 20 of 482

4 CHAPTER l:jAVAAPPLICATION SECURI1Y

some of the information we present will be applicable to a browser environment,
the security of any particular browser is ultimately up to the provider of the
browser. Some browsers allow us to change the security policy the browser uses,
but many do not. Hence, reading about the security manager in this book may
help you understand how a particular browser works (and why it works that way),
but that won't necessarily allow you to change the security model provided by that
browser.

The lava Sandbox
Discussions of Java's security model often center around the idea of a sandbox
model. The idea behind this model is that when you allow a program to be hosted
on .your computer, you want to provide an environment where the program can
play (i.e., run), but you want to confine the program's play area within certain
bounds. You may decide to give the program certain toys to play with (i.e., you
may decide to let it have access to certain system resources), but in general, you
want to make sure that the program is confined to its sandbox.

This analogy works better when you consider it from the view of a close relative
rather than from the view of a parent. If you're a parent, you probably consider
the purpose of a sandbox to be to provide a safe environment for your child to
play in. When my niece Rachel visits me, however, I consider the purpose of a
sandbox not (only) to be to protect her, but also to protect my grandmother's
china from her. I love my niece, but I can't give her leave to run through my
house; I enjoy running the latest cool applet on the Internet, but I can't give it
leave to run through my filesystem.

The Java sandbox is responsible for protecting a number of resources, and it does
so at a number of levels. Consider the resources of a typical machine as shown in
Figure 1-1. The user's machine has access to many things:

• Internally, it has access to its local memory (the computer's RAM).

• Externally, it has access to its filesystem and to other machines on the local
network.

• For running applets, it also has access to a web server, which may be on its
local (private) net, or may be on the Internet.

• Data flows through this entire model, from the user's machine through the
network and (possibly) to disk.

Each of these resources needs to be protected, and those protections form the
basis of Java's security model.

Page 21 of 482

THE jAVA SANDBOX 5

D t : :

.... ~a~a r_· .. "!'··· . . , , J

.. ~·~·)

Figure 1-1. A machine has access to many resources

We can imagine a number of different-sized sandboxes in which a Java program
might run:

• A sandbox in which the program has access to the CPU, the screen, keyboard,
and mouse, and to its own memory. This is the minimal sandbox-it contains
just enough resources for a program to run.

• A sandbox in which the program has access to the CPU and its own memory
as well as access to the web server from which it was loaded. This is often
thought of as the default state for the sandbox.

• A sandbox in which the program has access to the CPU, its memory, its web
server, and to a set of program-specific resources (local files, local machines,
etc.). A word-processing program, for example, might have access to the docs
directory on the local filesystem, but not to any other files.

• An open sandbox, in which the program has access to whatever resources the
host machine normally has access to.

The sandbox, then, is not a one-size-fits-all model. Expanding the boundaries of
the sandbox is always based on the notion of trust: when my one-year-old niece
comes to visit, there's very little in the sandbox for her to play with, but when my
six-year-old godchild comes to visit, I trust that I might give her more things to
play with. In the hands of some visitors, a toy with small removable parts would be
dangerous, but when I trust the recipient, it's perfectly reasonable to include that
item in the sandbox. And so it is with Java programs: in some cases, I might trust
them to access my filesystem; in other cases, I might trust them to access only part

Page 22 of 482

6 CHAPTER 1: jAVA APPLICATION SECURITY

of my filesystem; and in still other cases, I might not trust them to access my file­
system at all.

Applications, Applets, and Programs
It's no accident that this chapter has the word "application" in its title, because
the Java security model is solely at the discretion of a Java application. When an
applet runs inside the HotJava browser, HotJava is the Java application that has
determined the security policy for that applet. And although other popular
browsers are not written in Java, they play the role of a Java application: it is still
the case that the choice of security model is up to the browser and cannot be
changed by the applet.

This makes the distinction between applications and applets a crucial one: applica­
tions can establish and modify their security policies while applets (generally)
cannot. However, this distinction has diminished over time. Beginning with Java
1.2, users of Java applications have the opportunity to run an application within a
sandbox that the user or system administrator has constructed. In the next
section, we'll see how the same functionality can be achieved with Java 1.1 as well.
Under these scenarios, the Java security model for applications is solely at the
discretion of the user or system administrator.

This is a major change of perception for many users and developers of Java, who
are used to considering the security differences between applets and applications
as a significant differentiator between the two types of programs. There will, of
course, always be particular programming differences between applets and appli­
cations: an applet extends the java. applet. Applet class and is written as a series
of callbacks, while an application can be any class that has a static method called
main(). When this programming distinction is important, we'll use the terms
"applet'' and "application" as appropriate. But we'll typically use the term
"program" to refer to the Java code that we're running.

Anatomy of a 1 ava Application

The anatomy of a typical Java application is shown in Figure 1-2. Each of the
features of the Java platform that appears in a rectangle plays a role in the develop­
ment of the Java sandbox. In particular, the elements of the Java sandbox are
comprised of:

The bytecode verifier
The bytecode verifier ensures that Java class files follow the rules of the Java
language. In terms of resources, the bytecode verifier helps enforce memory
protections for all Java programs. As the figure implies, not all files are subject
to bytecode verification.

Page 23 of 482

APPLICATIONS, APPLETS, At'<D PROGRAMS 7

Bytecode Verifier

Figure 1-2. Anatomy of a java application

The class loader
One or more class loaders load classes that are not found on the CLASSPATH.

In 1.2, class loaders are responsible for loading classes that are found on the
CLASSPATH as well.

The access controller
In Java 1.2, the access controller allows (or prevents) most access from the
core API to the operating system.

The security manager
The security manager is the primary interface between the core API and the
operating system; it has the ultimate responsibility for allowing or preventing
access to all system resources. In 1.2, the security manager uses the access
controller for most (but not all) of those decisions; in 1.0 and 1.1, the security
manager is solely responsible for those decisions.

The security package
The security package (that is, classes that are in the java. security package)
forms the basis for authenticating signed Java classes. Although it is only a

Page 24 of 482

8 CHAPTER I: JAVA APPLICATION SECURITY

small box in this diagram, the security package is a complex API, and discus­
sion of it is broken into several chapters of this book. This includes
discussions of:

• The security provider interface-the means by which different security
implementations may be plugged into the security package

• Message digests

• Keys and certificates

• Digital signatures

• Encryption (an optional extension to the security package)

The security package was initially available in Java 1.1.

The key database

The key database is a set of keys used by the security manager and access
controller to verify the digital signature that accompanies a signed class file.
In the Java architecture, it is part of the security package, though it may be
manifested as an external file or database.

The last two items in this list have broad applicability beyond expanding the Java
sandbox. With respect to the sandbox, digital signatures play an important role,
because they provide authentication of who actually provided the Java class. As
we'll see, this provides the ability for end users and system administrators to grant
very specific privileges to individual classes or signers. But a digital signature
might be used for other applications. Let's say that you're deploying a payroll
application throughout a large corporation. When an employee sends a request
to view his payroll information, you really want to make sure that the request
came from that employee rather than from someone else in the corporation.
Often, this type of application is secured by a simple password, but a more secure
system could require a digitially signed request before it sent out the payroll
information.

We'll discuss security concerns in both these contexts in this book. In particular,
two different examples will form the theme of the examples that are developed
through this book:

• A browser-type program (called JavaRunner) that we'll use to explore the
sandbox aspects of Java's security model

• The payroll application of a large company (XYl Corporation) that we'll use
to explore how the features of Java's security model can be used for purposes
other than the sandbox (e.g., to sign a payroll request)

We'll develop a full implementation of the first of these examples; while we won't
provide a complete payroll application, we will provide a number of examples of
the security features required for such an application.

Page 25 of 482

RUNNING A jAVA APPLICATION 9

Running a] ava Application
The parameters of the Java sandbox that we've outlined are possible elements of a
Java application, but they are not required elements of an application. The
remainder of this book will show us how and when those elements can be intro­
duced into a Java application. First, however, we're going to discuss the
techniques by which Java applications can be run.

There are two techniques that we'll introduce in this section: the JavaRunner tech­
nique and the Launcher technique. While both allow you to run an application
securely, the examples in this chapter do not provide any security. We'll fill in the
security pieces bit by bit, while we flesh out the security story. At that point, we'll
show how to run Java applications securely.*

Typically, we're used to running Java applications simply by specifying on the
command line the name of a class that contains a main () method. Consider this
application that reads the file specified by a command-line argument:

public class Cat {

public static void main(String args[])

try {

String s;

FileReader fr =new FileReader(args[O]);

BufferedReader br =new BufferedReader(fr);

while ((s = br.readLine()) !=null)

System.out.println(s);

catch (Exception e) {

System.out.println(e);

This is a regular Java application; if we wanted to run it and print out the contents
of the password file on a Unix system, we could run the command:

piccolo% java Cat /etc/passwd

root:x:O:l:OOOO-Admin(OOOO) :/:/usr/bin/csh

daemon:x:l:l:OOOO-Admin(OOOO):/:

bin:x:2:2:0000-Admin(0000) :/usr/bin:

From a security point of view, this is a very rudimentary program. It contains none
of the elements of the sandbox that we just listed; it has the default (wide-open)
sandbox given by default to every Java application. This application can perform
any operation it wants.

* See, for example, the end of Chapter 6.

1
·~
'.f

:
'

Page 26 of 482

10 CHAPTER I: JAVA APPLICATION SECURITY

Security and the Operating System

The security policy imposed by Java is augmented by the security features of
the operating system on which Java is running. A Java application with a
wide-open security policy may attempt to read the password file, but if the
user running the application does not normally have permission to read the
password file, the Java application will not succeed.

The actual security policy that is in effect for a Java application will be the
intersection of the security policy built into the application and the security
policy of the operating system when the application is run. For the purposes
of this book, we ignore the security features that the operating system may
provide.

There are two ways in which we can add security features to this application. One
way is to add to the application a class loader, a security manager, use of the
access controller, and so on. This additional programming would set the bounds
of the sandbox for this particular application.

The other route we can take is to run this application under the auspices of
another application that we'll call JavaRunner. This is completely analogous to
the way in which we typically run applets: appletviewer is a Java application that
runs applets, and JavaRunner is a Java application that runs other applications.
JavaRunner is responsible for establishing the parameters of the Java sandbox
(that is, it ensures that appropriate class loaders, a security manager, and the like
are all in place) before it invokes the target application, just as appletviewer
establishes the parameters of the Java sandbox before it invokes the target applet.

This technique removes the difference (in terms of security) between an applet
and an application: both types of programs are now subject to the Java sandbox.
There are a number of circumstances in which this is useful:

• If you download (or purchase) Java applications and want them to run in a
sandbox.

• If you want to ensure that your internally developed applications all run in
the desired sandbox (without having to include that code in every applica­
tion).

• If you have a corporate or campus network and need to distribute Java applica-
tions under a new security model. Perhaps the new model will:

Give different security permissions to programs downloaded from within
the corporate firewall than those from outside the corporate firewall
(without requiring internal classes to be signed)

Page 27 of 482

RUNNING A jAVA APPLICATION 11

Authenticate users on the corporate network before allowing sensitive
payroll data to be sent (even over the corporate network)

Encrypt that payroll data, so internal spies can't decipher it

Allow the user greater discretion over the resources granted to a partic­
ular program

Although the JavaRunner program is designed to run other applications, there is
no reason why it cannot be modified to run applets as well. Such a modification
would require some extra code to parse the HTML containing the applet tag and
set up an instance of the AppletStub and AppletContext classes for the applet
itself. We're not showing the code to do that only because it's not really relevant
to the discussion of java security-but the JavaRunner could easily be extended to
become an appletviewer (or, with an appropriate Java: bean that interprets
HTML, a full-fledged browser). The advantage, of course, is that as author of the
browser you would have full control over the security model the browser employs.

Outline of the J avaRunner Application

Here's the basic implementation of the JavaRunner application:

public class JavaRunner implements Runnable {

final static int numArgs = 1;

private Object args[];

private String className;

JavaRunner(String className, Object args[]) {

this.className = className;

this.args = args;

void invokeMain(Class clazz) {

Class argList[J =new Class[] { String[] .class };

Method mainMethod = null;

try {

mainMethod = clazz.getMethod("main", argList);

catch (NoSuchMethodException nsme) {

try

System.out.println("No main method in"+ clazz.getName());

System. exit (-1);

mainMethod.invoke(null, args);
catch (Exception e) {

Throwable t;
if (e instanceof InvocationTargetException)

t = ((InvocationTargetException) e)

.getTargetException();

Page 28 of 482

12 CHAPTER l:jAVAAPPLICATION SECURITY

else t = e;
System.out.println("Procedure exited with exception" + t);

t.printStackTrace();

public void run() {

Class target = null;

try {

target= Class.forName(className);

invokeMain(target);

catch (ClassNotFoundException cnfe) {
System.out.println("Can't load" + className);

static Object[) getArgs(String args[)) {

String passArgs[J =new String[args.length- numArgs);

for (int i = numArgs; i < args.length; i++)

passArgs[i- numArgs) = args[i);

Object wrapArgs [J = new Object [1].;

wrapArgs[O] = passArgs;
return wrapArgs;

public static void main(String args[)) {
if (args.length < 1) {

System.err.println("usage: JavaRunner classfile");
System.exit(-1);

ThreadGroup tg =new ThreadGroup("JavaRunner Threadgroup");

Thread t = new Thread(tg,

new JavaRunner(args[O), getArgs(args)));
t.start();

try {

t.join();

catch (InterruptedException ie) {

System. out .println ("Thread was interrupted");

This is a fully functional (if not full-featured) version of the JavaRunner program;
we can use it to run our Cat application like this:

piccolo% java JavaRunner Cat /etc/passwd
root:x:0:1:0000-Admin(0000) :/:/usr/bin/csh

daemon:x:1:1:0000-Admin(0000) :/:

bin:x:2:2:0000-Admin(0000) :/usr/bin:

Page 29 of 482

RUNNING A jAVA APPLICATION 13

This will give us exactly the same results as when we ran the program by hand.
The invokeMain() method will use the Java reflection API to find the static
main () method of the Cat class and then construct an appropriate argument list
to pass to that method. Note that the use of the reflection API introduces a depen­
dency on Java 1.1 for this program. You can write a similar program under Java
1.0, but not without using the native (C) interface to Java.

Note also that we construct a new thread group and thread, and run the main ()
method under control of that thread. The primary reason we do that will become
clear in Chapter 6 when we discuss thread security policies. But there's no reason
why you couldn't expand this example to run multiple targets simultaneously, in
which case each target should have its own thread and thread group anyway.

We've cheated a little bit here by using the forName () method of the Class class
to find our target application class-we'll hear more about that in Chapter 3
when we discuss class loaders. For now, it will suffice to know that this will load
our target class (assuming that the target class is found on the CLASSPATH). In
addition, we still haven't done anything to set up a security manager or to enable
the access controller. As a result, the sandbox for an application run under this
program is non-existent: the bytecodes will not be verified, and there will be no
restriction on any actions that the application may perform. But this is the
example that we'll expand upon during the rest of this book as we add security
features to it.

Don't think that the only function of a program like this is to run Java applica­
tions (or even Java applets). Consider the Java web server-it must dynamically
invoke servlets for different web requests as those requests come in. An RMI
server might operate similarly, perhaps even loading the code to perform its oper­
ations from a client machine. Although we stick with this example throughout the
book, the need for security in server applications parallels the need for security in
end-user applications.

Built-in Java Application Security

Beginning in Java 1.2, the Java platform itself comes with a security model built
into applications it runs. This model is based upon information in the user's
CLASSPATH. Setting the CLASSPATH is the same operation in Java 1.1 and Java 1.2,
but in Java 1.2, classes that are found on the CLASSPATH may optionally be subject
to a security model. This allows you to run the application code in a user- or
administrator-defined sandbox: in particular, it uses the access controller of Java
1.2 to provide the same security environment for the target application as a Java­
enabled browser provides for an applet.

Page 30 of 482

14 CHAPTER l:jAVAAPPLICATION SECURITY

The successful use of this facility depends upon the class loader that the built-in
application runner will use, as well as depending upon the environment set up by
the access controller and security manager. We'll examine how these facilities
interact with this method of running applications in the next few chapters. For
now, we'lljust outline how this method operates.

As always, Java applications are run on the command line as follows:

piccolo% java Cat /etc/passwd
root:x:O:l:OOOO-Admin(OOOO} :/:/usr/bin/csh
daemon:x:l:l:OOOO-Admin(OOOO} :/:
bin:x:2:2:0000-Admin(0000} :/usr/bin:

This example loads the Cat. class file from the user's CLASSPATH and runs the appli­
cation with the single argument /etc/passwd. As always, when an application is run
in this manner, the sandbox in which the application runs is unlimited: the appli­
cation can perform any activity it wants to.

There is a very important difference between running these examples in Java 1.1
and running them in 1.2: in 1.2, classes that are loaded from the CLASSPATH will
be loaded by a class loader. The addition of the class loader to the CLASSPATH
allows us to build a sandbox for the application. However, none of these examples
actually builds a sandbox yet. In order to build a sandbox for these examples, we
must specify the -usepolicy flag on the command line. This flag enables a secu­
rity manager and access controller to be installed; we'll discuss the details of this
option in Chapter 6.

The -usepolicy flag is only available in Java 1.2. Without it, Java applications in
1.2 behave exactly as they do in 1.1: they have a wide-open sandbox.

For historical reasons (and because it makes describing this facility easier), we'll
refer to the ability to run applications with an optional argument to specify a
sandbox as the Launcher. Given that the Launcher is a standard part of Java, you
might ask why we're going to the trouble of implementing our own JavaRunner.
One reason is simply to make our discussion clearer: it is easiest to understand the
architecture of Java's security policy in the context of JavaRunner. Other reasons
have to do with certain limitations that we'll discover about the Launcher:

• The Launcher comes only with Java 1.2 and later releases; if you're still using
1.1, you'll have to use the JavaRunner program.

• The Launcher can only run classes from the CLASSPATH-it cannot load
classes from the network or from another location. However, simply because
the program in question is an application does not mean we won't want to
load its classes from a server-but we'll need JavaRunner to do that.

Page 31 of 482

SUMMARY

Secure Applications in 1.2 and 1.2 beta 2

In releases of 1.2 up through beta 2, running a secure application requires
use of a special class: the Launcher class (sun.misc.Launcher). To run an
application under control of the Launcher, you would execute this
command:

piccolo% java sun.misc.Launcher Cat /etc/passwd

In 1.2 beta, classes that are loaded from the CLASSPATH are not subject to the
sandbox. In order to load those classes through a class loader and subject them
to the sandbox, you must specify an alternate classpath for the classes .that
make up the application:

piccolo% java -Djava.app.class.path=/classes sun.misc.Launcher \
Cat /etc/passwd

If the Cat class is found in I classes, it will be subject to the sandbox. If it is
found in the CLASSPATH, it will not.

Beginning in 1.2 beta 3, the Launcher class was incorporated into the virtual
machine itself.

15

• The security manager used by the Launcher does not have all the features we
might desire. While most of its features are configurable through the access
controller (also a feature of Java 1.2), there are certain advanced policies that
we cannot configure in that way. These features can only be achieved with
some programming on our part.

Hence, both the Launcher and JavaRunner are useful mechanisms for running
Java applicatiof!.s; which one you use depends on your particular requirements.

Summary
Security is a multifaceted feature of the Java platform. There are a number of facil­
ities within Java that allow you to write a Java application that implements a
particular security policy, and this book will focus on each of those facilities in
turn. Java-enabled browsers (including those like HotJava™ that are written in
Java) are the ultimate proof of these features: these browsers have used the
features of the Java platform to allow users to download and run code on their
local systems without fear of viruses or other corruption.

But the security features of Java need not be limited to the protections afforded to
Java applets running in a browser: they can be applied as necessary to your own
Java applications. This is done most easily by incorporating those features in:to a

Page 32 of 482

16 CHAPTER }:jAVA APPLICATION SECURITY

framework designed to run Java applications within a specified sandbox. The
ability to define and modify that framework is one of the primary examples of this
book. In addition, the security package allows us to create applications that use
generic security features-such as digital signatures-for many purposes aside
from expanding the Java sandbox. This other use of the security package will also
be a constant theme throughout this book.

In the next chapter, we'll look into the security features of the Java language
itself-the first set of security features that are available to any Java application.

Page 33 of 482

2

] ava Language
Security

The first components of the Java sandbox that we will examine are those compo­
nents that are built into the Java language itself. These components primarily
protect memory resources on the user's machine, although they have some
benefit to the Java API as well. Hence, they are primarily concerned with guaran­
teeing the integrity of the memory of the machine that is hosting a program: in a
nutshell, the security features within the Java language want to ensure that a
program will be unable to discern or modify sensitive information that may reside
in the memory of a user's machine. In terms of applets, these protections also
mean that applets will be unable to determine information about each other;
each applet is given, in essence, its own memory space in which to operate.

In this chapter, we'll look at the features of the Java language that provide this
type of security. We'll also look at how these features are enforced, including a
look at Java's bytecode verifier. With a few exceptions, the information in this
chapter is largely informational; because the features we are going to discuss are
immutable within the Java language, there are fewer programming considerations
than we'll find in later chapters. However, the information we'll present here is
crucial in understanding the entire Java security story; it is very helpful in
ensuring that your Java environment is secure and in assessing the security risks
that Java deployment might pose. The security of the Java environment is depen­
dent on the security of each of its pieces, and the Java language forms the first
fundamental piece of that security.

As we discuss the language features in this chapter, keep in mind that we're only
dealing with the Java language itself-as is the common thread of this book, all
security features we're going to discuss do not apply when the language in ques­
tion is not Java. If you use Java's native interface to run arbitrary C code, that C
code will be able to do pretty much anything it wants to do, even when it violates
the precepts we're outlining in this chapter.

17

Page 34 of 482

18 CHAPTER 2:JAVA LANGUAGE SECURITY

Java Language Security Constructs
In this chapter, we're going to be concerned primarily with how Java operates on
things that are in memory on a particular machine. Within a Java program, every
entity-that is, every object reference and every primitive data element-has an
access level associated with it. To review, this access level may be:

• private: The entity can only be accessed by code that is contained within the
class that defines the entity.

• Default (or package): The entity can be accessed by code that is contained
within the class that defines the entity, or by a class that is contained in the
same package as the class that defines the entity.

• protected: The entity can only be accessed by code that is contained within
the class that defines the entity, by classes within the same package as the
defining class, or by a subclass of the defining class.

• public: The entity can be accessed by code in any class.

The notion of assigning data entities an access level is certainly not exclusive to
Java; it's a hallmark of many object-oriented languages. Since the Java language
borrows heavily from C++, it's not surprising that it would borrow the basic notion
of these access levels from C++ as well (although there are slight differences
between the meanings of these access modifiers inJava and in C++).

As a result of this borrowing, the use of these access modifiers is generally thought
of in terms of the advantage such modifiers bring to program design: one of the
hallmarks of object-oriented design is that it permits data hiding and data encap­
sulation. This encapsulation ensures that objects may only be operated upon
through the interface the object provides to the world, instead of being operated
upon by directly manipulating the object's data elements. These and other design­
related advantages are indeed important in developing large, robust, object­
oriented systems. But in Java, these advantages are only part of the story.

In a language like C++, if I create a CreditCard object that encapsulates my
mother's maiden name and my account number, I would probably decide that
those entities should be private to the object and provide the appropriate
methods to operate on those entities. But nothing in C++ prevents me from
cheating and accessing those entities through a variety of back-door operations.
The C++ compiler is likely to complain if I write code that attempts to access a
private variable of another class, but the C++ runtime isn't going to care if I
convert a pointer to that class into an arbitrary memory pointer and start scan­
ning through memory until I find a location that contains a string with 16 digits­
a possible account number. In C++ systems, no one typically worried about such
occurrences because all parts of the system were presumed to originate from the

Page 35 of 482

jAVA LANGUAGE SECURITY CONSTRUCTS 19

same place: it's my program, and if I want to work around my data model to get
access to that data, so be it.*

Things change with Java. I might be surfing to play some cool game applet on
www.EvilSite.org, and then I might go shopping at www.Acme.com. When my Java
wallet applet runs, I'd hate for the applet that is still running from www.EvilSite. org
to be able to access the private CreditCard object that's contained in my Java
wallet-and while it's necessary for www.Acme.com to know that I have a valid Cred­
itCard object, I don't necessarily feel comfortable telling them my mother's
maiden name. Because I'm now in the midst of a dynamic system with active
programs from multiple sites, I need to make sure that the data entities are
accessed by only those objects that are supposed to have access to them. It's
obvious that I want protection from EvilSite.org, whom I don't want to know about
the CreditCard object contained in my Java wallet. But I also want to be
protected from Acme. com, a site I feel relatively comfortable about, but who
should not be granted access to all the data elements of an object that it must use.

This is only one example of why the Java platform must provide memory integ­
rity-that is, it must ensure that entities in memory are accessed only when they
are allowed to be, and that these entities cannot be somehow corrupted. To that
end, Java always enforces the following rules:

Access methods are strictly adhered to.
In Java, you cannot be allowed to treat a private entity as anything but
private: the intentions of the programmer must always be respected. Object
serialization involves an exception to this rule; we'll give more details about
that a little bit later.

Programs cannot access arbitrary memory locations.
This is easy to ensure, as Java does not have the notion of a pointer. For
example, casting between an int and an Object is strictly illegal in Java.

Entities that are declared as final must not be changed.
Final variables in Java are considered constants; they are immutable once they
are initialized. Consider the havoc that could ensue if the final modifier were
not respected:

• A public final variable could be changed, drastically altering the
behavior of a program. If a rogue applet swapped the values of the vari­
ables EAST and WEST in the GridBagConstraints class, for example, any
new applets would be laid out incorrectly (and probably incomprehen­
sibly). That's a rather benign example of what could potentially be a
dramatic security flaw.

* In a large project with multiple programmers, there's a strong argument that such an attitude on the
part of an individual programmer is not to be dismissed so lightly, but we'lllet that pass.

Page 36 of 482

20 CHAPTER 2:jAVA LANGUAGE SECURITY

• A subclass could override a final method, altering the behavior of a
class. One of the features of the Java API is that threads are not allowed to
raise their priority above a certain maximum priority (typically, the
priority of the thread group to which the thread belongs). This feature is
enforced by the setPriority() method of the Thread class, which is a
final method; allowing that method to be overridden would defeat the
security mechanisms.

This feature is used for virtually all of Java's security checks: performing
an operation requires calling a final method in a Java class; only that
final method can trap into the operating system to execute the opera­
tion. That final method is responsible for making sure the operation
does not proceed if it would violate the security policy in place.

• A subclass could be created from a final class, with similar results. In
Java, strings are considered as constants-their value may not be changed
once the string has been created. If the String class could be subclassed,
this rule could not be enforced.

Variables may not be used before they are initialized.
If a program were able to read the value of an uninitialized variable, the effect
would be the same as if it were able to read random memory locations. A Java
class wishing to exploit this defect might then declare a huge uninitialized
section of variables in an attempt to snoop the memory contents of the user's
machine. To prevent this type of attack, all local variables in Java must be
initialized before they are used, and all instance variables in Java are automati­
cally initialized to a default value.

Array bounds must be checked on all array accesses.
Like the access modifiers that started this discussion, bounds checking is
generally thought of in terms other than security: the prime benefit to
bounds checking is that it leads to fewer bugs and more robust programs. But
it has security benefits as well: if an array of integers happens to reside in
memory next to a string (which, in memory, is an array of characters), writing
past the end of the array of integers would change the value of the string. The
effect of this is generally a bug, but it could be exploited as a security hole as
well: if the string held the destination account number for an electronic
funds transfer, we could change the destination account number by willfully
writing past the end of the array of integers.*

* This type of attack is not as far-fetched as it might seem; an early version ofNetscape Navigator suffered
from just this type of security hole. When long URLs were typed into the Goto field, the Netscape C code
that read the string overwrote the bounds of the array where the characters were to be stored and clob­
bered a key location in memory, which allowed a security breach.

Page 37 of 482

jAVA LANGUAGE SECURITY CONSTRUCTS

Objects cannot be arbitrarily cast into other objects.
Given the class fragment:

public class CreditCard {

private String acctNo;

and the rogue class:

public class CreditCardSnoop

public String acctNo;

then the following code cannot be allowed to execute:

CreditCard cc = Wallet.getCreditCard();

CreditCardSnoop snoop = (CreditCardSnoop) cc;

21

System. out .println ("Ha! Your account number is " + snoop. acctNo);

Hence, Java does not allow arbitrary casting between objects; an object can
only be cast to one of its superclasses or its subclasses (if, in the latter case, the
object actually is an instance of that subclass). Note that the Java virtual
machine is much stricter about this rule than the Java compiler is. In the
example above, the compiler would complain about an illegal cast. We could
satisfy the compiler by changing the code as follows:

Object cc = Wallet.getCreditCard();

CreditCardSnoop snoop = (CreditCardSnoop) oc;

Only the virtual machine will know if the returned object actually is of type
Credi tCard or not. In this case, then, the virtual machine is responsible for
throwing a ClassCastException when the snoop variable is assigned to
thwart the attack.

These are the techniques by which the Java language ensures· that memory loca­
tions are read and written only when such access should normally be allowed.
This restriction protects the user's machine from the outside: if I download an
applet onto my machine, I don't want that applet accessing the private variables
of my CreditCard class. However, if that applet has a private variable within it,
nothing prevents me (depending on my operating system) from using a program
outside of the browser to scan the memory on my system and figure out somehow
what value that particular variable has. Similarly, nothing prevents me from
having another program outside the browser change the value of a particular vari­
able that is held in memory on my machine.

If you're an applet developer and are worried about this type of problem, you're
pretty much on your own to come up with a solution to it. This might be particu­
larly troublesome if you had, say, a variable somewhere in your applet that held a
Boolean value indicating whether or not the user was licensed for a particular
operation; a very clever user can go outside the browser and manipulate the
machine's memory so that the integrity of your licensing scheme is violated. This
problem is not new to Java, but it's not solved by Java either.

Page 38 of 482

22 CHAPTER 2:jAVA LANGUAGE SECURITY

Object Serialization and Memory Integrity

There is one general exception to the rules about public, private, and protected
access in Java. Object serialization is a feature of Java that allows an object to be
written as a series of bytes; when those bytes are read someplace else, a new object
is created that has the same state as the original object. Object serialization has
two main purposes: it's used extensively in the RMI API to allow clients and
servers to exchange objects, and it's used whenever you need to save a particular
object to disk and want to recreate the object at some later point in time.

The murky issue here is just what constitutes an object's state. In the case of our
CreditCard object, the account number is pretty basic to creating that object, but
it's a variable that needs to be private for the reasons we've been discussing. In
order for object serialization to work, it must have access to those private variables
so it can correctly save and restore the object's state. That's why the object serial­
ization API can access and save all private variables of an object (as well as its
default, protected, and public variables). Similarly, the object serialization API is
able to store those values back into the private data members when the object is
actually reconstituted.

Depending on your perspective, this is a good thing or a bad thing. From a secu­
rity perspective, it can be a bad thing: if the CreditCard object is saved to disk,
something else can come along and read all that information from the disk file.
Worse yet, the file could be edited in such a way that the object will be recreated
in a completely different state than it originally had, with potentially damaging
results.

In theory, this is the same problem we just discussed about influences outside the
browser being able to read and write the private data of objects that are held in
me~ory (which may help to explain why object serialization works this way by
default). In practice, however, it's much easier to change the data in a binary file
than to figure out how to access and change the value of an object in memory.
Hence, object serialization has two additional mechanisms associated with it that
make it more secure.

The first of these is that object serialization can only occur on objects that imple­
ment the java.io.Serializable interface (or its subclass, the
java.io.Externalizable interface). The Serializable interface requires no
methods, so it can be thought of simply as a flag to the virtual machine that says:
"Hey, virtual machine-I've thought about the security aspects of this class, and
it's okay if you serialize it by writing out all its data." By default, an object is not
serializable, lest its internal private state be violated.

The second of these mechanisms is that object serialization respects the tran­

sient keyword associated with a variable: if our account number in the i

J

Page 39 of 482

ENFORCEMENT OF THE jAVA LANGUAGE RULES 23

CreditCard class were declared as private transient, then object serialization
would not be allowed to read or write that particular variable. This lets us design
classes that can be stored and reconstituted without showing their private data to
the world.

Of course, a CreditCard object without an account number is worthless; what we
really need is something that can save and reconstitute the transient data in such
a way that the data cannot be compromised. This can be achieved by having our
class implement the wri teObj ect () and readObj ect () methods. The write­
Object () method is responsible for writing out the transient data to the given
output stream, while the readObj ect () method is responsible for reading the
data corresponding to the transient data and storing that data into the field. It's
your decision how to save and reconstitute the data so that its integrity is
preserved, but typically this will mean that you'll want to use one of the encryp­
tion APis we'll discuss in Chapter 13.

Storing and reconstituting the transient data can also be achieved by
implementing the Externalizable interface and implementing the writeEx­
ternal () and the readExternal () methods of that interface. The difference in
this case is that these two methods are now responsible for saving and reconsti­
tuting the entire state of the object-no data is stored or reconstituted for you.

Using either of these techniques, you have the ability to protect any sensitive data
contained in your objects, even if you choose to share those objects over the
network or save those objects to some sort of persistent storage.

Enforcement of the Java Language Rules
The list of rules we outlined above are fine in theory, but they must be enforced
somehow. We've always been taught that overwriting the end of an array in C
code is a bad thing, but I somehow still manage to do it accidentally all the time.
There are also those who willfully attempt to overwrite the ends of arrays in an
attempt to breach the security of a system. Without mechanisms to enforce these
memory rules, they become simply guidelines and provide no sort of security at alL

This necessary enforcement happens at three different times in the development
and deployment of a Java program: at compile time, at link time (that is, when a
class is loaded into the virtual machine), and at runtime. Not all rules can be
checked at each of these points, but certain checks are necessary at each point in
order to ensure the memory security that we're after. As we'll see, enforcement of
these rules (which is really the construction of this part of the Java sandbox)
varies depending on the origin of the class in question.

Page 40 of 482

24 CHAPTER 2: jAVA LANGUAGE SECURITY

Compiler Enforcement

The Java compiler is the first thing that is tasked with the job of enforcing Java's
language rules. In particular, the compiler is responsible for enforcing all of the
rules we outlined above except for the last two: the compiler cannot enforce array
bound checking nor can it enforce all cases of illegal object casts.

The compiler does enforce certain cases of illegal object casts-namely, casts
between objects that are known to be unrelated, such as the following code:

Vector v =new Vector();
String s = (String) v;

But the validity of a cast between an object of type X to type Y where Y is a subclass
of X cannot be known at compile time, so the compiler must let such a construct
pass.

The Bytecode Verifier

Okay, the compiler has produced a Java program for us, and we're about to run
the Java bytecode of that program. But if the program came from an unknown
source, how do we know that the bytecodes we've received are actually legal?

Bytecode Verification of Other Languages

Throughout this section, we're discussing the byu!code verifier as if it were
tied to the Java language. This is somewhat imprecise: the bytecode verifier
is actually independent of the original source language of the program. If
we had a C++ compiler that generated Java bytecodes from C++ source, the
bytecode verifier would still be able to verify (or not) the bytecodes.

However, the verification of the bytecodes would still depend upon the
semantics of the Java language, and not the semantics of C++; just because
the bytecodes in question originated from C++ code is no reason that they
should suddenly be allowed to cast an arbitrary memory location into an
object.

For this reason, I prefer to think of the bytecodes in terms of the Java
language itself. There are tools to produce Java bytecodes from other
languages (like Scheme), but in general, producing Java bytecodes from
another language severely limits the constructs that can be written in that
other language.

Page 41 of 482

ENFORCEMENT OF THE jAVA LANGUAGE RULES 25

This brings us to the need for the bytecode verifier-the second link in the chain
of responsibility of enforcing the rules of the Java language. Normally when the
need for the bytecode verifier is discussed, it's in terms of an evil compiler-that
is, a compiler that someone has written in such a way that the code produced by
the compiler is not legal Java code. The theory is that code from such a compiler
could be constructed in order to create and exploit a security hole by ignoring a
rule in the Java language. Such an attack might seem to be difficult to achieve, in
that it would require some detailed knowledge of the Java compiler.

It turns out that the evil compiler issue is a red herring-it doesn't really matter
whether such an attack is likely or not, because it's trivial to create non­
conforming Java code with any standard Java compiler. Assume that we have these
classes:

public class CreditCard {

public String acctNo = "0001 0002 0003 0004";

public class Test {

public static void main(String args[]) {

CreditCard cc =new CreditCard();

System.out.println("Your account number is " + cc.acctNo);

If we run this code, we'll create a CreditCard object and print out its account
number. Now say that we realize the account number should really have been
private, so we go back and change the definition of acctNo to be private and
recompile only the CreditCard class. We then have two class files, and the Test
class file contains Java code that illegally accesses the private instance variable
acctNo of the Credi tCard class.

The above example shows an innocent mistake, but a malicious programmer
could use just this technique to produce illegal Java bytecodes. In order to modify
the contents of a string, for example, all we need to do is:

1. Copy the java .lang. String source file into our CLASSPATH.

2. In the copy of the file, modify the definition of value-the private array that
holds the actual characters of the string-to be public.

3. Compile this modified class, and replace the String. class file in the JDK

4. Compile some new code against this modified version of the String class.
The new code could include something like this:

public class CorruptString {

public static void modifyString(String src, String dst) {

for (int i = 0; i < src.length; i++) {

Page 42 of 482

26

if (i == dst.length)

return;

CHAPTER 2:jAVA LANGUAGE SECURITY

src.value[i] = dst.value[i];

Now any time you want to modifY a string in place, simply call this modi­
fyString () method with the string you want to corrupt (src) and the new
string you want it to have (dst).

5. Remove the modified version of the String class.

Now the CorruptString class can be referenced by a java program, which can use
it to attempt to corrupt any string that it has a reference to. Even though the
program will run with the original version of the String class, the corruptString
class will be able to access the private value array within the String class-unless
the bytecode verifier rejects the CorruptString class.

Inside the bytecode verifier

The bytecode verifier is an internal part of the Java virtual machine and has no
interface: programmers cannot access it and users cannot interact with it. The veri­
fier automatically examines most bytecodes as they are built into class objects by
the class loader of the virtual machine (see Figure 2-1). We'll give just a brief over­
view of how the bytecode verifier actually works.

Figure 2-1. The bytecode verifier

The verifier is often referred to as a mini-theorem prover (a term first used in
several documents from Sun). This sounds somewhat more impressive than it is;
it's not a generic, all-purpose theorem prover by any means. Instead, it's a piece

Page 43 of 482

ENFORCEMENT OF THE jAVA LANGUAGE RULES 27

of code that can prove one (and only one) thing-that a given series of (Java)
bytecodes represents a legal set of (Java) instructions.

Specifically, the bytecode verifier can prove the following:

•

•
•
•

•

•

The class file has the correct format. The full definition of the class file for­
mat may be found in the Java virtual machine specification; the bytecode veri­
fier is responsible for making sure that the class file has the right length, the
correct magic numbers in the correct places, and so on.

Final classes are not subclassed, and final methods are not overridden .

Every class (except for java.lang .Object) has a single superclass .

There is no illegal data conversion of primitive data types (e.g., int to
Object).

No illegal data conversion of objects occurs. Because the casting of a super­
class to its subclass may be a valid operation (depending on the actual type of
the object being cast),. the verifier cannot ensure that such casting is not
attempted-it can only ensure that before each such attempt is made, the
legality of the cast is tested.

There are no operand stack overflows or underflows .

In Java, there are two stacks for each thread. One stack holds a series of
method frames, where each method frame holds the local variables and other
storage for a particular method invocation. This stack is known as the data
stack and is what we normally think of as the stack within a traditional
program. The bytecode verifier cannot prevent overflow of this stack-an infi­
nitely recursive method call will cause this stack to overflow. However, each
method invocation requires a second stack (which itself is allocated on the
data stack) that is referred to as the operand stack; the operand stack holds
the values that the Java bytecodes operate on. This secondary stack is the stack
that the bytecode verifier can ensure will not overflow or underflow.

Hence, when. the bytecode verifier has completed its task, we know that the code
in question follows many of the constraints of the Java language-including most
of the rules that the compiler was also responsible for ensuring. The remaining
rules are verified during the actual running of the program.

Delayed bytecode verification

When we began this section, we said that the bytecode verifier is responsible for
examining all the bytecodes of the class-we explicitly did not say that the verifier
is responsible for verifying all the bytecodes. This is because the bytecode verifier
may delay some of the checks it is responsible for, as long as those checks are
performed before the code is actually executed. In typical verifier implementa­
tions, the bytecode verifier does not immediately test to see if all field and method .

Page 44 of 482

28 CHAPTER 2:JAVA LANGUAGE SECURITY

accesses are legal according to the access modifiers associated with that field or
method.

This is driven by a desire to be efficient-our Test class may reference the acctNo
field of our CreditCard class, but it may do so only if a particular branch in the
code is taken. In the following code, there's no need to verify that the access to
acctNo is legal unless an IllegalArgumentException has been generated:

CreditCard cc = getCreditCard();
try {

Wallet.makePurchase(cc);
catch (IllegalArgumentException iae) {

System.out.println("Can't process for account"+ cc.acctNo);

Hence, the bytecode verifier delays all tests for field and method access until the
code is actually executed. The process by which this happens is implementation
independent; one technique that is often used is to ensure during verification
that all accesses test the validity of the field access. If the access is valid, the stan­
dard bytecodes are then replaced during execution with a special bytecode
indicating that the test has been performed and access to the field in question no
longer needs to be tested. On the other hand, if the validity test fails, the virtual
machine throws an IllegalAccessException.

This gives us the best of both worlds-verification of the access is performed
during the actual running of the program (after traditional bytecode verification
has occurred), but the verification is still only performed once (unlike the
runtime verification we'll examine later).

Controlling bytecode verification

Bytecode verification seems like a great thing: not only can it help to prevent mali­
cious attacks from violating rules of the Java language, it can also help detect
simple programmer errors-such as when we changed the access modifier of
acctNo in our Credi tCard class, but forgot to recompile our Test class.

Nonetheless, bytecode verification is not used on all classes. Like many security­
related features of Java, bytecode verification only applies to certain classes. In
Java 1.1 and earlier, classes that are loaded from the CLASSPATH are deemed to be
trusted and are not subject to bytecode verification, whereas classes that are
loaded from another location (e.g., a file- or HTIP-based URL) are not deemed
to be trusted and must be verified. In Java 1.2, this policy has changed and all
classes except those in the core Java API are verified. This difference really reflects
the class loader that is used to load the class, as we'll see in the next chapter.

Page 45 of 482

ENFORCEMENT OF THE jAVA LANGUAGE RULES 29

In typical usage, this is a workable policy. Browsers always ensure that the code
imported to run an applet is verified, and Java applications are typically not veri­
fied. Of course, this may or may not be the perfect solution:

• If a remote site can talk an end user into installing a local class into the
browser's CLASSPATH, the local class will not be verified and may violate the
rules we've discussed here. In 1.2, this is much harder, since the class must be
added to the zip file containing the core API classes.

• You may implicitly rely upon the verifier to help you keep files in sync so that
when one is changed, other files are verified against it.

As a user, you (theoretiCally) have limited control over the verifier-though such
control depends on the browser you are using. If you are running aJava applica­
tion, you can run java with the -verify option, which will verify all classes.
Similarly, if you are using a browser written in Java-'-including the applet­
viewer-you can arrange for the java command to run with the -noverify
option, which turns verification off for all classes. Occasionally, a browser not
written in Java will allow the user to disable bytecode verification as well-e.g.,
Internet Explorer 3.0 for the Mac had this capability, although it was present only
because the bytecode verifier could not run in certain limited memory
configurations.

However, although these options to the virtual machine are well-documented,
they are not implemented on all platforms. One way to ensure that application
code is run through the bytecode verifier is to use the final version of the JavaR­
unner program (once we add a class loader to it in the next chapter) or the
Launcher in Java 1.2.

Runtime Enforcement

Like the compiler, the bytecode verifier cannot completely guarantee that the
bytecodes follow all of the rules we outlined earlier in this chapter: it can only
ensure that the first four of them are followed. The virtual machine must still take
responsibility for ultimately determining that the Java bytecodes provide the secu­
rity we expect them to.

The remaining security protections of the Java language must be enforced at
runtime by the virtual machine:

Array bounds checking
In theory, the bytecode verifier can detect certain cases of array bounds
checking, but in general, this check must take place at runtime. Consider the
following code:

void initArray{int a[], int nitems) {

for {int i = 0; i < nitems; i++) {

Page 46 of 482

30 CHAPTER 2:jAVA LANGUAGE SECURITY

a[i) 0;

}

Since niterns and a are parameters, the bytecode verifier has no way of deter­
mining whether this code is legal. Hence, array bounds checking is always
done at runtime. Failure to meet this rule results in an
ArrayindexOutOfBoundsException

Object casting
The verifier can and will detect the legality of certain types of casts, specifi­
cally, whenever unrelated. classes are cast to each other. The virtual machine
must monitor when a superclass is cast into a subclass and test that cast's
validity; failure to execute a legal cast results in a ClassCastException. This
holds for casts involving interfaces as well, since objects that are defined as an
interface type (rather than a class type) are considered by the verifier to be of
type Object.

Summary
Because the notion of security in Java is pervasive, its implementation is equally
pervasive. In this chapter, we've explored the security mechanisms that are built
into the Java language itself. Essentially, at this level the security mechanisms are
concerned with establishing a set of rules for the Java language that creates an
environment where an object's view of memory is well-known and well-defined, so
that a developer can ensure that items in memory cannot be accidentally or inten­
tionally read, corrupted, or otherwise misused. We also took a brief look at Java's
bytecode verifier, including why it is necessary, and why you should turn it on,
even for Java applications.

It's important to keep in mind that the purpose of these security constraints is to
protect the user's machine from a malicious piece of code and not to protect a
piece of code from a malicious user. Java does not (and could not) prevent a user
from acting on memory from outside the browser (with possibly harmful results).

Page 47 of 482

r

3

Java Class Loaders

In this chapter, we're going to explore Java's class loading mechanism-the mech­
anism by which files containing Java bytecodes are read into the Java virtual
machine and converted into class definitions. The operation of Java programs
depends on the class loader; given Java's desire to ensure security throughout its
architecture, it should come as no surprise that class loaders are also a very impor­
tant piece of the Java security story. The class loader normally works in
conjunction with the security manager and access controller to provide the bulk
of the protections associated with the Java sandbox.

The class loader is important in Java's security model because initially, only. the
class loader knows certain information about classes that have been loaded into
the virtual machine. Only the class loader knows where a particular class origi­
nated, and only the class loader knows whether or not a particular class was signed
(although the class loader arranges for the Class object itself to carry its signature
with it). Hence, one of the keys to writing a secure Java application is to under­
stand the role of the class loader and to write (or at least use) a secure class loader.·

We'll address both those points in this chapter. We begin with an overview of how
the class loader functions, and the features that its basic functions add to the
overall security of the Java platform. We'll then look into writing our own class
loader, the motivation for which will vary depending on the release of Java you're
using and the type of application you are running.

AI> with the other elements of the Java sandbox, the ability to create and use a
class loader is limited to Java applications. Java applets use the class loader
provided for them by the browser in which they are running, and they are gener­
ally prohibited from creating their own class loader.

31

Page 48 of 482

32 CHAPTER 3:jAVA CLASS LOADERS

Security and the Class Loader
There are two instances where the class loader plays an important role in the Java
security model: it must coordinate with Java's security manager or access
controller, and it must enforce certain rules about the namespace used by Java
classes.

Class Loaders and Security Enforcement

The class loader must coordinate with the security manager and access controller
of the virtual machine in order to determine the security policy for a Java
program. We'll explore this in more detail in the next few chapters when we
discuss these various security mechanisms; for now, we'll just consider the motiva­
tion for the following connection.

As we know, a Java applet cannot (normally) read a file when the applet is being
run in a browser such as HotJava.* The HotJava browser itself, however, can read
files, even while it is also running applets. Both the browser and the applets are
using the same classes to (attempt to) read a file, so clearly there must be some­
thing that allows the java. io classes to determine that one case should fail while
the other case should succeed. That differentiation is the by-product of the class
loader: the class loader allows the security manager to find out particular informa­
tion about the class, which allows the security manager to apply the correct
security policy depending on the context of the request. When we discuss the secu­
rity manager, we'll discuss the specific mechanics by which this can be achieved.
For now, it is only important to keep in mind that the class loader is the piece of
the Java architecture that is able to make this distinction. Since it loaded the class,
it knows if the class came from the network (i.e., the class is part of the applet and
should not be trusted) or if the class came from the local filesystem (i.e., the class
is part of the browser and should be trusted). It also knows if the class was deliv­
ered with a digital signature, and the exact location from which the class was
loaded. All these pieces of information may be used by the security manager and
access controller to establish a security policy.

Class Loaders and Names paces

The second place where the class loader provides security in Java is more subtle
and has to do with Java's namespace rules. Recall that the full name ofaJava class
is qualified by the name of the package to which the class belongs; there is no
standard class called String in the Java API, but there is the class

* This is true of all java-enabled browsers, of course, but the point is clearer when we consider the Hot­
Java browser since that browser is written in java.

Page 49 of 482

SECURITY AND THE CLASS LOADER 33

java. lang. String. On the other hand, a class does not need to belong to a
package, in which case its full name is just the name of the class. It's often said
that these classes are in the default package, but that's slightly misleading: as it
turns out, there is a different default package for each class loader in use by the
virtual machine.

Consider what happens if you surf to a page at www.sun.com and load an applet
that uses a class called Car (with no package name); after that, you surf to a page
at www.ora.com and load a different applet that uses a class called Car (also with
no package name). Clearly, these are two different classes, but they have the same
fully qualified name-how can the virtual machine distinguish between these two
classes?

The answer to that question lies in the internal workings of the class loader. When
a class is loaded by a class loader, it is stored in a reference internal to that class
loader. A class loader in Java is simply an object whose type is some class .that
extends the ClassLoader class. When the virtual machine needs access to a partic­
ular class, it asks the appropriate class loader. For example, when the virtual
machine is executing the code from sun.com and needs access to the Car class, it
asks the class loader that loaded the applet (rl in Figure 3-1) to provide that class.

Figure 3-1. Different instances of the class loaders help to disambiguate class names

' '.
'

In order for this scheme to work, the Car class from www.ora.com must be loaded
using a different class loader than that which loaded the Car class from
www.sun.com. That way, when the virtual machine asks the class loader r2 for the

Page 50 of 482

34 CHAPTER 3:jAVA CLASS LOADERS

definition of the Car class, it will get back (correctly) the definition from ora. com.
The class loader does not need to be a different class; as this example implies, it
must merely be a different instance of the class. Hence, applets that have a
different CODEBASE (even if they originate on the same host) are always loaded by
different instances of the browser's class loader. Applets on the same page with
the same CODEBASE, however, may use the same class loader so that they may share
class files (as well as sharing other information). Some browsers also allow applets
on different pages to be loaded by the same class loader as long as those applets
have the same CODEBASE, which is generally a more efficient and useful
implementation.

This differentiation between class files loaded from different class loaders occurs
no matter what packages are involved. Don't be confused by the fact that there
were no explicit package names given in our example. A large computer company
might define a class named com.sun.Car, a large oil company might also define a
class called com. sun. Car, and the two classes need to be considered as distinct
classes-which they will be if (and only if) they are loaded by different instances
of the class loader.

So far we've given a logical reason why the class loader is involved in the
namespace resolution of Java classes. You might think that if everyone were to
follow the convention that the beginning of their package name must be their
Internet domain in reverse order-e.g., com. sun for Sun Microsystems-this idea
of different class loaders wouldn't be necessary. But there are security reasons for
this namespace separation as well.

In Java, classes that are members of the same package have certain privileges that
other classes do not have-they can access all the classes of the package that have
the default protection (that is, the classes that are neither public, private, nor
protected). Additionally, they can access any instance variable of classes in the
package if the instance variable also has the default protection. As we discussed in
Chapter 2, the ability to reference only those items to which a class has access is a
key part of the security restrictions Java places on a program to ensure memory
and API integrity.

So let's assume that no class loader based package separation exists, and that we
rely on Sun Microsystems to name its classes com.sun.Car and so on. Everything
would proceed reasonably, until we surf to www.EvilSite. org, where someone has
placed a class called com. sun.DoSomethingEvil. Without the namespace separa­
tion introduced by the class loader, this class would suddenly have access to all the
default protected classes and default protected variables of every class that had
been downloaded from Sun. Worse, that site could supply a class called
com. sun.Car with a much different implementation than Sun's-such that when

Page 51 of 482

ANATOMY OF A CLASS LOADER 35

the user (m~taphorically, of course) applied the car's brakes, the new implementa­
tion sped up instead. Clearly, this is not a desirable situation.

Note too that with a badly written class loader, the hackers at EvilSite.org have the
potential to supply new classes to override the core classes of the Java API. When
the class loader that loaded the applet from EvilSite is asked to provide the
java .lang. String class, it must provide the expected version of that class and
not some version from EvilSite.org. In practice, this is not a problem, because the
class loader is written to find and return the core class first.

Without enforcement of the namespace separation that we've just outlined, there
is no way to ensure that the hackers at EvilSite.org have not forged a class into the
com. sun package. The only way to prevent such forgeries would be to require that
every class be a signed class which authenticated that it did in fact come from
sun.com (or wherever its package name indicates that it should have come from).
Authenticated classes certainly have their place in Java's security model, but it
would be unmanageable to require that every site sign and authenticate every
class on its site.

Hence, the separation of classes based on the class loader that loaded them-and
the convention that applets on different pages are loaded by different class
loaders-has its benefits for Java security as well as solving a messy logistical
problem. We'll now look into the details of how the class loader actually works.

Anatomy of a Class Loader
When the Java virtual machine needs access to a particular class, it is up to a class
loader to provide the class. The class loader goes through the following steps to
load and define a class:

1. If the class loader has already loaded this class, it should find the previously
defined class object and return that object immediately.

2. The security manager is consulted to see if this program is allowed to access
the class in question. If it is not, a security exception is thrown. This step may
be considered optional.

3. Otherwise, an internal class loader is consulted to attempt to load the class
from the CLAsSPATH. If that succeeds, the class loader returns. This ensures
that classes within the Java API will not be superseded by classes loaded from
the network (or other location).

The way this is done varies between 1.1 and 1.2. In 1.1, there is a single
method (the findSystemClass () method) that handles this step. In 1.2, a
class loader must delegate to another class loader to find classes that are on
the CLASSPATH and call the findSystemClass () method to find classes that
are in the core API.

Page 52 of 482

36 CHAPTER 3:JAVA CLASS LOADERS

4. The security manager is consulted to see if this program is allowed to create
the class in question. If it is not, a security exception is thrown. This step may
be considered optional.

5. The class file is read into an array of bytes. The mechanism by which the class
loader reads the file and creates the byte array will vary depending on the
class loader (which, after all, is one of the points of having different class
loaders).

6. The byte codes are run through the bytecode verifier.

7. A Class object is constructed from the bytecodes. In the process, the
methods defining the class are created. InJava 1.1 and later, this process also
ensures that the name in the class file matches. the name that the class loader
thought it was asked to load.

8. Before the class can be used, it must be resolved-which is to say that any
classes that it immediately references must also be found by this class loader.
The set of classes that are immediately referenced contains any classes that
the class extends as well as any classes used by the static initializers of the class.
Note that classes that are used only as instance variables, method parameters,
or local variables are not normally loaded in this phase: they are loaded when
the class actually references them (although certain compiler optimizations
may require that these classes be loaded when the class is resolved).

Step 5 of this process varies depending on the policy of the particular class
loader-the data for the class may be read from the network or the filesystem (or
from any other location, such as a database). The other steps of this process will
remain fixed for a well-defined class loader.

There are a number of class loaders that are used in Java programs, described in
the following sections.

The Internal Class Loader

All Java programs must have the capability of loading certain classes-the Java API
classes and any otherslocated in the user's CLASSPATH. Some of these classes are
bootstrapped into the virtual machine. The first thing the virtual machine typi­
cally does is load the Java API class files (the classes.zip file) for future use.

The internal class loader uses the native operating system's file access methods to
open and read the class files into byte arrays. When one of these classes contains a
reference to another class, the internal class loader is again consulted to load the
referenced class.

Unlike other class loaders we'll explore, the internal class loader cannot be over­
ridden. Most of the internal class loader, in fact, is written in native code so that it

Page 53 of 482

ANATOMY OF A CLASS LOADER 37

can be accessed directly by the virtual machine (a requirement for the virtual
machine to be able to bootstrap the API classes).

The internal class loader is often referred to as the default class loader or the
primordial class loader. Due to some details of the Class class, we often speak of
classes that are loaded by the internal class loader as having no class loader at all
(and as a result, the internal class loader is sometimes called the null class loader).

There is a significant change in the use of the primordial class loader between
Java 1.1 and 1.2. In 1.1, the primordial class loader was used to load all classes on
the CLASSPATH. In 1.2, the primordial class loader is used only to load the Java API
class files; the virtual machine constructs an instance of the URLClassLoader class

· to load the classes from the CLASSPATH.

The Applet Class Loader
An applet needs the ability to load classes via HTTP from the network. Hence,
applet class loaders typically use the URL class to read in the data for a class file
from the applet's CODEBASE host.

There is no standard applet class loader in the Java API-each Java browser is
responsible for implementing its own class loader. In practice, the class loaders of
various browsers are indistinguishable (and are usually based on the reference
class loader implemented in Sun's appletviewer), but a Java programmer cannot
simply instantiate an applet class loader in a platform-independent way.*

The RMI Class Loader
Beginning with JDK 1.1, the Java API includes an RMI class loader that can be
used by any application. Despite its name, the RMI class loader needn't be used in
an RMI application, and it is not truly a class loader-that is, it does not extend
the ClassLoader class. In function, the RMIClassLoader class
(java.nni.server.RMIClassLoader) is very similar to the applet class loader-it
uses the HTTP protocol to load the desired class file from a remote machine and
then defines the class from the data in that file.

The RMI class loader cannot be instantiated directly; you must use one of its static
methods to load a class. Once an initial class is loaded by the RMI class loader, any
classes it references will also be loaded by the RMI class loader. In addition, the
RMI class loader can only load classes from the URL specified by the

* If you want, you can figure out which class in the JDKon your system is the applet class loader, instantiate
an instance of that class, and use it, but all virtual machines will not necessarily have that class available.

Page 54 of 482

38 CHAPTER 3:jAVA CLASS LOADERS

java. nni. server. codebase property, so it is not a generic solution to all applica­
tions where a class loader might be used.

If you are loading individual, unsigned classes (i.e., classes that are not in a JAR
file) from a single URL (i.e., a single directory, whether a file-based or an HTTP­
based URL), using the RMI class loader is the simplest option for Java 1.1 applica­
tions. For Java 1.2 applications, you can use the RMI class loader for this purpose,
or you can use the URL class loader; the URL class loader will offer you more
flexibility.

The Secure Class Loader

Beginning with Java 1.2, the Java API includes a class loader in the java. security
package called SecureClassLoader. This class has a protected constructor, so its
real use is to provide the basis for the development of other class loaders. The
distinguishing feature of the secure class loader is that it associates a protection
domain with each class that it loads. Protection domains form the basis of the
operation of the access controller; we'll see more about them in Chapter 5. For
now, just accept the fact that if you want to use the access controller to establish
your security policy, you'll need to use a class loader that extends the Secure­
ClassLoader class.

The URL Class Loader

Also beginning with Java 1.2, the Java API includes a general-purpose class loader
that can load classes from a set of URLs: the URLClassLoader class
(java.net.URLClassLoader). This class is public and fully implemented, so for
1.2-based applications, it provides a truly useful, general purpose class loader:

public class URLClassLoader extends SecureClassLoader *
Load classes from a set of URLs. A URL in this set may be a directory-based
URL, in which case the class loader will attempt to locate individual class files
under that directory. A URL in this ~et may also be a JAR file, in which case
the JAR file will be loaded, and the class loader will attempt to find a class in
the JAR file.

An instance of the URLClassLoader class is created via one of these constructors:

public URLClassLoader(URL urls[J) *
public URLClassLoader(URL urls[}, ClassLoader parent) *

Construct a class loader based on the given array of URLs. This class loader
attempts to find a class by searching each URL in the order in which it
appears in the array.

The second of these constructors constructs a URL class loader that uses the
1.2-based delegation model for loading classes (which we discuss at the end of

Page 55 of 482

ANATOMY OF A CLASS LOADER 39

this chapter). In that case, the parent class loader will be asked to load the
class first; if it fails, this URL class loader proceeds to load the class. This is the
preferred constructor to use.

We can construct a URL class loader like this:

URL urls[] =new URL[2];

urls[O] =new URL("http://piccolo.East/-sdo/");

urls[l] =new URL("file:/home/classes/LocalClasses.jar");

URLClassLoader ucl =new URLClassLoader(urls, parent);

When we use this class loader to load the class com. sdo. Car, the class loader first
attempts to load it via the URL http:/ /piccolo.East/-sdo/com/sdo/Car.class; if that
fails, it looks for the class in the LocalClasses.jarfile.

It should come as no surprise that this class is the basis for running the Launcher.

In that case, the array of URLs is created based on the list of URLs that make up
the CLASSPATH (but not including the core Java API classes).

Choosing the Right Class Loader

With all these class loaders to choose from, which is the better choice: an existing
class loader or your own custom class loader? The answer depends upon your
needs. It is better not to write your own class loader if an existing one can fit your
needs, but that's not always possible. Here are some guidelines:

1. Start by trying to use an instance of the URLClassLoader class. This class can
load classes from multiple sites, using file-based and HTTP-based URLs. It can
process individual class files and JAR files (including signed JAR files, which
will become important later in our discussion). This class is the basis of the
Launcher, although with the Launcher itself, you're limited to file-based
URLs.

When would you not use the URL class loader? Here are some possible cases:

When you want to load classes other than via HTTP or the file system.
You may have classes that are held in a database, or you may want to
define the bytecodes for a class programmatically.

When you want to load classes from different hosts and you have a priori
knowledge of which class is on which host. The URL class loader will
search for classes in its list of URLs sequentially; prior knowledge may
allow you to load classes more efficiently.*

* In the beta release of 1.2, URLClassLoader fails to handle multiple HTTP-based URLs correctly. It
is hoped that this will be fixed for FCS; if it is not and you need to load classes from multiple web servers,
you will need to use your own class loader-see the information about the Mul tiLoader class in the
section "Loading from Multiple Sites" later in this chapter .

Page 56 of 482

40 CHAPTER 3:jAVA CLASS LOADERS

2. If you're on a 1.1-based system and only need to load classes from a single
site, use the RMI class loader. Remember that you will have to define as a
property the location where those classes are found.

3. Otherwise, you'll need to provide a custom class loader.

Loading Classes
We'll now explore the details of how a class loader actually loads classes. There is
a single method of the ClassLoader class (and all its subclasses) that accom­
plishes this:

public Class loadClass(String name)

Load and resolve the named class. A ClassNotFound.Exception is thrown if
the class cannot be found.

This is the simplest way to use a class loader directly: it simply requires that the
class loader be instantiated and then be used via the loadClass () method. Once
the Class object has been constructed, there are four ways in which a method in
the class can be executed:

• A static method of the class can be executed using the native method inter­
face of the Java virtual machine. This is the technique the Java virtual
machine uses to execute the main () method of a Java application once the ini­
tial class has been loaded, but this is not generally a technique used by Java
applications.

• An object of the class can be constructed using the newinstance () method of
the Class class, but only if the class has an accessible constructor that
requires no arguments. Once the object has been constructed, methods with
well-known signatures can be executed on the object. This is the technique
that a program like appletviewer uses: it loads the initial class of the applet,
constructs an instance of the applet (which calls the applet's no-argument
constructor), and then calls the applet' s ini t () method (among other meth­
ods).

• Starting with JDK 1.1, the reflection API can be used to call a static method
on the class, or to construct instances of the object and execute methods on
that object. The reflection API allows more flexibility than the second choice,
since it allows arguments to be passed to the constructor of the object. This is
the technique that is used by our JavaRunner program.

• In the uRLclassLoader class, the invokeClass () method may be called to
call the static main () method of the class (assuming that one exists), passing
it an array of strings. This is the technique the Launcher uses.

Page 57 of 482

LOADING CLASSES 41

The second case is more commonly implemented, if only because it's simpler
(and it is applicable in all versions of Java). But consider the following modifica­
tions to our JavaRunner program:

public class JavaRunner implements Runnable {
final static int numArgs = 2;
ClassLoader cl;
String className;
Object args[];

JavaRunner(ClassLoader cl, String className, Object args []) {
this.cl = cl;
this.className = className;
this.args = args;

void invokeMain{Class clazz) {
. . unchanged ..

public void run{) {
Class target = null;
try {

target·= cl.loadClass(className);
invokeMain{target);

catch {ClassNotFoundException cnfe)
System.out.println{ "Can't load " + className);

static Object[] getArgs{String args[]) {
. . unchanged ..

public static void main{String args[J)
throws ClassNotFoundException

Class self = Class. forName ("Java.Runner") ;
Java.RunnerLoader jrl = new

Java.RunnerLoader(args[O], self.getClassLoader());
Java.RunnerLoader jrl = new Java.RunnerLoader (args [0 l , parent) ;
ThreadGroup tg = new ThreadGroup { "JavaRunner Threadgroup") ;
Thread t = new Thread(tg,

new Java.Runner(jrl, args[l], getArgs(args)));
t.start{);
try {

t.join{);

Page 58 of 482

42 CHAPTER 3:JAVA CLASs LoADERS

catch (InterruptedException ie) {
System. out .println ("Thread was interrupted");

We've replaced the forName () method that we used in our example in Chapter 1
with the highlighted code here: now we construct a class loader (an instance of
the JavaRurmerLoader class, the definition of which we'll see in just a bit) and are
now using the loadClass () method to find our target class.

In java 1.2, constructing the class loader requires that we find the class loader that
loaded our class and pass that to the constructor of the JavaRurmerLoader class.
In 1.1, we would not use the self instance variable.

We've also changed the arguments required to run this program, which is why
we've changed the definition of numArgs. Previously, we required the name of the
class and any arguments the class requires. Now we require an additional argu­
ment: the name of the URL from which to load all the classes. Hence, if our Cat
class was on the web server named piccolo, we could run our JavaRurmer example
like this:

piccolo% java JavaRunner http://piccolo/ Cat /etc/passwd
root:x:O:l:OOOO-Admin(OOOO) :/:/usr/bin/csh
daemon:x:l:l:OOOO-Admin(OOOO) :/:
bin:x:2:2:0000-Admin(0000) :/usr/bin:

Note the difference between this implementation and the one we showed in
Chapter 1. In this case, the Cat class is loaded from the JavaRurmer class loader,
and any classes the Cat class needs are dynamically loaded from that class loader.
In Chapter 1, what happened was a product of the release of java. In 1.1, the Cat
class was loaded from the primordial class loader; any classes it required were
loaded from the primordial class loader as well. In 1.2, the Cat class was loaded
from an instance of the URLClassLoader class, and any classes it required were
loaded from that class loader as well.

The practical result is that the security manager and access controller will give
different permissions to the Cat class depending on which class loader loaded it:
the permissions that are assigned to a class may be different depending upon
whether the class was loaded from the URL class loader, the JavaRurmer class
loader, or the primordial class loader. Exactly how those permissions differ
depends upon the internal implementation of the class loader as well as the secu­
rity manager and access controller that are in effect. In a nutshell, these
differences will be based upon where the class loader found the class, and
whether or not that class was signed.

Page 59 of 482

IMPLEMENTING A CLASS LOADER 43

Implementing a Class Loader
Part of the security implications of a class loader depend upon its internal imple­
mentation. When you implement a class loader, you have two basic choices: you
can extend the ClassLoader class, or you can extend the SecureClassLoader
class. The second choice is preferred, but it is not an option for Java 1.1. If you're
programming in 1.2, you may choose to use the URL class loader rather than
implementing your own, but the information in this section will help you under­
stand the security features of the URL class loader. In this section, then; we'lllook
at how to implement both default and secure class loaders.

Implementing the ClassLoader Class

Aside from the primordial class loader, all Java class loaders must extend the
ClassLoader class (java.lang.ClassLoader). Since the ClassLoader class is
abstract, it is necessary to subclass it to create a class loader.

Protected methods in the ClassLoader class

In order to implement a class loader, we start with this method:

protected abstract Class loadClass(String name, boolean resolve) '{;:{
protected Class loadClass(String name, boolean resolve) *

Using the rules of the class loader, find the class with the given name and, if
indicated by the resolve variable, ensure that the class is resolved. If the class
is not found, this method should throw a ClassNotFoundException. This
method is abstract in 1.1, but not in 1.2. In 1.2, you typically do not override
·this method.

The loadClass () method is passed a fully qualified class name (e.g.,
java.lang.String or com.xyz.XYZPayrollApplet), and it is expected to return
a class object that represents the target class. If the class is not a system class, the
loadClass () method is responsible for loading the bytes that define the class
(e.g., from the network).

There are fc;mr final methods in the ClassLoader class that a class loader can use
to help it achieve its task:

protected final Class defineClass(String name, byte data[], int offset, int length)
Create a Class object from an array of bytecodes. The defineClass ()
method runs the data through the bytecode verifier and then creates the
Class object. This method also ensures that the name in the class file is the
same as the name of the argument-that is, that the bytes actually define the
desired class.

Page 60 of 482

44 CHAPTER 3:jAVA CLASS LOADERS

protected final Class findSystemClass(String name)

Attempt to find the named class by using the internal class loader to search
the user's CLASSPATH. If the system class is not found, a ClassNotFoundExcep­
tion is generated. In 1.2, this method searches only the classes in the Java API.

protected final Class findLoadedClass(String name)

Find the class object for a class previously loaded by this class loader. If the
class is not found, a null reference is returned.

Finding Previously Loaded Classes
According to the Java specification, a class loader is required to cache the class­
es that it has previously loaded, so that when it is asked to load a particular
class, it is not supposed to re-read the class file. Not only is this more efficient,
it allows a simpler internal implementation of many methods, including the
resol veClass () method.

The Java specification hedges this somewhat by stating that this requirement
may change in the future, when the classes will be cached by the virtual ma­
chine itself. Hence, the ClassLoader class inJDK 1.0 did not do any caching,
and it was up to concrete implementations of class loaders to perform this
caching.

Beginning withJDK 1.1, however, caching within the class loader was consid­
ered important enough that the base ClassLoader class now performs this
caching automatically: a class is put into the cache of the class loader in the de­
fineClass () method and may be retrieved from the cache with the find­
LoadedClass () method. Since these methods are final, and since the cache
itself is a private instance variable of the ClassLoader class, this permits a class
loader to be written without any knowledge of whether the class loader or the
virtual machine is doing the caching.

protected final void resolveClass(Class c)

For a given class, resolve all the immediately needed class references for the
class; this will result in recursively calling the class loader to ask it to load the
referenced class.

The loadClass () method is responsible for implementing the eight steps of the
class definition list given above. Typkally, implementation of this method looks
like this:

protected Class loadClass(String name, boolean resolve)

Class c;

SecurityManager sm = System.getSecurityManager();

II Step 1 --Check for a previously loaded class

Page 61 of 482

IMPLEMENTING A CLASS LOADER

c = findLoadedClass(name);
if (c ! = null)

return c;

II Step 2 --Check to make sure that we can access this class
if (sm ! = null) {

inti= name.lastindexOf('.');
if (i >= 0)

sm.checkPackageAccess(name.substring(O, i));

II Step 3 --Check for system class first
try {

II In 1.2 only, defer to another class loader if available
if (parent != null)

c = parent.loadClass(name, resolve);
else

II Call this method in both 1.1 and 1.2

c = findSystemClass(name);

if (c ! = null)

return c;

catch (ClassNotFoundException cnfe) {

II Not a system class, simply continue

II Step 4 -- Check to make sure that we can define this class
if (sm != null) {

inti= name.lastindexOf('. ');
if (i >= 0)

sm.checkPackageDefinition(name.substring(O, i));

II Step 5 --Read in the class file

byte data(] = lookupData(name);

II Step 6 and 7 --Define the class from the data; this also

II passes the data through the bytecode verifier
c = defineClass(name, data, 0, data.length);

II Step 8 --Resolve the internal references of the class
if (resolve)

resolveClass(c);

return c;

45

Page 62 of 482

46 CHAPTER 3:jAVA CLASS LOADERS

For most of the class loaders we're interested in, this skeleton of a class loader is
sufficient, and all we need to change is the definition of the lookupData ()
method (as well as the constructor of the class, which might need various initializa­
tion parameters).

This method might be used to implement a 1.1-based class loader, where the
loadClass () method is abstract. In 1.2, however, it is easier to use the existing
loadClass () method and override only the existing findLocalClass () method:.

protected Class findLocalClass(String name) *
Load the given class according to the internal rules of the class loader. This
method should assume that it is responsible for implementing only steps 5, 6,
and 7 in our list: that is, it should read the data and call the defineClass ()
method, but it needn't look for an existing implementation of the class or
check to see if it is a system class. If the class cannot be found, this method
should return null (which is what the default implementation of this method
returns in all cases).

We'll use this method in our example of a secure class loader. If you must imple­
ment a 1.1-based class loader, you can use the code from that example to
implement a lookupData () method that could be used by the above implementa­
tion of the loadClass () method.

From a security point of view, .the loadClass () method is important because it
codifies several aspects of how Java handles security. One example of this is that
the order in which the loadClass () method looks for classes is significant. Much
of the security within Java itself depends on classes in the Java API doing the
correct thing-e.g., the java .lang. String class is final and holds the array of
characters representing the string in a private instance variable; this allows strings
to be considered constants, which is important to several aspects of Java security.
When a class loader is asked to find the java .lang. String class, it is very impor­
tant that it return the class from the Java API rather than returning a class (possibly
having different and insecure semantics) it loaded from a different location.

Hence, it is important that the class loader call the findSystemClass () method
immediately after it attempts (and fails) to find the class in its internal cache (via
the findLoadedClass () method). By codifying this behavior in the loadClass ()
method, the ClassLoader class ensures that the class loader will have the correct
behavior to enforce the overall security of the virtual machine. This is why the
loadClass () method is no longer abstract in 1.2. This method really should be
made final now, but that would break compatibility with previously written class
loaders.

Violating security by returning the incorrect class would have required the cooper­
ation of the class loader. This might have happened accidentally, if the author of
the class loader did not provide a correct implementation. It might also have

Page 63 of 482

IMPLEMENTING A CLASS LOADER

Secure Class Loaders and
defineClass() Method

the

When a class is defined by a secure class loader, one of the parameters that it
must specify is a CodeSource object or a ProtectionDomain object. A CodeS­
ource object encapsulates certain information about the class-where it was
loaded from and whether or not it was signed (and if so, by whom); a
ProtectionDomain object encapsulates information about the specific
permissions that have been granted to the class.

We're deferring discussion of these classes until Chapter 5, when we can
discuss them in their proper context. For now, we'll just use the getCode­
Source () method whenever a code source is necessary and trust it to
provide us with the correct object.

47

happened maliciously, if the author of the class loader intentionally wrote an
incorrect implementation. The new implementation solves the first problem, but
not the second: the author of the class loader can still override the loadClass ()
method directly to do whatever he wants. In general, you have to trust the author
of your class loader anyway, so the new implementation enhances security mostly
by assisting developers in writing more robust programs.

Implementing the SecureClassLoader Class

Starting with JDK 1.2, there is an extension of the ClassLoader class that any Java
developer can use as the superclass of her own class loader: the SecureClass­
Loader class (java. security. SecureClassLoader).

In terms of security, the benefit of the SecureClassLoader class comes because it
is fully integrated with the notion of protection domains that was introduced in
1.2 .. We'll discuss this integration more fully in Chapter 5, when we have an under­
standing of what a protection domain is.

Protected methods of the SecureClassLoader class

The SecureClassLoader class provides these two new methods:

protected final Class defineClass(String name, !Jyte buf[), int offset, int length,
CodeSource cs, Object signers[])

protected final Class defineClass(String name, !Jyte buf[J, int offset, int length,
ProtectionDomain pd, Object signers[])
Define a class that is associated with the given code source or protection
domain and the given array of signers. Either of these last two parameters

Page 64 of 482

48 CHAPTER 3:jAVA CLASS LOADERS

may be null; if both are null, this method is the equivalent of the define­
Class () method in the base ClassLoader class.

protected CodeSource getCodeSource(URL url, Object signers[])
Construct a code so~rce based on the given URL and signers; this is the code
source that would then be passed to the defineClass () method. It is prefer­
able to construct a code source via this method rather than directly
instantiating a code source object, since this method will keep a cache of code
source objects, which may be reused.

As our first example of a class loader, we'll use the same paradigm for loading
classes that a Java-enabled browser uses, namely an HTTP connection to a web
server:

public class JavaRunnerLoader extends SecureClassLoader
protected URL urlBase;

public boolean printLoadMessages = true;

public JavaRunnerLoader(String base, ClassLoader parent} {
super(parent};
try {

if (! (base.endsWith("I"}}}

base = base + "/";

urlBase =new URL(base};
catch (Exception e) {

throw new IllegalArgumentException(base};

byte[] getClassBytes(InputStream is} {

ByteArrayOutputStream baos =new ByteArrayOutputStream(};

BufferedinputStream bis =new BufferedinputStream(is};

boolean eof = false;
while (!eof} {

try {

inti= bis.read(};

if (i == -1}

eof = true;

else baos.write(i};
catch (IOException e)

return null;

return baos.toByteArray(};

protected Class findLocalClass(String name} {

String urlName = name.replace('. ', '/'};
byte buf[];

Page 65 of 482

IMPLEMENTING A CLASS LOADER

Class cl;

SecurityManager sm = System.getSecurityManager();
if (sm != null)

try

inti= name.lastindexOf('. ');

if (i >= 0)

sm.checkPackageDefinition(name.substring(O, i));

URL url =new URL(urlBase, urlName +".class");

if (printLoadMessages)

System. out .println ("Loading " + url);

InputStream is = url.openConnection() .getinputStream();
buf = getClassBytes(is);

CodeSource cs = getCodeSource(urlBase, null);

cl = defineClass(name, buf, 0, buf .. length, cs, null);

return cl;

catch (Exception e) {

System.out.println("Can't load " + name + ": " + e);
return null;

public void checkPackageAccess(String name) {

SecurityManager sm = System.getSecurityManager();

if (sm != null)

sm.checkPackageAccess(name);

49

The key decision in using this class loader is where the classes are located-that is,
the URL that needs to be passed to the constructor. If we were using this class
loader in a browser, that URL would be the applet's CODEBASE; for an application,
this location is up to the application to decide, using whatever means it deems
appropriate (in the JavaRunner application, we used a command-line argument
for that purpose). Note that the URL that is passed to the constructor must be a
directory; in order to compose that directory into a URL later in the findLocal­
Class () method, the name must end with a slash.

The logic of the findLocalClass () method itself is simple: we need to convert
the class name (e.g., com.XYZ.HRApplet) to a URL, which we can do by replacing
the package-separating periods with slashes. Once the URL has been created, we
simply obtain an input stream to the URL, read the bytes from that stream, and
pass the bytes to the defineClass () method.

Note that the findLocalClass () method encompasses most of the logic that is
necessary for the look.upData () method we'd need if we were writing a 1.1-based
class loader. The only difference for a 1.1-based class loader is that we would not

Page 66 of 482

50 CHAPTER 3:jAVA CLASS LOADERS

need to call the defineClass () method, as that is called in our 1.1-based imple­
mentation of the loadClass () method.

The implementation we've just shown is the basis for the implementation of the
URLClassLoader class. The basic difference between the two is that our implemen­
tation operates on a single URL, while the URLClassLoader class operates on an
array of URLs. The URLClassLoader class can also read JAR files while our
present implementation can only read individual class files; we'll remedy both
those situations in the next section.

Implementing Security Policies in the Class Loader

When we discussed the algorithm used to load classes, we mentioned that you
could test to see if the class loader was allowed to access or define the package
that the class belonged to. You might, for example, want to test whether the
program should be allowed to access classes in the sun package, or define classes
in the java package.

It is up to the author of the class loader to put these checks into the class loader­
even in 1.2. In 1.2, the loadClass () method does not call the checkPackageAc­
cess () method of the security manager directly (as we did in our skeleton of the
loadClass () method): instead, it calls the checkPackageAccess () method of the
ClassLoader class. In the ClassLoader class, the checkPackageAccess () method
simply returns. Hence, if you want to make the check for package access that we
showed earlier, you must override the checkPackageAccess () method in your
class loader and insert the appropriate call to the security manager. In 1.1, of
course, you have to write the loadClass () method from scratch, so you can call
the security manager or not as you deem appropriate.

In the case of defining a class in a package, the necessary code in a 1.2-based class
loader must be inserted into the findLocalClass () method as we did in our
example class loader. Note that the URL class loader-the only concrete imple­
mentation of a class loader in the core API-does not make such a call; it allows
you to define a class in any package whatsoever.

For the Launcher (and any applications built on the URLClassLoader class), then,
the default security model does not perform either of these checks. This is unfor­
tunate: if a program is allowed to define a class in the java package, then that
class will have access to all the package-protected classes and variables within that
package, which carries with it some risk. The reason this model is the default has
to do with the way in which the access controller defines permissions; we'll
explore it more in depth when we write our own security manager in Chapter 6.

Page 67 of 482

EXTENSIONS TO THE CLASS LOADER 51

Extensions to the Class Loader
When we implemented a class loader above, we had a fully operational class
loader that paralleled the first class loaders that were used by Java's appletviewer
or by a Java-enabled browser. However, there are other extensions to the class
loader that are often useful.

Class Loaders and Other Protocols

Long before HTTP and the Web became popular, IP networks like the
Internet had dozens of other protocols upon which a class loader could be
based-FTP, NFS, RCP, and others. It's possible to write a class loader based
on any of these protocols, although it's not as easy as using HTTP. The stan­
dard Java URL class will handle all the low-level details of the HTTP
protocol for us, whereas we'd have to write the low-level details of the ftp (or
whichever) protocol ourselves. We won't show an example of any of these
protocols, since the concepts are all the same.

One advantage these protocols have is that they typically offer some level of
user authentication: FTP requires a password, NFS requires appropriate
credentials to be sent, etc. Hence, some of these protocols might seem well­
suited to an implementation where security is a concern-except that this
level of authentication is often no stronger than simply putting the classes to
be downloaded on a web server that requires a password to get into a partic­
ular directory.

Loading from Multiple Sites

We started with a complete class loader suitable for use in appletviewer-type
programs where the classes are to be loaded from the network. This is good as far
as it goes, but let's delve a little more into the security issues that surround that
class loader.

In the world of Java-enabled browsers, an applet can retrieve classes from only one
site-the CODEBASE specified in the applet's HTML tag. There are other reasons
why an applet can only make a network connection to its CODEBASE (which we'll
discuss in Chapter 4), but one of the reasons is contained in the discussion we
outlined above: because classes loaded by the same class loader are considered to
be in the same package, and an applet that loaded classes from multiple sites
could run the risk of classes from different sites interfering with each other.

Page 68 of 482

52 CHAPTER 3:JAVA CLASS LOADERS

In an ideal world, however, a Java program may want to load classes from several
locations on the network. Consider the deployment outlined in Figure 3-2 for
xyz Corporation: xyz Corporation employs a network support group to manage
its departmental servers, and within each department, there are programmers
who are responsible for deploying the department's applications on those servers.

Figure 3-2. A distributed deployment

When the corporate network support group develops some useful JavaBeans™
components, everyone in the corporation is encouraged to use them in their
departmentally developed applications. This gives the applications a certain consis­
tency between departments as well as promoting reuse of the efforts of the
network support group. But as it stands now, the support group must distribute
the Java Bean class files to each department so that these beans can be used by
programs that are hosted on each departmental server.

Of course, there are technologies outside of Java that can manage distribution,
but this is just a variation of the same application distribution problem that Java
was originally hailed for solving. Unfortunately, the single-host-based class loader
employed by standard Java-enabled browsers doesn't address this situation.

One improvement that we might make is to allow our class loader to load classes
from multiple hosts on the network. There's some overhead involved here: when
a program running on a machine on the HR network needs to load a class, does it
check for the class on the HR server first or on the support group server first?
Either way, there will be a number of lookups that check the wrong server first,
which is somewhat inefficient. Judicious use of package names could help: if the

Page 69 of 482

EXTENSIONS TO THE CLASS LOADER 53

support group beans were all placed in a single package, the class loader could be
smart enough to contact the support group server only when asked to load classes
from that package.

Remember that this intelligence about package names solves a logistical problem
as well. Say that the support group writes a java bean called Check that provides a
nice graphical representation of a checkbox; this graphical representation is part
of the look-and-feel on which XYl Corporation wants to standardize. Now the HR
group wants to create a payroll application, so they create a Check class repre­
senting the financial instrument that is used to pay their employees. Now when an
HR applet wants to instantiate a Check object, what is it referring to-a GUI class
or a financial instrument?

Solving this problem in the intranet world is straightforward-it's easy for the
support and HR groups to coordinate their namespace so that the class loader
won't see these collisions (e.g., by having the support group use names in a partic­
ular package, which again could make the class loader more efficient). In the case
of the freewheeling Internet, this type of coordination is not possible: there can
be no guarantee that two unrelated sites won't use classes that are in the same
package. So the multiple-site class loader is really only appropriate for intranet
use.

There are various ways in which the multiple-site class loader could be imple­
mented-for this example, we'll assume that any classes that are in the
com.XYZ.support package should be loaded from the network support group's
server (which we'll hardcode into the class loader, though we would normally
configure this to be a property). Any other classes should come from the server
that initialized the class loader. So our new class loader looks like this:

public class MultiLoader extends JavaRunnerLoader {
private static final String server= "support.xyz.com/";

public MultiLoader(String url, ClassLoader parent) {

super(url, parent);

protected Class findLocalClass(String name)

URL codeURL;

SecurityManager sm = System.getSecurityManager();

if (sm != null)

try

inti= name.lastindexOf('. ');

if (i >= 0)

sm.checkPackageDefinition(name.substring(O, i));

Page 70 of 482

54 CHAPTER 3:JAVA CLASS LOADERS

String codeName = name. replace (' . ' , 'I ') + " • class";

if (name.startsWith("com.xyz.support"))

codeURL = new URL ("http: I I" + server + codeName) ;

else codeURL =new URL(urlBase, codeName);

if (printLoadMessages)

System. out .println ("Loading " + name);

InputStream is= codeURL.openConnection() .getinputStream();

byte buf[) = getClassBytes(is);

return defineClass(name, buf, 0, buf.length, cs, null);

catch (Exception e) {

return null;

If you're thinking clearly about the security ramifications of this code, then you've
already spotted a potential error: just because we're asked to load a class named
com.xyz.support.Car doesn't necessarily mean that we should contact our
internal server to do so-we should only contact that internal server if the other
classes that we are loading are also from our internal network. That is, if we use
this class loader in a browser that is loading an applet from www.EvilSite. org that
requests the class com.xyz. support. Car, we should attempt to load that class
from EvilSite and not from our support group's server; we should only load
com. xyz. support classes from support. xyz. com when the other classes in the
program come from another machine in the xyz. com domain.

We could have put the logic to deal with that possibility into the class loader itself;
however, it's equally possible to put that logic elsewhere into our application. The
JavaRurmer program, for example, must instantiate a new class loader for each
program it loads, and it's simpler to instantiate a MultiLoader class loader when
the program is being loaded from a machine within the xyz. com domain, and to
instantiate a regular JavaRurmerLoader when the program is being loaded from a
machine outside the xyz. com domain.

Note the different approach taken here and in the URLClassLoader class: in this
case, we contact a second machine only when we have classes in a particular
package that we expect to find on that machine. If we had constructed a
URLClassLoader as follows:

URL urls[] =new URL[2);

url[OJ =new URL("http:/lhr.xyz.coml");

url[l) =new URL("http:/lsupport.xyz.coml");

URLClassLoader ucl =new URLClassLoader(urls);

then we would have functionally achieved something similar. However, with the
URL class loader, when we search for a class named com. xyz . support. Check,
we'll always contact the HR server first, which is slightly less efficient. On the

Page 71 of 482

EXTENSIONS TO THE CLASS LOADER 55

other hand, the technique used by the URL class loader is clearly more flexible
than the approach we've outlined above.

A JAR File Class Loader

There is one important feature present in many class loaders that we haven't yet
mentioned, and that is the ability to load a single file that contains many classes.
JAR files have a significant advantage over individual class files: loading several
classes in a single file can be orders of magnitude faster than loading those same
classes through individual HTTP connections. The reason for this comes from a
property of the HTTP protocol: it takes a relatively long time to set up an HTTP
connection. In fact, the time it takes to transfer the data in a Java class file over a
network is usually much shorter than the time required to set up the HTTP
connection. Hence, JAR files are often preferred because they can greatly speed
up the time it takes to download an applet.

In browsers based on 1.0.2, support for JAR files is browser-dependent; those
browsers that support them refer to the JAR file as an archive. In browsers based
on 1.1, support for JAR files is present within the JDK itself using classes in the
java. util. zip package, because a JAR file is really just a zip file with some addi­
tional information. In Java 1.2, there is an additional set of classes in the
java. util. jar package that can help to process these files as well (including the
additional information in the JAR file).

Of course, there's a flip side to using JAR files. If you use a large word-processing
program in Java, you'll probably want to avoid loading a lot of the classes when
you download the program: there's no need to spend the time downloading all
the class files that implement the spellchecker until it is actually time to check the
document's spelling. With JAR files, you don't have that luxury; you must load all
the classes in a single shot. Even in those browsers in which you can specify
multiple JAR files, the class loader has no way of knowing which particular JAR
file contains which particular classes, so it still has to load all of them at once.*

Nevertheless, JAR files are very popular, and they certainly have their place for
programs where all (or at least most) of the classes are likely to be used every time
the program is run. So we'll look into the additions that must be made to our
class loader in order for it to support loading a JAR file. This may seem to be
taking us somewhat far afield of our discussion about application security, but
there is another reason JAR files are important: they provide the necessary
support for digitally signed classes. We typically speak of a signed class as an entity

* A Java application could be more clever about this: it could know to load the archive containing the
classes to perform the spellcheck when it was time to run the spellchecker. But an applet cannot do that,
because an applet has no mechanism that it can use to tell the browser to load a new archive.

Page 72 of 482

56 CHAPTER 3:JAVA CLASS LOADERS

unto itself; in fact, a signed class can only be delivered as part of aJAR file. Hence,
a class loader that can process JAR files is very important.

So, to complete our understanding of the class loader and to prepare us for those
future examples, we'll show how to add JAR support to our custom class loader. In
order to support a JAR file, we'll create a new class. Although the logic is similar
to our JavaRurmerLoader class, we get no benefit from extending that class, so
we'll show the full implementation here. Changes to the JavaRurmerLoader class
are shown in bold.

public class JarLoader extends SecureClassLoader
private URL urlBase;

public boolean printLoadMessages = true;
Hashtable classArrays;
CodeSource cs;

public JarLoader(String base, ClassLoader parent) {

super (parent) ;
try {

if (! (base . endsWi th (" I ")))
base= base+ "/";

urlBase =new URL(base);

classArrays =new Hashtable();

cs = getCodeSource(urlBase, null);
catch (Exception e) {

throw new IllegalArgumentException(base);

private byte[] getClassBytes(InputStream is) {

ByteArrayOutputStream baos =new ByteArrayOutputStream();
BufferedinputStream bis =new BufferedinputStream(is);

boolean eof = false;
while (!eof) {

try {

inti= bis.read();

if (i == -1)
eof = true;

else baos.write(i);
catch (IOException e)

return null;

return baos.toByteArray(};

protected Class findLocalClass(String name) {

String urlName = name.replace('.', '/'};
byte buf[];

Class cl;

Page 73 of 482

EXTENSIONS TO THE CLASS LOADER

SecurityManager sm = System.getSecurityManager();

if (sm ! = null) {

inti= name.lastindexOf('. ');

if (i >= 0)

sm.checkPackageDefinition(name.substring(O, i));

buf = (byte[]) classArrays.get (urlName);
if (buf != null) {

try

cl = defineClass(name, buf, 0, buf.length, cs, null);
return cl;

URL url = new URL (urlBase, urlName + " . class") ;

if (printLoadMessages)

System. out. println ("Loading " + url) ;

InputStream is= url.openConnection() .getinputStream();

buf = getClassBytes(is);

cl = defineClass(name, buf, 0, buf.length, cs, null);

return cl;

catch (Exception e) {

System.out.println("Can't load " + name + ": " + e);

return null;

public void readJarFile(String name)
URL jaruri = null;

JarinputStream jis;

JarEntry je;

try {

jarUrl =new URL(urlBase, name);

catch (MalformedURLException mue)

System. out .println ("Unknown jar file " + name);

return;

if (printLoadMessages)

System.out.println("Loading jar file"+ jarUrl);

try {

jis = new JarinputStream(

jarUrl.openConnection() .getinputStream());

catch (IOException ioe) {

System.out.println("Can't open jar file"+ jarUrl);

return;

57

Page 74 of 482

58 CHAPTER 3:JAVA CLASS LOADERS

try {

while ((je = jis.getNextJarEntry()) !=null) {

String jarName = je.getName();

i.f (j arName. endsWi th (" . class"))

loadClassBytes(jis, jarName);

II else ignore it; it could be an image or audio file

jis.closeEntry();

catch (IOException ioe)

System.out.println("Badly formatted jar file");

private void loadClassBytes(JarinputStream jis, String jarName} {
if (printLoadMessages)

System .. out.println("\t" + jarName);

BufferedinputStream jarBuf =new BufferedinputStream(jis);

ByteArrayOutputStream jarOut =new ByteArrayOutputStream();

int b;

try {

while ((b = jarBuf.read(}) != -1)

jarOut.write(b);

classArrays.put(jarName.substring(O, jarName.length() - 6),

jarOut.toByteArray());

catch (IOException ioe) {

System. out .println ("Error reading entry " + jarName);

public void checkPackageAccess(String name) {

SecurityManager sm = System.getSecurityManager();

if (sm ! = null)

sm.checkPackageAccess(name);

The bulk of the change in this example is the addition of two new methods (the
readJarFile () and loadClassBytes () methods). These two new methods are
used to process the JAR file.

The classes in the java. util. jar package handle all the details about the JAR
file for us, and we're left with a simple implementation: we use the getNext­
JarEntry () method to obtain each file in the archive and process each one
sequentially. For maximum efficiency, we don't actually need to create the class
from the bytes until necessary: the loadClassBytes () method just creates an
array of bytes for each class in the JAR file.

This necessitates a slight change to the logic in our findLocalClass () method:
now when we need to provide a class that is not a system class, we check first to see

Page 75 of 482

MISCELLANEOUS CLASS LOADING TOPICS 59

if that class is in the classArrays hashtable. If it is, we obtain the bytes for the
class from that hash table (where they were stored in the readJarFile () method)
rather than opening a URL to obtain the bytes for the class over the network.

If you need to produce a similar class loader under 1.1, you can use
the java. util. zip package instead of the java. util. jar package. In this
example, the two are functionally equivalent, and you may simply substitute Zip
every time you see Jar (and zip for jar) with one exception: replace the getNex­
tJarEntry() method with the getNextEntry() method. Later, when we deal
with signed JAR files, that substitution will not work: the difference between the
two packages is that the jar package understands the signature format and mani­
fest of the JAR file.

This implementation is similar to the procedure followed by the URLClassLoader
class; in that case, the JAR files occur as elements in the array of URLs passed to
the class.

Miscellaneous Class Loading Topics
There are a few details that we haven't yet covered. These details are not directly
related to the security aspects of the class loader, which is why we've saved them
until now. If you're interested in the complete details of the class loader, we'll fill
in the last few topics here.

Delegation

Beginning with Java 1.2, class loading follows a delegation model. This new model
permits a class loader to be instantiated with this constructor:

protected ClassLoader(ClassLoader delegate) *
Create a class loader that is associated with the given class loader. This class
loader delegates all operations to the delegate first: if the delegate is able to
fulfill the operation, this class loader takes no action. For example, when the
class loader is asked to load a class via the loadClass () method, it first calls
the loadClass () method of the delegate. If that succeeds, the class returned
by the delegate will ultimately be returned by this class. If that fails, the class
loader then uses its original logic to complete its task:

public Class loadClass(String name)

Class cl;

cl = delegate.loadClass(name);

if (cl != null)

return cl;
II else continue with the loadClass() logic

You may retrieve the delegate associated with a class loader with this method:

Page 76 of 482

60 CHAPTER 3:JAVA CLASS LOADERS

public ClassLoader getParent() *
Return the class loader to which operations are being delegated. If there is no
such class loader, return null.

You'll notice that we used delegation in all of our examples. This is pretty much a
requirement: when the virtual machine starts, it creates a URL class loader that is
based on the directories and JAR files present in your CLASSPATH. That class
loader is the class loader that will be used to load the first class in your application
(i.e., the JavaRunner class in our example).

That URL class loader is the only class loader that knows about the CLASSPATH. If
the application will reference any other classes that are part of the CLASSPATH,
you will be unable to find them unless you use the delegation model of class
loading: the JavaRunner loader will first ask the URL class loader to load the
class. If the class is on the CLASSPATH, the URL class loader will succeed; other­
wise, the JavaRunner loader will end up loading the class itself. This logic is built
into the loadClass () method; you do not need to concern yourself with it at a
programming level, but it is the reason why you must use delegation.

Loading Resources

A class loader can load not only classes, but any arbitrary resource: an audio file,
an image file, or anything else. Instead of calling the loadClass () method, a
resource is obtained by invoking one of these methods:

public URL getResource(String name)
public InputStream getResourceAsStream(String name)
public URL getLocalResource(String name) *

Find the named resource and return either a URL reference to it or an input
stream from which it can be read. Implementations of class loaders should
look for resources according to their internal rules, which are typically (but
need not be) the same rules as are used to find classes. In our first JavaRun­
nerLoader class, that would mean simply constructing a URL based on the
urlBase concatenated with the name parameter.

In 1.1, the default behavior for these methods is to return null.

In 1.2, the getResource () method calls the getSysternResource () method;
if it does not find a system resource, it returns the object retrieved by a call to
the getLocalResource () method (which by default will still be null). The
getResourceAsStream () method simply calls the getResource () method
and, if a resource is found, open the stream associated with the URL.

Page 77 of 482

SUMMARY 61

public static l.IRL getSystemResource(String name)
public static InputStream getSystemResourceAsStream(String name)

Find the named resource and return either a URL reference .to it or an input
stream from which it can be ·read. By default, these methods look for the
resource on the CLASSPATH and return that resource (if found).

public final Enumeration getResources(String name) *
public Enumeration getLocalResources(String name) *

Return an enumeration of resources with the given name. In the first
method, an enumeration of the local resources of all delegated class loaders
(including the present class loader) is returned; in the second method, only
the local resources of the present class loader are returned.

Summary
The class loading mechanism is integral to Java's security features. Typically this
integration is considered in light of the relationship between the class loader and
the security manager. However, the class loader is important in its own right. The
class loader must enforce the namespace separation between classes that are
loaded from different sites (especially when these different sites are untrusted).
Newer versions of the class loader (in Java 1.2) provide an easier route for devel­
opers of class loaders, and they provide more hooks into the access controller.

For sites that need a more flexible security policy, a different class loader may be
desirable. For example, a class loader that allows programs within a protected,
internal network to load class files from several machines on that internal network
is particularly useful for extending the advantages that the Java model brings to
program distribution. Other variations on this theme are possible-as long as the
implementor remembers to keep the security requirements of Java's namespace
model in mind when such variations are designed.

In the next chapters, we'll look in depth at Java's .security manager and Java's
protection domains, and see how the class loader and these features together
further enforce Java's security policies.

Page 78 of 482

4

The Security Manager
Class

When most people think of Java security, they think of the protections afforded to
a Java program-and, more particularly, only by default to a Java applet-by Java's
security manager. As we've seen, there are other important facets of Java's security
story, but the role played by the security manager is of paramount importance in
the degree to which your machine will be safe from malicious Java programs.

On one level, the Java security manager is simple to understand, and it's often
summarized by saying that it prevents Java applets from accessing your local disk
or local network. The real story is more complicated than that, however, with the
result that Java's security manager is often misunderstood. In this chapter, we'll
look into how the security manager actually works, what it can and can't do, and
when it does-and doesn't-protect you. In this chapter, we're only going to look
at the security manager in terms of its capabilities, with an emphasis on how those
capabilities are used by popular browsers; we'll look into writing our own security
manager in the next few chapters.

Overview of the Security Manager
On a simple level, the security manager is responsible for determining most of the
parameters of the Java sandbox-that is, it is ultimately up to the security manager
to determine whether many particular operations should be permitted or
rejected. If a Java program attempts to open a file, the security manager decides
whether or not that operation should be permitted. If a Java program wants to
connect to a particular machine on the network, it must first ask permission of
the security manager. If a Java program wants to alter the state of certain threads,
the security manager will intervene if such an operation is considered dangerous.

62

Page 79 of 482

OVERVIEW OF THE SECURITY MANAGER 63

The security manager is of particular concern to authors and users of Java applets.
In general, Java applications do not have security managers-unless the author of
the application has provided one. Historically, that's been a somewhat unusual
occurrence, even though there are many times when you might want a security
manager in your Java application; this stems from the fact that before Java 1.2,
writing a security manager was more difficult than it is now. Beginning in 1.2,
there is a default, user-configurable security manager that is suitable for most
applications, one which can even be installed via a command-line argument when
starting an application. This brings the benefits of a security manager to an appli­
cation without requiring any programming. And we'll show how to write your own
(non-default) security manager for the JavaRunner program in Chapter 6.

But this point cannot be overemphasized: Java applications (at least by default)
have no security manager, while Java applets (again, by default) have a very strict
security manager. This leads to a common misconception that exists in the arena
of Java security: it's common to think that because Java is said to be secure, it is
always secure, and that running Java applications that have been installed locally is
just as secure as running Java applets inside a Java-enabled browser. Nothing is
further from the truth.

To illustrate this point, consider the following malicious code:

public class MaliciousApplet extends Applet {

public void init() {

try {

Runtime.getRuntime() .exec("/bin/rm -rf .");

} catch (Exception e) {}

public static void main(String args[))

MaliciousApplet a= new MaliciousApplet();

a. init ();

If you compile this code, place it on your web server, and load it as an applet,
you'll get an error reflecting a security violation. However, if you compile this
code, place it in a directory, and run it as an application, you'll end up deleting
all the files in your current directory.* As a user, then, it's crucial that you under­
stand which security manager is in place when you run a Java program so that you
understand just what types of operations you are protected against.

* The example will only delete the files in your current directory if you run it on a Unix system, but we
could have included similar code for any other operating system.

Page 80 of 482

64 CHAPTER 4: THE SECURITY MANAGER CLASS

Security Managers and the]avaAPI

The security manager can be considered a partnership between the Java API and
the implementor of a specific Java application or of a specific Java-enabled
browser. There is a class in the Java API called SecurityManager
(java .lang. Securi tyManager) which is the linchpin of this partnership-it
provides the interface that the rest of the Java API uses to check whether partic­
ular operations are to be permitted. The essential algorithm the Java API uses to
perform a potentially dangerous operation is always the same: ·

1. The programmer makes a request of the Java API to perform an operation.

2. The Java API asks the security manager if such an operation is allowable.

3. If the security manager does not want to permit the operation, it throws an
exception back to the Java API, which in turn throws it back to the user.

4. Otherwise, the Java API completes the operation and returns normally.

Let's trace this idea with the example that we first saw in Chapter 1:

public class Cat {

public static void main(String args(]) {
try {

String s;

FileReader fr =new FileReader(args[O]);

BufferedReader br =new BufferedReader(fr);
while ((s = br.readLine()) !=null)

System.out.println(s);

catch (Exception e) {
System.out.println(e);

The FileReader object will in turn create a FileinputStream object, and
constructing the input stream is the first step of the algorithm. When the input
stream is constructed, the Java API performs code similar to this:

public FileinputStream(String name) throws FileNotFoundException
SecurityManager security= System.getSecurityManager();

if (security != null) {

security.checkRead(name);

try {

open(name); //open() is a private method of this class
catch (IOException e) {

throw new FileNotFoundException(name);

Page 81 of 482

OVERVIEW OF THE SECURITY MANAGER 65

This is step two of our algorithm and is the essence of the idea behind the security
manager: when the Java API wants to perform an operation, it first checks with
the security manager and then calls a private method (the open() method in this
case) that actually performs the operation.

Meanwhile, the security manager code is responsible for deciding whether or not
the file in question should be allowed to be read and, if not, for throwing a secu­
rity exception:

public class SecurityManagerimpl extends SecurityManager {

public void checkRead(String s) {

if (theFileisNotAllowedToBeRead)

throw new Securi tyException ("checkRead") ;

The Securi tyException class is a subclass of the RuntimeException class.
Remember that runtime exceptions are somewhat different than other exceptions
in Java in that they do not have to be caught in the code-which is why the check­
Read () method does not have to declare that it throws that exception, and the
FileinputStream constructor does not have to catch it. So if the security excep­
tion is thrown by the checkRead () method, the FileinputStream constructor will
return before it calls the open () method-which is simply to say that the input file
will never be opened, because the security manager prevented that code from
being executed.

Typically, the security exception propagates up through all the methods in the
thread that made the call; eventually, the top-most method receives the excep­
tion, which causes that thread to exit. When the thread exits in this way, it prints
out the exception and the stack trace of methods that led it to receive the excep­
tion. This leads to the messages that you've probably seen in your Java console:

sun.applet.AppletSecurityException: checkread

at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:427)

at java.io.FileOutputStream.<init>(FileOutputStream.java)

at Cat.init(Cat.java:7)

at sun.applet.AppletPanel.run(AppletPanel.java:273)

at java.lang.Thread.run(Thread.java)

If the security exception is not thrown-that is, if the security manager decides
that the particular operation should be allowed-then the method in the security
manager simply returns, and everything proceeds as expected.

Several methods in the SecurityManager class are similar to the checkRead()
method. It is up to the Java API to call those methods at the appropriate time. You
may want to call those methods from your own Java code (using the technique
shown above), but that's never required. Since the Java API provides the interface

Page 82 of 482

66 CHAPTER 4: THE SECURITY MANAGER CLASS

to the virtual operating system for the Java program, it's possible to isolate all the
necessary security checks within the Java API itself.

You Don't Know About All Security Violations
Since a violation of the rules of the security manager manifests itself as a secu­
rity exception, it's possible to hide the attempted violation from the user run­
ning the program by catching that exception.

To portray this feature in a positive light, it allows the author of a Java program
to provide a more intelligent program that might be delivered to an end user
in different ways. If the program is delivered as an application, the author may
want to save some state from the program in a file on the user's disk; if the pro­
gram is delivered as an applet, the author will need to save that state by sending
it to the web server. So the program might have code that looks like this:

OutputStream os;

try {

os = new FileOutputStream("statefile");

catch (SecurityException e) {

os =new Socket(webhost, webport) .getOutputStream();

Now the Java program has an appropriate output stream where it can save its
data.

On the other hand, this technique can be used by the author of an applet to
probe your browser's security manager without your knowledge-because the
applet is catching the security exceptions, you'll never see them. This is one
reason why it's important to understand the ramifications of adjusting your
browser's security policy.

One exception to this guideline occurs when you extend the virtual operating
system of the Java API, and it is important to ensure that your extensions are well­
integrated into Java's security scheme. Certain parts of the Java API-the Toolkit
class, the Provider class, the Socket class, and others-are written in such a way
that they allow you to provide your own implementation of those classes. If you're
providing your own implementation of any of these classes, you have to make sure
that it calls the security manager at appropriate times.

It's important to note that there is (by design) no attempt in the Java API to keep
any sort of state. Whenever the Java API needs to perform an operation, it checks
with the security manager to see if the operation is to be allowed-even if that
same operation has been permitted by the security manager before. This is
because the context of the operation is often significant-the security manager

Page 83 of 482

TRUSTED AND UNTRUSTED CLASSES 67

might allow a FileOutputStream object to be opened in some cases (e.g., by
certain classes) while it might deny it in other cases. The Java API cannot keep
track of this contextual information, so it asks the security manager for permis­
sion to perform every operation.

Trusted and Untrusted Classes
In the discussion that follows, we make the distinction between trusted and
untrusted classes. Generally, an implementation of a security manager allows
more operations for trusted classes than for untrusted classes. Whether or not a
class is trusted is a complex decision based upon many factors-not the least of
which is the release of Java under which the program is running. The default
notion of what constitutes a trusted class has changed significantly between
releases of Java:

• In Java 1.0, a class that is loaded from the CLASSPATH is considered trusted,
and a class that is loaded from a class loader is considered untrusted.

• In Java 1.1, that same rule applies, but a class that is loaded from a JAR file
may carry with it a digital signature that allows it to be given extra privileges.

• In Java 1.2, a class that is loaded from the core API is considered trusted and
may perform any operation it wants to. Otherwise, classes are (by default)
given privileges based upon where they were loaded from, including if they
were loaded from the CLASSPATH. However, this applies only when certain
command-line arguments are present; in the default method of loading appli­
cations, items from the CLASSPATH are generally considered trusted.

Nothing inherent in the design of the security manager requires security to be
enforced as an ali-or-nothing proposition for each class. It's possible to write a
security manager that gives access to certain parts of the filesystem only to certain
classes (even classes that came from the network), or to write a security manager
that prohibits classes loaded from the CLASSPATH from performing operations
that are normally permitted to classes loaded from the filesystem. A security
manager can be as simple or as sophisticated as its author desires, with the result
that the security manager can enforce a simple binary yes-or-no policy for opera­
tions, or it can enforce a very specialized, very detailed policy. This is true of all
security managers in all versions of Java, though as we'll see in Chapter 5, one of
the prime benefits of Java 1.2 is that it makes it much easier to achieve fine­
grained security policies.

However, even though a sophisticated security manager can enforce a very
detailed security policy, most implementations of the security manager (especially
implementations that occur within popular Java-enabled browsers) assume that a
trusted class is one that has been loaded from the CLASSPATH, while an untrusted

Page 84 of 482

68 CHAPTER 4: THE SECURITY MANAGER CLASS

class is one that has been loaded from a class loader. Furthermore, trusted classes
are normally permitted to perform any operation, while an untrusted class 1s
normally subjected to the full extent of the provisions of the security manager.

This dichotomy is essentially the same as the one we normally make between appli­
cations and applets: since an application is loaded entirely through the
CLASSPATH, all of its classes are considered trusted, and the application can
perform any operation that it wants to. On the other hand, the classes that
comprise an applet are generally loaded from the network; hence they are consid­
ered untrusted and denied any operation that has the potential to violate the
browser's security policy.

Beginning with Java 1.1, this distinction became less clear (and Java 1.2 made it
even fuzzier): classes now have the ability to be signed, and classes that are signed
can be treated as trusted or untrusted. We discuss the rationale behind that idea
in Chapter 7 and we fully explore signed classes in the last part of this book; for
now, we'lljust keep in mind that some classes are trusted and some are not.

Using the Security Manager
We're now going to examine the public 1pethods of the security manager so that
we may understand how the security manager is used by applications and by the
Java API.

Setting a Security Manager

There are two methods in the System class that are used to work with the security
manager itself:

public static SecurityManager getSecurityManager()
Return a reference to the currently installed security manager object (or null
if no security manager is in place). Once obtained, this object can be used to
test against various security policies.

public static void setSecurityManager(SecurityManager sm)
Set the system's security manager to the given object. This method can only
be called once, and once installed, the security manager cannot be removed.
Attempting to call this method after a security manger has already been
installed will result in a Securi tyException.

These methods operate with the understanding that there is a single security
manager in the virtual machine; the only operations that are possible on the secu­
rity manager are setting it (that is, creating an instance of the security manager
class and telling the virtual machine that the newly created object should be the

Page 85 of 482

USING THE SECURI'IY MANAGER 69

security manager), and getting it (that is, asking the virtual machine to return the
object that is the security manager so that a method might be invoked upon it).

We've already seen how you might use the getSecurityManager() method to
retrieve the security manager and invoke an operation on it. Setting the security
manager is a predictably simple operation:

public class TestSecurityManager {
public static void main(String args[])

System.setSecurityManager(new SecurityManagerimpl());
... do the work of the application ...

However, there's an important detail here: the setSecurityManager() method is
written in such a way that it can only be called once. Once a particular security
manager has been installed, that security manager will be used by every other class
that runs in this virtual machine. Once the policy is established, it cannot be
changed (although the policy itself might be very fluid).

This fact has two important ramifications. First, as the author, it's up to you to
write a security manager that embodies all the security policies you want your Java
application to have. Second, in a Java-enabled browser, the security manager is
always set as the browser initializes itself. This makes it impossible for an applet to
set the security manager-it must live with the policy established by the author of
the browser. This, of course, is a crucial feature of the security manager: since the
security manager is responsible for fencing in the applet, it would be a catas­
trophe if the applet could change the security manager and hence the security
policies of the browser.

The real significance of this last point, however, is that it is up to the developer of
a browser to set the security policy. There is no absolute security policy that is
common to every Java-enabled browser; each company that supports one is free to
develop its own security manager and, accordingly, the security policies of that
browser.

Now that we have an understanding of how the security manager works, we'lllook
into what protection the security manager actually provides. We'll discuss the
public methods of the security manager that perform security checks and when
those methods are called, along with the rationale behind each of the methods.
Since these methods are all public, they can be called anywhere, including in your
own code, although as we've mentioned, th<:Jt's a rare thing.

When we discuss the rationale for each of the methods in the SecurityManager
class, we'll discuss them from the point of view of untrusted classes. For now,
consider an untrusted class as one loaded from the network (i.e., as part of an

Page 86 of 482

70 CHAPTER 4: THE SECURITY MANAGER CLASS

applet), while a trusted class is one that has been loaded from the filesystem
through the user's CLASSPATH (including the classes that are part of the Java­
enabled browser itself).

Methods Relating to File Access

The most well-known methods of the security manager class handle access to files
on the local network. This includes any files that are on the local disk as well as
files that might be physically located on another machine but appear (through
the use of NFS, NetWare, Samba, or a similar network-based filesystem) to be part
of the local filesystem.

These are the methods the security manager uses to track file access:

public void checkRead(FileDescriptor jd)
public void checkRead(Stringfile)
public void checkRead(Stringfile, Object context)

Check whether the program is allowed to read the given file. The last method
in this list is not used by the Java API itself.

public void check Write(FileDescriptor fd)
public· void check Write(String file)

Check whether the program is allowed to write the given file.

public void checkDelete(Stringfile)
Check whether the program is allowed to delete the given file.

Interestingly, although as developers we tend to think of other file operations­
such as creating a file or seeing when the file was last modified-as being distinct
operations, as far as security is concerned, the Java API considers all operations to
be either reading, writing, or deleting.

Table 4-1 lists the Java API interaction with the checkRead(), checkWrite(), and
checkDelete () methods, listing when and why each check is invoked. In all the
tables in this chapter, the syntax may imply that the calling methods are all static,
but that of course is not the case: the entry File.canRead() means the
canRead () method invoked on an instance of the File class.

This table lists only those classes that directly call the security manager method in
question. There may be many routes through the Java API that lead to one of
these checks; for example, when a FileReader object is constructed, it will
construct a FileinputStream object, which will result in a call to checkRead().

·'

•,

Page 87 of 482

USING THE SECURITY MANAGER

Table 4-1. Check Methods

Method

checkRead ()

checkWri te ()

Calling Methods

File. canRead ()

FileinputStream()
RandomAccessFile()

File.isDirectory()
File. isFile ()

File.lastModified()

File .length ()

File. list()

File. canWri te ()

FileOutputStream()
RandomAccessFile()

File.mkdir()

File. renameTo ()

File.createTemp­

File() *
checkDelete () File. delete ()

File.deleteOnExit() *

Rationale

Test if the current thread can read the
file

Constructing a file object requires that
you must be able to read the file

Determining whether a file object is an
actual file or a directory requires that
you must be able to read the file

Determining the modification date
requires that you read the file's
attributes

Determining the length requires that
you read the files attributes

Determining the files in a directory
requires that you read the directory

Test if the current thread can write the
file

To construct a file object, you must be
able to write the file

To create a directory, you must be able
to write to the filesystem

71

To rename a file, you must be able to
write to the directory containing the file

To create a temporary file, you must be
able to write the file

Test if the current thread can delete a
file

Test if the current thread can delete the
file when the virtual machine exits

By default, in most Java-enabled browsers, untrusted classes are not allowed any
sort of file access, for these reasons:

• If an untrusted class is allowed to read an arbitrary file, it might read your pass­
word file, or the data file from your tax preparation program, or the tempo­
rary file containing an edit log of the sensitive document you're working on.

• If an untrusted class is allowed to write an arbitrary file, it might overwrite
data on your machine, essentially erasing the file. Worse, it might insert a
virus into an existing file (or create a new file with a virus), with catastrophic
results. Less damaging, but still a problem, would be the ability for the applet
to completely fill the available disk space.

• If an untrusted class is allowed to delete files, it could destroy any data in your
local filesystem.

Page 88 of 482

72 CHAPTER 4: THE SECURITY MANAGER CLASS

The Real Reason Applets Cannot Access Files
If you're a Java developer chafing at the restriction that an applet cannot ac­
cess the user's local files, you're missing one of the points of developing in Ja­
va. The real reason your applet can't access local files is that there may not be
any: what if your appkt is being run on a network computer or a Java-enabled
TV webtop? If your applet requires a local disk, it will be unable to run on the
next generation of computing devices. Java is leading-edge technology; if
you're riding the next wave, you may as well take full advantage of it-there is
a wealth of middleware Java tools that will allow you to easily read and write
files from and to a remote web server or file server.

Some Java developers consider this strict restriction on file access unnecessarily
draconian-they'd seek a compromise where at least some access to some local
files is possible. The types of suggested compromises are things like:

• Untrusted classes should be allowed access to the system's temporary directory.

The problem with this is that other programs might have left sensitive data in
that directory. If I'm editing salary data on my machine, I wouldn't want some
untrusted class to come along and see the edit log that exists in the system's
temporary directory.

• A single directory could be set up for the exclusive use of untrusted classes.

This does not prevent a bad untrusted class from accessing, erasing, or cor­
rupting the data files of other untrusted programs.

• An individual directory could be set up for each applet (or for each package
of un trusted classes) .

This would work in theory, but such a scheme would be unwieldy. It also
leaves potential attack routes for an applet. On the Internet, one site can pre­
tend to be another site by engaging in IP spoofing (see the discussion in "The
Need for Authentication" in Chapter 7); applets from such sites could read
data from the original applet. In addition, an applet could still fill the avail­
able disk space.

• The user could be prompted before an untrusted class accessed a file.

This issue is less black-and-white. On the one hand, there's a persuasive argu­
ment that computer users are pretty intelligent, and they'll know whether or
not a program should be allowed to access the file in question. In the real
world, however, there are users who will not pay enough attention to such
prompts and always grant access, to the detriment of their system's security.
You may not have much sympathy for users on home computers who grant an

Page 89 of 482

USING THE SECURITY MANAGER 73.

applet access to the data file of their financial package, but the user on a cor­
porate or campus network who allows an applet access to his or her password
file harms other users of the network as well.

Nonetheless, as with all policies enforced by the security manager, it is up to the
author of a particular program (or web browser) to establish the policy the secu­
rity manager will enforce. Hence, while Netscape Navigator, Internet Explorer,
and HotJava all have a default policy that prevents untrusted classes from all file
access, some of them allow the user to configure a different policy. HotJava and
the JDK's appletviewer, for example, allow the user to create a set of directories
in which applets can read and write files, and some versions of Internet Explorer
allow the user to grant file access to all untrusted classes.

There is one exception to the rule about file access: applets that are loaded from
a CODEBASE that specifies file as its protocol (e.g., file:/myapplets) are allowed to
read (but not create or delete) files in the CODEBASE directory (and any of its
subdirectories). This is required to allow the applet to load other r~sources­
audio files, images, as well as other classes-in the same manner in which it would
load those resources through an HTTP-based URL.

If you carefully considered the list of methods in the tables above, you were prob­
ably surprised not to see an obvious method to check: the actual read () or
write () methods of any of the File classes. The assumption here is that a trusted
class is responsible for determining the security policy associated with any partic­
ular File object; if the trusted class decides that it is okay for an untrusted class to
perform I/0 on a particular File*Stream object, then it is free to deliver that
object to the untrusted class, and the untrusted class is free to read or write to that
object. This implementation also allows for much greater efficiency: if the
program had to check with the security manager every time it called the read()

or write () methods, I/ 0 performance would drastically suffer.

Methods Relating to Network Access

Network access in Java is always accomplished by opening a network socket,
whether directly through the Socket class or indirectly through another class like
the URL class. An untrusted class can only (by default) open a socket to the
machine from which it was actually downloaded; typically, this is the location
given by the CODEBASE tag in the HTML for the browser page containing the
applet or-in the absence of such a tag-the web server for the page. In either
case, the machine in question is a web server, so we'll use that terminology in this
discussion.

This restriction on untrusted classes is designed to prevent two types of attack.
The first attack concerns a rogue applet using your machine for malicious
purposes by connecting to a third machine over the network. The canonical

Page 90 of 482

74 CHAPTER 4: THE SECURJTY MANAGER CLASS

description of this attack is an applet that connects to the mail server on someone
else's machine and sends people on that machine offensive email from your
address. There are more severe attacks possible with this technique, however­
such an applet could use a connection from your machine to break into a third
computer; auditors on that third computer will think the break-in attempts are
coming from you, which can cause you all sorts of legal problems.

·The second sort of attack concerns· network information on your local network
that you might not want to be broadcast to the world at large. Typically,
computers at corporations or campuses sit behind a firewall so that users on the
Internet cannot access those computers (see Figure 4-1). The firewall allows only
certain types of traffic through (e.g., HTTP traffic), so that users on the local
network can access the Internet, but users on the Internet cannot glean any infor­
mation about the local network.

Payroll data on
this machine

Figure 4-1. A typical firewall configuration

Now consider what happens if an applet downJoaded onto a machine on the local
network can connect to other machines on the local network. This allows the
applet to gather all sorts of information about the local network topology and
network services and to send that information (via HTTP, so that it will pass
through the firewall) back out onto the Internet. Such an opportunity for corpo­
rate spying would be very tempting to would-be hackers. Worse, if the applet had
access to arbitrary network services, it could break into the local HR database and
steal employee data, or it could break into a network file server and steal corpo­
rate documents. Hence, applets (and untrusted classes in general) are prevented
from arbitrary network access.

Page 91 of 482

USING THE SECURITY MANAGER

The Real Reason Why Network Access Is Limited
Just when you realized that your applet couldn't access files in the new 'network
computing model and thus had to send all its data over the network comes this
restriction oflimited network access. ,

But even if this restriction didn't exist inJava, the configuration of many sites
dictates a harsher restriction for network access anyway-the corporate or
campus firewall. The firewall often restricts all traffic between the applet's web
server and the user's browser to a set of protocols and, possibly, a set of hosts.
If you're going to write really effective network applets with Java, you have to
take this into account anyway-which means that all your network access really
needs to use something called HTTP-tunneling to work.

HTTP-tunneling means that all requests between the applet and the network
service running on the web server are encapsulated to look like normal HTTP
(web browsing) traffic. This allows the data to go through firewalls that filter
out traffic based on protocol. And by only connecting back to the web server,
the data will pass through firewalls that filter out traffic based on the destina­
tion. There are a variety of well-known techniques for accomplishing HTTP­
tunneling via the URL class, and RMI gives you such tunneling transparently.

So, once again, if you're going to write applets that take advantage of the full
power of Java, Java's network security restrictions won't get in your way-you'll
have worked around them anyway.

75

Network sockets can be logically divided into two classes: client sockets and .server
sockets. A client socket is responsible for initiating a conversation with an existing
server socket; server sockets sit idle waiting for these requests to come from client
sockets. Untrusted classes are often restricted from creating server sockets.
Normally, this is not a problem: since an applet can only talk to its web server, it
could only answer requests from that machine-and the applet can already open
a connection to that machine at will; there's no algorithmic or logistic reason why
an operation between the applet and the web server cannot always start with the
applet as the client. In situations where the applet is allowed to open client
sockets to other machines, however, this reasoning doesn't apply, and the ability
to create a server socket is often granted in such situations (and, sometimes, in all
situations).

The security manager uses the following methods to check network access:

public void checkConnect(String host, int port)
public void checkConnect(String host, int port, Object context)

Check if the program can open a client socket to the given port on the given
host. The second form of this method is never called directly from the Java API.

Page 92 of 482

76 CHAPTER 4: THE SECURITY MANAGER CLASS

public void checkListen(int port)

Check if the program can create a server socket that is listening on the given
port.

public void checkAccept(String host, int port)

Check if the program can accept (on an extstmg server socket) a client
connection that originated from the given host and port.

public void checkMulticast(InetAddress addr)

public void checkMulticast(InetAddress addr, byte ttl)

Check if the program can create a multicast socket at the given multicast
address (optionally with the given time-to-live value).

public void checkSetFactory()

Check if the program can change the default socket implementation. When
the Socket class is used to create a socket, it gets a new socket from the socket
factory, which typically supplies a standard TCP-based socket. However, a
socket factory. could be used to supply SSL-based sockets, or any other socket
variant.

The instances where these methods are used and the rationale for such uses are
shown in Table 4-2.

Table 4-2. Security Manager Methods to Protect Network Access

Method

checkConnect ()

checkConnect ()

checkListen ()

checkMul ticast ()

checkAccept ()

Called by

DatagrarnSocket.send()
DatagrarnSocket.receive() ~
MulticastSocket.send()
Socket()

DatagrarnSocket.getLocalAddress()
InetAddress.getHostName()
InetAddress.getLocalHost()
InetAddress . getAllByName ()

DatagrarnSocket()
MulticastSocket()
ServerSocket ()

DatagrarnSocket. send ()
DatagramSocket.receive()
MulticastSocket.send()
MulticastSocket.receive()
MulticastSocket.joinGroup()
MulticastSocket.leaveGroup()

ServerSocket.accept()
DatagramSocket.receive() Jt

Rationale

Test if the untrusted
class can create a
client-side connection

Test if the untrusted
class can see any hosts
on the local network

Test if the untrusted
class can create a
server-side socket

Test if the untrusted
class can operate on a
multicast socket

Test if the untrusted
class can accept a
server connection

Page 93 of 482

USING THE SECURITY MANAGER

Table 4-2. Security Manager Methods to Protect Network Access (continued)

Method

checkSetFactory()

checkSetFactory()

Called by

SerVerSocket.setSocketFactory()
Socket.setSocketFactory()
URL.setURLStreamHandlerFactory()
URLConnection.setContentHandler­
Factory()
RMI.setSocketFactory()

HttpURLConnection.setFollowRedi­
rects()

Rationale

Test if the untrusted
class can alter the
manner in which all
sockets are created

Test if the untrusted
class can change redi­
rection behavior

77

Some notes are in order. As in the case with file access, these methods sometimes
check operations that are logically different from a programming view, but are
essentially the same thing at a system view. Hence, the checkConnect () method
not only checks the opening of a socket but also the retrieval of hostname or
address information (on the theory that to know the name of a host, you need to
be able to open a socket to that host). This last test may seem somewhat odd­
under what circumstances, you might wonder, should an untrusted class not be
able to know the name or address of the machine on which it is running? Recall
that we want to prevent the outside world from knowing our network topology;
this includes the name and address of the user's machine as well.*

There was a change in the default security policy supplied in 1.0 and in 1.1 with
respect to untrusted classes and server sockets (either instances of class Server­
Socket or datagram sockets that received data from any source). In 1.0, untrusted
classes were typically not allowed to create a server socket at all, which meant that
the checkListen () and checkAccept () methods always threw a security excep­
tion when an applet attempted such an operation. In 1.1 and later, untrusted
classes are allowed to create a server socket so long as the port number of that
socket is greater than the privileged port number on the machine (typically
1024). Note too that the receive() method of the DatagramSocket class in 1.2
now calls the checkAccept () rather than the checkConnect () method.

Some applet publishers consider it to be very inconvenient to have to put both
the applet and any network services that the applet requires on the same machine
(the applet's web server). When you're configuring a network of machines, it
certainly is more natural to have a database server that is separate from the web
server; the scaling and flexibility that such separation gives is the cornerstone of
network computing. Hence, an applet that is running on the browser shown in

* On the other hand, there's a good chance that the outside web server already knows that information,
since our browser sent along a hostname and other information when it retrieved the file to begin with.
If our request passed through a firewall or proxy server, there's a chance that some of this information
was prevented from passing to the outside web server, but that's not necessarily the case either.

Page 94 of 482

78 CHAPTER 4: THE SECURITY MANAGER CLASS

Figure 4-2 would consider it more convenient to access the database server
directly. Sites with this configuration may therefore attempt to convince you to
adjust your browser's network connection policy so their applet will work in this
multitiered environment.

Figure 4-2. An untrusted class cannot directly connect to the database server

However, it's relatively trivial for applet publishers to set up a proxy service on
their web server that forwards requests to the third machine, so that the applet
only connects to the web server while the proxy service can connect to the third
machine (e.g., the database server). Such a configuration may not be ideal­
there's still a lot of traffic on the web server going through the proxy-but it's an
effective compromise.

The requirement to use a proxy should not prove onerous to developers, either;
it's common for network software providers to deliver such proxies with their Java
code. Many JDBC-driver vendors, for example, provide such a proxy HTTP server
that their JDBC drivers can access. Writing a simple proxy from scratch for other
services is well within the grasp of good Java programmers.

Nonetheless, if in your view the reward of reduced network traffic outweighs the
security considerations behind preventing arbitrary network access by untrusted
classes, the Sun browsers (HotJava and appletviewer) and some versions of
Internet Explorer allow you to configure them so that untrusted classes can
connect to any host on the network.

The checkSetFactory () method of the security manager class is responsible for
arbitrating the use of several low-level aspects of Java's network classes. Most of the
tests made by this method have to do with whether or not the untrusted class is
allowed to create some variety of socket factory. Socket factories are classes that are

Page 95 of 482

USING THE SECURITY MANAGER 79

responsible for creating sockets that implement a particular interface while having
a nonstandard feature: for example, a Java server might want to encrypt all of its
traffic, so it would create and i~stall a socket factory that creates only SSL-enabled
sockets. Predictably, untrusted classes cannot change the socket factory in use.

This method is also used to determine whether the Java program will automati­
cally follow redirect messages when opening a URL. When a Java program opens
a URL, the server to which it is connected may send back a redirect response (an
HTTP response code of 3xx). Often, browsers follow these redirects transparently
to the user; in Java, the programmer has the ability to determine ifthe redirection
should automatically be followed or not. An untrusted class is not able to change
whether redirection is on or off. The HttpURLConnection class that uses this
method is abstract, so the actual behavior of this class may be overridden in a
particular implementation.

Methods Protecting the Java Virtual Machine

There are a number of methods in the SecurityMan.ager class that protect the
integrity of the Java virtual machine and the security manager. These methods
fence in untrusted classes so that they cannot circumvent the protections of the
security manager and the Java API itself. These methods are summarized in
Table 4-3.

Table 4-3. Security Manager Methods Protecting the Virtual Machine

Method

checkCreateClass­
Loader()

checkExec ()

checkExec ()

checkLink ()

checkExi t ()

checkExi t ()

checkPerrnission() jt

Called by

ClassLoader ()

Runtime. exec ()

System.setin() i:f
System. setOut() i:f
System. setErr () i:f
Runtime .load ()

Runtime.loadLibrary()

Runtime. exit ()

Runtime.runFinalizers­

OnExit()

many

Rationale

Class loaders are protected
since they provide informa­
tion to the security manager

Other processes might
damage the user's machine

Don't let important messages
be redirected away from the
user

Don't let untrusted code
import native code

Don't let untrusted code halt
the virtual machine

Don't let untrusted code
change if finalizers are run

See if the current thread has
been granted a particular
permission

Page 96 of 482

80 CHAPTER 4: THE SECURJTY MANAGER CLASS

public void checkCreateClassLoader()

The distinction we keep mentioning between trusted and untrusted classes is
often based on the location from which the class was loaded (i.e., if the class
came from the file system or from the network). As a result, the class loader
we examined· in Chapter 3 takes on an important role, since the security
manager must ask the class loader where a particular class came from. The
class loader is also responsible for marking certain classes as signed classes.
Hence, an untrusted class is typically not allowed to create a class loader. This
method is only called by the constructor of the ClassLoader class: if you can
create a class loader (or if you obtain a reference to a previously created class
loader), you can use it.

public void checkExec(String cmd)

This method is used to prevent execution of arbitrary system commands by
untrusted classes-an untrusted class cannot, for example, execute a separate
process that removes all the files on your disk.* In addition, this method is
used to test whether a Java program is able to redirect the standard input,
output, or error streams to another source-with the predictable result that
untrusted classes are not allowed to perform such redirection.

In Java 1.2, this method is no longer used to determine whether the standard
streams may be redirected. Redirection of those streams in 1.2 is determined
instead by the checkPermission () method.

public void checkLink(String lib)

System commands aren't the only code that is out of reach of the security
manager-any native (C language) code that is executed by the virtual
machine cannot be protected by the security manager (or, in fact, by any
aspect of the Java sandbox). Native code is executed by linking a shared
library into the virtual machine; this method prevents an untrusted class from
linking in such libraries.

It may seem as if this check is very important. It is, but only to a point: the
programmatic binding from Java to C is such that Java code cannot just call
an arbitrary C function-the C function must have a very specialized name
that will not exist in an arbitrary library. So any C function that the untrusted
class would like to call must reside in a library that you've downloaded and
placed on your machine-and if the program's author can convince you to
do that, then you don't really have a secure system anyway, and the author
could find a different line of attack against you.

* The separate process would not need to be written in java, of course, so there would be no security
manager around to enforce the prohibition about deleting files.

Page 97 of 482

USING THE SECURITY MANAGER 81

public void checkExit(int status)
Next, there is the continuing processing of the virtual machine itself. This
method prevents an untrusted class from shutting down the virtual machine.
This method also prevents an untrusted class from changing whether or not
all finalizers are run when the virtual machine does exit. This means that an
untrusted class-and in particular, an applet-cannot guarantee that all the
finalize methods of all the objects will be called before the system exits (which
cannot be guaranteed in any case, since the browser can be terminated from
the operating system without an opportunity to run the finalizers anyway).

public void checkPermission(Permission p) *
public void checkPermission(Permission p, Object context) *

Check to see if the current thread has the given permission. This method is at
the heart of the access controller, which we'll explain in Chapter 5, where
we'll also list when it is called. The second form of this method is never used
by the Java API. The default for untrusted classes is to be given only a few
explicit permissions, which we'll also list in Chapter 5.

Methods Protecting Program Threads

Java depends heavily on threads for its execution; in a simple Java program that
uses images and audio, there may be a dozen or more threads that are . created
automatically for the user (depending on the particular implementation of the
VM). These are system-level threads responsible for garbage collection, the
various input and output needs of the graphical interface, threads to fetch
images, etc. An untrusted class cannot manipulate any of these threads, because
doing so would prevent the Java virtual machine from running properly, affecting
other applets and possible even the browser itself.

The security manager protects threads with these methods:

public void checkAccess(Thread g)
Check if the program is allowed to change the state of the given thread.

public void checkAccess(ThreadGroup g)
Check if the program is allowed to change the state of the given thread group
(and the threads that it holds).

public ThreadGroup getThreadGroup()
Supply a default thread group for newly created threads to belong to.

Table 4-4 shows the methods of the Java API that are affected by the policy set in
the checkAccess () methods.

Page 98 of 482

82 CHAPTER 4: THE SECURITY MANAGER CLASS

Table 4-4. Security Manager Methods Protecting Thread Access

Method

checkAccess(Thread g)

checkAccess(Thread­
Group g)

getThreadGroup ()

Called by

Thread. stop ()
Thread. interrupt()
Thread. suspend ()
Thread. resume ()
Thread.setPriority()
Thread. setName ()
Thread.setDaemon()
Thread.setClassLoader() jt

Thread()

ThreadGroup ()
ThreadGroup.setDaemon()
ThreadGroup.setMaxPriority()
ThreadGroup.stop()
ThreadGroup.suspend()
ThreadGroup.resume()
ThreadGroup.destroy()

ThreadGroup. interrupt () *
Thread()

Rationale

Untrusted classes may
only manipulate
threads that they have
created

Untrusted classes can
only affect thread
groups that they have
created

Threads ofunu·usted
classes must belong to
specified groups

Most of the rationale behind these methods is straightforward: an untrusted class
can manipulate its own threads, and it can manipulate threads that are in its
thread group. This prevents an untrusted class from suspending the threads
responsible for loading images; for example, those threads were not created by
the untrusted class, and so the untrusted class cannot affect them.

Threads in a Java program are organized into a hierarchy (see Figure 4-3). In
theory, the policy of the security manager should also apply to this hierarchy such
that threads may only manipulate threads that are below them in the hierarchy.
Hence, the calculating thread really should not be able to manipulate the state of
the I/ 0 reading thread-regardless of whether the calculating thread is
executing trusted code or untrusted code. Similarly, the processing thread ought
to be able to manipulate the state of the I/ 0 reading thread even if the code to
do so is in an untrusted class, since that implies that the untrusted class created
the processing thread and the I/ 0 thread anyway.

In practice, however, it does not work that way in Java 1.1: in that release, by
default each applet is given an individual thread group, and the threads within
that group can manipulate other threads within that group without respect to any
hierarchy. In Java 1.2, the default is for the thread hierarchy to operate as
expected.

Page 99 of 482

USING THE SECURI1Y MANAGER 83

Figure 4-3. A java thread hierarchy

Unlike the other public methods of the security manager, the getThreadGroup ()
method is not responsible for deciding whether access to a particular resource
should be granted or not, and it does not throw a security exception under any
circumstances. The point of this method is to determine the default thread group
that a particular thread should belong to. When a thread is constructed and does
not ask to be placed into a particular thread group, the getThreadGroup ()
method of the security manager is used to find a thread group to which the
thread should be assigned. By default, this is the thread group of the calling
thread, but a security manager can implement different logic so that the thread
hierarchy we've described above becomes possible.

The getThreadGroup() method is only present in Java 1.1 and subsequent
releases. In Java 1.0 (and browsers built on that release), thread security was gener­
ally non-existent: any thread could manipulate the state of any other thread, and
applets weren't able to create their own thread groups. This additional method
provided the infrastructure by which security managers built in Java 1.1 and later
releases can implement the security policy that we've described here.

Methods Protecting System Resources

The Java-enabled browser has access to certain system-level resources to which
untrusted classes should not be granted access. The next set of methods (outlined
in Table 4-5) in the Securi tyManager class handles those system-level resources.

Page 100 of 482

84 CHAPTER 4: THE SECURITY MAJ\"AGER CLASS

Table 4-5. SecUTity Manager Protections of System Resources

Method

checkPrintJobAccess()

checkSystemClip­

boardAccess()

checkAwtEventQueue­

Access ()

checkPropertiesAc­

cess ()

checkPropertyAc­

cess ()

checkPropertyAc­

cess ()

checkPropertyAccess()

checkTopLevelWindow()

Called by

Toolkit.getPrintJob()a

Toolkit.getSystem­

Clipboard()

Event­

Queue.getEvent­

Queue()

System.getProper­

ties ()

System.setProper­

ties ()

System.getProp­

erty()

Locale.setDefault()

Font. getFont ()

Window()

Rationale

Untrusted classes can't
initiate print jobs

Untrusted classes can't
read the system clipboard

Untrusted classes can't
manipulate Window
events

Untrusted classes can't
see or set system proper­
ties

Untrusted classes can't
get a particular system
property

Can't change the locale
unless the
user. language prop­
erty can be read

Can't get a font unless its
property can be read

Windows created by
untrusted classes should
have an indentifying
banner

a The Toolkit class is abstract and hence may vary by implementation; it's assumed that the implemen­
tation on a particular platform will call the correct method of the security manager.

public void checkPrintJobAccess()

Untrusted classes are not allowed access to the user's printer. This is another
example of a nuisance protection; you wouldn't want a rogue applet sending
reams of nonsense data to your printer. This method is never actually called
by the standard Java API-it's up to the platform-specific implementation of
the AWT toolkit to call it.

Note that this doesn't prevent the user from initiating a print action from the
browser-it only prevents an applet from initiating the print action. The
utility of such a check is subtle: the user always has to confirm the print dialog
box before anything is actually printed (at least with the popular implementa­
tions of the A WT toolkit). The only sort of scenario that this check prevents is
this: the user could surf to www.EvilSite.organd then to www.sun.com; although
the applets from EvilSite are no longer on the current page, they're still active,
and one of them could pop up the print dialog. The user will associate the

Page 101 of 482

US!i'\G THE SECURITY M.At'IAGER 85

dialog with the www.sun.com page and presumably allow it to print-and when
the EvilSite applet then prints out offensive material, the user will blame the
Sun page.

public void checkSystemClipboardAccess()
The Java virtual machine contains a system clipboard that can be used as a
holder for copy-and-paste operations. Granting access to the clipboard to an
untrusted class runs the risk that a class will come along, examine the clip­
board, and find contents a previous program left there. Such contents might
be sensitive data that the new class should not be allowed to read; hence,
untrusted classes are prevented from accessing the system clipboard. This
restriction applies only to the system clipboard: an untrusted class can still
create its own clipboard and perform its own copy-and-paste operations to
that clipboard. Untrusted classes can also share non-system clipboards
between them.

This method is also never actually called by the Java API; it's up to the plat­
form-specific implementation of the A Wf toolkit to call it.

public void checkAwtEventQueueAccess()
Similarly, the Java virtual machine contains a system event queue that holds
all pending AWf events for the system. An untrusted class that had access to
such a queue would be able to delete events from the queue or insert events
into the queue. This protects against the same sort of scenario we saw for
printing-an applet on a previously visited page could insert events into the
queue which would then be fed to an appleton the existing page.

Since this means that an untrusted class cannot get the system event queue, it
is unable to call any of the methods of the EventQueue class-specifically the
postEvent () and peekEvent () methods. Note, however, that an applet may
still post events to itself using the dispatchEvent () method of the Component
class.

public void checkPropertiesAccess()
public void checkPropertyAccess(String key)

The Java virtual machine has a set of global (system) properties that contains
information about the user and the user's machine: login name, home direc­
tory, etc. Untrusted classes are generally denied access to some of this
information in an attempt to limit the amount of spying that an applet can
do. As usual, these methods only prevent access to the system properties; an
untrusted class is free to set up its own properties and to share those proper­
ties with other classes if it desires.

Note that security managers are typically written to allow access to some
system properties based on the name of the property.

Page 102 of 482

86 CHAPTER 4: THE SECURITY Mili'lAGER CLASs

public boolean checkTopLevelWindow(Object window)

Java classes, regardless of whether they are trusted or untrusted, are normally
allowed to create top-level windows on the user's desktop. However, there is a
concern that an untrusted class might bring up a window that looks exactly
like another application on the user's desktop and thus confuse the user into
doing something that ought not be done. For example, an applet could bring
up a window that looks just like a telnet session and grab the user's password
when the user responds to the password prompt. For that reason, top-level
windows that are created by untrusted classes have some sort of identifying
banner on them.

Note that unlike other methods in the security manager, this method has
three outcomes: if it returns true, the window will be created normally; if it
returns false, the window will be created with the identifying banner.
However, this method could also throw a security exception (just like all the
other methods of the security manager class) to indicate that the window
should not be created at all. However, all the popular security manager imple­
mentations allow an untrusted class to bring up a window, subject to the
identifying banner.

Methods Protecting Security Aspects

There are a number of methods in the security manager that protectJava's idea of
security itself. These methods are summarized in Table 4-6.

Table 4-6. Security Manager Methods Protecting]ava Security

Method

checkMernberAc­

cess ()

checkPackageAc­

cess ()

Called by

Class.getFields()

Class.getMethods()

Class.getConstructors()

Class.getField()

Class.getMethod()

Class.getConstructor()

Class.getDeclaredClasses()

Class.getDeclaredFields()

Class.getDeclaredMethods()

Class.getDeclaredConstruc­

tors ()

Class.getDeclaredField()

Class.getDeclaredMethod()

Class.getDeclardCon­

structor()

not called

Rationale

Untrusted classes can only
inspect public information
about other classes

Check if the untrusted class
can access classes in a
particular package

Page 103 of 482

USING THE SECURITY Mru'<AGER 87

Table 4-6. Security Manager Methods Protectingjava Security (continued)

Method

checkPackageDef­

inition ()

checkSecurityAc­

cess ()

Called by

not called

Identity.setPublicKey()

Identity.setinfo()

Identity.addCertificate()

Identity.removeCertificate()

IdentityScope.setSystem­

Scope ()

Provider.clear()a

Provider .put ()

Provider.remove()

Security.insertProviderAt()

Security.removeProvider()

Security.setProperty()

Signer.getPrivateKey()

Signer.setKeyPair()

Identity.toString()b

Security.getProviders()

Security.getProvider()

Security.getProperty()

a The provider methods only call the security manager in 1.2.

Rationale

Check if the untrusted class
can load classes in a partic­
ular package

Untrusted classes cannot
manipulate security
features

b The last four methods in this list no longer call the security manager in 1.2.

public void checkMemberAccess(Class clazz, int which)

In Chapter 2, we examined the importance of the access modifiers to the
integrity of Java's security model. Java's reflection API allows programs to
inspect classes to determine the class's methods, variables, and constructors.
The ability to access these entities can impact the memory integrity that Java
provides.

The reflection API is powerful enough that, by inspection, a program can
determine the private instance variables and methods of a class (although it
can't actually access those variables or call those methods). Untrusted classes
are allowed to inspect a class and find out only about its public variables and
methods.

public void checkSecurityAccess(String action)

In the last half of this book, we'll be examining the details of the Java security
package. This package implements a higher-order notion of security,
including digital signatures, message digests, public and private keys, etc. The
security package depends on this method in the security manager to arbitrate
which classes can perform certain security-related operations. As an example,

Page 104 of 482

88 CHAPTER 4: THE SECURITY Mfu'1AGER CLASS

before a class is allowed to read a private key, this method is called with a
string indicating that a private key is being read.

Predictably, an untrusted class is not allowed to perform any of these security­
related operations, while a trusted class is.* Although the string argument
gives the ability to distinguish what operation is being attempted, that argu­
ment is typically ignored in present implementations. As we discuss the
features of the security package itself, we'll examine more in depth how the
security package uses this method.

public void checkPackageAccess(String pkg)

public void checkPackageDefinition(String pkg)

These methods are used in conjunction with a class loader. When a class
loader is asked to load a class with a particular package name, it will first ask
the security manager if it is allowed to do so by calling the checkPackageAc­
cess () method. This allows the security manager to make sure that the
untrusted class is not trying to use application-specific classes that it shouldn't
know about.

Similarly, when a class loader actually creates a class in a particular package, it
asks the security manager if it is allowed to do so by calling the checkPackage­
Definition() method. This allows the security manager to prevent an
untrusted class from loading a class from the network and placing it into, for
example, the java.lang package.

Note the distinction between these two methods: in the case of the check­
PackageAccess () method, the question is whether the class loader can
reference the class at all-e.g., whether we can call a class in the sun package.
In the checkPackageDefinition() method, the class bytes have been loaded,
and the security manager is being asked if they can belong to a particular
package.

By default, these methods are never called. If you write a class loader, you
should make sure that you call these methods as we indicated in Chapter 3.

That's all the methods of the security manager class that are used by the Java API
. to perform checks on certain operations. There are two more public methods of

the SecurityManager class that we have not examined in this section; even
though those methods are public, they are generally only used when you imple­
ment your own security manager, so we will defer their discussion. Remember
that the discussion we followed in this chapter about the behavior of the system is

* This is not quite true: most browsers (including Netscape Communicator 4.0 and Internet Explorer
4.0) do not implement the Java security package at all. For classes loaded over the network, the effect is
the same: you cannot use the methods of the security package. In these browsers, a trusted class in the
browser's CLASSPATH, however, is also unable to use the security package.

Page 105 of 482

SUMMARY 89

based on a default set of behaviors exhibited by popular Java-enabled browsers­
but since each browser is free to implement its own security policies, your partic­
ular browser may have a variation of the features we've just discussed.

Summary
In this chapter, we've had an overview of the most commonly known feature of
Java's security story: the security manager. The security manager is responsible for
arbitrating access to what we normally consider operating system features-files,
network sockets, printers, etc. The goal of the security manager is to 'grant access
to each class according to the amount of trust the user has in the class. Often, that
means granting full access to trusted classes (that is, classes that have been loaded
from the filesystem) while limiting access when the access is requested from an
untrusted class (that is, a class that has been loaded from the network).

Although the security manager is the most commonly known feature of Java's secu­
rity story, it's often misunderstood: there is no standard security manager among
Java implementations, and Java applications, by default, have no security manager
at all. Even with the popular Java-enabled browsers, the user often has latitude in
what protections the security manager will be asked to enforce.

We examined in this chapter all the times when the security manager is asked to
make a decision regarding access; such decisions range from the expected file
and network access to more esoteric decisions, such as whether a frame needs a
warning banner or what thread group a particular thread should belong to. This
gave us a basic understanding of how the security manager can be used to enforce
a specific policy, and the issues involved when defining such a policy. This
knowledge will be used as a basis in the next few chapters, when we'll look at how
to implement our own security manager.

Page 106 of 482

The Access Controller

In this chapter:
• The CodeSource Class

• Permissions

• The Policy Class

• Protection Domains

• ·The AccessController
Class

• Guarded Objects

In this chapter, we're going to examine Java's access controller. While the security
manager is the key to the security model of the Java sandbox, the access controller
is the mechanism that the security manager actually uses to enforce its protec­
tions. The security manager may be king, but the access controller is really the
power behind the throne.

The access controller is actually somewhat redundant. The purpose of the security
manager is to determine whether or not particular operations should be permitted
or denied. The purpose of the access controller is really the same: it decides
whether access to a critical system resource should be permitted or denied. Hence,
the access controller can do everything the security manager can do.

The reason there is both an access controller and a security manager is mainly
historical: the access controller is only available in Java 1.2 and subsequent
releases. Before the access controller existed, the security manager had to rely on
its internal logic to determine the security policy that should be in effect, and
changing the security policy required changing the security manager itself.
Starting with 1.2, the security manager is able to defer these decisions to the
access controller. Since the security policy enforced by the access controller can
be specified in a file, this allows a much more flexible mechanism for determining
policies. The access controller also gives us a much simpler method of granting
fine-grained, specific permissions to specific classes. That process was theoretically
possibly with the security manager alone, but it was simply too hard to implement.

But the large body of pre-1.2 Java programs dictates that the primary interface to
system security-that is, the security manager-cannot change; otherwise, existing
code that implements or depends on the security manager would become obso­
lete. Hence, the introduction of the access controller did not replace the security

90

Page 107 of 482

THE ACCESS CONTROLLER 91

manager-it supplemented the security manager. This relationship is illustrated
in Figure 5-l. Typically, an operation proceeds through the program code into
the Java API, through the security manager to the access controller, and finally
into the operating system. In certain cases, however, the security manager may
bypass the access controller. And native libraries are still outside the domain of
either the security manager or the access controller (although the ability to load
those libraries may be restricted, as we've seen).

Program Code

Figure 5-1. Coordination of the security manager and the access controller

Program-Specific
Resources

The access controller plays another role in this picture as well: it allows a program
to determine that access to any arbitrary resource must require explicit permis­
sion. A program that accesses employee payroll information from a corporate
database may want to assign permission to each employee to access only his or her
own data in the database. While global access to the database may be controlled
by the security manager (e.g., because it's necessary to open a file or socket to get
to the database), access to the particular record can be controlled by the access
controller alone. Because the access controller (unlike the security manager) is
easily extensible, it is simple for a program to use the same security framework to
access both the general resources of the operating system and any specific
resources of the program.

Keep in mind, however, that the core Java API never calls the access controller
unless a security manager is in place, and that the access controller will not be
initialized until it is called. If you call it directly for a program-specific resource, it
will initialize itself automatically. But by default, Java applications run without a
security manager will not use the access controller. We'll discuss later in this
chapter and in Chapter 6 the use of the -usepolicy flag to install a security
manager into the application, which will initialize the access controller for us.

Page 108 of 482

92 CHAPTER 5: THE ACCESS CONTROLLER

In this chapter, then, we'lllook into the access controller, including its implemen­
tation and its use. This will give us the necessary knowledge of how the access
controller works, how it can be used to change the security of a Java program
without requiring code changes, and how it is used to implement the security
manager. This last point will also give us the necessary information to write our
own security manager. In Java 1.2, there are only rare cases where such a task is
necessary.

The access controller is built upon four concepts:

• Code sources: An encapsulation of the location from which certain Java classes
were obtained

• Permissions: An encapsulation of a request to perform a particular operation

• Policies: An encapsulation of all the specific permissions that should be
granted to specific code sources

• Protection domains: An encapsulation of a particular code source and the per­
missions granted to that code source

Before we examine the access controller itself, we'll look each of these building
blocks.

The CodeSource Class
When we examined class loaders, we introduced the notion of a code source. A
code source is a simple object that merely reflects the URL from which a class was
loaded and the keys (if any) that were used to sign that class. The SecureClass­
Loader class (and its subclasses) are responsible for creating and manipulating
these code source objects.

The CodeSource class (java.security.CodeSource) has a few interesting
methods:

public CodeSource(URL url, PublicKey key[])*
Create a code source object for code that has been loaded from the specified
URL. The optional array of keys is the array of public keys that have signed
the code that was loaded from this URL. These keys are typically obtained
from reading a signed JAR file, which we'll show in Chapter 12; if the code
was not signed, this argument should be null.

public boolean equals(Object o) *
Two code source objects are considered equal if they were loaded from the
same URL (that is, the equals () method for the URL of the objects returns
true) and the array of keys is equal (that is, a comparison of each key in the
array of keys will return true).

Page 109 of 482

PERMISSIONS 93

public final URL getLocation() *
Return the URL that was passed to the constructor of this object.

public final PublicKey[] getKeys() *
Return a copy of the array of keys that was passed to the constructor of this
object. The original keys are not returned so that they cannot be modified
accidentally (or maliciously).

That's the extent of the CodeSource class. When we discussed the SecureClass­
Loader class in Chapter 3, we showed that the defineClass () method expected a
CodeSource object as a parameter. It's up to the implementor of the Secure­
ClassLoader to provide this object. In the URLClassLoader class, this happens
automatically, based on the URL where the class was actually located. By default,
each URL in the URLClassLoader class will have its own distinct code source
object, so all classes that are loaded from that URL are considered to have the
same code source. This does not have to be the case (though it's much simpler);
you could have a different code source for each class, or even different code
sources for sets of classes from the same URL (although we question the wisdom
of doing that).

In Chapter 3, we obtained code source objects from the getCodeSource ()
method of the class loader source. The relationship between that method (which
requires a URL and an array of objects as parameters) and the constructor of the
code source should be fairly obvious. The advantage of the getCodeSource ()
method is that it allows each class loader to maintain a cache of code source
objects, which is more efficient than constructing a new code source object each
time one is needed. Hence, in our examples we will not construct code source
object directly.

Permissions
The basic entity that the access controller operates on is a permission object-an
instance of the Permission class (java. security. Permission). The Permission
class itself is an abstract class that represents a particular operation. The nomen­
clature here is a little misleading, because a permission object can reflect two
things. When it is associated with a class (through a code source and a protection
domain), a permission object represents an actual permission that has been
granted to that class. Otherwise, a permission object allows us to ask if we have a
specific permission.

For example, if we construct a permission object that represents access to a file,
possession of that object does not mean that we have permission to access the file.
Rather, possession of the object allows us to ask if we have permission to access
the file.

Page 110 of 482

94 CHAPTER 5: THE ACCESS CONTROLLER

An instance of the Permission class represents one specific permission. A set of
permissions-e.g., all the permissions that are given to classes signed by a partic­
ular individual-is represented by an instance of the Permissions class
(java. security. Permissions). As developers and administrators, we'll make
extensive use of these classes, so we'll need to investigate them in depth.

The Permission Class

Permissions have three properties:

A type
All permissions carry a basic type that identifies what the permission pertains
to. A permission object to access a file will have a type of FilePermission; an
object to create a window will have a type of AWTPermission; permission to
use the xyz company payroll application would have a type of
XYZPayrollPermission.

A name

All permissions have a name that identifies the specific object that a permis­
sion relates to. A FilePermission has a name that is the name of the file to
be accessed; an AWTPermission to create a window has a name of topLevel­
Window; permission to access a particular employee's payroll record would
have the name of that employee. Names are often based on wildcards, so that
a single file permission object may represent permission to access several files,
and so on.

The name of a permission is fairly arbitrary. In the case of file permissions,
the name is obviously the file. But the name of the topLevelWindow permis­
sion (among many others) is chosen by convention, and it is up to all Java
programs to adhere to that convention. This is only a concern to program­
mers when dealing with your own permission classes; as a developer you rarely
need to create permission objects for the types of permissions defined in the
Java API.

On the other hand, this naming convention is of concern to end users and
administrators, who must know the name of the permission they want to grant
to the programs they are going to run. These names must go into the policy
file (which we '11 discuss in just a bit).

Actions

Some permissions carry with them one or more actions. The presence of
these actions is dependent upon the semantics of the specific type of permis­
sion. A file permission object has a list of actions that could include read,
write, and delete; an xyz payroll permission object could have a list of actions
that includes view and update. On the other hand, a window permission does

Page 111 of 482

PERMISSIONS 95

not have an action: you either have permission to create the window, or you
don't. Actions can also be specified by wildcards. The terms used to specify a
list of actions are also arbitrary and handled by convention.

Permissions can serve two roles. They allow the Java API to negotiate access to
several resources (files, sockets, and so on). Those permissions are defined by
convention within the Java API, and their naming conventions are wholly within
the domain of the Java API itself. Hence, you can create an object that represents
permission to read a particular file, but you cannot create an object that repre­
sents permission to copy a particular file, since the copy action is not known
within the file permission class.

On the other hand, you can create arbitrary permissions for use within your own
programs and completely define both the names of those permissions as well as
the actions (if any) that should apply. If you are writing a payroll program, for
example, you could create your own permission class that uses the convention
that the name of the permission is the employee upon whose payroll information
you want to act; you could use the convention that the permissible actions on the
payroll permission are view and update. Then you can use that permission in
conjunction with the access controller to allow employees to view their own
payroll data and to allow managers to change the payroll data for their employees.

We'll look at both of these cases, starting with the classes that are provided within
the Java API itself. These classes are used by the Java API (and in particular, by the
security manager) to protect access to certain resources in ways that are fairly intu­
itive, given our knowledge of the security manager (but we'll examine that
interaction in detail later).

Permissions of the Java API

There are 11 standard permissions in the Java API, each of which is implemented
as a class:

1. The FilePerrnission class (java. io. FilePerrnission)

This class represents permissions for files. This class implements two wildcard
patterns for filenames: an asterisk matches all files in a given directory, and a
hyphen matches all files that reside in an entire directory hierarchy. Valid
actions for file permissions are read, write, delete, and execute.

File permissions must be constructed with their platform-specific name.
Hence, /myclasses/xyz is a valid name for a file permission on a Unix system,
but not on a Macintosh (where an equivalent name might be
System Disk:myclasses:xyz). When these strings are specified programmatically,
they are not too difficult to construct (using the file separator property);

Page 112 of 482

96 CHAPTER 5: THE ACCESS CONTROLLER

when these strings need to be specified in an external file, an appropriate
syntax must be used.

Keep in mind the difference between an asterisk and a hyphen: an asterisk
only traverses a single directory, while a hyphen traverses an entire filesystem.
Hence /myclasses/* will not include /myclasses/xyz/HRApplet.class, but /my­

classes/- will. A single asterisk will access all files in the current directory, and a
single hyphen will access all files in the current directory and its
subdirectories.

If you want to access all files on a particular machine, you specify the special
token <<ALL FILES>>.

A FilePennission object is constructed by providing the name of the file and
a list of actions on that file:

FilePermission p1
FilePerrnission p2
FilePerrnission p3

new FilePermission("-", "execute"};
new FilePerrnission("/rnyclasses/*", "read, write"};
new FilePermission("<<ALL FILES>>", "read"};

Here, pl represents permission to execute all files that are in the filesystem
hierarchy under the current directory, p2 represents permission to read and
write all files that exist in the directory /myclasses, and p3 represents permis­
sion to read all the files on the machine.

2. The SocketPennission class (java. net. SocketPennission)

This class represents permissions to interact with network sockets. The name
of a socket permission is hostname:port, where each component of the name
may be specified by a wildcard. In particular, the hostname may be given as a
hostname (possibly DNS qualified) or an IP address. The leftmost position of
the hostname may be specified as an asterisk, such that the host
piccolo.East.Sun.COMwould be matched by each of these strings:

piccolo
piccolo. East. Sun. CQI.I
*.Sun.COM

*
129.151.119.8

The port component of the name can be specified as a single port number or
as a range of port numbers (e.g., 1-1024). When a range is specified, either
side of the range may be excluded:

1024 (port 1024}
1024- (all ports greater than or equal to 1024}
-1024 (all ports less than or equal to 1024}
1-1024 (all ports between 1 and 1024, inclusive}

Valid actions for a socket permission are accept, connect, listen, and resolve.
These map into the socket API: accept is used by the ServerSocket class to

Page 113 of 482

PE~\1ISSIONS 97

see if it can accept an incoming connection from a particular host; connect is
used by the Socket class to see if it can make a connection to a particular
host, listen is used by the Se:rverSocket class to see if a server socket can be
created at all, and resolve is used by the Socket class to see if the IP address
for a particular host can be obtained.

Constructing a socket permission, then, is simply a matter of putting together
the desired strings in the correct format:

SocketPermission sl new SocketPermission {"piccolo: 6000", "connect") ;

SocketPermission s2 = new SocketPermission {"piccolo: 1024-",

"accept, listen");

Here sl represents permission to connect to the X server (port 6000) on
machine piccolo, and s2 represents permission for piccolo to start a server on
any non privileged port.

3. The PropertyPemission class (java. util. PropertyPemission)

This class represents permissions for Java properties. Property permission
names are specified as dot-separated names (just as they are in a Java property
file); in addition, the last element can be a wildcard asterisk:*, a.*, a.b.*, and
so on.

The valid actions for this class are read and write. Hence, to construct a prop­
erty permission, you would do something like:

PropertyPermission pl new PropertyPermission{"java.version", "read");

PropertyPermission p2 =new PropertyPermission{"xyz.*", "read,write'');

Here, pl represents permission to read the version of the virtual machine
that's in use, and p2 represents permission to read or write all properties that
begin with the token xyz.

4. The RuntimePemission class (java .lang. RuntimePemission)

This class represents permissions for the Java runtime-essentially, permis­
sions to perform any of the operations encapsulated by the Runtime class,
including most thread operations. The names recognized by this class are dot­
separated names and are subject to the same wildcard asterisk matching as
the property permission class.

Runtime permissions have no associated actions-you either have permission
to perform those operations, or you don't. Hence, a runtime permission is
constructed as:

RuntimePermission rl =new RuntimePermission{"exit");

RuntimePermission r2 =new RuntimePermission{"package.access.*");

Here, rl represents permission to exit the virtual machine, and r2 represents
permission to access any package.

Page 114 of 482

98 CHAPTER 5: THE ACCESS CONTROLLER

5. The AWTPemission class (java. awt .AWTPemission)

This class represents permissions to access certain windowing resources. In
particular, as we might assume from the corresponding methods in the secu­
rity manager, there are three conventional names in this class: topLevelWin­
dow, systemClipboard, and eventQueue.

There are no actions associated with this class. In addition, this class techni­
cally supports wildcard matching, but since none of the conventional names
are in dot-separated format, that facility is unused. Hence, an AWT permis­
sion is constructed like this:

AWTPermission a =new AWTPermission("topLevelWindow");

6. The NetPemission class (java. net. NetPemission)

This class represents permissions to interact with three different classes. The
first is the Authenticator class: there are no concrete implementations of the
Authenticator class within the JDK, but implementations of that class pro­
vide HTTP authentication for password-protected web pages. The valid names
associated with this class are Authenticator.setDefault and Authentica­
tor. requestPasswordAuthentication. Wildcard asterisk matching applies
to these names.

In addition, the ability to create multicast sockets is encapsulated in the
NetPemission class, with a name of multicast.

Finally, the ability to create a listener for the URLClassLoader class is encapsu­
lated in the NetPermission class with a name of URLClassLoader. set­
Listener.

There are no associated actions with a net permission, so they are constructed
as follows:

NetPermission nl =new NetPerrnission("rnulticast");

NetPermission n2 =new NetPermission("Authenticator.*");

7. The SecurityPemissionclass (java.security.SecurityPemission)

This class represents permission to use the security package. Names passed to
this class are subject to wildcard asterisk matching, and there are no actions
associated with this class. The valid names to this class include all the valid
strings that can be passed to the checkSecuri tyAccess () method of the secu­
rity manager; as we discuss the security API in the last half of this book, we'll
list these names for each class.

8. The SerializablePemissionclass (java. io. SerializablePer-mission)

This class represents various permissions relating to the serialization and dese­
rialization of an object. No wildcards or actions are accepted by this class. This
permission has one valid name: enableSubstitution. If granted, this permis-

Page 115 of 482

PER.'viiSSJO:-IS 99

sion allows the enableResol veObj ect () method of the Obj ectinputStream
and the enableReplaceObject () method of the ObjectOutputStream classes
to function.

9. The ReflectPermission class (java .lang. reflect. ReflectPermis-sion)

This permission represents the ability to set the accessible flag on objects
that are to be used with the reflection API. This class has a single name
(access) and no actions.

10. The UnresolvedPermission class (java. security. UnresolvedPermis-sion)

This class is used internally in the Java API to represent external permissions
(i.e., permissions that are implemented by third-party APis) before the class
that defines that permission is found. This permission is only needed if you
are writing an implementation of the Policy class.

11. The AllPermission class (java. security .AllPermission)

This class represents permission to perform any operation-including file,
socket, and other operations that have their own permission classes. Granting
this type of permission is obviously somewhat dangerous; this permission is
usually given only to classes within the Java API and to classes in Java exten­
sions. This class has no name or actions; it is constructed as follows:

AllPermission ap =new AllPermission();

Using the Permission Class

We'll now look into the classes upon which all these permissions are based: the
Permission class. This class abstracts the notion of a permission and a name.
From a programmatic standpoint, the Permission class is really used only to
create your own types of permissions. It has some interesting methods, but the
operations that are implemented on a permission object are not generally used in
code that we vvrite-they are used instead by the access controller. Hence, we'll
examine this class primarily with an eye towards understanding how it can be used
to implement our own permissions.

Permission is an abstract class that contains these public methods:

public Permission(String name) *
Construct a permission object that represents the desired permission.

public abstract boolean equals(Object o) *
Subclasses of the Permission class are required to implement their own test
for equality. Often this is simply done by comparing the name (and actions, if
applicable) of the permission.

Page 116 of 482

100 CHAPTER 5: THE AcCESS CONTROLLER

public abstract int hash Code() *
Subclasses of the Pe:nnission class are required to implement their own hash
code. In order for the access controller to function correctly, the hash code
for a given permission object must never change during execution of the
virtual machine. In addition, permissions that compare as equal must return
the same hash code from this method.

public abstract String getName() *
Return the name that was used to construct this permission.

public abstract String getActions() *
Return the canonical form of the actions (if any) that were used to construct
this permission.

public String toString() *
The convention for printing a permission is to print in parentheses the class
name, tl1e name of the permission, and the actions. For example, a file
permission might return:

("java. io. FilePermission", "/myclasses/xyz/HRApplet. class", "read")

public abstract boolean implies(Permission p) *
This method is one of the keys of the Pe:nnission class: it is responsible for
determining whether or not a class that is granted one permission is granted
another. This method is normally responsible for performing wildcard
matching, so that, for example, the file permission /myclasses/- implies the file
permission /myclasses/xyz/HRApplet.class. But this method need not rely on
wildcards; permission to write a particular object in a database would prob­
ably imply permission to read that object as well.

public Permission Collection newPermissionCollection() *
Return a permission collection suitable for holding instances of this type of
permission. We'll discuss the topic of permission collections in the next
section. This method returns null by default.

public void checkGuard(Object o) *
Call the security manager to see if the permission (i.e., the this variable) has
been granted, generating a SecurityException if the permission has not
been granted. The object parameter of this method is unused. We'll give
more details about this method later in this chapter.

Implementing your own permission means providing a class with concrete imple­
mentations of these abstract methods. Note that the notions of wildcard matching
and actions are not generally present in this class-if you want your class to
support either of these features, you're responsible for implementing all of the
necessary logic to do so (although the BasicPe:nnission class that we'll look at
next can help us with that).

Page 117 of 482

PERl\1ISSIONS 101

Say that you are implementing a program to administer payroll information.
You'll want to create permissions to allow users to view their payment history.
You'll also want to allow the HR department to update the pay rate for employees.
So we'll need to implement a permission class to encapsulate all of that:

public class XYZPayrollPermission extends Permission {

protected int mask;

static private int VIEW OxOl;

static private int UPDATE = Ox02;

public XYZPayrollPermission(String name) {

this (name, "view") ;

public XYZPayrollPermission(String name, String action) {

super (name) ;

parse (action);

private void parse(String action) {

StringTokenizer st =new StringTokenizer(action, ",\t ");

mask = 0;

while (st.hasMoreTokens()}

String tok = st.nextToken();

if (tok. equals ("view"))

mask I= VIEW;

else if (tok.equals("update"))

mask I = UPDATE;

else throw new IllegalArgumentException(

"Unknown action " + tok) ;

public boolean implies(Permission permission) {

if (!(permission instanceof XYZPayrollPermission))

return false;

XYZPayrollPermission p = (XYZPayrollPermission) permission;

String name= getName();

if (!name.equals("*") && !name.equals(p.getName()))

return false;

if ((mask & p.mask) != p.mask)

return false;

return true;

public boolean equals(Object o) {

Page 118 of 482

102 CHAPTER 5: THE ACCESS CONTROLLER

if (! (o instanceof XYZPayrollPermission))

return false;

XYZPayrollPermission p = (XYZPayrollPermission) o;

return ((p.getName() .equals(getName())) && (p.mask

public int hashCode() {

return getName() .hashCode() A mask;

public String getActions()

if (mask == 0)
return nn;

else if (mask == VIEW)

return "view 11
;

else if (mask == UPDATE)

return "update";

else if (mask== (VIEW J UPDATE))

return "view, update";

mask));

else throw new IllegalArgumentException ("Unknown mask");

public PermissionCollection newPermissionsCollection()

return new XYZPayrollPermissionCollection();

The instance variables in this class are required to hold the information about the
actions-even though our superclass makes references to actions, it doesn't
provide a manner in which to store them or process them, so we have to provide
that logic. That logic is provided in the parse () method; we've chosen the
common convention of having the action string treated as a list of actions that are
separated by commas and whitespace. Note also that we've stored the actual
actions as bits in a single integer-this simplifies some of the later logic.

As required, we've implemented the equals () and hashCode () methods-and
we've done so rather simply. We consider objects equal if their names are equal
and their masks (that is, their actions) are equal, and construct a hash code
accordingly.

Our implementation of the getActions () method is typical: we're required to
return the same action string for a permission object that was constructed with an
action list of "view, update" as for one that was constructed with an action list of
"update, view". This requirement is one of the prime reasons why the actions are
stored as a mask-because it allows us to construct this action string in the proper
format.

Page 119 of 482

PERlVIISSIONS 103

Finally, the implies () method is responsible for determining how wildcard and
other implied permissions are handled. If the name passed to construct our
object is an asterisk, then we match any other name; hence, an object to represent
the permissions of the HR department might be constructed as:

new XYZPayrollPermission ("*", "view, update")

When the implies () method is called on this wildcard object, the name will
always match, and because the action mask has the complete list of actions, the
mask comparison will always yield the mask that we're testing against. If the
implies () method is called with a different object, however, it will only return
true if the names are equal and the object's mask is a subset of the target mask.

Note that we also might have implemented the logic in such a way that permission
to perform an update implies permission to perform a view simply by changing
the logic of testing the mask-you're not limited only to wildcard matching in the
implies () method.

The BasicPermission Class

If you need to implement your own permission class, the BasicPemission class
(java.security.BasicPemission) provides some useful semantics. This class
implements a basic permission-that is, a permission that doesn't have actions.
Basic permissions can be thought of as binary permission-you either have them,
or you don't. However, this restriction does not prevent you from implementing
actions in your subclasses of the BasicPemission class (as the PropertyPermis­
sion class does).

The prime benefit of this class is the manner in which it implements wildcards.
Names in basic permissions are considered to be hierarchical, following a dot-sepa­
rated convention. For example, if the XVZ corporation wanted to create a set of
basic permissions, they might use the convention that the first word
of the permission always be xyz: xyz. readDatabase, xyz. wri teDatabase,
xyz . runPayrollProgram, xyz . HRDepartment. accessCheck, and so on. These
permissions can then be specified by their full name, or they can be specified with
an asterisk wildcard: xyz. * would match each of these (no matter what depth),
and * would match every possible basic permission.

The wildcard matching of this class does not match partial names: xyz. read*
would not match any of the permissions we just listed. Further, the wildcard must
be in the rightmost position: *. readDatabase would not match any basic
permission.

The BasicPemission class is abstract, although it does not contain any abstract
methods, and it completely implements all the abstract methods of the Pemis­
sion class. Hence, a concrete implementation of the BasicPemission need only

Page 120 of 482

104 CHAPTER 5: THE ACCESS CONTROLLER

contain a constructor to call the correct constructor of the superclass (since there
is no default constructor in the BasicPemission class). Subclasses must call one
of these constructors:

public BasicPermission(String name) *
Construct a permission with the given name. This is the usual constructor for
this class, as basic permissions do not normally have actions.

public BasicPermission(String name, String action) *
Construct a permission with the given name and action. Even though basic
permissions do not usually have actions associated with them, you must
provide a constructor with this signature in all implementations of the
BasicPemission class due to the mechanism that is used to construct permis­
sion objects from the policy file (which we will see later in this chapter).

Permission Collections

The access controller depends upon the ability to aggregate permissions so that it
can easily call the implies () method on all of them. For example, a particular
user might be given permission to read several directories: perhaps the user's
home directory (!home/sdo/-) and the system's temporary directory (!tmp/-).

When the access controller needs to see if the user can access a particular file, it
must test both of these permissions to see if either one matches. This can be done
easily by aggregating all the file permissions into a single permission collection.

Every permission class is required to implement a permission collection, then,
which is a mechanism where objects of the same permission class may be grouped
together and operated upon as a single unit. This requirement is enforced by the
newPemissionCollection () method of the Permission class.

The PemissionCollection class (java. security. PemissionCollection) 1s
defined as follows:

public abstmct class PermissionCollection

Implement an aggregate set of permissions. While permission collections can
handle heterogeneous sets of permissions, a permission collection typically
should be used to group together a homogeneous group of permissions (e.g.,
all file permissions or all socket permissions, etc.).

There are three basic operations that you can perform on a permission collection:

public abstmct void add(Permission p) *
Add the given permission to the permission collection.

public abstract boolean implies(Permission p) *
Check to see if any permission in the collection implies the given permission.
This can be done by enumerating all the permission objects that have been

Page 121 of 482

PE&'VIISSIONS 105

added to the collection and calling the implies () method on each of those
objects in turn, but it is typically implemented in a more efficient manner.

public abstract Enumeration elements() *
Return an enumeration of all the permissions in the collection.

The javadoc documentation of this class claims that a permission collection is a
collection of heterogeneous permission objects. Forget that idea; introducing that
notion into permission collections vastly complicates matters, and the issue of a
heterogeneous collection of permission objects is better handled elsewhere (we'll
see how a little bit later). As far as we're concerned, the purpose of a permission
collection is to aggregate only permission objects of a particular type.

Permission collections are typically implemented as inner classes, or at least as
classes that are private to the package in which they are defined. There is, for
example, a corresponding permission collection class for the FilePe:rrnission
class, one for the SocketPe:rrnission class, and so on.

None of these collections is available as a public class that we can use in our own
program. Hence, in order to support the newPe:rrnissionCollection () method
in our XYZPayrollPe:rrnission class, we'd need to do something like this:

public class XYZPayrollPermissionCollection extends

PermissionCollection

private Hashtable permissions;

private boolean addedAdmin;

private int adminMask;

XYZPayrollPermissionCollection()

permissions= new Hashtable();

addedAdmin = false;

public void add(Permission p) {

if (! (p instanceof XYZPayrollPermission))

throw new IllegalArgumentException(

"Wrong permission type");

XYZPayrollPermission xyz = (XYZPayrollPermission) p;

String name= xyz.getName();

XYZPayrollPermission other =

(XYZPayrollPermission) permissions.get(name);

if (other != null)

xyz = merge(xyz, other);

if (name.equals("*")) {

addedAdmin = true;

adminMask = xyz.mask;

Page 122 of 482

106

permissions.put(name, xyz);

public Enumeration elements() {

return permissions.elements();

public boolean implies(Permission p} {

CHAPTER 5: THE ACCESS CONTROLLER

if (! (p instanceof XYZPayrollPermission))

return false;

XYZPayrollPermission xyz = (XYZPayrollPermission) p;

if (addedAdmin && (adminMask & xyz.mask) != 0)

return true;

Permission inTable = (Permission)

permissions.get(xyz.getName());

if (inTable == null)

return false;

return inTable.implies(xyz);

private XYZPayrollPermission

merge(XYZPayrollPermission a, XYZPayrollPermission b) {

String aAction = a.getActions();

if (aAction.equals("")}

return b;

String bAction = b.getActions();

if (bAction.equals(""))

return a;

return new XYZPayrollPermission(a.getName(),

aAction + + bAction);

Note the logic within the implies () method-it's the important part of this
example. The implies () method must test each permission in the hash table (or
whatever other container you've used to store the added permissions), but it
should do so efficiently. We could always call the implies () method of each entry
in the hashtable, but that would clearly not be efficient-it's better to call only the
implies () method on a permission in the table that has a matching name.

The only trick is that we won't find a matching name if we're doing wildcard
pattern matching-if we've added the name "*" to the table, we'll always want to
return true, even though looking up the name 'John Smith" in the table will not
return the administrative entry. Implementing this wildcard pattern matching effi­
ciently is the key to writing a good permission collection.

Page 123 of 482

PE&v!ISSIONS 107

When you use (or subclass) one of the concrete permission classes that we listed
earlier, there is no need to provide a permission collection class-all concrete
implementations provide their own collection. In addition, there are two other
cases when you do not need to implement a permission collection:

" When you extend the Pemission class, but do not do wildcard pattern
matching.

Hidden internally within the Java API is a PemissionsHash class, which is the
default permission collection class for permission objects. The Pe:anission­
sHash class stores the aggregated permissions in a hash table, so the implemen­
tations of its add () and elements () methods are straightforward. The
implementation of its implies () method is based on looking up the name of
the permission parameter in the hashtable collection: if an entry is found,
then the implies () method is called on that entry.

" When you extend the BasicPemission class and do not provide support for
actions.

The newPemissionClass () method of the BasicPemission class will pro­
vide a permission collection that handles wildcard pattern matching correctly
(and efficiently).

The Permissions Class

So far, we've spoken about permission collections as homogeneous collections: all
permissions in the XYZPayrollPemissionCollection class are instances of the
XYZPayrollPemission class; a similar property holds for other permission collec­
tions. This idea simplifies the implies () method that we showed above. But to be
truly useful, a permission collection needs to be heterogeneous, so it can repre­
sent all the permissions a program should have. A permission collection really
needs to be able to contain file permissions, socket permissions, and other types
of permissions.

This idea is present within the Pe:anissionCollection class; conceptually,
however, it is best to think of heterogeneous collections of permissions as encapsu­
lated by the Pemissions class (java. security. Pemissions):

public final class Permissions extends Permission Collection
Implement the PemissionCollection class. This class allows you to create a
heterogeneous collection of permissions: the permission objects that are
added to this collection need not have the same type.

This class contains a concrete implementation of a permission collection that
organizes the aggregated permissions in terms of their individual, homogenous
permission collections. You can think of a permissions object as containing an

Page 124 of 482

108 CHAPTER 5: THE ACCESS CONTROLLER

aggregation of permission collections, each of which contains an aggregation of
individual permissions.

For example, let's consider an empty permissions object. When a file permission
is added to this object, the permissions object will call the newPennissionCollec­
tion() method on the file permission to get a homogeneous file permission
collection object. The file permission is then stored within this file permission
collection. When another file permission is added to the permissions object, the
permissions object will place that file permission into the already existing file
permission collection object. When a payroll permission object is added to the
permissions object, a new payroll permission collection will be obtained, the
payroll permission added to it, and the collection added to the permissions
object. This process will continue, and the permissions object will build up a set of
permission collections.

When the implies () method of the permissions object is called, it will search its
set of permission collections for a collection that can hold the given permission. It
can then call the implies () method on that (homogenous) collection to obtain
the correct answer.

The Pennissions class thus supports any arbitrary grouping of permiSSions.
There is no need to develop your own permission collection to handle heteroge­
neous groups.

In addition to the methods that are inherited from the PennissionCollection
class, the Pemissions class has these public methods:

public void setReadOnly() *
Mark the permissions object as read-only. Once a permissions object is
marked as read-only, attempts to add a permission to it (via the add ()
method) will throw a SecurityException.

public boolean isReadOnly() *
Return whether or not this permissions object has been marked as read-only.

The Policy Class
The third building block for the access controller is the facility to specify which
permissions should apply to which code sources. We call this global set of permis­
sions the security policy; it IS encapsulated by the Policy class
(java. security. Policy):

public abstract class Policy *
Establish the security policy for a Java program. The policy encapsulates a
mapping between code sources and permission objects in such a way that

Page 125 of 482

THE POLICY CLASS 109

classes loaded from particular locations or signed by specific individuals have
the set of specified permissions.

A policy class is constructed as follows:

public Policy() *
Create a policy class. The constructor should initialize the policy object
according to its internal rules (e.g., by reading the java.policy file, as we'll
describe later).

Like the security manager, only a single instance of the policy class can be
installed in the virtual machine at any time. However, unlike the security
manager, the actual instance of the policy class can be replaced. These two
methods install and retrieve the policy:

public static Policy getPolicy() *
Return the currently installed policy object.

public static void setPolicy(Policy p) *
Install the given policy object, replacing whatever policy object was previously
installed.

Getting and setting the policy object requires going through the checkProp­
erty () method of the security manager. By default, this succeeds only if you
already have been granted a security permission with the name of
Policy. getPolicy or Policy. setPolicy (as appropriate). There's a bootstrap­
ping issue involved when setting the policy, since granting permissions requires
the policy to have been set. Hence, the initial policy is typically set by a class in the
core API, as those classes always have permission to perform any operation.

There are two other methods in the Policy class:

public abstract Permissions evaluate(CodeSource cs) *
Create a permissions object that contains the set of permissions that should
be granted to classes that came from the given code source (i.e., loaded from
the code source's URL and signed by the keys in the code source).

public abstract void refresh() *
Refresh the policy object. For example, if the initial policy came from a file, re­
read the file and install a new policy object based on the (presumably
changed) information from the file.

In programmatic terms, writing a policy class is a matter of implementing these
methods. The default policy class is provided by the PolicyFile class
(java. security. PolicyFile), which constructs the set of permissions based on
the information found in a file on the user's local disk (a process we're just about
to examine).

Page 126 of 482

110 CHAPTER 5: THE ACCESS CONTROLLER

Unfortunately, the PolicyFile class that parses that file and builds up the set of
permissions is a package-protected class; it is not accessible to us as programmers.
Hence, while it's possible to write your own policy class, it is a fairly involved
process. You might want to write your own Policy class if you want to define a set
of permissions through some other mechanism than a URL (e.g., loading the
permissions via a policy server database). That implementation is fairly straightfor­
ward: you need only provide a mechanism to map code sources to a set of
permissions. Then, for each code source, construct each of the individual permis­
sion objects and aggregate them into a permissions object to be returned by the
evaluate () method.

Property Expansion and the Policy Class

You'll notice an unusual syntax in the list of policy properties in the java. secu­
rity file: $ { foo. bar}. This syntax uses property substitution to fill in the
given target; for example, the string ${user .home} might expand to
/home/sdo on my Unix desktop machine and to C:\ on my Windows desktop
machine. As you might have guessed, the string $ {!} expands to the file
separator character on the platform that is reading the file.

This property substitution allows us to use one set of configuration files no
matter what the underlying platform, since we can use standard Java proper­
ties to hide those platform-specific details. This is particularly important
when specifying filenames for file permissions in a policy file.

If the policy. expandProperties property in the java. security file is set to
false, however, substitution will not occur and these strings should not be
used. If they are used, they will be treated as literal strings and fail.

The Default Policy

The Policy and PolicyFile classes give system administrators or end users the
ability to define in a file a security policy for any Java program; this allows changes
to the security model for the program without modifying the program's code. The
policy that you can specify in this file is extremely flexible, since it's based on the
permission model we examined earlier. If you want a Java program to be able to
read a single directory, you can specify the appropriate file permission in the
policy file. If you want a Java program to be able to connect to particular hosts on
the network, you can specify the appropriate socket permissions in the policy file.
And if you want a Java program to be able to administer payroll records, you can
specify the appropriate payroll permissions in the policy file.

Page 127 of 482

THE POLICY CLASS 111

By default, the policy for a Java program is read from two locations, but this is
controlled by the system security file. This file is a set of properties that apply to
the security package in general; it is named $]A VAHOME/lib/security/java.security.

In terms of the Policy class, here are the relevant entries in the java. security file:

policy.provider=java.security.PolicyFile
policy.expandProperties=true
policy.allowSystemProperty=true
policy.url.l=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

The first of these properties defines the class that should be instantiated to
provide the initial instance of the Policy class: in this case, the PolicyFile class
(which implements the behavior we're now describing). Here's the algorithm that
the PolicyFile class uses to read in policy files. The entire set of entries in the
resulting policy is composed of all the specific entries read from all of the
following files:

1. If the policy. allowSystemProperty property in the java. security file is set to
true (which it is by default), then the first file to be read is a file specified on
the command line with the -usepolicy argument. For example, the
following command would first load the policy file from /globalfiles/java.policy:

piccolo% java -usepolicy:/globafiles/java.policy Cat /etc/passwd

If the policy. allowSystemProperty property is set to false, then the -
usepolicy file will be ignored. On the other hand, if this property is set to
true and the filename given as the -usepolicy argument begins with an
equals sign:

piccolo% java -usepolicy:=/globalfiles/java.policy Cat /etc/passwd

then the given file is the only policy file that will be read (and hence the only
file that will define permissions).

Note that you may also specify the -usepolicy flag with no argument, in
which case the policy files from the java.security file (see the next step) are
used and no additional files are consulted:

piccolo% java -usepolicy Cat /etc/passwd

This last example is the typical usage. Any of these examples set up the
default sandbox for us in Java 1.2-the parameters of this sandbox are
defined by the entries in the policy file.

2. Next, the PolicyFile class looks for properties of the form policy. url.n
where n is an integer starting with 1. As it finds each property, it reads in the
policy from the given URL; in the default set of properties we listed above,
this means that the first URL to be read is the java.policy file in the $JAVA­
HOME/lib/security directory and the second URL to be read is the .java.policy

Page 128 of 482

112 CHAPTER 5: THE ACCESS CONTROLLER

file in the user's home directory. You may specify as many or as few of these
URLs as desired, but they must be numbered consecutively starting with 1.

3. If no files have been loaded (because there was no -usepolicy argument and
there were no policy. url properties), then an internal static set of permis­
sions is loaded (which is the same set of permissions defined by the default
java. policy file we list below).

The policy files are designed to map code sources to sets of permissions. For
example, this entry:

grant codeBase http://www.xyz.com/ {

} ;

permission java. io. FilePermssion "${user. home}${/ }docs${/}-",

"read, write, delete";

means that any code loaded from the top-level directory of www.xyz.com is granted
permission to use any files under the user's docs directory. The code base in this
case is used to construct a code source with no public keys.

The above example is one case of a policy entry, also called a grant entry, and a
policy file is a collection of policy entries. Each entry is specific to one code source
and should list all the permissions for that code source-but a single policy file
can have several entries and thus work effectively for code that originated from
multiple sources. The syntax of a policy entry is as follows:

grant [signedBy <signer>] [, codeBase <code source>]

permission <class> [<name> [, <action list>]];

permission <class> [<name> [, <action list>]];

} ;

As indicated by the bracket syntax, the signedBy and codeBase entries are
optional. If both are missing, the list of permissions applies to a class with any
code source. The signer entry should be a name that matches an entry in the
system's key management system-a concept we'll explore in Chapter II. The
codeBase should be the URL that applies to the location from which the classes
were loaded-including a file-based or HTTP-based URL.

Note that omitting the signedBy and codeBase fields in the policy file means that
the given permissions should apply to all code sources. It does not mean that the
listed permissions should apply only to classes that had a code source with no
URL and no public key. This point about the code source is important: permis­
sions given within the policy file apply only to classes that have a code source.
Classes that are loaded by the primordial class loader do not have a code source­
these classes are given permission to perform any operation. Hence, the Java API
itself has no restrictions placed upon what operations it may perform.

Page 129 of 482

THE POLICY CLASS 113

The permisSions themselves should have the fully package-qualified class name
for the permission-including any permission classes (like the XYZPayrollPer­
rnission class) that you may have defined for your own application. The name will
be used to construct the permission, along with the action list (if present). An
internal (private) method of the PolicyFile class is used to construct the permis­
sion object; this method expects to find a constructor that takes both a name and
an action. If the action is not present, then null will be passed to the constructor.
This requirement forces you to include a constructor with both arguments in all
your permission classes, including those that are extensions of the BasicPerrnis­
sion class.

Here's the default policy file that comes with the Java 1.2. This is the system secu­
rity file (i.e., the one loaded from $]A VAHOME/lib/security/java.policy); there is no
default file for each user. This is also the set that will be loaded when no policy
files are found:

II Standard extensions get all permissions by default

grant codeBase "file:${java.home}lliblextl" {

permission java.security.AllPermission;

} ;

II default permissions granted to all domains

grant {

II allows anyone to listen on un-privileged ports

permission java.net.SocketPermission "localhost:1024-", "listen";

II "standard" properies that can be read by anyone

permission java.util.PropertyPermission "java.version", "read";

permission java.util.PropertyPermission "java.vendor", "read";

permission java.util.PropertyPermission "java.vendor.url", "read";

permission java.util.PropertyPermission

~~java.class.version", "readn;

permission java.util.PropertyPermission "os.name", "read";

permission java.util.PropertyPermission "os.version", "read";

permission java.util.PropertyPermission "os.arch", "read";

permission java.util.PropertyPermission "file.separator", "read";

permission java.util.PropertyPermission "path.separator", "read";

permission java.util.PropertyPermission "line.separator", "read";

permission java.util.PropertyPermission

"java. specification. version", "read";
permission java.util.PropertyPermission

"java. specification. vendor", "read";

permission java.util.PropertyPermission

"java.specification.narne", "readn;

permission java.util.PropertyPermission

"java. vm. specification. version", "read";

Page 130 of 482

114

} ;

CHAPTER 5: THE ACCESS CONTROLLER

permission java.util.PropertyPermission

"java.vm.specification.vendor", "read";

permission java.util.PropertyPermission

"java.vm.specification.name"/ .. read";

permission java.util.PropertyPermission "java.vm.version", "read";

permission java.util.PropertyPermission "java.vm.vendor", "read";

permission java.util.PropertyPermission "java.vm.name", "read";

When you use this policy file, then, all classes that are loaded from the Java exten­
sions directory will be granted all permissions. All other non-system classes will
have read access to the system properties listed as well as being able to listen on a
socket with a port number of 1024 or greater (which means that the class will be
able to create a server socket on an unprivileged port).

A policy file may contain an additional entry:

keystore ".keystore";

This entry specifies the name of the URL that will be used to process the keystore
in which public keys for the signers listed in the policy file should be found. This
entry is missing from the default policy file, as it does not contain any entries that
are signed. The name of this file is relative to the URL that was used to load the
file; if the policy. url property was file:/${user.home} /.java. policy, the URL to load
the keystore will be file:/${user.home} /.keystore. The keystore entry may be an abso­
lute URL if desired.

Policy files may be constructed by hand, or you may use the policytool applica­
tion that comes with the JDK to administer those files (see Appendix A).

Protection Domains
A protection domain is a grouping of a code source and permissions-that is, a
protection domain represents all the permissions that are granted to a particular
code source. In the default implementation of the Policy class, a protection
domain is one grant entry in the file. A protection domain is an instance
of the ProtectionDomain class (java. security. ProtectionDomain) and is
constructed as follows:

public ProtectionDomain(CodeSource cs, Permissions p) *
Construct a protection domain based on the given code source and set of
permissions.

When associated with a class, a protection domain means that the given class was
loaded from the site specified in the code source, was signed by the public keys
specified in the code source, and should have permission to perform the set of
operations represented in the permissions object. Each class in the virtual

Page 131 of 482

PROTECTION DOMAINS 115
--~----------------

machine may belong to one and only one protection domain, which is set by the
class loader when the class is defined.

However, not all class loaders have a specific protection domain associated with
them: classes that are loaded by the primordial class loader have no protection
domain. In particular, this means that classes that exist as part of the system class
path (that is, the Java API classes) have no explicit protection domain. We can
think of these classes as belonging to the system protection domain.

A protection domain is set for a class inside the defineClass () method. A protec­
tion domain is assigned to a class depending upon one of the following cases:

" The defineClass () method accepts a protection domain as a parameter. In
this case, the given protection domain is assigned to the class. This technique
is typically used when you want to define some permissions for a particular
class in addition to (or perhaps instead of) the set of permissions that were
found by the Policy class. We'll show how to do this in Chapter 6, since this
is a useful technique for defining an enhanced security model for checking
thread access.

" The defineClass () method accepts a code source as a parameter. In this
case, a protection domain is defined based on the given code source and a set
of permissions that have been defined by the system's security policy. This set
of permissions is returned from the evaluate () method of the Policy class.

" The defineClass () method accepts neither of these parameters. In this case,
a protection domain is defined based on a code source with null parameters
and a set of permissions that have been defined by the system's security policy
(retrieved with the evaluate () method). This case will include the default
grant entry we listed earlier.

There are three utility methods of the ProtectionDornain class:

public CodeSource getCodeSource() *
Return the code source that was used to construct this protection domain.

public Permissions getPermissions() *
Return the permissions object that was used to construct this protection
domain.

public boolean implies(Permission p) *
Indicate whether the given permission is implied by the permissions object
contained in this protection domain.

Page 132 of 482

116 CHAPTER 5: THE ACCESS CONTROLLER

The AccessController Class
Now we have all the pieces in place to discuss the mechanics of the access
controller. The access controller is represented by a single class called, conve­
niently, AccessController. There are no instances of the AccessController
class (java.security.AccessController)-its constructor is private, so that it
cannot be instantiated. Instead, this class has a number of static methods that can
be called in order to determine if a particular operation should succeed. The key
method of this class takes a particular permission and determines, based on the
policy specified by the policy file, whether or not the permission should be
granted:

public static void checkPermission(Permission p) *
Check the given permission against the policy in place for the program. If the
permission is granted, this method returns normally; otherwise, it throws an
AccessControlException.

We can use this method to determine whether or not a specified operation should
be permitted:

public class AccessTest extends Applet {

public void init() {

SocketPermission sp = new SocketPermission(

get Parameter ("host") + ": 6000", "connect") ;

try {

AccessController.checkPermission(sp);

System.out.println("Ok to open socket");

catch (AccessControlException ace) {

System.out.println(ace);

Whether the access controller allows or rejects a given permission depends upon
the set of protection domains that are on the stack when the access controller is
called. Figure 5-2 shows the stack that might be in place when the init () method
of the AccessTest applet is called. In the appletviewer, an applet is run in a sepa­
rate thread-so the bottom method on the stack is the run () method of the
Thread class.* That run() method has called the run() method of the Applet­
Panel class. This second run () method has done several things prior to calling
the init () method: it first created an HTTP-based class loader (from an internai
class that is a subclass of the URLClassLoader class) and has used that class loader
to load the AccessTest class. It then instantiated an instance of the AccessTest

* In fact, the nm () method is always the bottom method on a stack, since stacks apply on a per-thread
basis.

Page 133 of 482

THE ACCESSCONTROLLER CL<\SS 117

class and called the init () method on that object. This left us with the stack
shown in the figure-the run () method of the Thread class has called the run ()
method of the AppletPanel class, which has called the init () method of the
Test class, which has called the check.Pemission () method of the AccessCon­
troller class.

·· AccessCo:ntroiler:; che;kP~~is sj,on Ulil---1~ Sy~tem po~J!!il~
...... lllllllllllllllllllllll!lllllllll!llllllllllllill

Protection Domains

Figure 5-2. The stack and protection domains of a method

The reason we need to know the stack trace of the current thread is to examine
the protection domains that are on the stack. In this example, only the
AccessTest class has been loaded by a class loader: the AppletPanel class and
the Thread class were loaded from the core API with the primordial class loader.
Hence, only the AccessTest class has a nonsystem protection domain (associated
with the URL from which we loaded it, http:/ /piccolo/ in this case).

The permissions for any particular operation can be considered to be the intersec­
tion of all permissions of each protection domain on the stack when the
check.Pemission () method is called. When the check.Pemission () method is
called, it checks the permissions associated with the protection domain for each
method on the stack. It does this starting at the top of the stack, and proceeding
through each class on the stack.

If this entry appeared in the policy file:

grant codeBase http://piccolo/ {

permission java.net.SocketPerrnission "*:1024-", "connect";

the protection domain that applies to the AccessTest class will have permission
to open the socket. Remember that the system domain implicitly has permission
to perform any operation; as there are no other nonsystem protection domains
associated with any class on the stack, the check.Pemission () method will permit
this operation-which is to say that it will silently return.

Page 134 of 482

CHAPTER 5: THE ACCESS CONTROLLER

For most implementations of Java browsers, and many Java applications, there will
only be a single nonsystem protection domain on the stack: all the classes for the
applet will have come from a single CODEBASE (and hence a single protection
domain). But the checkPermission () method is more general than that, and if
you use a class loader that performs delegation, there will be multiple protection
domains on the stack. This is a common occurrence if you're using a Java
extension.

Let's say that you've written a payroll application that uses a class loader that loads
classes from two sources: the server in the X\'Z HR department and the server in
the X\'Z network services department.* This might lead to a call to the checkPer­
mission () method with the stack shown in Figure 5-3. Note that this stack trace is
a little more complicated than the one we've just shown-in this case, we're relying
on the fact that the constructor of the Socket class will (indirectly) call the access
controller. That is what actually happens, and we'll explore that process in our
next chapter. For now, we'lljust accept the fact that this is the correct stack trace.

Protection Domains

Figure 5-3. A stack with multiple nonsystem protection domains

In this example, the access controller first checks the protection domain for the
Network class to see if a class loaded from http:/ /network.xyz.com/ is allowed to
connect to the socket. If that succeeds, it then checks the protection domain of
the PayrollApp class to see if a class loaded from http:/ /hr. xyz. com/ is allowed to
connect to a the socket. Only if both code sources are granted permission in the
policy file (either individually or via an entry that does not speci:cy a code base at
all) does the checkPermission () method succeed.

Whether or not this is the appropriate behavior depends upon your intent. Let's
say that the policy file for the payroll application specifies that classes witl1 a code

* We showed this example and class loaders to implement it in Chapter 3.

Page 135 of 482

T!-IE ACCESSCONTROLLER CL\SS 119

base of http:/ /network.xyz. com/ are allowed to create sockets, but that no other
protection domains (other than the system protection domain, of course) are
granted that permission. That leads to the situation where a class from the
network services department might not be able to open a socket (even though it
has that permission in the file): if there is any class in the HR protection domain
on the stack, the operation will fail. All classes on the stack must have permission
for an operation to succeed.

Often, however, you want a class to be temporarily given the ability to perform an
action on behalf of a class that might not normally have that ability. In this case,
we might want to establish a policy where the classes from the HR department
cannot create a socket directly, but where they can call classes from the network
services department that can create a socket.* In this case, you want to tell the
access controller to grant (temporarily) the permissions of the network services
department to any methods that it might call within the current thread.

That facility is possible with these two methods of the access controller class:

public static void beginPrivileged() *
Extend the permissions of the calling class within the calling thread to any
subsequent method calls.

public static void endPrivileged() *
Retract the permissions of the calling class.

The beginPrivileged() and endPrivileged() methods form a block of code;
all code within this block will be executed as if it had the privileges of the class
that called the beginPrivileged() method. Hence, we might write our network
class like this:

public class NetworkMonitor

public NetworkMonitor()

try {

AccessController.beginPrivileged();

Sockets= new Socket("net.xyz.com", 4000);

catch (Exception e) {

II Do exception processing here for

II a possible AccessControlException

II and for exceptions from creating the socket

finally {

AccessController.endPrivileged();

* Consider this in terms of writing a file: an applet might not be able to write a file, but it can call a meth­
od of the JDK to play audio data-which means that the JDK class must write to the audio device file.

Page 136 of 482

120 CHAPTER 5: THE ACCESS CONTROLLER

Note the use of the finally clause here; this is typical for the endPrivileged()
method. The rationale behind this is that if the socket constructor were to throw
an uncaught exception-for example, a runtime exception or a thread death-it
is still important for the endPrivileged() method to be called to make sure that
the privileges are not in effect when the network monitor constructor returns.
Using the finally clause ensures that this happens.

As it turns out, however, the access controller is smart enough to realize when a
method that has called beginPrivileged() has returned, so if that method
somehow forgets to call the endPrivileged() method, security will not be
compromised. No errors are thrown to the user; the access controller simply (and
silently) adjusts its internal state to reflect that the beginPrivileged() call
should no longer be in effect.

Let's examine the effect these calls have on the access controller. The access
controller begins the same way, by examining the protection domains associated
with each method on the stack. But this time, rather than searching every class on
the stack, the access controller stops searching the stack when it reaches the class
that has called the beginPri vileged () method. In the case of Figure 5-3, this
means that the access controller does not continue searching the stack after the
Network:Monitor class, so as long as the policy file has a valid entry for the
http:/ /network.xyz. com/ code base, the monitor will be able to create its socket.

There's an important (but subtle) distinction to be made here: the beginPrivi­
leged () method does not suddenly establish a global permission based on the
protection domain of the class that called it. Rather, it specifies a stopping point
as the access controller searches the list of protection domains on the stack. In the
previous example, we assumed that http://network.xyz.com/had permission to open
the socket. When the access controller searched the protection domains on the
stack, it first reached the protection domain associated with
http://network.xyz.com/. Since that domain had been marked as the privileged
domain, the access controller returned at that point: it never got to the point on
the stack where it would have checked (and rejected) the protection domain asso­
ciated with http:/ /hr.xyz.com/.

Now consider what would happen if the permissions given to these protection
domains were reversed; that is, if the http://network.xyz.com/ protection domain is
not given permission to open the socket, but the http://hr.xyz.com/ protection
domain is. We might be tempted to ·write the PayrollApp class (knowing that it
will have permission to open the socket) like this:

public class PayrollApp

NetworkMonitor nm;

Page 137 of 482

GUARDED O~JECTS

public void init() {

try {

AccessController.beginPrivileged();

nm =new NetworkMonitor();

finally {

AccessController.endPrivileged();

121

When the code within the Socket constructor calls the checkPemission ()
method, the access controller searches the same stack shown in Figure 5-3. When
the access controller reaches the protection domain associated with
http:/ /network.xyz.cmn, it immediately throws an AccessControlException,
because that protection domain does not have permission to open sockets. Even
though a protection domain lower in the stack does have such a permission, and
even though that protection domain has called the beginPrivileged() method
of the access controller, the operation is rejected when the access controller finds
a protection domain that does not have the correct permission assigned to it.

This means that a protection domain can grant privileges to code that has called
it, but it cannot grant privileges to code that it calls. This rule permits key opera­
tions of the Java virtual machine; if, for example, your non privileged class calls the
Java API to play an audio clip, the Java API will grant permission to the calling
code to write data to the audio device on the machine. When you write your own
applications, however, it's important to realize that the permission granting goes
only one way.

Guarded Objects
The notion of permissions and the access controller can be encapsulated into a
single object: a guarded object, which is implemented by the GuardedObject class
(java. security. GuardedObj ect). This class allows you to embed another object
within it in such a way that all access to the object will first have to go through a
guard (which, typically, is the access controller).

There are two methods in the GuardedObject class:

public OuardedObject(Object o, Guard g)*
Create a guarded object. The given object is embedded within the guarded
object; access to the embedded object will not be granted unless the guard
allows it.

Page 138 of 482

122 CHAPTER 5: THE ACCESS CONTROLLER

public Object getObject() *
Return the embedded object. The checkGuard () method of the guard is first
called; if the guard prohibits access to the embedded object, an AccessCon­
trolException will be thrown. Otherwise, the embedded object is returned.

The guard can be any class that implements the Guard interface (java.secu­
ri ty. Guard). This interface has a single method:

public void checkGuard(Object o) *
See if access to the given object should be granted. If access is not granted,
this method should throw an AccessControlException; otherwise it should
silently return.

Although you can write your own guards, the Pemission class already imple­
ments the guard interface. Hence, any permission can be used to guard an object
as follows:

public class GuardTest {

public static void main(String args[]) {

GuardedObject go = new GuardedObject(new XYZPayrollRequest(),

new XYZPayrollPermission ("sdo", "view")) ;

try {

Object o = go.getObject();

System.out.println("Got access to object");

catch (AccessControlException ace)

System.out.println("Can't access object");

When the getObj ect () method is called, it in turn calls the checkGuard ()
method of the XYZPayrollPemission class, which (as it inherits from the
Pemission class) will call the checkPemission () method of the access
controller, passing the xyz payroll request object as an argument.

Summary
In this chapter, we've looked at Java's access control mechanism. The access
controller is the most powerful security feature of the Java platform: it protects
most of the vital resources on a user's machine, and it allows users (or system
administrators) to customize the security policy of a particular application simply
by modifying entries in the java.policy (and/or other similar) files.

The access controller is able to control access to a well-established set of system
resources (files, sockets, etc.), but it is extensible as well: you can create your own

Page 139 of 482

SUMMARY 123

permission classes that the access controller can use in order to grant or to deny
access to any resource that you like.

In the next chapter, we'll look into more details of implementing a security
policy, including the important relationship between the access controller and
the security manager. And, because the access controller is only available with Java
1.2, we'll look at how the security manager can be used to implement a security
policy in earlier releases of java as well.

Page 140 of 482

In this chapter:
• Protected Methods of

the Security Manager

• Security Managers
and the Class Loader

• Implementation
Techniques

Implementing Security
Policies

• Running Secure
Applications

In Chapter 4, we examined the security manager in the context of existing imple­
mentations of the security manager for usc in Java-enabled browsers; we followed
that with a discussion of the access control mechanism and Java's ability to define
access policies.

In this chapter, we'll put that information together and look at how the security
manager is actually implemented, and how you can implement your own security
manager. There are three times when it's important to write your own security
manager:

In an RMI server
RMI wants you to provide a security manager for all RMI servers; for RMI
servers that load client classes, a security manager is required. There is a
default RMI security manager that you may use for this purpose, or you may
write your own.

In a customized !Jrowser
If you're writing your own Java-enabled browser, you'll want to provide a secu­
rity manager. In addition, if you're using an existing browser, you may want to
use a different security manager in that browser. Some browsers already allow
the user to specify a different security manager via a property; other browsers
can be licensed for this type of customization.

In a Java application

124

If you download, install, and run Java applications on your machine, you may
want to provide a security manager to protect your system against those appli­
cations the same way that it is protected against Java applets. In Java 1.1 and
earlier releases, this requires you to write a security manager. In Java 1.2, you
can use the access control mechanism instead of writing a complete security
manager. However, even in Java 1.2 you may need to write your own security

Page 141 of 482

PROTECTED METHODS OF THE SECURITY MANAGER 125

manager in certain circumstances. There are methods (like the getThread­
Group () method) of the security manager that are outside the scope of the
access controller, and there are certain types of permissions (like those typi­
cally given to the checkConnect () method) that cannot be specified in a
java. policy file.

Access Control and the Security Manager
When the access controller was introduced into Java 1.2, it made a big differ­
ence to the role of the security manager. Previously, the security manager was
paramount in allowing or rejecting operations on files and sockets and other
system resources. In Java 1.2, the security manager began to defer permission
checking to the access controller.

However, the security manager remains an important interface to system secu­
rity. TheJavaAPI still calls the methods of the security manager to enforce sys­
tem security-and now most of these methods call the access controller. This
allows for upward compatibility-if you wrote a 1.1-based security manager
that implements your desired security policy, you can still use that security
manager with Java 1.2; your program will run exactly the same as it used to. In
this case, you needn't worry about policy files and code sources and secure
class loaders-the security model that you've already encapsulated into your
security manager will be respected.

Protected Methods of the Security
Manager
We've often said that the distinction between trusted and untrusted code has its
roots in information that the security manager must obtain from the class loader.
There are two ways in which this happens: through a set of generic methods of
the Securi tyManager class that inform the security manager about the state of
the class loader, and through an agreed-upon interface between the security
manager and the class loader. We'll look at the first of these mechanisms in this
section, and we'll discuss the second mechanism later when we actually develop a
security manager.

The use of these protected methods is vital in Java 1.1 and previous releases. In
Java 1.2, they are much less important-some of them have even been depre­
cated. This is not surprising, since the access controller now gives us much of the
information that initially could only be obtained from the class loader. We'll give
a complete overview of these methods here, although it is information that you'll
only need to complete a 1.1-based security manager.

Page 142 of 482

126 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

The methods of the security manager that provide us with generic information
about the class loader are all protected methods of the security manager class;
they are summarized in Table 6-1.

Table 6-1. Protected Methods of the Security Manager Class

Method

getClassContext()

currentClassLoader()

currentLoadedClass()

classLoaderDepth()

classDepth ()

inClass()

inClassLoader ()

Purpose

Return all the classes on the stack to see who has called us

Return the most recent class loader

Return the class that was most recently loaded with a class
loader

Return the depth in the call stack where the most recent
class loader was found

Return the depth in the call stack of the given class

Return true if the given class is on the stack

Return true if any class on the stack came from a class
loader

protected native Class[] getClassContext()

Return an array of all classes on the stack of the currently executing thread.

The first such method we'll discuss lets us retrieve all the classes involved m
making the current call to the security manager. This method itself is rarely used
in a security manager, but it is the basis for many of the methods we'll discuss in
this section.

The getClassContext () method returns an array of Class objects in the order of
the call stack for the current method. The first element of the array is always the
Class object for the security manager class, the second element is the Class
object for the method that called the security manager, and so on.

Accessing all the classes in this array is one way to determine whether the call origi­
nally came from code that is in the Java API or whether it came from other code.
For example, we could put the following method into our custom security
manager:

public class MySecurityManager extends SecurityManager {

public void checkRead(String s) {

Class c[] = getClassContext();

for (int i = 0; i < c.length; i++)

String name= c.getName();

System.out.println(name);

Page 143 of 482

PROTECTED METHODS OF THE SECURITY MA.t'IAGER

If we then try to create a FileReader object:

public class Test {

public static void main(String args[]) {

System.setSecurityManager(new MySecurityManager());

FileReader f =new FileReader("/etc/passwd");

we see the following output from the checkRead () method:

MySecurityManager

java.io.FileinputStream

java.io.FileReader

Test

127

In other words, a method in the Test class invoked a method in the FileReader
class, which invoked a method in the File InputStream class, which invoked a
method (the checkRead () method, in fact) in the MySecuri tyManager class.

The policies you want to enforce determine how you use the information about
these classes-just keep in mind that the first class you see is always your security
manager class and the second class you see is normally some class of the Java API.
This last case is not an absolute-it's perfectly legal, though rare, for any arbitrary
class to call the security manager. And as we saw in Chapter 4, some methods are
called by platform-specific classes that implement particular interfaces of the Java
API (such as methods that implement the Toolkit class).

Also keep in mind that there may be several classes from the Java API returned in
the class array-for example, when you construct a new thread, the Thread class
calls the checkAccess () metl1od; the classes returned from the getClassCon­
text () method in that case are:

MySecurityManager

java.lang.Thread

java.lang.Thread

java.lang.Thread

java.lang.Thread

Test

Test

We get this output because the Thread class constructor calls three other internal
methods before it calls the security manager. Our Test class has created a thread
in an internal method as well, so the Test class also appears twice in the class array.

protected native ClassLoader currentClassLoader()
Search the array of classes returned from the getClassContext () method for
the most recently called class that was loaded via a program-defined class
loader, and return that class loader.

Page 144 of 482

128 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

The objects in the class array returned from the getClassContext () method are
generally used to inspect the class loader for each class-that's how the security
manager can make a policy decision about classes that were loaded from disk
versus classes that were loaded from the network (or elsewhere). The simplest test
that we can make is to see if any of the classes involved in the current method invo­
cation are loaded from the network, in which case we can deny the attempted
operation. This is the method we use to do that.

To understand currentClassLoader {), we need to recall how the class loader
works. The class loader first calls the findSystemClass () method, which attempts
to find the class in the user's CLASSPATH (or system class path in 1.2). If that call is
unsuccessful, the class loader loads the class in a different manner (e.g., by
loading the class over the network). As far as the Java virtual machine is
concerned, the class loader associated with a class that was loaded via the find­
SystemClass () method is null. If an instance of the ClassLoader class defined
the class (by calling the defineClass () method), then (and only then) does Java
make an association between the class and the class loader. This association is
made by storing a reference to the class loader within the class object itself; the
getClassLoader {) method of the Class object can be used to retrieve that
reference.

Hence, the currentClassLoader () method is equivalent to:*

protected ClassLoader currentClassLoader{)

Class c[] = getClassContext{);

for (int i = 1; i < c.length; i++)

if (c[i] .getClassLoader{) != null)

return c[i].getClassLoader{);

return null;

We can use this method to disallow writing to a file by any class that was loaded via
a class loader:

public void checkWrite{String s) {

if (currentClassLoader() != null)

throw new SecurityException{"checkWrite");

With this version of checkWrite (), only the Java virtual machine can open a file
for writing. When the Java virtual machine initializes, for example, it may create a
thread for playing audio files. This thread will attempt to open the audio device

* The truth is that the currentClassLoader () method is written in native code, so we don't know
how it actually is implemented, but it is functionally equivalent to the code shown. This is true about most
of the methods of this section, which for efficiency reasons are written in native code.

Page 145 of 482

PROTECTED METHODS OF THE SECURITY MAi'-lAGER 129

on the machine by instantiating one of the standard Java API file classes. When
the instance of this class is created, it (as expected) calls the checkWrite ()
method, but there is no class loader on the stack. The only methods that are
involved in the thread opening the audio device are methods that were loaded by
the Java virtual machine itself and hence have no class loader. Later, however, if
an applet class tries to open up a file on the user's machine, the checkWrite ()
method is called again, and this time there is a class loader on the stack: the class
loader that was used to load in the applet making the call to open the file. This
second case will generate the security exception.

A number of convenience methods of the security manager class also relate to the
current class loader:

protected boolean inClassLoader() *
Test to see if there is a class loader on the stack:

protected boolean inClassLoader() {

return currentClassLoader() != null;

protected Class currentLoadedClass() *
Return the class on the stack that is associated with the current class loader:

protected Class currentLoadedClass() {

Class c[] = getClassContext();

for (int i = 0; i < c.length; i++)

if (c[i).getClassLoader() !=null)

return c[i];

return null;

protected native int classDepth(String name) *
Return the index of the class array from the getClassContext () method
where the named class is found:

protected int classDepth(String name) {

Class c[) = getClassContext();

for (int i = 0; i < c.length; i++)

if (c[i).getName() .equals(name))

return i;

return -1;

protected boolean inClass(String name) *
Indicate whether the named class is anywhere on the stack:

protected boolean inClass(String name)

return classDepth(name) >= 0;

Page 146 of 482

130 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

Many of these convenience methods revolve around the idea that an untrusted
class may have called a method of a trusted class and that the trusted class should
not be allowed to perform an operation that the untrusted class could not have
performed directly. These methods allow you to write a Java application made up
of trusted classes that itself downloads and runs untrusted classes. The HotJava
browser is the best-known example of this sort of program. For example, the secu­
rity manager of the HotJava browser does not allow an arbitrary applet to initiate a
print job, but HotJava itself can.

HotJava initiates a print job when the user selects the "Print" item from one of the
standard menus. Since the request comes from a class belonging to the HotJava
application itself (that is, the callback method of the menu item), the browser is
initiating the request (at least as far as the security manager is concerned). An
applet initiates the request when it tries to create a print job.

In both cases, the getPrintJob() method of the Toolkit class calls the check­
PrintJobAccess () method of the security manager. The security manager must
then look at the classes on the stack and determine if the operation should
succeed. If there is an untrusted (applet) class anywhere on the stack, the print
request started with that class and should be rejected; otherwise, the print request
originated from the HotJava classes and is allowed to proceed.

Note the similarity between this technique and the manner in which the access
controller works. In Java 1.2, the HotJava classes belong to the system domain, so
they are allowed to do anything; the classes that make up the applet, however, are
prohibited from initiating the print job (unless, of course, an entry that enables
printing for that applet's code source is in the policy file). This is why these
methods have been deprecated in 1.2, where the access controller is the desired
mechanism to provide this functionality.

The Class Loader Depth

The example that we just gave is typical of the majority of security checks the secu­
rity manager makes. You can often make a decision on whether or not an
operation should be allowed simply by knowing whether or not there is a class
loader on the stack, since the presence of a class loader means that an untrusted
class has initiated the operation in question.

There's a group of tricky exceptions to this rule, however, and those exceptions
mean that you sometimes have to know the exact depth at which the class loader
was found. Before we dive into those exceptions, we must emphasize: the use of
the class loader depth is not pretty. Fortunately, beginning with Java 1.2, this
method has been deprecated, and we need no longer concern ourselves with it. If
you need to write a 1.1-compatible security manager, however, you need to use
the information in this section.

Page 147 of 482

PROTECTED METHODS OF THE SECURITY MANAGER 131

The depth at which the class loader was found in the class context array can be
determined by this method:

protected native int classLoaderDepth() -k
Return the index of the class array from the getClassContext (} method
where the current class loader is found:

protected int classLoaderDepth() {

Class c[) = getClassContext();

for (int i = 0; i < c.length; i++) {

if (c[i) .getClassLoader() != null)

return i;

return -1;

Let's look at this method in the context of the following applet:

public class DepthTest extends Applet

native void evilinterface();

public void init()

doMath();

infiltrate ();

.public void infiltrate () {

try {

System.loadLibrary("evilLibrary");

evilinterface();

catch (Exception e) {}

public void doMath() {

Biginteger bi =new Biginteger("100");

bi = bi.add(new Biginteger("100"));

System.out.println("answer is " + bi);

Under normal circumstances, we would expect the doMath() method to inform
us (rather inefficiently) that 100 plus 100 is 200. We would further expect the call
to the infiltrate (} method to generate a security exception, since an untrusted
class is not normally allowed to link in a native library.

The security exception in this case is generated by the checkLink (} method of
the security manager. When the infiltrate (} method calls the System.loadLi­
brary (} method, the loadLibra:ry (} method in turn calls the checkLink (}
method. If we were to retrieve the array of classes (via the getClassContext (}

Page 148 of 482

132 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

method) that led to the call to the checkLink () method, we'd see the following
classes on the stack:

MySecurityManager (the checkLink () method)

java.lang.Runtime (the loadLibrary () method)

java .lang. System (the loadLibrary () method)

DepthTest (the infiltrate () method)

DepthTest (the init() method)

. . . other classes from the browser ...

Because the untrusted class DepthTest appears on the stack, we are tempted to
reject the operation and throw a security exception.

Life is not quite that simple in this case. As it turns out, the Biginteger class
contains its own native methods and hence depends on a platform-specific library
to perform many of its operations. When the Biginteger class is loaded, its static
initializer attempts to load the math library (by calling the System.loadLi­
brary() method), which is the library that contains the code to perform these
native methods.

Because of the way in which Java loads classes, the Big Integer class is not loaded
until it is actually needed-that is, until the doMath() method of the DepthTest
class is called. If you recall our discussion from Chapter 3 regarding how the class
loader works, you'll remember that when the doMath() method is called and
needs access to the Biginteger class, the class loader that created the DepthTest
class is asked to find that class (even though the Big Integer class is part of the
Java API itself). Hence, the applet class loader (that is, the class loader that loaded
the DepthTest class) is used to find the Biginteger class, which it does by calling
the findSystemClass () method. When the findSystemClass () method loads
the Biginteger class from disk, it runs the static initializers for that class, which
call the System. loadLibrary () method to load in the math library.

The upshot of all this is that the System.loadLibrary () method calls the security
manager to see if the program in question is allowed to link in the math library.
This time, when the checkLink () method is called, the class array from the
getClassContext () method looks like this:

MySecurityManager

java.lang.Runtime

java.lang.System

java.math.Biginteger

java.lang.ClassLoader

AppletLoader

java.lang.ClassLoader

DepthTest

DepthTest

(the checkLink () method)

(the loadLibrary () method)

(the loadLibrary() method)

(the static intializer)

(the findSystemClass() method)

(the loadClass () method)

(the loadClassinternal() method)

(the doMath () method)

(the ini t () method)

... various browser classes ...

Page 149 of 482

PROTECTED METHODS OF THE SECURITY M-\NAGER 133

As we would expect, the first three elements of this list are the same as the first
three elements of the previous list-but after that, we see a radical difference in
the list of classes on the stack. In both cases, the untrusted class (DepthTest) is on
the stack, but in this second case, it is much further down the stack than it was in
the first case. In this second case, the untrusted class indirectly caused the native
library to be loaded; in the first case the untrusted class directly requested the
native library to be loaded. That distinction is what drives the use of the class­
LoaderDepth () method.

So in this example, we need the checkLink () method to obtain the depth of the
class loader (that is, the depth of the first untrusted class on the stack) and behave
appropriately. If that depth is 3, the checkLink.() method should throw an excep­
tion, but if that depth is 7, the checkLink.() method should not throw an
exception. There is nothing magical about a class depth of 7, however-that just
happens to be the depth returned by the classLoaderDepth () method in our
second example. A different example might well have produced a different
number, depending on the classes involved.

Testing the Security Manager

If you want to know whether or not the security manager will permit a
certain operation, you might be tempted to ask the security manager
directly. If you want to know, for example, if you can change the state of a
particular thread, you might be tempted to write this code:

SecurityManager sm = System.getSecurityManager{);

boolean canModify = true;

if { sm ! = null) {

try {

sm.checkAccess{myThread);

catch {SecurityException se)

canModify = false;

Sometimes this procedure works, and sometimes it doesn't. The methods of
the security manager that depend on the depth of the class loader usually test
for a specific value. In the code fragment above, the depth of the class loader
is 1-which is a depth that most security managers will not complain about, so
the canModifyvariable is set to true. When an actual operation on the thread
is attempted, however, the depth of the class loader will be different, and the
security manager will reacts differently.

Hence, the only certain way to know if the security manager will prohibit an
operation is to attempt that operation and see if a security exception is thrown.

Page 150 of 482

134 CHAPTER 6: l:v!PLEMENTING SECURJTY POLICIES

There is, however, something special about a class depth of 3 in this example: a
class depth of 3 always means that the untrusted class called the System.loadLi­

bra:ry () method, which called the Runtime .loadLibra:ry () method, which
called the security manager's checkLink () method.* Hence, when there is a class
depth of 3, it means that the untrusted class has directly attempted to load the
library. When the class depth is greater than 3, the untrusted class has indirectly
caused the library to be loaded. When the class depth is 2, the untrusted class has
directly called the Runtime .loadLibra:ry () method-which is to say again that
the untrusted class has directly attempted to load the library. When there is a class
depth of 1, the untrusted class has directly called the checkLink() method­
which is possible, but that is a meaningless operation. So in this case, a class depth
that is 3 or less (but greater than -1, which means that no untrusted class is on the
stack) indicates that the call came directly from an untrusted class and should be
handled appropriately (usually meaning that a security exception should be
thrown).

But while 3 is a magic number for the checkLink () method, it is not necessarily a
magic number for all other methods. In general, for most methods the magic
number that indicates that an untrusted class directly attempted an operation is 2:
the untrusted class calls the Java API, which calls the security manager. Other
classes have other constraints on them that change what their target number
should be.

The class depth is therefore a tricky thing: there is no general rule about the allow­
able class depth for an untrusted class. Worse, there's no assurance that the
allowable class depth may not change between releases of the JDK-the JDK
could conceivably change its internal algorithm for a particular operation to add
another method call, which would increase the allowable class depth by 1. This is
one reason why the class depth is such a bad idea: it requires an intimate knowl­
edge of all the trusted classes in the API in order to pick an appropriate class
depth. Worse, a developer may introduce a new method into a call stack and
completely change the class depth for a sensitive operation without realizing the
effect this will have on the security manager.

Nonetheless, in order for certain classes of the Java API to work correctly, you
need to put the correct information into your 1.1-based security manager (such as
in the checkLink () method that we just examined). The methods that need such
treatment are summarized in Table 6-2.

* Theoretically, it could also mean that an untrusted class has called a trusted class that has called the
Runtime .loadLibrary () method directly. However, the Java API never bypasses the Sys­
tem.loadLibra:ry() method, so that will not happen in practice. If you expect trusted classes in your
Java application to work under the scenario we're discussing here, you must also follow that rule.

Page 151 of 482

PROTECTED METHODS OF THE SECURITY MANAGER 135

Table 6-2. Methods of the SecurityManager Class Affected by the Depth of the Class Loader

Method Depth to Avoid Remarks

checkCreateClass- 2 Java beans create a
Loader() SystemClassLoader

checkPropertiesAccess() 2 Java API calls
System.getProperties()

checkPropertyAccess() 2 Java API gets many properties

checkAccess(Thread t) 3 Java API manipulates its own threads
checkAccess(Thread- 3 Java API manipulates its own thread
Group tg) (sometimes 4) groups
checkLink () 2or3 Java API loads many libraries

checkMemberAccess() 3 Java API uses method reflection

checkExec() 2 Toolkit implementations of
getPrintJob () may execute a print
command

checkExi t () 2 The application may call exit

checkWri te () 2 Toolkit implementations may create
temporary files; the Java API needs to
write to audio and other device files

checkDelete() 2 Toolkit implementations may need to
delete temporary files

checkRead () 2 Java API needs to read property files

checkTopLevelWindow() 3 Trusted classes may need pop-up
windows

In all cases in Table 6-2, the Java API depends on being allowed to perform an
operation that would normally be rejected if an untrusted class performed it
directly. The JavaBeans classes, for example, create a class loader (an instance of
SystemClassLoader) in order to abstract the primordial class loader. So if an
untrusted class creates a Java bean, that Java bean must in turn be allowed to
create a class loader, or the bean itself won't work.

Note that not every target depth in this table is 2. In the case of the Thread and
ThreadGroup classes, operations that affect the state of the thread call the check­
Access () method of the Thread or ThreadGroup class itself, which in turn calls
the checkAccess () method of the Securi tyManager class. This extra method call
results in an extra method on the stack and effectively increases the target depth
by 1. Similarly, the checkTopLevelWindow() method is called from the
constructor of the Window class, which in turn is called from the constructor of
the Frame class, resulting in a target depth of 3.

Remember that this table only summarizes the methods of the security manager
where the actual depth of the class loader matters to the core Java API. If you're
writing your own application, you need to consider whether or not your applica-

Page 152 of 482

136 CHAPTER 6: lMPLEMEl\Tl::-<G SECURITY POLICIES

tion classes want to perform certain operations. If you want classes in your
application to be able to initiate a print job, for example, and you don't want
untrusted classes that your application loads to initiate a print job, you'll want to
put a depth check of 2 into the checkPrintJobAccess () method. In general, for
methods that aren't listed in the above table, a depth of 2 is appropriate if you
want your application classes (i.e., classes from the CLASSPATH) to be able to
perform those operations.

There is once again a nice similarity between these ideas and the access
controller. When you call the beginPrivileged() method of the access
controller, you're achieving the same thing a security manager achieves by testing
the class depth. The point to remember about the class depth is that it allows the
security manager to grant more permissions to a class than it would normally
have-just like the beginPrivileged() method grants its permissions to all
protection domains that have previously been pushed onto the stack. Of course,
the access controller is a much smarter way to go about this, since it doesn't
depend upon someone getting the class depth right; it only depends upon the
actual characteristics of the stack during execution of the program.

Protected Instance Variables in the Security Manager

There is a single protected instance variable in the security manager class, and
that is the inCheck instance variable:

protected boolean inChecll '(::{

Indicate whether a check by the security manager is in progress.

The value of this variable can be obtained from the following method:

public boolean getlnCheck() '(::{
Return the value of the inCheck instance variable.

Since there is no corresponding public method to set this variable, it is up to the
security manager itself to set in check appropriately.*

This variable has a single use: it must be set by the security manager before the
security manager calls most methods of the InetAddress class. The reason for
this is to prevent an infinite recursion between the security manager and the
InetAddress class. This recursion is possible under the following circumstances:

* Don't get all excited and think that your untrusted class can use this method to see when the security
manager is working. As we'll see, it's only set by the security manager in a rare case, and even if it were
set consistently, there's no practical way for your untrusted class to examine the variable during the short
period of time it is set.

Page 153 of 482

PROTECTED METHODS OF THE SECURITY MANAGER 137

1. An untrusted class attempts to open a socket to a particular host (e.g.,
sun. com). The expectation is that if the untrusted class was loaded from
sun. com that the operation will succeed; otherwise, the operation will fail.

2. Opening the socket results in a call to the checkConnect (} method, which
must determine if the two hosts in question are the same. In the case of a class
loaded from sun. com that is attempting to connect to sun.com, a simple string
comparison is sufficient. If the names are the same, the checkConnect (}
method can simply return immediately. In fact, this is the only logic
performed by some browsers-if the names do not literally match, the opera­
tion is denied immediately.

3. A complication arises if the two names do not match directly, but may still be
the same host. My machine has a fully qualified name of piccolo.East.Sun.COM;
browsers on my local area network can access my machine's web server as
piccolo, piccolo.East, or piccolo.East.Sun.COM. If the untrusted class is loaded
from a URL that contained only the string piccolo, and the class attempts to
open a socket to piccolo.East, we may want that operation to succeed even
though the names of the h.osts are not equal.

Hence, the checkConnect (} method must retrieve the IP address for both
names, and compare those IP addresses.

4. To retrieve the IP address for a particular host, the checkConnect (} method
must call the InetAddress. getByNarne (} method, which converts a string to
an IP address.

5. The getByNarne (} method will not blithely convert a hostname to an IP
address-it will only do so if the program in question is normally allowed to
make a socket connection to that host. Otherwise, an untrusted class could be
downloaded into your corporate network and determine all the IP addresses
that are available on the network behind your firewall. So the getByNarne (}
method needs to call the checkConnect (} method in order to ensure that the
program is allowed to retrieve the information that is being requested.

We see the problem here: the getByNarne (} method keeps calling the checkCon­
nect (} method, which in turn keeps calling the getByNarne () method. In order
to prevent this recursion, the checkConnect () method is responsible for setting
the inCheck instance variable to true before it starts and then setting it to false
when it is finished. Similarly, the getByNarne () method is responsible for exam­
ining this variable (via the return from the getinCheck () method); it does not
call the checkConnect () method if a security check is already in progress.

There may be other variations in this cooperation between the security manager
and the InetAddress class-other methods of the InetAddress class also use the
information from the getinCheck () method to determine whether or not to call

Page 154 of 482

138 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

the checkConnect () method. But this is the only class where this information is
used directly. You can set the inCheck method within other methods of your secu­
rity manager, but there is no point in doing so.

In 1.2, this variable and method are deprecated. The correct operation to
perform in a 1.2-based security manager is to call the AccessController .begin­
Privileged() method before calling any method of the InetAddress class, and
to call the AccessController. endPri vileged () method after the method invoca­
tion returns. In addition, the InetAddress class in 1.2 no longer calls the
getinCheck () method.

Ifyou implement a checkConnect() method that calls the InetAddress class and
sets the inCheck variable, you must make the checkConnect () method and the
getinCheck () methods synchronized. This prevents another thread from directly
looking up an IP address at the same time that the security manager has told the
InetAddress class not to call the checkConnect () method.

Security Managers and the Class Loader
In addition to the methods of the security manager class that we just examined, a
second way by which the security manager can enforce policies is to ask that the
class loader for a particular class provide more information on which the security
manager may base its decision. This technique requires a coordination between
the security manager and the class loader; there is no standard interface by which
this information may be obtained (nor is there a limit to the type of information
that may be exchanged). The details of the interface are completely at the discre­
tion of the application developer. This technique is useful for both 1.1-based and
(to a lesser extent) 1.2-based security managers.

In the last section, we showed an example of the checkWrite () method that
threw a security exception only if there was a class loader on the stack; this effec­
tively prevented any class that was loaded from the network from opening a file in
order to write to it. A more sophisticated policy would be to allow certain classes
loaded over the netvvork to write files, but not other classes. If you recall our
example from Chapter 3, xyz Corporation is using a customized class loader that
allows their applications to read classes both from the web server on which the
application is hosted and from the centralized administration server. xyz Corpo­
ration might want to establish a security policy whereby classes that are loaded
from the administration server can write local files, but other classes cannot. This
sort of policy requires some cooperation between the security manager and the
class loader-the security manager must ask the class loader for the host the class
was loaded from:

public void checkWrite(String s) {

ClassLoader cl = currentClassLoader();

Page 155 of 482

SECURITY MANAGERS AND THE CLASS LOADER

if (cl != null) {

MultiLoader ml = null;

try {

ml = (MultiLoader) cl;

catch (ClassCastException cce) {

II This can't happen unless our class loader and our

II security manager are out of sync

throw new SecurityException("checkWrite out of sync");

if (!ml.getTrust(currentLoadedClass()))

throw new SecurityException("checkWrite");

139

This example only works with a class loader we have defined, since we need a
method called getTrust () in the class loader to let us know the origin of the
class. That getTrust () method might look like this:

public class MultiLoader extends SecureClassLoader

boolean getTrust(Class c) {

String name= c.getName();

if (supportClassesCache.get(name))

return true;

return false;

Hence, we cast the class loader returned from getClassLoader () to be an
instance of MultiLoader. It's easy to keep the class loader and the security
manager in sync because the application must install both of them, but it always
pays to be sure. We use this class loader to check whether the particular class is to
be trusted; the class loader thinks classes that have been loaded from xyz's
support machine are trusted and other classes are not.

This sort of cooperation can be used between the class loader and the security
manager to support a variety of requirements-providing different access to
classes from different domains, or from different protocols, or anything else the
class loader knows about. It just requires that the security manager know about
any special interfaces the class loader might have to support these features.

The Class Loader and the Security Manager

The relationship between the security manager and class loader goes both ways­
not only is the class loader able to provide additional information about particular
classes to the security manager, the class loader is also responsible for calling the
security manager to see if particular classes are able to be loaded or defined. We
showed the code a class loader uses to do this in Chapter 3.

Page 156 of 482

140 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

When a class loader is asked to load a class, it must call the checkPackageAc­

cess () method of the security manager so that the security manager can prevent
certain classes from being loaded. This is chiefly used to prevent untrusted classes
from directly accessing implementation-specific classes. If you ship an application
with a set of classes in the com.XYZ package, you can ensure that untrusted classes
do not directly call classes in that package by placing the appropriate logic into
the checkPackageAccess () method. Java-enabled browsers typically do just that;
for example, an applet cannot call any of the classes in the sun package within the
Hot]ava browser.

Additionally, when a class loader is asked to define a class, it must call the check­

PackageDefinition() method of the security manager so that the security
manager can prevent an untrusted class from defining classes in a particular
package. This should be used, for example, to prevent an untrusted class from
loading a new class into the java. lang package. Otherwise, an untrusted class
could create a class named java. lang. Foo that has access to all the default­
protected methods and instance variables of the other classes within the
java. lang package.

Implementation Techniques
We'll now turn our attention to implementing security policies. Our goal is to
show how to write a security manager-one that can be used in conjunction with
the access controller, and one that can stand alone. We'll plug these security
managers into our JavaRunner program, and we'll also discuss the implementa­
tion of the security manager that comes with the Launcher and how that security
manager may be installed.

Utility Classes

In order to make our implementation of the security manger a bit easier, we'll
provide a few utility classes.

As we intimated above, there are many times when we want to reject an operation
if there is any untrusted class on the stack. In order to simplify this operation, we
define this method:

private void checkClassLoader(String ask, String ex) {

II Use the ask string to prompt the user if the operation

II should succeed

if (inClassLoader()) {

throw new SecurityException(ex);

Page 157 of 482

IMPLEMENTATION TECHNIQUES 141

We've passed a string to this method that allows us to ask the user if the operation
in question should be permitted; for example, the application could pop up a
dialog window and give the user the opportunity to accept the operation.
Whether or not that ability is a good idea is open to debate; we've left it to the
reader to provide the logic to implement that feature (if desired).

There are a number of tests we want our security manager to reject if they are
attempted directly by an untrusted class, but should succeed if they are attempted
indirectly by an untrusted class. For these tests in Java 1.1, we have to rely on the
class depth to tell us whether the call originated from an untrusted class or not.
We use this method to help us with that task:

private void checkClassDepth(int depth, String ask, String ex) {

int clDepth = classLoaderDepth();

if (clDepth > 0 && clDepth <= depth + 1) {

throw new SecurityException(ex);

Note that we have to add 1 to the class depth for this method to succeed, since
calling this method has pushed another method frame onto the stack.

Implementing Network Access

Regardless of the release on which your security manager is based, you typically
must write the necessary methods to handle network access, because the default
methods of the security manager are usually inadequate. In 1.1, the default
behavior for the checkConnect () method is to throw a security violation.

In 1.2, the default behavior for the checkConnect () method is to use the access
controller to see if the appropriate entry is in the policy file. This is very useful in
some circumstances: we can, for example, specify that all code loaded from
network.xyz.com can access any other machine in the xyz.com domain, but no other
machines. But we cannot set up a general rule for the mode of network access
we're most accustomed to. We cannot set up a rule saying that code loaded from a
particular machine can only make a network connection back to that machine.
The problem lies in the fact that we cannot pattern match entries in the policy
file; we cannot say something like:

grant codeBase http://%template/

permission java.net.SocketPermission "%template", "connect";

} ;

So if we want to implement a security policy where code can only make a connec­
tion back to the host from which it was loaded, we must provide a new
implementation of the checkConnect () method:

Page 158 of 482

142 CHAPTER 6: IMPLEMENTING SEGliRITY POLICIES

public void checkConnect(String host, int port) {

try {

super.checkConnect(host, port);

return;

catch (AccessControlException ace)

II continue

ClassLoader loader

String remoteHost;

if (loader == null)

return;

currentClassLoader();

if (!(loader instanceof JavaRunnerLoader))

throw new SecurityException("Class loader out of sync");

JavaRunnerLoader cl = (JavaRunnerLoader) loader;

remoteHost = cl.getHost();

if (host.equals(remoteHost))

return;

try {

AccessController.beginPrivileged();

InetAddress hostAddr = InetAddress.getByName(host);

InetAddress remoteAddr = InetAddress.getByName(remoteHost);

if (hostAddr.equals(remoteAddr))

return;

catch (UnknownHostException uhe) {

II continue and throw exception

finally {

AccessController.endPrivileged();

throw new SecurityException(

"Can't connect from"+ remoteHost +"to"+ host);

First, we check our superclass to see if it allows the connection. This is only appro­
priate for 1.2-based security managers-calling the superclass checks the policy
file to see if the connection should be made according to information in that file.
If that's true, then we simply want to return: the check should succeed. Otherwise,
we continue so we can make sure the destination machine is the same machine we
loaded this particular class from. For 1.1, this test must be omitted; the superclass
in 1.1 would immediately throw an exception.

If there is no class loader on the stack, we want to permit access to any host, so we
simply return. Otherwise, we obtain the hostname the untrusted class was loaded
from (via the getHost () method of the class loader) and compare that to the

Page 159 of 482

IMPLEMENTATION TECHNIQUES 143

hostname the untrusted class is attempting to contact. If the strings are equal,
we're all set and can return. Otherwise, we implement the logic we described
earlier by obtaining the IP address for each hostname and comparing the two IP
addresses.

Note that the logic here for allowing the InetAddress class to resolve the host­
name to an IP address is based on the access controller. For a 1.1-based security
manager, you replace the call to the beginPrivileged() method by setting the
inCheck variable to true, and replace the call to the endPri vileged () method by
setting the inCheck variable to be false. You also need to make this method and
the getinCheck () methods synchronized.

This implementation requires yet another change to the class loader we're using.
The class loader must now be able to provide us with the name of the host from
which a particular class was loaded. Since our class loader is based on a URL,
that's an easy method to implement: we simply return the host of the URL:

public class JavaRunnerLoader extends SecureClassLoader

URL urlBase;

... other code from previous examples

String getHost() {

return urlBase.getHost();

If you choose to implement a different network security model for your checkCon­
nect () method, there are a few things that you should be aware of:

e The checkConnect () method is frequently called with a port of -1. That usage
comes primarily from the methods of the InetAddress class; in order to
resolve the name of a machine, you must be able to make a connection to
that machine. So if you want to restrict a connection to the privileged ports
on your machine (those less than 1 024), make sure you test to see that the
port is between 0 and 1023, rather than simply less than 1024.

• The host argument passed to the checkConnect () method is frequently an IP
address rather than a symbolic hostname. This is an artifact of the way in
which the default socket implementation (that is, the PlainSocketimpl class)
operates: this class actually generates two calls to the checkConnect ()
method. The first call contains the actual hostname and a port number of -1
(because the PlainSocketimpl class has called the InetAddress. get­
ByName () method), and the second call contains the IP address and the
actual port number.

• If you choose to disallow all network access by untrusted classes and you are
using a network-based class loader to load classes, you cannot simply write a
checkConnect () method that calls the inClassLoader () method and throws

Page 160 of 482

144 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

an exception if it returns true. The class loader must be allowed to open a
socket in order to retrieve additional classes that are referenced by the
untrusted class, and such a request will contain the untrusted class on the
stack when the call is made. In Java 1.1, you can use the inClass () method to
see if the class loader is attempting to open the socket, in which case you
should let the operation succeed. In Java 1.2, you can call the beginPrivi­
leged () method of the access controller from within the class loader before it
attempts to open the URL.

• There is another checkConnect () method that accepts as arguments the host­
name, the port number, and an arbitrary object (a context). Like the similar
checkRead () method, this version of the checkConnect () method is never
called by the Java API, so the easiest route to take is not to implement it at all.
The type of information you might choose to encode within the context
could be, for example, the hostname that was retrieved from the current class
loader. However, since the security manager is responsible for obtaining the
context in the first place, there's no reason why that information cannot be
used directly rather than calling this second checkConnect () method.

You may want to implement a similar policy in the checkAccept () method so that
a class can only accept a connection from the host from which it was loaded. Since
we've just implemented that logic in the checkConnect () method, the easiest way
to implement this method is:

public void checkAccept(String host, int port)

try {

super.checkAccept(host, port);

return;

catch (AccessControlException ace)

II continue

checkConnect(host, port);

Network Permissions in the Class Loader

In Java 1.2, there is another way to achieve the network perm1ss1ons we just
outlined. Instead of overriding the checkConnect () method of the security
manager, we can arrange for the protection domain of each class to carry with it
the permission to open a socket to the host it was loaded from. We can add this
permission without regard to the permissions that might be in the policy file.

This implementation requires a change to our class loader:

protected Class findLocalClass(String name)

Policy pol= Policy.getPolicy();

Permissions p = pol.evaluate(codeSource);

Page 161 of 482

lMPLE:v!ENTATION TECHNIQUES

p.add(new SocketPermission(

urlBase.getHost() + ":1024-", "connect"));

ProtectionDomain pd = new ProtectionDomain(codeSource, p);

cl = defineClass(name, buf, 0, buf.length, pd, null);

145

Instead of passing a code source to the defineClass () method, we create a
protection domain directly. The protection domain is based on the permissions
that come with the code source from the Policy class, but then we explicitly add
permission to connect to the host from which we loaded the class.

Implementing Thread Security

Implementing a model of thread security requires that you implement the check­
Access () methods as well as implementing the getThreadGroup () method. In
1.1, the checkAccess () methods by default throw a security exception. In 1.2, the
default behavior of the security manager is to implement the model we'll describe
in this section. Both releases return the thread group of the calling thread for the
getThreadGroup () method.

We'll show an example that implements a hierarchical notion of thread permis­
sions which fits well within the notion of the virtual machine's thread hierarchy
(see Figure 6-1); this is a model implemented by the SecurityManager class in
1.2. In this model, a thread can manipulate any thread that appears within its
thread group or within a thread group that is descended from its thread group. In
the example, Program #1 has created two thread groups. The Calc thread can
manipulate itself, the I/0 thread, and any thread in the Program #1 thread
groups; it cannot manipulate any threads in the system thread group or in
Program #2's thread group. Similarly, threads within Program #1's thread
subgroup #1 can only manipulate threads within that group.

This is a different security model than that which is implemented by the JDK's
appletviewer and by some browsers in 1.1. In those models, any thread in any
thread group of the applet can modify any other thread in any other thread
group of the applet, but threads in one applet are still prevented from modifying
threads in another applet or from modifying the system threads. But the model
we'll describe fits the thread hierarchy a little better.

Note that this security model does not fit well within the idea of thread permis­
sions and protection domains. An entry in the policy file that grants permission to
manipulate threads (that is, a runtime permission with the name "thread") to the
classes from which Program #1 is loaded will thus grant Program #1 permission to
manipulate any threads in the virtual machine. The 1.2 default security manager
does check for this permission and honors it if it is present, but if the permission
is not present, the security manager follows the model we're about to describe.

Page 162 of 482

146 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

Figure 6-1. A java thread hierarchy

The key to our model of thread security depends on the getThreadGroup ()
method. We can use this method to ensure that each class loader creates its
threads in a new thread group as follows:

" If the program attempts to create a thread in a particular thread group, the
check:Access () method can throw a security exception if the thread group in
question is not a descendant of the thread group that belongs to the class
loader.

" If the program attempts to create a thread without specifying the thread
group to which it should belong, we can arrange for the getThreadGroup ()
method to return the class loader's default thread group. This works because
the constructors of the thread class call the getThreadGroup () method
directly to obtain the thread group to which a thread should belong.

The simplest way to implement getThreadGroup () is to create a new thread
group for each instance of a class loader. In a browser-type program, this does not
necessarily create a new thread group for each applet, because the same instance
of a class loader might load two or more different applets if those applets share
the same codebase. If we adopt this approach, those different applets vvill share
the same default thread group. This might be considered a feature. It is also the
approach we'll show; the necessary code to put different programs loaded by the
same class loader into different thread groups is a straightforward extension.

Page 163 of 482

IMPLEMENTATION TECHNIQUES

Our getThreadGroup () method, then, looks like this:

public ThreadGroup getThreadGroup() {

ClassLoader loader= currentClassLoader();

if (loader== null I I ! (loader instanceof JavaRunnerLoader))

return super.getThreadGroup();

JavaRunnerLoader cl = (JavaRunnerLoader) loader;

return cl.getThreadGroup();

147

We want each instance of a class loader to provide a different thread group. The
simplest way to implement this logic is to defer to the class loader to provide the
thread group. If there is no class loader, we'll use the thread group our super­
class recommends (which, if we've directly extended the SecurityManager class,
will be the thread group of the calling thread).

Of course, not every class loader has a getThreadGroup () method, so if the class
loader we find isn't ofthe class that we expect, we again have to defer to our super­
class to provide the correct thread group (which, by default, is the thread group
of the calling thread). Otherwise, we can ask the class loader, which implies that
we need to provide a getThreadGroup () method within that class loader:

public class JavaRunnerLoader extends SecureClassLoader {

private ThreadGroup threadGroup;

private static int groupNum;

ThreadGroup getThreadGroup()

if (threadGroup == null)

threadGroup =new ThreadGroup("JavaRunner ThreadGroup-"

+ groupNum++) ;

return threadGroup;

Now we've achieved the first part of our goal: when the program attempts to
create a thread without specifying a thread group that it should belong to, the
thread is assigned to the desired group. For the second part of our goal, we need
to ensure that the checkAccess () method only allows classes from that class
loader to create a thread within that thread group (or one of its descendent
thread groups).

In order to achieve this second goal, we must implement the checkAccess ()
methods as follows:

public void checkAccess(Thread t) {

ThreadGroup current = Thread.currentThread() .getThreadGroup();

if (!current.parentOf(t.getThreadGroup()))

super.checkAccess(t);

Page 164 of 482

148 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

public void checkAccess(ThreadGroup tg) {

ThreadGroup current= Thread.currentThread() .getThreadGroup();

if (!current.parentOf(tg))

super.checkAccess(tg);

This logic prevents threads in sibling thread groups from manipulating each
other, as well as preventing threads in groups that are lower in the thread hier­
archy from manipulating threads in their parent groups. Though that makes it
more restrictive than the model employed by the 1.1 JDK, it matches the concept
of a thread group hierarchy better than the JDK' s model.

There are two caveats with this model. The first has to do with the way in which
thread groups are created. When you create a thread group without specifying a
parent thread group, the new thread group is placed into the thread hierarchy as
a child of the thread group of the currently executing thread. For example, in
Figure 6-1, when the Calc thread creates a new thread group, by default that
thread group is a child of Program Thread Group #1 (e.g., it could be Program
Subgroup #1). Hence, if you start a program, you must ensure that it starts by
executing it in the thread group that would be returned by its class loader-that
is, the default thread group of the program. That's why we included that logic at
the beginning of our JavaRunner example.

The second caveat is that threads may not be expecting this type of enforcement
of the thread hierarchy, since it does not match many popular browser implemen­
tations. Hence, programs may fail under this model, while they may succeed
under a different model.

Implementing Package Access

A final area for which the default security manager is generally inadequate is the
manner in which it checks for package access. In 1.2, the security manager looks
for a permission of package. access . <package name>, while in 1.1 the security
manager rejects all package accesses.

The situation in 1.2 is further complicated by the fact that we're used to using
property files to specify which packages to deny access to (e.g., untrusted classes
are often denied the ability to use the sun package), but the java. policy files only
allows us to specify packages we are permitted to access. It would be impossible to
know beforehand every package that an application was likely to use, especially
when it might define some of them.

For that reason, and also to provide a better migration between releases (and
because it's the only way to do it in 1.1), you may want to include the logic to
process these old policies within your new security manager. In that way, users will

Page 165 of 482

IMPLEMENTATION TECHNIQUES 149

not need to make, any changes on their system; in this case, the user will not have
to put the appropriate PropertyPe:rmission entries into the java.policy files by
hand.

The checkPackageAccess () method is most often used to restrict untrusted
classes from directly calling certain packages-e.g., you may not want untrusted
classes directly calling the com.xyz. support pacakge of your application. Unfortu­
nately, the only way to do that while relying on the access controller and security
manager is to rely on the class depth, which we want to avoid.

One solution is to introduce a property for the application that defines packages
that the untrusted classes in the application are not allowed to access. HotJava
and the appletviewer do this by setting properties of the form:

package.restrict.access.pkgname = true

In the checkPackageAccess () method, you can use the parameter to construct
this property (substituting for the pkgname) and see if the corresponding property
is set: if it is, and if the inClassLoader () method returns true, you can throw the
security exception. For our purposes, however, we will allow classes to access any
package, and write our checkPackageAccess () method like this:

public void checkPackageAccess{String pkg) {
}

The checkPackageDefinition() method is somewhat different-you probably
don't want untrusted classes defining things in the java package, for example. So
we want to test for that package explicitly. But we also want to respect the permis­
sions for the applications, so the general solution for cases such as this is to first
check with the access controller (via the security manager's superclass), and then
to implement the original logic:

public void checkPackageDefinition{String pkg)

if { !pkg. startsWith{ "java."))

return;

try {

super.checkPackageDefinition(pkg);

return;

catch {AccessControlException ace) {

II continue

if {inClassLoader{))

throw new SecurityException {"Can't define java classes");

Note that the name in the test contains the period separator-you don't want an
untrusted class to be able to define a class named java .lang. String, but you do
want it to be able to define a class named javatest.myClass. On the other hand,

Page 166 of 482

150 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

you may or may not want to grant access to classes in the javax package. This
method also requires a change to the class loader that we'll show at the end of the

chapter.

Establishing a Security Policy in 1.2

We'll now give specific information on how to establish a security policy for 1.2. In
Java 1.2, the Securi tyManager class is a concrete class-you use it directly, or you
may subclass it. The simplest implementation of the Securi tyManager class is:

public class JavaRunnerManager extends SecurityManager {

}

The JavaRunnerManager class inherits the default behavior of the SecurityMan­
ager class for all its methods-but it's important to realize that this default
behavior is not the behavior we discussed in Chapter 4. The behavior we discussed
in that chapter stemmed from the security manager implementations of various
popular browsers-that may be the security that is appropriate for your applica­
tion, but the default behavior for the Security Manager class comes from the
java. policy files.

The default behavior of the public methods of the SecurityManager class is to
call the access controller with an appropriate permission. For example, the imple­
mentation of the checkExit () method is:

public void checkExit(int status) {

AccessController.checkPermission(new RuntimePermission("exit"));

This is why the default security policy for the application can be specified via the
java. policy files. Table 6-3 lists the methods of the security manager and the permis­
sion they construct when they call the access controller.

Table 6-3. The Relationship Between the S'ecurity Manager and the Access Controller

Method

checkCreateClassLoader()

checkAccess() [both signatures)

checkExit(int status)

checkExec(String cmd)

checkLink(String lib)

checkRead(FileDescriptor fd)

Permission

RuntimePermission("createClass­

Loader")

RuntimePermission ("thread")

RuntimePermission ("exit")

FilePermission (cmd, "execute")

RuntimePermission ("loadLibrary. " +

lib)

RuntimePermission("fileDe­

scriptor. read")

Page 167 of 482

IMPLEMENTATION TECHNIQUES 151

Table 6-3. The Relationship Between the Security Manager and the Access Controller (continued)

Method

checkRead{String file)

checkRead(String file, Object
context)

checkWrite(FileDescriptor fd)

checkWrite(String file)

checkDelete(String file)

checkConnect(String h, int p)

checkConnect(String h, int p,
Object context)

checkListen(int port)

checkAccept(String host, int port)

checkMul ticast () [both signatures]

checkPropertiesAccess()

checkPropertyAccess(String key)

checkTopLevelWindow(Object w)

checkPrintJobAccess()

checkSystemClipboardAccess()

checkAwtEventQueueAccess()

checkPackageAccess(String pkg)

checkPackageDefinition(String pkg)

checkSetFactory()

checkMemberAccess(Class c, int
which)

Permission

FilePerrnission(file, "read")

FilePermission(file, "read");

RuntimePerrnission("fileDe­
scriptor.write")

FilePerrnission{file, "write")

FilePermission{file, "delete")

if port== -1
SocketPerrnission {h, "resolve")

othetwise

SocketPerrnission(h + "·" + p,

"connect")

same as checkConnect ()

if port== 0
SocketPerrnission("localhost:1024-
","listen") otherwise
SocketPerrnission{"localhost:" +

port, "listen")

SocketPermission (host + " : " + port,
"accept")

NetPermission ("multicast")

PropertyPermission ("*", "read,
write")

PropertyPermission (key, "read")

AWTPerrnission ("topLevelWindow")

RuntimePerrnission ("print. queueJob")

AWTPerrnission ("systemClipboard")

AwtPermission ("event Queue")

RuntimePerrnis-
sion ("package. access. " + pkg)

RuntimePermis­
sion("package.define." + pkg)

RuntimePermission ("setFactory")

RuntimePermis-
sion ("reflect .declared." +

c. getName ())

Page 168 of 482

152 CHAPTER 6: IMPLEMENTING SECURITY POLICIES

Table 6-3. The Relationship Between the Security Manager and the Access Controller (continued)

Method

checkSecurityAccess(String action)

checkPermission(Permission p)

checkPermission(Permission p,

Object o)

Permission

SecurityPermission(action)

p (that is, the permission parameter)

p (that is, the permission parameter)

There are five slight exceptions to the rules laid out in Table 6-3:

" The checkAccess () methods only check for the thread permission if the cur­
rent thread is not a parent of the target thread, as we discussed previously.

" If the command passed to the checkExec () method is not a fully qualified
pathname (that is, if the command will be found by examining the user's
PATH variable), the string passed to create the file permission is "<<ALL
FILES>>." The domain must have permission to execute all files in the filesys­
tem in this case.

" The methods that use a context expect the context to be an instance of the
AccessControlContext class. They then call the checkPennission () method
of that context, using the same permission that would normally be used in
that call (e.g., a file permission with a read action for the checkRead(}
method). As we mentioned, these methods are never called by the core API.
If the context is not an access control context, then a SecurityException will
be thrown.

" The checkTopLevelWindow() method catches the AccessControlException
if it is thrown by the access controller. In this case, it returns false. This
method does not (by default) throw an exception.

" The checkMemberAccess () method does not call the access controller if the
program is inspecting public values (that is, if the which flag is Member. PUB­
LIC) or if the current class loader is the same class that loaded the target class.

For the most part, it's possible to use the default security manager and the permis­
sion mappings we've just identified to support virtually any security policy. But
there are certain useful exceptions a security manager will often define:

" Network permissions may want to follow the implementation outlined above.

" Package access and definition permissions may follow the implementation out­
lined above.

" Exit permissions may be summarily granted to all applications (unless the
application is a server that should stick around).

Page 169 of 482

IMPLEMENTATION TECHNIQUES 153

For a complete 1.2-based security manager, then, you typically need to override
only the methods involved with these three exceptions. The 1.2-based security
manager we '11 use for our JavaRunner program looks like this:

public class JavaRunnerManager extends SecurityManager

public void checkConnect(String host, int port)

.. follow implementation given above ..

public void checkPackageAccess(String pkg) {

.. follow implementation given above ..

public void checkPackageDefinition(String pkg)

.. follow implementation given above

public void checkExit(int status) {

Establishing a 1.1 Security Policy

Establishing a security policy in 1.1 is done only by ensuring that the correct secu­
rity manager is in place. In this section, we're going to discuss how a 1.1-based
security manager can be implemented.

The RMI security manager

One of the times a security manager is often used in a Java application is in an
RMI server. An RMI server has the capability of loading code from an RMI client
located on a remote machine and executing that code on the server-essentially
transforming the server (temporarily) into a client.* In essence, the security ramifi­
cations of using RMI servers are similar to those of an applet, but in reverse: you
now want to protect your server machine from the side effects of untrusted code it
got from a client.

In the most common case, you'll want your RMI server to have a simple security
model. If the code it's executing was completely loaded from the server, the opera­
tion should succeed; if any of the code it's executing was loaded from the client,
the operation should fail. Hence, the Java API provides the RMISecurityManager

class, which implements just such a policy. In general, the methods of the RMISe­

curi tyManager class look like this:

* This used to be called "peer computing," although that term has fallen out of favor. But it's a useful
concept: just because one machine has to initiate a request shouldn't mean that the roles of client and
server have to be immutable.

Page 170 of 482

154

public void checkAccess(Thread t) {

if (inClassLoader())

CHAPTER 6: IMPLEMENTING SECURITY POLICIES

throw new SecurityException("checkAccess");

You can check the source code (java.rrni.RMISecurityManager) for exact
details; this example is a conflation of code found there.

Hence, in the RMI security manager, all local code is trusted and all remote code
is untrusted. There are certain methods of this class that have slightly different
implementations, however. Because the RMISecurityManager provides a useful
basis for a default implementation of your own security manager, we'll list those
exceptions here so you can use the RMISecurityManager class and understand
where you're starting out.

public void chechPropertyAccess(String hey)
An untrusted class can check properties only if a special property is set. If an
untrusted class wants to check the property foo. bar, the property
foo. bar. stub must be set to true.

public void checkRead(FileDescriptor jd)
public void check Write(Ji'ileDescriptor jd)

An untrusted class can read or write a file if that file is a socket. Note that the
untrusted class still cannot create the socket.

public void checkConnect(String host, int port)
An untrusted class can connect a socket only if called from certain internal
RMI classes. If you're using the RMISecuri tyManager class as the basis for a
non-RMI application, the untrusted class is not able to make any connections.

public void chechTopLevelWindow(Object window)
An untrusted class can create a separate window, but it will have the warning
banner.

public void checkPackageAccess(String pklfj
An untrusted class can access a package unless the external properties specifi­
cally prohibit such access.

public void chechPackageDefinition(String pkiJ
An untrusted class can access a package definition unless the external proper­
ties specifically prohibit such access.

public void checkSetFactory()
Neither an untrusted class nora trusted class can change a socket factory.

public void chechMemberAccess()
An untrusted class can only check the member access for public members.

Page 171 of 482

IMPLEMENTATION TECHI'\IQUES 155

A complete 1.1 security manager

In Java 1.1, the SecurityManager class is abstract, so you can't directly instantiate
a security manager object. However, none of the methods of Security-Manager
is itself abstract, meaning that the simplest implementation of the SecurityMan­
ager class is this:

public class StrictSecurityManager extends SecurityManager {

The StrictSecurityManager class inherits the default behavior of the Security­
Manager class for all its methods-but once again it's important to realize that this
default behavior is not the behavior we discussed earlier in terms of what an
untrusted class might or might not be allowed to do. The default behavior of the
public methods in the SecurityManager class in 1.1-and hence of the StrictSe­
curityManager class above-is to deny every operation to every class, trusted or
not. Each of the public methods of the Securi tyManager class looks similar to
this:

public void checkAccess{Thread g) {

throw new SecurityException{);

Thus, if you want to implement your own security manager, you need only over­
ride the methods for which you want to provide a more relaxed security policy. If
you want to allow (at least some) thread operations, you must override the check­
Access () methods; if you do not override those methods, no thread operations
will be allowed by any class.

A Null Security Manager

The default security manager class makes you override each method to
create a relaxed security policy for that method, but sometimes it might be
easier to start with a null security manager: one that provides a completely
wide-open policy for every check. You could then override only those
methods for which you wanted to tighten the security policy.

The Java API does not provide such a class, but one is available in source
form with the Java API source files-if you copy the SecurityManager.java file
from the API source directory and edit it, you'll find a NullSecurityMan­
ager class that implements each method with a wide-open security policy.
You can edit out everything but this class, make it a public class, and use it
for the basis of your customized security manager. This class was removed
from the 1.2 source.

Page 172 of 482

156 CHAPTER 6: lMPLEMENT!:-.IG SECURITY POLICIES

In typical usage, a 1.1-based security manager might want to deny a large number
of operations if there is any untrusted class on the stack. These methods might be
implemented with the checkClassLoader () method we discussed above. Candi­
dates for this type of check are:

check.Accept ()

checkAWTEventQueue­

Access ()

checkMemberAccess()

checkMulticast()

checkSecurityAccess()

checkSystemClipboardAc­

cess ()

checkExi t ()

checkListen ()

checkPrintJobAccess()

checkSecurityAccess()

Similarly, there are a number of tests that we want to fail if they are attempted
directly by an untrusted class, but that we want to succeed if they are attempted
indirectly by an untrusted class. For these tests, we have to rely on the class depth
to tell us whether the call originated from an untrusted class or not; we use the
checkClassDepth () method to help us with that task. Here are the candidate
methods for this test along with the depth that checked for each method:

checkCreateClassLoader()

checkDelete ()

checkExec ()

2
2
2

checkLink ()

checkPropertiesAccess()

checkPropertyAccess()

3
2
2

Finally, there are some methods we must implement with their own logic.
Although we've saved these for last, they are the most interesting point of this
example, since these are the methods that you'll need to pay the most attention to
when you write your own security manager.

Implementing the file access methods

If you are going to implement a security manager, you must determine a policy
for reading and writing files and implement that policy in each of the check­

Read() and checkWri te () methods. The logic you put into each method is
slightly different.

In the case where these methods take a single string argument, the logic is
straightforward: the program is attempting to open a file with the given name,
and you should either accept or reject that operation. We'll base our decision on
the depth of the class loader. Untrusted classes may not directly open a file for
reading or writing, but they may cause that to happen through the Java API:

public void checkRead(String file) {

checkClassDepth(2, "Read the file " + file,

"Can't read local files");

Page 173 of 482

IMPLEMENTATION 157

Allowing File Access

If you want to write a policy that allows some files on the local machine to be
read or written, make sure that you use the File. getCanonicalPath ()
method to find out the actual name of the file before you grant access to
that file. If, for example, you want programs to have access to the /tmp direc­
tory on your machine, you want to make sure that access to
/tmp/../etc/passwd is still denied; the program must not be allowed to use the
parent directory to jump out of the directory you've allowed. The getCanon­
icalPath () method removes all references to parent directories, as well as
following all symbolic links, shortcuts, and aliases to find out the actual
name of the file that's being referenced.

public void checkWrite(String file) {

checkClassDepth(2, "Write the file " + file,

"Can't write local files");

In the case where these methods take a FileDescriptor as an argument, the
policy is a little harder to define. As far as the Java API is concerned, these
methods are only called as a result of calling the Socket. getinputStream () or
Socket. getOutputStream () methods-which means that the security manager is
really being asked to determine if the socket associated with the given file
descriptor should be allowed to be read or written. By this time, the socket has
already been created and has made a valid connection to the remote machine,
and the security manager has had the opportunity to prohibit that connection at
that time.

What type of access, then, would you prohibit when you implement these
methods? It partially depends on the types of checks your security manager made
when the socket was created. We'll assume for now that a socket created by an
untrusted class can only connect to the site from which the class was loaded, while
a socket created by a trusted class can connect to any site. Hence, you might want
to prohibit an untrusted class from opening the data stream of a socket created by
a trusted class-although if the class was trusted in the first place, you typically
want to trust that class's judgement, and if that class passed the socket reference
to an untrusted class, the untrusted class should be able to read from or write to
the socket.

On the other hand, it is very important to make sure that these methods are actu­
ally being called from the socket class. Otherwise, an untrusted class could

Page 174 of 482

158 CHAPTER 6: !MPLEME:-.ITING SEcutuTY Poucms

attempt to pass an arbitrary file descriptor to the File*Strearn constructor in an
attempt to break into your machine.

Typically, then, the only checks you put into this method are to determine that
the FileDescriptor object is valid and the FileDescriptor object does indeed
belong to the socket class:

public void checkRead(FileDescriptor fd) {

if (!inClassLoader())

return;

if (! fd. valid () I I ! inClass ("java. net. SocketinputStrearn"))

throw new SecurityException("Can't read a file descriptor");

public void checkWrite(FileDescriptor fd) {

if (!inClassLoader())

return;

if (!fd.valid() II !inClass("java.net.SocketOutputStrearn"))

throw new SecurityException("Can't write a file descriptor");

Implementing network, thread, and package access

A typical 1.1-based security manager would implement thread, network, and
package access as we described above.

Implementing miscellaneous methods

There is one more method of the security manager that we must implement with
slightly different rules: the checkTopLevelWindow() method. This method uses
the standard class depth test for an untrusted class, but it shouldn't throw an
exception, so it looks like this:

public boolean checkTopLevelWindow(Object window) {

if (classLoaderDepth() == 3)

return false;

return true;

Running Secure Applications
In Chapter 1 we showed how JavaRunner and the Launcher can be used to run a
Java application. Now that we have the final piece of the security policy story, we
can put everything together and show how the policy can apply to these
applications.

Page 175 of 482

RUNNING SECURE APPLICATIONS 159

The Secure]avaRunner Program

Running a program securely under the auspices of JavaRunner requires that we
modify that program to accept a security manager:

public class JavaRunner implements Runnable

.. other methods are unchanged

public static void main(String args[])

throws ClassNotFoundException

Class self= Class.forName("JavaRunner");

System.setSecurityManager(new JavaRunnerManager());

JavaRunnerLoader jrl = new JavaRunnerLoader(

args[O], self.getClassLoader());

'l'hreadGroup tg = j rl. getThreadGroup () ;

Thread t = new Thread(tg,

new JavaRunner(jrl, args[l], getArgs(args)));

t.start();

try {

t. join();

catch (InterruptedException ie) {

System.out.println("Thread was interrupted");

This single-line change installs a security manager for us; the security manager
provides the security policy for the target application. Because our security
manager defers most of its checks to the access controller, we must have appro­
priate java.policy files somewhere (unless, of course, we have installed a different
default Policy class). If these policy files are in the default locations ($]A VA­
HOME/lib/security/java.policy and $HOME/.java.policy), no other steps are
necessary. If that file is somewhere else, you must list that file in the java.security

file as an alternate policy URL.

Note that we cannot use the -usepolicy command-line argument: the -
usepolicy command-line argument installs the Launcher's security manager for
us, which prevents our security manager from being installed. On the other hand,
we could forego the use of the JavaRunnerManager class altogether and use the
same security manager that the Launcher uses by specifying the -usepolicy
command-line argument.

In Java 1.2, installing this security manager has other ramifications upon the
JavaRunner program. Since the JavaRunner class is loaded from the default URL
class loader, it is subject to the permissions of the access controller. AI; a practical
matter, this means that one of the java.policy files must have certain permissions in
it that the JavaRunner program needs: it needs to open sockets (to open the

Page 176 of 482

160 CHAPTER 6: lMPLEMENTI!'\G SECURITY POLICIES

URLs from which to retrieve the classes), create a class loader, and so on. The
simplest way to achieve this is to put the JavaRunner class and its associated class
files (the class loader and security manager it uses) into a single directory and
grant all permissions to that directory. If, for example, we put those files into the
/home/sdol]avaRunner directory, we would need to put this entry into a java.policy
file:

grant codeBase "file:/home/sdo/JavaRunner" {

permission java.security.AllPermission;
} ;

A second change required by the introduction of an access controller-based secu­
rity manager into this program occurs in the class loader. Remember that the
class loader we use-which has just been granted all permissions-is used by other
(untrusted) classes to load code. If the JavaRunnerLoader class loader loads the
Cat class and the Cat class needs access to the CatFile class, then the JavaRun­
nerLoader class loader will be asked to load that class. At the time it loads the
CatFile class, the Cat class will be on the stack-as will the protection domain
associated with that class.

This means that we need to extend the permissions of the class loader so that it
will still be able to open the URL and create the socket. This necessitates the
following changes to the findLocalClass () method of the class loader:

try {

AccessController.beginPrivileged();
URL url =new URL(urlBase, urlName +".class");
if (printLoadMessages)

System.out.println("Loading " + url);
InputStream is= url.openStream();

buf = getClassBytes(is);

cl = defineClass(name, buf, 0, buf.length, cs, null);
return cl;

catch (Exception e) {

System.out.println("Can't load"+ name+"·"+ e);
return null;

finally {

AccessController.endPrivileged();

The Secure] ava Launcher

In 1.2, when you run a program via the command line, no security manager is
installed for you and the program has _no sandbox (unless one is installed as we
did for the JavaRunner program).

Page 177 of 482

SUMMARY 161

However, when you specify the -usepolicy argument on the command line, a
default security manager is installed; the effect of that argument is to install the
Launcher's security manager. This security manager in turn initializes the access
controller-as we mentioned in Chapter 5, the access controller is not initialized
until it is first used, and it will not be used until the security manager calls it
(unless, of course, your own code calls it). The Launcher's security manager asks
the access controller to check for the appropriate permission (that is, the permis­
sion that we listed in Table 6-3) with the exceptions that we listed with that table
and the additional exception that the check:Exit () method always succeeds.

Remember when you use the Launcher that the security provisions only apply to
classes that are loaded from the CLASSPATH and not from the Java API.

Summary
Implementing a security manager is a key step in defining a security policy for
your own Java applications; the examples presented in this chapter should help
you do that effectively. In Java 1.2, you can specify much of the security policy via
an external policy file, although there are still instances where you need to write
your own security manager in order to achieve specific (but common) policies. In
Java 1.1 and previous releases, you need to write your own security manager that
implements the security policy you feel is appropriate. Otherwise, your Java appli­
cation will have no security policy at all.

If you don't feel comfortable running a third-party Java application without a secu­
rity manager in place, the examples we've provided in this chapter are also key­
they provide the cornerstone of the security features that are built into the JavaR­
unner program.

On the other hand, if you have a secured network and want to expand the parame­
ters of the Java sandbox without resorting to the use and configuration of signed
classes (the topic we'll explore for most of the rest of this book), writing your own
security manager is also the way to go. For browsers that support it, you can then
substitute the new security manager into them, or you can again use the Java­
Runner program or Java's Launcher to run the program.

No matter what path you take, the security manager is the most important aspect
of the Java sandbox. The methods of the security manager should help you be
able to make the appropriate decisions when you implement your own security
policies.

Page 178 of 482

7

Introduction to
Cryptography

In this chapter:
• The Need for

Authentication

• The Role of
Authentication

" Cryptographic
Engines

So far, we've examined the basic level of Java's security paradigm-essentially,
those features that make up the Java sandbox. We're now going to shift gears
somewhat and begin our examination of the cryptographic features in the Java
security package itself. The Java security package is a set of classes that were added
to Java 1.1 (and expanded in 1.2); these classes provide additional layers of secu­
rity beyond the layers we've examined so far. Although these classes do play a role
in the Java sandbox-they are the basis by which Java classes may be signed, and
expanding the sandbox based on signed classes is a key goal of Java security-they
may play other roles in secure applications.

A digital signature, for example, can authenticate a Java class so that the security
policy can allow that class greater latitude in the operations it can perform, but a
digital signature is a useful thing in its own right. An HR department may want to
use a digital signature to verify requests to change payroll data, an online subscrip­
tion service might require a digital signature to process a change order, and so
on. Thus, while we'll examine the classes of the Java security package from the
perspective of what we'll be able to do with a signed class, the techniques we'll
show will have broader applicability.

In order to use the classes of the security package, you don't need a deep under­
standing of cryptographic theory. This chapter will explain the basic concepts of
the operations involved, which should be sufficient to understand how to use the
APis involved. On the other hand, one feature of the security package is that
different implementations of different algorithms may be provided by third-party
vendors. We'll explain how to go about providing such implementations, but it is
assumed that readers who are interested in writing such an implementation
already understand the mechanics of cryptography. Hence, we won't give any cryp­
tographically valid examples in those sections.

162

Page 179 of 482

THE NEED FOR AUTHENTICATION 163

If you already have an understanding of the basics of digital signatures, encryp­
tion, and the need for authentication, you can skip this chapter, which provides
mainly background information.

The Need for Authentication
We are primarily concerned with one goal of the security package: the ability to
authenticate classes that have been loaded from the network. The components of
the Java API that provide authentication may have other uses in other contexts
(including within your own Java applications), but their primary goal is to allow a

Java application (and a Java-enabled browser) to load a class from the network
and be assured of two things:

o The identity of the site from which the class was loaded can be verified
(author authentication).

0 The class was not modified in transit over the network (data authentication).

As we've seen, Java applications typically assume that all classes loaded over the
network are untrusted classes, and these untrusted classes are generally given
permissions consistent with that assumption. Classes that meet the above two
criteria, however, need not necessarily be so constrained. If you walk into your
local software store and buy a shrink-wrapped piece of software, you're generally
confident that the software will not contain viruses or anything else that's
harmful. This is part of the implied contract between a commercial software
producer and a commercial software buyer. If you download code from that same
software producer's web site, you're probably just as confident that the code
you're downloading is not harmful; perhaps it should be given the same access
rights as the software you obtained from that company through a more traditional
channel.

There's a small irony here, because many computer viruses are spread through
commercial software. That's one reason why the fact that a class has been authenti­
cated does not necessarily mean it should be able to access anything on your
machine that it wants to. It's also a reason why the fine-grained nature of the
access controller is important: if you buy classes from acme. com, but only give them
access to certain things on your machine, you are still somewhat protected if by
mistake acme. com includes a virus in their software.

Even if all commercial software were virus free, however, there is a problem with
assuming that code downloaded from a commercial site is safe to run on your
machine. The problem with that assumption-and the reason that Java by default
does not allow that assumption to be made-has to do with the way in which the
code you execute makes its way through the Internet. If you load some code from
www.xyz.com onto your machine, that code will pass through many machines that

Page 180 of 482

164 CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

are responsible for routing the code between your site and xyz's site. Typically,
we like to think that the data that passes between our desktop and www.xyz.com

enters some large network cloud; it's called a cloud because it contains a lot of
details, and the details aren't usually important to us. In this case, however, the
details are important. We're very interested to know that the data between our
desktop and xyz.com passes through, for example, our Internet service provider,
two other sites on the Internet backbone, and xyz's Internet service provider.
Such a transmission is shown in Figure 7-1. The two types of authentication that
we mentioned above provide the necessary assurance that the data passing
through all these sites is not compromised.

www.site1.com ~

~.si~A
ISP ~

" desktop www.xyz.com
\. __________________________ _

Figure 7-1. How data travels thTough a network

Author Authentication

First we must prove is that the author of the data is who we expect it to be. When
you send data that is destined for www.xyz.com, that data is forwarded to site2, who
is supposed to forward it to sitel, who should simply forward it to Xyz's Internet
service provider. You trust sitel to forward the data to xyz's Internet service
provider unchanged; however, there's nothing that causes site] to fulfill its part of
this contract. A hacker at site] could arrange for all the data destined for
www.xyz.com to be sent to the hacker's own machine, and the hacker could send
back data through site2 that looked as if it originated from www.xyz.com. The
hacker is now successfully impersonating the www.xyz.com site. Hence, although the
URL in your browser says www.xyz.com, you've been fooled: you're actually
receiving whatever data the impersonator of xyz Corporation wants to send to you.

There are a number of ways to achieve this masquerade, the most well-known of
which is DNS (or IP) spoofing. When you want to surf to www.xyz.com, your

Page 181 of 482

THE NEED FOR AUTHENTICATION 165

desktop asks your DNS server (which is typically your Internet service provider)
for the IP address of www.xyz.com and you then send off the request to whatever
address you receive. If your Internet service provider knows the IP address of
www.xyz.com, it tells your desktop what the correct address is; otherwise, it has to
ask another DNS server (e.g., sitel) for the correct IP address. If a hacker has
control of a machine anywhere along the chain of DNS servers, it is relatively
simple for that hacker to send out his own address in response to a DNS request
for www.xyz.com.

Now say that you surf to www.xyz.com and request a Java class (or set of classes) to
run a spellchecker for your Java-based word processor. The request you send to
www.xyz.com will be misaddressed by your machine-your machine will errone­
ously send the request to the hacker's machine, since that's the IP address your
machine has associated with www.xyz.com. Now the hacker is able to send you back
a Java class. If that Java class is suddenly trusted (because, after all, it allegedly
came from a commercial site), it has access that you wouldn't necessarily approve:
perhaps while it's spellchecking your document, it is also searching your hard disk
to find the data file of your financial planning software so that it can read that file
and send its contents back over the network to the hacker's machine.

Yes, we've made this sound easier than it is-the hacker would have to have inti­
mate knowledge of the xyz.com site to sen'd you back the classes you requested, and
those classes would have to have the expected interface in order for any of their
code to be executed. But such situations are not difficult to set up either; if the
hackers stole the original class files from www.xyz.com--which is usually extremely
easy-all they need to do is set themselves up at the right place in the DNS chain.

In the strict Java security model we explored earlier, this sort of situation is
possible, but it isn't dangerous. Because the classes loaded from the network are
never trusted at all, the class that was substituted by the hackers is not able to
damage anything on your machine. At worst, the substituted class does not behave
as you expect and may in fact do something quite annoying-like play loud music
on your machine instead of spellchecking your document. But the class is not able
to do anything dangerous, simply because all classes from the network are
untrusted.

In order to trust a class that is loaded from the network, then, we must have some
way to verify that the class actually came from the site it said it came from. This
authentication comes from a digital signature that comes with the class data-an
electronic verification that the class did indeed come from www.xyz.com.

Data Authentication

The second problem introduced by the fact that our transmissions to www.xyz. com

must pass through several hosts is the possibility of snooping. In this scenario,

Page 182 of 482

166 CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

assume that site2 on the network is under control of a hacker. When you send
data to www.xyz.com, the data passes through the machine on site2, where the
hacker can modify it; when data is sent back to you, it travels the same path, which
means that the hacker on site2 can again modify the data.

This lack of privacy in data transmission is one reason you might want data over
the network to be encrypted-certainly if the spellchecking software you're using
from www.xyz.com is something you must pay for, you don't want to send your
unencrypted credit card through the network so that site2 can read it. However,
for authentication purposes, encrypting the data is not strictly necessary. All that
is necessary is some sort of assurance that the data that has passed through the
network has not been modified in transit. This can be achieved by various crypto­
graphic algorithms even though the data itself is not encrypted. The simpler path
is to use such a cryptographic algorithm (known as a message digest algorithm or
a digital fingerprint) instead of encrypting the data.

Encryption Versus Data Authentication

When you send data through a public network, you can use a digital finger­
print of that data to ensure that the data was not modified while it was in
transit over the network. This fingerprint is sufficient to prevent a snooper
from substituting new data (e.g., a new Java class file) for the original data in
your transmission.

However, this authentication does not prevent a snooper from reading the
data in your transmission; authenticated data is not encrypted data. If you
are worried about someone stealing your data, the security provided by data
authentication is insufficient. Data authentication prevents writing of data,
but not reading of data.

Java only provides authentication and not encryption because of export laws
various countries apply to encryption technology. When we discuss the Java
Cryptography Extension in Chapter 13, we'll expand upon these restrictions.

Without some cryptographic mechanism in place, the hacker at site2 has the
option of modifying the classes that are sent from www.xyz.com. When the classes
are read by the machine at site2, the hacker could modify them in memory before
they are sent back onto the network to be read by site] (and ultimately to be read
by your machine). Hence, the classes that are sent need to have a digital finger­
print associated with them. As it turns out, the digital fingerprint is required to
sign the class as well.

Page 183 of 482

THE NEED FOR AUTHENTICATION 167

Java's Role inAuthentication

When Java was first released and touted as being "secure," it surprised many
people to discover that the types of attacks we've just discussed were still possible.
As we've said, security means many things to many people, but a reasonable argu­
ment could be made that the scenarios we've just outlined should not be possible
in a secure environment.

The reasons Java did not solve these problems in its first release are varied, but
they essentially boil down to one practical reason and one philosophical reason.

The practical reason is that all the solutions we're about to explore depend to a
high degree on technologies that are just beginning to become viable. As a prac­
tical matter, authentication relies on everyone having public keys available-and
as we'll discuss in Chapter 11, that's not necessarily the case. Without a robust
mechanism to share public keys, Java had two options:

" Provide no security at all, and allow applets full use of the resources of the
user's computer. By now, we know all the possible problems with that route.

" Provide the very strict security that was implemented in 1.0-based versions of
Java, with a view toward ways of enhancing that model as technologies
evolved. While not the best of all possible worlds, this compromise allowed
Java to be adopted much sooner than it would otherwise have been.

On a philosophical level, however, there's another argument: Java shouldn't solve
these problems because they are not confined to Java itself. Even if Java classes
were always authenticated, that would not prevent the types of attacks we've
outlined here from affecting non:Java-related transmissions. If you surf to
www.xyz.com and that site is subject to DNS spoofing, you'll be served whatever
pages the spoofer wants to substitute. If you engage in a standard non:Java, forms­
based transmission with www.xyz.com, a snooper along the way can steal and
modify the data you're sending over the standard HTTP transmission mechanism.

In other words, the attacks we've just outlined are inherent in the design of a
public network, and they affect all traffic equally-email traffic, web traffic, ftp
traffic, Java traffic, and so on. In a perfect world, solving these problems at the
Java level is inefficient, as it means that the same problem must still be solved for
all the other traffic on the public network. Solving the problem at the network
level, on the other hand, solves the problem once and for all, so that every
protocol and every type of traffic are protected.

There are a number of popular technologies that solve this problem in a more
general case. If all the traffic between your site and www.xyz.com occurs over SSL
using an https-based URL, then your browser and the www.xyz.com web server will
take care of the details of authentication of all web-based traffic, including the

Page 184 of 482

168 CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

Java-related traffic. That solves the problem at the level of the web browser, but
that still is not a complete solution. If the applet needs to open a connection back
to www.xyz.com, it must use SSL for this communication as well. And we still have
other, non-web-related traffic that is not authenticated.

It would be better still to solve this problem at the network level itself. There are
many products from various vendors that allow you to authenticate (and encrypt)
all data between your site and a remote site on the network. Using such a product
is really the ideal from a design point of view; in that way, all data is protected, no
matter what the source of the traffic is. Either of these solutions makes authentica­
tion and fingerprinting of Java classes redundant (and they may offer the benefit
that the data is actually encrypted when it passes through the network).

Unfortunately, these solutions lead us back to practical considerations: if it's hard
for Java environments to share digital keys and to manage cryptographic tech­
nology, it's harder still to depend on the network software to manage this process.
So while it might be ideal for this problem to be solved for the network as a
whole, it's impractical to expect such a solution. Hence, the Java security package
offers a reasonable compromise: it allows you to deploy and use trusted (i.e.,
authenticated) classes, but their use is not mandated, in case you prefer to employ
a broader solution to this problem.

The Role of Authentication
In the preceding discussion, we assumed that you want to load classes from
www.xyz.com and that you want those classes to be trusted, so that they might have
some special permission when they execute on your machine. For example, the
spellchecking class might need to open up a local dictionary file to learn how to
spellcheck names and other data you customized for the spellchecker.

Do not, however, make the assumption that all classes that are authenticated are
therefore to be trusted, or even that all trusted classes should necessarily have the
same set of permissions. There's nothing that prevents me from obtaining the
necessary information and tools so that I can sign and encrypt all of my classes.
When you download those classes, you know with certainty that the classes came
from me-they carry my digital signature, and they've been fingerprinted to
ensure that they haven't been tampered with.

But that's all the information that you know about these classes. In particular, just
because the classes were authenticated does not mean that I didn't put a virus
into them that's going to erase all the files on your hard disk. And just because
you know that a particular Java applet came from me does not mean that you can
necessarily track me down when something goes wrong. If you surf to my home
page and run my authenticated applet, then surf to www.sun.com and run their

Page 185 of 482

CRYPTOGRAPHIC ENGINES 169

authenticated applet, then surf to www.EvilSite.org and run their authenticated
applet, and then two weeks later your hard disk is erased, how will you know
which site planted the delayed virus onto your machine? How will you even
remember which sites you had visited in the last two weeks (or longer)? If you
have an adequate set of backups and other logs, it is conceivable that you might
be able to re-create what happened and know at whom to point your finger (and
whom to sue), but such a task would be arduous indeed. And if the virus affected
your logs, the finger of suspicion might point to the incorrect site.

Hence, the role of authentication of Java classes is not to validate that those
classes are trusted or to automatically give those classes special permissions. The
role of authentication is to give the user (or, for a corporate network, the system
or network administrator) more information on which to base a security policy. A
reasonable policy might be that classes that are known to come from
www.SpellChecker.com can read the user's personal dictionary file-but that doesn't
mean they should necessarily be able to read anything else. A reasonable policy
would also be that this type of exception to the general rule about permissions
given to network classes is only to be granted in very specific cases to only a few
well-known sites, and that unknown but authenticated sites are still considered
untrusted.

The moral of the story is that authentication does not magically solve any
problem; it is merely a tool that can be used in the pursuit of solutions.

Cryptographic Engines
In the next few chapters of this book, we're going to see how Java provides an
interface to the algorithms required to perform the sort of authentications we've
just talked about. We'll also explore the architecture Java provides for general
implementation of these algorithms, including ones (such as encryption) that are
not strictly required for authentication. If you're not familiar with the various cryp­
tographic algorithms we've been alluding to so far in this chapter, the next
section should sort that all out for you.

Essentially, all cryptographic operations are structured like the diagram in
Figure 7-2. Central to this idea is the cryptographic algorithm itself, which is
called an engine; the term "algorithm" is reserved to refer to particular implemen­
tations of the cryptographic operation. The engine takes some set of input data
and (optionally) some sort of key and produces a set of output data. A few points
are relevant to this diagram. There are engines that do not require a key as part of
their input. In addition, not all cryptographic engines produce symmetric
output-that is, it's not always the case tl1at the original text can be reconstructed
from the output data. Also, the size of the output is typically not the same as the

Page 186 of 482

CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

size of the input. In the case of message digests and digital signatures, the output
size is a small, fixed-size number of bytes; in the case of encryption engines, the
output size is typically somewhat larger than the input size.

April is the
cruelest month

Input data

Figure 7-2. A cryptographic engine for encryption

Ncevy vf gur
pehryrtg zbagu

Output data

In the Java security package, there are two standard cryptographic engines: a
message digest engine and a digital signature engine. In addition, for some users,
an optional engine is available to perform encryption. Finally, because keys are
central to the use of most of these engines, there is a wide set of classes that
operate on keys, including engines that can be used to generate certain types of
keys. The term "engine" is also used within the security package to refer to other
classes that support these operations.

Message Digests

Message digests are the first cryptographic engines we'll examine. A message
digest is the digital fingerprint we alluded to earlier. Conceptually, a message
digest is a small sequence of bytes that is produced when a given set of data is
passed through the message digest engine. Unlike other cryptographic engines, a
message digest engine does not require a key to operate. It takes a single stream
of data as its input and produces a single output. We call the output a message
digest (or simply a digest, or a hash), and we say that the digest represents the
input data.

The digest that corresponds to a particular set of data does not reflect any infor­
mation about that data-in particular, there is no way to tell from a digest how
much data it represents, or what the data actually was. A message digest is useful
only when the data it represents is also available. If you want to determine
whether a particular digest represents a particular set of data, you must recalcu­
late the digest and compare the newly calculated digest with the original digest. If

Page 187 of 482

CRI:PTOGRAPHIC ENGINES 171

the two are equal, you've verified that the original digest does indeed represent
the given set of data.

Data that is fed into a message digest engine is always treated as an ordered set of
bytes. If even one byte of the data is altered or absent (or presented out of order),
the digest will be different. Hence, a typical message digest algorithm has an
internal accumulator that operates on all data fed into the engine. As each byte of
data is fed into the engine, it is combined with the data in the accumulator to
produce a new value, which is stored in the accumulator to provide input (see
Figure 7-3).

Original Text

0 Time, thou must untangle this.

Figure 7-3. The message digest accumulator

As a simple example, consider a message digest algorithm based on the exclusive­
or of all the input bytes. The accumulator starts with a value of 0. If the string "0
Time, thou must untangle this" is passed to the engine, the engine considers the
bytes one at a time.* The first byte, "0", has a value of Ox4f, which will xorwith the
accumulator to provide a value of Ox4f. The next byte, a space (Ox20), will xorwith
the accumulator to produce a value of Ox6f. And so on, such that the final result
of the accumulator is Ox67.

There are a few differences between this example and a real message digest algo­
rithm. First, standard algorithms typically operate on 4- or 8-byte quantities, so the
bytes that are fed into the engine are first grouped into ints or longs, with
padding added if the input data is not a multiple of the desired quantity. Second,
they produce a digest that is usually 64 or 128 bits long, rather than a single byte;

* Don't be confused by the fact that we're dealing in bytes here, when the characters in a java string are
·two bytes long. The data passed to the message digest engine is treated as arbitrary binary data-it doesn't
matter if the data was originally ASCII (that is, byte-oriented) data, or a java character string, or a binary
class file.

Page 188 of 482

172 CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

this final digest may be the value left in the accumulator, or it may be the value
left in the accumulator subjected to additional operations.

The difference in the output size is one of the crucial differences. At best, the
example we just walked through could produce 256 different digests. Any two
given inputs have a 1 in 256 chance of producing the same digest, which is clearly
not a sufficient guarantee that a digest represents a given set of data. In the
example above, the string "0 Time, thou must untangle this" produced a digest of
Ox67-but so does the string "g". An algorithm that produces a 64-bit digest, on
the other hand, produces over 18 quintillion unique digests, so that the odds that
two data sequences will produce the same digest are very remote indeed.

This brings us to another of the crucial differences-a successful message digest
algorithm must provide an assurance that it is computationally infeasible to find
two messages that produce the same digest. This ensures that a new set of data
cannot be substituted for the original data so that each produces the same digest.

Note also that a message digest in itself is not a secure entity. A digest is often
provided with the data it represents; the recipient of the data then recalculates
the digest to make sure that the data was not originally tampered with. But
nothing in this scenario prevents someone from modifying both the original data
and the digest, since both are transmitted, and since the calculation of the digest
is a well-known operation requiring no key. Digests are an important piece of a
digital signature, as we'll see in just a bit.

Cryptographic Keys

The second engine we'll look at generates cryptographic keys. Keys are the basis
for many cryptographic operations. In its simplest sense, a key is a long string of
numbers-not just any string of numbers, but a string of numbers that has very
strict mathematical properties. The mathematical properties a key must have vary
based on the cryptographic algorithms it is going to be used for, but there's an
abstract (logical) set of properties all keys must have. It's this abstract set of prop­
erties that we'll see in the Java security package.

In the realm of cryptography, keys can either come alone (in which case they are
called secret keys) or in pairs. A key pair has two keys, a public key and a private
key. So altogether there are three types of keys-secret, public, and private-but
from an algorithmic perspective, there are two types of keys, shared and secret.

When an algorithm requires a secret key, both parties using the algorithm will use
the same key. Both parties must agree to keep the key secret, lest the security of
the cryptography between the parties be compromised.

Page 189 of 482

CRYPTOGRAPHIC ENGINES 173

The secret key approach suffers from two problems. First, it requires a separate
key for every pair of parties that need to send encrypted data. If you want to send
your encrypted credit card data to ten different Internet stores, you would need
ten different keys. Worse yet, if you operated an Internet store and had millions
of customers, you would need literally millions of keys-one per customer.
Management of such keys is a very hard problem.

The other problem with this approach is corning up ·with a method for sharing
the keys. It's crucial that the key be kept secret, since anyone with the key can
decrypt the data to be shared. Hence, you can't simply send the key over the
network without somehow encrypting the key itself; doing so would be tanta­
mount to sending the data itself unencrypted.

For these reasons, most keys in the security package are parts of public
key/private key pairs (the exception to this is the encryption engine, which can
use any type of key, and which provides a mechanism to share secret keys). Public
and private keys can provide asymmetric operation to cryptographic engines. The
public key can be used by one party participating in the algorithm, and the
private key can be used by the other party.

The usefulness of this type of key pair is that one key can be published to the
world. You can email your public key to your friends (and your enemies), you can
put it on a global key server somewhere, you can broadcast it on the Internet-as
long as you don't lose your private key, you can do anything you like with your
public key.

Then, when someone wants to send you some sensitive information, they can use
your public key to encrypt the data-and as long as you have kept your private key
private, you'll be the only one who is actually able to decrypt the data. Similarly,
when you want to send sensitive data to someone, all you need is their public key;
when the data has been encrypted with the public key, you know that only the
hoider of the private key will be able to read what you've sent them. In the area of
digital signatures, this key ordering is reversed: you sign a. document with your
private key, and the recipient of the document needs your public key in order to
verify the digital signature.

Public key encryption is not without its key management problems as well,
however. When you receive a digitally signed document, you need the public key
of the signer of the document. The mechanism to obtain that key is very fluid;
there are a number of proposals for centralized key warehouses that would hold
public keys and for methods to access those keys, but the infrastructure to make
this all a reality is not really in place. Hence, users of public keys have adopted a
variety of techniques for obtaining the public keys.

Page 190 of 482

174 CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

Digital Signatures

The primary engine in the security package (at least as far as authentication goes)
is the digital signature engine. Like a real signature, a digital signature is
presumed to identify uniquely an entity (that is, an individual or an organization).
Like a real signature, a digital signature can be forged, although it's much harder
to forge a digital signature than a real signature.* Forging a digital signature
requires access to the private key of the entity whose signature is being forged;
this is yet another reason why it is important to keep your private keys private.
Like a real signature, a digital signature can be "smudged" so that it is no longer
recognizable. And because they're based on key certificates, digital signatures
have other properties, such as the fact that they can expire.

Digital signatures rely on two things: the ability to generate a message digest, and
the ability to encrypt that digest. The entire process is shown in Figure 7-4.

989754494 ...

Digital Signature

Figure 7-4. Generating a digital signature

The process is as follows:

1. A message digest is calculated that represents the input data.

2. The digest is then encrypted with the private key.

Note that encryption is performed on the digest and not on the data itself. In
order to present this signature to another entity, you must present the original
data with it-the signature is just a message digest, and, as we mentioned earlier,
you cannot reconstruct the input data from the message digest.

* On the other hand, a forged digital signature is undetectable, unlike a forged real signature.

Page 191 of 482

SCM~!ARY 175

Verifying a digital signature requires the same path; the message digest of the orig­
inal data must be calculated. This digest is then passed through the encryption
engine, but this time, the public key of the signer is used. If the digital signature
produced by this operation is the same as the digital signature that was presented,
the digital signature is deemed valid. Alternately, for some digital signature algo­
rithms, the signed digest could be decrypted with the public key, and the digests
compared.

Nothing prevents the signed data from being intercepted. So the data that accom­
panies the digital signature cannot be sensitive data; the digital signature only
verifies that the message came from a particular entity, but it does not actually
protect that message.

However, just because someone can snoop the signed data does not mean that it
can be tampered with-if the data is altered, it will not produce the same message
digest, which in turn will not produce the same digital signature. And it's impos­
sible to change the data, generate a new digest of that data, and then regenerate
the digital signature without access to the private key. It is, however, possible to
replace one message that was signed by a private key with another message that
was signed by that same private key.

Encryption Engines

The final engine we'll discuss handles actual encryption. This engine is part of the
Java Cryptography Extension (JCE) rather than the security package itself, and
there are various rules on who may and may not obtain the JCE (at least from Sun
or other U.S. companies). Encryption engines handle the encryption and decryp­
tion of arbitrary data, just as we would expect. An important thing to note is that
the encryption engines that are part of the JCE are not used in the generation
and verification of digital signatures-digital signatures use their own algorithms
to encrypt and decrypt the message digest that are suitable only for manipulating
data the size of a message digest. This difference allows the digital signature
engine to be exportable, where the encryption engines are not.

Summary
Much of the Java security package is made up of a collection of engines, the basic
properties of which we've outlined in this chapter. As a unit, these engines allow
us primarily to create digital signatures-a useful notion that authenticates a
particular piece of data. One thing that a digital signature can authenticate is a
Java class file, which provides the basis for a security manager to consider a class
to be trusted (as least to some degree), even though the class was loaded from the
network.

Page 192 of 482

176 CHAPTER 7: INTRODUCTION TO CRYPTOGRAPHY

The security package, like many Java APis, is actually a fairly abstract interface that
several implementations may be plugged into. Hence, another feature of the secu­
rity package is its infrastructure to support these differing implementations. In
the next chapter, we'll explore the structure of the security package and how it
supports these differing implementations; we'll then proceed into how to use the
engines of the security package.

Page 193 of 482

In this chapter:
• The Architecture of

Security Providers

• The Provider Class

• The Security Class

o The Architecture of
Engine Classes

Security Providers

The cryptographic engines in Java that provide for digital signatures, message
digests, and the like are provided as a set of abstract classes in the Java security
package. Concrete implementations of these classes are provided by Sun in the
JDK, and you also have the option of obtaining third-party implementations of
these engines. All of this is made possible through the security provider infrastruc­
ture. The provider infrastructure allows concrete implementations of various
classes in the security package to be found at runtime, without any changes to the
code. In terms of programming, the infrastructure provides a consistent API that
can be used by all programs, regardless of who is providing the actual
implementation.

Like many other tools discussed in this book, security providers are useful only to
developers and users of Java applications. Java-enabled browsers do not imple­
ment the security provider infrastructure, nor do they implement any of the
cryptographic engines we discuss in the remainder of this book. On the other
hand, one of the key features of the Activator-the Java plug-in for Internet
Explorer and Netscape Communicator-is that it does implement the entire secu­
rity provider infrastructure for use within a browser (subject to the restrictions
that might be in place by the access controller and security manager). All the
features discussed in this chapter are available in both Java 1.1 and 1.2, with some
slight differences we'll mention.

In terms of actual programming, the classes we're going to examme m this
chapter are rarely used-hence, we will not delve much into programming. For
most developers, end users, and administrators, this chapter focuses on the archi­
tecture of the security provider, since that gives us the ability to substitute new
implementations of the cryptographic engines we'll use in the rest of the book.

177

Page 194 of 482

178 CHAPTER 8: SECURITY PROVIDERS

Following that discussion, we'll move into the implementation of the architecture,
for those readers who are interested in the details.

The Architecture of Security Providers
The security provider abstracts two ideas: engines and algorithms. In this context,
"engine" is just another word for operation; there are certain operations the secu­
rity provider knows about, and in Java, these operations are known as engines. An
algorithm defines how a particular operation should be executed. An algorithm
can be thought of as an implementation of an engine, but that can lead to confu­
sion, because there may be several implementations of an algorithm.

As a simple example, the Java security package knows about message digests. A
message digest is an engine: it is an operation a programmer can perform. The
idea behind a message digest is independent of how any particular message digest
may be calculated. All message digests share certain features, and the class that
abstracts these common features into a single interface is termed an engine.
Engines are generally abstract, and are always independent of any particular
algorithm.

A message digest may be implemented by a particular algorithm, such as MD5 or
SHA. An algorithm is generally provided as a concrete class that extends an
abstract engine class, completing the definition of the class. However, there may
be many classes that provide a particular algorithm; you may have an SHA class
that came with your Java platform, and you may also have obtained an SHA class
from a third party. Both classes should provide the same results, but their internal
implementations may be vastly different.

Security providers are the glue that manages the mapping between the engines
used by the rest of the security package (such as a message digest), the specific
algorithms that are valid for those engines (such as an SHA digest), and the
specific implementations of that algorithm/ engine pair that might be available to
any particular Java virtual machine. The goal of the security provider interface is
to allow an easy mechanism where the specific algorithms and their implementa­
tions can be easily changed or substituted. The security provider allows us to
change the implementation of the SHA digest algorithm that is in use, and to
introduce a new algorithm to generate a digest.

Hence, a typical programmer only uses the engine classes to perform particular
operations. You don't need to worry about the classes that actually perform the
computation. The engine classes provide the primary interface to the security
package.

Page 195 of 482

THE ARCHITECTURE OF SECURI1Y PROVIDERS 179

Components of the Architecture

The architecture surrounding all of this has these components:

Engine classes
These classes come with the Java virtual machine as part of the core API.

Algorithm classes
At the basic level, there is a set of classes that implement particular algorithms
for particular engines. A default set of these classes is provided by the supplier
of the Java platform, and other third-party organizations (including your
own) can supply additional sets of algorithm classes. These classes may imple­
ment one or more algorithms for one or more engines; it is not necessary for
a set of classes from a particular vendor to implement all possible algorithms
or all possible engines. A single algorithm class provides a particular algo­
rithm for a particular engine.

The Provider class
Each set of algorithm classes from a particular vendor is managed by an
instance of the class Provider. A provider knows how to map particular algo­
rithms to the actual class that implements the operation.

The Security class
The Security class maintains a list of the provider classes and consulting
each in turn to see which operations it supports.

In later chapters, we'lllook at the individual algorithms and engines of this archi­
tecture; for now, we'll discuss the Provider and Security classes. These two
classes together make up the idea of a security provider.

The security providers rely on cooperation between themselves and the rest of the
Java security package in order to fulfill their purpose. The details of this coopera­
tion are handled for us-when we use the MessageDigest class to generate a
digest, for example, it's the responsibility of the MessageDigest class to ask the
Security class which particular class to use to generate the digest. The Security
class in turn asks each of the providers whether or not they can supply the desired
digest.

So a typical program that wants to use the security package does not interact
directly with the security provider. Instead, the security provider provides its
usefulness transparently to the programmer and to the end user. An end user, a
system administrator, or a developer can configure the security provider; this is a
result of the security provider being based on a set of provider classes. While there
is a default provider class, the end user or system administrator can replace the
default provider with another class. In addition, a user or programmer can
augment the default provider class by adding additional provider classes.

Page 196 of 482

180 CHAPTER 8: SECURITY PROVIDERS

When the security package needs to perform an operation, it constructs a string
representing that operation and asks the Security class for an object that can
perform the operation with the given algorithm. For example, the idea of gener­
ating a message digest is represented by a particular engine; its name (i.e.,
MessageDigest) is the first component in the request to the security provider.
There can be many algorithms that can provide a message digest. SHA-1 and MD5
are the two most common, though we'll explore other possibilities when we look
in depth at the corresponding classes that handle digests in Java. So the name of
the algorithm (e.g., MD5) forms the second component of the string provided to
the security class. These components are concatenated into a single string sepa­
rated by a dot (e.g., MessageDigest.MD5).

Six cryptographic engines are supported in the Java security package. In addition,
thirteen cryptographic algorithms are common enough to have standard names
recognized by the Java security package. However, not every algorithm can be
used to perform every operation; the valid combinations Java supports are listed
in Table 8-1. Italicized entries are operations that the Java security specification
defines as legal, but are not implemented by the default security provider.

Table 8-1. Security Features and Algorithms Expected in the Security API

Engine

AlgorithmParameters *
AlgorithmParameterGenerator *
KeyFactory *
KeyPairGenerator

K.eyPairGenerator

MessageDigest

MessageDigest

MessageDigest

Signature

Signature

Signature

Signature

Algorithm Name

DSA

DSA

DSA

DSA

RSA

MD5

SHA-1

MD2

DSAa

MD2/RSA

MD5/RSA

SHA-1/RSA

a This becomes SHA/DSA in java 1.2, though DSA is still accepted.

The names in this table are the strings passed to the security provider in order for
it to find the class implementing the operation. In addition, the security provider
can be passed certain alias strings that map an alias to one of these valid strings.
For example, although the standard name of the secure hash algorithm is SHA-1

Page 197 of 482

THE ARCHITECTURE OF SECURITY PROVIDERS 181

(to distinguish it from SHA-0, the first such algorithm, which is now obsolete),
this algorithm is often referred to as SHA. So ~hile

MessageDigest.SHA-1

is a valid string to pass to the security provider, there is a way to construct alias
strings so that the alias refers to the original algorithm. Such a string has the form:

Alg.Alias.MessageDigest.SHA

This string specifies to the security provider that SHA is a valid name for the
message digest operation implemented by this provider. We'll see an example of
this alias in use when we discuss the Provider class.

A word about the algorithm names in Table 8-1: Though the documentation for
the Java security package talks about these algorithm names as the valid names
that are supported by Java, that notion is not very helpful. As the entries in italics
show, not all pairs of engines and algorithm names are provided by the default
JDK So, even though it's reasonable to ask the Java security package for an
engine that provides digital signatures using an RSA algorithm, you won't be
successful in obtaining such an engine unless you've installed special software to
provide it. Similarly, although these are the supported algorithm names, there's
nothing that prevents us from using another name to refer to a new algorithm. If
you develop a new algorithm that performs a message digest operation, you can
give that algorithm whatever name you like and use that name freely within the
Java security package.

As it happens, there are many standard algorithms that have well-known names
which are not included in the set of names that the Java security specification
defines; there are some six to eight well-known message digest algorithms even
though the Java documentation mentions only three of them. Nothing prevents
you from using any of these algorithms.

In fact, the default security provider in Sun's provider uses other names for the
algorithms it does implement, although those names are undocumented. On the
other hand, it is not very useful to have arbitrary names for algorithms; these
other names that the Sun provider uses are known as OlD names. OlD stands for
Object IDentifier and is a way that some algorithm names are standardized by the
U.S. government. If you're used to dealing with algorithm definitions at that level,
rest assured that the Sun provider has aliases for them, but for our purposes, we'll
stick with the default names.

Choosing a Security Provider

When the Java virtual machine begins execution, it is responsible for consulting
the user's properties in order to determine which security providers should, be in

Page 198 of 482

182 CHAPTER 8: SECURITY PROVIDERS

place. These properties must be located in the file $]AVAHOME/lib/secu­
rity/java.security. In the reference release of the JDK, this file· contains this line
(among others):

security.provider.l=sun.security.provider.Sun

This line tells us that there is at least one provider class that should be consulted,
and that class should be an instance of the sun. security. provider. Sun class.

Each provider given in this file must be numbered, starting with 1. If you want to
use an additional provider, you can edit this file and add that provider at the next
number. Say that you obtain a security provider from xyz Corporation. When you
obtain this provider, you are told that the provider's class name is
com. xyz. XYZProvider; hence, you add this line to the java. security file:

security.provider.2=com.xyz.XYZProvider

Note that there's no reason why the new provider class had to be added at posi­
tion 2-it would have been perfectly acceptable to add the XYZProvider class as
security. provider .1 if the sun. security. provider. Sun class were changed to
security. provider. 2 (or, alternately, removed altogether). The Security class
keeps the instances of the providers in an array so that each class is found at the
index specified in the java. security file. As long as the providers in the java. security
file begin with 1 and are numbered consecutively, they may appear in any order.

The numbers in this example are significant; when the Security class is asked to
provide a particular engine and algorithm, it searches the listed providers in
order to find the first one that can supply the desired operation. All engine classes
use the security class to supply objects. When the message digest engine is asked
to provide an object capable of generating SHA message digests, the engine will
ask the Security class which provider to use. If the first provider in the list can
perform SHA message digests, that provider will be used. Otherwise, the second
provider is checked, and so on, until there are no providers left (and an excep­
tion is thrown) or until a provider that implements the desired operation is
found. Hence, the number that follows the security.provider string indicates
the order in which providers will be searched for particular implementations.

For end users and administrators, that's all there is to adding new security
providers. For developers, there is also a programmatic way in which a security
provider may be added; we'll explore that when we discuss the interface of the
Security class. But as we mentioned earlier, the programmatic interfar:e
provided by the two classes we're about to discuss is not often needed; you'd need
them only if you wanted to supply your own security provider, or if you wanted to
inspect or set programmatically the list of existing providers. Otherwise, the
classes are interesting only because they are used by the engine classes we'll begin
to examine in the next chapter.

Page 199 of 482

THE PROVIDER CLASS 183

The Provider Class
The first class we'll examine in depth is the Provider class (java.secur­
i ty. Provider).

public abstract class Provider extends Properties
This class forms the basis of the security provider architecture. There is
normally a standard subclass that implements a default security feature set;
other classes can be installed to implement other security algorithms.

In the core Java API, the Provider class is abstract, and there are no classes in the
core Java API that extend the ·Provider class. The default provider class that
comes with the referenc.~ JDK is the class Sun in the sun.security.provider
package. However, since this class is in the sun package, there's no guarantee that
it will be available with every implementation of the Java virtual machine.

In theory, this should not matter. The concepts of the security package will work
according to the specification as long as the Java implementation provides an
appropriate provider class and appropriate classes to perform the operations a
Java program will expect. The exact set of classes a particular program may expect
will depend, of course, on the program. In the next section, we;ll discuss how
different implementations of the Provider class may be loaded and used during
the execution of the virtual machine.

Using the Provider Class

The Provider class is seldom used directly by a programmer. This class does
contain a number of useful miscellaneous method we'll review here; these
methods are generally informational and would be used accordingly.

public String getName()
Return the name of the provider.

public double getVersion()
Return the version number of the. provider.

public String getlnfo()
Return the info string of the provider.

public String toString()
Return the string specifying the provider; this is typically the provider's name
concatenated with the provider's version number.

Page 200 of 482

184 CHAPTER 8: SECURITY PROVIDERS

As an extension of the Properties class, the Provider class also shares its public
interface. Beginning in Java 1.2, the Provider class overrides three of those
methods:

public synchronized void clear() *
If permission is granted, clear out all entries from the provider.

public synchronized Object put(Object key, Object value) *
If permission is granted, add the given property, keyed off the given key.

public synchronized Object remove(Object key)*
If permission is granted, remove the object associated with the given key.

Permission to perform these last three options is granted if the checkSecurityAc­
cess (} method grants permission based on the argument string
Provider. <method name> + getName (} where <method name> is clear, put, or
remove.

Since the interface to this class is simple, we won't actually show how it is used,
although we will use some of these methods later in this chapter. Note also that
there is no public constructor for the Provider class-a provider can only be
constructed under special circumstances we'll discuss later.

Implementing the Provider Class

If you're going to provide your own set of classes to perform security operations,
you must extend the Provider class and register that class with the virtual
machine. In this section, we'll explore how to do that. Most of the time, of course,
you will not implement your own Provider class-you'll just use the default one,
or perhaps install a third-party provider using the techniques that we explore in
the next section.

Although the Provider class is abstract, none of its methods are abstract. This
means that implementing a provider is, at first blush, simple: all you need do is
subclass the Provider class and provide an appropriate constructor. The subclass
must provide a constructor, since there is no default constructor within the
Provider class. The only constructor available to us is:

protected Provider(String name, double version, String info)
Construct a provider with the given name, version number, and information
string.

Hence, the basic implementation of a security provider is:

public class XYZProvider extends Provider {
public XYZProvider() {

super("XYZ", 1.0, "XYZ Security Provider vl.O");

Page 201 of 482

THE PROVIDER CLASS 185

Here we're defining the skeleton of a provider that is going to provide certain
facilities based on various algorithms of the xyz Corporation. Throughout the
remainder of this book, we'll be developing the classes that apply to the xyz's
cryptographic methods, but they will be examples only-they lack the rigorous
mathematical properties that these algorithms must have. In practice, you might
choose to implement algorithms that correspond to the RSA algorithms for the
cryptographic engines.

Note that we used a default col').structor in this class rather than providing a
constructor similar to the "one found in the Provider class itself. The reason for
this has to do with the way providers are constructed, which we'll discuss at the
end of this section. When you write a provider, it must provide a constructor with
no arguments.

This is a complete, albeit useless, implementation of a provider. In order to add
some functionality to our provider, we must put some associations into the
provider. The associations will perform the mapping that we mentioned earlier; it
is necessary for the provider to map the name of an engine and algorithm with
the name of a class that implements that operation. This is why the Provider class
itself is a subclass of the Properties class-so that we can make each of those asso­
ciations into a property.

The operations that our provider will be consulted about are listed in Table 8-2.
In this example, we're going to be providing an SHA-1 algorithm for performing
message digests, since that would be needed as part of the signature generation
algorithm we want to implement. There's no absolute requirement for this; we
could have depended on the default Sun security provider to supply this algo­
rithm for us. On the other hand, there's no guarantee that the default security
provider will be in place when our security provider is installed, so it's a good idea
for a provider to include all the algorithms it will need.

Table 8-2. Properties Included 1Yy Our Sample Provider

Property

Signature.SHA-1/XYZ

KeyPairGenerator.XYZ

MessageDigest.XYZ

MessageDigest.SHA-1

Corresponding Class

XYZSignature

XYZKeyPairGenerator

XYZMessageDigest

SHA1MessageDigest

In order to make these associations from this table, then, our XYZProvider class
needs to look like this:

public class XYZProvider extends Provider {
public XYZProvider() {

super("XYZ", 1.0, "XYZ Security Provider v1.0");

Page 202 of 482

186 CHAPTER 8: SECURJTYPROVIDERS

put("Signature.SHA-1/XYZ", "com.xyz.XYZSignature");
put("KeyPairGenerator.XYZ", "com.xyz.XYZKeyPairGenerator");
put("MessageDigest.XYZ", "com.xyz.XYZMessageDigest");
put("MessageDigest.SHA-1", "com.xyz.SHA1MessageDigest");
put ("A1g .Alias .MessageDigest. SHA", "SHA-1");

The only properties a provider is required to put into its property list are the prop­
erties that match the engine name and algorithm pair with the class that
implements that operation. In this example, that's handled with the first four calls
to the put () method (but remember too that the provider. can implement· as few
or as many operations as it wants to; it needn't irpplement more than a single
engine with one algorithm, or it can implement dozens of engine/algorithm
pairs). Note that the class name is the fully qualified package name of the class.

The provider also has the opportunity to set any other properties that it wants to
use. If the provider wants to set aliases (as we've done with the final call to the
put() method, using the syntax we showed earlier), it's free to do so. Our
example allows the program using this provider to request an SHA message digest
in addition to requesting an SH,A-1 digest. Doing this for SHA is highly advisable,
since that algorithm is typically referred to as SHA rather than SHA-1, but that's
the only common case where that aliasing is needed.

·A provider can set any other arbitrary properties that it wants as well. For instance,
a provider class could set this property:

put ("Nativeimplementation", "false");

if it wanted the classes that use the provider to be able to determine if this partic­
ular xyz implementation uses native methods.* It can also use the convention
that certain properties are preceded with the word Alg and contain the algorithm
name, like this:

put ("Alg.Nativeimplementation.XYZ", "false");

There's no advantage to setting any additional properties-nothing in the core
JDK will use them. They can be set to make the classes that accompany your
provider class easier to write-for example, your XYZSignature class might want
to inquire which particular providers have a native method implementation of the
xyz algorithm. Whatever information you put into your provider and how your
accompanying classes use that information is a design detail that is completely up
to you. The Security class will help you manage the information in these proper-

* RSA algorithms often use native methods, because there are existing implementations of them that are
written in C and have gone through an extensive quality acceptance test that many commercial sites have
a level of confidence in. However, many third-party RSA implementations do not use native methods.

Page 203 of 482

THE SECURITY CLASS 187

ties; this relationship to the Security class is the reason why we used a string
value for the Nativeimplementation property rather than a Boolean value.

There's one more nonpublic method of the Provider class that is used by the
security API:

static Provider loadProvider(String className)
Instantiate a provider that has as its type the given class. This method is
provided mostly for convenience-it simply loads the given class and instanti­
ates it. However, this method also ensures that the loaded class is an instance
of the Provider class.

This method creates an instance of a provider. The importance of this method
stems from how it performs its task: it creates the instance of the provider object
by calling the newinstance () method of the Class class. In order for that. opera­
tion to succeed, the provider class must therefore have a default constructor­
that is, a constructor that requires no arguments. This is why in our example we
provided such a constructor and had the constructor hardwire the name, version
number, and information string. We could have provided an additional
constructor that accepts those values as parameters, but it would never be called,
since the only way in which the virtual machine uses providers is to load them via
this"'method.

In the next section, we'll look into the details of how the virtual machine loads
those provider classes we want to use.

The Security Class
The Security class (java.security.Security) is responsible for managing the
set of provider classes that a java program can use, and forms the last link in the
architecture of the security provider. This class is final, and all its methods are
static (except for its constructor, which is private). Like the System and Math
classes, then, the Security class can never be created or subclassed; it exists
simply to provide a placeholder for methods that deal with the java. security
package.

Earlier, we explained how to add entries to the java.security file to add new
providers to the security architecture. The same feat can be accomplished
programmatically via these methods of the Security class:

public static int addProvider(Provider provider)
Add a new provider into the list of providers. The provider is added to the
end of the internal array of providers.

1
I

Page 204 of 482

188 CHAPTER 8: SECURITY PROVIDERS

public static int insertProviderAt(Provider provider, int position)
Add a new provider into the internal array of providers. The provider is
added at the specified position; other providers have their index changed if
necessary to make room for this provider. Position counting begins at 1.

The notion that these classes are kept in an indexed array is important; when the
Security class is asked to provide a particular algorithm for an operation, the
array is searched sequentially for a provider that can provide the requested algo­
rithm for the requested operation.

As an example, let's use a modification of the XYZProvider class that we outlined
earlier. This class comes with a set of classes to perform generation of key pairs,
and it can generate key pairs according to two algorithms: DSA and X'YZ. The
XYZProvider class, according to an entry added to the java.security file, has been
added at position 2. Additionally, let's say that our Java program has installed an
additional provider class at position 3 called the FooProvider that can generate
key pairs and digital signatures according to a single algorithm known as Foe.

Table 8-3. Sample Security Providers

Sun Provider

Signature Engines
DSA

Message Digest Engines
MD5

Key Pair Engines
DSA

XYZ Provider

Signature Engines
xyz
DSA

Message Digest Engines
xyz
SHA

Key Pair Engines
xyz
DSA

Foo Provider

Signature Engines
Foo

Message Digest Engines
None

Key Pair Engines
Foo

This leaves us with the set of provider classes listed in Table 8-3.

Now when our Java program needs to generate a key pair, the security provider is
consulted as to which classes will implement the key pair generation we want. If
we need to generate a DSA key, the security provider returns to us a class associ­
ated with the Sun provider class, since the Sun provider, at position 1, is the first
class that says that it can perform DSA key generation. If we had reversed the
order of indices in the java.security file so that the Sun provider was at position 2
and the X'YZ provider was at position l, a class associated with the X'YZ provider
would have been returned instead. Similarly, when we request a Foe key pair, a
class associated with the Foo provider is returned to us, regardless of what index it
occurs at, since that is the only provider class that knows how to perform Foe key
generation.

Page 205 of 482

THE SECURITY CLASS 189

Remember that this is a two-step process. The security class receives a string (like
KeyPairGenerator. DSA) and locates a class that provides that service (such as
sun. security. provider. Sun). The Sun class, as a provider class, does not actu­
ally know how to generate keys (or do anything else)-it only knows what classes
in the Sun security package know how to generate keys. Then the security class
must ask the provider itself for the name of the class that actually implements the
desired operation. That proc::ess is handled by an internal method of the Secu­
rity class-we'll use that method implicitly over the next few chapters when we
retrieve objects that implement a particular engine and algorithm. Before we do
that, though, we'll finish looking at the interface of the Security class.

There are a number of other methods in the Security class that provide basic
information about the configuration of the security provider.

public static void removeProvider(String name)
Remove the named provider from the list of provider classes. The remaining
providers move up in the array of providers if necessary. If the named
provider is not in the list, this method silently returns (i.e., no exception is
thrown).

public statz(; Provider[] getProviders()
Return a copy of the array of providers on which the Security class operates.
Note that this is a copy of the array; reordering its elements has no effect on
the Security class~

public static Provider getProvider(String name)
Return the provider with the given name. If the named provider is not in the
list held by the Security class, this method returns null.

public static String getProperty(String key)
Get the property of the Security class with the associated key. The properties
held in the Security class are the properties that were read from the java. secu­
rity file. In typical usage, one of the properties is security.provider.l (a~
well as any other providers listed in the java.security file). Note, however, that
properties of this sort may not reflect the actual order of the provider classes:
when the addProvider () , insertProviderAt () , and removeProvider ()
methods are called, the order of the providers changes. These changes are
not reflected in the internal property list.

The java.security file has a number of other properties within it; these other
properties may also be retrieved via this method.

public static String setProperty(String key)
Set the property of the security class with the associated key.

Page 206 of 482

190 CHAPTER 8: SECURITY PROVIDERS

public static String getAlgorithmProperty(String algName, String propName)
Search all the providers for a property in the form Alg. propName. algName
and return the first match it finds. For example, if a provider had set the
Alg .Nativeiirplementation.XYZ property to the string "false," a call to
getAlgorithrnName ("XYZ", "Nativeii!plementation") returns the string
"false" (which is why earlier we used a string value in the provider class).

Here's a simple example, then, of how to see a list or" all the security providers in a
particular virtual machine:

public class ExamineSecurity
public static void main(String args(])

try {
Provider p[] = Security.getProviders{);
for (int i = 0; i < p.length; i++) {

System.out.println(p[i]);
for (Enumeration e = p[i].keys(); e.hasMoreElements();)

System.out.println("\t" + e.nextElement());

catch (Exception e) {
System.out.println(e);

If we run this program with the 1.2 Sun security provider, we get this output:*

SUN version 1.2
Alg.Alias.MessageDigest.SHA
Alg.Alias.Signature.SHAwithDSA
Alg.Alias.Signature.1.3.14.3.2.13
Alg.Alias.Signature.OID.1.2.840.10040.4.3
Alg.Alias.Signature.SHA-1/DSA
Alg.Alias.Signature.DSS
Alg.Alias.Signature.SHA1withDSA
Alg.Alias.Signature.OID.1.3.14.3.2.13
AlgorithmParameters.DSA
KeyFactory.DSA
Alg.Alias.Signature.1.2.840.10040.4.3
Alg.Alias.MessageDigest.SHA1
AlgorithmParameterGenerator.DSA
Alg.Alias.AlgorithmParameters.1.2.840.10040.4.1
MessageDigest.MDS
Alg.Alias.KeyPairGenerator.OID.1.2.840.10040.4.1
MessageDigest.SHA-1
Alg.Alias.KeyPairGenerator.OID.1.3.14.3.2.12

* Output is from the beta 3 release ofJDK 1.2; there may be slight changes for the FCS security provider.

Page 207 of 482

THE SECURITY CLASS

Signature.DSA

Alg.Alias.KeyPairGenerator.1.3.14.3.2.12
Alg.Alias.KeyPairGenerator.1.2.840.10040.4.1

Alg.Alias.Signature.1.3.14.3.2.27

Alg.Alias.Signature.SHA/DSA

KeyPairGenerator.DSA
Alg.Alias.Signature.SHAl/DSA

Alg.Alias.Signature.OID.l.3.14.3.2.27

Alg.Alias.AlgorithmParameters.1.3.14.3.2.12

191

Two things are readily apparent from this example. First, the strings that contain
only an engine name and an algorithm implement the expected operations that
we listed in Table 8-1. Second, as we mentioned in the section on the Provider
class, security providers often leverage the fact that the Provider class is a subclass
of the Properties class to provide properties that may make sense only to other
classes that are part of the provider package. Hence, the signature algorithm
1. 3 .14. 3. 2 .13 may make sense to one of the classes in the Sun security provider,
but it is not a string that will necessarily make sense to other developers. In fact,
those aliases-including the ones that are prefaced by OlD-do have meanings
within the cryptography standards world, but for our purposes we'll stick with the
standard algorithm names that we listed earlier.

The Security Class and the Security Manager

All the public methods of the Security class call the checkSecurityAccess ()
method of the security manager. This gives the security manager the opportunity
to intervene before an untrusted class affects the security policy of the virtual
machine.

Recall that the checkSecurityAccess () method accepts a single string param­
eter. In the case of the methods in the Security class, the call that is made looks
like this:

public static Provider getProvider(String name) {

SecurityManager sec= System.getSecurityManager();

if (sec != null)

sec.checkSecurityAccess("java");

... continue to find the provider

The string parameter that is sent to the checkSecurityAccess () method has
changed between releases of java; the various methods and the strings they pass to
the security manager are listed in Table 8-4.

Page 208 of 482

192 CHAPTER 8: SECURITY PROVIDERS

Table 8-4. Security Checks of the Security Class

Method

insertProviderAt()

removeProvider()

getProviders ()

getProvider ()

get Property ()

setProperty ()

1.2 Parameter

Security.insertProvider. +

provider.getName()

Security.removeProvider. +

provider.getName()

- not called -

- not called -

- not called -

Security.setProperty. + key

1.1 Parameter

java

java

java

java

java

java

In typical usage in 1.1, the security manager ignores this string altogether and
simply allows all trusted classes to call these methods and prevents all untrusted
classes from calling these methods. In 1.2, the security manager constructs a secu­
rity permission for the given name and calls the access controller to see if the
given permission has been granted.

The Architecture of Engine Classes
In the next few chapters, we'll discuss the engine classes that are part of the core
Java API. All engine classes share a similar architecture that we'll discuss here.

Most programmers are only interested in using the engine classes to perform
their desired operation; each engine class has a public interface that defines the
operations the engine can perform. None of this is unusual: it is the basis of
programming in java.

However, the engine classes are designed so that users can employ third-party
security providers (using the architecture we've just examined). For programmers
who are interested in writing such providers, the engine classes have an additional
interface called the security provider interface (SPI). The SPI is a set of abstract
methods that a particular engine must implement in order to fulfill its contract of
providing a particular operation.

The role of the SPI has changed between Java 1.1 and java 1.2. In 1.1, the SPI was
simply a convention. There were a set of protected, usually abstract, methods in
each engine that made up the SPI. By convention, these methods begin with the
word "engine"; implementing a 1.1 engine is a matter of implementing each of
these protected methods.

In 1.2, the interface of an engine was split between two distinct classes: the engine
class itself and the SPI class. For example, in 1.2 there is an engine class called
MessageDigest, and its SPI class is called MessageDigestSpi. For historic

Page 209 of 482

THE ARCHITECTURE OF ENGINE CLASSES 193

reasons, there are differences in various engine classes between the engine class
itself and the SPI.

There were three engine classes in 1.1. In 1.2, the SPI class for these classes is a
superclass of the engine class~ e.g., the MessageDigest class extends the Message­
DigestSpi class. This allows the MessageDigest class in 1.2 to have the same
interface as it does in 1.1, even though the class hierarchy to which it belongs has
changed.

There are three new engine classes in 1.2, and for these classes, the SPI is unre­
lated to the class itself; e.g., there is a KeyFactory class and a KeyFactorySpi
class, both of which simply subclass the Object class. In these cases, the engine
class contains an instance of the SPI that it uses to carry out its operations.
Table 8-5 summarizes the six core Java engine classes and their corresponding SPI.

Table 8-5. Engine Classes in the Core Java API

Engine

AlgorithmParameters ~

AlgorithmParameterGener­
ator ~

KeyFactory ~

KeyPairGenerator

MessageDigest

Signature

SPI Class Engine Superclass

AlgorithmParametersSpi Object

AlgorithmParameterGenera- Object
torSpi

KeyFactorySpi Object

KeyPairGeneratorSpi KeyPairGenera-
torSpi

MessageDigestSpi MessageDigestSpi

SignatureSpi SignatureSpi

What this all means is that if you want to implement a security provider under Java
1.2, you would typically extend the SPI. This allows a developer to request a partic­
ular engine and receive the correct class according to the following algorithm:

1. The programmer requests an instance of a particular engine that implements
a particular algorithm. Engine classes never have public constructors; instead,
every engine has a getinstance () method that takes the name of the desired
algorithm as an argument and returns an instance of the appropriate class.

2. The Security class is asked to consult its list of providers and provide the
appropriate instance. For example, when the getinstance () method of the
MessageDigest class is called, the Security class may determine that the
appropriate provider class is called com.xyz .XYZMessageDigest.

3. If the retrieved class does not extend the appropriate SPI (e.g., java.secu­
rity.MessageDigestSpi in this case), a NoSuchAlgorithroException IS

generated.

4. An instance of the retrieved class is created and returned to the getin­
stance () method (which in tum returns it to the developer).

Page 210 of 482

194 CHAPTER 8: SECURITY PROVIDERS

For consistency, when you implement any engine class in 1.2, it is always possible
to extend the appropriate SPI. However, when you implement one of the three
engines that are part of 1.1, it may make more sense to extend th~ engine class
(e~g., the MessageDigest class) rather than the SPI (e.g., the MessageDigestSpi
class). This allows the implementation to be used under both 1.1 and 1.2. An
engine class that directly subclasses its SPI in 1.2 cannot be used in 1.1, while an
engine class that directly subclasses a Java engine class can be used in both 1.1 and
1.2. That is the convention we'll follow in our examples.

Summary
In this chapter, we've explored the architecture that forms the basis of the Java
security API. This architecture is based on the Security and Provider classes,
which together form a set of mappings that allow the security API to determine
dynamically the set of classes it should use to implement certain operations.

Implementing a provider is trivial, but implementing the set of classes that must
accompany a provider is much harder. We've shown a simple provider class in this
chapter. Although we'll show the engine classes in the next few chapters, the
mathematics behind designing and implementing a successful cryptographic algo­
rithm are beyond the scope of this book. However, this architecture also allows
users and administrators to buy or download third-party implementations of the
security architecture and plug those implementations seamlessly into the Java
virtual machine; a partial list of available third-party implementations appears in
Appendix C.

In the next few chapters, we'll examine the specifics of the engine classes-that is,
the operations-that this security provider architecture makes possible. In those
chapters, we'll see how the engines are used, and the benefits each engine
provides.

Page 211 of 482

In this chapter:

• Using the Message
Digest Class

• Message Digest
Streams

• Implementing a
MessageDigest Class

9

Message Digests

In this chapter, we're going to look at the API that implements the ability to
create and verify message digests. The ability to create a message digest is one of
the standard engines provided by the Sun default security provider. You can there­

fore reasonably expect every Java implementation to create message digests.

Message digests are the simplest of the standard engines that compose the secu­

rity provider architecture, so they provide a good starting point in our
examination of those engines. In addition, message digests provide the first link

in creating and verifYing a digital signature-the most important goal of the
provider architecture. However, message digests are useful entities in their own
right, since a message digest can verify that data has not been tampered with-up
to a point. As we'll see, there are certain limitations on the security of a message

digest that is transmitted along with the data it represents.

Message digests are implemented through a single class:

public abstract class MessageDigest extends MessageDigestSpi

Implement operations to create and verify a message digest.

In Java 1.1, there is no MessageDigestSpi class, and the MessageDigest class
simply extends Object. That difference is important only if you want to imple­
ment your own message digest class, which we'll do later in the chapter.

Like all engines in the Java security package, the MessageDigest class
(java.security.MessageDigest) is an abstract class; it defines an interface that
all message digests must have, but the implementation details of a particular

message digest class are hidden in the private classes that accompany a security
provider. This allows a developer to use the message digest class without knowing

the details of a message digest implementation by operating on the public
methods of the message digest class, and it allows providers of a security package

195

Page 212 of 482

196 CHAPTER 9: MESSAGE DIGESTS

to implement their own message digests by implementing the abstract methods of
the class. We'll examine the message class from the perspectives of both developer
and implementor in this chapter.

Using the Message Digest Class
For a developer who wants to operate on a message digest, the first step is to
obtain an instance of the message digest class. Since the message digest class is
abstract, this cannot be done directly; instead, the developer must use one of
these methods:

public static MessageDigest getlnstance(String algorithm)
public static MessageDigest getlnstance(String algorithm, String provider)

Return an instance of the message digest class that implements the given algo­
rithm. In the first case, the security providers are searched in order following
the process we outlined in Chapter 8; otherwise, only the given provider is
searched. Valid names for the default Sun security provider are SHA, SHA.-1,
and MD5. If no provider can be found that implements the given algorithm, a
NoSuchAlgorithmException is thrown. If the named provider cannot be
found, a NoSuchProviderException is thrown.

Once a message digest object has been obtained, the developer can operate on
that object with these methods:

public void update(byte input)
public void update(byte[] input)
public void update(byte[] input, int offset, int length)

Add the specified data to the digest. The first of these methods adds a single
byte to the data, the second adds the entire array of bytes, and the third adds
only the specified subset of the array of data.

These methods may be called in any order and any number of times to add
the desired data to the digest. Consecutive calls to these methods append
data to the internal accumulation of data over which the digest will be
calculated.

public byte[] digest()
public byte[] digest(byte[] input)

Compute the message digest on the accumulated data (optionally adding the
specified data before performing the computation). The resulting digest is
returned as a byte array. Once a digest has been calculated, the internal state
of the algorithm is reset, so that the object may be reused at this point to
create a new message digest.

Page 213 of 482

USING THE MESSAGE DIGEST CLASS 197

public int digest(byte[] output, int offset, int len) *
Compute the message digest on the accumulated data and place the answer
into the provided array, starting at the given offset and copying at most len
bytes. Most implementations do not return a partial digest, so if the amount
of space in the buffer (taking into account its offset) is not sufficient to store
the digest, a DigestException is thrown. This method returns the size of the
digest.

public static boolean isEqual(byte digestA[], byte digestB[])
' Compare two digests for equality. Two digests are considered equal only if

each byte in the first digest is exactly equal to each byte in the second digest
and the digests are the same length.

public void reset()
Reset the digest object by discarding all accumulated data and resetting the
algorithm that is used to implement the digest. This is equivalent to creating a
new instance of the object. In addition, this method throws away any informa­
tion that the toString () method would have printed (see below).

public final String getAlgorithm()
Return the string representing the algorithm name (e.g., SHA).

public String toString()
A strirrg representation of a digest by default contains the name of the class
implementing the digest, the words "Message Digest," and the bytes that were
returned by a previous call to the digest () method. If the digest () method
has not been called, or if the reset () method has been called, then "<incom­
plete>" is printed instead of the digest. An example string looks like:

sun.security.provider.SHA Message Digest \
<Oa808982fee54fd74a86aae72eff7991328ff32b>

public Object clone() throws CloneNotSupportedException .
Return a clone of the object. Message digest implementations need to imple­
ment the clone () method because some internal operations on the digest
object require a call to the digest () method, which resets the digest. These
operations are typically done on a clone of the object so that the state of the
original object is not changed.

public final int getDigestLength() *
Return the length of array of bytes that are returned from the digest ()
method. This value is usually constant (i.e., it does not depend on the amount
of data that has been sent through the update () method).

Let's see an example of how all of this works. As a simple case, let's say that we
want to save a simple string to a file, but we're worried that the file might be
corrupted when we read the string back in. Hence, in addition to saving the

Page 214 of 482

198 CHAPTER 9: MESSAGE DIGESTS

string, we must save a message digest. We do this by saving the serialized string
object followed by the serialized array of bytes that constitute the message digest.

In order to save the pieces of data, we use this code:

public class Send {

public static void main(String args[]) {

try {

FileOutputStream fos =new FileOutputStream("test");

NessageDigest rod= MessageDigest.getinstance("SHA");

ObjectOutputStream oos =new ObjectOutputStream(fos);
String data = "This have I thought good to deliver thee, "+

"that thou mightst not lose the dues of rejoicing " +

"by being ignorant of what greatness is prom~sed thee.";

byte buf[] = data.getBytes();
md.update(buf);

oos.writeObject(data);

oos.writeObject(md.digest());
.} catch (Exception e) {

System.out.println(e);

That's all there is to creating a digest of some data. The call to the getinstance (}
method finds a message digest object that implements the SHA message digest
algorithm. After creating our data-which in this case is a simple string-we pass
that data to the update (} method of the message digest. In practice, this code
could be slightly more complicated, since all the data might not be available at
once. As far as the message digest object is concerned, though, that situation
would just require multiple calls to the update (} method instead of a single call
(it can also be handled with digest streams, which we'll examine next). Once
we've loaded all the data into the object, it is a simple matter to create the digest
itself (with the digest (} method) and then save our data objects to the file.

Similarly, to retrieve this data we need only read the object back in and verify the
message digest. In order to verify the message digest, we must recompute the
digest over the data we received and test to make sure the digest is equivalent to
the original digest:

public class Receive

public static void main(String args[]) {
try {

Fileinputstream fis =new FileinputStream("test");

ObjectinputStream ois =new ObjectinputStream(fis);

Object o = ois.readObject();
if (! (o instanceof String)) {

System.out.println("Unexpected data in file");

---------------------------·---------

Page 215 of 482

USING THE MESSAGE DIGEST CLASS

System. exit (-1);

String data = (String) o;
System. out .println ("Got message " + data);
o = ois.readObject();
if (! (o instanceof byte[])) {

System. out .println ("Unexpected data in file");
System.exit(-1);

byte origDigest[] = (byte []) o;
MessageDigest md = MessageDigest.getinstance("SHA");
md.update(data.getBytes());
if (MessageDigest.isEqual(md.digest(), origDigest))

System. out .println ("Message is valid");
else System. out .println ("Message was corrupted");

catch (Exception e) {
System.out.println(e);

199

Once again, if the data was not available all at once, we would need to make
multiple calls to the update () method as the data arrived. We do not, however,
need to make sure that calls to the update () methods between the Send and
Receive classes match in any sense; that is, ifwe called the update() method four
times in the Send class, we do not need to call the update () method four times
(with the same data) in the Receive class-we can call it once, five times, or what­
ever. The calculation of the digest is unaffected by how the data was placed into
the message digest object-as long as the order of the bytes presented to the
various calls to the update () methods is the same.

Secure Message Digests

As we stated in Chapter 7, the message digest by itself does not give us a very high
level of security. We can tell whether somehow the output file in this example has
been corrupted, because the text that we read in won't produce the same message
digest that was saved with the file. But there's nothing to prevent someone from
changing both the text and the digest stored in the file in such a way that the new
digest reflects the altered text.

There are various ways in which a message digest can be made into a Message
Authentication Code (MAC), but the Java security API does not provide any stan­
dard techniques for doing so. One popular way is to encrypt the message digest
using the encryption engine (if one is available to you)-which, in fact, is really a
variation of a digital" signature.

Page 216 of 482

200 CHAPTER 9: MESSAGE DIGESTS

If we are not able to encrypt the digest, all is not lost; we can also use a passphrase
along with the message digest in order to calculate a secure message digest (or
MAC). This requires that both the sender and receiver of the data have a shared
passphrase that they have kept secret.

Using this passphrase, calculating a MAC requires that we:

1. Calculate the message digest of the secret passphrase concatenated with the
data:

MessageDigest md = MessageDigest.getinstance("SHA");

String data = "This have I thought good to deliver thee, " +

"that thou mightst not lose the dues of rejoicing " +

"by being ignorant of what greatness is promised thee.";
String passphrase = "Sleep no more";

byte dataBytes[) = data.getBytes();

byte passBytes[] = passphrase.getBytes();

md.update(passBytes);
md.update(dataBytes);

byte digestl[) = md.digest();

2. Calculate the message digest of the secret passphrase concatenated with the.
just-calculated digest:

md.update(passBytes);

md.update(digestl);

byte mac[) = md.digest();
,.

We can substitute this code into our original Send example, writing out the data
string and the MAC to the file. Note that we can use the same message digest
object to calculate both digests, since the object is _ reset after a call to the
digest () method. Also note that the first digest we calculate is not saved to the
file: we save only the data and the MAC. Of course, we must make similar changes
to the Receive example; if the MACs are equal, the data was not modified in
transit.

As long as we use exactly the same data for the passphrase in both the transmit­
ting and receiving class, the message digests (that is, the MACs) still compare as
equal. That gives a certain level of security to the message digest, but it requires
that the sender and the receiver agree on what data to use for the passphrase; the
passphrase cannot be transmitted along with the text. In this case, the security of
the message digest depends upon the security of the passphrase. Normally, of
course, you would prompt for that passphrase rather than hardcoding into the
source as we've done above.

Page 217 of 482

MESSAGE DIGEST STREAMS 201

Message Digest Streams
The interface to the message digest class requires that you supply the data for the
digest as a series of single bytes or byte arrays. As we mentioned earlier, this is not
always the most convenient way to process data, which may be coming from a file
or other input stream. This brings us to the message digest stream classes. These
classes implement the standard input and output filter stream semantics of Java
streams so that data can be written to a digest stream that will calculate the digest
as the data itself is written (or the reverse operation for reading data).

The DigestOutputStream Class

The first of these classes we'll examine is the DigestOutputStream class
(java. security. DigestOutputStream) . This class allows us to write data to a
particular output stream and calculate the message digest of that data transpar­
ently as the data passes through the stream:

public class DigestOutputStream extends FilterOutputStream
Provide a stream that can calculate the message digest of data that is passed
through the stream. A digest output stream holds two components internally:
the output stream that is the ultimate destination of the data, and a message
digest object that computes the data of the stream written to the destination.

The digest output stream is constructed as follows:

public DigestOutputStream(OutputStream os, MessageDigest md)

Construct a digest output stream that associates the given output stream with
the given message digest. Data that is written to the stream is automatically
passed to the update () method of the message digest.

In addition to the standard methods available to all output streams, a message
digest output stream provides the following interface:

public MessageDigest getMessageDigest()
Return the message digest associated with this output stream.

public void setMessageDigest(MessageDigest md)
Associate the given message digest with this output stream. The internal refer­
ence to the original message digest is lost, but the original message digest is
otherwise unaffected (i.e., if you still hold a reference to the original message
digest object, you can still calculate the digest of the data that was written to
the stream while that digest was in place).

Page 218 of 482

~···
II
I '
I 202 CHAPTER 9: MESSAGE DIGESTS

public void write(int b)

public void write(byte b[], int oft int len)

Write the given byte or array of bytes to the underlying output stream, and
also update the internal message digest with the given data (if the digest
stream is marked as on). These methods may throw an IOException from the
underlying stream.

public void on(boolean on)

Turn the message digest stream on or off. When data is written t,o a stream
that is off, the data will be passed to the underlying output stream, but the
message digest will not be updated.

Note that this last method does not affect the underlying output stream at all;
data is still sent to the underlying stream even if the digest output stream is
marked as off. The on/ off state only affects whether the update () method of the
message digest will be called as the data is written.

We can use this class to simplify the example we used earlier:

public class SendStream {

public static void main(String args[]) {

try {

FileOutputStream fos =new FileOutputStream("test");

MessageDigest rod= MessageDigest.getinstance("SHA");

DigestOutputStream dos =new DigestOutputStream(fos, md);

ObjectOutputStream oos =new ObjectOutputStream(dos);
String data = "This have I thought good to deliver thee, "+

"that thou mightst not lose the dues of rejoicing " +

"by being ignorant of what greatness is promised thee.";

oos.writeObject(data);

dos.on(false);
oos.writeObject(md.digest());

catch (Exception e) {

System.out.println(e);

The big change is in constructing the object output stream-we now want to wrap
it around the digest output stream so that as each object is written to the file, the
message digest will include those bytes. We also want to make sure that we turn off
the message digest calculation before we send the digest itself to the file. Turning
off the digest isn't strictly necessary in this case, since we don't use the digest
object once we've calculated a single digest in this example, but it's good practice
to keep the digest on only when strictly required.

Note that there is a subtle difference between the digest produced in this example
and the previous example. In the first example, the digest was calculated over just

Page 219 of 482

MESSAGE DIGEST STREAMS 203

the bytes of the string that we saved to the file. In the second example, the digest
was calculated over the serialized string object itself-which includes some infor­
mation regarding the class definition in addition to the bytes of the string.

The DigestlnputStream Class

The symmetric operation to the digest output stream is the DigestinputStream
class (java. security. DigestinputStream):

public class DigestlnputStream extends FilterlnputStream
Create an input stream that is associated with a message digest. When data is
read from the input stream, it is also sent to the update () method of the
stream's associated message digest.

The digest input stream has essentially the same interface as the digest output
stream (with writing replaced by reading). There is a single constructor for the
class:

public DigestlnputStream(lnputStream is, MessageDigest md)
Construct a digest input stream that associates the given input stream with the
given message digest. Data that is read from the stream will also automatically
be passed to the update () method of the message digest.

The interface provided by the digest input stream is symmetric to the digest
output stream:

public MessageDigest getMessageDigest()
Return the message digest that is associated with this output stream.

public void setMessageDigest(MessageDigest md)
Associate the given message digest with this output stream. The internal refer­
ence to the original message digest is lost, but the original message digest is
otherwise unaffected (e.g., you can still calculate the digest of the data that
had been written to the stream while that digest was in place).

public void read(int b)
public void read(byte b[], int off, int len)

Read one or more bytes from the underlying output stream, and also update
the internal message digest with the given data (if the digest stream is marked
as on). These methods may throw an IOException from the underlying
stream.

public void on(boolean on)
Tum the message digest stream on or off. When data is read from a stream
that is off, the message digest will not be updated.

Page 220 of 482

204 CHAPTER 9: MESSAGE DIGESTS

Here's how we can use this class to read the file we created with the digest output
stream:

public class ReceiveStream {
public static void main(String args[)) {

}

try {

FileinputStream fis =new FileinputStream("test");'
MessageDigest md = MessageDigest.getinstance("SHA");
DigestrDPUtStream dis= new DigestrnputStream(fis, md);
ObjectrDPUtStream ois =new ObjectrnputStream(dis);
Object o = ois.readObject();
if (!(o instanceof String)) {

System.out.println("Unexpected data in file");
System.exit(-1);

String data = (String) o;
System.out.println("Got message " + data);
dis.on(false);
o = ois.readObject();
if (!(o instanceof byte[)))

System.out.println("Unexpected data in file");
System.exit(-1);

byte origDigest[J = (byte(]) o;
if (MessageDigest.isEqual(md.digest(), origDigest))

System. out .println ("Message is valid");
else System.out.println("Message was corrupted");

catch (Exception e) {
System.out.println(e);

Once again, constructing the input stream is a matter of providing a message
digest. In this example, we've again turned off the digest input stream after
reading the string object in the file. Turning off the stream is strictly required in
this case. We want to make sure that the digest we calculate is computed only over
the string object and not the stored byte array (that is, the stored message digest).

Implementing a MessageDigest Class
If you want to write your own security provider, you have the option of creating
your own message digest engine. Typically, you'd do this because you want to
ensure that a particular algorithm like SHA is available regardless of who the
default security provider is; if you have a mathematics background, it's conceiv­
able that you might want to implement your own algorithm.

Page 221 of 482

IMPLEMENTING A MESSAGEDIGEST CLASS 205

In order to implement a message digest algorithm, you must provide a concrete
subclass of the MessageDigest class. This essentially entails providing an imple­
mentation of most of the public methods we've just looked at. Although the
public methods are not declared abstr~ct, they typically do nothing more than call
an internal (protected) method to acc~mplish their task.

The MessageDigest class exists in both Java l.l and 1.2, which is why it extends its
SPI (see Chapter 8). For our example, we'll directly subclass the MessageDigest
class so that the resulting example will work under both releases, but remember
that in 1.2 you have the option of extending the MessageDigestSpi class directly.

There is a single constructor in the MessageDigest class that is available to
implementors:

protected MessageDigest(String name)
Construct a message digest object. Classes that extend the MessageDigest
class must call this constructor, as this is the only constructor in the class. As
we'll see, however, the constructor of the subclass must take no arguments.

In order to write a message digest class, you must implement each of the following
methods:

protected abstract void engine Update(byte input)
protected abstract void engine Update(byte[] input, int offset, int len)

Add the given bytes to the data over which the digest will be calculated. Note
that there is no method in this list that accepts simply an array of bytes; the
update(byte[] b) method in the base class simply uses an offset of 0 and a
length equal to the entire array.

protected abstract byte[] engineDigest()
Calculate the digest over the accumulated data, resetting the internal state of
the object afterwards. Note that there is no corresponding method that
accepts an array of bytes as an argument; the digest () method in the base
class simply calls the engineUpdate () method if needed before calling the
engineDigest () method.

protected int engineDigest(byte buj[], int offset, int len) *
Calculate the digest, placing the output into the buf array (starting at the
given offset and proceeding for len bytes) and returning the length of the
calculated digest. The default implementation of this method simply calls the
engineDigest () method and then copies the result into buf. The buffer
passed to this method always has sufficient length to hold the digest, since if
the buffer had been too short the digest () method itself would have thrown
an exception.

Page 222 of 482

206 CHAPTER 9: MESSAGE DIGESTS

protected abstract void engineReset()
Reset the internal state of the engine, discarding all accumulated data and
resetting the algorithm t<:> an initial condition.

protected int engineGetDigestLength() *
Return the digest length that is supported by this implementation. Unlike
most of the protected methods in this class, this method is not abstract; it
does not need to be overridden. However, the default implementation simply
returns 0. If 0 is returned by this method, the getDigestLength() method
attempts to create a clone of the digest object, calculate its digest, and return
the length of the calculated digest. If a digest implementation does not over­
ride this method and does not implement the Cloneable interface, the
getDigestLength () method will not operate correctly.

Each of these methods corresponds to a public method we just looked at, with the
name of the public method preceded by the word "engine". The public methods
that do not have a corresponding method in this list are fully implemented in the
base class and do not need to be implemented in the message digest subclass.

We'll show a simple implementation of a message digest class here. This imple­
mentation is based on a hash algorithm that produces a 4-byte output. As bytes
are accumulated by this algorithm, they are stored into a 4-byte value (that is, an
int); when this value has all four bytes filled, it is XOR-ed to another integer that
accumulates the hash.

package com.xyz;

public class XYZMessageDigest extends MessageDigest

implements Cloneable {
private int hash;

private int store;

private int nBytes;

public XYZMessageDigest(}
super ("XYZ"};

engineReset(};

public void engineUpdate(byte b)

switch(nBytes} {

case 0:

store = (b << 24} & OxffOOOOOO;
break;

case 1:

store I= (b << 16} & OxOOffOOOO;
break;

case 2:

store I= (b << 8} & OxOOOOffOO;

Page 223 of 482

IMPLEMENTING A MESSAGEDIGEST CLASS

break;

case 3:

store I= (b << 0) & OxOOOOOOff;
break;

nBytes++;
if (nBytes == 4) {

hash = hash A store;

nBytes = 0;

store = 0;

public void engineUpdate(byte b[], int offset, int length) {

for (int i = 0; i < length; i++)

engineUpdate(b[i +offset]);

public void engineReset ()

hash = 0;

store = 0;

nBytes = 0;

public byte[] engineDigest() {

while (nBytes != 0)

engineUpdate((byte) 0);

byte b[] =new byte[4];

b[O] (byte) (hash>>> 24);
b[l] (byte) (hash >>> 16);

b[2] (byte) (hash >>> 8);

b[3] (byte) (hash >>> 0);

engineReset();

return b;

207

The implementation of this class is simple, which isn't surprising given the fact
that the algorithm itself is too simple to be considered an effective digest algo­
rithm. The major points to observe are:

• The name of the class (XYZMessageDigest) and the name of the algorithm
that it implements (Xyz) must match one of the strings in the provider pack­
age for this class to be found. Hence, in our provider class in Chapter 8, we
included this property:

put ("MessageDigest.XYZ", "corn.xyz .XYZMessageDigest");

• Our constructor calls the only constructor available to us, and the string
"Xyz" that we pass to that constructor takes on significance-it's the name of

Page 224 of 482

208

•

•

•

•

CHAPTER 9: MESSAGE DIGESTS

the algorithm we've implemented in this class. This in turn be~omes the
name that is registered in the security provider architecture; it must match
the name of the algorithm we registered in our provider.

In order for the getDigestLength () method to function, we chose to imple­
ment the Cloneable interface instead of overriding the engineGetDi­
gestLength () method. Since there are no embedded objects in this class, we
do not need to override the clone () method. The default implementation of
that method (a shallow copy) is sufficient for this class.

The engineUpdate () methods accumulate bytes of data until an integer has
been accumulated, at which point that integer can be XOR-ed into the saved
state held in the hash instance variable.

The engineDigest () method converts the hash instance variable into a byte
array and returns that to the programmer. Note that the engineDigest ()
method is responsible for resetting the internal state of the algorithm. In addi­
tion, the engineDigest () method is responsible for padding the data so that
it is a multiple offour bytes (the size of a Java integer). This type of data pad­
ding is a common feature of message digest calculation.

The engineReset () method initializes the algorithm to its initial state .

Once we have an implementation of a message digest, we must install it into the
security provider architecture. If we use the XYZProvider class from Chapter 8, we
can change our Send class above to use our new digest algorithm:

public class SendXYZ {
public static void main(String args[]) {

try {

Security. addProvider (new XYZProvider ()) ;

FileOutputStream fos =new FileOutputStream("test.xyz");
MessageDigest md = MessageDigest. getrnstance ("XYZ");

ObjectOutputStream oos =new ObjectOutputStream(fos);
String data = "This have I thought good to deliver thee, "+

"that thou mightst not lose the dues of rejoicing " +

"by being ignorant of what greatness is promised thee.";
byte buf[] = data.getBytes();
md. update (buf) ;
oos.writeObject(data);
oos.writeObject(md.digest());

catch (Exception e) {
System.out.println(e);

Similar changes to the Receive class will allow us to accept the message that we've
saved to the file test.xyz.

Page 225 of 482

SUMMARY 209

Summary
In this chapter, we've explored the first link in creating an authenticated and
secure system: the message digest. The facility to calculate a message digest is
straightforward and easy to use; the facility to write our own message digest class is
equally straightforward.

The message digest by itself gives us some comfort about the state of the data it
represents, but it does not give us a completely secure system. If we have a shared
passphrase, we can construct a secure message digest (that is, a Message Authenti­
cation Code), but there are no easy means to share that passphrase. A MAC is
similiar to a digital signature (where digital keys replace the passphrase); in the
next few chapters, we'll continue our exploration of the API to provide the neces­
sary components of a digital signature, beginning with an exploration of the keys
required to create a digital signature.

Page 226 of 482

10

Keys and Certificates

In this chapter:
• Keys
• The

KeyPairGenerator
Class

• The KeyFactory Class

• Certificates
• Keys, Certificates,

and Object
Serialization

In this chapter, we discuss the classes in the Java security package that handle keys
and certificates. Keys are a necessary component of many cryptographic algo­
rithms-in particular, keys are required to create and verify digital signatures.
The keys we're going to discuss in this chapter are public keys and private keys,
since those are the keys most often used in a digital signature. Secret keys-used
for encryption algorithms-are discussed in Chapter 13. We defer that discussion
because secret keys do not come with standard Java implementations; they come
only with the Java Cryptography Extension.

We also cover the implementation of certificates in this chapter. Certificates are
used to authenticate keys; when keys are transmitted electronically, they are often
embedded within certificates.

Keys and certificates are normally associated with some person or organization,
and the way in which keys are stored, transmitted, and shared is an important
topic in the security package. Management of keys is left for the next chapter,
however; right now, we're just concerned about the APis that implement keys and
certificates. As usual, we'll show how a programmer interacts with keys and certifi­
cates, as well as how you might implement your own versions of each.

The classes and engines we discuss in this chapter are outlined in Figure 10-1.
There are two engines that operate on keys:

• The KeyPairGenerator class generates keys from scratch. With no input (or,
possibly, input to initialize it to a certain state), the generator can produce
one or more pairs of keys.

• The KeyFactory class translates between key objects and their external repre­
sentations, which may be either a byte array or a key specification; this transla­
tion goes both ways.

210

Page 227 of 482

KEYS

Figure 10-1. The interaction of key classes

Key Specification
~---• Param P=3

Param 0=4

211

There are a number of classes and interfaces we'll discuss to facilitate support for
Figure 10-1; in addition to the engine classes themselves, there are several classes
and interfaces that represent the key objects and the key specifications (the
encoded key data is always an array of bytes). In an effort to provide the complete
story, we'll delve iO:to the details of all of these classes; for the most part, however,
the important operations that most developers will ne~d are:

• The ability to create a new pair of keys from scratch using the key pair generator

• The ability to export a key, either as a parameter specification or as a set of
bytes, and the corresponding ability to import that data in order to create a key

This means that, for the most part, the data objects we explore in this chapter­
the Key classes and interfaces as well as the various KeySpec classes (key specifica­
tion classes)-can be treated by most programmers as opaque objects. We'll show
their complete interface (which you might be curious about, and which is abso­
lutely needed if you're writing your own security provider), but we'll try not to
lose sight of the two goals of this chapter.

Also note that the idea of the key factory and key specifications is available only
with java 1.2. In java 1.1, you can get the encoded key data directly from a key, but
that's a one-way operation.

Keys
Let's start with the various classes that support the notion of keys within Java.

Page 228 of 482

212 CHAPTER 10: KEYS AND CERTIFICATES

The Key Interface

The concept of a key is modeled by the Key interface (java.security.Key):

public interface Key extends Serializable
Model the concept of a single key. Because keys must be transferred to and
from various entities, all keys must be serializable.

As we discussed in Chapter 8, there might be several algorithms available for
generating (and understanding) keys, depending on the particular security
providers that are installed in the virtual machine. Hence, the first thing a key
needs to be able to tell us is what algorithm generated it:

public String getAlgorithm()
Return a string describing the algorithm used to generated this key; this
string should be the name of a standard key generation algorithm.

We listed the standard algorithm names for key generation in Chapter 8, but with
the default provider with the JDK, this string is always DSA.

When a key is transferred between two parties, it is usually encoded as a series of
bytes; this encoding must follow a format defined for the type of key. Keys are not
required ·to support encoding-in which case the format of the data transferred
between the two parties in a key exchange is either obvious (e.g., simply the serial­
ized data of the key) or specific to a particular implementation. Keys tell us the
format they use for encoding their output with this method:

public String getFormat()
Return a string describing the format of the encoding the key supports.

For DSA keys produced by the Sun security provider, this format is always PKCS#8
for private keys and X.509 for public keys. The encoded data of the key itself is
produced by this method:

public byte[] getEncoded()
Return the bytes that make up the particular key in the encoding format the
key supports. The encoded bytes are the external representation of the key in
binary format.

Those are the only methods that a key is guaranteed to implement (other than
methods of the Object class, of course; most implementations of keys override
many of those methods). In particular, you'll note that there is nothing in the key
interface that says anything about decoding a key. We'll say more about that later.

There are two additional key interfaces in the Java security API:

Page 229 of 482

public interface PublicKey extends Key
public interface PrivateKey extends Key

213

These interfaces contain no additional methods. They are used simply for type
convenience. A class that implements the PublicKey interface identifies itself as a
public key, but it contains no methods that are different from any other key.

DSA keys

The keys supported by the Sun security provider are built around the DSA algo­
rithm. DSA-generated keys are important enough to have several interfaces built
around them; these interfaces enhance your ability to work with these specific
types of keys. These interfaces are necessary because DSA keys have certain pieces
of information that are not reflected in the default key interfaces: the DSA algo­
rithm-specific parameters p, q, and g that are used . to generate the keys.
Knowledge of these variables is abstracted into the DSAParams interface
(java.security.interfaces.DSAParams):

public interface DSAParams {
public Biginteger getP();
public Biginteger getQ();
public Biginteger getG();

Keys that are generated by DSA will typically implement the DSAKey interface
(java. security. interfaces. DSAKey):

public interface DSAKey
Provide DSA-specific information about a key.

Implementing this interface serves two purposes. First, it allows the programmer
to determine if the key is a DSA key by checking its type. The second purpose is to
allow the programmer to access the DSA parameters using this method in the
DSAKey interface:

public DSAParams getParams()
Return the DSA parameters associated with this key.

These methods and interfaces allow us to do specific key manipulation like this:

public void printKey(Key k) {
if (k instanceof DSAKey) {

System.out.println("key is DSA");
System.out.println("P value is " +

((DSAKey) k) .getParams() .getP());

else System.out.println("key is not DSA");

Page 230 of 482

214 CHAPTER 10: KEYS AND CERTIFICATES

The idea of a DSA key is extended even further by these two interfaces (both of
which are in the java. security. interfaces. package):

public inteiface DSAPrivateKey extends DSAKey
public inteiface DSAPublicKey extends DSAKey

These interfaces allow the programmer to retrieve the additional key-specific
values (known as y for public keys and x for private keys in the DSA algorithm):

public void printKey(DSAKey k) {

if (k instanceof DSAPublicKey)

System.out.println("Public key value is " +

((DSAPublicKey) k) . getY ()) ;

else if (k instanceof DSAPrivateKey)

System.out.println("Private key value is " +

((DSAPrivateKey) k) .getX());

else System.out.println("Bad key implementation");

DSA keys are often used in the Java world (and elsewhere in cryptography), and if
you know you're dealing with DSA keys, these interfaces can be very useful. In
particular, if you're writing a security provider that provides an implementation of
DSA keys, you should ensure that you implement all of these interfaces correctly.
For most programmers, however, keys are opaque objects, and the algorithm­
specific features of DSA keys are not needed.

The KeyPair Class

There are no classes in the core JDK that implement any of the Key interfaces.
However, there is one concrete class, the KeyPair class (java.secu­
ri ty. KeyPair), that extends the abstraction of keys:

public final class KeyPair
Model a data object that contains a public key and a private key.

The KeyPair class is a very simple data structure class, containing two pieces of
information: a public key and a private key. When we need to generate our own
keys (which we'll do next), we'll need to generate both the public and private key
at once. This object will contain both of the necessary keys. If you're not inter­
ested in generating your own keys, this class may be ignored.

The KeyPair class contains only two methods:

public PublicKey getPublic()
public PrivateKey getPrivate()

Return the desired key from the key pair.

Page 231 of 482

THE KEYPAIRGENERATOR CLASS 215

A key pair object is instantiated through a single constructor:

public KeyPair(PublicKey pub, PrivateKey priv)
Create a key pair object, initializing each member of the pair.

In theory, a key pair should not be initialized without both members of the pair
being present; there is nothing, however, that prevents us from passing null as
one of the keys. Similarly, there are no security provisions within the KeyPair
class that prevent the private key' from being accessed-no calls to the security
manager are made when the getPrivate () method is invoked. Hence the
KeyPair class should be used with caution.

The KeyPairGenerator Class
Generation of public and private keys is one of the standard engines that can be
provided by a Java security provider. This operation is provided by the KeyPair­
Generator class (java. security. KeyPairGenerator):

public abstract class KeyPairGenerator
Generate and provide information about public/private key pairs.

In Java 1.1, this class extends only the Object class; in Java 1.2, this class
extends the KeyPairGeneratorSpi class (java. security. KeyPairGenera­
torSpi). As is usual with this architecture, some of the methods we're going
to use are methods of the KeyPairGenerator class in Java 1.1 and methods of
the KeyPairGeneratorSpi class iri 1.2; for the developer, the end result is the
same.

Generating a key pair is a very time-consuming operation. Fortunately, it does not
need to be performed often; much of the time, we obtain keys from a key manage­
ment system rather than generating them. However, when we esta,blish our own
key management system in the next chapter, we'll need to use this class; it is often
easier to generate your own keys from scratch rather than use a key management
system as well.

Using the KeyPairGenerator Class

Like all engine classes, the KeyPairGenerator is an abstract class for which there
is no implementation in the core API. However, it is possible to retrieve instances
of the KeyPairGenerator class via these methods:

public static KeyPairGenerator getlnstance(String algorithm)
public static KeyPairGenerator getlnstance(String algorithm, String provider)

Find the implementation of the engine that generates key pairs with the
named algorithm. The algorithm should be one of the standard API algorithm

Page 232 of 482

216 CHAPTER 10: KEYS AND CERTIFICATES

names; if an appropriate implementation cannot be found, this method
throws a NoSuchAlgori thmException.

The first format of this method searches all available providers according to
the rules we outlined in Chapter 8. The second method searches only the
named provider, throwing a NoSuchProviderException if that provider has
not been loaded.

These methods search the providers that have been registered with the security
provider interface for a key pair generator that supports the named algorithm. In
the Sun security provider, this method allows us to retrieve the key pair generator
that generates keys using the DSA algorithm.

Once we have the key pair generator, we can invoke any of the following methods
on it:

public String getAlgorithm()
Return. the name of the algorithm that this key pair generator implements
(e.g., DSA).

public void initialize(int strength)
public abstract void initialize(int strength, SecureRandom random)

Initialize the key pair generator to generate keys of the given strength. The
idea of strength is common among key pair generator algorithms; typically it
means the number of bits that are used as input to the engine to calculate the
key pair, but the actual meaning may vary between algorithms.

Most key algorithms restrict on the values that are valid for strength. In the
case of DSA, the strength must be between 512 and 1024 and it must be a
multiple of 64. If an invalid number is passed for strength, an InvalidPar­
ameterException will be thrown.

Key pairs 'typically require a random number generator to assist them. You
may specifY a particular random number generator if desired; otherwise, a
default random number generator (an instance of the SecureRandom class) is

·used.

In Java 1.2, the second of these methods is inherited from the KeyPairGener­
atorSpi class.

public void initialize(AlgorithmParameterSpec params) *
public void initialize(AlgorithmParameterSpec params, SecureRandom random) *

Initialize the key pair generator using the specified parameter set (which we'll
discuss a little later). By default, the first method simply calls the second
method with a default instance of the SecureRandom class; the second
method, by default, will throw an UnsupportedOperationException. The
second of these methods is inherited from the KeyPairGeneratorSpi class.

Page 233 of 482

THE KEYPAIRGENERATOR CLASS

public abstract KeyPair generateKeyPair()
public final KeyPair genKeyPair() *

217

Generate a key pair, using the initialization parameters previously specified. A
KeyPairGenerator object can repeatedly generate key pairs by calling one of
these methods; each new call generates a new key pair. The gen.KeyPair ()
method simply calls the generateKeyPair () method.

In Java 1.2, the generateKeyPair () method is inherited from the SPI.

Using these methods, generating a pair of keys is very straightforward:

KeyPairGenerator kpg = KeyPairGenerator .get Instance { "DSA");

kpg.initialize{512);

KeyPair kp = kpg.generateKeyPair{);

According to the Java documentation, you are allowed to generate a key pair
without initializing the generator; in this situation, a default strength and random
number generator are to be used. However, this feature does not work with the
Sun security provider in 1.1: a NullPointerException is thrown from within the
generateKeyPair () method. Since it is possible that third-party providers may
behave similarly, it is always best to initialize the key pair generator.

We'll show what to do with these keys in the next chapter, when we discuss the
topic of key management.

Generating DSA Keys

The abstraction provided by the key pair generator is usually all we need to
generate keys. However, sometimes the particular algorithm needs additional
information to generate a key pair. When a DSA key pair is generated, default
values for p, q, and g are used; in the Sun security provider, these values are pre­
computed to support strength values of 512 and 1024. Precomputing these values
greatly reduces the time required to calculate a DSA key. Third-party DSA
providers may provide precomputed values for additional strength values.

It is possible to ask the key generator to use different values for p, q, and g if the
key pair generator supports the DSAKeyPairGenerator interface (java. secu­
rity.interfaces.DSAKeyPairGenerator):

public interface DSAKeyPairGenerator
Provide a mechanism by which the DSA-specific parameters of the key pair
engine can be manipulated.

There are two methods in this interface:

public void initialize(int modlen, boolean genParams, SecureRandom random)
Initialize the DSA key pair generator. The modulus length is the number of
bits used to calculate the parameters; this must be any multiple of 8 between

Page 234 of 482

218 CHAPTER 10: KEYS AND CERTIFICATES

512 and 1024. If genParams is true, then the p, q, and g parameters will be
generated for this new modulus length; otherwise, a precomputed value will
be used (but precomputed values in the Sun security provider are available
only for modlen values of 512 and 1024). If the modulus length is invalid, this
method throws an InvalidParameterException.

public void initialize(DSAParams params, SecureRandom random)
Initialize the DSA key pair generator. The p, q, and g parameters are set from
the values passed in params. If the parameters are not correct, an InvalidPa­
rameterException is generated.

As with the DSAKey interface, a DSA key pair generator implements the DSAKey­
. PairGenerator interface for two purposes: for type identification, and to allow
the programmer to initialize the key pair generator with the desired algorithm­
specific parameters:

KeyPairGenerator kpg = KeyPairGenerator. get Instance ("DSA");

if (kpg instanceof DSAKeyPairGenerator) {

DSAKeyPairGenerator dkpg = (DSAKeyPairGenerator) kpg;

dkpg.initialize(512, true, new SecureRandom());

else kpg.initialize(512);

In sum, this interface allows us to use the generic key pair generator interface
while providing an escape clause that allows us to perform DSA-specific
operations.

Implementing a Key Pair Generator

If you want to implement your own key pair generator-either using a new algo­
rithm or, more typically, a new implementation of a standard algorithm-you
need to create a concrete subclass of the KeyPairGenerator class. In Java 1.2, you
may create a subclass of the KeyPairGeneratorSpi class instead; in this case, the
SPI is the superclass of the engine class.

To construct a key pair generator, there is a single protected method at your
disposal:

protected KeyPairGenerator(String name)
Construct a key pair generator that implements the given algorithm.

As with the other engines in the security API, there is no default constructor avail­
able within the engine class. When the key pair generator is constructed, it must
pass the name of the algorithm that it implements to its superclass so that the algo­
rithm name may be correctly registered with the Security class.

There are two abstract public methods of the key pair generator (or its SPI) that
we must implement in our key pair generator: the initialize{) method and the

Page 235 of 482

THE KEYPAIRGENERATOR CLASS 219

generateKeyPair () method. For this example, we'll generate a simple key pair
that could be used for a simple rotation-based encryption scheme. In this scheme,
the key serves as· an offset that we add to each ASCII character-hence, if the key
is 1, an encryption based on this key converts the letter a to the letter b, and so on
(the addition is performed with a modulus such that z will map to a). To support
this encryption, then, we need to generate a public key that is simply a number
between 1 and 25; the private key is simply the negative value of the public key.

We must also define a class to represent keys we're implementing.* We can do
that with this class:

public class XYZKey implements Key, PublicKey, PrivateKey {

int rotValue;

public String getAlgorithm()

return "XYZ";

public String getFormat() {

return "XYZ Special Format";

public byte[] getEncoded () {

byte b[] = new byte [4];

b[3] (byte) ((rotValue <<
b[2] (byte) ((rotValue <<
b[l] (byte) ((rotValue <<
b[O] (byte) ((rotvalue <<

return b;

24) & Oxff);

16) & Oxff);

8) & Oxff);

0) & Oxff);

The only data value our key class cares about is the value to be used as the index;
for simplicity, we've made it a simple instance variable accessible only by classes in
our package. Because this example is simple, we can use the same class as the
interface for the public and the private key; normally, of course, public and
private keys are not symmetric like this.

With these pieces in place, we're ready to define our key pair generation class:

public class XYZKeyPairGenerator extends KeyPairGenerator {

SecureRandom random;

public XYZKeyPairGenerator()

* This is true even if you're implementing the DSA algorithm-the classes the Sun security provider uses
to represent keys are not in the java package, so they are unavailable to us. So even if you're implement­
ing DSA, you must still define classes that implement all the DSA interfaces we looked at earlier.

Page 236 of 482

220 CHAPTER 10: KEYS AND CERTIFICATES

super ("XYZ");

public void initialize(int strength, SecureRandom sr) {

random = .sr;

public KeyPair generateKeyPair() {

int rotValue = random.next!nt() % 25;

XYZKey pub= new XYZKey();
XYZKey priv =new XYZKey();

pub.rotValue = rotValue;
priv.rotValue = -rotValue;

KeyPair kp =new KeyPair(pub, priv);

return kp;

As a last step, we must install this class using the security provider architecture
that we examined in Chapter 8. Now obtaining a new key pair for the xyz algo­
rithm is as simple as substituting the string xyz for the algorithm name in the
example we gave earlier for DSA key pair generation.

The KeyFactory Class
Although there are times when you'll generate your own keys, they are more
often obtained electronically. The final engine and related set of classes we'll
examine show us how to import and export keys. The source or destination of
these keys is not specified by any of these classes-you may have read the data
from a file, or from a socket, or you may have typed it in manually. The classes in
this section merely enable you to convert a key object to a known external repre­
sentation and to perform the reverse conversion.

Key factories are available only in Java 1.2. Exporting keys in 1.1 is simple: the
encoded bytes of the key can be obtained and transmitted in any manner that is
convenient. But importing keys in 1.1 is very difficult, because there is no way to
take the encoded bytes and produce a key from them. As a fallback measure, you
can serialize a key object to export it and then deserialize that data to import the
key, although that's not something we generally recommend (see "Keys, Certifi­
cates, and Object Serialization" later in this chapter).

There are two external representations by which a key may be transmitted-by its
encoded format, or by the parameters that were used to generate the key. Either
of these representations may be encapsulated in a key specification, which is used
to interact with the KeyFactory class (java.security.KeyFactory) that actually
imports and exports keys:

Page 237 of 482

THE KEYF ACTORY CLASS 221

public class KeyF actory *
Provide an infrastructure for importing and exporting keys according to the
specific encoding format or parameters of the key.

Using the Key Factory class

The KeyFactory class is an engine class, which provides the typical method of
instantiating itself:

public static final KeyFactory getlnstance(String alg) *
public static final KeyFactory getlnstance(String alg, String provider) *

Create a key factory capable of importing and exporting keys that were gener­
ated with the given algorithm. The class that implements the key factory
comes from the named provider or is located according to the standard rules
for provider engines. If a key factory that implements the given algorithm is
not found, a NoSuchAlgori thmException is generated. If the named provider
is not found, a NoSuchProviderException is generated.

A key factory presents the following public methods:

public final Provider getProvider() *
Return the provider that implemented this particular key factory.

public final PublicKey generatePublic(KeySpec ks) *
public final PrivateKey generatePrivate(KeySpec ks) *

These methods are used to import a key: they create the key based on the
imported data that is held in the key specification object. If the key cannot be
created, an InvalidKeySpecException is thrown.

public final KeySpec getKeySpec(Key key, Class keySpec) *
This method is used to export a key: it creates a key specification based on the
actual key. If the key specification cannot be created, an InvalidKeySpecEx­
ception is thrown.

public final Key translateKey(Key key) *
Translate a key from an unknown source into a key that was generated from
this object. This method can be used to convert the type of a key that was
loaded from a different security provider (e.g., a DSA key generated from the
xyz provider-type com.XYZ.DSAPrivateKey-could be converted to a DSA
key generated from the Sun provider-type sun.security.pro­
vider. DSAPri vateKey). If the key cannot be translated, an InvalidKeyEx­
ception is generated.

public final String getAlgorithm() *
Return the algorithm this key factory supports.

We'll defer examples of these methods until we discuss the KeySpec class later.

Page 238 of 482

222 CHAPTER 10: KEYS AND CERTIFICATES

Implementing a Key Factory

Like all engines, the key factory depends on a service provider interface class: the
KeyFacto:rySpi class (java. security. KeyFacto:rySpi):

public abstract class KeyFactorySpi *
Provide the set of methods necessary to implement a key factory that is
capable of importing and exporting keys in a particular format.

However, since the KeyFacto:ry class did not exist in 1.1, its SPI is unrelated in the
class hierarchy. Implementing a key factory therefore requires that we subclass the
SPI rather than subclassing the KeyFacto:ry class directly. The KeyFacto:rySpi
class is required to implement a key factory because the KeyFacto:ry class contains
only this constructor:

protected KeyFactory(KeyFactorySpi keyFacSpi, Provider provider, String algorithm)
Construct a key factory based on the given factory service provider class that is
implemented by the given provider and that provides keys of the given
algorithm.

This constructor is called by the Security class itself; all we need to do is ensure
that the class we register with the security provider interface is a subclass of the
KeyFacto:rySpi class.

The KeyFacto:rySpi class contains the following methods; since each of these
methods is abstract, our class must provide an implementation of all of them:

protected abstract PublicKcy engineGeneratePublic(KcySpec ks) *
protected abstract PrivateKcy engineGeneratePrivate(KcySpec ks) *

Generate of the public or private key. Depending on the key specification,
this means either decoding the data of the key or regenerating the key based
on specific parameters to the key algorithm. If the key cannot be generated,
an InvalidKeyException should be thrown.

protected abstract KcySpec engineGetKcySpec(Kcy key, Class keySpec) *
Export the key. Depending on the key class specification, this means either
encoding the data (e.g., by calling the getEncoded() method) or saving the
parameters that were used to generate the key. If the specification cannot be
created, an InvalidKeySpecException should be thrown.

protected Key engineTranslateKcy(Kcy key)*
Perform the actual translation of the key. This is typically performed by trans­
lating the key to its specification and back. If the key cannot be translated, an
InvalidKeyException should be thrown.

Although we show how to use a key factory later, we won't show how to implement
one; the amount of code involved is large and relatively uninteresting. However,

Page 239 of 482

THE KEYFACTORY CLASS 223

the online examples do contain a sample key factory implementation if you're
interested in seeing one.

Key Specifications

Importing and exporting a key are based on classes that implement the KeySpec
interface (java. security. spec. KeySpec):

public interface KcySpec *
IdentifY a class as one that is able to hold data that can be used to generate a
key.

The KeySpec interface is an empty interface; it is used for type identification only.
This interface in turn forms the basis of two interfaces, each of which handles one
method of importing a key.

The EncodedKeySpec class

Earlier, we mentioned that the Key class must provide a getEncoded () method
for the key that outputs a series of bytes in a format specific to the type of key; this
format is generally part of the specification for the key algorithm. For DSA keys,
for example, the encoding format might be PKCS#8 or X.509. An encoded key
specification holds the encoded data for a key and is defined by the EncodedKey­
Spec class (java. security. spec. EncodedKeySpec):

public abstract class EncodedKcySpec implements KcySpec *
Provide an object to hold the encoded data of a key.

An encoded key specification can be operated on via these methods:

public abstract byte[] getEncoded() *
Return the actual encoded data held by the object.

public abstract String getFormat() *
Return the string that represents the format of the encoded data (e.g.,
PKCS#8).

There are two core classes that provide a concrete implementation of this class
(both of which are in the java. security. spec package):

public class PKCSBEncodedKcySpec extends EncodedKcySpec *
public class X509EncodedKcySpec extends EncodedKcySpec *

Provide an implementation of the encoded key specification. The PCKS8
encoded key specification is used for DSA private keys, and the X509 encoded
key specification is used for DSA public keys.

Page 240 of 482

224 CHAPTER 10: KEYS AND CERTIFICATES

Both of these classes are constructed by passing in the encoded data:

public PKCS8EncodedKcySpec(byte data[]) *
public X509EncodedKeySpec(byte data[]) *

Construct an encoded key specification object that holds the given encoded
data. The format of the data is not checked for validity. The input data is
saved within the object to be returned via the getEncoded () method.

Taken together, the methods of these classes allow us to import and export keys.
Keys are exported via the getEncoded () method, and they are imported by
constructing an object based on the encoded bytes.

The AlgorithmParameterSpec interface

In addition to their encoded format, keys are typically able to be specified by
providing the parameters to the algorithm that produced the key. SpecifYing keys
in this manner is a function of the AlgorithmParameterSpec interface
(java.security.spec.AlgorithmParameterSpec):

public interface AlgorithmParameterSpec *
Provide an infrastructure for specifYing keys based on the parameters used to
generate them.

Like the KeySpec interface, this interface provides no methods and is used only
for type identification. The DSAParameterSpec class (java.secu­
ri ty. spec. DSAParameterSpec) is the single core class that implements this
interface:

public class DSAParameterSpec implements AlgorithmParameterSpec, DSAParams *
Provide a class that holds the parameters used to generate a DSA key.

As we mentioned earlier, there are three parameters that are common to all DSA
keys: p, q, and g. Hence, an instance of this class can be constructed as follows:

public DSAParameterSpec(Biglnteger p, Biglnteger q, Biglnteger g) *
Create an object that holds the common parameters used to generate a DSA
key.

The only methods of this class are used to retrieve those parameters:

public Biglnteger getP() *
· public Biglnteger getQ() *
public Biglnteger getG() *

Return the parameter held by the specification object.

While those three parameters are common to every DSA key, a DSA public key
has an additional parameter (y) and a DSA private key has a different additional

Page 241 of 482

THE KEYFACTORY CLASS 225

parameter (x). Hence, to represent a DSA key fully requires one of these classes
(both of which are in the java. security. spec package):

public class DSAPublicKeySpec implements Key$pec *
public class DSAPrivateKeySpec implements KeySpec *

Provide an object to hold all parameters of a DSA public or private key.

Instances of these classes are constructed by providing all parameters:

public DSAPublicKeySpec(Biglnteger y, Biglnteger p, Biglnteger q, Biglnteger g) *
public DSAPrivateKeySpec(Biglnteger x, Biglnteger p, Biglnteger q, Biglnteger g) *

Create an object that holds all the parameters used to generate a DSA key.

This final parameter can be retrieved via a class-specific method (getX() or
getY () as appropriate).

Once again, these classes in total allow us to export keys (via the various get* ()

methods) and to import keys via the constructors.

A Key Factory Example

As we mentioned at the beginning of this section, the prime reason for key facto­
ries is that they give us the ability to import and export keys. Exporting a key
specification is typically done by transmitting the individual data elements of the
key specification (those individual elements vary by the type of key). Importing a
key specification typically involves constructing the specification with the trans­
mitted elements as parameters to the constructor.

Here's an example using a DSA algorithmic parameter specification. We'll look
first at exporting a key:

public class Export

public static void main(String args[])

try {

KeyPairGenerator kpg = KeyPairGenerator .getinstance ("DSA");

kpg.initialize(512, new SecureRandom());

KeyPair kp kpg.generateKeyPair();

Class spec = Class.forName(

"java. security. spec. DSAPri vateKeySpec") ;

KeyFactory kf = KeyFactory.getinstance("DSA");

DSAPrivateKeySpec ks = (DSAPrivateKeySpec)

kf.getKeySpec(kp.getPrivate(), spec);

FileOutputStream fos =new FileOutputStream("exportedKey");

ObjectOutputStream oos =new ObjectOutputStream(fos);

oos.writeObject(ks.getX());

oos.writeObject(ks.getP());

oos.writeObject(ks.getQ());

oos.writeObject(ks.getG());

Page 242 of 482

226

catch (Exception e) {
e.printStackTrace();

CHAPTER 10: KEYS AND CERTIFICATES

Two items are interesting in this code. First, one argument to the getKeySpec ()

method is a class object, requiring us to construct the class object using the
forName () method (a somewhat unusual usage). Then, once we have the key spec­
ification itself, we have to figure out how to transmit the specification. Since in
this case, the specification is an algorithmic specification, we chose to write out
the individual parameters from the specification.* If we had used an encoded key
specification, we simply would have written out the byte array returned from the
getEncoded () method.

We can import this key as follows:

public class Import {
public static void rnain(String args[]) {

try {
FileinputStrearn fis =new FileinputStrearn("exportedKey");
ObjectinputStrearn ois =new ObjectinputStrearn(fis);
DSAPrivateKeySpec ks =new DSAPrivateKeySpec(

(Biginteger) ois.readObject(),
(Biginteger) ois.readObject(),
(Biginteger) ois.readObject(),
(Biginteger) ois.readObject());

KeyFactory kf = KeyFactory.getinstance("DSA");
PrivateKey pk.= kf.generatePrivate(ks);
Systern.out.println("Got private key");

catch (Exception e) {
e.printStackTrace();

This example is predictably symmetric to exporting a key.

Certificates
When you are given a public and private key, you often need to provide other
people with your public key. If you sign a digital document (using your private
key), the recipient of that document will need your public key in order to verify
your digital signature.

* The DSAPrivateKeySpec class-like all key specification classes-is not serializable itself. But for
reasons that we'll discuss later, it's better not to serialize key classes that are to be imported into another
Java VM anyway.

Page 243 of 482

CERTIFICATES 227

The inherent problem with a key is that it does not provide any information about
the identity to which it belongs; a key is really just a sequence of seemingly arbi­
trary numbers. If I want you to accept a document that I digitally signed, I could
mail you my public key, but you normally have no assurance that the key (and the
original email) came from m~ at all. I could, of course, digitally sign the e-mail so
that you knew that it came from me, but there's a circular chain here-without
my public key, you cannot verity the digital signature. You would need my public
key in order to authenticate the public key I've just sent you.

Certificates solve this problem by having a well-known entity (called a certificate
authority, or CA) verity the public key that is being sent to you. A certificate can
give you the assurance that the public key in the certificate does indeed belong to
the entity that the certificate authority says it does. However, the certificate only
validates the public key it contains: just because Fred sends you his public key in a
valid certificate does not mean that Fred is to be trusted; it only means that the
public key in question does in fact belong to Fred.

In practice, the key may not belong to Fred at all; certificate authorities have
different levels at which they assess the identity of the entity named in the certifi­
cate. Some of these levels are very stringent and require the CA to do an extensive
verification that Fred is who he says he is. Other levels are not stringent at all, and
if Fred can produce a few dollars and a credit card, he is assumed to be Fred.
Hence, one of the steps in the process of deciding whether or not to trust the
entity named in the certificate includes the level at which the certificate authority
generated the certificate. Each certificate authority varies in its approach to vali­
dating identities, and each publishes its approach to help you understand the
potential risks involved in accepting such a certificate.

A certificate contains three pieces of information (as shown in Figure 10-2):

• The name of the entity for whom the certificate has been issued. This entity is
referred to as the subject of the certificate.

• The public key associated with the subject.

• A digital signature that verifies the information of the certificate. The certifi-
cate is signed by the issuer of the certificate.

Because the certificate carries a digital signature of the certificate authority, we
can verity that digital signature-and if the verification succeeds, we can be
assured that the public key in the certificate does in fact belong to the entity the
certificate claims (subject to the level at which the CA verified the subject).

We still have a bootstrapping problem here-how do we obtain the public key of
the certificate authority? We could have a certificate that contains the public key
of the certificate authority, but who is going to authenticate that certificate?

Page 244 of 482

228 CHAPTER 10: KEYS AND CERTIF1CATES

Certificate

Signed

This certificate verfies that the public key of
Scott Oaks, from the SMCC division of Sun Mircosystems
is
2351251~3590890

The Certificate Authority <1241241>

Figure 10-2. Logical representation of a certificate

This bootstrapping problem is one reason why key management (see Chapter 11)
is such a hard topic. Most Java-enabled browsers solve this problem by providing
the public keys for certain well-known certificate authorities along with the
browser. This has worked well in practice, though it clearly is not an airtight solu­
tion (especially when the browser is downloaded from some site on the Internet­
theoretically, the certificates that come with the browser could be tampered with
as they are in transit). Although there are various proposals to strengthen this
model, for now we will assume that the certificate of at least one well-known certifi­
cate authority is delivered along with the Java application. This situation allows me
to mail you a certificate containing my public key; if the certificate is signed by a
certificate authority you know about, you are assured that the public key actually
belongs to me.

There are many well-known certificate authorities-and therein lies another
problem. I may send you a certificate that is signed by the United States Post
Office, but that certificate authority may not be one of the certificate authorities
you recognize. Simply sending a public key in a certificate does not mean that the
recipient of the public key will accept it. A more important implication of this is
that a key management system needs to be prepared to assign multiple certificates
to a particular individual, potentially orie from each of several certificate
authorities.

Another implication of this profusion of certificate authorities is that certificates
are often supplied as a chain. Let's say that you have the certificate of the U.S.
Post Office certificate authority, and I want to send you my certificate that has
been generated by the Acme Certificate company. In order for you to accept this
certificate, I must send you a chain of certificates: my certificate (certified by the
Acme Certificate company), and a certificate for the Acme Certificate company

Page 245 of 482

CERTIFICATES 229

(certified by the U.S. Post Offi~e). This chain of certificates may be arbitrarily
long.

The last certificate in this chain-that is, the public key for a certificate
authority-is generally stored in a certificate that is self-signed: the certificate
authority has signed the certificate that contains its own public key. Self-signed
certificates tend to crop up frequently in the Java world as well, since the tools
that come with the JDK will create self-signed certificates. The certificates are
intended to be submitted to a certificate authority, who will then return a CA­
signed certificate. But there's no reason why the certificate itself can'_t be used as a
valid certificate. Whether or not you want to accept a self-signed certificate is up
to you, but it obviously carries certain risks.

Finally, for all this talk of certificates, you have to consider whether or not they are
actually necessary to support your application. If you'll generally be receiving
signed items from people you do not know (e.g., a signed JAR file from a web
site), then they are absolutely necessary. On the other hand, large-scale computer
installations often consider using certificates to authenticate and validate their
employees; this results in a computer system that has much better internal secu­
rity than one that relies solely on passwords. But it is not the certificate that
generates the security advantage, it is the use of public key cryptography. The
computer installation can achieve the same level of security without using a certifi­
cate infrastructure.

Consider the security necessary to support XYZ Corporation's payroll application.
When an employee wants to view her payroll statements, she must submit a digi­
tally signed request to do so. Hence, XYZ should distribute to each employee a
private key to be used to create the digital signature. X"YZ can also store the
employee's public keys in a database; when a request comes that claims to be from
a particular employee, the payroll server can simply examine the database to
obtain that employee's public key and verify the signature. No certificate is
required in this case-and in general, no certificate is required when the recipient
of the digital signature is already known to have the public key of the entity that
signed the data. For applications within a corporation, this is almost always the case.

We issue this caveat about certificates being necessary because certificate support
in Java (even in Java 1.2) is not fully complete-while it is possible to set up your
own certificate authority to distribute the certificates for your company, it's very
hard to write the necessary code to do that in Java (at present). Hence, we'll focus
our discussion of the certificate API on accepting (i.e., validating) existing
certificates.

Page 246 of 482

230 CHAPTER 10: KEYS AND CERTIFICATES

Certificate: Class or Interface

There's an unfortunate ambiguity in Java's use of the term "certificate." In
Java 1.1, an interface called java.security.Certificate was introduced
and used by the javakey utility and by the appletviewer when they used
signed classes. The Certificate interface was implemented by platform­
specific classes.

In Java 1.2, there is a new class called java.security.cert.Certificate.
This class is the preferred class for all interactions with certificates, and is
used by the utilities provided with the 1.2JDK. The java.security.Certif­
icate interface has been deprecated starting with Java 1.2.

One problem where this manifests itself is with irrport statements. If you
import the following packages:

import java.security.*;
import java.security.cert.*;

the compiler will be unable to reconcile the definition of Certificate. When
dealing with certificates, you'll either need to refer to them by their fully qual­
ified name or only import those classes in the security package that you explic­
itly need.

In the main text of this book, whenever we talk about a certificate object, we
mean an instance of the java.security.cert.Certificate class (or one of
its subclasses). Except for some examples in Appendix B, we will not show
usage of the Certificate interface.

The Certificate Class

There are many formats that a certificate can take (depending on the crypto­
graphic algorithms used to produce the certificate). Hence, the Java API abstracts
the generic notion of a certificate with the Certificate class
(java. security. cert .Certificate):

public abstract class Certificate *
Provide the necessary (and very basic) operations to support a certificate.

Like many classes in the Java security package, the Certificate class is abstract; it
relies upon application-specific classes to provide its implementation. In the case
of the JDK, there are classes in the sun package that implement certain certificate
formats (but more about that in just a bit).

There are three essential operations that you can perform upon a certificate:

Page 247 of 482

CERTIFICATES 231

public abstract byte[] getEncoded() *
Return a byte array of the certificate. All certificates must have a format in
which they may be transmitted as a series of bytes, but the details of this
encoding format are specific to the type of the certificate. If the encoding
cannot be generated, a CertificateEncodingException is thrown.

public abstract void verify(PublicKey pk) *
public abstract void verify(PublicKey pk, String provider) *

Verify that the certificate is valid. In order to verify a certificate, you must
have the public key of the certificate authority that issued it; a valid certificate
is one in which the signature of the certificate authority is valid. A valid certifi­
cate does not imply anything about the trustworthiness of the certificate
authority or the subject to which the certificate belongs; it merely means that
the signature in the certificate is valid for the supplied public key. If the certifi­
cate is invalid, this method throws a CertificateException.

The signature is verified according to the digital signature details we'll
examine in Chapter 12. The process of creating an object to verify the digital
signature as well as the actual verification of the signature may thrown a
NoSuchProviderException, a NoSuchAlgorithmException, an Invalid­
KeyException, or a SignatureException.

public abstract PublicKey getPublicKey() *
Extract the public key from the certificate-that is, the key that belongs to the
subject the certificate vouches for.

These are the basic operations that are valid for any certificate. Notice that while
we can encode a certificate into a byte array in order to transmit the certificate,
there is nothing in the basic API that allows us to create a certificate from such a
byte array. In fact, there's no practical way to instantiate a certificate object at all;
the Certificate class is usually used as a base class from which individual certifi­
cate types are derived. Fortunately, the next class allows us to both import and
export certificates.

The X509Certificate Class

As we mentioned, there are many certificate formats that could be in use by a key
management system; one of the most common of these is the X509 format. X509
has gone through a few revisions; the version supported by the Java API is version
3. This format is an ANSI standard for certificates, arid while there are PGP and
other certificate formats in the world, the X509 format is dominant. This is the
only format of certificate for which Java provides a standard API; if you want to
support another certificate format, you must implement your own subclass of
Certificate.

Page 248 of 482

232 CHAPTER 10: KEYS AND CERTIFICATES

The X509Certificate class (java.security.cert.X509Certificate) is defined
as follows:

public abstract class X509Certificate extends Certificate implements X509Extension *
Provide an infrastructure to support X509 version 3 formatted certificates.

The X509Certificate class looks like an engine class, but it is slightly different.
Instead of relying upon its implementation to be provided in the security provider
infrastructure, it relies upon an implementation that is specified directly in the
java.security file itself. The JDK comes with a particular implementation that
appears in the default java. security file as:

cert.provider.x509=sun.security.x509.X509Certimpl

You may write or purchase your own implementation of this class and substitute
that class in the java. security file.

Like the engine classes, an instance of this class is created by the getinstance ()
method:

public static final X509Certificate getinstance(InputStream is) *
public static final X509Certificate getlnstance(byte[J data) *

Create an X509 certificate based on the encoded data to be read from the
given input stream or byte array. If the certificate cannot be created from the
data in the input stream or array, a CertificateException is generated.

There is no getinstance () method that instantiates an empty certificate: certifi­
cates in this API must always be instantiated based on existing data. In other
words, we can use the certificate API to import a certificate, but we cannot use it
to create a certificate from scratch.*· The standard X509 implementation requires
that the data to be read is encoded in a format known as DER (for Definite
Encoding Rules).

An X509 certificate has a number of properties that are not shared by its base
class:

• A start and end date: An X509 certificate is valid only for a certain period of
time, as specified by these dates.

• A version: Various versions of the X509 standard exist; the default implemen­
tation of this class supports version 3 of the standard.

• A serial number: Each certificate that is issued by a certificate authority must
have a unique serial number. The serial number is only unique for a particu-

* This is a primary reason why we won't get into the issues involved in writing your own certificate
authority for your local enterprise.

1

Page 249 of 482

CERTIFICATES 233

lar authority, so that the combination of serial number and certificate author­
ity guarantee a unique certificate. ·

• The distinguished name* of the certificate authority.

• The distinguished name of the subject represented by the certificate.

These properties can be retrieved with the following set of methods:

public abstract void check Validity() *
public abstract void check Validity(Date d) *

Check that the specified date (or today if no date is specified) is within the
start and end dates for which the certificate is valid. If the specified date is
before the start date of the certificate, a CertificateNotYetValidException
is thrown; if it is after the end date of the certificate, a Certifi­
cateExpiredExceptionisthrown.

public abstract int getVersion() *
Return the version of the X509 specification that this certificate was created
with. For the Sun implementation, this will be version 3.

public abstract Biglnteger getSerialNumber() *
Return the serial number of the certificate.

public abstract Principal getlssuerDN() *
Extract the distinguished name of the certificate authority from the certificate
and use that name to instantiate a principal object.

public abstract Principal getSubjectDN() *
Extract the distinguished name of the subject entity in the certificate and use
that name to instantiate a principal object.

public abstract Date getNotBefore() *
Return the first date on which the certificate is valid.

public abstract Date getNotAjter() *
Return the date after which the certificate is invalid.

From a programmatic view, these are the most useful of the attributes of a certifi­
cate. If your X509 certificate is contained in the file sdo.cer, you could import and
print out information about the certificate as follows:

public class PrintCert {

public static void main(String args[]) {

try {

FileinputStream fr =new FileinputStream("sdo.cer");

X509Certificate c = X509Certificate.getinstance(fr);

System.out.println("Read in the following certificate:");

* See the sidebar "What's in a Name?" in Chapter 11 for an explanation of distinguished names.

Page 250 of 482

234 CHAPTER 10: KEYS AND CERTIFICATES

System.out.println("\tCertificate for: " +
c.getSubjectDN());

System.out.println("\tCertificate issued by: " +
c.getissuerDN());

System.out.println("\tThe certificate is valid from " +

c.getNotBefore() +"to"+ c.getNotAfter());
System.out.println("\tCertificate SN# " +

c.getSerialNumber());

System.out.println("\tGenerated with " +

c.getSigAlgName());
catch (Exception e) {

e.printStackTrace();

Running this program would produce the following output:

Read in the following certificate:
Certificate for:

CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=NY, S=NY, C=US
Certificate issued by:

CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=NY, S=NY, C=US

The certificate is valid from Sun Oct 19 11:40:24 EDT 1997 to

Sat Jan 17 10:40:24 EST 1998

Certificate SN# 3895020084
Generated with SHA1withDSA

Importing and Exporting Certificates

The input data to the X509Certificate class must be a certificate that is encoded
in DER format. This encoding is specified by the X509 standard, so obtaining a
certificate with that encoding is not normally a problem. Hence, a certificate can
usually be imported into your program using the code in the example we just
showed.

Often, however, you'll obtain a certificate that is in RFC 1421 format. In this case,
the 8-bit bytes that comprise the DER-encoded certificate have been transformed
into 7-bit ASCII characters; this facilitates the transmission of the certificate over
some public networks (and through some mail systems) that are unable to
transmit 8-bit binary data. In addition, the certificate will begin with the string:

-----BEGIN CERTIFICATE-----

and conclude with the string:

-----END CERTIFICATE-----

The ASCII-encoded data will appear between these two string delimiters.

Page 251 of 482

CERTIFICATES 235

The translation from 8-bit to 7-bit data (and back to 8-bit data) is defined by RFC
1521 and is referred to as Base64 encoding. In this encoding scheme, each 3 bytes
of 8-bit data are turned into 4 bytes of 7-bit data from a specified character set.
There are many third-party Java classes that perform this manipulation, so we'll
not repeat it here. Assuming that you have a class to perform the decoding, you
could read in an RFC 1421 certificate as follows:

String s;

Bliffered.Reader br =new Buffered.Reader(new FileReader("sdo.cer"));

while ((s = br.readLine()) !=null &&
!s.equals("-----BEGIN CERTIFICATE-----"))

continue;

if (s == null)

throw new IOException ("Malformed certificate");

StringBuffer buf =new StringBuffer();

while ((s = br.readLine()) !=null) &&
!s.equals("-----END CERTIFICATE-----"))

buf .append(s);

if (s == null)

throw new IOException ("Malformed Certificate");

Base64Decoder dec = new Base64Decoder();

byte data[] = dec.decode(buf.toString());

X509Certificate c = X509Certificate.getinstance(data);

Exporting of certificates is predictably symmetric: to produce a DER-encoded
certificate, you simply call the getEncoded () method on the certificate and write
out the bytes. To produce an RFC 1421 format certificate, you print out the begin­
ning delimiter, followed by the DER-encoded data that has been run through a
Base64 encoder, followed by the ending delimiter.

Advanced X509C ertificate Methods
There are a number of other methods of the X509Certificate class. For the
purposes of this book, these methods are not generally useful; they enable you to
perform more introspection on the certificate itself. We'll list these methods here
simply as a matter of record.

public abstract byte[] getTBSCertificate() *
Get the DER-encoded TBS certificate. The TBS certificate is the body of the
actual certificate; it contains all the naming and key information held in the
certificate. The only information in the actual certificate that is not held in
the TBS certificate is the name of the algorithm used to sign the certificate
and the signature itself.

The TBS certificate is used as the input data to the signature algorithm when
the certificate is signed or verified.

Page 252 of 482

236 CHAPTER 10: KEYS AND CERTIFICATES

public abstract byte[]getSignature() *
Get the raw signature bytes of the certificate. These bytes could be used to
verity the signature explicitly (e.g., using the methods we'll describe in
Chapter 12) instead of relying upon the verify() method to do so.

public abstract String getSigAlgName() *
Return the name of the algorithm that was used to sign the certificate. For the
Sun implementation, this will always be SHAlwithDSA

public String getSigAlgOID() *
Return the OlD of the signature algorithm used to produce the certificate.

public abstract byte[] getSigAlgParams() *
Return the DER-encoded parameters that were used to generate the signa­
ture. In general, this will return null, since the parameters are usually
specified by the certificate authority's public key.

public abstract byte[] getlssuerUniqueiD() *
Return the unique identifier for the issuer of the certificate. The presence of
a unique identifier for each issuer allows the names to be reused, although in
general it is recommended that certificates not make use of the unique
identifier.

public abstract byte[] getSubjectUniqueiD() *
Return the unique identifier for the subject of the certificate (again, this is
unused in general).

public abstract BitSet getKeyUsage() *
Return the key usage extension, which defines the purpose of the key: the key
may be used for digital signing, nonrepudiation, key encipherment, data enci­
pherment, key agreement, certificate signing, and more. The key usage is an
extension to the X509 specification and need not be present in all X509
certificates.

public abstract int getBasicConstraints() *
An X509 certificate may contain an optional extension that identifies whether
the subject of the certificate is a certificate authority. If the subject is a CA,
this extension returns the number of certificates that may follow this certifi­
cate in a certification chain.

Revoked Certificates

Occasionally, a certificate authority needs to revoke a certificate it has issued­
perhaps the certificate was issued under false pretenses, or maybe the user of the
certificate has engaged in illegal conduct using the certificate. Under circum­
stances such as these, the expiration date attached to the certificate is insufficient
protection; the certificate must be immediately invalidated.

J

Page 253 of 482

CERTIFICATES 237

This invalidation occurs as the result of a CRL-a certificate revocation list. Certifi­
cate authorities are responsible for issuing certificate revocation lists that contain
(predictably) a list of certificates the authority has revoked. Validators of certifi­
cates are required to consult this list before accepting the validity of a certificate.

Unfortunately, the means by which an authority issues a CRL is one of those areas
that is in flux, and while the interfaces to support revoked certificates have been
established, they are not completely integrated into most certificate systems. In
particular, the validate () method of the Certificate class does not automati­
cally consult any CRL. The CRL itself is typically obtained in an out-of-band
fashion (just as the certificates of the authority were obtained); once you have a
CRL, you can check to see if a particular certificate in which you are interested is
on the list.

While the notion of revoked certificates in not necessarily specific to an X509
certificate, the Java implementation is. Revoked certificates themselves are repre­
sented by the RevokedCertificate class (java.security.cert.Revoked­
Certificate):

public abstract class RevokedCertificate implements X509Extension *
Provide a framework for revoked certificate objects. The revoked certificate is
tied to the notion of an X509 certificate because it is based upon an X509
serial number. There are no public concrete implementations of this class;
they are instantiated and provided by the X509CRL class (see below).

The methods of this class are simple and are based upon the fields present in a
revoked X509 certificate:

public abstract Biglnteger getSerialNumber() *
Return the serial number of the revoked certificate.

public abstract Date getRevocationDate() *
Return the date on which the certificate was revoked.

public abstract boolean hasExtensions() *
Indicate whether the implementation of the class has any X509 extensions.

Revoked certificates are generated by the X509CRL class (java.secu­
rity. cert.X509CRL):

public abstract class X509CRL implements X509Extension *
Provide the support for an X509-based certificate revocation list.

Like the X509Certificate class, the X509CRL class may be provided by a third
party; its Sun implementation is provided by this entry in the java. security file:

crl.provider.x509=sun.security.x509.X509CRLimpl

Page 254 of 482

238 CHAPTER 10: KEYS AND CERTIFICATES

Instances of this class are therefore generated by the get Instance () method:

public static final X509CRL getlnstance(byte[] data) *
public static final X509CRL getlnstance(InputStream is) *

Create a CRL based on the given input data. The format of the input data is
defined by the X509 standard and is DER-encoded; in logical terms, the input
stream contains a series of revoked certificates (corresponding to the above
class) and the signature of the certificate authority who issued the CRL. An
error in parsing the data may result in a CRLException or an
X509ExtensionException.

Once the class has been instantiated, you may operate upon it with these
methods. As you can see, there is a strong synergy between the methods that are
used to operate upon an X509 certificate and those used to operate upon a CRL:

public abstract void veri.fy(PublicKey pk) *
public abstract void veri.fy(PublicKey pk, String sigProvider) *

Verify that the signature that accompanied the CRL is valid (based on the
standard signature verification we'll look at in Chapter 12). The public key
should be the public key of the certificate authority that issued the CRL.

An error in the underlying signature object may generate a NoSuchAlgorith­
mException, a NoSuchProviderException, an InvalidKeyExcep-tion., or a
SignatureException.

public abstract boolean isRevoked(Biglnteger serialNumber) *
Indicate whether or not the certificate with the given serial number has been
revoked (that is, is present in the given CRL).

public abstract int getVersion() *
Return the version of the CRL. The present version of the X509 CRL specifica­
tion is 2.

public abstract Principal getlssuerDN() *
Extract the distinguished name of the issuer of the CRL and return a prin­
cipal object that contains that name.

public abstract Date get This Update() *
Extract and return the date when the authority issued this CRL.

public abstract Date getNextUpdate() *
Extract and return the date when the authority expects to issue its next CRL.
This value may not be present in the CRL, in which case null is returned.

public abstract RevokedCertijicate getRevokedCertijicate(Biglnteger sn) *
Instantiate and return a revoked certificate object based on the given serial
number. If the serial number is invalid, a CRLException is thrown.

Page 255 of 482

CERTIF1CATES 239

public abstract Set getRcvokedCertificates() *
Instantiate a revoked certificate object· for each certificate in the CRL and
return the set of those objects. This method may throw a CRLException.

public abstract byte[] getEncoded() *
Return the DER-encoded CRL itself. This method may throw a CRLException.

public abstract byte[] getTBSCertList() *
Return the DER-encoded TBS certificate list-that is, all the data that came
with the CRL aside from the name of the algorithm used to sign the CRL and
the digital signature itself. This data can be used to verifY the signature
directly. Parsing of the underlying data may throw a CRLException or an
X509ExtensionException.

public abstract byte[] geiSignature *
Return the actual bytes of the signature.

public abstract String getSigAlgNa"ne() *
Return the name of the signature algorithm that was used to sign the CRL.

public abstract String getSigAlgOID() * '
Return the OlD string of the signature algorithm that was used to sign the
CRL.

public abstract byte[] getSigAlgParams() *
Return the DER-encoded algorithms used in the signature generation. This
generally returns null, as those parameters (if any) usually accompany the
authority's public key.

When all is said and done, the point of the CRL class (and the revoked certificate
class) is to provide you with the tools necessary to see if a particular certificate has
been invalidated. This checking is up to your application to perform; you might
choose to implement it as follows:

public Certificate importCertificate(byte data[])

X509Certificate c = null;

try {

throws CertificateException

c = X509Certificate.getinstance(data);
Principal p = c.getissuerDN();

PublicKey pk = getPublicKey(p);

c.verify(pk);

InputStream crlFile = lookupCRLFile(p);

X509CRL crl = X509CRL.getinstance(crlFile);

Biginteger bi = c.getSerialNumber();

if (crl.isRevoked(bi))

throw new Certificat~Exception("Certificate revoked");

catch (NoSuchAlgorithmException nsae) {
throw new CertificateException("Can't verify certificate");

Page 256 of 482

240 CHAPTER 10: KEYS AND CERTIFICATES

catch (NoSuchProviderException nspe) {
throw new CertificateException("Can't verify certificate");

catch (SignatureException se) {
throw new CertificateException("Can't verify certificate");

catch (InvalidKeyException ike) {
throw new CertificateException("Can't verify certificate");

catch (CRLException ce) {
II treat as no crl

catch (X509ExtensionException xee)
II treat as no crl

return c;

This method encapsulates importing a certificate and checking its validity. It is
passed the DER-encoded data of the certificate to check (this data must have been
read from a file or other input stream, as we showed earlier). Then we consult the
certificate to find out who issued it, obtain the public key of the issuer, and vali-

. date the certificate. Before we return, however, we obtain the latest CRL of the
issuing authority and ensure that the certificate we're checking has not been
revoked; if it has been, we throw a CertificateException.

We've glossed over two details in this method: how we obtain the public key of the
authority that issued the certificate, and how we get the CRL list associated with
that authority. Implementing these methods is the crux of a key I certificate
management system, and we'll show some ideas on how to implement the key
lookup in Chapter 11. Obtaining the CRL is slightly more problematic, since you
must have access to a source for the CRL data. Once you have that data, however,
it's trivial to create the CRL via the get Instance() method.

Keys, Certificates, and Object
Serialization
Before we conclude this chapter, a brief word on object serialization, keys, and
certificates. Keys and certificates are often transmitted electronically, and a reason­
able mechanism for transmitting them between Java programs is to send them as
serialized objects. In theory-and, most of the time, in practice-this is a work­
able solution. If you modify some of the examples in this chapter to save and
restore serialized keys or certificates, that will certainly work in a testing
environment.

A problem arises, however, when you send these serialized objects between virtual
machines that have two different security providers. Let's take the case of a DSA
public key. When you create such a key with the Sun security provider, you get an
instance of the sun. security. provider. DSAPublicKey class. When you create

Page 257 of 482

SUMMARY 241

such a key with a third-party security provider, you may get an instance of the
com.xyz.XYZPubllcKey class. Although both public keys are extensions of the
PublicKey class, they cannot be interchanged by object serialization. Serializing a
pub'!ic key created with the Sun security provider requires that the sun. secu­
rity.provider.DSAPublicKeyclass be used, and deserialization creates an object
of that type, no matter what security providers the deserializing virtual machine
has installed. Whether or not the Sun security provider has been installed in the
destination virtual machine is irrelevant. The process of deserializing the object
uses that class if it is available, and deserialization fails if that class is not available.

Hence, while they are serializable objects, keys and certificates should only be
transmitted as encoded data. For keys, you also have the option of transmitting
the data contained in the key specification as we did earlier; the key specification
classes are not serializable themselves, so you still have to rely on transmitting only
the data that those objects contain.

This rule applies not only to keys and certificates that stand alone, but also to
classes that embed one of those objects. Take, for example, this class:

public class Message implements Serializable {
String msg;

.X509Certificate cert;
byte signature[];

If you want to send an object of this class to a remote virtual machine (or save the
object to a file), you should override the wri teObj ect () and readObj ect ()
methods of the class so that when it is transmitted, the certificate is transmitted
only as its encoded data and not as an instance of the sun.secu­
rity .x509 .X509Certirnpl class. We'll do just that in Chapter 12.

Summary
Keys are a basic feature of any cryptographic system; they provide one of the
inputs required to produce a digital signature (as well as other potential crypto­
graphic operations). In this chapter, we looked at the basic classes that implement
the notion of a key within the Java security package.

Keys are closely tied to the notion of certificates; a certificate contains a public key
as well as an assurance from some known entity that the public key belongs to a
specific entity. In a general sense, there are a great many things you can do with
certificates, but for our purposes, we're interested in certificates only from the
perspective of the certificate's user-that is, we want to be able to import and
verify a certificate, but we're not too interested in creating our own certificates or
in becoming a certificate authority.

~--~-~~-· ~~·-~--~------------_j

Page 258 of 482

242 CHAPTER 10: KEYS AND CERTIFICATES

Given that the operations we want to perform on keys and certificates are simple­
importing and exporting those certificates-you'd expect that we could leave our
discussion of keys for the time being. Unfortunately, the topic of finding a key for
a particular entity (which is really just a case of importing a key) is a particularly
troublesome topic, which we'll examine in the next chapter.

Page 259 of 482

II

Key Management

In this chapter, we're going to discuss key management, and the facilities in Java
that enable key management. The problem of key management turns out to be a
hard one to solve: there is no universally accepted approach to key management,
and although many features in Java (and on the Internet) are available to assist
with key management, all key management techniques remain very much works
in progress.

The fluidity of key management is evident in the progress of Java itself. Key
management with the 1.1 API is very different from key management in 1.2.
Further complicating this picture is the fact that no Java-enabled browser
(including Ho1Java, but not including the Java Activator) uses the technique for
key management that comes with the JDK Each requires keys to be kept in a
different key database, and each uses a different technique to store and retrieve
keys from that application-specific database. Key management remains applica­
tion-specific.

In this chapter, we'll discuss the basic features of Java that are available for key
management, including the default key management features of the JDK We'll
conclude with an example of implementing your own key management system.
The key management features we're going to discuss apply primarily to Java 1.2. If
you must implement a key management system under Java 1.1, you'll need to use
the IdentityScope class as discussed in Appendix B. However, the Identity­

Scope class itself, while not officially deprecated, has been pretty much replaced
by the classes we are going to explore in this chapter.

243

Page 260 of 482

244 CHAPTER 11: KEY MANAGEMENT

_Overview of Key Management
Keys are important to Java's security model because they allow us to create or
verify a digital signature. In the sandbox model, we usually think of the use of
digital signatures in the context of a signed JAR file. When a JAR file is signed, we
are assured that the classes contained in that file were actually provided by the
entity (the person or corporation) that signed the JAR file. This allows us to grant
privileges to the signed classes because we know that the classes have not been
forged by a third party. Of course, digital signatures have many other uses in a
particular application.

We'll discuss the details of digital signatures in Chapter 12. For now, it's enough
to know that a digital signature is created with a private key, then transferred elec­
tronically (along with the data it signed). When the digital signature is received, it
must be verified, which requires a public key that corresponds to the private key
that generated the signature.

The purpose of a key management system is two-fold. When you need to digitally
sign something, the key management system must provide your private key for the
code that creates the digital signature. When you need to verify a digital signa­
ture, the key management system must provide the public key that will be used for
verification. A key management system may encompass other operations (it may,
for example, provide information about the degree to which a particular indi­
vidual should be trusted), but it exists primarily to serve up keys.

Hence, there are three elements of a key management system:

Keys
The keys in a key management system can be used for several cryptographic
operations, but in general we will use them to sign data, such as aJAR file. An
entity in the key management database can have no keys, a public key, or
both a public key and a private key.

Certificates
Certificates are used to verify that the association between a public key and an
entity is valid. Verification of a digital signature requires the public key that
belongs to the entity that created the digital signature; a certificate verifies
that the public key itself has not been forged and does indeed belong to the
desired identity.

Identities
Identities are an abstraction of individuals, companies, or any other entity
that might have a key. The purpose of a key management system is to asso­
ciate identities with their keys. This association must be stored somewhere; we
refer to the database in which these associations are stored as the key data­
base or the keystore.

Page 261 of 482

IDENTITIES 245

Java 1.1 comes with a key management system that is based upon the javakey
utility. Javakey has several limitations; in particular, it stores public and private
keys in the same, unprotected location (often called an identity database). This
allows anyone with access to the javakey database to determine all the keys that
were stored in the file. Since access is required to obtain your own private key to
generate your own digital signature, this essentially gives all users access to each
other's keys. This problem was a limitation of the javakey utility itself. Ifs
possible to use the 1.1 classes to write a key database in such a way that your
private key is held separately from a group of public keys (see Appendix B).

The javakey utility was an interim solution to the key management problem; it is
no longer available. In 1.2; javakey has been replaced by a new utility called
keytool. Keytool is a much better tool, in that individual private and public keys
can be stored in the same database, and retrieval of each key can be made subject
to a password. The keytool database is often referred to as the keystore.

Unfortunately, the default implementation of the keytool database still has
certain limitations; in particular, it is difficult to share the keys in a keytool data­
base among a widely dispersed group of people (like all the employees of xyz
Corporation). We can, however, use the framework that the keytool database
uses to create a key management system that has whatever features we require.

That framework is the ultimate goal of this chapter. First, however, we must
discuss the last of the APis that make up the necessary parts of a key management
system: identities.

Identities
You probably noticed in Chapter 10 that none of the key classes had any notion of
whom the key belonged to. Keys are really just an arbitrary-appearing series of
bytes. The set of classes we'll examine now deal with the notion of identity: the
entity to which a key belongs. An identity can represent an individual or a corpora­
tion (or anything else that can possess a public or a private key) .

The classes we'll examine in this section were originally designed to support the
1.1 javakey utility. In 1.2, these classes still provide a useful abstraction for the
entity that holds a set of keys, but they play a far less important role in a keytool­
based key management system than they did in a javakey-based one.

Principals

Classes that are concemed with identities and key management in the Java secu­
rity package generally implement the Principal interface (java.secur­
ity.Principal):

Page 262 of 482

246 CHAPTER II: KEY MANAGEMENT

public interface Principal
Provide an interface that supports the notion of an entity. In particular, princi­
pals have a name, but little else.

There is a single method that implementors of the Principal interface must
implement:

public String getName()
Return the name of the principal. This is typically an X.500 distinguished
name, but it may be any arbitrary name.

The only idea that the Principal interface abstracts is that principals have a
name. The Java documentation claims that a principal is anything. that can have
an identity, but don't be confused by that statement; the word "identity" is being
overloaded in this context. The Identity class we're about to introduce is a prin­
cipal, but there are classes implementing the Principal interface that are
unrelated to the Identity class.

Further confusion about this interface can arise because there are two principal
objects inJava 1.2: the java.security.Principal interface (introduced in 1.1),
and the org. omg. CORBA. Principal class (introduced in 1.2). These classes are
unrelated, and we'll discuss only the java.security.Principal· interface
throughout this book.

The name that is stored in a principal is often an X.500 distinguished name (DN).
That is particularly true when a principal is used in certain certificates (like X509
certificates); it is not an absolute requirement by any means.

There are other methods listed in the Principal interface-namely, the
equals () , toString (), and hashCode () methods. There's no reason for those
methods to be listed in the Principal interface, since every class already inherits
those methods from the Object class. If you implement the Principal interface,
the only method you must implement is the getName () method. You should make
sure that the other methods of the Principal interface are implemented
correctly-but you should ensure that these methods of the Object class are
implemented correctly for all your classes, not just those that implement the Prin­
cipal interface.

The Identity Class

Now we'll look at the primary class used to encapsulate an entity that has a public
key, the Identity class (java. security. Identity):

public class Identity implements Principal, Serializable
Implement an identity-an entity that has a public key. In 1.1, this class is
abstract.

Page 263 of 482

IDENTITIES 247

What's in a Name?

X509 certificates (and many other ANSI standards) make use of the idea of
a distinguished name (usually referred to as a DN). The distinguished name
of an individual includes these fields:

Common Name (CN)
The (full) common name of the individual

Organizational Unit (OU)
The unit the individual is associated with

Organization (0)
The organization the individual is associated with

Location (L)
The city where the individual is located

State (S)

The state/province where the individual is located

Country (C)

The country where the individual is located

The DN specification allows other fields as well, although these are the fields
used internally in Java. The organization that is associated with an individuai
is typically the company the individual works for, but it can be any other
organization (and of course, you may not be associated with an organization
under a variety of circumstances) ..

The idea behind a DN is that it limits to some extent name duplication.
There are other Scott Oakses in the world, but only one who has a DN of:

CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=NY,

S=NY, C=US

On the other hand, this is not absolute; there are many non-unique DNs.

An identity object holds only a public key; private keys are held in a different type
of object (the signer object, which we'll look at a little later). Hence, identity
objects represent the entities in the world who have sent you their public keys in
order for you to verity their identity.

In 1.1, the Identity class is an abstract class that contains no abstract methods; in
1.2 it is concrete. For compatibility, then, we typically subclass the Identity class
in order to create an identity object. Although you're not required to, you'll want
to override certain methods if you implement a subclass of the Identity class.

Page 264 of 482

248 CHAPTER 11: KEY MANAGEMENT

An identity contains five pieces of information:

• A name-the name of the identity; this satisfies the Principal interface that
the identity implements.

• A public key.

• An optional information string describing the identity.

• An optional identity scope. Identities can be aggregated into a collection,
which is called an identity scope. This feature is primarily used to support the
javakeyutility; it is not used in java 1.2.

• A list of certificates that vouch for the identity ..

Identities and Identity Scopes

In 1.1, an identity was closely tied to the notion of an identity scope. The
idea behind this was that the javakey utility needed the ability to operate on
a collection of identities (all the identities in the javakey database). Hence,
the introduction of the IdentityScope class (java.secu­
ri ty. Identi tyScope).

The I den ti tyScope class is similar to other container classes. It has
add- and remove-based methods and a way to enumerate its elements. It also
provides methods to search the identity scope for a particular name, certifi­
cate, or public key. But the architecture of this class is somewhat
complicated, since the IdentityScope class extends the Identity class,
allowing for the idea of nested (as well as disjoint) identity scopes.

The real purpose of the IdentityScope class was to support the 1.1 javakey
database; as javakey was replaced by keytool, this class became much less
useful. In general, we'll ignore the idea of identity scopes altogether and
assume that identities exist independent of a scope.

Details of the identity scope class will be given in Appendix B.

Note that the default implementation of an identity object carries with it no
notion of trustworthiness. You're free to add that feature to your own identity
class, though typically that information is held elsewhere (e.g., in the policy data­
base we examined in Chapter 5).

Page 265 of 482

IDENTITIES 249

Using the identity class

If you want to use an identity object, you have the following methods at your
disposal:

public final String getName()
Return the name of the identity.

public final IdentityScope getScope()
Return the identity scope to which the identity belongs.

public PublicKey getPublicKey()
Return the public key associated with the identity.

public void setPublicKey(PublicKey key) throws KeyManagementException
Set the public key associated with the identity to the given public key. This
replaces any preVious public key as well as any preVious certificates associated
with this identity. If the public key is already associated with another identity
in the identity scope to which this identity belongs, a KeyManagementExcep­
tion is thrown. The implementation of this method in the base class does not
actually check the identity scope to see if the key already exists in another
identity; it's up to the concrete subclass to proVide this functionality.

public String getlnfo()
Return the information string associated with the identity.

public void setlnfo(String info)
Set the information string in the identity, replacing any existing information
string.

public void addCertificate(java.security. cert. Certificate certificate) *
public void addCertificate(java.security. Certificate certificate) 1:.?:

Add the given. certificate to the list of certificates in the identity. If the identity
has a public key and that public key does not match the public key in the
certificate, a KeyManagementException is thrown. If the identity does not
have a public key, the public key in the certificate becomes the public key for
the identity. Like the setPublicKey(} method, this should generate a
KeyManagementException if this conflicts with another key in the identity
scope, but the implementation in the base class doesn't automatically proVide
that.

public void removeCertificate(java.security. cert. Certificate) *
public void removeCertificate(java.security. Certificate certificate) 1:.?:

Remove the given certificate from the list of certificates in the identity. If the
given certificate isn't in the identity's list of certificates, no exception is
thrown.

Page 266 of 482

250 CHAPTER 11: KEY MANAGEMENT

public java. security. cert. Certificate{] getCertificates() *
public java. security. Certificate{] certificates() i::r

Return a copy of the array of certificates held in the identity. The array itself
is a copy of what is held by the object, but the certificate objects themselves
are not.

public final boolean equals(Object id)
Test if the given identity is equal to the current object. Identities are consid­
ered equal if they are in the same scope and have the same name. Otherwise,
they are considered equal if the identi tyEquals () method returns true. By
default, identities in different scopes are considered equal by the identi-"
tyEquals () method if they have the same name and the same public key.

If you have an identity object, those are the methods you can invoke on that
object. There are three ways to obtain an identity object-via the getidentity()
method of the IdentityScope class, by implementing your own subclass of the
Identity class, or (in 1.2 only) by directly constructing an identity object. In
typical java programs, the IdentityScope' class is unused (at least in 1.2); all iden­
tities that we use in this book are ones we construct ourselves.

Implementing an Identity class

An application that wants to work with identities will typically provide its own iden­
tity class. A typical implementation of the Identity class is trivial:

public class XYZidentity extends Identity {
public XYZidentity(String name)throws KeyManagementException

super(name);

Because all of the methods in the Identity class are fully implemented, our class
need only construct itself. Here are the constructors in the Identity class that we
have the option of calling:

protected Identity()
Construct an unnamed identity. This constructor is not designed to be used
directly; it is provided for use by object serialization only.

public Identity(String name)
Construct an identity object that does not belong to an identity scope.

public Identity(String name, IdentityScope scope) throws KeyManagementException
Construct an identity object that belongs to the given scope. A KeyManage­
mentException is thrown if the given name already exists in the· identity
scope.

Page 267 of 482

IDENTITIES 251

public Identity(String name, String info, Certificate c{], PublicKey pk) *
Construct an identity object with the given name, information string, list of
certificates, and public key.

We've chosen in this example only to implement the second of these constructors.

Other than the constructor, we are not required to implement any methods in
our class. If you are implementing an identity within an identity scope, there are
methods that you'll need to override in order to get the expected semantics.

Our identity class has one other option available to it, and that is the ability to
determine when two identities will compare as equal (via the equals {) method).
The equals {) method itself is final, and it will claim that two identities are equal
if they exist in the same scope and have the same name. If either of those tests
fails, however, the equals {) method relies on the following method to check for
equality:

protected boolean identityEquals(ldentity id)
Test for equality between the given identity and this identity. The default
behavior for this method is to return true if the identities have the same
name and the same key.

If your identity class has other information, you may want to override this method
to take that other information into account.

The Identity class and the security manager

The identity class uses the checkSecuri tyAccess {) method of the security
manager to prevent many of its operations from being performed by untrusted
classes. This mechanism has changed somewhat between 1.1 and 1.2; Table 11-1
lists the methods of the Identity class that make this check and the argument
they pass to the checkSecuri tyAccess {) method.

Table 11-1. Methods in the Identity Class that Call the Security Manager

Method Argument in 1.2 Argument in 1.1

setPublicKey () Identity.setPublicKey set. public. key

setinfo () Identity.setinfo set.info

addCertificate() Identity.addCertificate add.certificate

removeCertificate() Identity.removeCertifi- remove.certificate
cate

toString() -not used- print

In 1.1, the argument to the checkSecurityAccess {) method is constructed from
four pieces of information: the name of the class that is providing the implementa­
tion of the identity class, the string listed in the table above, the name of the

Page 268 of 482

252 CHAPTERll:KEY~AGEMENT

particular identity in question (that is, the string returned by the getName ()
method), and the name of the class that implements the identity scope to which
the identity belongs (if any). For example, in 1.1, a call to the setPublicKey()
method of our example class XYZidentitywould end up passing the string XYZI­
denti ty. set. public. key. sdo to the checkSecuri tyAccess () method.

In common implementations of the security manager in 1.1, this string is ignonid,
and trusted classes are typically allowed to work with identities, while untrusted
classes are not. In 1.2, the default implementation of the security manager will
create a security permission object (with the name set as the string given in
Table 11-1) and see if that permission has been granted by the access controller.

Signers

An identity has a public key, which can be used to verity the digital signature of
something signed by the identity. In order to create a digital signature, we need a
private key. An identity that carries with it a p~vate key is modeled by the Signer
class (java.security.Signer):

public abstract class Signer extends Identity
A class to model an entity that has both a public key and a private key. Since
this is a subclass of the Identity class, the public key comes from the imple­
mentation of that class, and a signer class needs only to be concerned with
the private key.

The Signer class is fully implemented even though it is declared as abstract; an
implementation of the Signer class need not implement any methods.

Using the Signer class

A signer is used just like an identity, with these additional methods:

public Private&y getPrivateKey()
Return the private key of the signer.

public final void set&yPair(KeyPair pair)
Set both the public and private key of the signer. Since public and private
keys must match in order to be used, this class requires that in order to set the
private key, the public key must be set at the same time. If only one key is
present in the key pair, an InvalidParameterException is thrown. The act of
setting the public key might generate a KeyManagernentException (a subclass
ofKeyException, which this method throws).

Except for these two operations, a signer is identical to an identity.

Page 269 of 482

THE KE\'STORE CLASS 253

Implementing a signer

Signers are trivial to implement, given that none of their methods are abstract.
Hence, it is simply a matter of calling the appropriate constructor:

public class XYZSigner extends Signer {

public XYZSigner(String name} throws KeyManagementException

super (name};

Note an unfortunate problem here: if you've added additional logic to your iden­
tity subclass, your signer subclass cannot use that logic. Your own signer subclass
must extend Java's Signer class, not your own identity subclass.

Signers and the security manager

In addition to the security checks that will be made as part of the methods of the
Identity class, the signer class calls the checkSecurityAccess {) method of the
security manager in the following cases with the strings in Table 11-2.

Table 11-2. Methods of the Signer Class That Call the Security Manager

Method

getPri vateKey (}

setKeyPair (}

Parameter in 1.2

Signer.getPrivateKey

Signer.setKeyPair

Parameter in l.l

get.private.key

set.private.keypair

As with the Identity class, in 1.1 the actual string passed to the security manager
is preceded with the name of the class, and the name of the identity is appended
to the class along with the name of the identity's scope.

The KeyS tore Class
Now that we understand the pieces that make up a key management system, we
can look at the topic of key management itself. From an administrative perspec­
tive, the primary tool that provides key management for Java 1.2 is the keytool
utility. Keytool operates upon a file (or other storage system) containing a set of
private keys and certificates for those keys. The keytool file contains a set of
entries; each entry may have the following attributes:

• An alias. This is a name you can use to reference the entity in the database.
For example, an alias for my entry might be sdo, or ScottOaks.

• · One or more certificates that vouch for the identity of the entry. These certifi­
cates also provide the public key for the entry.

Page 270 of 482

254 CH.\PTER ll: KEY M.-\1\' AGEI'v!EC\IT

• Optionally, a private key. If present, the private key can be protected by a pass­
word.

We'd be tempted to call the entries in this database identities, but that's poten­

tially confusing: the entries stored in the keytool database are not instances of the
Identity class (although we could create an identity object based on the informa­
tion retrieved from the database).

Figure 11-1 shows the role of the keytool database in the creation and execution
of a signed JAR file. The jarsigner utility consults the kcytool database for the
private key of the entity that is signing the JAR file. Once the signed JAR file is
produced, it is placed on a web server, where it can be downloaded into an applet­
viewer or other Java-enabled browser.* When the JAR file is read on the remote

system. the keytool database is consulted in order to retrieve the public key of the
entity that signed the JAR file so that the JAR file's signature can be verified.

Java Class
Files

Signed
JAR
Files

Figure 11-1. The keytool database in a signedJARfile

appletviewer

Note that the two keytool databases in this example are (probably) separate data­
bases, on separate machines. They probably have completely different entries as
well-even for the entry that represents the signer. The signer's entry in her own
database must have the private key of the signer, while the signer's entry in the
user's database needs only a certificate (public key) for the signer. However, the

keytool database could (in this and all examples) be a shared database-but more

•'• As we mentiorwd, however, C\lctscape Navigator, Internet Explorer, and Hotfava at present allnse a dif
krnlt kev management svstem than the keytool database, so the appktvicwer is the best example here.

Page 271 of 482

THE KE\'STORE CLASS 255

about that later. The default keytool database is the file .keystore that is held in the
user's home directory.

The class that implements the keytool database is the KeyStore class
(java.security.KeyStore):

public abstract class KeyStore *
Represent a set of private keys, aliases (entities), and their corresponding
certificates. A keystore object is typically one that has been read in from disk;
that is, the keystore object is an in-memory representation of the keytool
database.

Although they share the features of a provider interface, keystores are not part of
the security provider interface. Instead, they are installed by modifying the
java.security property file directly; the default Sun keystore implementation is
listed in the java. security file as:

keystore=sun.security.tools.JavaKeyStore

Just like classes that are implemented through the provider interface, a keystore
object is returned from the getinstance () method:

public static final KeyStore getlnstance() *
Return an instance of KeyStore that was given by the class named in the
java. security file. This method throws a KeyStoreException if it gets an error.

When the keys tore object is created, . it is initially empty. Although the getin­
stance () method has constructed the object, it is not expected that the object's
constructor will read in a keystore from any particular location. The interaction
between the keystore object and the keytool database comes via these two
methods:

public abstract void load(lnputStream is, String password) *
Initialize the keystore from the data provided over the given input stream.
The integrity of the keystore is typically protected by using a message digest:
when the keystore is stored, a message digest that represents the data in the
keystore is also stored. Before the digest is created, the password is added to
the digest data; this means that the digest cannot be re-created from a
tampered keystore without knowledge of the password. The password for this
method can be null, in which case the keystore is loaded and not verified.

This use of the password is a property of the Sun implementation of the
KeyStore class; the password could be used for anything else (including
encrypting the entire keystore) if you were to write your own implementation.
To call this parameter a password is somewhat misleading (although that's
what the javadoc documentation calls it), since Sun's implementation lets
you read the entire keystore without it. The Sun implementation of the

Page 272 of 482

256 CHAPTER 11: KEY MANAGEMENT

KeyStore class requires another password to access each private key in the
keystore, so this isn't a potential security hole; all you're reading is public
certificates.

You cannot require a password for load () to succeed, since the Sun imple­
mentation of the Policy class calls this method without a password when it
constructs the information needed for the access controller. You may, of
course, provide your own implementation of the Policy class that provides a
password if desired.

In the Sun implementation, if the class required to support the underlying
message digest is not available, a NoSuchAlgorithmException is thrown. An
error in reading the data results in an IOException, and generic format
errors in the data result in a CertificateException.

public abstract void store(OutputStream os, String password) * /
Store the keystore to the given output stream. The password is typically
included in a digest calculation of the keystore; this digest is then written to
the output stream as well (but again, your own implementation of this class
could use the password differently).

The Sun implementation of this method may throw an IOException if the
output stream cannot be read, a NoSucbAlgori thmException if the class used
to create the digest cannot be found, or a CertificateException if the
keystore object contains a certificate that cannot be parsed.

There is no default file that holds the keys tore. Within the core Java API, the only
class that opens the keystore is PolicyFile, and that opens the keystore that is
listed in the java.policy file. The tools that use the keystore (the jarsigner and
keytool tools) allow you to use a command-line argument to specify the file that
contains the keystore; by default, that file is .keystore in the user's home directory.
This is the convention your own programs will need to use. If your application
needs to open the keystore (for example, to obtain a private key to sign an
object), it should provide either a command-line argument or a property to
specify the name of the file to open. By convention, we'll use the .keystore file in
the user's home directory in our examples.

While we mentioned that the keystore may not be encrypted, the private keys
themselves typically are encrypted so that if someone gains access to the keystore
file, they do not have access to the private keys in that file without the password
used to encrypt those keys. If you provide a keys tore implementation that supplies
keys from a protected location, you do not necessarily need to store the private
keys in encrypted format. When private keys are delivered over the network, you
probably want to make sure that the transmission of those keys is encrypted so
that no one can snoop the network and discover the private key.

Page 273 of 482

THE KEY8TORE CLASS 257

A keystore is arranged in terms of alias names. Aliases are arbitrarily assigned to
an entry; while the name embedded in the certificate for a particular entry may be
a long, complicated, distinguished name, the alias for that entry can provide a
shorter, easier-to-remember name. There are a number of simple methods in the
KeyStore class that deal with these alias names:

public abstract Date getCreationDate(String alias) *
Return the date on which the entry referenced by the given alias was created.

public abstract void deleteEntry(String alias) *
Delete the entry referenced by the given alias from the keystore.

public abstract Enumeration aliases() *
Return an enumeration of all the aliases in the keys tore.

public abstract boolean containsAlias(String alias) *
Indicate whether the keystore contains an entry referenced by the given alias.

public abstract int size() *
Return the number of entries/aliases in the keystore.

Note that this list has a method to delete an entry but not one to create an entry­
creating an entry in the keystore depends upon the type of entry you want to
create.

The keystore holds two types of entries: certificate entries and key entries. The
dichotomy between these two entries is one we explored earlier when we looked
at the Identity and Signer classes. A certificate entry is an entry that contains
only a public key (encapsulated in a certificate) and can be used only to verify a
digital signature, while a key entry is an entry that contains both a private and a
public key and can be used to create and to verify a digital signature. Hence, you
may think of a key entry as a signer and a certificate entry as an identity, although
those classes are not used in the keys tore interface (they may be used in the
keystore implementation).

There are two basic differences between key entries and certificate entries:

• A key entry contains a private key, while a certificate entry does not.

• A key entry may contain a chain of certificates that verifies it, while a certifi­
cate entry contains a single certificate.

For a given alias, you can determine what type of entry it represents via these two
methods:

public abstract boolean isKeyEntry(String alias) *
public abstract boolean isCertificateEntry(String alias) *

Indicate whether the given alias represents a key entry or a certificate entry.

Page 274 of 482

258 CHAPTER 11: KEY MANAGEMENT

For a given alias, you cannot retrieve an object that represents the entire entry.
You may use these methods to retrieve information about the entry represented
by an alias:

public abstract PrivateKey getPrivateKey(String alias, String password) *
Return the private key for the entry associated with the given alias. For a certif­
icate entry, this method returns null. An UnrecoverableKeyException is
thrown if the key cannot be retrieved (e.g., if the key has been damaged).

Retrieving a private key typically requires a password; this may or may not be ,
the same password that was used to read the entire keystore. This allows
private keys to be stored encrypted so they cannot be read without the appro­
priate password. If the class that provides encryption cannot be found, this
method throws a NoSuchAlgorithmException

public abstract Certificate[] getCertificateChain(String alias)*
Return the certificate chain that verifies the entry associated with the given
alias, which must represent a key entry. For an alias that represents a certifi~
cate entry, this method returns null.

public abstract Certificate getCertificate(String alias) *
Return the certificate associated with the given alias. If the alias represents a
key entry, the certificate returned is the user's certificate (that is, the first
certificate in the entry's certificate chain); certificate entries have only a
single certificate.

public abstract String getCertificateAlias(Certificate cert) *
Return the alias that corresponds to the entry that matches the given certifi­
cate (using the equals() method of certificate comparison). If no matches
occur, null is returned.

Finally, in order to create or modify an entry, you may use one of these methods.
All of these methods create a new entry if the given alias does not exist:

public abstract void setKeyEntry(String alias, !Jyte privateKey[], Certificate chain[}) *
public abstract void setKeyEntry(String alias, PrivateKey pk, String password, Certificate

chain[})*
Assign the given private key and certificate chain to the key entry represented
by the given alias, creating a new key entry if necessary. Any previous private
key and certificate chain for this entry are lost; if the previous entry was a
certificate entry, it now becomes a key entry.

A KeyStoreException is thrown if the key entry cannot be encrypted by the
internal encrypting algorithm of the keystore. In the Sun implementation,
when the key is passed in as a series of bytes, it is not encrypted-in this case,
you are expected to have performed the encryption yourself.

Page 275 of 482

THE KEY8TORE CLASS 259

public abstract void setCertificateEntry(String alias, Certificate c) *
Assign the given certificate to the certificate entry represented by the given
alias. If an entry for this alias already exists and is a key entry, a KeyStoreEx­
ception is thrown. Otherwise, if an entry for this alias already exists, it is
overwritten.

These are the basic methods by which we can manage a keystore. We'll see exam­
ples of many of these methods throughout the rest of this book; for now, let's
look at a simple example that looks up a given entry in the keystore:

public class KeyStoreLookup {

pubiic static void main(String args[]) {
try {

KeyStore ks = KeyStore.getinstance();

String fname = System.getProperty("user.home") +

File.separator + ".keystore";

FileinputStream fis =new FileinputStream(fname);

ks.load(fis, null);

if (ks.isKeyEntry(args[O])) {

System.out.println(args[O] +

"is a key entry in the keystore");
System.out.println("The private key for" + args[O] +

" is " + ks.getPrivateKey(args[O], args[1]));
Certificate certs[] = ks.getCertif'icateChain(args[O]);

if (certs[O] instanceof X509Certificate) {

X509Certificate x509 = (X509Certificate) certs[O];

System.out.println(args[O] + " is really " +

x509.getSubjectDN());

if (certs[certs.length- 1] instanceof
X509Certificate) {

X509Certificate x509 = (X509Certificate)

certs[certs.length- 1];

System.out.println(args[O] + " was verified by " +

x509.getissuerDN());

else if (ks.isCertificateEntry(args[O])) {

System.out.println(args[O] +

"is a certificate entry in the keystore");

Certificate c = ks.getCertificate(args[O]);

if (c instanceof X509Certificate) {

X509Certificate x509 = (X509Certificate) c;

System.out.println(args[O] + " is really " +

x509.getSubjectDN());

System.out.println(args[O] + " was verified by " +

x509.getissuerDN());

Page 276 of 482

260

else {
System.out.println(args[O] +

CHAPTER 11: KEY MANAGEMENT

"is unknown to this keystore");

catch (Exception e) {

e.printStackTrace();

This program expects two arguments: the name of the entity in the keystore for
which information is desired, and the password that was used to encrypt the
private key.

There are a number of points to pick out from tl;lis example.· First, note that we
constructed the keystore using the convention we mentioned earlier-the .keystore
file in the user's home directory.

Mter we've read in the data, the first thing we do is determine if the entry that
we're interested in is a key entry or a certificate entry-mostly so that we can
handle the certificates for these entries differently. In the case of a key entry, we
obtain the entire certificate chain, and use the first entry in that chain to print out
the Distinguished Name (DN) for the entry, while the last entry in the chain is
used to print out the DN for the last certificate authority in the chain. For a certifi­
cate entry, our task is simpler: there is a single certificate, and we simply print out
its information.

A Key Management Example
The Sun implementation of the keytool utility is useful in many circumstances
where users have disjoint databases. In Figure 11-1 we showed just such an
example, and we mentioned that this example was set up in such a way that the
code signer and the end user could have different key databases.

This is not to say, however, that those two databases could not have been the same
database-that is, one that is shared by the signer and the end user. Since access
to the private key of the signer is protected by a password, the signer and the end
user are able to share a single database without concern that the end 'user may
obtain access to the signer's private key (assuming that she keeps her password
secret, of course). In the case of a corporate network, this flexibility is important,
since an enterprise may want to maintain a single database that contains the
private keys of all of its employees as well as the certificates of all known external
entities.

We could have these users share the keystore by using the appropriate filename in
the application and the java.policy files. But sharing the keytool database by a file

Page 277 of 482

A KEY MANAGEMENT EXAMPLE 261

is somewhat inefficient. If the global file is on a machine in New York and is refer­
enced by a user in Tokyo, you'll want to use a better network protocol to access it
than a file-based protocol. In addition, the load() method reads in the entire file.
If there are 10,000 users in your corporate keystore database, you shouldn't need
to read each entry into memory to find the one entry you are interested in using.

Hence, for many applications, you'll want to provide your own implementation of
the KeyStore class. We'll show a very simple example here as a starting point for
your own implementations. For the payroll application being deployed by XYl
Corporation, a database containing each employee in the corporation is neces­
sary. The HR department could set up its own keystore for this purpose, but a
similar keystore will be needed by the finance department to implement its 401K
application; a better solution is to have a single keystore that is shared between all
departments of XYl Corporation.

In this case, the question becomes how best to share this keystore. A single global
file would be too large for programs to read into memory and too unwieldy for
administrators to distribute to all locations of XYl Corporation. A better architec­
ture is shown in Figure 11-2. Here, the application uses the security provider
architecture to instantiate a new keystore object (of a class that we'll sketch out
below). Unknown to the users of this object, the keys tore class uses RMI (or
CORBA, or any other distributed computing protocol) to talk to a remote server,
which accesses the 10,000 employee records from a database set up for that
purpose.

Local KeyStore class

R
M

Figure 11-2. A distributed keystore example

Page 278 of 482

262 CHAPTER 11: KEY MANAGEMENT

Without getting bogged down in the details of the network and database program­
ming required for this architecture, let's look at how the KeyStore class itself
would be designed.

Many of the methods of our new class are simple passthroughs to the remote
server. If the handle to the remote server is held in the instance variable rks, a
typical method looks like this:

public Date getCreationDate{String alias)

return rks.getCreationDate{alias);

The methods that could be implemented in this ~anner are:

getPrivateKey{)

getCertificateChain{)

getCertificate{)

getCreationDate{)

aliases {)

containsAlias {)

size{)

isKeyEntry {)

isCertificateEntry{)

getCertificateAlias{)

On the other hand, many methods should probably throw an exception-espe­
cially those methods that are designed to alter the keystore. In an architecture
such as this one, changes to the keystore should probably be done through the
database itself-or at least through a different server than the server used by all
employees in the corporation. So many functions may look simply like this:

public void setKeyEntry{String alias, PrivateKey key,

String passphrase, Certificate chain[])

throws KeyStoreException {

throw new KeyStoreException{"Can't change the keystore");

Methods that could be implemented in this manner are:

setKeyEntry {)

setCertificateEntry{)

dele teEn try {)

store {)

Note that we did not include the load() method in the above list. The load()
method is useful to us, because it allows the application to require a password
from the user before a connection to the remote server can be made. This differs
slightly from normal programming for this class. Typically, the load() method is
called with the input stream from which to read the keystore. In this case, the

Page 279 of 482

A KEY MANAGEMENT EXAMPLE 263

load () method is expected to be called with a null input stream, and sets up the
connection to the remote server itself:

public void load(InputStream is, String password)

throws IOException, NoSuchAlgorithmException,

CertificateException {

rks = Naming.lookup("rmi://KSServer/DistributedKeyServer");

if (! rks. authenticate (password) } {

rks = null;

throw new IOException("Incorrect password");

Since the keystore database in this architecture cannot be written through the
·server, there is some question as to whether a password should be required to
access the keystore at all (since there are individual passwords on the private·
keys). Every employee will potentially have access to the password (unless it is
embedded into the application itself); you can decide if a password really adds
security in that case. If no password is desired, the load () method could be empty
and the connection to the remote server could be made in the constructor.

On the server side, implementation of the required methods is simply a matter of
making appropriate database calls:

public int size()

int sz = -1;
try {

Connection conn= connectToDatabase();

Statement st = conn. createStatement () ;

boolean restype = st.execute("select count(*) from entries");

if (restype) {

ResultSet rs = st.getResultSet();

sz = Integer.parseint(rs.getString(l));

st.cancel();

catch (E~ception e) {

finally

return sz;

This architecture works well because it allows the passwords for each of the private
keys to be held in the database itself, so retrievals of private keys can easily test the
password via a simple string comparison. Implementations of file-based keystores
are more problematic: if the file is readable by the user, obviously the password
cannot be stored in the file as a simple string. File"based keystores must store their

Page 280 of 482

264 CHAPTER 11: KEY MANAGEMENT

passwords and their private keys in encrypted form, perhaps using the encryption
APis we'll examine in Chapter 13. Assuming that the database machine is secured,
such encryption is not required in this architecture.

Encrypting Private Keys

In this section, we've discussed the need for private keys to be stored
encrypted whenever those keys are stored in a location that is generally ..
accessible to other users. The Sun implementation of the KeyStore class
does this using an internal algorithm to perform the encryption.

The strength of this encryption is limited; because it is part of the standard
Sun distribution, the encryption must be weak enough to be exportable
from the United States. "Weak" is a relative term in this context; it still
requires some effort for the encryption to be broken, but it can be done.

In your own KeyStore class, if you need to encrypt the private keys you'll
want to use the strongest form of encryption that is suitable for your situa­
tion. If you're a multinational organization, this encryption will not be very
strong, and you're better off storing your private keys on a private database
as we've described here.

There are unlimited possibilities in the implementation of a keystore. One tech­
nique might be to create a floppy for each employee that contains only that
employee's entry and to write a keystore class that looks for key entries from the
file on the floppy and for certificate entries from a global file somewhere.* This
type of implementation ~s very simple. The new keystore can contain two instances
of the Sun KeyStore class that have read in both files, and it can use object delega­
tion to implement all of its methods.

Note that this type of two-tiered system is really the ideal. If the private keys are
transmitted over the network, as in our previous case, then internal spies on the
network might snoop the password used to retrieve the key or the private key that
is sent back. If the private key is held locally, however, and only the public keys are
retrieved from the remote key store, you have a much better implementation.

* Of course, we don't want to use a floppy for this-we want to use a java-enabled smart card, though of
course we don't all have smart card readers on our computers. At least, not yet...

Page 281 of 482

SUMMARY 265

Installing a KeyS tore Class

In order to use an alternate keystore implementation, the java. security file must be
updated to set the keystore property, like this:

keystore=DistributedKeyStore

If necessary, you'll need to establish a convention by which the input stream that
is opened for the load () method is created-unless your keystore does not
require one at all (as, for example, our RMI-based keystore would not).

The Policy class uses the keystore in a predictable manner. Given this entry .in
the java. policy file:

grant CodeBase "http://piccolo/", signedBy "sdo" {

the Policy class uses the keystore to look up the alias for sdo, retrieve sdo's
public key, and use that public key to verify any signature that comes from the site
piccolo. Remember, however, that the Sun implementation of the Policy class
requires an entry in the java.policy file that specifies the URL from which to load
the keystore.

Summary
In this chapter we. examined the key management facilities of Java. Key manage­
ment revolves around keys and certificates-ideas we've already discussed-but it
also depends upon the notion of an identity-an individual or a corporation­
and the idea that a particular identity can be certified.

K.ey management in Java can be handled either programmatically with the stan­
dard Java API or with the key management tool keytool. Keytool itself is a good
example of how the programming API can be used, although there are some
trade-offs involved here; for example, loading a large keystore is not necessarily
the most appropriate choice for a thin-client application. Fortunately, the security
package gives us the necessary tools to implement our own keystore when that is
appropriate.

For all the time we've spent on them, keys are not interesting by themselves. They
are interesting for what they allow us to do, which among other things includes
the ability to operate on a digital signature. In the next chapter, we'll look at
digital signatures, their relationship to keys, and the operations that keys and
digital signatures enable us to perform.

Page 282 of 482

12

Digital Signatures

In the previous few chapters, we've examined various aspects of Java's security
package with an eye toward the topics of this chapter: the ability to generate and
to verify digital signatures. We've now reached the fruits of that examination. In
this chapter, we'll explore the mechanisms of the digital signature.

The use and verification of digital signatures is another standard engine that is
included in the security provider architecture. Like the other engines we've exam­
ined, the classes that implement this engine have both a public interface and an
SPI for implementors of the engine.

In the JDK, the most common use of digital signatures is to create signed classes;
users have the option of granting additional privileges to these signed classes
using the mechanics of the access controller. In addition, a security manager and
a class loader can use this information to change the policy of the security
manager; this technique is quite useful in 1.1. Hence, we'll also show an example
that reads a signed JAR file.

The Signature Class
Operations on digital signatures are abstracted by the Signature class
(java. security. Signature):

public abstract class Signature extends Sig;natureSpi
Provide an engine to create and verify digital signatures. In Java 1.1, there is
no Signature.Spi class, and this class simply extends the Object class.

The Sun security provider includes a single implementation of this class that
generates signatures based on the DSA algorithm.

266

Page 283 of 482

THE SIGNATURE CLASS 267

Using the Signature Class

As with all. engine classes, instances of the Signature class are obtained by calling
one of these methods:

public static Signature getlnstance(String algorithm)
public static Signature getlnstance(String algorithm, String provider)

Generate a signature object that implements the given algorithm. If no
provider is specified, all providers are searched in order for the given algo­
rithm as discussed in Chapter 8; otherwise, the system searches for the given
algorithm only in the given provider. If an implementation of the given algo­
rithm is not found, a NoSuchAlgori thmE:xception is thrown. If the named
security provider cannot be found, a NoSuchProviderException is thrown.

Beginning in 1.2, if the algorithm string is "DSA", the string "SHA/DSA" is
substituted for it. Hence, implementors of this class that provide support for
DSA signing must register themselves appropriately (that is, with the message
digest algorithm name) in the security provider.

Once a signature object is obtained, the following methods can be invoked on it:

public void final initVerify(PublicKey publicKey)
Initialize the signature object, preparing it to verify a signature. A signature
object must be initialized before it can be used. If the key is not of the correct
type for the algorithm or is otherwise invalid, an InvalidKeyException is
thrown.

public final void initSign(PrivateKey privateKey)
Initialize the signature object, preparing it to create a signature. A signature
object must be initialized before it can be used. If the key is not of the correct
type for the algorithm or is otherwise invalid, an InvalidKeyException is
thrown.

public final void update(byte b)
public final void update(byte[] b)
public final void update(byte b[], int offset, int length)

Add the given data to the accumulated data the object will eventually sign or
verify. If the object has not been initialized, a SignatureException is thrown.

public final byte[] sign()
Create the digital signature, assuming that the object has been initialized for
signing. If the object has not been properly initialized, a SignatureExcep­
tion is thrown. Once the signature has been generated, the object is reset so
that it may generate another signature based on some new data (however, it is
still initialized for signing; a new call to the initSign(} method is not
required).

Page 284 of 482

268 CHAPTER 12: DIGITAL SIGNATURES

public final boolean veri.fy(!Yyte[] signature)
Test the validity of the given signature, assuming that the object has been
initialized for verification. If the object has not been properly initialized, then
a SignatureException is thrown. Once the signature has been verified
(whether or not the verification succeeds), the object is reset so that it may
verity another signature based on some new data (no new call to the
initVerify() method is required).

public final String getAlgorithm()
Get the name of the algorithm this object implements.

public String toString()
A printable version of a signature object is composed of the string
"Signature object: " followed by the name of the algorithm implemented
by the object, followed by the initialized state of the object. The state is either
<not initialized>, <initialized for verifying>, or <initialized for
signing>. However, the Sun DSA implementation of this class overrides this
method to show the parameters of the DSA algorithm instead.

public final void setParameter(String param, Object value) i::r
public final void setParameter(AlgorithrnParameterSpec param) *

Set the parameter of the signature engine. In the first format, the named
parameter is set to the given value; in the second format, parameters are set
based on the information in the param specification.

In the Sun implementation of the DSA signing algorithm, the only valid
param string is KSEED, which requires an array of bytes that will be used to
seed the random number generator used to generate the k value. There is no
way to set this value through the parameter specification, which in the Sun
implementation always returns an UnsupportedOperationException.

public final Object getParameter(String param) i::r
Return the named parameter from the object. The only valid string for the
Sun implementation is KSEED.

public final Provider getProvider() *
Return the provider that supplied the implementation of this signature object.

It is no accident that this class has many similarities to the MessageDigest class; a
digital signature algorithm is typically implemented by performing a crypto­
graphic operation on a private key and the message digest that represents the
data to be signed. For the developer, this means that generating a digital signa­
ture is virtually the same as generating a message digest; the only difference is that
a key must be presented in order to operate on a signature object. This difference
is important, however, since it fills in the hole we noticed previously: a message
digest can be altered along with the data it represents so that the tampering is

Page 285 of 482

THE SIGNATURE CLASS 269

unnoticeable. A signed message digest, on the other hand, can't be altered
without knowledge of the key that was used to create it. The use of a public key in
the digital signature algorithm makes the digital signature more attractive than a
message authentication code, in which there must be a shared key between the
parties involved in the message exchange.

Let's take our example from Chapter 9 where we saved a message and its digest to
a file; we'll modify it now to save the message and the digital signature. We can
create the digital signature like this:

public class Send {

public static void main{String args[]) {

String data;
data = "This have I thought good to deliver thee, " +

try {

"that thou mightst not lose the dues of rejoicing " +

"by being ignorant of what greatness is promised thee.";

FileOutputStream fos =new FileOutputStream{"test");
ObjectOutputStream oos =new ObjectOutputStream{fos);

KeyStore ks = KeyStore.getinstance{);

ks.load{new FileinputStream{

System.getProperty{ "user .home") +

File.separator + ".keystore"), null);
PrivateKey pk ks.getPrivateKey{args[O], args[l]);

Signatures= Signature.getinstance{"DSA");

s.initSign{pk);

byte buf[] = data.getBytes{);

s.update{buf);

oos.writeObject{data);

oos.writeObject{s.sign{));

catch {Exception e) {

e.printStackTrace{);

This example puts together many of the examples from the past few chapters. In
order to create the digital signature we must accomplish the following:

1. Obtain the private key that is used to sign the data. Here we're using the
conventional keystore database ($HOME/.keystore) and the command-line
arguments to obtain the alias and password of the private key we want to use.

Page 286 of 482

270 CHAPTER 12: DIGITAL SIGNATURES

2. Obtain a signing object via the getinstance () method and initialize it. Since
we're creating a signature in this example, we use the initSign() method for
initialization.

3. Pass the data to be signed as a series of bytes to the update () method of the
signing object. Multiple calls could be made to the update () method even
though in this example we only need one.

4. Obtain the signature by calling the si!;J!l () method. We save the signature
bytes and write them to a file with the data so that the data and the signature
can be retrieved at a later date.

Reading the data and verifying the signature are similar:

public class Receive {
public static void main($tring args[])

try {
String data = null;
byte signature[] = null;
FileinputStream fis =new FileinputStream("test");
ObjectinputStream ois =new ObjectinputStream(fis);
Object o
try {

data

ois.readObject();

(String) o;
catch (ClassCastException cce) {

System.out.println("Unexpected data in file");
System. exit (-1) ;

o ois.readObject();
try {

signature= (byte []) o;
catch (ClassCastException cce)

System.out.println("Unexpected data in file");
System.exit(-1);

System. out.println ("Received message");
System.out.println(data);

KeyStore ks = KeyStore.getinstance();
ks.load(new FileinputStream(

System.getProperty("user .home") +

File.separator + ".keystore"), args[1]);

Certificate c = ks.getCertificate(args[O]);
PublicKey pk = c.getPublicKey();
Signatures= Signature.getinstance("DSA");
s.initVerify(pk);
s.update(data.getBytes());
if (s.verify(signature)) {

System.out.println("Message is valid");

Page 287 of 482

THE SIGNATURE CLASS

else System. out .println ("Message was corrupted");

catch (Exception e) {

System.out.println(e);

271

The process of verifying the signature still requires four steps. The major differ­
ences are that in step two, we initialize the signing object for verification by using
the initVerify() method, and in step four, we verify (rather than create) the
existing signature by using the verify () method. Note that we still have to know
who signed the message in order to look up the correct key-but more about that
a little later.

The SignedObject Class

In our last example, we had to create an object that held both the data in which
we are interested and the signature for that data. This is a common enough
requirement that Java provides the SignedObject class (java.secu­
rity. SignedObject) to encapsulate an object and its signature:

public final class SignedObject implements Serializable *
Encapsulate an object and its digital signature. The encapsulated object must
be serializable so that a serialization of a signed object can do a deep copy of
the embedded object.

Signed objects are created with this constructor:

public SignedObject(Serializable o, PrivateK.ey pk, Signature engine) *
Create a signed object based on the given object, signing the serialized data in
that object with the given private key and signature object. The signed object
contains a copy of the given object; this copy is obtained by serializing the
object parameter. If this serialization fails, an IOException is thrown.

It's very important to realize that this constructor makes, in effect, a copy of its
parameter; if you create a signed object based on a string buffer and later change
the contents of the string buffer, the data in the signed object remains
unchanged. This preserves the integrity of the object encapsulated with its
signature.

Here are .the methods we can use to operate on a signed object:

public Object getContent() *
Return the object embedded in the signed object. The object is reconstituted
using object serialization; an error in serialization may cause either an IOEx­
ception or a ClassNotFoundException to be thrown.

Page 288 of 482

272 CHAPTER 12: DIGITAL SIGNATURES

public byte[} getSignature() *
Return the signature embedded in the signed object.

public String getAlgorithm() *
Return the name of the algorithm that was used to sign the object.

public boolean verify(PublicKey pk, Signatures) *
Verify the signature within the embedded object with the given key and signa­
ture engine. The signature engine parameter may be obtained by calling the
getinstance () method of the Signature class. The underlying signature
engine may throw an InvalidKeyException or SignatureException.

We'll use this class in examples later in this chapter.

Signing and Certificates

In the previous examples, we specified on the command line the name of the
entity that we assumed generated the signature in the file. This was necessary
because the file contained. only the actual signature of the entity and the data that
was signed; it did not contain any information about who the signer actually is.
That's fine for an example, but it is not always appropriate in a real application.
We could have asked the user for the name of the entity that was supposed to
have signed the data, but that course is fraught with potential errors:

• The user could have no idea what names are in the keystore of the applica­
tion. Especially in a corporate environment, users may not know what data
the keystore database might contain.

• The user could get the name of the keystore alias wrong. Say that the applica­
tion asks the user to enter the name of the signer; the user, knowing that the
data came from me, may enter "sdo" as the alias of the identity.

What the user may not remember is that when the keystore was first created,
. she received a public key from the San Diego Oil company; that public key
was entered into the keystore with the alias "sdo." When my identity was
added to the keystore, a different alias had to be chosen, so my public key was
added with the alias "ScottOaks." But that was a long time ago, now forgotten,
and because I use the sdo moniker all over my writings, the user assumes that
I am the sdo in the keystore. And so the wrong alias will be chosen, and the
signature verification will fail when it should have succeeded.

For these reasons, it makes more sense to include the public key with the signa­
ture and the signed data. This allows the application to find the identity based on
the unique public key in order to determine who the signer of the data is.

We could do that by simply sending the encoded public key with the signature
and data. A better solution, however, would be to send the certificate that verifies

Page 289 of 482

THE SIGNATURE CLASS 273

the public key. That way, if the public key is not found in the database, the creden­
tials of the certificate can be presented to the user, and the user can have the
opportunity to decide on the fly if the particular entity should be trusted.

Although an embedding of signature, data, and certificate is very common, the
SignedObj ect class does not include the capability to contain a certificate. So
we'll use the SignedObject class in this example, but we'll still need an object
that contains the signed object and the certificate. We'd like to do this by
extending the SignedObject class, but since that class is final we're forced to
adopt this approach:

public class Message implements Serializable
SignedObject object;

transient Certificate certificate;

private void writeObject{ObjectOutputStream out)

throws IOException

out.defaultWriteObject{);

try {
out.writeObject{certificate.getEncoded{));

catch {CertificateEncodingException cee) {

throw new IOException{"Can•t serialize object"+ cee);

private void readObject{Objectinputstream in)
throws IOException, ClassNotFoundException

in.defaultReadObject{);

try {

byte b[] = {byte []) in.readObject{);

X509Certificate x509 = X509Certificate.getinstance{

new ByteArrayinputStream{b)};

certificate = x509;

catch {CertificateException ce) {

throw new IOException{"Can't de-serialize object"+ ce);

We've made the certificate variable in this class transient and have explicitly
serialized and deserialized it using its external encoding. As we discussed in
Chapter 10, whenever we have an embedded certificate or key, we must follow a
procedure like this to ensure that the receiving party is able to deserialize the class.

As it turns out, the X509 certificate implementation that comes with the JDK (that
is, the sun.security.x509 .X509Certimpl class) also overrides the writeOb­

j ect () and readOl:ij ect () methods, so if we serialize a certificate explicitly, the
encoded data is written to or read from the file. It is not sufficient to rely upon

Page 290 of 482

274 CHAPTER 12: DIGITAL SIGNATURES

that, however-if we use the default serialization methods for the Message class, a
reference to the sun.security.x509.X509Certi:r!pl class is embedded into the
serialized stream. A user with another security provider (and hence a different
implementation of the X509Certificate class) would not be able to deserialize
the stream because there is no access to the Sun implementation of the
X509Certificate class. Explicitly serializing and deserializing the. certificate as
we've done here avoids embedding any reference to the provider class and makes
the data file more portable.

When we save the message to the file, we now have to make sure that we save a
certificate with it. Other than that, changes to the class are minor:

public class SendObject {
public.static void main(String args[]) {

try {
FileOutputStream fos =new FileOutputStream("test.obj");
ObjectOutputStream oos =new ObjectOutputStream(fos);
KeyStore ks = KeyStore.getinstance();
ks.load(new FileinputStream(

System. get Property ("user. home") +

File.separator + ".keystore"), args[l]);

Certificate certs[] = ks.getCertificatechain(args[O]);
PrivateKey pk = ks.getPrivateKey(args[O], args[l]);
Message m =new Message();
m.object = new SignedObject(

"'l'his have r thought good to deliver thee, " +
"that thou mightst not lose the dues of rejoicing " +

"by being ignorant of what greatness is promised thee. ",

pk, Sig:nature.getrnstance ("DSA"));
m.certificate = certs[O];
oos.writeObject(m);

catch (Exception e) {
System.out.println(e);

Retrieving the data is now more complicated, since we must verify both the signa­
ture in the signed object and the identity of the authority that signed the
embedded certificate:

public class ReceiveObject
private static void verifySigner(Certificate c, String name)

throws CertificateException {
Certificate issuerCert = null;
X509Certificate scert = null;
KeyStore ks = null;

Page 291 of 482

THE SIGNATURE CLASS

try {
ks = KeyStore.getinstance();
ks.load(new FileinputStream(

System. getProperty("user .home") +

File.separator + ".keystore"), null);
catch (Exception e) {

throw new CertificateException("Invalid keystore");

String signer= ks.getCertificateAlias (c);
if (signer != null) {

275

System.out.println("We know the signer as " + signer);
return;

for (Enumeration al = ks.aliases(); al.hasMoreElements();) {
Strings= (String) al.nextElement();
try {

sCert = (X509Certificate) ks.getCertificate(s);
catch (Exception e) {

continue;

if (name.equals(sCert.getSubjectDN() .getName()))
issuerCert = sCert;
break;

if (issuerCert == null) {
throw new CertificateException("No such certificate");

try {
c.verify(issuerCert.getPublicKey());

catch (Exception e) {
throw new CertificateException(e.toString());

private static void processCertificate(X509Certificate x509)
throws CertificateParsingException

Principal p;
p = x509.getSubjectDN();
System.out.println("This message was signed by " +

p.getName());
p = x509.getissuerDN();
System.out.println("This certificate was provided by " +

p. getName ()) ;
try {

verifySigner(x509, p.getName());

Page 292 of 482

276 CHAPTER 12: DIGITAL SIGNATURES

catch {CertificateException ce) {

System.out.println{ "We don't know the certificate signer");

t;ry {

x509.checkValidity{);

catch {CertificateExpiredException cee) {

System.out.println{"That certificate is no longer valid");

catch {CertificateNotYetValidException cnyve)

System.out.println{"That certificate is not yet valid");

public static void main{String args[])

try {

FileinputStream fis =new FileinputStream{"test.obj");

Objectinputst·ream ois = new ObjectinputStream{fis);

Object o = ois.readObject{);

if {o instanceof Message) {

Message m = {Message) o;

System.out.println{"Received message");

processCertificate{{X509Certificate) m.certificate);

PublicKey pk = m.certificate.getPublicKey{);

if {m.object.verify{pk, Signature.getinstance{"DSA")))

System. out .println{ "Message is valid");

System.out.println{m.object.getObject{));

else System.out.println{"Message signature is invalid");

else System.out.println{"Message is corrupted");

catch {Exception e) {

e.printStackTrace{);

We've seen most of this code in previous chapters; in particular, the processCer­
tificate () method uses the standard certificate methods to extract and print
information about the certificate. The new code for us is primarily in the verify­
Signer () method, where we search the entire keystore for a name that matches
the issuer of the certificate that was sent to us. If we find a match, we use the corre­
sponding public key to verify the certificate we received.

This method shows yet another need for an alternate implementation of the
KeyS tore class-if you have to search the entire list of keys for a matching certifi­
cate like this, you clearly don't want to perform a linear search each time. An
alternate keystore could provide a more efficient means of searching for
certificates.

Page 293 of 482

SIGNED CLASSES 277

Signed Classes
One of the primary applications of digital signatures in Java is to create and verify
signed classes. Signed classes allow the expansion of Java's sandbox in two
different ways:

• The policy file can insist that classes coming from a particular site be signed
by a particular entity before the access controller will grant that particular set
of permissions. In the policy file, such an entry contains a signedBy directive:

•

grant signecl.By "sdo", codeBase "http://piccolo.East.Sun.COM/"
java. io. FilePerrnission "-", "read, write";

This entry allows classes that are loaded from piccolo.East.Sun. COM to read
and write any local files under the current directory only if the classes have
been signed by sdo.

The security manager can cooperate with the class loader in order to deter­
mine whether or not a particular class is signed; the security manager is then
free to grant permissions to that class based on its own internal policy. This
technique is far more important in Java 1.1, since mostJava 1.2 security man­
agers simply defer decisions to the access controller.

In this section, we'll explore the necessary components behind this expansion of
the Java sandbox. This example in the rest of the section fills in the remaining
details of the JavaRunner program by showing us how to use a signed class.

There are three necessary ingredients to expand the Java sandbox with signed
classes:

• A method to create the signed class. The jarsigner utility is used for this
(see Appentiix A).

• A class loader that knows how to understand the digital signature associated
with the class. The URLClassLoader class knows how to do this, but we'll show
an example of how to do that for our JavaRunnerLoader class as well.

• A security manager or access controller that grants the desired permissions
based on the digital signature. The default access controller will do this for us;
we'll show how the security manager might do this directly.

Reading Signed JAR Files

Signed classes in the Java-browser world are typically delivered as signed JAR files;
there are various tools (javakey for Java 1.1 and jarsigner for Java 1.2) that can
take an ordinary JAR file and attach a digital signature to it. A signed JAR file has
three special elements:

Page 294 of 482

278 CHAPTER 12: DIGITAL SIGNATURES

• A manifest (MANIFEST.MF), containing a listing of the files in the archive
that have been signed, along with a message digest for each signed file.

• A signature file (XXX.SF, where {(XX is the name of the entity that signed
the archive) that contains signature information. The data in this file is com­
prised of message digests of entries in the manifest file.

• A block file (XXX.DSA, where XXX is the name of the entity that signed the
archive and DSA is the name of the signature algorithm used to create the sig­
nature). The block file contains the actual signature data in a format known
as PKCS7.

There are many advantages to this format, not the least of which is that the PKCS7
block file (that is, the signature itself) is a standard format for external signatures.
Unfortunately, the necessary classes to create PKCS7 blocks are not part of Java's
public API; if you want to be able to write a signed JAR file, you'll need to write
the classes to create the signature block yourself.

However, we can read a signed JAR file using the core API. This means that the
class loader we've been using for the JavaRunner program can be modified to
read a standard JAR file and associate the digital signature of that archive with the
classes it loads.

We'll enhance the JarLoader class loader that we first developed in Chapter 3 in
order to read the signature. For reference, we'll show the entire class again here,
although only the highlighted portions of it have changed (it also contains some
methods that we added in Chapter 6):

public class JarLoader extends SecureClassLoader

private URL urlBase;

public boolean printLoadMessages = true;

Hashtable classArrays;
Hashtable classids;
static int groupNum = 0;

ThreadGroup threadGroup;

public JarLoader{String base, ClassLoader parent) {

super (parent);
try {

if {! {base. endsWith{ "I")))

base= base + "/";

urlBase =new URL{base);

classArrays =new Hashtable{);

classids =new Hashtable{);
catch {Exception e) {

throw new IllegalArgumentException{base);

Page 295 of 482

SIGNED CLASSES

private byte[] getClassBytes(InputStream is) {

ByteArrayOutputStream baos =new ByteArrayOutputStream();

BufferedinputStream bis =new BufferedinputStream(is);
boolean eof = false;
while (!eof)

try {

inti bis.read();
if (i == -1)

eof = true;

else baos.write(i);

catch (IOException e)

return null;

return baos.toByteArray();

protected Class findLocalClass(String name) {

String urlName = name.replace('. ', '/');
byte buf [];

Class cl;

SecurityManager sm = System.getSecurityManager();
if (sm != null)

inti= name.lastindexOf('.');
if (i >= 0)

sm.checkPackageDefinition(name.substring(O, i));

buf = (byte[]) classArrays.get(urlName);

if (buf != null) {

try

Object ids[] = (Object []) classids.get(urlName);
Codesource cs = getCodeSource(urlBase, ids);
cl = defineClass(name, buf, 0, buf.length, cs, ids);
return cl;

AccessController.beginPrivileged();

URL url =new URL(urlBase, urlName + ".class");
if (printLoadMessages)

System.out.println("Loading" + url);

InputStream is= url.openConnection() .getinputStream();
buf = getClassBytes(is);

CodeSource cs = getCodeSource(urlBase, null);

cl = defineClass(name, buf, 0, buf.length, cs, null);

return cl;

catch (Exception e) {

279

Page 296 of 482

280 CHAPTER 12: DIGITAL SIGNATURES

System.out.println{"Can't load"+ name+":"+ e);
return null;

finally {

AccessController.endPrivileged{);

public void readJarFile {String name) {'~

URL jarUrl = null;
JarinputStream jis;

JarEntry je;

try {

jarUrl =new URL{urlBase, name);

catch {MalformedURLException mue)

System.out.println{ "Unknown jar file " + name);

return;

if (printLoadMessages)

System.out.println{"Loading jar file " + jarurl);

try {

jis = new JarinputStream{

jarUrl.openConnection{) .getinputstream{));
catch {IOExcepti6n ioe) {

try

System.out.println{"Can't open jar file"+ jarUrl);
return;

while {{je = jis.getNextJarEntry{)) !=null) {

String jarName = je.getName{);

if {jarName. endsWith{". class"))
loadClassBytes{jis, jarName, je);

II else ignore it; it could be an image or audio file
jis.closeEntry{);

catch {IOException ioe)

System.out.println{"Badly formatted jar file");

private void loadClassBytes{JarinputStream jis,

String jarName, JarEntry je) {
if {printLoadMessages)

System.out.println{"\t" + jarName);

BufferedinputStream jarBuf =new BufferedinputStream{jis);

ByteArrayOutputStream jarOut =new ByteArrayOutputStream{);
int b;

Page 297 of 482

SIGNED CLASSES

try {

while ((b = jarBuf.read()) != -1)

jarOut.write(b);

281

String className = jarName.substring(O, jarName.length() -
6);

classArrays.put(className, jarOut.toByteArray());

Object ids[] = je.getidentities();
if (ids != null)

classids.put(clasSName, ids);
catch (IOException ioe) {

Syst~:out.println("Error reading entry"+ jarName);

public void checkPackageAccess(String name) {

SecurityManager sm = System.getSecurityManager();
if (sm ! = null)

sm.checkPackageAccess(name);

ThreadGroup getThreadGroup() {

if (threadGroup == null)

threadGroup = new ThreadGroup(

"JavaRuner ThreadGroup-" + groupNum++);
return threadGroup;

String getHost() {

return urlBase.getHost();

Interestingly enough, all the details of the digital signature are handled for us by
the classes in the jar package. All that we're left to do is obtain the array of
signers when we read in each JAR entry and then use that array of signers when
we construct the code source we use to define the class. Remember that each file
in a JAR file may be signed by a different group of identities and that some may
not be signed at all. This is why we must construct a new code source object for
each signed class that was in the JAR file.

The Signed JAR File and Security Policies

The last item in our examination of signed JAR files involves the security policy
and its interaction with the signed JAR file. In the case where the security policy is
completely determined by the access controller, the class loader has already done
all our work for us; the access controller depends on each class to have an appro-

Page 298 of 482

282 CHAPTER 12: DIGITAL SIGNATURES

priate code source, and permissions for that code will be completely defined in

the policy file.

In Java 1.1, the mechanism is different; we can't use the JAR classes to parse a
signed JAR file, and we can't use the defineClass ()method to set the signers for
a particular signed class. The first of these problems is harder to overcome; it
requires that you implement the equivalent of the java. util. jar package. We've
presented all the background information you'd need to do that, but it is a lot of
code to write (so we won't). The second of these problems means that your class
loader must define a class as follows:

if (isSecure(urlName)) {
cl = defineClass(name, buf, 0, buf.length);

if (ids I= null)
setSigners(cl, ids);

else cl = defineClass(name, buf, 0, buf.length);

The is Secure () method in this case must base its decision on information
obtained from reading the manifest of the JAR file and verifYing the signature
that is contained in the signature file. The array of ids will need to be created by
constructing instances of the Identity class to represent the signer ofthe class.

The reason for setting the signers in this way is to allow the security manager to
retrieve those signatures easily. When the security manager does not defer all
permissions to the access controller-and, hence, in all Java 1.1 programs-the
security manager will need to take advantage of signed class information to base
its decisions. This is typically done by programming the security manager to
retrieve the keys that were used to sign a class via the getSigners () method. This
allows the security manger to function with any standard signature-aware class
loader. The security manager could then do something like this:

public void checkAccess(Thread t) {

Class cl = currentLoadedClass();

if (cl == null)
return;

Identity ids[] = (Identity[]) cl.getSigners();

for (int i = 0; i < ids.length; i++) {

if (isTrustedid(ids[i]))

return;

throw new SecurityException("Can't modify thread states");

The key to this example is writing a good isTrustedid () method. A possible
implementation is to use the information stored in the keystore (for 1.2) or iden­
tity database (for 1.1) to grant a level of trust to an entity; such an implementation
requires that you have a non-default implementation of these databases. Alter-

Page 299 of 482

IMPLEMENTING A SIGNATURE CLASS 283

nately, your application could hardwire the public keys of certain entities (like the
public key of the HR group of XYZ corporation) and use that information as the
basis of its security decisions.

Implementing a Signature Class
Now that we've seen how to use the Signature class, we'll look at how to imple­
ment our own class. The techniques we'll see here should be very familiar from
our other examples of implementing an engine in the security provider architec­
ture. In particular, since in 1.2 the Signature class extends its own SPI, we can
implement a single class that extends the Signature class.

To construct our subclass, we must use the following constructor:

protected Signature(String algorithm)
This is the only constructor of the Signature class, so all subclasses of this
class must use this constructor. The string passed to the constructor is the
name that will be registered with the security provider.

Once we've constructed our engine object, we must implement the following
methods in it:

protected abstract void enginelnitVeri.fy(PublicKcy pk)
Initialize the object to prepare it to verify a digital signature. If the public key
does not support the correct algorithm or is otherwise corrupted, an
InvalidKeyException is thrown.

protected abstract void enginelnitSign(PrivateKcy pk)
Initialize the object to prepare it to create a digital signature. If the private
key does not support the correct algorithm or is otherwise corrupted, an
InvalidKeyExceptionisthrown.

protected abstract void engineUpdate(byte b)
protected abstract void engineUpdate(byte b[], int off, int len)

Add the given bytes to the data that is being accumulated for the signature.
These methods are called by the update () methods; they typically call the
update () method of a message digest held in the engine. If the engine has
not been correctly initialized, a SignatureException is thrown.

protected abstract byte[] engineSign()
Create the signature based on the accumulated data. If there is an error in
generating the signature, a SignatureException is thrown.

I,

protected abstract boolean engineVeri.fy(byte b{})
Return an indication of whether or not the given signature matches the
expected signature of the accumulated data. If there is an error in validating
the signature, a SignatureException is thrown.

Page 300 of 482

284 CHAPTER 12: DiGITAL SiGNATURES

protected abstract void engineSetParameter(String p, Object o) fA:
protected abstract void engineSetParameter(AlgorithmParameterSpec p) *

Set the given parameters, which may be algorithm-specific. If this parameter
does not apply to this algorithm, this method should throw an
InvalidParameterException

protected abstract Object engineGetParameter(String p) fA:
Retum the desired parameter, which is algorithm-specific. If the given param­
eter does not apply to this algorithm, this method should throw an
InvalidParameterException

In addition to those methods, there are a few protected instance variables that
keep track of the state of the signature object-whether it has been initialized,
whether it can be used to sign or to verify, and so on:

protected final static int UNINITIAUZED
protected final static int SIGN
protected final static int VERIFY
protected int state

These variables control the intemal state of signature object. The state is
initially UNITIALIZED; it is set to SIGN by the initSign() method and to
VERIFYby the initVerify() method.

These variables are not normally used by the subclasses of Signature, since the
logic to maintain them is already implemented in the Signature class itself.

Here is an implementation of a signature class. Note that the XYZSign class
depends on other aspects of the security architecture-in this example, the
message digest engine to create an SHA message digest, and the DSA key inter­
faces to handle the public and private keys. This is very typical of signature
algorithms-even to the point where the default name of the algorithm reflects
the underlying components. The actual encryption of the message digest will use
a simple XOR-based algorithm (so that we can, as usual, avoid the mathematics
involved with a secure example).

public class XYZSign extends Signature implements Cloneable {
private DSAPublicKey pub;
private DSAPrivateKey priv;
private MessageDigest md;

public XYZSign() throws NoSuchAlgorithmException
super ("XYZSign") ;
md = MessageDigest.getinstance("SHA");

public void engineinitVerify(PublicKey publicKey)
throws InvalidKeyException

Page 301 of 482

IMPLEMENTING A SIGNATURE CLASS

try {

pub = (DSAPublicKey) publicKey;
catch (ClassCastException cce) {

throw new InvalidKeyException ("Wrong public key type") ;

public void engineinitSign{PrivateKey privateKey)
throws InvalidKeyException

try {
priv = {DSAPrivateKey) privateKey;

catch (ClassCastException cce) {
throw new InvalidKeyException{"Wrong private key type");

public void engineUpdate{byte b) throws SignatureException {
try {

md. update (b) ;
catch {NullPointerException npe) {

throw new SignatureException ("No SHA digest found");

public void engineUpdate(byte b[], int offset, int length)
throws SignatureException {

try {
md.update(b, offset, length);

catch {NullPointerException npe)
throw new SignatureException{"No SHA digest found");

public byte[] engineSign() throws SignatureException {
byte b[] = null;
try {

b = md.digest();
catch {NullPointerException npe) {

throw new,SignatureException("No SHA digest found");

return crypt(b, priv);

public boolean engineVerify{byte[] sigBytes)

byte b[] = null;
try {

b = md.digest{);

throws SignatureException

catch (NullPointerException npe) {
throw new SignatureException {"No SHA digest found");

285

Page 302 of 482

286

byte sig[] = crypt(sigBytes, pub);
return MessageDigest.isEqual(sig, b);

CHAPTER 12: DIGITAL SIGNATURES

public void engineSetParameter(String param, Object value)
throw new InvalidParameterException ("No parameters") ;

public void engineSetParameter(AlgorithmParameterSpec aps)
throw new InvalidParameterException ("No parameters") ;

public Object engineGetParameter(String param) {
throw new InvalidParameterException ("No parameters") ;

public void engineReset() {
}

private byte[] crypt(byte s[], DSAKey key)
DSAParams p = key.getParams();
int rotvalue = p.getP() .intValue();
byte d[] = rot(s, (byte) rotValue);
return d;

private byte[] rot(byte in[], byte rotValue)
byte out[] new byte[in.length];
for (int i 0; i < in.length; i++) {

out[i] = (byte) (in[i] A rotValue);

return out;

Like all implementations of engines in the security architecture, this class must
have a constructor that takes no arguments, but it must call its superclass with its
name. The constructor also is responsible for creating the instance of the under­
lying message digest using whatever algorithm this class feels is important. It is
interesting to note that this requires the constructor to specify that it can throw a
NoSucbAlgori thmException (in case the SHA algorithm can't be found).

The keys for this test algorithm are required to be DSA public and private keys. In
general, the correspondence between an algorithm and the type of key it requires
is very strong, so this is a typical usage. Hence, the two engine initialization
methods cast the key to make sure that the key has the correct format. The engine
initialization methods are not required to keep track of the state of the signature

Page 303 of 482

SUMMARY 287

object-that is, whether the object has been initialized for signing or for verifying.
That logic, since it is common to all signature objects, is present in the generic
initialization methods of the Signature class itself.

The methods that update the engine can simply pass their data to the message
digest, since the message digest is responsible for providing the fingerprint of the
data that this object is going to sign or verify. Hence, the only interesting logic in
this class is that employed by the signing and verification methods. Each method
uses the message digest to create the digital fingerprint of the data. Then, to sign
the data, the digest must be encrypted or otherwise operated upon with the previ­
ously defined private key-this produces a unique digest that could only have
been produced by the given data and the given private key. Conversely, to verify
the data, the digest must be decrypted or otherwise operated upon with the previ­
ously defined public key; the resulting digest can then be compared to the
expected digest to test for verification.

Clearly, the security of this algorithm depends on a strong implementation of the
signing operations. Our example here does not meet that definition-we're
simply XORing every byte of the digest with a byte obtained from the parameters
used to generate the keys. This XOR-encryption provides a good example, since
it's both simple and symmetric; a real digital signature implementation is much
more complex.

These engine signing and verification methods are also responsible for setting the
internal state of the engine back to an initialization state, so that the same object
can be used to sign or verify multiple signatures. In this case, no other work needs
to be done for that; the message digest object itself is already reset once it creates
its digest, and there is no other internal state inside the algorithm that needs to
be reset. But if there were another state, it would need to be reset in those
methods.

Summary
We've now completed our look at the basic engines that comprise the default secu­
rity architecture on the Java platform. The digital signatures we've examined in
this chapter form the pinnacle of that architecture, since they are the mechanism
by which the parameters of the Java security sandbox c~n be extended: a digital
signature gives the user the assurance that particular Java classes were provided by
known entities. The user is then free to adopt a security policy for those classes
based on the user's assessment of the trustworthiness of the entity that provided
the classes.

The digital signature engine is interesting also because it requires the use of the
other engines we've looked at in earlier chapters-the message digest engine to

Page 304 of 482

288 CHAPTER 12: DIGITAL SIGNATURES

generate the fingerprint of the data that the digital signature will sign, and the
key pair engine (and its related classes) to provide the necessary keys to feed into
this engine. In sum, then, the engines provided with Java can really be thought of
as having a single purpose: creating and verifying digital signatures. A digital signa­
ture thus becomes the basis of the advanced Java security model.

Important as digital signatures are, however, they do not complete what many
people would expect from a security provider, in that the data communicated
with a digital signature is itself not encrypted. This data is therefore vulnerable to
being read by anyone. In the next chapter, we'll delve into an optional engine
that can be loaded into the Java virtual machine-the engine to provide encryp­
tion of arbitrary streams of data. Although that engine cannot be used universally,
it does provide (in those situations where it can be used) this last piece of security.

Page 305 of 482

In this chapter:
• Export Restrictions

• The Sun Security
Provider in the ICE

• Key Types in the ICE

• Secret Key Engines

• Encrypting Data

• Cipher Streams

• Symmetric Key
Agreement

• Sealed Objects

13

Encryption

In this chapter, we'll examine the Java Cryptography Extension, which provides
(among other things) an engine to perform encryption of arbitrary data. This

engine allows developers to send and receive encrypted streams of data over the
network or through a filesystem (subject to some export restrictions we'll also

discuss).

The encryption engine we'll discuss in this chapter does not come with the JDK.
Information in this chapter is based on the early access 1.2 release of the Java
Cryptography Extension (JCE); because it is an early access release, the informa­
tion is subject to change when JCE is officialy released (tentatively scheduled for

mid-1998). The JCE introduces four new engine classes to the Java security archi­
tecture-one to perform encryption, and three that handle keys for encryption­
and it comes with a new security provider to implement those classes. We'll
discuss all of these features in this chapter.

Export Restrictions
Use of the JCE is strictly limited by the export restrictions of the U.S. government.
Sun Microsystems is headquartered in the United States, so the export of the JCE
is controlled by the U.S. government. Because this implementation is capable of
strong encryption, the only countries where it may be used are the United States
and Canada.

There are ongoing legal challenges to this position as well as increasing negotia­
tions with the U.S. government to change this policy; at the same time, there are
increasing efforts to prohibit the use of this technology even within the United

States. The official policy regarding export of encryption software has changed a
few times over the past few years and is likely to change frequently in the next few

289

Page 306 of 482

290 CHAPTER 13: ENCRYPTION

years as various parties attempt to reach a coherent policy. Right now, the U.S.
government will grant an exemption for certain types of companies to use encryp­
tion in their global business; what will happen in the future is anyone's guess.

In addition, the U.S. is not the only government that is hostile to the use of
encryption, and encryption software can face import restrictions as well as export
restrictions. In France, for example, it is illegal to import the JCE without a
license. Other countries have regulations for cryptography, but in most cases they
are less onerous than those of the United States. However, it is always wise to
check your local policies to be sure (see Appendix C for resources to find more
information about these limitations).

According to the letter of the restrictions, technical information regarding the
JCE also cannot be exported except in the form of published books such as this
one (because the book is protected by the first amendment to the U.S. Constitu­
tion). This has not prevented several companies and groups outside the United
States from reimplementing the JCE encryption APis, with the result that there
are now several third-party security providers that include their own implementa­
tions of the JCE and are available outside the United States (the list of third-party
security providers in Appendix C includes some of these implementations).

Many of the popular algorithms that are used by the encryption engine (and
some of the other cryptographic engines that we've looked at) are patented algo­
rithms, which also restricts their use. RSA Data Security, Inc., holds a patent in the
U.S. on several algorithms involving RSA encryption and digital signatures; Ascom
System AG in Switzerland holds both U.S. and European patents on the IDEA
method of performing encryption. If you live in a country where these patents
apply, you cannot use these underlying algorithms without paying a license to the
patent holder. In particular, this means that many of the third-party security
providers and third-party implementations of the JCE cannot be used within the
United States because of patents held by RSA (although some of them have
reached a licensing agreement with RSA Data Security, Inc.-again, it is best to
check with the provider to see what restrictions might apply).

For at least the time being, then, Java programmers are faced with the following
restrictions on use of the JCE:

• The JCE must be procured separately from the JDK. The official JCE from
Sun may only be procured by citizens of the United States and Canada, but
third-party implementations of the JCE may be obtainable elsewhere.

• Electronic documentation of the JCE is subject to the same restriction. In
practice, the restriction about electronic documentation of encryption tech­
niques-which applies to many things other than the JCE-is rarely enforced
and widely violated.

Page 307 of 482

EXPORT RESTRICTIONS 291

• Code that uses the APis we are going to discuss in this chapter and that was
developed inside the United States or Canada inay not be distributed electron­
ically outside the United States and Canada. Hence, if you are a resident of
the United States or Canada, you cannot use these APis to develop applets
that you put on the Internet, or to develop applications i:hat you send outside
the United States and Canada.

Since no browser currently implements the JCE, the impact of this restriction
on browsers is somewhat muted. However, some third-party implementations
of the JCE will be compatible with popular browsers; these third-party imple­
mentations could be downloaded ana installed manually by the user, who
could then use cryptography only in applets that were developed outside the
United States and Canada or that are available only on private networks
wholly within the United States and Canada.

This restriction also means that, unlike the other examples in this book, the
examples in this chapter may not be downloaded from the O'Reilly ftp site.

• Questions about these APis cannot be answered via email (although this is·
another rule that applies in general to encryption algorithms and is-again,
at least presently-rarely enforced in the general case).

These APis, then, will typically be used:

• To develop applications for use on a private intranet that is located wholly
within the United States and Canada. xyz Corporation may want to use this
technology for their payroll application; without this technology, although
payroll data may only be retrieved upon a valid signed request, that data is
still shipped over the network unencrypted, where an inside corporate spy
could snoop the wire and obtain the data.

•

With the APis we'll discuss in this chapter, we could encrypt the payroll data
as it is passed over the network. This completes the security protection that
such an application really needs. We are assured that the payroll data is only
being sent to an authorized user, and we are assured that no one can decode
the data while it is in transit.

By developers outside the United States, who are effectively in a much better
position to take advantage of them than are their U.S. counterparts. These
developers, however, will be dependent upon third-party implementations of
theJCE.

You'll notice that this is the only part of this book where we've discussed export
restrictions. Somewhat surprisingly, that is because this is the only instance in
which the export restrictions of the U.S. government apply. Encryption of arbi­
trary data is considered a weapons-grade munition, but message digests and
digital signatures are not. Hence, the APis that allow us to calculate a message

Page 308 of 482

292 CHAPTER 13: ENCRYPTION

Encryption and Weaponry

The prohibitions we've been discussing here occur because strong encryp­
tion is considered by the U.S. government to be a munitions-grade weapon.
While this position is often questioned, it comes from a long tradition in
computer science.

During WWII, the Allies waged a successful and pivotal campaign in the
Atlantic against the Axis navy. The success of this campaign was _.greatly due
to the work of Alan Turing, who with his colleagues broke the German
encryption algorithm known as Enigma. Turing was also one of the
founding fathers of modern computer science, much of which was based on
the work he developed in service to his country during the war.

Ironically, the reward that Turing reaped for his efforts was that some years
after the war, he was arrested and forced to undergo harmful chemical treat­
ments because he was gay. There's an odd parallel here: many of the harsh
restrictions that are presently placed on encryption technology make no
more sense in a world with a global Internet than did England's persecution
of Alan Turing in the 1950s. But the links between encryption and military
security run deep and are not likely to be broken anytime soon.

digest and a digital signature are freely exportable, but the APis that allow us to
encrypt and decrypt data are not.

Note also that the restriction here is not only on the algorithms that perform
encryption, but on the APis themselves. Like other engines we've examined, the
encryption engine allows us to plug in any arbitrary algorithm to perform the
encryption. This includes a weak encryption algorithm (that is, one that can be
broken) that by itself would be exportable. But since the API allows a strong
encryption algorithm to be used as well, the export restrictions apply to the API
itself, even if the strong encryption implementation is not provided. Hence, the
JCE may not be exported in its present form.

The Sun Security Provider in the JCE
The JCE follows the same security provider infrastructure as does the rest of the
Java security architecture; the JCE comes with an additional security provider that
includes implementations of the engines of the JCE. In normal use, this security
provider supplements the ?efault security provider of the JDK; the security
provider within the JCE contains implementations only of the engines of the JCE.

Page 309 of 482

KEY 'TYPES IN THEJCE 293

Hence, to use the Sun JCE security provider, you need to add the SunJCE class
(com. sun. crypto. provider. SunJCE) to your java. security file like this:

security.provider.2=com.sun.crypto.provider.SunJCE

Alternately, you may use the addProvider () or insertProviderAt () methods of
the Security class. You may, of course, insert this provider at any position in the
list of providers.

There are four new engine classes in the JCE: the Cipher, KeyAgreement, KeyGen­
erator, and SecretKeyFactory engines. Table 13-1 lists the engines and
algorithms that are provided by the SunJCE security provider. In addition to imple­
mentations of the new engines, the SunJCE security provider gives us a key factory
and a key pair generator for Diffie-Hellman (DH) keys. As always, there may be
additional algorithm names in third-party security providers. Also note that the
algorithm name for the cipher engine may be more complex than we've shown
here.

Table 13-1. Engine Classes ofthe]CE

Engine Name

Cipher

Cipher

Cipher

KeyAgreement

KeyFactory

KeyGenerator

KeyGenerator

KeyPairGenerator

SecretKeyFactory

SecretKeyFactory

SecretKeyFactory

Key Types in the ICE

Algorithm

DES

DESede

PBEWithMDSAndDES

DH

DH

DES

DESede

DH

DES

DESede

PBE

The JCE introduces many new types of keys. Some of these are new types of public
and private keys that extend our previous exploration of keys, and some of these
are a new type of key: a secret key.

The new public and private key types are defined in the javax.crypto.inter­
faces package of the JCE as new interfaces:

Page 310 of 482

294 CHAPTER}3: ENCRWTION

public inteiface DHKey
public inteiface DHPrivateKey extends DHKey, PrivateKey
public inteiface DHPublicKey extends DHKey, PublicKey

This set of interfaces defines keys suitable for use in Diffie-Hellman algo­
rithms. In the SunJCE provider, they are used for the key agreement engine.

public inteiface RSAPrivateKey extends PrivateKey
public inteiface RSAPrivateKeyCrt extends PrivateKey
public inteiface RSAPublicKey extends PublicKey

This set of interfaces defines keys suitable for use in RSA algorithms.
However, in the SunJCE provider, there are no classes that model these keys,
nor any RSA-based implementations. The interfaces are defined here more
for the convenience of third-party implementors of the JCE than for use by
the SunJCE provider.*

Like their DSA-based counterparts (the DSAKey, DSAPublicKey, and DSAPri­

vateKey classes), these interfaces all have specific methods to retrieve the values
of certain parameters of the key. Since they are all keys, they support a byte­
encoded format as well. For our purposes, however, we'll treat their data as
opaque objects. The Diffie-Hellman keys are used in the key agreement protocol
we discuss later in this chapter.

Secret Keys

The new type of key in the JCE is a secret key. A secret key is a key that is shared
between two parties in a cryptographic operation.

Until now, we've used public key/private key pairs for all our operations. For
instance, the digital signature algorithms we explored in Chapter 12 all depended
on public key cryptography to alter the message digest of the data they signed.
These algorithms chose to use public key encryption because it simplified the way
in which keys were exchanged, as well as reducing the number of keys that
needed to be exchanged between parties. It is possible to use public and private
key pairs to perform encryption of data using the APis in this chapter; because
two different keys are involved, this type of encryption is called asymmetric
encryption.

Cryptographic algorithms can also implement symmetric operations, in which
case only a single key is necessary. In symmetric encryption, the same key that was
originally used to encrypt the data can also be used to decrypt the data. Hence,
for these encryption algorithms, only a single key is necessary. This single key is

* However, third-party implementors of other parts of the security package-e.g., digital signatures­
may also choose to provide RSA-based algorithms and will also rieed RSA key types independent of the
Java Cryptography Extension.

J

Page 311 of 482

KEY TYPES IN THEJCE 295

also called a secret key, since the key itself must be kept secret by the parties who
are exchanging the encrypted data. Anyone who has access to the key and to the
encrypted data also has access to the data.

The key used by the encryption engine-whether it is used by a symmetric or an
.asymmetric encryption algorithm-is still an instance of the class java. secu­
rity. Key. Just as there were interfaces that identified types of keys as public
(PublicKey) or private (PrivateKey), there is a new SecretKey interface
(javax. crypto. SecretKey) that is used by symmetric keys:

public interface SecretKey extends Key
Identify a class as being a symmetric key. Like other extensions of the Key
interface, this interface has no methods and is used strictly for type
identification.

As usual, there are no classes in the javax package that implement this interface,
though some are provided in the sun package. A simple implementation of ~his
interface must include the usual methods that are in the Key interface:

r
public class XORKey implements SecretKey {

byte value;

public XORKey(byte b) {

value = b;

public String getAlgorithm()

return "XOR";

public String getFormat() {

return "XOR Special Format";

public byte[] getEncoded() {

byte b[] =new byte[l];

b[O] = value;

return b;

Unlike public and private keys, secret keys are not associated with identities and
are not integrated into a key management system. Secret keys must therefore be
managed with different techniques, which we'll examine at the end of this
chapter.

Page 312 of 482

299 CHAPTER 13: ENCRYPTION

Secret Key Engines
In the JCE, there are new ways to generate keys. Since the existing key engines
only operate on public and private keys, the JCE introduces two new engines that
can operate on secret keys. Note also in Table 13-1 that the SunJCE security
provider implements a new algorithm to generate key pairs for Diffie-Hellman key
agreement; that algorithm uses the standard KeyPairGenerator class we explored
in Chapter 10.

The KeyGenerator Class

The first engine we'll look at is the KeyGenerator class (javax.crypto.Key­
Generator); this class is used to generate secret keys. This class is very similar to
the KeyPairGenerator class except that it generates instances of secret keys
instead of pairs of public and private keys:

public class KeyGenerator
Generate instances of secret keys for use by a symmetric encryption algorithm.

The KeyGenerator class is an engine within the JCE. As such, it has all the hall­
marks of a cryptographic engine. It has a complementary SPI and a set of public
methods that are used to operate upon it, and its implementation must be regis­
tered with the security provider.

Using the KeyGenerator class

Like other engine classes, the KeyGenerator class does not have any public
constructors. An instance of a KeyGenerator is obtained by calling one of these
methods:

public static final Key Generator getlnstance(String algorithm)
public static final Key Generator getlnstance(String algorithm, String provider)

Return an object capable of generating secret keys that correspond to the
given algorithm. These methods use the standard rules of searching the list of
security providers in order to find an object that implements the desired algo­
rithm. If the generator for the appropriate algorithm ·cannot be found, a
NoSuchAlgoritbroException -is thrown; if the named provider cannot be
found, a NoSuchProviderException is thrown.

Once an object has been obtained with these methods, the generator must be
initialized by calling one of these methods:

Page 313 of 482

SECRET KEY ENGINES 297

public final void init(SecureRandom sr)
public final void init(AlgprithmParameterSpec aps)
public final void init(AlgorithmParameterSpec aps, SecureRandom sr)

Initialize the key generator. Like a key pair generator, the key generator
needs a source of random numbers to generate its keys (in the second
method, a default instance of the SecureRandom class will be used). In addi­
tion, some key generators can accept an algorithm parameter specification to
initialize their keys (just as the key pair generator); however, for the DES-style
keys generated by the SunJCE security provider, no algorithm parameter speci­
fication may be used.

A key generator does not have to be initialized explicitly, in which case it is
initialized internally with a default instance of the SecureRandom class.
However, it is up to the implementor of the engine class to make sure that
this happens correctly; it is better to be sure your code will work by always
initializing your key generator.

A secret key can be generated by calling this method:

public final SecretKey generateKey()
Generate a secret key. A generator can produce multiple keys by repeatedly
calling this method.

There are two additional methods in this class, both of which are informational:

public final String getAlgorithm()
Return the string representing the name of the algorithm this generator
supports.

public final Provider getProvider()
Return the provider that was used to obtain this key generator.

In the next section, we'll show the very si~ple code needed to use this class to
generate a secret key.

Implementing a KeyGenerator class

Implementing a key generator requires implementing its corresponding SPI. Like
all engines that are not available in Java 1.1, the SPI for the KeyGenerator class is
unrelated in the class hierarchy to the KeyGenerator class itself, and the class that
we register with the security provider must extend the KeyGeneratorSpi class
(j avax. crypto. KeyGeneratorSpi):

public abstract class KeyGeneratorSpi
This class forms the service provider interface class for the KeyGenerator

class.

Page 314 of 482

298 CHAPTER 13: ENCRYPTION

There are three protected methods of this class that we must implement if we
want to provide an SPI for a key generator:

protected abstract SecretKey engineGenerateKey()
Generate the secret key. This method should use the installed random
number generator and (if applicable) the installed algorithm parameter speci­
fication to generate the secret key. If the engine has not been initialized, it is
expected that this method will initialize the engine with a default instance of
the SecureRandom class.

protected abstract void ~ginelnit(SecureRandom sr)
protected abstract void enginelnit(AlgorithrnParameterSpec aps, SecureRandom sr)

Initialize the key generation engine with the given random number generator
and, if applicable, algorithm parameter specification. If the class does not
support initialization via an algorithm parameter specification, or if the speci­
fication is invalid, an InvalidAlgorithmParameterException should be
thrown.

Hence, a complete implementation might look like this:

public class XORKeyGenerator extends KeyGeneratorSpi
SecureRandom sr;

public void engineinit(SecureRandom sr) {
this.sr = sr;

public void engineinit(AlgorithmParameterSpec ap, SecureRandom sr)
throws InvalidAlgorithmParameterException {

throw new InvalidAlgorithmParameterException(
"No parameters supported in this class");

public SecretKey engineGenerateKey()
if (sr == null)

sr =new SecureRandom();

byte b[] =new byte[!];
sr.nextBytes{b);
return new XORKey(b[O]);

Keys, of course, are usually longer than a single byte. However, unlike a public
key/private key pair, there is not necessarily a mathematical requirement for
generating a symmetric key. Such a requirement depends on the encryption algo­
rithm the key will be used for, and some symmetric encryption algorithms require
a key that is just an arbitrary sequence of bytes.

Page 315 of 482

SECRET KEY ENGINES 299

The SecretKeyFactory Class

The second engine that we'll look at is the SecretKeyFactory class
(javax.crypto.SecretKeyFactory). Like the KeyFactory class, this class can
convert from algorithmic or encoded key specifications to actual key objects and
can translate key objects from one implementation to another. Unlike the
KeyFactory class, which can only operate on public and private keys, the Secret­
KeyFactory class can operate only on secret keys:

public class SecretKeyFactory
Provide an engine that can translate between secret key specifications and
secret key objects (and vice versa). This allows for secret keys to be imported
and exported in a neutral format.

The interface to the SecretKeyFactory class is exactly the same at a conceptual
level as the interface to the KeyFactory. At a programming level, this means that
while most of the methods between the two classes have the same name and
perform the same operation, they may require slightly different parameters: a
secret key, rather than a public or private key. In addition, instead of methods to
generate public or private keys, the SecretKeyFactory class contains this method:

public final SecretKey generateSecret(KeySpec ks)
Generate the secret key according to the given specification. If the specifica­
tion is invalid, an InvalidKeySpecE:xception is thrown.

Because of its similarity to the KeyFactory class, we won't show an example of
how to use it; you may use examples from Chapter 10 and simply substitute this
new method.

Secret key specifications

The specifications used to import and export secret keys depend on the under­
lying algorithm that generated the secret key. As a result, the JCE provides twelve
new key specifications that deal with the new keys the JCE provides:

public class DESKeySpec implements KeySpec
public class DESParameterSpec implements AlgorithmParameterSpec

These classes provide the encoded and algorithmic parameter specifications
for DES keys.

public class DESedeKeySpec implements KeySpec .
This class provides the encoded specification for DESede keys. Note that
there is no corresponding parameter specification for this algorithm.

public class DHGenParameterSpec implements AlgorithmParameterSpec
public class DHParameterSpec implements AlgorithmParameterSpec

These classes implement algorithm specifications for Diffie-Hellman keys.

Page 316 of 482

300

public class DHPrivateKcySpec implements KcySpec
public class DHPublicKcySpec implements KcySpec

CHAPTER 13: ENCRYPTION

These classes implement the encoded key specifications for Diffie-Hellman
keys.

public class PBEKcySpec implements KcySpec
public class PBEParameterSpec implements AlgorithmParameterSpec

These classes implement the encoded and algorithm key specifications for the
password-based cipher algorithm (the PKCS#5 standard).

public class RSAPrivateKcySpec implements KcySpec
public class RSAPrivateKcyCrtSpec extends RSAPrivateKcySpec implements KcySpec
public class RSAPublicKcySpec implements KcySpec

These classes implement the encoded key specifications for RSA keys.

We typically treat the values contained in these specifications as opaque values.
Table 13-2 lists the methods for each class needed to import and export each of
these key specifications. As usual for key specifications, exporting a specificatioh
involves transmitting the individual data elements of the class, while importing a
specification involves constructing the specification with the correct values.

Table 13-2. Importing and Exporting Values from the Key Specification Classes

Key Specifications

DESKeySpec

DESParameterSpec

DESedeKeySpec

DHGenParameter­
Spec

DHParameterSpec

Methods to Export Data

byte [J getKey (}

byte [] get IV (}

byte [] getKey (}

int getPrimeSize(}

int getExponentSize(}

Biginteger getP(}

Biginteger getG(}
int getL (}

Methods to Import Data

DESKeySpec (byte [] buf}
DESKeySpec(

byte [J buf, int
offset}

DESParameterSpec(

byte[] buf}

DESParameterSpec(

byte [J buf, int

offset}

DESedeKeySpec(byte[] buf}
DESedeKeySpec(

byte [J buf, int

offset}

DHGenParameterSpec(

int primeSize,

int exponentSize}

DHParameterSpec(

Biginteger p,

Biginteger g)

DHParameterKeySpec(
Biginteger p,

Biginteger g,

int 1}

Page 317 of 482

SECRET KEY ENGINES 301

Table 13-2. Importing and Exporting Values from the Key Specification Classes (continued)

Key Specifications

DHPrivateKeySpec

DHPublicKeySpec

PBEKeySpec

PBEParameterSpec

RSAPrivateKey­

Spec

RSAPrivateKey­

CrtSpec

RSAPublicKeySpec

Methods to Export Data

Biginteger getX()

Biginteger getP()
Biginteger getG()

int getL()

Biginteger getY()

Biginteger getP()

Biginteger getG()

int getL()

String getPassword()

int getiterationCo~nt()
byte [] get Salt ()

Biginteger getModulus()
Biginteger getPrivate­

Exponent ()

Biginteger getCrtCoef­
ficient ()

Biginteger getPrimeEx­

ponentP ()

Biginteger getPrimeEx­

ponentQ ()

Biginteger getPrimeP()

Biginteger getPrimeQ()

Biginteger getPublicEx­
ponent ()

Biginteger getModulus()

Biginteger getPublicEx­
ponent ()

The secret key factory SPI

Methods to Import Data

DHPrivateKeySpec(
Biginteger x,

Biginteger p,

Biginteger g)

DHPrivateKeySpec(
Biginteger x,

Biginteger p,

Biginteger g, int 1)

DHPublicKeySpec(

Biginteger x,

Biginteger p, ,
Biginteger g)

DHPublicKeySpec(

Biginteger x,

Biginteger p,

Biginteger g, int 1)

PBEKeySpec(String pw)

PBEParameterSpec(

byte[] salt, int count)

RSAPrivateKeySpec(

Biginteger mod,

Biginteger exp)

RSAPrivateKeyCrtSpec(

Biginteger mod,

Biginteger publicExp,

Biginteger privateExp,
Biginteger primeP,

Biginteger primeQ,

Biginteger primeExpP,

Biginteger primeExpQ,

Biginteger crtCoeff)

RSAPublicKeySpec(

Biginteger mod,

Biginteger exp)

Like all engines, the secret key engine is implemented via an SPI; if you want to
implement your own secret key factory you must extend the SecretKeyFacto­
rySpi class (j avax. crypto. SecretKeyFactorySpi):

Page 318 of 482

302 CHAPTER 13: ENCRYPTION

public abstract class SecretKeyFactorySpi
This class is the SPI for the SecretKeyFactory class. As this class is only avail­
able as an extension to 1.2, the SPI is unrelated to the engine class; providers
must extend this class directly to provide a secret key factory.

Implementation of this class follows the implementation of a key factory SPI,
except that the methods of this class must operate upon secret keys rather than
public or private keys. If you want to implement a secret key factory SPI, you can
use the sample key factory SPI as a model.

Encrypting Data
In this section, we'l}look at the engine that performs encryption within the JCE.
This engine is called the Cipher class (javax.crypto.Cipher); it provides an
interface to encrypt and decrypt data either in arrays within the program or as
that data is read or written through java's stream interfaces:

public class Cipher implements Cloneable
Perform encryption and decryption of arbitrary data, using (potentially) a
wide array of encryption algorithms.

Like all security engines, the cipher engine implements named algorithms.
However, the naming convention for the cipher engine is different, in that cipher
algorithms are compound names that can include the name of the algorithm
along with the name of a padding scheme and the name of a mode. Padding
schemes and modes are specified by names-just like algorithms. In theory, just as
you may pick a new name for an algorithm, you may specify new names for a
padding scheme or a mode, although the SunJCE security provider specifies
several standard ones.

Modes and padding schemes are present in the Cipher class because that class
implements what is known as a block cipher; that is, it expects to operate on data
one block (e.g., 8 bytes) at a time. Padding schemes are required in order to
ensure that the length of the data is an integral number of blocks.

Modes are provided to further alter the encrypted data in an attempt to make it
harder to break the encryption. For example, if the data to be encrypted contains
a number of similar patterns-repeated names, or header/footer information, for
example-any patterns in the resulting data may aid in breaking the encryption.
Different modes of encrypting data help prevent these sorts of attacks. Depending
upon the mode used by a cipher, it may need to be initialized in a special manner
when the cipher is used for decryption. Some modes require initialization via an
initialization vector.

Page 319 of 482

ENCRYPTING DATA 303

Modes also enable a block cipher to behave as a stream cipher; that is, instead of
requiring a large, 8-byte chunk of data to operate upon, a mode may allow data to
be processed in smaller quantities. So modes are very important in stream-based
operations, where data may need to be transmitted one or two characters at a
time.

The modes specified by the SunJCE security provider are:

ECB

This is the electronic cookbook mode. ECB is the simplest of all modes; it
takes a simple block of data (8 bytes in the SunJCE implementation, which is
standard) and encrypts the entire block at once. No attempt is made to hide

·patterns in the data, and the blocks may be rearranged without affecting
decryption (though the resulting plaintext will be out of order). Because of
these limitations, ECB is recommended only for binary data; text or other
data with patterns in it is not well-suited for this mode.

ECB mode can only operate on full blocks of data, so it is generally used with
a padding scheme.

ECB mode does not require an initialization vector.

CBC

This is the cipher block chaining mode. In this mode, input from one block
of data is used to modifY the encryption of the next block of data; this helps
to hide patterns (although data that contains identical initial text-such as
mail messages-will still show an initial pattern). As a result, this mode is suit­
able for text data.

CBC mode can only operate on full blocks of data (8-byte blocks in the
SunJCE implementation), so it is generally used with a padding scheme.

CBC mode requires an initialization vector for decryption.

CFB
This is the cipher-feedback mode. This mode is very similar to CBC, but its
internal implementation is slightly different. CBC requires a full block (8
bytes) of data to begin its encryption, while CFB can begin encryption with a
smaller amount of data. So this mode is suitable for encrypting text, especially
when that text may need to be processed a character at a time. By default,
CFB mode operates on 8-byte (64-bit) blocks, but you may append a number
of bits after CFB (e.g., CFB8) to specifY a different number of bits on which
the mode should operate. This number must be a multiple of 8.

CFB requires that the data be padded so that it fills a complete block. Since
that size may vary, the padding scheme that is used with it must vary as well.
For CFB8, no padding is required, since data is always fed in an integral
number of bytes.

Page 320 of 482

304 CHAPTER 13: ENCRYPTION

CFB mode requires an initialization vector for decryption.

OFB
This is the output-feedback mode. This mode is also suitable for text; it is
used most often when there is a possibility that bits of the encrypted data may
be altered in transit (e.g., over a noisy modem). While a 1-bit error would
cause an entire block of data to be lost in the other modes, it only causes a
loss of 1 bit in this mode. By default, OFB mode operates on 8-byte (64-bit)
blocks, but you may append a number of bits after OFB (e.g., OFB8) to
specify a different number of bits on which the mode should operate. This
number must be a multiple of 8.

OFB requires that the data be padded so that it fills a complete block. Since
that size may vary, the padding scheme that is used with it must vary as well.
For OFB8, no padding is required, since data is always fed in an integral
number of bytes.

OFB mode requires an initialization vector for decryption.

PCBC

This is the propagating cipher block chaining mode. This mode is popular in
a particular system known as Kerberos; if you need to speak to a Kerberos
version 4 system, this is the mode to use. However, this mode has some known
methods of attack, and Kerberos version 5 has switched to using CBC mode.
Hence, PCBC mode is no longer recommended.

PCBC mode requires that the input be padded to a multiple of 8 bytes.

PCBC mode requires an initialization vector for decryption.

The padding schemes specified by the SunJCE security provider are:

PKCS5Padding

This padding scheme ensures that the input data is padded to a multiple of 8
bytes.

NoPadding

When this scheme is specified, no padding of input is done. In this case, the
number of input bytes presented to the encryption cipher must be a multiple
of the block size of the cipher; otherwise, when the cipher attempts to encrypt
or decrypt the data, it generates an error.

Remember that these uses of mode and padding are specific to the SunJCE secu­
rity provider. The modes and padding schemes are based upon accepted
standards and are thus likely to be implemented in this manner by third-party
security providers as well, but you should check your third-party provider docu­
mentation to be sure.

Page 321 of 482

ENCRYPTING DATA 305

The mode and padding scheme specified for decryption· must match the mode
and padding scheme specified for encryption, or the decryption will fail.

Using the Cipher Class

In order to obtain an instance of the Cipher class, we call one of these methods:

public static Cipher getlnstance(String algorithmName)
public static Cipher getlnstance(String algorithmName, String provider)

Obtain a cipher engine that can perform encryption and decryption by imple­
menting the named algorithm. The engine is provided by the given security
provider, or the list of installed security providers is searched for an appro­
priate engine.

If an implementation of the given algorithm cannot be found, a NoSuchAlgo­
rithmException is thrown. If the named provider cannot be found, a
NoSuchProviderExceptionisthrown.

The algorithm name passed to the getinstance () method may either be a
simple algorithm name (e.g., DES), or it may be an algorithm name that speci­
fies a mode and padding in this format: algorithm/mode/padding (e.g.,
DES/ECB/PKCS5Padding). If the mode and padding are not specified, they
default to an implementation-specific value; in the SunJCE security provider,
the mode defaults to ECB and padding defaults to PKCS5.

Once you've obtained a cipher object, you must initialize it. An object can be
initialized for encryption or decryption, but in either case, you must provide a
key. If the algorithm is a symmetric cipher, you should provide a secret key; other­
wise, you should provide a public key to encrypt data and a private key to decrypt
data (in fact, the key must match the algorithm type: a DES cipher must use a
DES key, and so on). Initialization is achieved with one of these methods:

public final void init(int op, Key k)
public final void init(int op, Key k, AlgorithmParameterSpec aps)
public final void init(int op, Key k, AlgorithmParameterSpec aps, SecureRandom sr)
public final void init(int op, Key k, SecureRandom sr)

Initialize the cipher to encrypt or decrypt data. If op is Cipher. ENCRYPT_
MODE, the cipher is initialized to encrypt data; if op is Cipher. DECRYPT_MODE,
the cipher is initialized to decrypt data. (In practice, other values will initialize
the cipher for encryption rather than generating an exception; this is argu­
ably a bug in the early-access implementation oftheJCE.)

These calls reset the engine to an initial state, discarding any previous data
that may have been fed to the engine. Hence, a single cipher object can be
used to encrypt data and then later to decrypt data.

Page 322 of 482

306 CHAPTER 13: ENCRYPTION

Many algorithm modes we discussed earlier require an initialization vector to
be specified when the cipher is initialized for decrypting. In these cases, the
initialization vector must be passed to the ini t () method within the algo­
rithm parameter specification; the DESParameterSpec class is typically used to
do this for DES encryption.

In the SunJCE security provider, specifying an initialization vector for a mode
that does not support it will eventually lead to a NullPointerException.
Failure to specify an initialization vector for a mode that requires one will
generate incorrect decrypted data.

Mter an engine has been initialized, it must be fed data. There are two sets of
methods to accomplish this. The first set can be used any number of times:

public final byte[] upd(Lte(byte[J input)
public final byte[] update(byte[] input, int offset, int length)
public final int update(byte[] input, int offset, int length, byte[] output)
public final int update(byte[] input, int offset, int length, byte[] output, int outOffset)

Encrypt or decrypt the data in the input array (starting at the given offset for
the given length, if applicable). The resulting data is either placed in the
given output array (in which case the size of the output data, is returned) or
returned in a new array. If the cipher has not been initialized, an Illegal­
StateException is thrown.

If the length of the data passed to this method is not an integral number of
blocks, any extra data is buffered internally within the cipher engine; the next
call to an update () or doFinal () method processes that buffered data as well
as any new data that is just being provided.

If the given output buffer is too small to hold the data, a ShortBufferExcep­
tion is thrown. The required size of the output buffer can be obtained from
the getOutputSize () method. A ShortBufferException does not clear the
state of the cipher: any buffered data is still held, and the call can be repeated
(with a correctly sized buffer) with no ill effects.

This second set of methods should only be called once:

public final byte[] doFinal()
public final int doFinal(byte[] output, int offset)
public final byte[] doFinal(byte[] input)
public final byte[] doFinal(byte[] input, int offset, int length)
public final int doFinal(byte[J input, int offset, int length, byte[] output)
public final int doFinal(byte[] input, int offset, int length, byte[] output, int outOffset)

Encrypt or decrypt the data in the input array as well as any data that has
been previously buffered in the cipher engine. This method behaves exactly
the same as the update () method, except that this method signals that all

Page 323 of 482

ENCRYPTING DATA 307

data has been fed to the engine. If the engine is performing padding, the
padding scheme will be used to process the pad bytes (i.e., add padding bytes
for encryption and remove padding bytes for decryption). If the cipher
engine is not performing padding and the total of all processed data is not a
multiple of the mode's block size, an IllegalBlockSizeException is thrown.

These methods throw an IllegalStateException or a ShortBufferExcep­
tion in the same circumstances as the update () methods.

In order to initialize some ciphers for decryption, you need to specify an initializa­
tion vector; this initialization vector must be the same vector that was used when
the cipher was initialized for encryption. For encryption, you may specify the
initialization vector, or you may use a system-provided initialization vector. In
order to retrieve this vector for later use (e.g., to send it to someone who will even­
tually need to decrypt the data), you may use this method:

public final byte[] getN()
Return the initialization vector that was used to initialize this cipher. If a
system-provided initialization vector is used, that vector is not available until
after the first call to an update () or doFinal () method.

In order to preallocate an output buffer for use in the update () and doFinal ()
methods, you must know its size, which is returned from this method:

public final int getOutputSize(int inputLength)
Return the output size for the next call to the update () or doFinal ()
methods, assuming that one of those methods is called with the specified
amount of data. Note that the size returned from this call includes any
possible padding that the doFinal () method might add. A call to the
update () method may actually generate less data than this method would
indicate, because it will not create any padding.

Finally, there are two miscellaneous methods of this class:

public final Provider getProvider()
Return the provider class that defined this engine.

public final int getBlockSize()
Get the block size of the mode of the algorithm that this cipher implements.

Let's put this all together into~ simple example:

public class CipherTest {
public static void main(String args[])

try {

KeyGenerator kg= KeyGenerator.getinstance("DES");

Cipher c = Cipher.getlnstance("DES/CBC/PKCS5Padding");

Key key= kg.generateKey();

Page 324 of 482

308 CHAPTER 13: ENCRYPTION

c.init(Cipher.ENCRYPT_MODE, key);
byte input[]= "Stand and unfold yourself".getBytes();
byte encrypted[]= c.doFinal(input);
byte iv[] = c.getiV();

DESParameterSpec dps =new DESParameterSpec(iv);
c. ini t (Cipher. DECRYPT_MODE, key, dps) ;
byte output[] = c.doFinal(encrypted);
System. out .println ("The string was ");
System.out.println(new String(output));

catch (Exception e) {
e.printStackTrace();

We've reused the single engine object to perform both the encryption and the
decryption. Since DES is a symmetric encryption algorithm, we generated a single
key that is used for both operations. Within the try block, the second block of
code performs the encryption:

1. We initialize the cipher engine for encrypting.

2. We pass the bytes we want to encrypt to the doFinal () method. Of course, we
might have had any number of calls to the update () method preceding this
call, with data in any arbitrary amounts. Since we've specified a padding
scheme, we don't have to worry about the size of the data we pass to the
doFinal () method.

3. Finally, we save the initialization vector the system provided to perform the
encryption. Note that this step would not be needed for ECB mode.

Performing the decryption is similar:

1. First, we initialize the cipher engine for decrypting. In this case, however, we
must provide an initialization vector to initialize the engine in order to get
the correct results (again, this would be unnecessary for ECB mode).

2. Next, we pass the encrypted data to the doFinal () method. Again, we might
have had multiple calls to the update () method first.

In typical usage, of course, encryption is done in one program and decryption is
done in another program. In the example above, this entails that the initialization
vector and the encrypted data must be transmitted to a receiver; this may be done
via a socket or a file or any other convenient means. There is no security risk in
transmitting the initialization vector, as it has the same properties as the rest of
the encrypted data.

Page 325 of 482

ENCRYPTING DATA 309

An alternate choice to using an initialization vector, by the way, is simply to
generate a dummy block of data at the beginning of the data to be encrypted, and
to throw away the first block of data that results from decryption. Using that tech­
nique, the cipher that is used for decryption needs to be initialized only with the
secret key; we'll use this technique a little later.

In this example, we used the PKCS5 padding scheme to provide the necessary
padding. This is by far the simplest way. If you want to do your own padding-if,
for example, you're using a CFB32 mode for some reason-you need to do some­
thing like this:

Cipher c = Cipher.getinstance("DES/CFB32/NoPadding");
c.init(Cipher.ENCRYPT_MODE, desKey);

int blockSize = c.getBlockSize();
byte b[] ="This string has an odd length".getBytes();

byte padded[] = new byte[b.length + blockSize -(b.length % blockSize)];

System.arraycopy(b, 0, padded, 0, b.length);

for (int i = 0; i < blockSize ,- (b. length % blockSize); i++)

padded[b.length + i] = 0;

byte output[] = c.doFinal(padded);

The problem with this code is that when the data is decrypted, there is no indica­
tion of how many bytes should be discarded as padding. PKCS5 and other
padding schemes solve this problem by encoding that information into the
padding itself.

The NullCipher Class
The JCE includes one subclass of the Cipher class: the Null Cipher class (ja~­
ax.crypto.NullCipher). This class performs no encryption. Data passes
through the null cipher unchanged, and no padding or blocking is performed
(the getBlockSize () method will return 1). Unlike a traditional cipher en­
gine, instances of the NullCipher class must be constructed directly:

Cipher c =new NullCipher();

This class can be used to test the logic of your program without actually en­
crypting or decrypting the data.

Cipher Algorithms
The SurtJCE security provider supports three cipher algorithms:

• DES, the Data Encryption Standard algorithm, a standard that has been
adopted by various organizations, including the U.S. government. There are

Page 326 of 482

310 CHAPTER 13: ENCRYPTION

known ways to attack this encryption, though they require a lot of computing
power to do so; despite widespread predictions about the demise of DES, it
continues to be used in many applications and is generally considered secure.
The examples in this chapter are mostly based on DES encryption.

• DESede, also known as triple-DES or multiple-DES. This algorithm uses multi-.
ple DES keys to perform three rounds of DES encryption or decryption; the
added complexity greatly increases the amount of time required to break the
encryption. It also greatly increases the amount of time required to encrypt
and to decrypt the data.

From a developer's perspective, DESede is equivalent to DES; only the algo­
rithm name passed to the key generator and cipher engines is different.
Although DESede requires multiple keys, these keys are encoded into a single
secret key. Hence, the programming steps required to use DESede are identi­
cal to the steps required to use DES.

• PBEWithMD5AndDES, the password-based encryption defined in PKCS#5. This
algorithm entails using a password, a byte array known as salt, and an iteration
count along with an MD5 message digest to produce a DES secret key; this key
is then used to perform DES encryption or decryption. PKCS#5 was devel­
oped by RSA Data Security, Inc., primarily to encrypt private keys, although it
may be used to encrypt any arbitrary data.

From a developer's perspective, this algorithm requires some special program­
ming to obtain the key. A password-based cipher cannot be initialized without
special data that is passed via the algorithm specification. This data is known
as the salt and iteration count. Hence, a password-based cipher is initialized as
follows:

String password= "Come you spirits that tend on mortal thoughts";

byte[] salt = { (byte) Oxc9, (byte) Ox36, (byte) Ox78, (byte) Ox99,

(byte) Ox52, (byte) Ox3e, (byte) Oxea, (byte) Oxf2 };

PBEParameterSpec paramSpec =new PBEParameterSpec(salt, 20);
PBEKeySpec keySpec =new PBEKeySpec(password);

SecretKeyFactory kf = SecretKeyFactory.getinstance("PBEWithMDSAndDES");
SecretKey key= kf.generateSecret(keySpec);

Cipher c = Cipher.getinstance("PBEWithMDSAndDES");

c.init(Cipher.ENCRYPT_MODE, key, paramSpec);

The rationale behind this system is that is allows the password to be shared ver­
bally (or otherwise) between participants in the cipher; rather than coding
the password as we've done above, the user would presumably enter the pass­
word. Since these types of passwords are often easy to guess (a string compari­
son of the above password against the collected works of Shakespeare would
guess the password quite easily, despite its length), the iteration and salt pro­
vide a means to massage the password into something more secure. The salt

Page 327 of 482

ENCRYPTING DATA 311

itself should be random, and the higher the iteration count, the more expen­
sive a brute-force attack against the key becomes (though it also takes longer
to generate the key itself).

Of course, despite the presence of the salt and iteration, the password chosen
in the method should not be easy to guess in the first place: it should contain
special characters, not be known quotes from literature, and follow all the
other usual rules that apply to selecting a password.

Implementing the Cipher Class

s in all 1.2-based engines, the SPI for the Cipher class is a separate class: the
CipherSpi class (javax.c:rypto.CipherSpi):

public abstract class CipherSpi
The SPI for the Cipher class. This class is responsible for performing the
encryption or decryption according to its internal algorithm. Support for
various modes or padding schemes must be handled by this class as well.

There is very little intelligence in the Cipher class itself; virtually all of its methods
are simply passthough calls to corresponding methods in the SPI. The one excep­
tion to this is the getrnstance () method, which is responsible for parsing the
algorithm string and removing the mode and padding strings if present. If it finds
a mode and padding specification, it calls these methods of the SPI:

public abstract void engineSetMode(String s)
Set the mode of the cipher engine according to the specified string. If the
given mode is not supported by this cipher, a NoSuchAlgorithmException
should be thrown.

public abstract void engineSetPadding(String s)
Set the padding scheme of the cipher engine according to the specified
string. If the given padding scheme is not supported by this cipher, a NoSuch­
PaddingException should be thrown.

Remember that the mode and padding strings we looked at earlier are specific to
the implementation of the S"LUlJCE security provider. Hence, while ECB is a
common mode specification, it is completely at the discretion of your implementa­
tion whether that string should be recognized or not. If you choose to implement
a common mode, it is recommended that you use the standard strings, but you
may use any naming convention that you find attractive. The same is true of
padding schemes.

Complicating this matter is the fact that there are no classes in the JCE that assist
you with implementing any mode or padding scheme. So if you need to support a
mode or padding scheme, you must write the required code from scratch.

Page 328 of 482

312 CHAPTER 13: ENCRYPTION

The remaining methods of the SPI are all called directly from the corresponding
methods of the Cipher class:

public abstract int engineGetBlockSize()
Return the number of bytes that comprise a block for this engine. Unless the
cipher is capable of performing padding, input data for this engine must total
a multiple of this block size (though individual calls to the update() method
do not necessarily have to provide data in block-sized chunks).

public abstract byte[] engineGetN()
Return the initialization vector that was used to initialize the cipher. If the
cipher was in a mode where no initialization vector was required, this method
should return null.

public abstract int engineGetOutputSize(int inputSize)
Return the number of bytes that the cipher will produce if the given amount
of data is fed to the cipher. This method should take into account any data
that is presently being buffered by the cipher as well as any padding that may
need to be added if the cipher is performing padding.

public void enginelnit(int op, Key key, SecureRandom sr)
public void enginelnit(int op, Key key, AlgorithmParameterSpec aps, SecureRandom sr)

Initialize the cipher based on the op, which will be either Cipher. ENCRYPT_
MODE or Cipher. DECRYPT_MODE. This method should ensure that the key is of
the correct type and throw an InvalidKeyException if it is not (or if it is
otherwise invalid), and use the given random number generator (and algo­
rithm parameters, if applicable) to initialize its internal state. If algorithm
parameters are provided but not supported or are otherwise invalid, this
method should throw an InvalidAlgori thmParameterException.

public abstract byte[] engineUpdate(int input[], int offset, int len)

public abstract int engineUpdate(int input[], int offset, int len, byte[] output, int outOjf)
Encrypt or decrypt the input data. The data that is passed to these methods
will is not necessarily an integral number of blocks. It is the responsibility of
these methods to process as much of the input data as possible and to buffer
the remaining data internally. Upon the next call to an engineUpdate () or
engineDoFinal () method, this buffered data must be processed first,
followed by the input data of that method (and again leaving any leftover data
in an internal buffer).

public abstract byte[] engineDoFinal(int input[], int offset, int len)

public abstract int engineDoFinal(int input[], int offset, int len, byte[] output, int outOjf)
Encrypt or decrypt the input data. Like the update () method, this method
must consume any buffered data before processing the input data. However,
since this is the final set of data to be processed, this method must make sure

Page 329 of 482

ENCRYPTING DATA 313

that the total amount of data has been an integral number of blocks; it should
not leave any data in its internal buffers.

If the cipher supports padding (and padding was requested through the
engineSetPadcling () method), this method should perform the required
padding; an error in padding shouid cause a BadPadclingException to be
thrown. Otherwise, if padding is not being performed and the total amount
of data has not been an integral number of blocks, this method should throw
an IllegalBlockSizeException.

Using our typical XOR strategy of encryption, here's a simple implementation of
a cipher engine:

public class XORCipher extends CipherSpi {
byte xorByte;

public void engineinit(int i, Key k, SecureRandom sr)
throws InvalidKeyException {

if (! (k instanceof XORKey))
throw new InvalidKeyException("XOR requires an XOR key");

xorByte = k.getEncoded() [0];

public void engineinit(int i, Key k, AlgorithmParameterSpec aps,
SecureRandom sr) throws InvalidKeyException,

InvalidAlgorithmParameterException {
throw new InvalidAlgorithmParameterException(

"Algorithm parameters not supported in this class");

public byte[] engineUpdate(byte in[], int off, int len) {
return engineDoFinal(in, off, len);

public int engineUpdate(byte in[], int inoff, int length,
byte out[], int cutoff)

for (int i = 0; i < length; i++)
out[outoff + i] = (byte) (in[inoff + i] A xorByte);

return length;

public byte[] engineDoFinal(byte in[], int off, int len) {
byte out[] =new byte[len- off];
engineUpdate(in, off, len, out, 0);
return out;

public int engineDoFinal(byte in[], int inoff, int len,
byte out[], int cutoff) {

Page 330 of 482

314 CHAPTER 13: ENCRYPTION

return engineUpdate(in, inoff, len, out, cutoff);

public int engineGetBlockSize()
return 1;

public byte [J engineGetiV ()
return null;

public int engineGetOutputSize(int sz) {
return sz;

public void engineSetMode(String s)
throws NoSuchAlgorithmException

throw new NoSuchAlgori thmException ("Unsupported mode " + s) ;

public void engineSetPadding(String s)
throws NoSuchPaddingException

throw new NoSuchPaddingException("Unsupported padding"+ s);

The bulk of the work of any cipher engine will be in the engineUpdate ()
method, which is responsible for actually providing the ciphertext or plaintext. In
this case, we've simply XORed the key value with every byte, a process that works
both for encryption as well as decryption. Because the work done by the engine­
Update () method is so symmetric, we don't need to keep track internally of
whether we're encrypting or decrypting; for us, the work is always the same. For
some algorithms, you may need to keep track of the state of the cipher by setting
an internal variable when the engineini t () method is called.

Similarly, because we can operate on individual bytes at a time, we didn't have to
worry about padding and buffering internal data. Such an extension is easy, using
the code we showed earlier that uses the modulus operator to group the input
arrays into blocks.

To use this class, we would need to add these two lines to the XYZProvider class
we developed in Chapter 8:

put ("Cipher .XOR", "XORCipher");
put("KeyGenerator.XOR", "XORKeyGenerator");

Then it is a simple matter of installing the XOR security provider and getting an
instance of this cipher engine:

Page 331 of 482

CIPHER STREAMS

Security.addProvider(new XYZProvider());

KeyGenerator kg= KeyGenerator.getinstance("XOR");

Cipher c = Cipher.getinstance("XOR");

315

Note that "XOR" is the only valid algorithm name for this implementation since
we do not support any modes or padding schemes.

Cipher Streams
In the Cipher class we just examined, we had to provide the data to be encrypted
or decrypted as multiple blocks of data. This is, not necessarily the best interface
for programmers: what if we want to send and receive arbitrary streams of data
over the network? It would often be inconvenient to get all the data into buffers
before it can be encrypted or decrypted.

The solution to this problem is the ability to associate a cipher object with an
input or output stream. When data is written to such an output stream, it is auto­
matically encrypted, and when data is read from such an input stream, it is
automatically decrypted. This allows a developer to use Java's normal semantics of
nested filter streams to send and receive encrypted data.

The CipherOutputStream Class
The class that encrypts data on output to a stream is the CipherOutputStream
class (j avax. crypt a. CipherOut.putStream):

public class CipherOutputStream extends FilterOutputStream
Provide a class that will encrypt data as it is written to the underlying stream.

Like all classes that extend the Fil terOutputStream class, constructing a cipher
output stream requires that an existing output stream has already been created.
This allows us to use the existing output stream from a socket or a file as the desti­
nation stream for the encrypted data:

public CipherOutputStream(OutputStream outputStream, Cipher cipher)
Create a cipher output stream, associating the given cipher object with the
existing output stream. The given cipher must already have been initialized,
or an IllegalStateException will be thrown.

The output stream may be operated on with any of the methods from the Filter­
OutputStream class-the write() methods, the flush() method, and the
close () method, which all provide the semantics you would expect. Often, of
course, these methods are never used directly-for example, if you're sending
text data over a socket, you'll wrap a cipher output stream around the socket's
output stream, but then you'll wrap a print writer around that; the programming

Page 332 of 482

316 CHAPTER 13: ENCRYPTION

interface then becomes a series of calls to the print () and println () methods.
You can use any similar output stream to get a different interface.

It does not matter if the cipher object that was passed to the constructor does auto­
matic padding or not-the CipherOutputStream class itself does not make that
restriction. As a practical matter, however, you'll want to use a padding cipher
object, since otherwise you'll be responsible for keeping track of the amount of
data passed to the output stream and tacking on your own padding.

Usually, the better alternative is to use a byte-oriented mode such as CFB8. This is
particularly true in streams that are going to be used conversationally: a message
is sent, a response received, and then another message is sent, etc. In this case,
you want to make sure that the entire message is sent; you cannot allow the cipher
to buffer any data internally while it waits for a full block to arrive. And, for
reasons we're just about to describe, you cannot call the flush() method in this
case either. Hence, you need to use a streaming cipher (or, technically, a block
cipher in streaming mode) in this case.

When the flush() method is called on a CipherOutputStream (either directly, or
because the stream is being closed), the padding of the stream comes into play. If
the cipher is automatically padding, the padding bytes are. generated in the
,flush() method. If the cipher is not automatically padding and the number of
bytes that have been sent through the stream is not a multiple of the cipher's
block size, then the flush() method (or indirectly the close() method) throws
an IllegalBlockSizeException (note that this requires that the IllegalBlock­
SizeException be a runtime exception).

If the cipher is performing padding, it is very important not to call the flush ()
method unless it is immediately followed by a call to the close () method. If the
flush () method is called in the middle of processing data, padding is added in
the middle of the data. This means the data does not decrypt correctly.
Remember that certain output streams (especially some types of Printwriter
streams) flush automatically; if you're using a padding cipher, don't use one of
those output streams.

We can use this class to write some encrypted data to a file like this:

public class Send {

public static void main(String args[]) {
try {

KeyGenerator kg= KeyGenerator.getinstance("DES");

kg.init(new SecureRandom());
SecretKey key= kg.generateKey();

SecretKeyFactory skf = SecretKeyFactory.getinstance("DES");
Class spec= Class.forName("javax.crypto.spec.DESKeySpec");

DESKeySpec ks = (DESKeySpec) skf.getKeySpec(key, spec);

ObjectOutputStream oos = new ObjectOutputStream(

Page 333 of 482

CiPHER STREAMS

new FileOutputStream("keyfile"));

oos.writeObject(ks.getKey());

oos.close();

Cipher c = Cipher.getinstance(-"DES/CFB8/NoPadding");

c.init(Cipher.ENCRYPT_MODE, key);

CipherOutputStream cos = new CipherOutputStream(

new FileOutputStream("ciphertext"), c);

PrintWriter pw = new PrintWriter(

new OutputStreamWriter(cos));

pw.print ("XXXXXXXX");

pw.println("Stand and unfold yourself");

pw.close();

catch (Exception e) {

System.out.println(e);

317

There are two steps involved here. First, we must create the cipher object, which
means that we must have a secret key available. The problem of secret key manage­
ment is a hard one to solve; we'll discuss it a little farther along. For now, we're
just going to save the key object to a file that can later be read by whomever needs
the key. Note that we've gone through the usual steps of writing the data
produced by the secret key factory so that the recipient of the key need not use
the same provider we use.

After we generate the key, we must create the cipher object, initialize it with that
key, and then use that cipher object to construct our output stream. Once the
data is sent to the stream, we close the stream, which flushes the cipher object,
performs any necessary padding, and completes the encryption.

Note that in this example, we've sent 8 arbitrary bytes before the real data. We've
done this instead of getting the initialization vector from the cipher and transmit­
ting the initialization vector (as we did in the earlier example); we'll have to
remember to discard the first 8 bytes when we read the data later. Because of the
possibility that someone might recognize a pattern in these bytes, this method is
slightly less secure, but it is clearly more convenient (and it would be more secure
ifwe didn't pick such an obvious pattern).

In this case, we've chosen to use CFB8 mode, so there is no need for padding. But
in general, this last step is important: if we don't explicitly close the PrintWriter
stream, when the program exits, data that is buffered in the cipher object itself
will not get flushed to the file. The resulting encrypted file will be unreadable, as
it won't have the correct amount of data in its last block.*

Page 334 of 482

318 CHAPTER 13: ENCRYPTION

The CipherlnputStream Class
The output stream is only half the battle; in order to read that data, we must use
the CipherinputStream class (javax. crypto. CipherinputStream):

public class CipherlnputStream extends FilterlnputStream
Create a filter stream capable of decrypting data as it is read from the under­
lying input stream.

A cipher input stream is constructed with this method:

public CipherlnputStream(InputStream is, Cipher c)
Create a cipher input stream that associates the existing input stream with the
given cipher. The cipher must previously have been initialized.

All the points we made about the CipherOutputStream class are equally valid for
the CipherinputStream class. You can operate on it with any of the methods in its
superclass, although you'll typically want to wrap it in something like a buffered
reader, and the cipher object that is associated with the input stream needs to
perform automatic padding or use a mode that does not require padding (in fact,
it must use the same padding scheme and mode that the output stream that is
sending it data used).

The CipherinputStream class does not directly support the notion of a mark.
The markSupported() method returns false unless you've wrapped the cipher
input stream around another class that supports a mark.

Here's how we could read the data file that we created above:

public class Receive {
public static void main(String args[]) {

try {
ObjectinputStream ois = new ObjectinputStream(

new FileinputStream("keyfile"));
DESKeySpec ks =new DESKeySpec((byte[]) ois.readObject());
SecretKeyFactory skf = SecretKeyFactory.getinstance("DES");
SecretKey key= skf.generateSecret(ks);
ois.close();

Cipher c = Cipher.getinstance("DES/CFB8/NoPadding");
c.init(Cipher.DECRYPT_MODE, key);
CipherinputStream cis = new CipherinputStream(

new FileinputStream("ciphertext"), c);
cis.read(new byte[8]);
BufferedReader br = new BufferedReader(

new InputStreamReader(cis));

* Closing the output stream is necessary whenever the stream performs buffering, but it is particularly
important to remember in this context.

Page 335 of 482

CIPHER STREAMS

System.out.println("Got message");

System.out.println(br.readLine());

catch (Exception e) {

System.out.println(e);

319

In this case, we must first read the secret key from the file where it was saved, and
then create the cipher object initialized with that key. Then we can create our
input stream and read the data from the stream, automatically decrypting it as it
go~s.

SSL Encryption

In the world of the Internet, data encryption is often achieved with SSL-the
Secure Socket Layer protocoL These sockets use encryption to encrypt data as it is
written to the socket and to decrypt that data as it is read from the socket.

SSL encryption is built into many popular web browsers and web servers; these
programs depend on SSL to provide the necessary encryption to implement the
https protocol. For Java applet developers who want to use SSL, there are three
options:

1. Use the URL class.

The URL class can be used to open a URL that the applet can read data from.
If the URL is a POST URL, the applet can send some initial data before it
reads the data. On browsers that will support it, you can specify an https
protocol when the URL is constructed, in which case the data exchanged by
the applet and the remote web server will be encrypted. Note that this is not
supported by the JDK itself.

There are a few limitations with this method. First, the data exchange is
limited to the web server and the applet using the single request-response
protocol of HTTP. Data cannot be streamed in this way, and you must write
an appropriate back-end cgi-bin script, servlet, or other program to process
the data. Second, not all browsers support the https protocol, and those that
do support https may not support a Java applet opening an https URL. On
the other hand, this will tunnel data through a firewall, which is one of the
main reasons why it is used.

2. Use an SSLSocket class.

There are a number of vendors who supply SSLSocket and SSLServerSocket
classes that extend the Socket and ServerSocket classes; these classes
provide all the semantics of their java.net counterparts with the additional
feature that the data they exchange is encrypted with the SSL algorithm.

Page 336 of 482

320 CHAPTER 13: ENCRYPTION

These classes are generally subject to import and export restrictions; in partic­
ular, Sun's SSLSocket and SSLServerSocket classes (which come with the
Java Server product) cannot be exported, and certain countries will not allow
these implementations to be imported. There are SSL implementations that
have been written outside the United States, so they have fewer restrictions
(but they may contain implementations of RSA that may not be used within
the United States).

3. Use an RSA-based security provider.

The Cipher class that we examined above has the ability to support RSA
encryption. Many third-party security providers will have RSA implementa- .
tions; some of these are listed in Appendix C.

For now, none of these solutions is completely attractive. The technique of using
URLs is well known and demonstrated in any book on Java network program­
ming, but suffers from the limitations we discussed above. The SSL-based Socket

classes have a known interface and are simple to use, but suffer from availability
questions (although no more than theJCE itself).

Symmetric Key Agreement
When we discussed public and private key pairs, we talked about the bootstrap­
ping issue involved with key distribution: the problem of obtaining the public key
of a trusted certificate authority. In the case of key pairs, keeping the private key
secret is of paramount importance. Anyone with access to the private key will be
able to sign documents as the owner of the private key; he or she will also be able
to decrypt data that is intended for the owner of the private key. Keeping the
private key secret is made easier because both parties involved in the crypto­
graphic transfer do not need to use it.

With the symmetric key we introduced in this chapter, however, the bootstrapping
issue is even harder to solve because both parties need acce:!is to the same key.
The question then becomes how this key can be transmitted securely between the
two parties in such a way that only those parties have access to the key.

One technique to do this is to use traditional (i.e., nonelectronic) means to
distribute the key. The key could be put onto a floppy disk, for example, and then
mailed or otherwise distributed to the parties involved in the encryption. Or the
key could be distributed in paper format, requiring the recipient of the key to
type in the long string of hex digits (the password-based encryption algorithm
makes this easier, of course). This is the type of technique we used in the section
on cipher data streams. In those examples, the key was saved in a file that was
created when the ciphertext was generated (although the key could have been
pregenerated, and the Send class could have also read it from a file).

Page 337 of 482

SYMMETRIC KEY AGREEMENT 321

Another technique is to use public key/private key encryption to encrypt the
symmetric key, and then to send the encrypted key over the network. This allows
the key to be sent electronically and then to be used to set up the desired cipher
engine. This is a particularly attractive option, because symmetric encryption is
usually much faster than public key encryption. You can use the slower encryption
to send the secret key, and then use the faster encryption for the rest of your data.
This option requires that your security provider implement a form of public key
encryption (which the SUnJCE security provider does not).

The final option is to use a key agreement algorithm. Key agreement algorithms
exchange some public information between two parties so they each can calculate
a shared secret key. However, they do not exchange enough information that
eavesdroppers on the conversation can calculate the same shared key.

In the JCE, these algorithms are represented by the KeyAgreement class
(javax. crypto. KeyAgreement):

public class KeyAgreement
Provide an engine for the implementation of a key agreement algorithm. This
class allows for two cooperating parties to generate the same secret key while
preventing parties unrelated to the agreement from generating the same key.

As an engine class, this class has no constructors, but it has the usual method to
retrieve instances of the class:

public final KeyAgreement getlnstance(String algorithm)
public final KeyAgreement getlnstance(String algorithm, String provider)

Return an instance of the KeyAgreement class that implements the given algo­
rithm, loaded either from the standard set of providers or from the named
provider. If no suitable class that implements the algorithm can be found, a
NoSuchAlgorithmException is generated; if the given provider cannot be
found, a NoSuchProviderException is generated.

The interface to this class is very simple (much simpler than its use would indi­
cate, as our example will show):

public final void init(AlgorithmParameterSpec aps)
public final void init(AlgorithmParameterSpec aps, SecureRandom sr)
public final void init(SecureRandom sr)

Initialize the key agreement engine. The parameter specifications will vary
depending upon the underlying algorithm implemented by the agreement
engine; if the parameters are invalid, of the incorrect class, or not supported,
an InvalidAlgori thmParameterException is generated.

Page 338 of 482

322 CHAPTER 13: ENCRYPTION

public final Key doPhase(int phase, Key key)
Execute a phase of the key agreement protocol. Key agreement protocols
usually require a set of operations to be performed in a particular order. Each
operation is represented in this class by a particular phase. Phases must be
executed in order. If the phase number is incorrect, an IllegalStateExcep­
tion is thrown. Phases usually require a key to succeed. If the provided key is
not supported by the key agreement algorithm, is incorrect for the current
phase, or is otherwise invalid, an InvalidKeyException is thrown.

The number of phases, along with the types of keys they require,, vary drasti­
cally from key agreement algorithm to algorithm. Your security provider must
document the order of calls and arguments to this method.

public final byte[] generateSecret()
public final int generateSecret(byte[J secret, int offset)

Generate the bytes that represent the secret key; these bytes can then be used
to create a SecretKey object. The type of that object will vary depending
upon the algorithm implemented by this key agreement. The bytes are either
returned from this argument or placed into the given array (starting at the
given offset). In the latter case, if the array is not large enough to hold all the
bytes a ShortBufferException is thrown. If all phases of the key agreement
protocol have not been executed, an IllegalStateException is generated.

Mter this method has been called, the engine is reset and may be used to
generate more secret keys (starting with a new set of calls to the doPha:;;e ()
method).

public final String getAlgorithm()
Return the name of the algorithm implemented by this key agreement object.

public final Provider getProvider()
Return the provider that implemented this key agreement.

Despite its simple interface, using the key agreement engine can be very complex.
The SunJCE security provider implements one key agreement algorithm: Diffie­
Hellman key agreement. This key agreement is based on the following protocol:

1. Alice (the first party in the exchange) generates a Diffie-Hellman public
key/private key pair.

2. Alice transmits the public key and the algorithm specification of the key pair
to Bob (the second party in the exchange).

3. Bob uses the algorithm specification to generate his own public and private
keys; he sends the public key to Alice.

Page 339 of 482

SYMMETRIC KEY AGREEMENT 323

4. Alice uses her private key and Bob's public key to create a secret key. In the
KeyAgreement class, . this requires two phases: one that uses her private key
and one that uses her public key.

5. Bob performs the same operations with his private key and Alice's public key.
Due to the properties of a Diffie-Hellman key pair, this generates the same
secret key Alice generated.

6. Bob and Alice convert their secret keys into a DES key.

7. Alice uses that key to encrypt data that she sends to Bob.

8. Bob uses that key to decrypt data that he reads.

These last two steps, of course, are symmetric: both Bob and Alice can encrypt as
well as decrypt data with the secret key. They can both send and receive data as
well.

Nothing in this key agreement protocol prevents someone from impersonating
Bob-Alice could exchange keys with me, I could say that I am Bob, and then
Alice and I could exchange encrypted data. So even though the transmissions of
the public keys do not need to be encrypted, they should be signed for maximum
safety.

This algorithm works because of the properties of the Diffie-Hellman public
key/private key pair. These keys are not suitable for use in an encryption algo­
rithm; they are used only in a key agreement such as this.

Here's how a key agreement might be implemented:

public class DHAgreement implements Runnable

byte bob[), alice[);

boolean doneAlice = false;
byte[) ciphertext;

Biginteger aliceP, aliceG;

int aliceL;

public synchronized void run()

if (!doneAlice)

doneAlice = true;

doAlice();

else doBob () ;

public synchronized void doAlice() {
try {

II Step 1: Alice generates a key pair
KeyPairGenerator kpg = KeyPairGenerator.getinstance("DH");

kpg.initialize(l024);

Page 340 of 482

324 CHAPTER 13: ENCRWTION

KeyPair kp = kpg.generateKeyPair();

II Step 2: Alice sends the public key and the

II Diffie-Hellman key parameters to Bob

Class dhClass = Class.forName(
"javax.crypto.spec.DHParameterSpec");

DHParameterSpec dhSpec = (

(DHPublicKey) kp.getPublic()) .getParams();

aliceG dhSpec. getG () ;

aliceP dhSpec.getP();

aliceL dhSpec.getL();

alice= kp.getPublic() .getEncoded();

notify();

II Step 4 part 1: Alice performs the first phase of the

II protocol with her private key

KeyAgreement ka = KeyAgreement. get Instance ("DH") ;

ka.doPhase(l, kp.getPrivate());

II Step 4 part 2: Alice performs the second phase of the

II protocol with Bob's public key

while (bob == null) {

wait();

KeyFactory kf = KeyFactory.getinstance("DH");

X509EncodedKeySpec x509Spec =new X509EncodedKeySpec.(bob);

PublicKey pk = kf.generatePublic(x509Spec);
ka.doPhase(2, pk);

II Step 4 part 3: Alice can generate the secret key

byte secret[] = ka.generateSecret();

II Step 6: Alice generates a DES key

SecretKeyFactory skf = SecretKeyFactory.getinstance("DES");
DESKeySpec desSpec =new DESKeySpec(secret);

SecretKey key= skf.generateSecret(desSpec);

II Step 7: Alice encrypts data with the key and sends

II the encrypted data to Bob

Cipher c = Cipher.getinstance("DESIECBIPKCSSPadding");
c.init(Cipher.ENCRYPT_MODE, key);

ciphertext= c.doFinal(

"Stand and unfold yourself".getBytes());
notify();

catch (Exception e)

e.printStackTrace();

Page 341 of 482

SYMMETRIC KEY AGREEMENT 325

public synchronized void doBob() {
try {

II Step 3: Bob uses the parameters supplied by Alice
II to generate a key pair and sends the public key
while (alice == null) {

wait();

KeyPairGenerator kpg = KeyPairGenerator.getinstance("DH");
DHParameterSpec dhSpec = new DHParameterSpec(

aliceP, aliceG, aliceL);
kpg.initialize(dhSpec);

KeyPair kp = kpg.generateKeyPair();

bob= kp.getPublic() .getEncoded();

notify();

II Step 5 part 1: Bob uses his private key to perform the

II first phase of the protocol

KeyAgreement ka = KeyAgreement. getinstance ("DH") ;
ka.doPhase(l, kp.getPrivate());

II Step 5 part 2: Bob uses Alice's public key to perform

I the second phase of the protocol.

KeyFactory kf = KeyFactory.getinstance("DH");

X509EncodedKeySpec x509Spec =

new X509EncodedKeySpec(alice);
PublicKey pk = kf.generatePublic(x509Spec);

ka.doPhase(2, pk);

II Step 5 part 3: Bob generates the secret key

byte secret[] = ka.generateSecret();

II Step 6: Bob generates a DES key

SecretKeyFactory skf = SecretKeyFactory.getinstance("DES");

DESKeySpec desSpec =new DESKeySpec(secret);
SecretKey key= skf.generateSecret(desSpec);

II Step 8: Bob receives the encrypted text and decrypts it
Cipher c = Cipher.getinstance("DESIECBIPKCS5Padding");

c.init(Cipher.DECRYPT_MODE, key);

while (ciphertext == null) {

wait();

byte plaintext[] = c.doFinal(ciphertext);

System.out.println("Bob got the string " +

new String(plaintext));
catch (Exception e) {

e.printStackTrace();

Page 342 of 482

326

public static void main(String args[]) {

DHAgreement test= new DHAgreement();

new Thread(test).start(};// Starts Alice

new Thread(test) .start();// Starts Bob

CHAPTER 13: ENCRYPTION

In typical usage, of course, Bob and Alice would be executing code in different
classes, probably on different machines. We've shown the code here using two
threads in a shared object so that you can run the example more easily (although
beware: generating a Diffie-Hellman key is an expensive operation, especially for
a size of 1024; a size of 128 will be better for testing). Our second reason for
showing the example like this is to make explicit the points at which the protocol
must be synchronized: Alice must wait for certain information from Bob, Bob
must wait for certain information from Alice, and both must perform the opera­
tions in the order specified. Once the secret key has been created, however, they
may send and receive encrypted data at will.

Otherwise, despite its complexity, this example merely reuses a lot of the tech­
niques we've been using throughout this book. Keys are generated, they are

. transmitted in neutral (encoded) format, they are re-formed by their recipient,
and both sides can continue.

Sealed Objects
The final class in the JCE that we'll investigate is the SealedObject class
(javax.crypto.SealedObject). This class is very similar to the SignedObject
class we examined in Chapter 12, except that the stored, serialized object is
encrypted rather than signed:

public class SealedObject
A class that can embed within it a serializable object in an encrypted form.

Constructing a sealed object is achieved as follows:

public SealedObject(Serializable obj, Cipher c)
Construct a sealed object. The sealed object serializes the given object to an
embedded byte array, effectively making a copy of the object. It then uses the
given cipher to encrypt the embedded byte array. If the object is unable to be
serialized, an IOException is thrown; an error in encrypting the byte array
results in an IllegalBlockSizeException If the cipher object has not been
initialized, an IllegalStateException is generated.

To retrieve the object, we use this method:

Page 343 of 482

SUMMARY 327

public Object getObject(Cipher c)
Decrypt the embedded byte array and deserialize it, returning the reconsti-

. tuted object. The cipher must have been initialized with the same mode and
key as the cipher that was passed to the constructor when the object was first
created, otherwise a BadPaddingMethodException or an IllegalBlockSize­
Exception is thrown. If the cipher was not initialized, an
IllegalStateException is generated; failure to find the serialized class
results in a ClassNotFoundException, and generic deserialization errors
results in an IOException.

These are the only two operations that may be performed upon a sealed object.
Just keep in mind that the embedded object in this class is a serialized instance of
the original object: the technique the object uses to perform serialization may
affect the resulting object that is retrieved from the sealed object. This class can
help us prevent someone from tampering with our serialized object, but the recon­
stituted object may be lacking transient fields or other information (depending,
of course, on the implementation of the object itself).

Summary
In this chapter, we explored the final engine <;>f the Java security package-the
encryption engine. The encryption engine is part of the Java Cryptography Exten­
sion (JCE). Due to export limitations, the JCE from Sun is available only within
the United States and Canada. Third-party implementations of the JCE are avail­
able elsewhere. No matter where you get it from, the JCE must be obtained
separately from the rest of the Java platform.

The encryption engine performs encryption of arbitrary chunks or streams of
data according to various algorithms. Though support for RSA and other popular
algorithms is possible within the provider architecture, the Su.nJCE security
provider supplies only DES encryption. DES encryption has a different require­
ment for keys than the other cryptographic engines we've examined-DES
encryption depends on both parties in the cryptographic exchange using the
same key. Hence the JCE also provides a new key type known as a secret key (or
symmetric key), as well as an engine to generate these keys.

Secret keys pose an interesting distribution problem-they cannot be distributed
electronically unless the secret key itself is encrypted. This problem is often solved
by relying on public key encryption to deliver the encrypted key, after which the
symmetric key can bt: used to create the type of cipher that we've discussed in this
chapter. The JCE also includes support for key agreement protocols to accom­
plish key sharing, one of which (the Diffie-Hellman key agreement protocol) is
implemented in the Su.nJCE security provider.

Page 344 of 482

328 CHAPTER 13: ENCRYPTION

The encryption engine finally provides what many people envision as the ultimate
goal in security: the ability to send arbitrary encrypted data streams in a conversa­
tional manner across the network. Although its use is limited by governmental
restrictions, it provides the last piece of the Java security puzzle that we outlined at
the beginning of this book.

Page 345 of 482

Security Tools

In this appendix, we'll discuss the tools that come with the JDK that allow devel­
opers, end users, and system administrators to deal with the security aspects of the
Java platform. These tools are only available in Java 1.2, since they primarily deal
with operations that require the support of 1.2.* As Java's security model
advances, these tools have become primary interfaces to establishing a secure
sandbox for Java applications.

To a lesser extent, these tools have become an interface for establishing a secure
sandbox for Java applets as well. However, as we've seen, not all the security
features of the Java platform have yet been uniformly adopted by all browsers. In
part, it is a problem with logistics. As this book went to press, Java 1.2 was still a
beta release. Clearly it will take some time before these new features can be propa­
gated to browsers. Part of the problem, though, lies in the fact that Java
applications (and Java browsers) ultimately decide upon their own security
features.

This last fact is true of your own applications as well: you can certainly use the
keytool utility that comes with the JDK to manage your public key/private key
databases. But if it is appropriate, you may want to replace (or at least supple­
ment) the keytool with your own key management tool that handles some of the
situations we discussed in Chapter 11.

* The j avakey utility in 1.1 can be used to sign JAR files and to operate like the keytool; that utility
is obsolete in 1.2. In fact, the signed JAR files and identity database that j avakey produces cannot be
read by 1.2 utilities at all.

329

Page 346 of 482

330 APPENDIX A: SECURITY TOOLS

The keytool
In Chapter 11 we discussed the KeyStore class, which provides an interface to a
key management system. The Java platform comes with a tool-keytool-that
provides an administrative interface to that class. Keytool allows end users and
system administrators to add, delete, and modify entries in the keystore (provided
that they have sufficient permissions, of course).

When we discussed the KeyStore class, we mentioned that it had some limitations
that may lead you to write your own implementation of that class. The good news
is that if you write such a class, you may still use keytool to administer your set of
keys. Since keytool uses the standard interface provided by the KeyStore class, it
will be (mostly) compatible with any new class that you install into that interface
(we'll remind you how to do that at the end of this appendix). However, there are
some exceptions to this: keytool itself places some restrictions upon the algo­
rithms that may be used to support particular keys.

Before we examine the workings of keytool, let's review a few objects that we
talked about in Chapter 11. When we discussed the KeyStore class, we defined
the following terms:

key store
The keys tore is the file that actually holds the set of keys; keytool operates on
this file. In other implementations of the KeyStore class, the keystore may
not be a file-the keys in that implementation may be held in a database or
some other structure. Regardless, we refer to the set of keys on disk (or wher­
ever they are located) as the keystore.

In keytool, this file is called .keystore and is held in the directory specified by
the property user. home. On Unix systems, this directory defaults to the user's
home directory (e.g., $HOME); on Windows systems, this directory defaults to
the concatenation of the HOMEDRIVE and HOMEPATH environment vari­
ables (e.g., C:\).

alias
An alias is a shortened, keystore-specific name for an entity that has a key in
the keystore. I choose to store my public and private key in my local keystore
under the alias "sdo"; if you have a copy of my public key, you may use that
alias, or you may use another alias (like "ScottOaks"). The alias used for a
particular entity is completely up to the discretion of the individual who first
enters that entity into the keystore.

DN (distinguished name)
The distinguished name for an entity in the keystore is a subset of its full
X.500 name. This is a long string; for example, my DN is:

CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=New York, S=NY, C=US

Page 347 of 482

THE KEYTOOL 331

DNs are used by certificate authorities to refer to the entities to whom they
supply a certificate. Hence, unlike an alias, the DN for a particular key is the
same no matter what keystore it is located in: if I send you my public key, it
will have the DN encoded in the public key's certificate.

However, nothing prevents me from having two public keys with different
DNs (I might have one for personal use that omits references to my place of
employment). And there is no guarantee that two unrelated individuals will
not share the same DN (in fact, you can count on this type of namespace colli­
sion to occur).

key entries and certificate entries

There are two types of entries in the keystore: key entries and certificate
entries. A key entry is an entry that has a private key as well as a corre­
sponding public key. The public key in this case is embedded in a certificate,
and there is a chain of certificates that vouch for the public key.

A certificate entry, on the other hand, does not contain a private key; it
contains only a public key held in a certificate. In addition, there is only a
single certificate associated with this entry.

With that in mind, we'll look at the various commands that keytool provides. At
present, keytool only has a command-line interface; we'll look at the typical
commands that add, modify, list, and delete entries in the keystore.

Global Options to keytool

Keytool implements a number of global options-options that are available to
most of its commands. We'll list these as appropriate for each command, but
here's an explanation of what they do:

-alias alias

Specify the alias the operation should apply to (e.g., -alias sdo). The default
for this value is "mykey."

-dname distinguishedName

Specify the distinguished name. There is no default for this value, and if you
do not specify it on the command line, you will be prompted to enter it when
it is needed. Letting keytool prompt you is generally easier, since the tool will
prompt for the name one field at a time. Otherwise, you must enter the entire
name in one quoted string, e.g.:

-dnarne \

"CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=New York, S=NY, C=US"

Page 348 of 482

APPENDIX A: SECURITY TOOLS

-keypass password
Specify the password used to protect the entire keystore. Access to any
element in the keystore requires this global password (programmatically, this
is the password that is passed to the load () method of the KeyS tore class) . If
this password is not provided on the command line, you will be prompted for
it. This is generally more secure than typing it on a command line or in a
script where others might see it. Passwords must be at least six characters long.

Note that even though the KeyStore class allows you to read entries from the
keystore without this password, keytool does not.

-keystore filename
Specify the name of the file that holds the keystore (programmatically, this
file will be opened and passed as the input stream argument to the load ()
method of the KeyStore class). The default value of this is the .keystore file
described above.

-storepass password

-v

Specify the password used to protect a particular entry's private key. This is
usually not (and should not be) the same as the global password. There
should be a different password for each private key that is specific to that
entry. This allows the keystore to be shared among many users. If this pass­
word is not provided on the command line, you will be prompted for it, which
is generally the more secure way to enter this password.

Verbose-print some information about the operations keytool IS

performing.

Adding a Certificate Entry

In order to add a certificate entry to the database, you use this command:

-impmt
Import a certificate into the database. This command either creates a new
certificate entry or imports a certificate for an existing key entry. This
command supports the following options:

-alias alias
-keypass heypass
-keystore keystore
-storepass storepass
-v

-file inputFile
The file containing the certificate that is being imported. The certificate
must be in RFC 1421 format. The default is to read the data from
System. in.

Page 349 of 482

THE KEYfOOL 333

-noprompt
Do not prompt the user about whether or not the certificate should be
accepted.

When you import a certificate, the information contained in that certificate is
printed out; this information includes the distinguished names of the issuer and
the principal, and the fingerprint of the certificate. Well-known certificate authori­
ties will publish their fingerprints (on the Web, in trade papers, and elsewhere). It
is very important for you to verify the displayed fingerprint with the published
fingerprint in order to verify that the certificate does indeed belong to the prin­
cipal named in the certificate.

Let's say that I have a certificate for the ACME certificate authority in the file
amce. cer. I can import it with this command:

piccolo% keytool -import -alias acme. -file acme.cer

Enter keystore password: ******
Owner: CN=ACME, OU=ACME CA Services, O=ACME Inc., L=New York, S=NY,

C=US

Issuer: CN=ACME, OU=ACME CA Services, O=ACME Inc., L=New York, S=NY,

C=US

Serial Number: 34cbd057

Valid from: Sun Jan 25 18:52:55 EST 1998 until: Sat Apr 25 19:52:55

EDT 1998

Certificate Fingerprints:

MD5: 51:4E:52:2C:1B:14:38:52:DB:30:5D:46:A9:46:FF:BB

SHA1: 9F:B2:18:4A:63:8B:F8:EB:A6:A0:56:DB:C7:1B:B3:CC:F5:4B:BA:72

Trust this certificate? [no]: yes

After typing in the command, keytool prints the given names, serial number, and
fingerprints, and asks for verification before it actually enters the certificate into
the keystore. After receiving a yes answer, the entry is made.

Adding a Key Entry

To add a key entry to the database (that is, an entry containing a private key), use
this command:

-genhey
Generate a key pair and add that entry to the keystore. This command
supports these options:

-alias alias
-dnameDN
-heypass heypass
-heystore keystore

Page 350 of 482

334 APPENDIX A: SECURITY TOOLS

-storepass storepass
-keyalg AlgorithmName

Use the given algorithm to generate the key pair. For the default Sun
security provider, the name must be DSA, which is also the default value
for this option. Despite the presence of this option, you cannot really
specify another algorithm name, nor, for that matter, can you use a non­
Sun DSA provider. Internally, keytool expects the key generator to
produce keys that belong to a specific class in the sun package.

-keysize keysize
Use the given keysize to initialize the key pair generator. The default
value for this option is 1024. Since the key is a DSA key, the value must be
between 512 and 1024 and be a multiple of64.

-sigalg signatureAlgorithm
Specify the signature algorithm that will be used to create the self-signed
certificate; this defaults to SHA-1/DSA, which is supported by the Sun
security provider. Like the key algorithm, this option is not particularly
useful at present, since you cannot use your own security provider classes
to implement the signature.

-validity nDays
Specify the number of days for which the self-signed certificate should be
valid. The default value for this option is 90 days.

The key entry that is created in this manner has the generated private key. In addi­
tion, the public key is placed into a self-signed certificate; that is, a certificate that
identitifies the holder of the public key (using the distinguished name argument)
and is signed by the holder of the key itself. This is a valid certificate in all senses,
although other sites will probably not accept the certificate since it is not signed
by a known certificate authority (CA). But the self-signed certificate can be used
to obtain a certificate from a CA.

In order to use this self-signed certificate to obtain a certificate from a CA, you
must first generate a certificate signing request (CSR). The CSR contains the
distinguished name and public key for a particular alias and is signed using the
private key of the alias; the CA can then verify that signature and issue a certificate
verifying the public key. CSRs are generated with this option:

-csr
Generate a certificate signing request. This command supports the following
options:

-alias alias
-keypass keypass
-keystore keystore
-storepass storepass

Page 351 of 482

THE KEYTOOL 335

-v

-sigalg signatureAlgorithm
Use the given algorithm to sign the CSR. This option is not presently
useful, as the internal design of keytool only supports SHA-1/DSA signa­
tures created by the Sun security provider.

-file outputFile
Store the CSR in the given file. The format of the CSR is defined in
PKCS#10. The default is to write the CSR to System. out.

Once you have the CSR in a file, you must send it to the CA of your choice.
Different CAs have different procedures for doing this, but all of them will send
you back a certificate they have signed that verifies the public key you have sent to
them. There are a few different formats in which the CA will send back a certifi­
cate; the only format that is presently supported by keytool is RFC 1421 (so you
should use a CA that supports this format, of course). You must also use a CA for
whom you have a certificate entry (but the CA will often send you its self-signed
certificate anyway).

Once you've received the file contammg the new certificate, you can import it
into the keystore using the -import command we discussed previously.

Here's an example of how all these commands can be used to create an entry with
a private key and a certified public key. First, we must create the entry:

piccolo% keytool -genkey -alias sdo

Enter keystore password: ******
What is your first and last name?

[Unknown] : Scott oaks

What is the name of your organizational unit?

[Unknown] : SMCC

What is the name of your organization?

[Unknown] : SUn Microsystems

What is the name of your City or Locality?

[Unknown]: New York

What is the name of your State or Province?

[Unknown]: NY

What is the two-letter country code for this unit?

[Unknown]: us
Is <CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=New York, S=NY,

C=US> correct?

[no]: yes

Enter key password for <sdo>

(RETURN if same as keystore password) : ******

At this point, we now have an entry for sdo in the keystore. That entry has a self­
signed certificate; note that we had the tool prompt us for all the entries that

Page 352 of 482

336 APPENDIX A: SECURITY TOOLS

comprise the DN rather than attempting to type it all in on the command line.
The next step is to generate the CSR:

piccolo% keytool -csr -alias sdo -file sdoCSR.cer
Enter keystore password: ******

The file sdoCSR.cer contains the CSR which must now be sent to a CA. Note that
we must send the CSR to an authority for whom we already have a certificate
entry-that is, for whom we already have a public key. Otherwise, when the
response to the CSR comes, we will be unable to verify the signature of the CA
that issued the new certificate.

When the response does come, we must save it to a file. If we save it to the file
sdo.cer, we can import it with this command:

piccolo% keytool -import -file sdo.cer -alias sdo
Enter keystore password: ******

Assuming that the certificate is valid, this imports the new certificate into the
keystore. The certificate is invalid if the public key for sdo does not match the
previously defined public key in the database, or if the certificate was issued by an
authority for whom we do not possess a public key, or if the certificate signature is
invalid (which would be the case if data in the certificate had been modified in
transit).

The state of the sdo entry in the keys tore has changed during this example:

• Mter the first command, the sdo entry has a single certificate; that certificate
is issued by sdo.

• Mter the import command, the sdo entry has two certificates in its certificate
chain: the first certificate is issued by Acme and has a principal of sdo; the sec­
ond certificate is Acme's self-signed certificate (a copy of the one that was
imported when the Acme certificate entry was created).

In programmatic terms, the getCertificateChain () method of the KeyS tore
class will return an array of one and two elements, respectively, for these cases.

Modifying Keystore Entries

There is no practical way to modify a certificate entry in the keystore. You may
delete an existing entry and add a new one if required.

There is one command that can modify the data within a key entry:

-selfcert
Change the certificate chain associated with the target key entry. Any previous
certificates (including ones that may have been imported from a valid certifi­
cate authority) are deleted and replaced with a new self-signed certificate; this

Page 353 of 482

THE KEYfOOL 337

certificate can be used to generate a new CSR. The public and private keys
associated with the alias are unchanged, but you may specify a new value for
the DN on the command line. Hence, one use for this command is to change
the DN for a particular entry.

This command supports the following options:

-alias alias
-dnameDN
-keypass keypass
-keystore keystore
-storepass storepass
-sigalg algorithmName

Use the given algorithm to generate the signature in the self-signed certifi­
cate; as in other cases, this option only supports the DSA algorithm no
matter what algorithms may be supported by your security provider.

-validity nDays
The number of days for which the self-signed certificate is valid. The
default is 90 days.

The -selfcert command is often used with this command, which can create a copy
of the original entry before the DN is changed:

-key clone
Clone the target entry. The cloned entry will have the same private key and
certificate chain as the original entry. This command supports the following
options:

-alias alias
-keypass keypass
-keystore keystore
-storepass storepass
-v

-dest newAlias
The new alias name of the cloned entry. If this is not specified, you will be
prompted for it.

-new newPassword
The new password for the cloned entry. If this is not specified, you will be
prompted for it.

To change the password associated with a particular key entry, use this command:

-keypasswd
Change the password for the given key entry. This command supports the
following options:

Page 354 of 482

338 APPENDIX A: SECURITY TooLS

-alias alias
-keystore keystore
-storepass storePassword
-keypass originalPassword
-new newPassword

Specify the new password for the entry. If this option is not supplied, you
will be prompted for the new password.

Deleting Keystore Entries

There is a single command to delete either a key entry or a certificate entry:

-delete
Delete the entry of the specified alias. If a certificate entry for a certificate
authority is deleted, there is no effect upon key entries that have been vali­
dated by the authority. This command supports the following options:

-alias alias
-heystore heystore
-storepass storepass
-v

Examining Keystore Data

If you want to examine one or more entries in the keystore, you may use the
following commands:

-list
List (to System.out) one or more entries in the keystore. If an alias option is
given to this command, only that alias will be listed; otherwise, all entries in
the keystore are listed. This command supports the following options:

-alias alias
-heystore heystore
-storepass storepass
-v

-rfc
When displaying certificates, display them in RFC 1421 standard. This
option is incompatible with the -v option.

-export
Export the certificate for the given alias to a given file. The certificate is
exported in RFC 1421 format. If the target alias is a certificate entry, that
certificate is exported. Otherwise, the first certificate in the target key entry's

Page 355 of 482

THE KEYTOOL 339

certificate chain will be exported. This command supports the following
options:

-alias alias
-keystore keystore
-storepass storepass
-v

-file outputFile
The file in which to store the certificate. The default is to write the certifi­
cate to System. out.

-printcert
Print out a certificate. The input to this command must be a certificate in
RFC 1421 format; this command will display that certificate in readable form
so that you may verify its fingerprint. Unlike all other commands, this
command does not use the keystore itself, and it requires no keystore pass­
words to operate. It supports the following options:

-v
-file certificateFile

The file containing the RFC 1421 format certificate. The default is to
read the certificate from System. in.

Miscellaneous Commands

There are two remaining commands. The first allows you to change the global
password of the keystore:

-storepasswd
Change the global password of the keystore. This command supports the
following options:

-keystore keystore
-storepass storepass
-v

-new newPassword
The new global password for the keystore. If you do not specify this value,
you will be prompted for it.

Finally, you can get a summary of all commands with this command:

-help
Print out a summary of the usage of keytool.

Page 356 of 482

340 APPENDIX A: SECURITY TOOLS

The jarsigner Tool
The next tool we'lllook at is the jarsigner tool; this tool creates signed JAR files.
The jarsigner tool uses the information in a keystore to look up information
about a particular entity and uses that information either to sign or to verify aJAR
file. As we discussed in the section on keytool, the keystore that jarsigner uses
is subject to the KeyStore class that has been installed into the virtual machine; if
you have your own keystore implementation, jarsigner will be able to use it.
Similarly, if you use the standard keystore implementation, but hold the keys in a
file other than the default .keystore file, jarsigner will allow you to use that other
file as well.

A signed JAR file is identical to a standard JAR file except that a signed JAR file
contains two additional entries:

• SIGNER SF-A file containing an SHA message digest for each class file in the
archive. The digest is calculated from the three lines in the manifest for the
class file. The base of this name (SIGNER) varies; it is typically based upon
the alias of the keys tore entry used to sign the archive.

• SIGNER.DSA-A file containing the digital signature of the .SF file. The base
of this name matches the first part of the .SF file; the extension is the algo­
rithm used to generate the signature. This file also contains the certificate of
the entity that signed the archive.

The algorithm used to generate the signature depends upon the type of the
key found in the keystore: if the key is a X509 (DSA) key, a DSA signature will
be generated. If the key is an RSA key, an RSA signature will be generated
(assuming you have installed a security provider capable of producing such
signatures). If you have a keystore that contains other types of keys, jar­
signer will be unable to use them to sign the JAR file.

These entries are held in the META-INF directory of the JAR file.

Creating a Signed JAR File

The simplest command to sign aJAR file is:
piccolo% jarsigner xyz.jar sdo

This command takes the existing JAR file xyz.jar and signs it using the private key
of the given alias (sdo). The private key is obtained by searching for the given
alias from the default keystore (which will be the .keystore file in the user .home
directory unless a command-line argument is given). The signature files in this
example will be named SDO.SF and SDO.DSA and will be added to the existing
JAR file.

Page 357 of 482

THE JARSIGNER TOOL 341

A JAR file can be signed by any number of entities simply by executing this
command multiple times with different aliases. Each act of signing the JAR file
creates a new set of .SF and .DSA files in the archive.

There are a number of options that can be used in conjunction with this
command:

-keystore keystore
Specify the filename that the KeyStore class should use as the keystore.

-storepass storepass
Specify the global password that should be used to open the keystore. If this
value is not provided, you will be prompted for it (which, as always, is the
more secure way to enter a password).

-keypass password
Specify the password for the key entry of the given alias. If this value is not
provided, you will be prompted for it.

-sigfile file
Specify the base name to be used for the .SF and .DSA files. The default for
this value is the alias specified on the command line translated to all upper­
case letters (e.g., SDO in the example above). If the alias name has more than
eight letters, only the first eight letters are used. The file argument in this
option can only contain uppercase letters, the digits 0-9, and an underscore;
it must contain eight or fewer letters.

-signedjar file
Write the signed JAR file to the named file instead of adding the signature
entries to the existing JAR file.

-verbose
Print out information as jarsigner progresses.

Verifying a JAR File

In the process of verifying a JAR file, jarsigner will use the public key of the
certificate embedded in the JAR file to verify that the signature is valid. The
simplest command to verify aJAR file is:

piccolo% jarsigner -verify xyz.jar
jar verified.

If the signature in the JAR file is not valid, j arsigner will produce this output:

jar is unsigned. (signatures missing or not parsable)

Page 358 of 482

342 APPENDIX A: SECURJTY TOOLS

Verification accepts the following options:

-sigfile file
Use the given base name to look up the .SF and .DSA files. This option is
useful when the JAR file has been signed by multiple entities.

-verbose

-ids

Provide verbose output for the verification, indicating for each file if it was
signed and whether or not the signer of the file has been found in the
keystore. Sample output from this command might appear like this:

piccolo% jarsigner -verify -verbose xyz.jar

402 Mon Jan 26 19:25:52 EST 1998 META-INF/SDO.SF
1395 Mon Jan 26 19:25:52 EST 1998 META-INF/SDO.DSA

smk 596 Sat Jan 24 22:18:22 EST 1998 XYZKey.class
smk 814 Sat Jan 24 22:17:46 EST 1998 XYZKeyPairGenerator.class
smk 1155 Sat Jan 24 21:56:40 EST 1998 XYZProvider.class
smk 900 Sat Jan 24 22:11:22 EST 1998 XYZSignature.class

s signature was verified
m entry is listed in manifest

k at least one certificate was found in keys tore

jar verified.

Note the legend for each file that is printed by this command. We know if the
file was signed, whether or not it was listed in the JAR file's manifest, and
whether or not the signer of the file was found in the keys tore.

In the vast majority of cases, the information for each file will be the same:
JAR files are usually signed all at once by the same person. However, there's
nothing to prevent someone from adding a new class to a signed JAR file (in
which case the class would appear as unsigned), or for a JAR file to contain
multiple signers (some of whom may have signed some of the classes, while
others may have signed only a few of the classes).

In order to determine whether the certificate was found in the keystore,
jarsigner opens the default instance of the KeyStore class and loads it. Note
that no password is required for this operation. As we mentioned in
Chapter 11, reading the public information out of the keystore does not
require a password (at least in the Sun implementation of the KeyStore class).

In conjunction with the -verbose option, print out the distinguished name
and alias of the certificate (if any) that is found with each class. With this
option, the output for a particular class looks like this:

smk 900 Sat Jan 24 22:11:22 EST 1998 XYZSignature.class

Page 359 of 482

THE POLICYfOOL 343

CN=Scott Oaks, OU=SMCC, O=Sun Microsystems, L=NY, S=NY, C=US (sdo)

In this case, the class was signed by the given distinguished name; the name of
the alias associated with the certificate is shown in parentheses (sdo).

This option has no effect unless the -verbose option is specified.

-keystore keystore
Use the given file as the name of the keystore to load. The default for this
option is to use the .keystore file in the directory specified by the user. home
property. This name is only used for the -verbose option to look up the
certificates of the signer.

The policytool
The last security-related tool that comes with the Java platform is policytool.
This tool allows you to manage entries in a java.policy file. Unlike the other tools
we've discussed, policytool is a graphical tool. As such, it has no command-line
options or arguments.

When you first start policytool, you see a blank window with two pull-down
menus: File and Edit. Initially, there are no policy entries loaded into this tool; if
you want to work on an existing policy file, the first thing you must do is choose
the Open command from the File menu. Otherwise, you can add new entries and
create a new file containing those entries. Whichever method you choose, keep in
mind that policytool is designed to operate on a single policy file.

When you've completed editing the entries for a policy file, you can save your
changes. Under the File menu, you can use the Save or Save As command to over­
write the file you loaded or to save your changes to a new file.

Managing Policy Codebases

The initial screen for this tool displays the name of the currently loaded policy file
(which is blank if no file has been loaded); the name of the keys tore referenced
within this file; buttons to add, edit, or remove policy entries; and a list of the
current set of policy entries. In this context, a policy entry is the URL from which
classes will be loaded; that is, a codebase or a code source. Hence, a single policy
entry may contain many individual permissions. In Figure A-1 we've loaded the
default java. policy file, which has one policy entry: an entry that grants permissions
to all codebases.

Note that the keystore entry for this file is .keystore. You can change that value
through an option under the Edit menu.

Page 360 of 482

344 APPENDIX A: SECURlTY TOOLS

Figure A -1. jJolicytoolloaded with one jJolicy entry

You can add new codebases to this file by selecting the Add Policy Entry button;
when you add a policy entry, you are allowed to specify a URL and a signer (both
of which are optional). The entry for the signer should be an alias in the keys tore;
if you enter a signer who is not in the keys tore, you'll get a warning, but the opera­
tion will continue.

You may delete codebases by selecting one and pressing the Remove Policy Entry
button. Selecting a codebase and pressing the Edit Policy Entry button allows you
to edit the specific set of permissions for a code base.

Managing Permissions

When you press the Edit Policy Entry button, you get a window similar to that
shown in Figure A-2. This window lists all permissions that are associated with the
given codebase, and provides the opportunity to add or remove individual
permissions.

When you add permissions for a particular codebase, you have the option of
adding only a subset of the standard Java permissions: AWT permissions, file
permissions, property permissions, net permissions, runtime permissions, and
socket permissions. If you have your own permission class (e.g., the XYZPayrollP­
emission class)' you will not be able to add xyz payroll permissions to the file
using policytool. Policytool is designed (at least at present) to work only with
the standard set of Java permissions. To add instances of other permission
classes-including your own-you need to edit the file manually.

Page 361 of 482

FILES TO ADMINISTER BY HAt'ID 345

Figure A-2. A set of permissions for a codebase

Managing Certificate Entries

Policytool also allows you to perform some rudimentary operations on the
default keystore (again, using whatever KeyStore class implementation has been
installed into your Java platform). Under the Edit menu, there are options to add
and remove public key aliases. These public key aliases are certificate entries in
the keystore. In order to add an alias, you must specify a name for the alias and
the name of a file containing a certificate (in RFC 1421 format) to import for that
alias; you may remove an alias simply by name.

Files to Administer by Hand
There are two security-related files in the Java platform that must be modified by
hand (rather than by a tool). We've talked about these files throughout the book,
but for reference, we'll discuss the files and the information they hold.

The java.security File

The java.security file must be in the $]AVAHOME/lib/security directory. This file is
consulted for the following information:

Page 362 of 482

346 APPENDIX A: SECURITY TOOLS

A list of security providers
You may have any number of entries in this file that specifY a security provider
that should be installed into the virtual machine. By default, there is one secu­
rity provider specified by this entry:

security.provider.l=sun.security.provider.Sun

You may specifY additional security providers by listing their full class name in
this file. Make sure that all security providers are numbered consecutively
starting with 1; additional providers can be added before the Sun provider as
long as the number assigned to the Sun provider is adjusted accordingly (or
the Sun provider could be removed altogether). Remember that this list of
providers is consulted when the virtual machine first starts, but that programs
with sufficient permissions may add and delete providers from this list.

A KeyStore class implementation
You must have an entry in this file that lists the class that should be used to
provide the keystore. By default, that class is listed as:

keystore=sun.security.tools.JavaKeyStore

If you change the class listed in this entry, the new class will be instantiated
whenever a keystore object is required. There can be only one keystore entry
in this file.

A Policy class implementation
You must have an entry in this file that lists the class that should be used to
provide the implementation of the Policy class. By default, that class is listed
as:

policy.provider=java.security.PolicyFile

If you change the class listed in this entry, the new class will be instantiated
when the policy object is required (i.e., when the permissions for a given code­
base are first used). There can be only one policy entry in this file.

The names of the default policy files
When the default implementation of the Policy class reads in permissions, it
will read them from the URLs listed as this set of properties:

policy.url.l=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

You may specifY any number of files in this manner, but the list must start at 1
and be numbered consecutively. The set of permissions will be the aggregate
of all permissions found in these URLs.

Remember that these URLs contain only global permissions. You may also
specifY on the command line a file containing policies with the -usepolicy
argument. If the name following the -usepolicy argument begins with an
equals sign, the URLs listed in the java. security file are ignored:

Page 363 of 482

FILES TO ADMINISTER BY HAND 347

-usepolicy:/globals/java.policy

adds the policies in the /globals/java.policy file to the set of policies in force,
but:

-usepolicy:=/globals/java.policy

sets the policy only to the entries contained in the /globals/java.policy file. The
-usepolicy argument also initializes a security manager for an application, so
you may use it by itself if you want to use only the files listed in the java. security
file.

Other implementations of the Policy class may or may not use these
properties.

Whether or not property substitution is allowed
The ability to make property substitutions for entries in the java. security file or
in the java. policy file depends on this entry:

policy.expandProperties=true

Whether or not the -usepolicy argument can be used
The ability to use the -usepolicy argument depends on this entry:

policy.allowSystemProperty=true

The name of the class to provide X509 certificates
When the X509Certificate class is asked to return a certificate (via its getin­
stance () method), it creates an instance of the class named in this property:

cert.provider.x509=sun.security.x509.X509CertDmpl

The name of the class to provide X509 certificate revocation lists
When the X509CRL class is asked to return a certificate revocation list (via its
getinstance () method), it creates an instance of the class named in this
property:

crl.provider.x509=sun.security.x509.X509CRLDmpl

The java.policy File
In many cases, you'll use policytool to modify the entries in a java. policy file (or
create a new one). However, if you need to add custom permissions to this file
that aren't supported bypolicytool, you must edit it by hand.

The format of the java.policy file is as follows:

keystore "<keystore_url>";

grant [signedBy "<signe:tl[, signer2]>"l [codeBase "<URL>"]
permission <classname> ["<name>"] [, ''<actions>" l

[, signedBy "<signerl[, signer2]>"];

Page 364 of 482

348 APPENDIX A: SECURITY TOOLS

} ;

Items in square brackets are optional. Items in angled brackets are replaced by
specific information, e.g., a signer must be a valid alias in the keystore. Within a
grant block, there may be any number of permissions, and within a file, there may
be any number of grant blocks.

For example, here are some typical entries in the java. policy file:

grant {

permission java.util.PropertyPermission "java.version", "read";

grant signedBy "sdo", codeBase "http://piccolo/" {

permission java.io.FilePermission "${/}tmp${1}-", "read, write,
delete";

permission XYZPayrollPermission "*", "read, write";

grant codeBase "http://www.sun.com" {

permission java. io. FilePermission "$ {/} tmp$ {/}-", "read";

permission java.io.FilePermission "${/}tmp${1}-",

"read, write, delete", signedBy "sdo";

In the first block, permission is given to code that comes from any location to
access the java. version property. The second block grants permissions
(including a custom xyz payroll permission) to any code that is loaded from the
site piccolo and that is signed by sdo. The third block grants permission to any
code that is loaded from www.sun.com to read files in the /tmp directory (or any of
its subdirectories); if that code is signed by sdo, it is allowed to read, write, and
delete such files.

Page 365 of 482

B

Identity-Based Key
Management

In Java 1.1, the primary tool that was used for key management was javakey,
which is based heavily on the Identity and IdentityScope classes. The keytool
utility that comes with 1.2 is a better way to implement key management, and the
KeyStore class on which keytool is based is definitely more flexible than the
classes on which javakey is based. In addition, the javakey database uses some
classes and interfaces that have been deprecated in 1.2-primarily the java. secu­

rity. Certificate interface. As a result, it is not possible to upgrade a javakey­
based identity database to a keystore-based one.

Nonetheless, for developers who are still using 1.1, a key management system
based upon the Identity and IdentityScope classes is the only possible solution.
In this appendix, we'll show how these classes can be used for key management.
All of the techniques we'll discuss in this appendix have a complementary tech­
nique in key management with the KeyStore class. In particular, although the
Identity class is used in certain limited situations in 1.2, the IdentityScope class
and the identity database that it represents are not needed in 1.2 (as we'll see, it is
almost impossible even to use the identity database in 1.2).

Identity Scopes
The database that an identity is held in is an identity scope. There can be multiple
identity scopes in a Java program, though typically there is only a system identity
scope. By default, the system identity scope for all Java programs is read from a
file; this file is the database that javakey operates on. But the architecture of an
identity scope can be more complex than a single scope.

As Figure B-1 shows, multiple identity scopes can be nested, or they can be
disjoint. This is because an identity scope may itself be scoped-that is, just like an

349

Page 366 of 482

350 APPENDIX B: IDENTITY-BASED KEY MANAGEMENT

identity can belong to a particular scope, an identity scope can belong to another

scope.

Figure B-1. Identity scopes

Identity Scopes
Identities

This architecture is not as useful as it might seem, since the identity scope class
does not give any particular semantics to the notion of a nested identity scope. If
you search the system scope in the figure for sdo's identity, you may or may not
find it, depending on how the system identity scope is implemented. That's
because there's no requirement that an identity scope recursively search its
enclosed scopes for any information. And the default identity scope does not do
such a recursive search.

This is not to prevent you from writing identity scope classes that use such seman­
tics-indeed, writing such a scope is the goal of this appendix.

The idea of an identity scope, of course, is to hold one or more unique identities.
However, possible implementations of an IdentityScope class (java.secu­
ri ty. Identi tyScope) are conceivably more complicated than that because of the
definition of this class:

public abstract class IdentityScope extends Identity
Implementations of this class are responsible for storing a set of identities and
for performing certain operations on those identities.

Hence, an identity scope is also an identity. That means that an identity scope
might have a name and a public key, which gives you the ability to model an iden­
tity database in very different ways. Conceivably, you might want an identity scope
for an organization that contains all the identities of individuals within that organi­
zation. Rather than having a separate identity for the organization itself, the
organization's identity can be subsumed by the identity scope. Since the organiza-

Page 367 of 482

IDENTITY SCOPES 351

tion itself also needs a name and a public key, this type of model might offer some
flexibility over the alternative: a model that just has a list of identities, some of
which are individuals and one of which is the organization.

However, we'll ignore that possibility for now, and just explore the identity scope
class with a view to its simplest use: as a holder of one or more identities.

Using the IdentityScope Class

The IdentityScope class is an abstract class, and there are no classes in the core
JDK that extend the IdentityScope class. Like other classes in the security
package, instances of it may be retrieved by a static method (albeit with a different
name than we've been led to expect):

public static IdentityScope getSystemScope()
Return the default identity scope provided by the virtual machine. For
javakey, this is the identity scope held in the identitydb.obj file in the user's
home directory (or an alternate file specified in the java. security property file).

Once you have retrieved the system's default scope (or any other identity scope),
you can operate on it with the following methods:

public abstract int size()
Return the number of identities that are held in this scope. By default, this
does not include the number of nested identities in other scopes that are
held in this scope.

public abstract Identity getidentity(String name)
Return the identity object associated with the corresponding name.

public abstract Identity getidentity(Principal principal)
Using the principal's name, return the identity object associated with the
corresponding principal.

public abstract Identity getidentity(PublicKey key)
Return the identity object associated with the corresponding public key.

public abstract void addidentity(Identity identity)
Add the given identity to this identity scope. A KeyManagementException is
thrown if the identity has the same name or public key as another identity in
this scope.

public abstract void removeidentity(Identity identity)
Remove the given identity from this identity scope. A KeyManagementExcep­
tion is thrown if the identity is not present in this scope.

public abstract Enumeration identities()
Return an enumeration of all the identities in this scope.

Page 368 of 482

352 APPENDIX B: IDENTI1Y-BASED KEY MANAGEMENT

For the most part, using these methods is straightfoiWard. For example, to list all
the identities in the default identity database, we need only find the system iden­
tity scope and enumerate it:

public class Test {
public static void main(String args[])

try {

IdentityScope is= IdentityScope.getSystemScope();

System.out.println(is);
Enumeration e = is.identities();

while (e.hasMoreElements()) {
Identity id = (Identity) e.nextElement();

System.out.println(id);

catch (Exception ex) {}

There is one exception to this idea of simplicity, however. An identity scope is typi­
cally persistent-the javakey database is in a local persistent file, and you could
write your own scope that was saved in a file, a database, or some other storage.
However, you'll notice that there are no methods in the IdentityScope class that
allow you to save the database for a particular scope. Hence, we could add a new
identity to the system identity scope like this:

IdentityScope is= IdentityScope.getSystemScope();

Identity me= somehowCreateidentity("sdo");
try {

is.addidentity(me);

} catch (KeyManagementException kme) {}

That adds an sdo identity to the system identity scope for the current execution of
the virtual machine, but unless we can somehow save that scope to the identi­
tydb.obj file, the sdo identity will be lost when we exit the virtual machine.
Unfortunately, there are no public methods to save the identity scope.

As an aside, we'll note that the identitydb.obj file just happens to be the serialized
version of an IdentityScope object-to save the database, we need only open an
Obj ectOutputStream and write the is instance variable to that output stream.
Changes in the definition of the Identity class between 1.1 and 1.2, however,
make this database incompatible between these releases: you cannot deserialize a
1.1-based identity scope object in a 1.2 program.

There's another point here that we must mention: the JDK's notion of the system
identity scope expects to hold identity objects that are instances of a particular
class that exists only in the sun package. This means that we can't actually write a
fully correct somehowCreateidentity() method-we .can create identities, but
they will not be of the exact class that the system identity scope expects. This can

Page 369 of 482

IDENTITY SCOPES 353

affect some of the operations of the javakey database, since some of those opera­
tions are dependent on properties of the Sun implementation of an identity that
are not in the generic idea of an identity. "Yben we write our own identity-based
database at the end of this appendix, that will no longer be a problem (but we
won't be able to use the javakey utility on that database, either).

Writing an Identity Scope

We'll now implement our own identity scope, which will be one of the classes that
we'll use at the end of this appendix to put together an identity-based key manage­
ment database. We'll write a generic identity scope that implements the notion
that its identities are held in a file:

public class XYZFileScope extends IdentityScope

private Hashtable ids;

private static String fname;

public XYZFileScope(String fname) throws KeyManagementException {

super ("XYZFileScope");

this.fname = fname;
try {

FileinputStream fis =new FileinputStream(fname);

ObjectinputStream ois =new ObjectinputStream(fis);

ids= (Hashtable) ois.readObject();

catch (FileNotFoundException fnfe) {
ids= new Hashtable();

catch (Exception e) {

throw new KeyManagementException(

"Can't load identity database"+ fname);

public int size() {

return ids.size();

public Identity getidentity(String name) {

Identity id;

id = (Identity) ids.get(name);

return id;

public Identity getidentity(PublicKey key) {
if (key == null)

return null;
Identity id;

for (Enumeration e = ids.elements(); e.hasMoreElements();) {

id = (Identity) e.nextElement();

Page 370 of 482

354 APPENDIX B: IDENTITY-BASED KEY MANAGEMENT

PublicKey k = id.getPublicKey();
if (k !=null && k.equals(key))

return id;

return null;

public void addidentity(Identity identity)

throws KeyManagementException

String name= identity.getName();
if (getidentity(name) != null)

throw new KeyManagementException(

name+" already in identity scope");

PublicKey k = identity. getPublicKey () ;
if (getidentity(k) != null)

throw new KeyManagementException(

name+" already in identity scope");

ids.put(name, identity);

public void removeidentity(Identity identity)

throws KeyManagementException

String name= identity.getName();

if (ids.get(name) == null)

throw new KeyManagementException(

name+" isn't in the identity scope");
ids.remove(name);

public Enumeration identities()

return ids.elements();

public void save() {

try {

FileOutputStream fos =new FileOutputStream(fname);

ObjectOutputStream oos = new ObjectOutputStream(fos).;

oos.writeObject(ids);
catch (Exception e) {

System.out.println(e);

throw new RuntimeException("Can't save id database");

Let's delve into the implementation of this class. First, there are two instance vari­
ables. The ids variable will hold the identities themselves; we've decided to hold
the identities in a hash table so that we can easily search them based on a key. That

Page 371 of 482

IDENTI1Y SCOPES 355

key will be their name, which makes locating identities in this scope by name very
easy (but notice that locating them by public key is harder). The second variable,
fname, is the name of the file that will hold the persistent copy of this identity
scope.

There are three constructors in the Identi tyScope class that are available to us:

protected IdentityScope()
Construct an unnamed identity scope. This constructor is not designed to be
used by programmers; it is provided only so that an identity scope may be
subject to object serialization.

public IdentityScope(String name)
public IdentityScope(String name, IdentityScope scope)

Construct an identity scope with the given name. If an identity scope is speci­
fied, the new identity scope will be scoped within the specified scope;
otherwise, the new identity scope will have no scope associated with it (like
Private Scope #2 in figure Figure B-1). A KeyManagernentException will be
thrown if an identity or identity scope with the desired name already exists in
the given scope.

In our case, we've chosen only to provide our identity scope with a name. After
calling the appropriate superclass constructor, our class opens up the stored
version of the identity database and reads it in. Like the default javakey imple­
mentation, we've chosen the simple expedient of object serialization to a
persistent file to provide our storage. If the file isn't found, we create an empty
identity scope.

We've provided a simple save () method that serializes the private database out to
the same file that we read it in from; this method has a package protection so that
it will only be accessible by the code we develop. The remaining methods in our
class are all methods we are required to implement, because they are methods
that are abstract in our superclass. Because we're storing identities in a hashtable,
their implementations are usually simple:

• The size () method can simply return the size of the hash table.

• The getidentity(name) method can simply use the name as the lookup key
into the hashtable.

• The getidentity(key) method is the most complex method, although only
slightly: it merely needs to enumerate the identities and test each one individ­
ually to see if the keys match.

• The addidenti ty () method can search to make sure that the name and pub­
lic key of the new identity are unique and then simply store the identity into
the hash table with the name as its key.

Page 372 of 482

356 APPENDIX B: IDENTITY-BASED KEY MANAGEMENT

• The removeidentity() method can just tell the hashtable to remove the iden-
tity With the appropriate key.

• The identities () method can just return the hashtable enumeration.

There is one remaining protected method of the Identi tyScope class:

protected static void setSystemScope(IdentityScope scope)
Set the system identity scope to be the given scope.

We haven't used this method in this example, but it is one that we'll rely on later
when we extend this example. This method replaces the system identity database.
Replacing the system database makes things easier for developers. When devel­
opers need to operate on identities, they expect to access those identities through
the system database. Now that our class is the system database, we can return iden­
tities whether they exist in the user's private key database or in the shared public
key database.

IdentityScope and the Security Manager

Like the Identity class, the IdentityScope class uses the checkSecurityAc­

cess () method of the security manager to protect many of its operations from
being performed by untrusted classes. This method is called by the setSystem­
Scope () method (with an argument of "set. system. scope" in 1.1 and an
argument of "Identi tyScope. setSystemScope" in 1.2); no other methods of the
Identi tyScope class call this method by default.

However, in the default identity scope implemented in the sun package in 1.1, in
the following situations, these methods call the checkSecurityAccess () method
with the given string:

• When the getidentity() method would return a signer-that is, an identity
that has a private key ("get. signer")

• When the addidentity() and removeidentity() methods are called
("add. identity" and "remove. identity", respectively)

• When the database is written to a file via object serialization ("serial­
ize. identity. database")

When we implemented the abstract methods of our IdentityScope class, we prob­
ably should have made the decision to let the security manager override the
ability of an untrusted (or other) class to perform these operations. Hence, a
better implementation of the getidenti ty () method would be:

public Identity getidentity(String name)
Identity id;

id = (Identity) ids.get(name);

Page 373 of 482

KEY MANAGEMENT IN AN IDENTITY SCOPE

if (id instanceof Signer)

SecurityManager sec= System.getSecurityManager();
if (sec != null)

sec.checkSecurityAccess("get.signer");

return id;

Key Management in an Identity Scope

357

We're now going to put together the identity scope with the information about
the identity class we touched upon in Chapter 11 to produce another key manage­
ment system. One of the primary limitations of the default identity scope is that
it's based upon a single file. If you're in a corporation, you may want to have an
identity scope that encompasses the public keys of every employee in the corpora­
tion-but you can't afford to put the private keys of the employees in that
database. Every employee needs· read access to the database to obtain his or her
own key; there's no practical way with a single identity scope to prevent these
users from reading each other's private keys.

Hence, in this example, we're going to develop an identity scope that provides for
the architecture shown in Figure B-2.

Figure B-2. A key management architecture

There are two simple goals to this example:

• There should be a central database (identity scope) managed by the system
administrators of the xyz Corporation. This database will hold the public
keys of all identities that are used in the system, along with a security level that
is assigned to each identity.

• Each user should have a private database that holds the user's private key.
The user's private key will be certified by the xyz Corporation itself, so this

Page 374 of 482

358 APPENDIX B: IDENTITY-BASED KEY MANAGEMENT

private database will need to have the public key of the xyz Corporation.
We'll make this scope the system scope so that it can encapsulate the knowl­
edge that there are two scopes in use; to a program, it will appear as only a sin­
gle scope.

This architecture allows a program to access the user's private key, but not anyone
else's private key; it also allows the corporation to set security policies for classes
that are signed by particular entities.

There's a certain schizophrenic approach that a system administrator must take in
order to use a system like the one we're describing here. Many of the operations
that are provided by javakey cannot be duplicated by a standard Java program.
Hence, we must always rely on javakey to perform certain operations (like
importing a 1.1-based certificate), and then we need to convert from the javakey
database to our own database.

We must implement three classes for this example: an identity class, a signer class,
and a shared identity scope class (which will be based upon the XYZFileScope

class that we showed above).

Implementing an Identity Class

First, let's look at an implementation of the identity class:

public class XYZidentity extends Identity {

private int trustLevel;

protected XYZidentity()
}

public XYZidentity(String name, IdentityScope scope)

throws KeyManagementException
super(name, scope);

scope.addidentity(this);

trustLevel = 0;

public void setPublicKey(PublicKey key)

throws KeyManagementException
IdentityScope is= getScope();

Identity i = is.getidentity(key);

if (i !=null && !equals(i))

throw new KeyManagementException("Duplicate public key");
super.setPublicKey(key);

public void addCertificate{Certificate cert)

throws KeyManagementException

Page 375 of 482

KEY MANAGEMENT IN AN IDENTITY SCOPE

Identity i = getScope() .getidentity(cert.getPublicKey());
if (i !=null && !equals(i))

throw new KeyManagementException ("Duplicate public key") ;
super.addCertificate(cert);

public int getTrust() {
return trustLevel;

void setTrust(int x) {
if (X < 0 I I X > 10)

359

throw new IllegalArgumentException("Invalid trust level");
trustLevel = x;

public String toString() {
return super.toString() + " trust level: " + trustLevel;

We've chosen in this class to ensure that an identity always belongs to a scope and
so we only provided one constructor. There's a somewhat confusing point here,
however. Constructing an identity as part of a scope does not automatically add
that identity to the scope. That logic is required either in the constructor (as
we've done), or the design of the class will require that the developer using the
class explicitly assigns the identity to the scope later. The former case is probably
more useful; make sure to assign your identities inside their constructors.

Other than the constructor, we're not required to implement any other methods
in our identity class. However, we've chosen to override the setPublicKey() and
addCertificate () methods so that those methods throw an exception when an
identity is to be assigned a public key that already exists in the identity scope.
You'll recall that when we first introduced the Identity class, we mentioned that
this logic was not present. Adding that logic is a simple matter of checking to see
if the public key in question is already in the identity scope.

Finally, we've introduced a variable in our identity to determine the level of trust
that we place in this identity. This is similar to the binary option that javakey
gives us as to whether an identity is trusted or not; in our version, we allow the
identity to have a level of trust. A trust level of 3 might indicate that the identity is
fully trusted and hence should have access to all files; a level of 2 might indicate
that the identity should be allowed access only to files in the user's temporary
directory; a level of 1 might indicate that the identity should never be allowed to
access a local file. The point is, the notion of trust associated with an identity is
completely up to the programmer to decide-you're free to assign whatever

Page 376 of 482

360 APPENDIX B: IDENTI1Y-BASED KEY MANAGEMENT

semantics you like for this (or any other value), or to dispense with such an idea
altogether. The idea behind this variable is that the security manager might use it
(or other such information) to determine an appropriate security policy.

Implementing a Signer Class

Implementing the Signer class that we require follows virtually the same process:

public class XYZSigner extends Signer {

private int trustLevel;

public XYZSigner(String name, IdentityScope scope)

super(name, scope);

scope.addidentity(this);

throws KeyManagementException

public void setPublicKey(PublicKey key)

throws KeyManagementException

IdentityScope scope= getScope();

if (scope != null) {

Identity i = getScope() .getidentity(key);
if (i !=null && !equals(i))

throw new KeyManagementException(

"Duplicate public key");

super.setPublicKey(key);

public void addCertificate(Certificate cert)

throws KeyManagementException
IdentityScope scope= getScope();

if (scope !=null) {

Identity i = getScope() .getidentity(cert.getPublicKey());

if (i !=null && !equals(ill

throw new KeyManagementException(

"Duplicate public key") ;

super.addCertificate(cert);

public int getTrust() {

return trustLevel;

void setTrust(int x) {

if (X < 0 I I X > 10)

throw new IllegalArgumentException("Invalid trust level");
trustLevel = x;

Page 377 of 482

KEY MANAGEMENT IN AN IDENTITY SCOPE 361

public String toString() {

return super.toString() + " trust level: " + trustLevel;

We do not need to provide an overridden method for the setKeyPair () method
of the Signer class to ensure that a duplicate private key is not inserted into the
identity scope. Since we can only insert a private key with a public key, and since
there is a one-to-one correspondence between such keys, we know that if the
public keys are unique, the private keys are unique as well.

A Shared System Identity Scope

In the architecture we're examining, there are two identity scopes:

• The private scope. This scope will hold one and only one instance of XYZ­

Signer. This signer will represent the user who owns that particular database.

• The public scope. This scope will hold several instances of XYZidentity, but
no signers-since it is to be shared, we don't want it to contain any private
keys.

Each of these scopes will be an instance of the XYZFileScope that we showed
earlier. To combine them, we'll create another identity scope that holds a refer­
ence to both scopes:

public class XYZidentityScope extends IdentityScope

private transient IdentityScope publicScope;

private transient IdentityScope privateScope;

public XYZidentityScope() throws KeyManagementException

super ("XYZidentityScope");

privateScope =new XYZFileScope("/floppy/floppyO/private");

publicScope =new XYZFileScope("/auto/shared/sharedScope");

setSystemScope(this);

public int size() {

return publicScope.size{) + privateScope.size{);

public Identity getidentity(String name)

Identity id;

id = privateScope.getidentity(name);

if (id == null)

id = publicScope.getidentity(name);

return id;

Page 378 of 482

362 APPENDIX B: IDENTITY-BASED KEY MANAGEMENT

public Identity getidentity(PublicKey key)
Identity id;
id = privateScope.getidentity(key);
if (id == null)

id = publicScope.getidentity(key);
return id;

public void addidentity(Identity identity)
throws KeyManagementException

throw new KeyManagementException(
"This scope does not support adding identities").;

public void removeidentity(Identity identity)
throws KeyManagementException

throw new KeyManagementException(
"This scope does not support removing identities");

class XYZidentityScopeEnumerator implements Enumeration
private boolean donePrivate = false;
Enumeration pubEnum = null, privEnum = null;

XYZidentityScopeEnumerator() {
pubEnum = publicScope.identities();
privEnum = privateScope.identities();
if (!privEnum.hasMoreElements())

donePrivate = true;

public boolean hasMoreElements() {
return pubEnum.hasMoreElements() I I

privEnum.hasMoreElements();

public Object nextElement()
Object o = null;
if (!donePrivate) {

o = privEnum.nextElement();
if (!privEnum.hasMoreElements())

donePrivate = true;

else o = pubEnum.nextElement();
if (o == null)

throw new NoSuchElementException(
"XYZidentityScopeEnumerator");

return o;

Page 379 of 482

KEY MANAGEMENT IN AN IDENTITY SCOPE 363

public Enumeration identities() {
return new XYZidentityScopeEnumerator();

The idea behind this class is that it is going to hold identities containing private
keys, and that those private keys should be held somewhere safe. For this
example, we're assuming that the private identity scope database will be stored on
a floppy disk somewhere-that way, a user can move the identity scope around
with her, and the private key won't be left on a disk where some malicious person
might attempt to retrieve it.

This class is completely tailored to a Solaris machine, since we've hardwired the
name of the private file to a file on the default floppy drive of a Solaris machine,
and we've hardwired the name of the public file to a file that can be automounted
on the user's machine. On other machines, the name of the floppy drive will vary,
and a complete implementation of this class would really require that filename to
be a property. The property can be set to the appropriate value for the hardware
on which the Java virtual machine is running. The public database probably
shouldn't even be a file; it should be held on a remote machine somewhere and
accessed via RMI or another technique. We'll leave those enhancements as an
exercise for the reader.

Now that we have the two scopes we're interested in, completing the implementa­
tion is a simple matter of:

• Setting this identity scope to be the system identity scope. This allows the
developer to use the standard methods we've already seen to extract informa­
tion from this scope.

• Overriding the getidenti ty () and identities () methods so that they oper­
ate on both included identity scopes. Remember that often identity scopes
are disjoint; in this case, however, it makes sense for there to be a single inter­
face to the two identity scopes.

• Overriding the addidentity() and removeidentity() methods to prevent
them from changing the underlying identity databases. We'll see how to
manipulate the individual database in the next section.

Creating Identities

The xyz Corporation is concerned about two sorts of identities: identities from
corporations and individuals outside the corporation, and identities of employees.
The latter must all have private keys in order for the employees to be able to sign

Page 380 of 482

364 APPENDIX B: IDENTITY-BASED KEY MANAGEMENT

documents and will be instances of the XYZSigner class; the former need only
public keys and will be instances of the XYZide,p.tity class.

In order to create these identities, we're going to rely on the facilities provided by
javakey to do the bulk of the work for us, then we're going to read the generic
entity out of the javakey database and turn it into an xyz-based entity. This allows
us to import or create certificates for these identities, which is something that
only javakeycan do injava 1.1.

When a new employee comes to the xyz Corporation, we must generate a private
identity database for that employee on a floppy that can be given to the employee.
As a first step, however, we must create the employee in a standard javakey data­
base so that the employee can be given a certificate to accompany her identity.
Once we've got the employee into the javakey database, here's the code we use to
convert the javakey entry into the XYZidentityScope we just examined:

pubiic class NewEmployee {

public static void rnain(String args[]) {

try {

IdentityScope is= IdentityScope.getSysternScope();

Signer origSigner = (Signer) is.get!dentity(args[O]);

Systern.out.println(

"Please insert the floppy for"+ args[O]);

Systern.out.print("Press enter when ready: ");

Systern.in.read();

XYZFileScope privateScope =

new XYZFileScope("/floppy/floppyO/private");

XYZSigner newSigner =new XYZSigner(args[O], privateScope);

KeyPair kp =new KeyPair(origSigner.getPublicKey(),

origSigner.getPrivateKey());

newSigner.setKeyPair(kp};

newSigner.setinfo(origSigner.getinfo(}};

Certificate certs[] = origSigner.certificates();

for (int i = 0; i < certs.length; i++}

newSigner.addCertificate(.certs[i]);

newSigner.setTrust(Integer.parseint(args[l]});

privateScope.save(};

XYZFileScope sharedScope

new XYZFileScope("/auto/shared/sharedScope"};

XYZidentity newid =new XYZidentity(args[O], sharedScope};

newid.setPublicKey(origSigner.getPublicKey(}};

newid.setinfo(origSigner.getinfo(});

certs = origSigner.certificates(};

for (int i = 0; i < certs.length; i++l

newid.addCertificate(certs[i]};

newid.setTrust(Integer.parseint(args[l]}};

Page 381 of 482

SUMMARY

sharedScope.save();

catch (Exception e) {

System.out.println(e);

365

This program is then run with the name of the employee as an argument. When
the program is run, two things happen:

1. The correct private key database is created and written to the floppy. The
private key database has the signing identity of the new employee loaded into
it.

2. The shared public database is opened, and the identity of the new employee
is added to it.

In both cases, it was necessary to read the existing data out of the entity read from
the javakey database and convert that data into an XYZ-based class. We could have
used the existing object (a subclass of the Identity or Signer class), but that
would not have allowed us to associate a level of trust with these entities in our
database. Mter the program has run, both databases have the desired entity, with
the desired set of keys.

When the system administrator for the X'YZ Corporation receives a public key
(and a certificate) for an entity that is not going to be a signer within the X'YZ
Corporation, a similar procedure would need to be followed to enter· the certifi­
cate into the javakey database, and then extract out the new identity and update
only the shared identity scope. Code to do that would be very similar to the code
shown above.

Summary
In this appendix, we've shown an example of an identity-based key management
system. Such a system is the only choice for key management for developers in
Java 1.1. In the realm of Java 1.2, such a system is fairly limited: the keystore-based
key management systems are more flexible and are better integrated into the Java
API.

The identity-based key management system does have one advantage: it allows the
retrieval of identity objects from the database, while the keystore-based system
only allows for retrieval of keys and certificates. This means that an identity-based
system can embed within it other information about an entity (including, for
example, a level of trust associated with that individual); this other information is
available to users of the database in a straightforward way.

Page 382 of 482

c

Security Resources

Books are very useful for learning some things, and hopefully you've gotten some
benefit from the one you're holding in your hand. However, for some types of
information, the Internet remains the better choice. In this appendix, we'll list
and discuss various network resources that relate to Java and security.

One reason why this information is better found on the Internet is because it is
subject to rapid change. The APis we've discussed may remain fairly stable
(despite the big changes in many of them between 1.1 and 1.2), but the informa­
tion to be found in these resources is more dynamic.

Security Bugs
Early in my computer science career, I handed in an exam that ended up
receiving a lower grade than I had expected.* As part of the exam, I was asked to
write an algorithm, prove that it was correct, and then provide an implementation
of the algorithm.

While my algorithm and its accompanying proof were completely correct, my
implementation received a failing grade. This was a rather dispiriting result: I had
come up with a solution and proved that the solution was correct. But the "real"
solution-the implementation-was still flawed.

Such is the potential problem with implementing a security model. A lot of design
and analysis has gone into Java's default security model, and hopefully you'll put
your own effort into making your own applications secure. But no matter how
sound the design of a security model, in the end it is the implementation that
matters.

* Okay, that was not an unusual event for me ...

366

Page 383 of 482

SECURITY BUGS 367

In this section, we'll discuss some past bugs in java's security implementation and
list some common resources for finding out about and fixing present bugs.

Few issues in the Java world receive more attention than security bugs; report of a
new bug is guaranteed to produce a flurry of activity. As a result, readers of the
trade press often have the idea that Java is riddled with security bugs, or that it
isn't secure to begin with. This is not the case. While some important bugs in
Java's security implementation have been reported, the impact of these bugs has
(at least until now) been minimal.

Bugs that are reported against Java's security model fall into one of five categories:

1. Reports that are not bugs, but that arise from a lack of understanding of
Java's security model

There are two types of very common bugs in this category: applets that
perform annoying tasks, and applets that seem to break out of the sandbox.
The former category includes applets that take lots of CPU time or otherwise
consume many resources. As we mentioned at the outset of this book, such
attacks are annoying but are not security attacks.

The latter category often involves bugs that hinge upon someone having
installed a local class file (or worse, a local native library); as we know by now,
these local class files are treated as trusted classes. When one of these local
classes is able to read (or remove) files on your disk, contact a machine on
your local network, or engage in some other potentially malicious behavior,
word goes out that Java is not secure, or at best has bugs in its security model.

The lesson to learn from these reports is this: no computer security model is a
substitute for vigilant practices by the end user. If your policy is never to run
shareware programs downloaded from the Internet, then your policy should
be never to install local classes on your system. And while newer versions of
browsers, along with the ability in 1.2 to run applications in a secure environ­
ment, help to mitigate the potential danger of installing a local class file, such
features will never obviate the need for users and system administrators to
understand and work with the security model. There may be real bugs in the
Java implementation-but don't assume that all reports you hear about the
sandbox being broken fall into that category.

2. Bugs that are misclassified; that is, actual bugs that are reported as being secu­
rity bugs when they are not

As we've seen, security is pervasive in the Java platform-the bytecode verifier,
the class loader, the security manager, and the compiler all have .aspects of
security to them. Hence, bugs in these areas are often considered security
bugs even when they are not. For example, a bug in the bytecode verifier is
usually assumed to be a security bug, even if it is not; if the verifier doesn't

Page 384 of 482

368 APPENDIX C: SECURITY RESOURCES

accept a particular construct that it should accept, for example, no security
concerns arise.

3. Web-related bugs that are not Java-specific

Often, security problems on the Internet are associated with Java without any
direct cause. In particular, bugs related to JavaScript™ and to ActiveX often
fall into this category.

When the first reports of ActiveX security bugs were circulated, there was a lot
of discussion about "active content"; the assertion in many quarters was that
the security problems that plagued ActiveX were inherent in any active
content system. This assertion attempted to place Java in the same light as
ActiveX since both were active content systems. The reality is that Java and
ActiveX have very different security models.

Similarly, bugs about JavaScript are often confused with bugs about Java, in
part because of the name. It is probably well known by this point, but it
doesn't hurt to reiterate: JavaScript and Java are completely different technol­
ogies produced by separate companies (Netscape and Sun, respectively). The
two technologies are complementary in many ways, but they are fundamen­
tally different from a security perspective.

Finally, Java is not immune to security problems that plague the Web in
general. Data that is sent between sites among Java applets and servers can be
snooped just like data that is sent via HTTP can be snooped (unless the Java
traffic is using SSL or another encryption technique). A hacker that sets up a
site to impersonate XYZ.com will be able to serve Java applets just as it is able
to serve HTML.

4. Bugs in third-party trusted classes

When you install third-party classes, it is possible that one of them may breach
the security model that you think is in place: it may provide a mechanism for
an untrusted class to open a file, for example, based upon the permissions
normally given to the third-party class.

Complicating this factor is the manner in which these classes are often
installed: they are often put into a directory and the user's CLASSPATH is
globally set to include those classes. Now untrusted classes will be able to
access the third-party classes.

5. Bugs in the Java implementation

There have been several well-publicized bugs that do involve Java's security
implementation; as with any large computer system, there are bound to be
others.

Page 385 of 482

SECURITY BUGS 369

This last point should not minimized-there have been and will be bugs in the
Java security implementation. But the potential for bugs and their potential
impact must be weighed against the potential benefits of using Java. I know of one
corporation where Java is not allowed to be used for any internal project. This site
is not worried about employees doing malicious things to other employees, and
they filter out Java class files at their corporate firewall, but developers at this
company are still not permitted to use Java for any internal project due to security
concerns.

When I asked about this policy, I was told that this corporation had "zero-toler­
ance" for security problems, and the mere risk of a Java security bug was enough
for them to forbid the use of Java. Of course, this site that had zero-tolerance for
security problems had a floppy disk drive on every one of their desktop
computers, and users routinely took files to and from the office via floppy disks.
The potential for a virus being spread by floppy disk drive (which is very real) was
outweighed for them by the benefit of their users doing work at home. Mean­
while, the thought that Java would somehow spontaneously corrupt their isolated
network was, for them, enough to outweigh any of the potential benefits they saw
to using Java within their extremely distributed, heterogeneous network. Assessing
the security of a platform always involves assessing the potential risks and the
potential rewards, though apparently that is sometimes hard to do.

] ava Security Bugs

One of the ways to assess the potential impact of Java security bugs is to under­
stand the bugs that have occurred to date and their relative impact. The fact that
all these bugs have been fairly minor and quickly fixed is of some comfort. That is
not to say that a future bug won't be more devastating or harder to fix; the point
here is really to shed light on the bugs that have been found.

The bugs we'll discuss in this section all have another property: attacks based on
these bugs were very hard to construct. In fact, attacks based on these bugs never
made it out onto the Internet or other networks; the bugs were all reported by
various researchers, and often even the researchers had difficulty in constructing
an attack against them.

Here's a chronology of security bugs that have been found in Java through March
1998:

DNS spoofing
In February 1996, the first Java security bug was posted. It involved a DNS
spoofing scenario in which an applet could make a connection to a third­
party host other than the one from which it was loaded. Such an attack
required access by the attacker to a DNS server that was used by the user and

Page 386 of 482

370 APPENDIX C: SECURITY RESOURCES

knowledge of the IP address of the third-party machine. DNS spoofing is a
general problem (i.e., this bug falls into category 3 in our above list), butJava
was fixed in 1.0.1 to circumvent this scenario.

Class loader implementation bug
In March 1996, a bug was found that allowed an applet to load a class refer­
enced by an absolute pathname. This bug was fixed in 1.0.1.

Verifier implementation bug
In March 1996, a bug was discovered that took advantage of an implementa­
tion error in the bytecode verifier. An attack via this bug needed to be very
sophisticated, but it did allow the applet to perform any operation (delete a
file, write a file, etc.) on the user's machine. This bug was fixed in 1.0.2.

URL name resolution attack
In April 1996, a bug related to an obscure network configuration was
reported. This bug required that the user's machine be running in a DNS
domain that it was not registered to and that the attacker's machine be
running in that same DNS domain. This bug was fixed in 1.0.2.

Class loader bug
In May 1996, a bug in the class loader was discovered that allowed two applets
loaded in different class loaders to exploit a way of casting between different
classes with the same distinct name. This bug was fixed in 1.1.

Verifier implementation bug
In March 1997, Sun discovered a bug in the implementation of the verifier.
Exploiting this bug would have required knowledge of the bug itself as well as
writing Java bytecodes by hand. This bug wasfixed in 1.1.1.

Class signing bug
A bug in the getSigners () method of the Class class was discovered in April
1997. This bug allowed code signed by one entity to be treated as if were
signed by a different entity (possibly with more access to the user's machine).
This bug was fixed in 1.1.2.

Verifier implementation bug
A bug that could allow the VM to crash in the bytecode verifier was discovered
in May 1997; this bug was fixed in 1.1.2.

Illegal type casting
A bug related to illegal type casting was reported in June 1996. This bug
allowed an applet to undermine the typing system of Java. This bug was fixed
in 1.1.3.

Page 387 of 482

THIRD-PARTY SECURITY PROVIDERS 371

Tracking Security Bugs

The nature of tracking security bugs makes it impossible to track them through a
book such as this; we're sure that the above list is already out of date. Hence, the
better way to track security issues with Java's implementation is to check periodi­
cally the following resources oil the Web.

An important point to realize about these sites and the bugs we've just listed is
that much of the research on security implementation bugs occurs outside of Sun.
Sun's approach to Java security is to achieve security by openness-that is, the
more people who can examine the platform for implementation bugs, the better
that implementation will become. This is one reason why the JDK source code is
freely available for noncommercial purposes.

http:/ /java. sun. com/sfaq/ chronology. html
This page lists the known bugs in the security implementation (the above list
was culled from this page). New bugs and their fixes are reported here first.

http://www. cert. org/
The CERT organization tracks security-related bugs for all types of computer
systems, including Java implementations. Java-related security bugs are often
published as CERT advisories.

http:/ /www.cs.princeton.edu/sip/
Many of the bugs in Java's security implementation have been discovered as a
result of work done at Princeton's Security Internet Programming (SIP)
group. This page summarizes their work, including several of the bugs that
were listed above.

Work at SIP is funded by many companies, including Sun itself.

news:/ /comp.security.announce
This newsgroup tracks security-related announcements about all systems,
including Java.

http:/ /kimera. cs. washington.edu/
This research group is also responsible for finding some of the bugs that were
listed above.

http://www. alw. nih.gov /Security/security-advisories. html
This site has links to several services that publish advisories when Java (and
other) security-related bugs are discovered.

Third-Party Security Providers
There is an increasing number of third-party security providers for both the stan­
dard Java Cryptography Architecture and for the Java Cryptography Extension. A

Page 388 of 482

372 .APPENDIX C: SECURITY RESOURCES

partial list of these security providers follows. Note that most of them are based
outside the United States. As we discussed in Chapter 13, this frees some restric­
tions and places other restrictions upon their use: the non-U.S. implementations
of the JCE are freed from the export restrictions of the U.S. government (but may
still be subject to other export and import restrictions). However, these packages
may be subject to patent restrictions-especially within the United States if they
include RSA or RC4 forms of cryptography (even if the package originated
outside the United States), and within the U.S. and Europe if they include IDEA
encryption.

The following list is not exclusive: new providers will certainly have been written
in the time this book has been published, and the algorithms provided by each
entry in the list are subject to change. In addition to the listed engines, these pack­
ages will all provide the necessary key classes and engines to support the
algorithms in the package.

• Baltimore Technologies (http://www.baltimore.ie/jcrypto.htm)

The J/Crypto product of Baltimore Technologies in Ireland furnishes a secu­
rity provider for the standard JCA that includes implementations of the follow­
ing engines:

Message digests: MD5 and SHA
Digital signatures: DSA and RSA/SHA

In addition, J/Crypto provides a JCE-compatible replacement that includes
the following engines:

Cipher: DES, DESede, RSA, RC4, PBE
Key agreement: Diffie-Hellman

• IAIK:J CE (http:/ /kopernikus. iaik. tu-graz. ac. atl]avaSecurity /index. htm)

This package from the Institute for Applied Information Processing and Com­
munications in Austria (IAIK) comes with a security provider that performs
the following:

Digital signatures: RSA/MD5 and RSA/SHA
Message digests: MD5 and SHA
Certificate and CRL classes: X509

While IAIK must be purchased for commercial use, it is free for noncommer­
cial use.

IAIK also provides a JCE-compatible replacement that includes the following
engines:

Cipher: DES, DESede, IDEA, RC2, RC4

Page 389 of 482

THIRD-PARTY SECURITY PROVIDERS 373

• JCP Computer Services LTD (http;/ jwww.Jcp.co.uk/products/index.html)

The JCP Crypto product of JCP Computer Services LTD in the United King­
dom furnishes a security provider that includes implementations of the follow­
ing engines:

Message digests: MD5 and SHA
Digital signatures: RSA/MD5 and RSA/SHA

JCP Crypto also comes with aJCE replacement that includes implementations
of the following:

Cipher: DES, DESede, IDEA, RSA, RC4

• Systemics LTD (http://www.systemics.com/sojtware/cryptix-java/)

The Cryptix package from Systemics LTD in the United Kingdom furnishes a
security provider that includes implementations of the following engines:

Message digest: Haval, MD2, MD4, MD5, RIPE-MD128, RIPE-MD160, SHA
Digital signature: RSA with MD2, MD4, MD5 and SHA, El Gamal.

In addition, Cryptix supplies a replacement for the JCE that includes the fol­
lowing:

Cipher: Blowfish, CAST 5, DES, DESede, IDEA, Loki, RC2, RC4, Safer, Speed,
Square, El Gamal ·

Cryptix is freely available.

• RSA Data Security, Inc. (http://www.rsa.com/rsa/products/jsaje/)

The]Safe product from RSA Data Security in the United States furnishes a
security provider that implements the following:

Message digest: MD5, SHA

Digital signature: RSA/MD5, RSA/SHA

In addition,JSafe has aJCE-security provider that implements the following:

Cipher: DES, DESede, RC2, RC4, RC5

Key agreement: Diffie-Hellman

Since RSA is the holder of the patents for these algorithms in the United
States, they are able to sell licenses for this technology within the U.S. Note
that unlike the other items listed in this section, the JCE security provider is
just that; it requires the official JCE from Sun. The remaining JCE packages
come with their ownJCE implementation.

Page 390 of 482

374 APPENDIX C: SECURITY RESOURCES

Security References
Finally, here is a number of white papers and other references that are of general
interest:

http://java.sun.com/security/
This is the main index site for all security-related features of the JDK In partic­
ular, this page has links to security white papers, API and tool documentation,
security specifications, and more. This site also has links to many of the other
sites we've lh;ted here.

http:/ /java.sun.com/sjaq/
This is the Frequently Asked Questions page for Java security. This page
primarily addresses what applets can and cannot do.

http:/ /java.sun.com/products/jdkl.2/docs/guide/security/security-spec.html
This document is the specification for the 1.2 Java security architecture; it
provided invaluable background for this book. When you download the JDK
1.2 documentation, this document can be found at $]A VA­
HOME/ docs/ guide/security /spec/security-spec. html.

· http://www. users.zetnet. co. uk/hopwood/papers/ compsec97.html
This document gives an interesting perspective on the topic of authentica­
tion, and in particular whether Java's techniques for authentication are
secure.

http:/ /www.doc.gov/
The Department of Commerce of the U.S. government. The Commerce
Department governs and publishes the export restrictions of encryption and
can grant exceptions for exporting encryption technology.

http:/ /www.crypto.com/
The Export Policy Resource page contains a number of links and other refer­
ences to sites concerned with the U.S. government encryption policies.

Bruce Schneier. Applied Cryptography. John Wiley & Sons, New York, NY. 1996
Okay, it is not a web site, but this book is another invaluable reference for
details of all the cryptographic topics of this book (Mr. Schneier's web site,
for the library-impaired, is http://www. counterpane. com/).

Jonathan Knudsen. Java Cryptography. O'Reilly & Associates, Sebastopol, CA. 1998
For a discussion of implementing cryptographic algorithms in Java with a
series of excellent examples, check out this book.

Page 391 of 482

D

Quick Reference

This appendix contains a quick-reference guide to the classes that we have
discussed in this book. The primary focus is on classes that are in the java. secu­
rity package and its sub-packages, as well as the javax.crypto extension
package. Accordingly, the classes listed in this appendix are organized by their
primary package. Of course, there are a number of security-related classes-such
as the various permission classes-that do not belong to one of these packages;
these are listed in the "Miscellaneous Packages" section at the end of this
appendix. Information in this appendix is based only on java 1.2.

Package java. security

Class java.security.AccessC ontrolC ontext

An access control context allows the access controller to substitute a different
context (that is, a different set of protection domains) than the context provided
by the stack of the current thread. This class might be used by a server thread to
determine if a particular calling thread should be allowed to perform particular
operations.

Class Definition
public final class java.security.AccessControlContext

extends java.lang.Object

II Constructors
public AccessControlContext(ProtectionDomain[]);

375

Page 392 of 482

376

II Instance Methods
public void checkPermission{Permission);
public boolean equals{Object);
public int hashCode{);

APPENDIX D: QUICK REFERENCE

See also: AccessController

Class java.security.AccessC ontroller
The access controller is responsible· for determining whether or not the current
thread can execute a given operation. This decision occurs in the checkPermis­
sion {) method and is based upon all the protection domains that are on the
stack of the calling thread and the set of permissions that have· been granted to
those protection domains. The access controller is heavily used by the security
manager to enforce a specific security policy, and it may be used by arbitrary code
to enforce an application-specific security policy as well.

Class Definition
public final class java.security.AccessController

extends java.lang.Object {

II Class Methods
public static native void beginPrivileged{);
public static native void beginPrivileged{AccessControlContext);
public static void checkPermission{Permission);
public static native void endPrivileged{);
public static AccessControlContext getContext{);

See Also: Permission, ProtectionDomain, Policy

Class java.security.AlgorithmParameterGenerator

This engine class is used to generate algorithm-specific parameters, which may
then be turned into algorithm parameters specifications to be used to initialize
other engine classes. In normal usage, those engines can be initialized directly via
the same init {) methods that exist in this class; hence, this class is little used.

Class Definition
public class java.security.AlgorithmParameterGenerator

II Constructors
protected AlgorithmParameterGenerator{

Page 393 of 482

PACKAGE JAVA. SECURITY 377

AlgorithmPararneterGeneratorSpi, Provider, String);

II Class Methods
public static final AlgorithmPararneterGenerator

getinstance(String);
public static final AlgorithmPararneterGenerator

getinstance(String, String);

II Instance Methods
public final String getAlgori thm () ;
public final Provider getProvider();
public final void init(int);
public final void init(int, SecureRandom) ;
public final void init(AlgorithmParameterSpec);
public final void init(AlgorithmParameterSpec, SecureRandom) ;
public final AlgorithmPararneters generatePararneters();

See also: AlgorithroParameters

Class
java. security .AlgorithmParameterGeneratorSpi

This class is the Security Provider Interface for the algorithm parameter gener­
ator. If you want to implement your own algorithm parameter generator, you
subclass this class and register your implementation with an appropriate security
provider.

Class Definition
public abstract class java.security.AlgorithmPararneterGeneratorSpi

II Instance Methods
protected abstract void engineinit(int, SecureRandom);
protected abstract void engineinit(

AlgorithmPararneterSpec, SecureRandom);
protected abstract AlgorithmPararneters engineGeneratePararneters();

See also: AlgorithmParameterGenerator

Class java.security .AlgorithmParameters
This engine class is used to generate algorithm-specific parameter specifications,
which may then be used to initialize other engine classes. In normal usage, those

Page 394 of 482

378 APPENDIX D: QUICK REFERENCE

engines can be initialized directly via the same init () methods that exist in this
class; hence, this class is little used.

Class Definition
public class java.security.AlgorithmParameters

II Class Methods
public static final AlgorithmParameters getinstance(String);
public static final AlgorithmParameters getinstance(

String, String);

II Instance Methods
protected AlgorithmParameters(AlgorithmParametersSpi,

Provider, String);
public final String getAlgorithm();
public final Provider getProvider();
public final void init(AlgorithmParameterSpec);
public final void init(byte[]);
public final void init(byte[], String);
public final AlgorithmParameterSpec getParameterSpec(Class);
public final byte[] getEncoded();
public final byte[] getEncoded(String);
public final String toString();

See also: KeyPairGenerator

Class java.security.AlgorithmParametersSpi
This is the Security Provider Interface for algorithm parameters. If you want to
implement your own algorithm parameters, you do so by subclassing this class and
registering your implementation with an appropriate security provider.

Class Definition
public abstract class java.security.AlgorithmParametersSpi

extends java.lang.Object

II Constructors
public AlgorithmParametersSpi();

II Protected Instance Methods
protected abstract byte[] engineGetEncoded();
protected abstract byte[] engineGetEncoded(String);
protected abstract AlgorithmParameterSpec

engineGetParameterSpec(Class);
protected abstract void engineinit(AlgorithmParameterSpec);

Page 395 of 482

PACKAGE JAVA. SECURITY

protected abstract void engineinit(byte[]);
protected abstract void engineinit(byte[], String);
protected abstract. String engineToString();

See also: AlgorithmParameters

Class java.security.AllPermission

379

This class represents permissions to perform any operation. This permission is
typically granted to extension classes, which (like the core API) need to be able to
perform any operation. Although it is a permission class, instances of this class
have no name and no. actions. The inplies () method of this class always returns
true.

Class Definition
public final class java.security.AllPermission

extends java.security.Permission

II Constructors
public AllPermission();
public AllPermission(String, String);

II Instance Methods
public boolean equals(Object);
public String getActions();
public int hashCode();
public boolean implies(Permission);
public PermissionCollection newPer.missionCollection();

See also: Pennission

Class java.security.BasicPermission
A basic permission represents a binary permission-that is, a permission that you
either have or do not have. Hence, the action string in a basic permission is
unused. A basic permission follows the same naming convention as java proper­
ties: a series of period-separated words, like "exit" or "print.queueJob". The
BasicPennission class is capable of wildcard matching if the last word in the
permission is an asterisk. This class serves as the superclass for a number of
default permission classes.

Page 396 of 482

380 APPENDIX D: QUICK REFERENCE

Class Definition
public abstract class java.security.BasicPermission

extends java.security.Permission
implements java.io.Serializable

II Constructors
public BasicPermission(String);
public BasicPermission(String, String);

II Instance Methods
public boolean equals(Object);
public String getActions();
public int hashCode();
public boolean implies(Permission);
public PermissionCollection newPermissionCollection();

See also: Permission, PermissionCollection

Class java.security.CodeSource

A code source encapsulates the location from which a particular class was loaded
and the public keys (if any) that were used to sign the class. This information is
used by a secure class loader to define a protection domain associated with the
class; typically, the class loader is the only object that uses a code source.

Class Definition
public class java.security.CodeSource

extends java.lang.Object
implements java.io.Serializable

II Constructors
public CodeSource(URL, PublicKey[]);

II Instance Methods
public boolean equals(Object);
public final PublicKey[] getKeys();
public final URL getLocation();
public int hashCode();
public String toString();

See also: SecureClassLoader, ProtectionDornain

Page 397 of 482

PACKAGE JAVA.SECURITY 381

Class java.security.Digestl nputS tream

A digest input stream is an input filter stream that is associated with a message
digest object. As data is read from the input stream, it is automatically passed to its
associated message digest object; once all the data has been read, the message
digest object will return the hash of the input data. You must have an existing
input stream and an initialized message digest object to construct this class; once
the data has passed through the stream, call the methods of the message digest
object explicitly to obtain the hash.

Class Definition
public class java.security.DigestinputStream

extends java.io.FilterinputStream

II Variables
protected MessageDigest digest;

II Constructors
public DigestinputStream(InputStream, MessageDigest);

II Instance Methods
public MessageDigest getMessageDigest();
public void on(boolean);
public int read();
public int read(byte[], int, int);
public void setMessageDigest(MessageDigest);
public String toString();

See also: DigestOutputStream, MessageDigest

Class java.security.DigestOutputS tream

A digest output stream is a filter output stream that is associated with a message
digest object. When data is written to the output stream, it is also passed to the
message digest object so that when the data has all been written to the output
stream, the hash of that data may be obtained from the digest object. You must
have an existing output stream and an initialized message digest object to use this
class.

Class Definition
public classs java.security.DigestOutputStream

extends java.io.FilterOutputStream {

Page 398 of 482

382 APPENDIX D: QUICK REFERENCE

II Variables
protected MessageDigest digest;

II Constructors
public DigestOutputStream(OutputStream, MessageDigest};

II Instance Methods
public MessageDigest getMessageDigest();
public void on (boolean};
public void setMessageDigest(MessageDigest};
public String toString();
public void write(int};
public void write(byte[], int, int);

See also: DigestinputStream, MessageDigest

Interface java.security.Guard

An object of a class that implements the Guard interface may be used to protect
access to a resource. In typical usage, a guard is an object of the Pe:rnlission class,
so that access to the guarded resource is granted if and only if the current thread
has been granted the given permission. This interface is used by the GuardedOb­
j ect class to guard access to another object.

Interface Definition
public abstract interface java.security.Guard {

II Instance Methods
public abstract void checkGuard(Object);

See also: GuardedObject, Pennission

Class java.security.GuardedObject

A guarded object is a container for another object. The contained object is
guarded using an object that implements the Guard interface; in typical usage,
that would be an instance of a Pe:rnlission object. The guarded object stores a
serialized version of the object it contains; the contained object will be deserial­
ized and returned by the getObj ect () method only if the guard object allows
access.

Page 399 of 482

PACKAGE JAVA. SECURITY

Class Definition
public class java.security.GuardedObject

extends java.lang.Object
implements java.io.Serializable

II Constructors
public GuardedObject(Serializable, Guard);

II Instance Methods
public Object getObject();

See also: Guard

Class java. security./ dentity

383

An identity encapsulates public knowledge about an entity (that is, a person or a
corporation-or anything that could hold a public key). Identities have names
and may hold a public key, along with a certificate chain to validate the public
key. An identity may belong to an identity scope, but this feature is optional and is
not typically used.

Class Definition
public class java.security.Identity

extends java.lang.Object
implements java.security.Principal, java·.io.Serializable {

II Constructors
protected Identity();
public Identity(String);
public Identity(String, String, Certificate[], PublicKey);
public Identity(String, IdentityScope);

II Instance Methods
public void addCertificate(Certificate);
public final boolean equals(Object);
public Certificate[) getCertificates();
public String getinfo();
public final String getName();
public PublicKey getPublicKey();
public final IdentityScope getScope();
public int hashCode();
public void removeCertificate(Certificate);
public void setinfo(String);
public void setPublicKey(PublicKey);
public String toString();

Page 400 of 482

384 APPENDlX D: QUlCK REFERENCE

public String toString(boolean);

11 Protected Instance Methods

protected boolean identityEquals(Identity);

See also: Certificate, IdentityScope,Principal,PublicKey

Class java.security.IdentityScope

An identity scope is a collection of identities; an identity may belong to a single
identity scope. The notion is that scope is recursive: an identity scope may itself
belong to another identity scope (or it may be unscoped). This class is not often
used in Java 1.2.

Class Definition
public abstract class java.security.IdentityScope

extends java.security.Identity

II Constructors

protected IdentityScope();

public IdentityScope(String);

public IdentityScope(String, IdentityScope);

II Class Methods

public static IdentityScope getSystemScope();

protected static void setSystemScope(IdentityScope);

II Instance Methods

public abstract void addidentity(Identity);

public abstract Identity getidenti ty (String) ;

public Identity getidentity(Principal);

public abstract Identity getidentity(PublicKey);

public abstract Enumeration identities();

public abstract void removeidentity(Identity);

public abstract int size();

public String toString();

See also: Identity

Interface java.security.Key

A key is essentially a series of bytes that are used by a cryptographic algorithm.
Depending on the type of the key, the key may be used only for particular opera-

Page 401 of 482

PACKAGE JAVA.SECURITY 385

tions and only for particular algorithms, and it may have certain mathematical
properties (including a mathematical relationship to other keys). The series of
bytes that comprise a key is the encoded format of the key.

Interface Definition
public abstract interface java.security.Key

implements java.io.Serializable

II Instance Methods
public abstract String getAlgorithm();
public abstract byte[] getEncoded();
public abstract String getFormat();

See also: PrivateKey, PublicKey, secretKey

Class java.security.KeyF actory

A key factory is an engine class that is capable of translating between public or
private key objects and their external format (and vice versa). Hence, key factories
may be used to import or export keys, as well as to translate keys of one class (e.g.,
com.acme.DSAPublicKey) to another class (e.g., com.xyz.DSAPublicKeyimpl) as
long as those classes share the same base class. Key factories' operate in terms of
key specifications; these specifications are the various external formats in which a
key may be transmitted. Keys are imported via the generatePublic () and gener­
atePrivate () methods, they are exported via the getKeySpec () method, and
they are translated via the translateKey () method.

Class Definition
public class java.security.KeyFactory

extends java.lang.Object

II Constructors
protected KeyFactory(KeyFactorySpi, Provider, String);

II Class Methods
public static final KeyFactory getinstance(String);
public static final KeyFactory getinstance(String, String);

II Instance Methods
public final PrivateKey generatePrivate(KeySpec);
public final PublicKey generatePublic(KeySpec);
public final String getAlgorithm();
public final KeySpec getKeySpec(Key, Class);

Page 402 of 482

386

public final Provider getProvider();
public final Key translateKey(Key);

APPENDIX D: QUICK REFERENCE

See also: KeyFactorySpi, KeySpec

Class java.security.KeyFactorySpi
This is the Service Provider Interface for a key factory; if you want to implement
your own key factory, you do so by extending this class and registering your imple­
mentation with an appropriate security provider. Instances of this class are
expected to know how to create key objects from external key specifications and
vice versa.

Class Definition
public abstract class java.security.KeyFactorySpi

extends java.lang.Object

II Constructors
public KeyFactorySpi();

II Protected Instance Methods
protected abstract PrivateKey engineGeneratePrivate(KeySpec);
protected abstract PublicKey engineGeneratePublic(KeySpec);
protected abstract KeySpec engineGetKeySpec(Key, Class);
protected abstract Key engineTranslateKey(Key);

See also: KeyFactory, KeySpec

Class java.security.KeyPair
Public and private keys are mathematically related to each other and hence are
generated together; this class provides an encapsulation of both the keys as a
convenience to key generation.

Class Definition
public final class java.security.KeyPair

extends java.lang.Object

II Constructors
public KeyPair(PublicKey, PrivateKey);

II Instance Methods

Page 403 of 482

PACKAGE JAVA.SECURITY

public PrivateKey getPrivate();
public PublicKey getPublic();

See also: KeyPaiiGenerator,PrivateKey,PublicKey

Class KeyPairGenerator

387

This is an engine class that is capable of generating a public key and its related
private key. Instances of this class will generate key pairs that are appropriate for a
particular algorithm (DSA, RSA, etc.). A key pair generator may be initialized to
return keys of a particular strength (which is usually the number of bits in the
key), or it may be initialized in an algorithmic-specific way; the former case is the
one implemented by most key generators. An instance of .this class may be used to
generate any number of key pairs.

Class Definition
public abstract class java.security.KeyPairGenerator

extends java.security.KeyPairGeneratorSpi {

II Constructors
protected KeyPairGenerator(String);

I l Class Methods
public static KeyPairGenerator getinstance(String);
public static KeyPairGenerator getinstance(String, String);

II Instance Methods
public final KeyPair genKeyPair();
public String getAlgorithm();
public final Provider getProvider();
public void initialize(int);
public void initialize(AlgorithmParameterSpec);

See also: AlgorithmParameterSpec, KeyPair

Class KeyPairGeneratorSpi
This is the Service Provider Interface class for the key pair generation engine; if
you want to implement your own key pair generator, you must extend this class
and register your implementation with an appropriate security provider. Instances
of this class must be prepared to generate key pairs of a particular strength (or
length); they rrtay optionally accept an algorithmic-specific set of initialization
values.

Page 404 of 482

388 APPENDIX D: QUICK REFERENCE

Class Definition
public abstract class java.security.KeyPairGeneratorSpi

extends java.lang.Object

II Constructors
public KeyPairGeneratorSpi{);

II Instance Methods
public abstract KeyPair generateKeyPair{);
public abstract void initialize{int, SecureRandom);
public void initialize{AlgorithmParameterSpec, SecureRandom);

Seealso:AlgorithmParameterSpec,KeyPairGenerator,SecureRandom

Class java.security.KeyStore
This class is responsible for maintaining a set of keys and their related owners. In
the default implementation, this class maintains the .keystore file held in the user's
home directory, but you may provide an aiternate implementation of this class
that holds keys anywhere: in a database, on a remote filesystem, on a Java smart
card, or any and all of the above. The class that is used to provide the default
keystore implementation is specified by the keystore property in the
$]DKHOME/lib/java.security file. The keystore may optionally require a passphrase
for access to the entire keystore (via the load() method); this passphrase is often
used only for sanity checking and is often not specified at all. On the other hand,
private keys in the keystore should be protected (e.g., encrypted) by using a
different passphrase for each private key.

Note that although the keystore associates entities with keys, it does not rely upon
the Identity class itself.

Class Definition
public abstract class java.security.KeyStore

extends java.lang.Object

II Constructors
public KeyStore{);

II Class Methods
public static final KeyStore getinstance{);

II Instance Methods
public abstract Enumeration aliases{);
public abstract boolean containsAlias{String);

Page 405 of 482

PACKAGE JAVA. SECURITY

public abstract void deleteEntry(String);
public abstract Certificate getCertificate(String);
public abstract String getCertificateAlias(Certificate);
public abstract Certificate(] getCertificateChain(String);
public abstract Date getCreationDate(String);
public abstract PrivateKey getPrivateKey(String, String);
public abstract boolean isCertificateEntry(String);
public abstract boolean isKeyEntry(String);
public abstract void load(InputStream, String);
public abstract void setCertificateEntry(String, Certificate);
public abstract void setKeyEntry(String, PrivateKey, String,

Certificate[]);
public abstract void setKeyEntry(String, byte(], Certificate[]);
public abstract int size();
public abstract void store(OutputStream, String);

See also: Certificate, PublicKey

Class java.security.M essageDiges t

389

The message digest class is an engine class that can produce a one-way hash value
for any arbitrary input. Message digests have two properties: they produce a
unique hash for each set of input data (subject to the number of bits that are
output), and the original input data is indiscernible from the hash output. The
hash value is variously called a digital fingerprint or a digest. Message digests are
components of digital signatures, but they are useful in their own right to verify
that a set of data has not been corrupted. Once a digest object is created, data
may be fed to it via the update (} methods; the hash itself is returned via the
digest (} method.

Class Definition
public abstract class java.security.MessageDigest

extends java.security.MessageDigestSpi

II Constructors
protected MessageDigest(String);

II Class Methods
public static MessageDigest getinstance(String);
public static MessageDigest getinstance(String, String);
public static boolean isEqual(byte[], byte[]);

II Instance Methods
public Object clone();
public byte[] digest();

Page 406 of 482

390

public byte[] digest(byte[]);

public int digest(byte[], int, int);

public final String getAlgori thm();

public final int getDigestLength();

public final Provider getProvider();

public void reset ().;

public String toString();

public void update(byte);

public void update(byte[]);

public void update(byte[], int, int);

APPENDIX D: QUICK REFERENCE

Class java.security.M essageDigestSpi

This is the Service Provider Interface for the message digest engine; if you want to
implement your own message digest class, you do so by extending this class and
registering your implementation with an appropriate security provider. Since the
MessageDigest class itself extends this class, you may also extend the MessageDi­

gest class directly. Implementations of this class are expected to accumulate a
hash value over data that is .fed to it as a series of arbitrary bytes.

Class Definition
public abstract class java.security.MessageDigestSpi

extends java.lang.Object

II Constructors

public MessageDigestSpi();

II Instance Methods

public Object clone();

II Protected Instance Methods

protected abstract byte[] engineDigest();

protected int engineDigest(byte[], int, int);

protected int engineGetDigestLength();

protected abstract void engineReset();

protected abstract void engineUpdate(byte);

protected abstract void engineUpdate(byte[], int, int);

See also: MessageDigest

Page 407 of 482

PACKAGE JAVA. SECURITY 391

Class java.security.Permission

This class forms the base class for all types of permissions that are used by the
access controller. A permission object encapsulates a particular operation (e.g.,
reading the file /tmp/foo). It does not, however, grant permission for that opera­
tion; rather, the permission object is constructed and passed to the access
controller to see if that operation is one which the current security policy has
defined as a permissible operation.

Permissions have names (e.g., the name of the file, or the name of the operation)
and may optionally have actions (the semantics of which are dependent upon the
type of permission). It is up to the implies () method to determine if one permis­
sion grants another; this allows you to specify wildcard-type permissions that imply
specific permissions (e.g., the permission named "*" may imply the permission
named "myfile").

Class Definition
public abstract class java.security.Permission

extends java.lang.Object
implements java.security.Guard, java.io.Serializable

II Constructors
public Permission(String);

II Instance Methods
public void checkGuard(Object};
public abstract boolean equals(Object};
public abstract String getActions();
public final String getName();
public abstract int hashCode();
public abstract boolean implies(Permission};
public PermissionCollection newPermissionCollection(};
public String toString(};

Seealso:AccessController,BasicPermission,PermissionCollection,

Policy

Class java.security.PermissionCollection

As you might infer, a permission collection is a collection of permission objects.
In theory, a permission collection can be a set of arbitrary, unrelated permission
objects; however, that usage is best avoided and left to the Permissions class.
Hence, a permission collection should be thought of as a collection of one type of

Page 408 of 482

392 APPENDIX D: QUICK REFERENCE

permission: a set of file permissions, a set of socket permissions, etc. A permission
collection is responsible for determining if an individual permission (passed as a
parameter to the irrplies () method) is contained in the set of permissions in the
object; presumably, it will do that more efficiently than by calling the irrplies ()
method on each permission in the collection. If you implement a new permission
class that has wildcard semantics for its names, then you must implement a corre­
sponding permission collection to aggregate instances of that class (if you don't
need wildcard matching, the default implementation of the Permission class will
provide an appropriate collection).

Class Definition
public abstract class java.security.PermissionCollection

extends java.lang.Object
implements java.io.Serializable

II Constructors
public PermissionCollection();

II Instance Methods
public abstract void add(Permission);
public abstract Enumeration elements();
public abstract boolean implies(Permission);
public String toString();

See also: Permission, Permissions

Class java.security.Permissions

This class is an aggregate of permission collections. Hence, it is an appropriate
collection object for a group of unrelated permission, which is its typical use: the
Policy class uses instances of this class to represent all the permissions associated
with a particular protection domain.

Class Definition
public final class java.security.Permissions

extends java.security.PermissionCollection
implements java.io.Serializable

II Constructors
public Permissions();

II Instance Methods
public void add(Permission);
public Enumeration elements();

Page 409 of 482

PACKAGE JAVA. SECURITY

public boolean implies(Permission);
public boolean isReadOnly();
public void setReadOnly();

See also: Permission, PermissionCollection, Policy

Class java.security.Policy

393

The Policy class encapsulates all the specific permissions that the virtual machine
knows about. This set of permissions is by default read from a series of URLs speci­
fied by policy. url properties in the $]DKHOME/lib/security/java.security file,
although applications may specify their own policy objects by using the
setPolicy () method of this class. Alternately, a different default implementation
of the policy class may be specified by changing the policy. provider property in
the java. security file.

Class Definition
public abstract class java.security.Policy

extends java.lang.Object

II Constructors
public Policy () ;

II Class Methods
public static Policy getPolicy();
public static void set~olicy(Policy);

II Instance Methods
public abstract Permissions evaluate(CodeSource);
public abstract void refresh();

See also: Permission, Permissions

Interface java.security.Principal

A principal is anything that has a name, such as an identity. The name in this case
is often an X.500 distinguished name, but that is not a requirement.

Interface Definition
public abstract interface java.security.Principal {

II Instance Methods
public abstract boolean equals(Object);

Page 410 of 482

394

public abstract String getName(};
public abstract int hashCode(};
public abstract String toString(};

See also: Identity

Interface java.security .PrivateKey

APPENDIX D: QUICK REFERENCE

A private key is a key with certain mathematical properties that allows it to
perform inverse cryptographic operations with its matching public key. Classes
implement this interface only for type identification.

Interface definition ·
public abstract interface java.security.PrivateKey

implements java.security.Key {

See also: Key, PublicKey

Class java.security.ProtectionDomain

A protection domain encapsulates the location from which a class was loaded and
the keys used to sign the class (that is, a CodeSource object) and the set of permis­
sions that should be granted to that class. These protection domains are
consulted by the access controller to determine if a particular operation should
succeed; if the operation is in the set of permissions in each protection domain
on the stack, then the operation will succeed. This class is typically . only used
within a class loader.

Class Definition
public class java.security.ProtectionDomain

extends java.lang.Object

II Constructors
public ProtectionDomain(CodeSource, Permissions};

II Instance Methods
public final CodeSource getCodeSource(};
public final Permissions getPermissions(};
public boolean implies(Permission};
public String toString(};

Seealso:AccessController,CodeSource, Permissions

Page 411 of 482

PACKAGE JAVA. SECURITY 395

Class java.security.Provider

An instance of the Provider class is responsible for mapping particular implemen­
tations to desired algorithm/ engine pairs; instances of this class are consulted
(indirectly) by the getinstance () methods of the engine classes to find a class
that implements the desired operation. Instances of this class must be registered
either with the Security class or by listing them in the $]DKHOME/lib/secu­
rity/java;security file as a security.provider property.

Class Definition
public abstract class java.security.Provider

extends java.util.Properties

II Constructors
protected Provider(String, double, String);

II Instance Methods
public synchronized void clear();
public String getinfo();
public String getName();
public double getversion();
public synchronized Object put(Object, Object);
public synchronized Object remove(Object);
public String toString();

See also: Security

Interface java.security.PublicKey
A public key is a key with certain mathematical properties that allows it to perform
inverse cryptographic operations with its matching private key. Classes implement
this interface only for type identification.

Interface Definition
public abstract interface java.security.PublicKey

implements java.security.Key {

See also: Key, PrivateKey

Page 412 of 482

396 APPENDIX D: QUICK REFERENCE

Class java.security.S ecureC lassLoader
A secure class loader is a class loader that is able to associate code sources (and
hence protection domains) with the classes that it loads (classes loaded by a tradi­
tional class loader have a default, null protection domain). All new class loaders
are expected to extend this class.

Class Definition
public class java.security.SecureClassLoader

extends java.lang.ClassLoader

II Constructors
protected SecureClassLoader();
protected SecureClassLoader(ClassLoader);

II Protected Instance Methods
protected final Class defineClass(String, byte[], int, int,

CodeSource, Object[]);
protected final Class defineClass(String, byte[], int, int,

ProtectionDornain, Object[]);
protected CodeSource getCodeSource(URL, Object[]);

See also: ClassLoader,CodeSource,ProtectionDomain

Class java.security.S ecureRandom

This class generates random numbers. Unlike the standard random-number
generator, numbers generated by this class are cryptographically secure-that is,
they are less subject to pattern guessing and other attacks that can be made upon
a traditional random-number generator.

Class Definition
public class java.security.SecureRandorn

extends java.util.Randorn

II Constructors
public SecureRandorn();
public SecureRandorn(byte[]);

II Class Methods
public static byte[] getSeed(int);

II Instance Methods
public synchronized void nextBytes(byte[]);

Page 413 of 482

PACKAGE JAVA.SECURITY

public void setSeed(long);
public synchronized void setSeed(byte[]);

II Protected Instance Methods
protected final int next(int);

Class java. security .Security

397

This class manages the list of providers that have been installed into the virtual
machine; this list of providers is consulted to find an appropriate class to provide
the implementation of a particular operation when the getinstance () method
of an engine class is called. The list of providers initially comes from the
$]DKHOME/lib/security/java.security file, and application!? may use methods of this
class to add and remove providers from that list.

Class Definition
public final class java.security.Security

extends java.lang.Object

II Class Methods
public static int addProvider(Provider);
public static String getAlgorithmProperty(String,
public static String getProperty(String);
public static Provider getProvider(String);
public static Provider[] getProviders();
public static int insertProviderAt(Provider, int);
public static void removeProvider(String);
public static void setProperty(String, String);

See also: Provider

Class java.security.SecurityPermission

String);

This class represents permissions to interact with the methods of the java. secu­
rity package. This permission is a basic permission; it does not support actions.
Security permissions are checked by the Identity, Signer, and Provider classes.

Class Definition
public final class java.security.SecurityPermission

extends java.security.BasicPermission

II Constructors
public SecurityPermission(String);

Page 414 of 482

398 APPENDIX D: QUICK REFERENCE

public SecurityPermission(String, String);

See also: BasicPe:r:mission

Class java.security.S ignature

This engine class provides the ability to create or verify digital signatures by
employing different algorithms that have been registered with the Security class.
As with all engine classes, instances of this class are obtained via the getin­
stance () method. The signature object must be initialized with the appropriate
private key (to sign) or public key (to verifY), then data must be fed to the object
via the update () methods, and then the signature can be obtained (via the
sign () method) or verified (via the verify () method). Signature objects may
support algorithm-specific parameters, though this is not a common
implementation.

Class Definition
public abstract class java.security.Signature

extends java.security.SignatureSpi

II Constants
protected static final int SIGN;
protected static final int UNINITIALIZED;
protected static final int VERIFY;

II Variables
protected int state;

II Constructors
protected Signature(String);

II Class Methods
public static Signature getinstance(String);
public static Signature getinstance(String, String);

II Instance Methods
public Object clone();
public final String getAlgorithm();
public final Object getParameter(String);
public final Provider getProvider();
public final void initSign(PrivateKey);
public final void initSign(PrivateKey, SecureRandorn) ;
public final void 1nitVerify(PublicKey);
public final void setParameter(String, Object);
public final void setParameter(AlgorithmParameterSpec);
public final byte[] sign();

Page 415 of 482

PACKAGE JAVA. SECURITY

public String toString{);
public final void update{byte);
public final void update(byte[]);
public final void update(byte[], int, int);
public final boolean verify(byte[]);

See also: Provider

Class java.security.SignatureSpi

399

This is the Security Provider Interface for the signature engine. If you want to
implement your own signature engine, you must extend this class and register
your implementation with an appropriate security provider. Since the Signature
class already extends this class, your implementation may extend the Signature
class directly. Implementations of this class must be prepared both to sign and to
verify data that is passed to the engineUpdate () method. Initialization of the
engine may optionally support a set of algorithm-specific parameters.

Class Definition
public abstract class java.security.SignatureSpi

extends java.lang.Object {

II Variables
protected SecureRandom appRandom;

II Constructors
public SignatureSpi();

II Instance Methods
public Object clone();

II Protected Instance Methods
protected abstract Object engineGetParameter(String);
protected abstract void engineinitSign(PrivateKey);
protected void engineinitSign(PrivateKey, SecureRandom);
protected abstract void engineinitVerify(PublicKey);
protected abstract void engineSetParameter(String, Object);
protected void engineSetParameter(AlgorithmParameterSpec);
protected abstract byte[] engineSign();
protected abstract void engineUpdate{byte);
protected abstract void engineUpdate(byte[], int, int);
protected abstract boolean engineVerify(byte[]);

See also: Provider, Signature

Page 416 of 482

400 APPENDIX D: QUICK REFERENCE

Class java.security.S ignedO bject
A signed object is a container class for another (target) object; the signed object
contains a serialized version of the target along with a digital signature of the data
contained in· the target object. You must provide a serializable object and a private
key to create a signed object, after which you can remove the embedded object and
verify the signature of the signed object by providing the appropriate public key.

Class Definition
public final class java.security.SignedObject

extends java.lang.Object

}

implements java.io.Serializable

II Constructors
public SignedObject(Serializable, PrivateKey, Signature);

II Instance Methods
public String getAlgorithm();
public Object getObject();
public byte[] getSignature();
public boolean verify(PublicKey, Signature);

See also: Signature

Class java. security .Signer
A signer abstracts the notion of a principal (that is, an individual or a corpora­
tion) that has a private key and a corresponding public key. Signers may
optionally belong to an identity scope, but that usage is now rare.

Class Definition
public abstract class java.security.Signer

extends java.security.Identity

II Constructors
protected Signer();
public Signer(String);
public Signer(String, IdentityScope);

II Instance Methods
public PrivateKey getPrivateKey();
public final void setKeyPair(KeyPair);

Page 417 of 482

PACKAGE JAVA.SECURITY.CERT 401

public String toString();

See also: Identity, Principal

Class java. security. U nresolvedPermission

An unresolved permission is one for which the implementing class has not been
loaded. If you define a custom permission, the Policy class will represent that
custom permission as an unresolved permission until it is time for the Policy
class to actually load the class; if the class cannot be found, then it will remain an
unresolved permission. By default, the irrplies () method of this class always
returns false.

Class Definition
public final class UnresolvedPermission extends Permission

implements java.io.Serializable

II Constructors
public UnresolvedPermission(String, String, String, PublicKey);

II Instance methods
public boolean equals(Object);
public int hashCode();
public boolean implies(Permission);

See also: Permission

Package java.security.cert

Class java.security.cert.Certificate

This class represents any type of cryptographic certificate. A certificate contains a
public key (see getPublicKey()) and other associated information. The certifi­
cate contains an internal signature that protects its inte'!grity. You can verifY the
integrity of the certificate by calling one of the verify () methods with the public
key of the certificate's issuer. (Note: don't confuse this class with the java. secu­
rity.Certificate interface, which is deprecated.)

Page 418 of 482

402 APPENDIX D: QUICK REFERENCE

Class Definition
public abstract class java.security.cert.Certificate

extends java.lang.Object

II Constructors
public Certificate();

II Instance Methods
public boolean equals(Object);
public abstract byte [] getEncoded ()';
public abstract PublicKey getPublicKey();
public int hashCode();
public abstract String toString();
public abstract void verify(PublicKey);
public abstract void verify(PublicKey, String);

See also: PublicKey, X509Certificate

Class java. security .cert.RevokedC ertificate

A revoked certificate represents a certificate whose contained key is no longer safe
to use. Instances of this class are returned by X509CRL's getRevokedCert.ifi­
cate () method. You can examine the certificate's revocation date and X.509
extensions.

Class Definition
public abstract class java.security.cert.RevokedCertificate

extends java.lang.Object
implements java.security.cert.X509Extension

II Constructors
public RevokedCertificate();

II Instance Methods
public abstract Set getCriticalExtensionOIDs();
public abstract byte[] getExtensionValue(String);
public abstract Set getNonCriticalExtensionOIDs();
public abstract Date getRevocationDate();
public abstract Biginteger getSerialNumber();
public abstract boolean hasExtensions();
public abstract String toString();

See also: Certificate, X509CRL, X509Extension

Page 419 of 482

PACKAGE JAVA.SECURITY.CERT 403

Class java.security.cert.X509Certi.ficate

This class represents certificates as defined in the X.509 standard. Such certifi­
cates associate a public key with a subject, which is usually a person or
organization. You can find out the certificate's subject by calling getSubj ectDN () ,
while you can retrieve the subject's public key using getPublicKey(). The certifi­
cate's issuer is the person or organization that generated and signed the
certificate (see getissuerDN ()). If you have a certificate file in the format
described by RFC 1421, you can create an X509Certificate from that data by using
one of the getinstance () methods.

Class Definition
public abstract class java.security.cert.X509Certificate

extends java.security.cert.Certificate
implements java.security.cert.X509Extension

II Constructors
public X509Certificate();

II Class Methods
public static final X509Certificate getinstance(InputStrearn);
public static final X509Certificate getinstance(byte[]);

II Instance Methods
public abstract void checkValidity();
public abstract void checkValidity(Date);
public abstract int getBasicConstraints();
public abstract Set getCriticalExtensionOIDs();
public abstract byte[] getExtensionValue(String);
public abstract Principal getissuerDN();
public abstract boolean[] getissuerUniqueiD();
public abstract boolean[] getKeyUsage();
public abstract Set getNonCriticalExtensionOIDs();
public abstract Date getNotAfter();
public abstract Date getNotBefore();
public abstract Biginteger getSerialNurnber();
public abstract String getSigAlgNarne();
public abstract String getSigAlgOID () ;
public abstract byte[] getSigAlgPararns();
public abstract byte[] getSignature();
public abstract Principal getSubjectDN();
public abstract boolean[] getSubjectUniqueiD();
public abstract byte[] getTBSCertificate();
public abstract int getVersion();

See also: Principal, PublicKey, X509Extension

Page 420 of 482

404 APPENDIX D: QUICK REFERENCE

Class java.security.cert.X509CRL
A Certificate Revocation List (CRL) is a list of certificates whose keys are no
longer valid. This clas& represents CRLs as defined in the X.509 standard. If you
have a CRL file that you would like to examine, you can construct an X509CRL
object from the file using one of the getinstance () methods. A CRL, just like a
certificate, has an internal signature that protects its integrity. To verity the integ­
rity of the CRL itself, call one of the verify() methods with the issuer's public
key. To find out if a particular certificate is revoked, call the isRevoked () method
with the certificate's serial number.

Class Definition
public abstract class java.security.cert.X509CRL

extends java.lang.Object

implements java.security.cert.X509Extension

II. Constructors

public X509CRL();

II Class Methods

public static final X509CRL getinstance(InputStream);

public static final X509CRL getinstance(byte[]);

II Instance Methods

public boolean equals(Object);
public abstract Set getCriticalExtensionOIDs();
public abstract byte[] getEncoded () ;
public abstract byte[] getExtensionValue(String);
public abstract Principal getissuerDN();
public abstract Date getNextUpdate();
public abstract Set getNonCriticalExtensionOIDs();
public abstract RevokedCertificate

getRevokedCertificate(Biginteger);

public abstract Set getRevokedCertificates();
public abstract String getSigAlgName();
public abstract String getSigAlgOID () ;
public abstract byte[] getSigAlgParams();
public abstract byte[] getSignature();
public abstract byte[] getTBSCertList();
public abstract Date getThisUpdate();
public abstract int getVersion();
public int hashCode () ;
public abstract boolean isRevoked(Biginteger);
public abstract String toString();
public abstract void verify(PublicKey);

Page 421 of 482

PACKAGE JAVA.SECURITY.INTERFACES 405

public abstract void verify(PublicKey, String);

Seealso:Certificate,PublicKey,RevokedCertificate,X509Extension

Interface java. security .cert.X509 Extension

The X509Extension interface represents the certificate extensions defined by the
X.509v3 standard. Extensions are additional bits of information contained in a
certificate. Each extension is designated as critical or non-critical. An application
that handles a certificate should either correctly interpret the critical extensions
or produce some kind of error if they cannot be recognized.

Class Definition
public abstract interface java.security.cert.X509Extension {

II Instance Methods
public abstract Set getCriticalExtensionOIDs();
public abstract byte[] getExtensionValue(String);
public abstract Set getNonCriticalExtensionOIDs();

See also: RevokedCertificate,X509Certificate,X509CRL

Package java.security.interfaces

Interface java.security. interfaces.DSAKey

This interface represents public and private keys that are suitable for use in DSA
signature algorithms. This interface allows you to retrieve DSA-specific informa­
tion from a suitable DSA key.

Interface Definition
public interface java.security.interfaces.DSAKey

II Instance Methods
public DSAParams getParams();

See also: PrivateKey, PublicKey

Page 422 of 482

406 APPENDIX D: QUICK REFERENCE

Interface
java. security. interfaces.DSAKeyPairGenerator
This interface represents key generators that can be used to generate pairs of DSA
keys. Key pair generators that implement this interface can be initialized with
information specific to DSA key generation.

Interface Definition
public interface java.security.interfaces.DSAKeyPairGenerator

II Instance Methods
public void initialize(DSAParams, SecureRandom);
public void initialize(int, boolean, SecureRandom);

See also: KeyPairGenerator

Interface java.security.interfaces.DSAParams

Classes that implement this interface allow you to obtain the three variables that
are common to both DSA public and private keys.

Interface Definition
public interface java.security.interfaces.DSAParams

II Instance Methods
public Biginteger getP();
public Biginteger getQ();
public Biginteger getG();

See also: DSAPrivateKey, DSAPublicKey

Interface java.security.interfaces.DSAPrivateKey

Classes that imple!llent this interface allow you to retrieve the private key param­
eter used to calculate a DSA private key.

Interface Definition
public interface java.security.interfaces.DSAPrivateKey

II Instance Methods

Page 423 of 482

PACKAGE JAVA.SECURI1Y.SPEC 407

public Biginteger getX();

See also: DSAPararos, DSAPublicKey

Interface java. security .interfaces.DSAPublicKey
Classes that implement this interface allow you to retrieve the public key param­
eter used to calculate a DSA public key.

Interface Definition
public interface java.security.interfaces.DSAPublicKey

II Instance Methods
public Biginteger getY();

See also: DSAPararos, DSAPrivateKey

Package java.security.spec

Interface
java.security.spec.AlgorithmParameterSpec
Algorithm parameter specifications are used to import and export keys via a key
factory. This interface is used strictly for type identification; the specifics of the
parameters are left to the implementing class.

Interface Definition
public interface java.security.spec.AlgorithmParameterSpec
}

See also: DSAParameterSpec, KeyFactory

Class java.security.spec.DSAP arameterS pee

This class provides the basis for DSA key generation via parameters; it encapsu­
lates the three parameters that are common to DSA algorithms.

Page 424 of 482

408 APPENDIX D: QUICK REFERENCE

Class Definition
public class java.security.spec.DSAParameterSpec

extends java.lang.Object

implements java.security.spec.AlgorithmParameterSpec,

java.security.interfaces.DSAParams {

II Constructors

public DSAParameterSpec(Biginteger, Biginteger, Biginteger);

II Instance Methods

public Biginteger getG();

public Biginteger getP();

public Biginteger getQ();

See also: AlgoritbroParameterSpec, DSAParams, DSAPrivateKeySpec,

DSAPublicKeySpec

Class java.security.spec.DSAPrivateKeySpec
This class provides the ability to calculate a DSA private key based upon the four
parameters that comprise the key.

Class Definition
public class java.security.spec.DSAPrivateKeySpec

extends java.lang.Object

implements java.security.spec.KeySpec

II Constructors

public DSAPrivateKeySpec(Biginteger, Biginteger,

Biginteger, Biginteger);

II Instance Methods

public Biginteger getG();

public Biginteger getP();

public Biginteger getQ();

public Biginteger getX();

See also: DSAPublicKeySpec, KeyFactory

Class java.security.spec.DSAPublicKeySpec
This class provides the ability to calculate a DSA public key based upon the four
parameters that comprise the key.

Page 425 of 482

PACKAGE JAVA.SECURITY.SPEC

Class Definition
public class java.security.spec.DSAPublicKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec

II Constructors
public DSAPublicKeySpec(Biginteger, Biginteger,

Biginteger, Biginteger);

II Instance Methods
public Biginteger getG();
public Biginteger getP();
public Biginteger getQ();
public Biginteger getY();

See also: DSAPrivateKeySpec, KeyFactory

Class java.seeurity .spee.EneodedKeyS pee

409

This class is used to translate between keys and their external encoded format.
The encoded format is always simply a series of bytes, but the format of the
encoding of the key information into those bytes may vary depending upon the
algorithm used to generate the key.

Class Definition
public abstract class java.security.spec.EncodedKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec

II Constructors
public EncodedKeySpec();

II Instance Methods
public abstract byte[) getEncoded();
public abstract String getFormat();

See also: KeyFactory,KeySpec,PKCS8EncodedKeySpec,X509EncodedKeySpec

I nterfaee java.seeurity.spee.KeyS pee

A key specification is used to import and export keys via a key factory. This may be
done either based upon the algorithm parameters used to generate the key or via

Page 426 of 482

410 APPENDIX D: QUICK REFERENCE

an encoded series of bytes that represent the key. Classes that deal with the latter
case implement this interface, which is used strictly for type identification.

Interface Definition
public abstract interface java.security.spec.KeySpec {.

}

Seealso:AlgorithmParameterSpec,EncodedKeySpec,KeyFactory

Class java.security.spec.PKCSBEncodedKeySpec
This class represents the PKCS#8 encoding of a private key; the key is encoded in
DER format. This is the class that is typically used when dealing with DSA private
keys in a key factory.

Class Definition
public class java.security.spec.PKCS8EncodedKeySpec

extends java.security.spec.EncodedKeySpec

II Constructors

public PKCS8EncodedKeySpec(byte(]);

II Instance Methods

public byte[] getEncoded();

public final String getForrnat();

See also: EncodedKeySpec, X509EncodedKeySpec

Class java.security.spec.X509EncodedKeySpec
This class represents the X509 encoding of a public key. It may also be used for
private keys, although the PKCS#8 encoding is typically used for those keys.

Class Definition
public class java.security.spec.X509EncodedKeySpec

extends java.security.spec.EncodedKeySpec

II Constructors

public X509EncodedKeySpec(byte[]);

II Instance Methods

public byte[] getEncoded();

Page 427 of 482

PACKAGE JAVAX.CRYPTO 411

public final String getFormat();

See also: EncodedKeySpec, PKCS8EncodedKeySpec

Package javax.crypto

Class javax.crypto.Cipher
This engine class represents a cryptographic cipher, either symmetric or asym­
metric. To get a cipher for a particular algorithm, call one of the getinstance ()
methods, specifYing an algorithm name, a cipher mode, and a padding scheme.
The cipher should be initialized for encryption or decryption using an init ()
method and an appropriate key (and, optionally, a set of algorithm-specific param­
eters, though these are typically unused). Then you can perform the encryption
or decryption, using the update () and doFinal () methods.

Class Definition
public class javax.crypto.Cipher

extends java.lang.Object

II Constants
public static final int DECRYPT_MODE;
public static final int ENCRYPT_MODE;

II Constructors
protected Cipher(CipherSpi, Provider, String);

II Class Methods
public static final Cipher getinstance(String);
public static final Cipher getinstance(String, String);

II Instance Methods
public final byte(] doFinal();
public final byte[] doFinal(byte(]);
public final int doFinal(byte[], int);
public final byte[]" doFinal(byte[], int, int);
public final int doFinal(byte[], int, int, byte[]);
public final int doFinal(byte[], int, int, byte[], int);
public final int getBlockSize();
public final byte[] getiV();
public final int getOutputSize(int);
public final Provider getProvider();

Page 428 of 482

412

public final

public final

public final
public final

public final
public final
public final

public final

APPENDIX D: QUICK REFERENCE

void init(int, Key);

void init(int, Key, SecureRandom) ;

void init(int, Key, AlgorithmParameterSpec);

void init(int, Key, AlgorithmParameterSpec,

SecureRandom) ;

byte[] update(byte(J);
byte[] update(byte[], int, int);

int update(byte[], int, int, byte[]);

int update(byte[], int, int, byte[], int);

Seealso:AlgorithmParameterSpec,CipherSpi,Key,Provider,SecureRandom

Class javax.crypto.CipherlnputStream

A cipher input stream is a filter stream that passes its data through a cipher. You
can construct a cipher input stream by specifying an underlying stream and
supplying an initialized cipher. For best results, use a byte-oriented cipher mode
with this stream.

Class Definition
public class javax.crypto.CipherinputStream

extends java.io.FilterinputStream

II Constructors
protected CipherinputStream(InputStream);

public CipherinputStream(InputStream, Cipher);

II Instance Methods
public int available();

public void close();

public boolean markSupported();

public int read();

public int read(byte[]);

public int read(byte[], int, int);

public long skip(long);

See also: Cipher

Page 429 of 482

PACKAGE JAVAX.CRYPTO 413

Class javax.crypto.CipherOutputStream
This class is a filter output stream that passes all its data through a cipher. You can
construct a cipher output stream by specifying an underlying output stream and
an initialized cipher. For best results, use a byte-oriented mode for the cipher.

Class Definition
public class javax.crypto.CipherOutputStream

extends java.io.FilterOutputStream

II Constructors
protected CipherOutputStream{OutputStream);
public CipherOutputStream{OutputStream, Cipher);

II Instance Methods
public void close{);
public void flush{);
public void write{int);
public void write{byte[]);
public void write{byte[], int, int);

See also: Cipher

Class javax.crypto.CipherSpi
This class is the Security Provider Interface of the Cipher class. To implement a
particular cipher algorithm, create a subclass of this class and register the class
with an appropriate security provider. Like all SPI classes, the methods that begin
with engine are called by their corresponding method (without engine) from the
Cipher class.

Class Definition
public abstract class javax.crypto.CipherSpi

extends java.lang.Object,

II Constructors
public CipherSpi{);

II Protected Instance Methods
protected abstract byte[] engineDoFinal{byte[], int, int);
protected abstract int engineDoFinal{byte[], int, int,

byte[], int);
protected abstract int engineGetBlockSize();
protected abstract byte[] engineGetiV{);

Page 430 of 482

414 APPENDIX D: QUICK REFERENCE

protected abstract int engineGetOutputSize(int);
protected abstract void engineinit(int, Key, SecureRandom);
protected abstract void engineinit(int, Key,

AlgorithmParameterSpec, SecureRandom);
protected abstract void engineSetMode(String);
protected abstract void engineSetPadding(String);
protected abstract byte[] engineUpdate(byte[], int, int);
protected abstract int engineUpdate(byte[], int, int, byte[], int);

Seealso:AlgorithmParameterSpec,Cipher,Key,SecureRandom

Class javax.crypto.KeyAgreement

This engine class represents a key agreement protocol, which is an arrangement
by which two parties can agree on a secret value. You can obtain an instance of
this class by calling the getinstance () method. After initializing the object (see
ini t ()), you can step through the phases of the key agreement protocol using
the doPhase() method. Once the phases are complete, the secret value (that is,
the key) is returned from the generateSecret () method.

Class Definition
public class javax.crypto.KeyAgreement

extends java.lang.Object

II Constructors
protected KeyAgreement(KeyAgreementSpi, Provider, String);

II Class Methods
public static final KeyAgreement getinstance(String);
public static final KeyAgreement getinstance(String, String);

II Instance Methods
public final Key doPhase(int, Key);
public final byte[] generateSecret();
public final int generateSecret(byte[], int);
public final String getAlgorithm();
public final Provider getProvider();
public final void init(SecureRandom);
public final void init(AlgorithmParameterSpec);
public final void init(AlgorithmParameterSpec, SecureRandom) ;

See also: AlgorithmParameterSpec, Key, KeyAgreementSpi, Provider,

SecureRandom

Page 431 of 482

PACKAGE JAVAX.CRYPTO 415

Class javax.crypto.KeyAgreementS pi
This is the Security Provider Interface class for the KeyAgreement class. If you
want to implement a key agreement algorithm, create a subclass of this class and
register it with an appropriate security provider.

Class Definition
public abstract class javax.crypto.KeyAgreernentSpi

extends java.lang.Object

II Constructors
public KeyAgreernentSpi();

II Protected Instance Methods
protected abstract Key engineDoPhase(int, Key);
protected abstract byte[] engineGenerateSecret();
protected abstract int engineGenerateSecret(byte[], int);
protected abstract void engineinit(SecureRandorn);
protected abstract void engineinit(AlgorithrnPararneterSpec,

SecureRandorn) ;

Seealso:AlgorithmParameterSpec,Key,KeyAgreement,SecureRandom

Class javax.crypto.KeyGenerator

A key generator creates secret keys for use with symmetric ciphers. Key generators
are obtained by calling the get Instance () method; they must then be initialized
with an init () method. The key itself is then returned from the generateSe­
cret () method.

Class Definition
public class javax.crypto.KeyGenerator

extends java.lang.Object

II Constructors
protected KeyGenerator(KeyGeneratorSpi, Provider, String);

II Class Methods
public static final KeyGenerator getinstance(String);
public static final KeyGenerator getinstance(String, String);

II Instance Methods
public final SecretKey generateKey();
public final String getAlgorithrn();
public final Provider getProvider();

Page 432 of 482

416 APPENDIX D: QUICK REFERENCE

public final void init(SecureRandom);
public final void init(AlgorithmParameterSpec);
public final void init(AlgorithmParameterSpec, SecureRandom);

Seealso:AlgorithmParameterSpec,KeyGeneratorSpi,Provider,SecretKey,
SecureRandom

Class javax.crypto.KeyGeneratorSpi
This is the Security Provider Interface for the KeyGenerator class. To create an
implementation of a key generation algorithm, make a subclass of this class and
register the implementation with an appropriate security provider.

Class Definition
public abstract class javax.crypto.KeyGeneratorSpi

extends java.lang.Object {

II Constructors
public KeyGeneratorSpi();

II Protected Instance Methods
protected abstract SecretKey engineGenerateKey();
protected abstract void engineinit(SecureRandom);
protected abstract void engineinit(AlgorithmParameterSpec,

SecureRandom) ;

Seealso:AlgorithmParameterSpec,KeyGenerator,SecretKey,SecureRandom

Class javax.crypto.NullCipher
As its name implies, null cipher is a cipher that does nothing. You can use it to
test cryptographic programs. Since a null cipher performs no transformations, its
ciphertext will be exactly the same as its plaintext.

Class Definition
public class javax.crypto.NullCipher

extends javax.crypto.Cipher

II Constructors

Page 433 of 482

PACKAGEJAVAX.CRYPTO 417

public NullCipher{);

See also: Cipher

Class javax.crypto.SealedObject

A sealed object is a container for another object. The contained object is serial­
ized and then encrypted using a cipher. You can construct a sealed object using
any serializable object and a cipher that is initialized for encryption. To decrypt
the contained object, call the getObj ect () method with a cipher that is initialized
for decryption.

Class Definition
public class javax.crypto.SealedObject

extends java.lang.Object
implements java.io.Serializable

II Constructors
public SealedObject{Serializable, Cipher);

II Instance Methods
public final Object getObject{Cipher);

See also: PublicKey, PrivateKey

Interface javax.crypto.S ecretKey

A secret key represents a key that is used with a symmetric cipher. This interface is
used strictly for type identification.

Interface Definition
public abstract interface javax.crypto.SecretKey

implements java.security.Key {

See also: Key

Class javax.crypto.SecretKeyF actory

A secret key factory is used to convert between secret key data formats; like a key
factory, this is typically· used to import a key based on its external format or to

Page 434 of 482

418 APPENDIX D: QUICK REFERENCE

export a key to its encoded format or algorithm parameters. Instances of this class
are obtained by calling the getinstance () method. Keys may be exported by
using the translateKey() method; they are imported by using the generate
Secret () method.

Class Definition
public class javax.crypto.SecretKeyFactory

extends java.lang.Object

II Constructors
protected SecretKeyFactory(SecretKeyFactorySpi, Provider);

II Class Methods
public static final SecretKeyFactory getinstance(String);
public static final SecretKeyFactory getinstance(String, String);

II Instance Methods
public final SecretKey generateSecret(KeySpec);
public final KeySpec getKeySpec(SecretKey, Class);
public final Provider getProvider();
public final SecretKey translateKey(SecretKey);

See also: KeySpec,Provider, SecretKey,SecretKeyFactorySpi

Class javax.crypto.SecretKeyFactorySpi
This class is the Security Provider Interface for the SecretKeyFactory class. To
create a secret key factory, make a subclass of this class and register your imple­
mentation with an appropriate provider.

Class Definition
public abstract class javax.crypto.SecretKeyFactorySpi

extends java.lang.Object

II Constructors
public SecretKeyFactorySpi();

II Protected Instance Methods
protected abstract SecretKey engineGenerateSecret(KeySpec);
protected abstract KeySpec engineGetKeySpec(SecretKey, Class);
protected abstract SecretKey engineTranslateKey(SecretKey);

Seealso:KeySpec,Provider,SecretKey,SecretKeyFactory

Page 435 of 482

PACKAGE JAV AX.CRYPTO.INTERFACES 419

Package javax.crypto.interfaces

Interface javax.crypto. interfaces .D HKey
This interface represents a public or private key used the Diffie-Hellman key
agreement implementation.

Interface Definition
public abstract interface javax.crypto.interfaces.DHKey {

II Instance Methods
public abstract DHParameterSpec getParams();

See also: DHPrivateKey, DHPublicKey

Interface javax.crypto. interfaces.D HPrivateKey
This interface represents a private key in a Diffie-Hellman key agreement protocol.

Interface Definition
public abstract interface javax.crypto.interfaces.DHPrivateKey

implements javax.crypto.interfaces.DHKey, java.security.PrivateKey

II Instance Methods
public abstract Biginteger getX();

See also: DHKey, DHPublicKey, PrivateKey

Interface javax.crypto. interfaces.D HPublicKey
This interface represents a public key in a Diffie-Hellman key agreement protocol.

Interface Definition
public abstract interface javax.crypto.interfaces.DHPublicKey

implements javax.crypto.interfaces.DHKey, java.security.PublicKey

II Instance Methods
public abstract Biginteger getY();

See also: DHKey, DHPrivateKey, PublicKey

Page 436 of 482

420 APPENDIX D: QUICK REFERENCE

Interface javax.crypto. interfaces.RSAPrivateKey
RSAPrivateKey represents a private key, suitable for use with RSA cryptographic
operations. Use of this class requires a third-party security provider.

Interface Definition
public abstract interface javax.crypto.interfaces.RSAPrivateKey

implements java.security.PrivateKey

II Instance Methods
public abstract Biginteger getModulus();
public abstract Biginteger getPrivateExponent();

See also: PrivateKey, RSAPublicKey

Interface
javax.crypto. interfaces.RSAPrivateKeyCrt
This interface is an alternate representation of an RSA private key. It uses the
Chinese Remainder Theorem (CRT) to represent the values of the private key.
Use of this class requires a third-party security provider.

Interface Definition
public abstract interface javax.crypto.interfaces.RSAPrivateKeyCrt

implements javax.crypto.interfaces.RSAPrivateKey {

II Instance Methods
public abstract Biginteger getCrtCoefficient();
public abstract Biginteger getPrimeExponentP();
public abstract Biginteger getPrimeExponentQ();
public abstract Biginteger getPrimeP();
public abstract Biginteger getPrimeQ();
public abstract Biginteger getPublicExponent();

See also: PrivateKey, RSAPrivateKey, RSAPublicKey

Interface javax.crypto.interfaces.RSAPublicKey
This class represents an RSA public key, suitable for use with an RSA crypto­
graphic algorithm. You must have a third-party security provider to use this class.

Page 437 of 482

PACKAGE JAVAX.CRYPTO.SPEC

Interface Definition
public abstract interface javax.crypto.interfaces.RSAPublicKey

implements java.security.PublicKey

II Instance Methods
public abstract Biginteger getModulus();
public abstract Biginteger getPublicExponent();

See also: PublicKey, RSAPrivateKey

Package javax.crypto.spec

Class javax.crypto.spec.DE SKeyS pee

421

This class represents a key specification for DES keys; this specification may be
used with a secret key factory to import and export DES keys.

Class Definition
public class javax.crypto.spec.DESKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec

II Constructors
public DESKeySpec(byte[]);
public DESKeySpec(byte[], int);

II Class Methods
public static boolean isParityAdjusted(byte[], int);

II Instance Methods
public byte[] getKey();

See also: SecretKeyFactory

Class javax.crypto.spec.DESParameterSpec
This class represents an IV (initialization vector) for a cipher that uses a feedback
mode. Ciphers in CBC, PCBC, CFB, and OFB modes need to be initialized with
an IV.

Page 438 of 482

422

Class Definition
public class javax.crypto.spec.DESParameterSpec

extends java.lang.Object

APPENDIX D: QUICK REFERENCE

implements java.security.spec.AlgorithmParameterSpec

II Constructors
public DESParameterSpec(byte[]);
public DESParameterSpec(byte[], int);

II Instance Methods
public byte [] get IV () ;

See also: AlgorithmParameterSpec, Cipher

Class javax.crypto.spec.DESedeKeySpec

This class represents a DESede key specification. It can be used with a secret key
factory to import and export DESede keys.

Class Definition
public class javax.crypto.spec.DESedeKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec

II Constructors
public DESedeKeySpec(byte[]);
public DESedeKeySpec(byte(], int);

II Class Methods
public static boolean isParityAdjusted(byte[], int);

II Instance Methods
public byte(] getKey();

See also: SecretKeyFactory

Class javax.crypto.spec.D H GenParameterS pee
Instances of this class may be used to supply the algorithm-specific initialization
method for generating Diffie-Hellman keys.

Class Definition
public class javax.crypto.spec.DHGenParameterSpec

Page 439 of 482

PACKAGE JAV AX.CRYPTO.SPEC

extends java.lang.Object
implements java.security.spec.AlgorithmParameterSpec

II Constructors
public DHGenParameterSpec(int, int);

II Instance Methods
public int getExponentSize();
public int getPrimeSize();

Seealso:AlgorithmParameterGenerator,AlgorithmParameterSpec

Class javax.crypto.spec.DHParameterSpec

423

This class encapsulates the public parameters used in the Diffie-Hellman key
agreement protocol. Instances of this class can be passed to the algorithm-specific
initialization methods of a key pair generator.

Class Definition
public class javax.crypto.spec.DHParameterSpec

extends java.lang.Object
implements java.security.spec.AlgorithmParameterSpec

II Constructors
public DHParameterSpec(Biginteger, Biginteger);
public DHParameterSpec(Biginteger, Biginteger, int);

II Instance Methods
public Biginteger getG();
public int getL();
public Biginteger getP();

Seealso:AlgorithmParameterSpec,KeyPairGenerator

Class javax.crypto.spec.D HPrivateKeyS pee

This class represents a key specification for Diffie-Hellman private keys. It can be
used with a key factory to import and export Diffie-Hellman keys.

Class Definition
public class javax.crypto.spec.DHPrivateKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec {

Page 440 of 482

424 APPENDIX D: QUICK REFERENCE

II Constructors
public DHPrivateKeySpec(Biginteger, Biginteger, Biginteger);

public DHPrivateKeySpec(Biginteger, Biginteger, Biginteger, int);

II Instance Methods

public Biginteger getG () ;

public int getL();

public Biginteger getP();

public Biginteger getX();

See also: DHParameterSpec,DHPublicKeySpec,KeySpec

Class javax.crypto.spec.DHPublicKeySpec
This class represents a key specification for Diffie-Hellman public keys. It can be
used with a key factory to import and export Diffie-Hellman keys.

Class Definition
public class javax.crypto.spec.DHPublicKeySpec

extends java.lang.Object

implements java.security.spec.KeySpec

II Constructors

public DHPublicKeySpec(Biginteger, Biginteger, Biginteger);

public DHPublicKeySpec(Biginteger, Biginteger, Biginteger, int);

II Instance Methods

public Biginteger getG();

public int getL();

public Biginteger getP();

public Biginteger getY();

See also: DHParameterSpec,DHPrivateKeySpec,KeySpec

Class javax.crypto.spec.PBEKeySpec
This class represents a key specification for a key that is used with passphrase
encryption.

Class Definition
public class javax.crypto.spec.PBEKeySpec

extends java.lang.Object

Page 441 of 482

PACKAGE JAV AX.CRYPTO.SPEC 425

implements java.security.spec.KeySpec

II Constructors
public PBEKeySpec(String);

II Instance Methods
public final String getPassword();

See also: PBEParameterSpec,SecretKey, SecretKeyFactory

Class javax.crypto.spec.PBEParameterSpec

This class encapsulates the salt and iteration count that are used in passphrase­
based encryption.

Class Definition
public class javax.crypto.spec.PBEParameterSpec

extends java.lang.Object
implements java.security.spec.AlgorithmParameterSpec

II Constructors
public PBEParameterSpec(byte[], int);

II Instance Methods
public int getiterationCount();
public byte[] getSalt();

Seealso:AlgorithmParameterSpec,Cipher, PBEKeySpec

Class javax.crypto.spec.RSAPrivateKeyC rtS pee
This class represents a key specification for an RSA private key; this specification
uses the Chinese Remainder Theorem (CRT). Instances of this class may be used
with an appropriate key factory to generate private keys. Use of this class requires
a third-party security provider.

Class Definition
public class javax.crypto.spec.RSAPrivateKeyCrtSpec

extends javax.crypto.spec.RSAPrivateKeySpec

II Constructors
public RSAPrivateKeyCrtSpec(Biginteger, Biginteger, Biginteger,

Biginteger, Biginteger, Biginteger, Biginteger, Biginteger);

Page 442 of 482

426 APPENDIX D: QUICK REFERENCE

II Instance Methods
public Biginteger getCrtCoefficient{);
public Biginteger getPrimeExponentP{);
public Biginteger getPrimeExponentQ();
public Biginteger getPrimeP();
public Biginteger getPrimeQ();
public Biginteger getPublicExponent{);

See also: KeyFactory,KeySpec,PrivateKey,RSAPrivateKeySpec

Class javax.crypto.spec.RSAPrivateKeySpec
This class represents a key specification for an RSA private key; this specification
uses a modulus and a private exponent. Instances of this class may be used with an
appropriate key factory to generate private keys. Use of this class requires a third­
party security provider.

Class Definition
public class javax.crypto.spec.RSAPrivateKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec

II Constructors
public RSAPrivateKeySpec(Biginteger, Biginteger);

II Instance Methods
public Biginteger getModulus{);
public Biginteger getPrivateExponent{);

See also: KeyFactory,KeySpec,PrivateKey,RSAPrivateKeyCrtSpec

Class javax.crypto.spec.RSAPublicKeyS pee
This class represents a key specification for an RSA public key. Instances of this
class may be used with an appropriate key factory to generate public keys. Use of
this class requires a third-party security provider.

Class Definition
public class javax.crypto.spec.RSAPublicKeySpec

extends java.lang.Object
implements java.security.spec.KeySpec {

Page 443 of 482

MISCELLANEOUS PACKAGES 427

II Constructors
public RSAPublicKeySpec(Biginteger, Biginteger);

II Instance Methods
public Biginteger getModulus();
public Biginteger getPublicExponent();

See also: KeyFactory, KeySpec, PublicKey

Miscellaneous Packages
This section lists security-related classes that appear in miscellaneous packages:
permission classes, class loaders, and security managers.

Class java.awt.A WTPermission
This class represents permission to perform windowing operations, like opening a
top-level window or examining the event queue. This is a basic permission, so it
has no actions.

· Class Definition
public final class java.awt.AWTPermission

extends java.security.BasicPermission

II Constructors
public AWTPermission(String);
public AWTPermission(String, String);

See also: BasicPermission, Permission

Class java.io.FilePermission
This class represents permission to read, write, delete, or execute files. The name
encapsulated in this permission is the name of the file; the string "<<ALL_
FILES»" represents all files, while an asterisk represents all files in a directory
and a hyphen represents all files that descend from a directory. The actions for
this permission are read, write, execute, and delete.

Class Definition
public final class java.io.FilePermission

Page 444 of 482

428

extends java.security.Per.mission
implements java.io.Serializable {

II Constructors
public FilePer.mission(String, String);

II Instance Methods
public boolean equals(Object);
public String getActions();
public int hashCode();
public boolean implies(Per.mission);

APPENDIX D: QUICK REFERENCE

public Per.missionCollection newPer.missionCollection();

See also: Pennission

Class java. io.S erializablePermission
This class represents permission to perform specific operations during object seri­
alization-specifically, whether or not object substitution may occur during
serialization. As all basic permissions, there are no actions associated with this
class, which has one valid name: enableSubsti tution.

Class Definition
public final class java.io.SerializablePermission

extends java.security.BasicPer.mission

II Constructors
public SerializablePer.mission(String);
public SerializablePer.mission(String, String);

See also: BasicPennission, Pennission

Class java.lang.ClassLoader
This class is the basis for loading a class dynamically in java. For historical reasons,
it appears in this package, but it is recommended that all new class loaders
subclass the SecureClassLoader class in the java. security package instead of
using this class. Loading a class explicitly may be done with the loadClass ()
method of this class (though classes are usually simply loaded as needed).

Class Definition
public abstract class java.lang.ClassLoader

extends java.lang.Object {

Page 445 of 482

MISCELLANEOUS PACKAGES

II Constructors
protected ClassLoader();
protected ClassLoader(ClassLoader);

II Class Methods
public static URL getSystemResource(String);
public static InputStrearn getSystemResourceAsStrearn(String);
public static Enumeration getSystemResources(String);

II Instance Methods
public URL getLocalResource(String);
public Enumeration getLocalResources(String);
public ClassLoader getParent();
public URL getResource(String);
public InputStrearn getResourceAsStrearn(String);
public final Enumeration getResources(String);
public Class loadClass(String);

II Protected Instance Methods
protected void checkPackageAccess(String);
protected final Class defineClass(String, byte[], int, int);
protected final Class defineClass(byte[], int, int);
protected Package definePackage(String, String, String, String,

String, String, String, URL);
protected final Class findLoadedClass(String);
protected Class findLocalClass(String);
protected final Class findSystemClass(String);
protected Package getPackage(String);
protected Package[] getPackages();
protected synchronized Class loadClass(String, boolean);
protected final void resolveClass(Class);
protected final void setSigners(Class, Object[]);

See also: SecureClassLoader, URLClassLoader

Class java.lang.RuntimePermission

429

This class represents permission to perform certain runtime operations, such as
executing other programs. Like all basic permissions, runtime permissions have
no actions.

Class Definition
public final class java.lang.RuntimePermission

extends java.security.BasicPermission

II Constructors

Page 446 of 482

430 APPENDIX D: QUICK REFERENCE

public RuntirnePermission(String);
public RuntirnePermission(String, String);

See also: BasicPennission, Pennission

Class java.lang.SecurityManager
This class forms the primary interface to the security model of the virtual
machine; it is recommended for backwards compatibility that access to that model
occur through this class rather than by calling the access controller directly.
However, most of the methods of this class simply call the access controller.

Class Definition
public class java.lang.SecurityManager

extends java.lang.Object

II Variables
protected boolean inCheck;

II Constructors
public SecurityManager();

II Instance Methods
public void checkAccept(String, int);
public void checkAccess(Thread);
public void checkAccess(ThreadGroup);
public void checkAwtEventQueueAccess();
public void checkConnect(String, int);
public void checkConnect(String, int, Object);
public void checkCreateClassLoader();
public void checkDelete(String);
public void checkExec(String);
public void checkExit(int);
public void checkLink(String);
public void checkListen(int);
public void checkMernberAccess(Class, int);
public void checkMulticast(InetAddress);
public void checkMulticast(InetAddress, byte);
public void checkPackageAccess(String);
public void checkPackageDefinition(String);
public void checkPermission(Permission);
public void checkPermission(Permission, Object);
public void checkPrintJobAccess();
public void checkPropertiesAccess();
public void checkPropertyAccess(String);
public void checkRead(FileDescriptor);

Page 447 of 482

MISCELLANEOUS PACKAGES

public·void checkRead(String);
public void checkRead(String, Object);
public void checkSecurityAccess(String);
public void checkSetFactory();
public void checkSystemClipboardAccess();
public boolean checkTopLevelWindow(Object);
public void checkWrite(FileDescriptor);
public void checkWrite(String);
public boolean getinCheck();
public Object getSecurityContext();
public ThreadGroup getThreadGroup();

II Protected Instance Methods
protected native int classDepth(String);
protected native int classLoaderDepth();
protected native ClassLoader currentClassLoader();
protected Class currentLoadedClass();
protected native Class[] getClassContext();
protected boolean inClass(String);
protected boolean inClassLoader(.);

See also: AccessController

Class java. lang. reflect.ReflectPermission

431

This class represents the ability to obtain information via object reflections; specifi­
cally, whether private and protected variables and methods may be accessed
through object reflection. As all basic permissions, this permission carries no
actions; it has a single name: access.

Class Definition
public final class java.lang.reflect.ReflectPermission

extends java.security.BasicPermission

II Constructors
public ReflectPermission(String);
public ReflectPermission(String, String);

See also: BasicPennission, Pennission

Page 448 of 482

432 APPENDIX D: QUICK REFERENCE

Class java.net.N etPermission

This class represents the ability to work with multicast sockets and the ability to
use the authenticator classes. As all basic permissions, this class carries no actions.

Class Definition
public final class java.net.NetPermission

extends java.security.BasicPermission

II Constructors
public NetPermission(String);
public NetPermission(String, String);

See also: BasicPemission, Pemission

Class java.net.SocketPermission

This class represents the ability to work with certain sockets. The name of this
permission is constructed from the hostname or IP address of the machine on the
other end of the socket and the port number; either portion of the name is
subject to wildcard matching. Valid actions for this class include connect, accept,
and listen.

Class Definition
public final class java.net.SocketPermission

extends java.security.Permission
implements java.io.Serializable

II Constructors
public SocketPermission(String, String);

II Instance Methods
public boolean equals(Object);
public String getActions();
public int hashCode();
public boolean implies(Permission);
public PermissionCollection newPerrnissionCollection();

See also: Pemission

Page 449 of 482

MISCELLANEOUS PACKAGES 433

Class java. net. URLC lassLoader
This class provides a concrete class loader that may be used to load classes from
one or more URLs (either http-based or file-based URLs). Since it is a secure class
loader, classes loaded from a URL class loader will be fully integrated into the
access controller's security model.

Class Definition
public class java.net.URLClassLoader

extends java.security.SecureClassLoader

II Constructors
public URLClassLoader(URL[], ClassLoader);

II Class Methods
public static URL fileToURL (File) ;
public static URL[] pathToURLs(String);

II Instance Methods
public URL getLocalResource(String);
public Enumeration getLocalResources(String);
public void invokeClass(String, String[]);
public void setListener(URLClassLoader$Listener);

II Protected Instance Methods
protected void checkPackageDefinition(String);
protected Class defineClass(String, Resource);
protected Package definePackage(String, Attributes, URL);
protected Class findLocalClass(String);

Seealso:ClassLoader,SecureClassLoader

Class java.rmi.RMISecurityManager
The RMI security manager provides a security manager that is suitable for many
RMI servers. It provides the ability for RMI applications to make socket-based
connections to e_ach other, and otherwise follows the default security manager
implementation.

Class Definition
public class java.rmi.RMISecurityManager

extends java.lang.SecurityManager

II Constructors

Page 450 of 482

434 APPENDIX D: QUICK REFERENCE

public RMISecurityManager();

II Instance Methods
public synchronized void checkAccept(String, int);
public synchronized void checkAccess(Thread);
public synchronized void checkAccess(ThreadGroup);
public synchronized void checkConnect(String, int);
public void checkConnect(String, int, Object);
public synchronized void checkPackageAccess(String);
public synchronized void checkPackageDefinition(String);
public synchronized void checkRead(String);
public void checkRead(String, Object);
public Object getSecurityContext();
public ThreadGroup getThreadGroup();

See also: SecurityManager

Class java.rmi.server.RMIClassLoader
While not a traditional class loader, this class allows classes to be loaded via the
same mechanics as a class loader: the loadClass () method may be called to load
a class explicitly, and this class will also be used to load all subsequent classes
required by the target class. This class loader will only load classes from the URL
specified by the java. nni. server. codebase property. The internal class loader
used by this class is a secure class loader, so the security model of the access
controller will be used by classes loaded in this manner.

Class Definition
public class java.rmi.server.RMIClassLoader

extends java.lang.Object

II Class Methods
public static Object getSecurityContext(ClassLoader);
public static Class loadClass(String);
public static Class loadClass(URL, String);

See also: ClassLoader, SecureClassLoader

Page 451 of 482

MISCELLANEOUS PACKAGES 435

Class java. util.PropertyPermission
This class represents the ability to read or write properties. The name of a prop­
erty permission is the name of the property itself; the action for a property
permission is either set or get.

Class Definition
public final class java.util.PropertyPermission

extends java.security.BasicPermission {

II Constructors
public PropertyPermission(String, String);

II Instance Methods
public boolean equals(Object);
public String getActions();
public int hashCode();
public boolean implies(Permission);
public PermissionCollection newPermissionCollection();

See also: Permission

Page 452 of 482

A
access controller, 7, 90-92

AccessController class, 116-121
class loaders.and, 32
CLASSPATH variable and, 13
code sources, 92-93
guarded objects, 121-122
permissions (see permissions)
Policy class, 108-114
protection domains, 114-115
security manager and, 90, 150-152
(see also permissions)

access levels, 18-19
object serializatio11: and, 22-23

AccessControlContext class, 152, 375
AccessController, 376
accessible flag, permission to set, 99, 431
accessing

files, security managers and, 70-73
memory (see casting illegally)
network, security managers and, 73-79

actions of permissions, 94
(see.also specific permission type)

add(), PermissionCollection class, 104
addCertificate(), Identity class, 249, 251
addidentity(), ldentityScope class, 351,

356
addProvider() , Security class, 187

Index

algorithm classes, 179
AlgorithmParameterGenerator class, 3'76
AlgorithmParameterGeneratorSpi

class, 377
AlgorithmParameters class, 377
AlgorithmParameterSpec

interface, 224-225, 407
AlgorithmParametersSpi class, 378
algorithms, cipher, 309-311
algorithms, cryptographic, 180-181
-alias option (keytool), 331
aliases for keystore entries, 257, 330
aliases () , KeyS tore class, 25 7
<<ALL FILES» token, 96, 152
allowSystemProperty property, 111
AllPermission class, 99, 379
applets

applet class loaders, 37
applications vs., 6
file access and, 72
network access and, 73-75
network services and, 77-78
security managers and, 63, 69

(see also security managers)
applications

applets vs., 6
built-in security, 13-15
elements of, 6-8

437

Page 453 of 482

438

applications (continued)
running, 9-10

JavaRunner for (example), 10-13
Launcher for, 14-15

security managers and, 63
(see also security managers)

array bounds checking, 20, 29
associations, provider, 185-187
authentication, 8, 163-169
Authenticator class, interacting with, 98
author authentication, 164-165
AWTPermission class, 98, 151, 427

permissions for, 98

B
basic permissions, 103-104, 379
BasicPermission class, 103-104, 379
beginPrivileged() , 119-121, 136
block files, 278
bugs, security, 366-371
built-in application security, 13-15
bytecode verifier, 6, 24-30

c

cancelling verification, 28-29
delayed verification, 27-28
how it works, 26-27
other programming languages and, 24
runtime verification, 29

caching loaded classes, 44
cancelling bytecode verification, 28-29
CAs (certificate authorities), 227-229,334

revoking certificates, 236-240
casting illegally, 19, 21

Java compiler and, 24
virtual machine and, 21, 30

catching security exceptions, 66
CBC encryption mode, 303
certificate entries, 257-260, 331

adding to database, 332-333
deleting, 338
examining, 338-339
managing with policytool, 345
modifying, 336-338
passwords for, 332, 337

INDEX

certificates, 210, 226-240
CAs (certificate authorities), 227-229,

236-240,334
Certificate class, 230-231, 401
Certificate interface, 230
CSRs (certificate signing

requests), 334-335
digital signatures and, 272-276
distinguished names (DNs), 247
importing/ exporting, 234-235, 338
java.security.cert quick

reference, 401-405
printing, 339
revoked, 236-240, 402
serialization and, 240-241
TBS certificates, 235, 239
when necessary, 229
X509 certificates

serialization and, 273
X509Certificate class, 231-236, 403
X509CRL class, 237-239, 404
X509EncodedKeySpec class, 223,

410
X509Extension class, 405

certificates() , Identity class, 250
CFB encryption mode, 303
check, determining if in progress, 136-138
checkAccept() , SecurityManager

class, 76, 144
checkAccess(), RMISecurityManager

class, 154
checkAccess() , SecurityManager class, 81,

135
default security policy and, 152
implementing thread security, 145-148

checkAwtEventQueueAccess(), 84, 85
checkClassDepth () , 141

security manager methods with, 156
checkClassLoader(), 140

security manager methods with, 156
checkConnect() , 75

connections to source host
only, 141-143

customizing network security
model, 143

Page 454 of 482

INDEX

in Check variable and, 137
RMISecurityManager class, 154

checkCreateClassLoader(), 79, 135
checkDelete(), 70-71, 135
checkExec(), 79-80, 135

default security policy and, 152
checkExit(), 79-81, 135
checkGuard(), 100, 122
checkLink() , 79-80, 135
checkListen(), 76
checkMemberAccess(), 85-,-87, 135

default security policy and, 152
RMISecurityManager class, 154

checkMulticast() , SecurityManager
class, 76

checkPackageAccess(), 50, 86-,-88, 140,
149

RMISecurityManager class, 154
checkPackageDefinition(), 87-88, 140,

149
RMISecurityManager class, 154

checkPermission ()
AccessController class, 116-,-118
SecurityManager class, 79-81

checkPrintJobAccess(), SecurityManager
class, 84-85

checkPropertiesAccess(), 84
checkPropertiesAccess() ,

SecurityManager class, 85
checkProperty(), 109
checkPropertyAccess(), 85, 135

RMISecurityManager class, 154
checkPropertyAccess(), SecurityManager

class, 84
checkRead(), 70-71, 135

RMISecurityManager class, 154
security policy for, 156-,-158

checkSecurityAccess() , 87-88, 184,
191-192,251,253

SecurityManager class, 356
checkSetFactory()

RMISecurityManager class, 154
SecurityManager class, 76, 78

checkSystemClipboardAccess(), 84-85
checkTopLevelWindow(), 84, 86, 135, 158

439

default security policy and, 152
RMISecurityManager class, 154

checkValidity() , X509Certificate class, 233
checkWrite(), 70-71, 135

RMISecurityManager class, 154
security policy for, 156-,-158

cipher algorithms, 309-311
cipher block chaining encryption

mode, 303
Cipher class, 293, 302-315, 411

implementing, 311-315, 413
NullCipher class, 309, 416

cipher-feedback encryption mode, 303
cipher streams, 315-320, 412-413
CipherlnputStream class, 318-319, 412
CipherOutputStream class, 315-317,413
CipherSpi class, 311-315, 413
class loaders, 7, 31

asking information of/for security
managers, 138-140

caching loaded classes, 44
choosing, 39
ClassLoader class, 428
CLASSPATH variable and, 14
connections to source host only, 143
delegation model for, 59
depth of, 130-136
extensions to, 51-59
how classes are loaded, 35-36, 40-42
implementing, 43-50
implementing security policies, 50
for JAR files, 55-59
loading resources with, 60
of most recently called class, 128-129
namespaces and, 32-35
network permissions in, 144
protection domains and, 115
protocols and, 51
RMIClassLoader class, 37, 40, 434
security enforcement, 32
security manager and, 32, 36, 125,...138
types of, 36-,-39
URLClassLoader class, 98, 433

ClassCastException, 21
classDepth () , 129

Page 455 of 482

440

classes
access to members of, 87
for algorithms, 179
authenticating (see authentication)
class loader depth, 130-136
defining, 50, 140
different class loaders and, 34
engine classes, 1 79

architecture of, 192-194
for message digests, creating, 204-208
involved in calling security

manager,-126-127
loading, 35-36, 40-42, 140

caching loaded classes, 44
delegation model for, 59
fromJAR files, 55-59
from multiple sites, 51-55
from URLs, 38-39
(see also class loaders)

not verifying, 28-29
protection domains and, 114
provider (see security providers)
resolving, 36, 44
of the same package, 34
sealed classes, 326-327, 417
SecureClassLoader class, 38, 396
SPI classes, 193
trusted vs. untrusted, 67-68, 130

classes, signed, 277-283
ClassLoader class, 43-4 7

caching loaded classes, 44
delegation model for, 59

classLoaderDepth(), 131-133
CLASSPATH environment variable, 13,

67-68
clear() , Provider class, 184
client sockets, 75
clipboard, access to, 85
clone () , MessageDigest class, 197
CN (common name), 247
code sources, 92-93

constructing, 48
permissions for (see security policy)
protection domains, 114-115

CO DEBASE attribute, 34, 51

codeBase entry (policy file), 112
code bases

managing with policytool, 343
permissions for, 344

Code Source () , 92
CodeSource class, 92-93, 380
collections of permissions, 104-108

(see also permissions)

INDEX

com.sun.crypto.provider.SunJCE class, 293
cipher algorithms, 309-311
encryption modes, 303-304
key agreement algorithm, 322-326
padding schemes, 304

commercial software, 163, 371-373
common name (CN), 247
compiler

enforcing java language rules, 24
writing illegal code, 25

constants (final variables), 19-20, 25
containsAlias(), KeyStore class, 257
CRLs (certificate revocation lists), 237-240
cryptographic keys, 172-173

public/private key pairs, 173
secret keys, 172

cryptography
algorithms for, 180-181
authentication vs. encryption, 166
authentication, role of, 168-169
certificates (see certificates)
encryption export restrictions, 289-292
encryption strength, 216, 264
engines for, 169-175, 180-181
JCE (seeJCE)
keys for (see keys, cryptographic)
reasons for, 163-168

-csr option (keys tore), 334
CSRs (certificate signing

requests), 334-335
currentClassLoader(), 127-129
currentLoadedClass(), 129
custom class loaders, 39
customizing

network security model, 143
security managers, 124-125

Page 456 of 482

INDEX

D
data authentication, 165-166
Data Encryption Standard (see DES)
decryption, 308 ·

(see also encryption)
default

access level, 18
class loader, 36-37
security policy, 110-114, 150-153

defineClass()
ClassLoader class, 43
ProtectionDomain class, 115
SecureClassLoader class, 4 7

defining classes, 140
delayed bytecode verification, 27-28
delegation model for loading classes, 59
-delete option (keystore), 338
deleteEntry() , KeyStore class, 257
deleting files, 70-73
depth, class loader, 130-136
DES (Data Encryption Standard), 309

DESede algorithm, 310
DESedeKeySpec class, 299, 422
DESKeySpec class, 299, 421
DESParameterSpec class, 299, 421

deserialization (see serialization)
Diffie-Hellman algorithm

DHGenParameterSpec class, 299, 422
DHKey interface, 294, 419
DHParameterSpec class, 299, 423
DHPrivateKey interface, 294, 419
DHPrivateKeySpec interface, 423
DHPublicKey interface, 294, 419
DHPublicKeySpec class, 300, 424
key agreement algorithm, 322-326

digest(), MessageDigest class, 196
DigestlnputStream class, 203-204, 381
DigestOutputStream class, 201-203, 381
digests (see message digests)
digital fingerprints (s~e message digests)
digital signatures, 8, 162, 174-175,

266-288
certificates and (see certificates)
encryption vs., 166

Signature class, 266-276, 398
implementing, 283-287

SignatureSpi class, 399
signed classes, 277-283
signed JAR files

reading, 277-281
security policy and, 281-283

SignedObject class, 271-272, 400
of SIGNER.SF file, 340
(see also message digests)

distinguished names (DNs), 247, 330
-dname option (keytool), 331
DNs (distinguished names), 247, 330
DNS spoofing, 164, 369
do Final () , Cipher class, 306-307
domains, protection (see protection

domains)
doPhase(), KeyAgreement class, 322
DSA algorithm

DSAKey interface, 213-214, 405
DSAKeyPairGenerator

441

interface, 217-218, 406
DSAParameterSpec class, .224, 407
DSAParams interface, 213, 406
DSAPrivateKey interface, 214, 406, 407
DSAPrivateKeySpec class, 225, 408
DSAPublicKey interface, 214, 406, 407
DSAPublicKeySpec class, 225, 408
keys for, 213-214

generating, 217-218
.DSA filename extension, 278

E
ECB encryption mode, 303
electronic cookbook encryption mode, 303
elements() , Permission Collection

class, 105
encapsulation, 18
EncodedKeySpec class, 223-224, 409
encoding keys, 212, 223-224
encryption

authentication vs., 166
cipher algorithms, 309-311
Cipher class, 293, 302-315, 411
cipher streams, 315-320

Page 457 of 482

442

encryption (continuer!)

Diffie-Hellman (see Diffie-Hellman
algorithm)

export restrictions, 289-292
of keystores, 256
of message digests, 199
modes of, 302-304
NullCipher class, 309, 416
padding schemes, 302, 304
of private keys, 264
process of, 302-315
public key encryption, 173

generating public keys, 222
importing public keys, 221
including key with

signatures, 272-276
PublicKey class, 395
PublicKey interface, 213

RSA (see RSA encryption)
sealed classes, 326-327, 417
SSL encryption, 167, 319-320
symmetric key agreements, 320-326

encryption engines, 175
endPrivileged(), 119-121
enforcing Java language rules, 23-30
engineDigest() , MessageDigest class, 205,

208
engineDoFinal() , Cipher class, 312
engineGeneratePrivate () , KeyFactorySpi

class, 222
engineGeneratePublic() , KeyFactorySpi

class, 222
engineGetBlockSize(), Cipher class, 312
engineGetDigestLength () , MessageDigest

class, 206
engineGetiV(), Cipher class, 312
engineGetKeySpec () , 222
engineGetOutputSize(), Cipher class, 312
engineGetParameter() , Signature

class, 284
engineReset() , 206
engines, security, 178

classes for, 179, 192-194
cryptography, 169-175, 180-181

encryption, 175
key-related, 210 .
message digests, 204-208
secret keys, 296-302

INDEX

engineSetMode(), Cipher class, 311
engineSetPadding(), Cipher class, 311
engineSetParameter() , Signature

class, 284
engineSign () , Signature class, 283
engineTranslateKey() , KeyFactorSpi

class, 222
engineUpdate()

Cipher class, 312
MessageDigest class, 205, 208
Signature class; 283

engineVeruy(), Signature class, 283
entries, keystore, 253, 257-260
equals()

CodeSource class, 92
Identity class, 250, 251
Permission class, 99

evaluate () , Policy class, 109
event queue, access to, 85
expanding properties, 110
expandProperties property, 110
-export option (keys tore), 338
exporting

certificates, 234-235, 338
cryptographic keys, 220-226
encryption technology, 289-292
keys from key specification classes, 300

extending class loaders, 51-59
Externalizable interface, 22

F
factories, key (see keys, key factories)
file access methods, 156-158
-file option (keytool), 332, 335
file-access methods, security

manager, 70-73
FilePermission class, 95-96, 150, 427
final variables (constants), 19-20, 25
finding loaded classes, 44
findLoadedClass(), ClassLoader class, 44,

46

Page 458 of 482

INDEX

findLocalClass () , ClassLoader class, 46, 49
defining classes in packages, 50

findSystemClass () , ClassLoader class, 44,
46, 128

flush(), CipherOutputStream and, 315
forging digital signatures, 174
forName(), Class class, 13

G
generateKeyPair () , KeyPairGenerator

class, 217, 219
generatePrivate(), KeyFactory class, 221
generatePublic(), KeyFactory class, 221
generateSecret()

KeyAgreeinent class, 322
SecretKeyFactory class, 299

generating key pairs, 217, 219, 333
-genkey option (keytool), 333
genKeyPair() , KeyPairGenerator class, 217
getActions(), Permission class, 100, 102
getAlgorithm()

Key interface, 212
KeyAgreement class, 322
KeyFactory class, 221 ·
KeyPairGenerator class, 216
MessageDigest class, 197
Signature class, 268
Signed Object class, 272

getAlgorithmProperty() , Security
class, 190

getBasicConstraints () , X509Certificate
class, 236

getBlockSize () , Cipher class, 307
getByName(), inCheck variable and, 137
getCanonicalPath(), File class, 157
getCertificate () , KeyS tore class, 258
getCertificateAlias (·) , KeyS tore class, 258
getCertificateChain () , KeyS tore class, 258
getCertificates () , Identity class, 250
getClassContext() , SecurityManager

class, 126-127
getCodeSource ()

ProtectionDomain class, 115
SecureClassLoader class, 48

getContent() , Signed Object class, 271

getCreationData(), KeyStore class, 257
getDigestLength () , MessageDigest

class, 197
getEncoded ()

Certificate class, 231
EncodedKeySpec class, 223
Key interface, 212
X509CRL class, 239

getFormat()
EncodedKeySpec class, 223
Key interface, 212

443

getldentity() , IdehtityScope class, 351, 356
getlnCheck(), SecurityManager class, 136
getlnfo()

Identity class, 249
Provider class,. 183

getlnstance ()
Cipher class, 305
KeyAgreement class, 321
KeyFactory class, 221
KeyPairGenerator class, 215
KeyStore class, 255
MessageDigest class, 196
Signature class, 267
X509Certificate class, 232
X509CRL class, 238

getlssuerDN ()
X509Certificate class, 233
X509CRL class, 238

getlssuerUniqueiD(), X509Certifi.cate
class, 236

getiV(), Cipher class, 307
getKeys(), CodeSource class, 93
getKeySpec(), KeyFactory class, 221
getKeyUsage(), X509Certificate class, 236
getLocalResource () , ClassLoader class, 60 .
getLocalResources() , ClassLoader

class, 61
getLocation () , CodeSource class, 93
getMessageDigest()

DigestlnputStream class, 203
DigestOuputStream class, 201

getName()
Identity class, 249
Permission class, 100

Page 459 of 482

444

getName() (continued)

Principal interlace, 246
Provider class, 183

getNextEntry() , ClassLoader class, 59
getNexyarEntry() , ClassLoader class, 58
getNextUpdate(}, X509CRL class, 238
getNotAfter(), X509Certificate class, 233
getN otBefore () , X509Certificate class, 233
getObject()

GuardedObject class, 122
Sealed Object class, 327

getOutputSize () , Cipher class, 307
getP(), DSAAlgorithmParameterSpec

class, 224
getParameter() , Signature class, 268
getParams(), DSAParams interlace, 213
getPermissions(), ProtectionDomain

class, 115
getPolicy() , Policy class, 109
getPrivate(}, KeyPair class, 214
getPrivateKey()

KeyStore class, 258
Signer class, 252-253

getProperty() , Security class, 189
getProvider()

Cipher class, 307
Key Agreement class, 322
KeyFactory class, 221
Security class, 189
Signature class, 268

getProviders(), Security class, 189
getPublic () , Key Pair class, 214
getPublicKey()

Certificate class, 231
Identity class, 249

getQ() , DSAAlgorithmParameterSpec
class, 224

getResource () , ClassLoader class, 60
getResourceAsStream () , ClassLoader

class, 60
getResources () , ClassLoader class, 61
getRevocationDate () , Revoked Certificate

class, 237
getRevokedCertificate () , X509CRL

class, 238

getRevokedCertificates () , X509CRL
class, 239

INDEX

getScope(}, Identity class, 249
getSecurityManager() , SecurityManager

class, 68-70
getSerialNumber()

RevokedCertificate class, 237
X509Certificate class, 233

getSigAlgName()
X509Certificate class, 236
X509CRL class, 239

getSigAlgOID(), X509Certificate
class, 236

getSigAlgParams(), X509CRL class, 239
getSignature ()

SignedObject class, 272
X509Certificate class, 236
X509CRL class, 239

getSubjectDN () , X509Certificate
class, 233

getSubjectUniqueiD () , X509Certificate
class, 236

getSystemResource () , ClassLoader
class, 61 ·

getSystemResourceAsStream () ,
ClassLoader class, 61

getSystemScope () , IdentityScope
class, 351

getTBSCertificate () , X509Certificate
class, 235

getTBSCertList(), X509CRL class, 239
getThisUpdate(), X509CRL class, 238
getThreadGroup() , SecurityManager

class, 81-83
implementing thread security, 145-148

getTrust() (example}, 139
getVersion()

Provider class, 183
X509Certificate class, 233
. X509CRL class, 238

government restrictions on
encryption, 289-292

Guard interlace, 382
guarded objects, 121-122
GuardedObject class, 121, 382

Page 460 of 482

INDEX

H
hasExtensions () , RevokedCertificate

class, 237
hash Code () , Permission class, 100
help (resources for further

reading), 366-374
-help option (keystore), 339
hierarchy, thread, 82
http-tunneling, 75
HttpURLConnection class, 79

I
identities() , IdentityScope class, 351
identities, key, 245-253, 349-365

creating, 363-365
Identity class, 246-252, 383

security manager and, 251-252
identity scopes, 248, 349-357, 384

key management in, 357-365
shared, 361-363
writing, 353-356

ldentityScope class, 248, 349-357, 384
security managers and, 356-357

Principle interface, 245-246
security managers and, 356-357
signers, 252-253, 360-361, 400

identitydb.obj file, 352
identityEquals(), Identity class, 251
-ids option (jarsigner), 342
implies()

Permission class, 100, 103
PermissionCollection class, 104-106
ProtectionDomain class, 115

-import option (keytool), 332-333
importing

certificates, 234-235
cryptographic keys, 220-226

from key specification classes, 300
entries into keystore, 332-336

inCheck variable, 136-138
in Class () , SecurityManager class, 129
inClassLoader(), SecurityManager

class, 129
InetAddress class, 136

init()
Cipher class, 305
KeyAgreement class, 321

445

initialize(), KeyPairGenerator class, 216,
218

initializing key pair generators, 216, 217
initializing keystores, 255
initializing variables, 20
initSign(), Signature class, 267
initVerify() , Signature class, 267
input streams

cipher streams, 318-319, 412
DigestlnputStream class, 381

input streams, message digest, 203-204
insertProviderAt() , Security class, 188
installing keystores, 265
integrity of memory, 19, 22-23
internal class loader, 36-37
invoke Class () , URLClassLoader class, 40
invokeMain() (example), 13
IP spoofing, 164, 369
isCertificateEntry() , KeyStore class, 257
isEqual(), MessageDigest class, 197
isKeyEntry(), KeyStore class, 257
isReadOnly() , Permissions class, 108
isRevoked () , X509CRL class, 238

J
JAR files

creating with jarsigner, 340-343
keystores in, 254
loading classes from, 55-59
signing, 340-341

reading signed files, 277-281
security policy and, 281-283

verifying, 341-343
jarsigner utility, 254, 340-343

Java
applets (see applets)
applications (see applications)
authenticationand, 167-168
compiler (see compiler)
encryption and, 166

(see also encryption)
enforcing language rules, 23-30

Page 461 of 482

446

Java (continued)

key management, 243-245, 253-265
language security constructs, 18-23
sandbox model, 4-6

signed classes and, 277-283
(see also sandboxes)

security bugs, 369-370
security policies in Java 1.1, 153-158
security policies in Java 1.2, 150-153
versions of, xi

secure applications and, 15
trusted classes, 67-68

virtual machine (see virtual machine)
Java API

permissions of, 95-99
security managers and, 64-67, 125

java.awt.AWTPermission class, 98, 151, 427
java.crypto package, 411-418
Java Cryptography Extension (JCE), 175
java.io.Extemalizable interface, 22
java.io.FilePermission class, 95-96, 150,

427
java.io.Serializable interface, 22
java.io.SerializablePermission class, 98-99,

428
java.lang.ClassLoader class, 428
java.lang.reflect.ReflectPermission

class, 99, 431
java.lang.RuntimePermission class, 97,

150,429
java.lang.SecurityMnager class, 64-67,

150-156,430
java.net.NetPermission class, 98, 151, 432
java.net.SocketPermission class, 96-97,

151,432
java.net. URLClassLoader class, 98, 433
java. policy files

administering by hand, 347
default security policy, 150-153
managing entries with

policytool, 343-345
Java properties (see properties)
Java reflection API, 13
java.rmi.RMISecurityManager class, 153,

433

INDEX

java.rmi.server.RMIClassLoader class, 37,
40,434

java.security file, 111
administering by hand, 345-34 7
code of (Java 1.2), 113-114

java.security package (see security package)
java.security.AccessControlContext

class, 152, 375
java.security.AccessController class, 376,

116-121
java.security.AlgorithmParameterGenerator

class, 376
java.security.AlgorithmParameterGenerator

Spi class, 377
java.security.AlgorithmParameters

class, 377
java.security.AlgorithmParametersSpi

class, 378
java.security.AllPermission class, 99, 379
java.security.BasicPermission

class, 103-104, 379
java.security.cert package, 401-405
java.security.cert.Certificate class, 401
java.security.cert.RevokedCertificate

class, 402
java.security.~ert.X509Certificate class, 403
java.security.cert.X509CRL class, 237-239,

404
java.security.cert.X509Extension class, 405
java.security.CodeSource class, 92, 380
java.security.DigestlnputStream

class, 203-204, 381
java.security.DigestOutputStream

class, 201-203, 381
java.security.Guard interface, 382
java.security.GuardedObject class, 121, 382
java.security.ldentity class, 383
java.security.ldentityScope class, 349-357,

384
java.security.interfaces package, 405-407
java.security.interfaces.DSAKey

interface, 213-214, 405
java.security.interfaces.DSAKeyPair­

Generator interface, 217-218, 406

Page 462 of 482

INDEX

java.security.interfaces.DSAParams
interface, 213, 406

java.security.Key interface, 212-214
java.security.KeyFactory class, 220-226, 385
java.security.KeyFactorySpi class, 222-223,

386
java.security.KeyPair class, 214-215
java.security.KeyPairGenerator

class, 215-220
java.security.KeyStore class, 388
java.security.MessageDigest class, 195-200,

389
java.security.MessageDigestSpi class, 390
java.security.Permission class, 93-95,

99-103,391
java.security.PermissionCollection

class, 104-107, 391
java.security.Permissions class, 107-108,

392
java.security.Policy class, 108-114, 393
java.security.PolicyFile class, 109-114
java.security.Principal interface, 393
java.security.PrivateKey interface, 394
java.security.ProtectionDomain

class, 114-115, 394
java.security.Provider class, 183-187, 395
java.security.SecureClassLoader class, 38,

396
java.security.SecureRandom class, 396
java.security.Security class, 187-192, 397
java.security.SecurityPermission class, 98,

152,397
java.security.Signature class, 266-276, 398

implementing, 283-287
java.security.SignatureSpi class, 399
java.security.SignedObject class, 271-272,

400
java.security.spec package, 407-411
java.security.spec.AlgorithmParameterSpec

interface, 224-225, 407
java.security.spec.DSAParameterSpec

class, 224, 407
java.security.spec.EncodedKeySpec

class, 223-224, 409

447

java.security.spec.KeySpec
interface, 223-225, 409

java.security.spec.PKCS8EncodedKeySpec
class, 223, 410

java.security.spec.X509EncodedKeySpec
class, 223, 410

java. security. UnresolvedPermission
class, 99, 401

java.utilJar package, 58
java.util.PropertyPermission class, 97, 435
java.util.zip package, 59
java. policy files, 148

sharing keystores via, 260-261
java.security.cert.Certificate class, 230-231
java.security.cert.RevokedCertificate

class, 237
java.security.cert.X509Certificate

class, 231-236
java.security.Certificate interface, 230
java.security.Identity class, 246-252
java~security.IdentityScope class, 248,

349-357
java.security.Key interface, 384
java.security.KeyPair class, 386
java.security.KeyStore class, 255....:260
java.security.Principle interface, 245-246
java.security.PublicKey class, 395
java.security.Signer class, 252-253,

360-361,400
javac (see compiler)
javakey utility, 245
JavaRunner program (example)

loading classes, 41-42
outline of, 11-13
running as secure, 159-160

JavaRunnerLoader class (example), 42
JAR file support, 56-59

JavaRunnerManager class (example), 150
javax.crypto.Cipher class, 293, 302-315,

411
javax.crypto.CipherlnputStream

class, 318-319, 412
javax.crypto.CipherOutputStream

class, 315-317, 413
javax.crypto.CipherSpi class, 311-315, 413

Page 463 of 482

448

javax.crypto.interfaces package, 293,
419-421

javax.crypto.interfaces.RSAPrivateKey
interface, 294, 420

javax.crypto.interfaces.RSAPrivateKeyCrt
interface, 294, 420

javax.crypto.interfaces.RSAPublicKey
interface, 294, 420

javax.crypto.KeyAgreement class, 293,
321-326,414

javax.crypto.KeyAgreementSpi class, 415
javax.crypto.KeyGenerator class, 293,

296-298,415
javax.crypto.KeyGeneratorSpi class, 416
javax.crypto.NullCipher class, 309, 416
javax.crypto.SecretKey class, 417
javax.crypto.SealedObject class, 326-327,

417
javax.crypto.SecretKeyFactory class, 293,

299-302,417
javax.crypto.spec package, 421-427
javax.crypto.spec.DESedeKeySpec

class, 299, 422
javax.crypto.spec.DESKeySpec class, 299,

421
javax.crypto.spec.DESParameterSpec

class, 299, 421
javax.crypto.spec.DHGenParameterSpec

class, 299, 422
javax.crypto.spec.DHParameterSpec

class, 299, 423
javax.crypto.spec.DHPrivateKeySpec

class, 294, 423
javax.crypto.spec.DHPublicKeySpec

class, 300, 424
javax.crypto.spec.PBEKeySpec class, 300,

424
javax.crypto.spec.PBEParameterSpec

class, 300, 425
javax.crypto.spec.RSAPrivateKeyCrtSpec

class, 300, 425
javax.crypto.spec.RSAPrivateKeySpec

class, 300, 426
javax.crypto.spec.RSAPublicKeySpec

class, 300, 426

INDEX

JCE (Java Cryptography Extension), 175
cipher streams, 315-320
encrypting data, 302-315
export restrictions, 289-292
key types in, 293-295
sealed classes, 326-327, 417
Sun security provider, 292-293
symmetric key agreements, 320-326

JVM (see virtual machine)

K
key database, 8
key entries (keystores), 257-260, 331

adding to database, 333-336
deleting, 338
DNsfor, 330
examining, 338-339
modifying, 336-338
passwords for, 332, 337

-keyalg option (keytool), 334
-keyclone option (keystore), 337
-keypass option (jarsigner), 341
"keypass option (keytool), 332
-keypasswd option (keystore), 337
keys, cryptographic, 172-173, 210-226

DSA keys, 213-214, 217-218
encoding, 212, 223-224
engines for, 210
generating key pairs, 215-220, 333
identities, 245-253
Identity class, 246-252
ldentityScope class, 248, 349-357
implementing key pair

generator, 218-220
importing/ exporting, 220-226, 300
including with digital

signatures, 272-276
JCE key types, 293-295
key factories, 385

example of, 225-226
KeyFactory class, 220-226
KeyFactorySpi class, 222-223
SecretKeyFactory class, 293,

299-302,417
Key interface, 212-214, 295, 384

Page 464 of 482

INDEX

keys, cryptographic (continued)

KeyAgreement class, 293, 321-326, 414
KeyAgreementSpi class, 415
KeyFactory class, 385
KeyFactorySpi class, 386
KeyGenerator class, 293, 296-298, 415
KeyGeneratorSpi class, 416
KeyPair class, 214-215, 386
KeyPairGenerator class, 215-220, 387

implementing, 218-220
KeyPairGeneratorSpi class, 387
KeySpec interlace, 223-225, 409
KeyStore class, 253-260
managing, 243-245, 253-265

in identity scopes, 357-365
Principle interlace, 245-246
public/private key pairs, 173
secret keys, 172, 294-295

engines for, 296-302
SecretKey class, 417
SecretKeyFactory class, 293,

299-302,417
SecretKeyFactorySpi class, 302, 418

serialization and, 24Q-241
Signer class, 252-253, 360-361, 400
strength, 216, 264
symmetric key agreements, 320-326
usage extension, 236
(see also certificates)

-keysize option (keytool), 334
keys tore entry (policy file), 114
-keystore option (jarsigner), 341
-keystore option (keytool), 332
keystores, 245, 253-260, 330

administrative interlace to
(keytool), 330-339

aliases for entries in, 330
deleting entries in, 338
DNs for entries in, 330
encrypting, 256
entrieso£ 253,257-260
entry passwords, 332
entry types, 331
examining data in, 338-339
importing entries into, 332-336

inJARfile, 254
KeyStore class, 388
managing certificate entries with

policytool, 345
modifying entries in, 336-338
password for, 332, 339
sharing by files, 260-261
specifying in policy files, 114

449

keytool utility, 245, 253-256, 260, 33Q-339

L
Launcher application (example), 14-15,

160
Launcher class, 15
laws regarding encryption, 289-292
length, message digest, 197, 206
-list option (keys tore), 338
listeners for URLClassLoader, 98
load () , KeyS tore class, 255, 262
load Class() , 40, 43-47

calling checkPackageAccess() , 50
loadClassBytes() (example), 58
loading classes, 35-36, 40-42, 140

caching loaded classes, 44
delegation model, 59
from JAR files, 55-59
from multiple sites, 51-55
from URLs, 38-39
(see also class loaders)

loading resources, 60
loadProvider() , Provider class, 187

M
machine properties, access to, 85
MACs (Message Authentication

Codes), 199-200
manifest for signed JAR files, 278
markSupported(), CipherOutputStream

class, 318
memory

caching loaded classes, 44
casting illegally, 19, 21, 24, 30
integrity, 19, 22-23

Message Authentication Codes
(MACs), 199-200

Page 465 of 482

450

message digests, 170-172, 178, 195-209
creating engine for, 204-208
encrypting, 199
filter streams for, 381
input/output streams, 201-204
MessageDigest class, 389
MessageDigestSpi class, 390
verifying, 198-199
(see also digital signatures)

MessageDigest class, 195-200
implementing, 204-208
Signature class vs., 268

modes, encryption, 302-304
modifiers for access levels, 18
multicast sockets, permissions, 98, 151, 432
multiple-DES, 310

N
names

cryptographic algorithms and
engines, 181

DNs (distinguished names), 247
keystore entry aliases, 257
of permissions, 94

(see also specific permission type)
socket permissions, 96

namespaces, class loaders and, 32-35
NetPermission class, 98, 151, 432
network-access methods, security

manager, 73-79
networking

implementing access, 141-144
network-level security, 168
permissions in class loader, 144
security policy for, 158
services and applets, 77-78
socket permissions, 96-97, 98, 151, 432

newlnstance() (Class class), 40
newPermissionCollection(), 100, 104
nit(), Cipher class, 312
nitSign () , Signature class, 283
nitVerify(), Signature class, 283
NoPadding scheme, 304
-noprompt option (keytool), 333
null security managers, 155

NullCipher class, 309, 416
NullSecurityManager class, 155

0
objects

casting illegally, 19, 21
Java compiler and, 24
virtual machine and, 21, 30

guarded, 121-122
serialization, 22-23
state of, 22

OFB encryption mode, 304
on()

DigestlnputStream class, 203
DigestOutputStream class, 202

operating system, security and, 10
OU (organizational unit), 247
output streqms

cipher streams, 315-317, 413
DigestOutputStream class, 381
message digest, 201-203

INDEX

output-feedback encryption mode, 304

p
package (default) access level, 18
packages

access to, 88, 148-150
classes of the same, 34
defining classes in, 50
security policy for, 158

padding schemes, 302, 304, 316
pairs of cryptographic keys, 172-173

DSAKeyPairGenerator interface, 406
DSAPrivateKey, DSAPublicKey

interfaces, 214, 406, 407 ·
DSAPublicKeySpec, DSAPrivateKeySpec

classes, 225, 408
factories (see keys, cryptographic: key

factories)
key pair generators, 215-220

implementing, 218-220
KeyPair class, 214-215, 386
KeyPairGenerator class, 387
KeyPairGeneratorSpi class, 387
symmetric key agreements, 320-326

Page 466 of 482

INDEX

passwords
for keystore entries, 332, 337
for keystores, 255, 263, 332, 339
for message digests, 200

patents on encryption technologies, 290
PBEKeySpec class, 300, 424
PBEParameterSpec class, 300, 425
PBEWithMD5AndDES algorithm, 310
PCBC encryption mode, 304
performance

delayed bytecode verification, 27-28
JAR files, 55

Permission(), Permission class, 99
permissio~s, 93

BasicPermission class, 1 03-104
codebase, managing, 344
granting all, 99
guarded objects, 121-122
Java API, 95-99
Java properties, 97, 435
Java runtime, 97, 150, 429
network permissions in class loader, 144
networking, 98, 151, 432
packages, 148-150
Permission class, 93-95, 391

guarded objects and, 122
how to use, 99-103

permission collections, 1 04-108
PermissionCollection class, 104-107,

391
Permissions class, 107-108
protection domains, 114-115
resolving external, 99
SecurityManager methods and, 150
serialization, 98-99, 428
sockets, 98, 151, 432
specifying for code sources (see security

policy)
threads, 145-148
windowing resources, 98
(see also access controller)

Permissions class, 392
PKCS5Padding scheme, 304
PKCS7 block files, 278

PKCS8EncodedKeySpec class, 223, 410
Policy class, 108-114, 393
policy code bases

managing with policytool, 343
permissions, 344

policy entries, 112
policy. url.# properties, Ill
PolicyFile class, 109-114
policytool tool, 343-345
ports in socket permission names, 96
primordial class loader, 36-37
Principal interface, 393
principals, 245-246
Principle interface, 245-246
-printcert option (keys tore), 339
printing

certificates, 339
permissions, 100
printer access, 84

priority, thread, 20
privacy, snooping, 165-166
private access level, 18

451

private cryptographic keys, 173
DHPrivateKeySpec class, 300
DSAPrivateKey interface, 214, 406, 407
DSAPrivateKeySpec class, 225, 408
encrypting, 264
generating, 215-220
importing, 221
JCE interfaces for, 294, 419
PrivateKey interface, 213, 394
RSAPrivateKey interface, 294, 420
RSAPrivateKeyCrt interface, 294, 420
RSAPrivateKeySpec class, 300, 426
signers, 252-253, 360-361,400
symmetric key agreements, 320-326

private identity scopes, 361
programs, 6

bytecode verification, 6, 24-30
cancelling, 28-29
delayed, 27-28

element access levels, 18
enforcing Java language rules, 23-30

propagating cipher block chaining
mode, 304

Page 467 of 482

452

properties
access to, 85
permissions for, 97, 435
PropertyPermission class, 97, 435
substitution for, 110

properties, provider, 185-187
protected access level, 18
protection domains, 114-115

network permissions in, 144
ProtectionDomain class, 114-115, 394

protocols and class loaders, 51
Provider class, 179, 183-187, 395
providers (see security providers)
proxy services, 78
public access level, 18

final variables and, 19
public identity scope, 361
public key encryption, 173

certificates (see certificates)
DHPublicKeySpec class, 300, 424
DSAPublicKey interface, 214, 406, 407
DSAPublicKeySpec class, 225, 408
generated public keys, 215-220
generating public keys, 222
Identity class, 246-252
importing public keys, 221
including key with signatures, 272-276
JCE interfaces for public keys, 294, 419
PublicKey class, 395
PublicKey interface, 213
RSAPublicKey interface, 294, 420
RSAPublicKeySpec class, 300, 426
symmetric key agreements, 320-326

put() , Provider class, 184

R
random numbers, 396
read () , DigestlnputStream class, 203
readExtemal () , Extemalizable

interface, 23
reading files, 70-73
reading private data, 165-166
reading signed JAR files, 277-281
readJarFile() (example), 58
readObject() , 23

INDEX

reflection API, 13
constructing classes with, 40
permission to set accessible flag, 99, 431

ReflectPermission class, 99, 431
refresh () , Policy class, 109
remove(), Provider class, 184
removeCertificate(), Identity class, 249,

251
removeldentity() , ldentityScope

class, 351, 356
removeProvider() , Security class, 189
reset(), MessageDigest class, 197
resetting message digests, 197, 206
resolveClass () , 44
resolving classes, 36, 44
resources (see system resources)
resources for further reading, 366-374
restrictions on encryption, 289-292
revoked certificates, 236-240, 402
RevokedCertificate class, 237, 402
RMI class loaders, 37, 40, 434
RMI security manager, 153-154
RMIClassLoader class, 37, 40, 434
RMISecurityManager class, 153, 433
RSA encryption, 320

RSAPrivateKey interface, 294, 420
RSAPrivateKeyCrt interface, 294, 420
RSAPrivateKeyCrtSpec class; 300, 425
RSAPrivateKeySpec class, 300, 426
RSAPublicKey interface, 294, 420
RSAPublicKeySpec class, 300, 426

running java applications, 9-10
JavaRunner for (example), 10-13
Launcher for (example), 14-15

runtime bytecode verification, 29
RuntimePermission class, 97, 150, 429

s
sandboxes

description of sandbox model, 4-6
signed classes and, 277-283
specifying as application

argument, 13-15
sealed classes, 326-327, 417
SealedObject class, 326-327, 417

Page 468 of 482

INDEX

secret keys, 172, 294-295
engines for, 296-302
KeyGenerator class, 293, 296-298, 415
KeyGeneratorSpi class, 416
SecretKey class, 417
S~cretKeyFactory class, 293, 299-302,

417
SecretKeyFactorySpi class, 302, 418

secure message digests, 199-200
Secure Socket Layer (SSL), 167, 319-320
SecureClassLoader class, 38, 47-50, 92, 396
SecureRandom class, 396
security

aspects of, protecting, 86-89
bugs, 366-371
built into applications, 13-15
class loaders and, 32-35
cryptography (see cryptography)
definition of, 1-4
encryption exportation laws, 289-292
enforcing Java language rules, 23-30
engines for (see engines, security)
file access, 70-73
jarsigner tool, 340-343
Java language constructs for, 18-23.
java. policy files, administering by

hand, 347
java.security file, 111

administering by hand, 345-347
code of Qava 1.2), 113-114

keys (see key, cryptographic)
keytool utility, 330-339
object serialization and, 22-23
operating system and, 10
policytool tool, 343-345
protection domains, 114-115
resources for further reading, 366-374
threats to (see threats)

Security class, 179-180, 187-192, 397
security manager and, 191-192

security exceptions, 65; 66
security managers, 7, 62-67

access controller and, 90, 150-152
asking information of/for class

loader, 138-140

class loaders and, 32, 36
custom, when to write, 124-125
file-access methods, 70-73
Identity class and, 251-252
identity scopes and, 356-357
Java API and, 64-67
JavaRunner program with

(example), 159-160
network-access methods, 73-79
null, 155

453

protected instance variables, 136-138
protected methods of, 125-138
protecting]VM, 79-81
protecting security aspects, 86-89
protecting system resources; 83-86
protecting threads, 81-83
for RMI server, 153-154
RMISecurityManager class, 153, 433
Security class and, 191-192
setting, 68-70
signed JAR files and, 282
signers and, 253
testing, 133
trusted vs. untrusted classes, 67-68
(see also SecurityManager class)

security package (java. security), 7
permissions to use, 98
quick reference, 375-401
security providers and, 179-180

security policy, 108-114
default, 110-114, 150-153
for file acces methods, 156-158
implementing from threads, 145-148
implementing in class loader, 50
implementing network access, 141-144
inJava 1.1, 153-158
in Java 1.2, 150-153
JavaRunner program and

(example), 159-160
Launcher application and

(example), 160
for networks, threads, packages, 158
operating system and, 10
package access, 148-150
Policy class, 393

Page 469 of 482

454

security policy (continuer!)

policy entries, 112
PolicyFile class, 109-114
reading from URLs, 111
setting the security manager, 69
signed JAR files, 281-283
utility classes for implementing, 140

security providers, 177
adding, 181-182, 187
architecture of, 178-182
interface for (SPI), 192-194
java.security and, 179-180
for keystore objects, 261-264
listing for virtual machine, 190
properties (associations) for, 185-187
Provider class, 179, 183-187, 395
SunJCE, 292-293
third-party, list of, 371-373
tr~slate keys between, 221

SecurityException class, 65, 66
SecurityManager class, 64-67, 150, 430

implementing in Java 1.1, 155-156
implementing in Java 1.2, 150-153
RMISecurityManager class, 153, 433

SecurityPermission class, 98, 152, 397
-selfcert option (keys tore), 336
Serializable interface, 22
serialization, 22-23, 240-241

permissions for, 98-99, 428
SerializablePermission class, 98-99, 428
X509 certificates and, 273

server sockets, 75
setCertificateEntry()

KeyStore class, 259
setlnfo() , Identity class, 249, 251
setKeyEntry() , KeyStore class, 258
setKeyPair(), Signer class, 252-253
setMessageDigest()

DigestlnputStream class, 203
DigestOuputStream class, 201

setParameter () , Signature class, 268
setPolicy() , Policy class, 109
setPriority(), Thread class, 20
setProperty() , Security class, 189
setPublicKey() , Identity class, 249, 251

INDEX

setReadOnly(), Permissions class, 108
setSecurityManager() , SecurityManager

class, 68-70
setSystemScope(), IdentityScope class, 356
setting the security manager, 68-70
.SF filename extension, 278
shared identity scope, 361-363
sharing keystores, 260-261
-sigalg option (keytool), 334, 335
-sigfile option (jarsigner), 341
sign(), Signature class, 267, 270
Signature class, 266-276, 398

implementing, 283-287
MessageDigest class vs., 268

signature files, 278
signatures (see digital signatures)
SignatureSpi class, 399
signed classes, 277-283
signed JAR files

reading, 277-281
security policy and, 281-283

signedBy en try (policy file), 112
-signedjar option (jarsigner), 341
SignedObject class, 271-272, 400
Signer class, 252-253, 360-361, 400
signer entry (policy file), 112
SIGNER.DSA file, 340
SIGNER. SF file, 340
signing JAR files, 340-341
size()

ldentityScope class, 351
KeyStore class, 257

snooping, 165-166
socket factories, 76, 78
sockets, 73-77

multicast, permissions for, 98, 151, 432
permissions for, 96-97, 151, 432
SocketPermission class, 96-97, 151, 432

software, commercial, 163, 371-373
SPI (security provider interface), 192-194
spoofing, 164, 369
SSL encryption, 167, 319-320
SSLSocket class, 319
stack trace of threads, 117
state, object, 22

Page 470 of 482

INDEX

store () , KeyS tore class, 256
-storepass option Uarsigner), 341
-storepass option (keytool), 332
-storepassword option (keys tore), 339
streams

ciphex:streams, 315-320, 412-413
digest streams, 381
message digest, 201-204

strength, encryption, 216, 264
StrictSecurityManager class

(example), 155-156
SunJCE security provider, 292-293

cipher algorithms, 309-311
encryption modes, 303-304
key agreement algorithm, 322-326
padding schemes, 304

sun.security.X509.X509Certlmpl class, 273
sun.misc.Launcher class, 15
SunJCE class, 293

cipher algorithms, 309-311
encryption modes, 303-304
key agreement algorithm, 322-326
padding schemes, 304

symmetric key agreements, 320-326
system resources

T

protecting with security
.managers, 83-86

TBS certificates, 235, 239
testing security managers, 133
third-party security providers, 371-373
threads

all classes on stack of, 126-127
permissions for, 145-148
priority of, 20
protecting with security

managers, 81-83
securing, 145-148
security policy for, 158
stack traces of, 117

threats
compilers writing illegal code, 25
DNS (IP) spoofing, 164, 369
forging digital signatures, 174

network access, 73
object serialization as, 22-23
secret key storage, 173
security bugs, 366-371
snooping private data, 165-166
using AllPermission class, 99
viruses and Trojan horses, 2-3

top-level windows, calling, 86
toString()

Identity class, 251
MessageDigest class, 197
Permission class, 100
Provider class, 183
Signature class, 268

tracking security bugs, 371
transient keyword, 22
translateKey() , Key Factory class, 221
triple-DES, 310
Trojan horses, 2-3
trusted classes, 67-68

as members ofuntrusted classes, 130
(see also untrusted classes)

types of permission, 94
(see also specific permission type)

u
U.S. restriction on encryption, 289-292
uninitialized variables, 20
UnresolvedPermission class, 99, 401
untrusted classes, 67-68

file access and, 71-73
network access and, 73-77
opening sockets, inCheck variable

and, 137
trusted classes as members of, 130

update()
Cipher class, 306
MessageDigest class, 196, 199
Signature class, 267, 270

URL class, 319
URL class loaders, 38-39, 60, 433

defining classes in packages, 50
invokeClass() , 40

URLClassLoader class, 98, 433
URLs, reading policies from, Ill

455

Page 471 of 482

456

-usepolicyflag, 14, 111,159,161
user information, access to, 85
utility classes for policy

implementation, 140

v
validate(), Certificate class, 237
validating certificates (see certificates)
-validity option (keytool), 334
variables

array bounds checking, 20, 29
final (constants), 19-20, 25
initializing, 20
of security managers, 136-138
transient, 22

-verbose option (jarsigner), 341
-verify option, 29
verify()

Certificate class, 231
Signature class, 268
SignedObject class, 272
X509CRL class, 238

verifying
bytecode (see bytecode verifier)
JARfiles, 341-343
message digests, 198-199

(see also message digests)
versions ofJava, xi

secure applications and, 15
SPI and, 192-194
trusted classes, 67-68

virtual machine
access controller and class loaders, 32
adding security providers, 181-182, 187
casting illegally and, 21, 30

listing security providers, 190
protecting with security

managers, 79-81
reading into (see class loaders)
runtime bytecode verification, 29

viruses, 2-3
in commercial software, 163

w
weaponry and encryption, 292

INDEX

wildcards for permissions, 94, 95, 103
windowing resources, permissions for, 98
windows, calling, 86
write(), DigestOutputStream class, 202
writeExtemal(), Extemalizable

interface, 23
writeObject() , 23
writing identity scopes, 353-356
writing key identities, 363-365
writing to files, 70-73

X
X509 certificates, 231-234

z

advanced methods for, 235-236
distinguished names (DNs), 247
importing/ exporting, 234-235
revoked, 236-240
serialization and, 273
X509Certificate class, 231-236, 403
X509CRL class, 237-239, 404
X509EncodedKeySpec class, 223, 410
X509Extension class, 405

zip package (java.util.zip), 59

Page 472 of 482

About the Author

Scott Oaks is a Java Technologist at Sun Microsystems, where he has worked since
1987. While at Sun, he has specialized in many disparate technologies, from the
SunOS kernel to network programming and RPCs to the X Window System to
threading. Since early 1995, he has primarily focused on Java and bringing Java tech­
nology to end users; he writes a monthly column on Java solutions for The Java
Report. Around the Internet, Scott is best known as the author of olvwm, the OPEN
LOOK window manager.

Scott holds a Bachelor of Science in mathematics and computer science from the
University of Denver and a Master of Science in computer science from Brown
University. Prior to joining Sun, he worked in the research division of Bear, Stearns.

In his other life, Scott enjoys music (he plays flute and piccolo with community
groups in New York), cooking, theatre, and traveling with his husband James.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

Hanna Dyer designed the cover of Java Security, based on a series design by Edie
Freedman. The image of a bird's nest was photographed by Kevin Thomas and
manipulated in Adobe Photoshop by Michael Snow. The cover layout was produced
with Quark XPress 3.3 using the Bodoni Black font from URW Software and Bodoni
BT Bold Italic from Bitstream. The inside layout was designed by Nancy Priest. Text
was prepared by Mike Sierra in FrameMaker 5.0. The heading font is Bodoni BT; the
text font is New Baskerville. The illustrations that appear in the book were created
in Macromedia Freehand 7.0 by Robert Romano.

Whenever possible, our books use Rep Kover™, a durable and flexible lay-flat
binding. If the page count exceeds RepKover's limit, perfect binding is used.

Page 473 of 482

. More Titles from O'Reilly
Java Programming

-Ja_~ __ m_a_M_m_sh_e_~_D_6_l-UXJ_E_E_D~1Ti~m~w~-------- -Ja_v._a-Se-c-~-iw ______________________ _

JAVA
MNIJ!f111HIM
S~gjava»oi)Jeonm-ROM ... _ _..,_~-~

By David Flanagan, et at.
1st Edition june 1997
628 pages, includes CD-ROM and book
ISBN 1-56592-304-9

java in a Nutshell, Deluxe Edition, is a Java
programmer's dream come true in one
small package. The heart of this Deluxe
Edition is the Java Reference Libracy on
CD-ROM, which brings together five vol­

umes for Java developers and programmers, linking related info
across bookS. It includes: Exploring java, 2nd Edition;]ava Lan­
guage Reference, 2nd Edition;]ava Fundamental Classes
Reference;javaAWJ' Reference; and java in a Nutshell, 2nd Edition,
included both on the CD-ROM and in a companion desktop edi­
tion. java in a Nutshell, Deluxe Edition, is an indispensable
resource for anyone doing serious programming with Java 1.1.

The Java Reference Libracy alone is also available by subscription
on the World Wide Web. Please see http://www.oreilly.com/cata­
logljavarlw/ for details. The electronic text on the Web and on the
CD is fully searchable and includes a complete index to all five, vol­
umes as well as the sample code found in the print volumes. A
web browser that supports HTML 3.2, Java, andJavascript, such as
Netscape 3.0 or Internet Explorer 3.0, is reqnired. (The CD-ROM
is readable on all UNIX and Windows platforms. However, current·
implementations of the Java Virtual Machine for the Mac do not
support the Java search applet in the CD-ROM.)

Java Cryptography
By jonathan B. Knudsen

~VA 1stEditionMay1998(est)
c.,., • .,..,h, 250 pages (est.), ISBN 1-56592-402-9

Java 1.1 and Java 1.2 provide extensive
support for cryptography with an elegant
architecture, the Java Cryptography Archi­
tecture (JCA). Another set of classes, the
Java Cryptography Extension (JCE), pro­
vides additional cryptographic functionali­

ty. This book covers the JCA and the JCE from top to bottom,
describing how to use cryptographic classes as well as how they
work.

The book is designed for moderately experienced Java program­
mers who want to learn how to bnild cryptography into their
applications, and no prior knowledge of cryptography is assumed.
It's peppered with useful examples, ranging from simple demon­
strations in the first chapter to full-blown applications in later
chapters.

.lAVA
Security

By Scott Oaks
1st Edition May 1998
472pages, ISBN 1-56592-403-7

java Security covers Java's security mech­
anisms and teaches you how to work with
them. It discusses class loaders, security
managers, access lists, digital signatures,
and authentication and shows how to use
these to create and enforce your own secu­

rity policy.java Security is essential reading for serious Java pro­
grammers. Covers Java 1.2.

Exploring Java, Second Edition
By Pat Niemeyer & josh Peck
2nd Edition September 1997
614pages, ISBN 1-56592-271-9

Whether you're just migrating to Java or
working steadily in the forefront of Java
development, this book, fully revised for
Java 1.1, gives a clear, systematic overview
of the language. It covers the essentials of
hot topics like Beans and RMI, as well as ·

writing applets and other applications, such as networking pro­
grams, content and protocol handlers, and security managers.

Java Virtual Machine
By jon Meyer & TroyDowning
1st Edition March 1997
452 pages, includes diskette
ISBN 1-56592-194-1

This book is a comprehensive program­
ming guide for the Java Virtual Machine
(JVM). It gives readers a strong overview
and reference of the JVM so that they may
create their own implementations of the

JVM or write their own compilers that create Java object code. A
Java assembler is provided with the book, so the examples can all
be compiled and executed.

O'REILLY'"
ro ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreifly.com

Page 474 of 482

Java Programming
Java Examples in a Nutshell Java Fundamental Classes Reference

L
JAVA

EXAMPLES
~ ,_.... .. .~~- ... -

Java Threads

.JAVA
Tluead.

By David Flanagan
1st Edition September 1997
414pages, ISBN 1-56592-371-5

From the author of java in a Nutshell, this
companion book is chock full of practical
real-world programming examples to help
novice Java programmers and experts alike
explore what's possible with Java 1.1. If you
learn best by example, this is the book for you.

By Scott Oaks and Henry Wong
1st Edition january 1997
268 pages, ISBN 1-56592-216-6

With this book, you'll learn how to take
full advantage of Java's thread facilities:
where to use threads to increase efficien­
cy, how to use them effectively, and how to
avoid common mistakes like deadlock
and race conditions. Covers Java 1.1.

.JAVA
Jbndamental Claua

lbiference

By Mark Grand & jonathan Knudsen
1st Editifm May 1997
1114pages, ISBN 1-56592-241-7

The java Fundamental Classes Reference
provides complete reference documenta­
tion on the core Java 1.1 classes that
comprise thejava.lang, java.io,
java. net, java. uti!, java. text, java. math,

O'AEIU.Y" ~ .. ~ - java. lang. reflect, andjava.util.zip pack-
ages. Part of O'Reilly's Java documentation series, this edition
describes Version 1.1 of the Java Development Kit. It includes
easy-to-use reference material and provides lots of sample
code to help you learn by example .

Netscape IFC in a Nutshell

71'1
NETSCAPE

IFC

By Dean Petrich with David Flanagan
1stEditionAugust 1997
370 pages, ISBN 1-56592-343~X

Java Language Reference, Second Edition • .,~mt'''

This desktop quick reference and program­
mer's guide is all the documentation pro­
grammers need to start creating highly
customizable graphical user interfaces with
the Internet Foundation Classes (IFC), Ver-By Mark Grand

2nd Edition july 1997
492pages, ISBN 1-56592-326-X

nus book helps you understand the subtle
nuances of Java-from the definition of
data types to the syntax of expressions and
control structures-so you can ensure
your programs run exactly as expected.
The second edition covers the new lan­

guage features that have been added in Java 1.1, such as inner
classes, class literals, and instance initializers.

01\EUY" __ ... ___ sion 1.1. The IFC is a Java class libracy freely
available from Netscape. It is also bundled with Communicator,
making it the preferred development environment for the Naviga­
tor 4. 0 web browser. Master the IFC now for a head start on the
forthcoming Java Foundation Classes (JFC).

Developing Java Beans
By Robert Englander
1st Edition june 1997
316 pages, ISBN 1-56592-289-1

Developing java Beans is a complete intro­
duction to Java's component architecture.
It describes how to write Beans, which are
software components that can be used in
visual programming environments. This
book discusses event adapters, serializa­

tion, introspection, property editors, and customizers, and shows
how to use Beans within ActiveX controls.

O'REILLY'"
TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreifly.com

Page 475 of 482

Java Programming
Java Network Programming
r------, By Elliotte Rusty Harold

.JAVA 1st Edition February 1997
No~wo•k Pro,...~u.g 442 pages, ISBN 1-56592-227-1

The network is the soul of Java. Most of
what is new and exciting about Java cen­
ters around the potential for new kinds of
dynamic, networked applications. java
Network Programming teaches you to

'-------,2-' work with Sockets, write network clients
and servers, and gives you an advanced look at the new areas like
multicasting, using the server API, and RMI. Covers Java 1.1.

Java in a Nutshell, Second Edition

JAVA
'''!!t'!!!!'''

By David Flanagan
2nd Edition May 1997
628pages, ISBN 1-56592:262-X

This second edition of the bestselling Java
book describes all the classes in the Java 1.1
API, with the exception of the still-evolving
Enterprise APis. And it still has all the great
features that have made this the Java book
most often recommended on the Internet:

practical real-world examples and compact reference informa­
tion. It's the only quick reference you'll need.

Java Native Methods

.JAVA
Nalil!e Method$

By Alligator Descartes
1st Edition August 1998 (est)
300 pages (est), ISBN 1-56592-345-6

Although Java offers the promise of plat­
form-independent programming, there
are situations where you may still need to
use native C or C+ +code compiled for a
particular platform. Maybe you have to tie
some legacy code into a Java application.

Or maybe you want to implement some computer-intensive meth­
ods for a performance-critical application in native code.java
Native Methods tells you everything you need to know to get your
native code working with Java, using either Sun's Java Native
Interface QNI) or Microsoft's Raw Native Interface (RNI).

Database Programming with JDBC and Java
By George Reese
1st Edition june 1997
240 pages, ISBN 1-56592-270-0

Database Programming with jDBC and
java describes the standard Java interfaces
that make portable, object-oriented access
to relational databases possible and offers
a robust model for writing applications
that are easy to maintain. It introduces the

]DBC and RMI packages and includes a set of patterns that sepa­
rate the functions of the Java application and facilitate the growth
and maintenance of your application.

Java AWT Reference
By john Zukowski
1st EditionAprill997
1074pages, ISBN 1-56592-240-9

The java AWl' Reference provides complete
reference documentation on the Abstract
Window Toolkit (AWT), a large collection
of classes for building graphical user
interfaces in Java. Part of O'Reilly's Java
documentation series, this edition

describes both Version 1.0.2 and Version 1.1 of the Java Develop­
ment Kit, includes easy-to-use reference material on every AWT
class, and provides lots of sample code.

Java Distributed Computing
By jim Farley
1st Edition january 1998
384pages, ISBN 1-56592-206-9

java Distributed Computing offers a gen­
eral introduction to distributed comput­
ing, meaning programs that run on two or
more systems. It focuses primarily on how
to structure and write distributed applica­
tions and, therefore, discusses issues like

designing protocols, security, working with databases, and deal­
ing with low bandwidth situations.

O'REILLY'"
TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE DR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreil/y.com

Page 476 of 482

How to stay in touch with O'Reilly

1. Visit Our Award-Winning Web Site
http://WWW. ore illy. com/

*"Top 100 Sites on the Web" -PC Magazine
*"Top 5% Web sites" -Point Communications
*"3-Star site" -The McKinley Group

Our web site contains a library of comprehensiveproduct
information (including book excerpts and tables of
contents), downloadable software, background articles,
interviews with technology leaders, links to relevant sites,
book cover art, and more. File us in your Bookmarks or
Hotlist!

2. Join Our Email Mailing Lists
New Product Releases
To receive automatic email with brief descriptions of all
new O'Reilly products as they are released, send email to:
listproc@online.oreilly.com
Put the following information in the first line of your mes­
sage (not in the Subject field):
subscribe oreilly-news

O'Reilly Events
lfyou'd also like us to send information about trade show
events, special promotions, and other O'Reilly events, send
email to:
listproc@online.oreilly.com
Put the following information in the first line of your mes­
sage (not in the Subject field):
subscribe oreilly-events

3. Get Examples from Our Books
via FTP
There are two ways to access an archive of example files
from our books:

RegularFTP
• ftp to:

ftp.oreilly.com
(login: anonymous
password: your email address)

• Point your web browser to:
ftp://ftp.oreilly.com/

FTPMAIL
• Send an email message to:

ftpmail@online.oreilly.com
(Write "help" in the message body)

4. Contact Us via Email
order@oreill~con~

To place a book or software order online. Good for North
American and international customers.

subscriptions@oreilly.com
To place an order for any of our newsletters or
periodicals.

books@oreilly.com
General questions about any of our books.

software@oreilly.com
For general questions and product information about our
software. Check out O'Reilly Software Online at
http://software.oreilly.com/ for software and technical
support information. Registered 0 'Reilly software users
send your questions to:website-support@oreilly.con~

cs@oreilly.com
For answers to problems regarding your order or our
products.

booktecb@oreilly.com
For book content technical questions or corrections.

proposals@oreilly.com
To submit new book or software proposals to our
editors and product managers.

international@oreilly.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:
http://www.oreilly.comlwww/order/country.html

O'Reilly & Associates, Inc.
101 Morris Street, Sebastopol, CA 95472 USA
TEL 707-829-0515 or 800-998-9938

(6am to 5pm PST)
FAX 707-829-0104

O'REILLY'"
TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE DR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800·998-9938 • 707-829·0515 • info@oreilly.com

Page 477 of 482

WEBPROGRAMMING
Advanced Perl Programming
Apache: The Definitive Guide
Building Your Own Web Conferences
Building Your Own WebsiteTM
CGI Programming for the World Wide

Web
Desigoing for the Web
Dynantic HTML: The Complete

Reference
Frontier: The Definitive Guide
HTML: The Definitive Guide, 2nd

Editiori
Information Architecture for the

World Wide Web ..
JavaScript: The Definitive Guide, 2nd

Edition
Learning Perl, 2nd Edition
Learning Perl for Win32 Systems
Mastering Regular Expressions
Netscape !Fe in a Nutshell
Perl5 Desktop Reference
Perl Cookbook
Perl in a Nutshell
Perl Resource Kit-UNIX Edition
Perl Resource Kit-Win32 Edition
Programming Perl, 2nd Edition
WebMaster in a Nutshell
WebMaster in a Nutshell, Deluxe

Edition
Web Security & Commerce
Web Client Progranuning with Perl

GRAPHIC DESIGN
Director in a Nutshell
Photoshop in a Nutshell
QuarkXPress in a Nutshell

JAVA SERIES
Database Programming with]DBC and

Java
DevelopirigJava Beans
Exploring Java, 2nd Edition
Java AWT Reference
Java Cryptography
Java Distributed Computing
Java Examples in a Nutshell
Java Fundamental Classes Reference
Java in a Nutshell, 2nd Edition
Java in a Nutshell, Deluxe Edition
Java Language Reference, 2nd Edition
Java Native Methods
Java Network Programming
Java Security
Java Threads
Java Virtual Machine

SONGLINE GUIDES
NetLaw NetResearch
NetLearning NetSuccess
NetLessons NetTravel

Titles from O'Reilly
SYSTEM ADMINISTRATION
Building Internet Firewalls
Computer Crime: A Crimefighter's

Handbook
Computer Security Basics
DNS and BIND, 2nd Edition
Essential System Administration, 2nd

Edition
Essential WindowsNT System

Administration
Getting Connected: The Internet at

56Kand Up
Linux Network Administrator's Guide
Managing Internet Information

Services, 2nd Edition
Managing IP Networks with Cisco

Routers
Managing Mailing lists
Managing NFS and NIS
Managing the WinNT Registry
Managing Usenet
MCSE: The Core Exams in a Nutshell
MCSE: The Electives in a Nutshell
Networking Personal Computers with

TCPIIP
Palri:t Pilot: The llitimate Guide
Practical UNIX & Internet Security,2nd

Edition
PGP: Pretty Good Privacy
Protecting Networks with SATAN
sendmail, 2nd Edition
sendmail Deskiop Reference
System Performance Thning
TCP/IP Network Administration, 2nd

Edition
termcap & terntinfo
Using & Managing PPP
Using & Managing UUCP
Virtual Private Networks
Volume 8: X Window System

Administrator's Guide
Web Security & Commerce
WindowsNT Backup & Restore
WindowsNT Desktop Reference
WindowsNT in a Nutshell
WindowsNT Server 4.0 for Netware

Administrators
WindowsNT SNMP
WindowsNT User Administration

WEB REVIEW STUDIO SERIES
Desigoing Sound for the Web
Desigoing with Animation
Desigoing withJavaScript
Gif Animation Studio
Photoshop for the Web
Shockwave Studio
Web Navigation: Desigoing the User

Experience

UNIX
Exploring Expect
Learning VBScript
Learning GNU Emacs, 2nd Edition
Learning the bash Shell, 2nd Edition
Learning the Korn Shell
Learning the UNIX Operating System,

4th Edition
Learning the vi Editor, 5th Edition
Linux Device Drivers
Linux in a Nutshell
Linux Multimedia Guide
Running linux, 2nd Edition
SCO UNIX in a Nutshell
sed & awk, 2nd Edition
TcVfkTools
UNIX in a Nutshell, Deluxe Edition
UNIX in a Nutshell, System V Edition
UNIX Power Tools, 2nd Edition
Using csh & tsch
What You Need To Know: When You

Can't Find Your UNIX System
Administrator

Writing GNU Emacs Extensions

WINOOWS
Access Database Desigu and

Programming
Developing Windows Error Messages
Excel97 Annoyances
Inside the Windows 95 File System
Inside the Windows 95 Registry
Office97 Annoyances
VBIVBA in a Nutshell: The Languages
Win32 Multithreaded Programming
Windows95 in a Nutshell
Windows97 Annoyances
Windows NT File System Internals
Windows NT in a Nutshell
Word97 Annoyances

USING THE INTERNET
AOL in a Nutshell
Bandits on the Information

Superhighway
Internet in a Nutshell
Smileys
The Whole Internet for Windows95
The Whole Internet: The Next

Generation
The Whole Internet User's Guide &

Catalog

O'REILLY'"

PROGRAMMING
Advanced Oracle PVSQL

Programming with Packages
Applying RCS and sees
BE Developer's Guide
BE Advanced Topics
C++: The Core Language
Checking C Programs with lint
Encyclopedia of Graphics File

Formats, 2nd Edition
Guide to Writing DCE Applications
lex & yacc, 2nd Edition
Managing Projects with make
Mastering Oracle Power Objects
OracleS Desigu Tips
Oracle Built-in Packages
Oracle Desigu
Oracle Performance Thning, 2nd

Edition
Oracle PVSQL Programming, 2nd

Edition
Oracle Scripts
Porting UNIX Software
POSIX Programmer's Guide
POSIX.4: Programming for the Real

World
Power Programming with RPC
Practical C Programming, 3rd Edition
Practical C++ Programming
Programming Python
Programming with curses
Programming with GNU Software
Pthreads Programming ·
Software Portability with imake, 2nd

Edition
Understanding DCE
UNIX Systems Programming for SVR4

X PROGRAMMING
VoL 0: X Protocol Reference Manual
VoL I: Xlib Programming Manual
Vol. 2: Xlib Reference Manual
Vol. 3M: X Window System User's

Guide, Motif Edition
VoL 4M: X Toolkit Intrinsics

Programming Manual, Motif
Edition

Vol. 5: X Toolkit Intrinsics Reference
Manual

Vol. 6A: Motif Programming Manual
Vol. 6B: Motif Reference Manual
VoL 8 : X Window System

Administrator's Guide

SOFTWARE
Building Your Own WebSite TM
Building Your Own Web Conference
WebBoardTM 3.0
WebSite ProfessionalTM 2.0
PolyFormTM

TO ORDER: 800·998·9938 • order@oreilly.com • http://www.oreilly.com/
OUR PRODUCTS ARE AVAilABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800·998·9938 • 707·829·0515 • info@oreilly.com

Page 478 of 482

International Distributors
UK, EUROPE, MIDDLE EAST AND
NORTHERN AFRICA (EXCEPT FRANCE, GER­

MANY, SWITZERLAND, & AUSTRIA)

INQUIRIES
International Thomson Publishing Europe
Berkshire House
168-173 High Holborn
London WC1V 7M
United Kingdom
Telephone: 44-171-497-1422
Fax: 44-171-497-1426
Email: itpint@itps.co.uk

ORDERS
International Thomson Publishing Services, Ltd.
Cheriton House, North Way
Andover, Hampshire SPI 0 SBE
United Kingdom
Telephone: 44-264-342-832 (UK)
Telephone: 44-264-342-806 (outside UK)
Fax: 44-264-364418 (UK)
Fax: 44-264-342761 (outside UK)
UK & Eire orders: itpuk@itps.co.uk
International orders: itpint@itps.co.uk

FRANCE
Editions Eyrolles
61 bd Saint-Germain
75240 Paris Cedex OS
France
Fax: 33-01-44-41-11-44

FRENCH LANGUAGE BOOKS
All countries except Canada
Telephone: 33-01-44-41-46-16
Email: geodif@eyrolles.com
English language books
Telephone: 33-01-44-41-11-87
Email: distribution@eyrolles.com

GERMANY, SWITZERLAND, AND
AUSTRIA
INQUIRIES
O'Reilly Verlag
Balthasarstr. 81
D-50670 Koln
Germany
Telephone: 49-221-97-31-60-0
Fax: 49-221-97-31-60-8
Email: anfragen@oreilly.de

ORDERS
International Thomson Publishing
Konigswinterer StraEe 418
53227 Bonn, Germany
Telephone: 49-228-97024 0
Fax: 49-228-441342
Email: order@oreilly.de

JAPAN
O'Reilly Japan, Inc.
Kiyoshige Bnilding 2F
12-Banchi, Sanei-cho
Shinjuku-ku
Tokyo 160-0008 Japan
Telephone: 81-3-3356-5227
Fax: 81-3-3356-5261
Email: kenji@oreilly.com

INDIA
Computer Bookshop (India) PVT. Ltd.
190 Dr. D.N. Road, Fort
Bombay 400 001 India
Telephone: 91-22-207-0989
Fax: 91-22-262-3551
Email: cbsbom@giasbmOl.vsnl.net.in ·

HONG KONG
City Discount Subscription Service Ltd.
Unit D, 3rd Floor, Yan's Tower
27 Wong Chuk Hang Road
Aberdeen, Hong Kong
Telephone: 852-2580-3539
Fax: 852-2580-6463
Email: citydis@ppn.com.hk

KOREA
Hanbit Media, Inc.
Sonyoung Bldg. 202
Yeksam-dong 736-36
Kangnam-ku
Seoul, Korea
Telephone: 822-554-9610
Fax: 822-556-0363
Email: hant93@chollian.dacom.co.kr

SINGAPORE, MALAYSIA,
AND THAILAND
Addison Wesley Longman Singapore PTE Ltd.
25 First Lok Yang Road
Singapore 629734
Telephone: 65-268-2666
Fax: 65-268-7023
Email: daniel@longman.com.sg

PHILIPPINES
Mutual Books, Inc.
429-D Shaw Boulevard
Mandaluyong City, Metro
Manila, Philippines
Telephone: 632-725-7538
Fax: 632-721-3056
Email: mbikikog@mnl.sequel.net

O'REILLY'"

CHINA
Ron's DataCom Co., Ltd.
79 Dongwu Avenue
Dongxihu District
Wuhan 430040
China
Telephone: 86-27-3892568
Fax: 86-27-3222108
Email: hongfeng@public.wh.hb.cn

ALL OTHER ASIAN COUNTRIES
O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 954 72 USA
Telephone: 707-829-0515
Fax: 707-829-0104
Email: order@oreilly.com

AUSTRALIA
WoodsLane Pty. Ltd.
715 Vuko Place, Warriewood NSW 2102
P.O. Box 935
Mona Vale NSW 2103
Australia
Telephone: 61-2-9970-5111
Fax: 61-2-9970-5002
Email: info@woodslane.com.au

NEW ZEALAND
Woodslane New Zealand Ltd.
21 Cooks Street (P.O. Box 575)
Waganui, New Zealand
Telephone: 64-6-34 7-6543
Fax: 64-6-345-4840
Email: info@woodslane.com.au

THE AMERICAS
McGraw-Hill Interamericana Editores,
S.A. de C.V.
Cedro No. 512
Col. Atlampa 06450
Mexico, D.E
Telephone: 52-5-541-3155
Fax: 52-5-541-4913
Email: mcgraw-hill @infosel.net.mx

SOUTH AFRICA
International Thomson Publishing
South Africa
Bnilding 18, Constantia Park
138 Sixteenth Road
P.O. Box 2459
Halfway House, 1685 South Africa
Telephone: 27-11-805-4819
Fax: 27-11-805-3648

TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707·829·0515 • info@orei/ly.com

Page 479 of 482

I

Which book did this card come from?

Where did you buy this book?
0 Bookstore 0 Computer Store
0 Direct from O'Reilly 0 Class/seminar
0 Bundled with hardware/software

OOther -------------
What operating system do you use?

0 UNIX 0 Macintosh
0 Windows NT 0 PC(Windows/DOS)

OOther -------------

Name

Address

City State

Telephone

~

~
....J -LU
~ ...
0

What is your job description?
0 System Administrator
0 Network Administrator
0 Web Developer

0 Programmer
0 Educator!feacher

0 Other --------------

.•· . ··.•
Q Please send me O'Reilly's catalog, containing

a complete li~ting ofO~Reilly books and
software. ··

Company/Organization

Zip/Postal Code Country

Internet or other email address (specify network)

Page 480 of 482

Nineteenth century wood engraving
of a bear from the O'Reilly &
Associates Nutshell Handbook®
Using & Managing UUCP.

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472-9902

11,1,,,1,1,,1,,11,,,1, d ,11,1,,1 ",,11,,,," ,I, Jll,l

PLACE

STAMP

HERE

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Page 481 of 482

Java/ Internet Programming

O'REILLYTM

JAVA Security
Java's most striking claim is that it provides a secure programming environ­
ment. However, despite lots of discussion, few people understand precisely
whatJava's claims mean and how it backs up those claims. Java Security is an in­

depth exploration aimed at developers, network administrators, and anyone who needs to
work with or understand Java's security mechanisms. It discusses in detail what security
means and doesn't mean, whatJava's default security policies are, and how to create and
implement your own policies.

In doing so, Java Security provides detailed coverage of security managers, class loaders,
the access controller, and much of the java.sec~rity package. It discusses message digests,
certificates, and digital signatures, showing you how to use Java's facilities for signing
classes or implement your own signature facility. It also shows you how to write a class
loader that recognizes signed classes, verifies the signature, and cooperates with a security
manager to grant additional privileges. It discusses the problem of managing
cryptographic keys and shows you how to implement your own key management systems.

Java Security is an essential book for everyone writing real-world software for the Internet.
If you're deploying software written in Java, you need to know how to grant your classes
the privileges they need, without granting privileges to untrusted classes. You need to
know how to protect your systems against intrusion and corruption. Java provides the
tools; this book shows you how to use them.

CoversJava 1.1 and 1.2.

Scott Oaks is a Lead Tactical Engineer at Sun Microsystems, where he works on bringing
Java technology to end users.

· ·~

- - - -,

11
X0003CIMP1

Java Security (Java Series)
Used, Very Good

6
Printed on Recycled Paper

Page 482 of 482

