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Preface

Give me a lever and a fulcrum, and I can move the globe.
—Archirnedes

Since Java technology’s inception, and especially its public debut in the spring
of 1995, strong and growing interest has developed regarding the security of the
Java. platform, as well as new security issues raised by the deployment of Java
technology. This level of attention to security is a fairly new phenomenon in com-
puting history. Most new computing technologies tend to ignore security consider-
ations when they emerge initially, and most are never made more secure
thereafter. Attempts made to do so typically are not very successful, as it is now
well known that retrofitting security is usually very difficult, if not impossible, and
often causes backward compatibility problems. '

Thus it is extremely fortunate that when Java technology burst on the Internet
scene, security was one of its primary design goals. Its initial security model,
although very simplistic, served as a great starting place, an Archimedean ful-
crum. The engineering talents and strong management team at JavaSoft are the
lever; together they made Java’s extensive security architecture a reality.

From a technology provider’s point of view, security on the Java platform
focuses on two aspects. The first is to provide the Java platform, primarily through
the Java Development Kit, as a secure, platform on which to run Java—enabled
applications in a secure fashion. The second is to provide security tools and ser-
vices implemented in the Java programming language that enable a wider range of
security-sensitive applications, for example, in the enterprise world.

I wrote this book with many purposes in mind. First, I wanted to equip the
reader with a brief but clear understanding of the overall picture of systems and
network security, especially in the context of the Internet environment within
which Java technology plays a central role, and how various security technologies
relate to each other.
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Second, I wanted to provide a comprehensive description of the current secu-

rity architecture on the Java platform. This includes language features, platform

APIs, security policies, and their enforcement mechanisms. Whenever appropri-

ate, I discuss not only how a feature functions, but also why it is designed in such

a way and the alternative approaches that we—the Java security development
team at Sun Microsystems—examined and rejected. When demonstrating the use

of a class or its methods, I use real—world code examples whenever appropriate.

Some of these examples are synthesized from the JDK 1.2 code source tree.

Third, I sought to tell the reader about security deployment issues, both how

an individual or an enterprise manages security and how to customize, extend, and

enrich the existing security architecture.

Finally, I wanted to help developers avoid programming errors by discussing a

number of common mistakes and by providing tips for safe programming that can
be immediately applied to ongoing projects.

How This Book Is Organized

This book is organized as follows.

Chapter 1. A general background on computer, network, and information

security

Chapter 2. A review of the original Java security model, the sandbox

Chapter 3. An in-depth look at the new security architecture in JDK 1.2, which

is policy—driven and capable of enforcing fine-grained access controls

Chapter 4. An explanation of how to deploy and utilize the new security fea-

tures in JDK 1.2, including security policy management, digital certificates,

and various security tools

Chapter 5. A demonstration of how to customize various aspects of the secu-

rity architecture, including how to move legacy security code onto the JDK 1.

2 platform

Chapter 6. A review of techniques to make objects secure and tips for safe
programming

Chapter 7. An outline of the Java cryptography architecture along with usage

examples

Chapter 8. A look ahead to future directions for Java security
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This book is primarily for serious Java programmers and for security profes-
sionals who want to understand Java security issues both from a macro (architec-
tural) point of View as well as from a micro (design and implementation)
perspective. It is also suitable for nonexperts who are concerned about Internet
security as a whole, as this book clears up a number of misconceptions around
Java security.

Throughout this book, I assume that the reader is familiar with the fundamen-
tals of the Java language. For those who want to learn more about that language,
the book by Arnold and Gosling [2] is a good source.

This book is not a complete API specification. For such details, please refer to
JDK 1.2 documentation.

Acknowledgments

It is a cliche to say that writing a book is not possible without the help of many
others, but it is true. I am very grateful to Dick Neiss, my manager at JavaSoft,
who encouraged me to write the book and regularly checked on my progress. Lisa
Friendly, the Addison-Wesley Java series editor, helped by guiding me through the
writing process while maintaining a constant but “friendly” pressure. The team at
Addison—Wesley was tremendously helpful. I’d like particularly to thank Mike
Hendrickson, Katherine Kwack, Marina Lang, Laura Michaels, Marty Rabinow-
itz, and Tracy Russ. They are always encouraging, kept faith in me, and rescued
me whenever I encountered obstacles. '

This book is centered around JDK 1.2 security development, a project that
lasted fully two years, during which many people inside and outside of Sun
Microsystems contributed in one way or another to the design, implementation,
testing, and documentation of the final product. I would like to acknowledge Dirk
Balfanz, Bob Blakley, Josh Bloch, David Bowen, Gilad Bracha, David Brownell,
Eric Chu, David Connelly, Mary Dageforde, Drew Dean, Satya Dodda, Michal
Geva, Gadi Guy, Graham Hamilton, Mimi Hills, Larry Koved, Charlie Lai, Sheng
Liang, Tim Lindholm, Jan Luehe, Gary McGraw, Marianne Mueller, Tony Nadalin,
Don Neal, Jeff Nisewanger, Yu—Ching Peng, Hemma Prafullchandra, Benjamin
Renaud, Roger Riggs, Jim Roskind, Nakul Saraiya, Roland Schemers, Bill
Shannon, Torn van Vleck, Dan Wallach, and Frank Yellin. I also appreciate the
technical guidance from James Gosling and Jim Mitchell, as well as management
support from Dick Neiss, Jon Kannegaard, and Alan Baratz. I have had the pleasure
of chairing the Java Security Advisory Council, and I thank the external members,
Ed Felten, Peter Neumann, Jerome Saltzer, Fred Schneider, and Michael
Schroeder for their participation and superb insights into all matters that relate to
computer security.
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CHAPTER 1 

 

Computer and Network

Security Fundamentals

The three golden rules to ensure computer security are: do not own
a computer; do notpower it on; and do not use it.

—Robert (Bob) T. Morris

Security is all about ensuring that bad things do not happen. This brief statement
is deceptively simple. It can in fact have very complicated interpretations. Explor-
ing these can help in understanding What security really means.

Certain “rule-of—thumb” principles apply to the concept of security in general.
First, security is always related to utility. To ensure that bad things do not happen,
you can simply do nothing. For example, a car stored in a garage cannot cause a
traffic accident. But doing nothing with the car is clearly not what is intended. The

real goal is to ensure that bad things do not happen while good things do get done.
Second, security is relative to the threat that one considers. For example, the

effectiveness of your house’s securely locked front door to prevent theft depends
heavily on the types of thieves against which you are guarding. While the lock
might deter a small-time thief, it might not pose a problem for a sophisticated one
equipped with the right tools.

Third, security must be considered from an overall systems point of view. It is
only as secure as the system’s weakest point. That is, it is not enough to just secure
the front door. A smart thief will try to enter the house from all potentially weak
spots, and in particular those furthest away from where you have installed strong
locks.

Fourth, security must be easy to accomplish. If it takes 30 minutes and great
effort every time to unlock a complicated lock, you will tend to ignore the lock

., and leave the door open.
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CRYPTOGRAPHY VERSUS COMPUTER SECURITY

Fifth, security must be affordable and cost effective. For example, it clearly
does not make sense to install a lock that is worth more than the contents it is

guarding. This is made more complex by the fact that different people tend to

value things differently.

Last but not least, security must be as simple as possible because, as experi-

ence indicates, the more complex a system is, the more error—prone it tends to be.

It is better to have something that is simpler but more dependable.

Throughout this book, you will see that these “rule—of—thumb” principles

apply equally well to computer security.

1.1 Cryptography versus Computer Security

Before moving on to specific topics, I want to clarify that cryptography and com-

puter security are two distinct subjects. Cryptography is the art of encoding

information in a secret format such that only the intended recipient can access the

encoded information. The use of cryptography has progressed extensively over a

long period of time, ranging from the ancient Caesar cipher, to cipher machines

widely used in World War I], to modern cryptosystems implemented with com-

puter hardware and software.

Computer security first became an issue only in the 19603, when timesharing,

multiuser computer (operating) systems were first built, such as Cambridge’s

early computing system [80] and MIT’s Multics [69, newref 1]. After that, the

field of computer security remained relatively obscure for years, apart from a brief

active period in the mid—1970s [3, 32, 36, 75, newref 2, newref 3]. Security con—

cerns then were based mostly on military requirements. Commercial security did

not become fully mainstream until the Internet and electronic commerce

(e—commerce), and Java technology in particular, took center stage in the 19905.

Security mechanisms often can benefit from the use of cryptography, such as

when running a network-based user login protocol. However, they do not neces-

sarily depend on the use of cryptography, such as when implementing UNIX-style
access control on files.

Yet cryptography does not exist in a vacuum. Cryptographic algorithms are

usually implemented in software or hardware; thus their correct operation depends

critically on whether there is an adequate level of system security. For example, if

lack of access control means that an attacker can modify the software that imple-

ments the algorithm, then the lack of security directly impacts the utilization of

cryptography.
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COMPUTER AND NETWORK SECURITY FUNDAMENTALS

1.2 Threats and Protection

In computer security literature, threats or attacks are usually classified into three
categories.

1. Secrecy attacks. The attacker attempts to steal confidential information, such
as passwords, medical records, electronic mail (e-mail) logs, and payroll data.
The methods of attack vary, from bribing a security guard to exploiting a secu-
rity hole in the system or a weakness in a cryptographic algorithm.

2. Integrity attacks. The attacker attempts to illegally alter parts of the system.
For example, a bank employee modifies the deposit system to transfer custom—

er money into his own account, thus compromising transaction integrity [61].
Or, a college student breaks into the college administration system to raise her
examination scores, thus compromising data integrity. An attacker might also
try to erase system logs in order to hide his footprint.

3. Availability attacks. The attacker attempts to disrupt the normal operation of
a system. These are also commonly called denial-of-service attacks. For exam-

ple, bombarding a machine with a large number of IP packets can effectively
isolate the machine from the rest of the network. A cyber terrorist might at-
tempt to bring down the national power grid or cause traffic accidents by com—
promising the computer—operated control systems.

These three categories of attacks are intricately related; that is, the techniques
and results of attacks in one category can often be used to assist attacks in another.
For example, by compromising secrecy an attacker could obtain passwords and
thus compromise integrity by gaining access to and then modifying system
resources, which in turn could lead to successful denial-of—service attacks. When a

system failure occurs during an attack, most systems do not fail safe—that is,
enter into a state that is deemed secure—because they are not designed to do so.
For example, it has been shown that a system crash sometimes leads to a core
dump in a publicly readable directory, where the core can contain sensitive infor-
mation if the dump occurs at the right time.1

Similarly, protection mechanisms against these types of attacks in general are
related. Roughly speaking, the mechanisms are for one or more of the following
 

. 1 Of course, attacks can be viewed from other perspectives. For example, there is widespread
public concern regarding the privacy of the unregulated and sometimes illegal collection
and distribution of personal data, such as birth dates and US. Social Security Numbers.
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PERIMETER DEFENSE

purposes: attack prevention, detection, or recovery. Not all of these purposes can

be fulfilled by the same mechanisms, as explained later in this chapter.

To protect data secrecy, you can store the data in an obscure place in the hope

that attackers will not find it. Or you can install strict access control procedures to

guard against unauthorized access. Or you can use encryption technology to

encrypt the data such that attackers cannot access real data unless they can break

the cryptosystem, which could be extremely hard, or they can steal the encryption

key. Of course, multiple measures can be deployed at the same time. Note that, for

secrecy, the most important technique is prevention. A loss of data is very hard to

detect, and lost data are impossible to recover.

To protect data integrity, once again you can use any or all of the mechanisms

mentioned previously. However, in this case, detection is easier and recovery is

often possible. For example, for a file x, you could compute its hash value using a

well-known one-way functionf0 and store fix) separately. Now, if x is then modi-

fied to be x', fix) very likely will not be equal to f(x'), according to the properties of

f(). Thus you can recompute the hash value and compare it withf(x). A mismatch

will indicate that integrity has been compromised.

Of course, if the correspondingflx) is also compromised, detection might not

be possible. If the place to store f(x) itself is not safe, you could use a keyed, one-

way hash function and store flk, x) together with x. If k is kept secret, then it will

still be difficult for attackers to modify x and the hash value in such a way as to
avoid detection [22, 52].

To be able to restore the data to its original form after an integrity compro—

mise, you can back up data and store the backup in a secure place [61]. Or you 'can

use more—complicated distributed computing techniques to back up the data in an
insecure network [34, 64, 73, 77].

Guarding against an availability attack is more complicated. This is because

apart from applying the usual techniques of prevention and detection, surviving

such attacks becomes critical. Here, computer security meets the field of fault-

tolerant computing. Some interesting research results in this combined topic area,

sometimes called dependable systems, are available. For further reading, consult

the papers and their citations at [12, 24, 65, 73].

1.3 Perimeter Defense

Because of the multitude of potential weaknesses and the essentially unlimited

number of attack scenarios, where each scenario can be a combination of various

attack techniques, securing an entire system can be daunting, especially when the

system includes multiple host machines connected via a network. Because a sys—

tem is only as secure as its weakest link, the security coverage must be compre—
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hensive. The task is further complicated by the fact that a system, for example the
internal network deployed within a large enterprise, typically consists of machines

of numerous different brands and types. These machines run different operating
systems and different application software and are connected together with routers

and other networking gears from various vendors offering different features and

capabilities. In such a heterogeneous and evolving environment, examining the
entire system and securing all of its components takes a long time if possible at all.

Faced with such a messy picture, it is no surprise that companies find it easier,

both psychologically and physically, to simply divide the world into two camps,
“Us” and “Them.” Us includes all machines owned, operated, or in general trusted
by the concerned enterprise, while Them includes all other machines, which are

potentially hostile and cannot be trusted. Once the border is drawn, it is a matter of

keeping Them out and Us in. Such a defensive posture is often called perimeter
defense. .

One approach to constructing a perimeter defense is simply not to connect Us
with Them. Indeed, some military installations and commercial entities have inter-

nal networks that are entirely separated from the wider area network, the Internet.

They might allow some isolated terminals or machines for outside connections,

but these special machines are usually guarded to prevent their being connected to
the internal network.

If the overall system contains machines scattered among different physical or
geographical locations, leased lines or dedicated network connections can link the

sites to form a private network.

If, however, the sites must communicate through the open network, then

encryption can be deployed between every two communicating sites so that these

sites form a Virtual private network (VPN). This is depicted in the fictitious sce-

nario in Figure 1.1, where, although all four campuses are connected to the Inter-
net, three sites (MIT, UT Austin, and UCLA) form a VPN so that network traffic

between them is automatically protected from eavesdropping from Stanford.

However, such total isolation from the outside does not always work well. For

example, e-mail has become the “killer application” of the Internet as people
increasingly demand the ability to communicate with the outside world via the

Internet. The W0rld Wide Web (Web) has made the Internet even more popular,

and browsing the Web to locate information is important to productivity (if used

judiciously, of course). These trends are driving previously closed enterprises to

selectively open up their border control. Here is where firewalls play a critical role
in constructing a more useful perimeter defense.
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1.3.1 Firewalls

Firewalls come in different shapes and sizes [6]. Generally speaking, a firewall is

a machine sitting between a private network and a public one. It functions as a fil—

ter for network traffic, with the responsibility of selectively allowing certain traffic

through, in each direction, based on a security policy. A security policy can be

very simple or quite complicated. This is because, often, filtering decisions are

based on, for example, the source and destination of the traffic, the protocols used,

and the applications involved, among others factors. The firewall also might redi-

rect traffic, act as a proxy server, or even manipulate the traffic content before

allowing it to pass through. It further might also encrypt traffic—indeed, encrypt-

ing firewalls can be used to form a VPN. I
Perimeter defense as implemented by firewalls has been shown to be an effec-

tive security solution. A firewall provides a central point of control, where a cor—

porate policy can be more easily implemented and updated. But it has certain

problems. First of all, firewalls cannot filter or stop all network traffic. In fact,

traffic for protocols such as HTTP is often deliberately let through firewalls. Gen—

erally, there is tension between the firewall and mobile code, because the former

attempts to block or reduce incoming traffic, including that concerning what the

latter is trying to achieve. A firewall can also be a bottleneck and a single point of

communication failure for a large enterprise. Moreover, many applications on the

desktop have to be rewritten to use the firewall as a proxy. This problem is less

severe for new applications, which often have built—in proxy support.

1.3.2 Inadequacies of Perimeter Defense Alone

Perimeter defense alone is not sufficient, however, as a total security solution, for

several reasons. Locating and securing all perimeter points are quite difficult. For

example, in reported cases, direct telephone line-based connections are estab—

lished (for example, for diagnostic purposes) that can effectively puncture the

perimeter defense [61]. Further, when an enterprise supports allows its employees

to work remotely and from home, inspecting and ensuring that those remote

points of the internal network are adequately protected are impractical.

Even within an enterprise, controls are needed because not everything or

everyone can be fully trusted. The most devastating attacks often occur from

within. Such insider attacks usually incur comparatively large losses because

insiders have a significant advantage over external hackers. For example, the

accounting department must be protected so that only authorized employees may

issue purchase orders, while the patent department must be isolated to prevent

information leaks to competitors.
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The remainder of this chapter reviews security models and techniques that are
useful both within the perimeter and across organizational boundaries.

1.4 Access Control and Security Models

A security model is an abstraction of how one goes about controlling access to
protected data. Like firewalls, security models come in various shapes and sizes
because requirements can differ vastly for different applications and their environ—
ments. Multiple ways to classify security models are available, including the
following: I

9 MAC and DAC models

9 Data and information security models

0 Static and dynamic models

1.4.1 MAC and DAC Models

One classification of security models centers on the concept of mandatory access
control, or MAC. In a MAC security model, entities within a system are either
subjects (roughly corresponding to the notions of users, processes, machines, and
so on) or objects (roughly corresponding to the targets of control, such as files and
data records). Each entity is assigned a sensitivity level. Such levels normally
form a lattice over a “dominate” relationship so that, for example, if there are two
levels, then either one dominates the other or the two are incompatible. For exam-
ple, levels of “unclassified,” “classified,” “secret,” and “top-secret” could have the
dominate relationship shown in Figure 1.1.

MAC models meeting the requirements of multilevel security are exemplified
by the work of Bell and LaPadula [3] in which is described a mathematical model
for the security of the Multics system [69]. In the Bell—LaPadula model, a subject
may have read access to an object if, and only if, its level dominates that of the
object and may have write access to an object if, and only if, its level is dominated
by that of the object. This is called informally read-down and write-down, or more
precisely, no read-up and no write-down. Note that according to this model, two
entities may communicate in both directions only when either they are at the same
level or they do so Via a trusted intermediary.

Non—MAC models are called discretionary access control, or DAC, models.
The UNIX security model is similar to a DAC model in that the owner (user) of
each file can determine who else can access it by setting the file’s permission bits.
Someone who can read a file can also make a copy of it and then let everyone read
it. MAC models do not permit such discretionary decisions.

\w’.
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Figure 1.1 MAC security model.

1.4.2 Access to Data and Information

So far the discussion of access control has focused on models that specify explicit

access to data, such as directly reading the content of a file stored on the file sys-

tem. However, information can be transmitted implicitly, as experiences of human

life can testify. In particular, cooperating parties can communicate through so—

called covert channels, as compared to overt channels. For example, if two parties

share the same disk partition and one party fills the disk to its full capacity, then

the other party can notice this fact when a new file creation fails due to lack of

space. By filling or not filling the disk, one party can transmit a “one” or a “zero”

to the other party. '

Investigation of this scenario began with Lampson’s paper on the confinement

problem [43]. In that paper, Lampson discussed the difficulty of restricting an

application so that it cannot affect the outside world either directly or by transmit-

ting information.

How critical this type of attack is hinges on the level of one’s fear of infiltra-

tion by the enemy and on the perceived potential for severe damage that an insider

can cause. The mode of insider attack has a long tradition. The fall of Troy eventu-

ally led to the term Trojan horse, which in the computer security field means any

program that is planted on one’s machine for the purpose of causing harm. (The

premier computer security conference, the IEEE Symposium on Security and Pri—

vacy, has used a Trojan horse illustration on the cover of its proceedings.) Recent

examples of such infiltrations are the several high-level US. government officials

and employees convicted for leaking national secrets to foreign agents.
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Early research into the confinement problem led to security models that are
based on information flow instead of data access. In particular, the models put for-
ward by Goguen and Meseguer served as the basis for extensive theory work in
this area [18, 19]. Also, practical studies of covert-channel communication in real
systems have been done. For example, a team at Digital Equipment Corporation
constructed a case study in which two parties share the same disk. By placing files
in strategic locations, one party can selectively read one file or another, which will
cause a detectable delay when another party tries to read a third file. The delay is
due to the speed of the disk-arm movement, and the two different delay values can
be interpreted as l and 0. The value of such practical studies is mostly in deter—
mining the capacity, and therefore the usability and threat, of covert channels. For
example, the disk-arm covert channel is usually a lot faster than the fill—up-disk—
partition covert channel.

Note that the practical utith of covert channels is difficult to gauge. First,
there is always the possibility of noise. For example, in the disk-arm case a third
party independently accessing various files on the disk could significantly reduce
the bandwidth of the covert channel. However, for very secret materials, such as
cryptographic keys, a slow covert channel is adequate for leaking those secrets.
Second, covert channels are exploitable only when one can plant Trojan horse pro-
grams. When such penetration occurs, other fonns of communication that are eas-
ier to exploit are often possible.

Moreover, defense against covert channels is effective only “within the sys-
tem.” For example, a computer system that does not allow an insider to signal to
the outside world cannot prevent the insider from memorizing the secrets and
walking out with them. Nevertheless, some organizations, especially the U.S. gov-
ernment, take covert channels seriously. For example, researchers at the Naval
Research Laboratory have been developing an extensive system called the
“Pump”. for the sole purpose of transmitting information with no or limited leak—
age of information through covert channels. The Java Development Kit (JDK) 1.2
does not comprehensively address the presence of covert channels.

1.4.3 Static versus Dynamic Models

At first glance, a security policy appears static. For example, an employee either
can or cannot read file A. There is no third way, and that is that. In reality, security
policies are dynamic—they can change over time. When that employee transfers
into a different department in the organization, she might then be given access to a
file to which she was previously denied access. In the MAC model, the sensitivity
level of the data and the clearance level of people can also change. A datum can be
upgraded or downgraded, or a person might gain or lose a particular level of secu-
rity clearance.

Page 25 of 275



Page 26 of 275

 
Page 26 of 275

10 ACCESS CONTROL AND SECURITY MODELS

Several notable security models exhibit this dynamism. One is the High-

Watermark model [44], in which the sensitivity level of a datum keeps moving up

according to the clearance level of the person who has had access to the data.

Another is the Chinese Wall model [8], which models the practice, especially

in consulting firms and financial institutions, of enacting Chinese Wall to avoid

conflicts of interest. For example, a consultant in the oil industry is available to

consult with oil companies A or B, both of which are clients of the firm. Thus the

consultant potentially can access materials related to either A or B. However, once
the consultant accesses A’s materials, access to B’s will be denied due to conflict

of interest. The Chinese Wall model attempts to represent such real-life policies.

Another dynamic model that has its root in the financial industry is the Clark-

Wilson integrity model [11], which can be used to model the security require—

ments for performing financial transactions. For example, transactions over a cer—

tain monetary limit must be cosigned by two different people and in a particular

order. This model was the first widely cited security model that clearly demon—

strated the need for security models beyond those of interest to the military and to
government agencies, which were primarily MAC security models.

1.4.4 Considerations Concerning the Use of Security Models

A model can be used, for example, to drive or analyze the design of a computer

system or to form the basis of a system’s operation. These practical uses of models

resulted in a number of interesting issues that have been studied to various
degrees.

First is decidability. That is, can you decide if a system is secure, when given

a general security model of a real system and a particular requirement or condition

of security (such as, an employee must not be allowed to access file A directly or

indirectly). The answer to this question is no in the general case (see [32]). Later

research to resolve this issue has primarily involved efforts to restrict the model’s

generality so that the issue becomes decidable. In most such models, the computa-

tional complexity to answer the security question is still NP-complete [72].

The second issue is that it often is impossible or infeasible to model, specify,

or analyze an entire system as a whole because a practical system tends to be

fairly large. This has led to work with composability. Here, a security model is

constructed Such that if various components satisfy some set of security properties

and are connected in some particular ways, then the overall system automatically

(Via mathematical proof) satisfies another set of security properties [48, 57]. In

practice, the ability to develop secure and composable systems is in the somewhat
distant future.

Third, the need to retrofit security mechanisms into the so—called legacy sys-

tems, or at least to securely connect the systems together, means that the legacy
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systems must be securely interoperable. One definition of secure interoperability
is that the security properties of each legacy system must be preserved under its

. original definition. However, in this case deciding if a particular interoperation is
secure is often NP—complete [27] even under very simple models.

Finally, security does not mean only confidentiality. Modeling the integrity of
a system is also critical. An early integrity model [Biba, 44] is the dual of the Bell—
LaPadula confidentiality model. One can also View integrity as an aspect of
dependability or correctness and thus can enlist the help of results from the field
of fault tolerance.

1.5 Using Cryptography

While cryptography concerns the encoding and decoding of information, crypt-
analysis is the reverse of cryptography and is the art of decoding, or “breaking,”
secretly encoded information without knowledge of the encryption keys. The term
cryptology (or crypto, for short) refers to the whole subject field.

Security and cryptology are related but different fields—many people confuse
them. They are orthogonal in the sense that each has its own utility without
depending on the other, although technology from one can help the other. For
example, all of the security models discussed so far do not need to use crypto at
all. Crypto can be used to enhance confidentiality and integrity. It also is a field
that can be studied in the abstract, without reference to computer security. How-
ever, modern crypto exists largely in the context of a computer and a communica—
tions system, in which features such as access control are useful in protecting the
access to cryptographic keys. In fact, the easiest way to attack a crypto system is
to try to compromise its key storage facility.

The most commonly used crypto concepts include these:

9 one-way hash functions

9 symmetric ciphers

o asymmetric ciphers

These are discussed in the following three subsections.

One final note about crypto in general is that all except one crypto system are
theoretically insecure, according to theorems by Claude Shannon, in the sense that
an enemy with sufficient knowledge and computing power can always break the
crypto system. The only exception is a system called one-time pad, in which the
secret key is as long as the plaintext itself and is never reused. A one—time pad sys-
tem is practical only when the sender and recipient have a secure way to exchange
the (potentially very large) key.
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The most in—depth reference book currently available on this subject is Hand-

book ofApplied Cryptography [51]. For readers who do not want to dive into deep

background of cryptography and related research subjects, Applied Cryptography
[74] is more suitable.

1.5.1 One-Way Hash Functions

A one—way hash function is an important building block to help achieve data

integrity. Such functions are often used to protect data both in storage and in
transit.

According to Knuth [38], the idea of hashing originated in 1953 with two

groups of IBM researchers. The earliest reference I can find to the concept of one-

way function was by Wilkes in 1968 [80], when he referred to the invention of

one-way functions for the Cambridge Time—Sharing Computer System by
Needham.2

The concept of one-way hash functions also dates back many years. A num—

ber of researchers such as Merkle [52], Naor and Yung [58], and Damgsard [13]

have suggested definitions. Meyer and Schilling [54], Merkle [53], Rabin [64],

Rivest [67], and others have presented practical designs for such functions.

Many different terms have been introduced relating to one way hash functions.

Some of these are alternative names, and some are intended to emphasize differing

assumptions. Examples are one-way (hash) function, collision—free (hash) function,

fingerprinting function, modification detection code, and message authentication
code.

Informally, a one-way hash function is a function that is easy to compute but
difficult to reverse. Also, it is difficult to find two values with which the function

would compute the same output value. Such properties allow the protection of

integrity as follows. Suppose you store a file on the disk and you suspect that it

might be tampered with. Using the file content as input, you can compute the hash

function value, which can be a lot shorter than the file content itself. Later, you
can take the current content of the file and feed it into the hash function. If the new

hash value is identical to the old hash value, then it is highly likely that the file

content has not been modified. In this case, the one—way hash function serves as an

unforgeable link between the file content and its hash value. Figure 1.2 illustrates

one way hash functions.

Designers often incorporate secret keys into the inputs of one-way hash func-

tions such that the hash value cannot be correctly computed or predicted without
 

2 Roger Needham later remembered that the idea was first discussed in The Eagle public
house in Cambridge in 1967. He also noted that it is a compliment to the hospitality of the
public house that nobody remembers exactly who made the suggestion.
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Figure 1.2 One way hash functions.

knowing the secret keys. In this case, such a keyed, one-way hash function serves
as an unforgeable link, not only between the file content and its hash value, but
also between the secret keys used (and thus the entities that possess the keys) andthe hash value.

1.5.2 Symmetric Ciphers

A symmetric cipher is a transformation, operated under a secret key, that can
translate its input, called plaintext, to its output, called ciphertext, in such a way
that (excluding cryptoanalysis) only those entities possessing the secret key can
recover the plaintext from the ciphertext (Figure 1.3).

Symmetric ciphers have a long history. Their first known use dates from the
early Caesar system [39]. They since have been widely used; for example, the
Data Encryption Standard (DES) [62], as well as the vast number of modern
designs such as IDEA.

Symmetric ciphers are also called secret-key ciphers because the two commu-
nicating parties must share a secret key. This creates some difficulties in key man-
agement and key distribution. Moreover, because each pair of communicating
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Figure 1.3 Symmetric cipher.

parties must share a distinct secret key, when a large group of parties talk to each

other, in theory an exponential number of secret keys are needed.

Symmetric ciphers can be operated in different modes, such as various feed—
back modes. They can also be stacked to improve the crypto strength of the whole

system, such as in the case of triple—DES.

1.5.3 Asymmetric Ciphers

An asymmetric cipher is similar to a symmetric cipher, except that it depends on

a pair of keys (instead of just one key). One key of the pair is called the public key
and is used to encrypt plaintext. Another key is called the private key and is used

to decrypt ciphertext. See Figure 1.4. The keys are generated such that it is easy to

deduce the public key, given the private key; the reverse, however, is very difficult.

This property enables people to exchange their public keys over public channels

and still conduct private communications. Compare this with symmetric cipher

systems, in which people must arrange a shared secret key via a private channel.

Notable asymmetric systems include Diffie-Hellman [14] and RSA [68]. Asym-

metric systems are often used to encrypt and exchange keys for symmetric
systems.

Another distinct property of some asymmetric systems is that the encryption

and decryption are reversible. This means that one can apply the decryption oper-

ation with the private key to the plaintext, and one can recover the plaintext by

applying the encryption operation with the public key to the ciphertext. In this

case, since the public key is public, no confidentiality protection is provided.

However, because only the holder of the private key can generate the ciphertext,
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Figure 1.4 Asymmetric cipher.

the ciphertext can serve as a digital signature of the plaintext and anyone with the
public key can verify the authenticity of the signature. RSA is perhaps the most
widely used asymmetric system that can also be used to produce digital signa-

' tures. Another system, Digital Signature Algorithm (DSA), defined as a national
standard by the U.S. government, can only perform digital signature functions; it
cannot be used for encryption.

' For one party to prove to another that it is the real owner of a public key, the
proving party can present a certificate for verification by the other party. A public-
key certificate is a digitally signed statement from one entity, saying that the pub—
lic key (and some other information) of another entity has some specific value. A
chain of certificates is possible, whereby each certificate contains a public key that
is used to certify the public key in the succeeding certificate. The first certificate,
often called the root certificate, does not have another public key to certify it.
Thus it normally is a self—signed certificate in that its own public key is used to
certify itself. Later chapters (especially Section 4.3) have more in—depth discus-
sion about certificates.

1.6 Authentication

Another basic security issue is authentication. Authentication is the process of
confirming the identity of the user (or machine operating on behalf of the user). It
first became an issue when timesharing systems began to be deployed and the sys-
tem needed to know the identity of a user logging in to the system. This knowl-
edge is critical for enforcing access control policies, as most of the security
models mentioned previously are based on granting access to certain users and not
to others.
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The importance of authentication increased when networked computer sys—
tems started to surface. The network often is shared or public, so it is crucial to

authenticate or know the identity of the user at the other end of the wire. It is

equally important for the users to know the identity of the system they are con-

necting to.

Numerous authentication protocols exist, but many of these have subtle secu-

rity flaws, discovered even after many years of scrutiny by experts. As a result,
authentication has become a major study subject.

The basic approach is first to ask the user at the other end of the wire to

present a name and a password and then to check these against system records.

Such a simple-minded solution, which amazingly is still widely used when more
secure solutions are available, is vulnerable to eavesdropping and guessing attacks

[47]. Anyone who is monitoring network traffic can learn the password and use it

later. Variations of this approach exist, such as one-time passwords [40] and now

an Internet Engineering Task Force (IETF) standard called OTP (evolved from 8/

Key) [31]. These are an improvement with limitations because one can carry only
a limited number of one-time passwords.

This basic approach can be generalized to one based on challenge and

response. It can also be extended to perform the function of key distribution such
that different entities need to share keys only with certain designated key distribu—

tion centers. These centers can dynamically establish secret keys between any

set of such entities that previously might not have communicated to each
other. The earliest work in network—based authentication is the well—known

Needham—Schroeder protocol [59]. As illustrated in Figure 1.5, with such a proto—
col, entities A and B can use the key distribution center as a trusted third party to

Figure 1.5 Network authentication.
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establish a short-term secure session. This protocol is the basis of the Kerberos
system implemented as part of the MIT Project Athena and later adopted as part of
the DCE and as an IETF standard [56, 60].

Protocol design is full of peril. The Needham-Schroeder protocol, among
many others, was later shown to be defective in a number of aspects [9, 26].
Attacks on security protocols include replay attacks and interleaving attacks,
where an attacker listens and records legitimate network traffic and then reuses
these messages (sometimes after some skillful modifications) to defeat security.
But these can easily slip a protocol designer’s mind and thereby lead to the possi-
bility of attack later. As a result, formal and informal protocol analysis techniques
have been suggested and applied [9, 15, 26, 50, 55], including the fairly recent
application of model-checking tools.

One especially serious issue involves authentication protocols designed for
use by human beings. These usually involve the use of passwords that people can
remember. This approach has the disadvantage that such passwords are generally
chosen from a fairly small space (such as all words in a dictionary) that can be
mechanically searched and thus easily deduced. All of the authentication proto—
cols examined by the security research community that were published prior to
1989 suffer from this problem of easily guessed passwords. As a result, an
attacker who has monitored the network traffic and obtained a running record of
an authentication protocol can then guess each candidate password and verify if
the guess is correct, all off-line and thus undetectable. Technical solutions to this
problem started to appear in late 1989 [21, 47] and include also EKE and A—EKE
[4, 5]. Smartcards and other hardware-based security devices are often helpful in
avoiding to use guessable passwords.

1.7 Mobile Code

Mobile code is not a fundamentally new concept—anything that causes a remote
system to behave differently can in theory be Viewed as mobile code. Thus the
whole field of distributed computing works on the premise of mobile code. This
includes data such as Domain Name Service (DNS) information, remote com-
mands such as Remote Procedure Call (RFC), and executable scripts such as
remote shell on UNIX. This section focuses on the last category: executable
scripts, code that travels from one machine to another and gets executed as it trav-
els. Such mobile code is widespread, partly because it helps to distribute the com-
putation load among client as well as server machines and partly because it helps
to reduce demand on network bandwidth.

PostScript files belong to this category because when a PostScript file is dis—
played and viewed, it is the file content that is being executed. The same is true for
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Microsoft Word documents that contain macros—the macros are interpreted as

the document is read. Another example is Lisp. Many people read their e—mail

from within Emacs, a powerful text editor. Emacs interprets Lisp programs as it

sees fit, so a Lisp program segment embedded in an e-mail message can become

active when viewed inside Emacs. Other kinds of active components include

ActiveX controls and Java applets.

Active contents do not pose a new category of threat. Instead, they help

expose the inadequacies of commonly deployed security mechanisms. For exam-

ple, when mobile code is a DNS update request, the interface is fairly narrow so

that its security implication is more easily understood. However, when fully gen—
eral mobile code such as an ActiveX control arrives, the interface becomes the

entire Win32 APIs and any security holes in those APIs might be exploited.

The increasing use of mobile code has resulted in two responses. On the one

hand, people try to enhance system security to better control and thus utilize the

attractive aspects of mobile code. On the other hand, people get scared and want to

block mobile code at their perimeters. The latter is at best a gap-stopper. This is

because mobile code and active contents can travel through multiple channels

such as e-mail and filtering every e-mail message and removing parts of messages

is often unacceptable (to the e—mail users). One primary design goal of Java tech-

nology is to make Java a secure platform for mobile code.

1.8 Where Does Java Security Fit In

The previous sections painted, in rather broad strokes, the large security jigsaw

puzzle that today’s systems use, from firewalls to access control, from encryption

to authentication. Java security is a very important piece of this puzzle. This is

because Java is pervasive both as a platform—independent technology and as the

best vehicle to program mobile code and executable content for the Internet and

the Web. The rate of Java adoption is phenomenal. It is being deployed, for exam-

ple, in financial institutions, in on—line e—commerce software, and as part of other

critical applications. All these mean that the Java platform must fulfill its promise

as a safe Internet programming platform.3
The Java platform can be viewed as a client-side application (such as when

running Java inside a browser), a server-side application (such as when running

server software programmed in Java), or an operating system (such as when run-

ning the JavaOS directly on MS-DOS or bare hardware). Because different usage
 

3 I should make it clear that JavaScript is not based on Java and is related to it only by name.
JavaScript does not have the comprehensive security considerations and mechanisms that
Java has.
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scenarios might require different or even conflicting security features, JDK 1.2 is
designed to build in common functionalities while leaving sufficient hooks so that
it can be extensible to handle specific requirements.

When Java technology is available within an operating system such as Solaris
2.6 or Microsoft Windows 95 or 98 (collectively called, “MS-Windows”), its pres—
ence does not alter the basic security characteristics of the underlying system. For
example, on Solaris 2.6 an instance of the Java Virtual machine (JVM) will have
access only to resources that would be available to the user running the JVM.
However, if the entire application interface is limited to Java, then usually the
overall system security is improved. This is very obvious if one compares the lack
of security features on MS-Windows with the rich security features available in
Java. If all applications on such a system are restricted to be 100 percent Java
code, then many security problems on MS-Windows suddenly disappear (actually,
they are hidden behind the Java interface and thus cannot be exploited directly).

Finally, I want to emphasize that security features on the Java platform are not
limited to what is available in JDK 1.2. Further versions of JDK no doubt will con—
tinue to enrich the security features. In addition, a whole range of standard Java
interfaces have been or are being designed to include such functionality as cryp-
tography, secure sockets layer (SSL), user authentication, and others. Thus Java is
becoming not just one but actually many pieces of the security puzzle. Just as SSL
and the browser finally brought cryptography to the mass market, Java has played
an important role in pushing computer security into the technology mainstream.
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CHAPTER 2 

 
 

Basic Security for the

Java Language

Neverforget class struggle.
—Mao Ze-Dong

Since the inception of Java technology [30, 46], strong and growing interest has
centered on its security, in part because this has been publicized as one of its criti—
cal design goals and cited as a significant means of differentiating Java from other
technologies.

A new technology rarely includes reasonably good security features in its ini-
tial release. Thus the positioning of Java as the best platform for secure Internet
programming has attracted a lot of attention from both security professionals and
the computer industry in general. Long-time security researchers, academics, and
students have poured over design details and source code of the JDK, which was
released by Sun Microsystems for just such purposes. Even the popular media
have caught the frenzy; both The Wall Street Journal and The New York Times
have covered it prominently.1

From a technology provider’s point of view, Java security provides two
features [23]:

o The Java platform (primarily through JDK) as a secure, ready-made platform
on which to run Java-enabled applications in a secure fashion

9 Security tools and services implemented in Java that enable a wider range of
security-sensitive applications in such arenas as enterprises

 

1 Refer to [49] for some quotes and citations.
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The deployment of the Java technology also raised an array of interesting

security issues, which are covered in later chapters. This chapter focuses primarily

on the basic security features provided by the Java language and platform.

2.1 The Java Language and Platform

The Java language was designed originally for use in embedded consumer elec-

tronics applications such as handheld devices and set-top boxes. It is a general-

purpose object-oriented programming language and is simple enough that many

programmers can become fluent in it fairly quickly. It is specifically designed to

be platform-independent so that application developers can write a program once

using Java and then run that program securely everywhere on the Internet. It is

related to C and C++, but it is rather different, with a number of aspects of C and

C++ omitted and a few ideas from other languages included.

The Java language is strongly typed. It does not include any unsafe constructs,

such as array accesses without index checking, because such unsafe constructs

might result in unspecified and unpredictable program behavior.2 It comes with
automatic storage management, typically done by a garbage collector. Further, it

avoids the safety problems, such as those posed by C’s “free” or C++’s “delete,”

concerning the explicit deallocation of memory that is no longer needed.

Java is normally compiled to a bytecoded instruction set and binary format

defined in the Java Virtual Machine Specification [30]. It also defines a number of

packages for more complete programming support. A Java program is normally

stored as binary files representing compiled classes and interfaces. The binary
class files are loaded into a JVM, and then linked, initialized, and executed. Here

is an example of a simple program.

class Test {

public static void main(String[] args) {

for (int i = 0; i < args.length; i++)

System.out.print(i == 0 ? args[i] :

System.out.println();

ll'
+ ar‘gs[i]);

2 A recent study concluded that about 50 percent of all CERT-issued alerts are due in part to
buffer-overflow errors.
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On a Sun workstation running the Solaris operating system, the class Test,
stored in the file Test.java, can be compiled and executed by giving thesecommands:

javac Test.java
java Test Hello

The program will print out Hello.

The Java platform is network-centric and is born of the idea that the same
software should run on many different kinds of computers, consumer gadgets, and
other devices such as smart cards. With Java technology, you can use the same
application on a Sun SparcStation running the Solaris operating system, a per-
sonal computer (PC) running MS—Windows, a Macintosh computer, a network
computer, or even a cellular phone or an Internet screen phone.

The original HotJava browser demonstrated Java’s power by making it possi—
ble to embed Java programs inside HTML pages. These programs, called applets,
are transparently downloaded, to be run inside the browser. The Java platform has
been incorporated into all major Web browsers and soon will be built into next-
generation telephones and TV set-top boxes. Java programs can also run directly
on a computer without depending on a browser and are being written to run on
servers and large mainframe computers.

The Java platform consists of the Java language, the JVM, and the application
programming interfaces (API libraries). The JVM is an abstract computing
machine and does not assume any particular implementation technology or host
platform. It also knows nothing of the Java programming language; it knows only
of a particular file format, the class file format. A class file contains JVM instruc-
tions (or bytecodes) and a symbol table, as well as ancillary information. Byte-
codes can be either interpreted or compiled for a native platform. The JVM may
also be implemented either in microcode or directly in silicon. The current release
of Sun’s implementation of the JVM, inside JDK 1.2, emulates the JVM on Win32
and Solaris platforms.

2.2 Basic Security Architecture

In the original Java release, the basic security architecture centered on allowing a
user to dynamically import and run Java applets without undue risk to the user’s
system. An applet is loosely defined to be any code that does not reside on the
local system and must be downloaded to be run. Code that does reside on the local
system is commonly called a Java application. Because applets are downloaded
dynamically and often without your awareness, and because you may not know
who the applets, authors are, you cannot blindly trust an applet not to attempt to

23
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cause harm. Thus a downloaded applet’s actions are restricted to its sandbox, an

area of the Web browser allocated specifically to the applet. The applet may play

around within its sandbox but cannot reach beyond it. For example, it cannot read

or alter any file stored on the user’s system. In this way, if a user accidentally
imports ‘a hostile applet, that applet cannot damage the user’s system. Thus this

sandbox model provides a very restricted environment in which to run untrusted

code (that is, applets) obtained from the open network.

In the sandbox model, all applications (as opposed to applets) are completely

trusted to have full access to vital system resources (such as the file system). Secu—

rity comes from maintaining physical control over the systems, for example by
preventing end-users from installing suspicious software. Note that the distinction

between an applet and an application, or “outside” versus “inside,” is not always

absolute. With a networked file system, a class file appearing to reside on the local

file system actually might be located thousands of miles away, whereas an applet

can be downloaded from within the local area network (LAN), possibly from the
same host on which the user is running it.

The sandbox model is deployed through JDK 1.0.x and is generally adopted
by applications built with JDK, including Java-enabled Web browsers.

The original basic security architecture is enforced through a number of

mechanisms. First, the Java language is designed to be type safe and easy to use.

Thus the programmer is less likely to make subtle mistakes, compared with those

possible when using other programming languages such as C or C++. Language

features such as automatic memory management, garbage collection, and range

checking on strings and arrays are examples of how the language helps the pro—
grammer to write safer code.

Second, a bytecode verifier ensures that only legitimate Java code is executed.

A compiler translates Java programs into a machine-independent bytecode repre—
sentation. Before a newly downloaded applet is run, a bytecode verifier is invoked

to check that the applet conforms to the Java language specification and that there

are no violations of the Java language rules or name space restrictions. This is

because, for the sake of security, the JVM imposes strong format and structural
constraints on the code in a class file. The verifier also checks for violations of

memory management, stack underflows or overflows, and illegal data type casts.

These might allow a hostile applet to corrupt part of the security mechanism or to

replace part of the system with its own code. The bytecode verifier, together with

the JVM, is designed to guarantee language type safety at runtime. For example,

Java uses a runtime type check when storing references in arrays to ensure com-
plete type safety.

Moreover, note that runtime activities include the loading and linking of the

classes needed to execute a program, any optional machine code generation and

dynamic optimization of the program, and the actual program execution. During
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this process, a class loaderdefines a local name space, which is used to ensure that
an untrusted applet cannot interfere with the running of other Java programs.

Finally, access to crucial system resources is mediated by the JVM and is
checked in advance by a security manager class that restricts to a minimum the
actions of untrusted code. Class loader and security manager classes are discussed
in greater detail later in Section 3.8.

2.3 Bytecode Verification and Type Safety

This section takes a closer look at the general issue of type safety and in particular
bytecode verification because this subject has been the focus of some well-
publicized discoveries of potential security holes. A review of specific bugs and
their fixes is in Section 2.4.

Although a trustworthy compiler can ensure that Java source code does not
violate safety rules, someone could use a rigged compiler to produce code that
does violate them. A web browser with Java enabled that can import code frag-
ments from anywhere does not know whether a code fragment comes from a trust-
worthy compiler. Thus, before executing any code fragment, the runtime system
subjects it to a series of tests.

The tests range from verifying that the format of the fragment is correct to
passing it through a simple theorem prover to establish that the code plays by the
rules. Approximately, the code is checked to ensure the following.

o It does not forge pointers.

o It does not violate access restrictions. For example, a private field should not
be accessible from outside of the object.

Q It accesses objects as what they are. (For example, the tests ensure that Input—
St ream objects are always used as InputSt reams and never as anything else.)

o It calls methods with appropriate arguments of the appropriate type and there
are no stack overflows.

o No illegal data conversions are done, such as converting integers to pointers.

Note that a static bytecode verifier is not strictly necessary to ensure type
safety because the JVM can, in theory, perform complete type checking during
runtime. However, runtime checks often can slow down the execution of a pro—
gram significantly because such checks have to be done repeatedly for each
method invocation. Thus moving some Checks up front to class loading time,
where those checks are done only once, seems an appealing strategy. Knowing
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that any downloaded code satisfies these properties makes the runtime system
operate much faster because it does not have to check for them. Note that the veri-

fier is independent of the Java language or compiler, so it can also examine byte-
code that is generated from non-Java source languages.

The five checked points above obviously do not tell the whole story and are
not meant to be formal or precise. Space limitations do not permit a description of
the considerable work that covers the finer details of the Java language design, the
inner workings of the JVM, the background of flow analysis, and the art of theo—

rem proving, all of which are necessary background for a complete understanding
of how type safety is enforced.

For the present discussion, it is sufficient to understand the following points.
The most fundamental goal of the Java security architecture is to ensure that the

Java Language Specification and the Java Virtual Machine Specification are
observed and implemented correctly. One way to think about this is to imagine
that you are writing a calendar application. You typically will have interfaces that

expect to take an integer between 1 and 12 to represent a month within the year.
You might also have an initialization interface that prompts the user to type in the
current date. Because your other interfaces assume that the month integer will be
between 1 and 12, it is prudent that you check and ensure, from inside the initial-

ization procedure, that the user’s input is indeed a valid number. If you do not
check for this and as a result do not reject invalid numbers, your calendar applica-
tion might not work with an out-of—range month number and might behave in
strange ways.

This same principle applies to the Java platform. The JVM expects the byte-
code that it runs to have certain properties, and it is the job of the bytecode verifier
to ensure that those properties are met. The JVM also decides to check additional

properties itself, perhaps because these are difficult or impossible to analyze stati—
cally by the bytecode verifier. There is no mystery in ensuring type safety, just
mountains of detail and tons of work.

You might ask what type safety has to do with computer security. This ques—
tion can be addressed in a couple of ways. First, type safety contributes toward

program correctness. If a program that is implementing some security functional—
ity does not accomplish what it is intended to do, because the program cannot be
correctly executed, then security may not be provided correctly. For example, a
security deciSion may be embodied in an equality test, of the following form.

if (the name is James Gosling) {

open the door to Hacker's Lounge
} e'lse {

throw the person out
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Here, security reasoning is written and performed in the Java language. Thus it is
critical that a yes answer is not possible when a string such as James Gosling is
compared with a different string, say Scott McNealy. Otherwise, a trivial incor-
rectness in string comparison leads to a security hole.

On the other hand, it is important to note that not all type safety problems
inevitably result in a security breach. For example, if a Virtual machine implemen-
tation has a single bug that equates string acegi kmoqsuwy with string
bdfhj'l npr‘tvxz, what security compromise this will cause is not immediately
clear. Nevertheless, the type safety issue needs close attention and should not be
left to chance.

Yellin, in an early paper, included some details of the verifier and other type
checking mechanisms [82]. However, you need a fairly good understanding of the
bytecode instructions in order to fully digest them. More recently, Liang and Bracha
wrote about a new mechanism, implemented in JDK 1.2, that solves a problem with
type safety regarding dynamic class loading [45]. This subject of bytecode verifica-
tion is still evolving, with ongoing work occurring within the JDK development
team, as well as at research labs and universities. A more formal and precise exposi—
tion of the entire language type safety subject is anticipated for the future.

2.4 Signed Applets

JDK 1.1 introduced the concept of signed applets. Recall that in the original sand—
box model, all remote code—that is, all applets—are automatically untrusted and
are restricted to running inside the sandbox. Such restrictions, although contribut-
ing to a safe 00mputing environment, are too limiting for some applets. For exam-
ple, a company might deploy, within a LAN, an applet that is used to maintain
employee pension data. An employee who downloads and runs the applet to
change the plan allocation would want the applet to automatically update his own
accounting record stored in his own file directory.

To facilitate such features, JDK 11 added support for digital signatures so that
an applet’s class files, after their development, could be signed and stored together
with their signatures in the JAR (Java Archive) format. For each JDK installation,
you can specify which signers (or their public keys) are trusted. When a correctly
digitally signed applet is downloaded, and if its signers can be verified and recog-
nized as trusted, the applet is treated as if it is trusted local code and is given full
system access (Figure 2.1).

Both the original sandbox model and the trusted applet model have been
extended into a new security architecture in JDK 1.2 that implements fine-grained
access control based on security policies and permissions. This new architecture is
covered extensively in Chapter 3.
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Figure 2.1 JDK 1.1 security model.

2.5 A Brief History of Security Bugs and Fixes

It is often said that those who forget history are bound to repeat it. As part of
understanding the new security architecture in JDK 1.2, you need to understand
the series of Java security-related bugs, what caused them, and what has been
done to fix them. This review, set out in the following list, is based on the archive
that JavaSoft keeps on its public Web site. All known bugs are fixed, normally
shortly after their discovery, and the fixes are issued in the next release of JDK.
Bugs and fixes that are technically obscure are not explained in detail here.
McGraw and Felten [49] provide additional background such as media coverage
and stock market movement that might have been related to some of the bug
reports.

It is worth emphasizing that for all of the bugs discussed here, the problem is a
bug in the implementation of the security model, not with the model itself. As a

result, no major “surgery” is necessary and fixes are quickly developed and
deployed. Sun’s policy of “security through openness,” according to which all
source code is made available for public review, has attracted very capable people to
invest their time and energy in Java security research. This policy, which has
resulted in security bugs being found and fixed more quickly, has been a greatsuccess.
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6 February 1996. Drew Dean, Ed Felten, and Dan Wallach of Princeton Univer-

p sity (hereafter called “the Princeton team”) described an attack that exploits the
way in which the applet security manager in JDK 1.0 uses the DNS (Domain
Name Service) for hostname-to-[P address resolution. This attack is called the

DNS spoofing attack. Steve Gibbons also independently suggested this attack
scenario.

The attack uses the fact that DNS allows one hostname to match to multiple IP
addresses. Thus a malicious party can take control of a DNS server and falsely
advertise its attack host with its actual IP address and a fake address, which
belongs to the target machine. The attack also exploits a weakness in the
applet security manager that allows an applet to connect to any of the IP
addresses associated with the name of the computer from which it came. Thus
an applet from the attack host could open a connection to the fake address and

connect to the target machine, even though it was not supposed to.

The fix for the applet security manager is to make it more strict about deciding
to which computers an applet is allowed to connect. In particular, it notes the
actual IP address from which the applet truly came and thereafter allows the
applet to connect only to that exact same numerical address.

9 March 1996. David Hopwood at Oxford University found a bug in the
JDK 1.0 class loader that could be exploited to load illegal bytecode, which
could then be used to load a class referenced by. an absolute pathname. This
meant that if in cases such as an FTP upload, the attacker could install a mali-

cious class file on the target system with a known pathname, then the attack
applet would be able to load the malicious class file.

9 March 1996. The Princeton team found an implementation bug in the Java
bytecode verifier in JDK 1.0.]. Through a sophisticated attack, a malicious ap-
plet could exploit this bug to delete a file or do other damage.

0 April 1996. A security problem in JDK 1.0.] was reported to JavaSoft by a
software engineer from Sprint. For a specific firewall-protected network con—
figuration, an outside applet downloaded by a client inside the firewall could

connect to a single specific host behind the firewall. This was due to a bug in
the Uniform Resource Locator (URL) name resolution code. For the attack to

succeed, the target network and the attacker’s network must have an identical

domain name, with the attacker’s domain being the official (InterNIC), regis-
tered network. In other words, the target network must use an internal name

that has not been registered with InterNIC and the attacker must have control
over the InterNIC—registered name.
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May 1996. The Princeton team found another way to get past system restric-
tions on creating a class loader in JDK 1.0.1. (Section 3.8 discusses that a class

loader is a sensitive and powerful obj ect, so you must carefully control who can

create instances of a class loader.) This attack builds on earlier work done by
Tom Cargill.

June 1996. David Hopwood uncovered a bug in JDK 1.0.2, based on illegal

type casting, to manipulate how objects are assigned and how they collaborate.

March 1997. The JavaSoft engineering team came across a bug in the imple-

mentation of the JDK 1.1 bytecode verifier. To exploit this bug, someone

would have to handcraft specially formatted bytecode. The theoretical attack is

complex and appears extremely difficult to accomplish.

March 1997. It was reported that an applet can call a method named

getLocal Host() to determine the IP address of the computer in which it is

running. This turned out to be a false alarm, even though the media showed

great interest. Since the May 1996 JDK 1.0.2 release, an applet that calls

getLocal Host() will get the loopback host ("loca‘l host/127.0.0 . 1") as

an answer. This is a generic handle to the local computer, which does nOt reveal
any private information.

April 1997 . The Princeton team (now with a new member Dirk Balfanz) found

a flaw in the JDK 1.1.1 digital signature handling code used to manage identi-

ties of signers that signed class files. The attack used digitally signed code for

impersonation, and made the code appear to be signed by anyone from the list

of signers that were recorded in the Java runtime system.

May 1997 . Brian Bershad, Sean McDirrnid, and Emin Gun Sirer of the Uni-

versity of Washington (hereafter called “the Washington team”) discovered a

bug in the JDK 1.1.1 verifier. The verifier was not checking that the number of

arguments passed into a method invocation is less than the amount of space a1-

located to local variables for that method. Thus an excessive number of argu-

ments could cause a stack overflow, most likely leading to the JVM’s crashing.

There was no known security attack based on this bug, but since the bug relates

to class loading, it was important enough to fix immediately.

June 1997. The Washington team reported another implementation bug in the

JDK 1.1.2 bytecode verifier. This bug allowed a type-unsafe applet to execute

and to search and locate strings that are stored in the browser’s address space.
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0 March 1999. Karsten Sohr, a graduate student at the University of Marburg in
Germany discovered a bug in the implementation of the bytecode verifier. This
bug could allow an untrusted applet to run with excess privileges, and affects
JDK 1.1.x and JDK 1.2.

In retrospect, these bugs have a high probability to be caught earlier by more
complete and careful design specification and quality assurance measures.

In summary, note the following points. First, there was a fair amount of confu-

sion over the details of the sandbox security model. For example, applets were not
allowed to do certain actions. But the list of forbidden actions was not exhaustive

and was not given in precise language. Consequently, there was occasional debate
on whether something was a security bug.

Second, not all Java bugs are security bugs, even though they potentially all
are. On the one hand, we treat all bugs seriously; on the other hand, we all should
keep things in the right perspective.

Third, not all bugs are strictly Java security bugs because they interplay with
other aspects of the computing environment, such as the operating system, the
Web browser, Web spoofing, and some installed software. In fact, a lot of media

coverage has centered on bugs that have nothing to do with Java technology, but
because they are related to the Internet, some observers commonly issue warnings
about potential Java security problems before the real cause of the problems is dis-
covered. In addition, some people confuse ActiveX with Java, while others
(wrongly) think that JavaScript is the same as Java.

Finally, the current Java security technology does not attempt to monitor and
control resource consumption by applets and applications. For example, it is hard
to automatically tell the difference between an MPEG decompressor that takes a
long time to execute and a hostile applet that is intentionally wasting resources.
Note that resource consumption attacks can be mounted with or without Java and

sometimes do not require complicated programming. For example, a malicious
Web server can serve an infinitely long Web page, thus filling up the client
browser’s cache space. And a junk mailer can spam gigantic e—mail messages and
saturate a user’s mail box. Nevertheless, Sun recognizes that in some situations, it
is desirable to control the impact of denial-of-service attacks, and it is actively
researching this subject area.
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JDK 1.2

Security Architecture

The state is nothing but an instrument of
oppression ofone class by another.

—Friedrich Engels

This chapter focuses on the inner workings of the JDK 1.2 security architecture
that supports policy-driven, permission-based, flexible and extensible access con-
trol. I will go over the designs of the Policy and Permission classes, the internal
mechanisms for secure class loading, and the access control algorithm. But first I
will outline the motivations of the new architecture and its development timeline.

3.1 From the Beginning

Planning for the JDK 1.2 security architecture started in late August 1996; actual
code development got under way in the following February. The first permission-
controlled Appletviewer app] etvi ewe r prototype ran in March, and the first-cut
feature completion was achieved by May 1997. This time line roughly coincides
with the publication of the new architectural directions for Java security. I pre—
sented a paper at IEEE COMPCON in February 1997 [29], which later was
revised and expanded for the IEEE Micro May/June issue [23]. During my Java-
One talk in April 1997, I was able to confidently give some technical details based

on the prototype already in hand. For the subsequent twelve months, the security
architecture remained stable. The APIs, however, have been undergoing constant
refinement. An overview paper was presented at a USENIX conference in Decem—
ber 1997 [25], while aspects of implementation details were presented at an Inter—
net Society symposium in early 1998 [28].
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The JDK 1.2 security project was named “Gibraltar.”1 This was because we,
that is, the Java security development team at Sun Microsystems, Viewed it as an

important foundation stone for Java technology. But also, we anticipated major,
though not quite Herculean, efforts to complete it. We also intended to use the

other Herculean pillar (called “Abyla” in ancient times and today known as Mount
Hacho) to name the next major security project of this scale.

3.2 Why a New Security Architecture

As discussed in Chapter 2, it was critical that the original release of JDK 1.0 con-

sider security seriously and provide the sandbox security model. Not many tech—
nologies have security as a design goal, so Java technology, together with the
Internet and the promise of e-commerce, helped to finally move security technol-
ogy into the mainstream of the computer industry. This was a significant achieve-

ment. The next step was to improve the original design to make the security
solutions on the Java platform easier to use, as well as more robust. The new
architecture corrects several limitations of earlier versions.

3.2.1 Sandbox Restrictions on Applets Too Limiting

By default, the sandbox model severely restricts the kind of activities that an

applet may perform. Although this model was the catalyst that created the atmo-

sphere for safe Internet computing, it treats all applets as potentially suspicious.
Thus some applets, such as those created by a corporation’s finance group to han-
dle internal transactions, are also limited in what they can do, even though they are
likely to be more trustworthy than an arbitrary applet downloaded from an unfa-
miliar Web site.

Such a blanket restriction on all applets can be limiting. For example, suppose
a customer of Charles Schwab, a brokerage firm headquartered in San Francisco,
runs an applet loaded from Charles Schwab’s Web page to make stock trades. This

customer might want to let the applet update local files that contain her portfolio
at Charles Schwab; however, access to the client-side file system is prohibited by
the Sandbox model. Thus this customer needs flexible access control, whereby
certain applets can have access that is outside of the sandbox or in other words, the
sandbox can be customized (for example, by the client system) to have flexible
shapes and boundaries.

1 Gibraltar: The “calpe” of the ancients and one of the two pillars of Hercules, from Brewer’s
Dictionary ofPhrase & Fable.
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However, the Charles Schwab customer might also have Quicken software
installed on the local desktop that handles income tax issues. She might not feel
comfortable letting the Charles Schwab applet have free reign on her entire desk—

top system In this case, it would be best to confine the applet to limited file sys-
tem access, perhaps to only the Charles Schwab file folder. In other words, she
needs fine--grainea' access control.

Prior to JDK 1.2, one could,1n theory, implement a more flexible and finer—

grained access control on the Java platform. To accomplish this, however, some—

one (such as an application writer) had to do substantial programming work, for
example by subclassing and customizing the Securi tyManager‘, Cl assLoader‘,
and other classes. The HotJava browser is an example of such efforts; it has a lim—

ited range of user—definable security properties However, such programming is
extremely security--sensitive and requires in-depth knowledge of computer secu—
rity and robust programming skills.

The JDK 1.2 architecture aims to eliminate the need to write custom security
code for all but a small number of environments, such as the military, which
requires special security properties (such as multilevel security [44]). And even
then, writing custom security code would be simpler and safer.

3.2.2 Insufficient Separation Between Policy and Enforcement

The sandbox model, as codified by the Securi tyManager class, implements a
specific security policy that is expressed in the software that does the policy
enforcement This means that to enforce a different security policy, a special ver-
sion of the software must be used—clearly thisrs not desirable. Instead, whatis

neededis an infrastructure that supports a range of easily configurable security
policies.

The JDK 1.2 security architecture cleanly separates the enforcement mecha-

nism from the security policy statement. In this way, application builders and

users can configure their own flavors of security policies without having to write
special programs.

3.2.3 Security Checks Not Easily Extensible

The original design hard coded the types of security checks that the JDK per-
forms. For example, to check if a file can be opened for reading, you would call
the checkRead() method on the Securi tyManager class. Such a design is not
easily extensible because it does not accommodate the handling of new types of
checks that are introduced as after-market add—on to JDK. It also is not very scal-
able. For example, to create a new access check, such as one that checks to see if

money can be withdrawn from a bank account, you would have to add a new
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checkAccountWithdrawU method to the SecurityManager class or one of its
subclasses. Thousands of various kind of checks are possible. If methods were
created for this large number, they would overcrowd the Secu ri tyManage r class.
In fact, because many checks are application-specific, not of all them can be
defined ‘within JDK. What is needed is an easily extensible access control
structure.

The JDK 1.2 architecture introduces typed access-control permissions and an
automatic permission handling mechanism to achieve extensibility and scalability.
In theory, no new method ever needs to be added in the Secu r1' tyManager class.
So far, throughout the development of JDK 1.2, when numerous new types of
security checks were introduced, we have not encountered a situation requiring a
new method. Instead, a single method, called checkPermi $51" on( ), is now suffi-
cient to handle all security checks.

3.2.4 Locally Installed Applets Too Easily Trusted

The original security model has the built-in assumption that all locally installed
Java applications are fully trusted and therefore should run with full privileges. As
a result, the sandbox model applies only to downloaded applets. However, soft—
ware installed locally should not be given full access to all parts of the system. For
example, often a user installs a demo program on the local system and then tries it
out. It is a good idea to limit the potential damage such a demo program could
cause by giving it less than full system access. In another example, caching
applets on the local file system will improve performance, but caching should not
change the security model by treating cached applets as trusted code, even though
it now resides on the local system. Furthermore, the distinction between what is
local code and what is remote code is fast becoming blurred. In the modern world
of software components, one application could utilize multiple components, such
as JavaBeans, that reside in all corners of the Internet. So security checks must be
extended to all Java programs, to include applets as well as applications.

In the new architecture, local code is subjected to the same security controls
as applets, although users can choose to give full system access to certain (or all)
local or remote code, thus running them effectively as completely trusted. Such a
choice can be made by simply configuring a suitable security policy.

3.2.5 Internal Security Mechanisms Fragile

In the original release JDK 1.0 and the subsequent JDK 1.1, a number of internal
security mechanisms are designed and implemented using techniques that are
rather fragile. Although they work reasonably well in those versions, maintaining
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and extending them is difficult. Thus we made a few important internal structural
adjustments in order to reduce the risks of creating subtle security holes in pro-
grams. This involved revising the design and implementation of the Securi ty—
Manager and Class Loader classes, as well as the underlying access control
checking mechanism. Later Sections 3.8 and 3.9 touch on some historical details.

3.2.6 Summary

To summarize, the need to support flexible and fine-grained access—control secu-

rity policies, with extensibility and scalability, called for a new and improved
security architecture. The result is JDK 1.2. This new architecture uses a security
policy to decide which individual access permissions are granted to running code.
These permissions are based on the code’s characteristics, for example where the
code is coming from, whether it is digitally signed, and if so by whom. Later,
attempts to access protected resources will invoke security checks that will com-

pare the granted permissions with the permissions needed for the attempted
access. If the former includes the latter, access will be permitted; otherwise,
access will be denied. If a security policy is not explicitly given, then the default
policy is the classic sandbox policy implemented in JDK 1.0 and JDK 1.1. There

are various caveats, refinements, and exceptions to this model that are discussed in
later chapters.

The JDK 1.2 security architecture has not invented a new computer security
theory, even though we have had to design new ways to deal with many subtle
security issues that are unique to object oriented systems. Instead, it offers a real-

world example in which well-known security principles [17, 61, 63, 70] are put into
engineering practice to construct a practical and widely deployed secure system.

The remainder of this chapter describes the details of the implementation
classes. The major components of the new security model include security policy,
access permission, protection domain, access control checking, privileged opera-
tion, and Java class loading and resolution. Security policy and access permissions
define what actions are allowed, whereas protection domain and access control

checking provide the actual enforcement. Privileged operation and class loading
and resolution are valuable assistants in the overall protection mechanisms.

3.3 java . security . General Secur'i tyException

First, we specified a new exception class called General SecurityExcepti on.
Why introduce this class when there was already java . l ang . Securi ty—
Except'i on? Secu r'i tyException and its subclasses are runtime exceptions that
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are thrown only to signify that a security check has failed, for example when
someone attempts to illegally access a protected file. Such runtime exceptions are
not declared or checked and will cause the execution of a program to stop unless
application developers write code to explicitly catch them.

However, other error conditions, such as syntax errors, are related to the secu-

rity mechanisms but do not correspond to failed security checks. In these cases,
throwing a Secu r‘i tyExcepti on is inappropriate. Instead, a Gene ra'l Secu r'i ty—
Exception should be thrown. For example, passing in an invalid Po'l icy object is
security related but nonvital, and the exception here should probably not be a
security violation and should be caught and dealt with by a developer.

General SecurityException is a subclass of java.lang.Except1‘on and
must be declared or caught. This exception should be thrown in all cases from

within the security packages, except when some sort of security violation is
detected, in which case a Securi tyExcepti on should be thrown.2

3.4 Security Policy

The security behavior of a Java runtime system is specified by its security policy.
In abstract terms, the security policy is a typical access—control matrix that says
what system resources can be accessed, in what fashion, and under what circum—

stances. For example, one entry in the matrix shown in Figure 3.1 says something

Permissionss. 2 w t . WWW

 
Figure 3.1 Policy matrix.

 

2 The java. security package contains two places in which exceptions thrown are
subclassed directly from java. lang. Runti meExcepti o'n. These were introduced in JDK

1.1 and, to maintain backward compatibility, we do not change them to subclass from
GeneralSecuri tyException.
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like “when running an applet downloaded from http : //j ava. sun . com, allow it

to read the following file x.” More specifically, a security policy is a mapping
from a set of properties that characterizes running code to a set of access permis-
sions granted to the code.

When JDK 1.2 is run, a system security policy is in place that is really com—
posed of aset of policies that can be configured by the user or by a system admin-
istrator. There can be multiple forms of representation of such a policy outside of
the Java runtime environment. For example, the default implementation of
JDK 1.2 uses an ASCII format and the policy is stored in an ASCII file. The pol—
icy file can then be retrieved via HTTP or other protocols. The specification of the
format of the policy file is in Chapter 4.

So that the security mechanism inside the Java runtime environment can con-

sult the policy, the policy contents are necessarily represented internally in the
form of a Pol icy object, which is instantiated from a subclass of the class

java. security. Pol icy. Because there is no limitation on who can instantiate

such an object, multiple instances of the Pol icy object could exist at the same
time. Nevertheless, only one Policy object is in effect at any time, in the sense
that it is the one of which the security mechanism asks questions.

The Pol icy class is an abstract class, so a Pol icy object is instantiated not
from Policy but from one of its subclasses. The security policy is represented by
a Policy subclass that provides an implementation of the abstract methods in this

Pol i cy class. Following are Pol i cy’s four most important methods:

public static Policy getPolicy();

public static void setPolicy(Policy policy):

public abstract Permissions getPermissions(CodeSource

codesource);

public abstract void refresh();

The currently installed Pol icy object can be obtained by calling the get Pol —
icy method. This object maintains a runtime representation of the policy and is
typically instantiated either at the JVM start-up time or when the security policy is
used for the first time. It may be changed later via a secure mechanism, such as by
calling the setPol i cy method.

The source location for the policy information utilized by the Pol i cy object is
up to Pol i cy’s implementation. It may be stored, for example, as a flat ASCII file,
as a serialized binary file of Pol icy, or as a database.

The refresh method causes the Policy object to refresh or reload its current

configuration. How this is done is implementation—dependent, For example, if the
Pol icy object stores its policy content in configuration files, a call to refresh

will typically cause it to reread the configuration policy files. However, the default
implementation in JDK 1.2 does not affect classes that have already been loaded
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in the sense that they retain the permissions they have already been granted, even
if these permissions may conflict with the new security policy. Also, new classes
that are loaded after the policy update may not be granted permissions under the
new policy, depending how the class loaders are implemented. For example, if
they cache the old policy content, then this content and not the new policy content
gets used. Section 3.6 further elaborates policy update issues.

The default Pol icy implementation can be changed by setting the value of the
pol i cy. provider security property (in the Java security properties file) to the
fully qualified name of the desired Pol icy implementation class. The Java secu-
rity properties file is located in the file named

JAVA—HOME/lib/security/java.security

where JAVA—HOME refers to the directory in which the JRE (Java Runtime Envi-

ronment) is installed. For example, if you have JDK 1.2 installed on Solaris, the
security properties file is located in the file named

jdkl. Z/j re/lib/security/java.security

If instead you installed JRE 1.2 on Solaris, the file is named

jre1.2/lib/secur'ity/java. security

We designed the policy component as a provider structure because we wanted

to instill enough flexibility so that the policy content can be obtained in arbitrary
ways. It would have been impossible to anticipate the various possible ways for
doing this and then design sufficient APIs for them.

Policy content can be sensitive, and the method get Pol i cy() is public static
so that anyone can call it. Thus a suitable security check is installed so that only
code that has the permission to obtain the policy can successfully call the method.

Similarly, a security check is invoked when the set Pol i cy() method is
called. If the calling code does not have the required permission, a Security—
Exception is thrown, thereby indicating that a security-sensitive operation was
attempted and then denied due to insufficient access permission.

The security checks are based on the new security architecture introduced in
JDK 1.2 (so we practice what we preach) and are illustrated in the following code
segments. These code segments use the new permission model, details of which
are explained later in Sections 3.5, 3.7, 3.8, and 3.9.

public static Policy getPolicyC) {

SecurityManager' sm = System.getSecur'ityManagerO;
if (sm != null) sm.checkPermission(new

SecurityPer'mission ("getPolicy"));
return policy;
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public static void setPolicy(Policy policy) {

SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(new

SecurityPermission("setPolicy"));

Policy.policy = policy;
}

Note that because the getPe mi 551' ons and refresh methods are abstract, they
must be implemented by a subclass of the Po'l 1' cy class and in which the appropri-
ate security checks should be done to protect the contents of the Policy object. .

An example of how Policy is used is the following code fragment of
java. 'I ang . C'l assLoader, whose defi neCl ass method indirectly executes as
follows when defining a class that is granted with the default permissions.

Class c = defineClassQ(name, b, off, len);

c.5etProtectionDomain0(getDeFaultDomain());

where getDefaul tDomai n () is implemented as follows.

CodeSource cs = new CodeSource(nu11, null);

PermissionCollection p = Policy.getPolicy().getPermissions(cs);
return new ProtectionDomain(cs, p);

3.5 CodeSour-ce

Recall that the security policy is essentially an access control matrix that describes
code according to its characteristics and the permissions it is granted. This section
examines how to describe code.

Currently, a piece of code is fully characterized by two things. One is its ori—
gin (its location as specified by a URL). The second is the set of digital certificates
containing the public keys that correspond to the set of private keys that have been
used to sign the code using one or more digital signature algorithms. Such charac—
teristics are captured in the class java. secu ri ty . CodeSou rce, which can be
Viewed as a natural extension of the concept of a codebase within HTML. It is
important not to confuse the CodeSou rce class with the CodeBase tag in HTML.

For example, the CodeSou rce of an applet packaged in a JAR file called
foo . jar that resides at the Web address http : //java. sun . com/cl asses/ con-
tains the URL

http://java.sun.com/classes/foo.jar
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If the JAR file is signed, it will contain digital signatures for individual entries in

the JAR file or for the entire JAR file itself. In this case, the corresponding Code—
Source will also contain the certificates that correspond to the signature keys.
Note that if signatures cannot be verified, the JAR file will be viewed as unsigned
and the certificates will effectively be null. Verification could fail either because

the content of the JAR file was modified so that an entry no longer matches its sig—
nature or because the signature keys are unrecognizable.

Following are the most important method calls for the CodeSou rce class:

CodeSource(URL url, java.secur'ity.cert.CertiFicate certs[]);
public boolean equals(0bject obj);

public boolean implies(CodeSource codesour‘ce);

We intentionally made CodeSource immutable by including both the URL
and the certificates in the constructor and by making copies of the certificates
(instead of merely keeping references to those certificate objects). Note that the

URL itself is already immutable, so there is no need to make a clone of it. Making
a CodeSou rce object immutable ensures that it can be passed around without its
integrity being compromised. Its integrity is important because, as I discuss in
Section 3.6, access control decisions are made partly based on the CodeSou rce of
running code. For example, a code fragment from a designated Code Sou rce can

be allowed to write to the local file system, while code from other places is pro-
hibited local file system access. If a latter kind of CodeSource object can be
mutated, illegally, to become identical to the former CodeSource object, then
code from the latter would gain illegal access to the local file system, thereby
causing a security breach.

You might have noticed that because you need only private keys to create sig-
natures and only public keys to verify them, certificates are sometimes unneces-

sary. So why does the interface in CodeSou rce deal with only certificates and not
public keys? The answer is, for simplicity. In theory, both interfaces can exist,
where one interface deals with public keys and the other with certificates. But hav—

ing both is redundant and adds complexity to the underlying algorithm and code.
Until JDK 1.2 beta3, we decided to use public keys exclusively. From beta4
onward, we generalized to using certificates exclusively.

Using certificates exclusively should not cause any problem because given
any public and private key pair, you can easily produce a self-signed certificate
that encloses the public key. In fact, the tool used to generate keys in JDK 1.2,
called keytool, always generates a self—signed certificate when generating a key.
A self-signed certificate normally would not convey any significance to the key
enclosed inside, except to serve as a medium to transport the key.

Moreover, using certificates instead of public keys makes it easier to carry
around important information that might be contained insidea certificate but

 



Page 57 of 275

JDK 1.2 SECURITYARCHITECTURE

cannot be expressed by the public key itself. For example, because Code Sou rce
objects contain not only certificates but also their supporting certificate chains,
one can validate an entire certificate chain all the way up to the root CA. Such val-
idation information is valuable for auditing purposes.

3.5.1 Testing for Equality and Using Implication

Testing for equality between two CodeSou r‘ce objects is important because such a
comparison is central to security policy decision. Two CodeSource objects are
considered equal if their URL locations are identical and if the two sets of certifi-

cates contained in the two objects are identical. In other words, the two sets of cer-

tificates might not be stored in the same order (in the array), but the two sets must
be identical.

Sometimes, it is convenient to specify a first CodeSou r‘ce object that is more
general than a second CodeSou r'ce object so that any code coming from the sec—
ond can be considered also coming from the first. In this case, the first

CodeSource “implies” the second CodeSource. For example, CodeSou rce of
http : //java . sun . com/cl as ses/ is more general than a more specific
CodeSour‘ce of http://java. sun . com/cl asses/foo . jar.

With such a relationship based on “implication,” security policy can be sim-
plified by granting permissions to a general CodeSou rce object, which will
implicitly grant the same permissions to any more specific CodeSource object.
For example, you can give to http://java.sun . com/cl asses/ permission to
access the local file system, meaning that you give the same permission to all code
residing on that Web page.

Obviously, strict and precise rules must be followed in order to determine if

one CodeSource object implies another. When the this .implies(CodeSource

codesource) method is called, it returns true if “this” CodeSource object
implies the specified codesource passed in as the parameter. More specifically,
this method makes the following checks, in the following order. If any check fails,
it returns fal se. If they all succeed, it returns true.

1. codesou rce must not be null.

2. If this object’s certificates are not null, then all of them must be present in
codesource’s certificates.

3. If this object’s location (getLocati on()) is not null, then the following
checks are made against its location and codesour‘ce’s location.

a. codesou rce’s location must not be null.

b. If this object’s location equals codesource’s location, then immediately
return true. Otherwise, continue.
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c. This object’s protocol (getLocation() .getProtoco'l 0) must be equal
to codesource’s protocol. '

d. If this object’s host (getLocat'ionO .getHost()) is not null, then the

SocketPer'mi ssion constructed with this object’s host must imply the
SocketPe rmi ssion constructed with codesource’s host.

e. If this object’s port (getLocati on() .getPort( )) is not equal to —1 (that
is, if a port is specified), it must equal codesou r‘ce’s port.

f. If this object’s file (getLocation() .getFi 'I e( )) does not equal code—
sou rce’s file, then the following checks are made.

- If this object’s file ends with a “/”, then codesou rce’s file must contain

this object’s file as a prefix.

- If this object’s file ends with “/*”, then codesou rce’s file must reference

a class or JAR file in the directory pointed by this object’ s file without the
trailing “*”.

- If this object’s file ends with “/—”, then codesou rce’s file must reference

a class or JAR file in the directory pointed by this object’s file without the

trailing “*” or recursively any of its subdirectories.

- In all other cases, codesource’s file must, as a prefix, contain this
object’s file with a “l” appended.

g. If this object’s reference (getLocation( ) .getRef( )) is not null, it must
equal codesource’s reference.

For example, consider CodeSource objects with the following locations and
null certificates:

http:

http://*.sun.com/

http://java.sun.com/classes/

http://java.sun.com/classes/foo.jar

All of these imply the CodeSou rce object with the location http : //
java.sun . com/classes/foo.jar and null certificates. This is because http:,
http : //* . sun . com/, and http://j ava. sun . com/c'l asses/ all include

http : //java . sun . com/classes/Foo . jar as a special case.

Two different CodeSou rce objects refer to the same code source if they imply
each other.

Because CodeSou r'ce implements the interface java . io . Serial izab'l e, we
provided customized methods wri teObj ect( ) and readObj ect( ) for serialization.
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Following is a sample usage of the CodeSou rce class. When defining a class
that is loaded from either the local host or a. remote host, you need to calculate its
code source in order to consult the security policy to figure out the permissions to
grant to the code. Thus the method fi ndCl ass () in class java. net. URLClass—
Loade r executes the following code segment.

URLClassPath ucp = new URLClassPath(urls);

Resource res = ucp.getResource(path, false);

byte[] b = res.getBytes();

java.security.cert.Certificate[] certs = res.getCertificates();
CodeSource cs = new CodeSource(url, certs);

return defineClass(name, b, 0, b.length, cs);

3.6 Permission Hierarchy

The previous sections introduced the security policy, as well as the code source that
comprises half of the policy'content. The remaining part of the policy describes the
permissions granted to each different code source. This section covers first the

design of the Pe rmi ssion class hierarchy and then the various specific permission
classes.

The permission classes represent access to system resources. Currently, all
permission classes are positive in that they represent approvals, rather than deni—
als, of access. This design choice greatly simplifies the implementation and
improves efficiency. The root class of the Pe rmi ssi on class hierarchy,
java. security. Permission, is an abstract class and is subclassed, as appropri-
ate, to represent specific accesses. For example, the following Java code can be
used to produce a permission to read the file named abc in the /tmp directory:

perm = new java.io.FilePermission("/tmp/abc", "read");

New permissions are subclassed either from the Permission class or one of its
subclasses, such as java. secu ri ty . Basi cPermi 551' on (Figure 3.2). Subclassed
permissions (other than Basi cPe rm'i ssion) generally belong to their own pack—
ages. Thus Fi l ePe rmi 551' on, which describes access permission for the file sys—
tem, is found in the java.1'o package, which holds the APIs for file systemaccess.
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Figure 3.2 Permission subclasses.

3.6.1 java. security.Permission

Following are the constructor and the method calls of the Pe rmi ssi on class at the

root of the Pe rmi ss‘i on class hierarchy:

public Permission(String name);

public abstract boolean implies(Permission permission);

public abstract boolean equa'ls(0bject obj);

public String toString();

pub'lic PermissionCo'llection newPermissionCo'llection();

Each Permission instance is typically generated by passing one or more string
parameters to the constructor. In a common case with two parameters, the first
parameter is usually the name of the target (such as the name of a file for which

the permission is aimed) and the second parameter is the action (such as reading a
file). Generally, a set of actions can be specified as a comma—separated composite
string.

All permissions have a target name, whose interpretations depend on the sub-

class. It is conceivable that for certain types of permissions, the target name is of
no importance and is thus not interpreted. Permission objects are similar to
String objects in that they are immutable once they have been created. Sub—

classes should not provide methods that can change the state of a permission once
it has been created.
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Whether two Permission objects are considered equal is left entirely up to
each subclass of the Permission class. The same is true for those abstract meth-
ods for defining the semantics of the particular Permission subclass.

An important method that must be implemented by each subclass is the
implies method to compare permissions. Basically, “permission pl implies per-
mission p2” means that if you are granted permission p1, you are naturally
granted permission p2. Thus this is not really an equality test, but rather more of a
subset test.

It is important to remember that object equality differs from permission equiv—
alence. Object equality is useful, for example, when you store objects in hash
tables and later need to determine if an entry already exists. This can be done by
calling the equals method. Permission equivalence, on the other hand, means that
two objects semantically represent the same permission. To determine permission
equivalence, you must use the 1'mp'l 1'es method and check to see if one Pe rm'i ssi on
object implies another, and vice versa.

Most Permission objects also include a list that gives the actions that are per—
mitted on the permission target. For example, for a java. 1'0 . F1' 1 ePe mi 551' on

object, the permission name (and target) is the pathname of a file (or directory)
and the list of actions specifies which actions (such as read and write) are
granted for the specified file (or for files in the specified directory).

The actions list is optional for those Permission objects that do not need
such a list. One example is java. lang . Ru nt‘i me Pe rm'i ssion, where the named
permission (such as "ex1' tVM") is either granted or not. There is no further subdi-

vision of different actions. Admittedly, for these special. cases, quite often the
name embodies both the target of the permission (for example, VM is the target
from which to exit) and the action (exit). For simplicity, they are merged as one
string. The design of such permission classes typically subclasses from
java. secur'i ty.Bas-i cPermission.

Sometimes it is desirable to present a permission’s content in a human-

readable fashion. The toSt r'i ng () method returns a string describing the permis-
sion. The convention is to specify the class name, the permission name, and the
actions in the following format:

("Cl assName" "name" "act1'ons")

The Permission class implements two interfaces: Guard and

java. 1'0 . Serial 1'zabl e. For the latter, the intention is that Permission objects
may be transported to remote machines, such as via RMI, and thus a Serial 1'2-
ab'l e representation is useful. Guard, which is related to the class GuardedOb—

ject, is discussed in Chapter 6. Applications (and applets) are free to introduce

new categories of Permission classes beyond those that the system always sup-
ports. How to add such application-specific permissions is discussed in Chapter 5.
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The method newPe rmi ssi onCol l ecti on() returns an empty Permi ssion—

Collection object for a given Permission object, or null if a corresponding
Permi ssi onCol l ecti on() class is not defined. The next section deals with per—
mission sets.

3.6.2 Permission Sets

Often it is more convenient to deal with sets of permissions rather than one per-
mission at a time. The abstract class java. secu ri ty . Pe rmi ssi onCol l ecti on

represents a collection (that is, a set that allows duplicates) of Permission objects
for a single category (such as file permissions), for ease of grouping. Each Per—
mi ssi onCol l ection object holds a homogeneous collection of permissions. In

other words, each instance of the class holds only permissions of the same type.
Following are its more important method calls:

public abstract void add(Permission permission);

public abstract boolean implies(Permission permission);
public abstract Enumeration elements();

public void setReadOnly();

public boolean isReadOnly();

The add method adds a Permission object to the current collection of Per-

mission objects. How this is done is left to each subclass. For example, file per-
missions can be added to a Pe rmi ssi onCol l ecti on object in any order.

Similar to its purpose in the Permission class, the implies method here

checks whether the specified permission is implied by one or more of the permis—
sions in the current Pe rmi ssionCol l ecti on object. If so, we say that the permis-
sion is implied by the Pe rmi ssi onCol l ecti on object. Note that in this case, the

specified permission, say to read and write file x, might not be implied by any sin-
gle permission but rather by a collection of permissions in the Pe rmi ssi on—
Collection object, such as one permission to read file x and another to write file

x. Thus it is crucial that any concrete subclass of Pe rmi ssi onCol l ecti on

ensures that the correct semantics are followed when the implies method is
called.

The setReadOnly method marks this Permi ssionCol 'I ection object as
read—only. After this, no new Pe rmi ssi on objects may be added to it using
addPe rmi ssi on.

To group a number of Permission objects of the same type, you should first

call the newPermi ssi onCol l ecti on method on that particular type of
Permission object. The default behavior (from the Permission class) is simply
to return null. Sometimes, subclasses of Permission need to store their permis—
sions in a particular Permi ssionCol l ection object in order to provide the cor-



Page 63 of 275

JDK 1.2 SECURITYARCHITECTURE

rect semantics when the Permi .ssi onCo1 1 ecti on . imp1 i es method is called. In

this case, they override the method. If a non-null value is returned, that
Pe rm‘i ssi onCo1 1 ecti on must be used. If null is returned, then the caller of

newPermissionCo11ection is free to store permissions of the given type in any
Per‘mi ssi onCo1 1 ecti on it chooses (one that uses a Hashtab1 e, one that uses a
Vector, and so on).

The java. security. Permissions class represents a collection of collec-

tions of Permission objects, that is, a super collection of heterogeneous permis—
sions. A subclass of Pe rmi ssi onCo1 1 ecti on and final, it basically is a collection
of Permi ssi onCo1 1 ecti on objects. That is, it contains different types of
Permission objects organized into PermissionCo11ections. For example, any
java. io . Fi 1 ePe rmi ssi on objects added to an instance of this class are all
stored in a single Per‘mi ssionCo1 1 ecti on. This is the Permi ssi onCo1 1 ecti on
returned by a call to the newPe rmi ssi onCo1 1 ecti on method in the

Fi1 ePermi ssi on class. Similarly, any java . 1ang . Runti mePermi ssi on objects
are stored in the Pe r'mi ssi onCo1 1 ecti on returned by a call to‘ the
newPe rmi ssionCo1 1 ecti on method in the RuntimePe rmi ssi on class. Thus this
class represents a collection of Fe rmissionCo11ections.

Following are two of the methods worth examining:

pub1ic void add(Per‘mission permission);

pub1ic boo1ean imp1ies(Perm1'SS1'0n [JP—”“5510“;

When the add method is called to add a Permission, the Permission is stored in
the appropriate Permi ssi onCo1 1 ecti on. If no such collection yet exists, the
Permission object’s class is determined and the newPe rmi ssi onCo1 1 ecti on
method is called on that class to create the Pe rmi ssi onCo1 1 ecti on and add it to
the Permission object. If newPe r'mi ssionCo1 1 ecti on returns null, then a
default Pe rmi ssi onCo1 1 ecti on that uses a hash table will be created and used.

Each hash table entry has a Pe r'mi ssi on object’s name as the key and the
Permission object as the value.

Similar to its action with Pe r'mi ssi onCo1 1 ecti on, the imp1 i es method
checks to see if this object’s Permi ssi onCo1 1 ecti on for permissions of the spec-
ified permission’s type implies the permission expressed in the passed-in
Permission object. It returns true if the combination of permissions in the
appropriate Permi ssionCo11ect1'on (for example, a Fi1ePer‘missionCo11ection
for a Fi 1 ePe rmi ssi on) together imply the specified permission.

Note, neither of the two permission set classes is a subclass of
java. security. Permi ssion.
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3.6.3 java . security. Unreso'l vedPer'mi ssion

Recall that the policy for a Java runtime environment (specifying which permis—
sions are available for code from various code sources) is represented by a Policy
object..In particular, the internal state of a security policy is normally expressed by
the Permission objects that are associated with each code source CodeSource.

Thus, whenever a Policy object is initialized or refreshed, Permission objects
of appropriate classes may need to be created for all permissions allowed by the
policy.

Many Permission class types referenced by the policy configuration exist
locally (that is, those that can be found on CLASS PATH). Objects for such permis-
sions can be instantiated during Policy initialization. For example, it is always
possible to instantiate a java. 1'o . Fi 'I ePe rmi ssion, since the F1' '| ePermi 551' on
class is found on CLASSPATH.

However, the dynamic nature of Java technology makes it possible that when
the Policy object is constructed, the actual code that implements a particular
Permission class has not yet been loaded (or is not even available for loading).
For example, a referenced Pe mi 551' on class might be in a JAR file that will later
be loaded. In this case, the Pe rm-i ss-i on class cannot be defined in the Java runt—
ime environment at this point. For each such class, an UnresolvedPerm'i ssion
object is instantiated instead, as a placeholder that contains information about the
permission. Thus the Un resolved Pe rm'i ssion class is used to hold such “unre-

solved” permissions. Similarly, the class Un reso'l vedPe mi 551' onCo'l 'I ect‘i on

stores a collection of Unresol vedPe mi 551' on permissions.
Unresolved permissions of a particular type are resolved When access control

decisions are made regarding a permission of the same type that was previously
unresolved, but whose class has since become available (it either is already loaded
or is now loadable). That is, for each such Unresol ved Permi 551' on, a new object
of the appropriate class type is instantiated, based on the information in the

Unreso‘l vedPe rmi ssi on. This new object then replaces the stored Un reso'l ved-
Permission. If the permission is still unresolvable at this time, it is considered

invalid in the sense that the permission is not granted and the request to access is
denied. Of course, an Un reso'l vedPe rmi ss‘ion may get resolved eventually (after
a few tries) when the relevant permission class finally becomes available.

Note that it is not necessary to instantiate all loadable permission classes at
Policy initiation. This is because typically only a small portion of the P01 i cy’s
contents is needed to run the Virtual machine. Thus it is quite legitimate, and even
sometimes desirable for performance and efficiency, to make extensive use of
Un resol vedPe mi 551' on even when the Pe mi 551' on class is loadable, thus

delaying the actual instantiation of the Pe mi 551' on objects until right before they
are used. Nevertheless, you must pay close attention to the complexity that Unre—

 



Page 65 of 275

JDK 1.2 SECURITY ARCHITECTURE

sol vedPe rmi ssi on adds, especially when an Un resol vedPe r‘mi ssi on can be
resolved into different implementations at different times.

A few methods in the Un resolved Pe rmi ssi on class need explaining:

public UnresolvedPermission(String type,
String name, String actions,

java.security.cert.Certificate certs[]);
public boolean implies(Permission p);

public boolean equals(0bject obj);

Note that the constructor takes an array of certificates, which can be used to
verify the signatures on the Permission class binary files. This feature does not
exist for other Permission classes. This is because for permissions that are not
resident on CLASSPATH or other system paths, the permissions are more than likely
defined by a third party and are delivered as part of an extension or application. In
this case, the authenticity of the Pe r‘mi ssi on classes, such as whether they respect
the intentions of the root class java. security. Permission and whether their
implementation is not malicious, can be questionable and are difficult to verify
from within an application. The certificates, if present, can provide additional
assurance. This assurance depends on the trust conveyed by the signature keys that
signed the Pe rmi ssi on classes and on how an application chooses to interpret the
certificates.

The certificates also are useful when a Pe rmi ssi on class does not reside
locally and is downloaded each time it is used. On the one hand, ensuring that the
same class file is downloaded each time is often desirable. However, this could be
difficult to verify unless local storage is used to keep a copy or at least a finger-
print (a hash value) of a prior class file. On the other hand, software tends to get
upgraded often, so it is not uncommon to expect the same named Permission
class file to change over time, albeit in a consistent way. But again this consis—
tency is difficult to check by examining the class files. The certificates, which can
be used to verify a class file’s digital signature, normally change less often and can
be managed more efficiently than the actual class files.

The by now familiar impl 1' es() method always returns false for unresolved
permissions. This is because an Unresol vedPe mission is never considered to
imply another permission.

Finally, when comparing two Unresol vedPermi ssi on objects for equality,
you need to check that the second Permission object is also an Unresolved—
Permission and has the same type (class) name, permission name, actions, and
certificates as the first object, the one doing the comparison.
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3.6.4 java. 'io. F-i'lePer'm'ission

The java. io.Fi'lePerm1'ssion class represents access to a file or directory. A
Fil ePerm'i 551' on consists of a path name and a set of actions valid for that path
name. The path name is that of the file or directory on which the specified actions
are granted. It can be specified in the following ways, where directory names and
file names are strings that cannot contain whitespaces.

fi 1 e The named file

directory Same as directory /
d1' rectory/H l e The named file

d1' rectory/a All files in this directory

at All files in the current directory

di rectory/— All files in the file system under this directory
— All files in the file system under the current directory

"<<ALL FILES>> " All files in the file system

In other words, a pathname that ends in “A” indicates a directory and all of the
files contained in that directory. Here, “/” is the file separator character, imple-
mented as F‘ile.separato rChar. A pathname that ends with “/—” indicates a

directory and (recursively) all files and subdirectories contained in that directory.
A pathname consisting of the special token "<<ALL' FILES>>” matches any file.
Note that a pathname consisting of a single “at” indicates all of the files in the cur—

rent directory. A pathname consisting of a single “—” indicates all of the files in

the current directory and (recursively) all files and subdirectories contained in the
current directory.

The actions to be granted are passed to the constructor in a string containing a
list of zero or more comma-separated keywords. Following are the possible key-
words. The actions string is converted to lowercase before processing.

0 read refers to read permission.

0 write refers to write permission.

9 execute refers to execute permission, which allows Runtime.exec to be

called. It corresponds to the security check done within the Secu ri ty—
Manag‘er . checkExecC) method.

0 delete refers to delete permission, which allows F1" '| e . delete to be called. It

corresponds to the security check done within the Secu ri tyManager . check—
Delete method.
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Here are the important method calls in the java . i o . Fi l ePe rmi ssi on class:

public FilePermission(String path, String actions);

public boolean implies(Permission p)

public boolean equals(0bject obj)

public Permi ssionCol l ection newPermi ssi onCol l ecti on()

The impl ies () method checks to see if this Fi l ePermi ssion object implies
the specified permission. More specifically, this method returns true if p is an
instance of FilePermission, p’s actions are a proper subset of this object’s
actions, and p’s pathname is implied by this object’s pathname. For example,
/tmp/* implies /tmp/foo, since/tmp/ encompasses the /tmp directory and all
files in that directory, including the one named foo.

When checking two Fil ePermi ssion objects for equality using the equals
method, you must check that obj is a FilePe rmi ssion and has the same path-
name and actions as the object on which equals is invoked. Slightly more com—
plicated is the method that returns a new PermissionCollection object for
storing FilePermission objects. FilePe rmi ssion objects must be stored in a
manner that allows them to be inserted into the collection in any order and that
also enables the PermissionCollection’s implies() method to be imple—
mented in an efficient (and consistent) manner.

For example, suppose that you have two F i l ePe rmi ssi ons:

Il/tmp/_Il ’ ”Ireadu
”/tmp/scratch/foo", "write"

and you are calling the impl i es () method with this F1" '| ePe rmi ssi on:

"/tmp/scratch/foo", "read,write"

In this case, the implies method must take into account both the /tmp/-, read
and the /tmp/sc ratch/foo, wri te permissions, so the effective permission
includes /tmp/scratch/'Foo, read ,wri te, and implies returns true. The

semantics of the implies method for Fi 'I ePermi ssi ons are handled properly by
the Fermi ssi onCol l ecti on object returned by this newPe rmi ssi on—
Col 1 ecti on method.

Note that "<<ALL FILES>>" is a special string denoting all files in the sys-
tem. On a UNIX system, this includes all files under the root directory. On an MS-
DOS system, this includes all files on all drives.

Thus the following are valid code samples for creating file permissions.

import java.io.FilePermission;

FilePermission p = new FilePermission("myfile", "read,write");
FilePermission p = new FilePermission("/home/gong/", "read");
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FilePermission p new Fi1ePermission("/th/mytmp"-
"read,de1ete");

FilePermission p = new FilePermission("bin/*", "execute");

FilePermission p = new FilePermission("*”, "read");

FilePermission p = new FilePermission("/-", "read,execute"");

FilePermission p = new FilePermission("-", "read,execute");

FilePermission p = new FilePermission("<<ALL FILES>>", "read");

The implies method in this class correctly interprets the file system. For example,
Fi'lePermi ssi on("/—", "read , execute") implies F‘i 'l ePe rmi ssion("/home/
gong/pub'l 1' c—html /1' ndex. htm'l " , " read"), while F1' 1 ePerm'i ssion( "bi n/v'r",
"execute") implies F1 1 ePe mi 551' on("bi n/emac519 . 31" , "execute" ).

Note that most of these strings are given in a platform-dependent format. This,
unfortunately, will be necessary until a universal file description language is in
common use. For example, to represent read access to the file named ‘Foo in the

temp directory on the C drive of an MS-Windows system, you would use

FilePermission p = new FilePermission("c:\\temp\\Foo", "read");

The double backslashes, “\\”, are necessary to represent a single backslash
because the strings are processed by a tokenizer (j ava.1' o . St r'eamTokeni ze r).
The tokenizer allows “"” to be used as an escape string (for example, “"n” to indi-
cate a new line) and thus requires two backslashes to indicate a single backslash.

After the tokenizer has processed the F1' '| ePermi 551' on target string, converting
double backslashes to single backslashes, the end result is the actual path
"c : "temp" foo".

Note also that the use of meta symbols such as “*” an “—” precludes the use
of some specific file names with those symbols. We consider this a small limita-
tion that can be tolerated for the moment.

Also note that “/—” and "<<ALL FILES>>" are the same target on UNIX sys-
tems in that they both refer to the entire file system. They can refer to multiple
physical file systems that are organized as one virtual file system. Conversely, on a
Unix system that divides the file system into volumes or slices, “/—” may refer to
only the current slice while "<<ALL FILES>>" refers to all slices. The two targets
are potentially different on other operating systems, such as MS-Windows and
MacOS.

Finally, note that a target name that specifies just a directory with a read
action, as in

FilePermission p = new FilePermission("/home/gong/", "read");
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means that you are giving permission only to list the files in that directory, not to
read any of them. To allow read access to the files, you must specify either an
explicit filename or an “a” or “—”, as in

FilePermission p = new FilePermission("/home/gong/myfile",
”read");

FilePermission p = new FilePermission("/home/gong/*",
"read");

FilePermission p = new FilePermission("/home/gong/—",
"read");

To illustrate how file permissions are used in the real world, here is a code
segment from the constructor of the class java. io . Fi l eInputSt ream.

public FileInputStream(String name)

throws FileNotFoundException {

SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkRead(name);
}

(now open the File)
}

The corresponding checkRead() method in class SecurityManager does the
following.

public void checkRead(String file) {

checkPermission(new FilePermission(file, "read"));
}

This example shows how to create a corresponding file permission and use it
to invoke the security check. You could obtain the same result by bypassing
checkRead() and having the Fi l eInputStream constructor call checkPe rmi s—

sion( ) directly. We chose to keep checkRead( ) in order to provide backward
compatibility. More is said on compatibility issues where the Securi tyManage r
class is discussed in Section 3.10.

3.6.5 java . net . SocketPer'mi ssi on

The java. net . SocketPermi ssi on class represents access to a network via
sockets. A Socket Pe rmi ssi on consists of a host specification and a set of actions
specifying ways to connect to that host.

Informally, the host can be given as hostname : port—range, where host—
name can be given in the following ways:
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hostname A single host

IP address A single host
local host The local machine

" " Equivalent to local host

hostname . doma'i n A single host within the domain

hostname . subdomai n . domain A single host within the domain
s: . domain All hosts in the domain

4.: . subdomai n . domain All hosts in the domain
7': A11 hosts

More precisely, the host is specified in BNF format as

host = (hostname I IPaddress)[:por‘trange]

portrange portnumber I—portnumber | portnumber—[portnumber]
ll

The host is expressed as a DNS name, as a numerical IP address, or as local —

host (for the local machine). The wildcard “st” may be included once in a DNS

host specification. If it is included, it must be in the leftmost position, as in,2 . sun . com.

p0 rt range is optional and can be given as follows:

N A single port

N— All ports numbered N and above

—N All ports numbered N and below

Nl—N2 All ports between N1 and N2, inclusive

Here N, N1, and N2 are non-negative integers ranging from 0 to 65535.
The possible action by which to connect with a host are

0 accept

9 connect

9 listen

0 resolve

listen actions are meaningful only when used with local host. Note that

implicitly, the action resolve is implied by accept, connect, and listen when

any of the ether actions are present. In other words, anyone that can listen or

accept incoming connections from or initiate outgoing connections to a host
should be able to look up the name of the remote host.

You might question why there is both a listen action and an accept action.

Why not have just accept, which would imply l i sten? Both actions are necessary
because listen is an action that applies only to ports on the local host, whereas
accept is an action that applies to ports on both the local and remote hosts.
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Following are the more interesting methods for the j ava.net.Socket—
Permission class:

public SocketPermission(String host, String action);
public boolean equalsCObject obj);

public boolean implies(Permission p);

Here are the various ways to construct socket permissions.

import java.net.SocketPermission;
SocketPermission p =

new SocketPermision("java.sun.com","accept");

p = new SocketPermission("204.160.241.99","accept”);
p = new SocketPermission("*.com”,"connect");

p = new SocketPermission("*.sun.com:80","accept");

p = new SocketPermission("*.sun.com:—1023”,"accept");

p = new SocketPermission("*.sun.com:l@24","connect");

p = new SocketPermission("java.sun.com:8000—9000",
"connect,accept");

p = new SocketPermission("loca1host:1024—”,
"accept,connect,1isten");

Suppose you try the following:

SocketPermission("java.sun.com:80,8080","accept");n "-

SocketPermission("java.sun.com,javasun.sun.com , accept");

You will encounter a runtime exception, I'IlegalArgumentException. This is
because comma-separated lists are not accepted in hostnames or port ranges.

Checking two Socket Pe rmission objects for equality is easy. You simply
check to see if both are of the type SocketPer'mi ss-i on and have the same host—

name and actions. Checking if this SocketPe rmi ssion object implies another
specified permission is more complicated.

First, the imp'l i es method ensures that both of the following are true (and
returns fal se if one is not).

1. p is an instance of SocketPe rmi ssion.

2. p’s actions are a proper subset of this object’s actions, and its port range is in—
cluded in this p0 rt range.

Then it checks the following, in order. When a stated condition is true, it skips
the remaining checks and returns t rue. If none are tr'u e, it returns fal se.
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1. If this object Was initialized with a numeric IP address and one of p’s 1P ad-

dresses is equal to this object’s IP address

2. If this object is a Wildcard domain (such as e.— . sun.com) and p’s canonical

name (the name without any preceding a) ends with this object’s canonical

hostname; for example, 3-: . sun . com implies *.eng . sun. com

3. If this object was initialized with a host name (instead of a numeric address),

and one of the IP addresses corresponding to the host name equals one of p’s
IP addresses

4. If this canonical name equals p’s canonical name

Here it becomes clear that the meaning of having the same host name can be

subtle. When comparing host names, you sometimes must compare the corre-

sponding IP addresses instead. However, when initializing a Socket Pe rmi ssi on

object, there is no need to do a DNS lookup right then. It is sufficient if you delay
the lookup until the implies method is called, since that is when the authenticity
of the hostname and other information matters. Of course, if DNS records change
during the delay, the delayed check might yield unexpected results. If you choose

to use your own mechanism to compare two SocketPe rmi ssion objects, you
should be wary of taking the host names at their face value.

To illustrate how socket permissions are used in the real world, here is a code

segment from a constructor of the class java. io. Socket.

SecurityManager‘ security = System.getSecurityManager‘O;
if (security != null) {

security.checkConnect(address, port);
}

The corresponding checkConnect() method in the Securi tyManager class
does the following.

public void checkConnect(String host, int port) {
if (port == —1) {

checkPer'missi on(new SocketPermission(host,"reso'lve"));
} else {

checkPer‘mission(new SocketPermi ssion(host+":"+port,
"connect"));

}
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3.6.6 java. security. Basi cPer'mi ssion

The java. secu ri ty . Basi cPermi ssi on class extends the Permission class and

offers a very simple naming convention that is often encountered when creating
permission classes. It can be used as the base class for other permission classes
that want to follow the same naming convention.

The name of a Basi cPe mission is the name of the given permission (for

example, exi tVM, setFactory, and queueP r‘i ntJ ob). The naming convention

follows the hierarchical property naming convention. An asterisk may appear at
the end of the name, following a “ . ” or by itself, to signify a wildcard match. For
example, java. * and :1- are valid but z": j ava and askb are invalid.

Thus Basi cPe rmi ssi on is commonly used as the base class for named per—
missions. A named permission is a permission that contains a name but no actions

list; you either have the named permission or you do not. Basi cPe rmi ssi on is an

abstract class, so you cannot really construct it and must construct one of its sub-

classes instead. Subclasses may implement actions on top of Basi cPe rmi ssi on,
if desired. Following are the subclasses of Basi cPe rm1 ssi on:

java.uti1.PropertyPermission

java.lang.RuntimePermission

java.awt.AWTPermission

java.net.NetPermission

java.lang.reflect.ReflectPermission

java.io.SerializablePermission

java.security.SecurityPermission.

Note that even though the action string (inherited from Permission) is
unused, you must provide a constructor for Basi cPermi ssi on. Thus the follow-

ing two constructors are equivalent:

public BasicPermission(String name);

public BasicPermission(String name, String actions);

The imp'l i es () method checks to see if the specified permission to be com-
pared with is an instance of BasicPermission, and if so, whether its name is

implied by the name of the comparing permission. Here, name string comparison
takes into account of wildcards, so that, for example, "a. b. it" implies "a. b. c".

When checking two Basi cPermi ssi on objects for equality, you check to see
if their name strings are equal.

3.6.7 java. util . PropertyPermi ssion

The java. uti'l .PropertyPe rmi ssi on class represents the permission to access

Java properties set in various property files. For example, the property called
use r . home is typically set to be the home directory of a user.

A subclass of Basi cPermi ssion, PropertyPe rmi ssi on, similar to a

FilePermi ssion, contains a target and an action. The targets for this class are
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basically the names of Java properties, such as java.home and os.name. The

naming convention follows the hierarchical property naming convention. Also, an

asterisk may appear at the end of the name, following a “.” or by itself, to signify a
Wildcard match. For example, java . at and 7e are valid, while *java and ab are

invalid. Thus targets can be specified as 7': (any property), "a. a" (any property
whose name has a prefix “a.”), "a . b. a", and so on.

This class is one of the Basi cPermi ssi on subclasses that implements actions
on top of BasicPe rmission. The actions are read and write. Their meanings
are defined as follows.

9 Read permission allows the getProperty() method in java. 1 ang . System

to be called to get the property value.

9 Write permission allows the setP rope rty() method to be called to set the

property value.

There is nothing surprising about the methods in this class, listed as follows:

public PropertyPermissioMStrln9 name, String actions)

public boolean implies(Permission p)

public boolean equals(0bject obj)

The actions to be granted are passed to the constructor in a string containing a
list of zero or more comma—separated keywords. The actions string is converted to
lowercase before processing.

The following code segment shows how this permission is used. The
java. System class implements two static methods, getProperti es () and set—
Properti es(), as follows.

public static String getProperty(String key) {
if (security != null) {

security.checkPermission(new

PropertyPermission(key, ”read”));
}

retu rn props . getProperty ( key);
}

public static String setProperty(String key, String value) {
if (security != null)

security.checkPermission(new

PropertyPermission(key, "write"));

return (String) props.put(key, value);
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3.6.8 java. ‘lang. Runt‘imePerm-ission

The java . 'I ang . RuntimePe mi 551' on Class is a straightforward subclass of
Basi cPermi ssion. The target for a Runti mePe mi 551' on can be represented by
any string, and there is no action associated with the targets. For example, Run—
timePer‘mi ssi on("eX'i tVM") denotes the permission to exit the JVM.

The naming convention follows the hierarchical property naming convention.
Also, an asterisk may appear at the end of the name, following a “.” or by itself, to
signify a wildcard match. For example, package. :2 and a are valid, while
-,-.- package and ab are invalid.

Currently, the following target names are used:

createClassLoader

getClassLoader
setContextClassLoader

createSecurityManager

setSecurityManager
exitVM

setFactory
setIO

modifyThread

modifyThreadGroup
getProtectionDomain

readFileDescriptor

writeFileDescriptor

loadLibrary.{1ibrary name}

accessClassInPackage.{package name}

defineClassInPackage.{package name}

accessDeclaredMembers.{class name}
queuePrintJob

stopThread

To see how this Permission class is used, consider the situation in which

some code tries to link in a native library. A native library is not under JVM’s
supervision, so once linked in, it can perform security sensitive tasks. Thus linking
a native library must be a controlled operation. In the java. lang . Runt'i me class
is the following code segment.

public void loadLibrary(String libname) {

SecurityManager security = System.getSecurityManager();

Page 75 of 275



Page 76 of 275

 

  
Page 76 of 275

62 PERMISSION HIERARCHY

if (security != null)

security.checkLink(libname);

}

The checkLi nk( ) method in Secu ri tyManage r class is implemented as follows.

public void checkLink(String lib) {

checkPermission(new RuntimePermission("loadLibrary."+lib));
}

3.6.9 java . awt . AWTPermi ssi on

The java. awt .AWTPe rmi ssi on class is very similar to Runti mePe rmi ssi on. An

AWTPe rmi ssion contains a name but no actions list. Following are some of the
targets for this class:

showWindowWithoutWarningBanner
accessClipboard
accessEventQueue

listenToAllAWTEvents

readDisplayPixels

The naming convention follows the hierarchical property naming convention.
Also, an asterisk may be used to represent all AWT permissions.

In the java. awt .Wi ndow class, creating a top—level window requires the fol-
lowing code segment to be exercised.

SecurityManager sm = System.getSecurityManager();
if (sm != null) {

if (!sm.checkTopLevelWindow(thi5)) {

V}

}

This check method translates into the following in the Secu ri tyManager class.

public boolean checkTopLeVelWlndOWCObjeCt‘Wlnd°W) {
try {

checkPermission(topLevelWindowPermission):
return true;  
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} catch (SecurityException se) {

// Fall through to return false.
}

return false;
}

Note that this check method returns a bool ean rather than either returning
silently or throwing a security exception, as other cheek methods do. For back-

ward compatibility reasons, we did not change this interface.

3.6.10 java . net . NetPerm'i ssion

The java. net.NetPermission class is yet another subclass of BasicPe mis-

sion that contains targets but no actions. The targets represent various network
permissions. The naming convention follows the hierarchical property naming
convention. Also, an asterisk may appear at the end of the name, following a “.” or
by itself, to signify a wildcard match. For example, foo. st and * are valid, While
#00 and ab are invalid. Following are some of its targets:

setDefaultAuthenticator

specifyStreamHandler
requestPasswordAuthentication

In the java.net.Authenti cator‘ class, the requestPasswordAuthenti—

cati on () method asks the authenticator that has been registered with the system
for a password. Obviously, passwords must be safely guarded. Thus the following
check is performed.

SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(new

NetPermission(“requestPasswordAuthentication");

3.6.11 java .1ang. reflect . Ref‘l ectPermi ss1'on

The java.lang. ref'l ect.ReflectPermission class is one more subclass of
Basi cPer‘m‘i 551' on and is used for reflective operations. A Ref'l ectPe mi 551' on

is a named permission (like RuntimePermi 551' on) and has no actions. The only
name currently defined is supp ressAcces sChecks, which allows you to suppress
the standard Java language access checks performed by reflected objects at their
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point of use. Normally, access checks are done when someone tries to access a

class’s public, default (package) access, protected, and private members.
In the java.lang. reflect.Accessibl eObject class is a convenience

method, setAccessibl e( ), that sets the accessible flag for an array of objects
with a single security check (for efficiency). This method implements the follow—
ing check.

SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(new

ReflectPermission(“suppressAccessChecks”));

3.6.12 java . 1'0. Serial izabl ePermi ssion

The java . io . Serial i zabl ePermi ssion class is very similar to Refl ectPe r-
mission and contains the following targets and no actions:

enableSubclassImplementation
enableSubstitution

For example, in the java.io.ObjectOutputStream class, the following
code segment checks to see if a subclass can completely reimplement
ObjectOutputStream.

SecurityManager sm = System.getSecurityManager();
' if (sm != null) sm.checkPermission(new

SerializablePermission(“enableSubclassImplementation“));
enableSubclassImplementation = true;

3.6.13 java . secur'i ty . SecurityPermi ssion

The Securi tyPermi ssi on class controls access to security-related objects, such
as Security, Policy, Provider, Signer, and Identity. It contains the follow-
ing targets and no actions:

getPolicy

setPolicy

getProperty.{key}
setProperty.{key}

insertProvider.{provider name}

removeProvider.{provider name}

setSystemScope

setIdentityPublicKey

setIdentityInfo
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addIdentityCertificate

removeIdentityCertificate

printIdentity

c1earProviderProperties.{provider name}

putProviderProperty.{provider name}

removeProviderProperty.{provider name}
getSignerPrivateKey

setSignerKeyPair

The java. secu ri ty . Po11' cy class contains a static method to set the default

system P01 icy object. Because the P01 icy object now defines what sort of secu-

rity is enforced, this object cannot be changed without the appropriate permission.

pub1ic static Po1icy setPo11'cy() {

SecurityManager sm = System.getSecurityManagerO;
f (5m != nu11)

sm.checkPermission(new SecurityPermi ssion("setPo1-icy"));

}

Note that the classes java. secu rity. Identity and java. secu—
ri ty . Identi tyScope have been deprecated in JDK 1.2 and should not be used.

3.6.14 java. secur-i ty.A11Per'm1'ssion

The new java . secu rity.A11Pe mi 551 on class represents all permissions. We
introduced it to simplify the work of system administrators who might need to
perform multiple tasks that require all (or numerous) permissions and it would be
inconvenient to require thesecurity policy to iterate through all permissions.

Since A11 Permission does not care about the actual targets and actions, its
constructors ignore all passed-in parameters. By definition, A1 1 Permission per-
mission implies all permissions. Moreover, two A11 Permission objects are
always considered equal. Thus the A11 Permission class implements the follow-
ing two methods specially.

pub1ic boo1ean imp1ies(Permission p) {
return true;

}

pub1ic boo1ean equa1s(0bject obj) {

return (obj instanceof A11Permission);
}

“a t.‘4“ 
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Note that All Permission also implies new permissions that are defined in
the future. Clearly, granting this permission must be done with caution.

3.6.15 Implications of Permission Implications

Recall that permissions are often compared with each other. To facilitate such

comparisons, each permission class must define an 1'mp'l1'es() method that

represents how the particular permission class relates to other permission
classes. For example, java. 1'0. F'ilePermission("/tmp/z':", "read") implies
java.1'o.F1'lePerm1'ss1'on("/tmp/a.txt", "read"), but it does not imply any
java. net.NetPe rm1'ss1'on. However, there is another deeper implication that
might not be immediately obvious to some readers.

Suppose that an applet is granted permission to write to the entire file system.
Presumably, this allows the applet to replace the system binary, including the JVM
runtime environment. This effectively means that the applet has been granted all
permissions. Or suppose an applet is granted runtime permission to create class
loaders, It effectively is granted many more permissions, since a class loader can
perform sensitive operations.

Other permissions that are potentially dangerous to give out include these:

9 Al 'I Perm-i 551' on (of course)

9 Those that allow the setting of system properties

0 Runtime permissions for defining packages and for loading native code librar-

ies (because the Java security architecture is not designed to and does not pre—
vent malicious behavior at the level of native code)

3.7 Assigning Permissions

Previous sections covered the basics of security policy, code source, and the

Permission class hierarchy. This section discusses how permissions are actually
granted to running code.

When loading a new class that originated from a particular CodeSou rce, the
security mechanism consults the Policy object to determine what permissions to
grant. It does this by calling the getPer'm1' ssions () ' method of the Po'l1'cy
object:

pub1ic abstract Permissions getPermissions(CodeSource
codesource);
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In other words, the permissions are generally granted before the class is defined in

the Java runtime. There are a couple of exceptions. First, it is perfectly legitimate
to delay the instantiation of the granted permission classes and objects until a
security check occurs. This optimization allows a Java program that does not call

for security checks to execute faster and with a smaller footprint. Even for a Java

program that does trigger a security check, this optimization allows it to start up
faster. Note that if the content of the policy is changed between the time the policy
class is instantiated and the time the first security check is invoked, the presence of
this optimization technique will result in a Policy object’s having more up—to—
date content.'Keeping the policy content up to date is of course a good thing. Sec—
tion 3.3 discusses policy update using the refresh method.

Second, it is possible that the permissions already granted to a class will be

changed or even withdrawn after the class is defined, such as during a revocation
procedure after a security incident. Although the JDK 1.2 default implementation
does not alter permissions once they are granted, such alterations are considered

legal, as long as they are also controlled with the appropriate permissions.
It is worth emphasizing that permissions are granted to classes, which are

static Java code, and not to objects, which are instances of classes. The primary
reasons for this are to reduce complexity and increase manageability. Objects are
runtime entities, so they do not exist in a static state. But the security policy must
exist in a static state and independent of any particular Java runtime environment,

so it cannot possibly refer to objects. Also, for the sort of security policies consid—
ered here, the same policy should be enforced no matter how objects are instanti—
ated. In addition, the number of different classes tends to be a lot smaller than the

number of different objects. Even if you want to support a security policy that is
dependent on the runtime environment, the right way is not to grant permissions to
objects but rather to perform security checks that take into account the actual runt—

ime environment.3 I return to this subject in Section 3.10.
Finally, recall that the security policy, in essence, can be represented with a

list of entries, each being of the form (codeSource, Permission), thereby indi-
cating that code from the named code source is given the named permission.
Clearly, for a given piece of code, its code source can match multiple entries in the

policy. In this case, the code is granted the union of all permissions granted in
each matched entry in the policy. In other words, permission assignment is addi-
tive. For example, if code signed with key A gets permission X and code signed by
key B gets permission Y, then code signed by both A and B gets permissions X
and Y. Similarly, if the URL http: //j ava. sun . com is given permission X and

 

3 The security policy can grant permissions to interfaces, too, but this is immaterial, as inter-
faces alone do not get instantiated into objects that cause security checks to occur.
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the URL http://j ava. sun . com/peopie is given permission Y, then an applet
from http://java.sun.com/peopl e/gong gets both X and Y (assuming that
the signers match).

For details of the matching algorithm, refer to the impl i es() method in the
CodeSou rce section (Section 3.5). Note that URL matching here is purely syntac-
tic and does not deal with proxies or redirects. For example, a policy can give an
entry that specifies a URL ftp://ftp.sun.com. Such an entry is useful only
when you can obtain Java code directly from FTP for execution. If the Web server
redirects this URL to a different one, this policy entry might have no effect. To
specify URLs for the local file system, you can use a file URL. For example, to
specify files in the /home/gong/temp directory on a Solaris system, you can use
fi 1 e :/home/gong/temp/¢.-. To specify files in the temp directory on the C drive
on an MS-Windows system, you can use file:/c:/temp/a:. One more note:
Code base URLs always use slashes (no backlashes), regardless of the platform to
which they apply. Of course, you can also use an absolute pathname such as
/home/gong/bin/MyWonderful Java.

3.7.1 Positive versus Negative Permissions

It is important to observe that the Permission class hierarchy currently denotes
positive permissions only. This means mat if a permission is present in the secu-
rity policy, the said permission is granted. The denial of a permission is implicitly
expressed by the absence of the said permission, rather than by the presence of a
“negative” permission. The lack of negative permissions today does not mean that
they cannot be introduced in the future.

However, restricting oneself to only positive permissions has significant bene—
fits for simplicity and good performance. This is because no conflict can exist
between two positive permissions in the sense that there is no danger that access
granted by one permission is denied by the other. Consequently, when you exam-
ine a security policy to decide what permissions to grant to some code, you do not
need to check for conflict. Section 3.10 discusses how to perform access control
checking and the need to examine if a set of permissions implies a particular per-
mission. Without negative permissions, you can determine that the set implies the
said permission as soon as you find one permission Within the set that implies the
said permission. These benefits to JDK implementation are also benefits to secu-
rity policy administration.

The lack of negative permissions, on the other hand, does not allow you to
specify a policy conveniently, such as “grant all file system access except for this
particular file.” However, this loss of convenience is not really a loss of function—
ality because a negative can be expressed by the complement of a positive. It
seems that with additional “syntactic sugar” in more powerful policy processing
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tools, one can preprocess a policy with negative permissions and translate the pol—
icy into one with only positive permissions. How thisissue plays out in practice
remains to be seen.

3.8 Protect i onDomai n

When implementing the permission assignment algorithm, you can follow the
straightforward approach of encapsulating all of the permissions granted to a
class, which are represented by various Permission objects, in a Permissions
object and then associating the permission set with the class via an interface in the

base class java. 1ang. C1 ass. However, linking a permission set with a class so

directly leads to a rigid API that cannot be easily extended. For example, suppose
that you want to perform access control checks based on not only permissions
granted to the class but also on the name of the principal (for example a user) run-
ning the code To do this, you would have to extend the C1 ass class with addi—

tional interfaces, thus cluttering the base class.

To facilitate extensibility, JDK 1. 2 allows permissions to be granted to protec—
tion domains; classes and objects belong to protection domains and indirectly
“inherit” the granted permissions. According to the classical definition of a pro-
tection domain [70], a domain is scoped by the set of objects that1s currently
directly accessible by a principal, where a principal1s an entity in the computer
system to which authorizations (and as a result, accountability) are granted. Thus
the Java sandbox in JDK 1.0 is, in a sense, a protection domain with a fixed
boundary. In JDK 1.2, each class belongs to one and only one domain. The Java
runtime maintains the mapping from code (classes and objects) to their protection
domains and then to their permissions. The mapping from a class to its domain is

set only once, before the class is usable, and cannot be changed during the lifetime
of the C1 ass object

The definition of the class java. secu r1 ty. Protect1onDoma1 n is fairly

simple, as follows. \
public ProtectionDoma'n(CodeSource codesource,

Permi ssionCo11ect1' permissions);

pub1ic boo1ean imp1ies(Ps\rmission permission);
The 1 mp1'1 es () method checks to see if the Protecti onDomai n implies the per-
missions expressed1n the Pe mi 551' on object.

The following code segment from java . 1 ang . C1 ass is one example of how
protection domains are used.
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public java.security.ProtectionDoma'in getProtectionDomainO {
Securi tyManager sm = System.getSecurityManager‘O;
if (sm .'= null){

getPDperm new RuntimePermi ssion("getProtecti onDomain");
sm. checkPermi ssi on(getPDperm);

}

return protectiondomai n;
}

. Note that because a Protecti onDomai n object may contain sensitive infor-
mation, access to it is security checked with a runtime permission.

A number of finer points are worth discussing. First, in JDKl.2 protection
domains are created on demand as new classes are loaded into the runtime. In the
JDK 1.2 default implementation, classes belonging to the same domain are loaded

by the same class loader. This implementation detail is natural but not necessary.
Classes belonging to the same domain are granted the same permissions, but the
reverse is obviously not true, since there may be classes that have the same per-
missions but that are from different code sources and thus belong to different
domains.

Second, out of the many protection domains created during the lifetime of the
Java runtime, one protection domain is special: the system domain. The system
domain is a domain consisting of all code that is considered part of the system
core (or kernel, in operating system terminology). For historical reasons, system
code is always loaded by a primordial class loader that is written entirely in C.
This has the effect that system classes appear to be loaded with a special null class
loader. JDK 1.2 largely maintains this backward compatibility. Details of class
loading are covered in Section 3.9. For the time being, you need remember only
that code in the system domain is automatically granted all permissions. It is
important that all protected external resources, such as the file system, the net-
working facility, and the screen and keyboard, are directly accessible only via sys-
tem code, which mediates access requests made by less trustworthy code. Note
that although system classes have a special null class loader (this is discussed in
Section 3.9), their protection domain is a non-null object that has been granted
All Permission.

Moreover, the indirection between a class and its permissions via a protection
domain has an interesting benefit for Java virtual machine vendors to perform
implementation optimizations. For example, recall that it is desirable in some
cases to change the permissions granted to some code during the lifetime of a Java
runtime. This can be achieved by changing the contents but not the reference of

the ProtectionDomain object that is associated with a class. By maintaining
stability in the reference of the Protecti onDomai n object, you can determine if
two classes belong to the same domain and then apply various optimization
techniques.  
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Finally, note that the protection domains also serve as a convenient point for
grouping and isolating units of protection within the Java runtime. For example,
different domains may be prevented from interacting with each other. This can be
done by using distinct class loaders to load classes belonging to different domains
in such a way that any permitted interaction must be either through system code or
explicitly allowed by the domains concerned. This is because in the JVM, a class
is distinguished by itself plus the C1 assLoader instance that loaded the class.

Thus a class loader defines a distinct name space. It can be used to isolate and pro-
tect code within one protection domain by refusing to load code from different
domains (and with different permissions).

This point brings up the issue of accessibility, that is, what is visible to an

object and what methods can an object invoke and on what other objects. In defin-
ing the new security architecture, we examined existing coding practices that uti-
lize accessibility features that makes one object Visible to another. We found that

accessibility needed to remain flexible, especially in server programs, without
regard to the particular security policy being enforced. So we decided to maintain

existing accessibility customs and rules, thus making accessibility orthogonal to
security. In other Words, it is up to the application programmer to decide if and
how objects and methods should be hidden from one another. In this sense, the
Java security mechanism is much more than a classical capability system.

Note that, technically, we could have enforced stricter isolation between

domains. However, this would have created a need for a new set of interfaces for

interdomain communication (similar to IPC, or interprocess communication).
Also, existing applications would have had to be rewritten to utilize the new inter-

faces. To enforce complete isolation, we might have had to redesign some shared
system classes and their static fields [33]. Thus the decision to leave accessibility
separate from security is the best available solution.

3.9 Securely Lowding Classes
Dynamic class loading is an important feature of the JVM because it provides the
Java platform with the ability to install software components at runtime [45]. This
feature has a number of unique characteristics. One is lazy loading, which means
that classes are loaded on emand and at the last moment possible. Another is
dynamic class loading, whi \ means that the type safety of the JVM is main-
tained by adding link—time checks, which are performed only once, while avoiding
additional runtime checks.

In addition, because class loaders are first-class objects, programmers can
define class loaders, for example, that specify the remote location from which cer-

tain classes are loaded. They also can assign appropriate security attributes to
class loaders.

71
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Finally, class loaders can be used to provide separate name spaces for various
software components. For example, a browser can load applets from different Web
pages by using separate class loaders, thus maintaining a degree of isolation
between those applet classes. In fact, those applets may contain classes of the
same name; they are treated as distinct types by the JVM.

Section 2.3 briefly touched on language type safety, which is enforced by a
variety of techniques, including bytecode verification, class loading, and runtime
checks. This section focuses on the algorithms and APIs for locating the class
files, determining the appropriate class loaders to use, and assigning suitable secu-
rity attributes to loaded classes.

3.9.1 Class Loader Hierarchy

When a class loader loads Java software components, the smallest component unit
is a class. A class is defined in a machine-independent, binary representation
called class file format. The representation of an individual class is called a class
file, even though it need not be stored in an actual file.

A class file may contain bytecode, as well as symbolic references to fields,
methods, and names of other classes. An example is a class C declared as follows:

class C {

void f() {

D d = new DO;

}

}

The class file representing C contains a symbolic reference to class D. Such sym-
bolic references are resolved at link time (of class C) to actual class types. To do
this, the JVM must load the class file of D and create the class type.

A class loader instance L that loads class C is called the class’s defining class
loader. The actual type of the class is fully qualified by both itself and its defining
class loader, <C, L>. In other words, tw0 types in the Java runtime are equal if
both the class types are equal and their defining class loaders are identical. Fur—

ther, multiple instances of class loader objects may exist in one JVM, so an impor-
tant question when loading a class is how to determine which class loader to use
as the defining loader.

As a further complication, JDK 1.2 introduces multiple class loader classes
that have distinct properties. Thus another important question to ask when loading
aclass is what type of class loader you should use. The next subsection introduces
the class loader hierarchy and explains the similarities and differences between
classes Within the hierarchy.  
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Comparisons among the Class Loader Hierarchy

Recall that each class is loaded by its defining a class loader. Because each class
loader is itself a class and must be loaded by another class loader, a chicken-and-
egg question arises, that is, from where does the first class loader come. The

answer is, a primordial class loader that bootstraps the class loading process. This
class loader is generally written in a native language, such as C, and does not man—

ifest itself within the Java context in that it is not directly visible or accessible
from within the Java language. This primordial class loader often loads classes

from the local file system in a platform-dependent manner.

Some classes, such as those defined in the java. :2- package, are essential for
the correct functioning of the JVM and Java runtime system, and are often
referred to as system classes. For historical reasons, all system classes have a
defining class loader that is a null object. This null class loader, sometimes called

the system class loader, is perhaps the only sign of the existence of a primordial
class loader. In fact, it is easier to simply View the null class loader as the primor-
dial class loader. Fairly late during JDK 1.2 development, there was a terminology
shift. All classes that reside on the CLASSPATH are now called system classes.
These classes are loaded by either the primordial (or null) class loader or a
non-null instance of a subclass of java. 1 ang .Cl assLoader. A new term, boot-

strap class loader, refers to the class loader that loads the classes necessary to
bootstrap the Java virtual machine. In the default implementation of JDK 1.2, the
bootstrap class loader is the primordial class loader.

With all classes in one Java runtime environment, a class loading tree can eas-
ily be formed to reflect the class loading relationship (Figure 3.3). Each class that
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Figure 3.3 Class loader tree.
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z is not a class loader is a leaf node. Each class’s parent node is its defining class ’
loader, with the null class loader being the root class. Such a structure is a tree .

because there cannot be cycles; that is, a class loader cannot load its own ancestor 1class loader.

Recall that class loaders are ordinary objects that can be defined in Java code.
The root of the class loader class hierarchy is an abstract class called
java. 1 ang .C'l ass Loade r, originally defined in JDK 1.0 and has since been

expanded (see Section 3.9.2). Class java. secu r'i ty. Secu reCl assLoade r,
introduced in JDK 1.2, is a subclass and a concrete implementation of this abstract
Cl assLoader class. The class java.net.URLCl assLoader, also introduced in

JDK 1.2, is a critical component of the extensions mechanism [1] and a subclass
of Secu reCl ass Loade r.

A utility program called appl etvi ewer that is built with the JDK uses a pri-
vate class, sun . appl et .Appl etClassLoader, to load applets. In JDK 1.0,
Appl etCl ass Loader is a subclass and concrete implementation of Cl assLoade r.

In JDK 1.2, it is a subclass of URLC'I assLoade r. Note that interposing new classes
between an existing class and its subclass is binary backward compatible [30].

When creating a custom class loader class, you can subclass from any of the
class loader classes mentioned in this section, depending on the particular needs
of the custom class loader (Figure 3.4). Note that because the Appl etC'I ass—

Loader class is a private class defined in the sun . a package, it is not supported
and is subject to change, so you should not subclass from it.

 

3.9.2 java . 'lang . C'l assLoader' and Delegation

To understand how the abstract class java.lang .Class Loader functions, you
need to understand a particular relationship existing among C'I as s Loade r objects:
delegation.

When one class loader is asked to load a class, it either loads the class itself or

asks another class loader to do so. In other words, the first class loader can dele—

gate to the second class loader. The delegation relationship is virtual in the sense
that it has nothing to do with which class loader loads which other class loader.

Instead, the delegation relationship is formed when C'l assLoade r objects are cre-
ated; it takes the form of a parent-child relationship. Nevertheless, the primordial
(or bootstrap) class loader is the delegation root ancestor of all class loaders.

The first group of Cl assLoade r' APIs concerns the constructors:

protected ClassLoader(ClassLoader parent)
protected ClassLoaderO    
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Figure 3.4 Subclassing Cl assLoader.

The first constructor creates a class loader, with a particular Class loader as the

delegation parent. The second constructor uses a default delegation parent.
Because class loaders can perform sensitive operations such as defining classes,
you should strictly control who may create class loaders by invoking a security
check in the \COnstructors, when a security manager is present. Because all class
loaders are subclasses of Cl assLoader and constructors in the subclasses always
call the supe r‘( method, security checks placed here are always invoked.

The default delegation parent is determined by the method call getSystem—
C'lassLoaderO which is typically the class loader used to start the application.
You can obtain the parent of a class loader using the method call get Parent ( ).

\

public stat‘i c\ C'l assLoader getSystemCl assLoaderO

public C'I assLo\a<\:ler' getParentO\

You also should tightly control who can successfully invoke these methods.
This is primarily because from within any object, you can call this.get—
Class . getC'l assLoader‘O to obtain its own defining class loader. With a refer-

ence to this class loader, you might attempt to “reach over” to its delegation
parents and then invoke methods on them. Uncontrolled reach-over is clearly
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undesirable. Thus if a security manager is present, the two methods will succeed

only if the caller’s class loader is the same as or is a delegation ancestor of the cur—

1 rent class loader, or if the caller has RuntimePe rmi ssion("getCl assLoader")

‘ permission. Otherwise, a security exception will be thrown. Note that allowing a
delegatiOn ancestor to have access is reasonable because a delegation child, upon
its creation, must designate its delegation parent. Obviously, one has to be very
careful about which parent to adopt.

For similar reasons, the same security check is placed in the method call
Cl ass . getCl assLoader() because you do not want anything with a reference to

a Cl ass object to reach over to its Cl assLoader object. This security check is
new to JDK 1.2.

The next group of methods deals with actual class loading:

public Class loadClass(String name)

protected synchronized Class loadClass(String name,
boolean resolve)

protected native final Class findLoadedClass(String name)

protected final Class findSystemClass(String name)

protected Class findClass(String name)

protected final void resolvéClassCClass c)

The first two methods take a class name as argument and return a Cl ass object
that is the runtirne representation of a class type. The default implementation will
search for classes in the following order (Figure 3.5). If at any step a class is
located, the methods return the class.

 
1. Call fi ndLoadedCl ass() to check if the class has already been loaded.

2. If the current class loader has a specified delegation parent, call the

loadCl ass() method of the parent to load the class. Otherwise, call the

findSystemCl ass( ) method to see whether the class can be found among
system classes.

3. Call the fi ndCl ass method to find the class.

Here, fi ndLoadedCl ass () looks into the class loader’s local cache (or its equiva-
lent) to see if a loaded class matches the target class. However, it is critical for

type safety that the same class is not loaded more than once by the same class
loader. If the class is not among those already loaded, the current class loader will

attempt to delegate the task to the parent class loader; this can occur recursively.
This ensures that the appropriate class loader is used. For example, when locating
a system class the delegation process continues until the system class loader is   
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primordial class loader

delegation ancestor

delegation parent

requesting class loader

Figure 3.5 Cl assLoader searching for classes.

reached. If the target class is indeed a system class f1” ndSystemCl ass() uses the
null system class loader to load the class.

The fi ndCl ass( ) method provides a way to customize the mechanism for

looking for classes, thus a custom class loader can override this method to specify
how a class should be looked up. For example, an applet class, loader can override
this method to go back to the applet host to try to locate the class file and load it
over the network.

If the class was found using the previous steps and the resolve flag is true,
the loadCl ass () method will then call the resolveCl ass () method on the
resulting Class object.

Yet another issue to be clarified concerning class loading is which class loader
do you start with when trying to load the Class, when given the name of any class?
Following are e rules implemented in JDK 1.2

9 When the first 6: of an application is being loaded, a new instance of the
URLCl assLoaderi used.

9 When the first class of an\applet is being loaded, a new instance of the Appl et—
C'I ass Loade r is used.

9 If the request to load a class is triggered by a reference to it from an existing
class, the class loader for the existing class is asked to load the class.
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The rules about the use of URLCl ass Loader and Appl etClassLoader

instances have exceptions and can vary depending on the particular system
environment. For example, a Web browser may choose to reuse an existing
Ap pl etCl assLoade r' to load applet classes from the same Web page.

The'next group of methods convert an array of bytes into an instance of class
Cl as s:

protected final Class defineClassCString name, byte[] b,

int off, int len, ProtectionDomain protectionDomain)

protected final Class defineClass(String name, byte[] b,
int off, int len)

protected final void setSigners(Class c, Object[] signers)

Recall from Section 3.8 that access control permissions are granted to protec—
tion domains and that each class belongs to one and only one protection domain.
The class loader, when defining a class, consults the security policy to obtain a
reference to the Protecti onDomai n object that the class belongs to and then calls

the defi neCl assC) method with the Protecti onDomai n object as a parameter.
Note that the second defi neCl ass () method does not explicitly mention a
ProtectionDomai n because this method existed before JDK 1.2. In this case, a

default P rotecti on Domai n is used. This domain typically contains the set of per- '
missions granted when a call to Policy.getPolicy( ).getPermissions() is
made with a CodeSource of (null, null).

The result of class definition is that a class is marked as belonging to a spe-
cific protection domain. You can later query a class on its protection domain by
calling the Cl ass . getProtecti onDomai n() method. Obviously, Protecti on—
Domain objects are sensitive, so you must be cautious regarding who can obtain
references to them. Thus, if a security manager is present the getProtection—
Domai n() method invokes a security check to ensure that the caller has the Runt—

imePermi ssi on("getProtecti onDomai n") permission. If it does not, a
security exception is thrown.

When a class file is correctly signed with one or more digital signatures, the

runtime class created from the class file is marked by its signers. This is done by
calling the method setSi gne rs( ). You can query a class for its signers by calling
the Cl ass . getSi gne rs () method. There is no security check placed in this
method because it is usually not a security risk to reveal who signed the class.

The rest of the methods in the Cl assLoader class are mostly related to find-
ing resources and packaging. They are given next but not explained further.

protected String fi ndLibrary(String libname)

public URL getResource(String name)

public final Enumeration getResources(String name)
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public Enumeration findResources(String name)
public URL findResource(String name)

public static URL getSystemResource(String name)

public static Enumeration getSystemResources(String name)

public InputStream getResourceAsStream(String name)
public static InputStream

getSystemResourceAsStream(String name)

protected Package definePackage(...)

protected Package getPackage(String name)

protected Package[] getPackages()

3.9.3 java. security . SecureC'l assLoader

The java . secu ri ty . Secu reCl ass Loader class extends Cl assLoade r with

additional support for defining classes with an associated code source. During
JDK 1.2 development, this class initially had a richer design with a comprehensive
set of method calls. Gradually, those functionalities have been moved either to the
base class Class Loade r or to the newly created class URLC‘I assLoade r. The class
currently has two interesting methods:

protected PermissionCollection getPermissions(CodeSource
codesource)

protected final Class defineClass(String name, byte[] b,

int off, int len, CodeSource cs)

The first method returns the permissions for the given CodeSource object. The
defaulfiim‘p'lementation of this method invokes the Po‘l i cy. getPe rmi ssi ons()
method to g\et he permissions granted by the policy to the specified codesource.
This method is 1 voked by the defi neCl ass method that takes a CodeSource

object as an argumétfihen it is constructing the Protecti onDomai n for the class
being defined. A class oader can override this method. For example, this method
in the AppletClassLoader automatically grants a permission that allows the
applet to connect back to the host from which the applet is downloaded, even
though the security policy does not specify this permission. The next section
describes how the URLCl ass Loade r customizes this method.

The second method defines a class from a particular code source. In some

sense, this method duplicates certain functionality of the defi neCl ass () method
in C1 assLoader that takes a ProtectionDomai n as an argument. However,
sometimes it is convenient not to have to worry about protection domains. For
example, the caller of this method might not be able to determine which protection
domain to use but might still want to define the class. In this case, codesou rce is
the only piece of information available about the origin of the class that can be
used to determine the permissions to be granted.
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3.9.4 java . net . URLCl ass Loader

The java. net . URLCl assLoader class extends SecureCl assLoader and is used

to load classes and resources from a search path of URLs referring to both JAR
files and directories. Here are the two constructors:

public URLClassLoader(URL[] urls, ClassLoader parent)
public URLCl assLoader(URL [] ur‘l s)

The first method constructs a new URLC'I ass Loader for the given URLs. The

URLs will be searched in the order specified for classes and resources but only

after it first delegates to its parent by searching in the specified parent class loader. i
The second method constructs a new URLCl assLoader for the specified

URLs using the default delegation parent class loader. i

 
public Class 'IoadMainC'lassO

This method loads the main class for an application. The URL class path is
searched for the first JAR file containing a Mai n—Cl as s manifest attribute specify-
ing the name of the class to load for the application’s main method, It returns the
resulting class, or null if no Main-Class manifest attribute is found.

The java. net . URLC'IassLoader class also overrides the method f'i nd—

C‘l ass(Str‘i ng name) and a few resource-related loading methods to find and

load the class or resource with the specified name from the URL search path. Any
URLs that refer to JAR files are loaded and opened as needed until the class is
found.

More interesting from a security perspective, this class overrides the method

protected PermissionCo'llection getPer'missions(CodeSource cs)

This method, in returning the permissions for the given CodeSource object, first
calls super.getPermi ssions() to get the permissions granted by the security
policy. It also adds additional permissions based on the URL of the code source,
according to the following rules.

9 If the protocol specified by the URL is “file” and the path specifies a file, then

read permission to that file is granted.

9 If the protocol specified by the URL is “file” and the path is a directory, read

permission is granted to all files and (recursively) all files and subdirectories

contained in that directory.

9 If the protocol specified by the URL is not “file,” then a permission to connect

to and accept connections from the URL’s network host is granted. 
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In other words, by default, classes loaded by a URLCl ass Loader are granted per-
mission to access the URLs specified when the URLCI assLoader‘ was created.

Another distinguishing feature of URLC'I assLoaderis the pair of static meth-
ods to create new URLCl assLoader instances:

public static URLClassLoader newInstance(URL[] urls,
ClassLoader parent)

public static URLClassLoader newInstance(URL[] ur'ls)

As stated earlier in the chapter, security concerns compel severe restrictions
on who can create Cl assLoade r' instances. However, it is convenient to provide a
mechanism for applications or applets to specify URL locations, and to load

classes or resources from them. These static methods allow any program to create
instances of the URLC'I ass Loader‘ class, although not other types of class loaders.
This1s considered acceptable, given the available public methods and the delega-

tion mechanism. Note that an application or applet still cannot call the protected
methodsIn URLCl ass Loade r or its super classes.

Typically1n a Web browser and specifically1n appl etvi ewe r, an applet class
loader15 used to load classes and resources needed for applets. In JDK 1.2, this
class1s defined1n the private sun. eapackage and1s a straightforward subclass of
URLCI ass Loade r.

3.9.5 Classpaths

The class loader classes described previously provide programmable ways to
loca and load classes and resources. To simplify the task of installing software

on a Java-enabled system, common and user-specific places are avail—

able in which ut such components in order to allow them to be automatically
discovered by the va runtime system.

In JDK 10 and 1.1 is a well-known, built-in, system-wide search path called
CLASSPATH that is set in a platform-specific way. For example, on UNIX systems
CLASSPATH can be set via the Shell environment variable CLASSPATH. Essen—

tially, all classes or JAR files containing classes on the local file system must
reside on this path to be discovered. It also is where all system classes reside. As a
result, all classes from the local file system are treated as system classes and are
given full privileges to access all resources. In other words, those local classes that

really belong to the system code are not distinguished from other local classes that
are merely part of some locally installed applications

Thisis clearly not perfect One can imagine many scenarios in which a locally
installed application should not be given full system privilege, for example, a
demo program newly received1n the mail. As another example, when displaying
an important document you might want to run the display application1n read--only
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mode to ensure that the content of the document is not altered or lost due to soft—

ware bugs in the application.

The security architecture in JDK 1.2 includes provisions to treat locally resi—
dent classesin the same way as remotely downloaded applet classes, that1s, by
granting them specific and fine--grained permissions. For this to work, true system
classes must be distinguishable from all other classes. The JDK 1.2 approach1s to
have separate class paths, one for system classes and one for the rest.

The earliest design for this path separation, which was released in a beta ver—

sion of JDK 1.2, called for a search path—the application class path—in addition
to the existing CLASSPATH. As with JDK 1.1, all classes on CLASSPATH were

treated as system classes. All classes on the application class path are nonsystem
classes, however, and are loaded with instances of the Secu reCl assLoader,
which grants them permissions according to the security policy. The application
class path can be specified by either setting a Java property called
java . app . class . path or using'a command—line option when invoking the appli-
cation. Command-line options and other deployment issues are discussed in
Chapter 4.

This design has the advantage that it is fully backward compatible. An exist-
ing application can be migrated from sitting on CLASS PATH to the new application
class path at its own pace and without affectng other installed software compo-
nents. Before migration, the application runs exactly as in JDK 1.0 and JDK 1.1.

Once migrated, the application become subject to fine—grained access control.

However, it can be argued that such migration effort should not be placed on the
shoulders of users. Also, the backward compatibility might simply lead users to
do nothing at all; thus they would miss out on a much better security architecture
and a very powerful extensions mechanism.

Because of such concerns, in the eventual design of JDK 1.2 CLASSPATH is

interpreted as the application class path. Thus deployed applications do not have

to be moved When JDK 1.2 is installed, classes on this path are loaded by
instances of the URLC'I assLoader The security policy can be configured to grant
different permissions to different classes on the application path.

As the system class path, a new path Xbootcl asspath has been created.

Users or developers should rarely or never have to install classes on this path
except those classes included in JDK. Note, this design might not provide full
backward Compatibility for some existing applications, even though the number of

such applications1s expected to be very small. This15 because up to and including
JDK 1.1, all classes on CLASSPATH were treated as system classes and were loaded
with the null class loader. In JDK 1.2, they are loaded with instances of URL-

Cl assLoader‘. An application that checks for null class loaders might need to be
upgraded to reflect the presence of URLC'I ass Loade r.  
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You might question why there remains a separate system class path. If system
classes need all permissions, why not simply use the policy to grant them
All Permission and thus treat them as just a special kind of application. The real
situation is somewhat more complicated than this. As noted, system classes are
accustomed to being loaded by the null class loader. Determining whether a class
is a system class by whether it has a null class loader is not good practice, yet
there remains legacy code that is best not broken in the new security architecture.
Moreover, there are bootstrapping and other issues that can be technically solved,
but the solutions are judged to be too destabilizing to attempt for JDK 1.2. We
hope that, in the future, different parts of the system classes can be granted only
those fine-grained permissions that they really need. This subdivision of system
classes will constrain the power of each system component and further reduce the
consequence of a programming error in system classes.

3.10 java . 1 any . Secur'i tyManager-

The java.1ang.SecurityManager class, designed into the original release of
JDK 1.0, is the focal point of access control. Recall that the bytecode verifier, the
class loader, and other runtime checks ensure type safety. The security manager is
called whenever you decide whether to grant or deny a request for accessing sensi-
tive resources. For example, this class implements the sandbox security model in
JDK 1.0. Recall from Chapter 1 that according to this model, applications (classes
residing on the local file system) are given full system access, while applets
(remote classes loaded over the network) are denied all but the most essential
privileges.

This class went through perhaps the biggest conceptual change during the
development of JDK 1.2. This section explains the APIs that existed in JDK 1.1

and remain unchanged in JDK 1.2 and covers a few methods that have been depre-
cated in JDK 1.2. Then it covers newly introduced APIs and how they relate to
existing ones.

3.10.1 Example Use of the Security Manager

A program idiom for performing a security check is first to see if a Secu r1' ty-
Manager is installed, and if so, to call the appropriate check() method on it. For
example, the following code segment checks to see if you have permission to read
a file before opening it.

public FileInputStream(Str1‘ng name) throws

FileNotFoundException {
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SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkRead(name);

}

(proceed to open the file for read)
}

The Secu ri tyManage r is thereby given an opportunity to prevent completion
of the operation by throwing an exception. A Secu r'i tyManager routine, such

as checkRead ( ), simply returns if the operation is permitted, but it throws

a Secu ri tyExcepti on if the operation is not permitted. Note that because a

Secu ri tyExcepti on is a runtime exception, it is not declared, although it can be
caught.

3.10.2 Unchanged APIs in JDK 1.2

Following are the APIs existing in JDK 1.1 that remain unchanged in JDK 1.2,

except that the constructor has been changed from protected to public:

pub'lic SecurityManagerO

protected native C'I ass[] getC'l assContextU

public Object getSecurityContext()

Prior to JDK 1.2, the Secu r'i tyManager class was abstract, so a vendor must

subclass it and create a concrete implementation. This is inconvenient. In JDK 1.2,

the class is concrete, with a public constructor. A security check is placed in the

constructor because Secu r1' tyManage r has sensitive methods so that not just any-

one can invoke them. The required permission to pass the security check is
RuntimePerm'i ssion("createSecur'ityManager").

The getCl assContextC) method returns the current execution stack as an

array of classes. The length of the array is the number of methods on the execution

stack. The element at index 0 is the class of the currently executing method, the
element at index 1 is the class of that method’s caller, and so on. Such a context is

useful for determining the current method calling sequence, which is essential

knowledge for making an access control decision. This method is necessarily
native because introspection should not disturb the Java execution context.

The getSecuri tyContext() method creates an object that encapsulates the

current execution environment. Its purpose is to create a snapshot of the context so

that later you can query whether a security check would have passed if invoked

within that context. The default implementation of this method is to return an

AccessControl Context object. The special context class AccessControl —

Context is explained later in Sections 3.10.3.1 and 3.11.6.
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Recall that there may ~ be a system-wide security manager. The
java . l ang . System class manages this security manager, with the following rele-
vant method calls:

public static synchronized void

setSecurityManagerCSecurityManager 5)

public static SecurityManager getSecurityManager()

In the set method, if a security manager has not been established for the cur-
rently running Java application, the argument passed in is established as the cur-

rent security manager. This process is sometimes called installing the security
manager. If the argument passed in is null and no security manager has been
established, then no action is taken and the method simply returns. If a security
manager has already been installed, a security check is invoked to see if the caller

has the permission RuntimePermission("setSecurityManager”). If it does,
the passed—in argument is installed as the new security manager. Otherwise, a
Securi tyException is thrown. Note that prior to JDK 1.2, the system-wide
security manager could be set only once—this can be limiting in some cases.

The get method returns the established or installed security manager, or null
if no security manager has been installed. Allowing a security manager to be null
is not a perfect design; its shortcomings are discussed later in the chapter. But this
design feature has become a sort of de facto API, so we decided not to change it.

3.10.3 Deprecated Methods in JDK 1.2

The following APIs have been deprecated in JDK 1.2.

public boolean getInCheck()

protected boolean inClass(String name)

protected Class currentLoadedClass()

protected native Cl assLoader currentClassLoader()

protected native int classDepth(String name)

These methods were used for determining which class made a particular
method call. This generally was done on an inconsistent and often ad—hoc basis.
Typically, it involved determining whether a class somewhere on the stack existed

that was defined by a non-null class loader and/or determining how deep—that is,
how many method calls—a class was from the current method. This led to very
fragile code.

It also led to several security holes in the past. For example, in object-oriented
programming, an extra layer of indirection or interface is often added between two
existing method calls. But inserting another. method call into the call chain

changes the class depth. Thus it is very difficult to use the class depth as a reliable
indicator, especially when the software code is frequently revised. As one poten-
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tial consequence, a miscalculated class depth can make it appear that the code try—
ing to access a protected resource is trusted system code when in fact it is really an
untrusted applet. A

The new security architecture in JDK 1.2 completely eliminates the need for
these deprecated methods. While we have not removed but only deprecated
them—for backward compatibility reasons—we strongly recommend that you do
not use them.

Securi tyManager contains 29 methods that have names that begin with the
word “check.” These check methods are called by various methods in the Java

libraries before they perform certain potentially sensitive operations. The only
exception to this convention is checkTopLevel Wi ndovv, which returns a heel ean
value. Following are the check methods.

public void checkCreateClassLoader()

public void checkAccessCThread t)

public void checkAccess(ThreadGroup 9)

public void checkExit(int status)

public void checkExec(String cmd)

public void checkLink(String lib)

public void checkRead(FileDescriptor fd)

public void checkRead(String file)

public void checkRead(String file, Object context)

public void checkWrite(FileDescriptor fd)

public void checkWrite(String file)

public void checkDelete(String file)

public void checkConnect(String host, int port)

public void checkConnect(String host, int port, Object context)
public void checkListen(int port)

public void checkAccept(String host, int port)

public void checkMulticast(InetAddress maddr)

public void checkMulticast(InetAddress maddr, byte ttl)
public void checkPropertiesAccess()

public void checkPropertyAccess(String key)

public boolean checkTopLevelWindowtObject window)
public void checkPrintJobAccess()

public void checkSystemClipboardAccess()

public void checkAthventQueueAccess()

public void checkPackageAccess(String pkg)

public void checkPackageDefinitionCString pkg
public void checkSetFactory()

public void checkMemberAccess(Class clazz, int which)

public void checkSecurityAccess(String action)
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Most of these methods are self-explanatory by their names. Such a design
style with one distinctly named method for each different security check tends to
accumulate a large number of methods. A bigger problem is that, because each
existing method is designed for a particular type of resource, whenever a new type
of protected resource is added to the system, an appropriate security check is
needed but is normally not anticipated by the existing check methods. Thus a new
check method must be added to the Secu ri tyManager‘ class. This is a serious
design flaw because it is often not possible to extend an existing Security—
Manager‘; an example is a Web browser with a fixed SecurityManager class.
Thus an application cannot extend the runtime system with a new protected
resource without having to invent something similar to Secu ri tyMan age r. Even
when extending Secur‘i tyManager is feasible, the new security check method
often involves complicated JVM internal mechanisms and is difficult to imple-
ment, o'r implement correctly.

Such difficult situations can lead to the overloading of an existing. check
method. For example, in JDK1.1 the System. setIn(InputSt ream) method call
invokes the checkExec() call, which is normally used to see if someone is
allowed to execute a file. Another overloaded method is the checkConnect( )
method. Calling this method with a port of —1 means that the caller is attempting
to resolve an IP address to a host, or vice versa‘. Overloading check methods is
extremely undesirable and indeed can be very dangerous.

In JDK 1.2, all check methods are reimplemented cleanly using the following
new methods: -

public void checkPermissionCPermission perm)

public void checkPermission(Permission perm, Object context)

checkPermi ssion() with a single permission argument always performs secu-
rity checks within the context of the currently executing thread. When a security
check is being invoked within a given context (for example from within a worker
thread A), often the check should actually be done against a different context
(such as thread B). In this case, checkPermissionO should be used with an
appropriate context argument (such as the AccessCont ro'l Context of thread B).

In a sense, all existing check methods are superseded by checkPe rmi ssi on.
For backward compatibility, we did not deprecate the check methods. However,
we reimplemented them with checkPe rmi ssi on methods and removed all occur-
rences of check method overloading. The next subsections examine the new
checkPe r'mi ssion methods and then see how they relate to the existing checkmethods.
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New checkPermi ssi on Methods

The first method, public void checkPe rmi ssi on(Pe rmi ssi on perm), checks

to see if the requested access, specified by the given permission, is permitted

based on the current security policy. If it is permitted, the method returns silently;

otherwise, it throws a security exception. The default implementation for-
wards all calls to the checkPermission() method to java. security.Access—

Control l er, which is explained in Section 3.11.

The second method, public void checkPermission(Permi ssion perm,

Object context), checks to see if the requested access, specified by the given

permission, is permitted based on the current security policy, if the request is

issued in the execution context passed in. Recall that the method getSecuri ty—
Context() creates an object that encapsulates the current execution environment

and can return an AccessControl Context. If the context passed in is an instance
of AccessControl Context, the checkPe rmi ssion method on that Context

object is called. If the request is permitted, the method returns silently. Otherwise,
it throws a security exception.

AccessCont rol Context has the following APIS:

public AccessControlContext(ProtectionDomain context[])

public void checkPermission(Permission perm)

The public constructor creates an AccessControl Context object with the given
set of Protecti onDomai n objects, thus mimicking the execution context in which

objects, which instantiate classes from different protection domains, call each

other in the sequence given in the array. The first element in the array corresponds
to the most recent class’s protection domain. Duplicate domains will be removed

from the context, and the context array must not be null.

A single checkPermi ssion() method can replace the many check methods

because the semantics of the required check are no longer hard coded in the names

(and implementation code) of those methods. Instead, they are encoded in the per—

mission argument passed to the checkPe rmi ssion() method. This simple idea
has a tremendous advantage. The implementation of the checkPermi ssi on()

call typically involves examining Java runtime internal state and performing com-

plicated algorithms. That implementation can now be reused for all permission

types, including those yet to be invented. Thus, to (dynamically) add a new pro-

tected resource, you can simply introduce a new Pe rmi ssi on class and then place
a checkPermi ssion() call in the appropriate place. The new Permission class

can be written entirely in the Java language, thereby resulting in the existing
Secu ri tyMan age r class no longer needing to be modified.

To utilize the new checkPe rmi ssion method, we must match each method

call with a suitable permission. Table 3.1 lists the check methods replaced by
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Table 3.1 Check Methods Replaced by CheckPe rmi ssi on
K

Name of Check Method Content of RuntimePe r'mi ssion
checkCreateClassLoader createClassLoader

checkExit exitVM

checkSetFactory setFactory

checkAccess(Thread) modifyThread

checkAccess(ThreadGroup) modifyThreadGroup

checkReadCFi1eDescriptor) readFileDescriptor

checkWrite(FileDescriptor) writeFileDescriptor

checkLink ioadLibrary.{library name}

checkPackageAccess accessClassInPackage.{package name}
checkPackageDefinition defineClassInPackage.{package name}
checkMemberAccess accessDeclaredMembers

checkPrintJobAccess queuePrintJob
java.lang.System.{setIn,setOut,SetErr} setIO
\

CheckPe rmi ssi on with a suitable Runti mePermi ssi on. For each check method,
it lists the category (or type) of the permission, followed by the actions and targets
of the permission, if any. Permission names are given within double quotation
marks, such as "fp rope rty nameg", to represent an actual property name.

As an example of a permission translation, here is how checkLi nk() is reim-
plemented.

public void checkLink(String lib) {
checkPermission(new

RuntimePermission("1oadLibr‘ary."+'lib));
}

Table 3.2 lists the remaining check method calls that are matched.

Table 3.2 Matching the Check Method Calls
\

Method Name Permission Class Content of the Permission
checkPropertiesAccess PrOpertyPermission

checkPropertyAccess PropertyPermission {property name}

checkTopLevelWindow AWTPermission showWindowwithoutWarningBanner
checkSystemClipboardAccess AWTPermission accessClipboard

checkAthventQueueAccess AWTPermission accessEventQueue

checkSecurityAccess SecurityPermission {action}

checkExec FilePermission {File or directory pathname}
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Table 3.2 Matching the Check Method Calls (Continued)5““

Method Name Permission Class Content of the Permission

checkRead(String) FilePermission {file or directory pathname}

checkWrite(String) FilePermission {file or directory pathname}

checkDelete FilePermission {file or directory pathname}
checkConnect SocketPermission {host:port}

checkListen SocketPermission {hostzport}

checkAccept SocketPermission {host:port}
h“

Because JDK 1.2 has permission classes, such as NetPe rmi ssi on, that are
created for security checks new in JDK 1.2, these permission classes do not corre-
spond to any check methods in JDK 1.1.

One question that we expect many developers will ask is, when writing new
code to perform a security check, should they call the old check methods or the

new checkPe rmi ssi on method. This mostly concerns backward compatibility. If
you intend to defer security decisions to a pre-JDK 1.2-style customized security
manager, calling the old check methods is best because the security manager
might have overridden and customized certain check calls. In fact, for backward
compatibility, we did not revise JDK code that calls the check methods. This is

because an existing application that installs a customized Secu ri tyManager
might have been expecting the appropriate JDK code to call its own check meth-

ods. If we had revised the JDK code to call the checkPermission method, the
customized Secu ri tyMan age r would have been bypassed.

However, if you want to ensure that the new JDK 1.2-style security manager is
consulted, you should call the new checkPe rmi ssion method. We recommend

the new method for new application code because it is safer and cleaner. But we

expect that, for the foreseeable future, all check() methods in Secu ri tyManager
will be supported.

3.11 java . security .AccessControl 1 er

Although the Secu ri tyManager class defines the checkPermi ssi on class and the
check methods as interfaces to invoke an appropriate security check, these inter-
faces do not specify how the security checks are done. In particular, they do not
specify under what circumstances a request should be granted or denied. This is
necessary because it is almost impossible to anticipate all reasonable ways to‘
enforce a security check. For example, one application might want to implement a
multilevel security policy [3], while another wants to implement support for separa-
tion—of-duty policies [44]. One way to achieve the goal of supporting multiple poli—
cies is to provide a Policy object with a sufficiently rich expressive power to
include all possible policy specifications. This might not be possible, or at best, it
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might be very difficult. Another way is to override the check methods defined in

Securi tyManager to implement particular flavors of the security policy and to
install the appropriate security managers depending on the application environment.

Not fully specifying how security checks are done has its drawbacks. One is

that developers might write security managers that have inconsistent behavior. For

example, two custom Securi tyManager classes might implement totally oppo-
site semantics of a check method, thus resulting in inconsistent, ad-hoc, and possi-
bly dangerous behavior. Another problem is that Secu ri tyMan ager is difficult to
get right, especially for application developers who are not deeply versed in secu—
rity. Some programmers tend to hard code a security policy in the check methods
without leaving enough room for smooth evolution, while others might commit
subtle security bugs.

Thus there is an urgent need to provide a default implementation that specifies
a complete access control algorithm and that is general enough to be used in a
majority of applications. Developers can readily utilize such as implementation,
while users can expect consistent behavior across different applications and plat-
forms. The default implementation, introduced in JDK 1.2, is the Access—

Controller class. In other words, by default, Securi tyManager invokes
methods defined in AccessControl 1 er and essentially delegates security deci-
sion making.

The next section examines the interface design of AccessControl 1 er. Later
sections cover in detail the general access control algorithm that is embodied in
this new class.

3.11.1 Interface Design of AccessControl 1 er

The AccessContro'l 1 er class is declared final, so it cannot be further subclassed.

It has no public constructor; thus no one can instantiate it. It has only static meth-
ods, listed next:

public static void checkPermission(Permission perm)
public static native Object

doPrivileged(PrivilegedAction action)

public static native Object

doPrivileged(PrivilegedAction action,
AccessControlContext context)

public static native Object

doPrivileged(PrivilegedExceptionAction action)

throws PrivilegedActionException
public static native Object

doPrivileged(PrivilegedExceptionAction action,
AccessControlContext context)

throws PrivilegedActionException

public static AccessControlContext getContext()
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The now-familiar checkPe rmi ssi on() method checks to see if a requested
access, as specified by the permission argument, is allowed in the current execu-

tion context. If it is, the method returns silently. Otherwise, it throws an Access—

Control Exception, which is a subclass of SecurityException and provides
details of the reason for failure.

3.11.2 The Basic Access Control Algorithm

The decision of granting access to controlled resources can be made only within
the right context, which must provide answers to such questions as who is request—

‘ ing what and on whose behalf. Often, a thread is the right context for access con—
trol. Less often, access control decisions must be carried out among multiple
threads that must cooperate in obtaining the right context information. A thread of

execution may occur completely within a single protection domain (that is, all

classes and objects involved in the thread belong to the identical protection
domain) or might involve multiple domains, such as an application domain and
also the system domain. For example, an application that prints a message will
have to interact with the system domain that is the only access point to an output
stream.

The current execution context is entirely represented by its current sequence
of method invocations, where each method is defined in a class that belongs to a
protection domain. Thus you can form a sequence of protection domains for the
execution context. The basic access—control algorithm can be summarized in one

sentence. That is, a request for access is granted if, and only if, every protection
domain in the current execution context is granted the saidpermission.

The term caller is used to denote a protection domain within the context of the

current execution, since a protection domain can be associated with multiple con-
texts. The basic algorithmcan be expressed in the following constructive manner.

 

for each caller in the current execution context {

if the caller does not have the requested permission

throw an AccessControlException
}

return normally

To examine this basic algorithm, suppose a game applet has a method named
openHighScoreFile() that calls the constructor of FileInputStream to open
the high score file, the file that keeps the scores of the top ten players of the game.
The constructor calls checkRead( ), which in turn calls the checkPermi ssion ()
method inside the security manager. The security manager in turn calls the

checkPermi ssi on () method in AccessControl l e r. At this point, the execution
context looks like the snapshot in Figure 3.6.
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Figure 3.6 Stack frame snapshot.

In this example, two distinct protection domains exist within the execution

context: the system domain and the domain assigned to the applet. The algorithm
says that the file can be opened if, and only if, both domains have the file permis—
sion. Because the system domain by default has all permissions, the algorithm is
reduced to checking whether the applet has been granted the file permission. If the
applet has not been granted the permission, the file will not be opened, even
though the applet tries to enlist the help of system code to do so.

This last point is critical because an application domain should not gain addi-
tional permissions simply as a result of calling the system domain. Serious secu-
rity implications could result otherwise.

In a reverse situation, a system domain invokes a method from an application
domain. For example, the AWT system code calls an applet’s pai nt() method to
display the applet. Suppose the applet then tries to open the high-score file from
within pai nt( ). Figure 3.7 shows the execution context.

Again, even though it appears that the AWT code triggers the call to Fi 1eIn—
putSt ream, the file will not be opened if the applet has not been granted the nec-
essary file permission. Otherwise, the applet will gain immense power simply
because system code calls back to its own code. The access control algorithm built
into the access controller in JDK 1.2 prevents such mishaps.

Thus a less powerful domain cannot gain additional permissions as a result of
calling a more powerful domain, whereas a more powerful domain must lose its

power when calling a less powerful domain. This principle of least privilege is
applied to a thread that transverses multiple protection domains.

Prior to JDK 1.2, any code that performed an access control decision relied on

explicitly knowing its caller’s status (that is, whether the caller was system code or
applet code). This arrangement was fragile because, often, knowing only the
caller’s status is insufficiently secure. You frequently need also to know the status
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Figure 3.7 Stack frame execution context.

of the caller’s caller, and so on. At this point, placing this discovery process
explicitly on the typical programmer becomes a serious burden and can be error-

prone. It also means that the AWT code writer must worry about scenarios under

which an applet might behave. The algorithm implemented in AccessContro'l -

1 er relieves this burden by automating the access checking process.

3.11.3 Method Inheritance

The subtle issue of method inheritance needs clarification. The basic algorithm,
and its extended versions discussed later in the chapter, are defined in terms of a
sequence of callers, each represented by a method invocation. The method invoca-

tion identifies the class in which the method is defined; the class is linked to the

protection domain to which it belongs. The protection domain has been granted
permissions, against which an access control decision is made. Suppose class B is
a subclass of class A. Class A defines a method x( ), which B inherits but does not

override. Further assume that classes A and B belong to two different protection
domains. When someone invokes a call on B.x(), who is the caller that corre-

sponds to this method invocation? Is it class A, which defined and implemented
this method? Or is it class B, which simply inherited the method unchanged?

Either choice might seem more reasonable than the other under certain condi-

tions, but on balance, associating the caller according to where the method is
implemented is more natural. This is because a more powerful class can write its
methods in a secure way that allows less powerful classes to inherit them and

accomplish tasks for which the less powerful classes themselves would not have  
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Figure 3.8 Method inheritance.

had the permissions. Thus, in the scenario just given, class A is regarded as the
real caller and its protection domain is examined for the necessary access permis-
sions. Note that if, in class B, method x() was overridden but otherwise does
nothing other than call its parent’s x(), then the caller for B .x() would be B
instead of A, even though the override will not have changed the implementation
of the method. This is because once a subclass overrides a method call, the super-
class cannot be held responsible for the eventual implementation of the method
call. In other words, B could have changed the implementation of x() in arbitrary
ways, so its protection domain should be examined. Both of these scenarios are
depicted in Figure 3.8.

3.11.4 Extending the Basic Algorithm with Privileged Operations

The basic algorithm is simple and secure because all code involved in the compu—
tation must be granted sufficient permission for the requested access. However,
the algorithm can be too restrictive. For example, consider a password-changing
application. When a piece of user code calls this application, the user is prompted
to type a new password twice (to ensure that the correct password is entered) and
then to enter'the 01d password. If the old password matches the one stored in the

password file, the new password is stored in the updated password file. Note that
the application needs to open the password file for read and write access, and
assume that the application has been granted sufficient access. Under the basic

algorithm, the application cannot open the password file because it is called by the
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user code, which does not (and should not) have permission to directly access the

password file. In this case, the application should be given a way to opt out of the
basic algorithm in order to open the file, knowing full well what it is doing.

In another, similar, example, an applet might not have direct access to certain

system properties, but the system code servicing the applet might need to obtain

some properties in order to complete its tasks.

To deal with such exceptional cases, the AccessCont rol l e r class includes a

static method, doPrivi leged(). A piece of code that calls doPrivileged() is

telling the Java runtime system to ignore the status of its callers and that it itself is

taking responsibility in exercising its own permissions. Following is an extended

access control algorithm that takes into account privilege status.

for each caller in the current execution context {

if the caller does not have the requested permission
throw an AccessControlException;

if the caller is privileged, return normally;
}

return normal l y

In this extended algorithm, callers must be checked in the same order that they call
each other, starting with the most recent caller.

Armed with the call to “invoke one’s own privilege,” the password-changing
application can use the following code segment to open the file, even if the user
code does not have access permission.

public void changePassword() {

// Use own privilege to open the password file.

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// Open file for reading and writing.

return null;

}

D;

// Verify user's old and new passwords.

}

Here is a detailed look at doPrivi l eged. When executing this method, the

JVM marks the calling thread’s stack frame as privileged. In the previous exam-
ple, the stack frame corresponding to the changePassword() method is marked

privileged. Just before completing the execution of this method, the JVM unmarks

the calling thread’s stack frame, thereby indicating it is no longer privileged.
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By calling doPri vi l eged; the caller is merely enabling privileges it already
has. This is important to understand. A block of code never gains more permis—
sions than the set of permissions it has been granted. Being privileged simply tells
AccessCont roller to ignore its callers. For example, AccessCont roller can
stop checking after it has already verified that the privileged code holds the
requested permission.

Moreover, a privileged block is specific to the thread that enabled its privi—
leges. That is, the effect of some code’s being privileged in one thread does not
have any impact on other concurrently running threads, even though those other
threads might be executing code that belong to the same protection domain.

Another subtlety to consider is that the doPri vi l eged method can be invoked
reflectively by using java. lang. reflect.Method.invoke( ). In this case, the
privileges granted in privileged mode are not those of Method.invoke( ) but
those of the nonreflective code that invoked it. Otherwise, system privileges could
erroneously (or maliciously) be conferred on user code.

Let us dig a little deeper into the proper and careful use of doPri vi l eged. In
the password-changing application example, suppose that the code to open the
password file is actually in another method named open Passwo rd Fi l e( ), which
opens the password file and returns the object reference to the file input stream.
The example code would become the following.

public void changePassword() {

// Use own privilege to open the password file.

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// Open file for reading and writing.
f = openPasswordFile();
return null;

}

H;

// Verify user's old and new passwords.

}

This code should operate exactly as before. Calling doPri vi l ege from inside
openPasswo rd Fi l e( ) would be a mistake. Why? Because the user code can then
call it directly. Further, because of the privilege inside that method, the user code
gets a reference to the password file. The lesson here is that a method, such as
openPasswo rd Fi l e( ), should not invoke its own privilege if it does not know or
have full control over who can call it, since the method returns some resource that
is protected. On the other hand, changePassword() may safely invoke its own
privilege, even if anyone can call it. This is because it takes care not to reveal the
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password file to the outside world and will process it internally only after pass-
word checking succeeds.

You might have noticed that the design of the privilege feature is asymmetri-
cal. That is, you can choose to exercise your own privilege and tell the access con-
troller to ignore those callers before your method, but you cannot tell the access

controller to ignore those callers that you subsequently call (after you enable your
privilege). Thus if you later call a method whose corresponding protection domain
does not have a permission, that method call cannot gain the permission even if
you have it. This asymmetry is designed to protect you. If the access controller
also ignores those callers that you subsequently call, then you effectively have
granted your permissions to those callers. You might have control over which

caller you call directly but not over who that caller will call later. Your privileges
and granted permissions could be misused or abused if any of those callers are
malicious or incompetent. It is a very bad idea to trust a series of unknown parties.
The algorithm is designed to prevent you from accidentally falling into such traps.

3.11.5 Three Types of Privileged Actions

The code example in the previous section demonstrates the simplest usage of
doPrivileged by passing in a PrivilegedActi on interface as the argument.
That usage pattern, repeated next, is useful only when the code within the privi-
leged block does not need to return a value.

somemethod() {

...norma1 code here...

AccessController.doPrivileged(new PrivilegedAction() {
pubiic Object run() {

// Privileged code goes here, for exampie:
System.10adLibrary("awt");

return nu11; // Nothing to return.
}

});

...norma1 code here...

}

Here, Pri viiegedActi on is an interface with a single method, named run, that
returns an Object. The example shows a concrete implementation of the run
method is supplied. When the call to doPrivi "leged is made, an instance of the
Privi ‘l egedActi on implementation is passed to it. The doPrivi leged method
calls the run method from the Pri vi 1 egedActi on implementation after enabling
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privileges and then returns the method’s return value as the doPri vi 1 eged return

value (which is ignored in this example).

If the code from within the privileged block needs to return a value, the fol—

lowing is one way to write the code.

somemethod() {
...normal code here...

String user = (String) AccessController.doPrivileged(new

PrivilegedAction() {

public Object run() {

return System.getProperty("user.hame");
}

});
...normal code here...

}

This usage requires a dynamic cast on the value returned by doPri vi 1 eged.
An alternative is to use a final local variable as follows.

somemethod() {
...normal code here...

final String user[] = {null};

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

user[0] = System.getProperty("user.name");
return null; // Still need this.

}

});
...normal code here...

}

A third solution is to write a nonanonymous class that handles typing informa-

tion safely, such as the following.

somemethod() {
...normal code here...

GetPropertyAction gpa = new GetPropertyAction("user.name");

AccessController.doPrivileged(gpa);

String user = gpa.getValue();
...normal code here...
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class GetPropertyAction implements PrivilegedAction {
private String property;

private String value;

' public GetPropertyAction(String prop) {
property = prop;

}

public Object run() {

value = System.getProperty(property);
return value;

public String getValue() {
return value;

}

}

In this example, there is no type cast. Since the run method still returns a
value, you can abbreviate somemethod to the following.

somemethod() {

...norma1 code here...

String user = (String) AccessController.doPrivileged(new
GetPropertyAction("user.name"));

...normal code here...
}

Finally, the interface Pr1' vi 1 egedActi on is for privileged code that does not
throw checked exceptions (such as Fi 1eNotFoundExcept‘i on). If the code can
throw such an exception, which must be declared in the throws clause of a
method, then you must use Pr'i v1”! egedExcept'i onActi on instead.

somemethod() throws FileNotFoundException {
...normal code here...

try {

‘FileInputStream fis = (FileInputStream)

AccessControl1er.doPrivileged(new

PrivilegedExceptionActionC) {

public Object run() throws FileNotFoundException {
return new FileInputStream("someFile");

}

});
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} catch (Privi1egedActionException e) {

// e.getException() shou1d be an instance of

// FileNotFoundException, as only "checked" exceptions

// will be "wrapped" in a Privi1egedActionExcept‘ion.
throw (Fi'leNotFoundExcept'ion) e.getException();

..norm31 code here...

}

The use of doPri vi 'I eged is cumbersome. But there is a reason for this. The

rationale behind this design choice is discussed in Section 3.11.9. Meanwhile,

remember that privileged operations should be used with great care because they
utilize your own granted permissions even though you might be acting on behalf
of untrusted code. The privileged code block should be as small as possible, and
all code that can be executed outside of the block should not be inside the block.

3.11.6 The Context of Access Control

As mentioned earlier in the chapter, getContext() takes a snapshot of the current
execution context, places it in an AccessContr‘o'l Context object, and returns that
object. In the Java runtime system, a piece of code can start any number of child
threads, which can then start their own child threads, and so on. When a new

thread is created, the JVM creates a fresh execution stack, but ensures that the cur—

rent execution context is inherited by the new child thread; In other words, as far

as the security context of the child thread is concerned, it goes back all the way to
include all ancestors’ contexts. More specifically, the snapshot of the current exe-
cution context includes the current thread’s inherited AccessContro'l Context.

Note that, strictly speaking, the JVM does not have to force a thread to recur—

sively inherit its parent context, since not inheriting it does not necessarily pose a
security problem. However, our experience shows that a typical programmer
expects the security context to be inherited—and surprising the programmer is
undesirable. Automatic inheritance is in fact quite convenient in some cases. For
example, in a server application a master thread might create slave threads to handle

individual incoming requests when it would have been a burden to manually write
the code for the slave threads to take into account the master’s security context.

Another point that needs emphasizing is that the inherited context is the exact
context in the parent thread at the moment when the child thread is created. The

inherited context is essentially frozen for further references, and the parent thread
is free to continue and change its context afterwards without impacting the content
of the inherited context.
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The doPrivileged method that takes an AccessControl Context as argu-
ment marks the calling thread’s stack frame as pri vi 1 eged and associates the given
AccessCont rol Context with the privileged frame. The context will be included in
all future access control checks and will be checked after the privileged frame’s
Protecti onDomai n is checked. Understanding the use of this method might be eas-
ier after you read the full access-control algorithm, discussed in the next subsection.
Its use is illustrated next, where acc is the AccessControl Context object.

somemethod() {

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// Code goes here. Any permission checks from this

// point forward require both the current context

// and the snapshot's context to have the desired
// permission.

}

}, acc);

...normal code here...

3.11.7 The Full Access Control Algorithm

Suppose the current thread traverses m callers in the order caller 1 to caller 2 to
caller m. Then caller m invokes the checkPe rmi ssi on method, which determines
whether access is granted or denied based on the following algorithm.

i = m;

while (i <> 0) {

if (caller i's domain does not have the permission)
throw AccessControlException;

if (caller i is marked as privileged) {

if (a context was specified in the call to doPrivileged)
context.checkPermission(permission);

return;

}

i =’i — 1;
};
return;

The full algorithm is slightly more complicated than the extended algorithm
given in Section 3.10.4. They differ only in one way. When a privileged frame is
being checked and an access control context is specified in the call to
doPrivil eged ( Privi l egedActi on , AccessControlContext), the security  
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check will pass only if the requested permission is allowable in that specified
access control context.

Thus doPr‘ivileged(Pr1'v1'1egedAct1'on , AccessCont r01 Context) can
be used to enable a privileged frame, but only for those permissions that would
have been granted in the specified access control context. In other words, this fea-
ture can be used to further restrict the extent of the privilege coverage. Without a
context’s being specified, a privileged frame may exercise all of the permissions
granted to the caller. With a context specified, the exercisable permissions are fur-
ther limited to those that would have been permitted within the specified context.

From a theoretical and abstract level, the access control algorithm says that, at
any point in a thread of computation, the effective permission is the intersection of
the permissions of all protection domains transversed by the execution thread,
with the privilege status (and its associated access control context, if any) as well
as inherited access control context taken into account. Many strategies for imple—
menting this algorithin are possible. The two most obvious are discussed here:
eager evaluation and lazy evaluation. '

In an eager evaluation implementation, whenever a thread enters a new pro—
tection domain or exits from an existing one, the set of effective permissions is
updated dynamically. The benefit is that checking whether a permission is allowed
is simplified and can be faster in many cases. The disadvantage is that because
permission checking occurs much less often than cross—domain calls, a large per-
centage of permission updates might be useless effort.

In the lazy evaluation implementation, which is what JDK 1.2 uses, whenever
permission checking is requested, the thread state (as reflected by the current
thread stack or its equivalent) is examined and a decision is reached either to deny
or to grant the particular access requested. One potential downside of this
approach is the performance penalty at permission checking time. However, this
penalty would be incurred as well in the “eager evaluation” implementation (albeit
at earlier times and spread out among each cross-domain call). In the JDK 1.2
implementation, performance of this algorithm is quite acceptable, so we feel that
lazy evaluation is the most economical approach overall.4

Note that because access control is based on the protection domains associ—
ated with the current execution context, the context must be preserved intact when
optimizing a static, or just—in—time (JIT), compiler, or a particular implementation
of the JVM. For example, method inlining must be done with care so that protec—
tion domain information is not lost and the AccessCont roller class can be cor-
rectly implemented.

 

4 For details of the implementation of protection domains and a discussion on performance
and optimization techniques, see [28].
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3.11.8 Secur‘i tyManager' versus AccessControl 1 er'

Recall from earlier in this chapter the difference, when invoking a security check,
between calling checkPe mi 551' on () and calling the other check methods

defined in the Secur‘i tyManage r class. The choice then was contingent on
whether you depended on any pre-JDK 1.2 security manager classes. Now you
have another choice, that of calling the checkPermi 551' on() method defined in

Securi tyManager or in AccessControl 1 er. These methods differ in two major
ways.

First, sometimes no installed Secu ri tyManager exists, so you cannot invoke
check methods on it. By contrast, the static methods in AccessContro'l 1 er are

always available to be called. Recall the following idiom for calling Securi ty—
Manag e r.

SecurityManager sm = System.getSecurityManagerO;
if (5m != null)

sm.checkPermission(permission);

But you can always call

AccessControl 1 er . checkPe rmissi on(per'missi on);

Thus, if you want to ensure that your security check is always invoked (regardless
of whether a system-wide Secu ri tyManager has been installed), you should call
AccessControl 1 er'. Note, however, that some existing applications test whether
there is an installed instance of Secu ri tyManage r. Then, based on the result of

this test, which signifies one or the other security states, these applications take
different actions. For the backward compatibility of these applications, calling
Secu r'i tyManage r is more appropriate.

The second difference is that calling Secu ri tyManager does not guarantee a
particular access control algorithm—someone might have extended it and

installed a custom security manager. By contrast, calling AccessCont ro'l “I er‘
guarantees that the full access control algorithm specified earlier is used. Thus, if

you do not want to delegate your security check to a custom security manager, you
should call AccessContro'l ‘I e r directly. Otherwise, call Secu r'i tyManage r.

Also be warned that because the SecurityManager class defines a general
interface for security checks, it does not provide the privilege mechanism that
AccessControl 1 er has defined. In fact, if you use the privilege mechanism in
your code but later call Secu ri tyManage r to perform a security check, the privi-
lege status might not be taken into account if the security manager you installed is
not the one provided by JDK 1.2 and does not consult AccessControl 1 er or its
equivalent.

You might wonder why we provide these choices. Isn’t one way of doing
things good enough? These choices are based on experience. A balanced tradeoff
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between generality and consistency is needed. In the long run, we expect that cus-
tom security managers will not often be needed, and even when they are defined,
they will be built on existing functionality in AccessCont r01 1 er. In particular,
they will provide additional functionality rather than promote incompatible behav-
ior. Nevertheless, in a special environment in which a vastly different sort of secu-
rity policy must be enforced, a customized security manager conceivably might
not be able to utilize the algorithms implemented by AccessContro'l l e r.

3.11.9 A Mini-History of Privileged Operations

To cap the discussion on the AccessCont r01 1 er class, this section provides more
background on how the design of the privilege methods developed. The main
goals were to help programmers write secure code and to guarantee security when
a programmer makes a mistake.

It is helpful to compare the desired result with UNIX’s setuid facility. Com-
pared with such operating systems as MS-DOS and MS-Windows, UNIX has tra—

ditionally given security somewhat more comprehensive consideration. It limits

what a user-invoked program/application may do to a user’s privileges. In some
cases, though, these limits are too restricting. The setuid mechanism is designed to
circumvent those limits. However, the entire setuid-ed program is “armed,” in that
any software bug in a part of the (often large) program can potentially lead to a
security hole. We wanted to avoid this possibility in JDK 1.2, so we created APIs

that enable a programmer to limit, to just a few method calls, either the scope of
the dangerous operations or the duration of the “armed” period. In this way, bugs
outside of those sensitive methods are less likely to cause unintended harm.

We considered several design proposals. One was to extend the language with
a method modifier, perhaps called “privileged.” Privilege would be granted when
entering the method and revoked upon returning from it. This was by far the clean-
est design, but it required a major addition to the Java language that in turn
required compiler vendors to update their compilers. Such a change cannot be
made lightly. Moreover, a method modifier cannot take a context argument. So we
decided against it. We also rejected a number of other proposals, which would
have either changed the existing semantics of nonsecurity code or required sup-
port in the JVM that would have been difficult to implement on all platforms.

Up to JDK 1.2 beta3, we went with a design by which we provided the follow-
ing two method calls in the AccessCont roller class:

public static native void beginPr‘ivilegedO

public static native void endPrivi'legedO

Declaring a block of code to be privileged was to occur as follows.
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somemethodC) {

(normal code here)

try {

AccessControl1er.beginPrivi1eged();

// Privileged code goes here, for example:
System.1oadLibrary("awt");

} Finally {

AccessController.endPrivi1eged();
}

(more normal code here)
}

This design had the advantage of being fairly simple to use within the well-
known try-finally block construct. Its downside was that the call to endPrivi —

leged() could have been made only in the same method frame as the begi n—
Pri v1" 1 eged() call and optimally would have been called as soon as the privilege
was no longer needed. This limited the privilege period to one method invocation

and ensured that the privilege was reversed as soon as possible. In the event a pro-
grammer accidentally forgot to call endPr‘iV'i 'l eged(), we built in a number of

measures and checks to prevent mismatch between invocations of these begi n and
end methods from within different frames. For example, we would have reversed
a privilege status if it was clear that the programmer should have reversed it but
forgot to do so. In the end, the requirement to match frames was considered diffi-

cult to specify and enforce precisely in a platform-independent manner, so we
abandoned that design in favor of the doPr‘i vi 1 eged interface.

The design we eventually adopted works reasonably well, except for slightly
added complexity in programming. We expect to improve the design later, for
example, when suitable language constructs are made available.

3.12 Summary and Lessons Learned

As a summary of the overall process of how the JDK 1.2 security architecture
works, this section takes you through the handling of an applet or application. The
following steps occur when viewing an applet, either through a Web browser or
app'l etvi ewe r, or running a Java application, possibly from the command line by
invoking the program called java.

1. A class file is obtained and accepted if it passes preliminary bytecode verifica-
tion.  
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2. The class’s code source is determined. This step includes signature verifica—
tion, if the code appears to be signed.

3. The security policy is consulted, and the set ofpermissions to be granted to this
class is determined, based on the class’s code source. In this step, the Policy
object is constructed, if it has not been already.

4. A protection domain is created to mark the code source and to hold the permis-
sion set. Then the class is loaded and defined to be associated with the protec—
tion domain. If a suitable domain has already been created, then that

P rotect'i onDomai n object is reused and no new permission set is created.

5. The class may be instantiated into objects, and their methods executed. The
run-time type safety check continues.

6. When a security check is invoked and one or more methods of this class are in

the call chain, the access controller examines the protection domain, and in

particular, its permission set, to see if sufficient permission has been granted
for the requested access. If it has been granted, the execution continues. Oth-

erwise, a security exception is thrown. (This check is done for all classes whose

methods are involved in a thread. See Section 3.11.7 for the complete algo—
rithm.)

7. When a security exception, which is a runtime exception, is thrown and not
caught, the JVM aborts. '

There are variations to this flow of actions. For example, in a lazy approach,
the creation of the Policy object, protection domains, and permissions can be
delayed until the first security check occurs. This delaying tactic helps to reduce
start-up time and the footprint of the runtime because objects are not instantiated
until they must be used.

The fundamental ideas adopted in the new security architecture have roots in
the last 40 years of computer security research; for example, the overall idea of the
access control list [newref l, 42]. We followed some of the UNIX conventions in

specifying access permissions to the file system and other system resources. But
significantly, our design was inspired by the concept of protection domains and
the work dealing with mutually suspicious programs in Multics [69, 75] and
“rights amplification” in Hydra [36, 81].

One novel feature not present in operating systems such as UNIX or MS-DOS

is the implementation of the least-privilege principle by automatically intersecting
the sets of permissions granted to protection domains that are involved in a call

sequence. In this way, a programming error in system or application software is
less likely to be exploitable as a security hole.

Page 121 of275

107



Page 122 of 275

 

 
Page 122 of275

108 SUMMARYAND LESSONS LEARNED

Note that although the JVM typically runs over another host operating system
such as Solaris, it also may run directly over hardware, as in the case of the net-

work computer JavaStation running JavaOS [66]. To maintain platform indepen—
dence, the JDK 1.2 architecture does not depend on security features provided by
an underlying operating system.

Furthermore, this architecture does not override the protection mechanisms in
the underlying operating system. For example, by configuring a fine-grained
access control policy, a user may grant specific permissions to certain software.

This is effective, however, only if the underlying operating system itself has
granted the user those permissions.

Another significant characteristic is that JDK 1.2’s protection mechanisms are
language-based, within a single address space. A major distinction from more tra-
ditional operating systems, this feature is very much related to recent work on

software-based protection and safe kernel extensions (for example, [7, 10, 76]),
whereby various research teams have lately aimed for some of the same goals but
by using different programming techniques. In a typical operating system, a cross-
domain call tends to be quite expensive. In JDK 1.2, a cross—domain call is just
another method invocation and is as cheap as it can get.

The new design has the following significant benefits that are worth
highlighting.

1. The content of the security policy is totally separated from not only the imple-
mentation mechanism but also the interfaces. This leaves maximum room for

evolution. It also allows the policy to be configured entirely separately from the
runtime environment, thus reducing the complexity of system administration.

2. The access control algorithm is cleanly separated from the semantics of the

permissions that it is checking. This allows the reuse of the access controller

code with (perhaps application—specific) permission classes that are introduced
after JDK 1.2’s release. '

3. The introduction of a hierarchy of permission classes brings the full power of
object orientation (and especially encapsulation) to bear. This means that ac—

cess control permissions can be expressed both statically and dynamically and
that each Permission class may define its own semantics, for example how it
relates to a permission of its own type or of a different type or how to interpret
wildcard symbols and other peculiarities that are specific to it.

4. The secure class loading mechanism coupled with the extensions mechanism

extends security coverage to Java applications, thus resulting in a uniform se-

curity architecture and policy for any and all Java code, whatever its origin or
status.
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In addition to those technical benefits, we paid great attention to good inter—
face design. We worked extensively on API design issues, such as the proper divi—
sion of labor among various classes. We also tried to maintain a minimal set of

classes and APIs, kept as many classes private as possible, created suitable names

for classes and methods, and kept the names as short and concise as possible. We
did not start prototyping the code until we had a good grasp of the APIs. All of

this effort paid off well. We were able to respond to cements and suggestions,
and we made extensive revisions to APIs throughout the project, all without much

difficulty and without jeopardizing code quality or project delivery. Further, we

superseded some fragile features, such as those methods we deprecated in the
Secu r‘i tyManage r‘ class, with more robust architecture.

One major goal for good interface design is case of use. In this area, the JDK

1.2 design is superior to a few others proposed. An example of one of the others is

a commercial browser that implements features similar to JDK 1.2’s privileged
method calls. However, it requires that an application explicitly enable its granted
privilege in order to use it. In this case, to open a file for reading to which the

application has been granted read access, the application cannot just open a
Fi'l eInputSt ream. Instead, the application first must call a specific method—
basically announcing, “I will now exercise my right to read this file”—and then

proceed to open the file. Without the prior declaration, the subsequent open opera—
tion will fail [79]. Such an interface design has a number of drawbacks.

1. If JDK 1.2 had adopted such a design, all existing applications and applets
would have had to be rewritten to explicitly make the declarations. This would

have seriously broken backward compatibility.

2. In a multitier application environment, a common scenario involves a request

made by the top tier application to obtain a document. This request might be met

by the bottom tier application in a number of ways, such as by obtaining the doc-

ument from the file system, retrieving it from a database, or downloading it

from a Web server. In this case, no easy way exists for the top tier application

to know ahead of time whether it should enable the privilege for the bottom tier
application to read a file, to access a database, or to make a network connection,

However, if the application uses JDK 1.2 features, it does not need to decide

which privilege to enable. The request will be served in any one of the three

ways, as long as the application has been granted the appropriate permissions.

In other words, requiring a declaration of intent to exercise privilege does not

work well in a complex environment, even though it might work reasonably
well in a one—tier application situation.

3. If a new or revised security check is placed on a protected resource, any exist-

ing application or applet code must be rewritten to enable this new privilege by
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a new declaration before it can run as it did previously. This means that the ap-
plication or applet must be recompiled and redeployed just to continue access-

ing the same resource. This is a nightmare maintenance scenario.

By contrast, in JDK 1.2, you need only to revise the security policy to grant one
more permission to the application. The application or applet will run as before.

We did encounter two artifacts in JDK 1.0 which, although inconvenient, were
not changed. First, system classes have been traditionally loaded with a primordial
class loader, which is typically written in native code. As a result, all system classes
(now called bootstrap classes in JDK 1.2) are loaded from within the Java runtime

with a null system class loader. This particular implementation feature, however,
became a sort of de facto API. Some programmers started to test for the existence

of class loaders as a way to distinguish between system and nonsystem classes,
especially as part of the security decision making process. For backward compati—
bility, JDK 1.2 provides that system classes (or at least those classes necessary for
bootstrapping the Java virtual machine) are loaded by the null class loader.

This association between system classes and the null class loader coupled
with the difference in treatment of classes based on their class loader types, how—
ever, makes it difficult to subdivide system classes into various packages or JAR
files and then give them separate sets of permissions. Such a subdivision can

effectively reduce the amount of code you need to trust completely, as well as
reduce the amount of trust in that code. In JDK 1.2, application classes residing on
the local file system must now be loaded with non-null class loaders as part of the
extension mechanism. Further, under the new security architecture a class being
loaded with a non-null class loader does not say anything about its status, since
the class might have been granted Al 1 Permission. Hindsight tells us that it
would have been much easier to evolve the design if all system classes were origi-
nally loaded with a special, but non—null, class loader.

The second artifact in JDK 1.0 that is not changed is that the runtime system
does not always have a security manager installed, and in this case, a call to Sys—
tem . getSecu ri tyManage r( ) results in a null security manager. Again, for back-
ward compatibility, we did not change this in JDK 1.2. However, this oddity has
caused a few unnecessary complexities. For example, everywhere you invoke a
security check, you must test for a null security manage; this clutters the code.

Moreover, programmers soon started testing for this null security manager as a
way to determine the state of the universe, rather like trying to distinguish the
world before and after the so-called “big bang.” This has led to unwarranted

assumptions of how a virtual machine should behave when the security manager is
null, partly because no security checks can be invoked on a null security manager.
These assumptions should not have been made at a general level, but nevertheless

they are being made by some programmers. The presence of such assumptions
creates backward compatibility pressure.
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The AccessControl‘lerclass introduced in JDK 1.2 makes it possible to
invoke security checks in the absence of a security manager, but such checks
might need to be deployed gingerly for fear of breaking backward compatibility. It
would have been easier for us if the security manager had always been installed
(that is, immediately after the bootstrap process), even though its behavior might
change over time.

The lesson we learned from these two artifacts is that you cannot easily evolve
the interface design of something that is null—and you definitely cannot invoke
method calls on something that is null.
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CHAPTER I

Deploying the Security
Architecture

   
 

          
 

   
 

Policy must be clear, consistent, and confident.
—Dwight D. Eisenhower

To utilize the new security architecture provided in JDK 1.2, you must upgrade
your Java environment to the latest version. Generally, new versions of operating
systems or Internet browsers (for example, upgrades that you install or software
that comes with a new computer system) already support the latest JDK 1.2. How-
ever, to upgrade the JVM yourself to the 1.2 version, you can download and install

either the Java runtime environment for running Java applications or applets, the
JDK itself for development use, or the Java Plug—In that upgrades the JVM inside
Microsoft Internet Explorer (IE) and the Netscape Navigator (Navigator).

4.1 Installing JDK 1.2

JDK 1.2 versions for both the Win32 platform (MS-Windows or Windows NT)
and the Sun Solaris platform are available from Sun Microsystem’s Java Web site
at http://j ava. sun . com/products/jdk/l . 2/. For demonstration purposes,
the instructions in this chapter assume that you are using a Sun Sparc workstation
running Solaris.

1. From the Web site, choose the Solaris version of JDK 1.2 for download and

save it in a file named jdklZ—sol ari sZ—sparc . sh.

2. Follow the installation instructions at the site and unpack the downloaded soft-
ware as follows.
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% chmod a+x jdklZ—solarisZ-sparc.sh

% ./jdk12-so'larisZ—spar‘c.sh

A dialog box displays, asking if you agree to the license terms. Click Accept
to proceed. Now you have all of the necessary binary programs unpacked in
the directory ./jdk1. 2/b1' n.

3. Add the directory ./jdkl.2/bin to the search path by typing (in a shell
window)

% set path=($path ./jdk1.2/bin)

4. If you want to ensure that programs that are part of the newly installed JDK are

located first by the UNIX shell, move the directory to the beginning of the
search path:

% set path=(./jdk1.2/bin $path)

and verify this by typing (again in a shell Window)

% which java

./jdk1.2/bin/java
%

5. Next, you can test by running an applet with appl etv-i ewe r:

% appletviewer http://java.sun.com/app]ets/other/TumblingDuke/
index . htm'l

The command above should be typed on one line in a shell window (but it
does not fit under the type-setting system here). You also can run the test

application described at the beginning of Chapter 2 from the command line as
follows:

% java Test Hello

If you are using app'l etvi ewer or a new version of a browser that deploys
this new security architecture, you can continue to do things in largely the same
way as before. This means that the same sandbox policy in JDK 1.1.x will apply.
If you are a “power user,” you can use JDK 1.2’s built-in p01 1' cytool utility (or
an equivalent tool shipped with the browser) to customize the security policy, thus
utilizing the full benefit of the new security architecture. Such customization

might involve setting up a certificate store, which can be done using the keytoo'l
utility, used to create and administer keystores. This utility is introduced later in
the chapter and is available for the Solaris and MS-Windows platforms.
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Application developers in general need to do nothing special to work with
JDK 1.2’s security features because when their applications run on top of JDK
1.2, those features are invoked automatically. A developer might want to use the
built—in tools to package the resulting application into JAR files and might choose
to digitally sign them.

A software library developer whose code controls certain resources might need
to extend the existing permission class hierarchy to create application—specific
permissions. The developer might also need to learn to use features provided by
the AccessControl 1 er class, such as the doPrivi 1 ege interface.

4.2 Policy Configuration

So far in the demonstration example, no security policy has been specified for run-
ning applets or applications. Thus the JVM will default to the pre-JDK 1.2 sand-
box security model, whereby remote applets are untrusted and local applications
are fully trusted. To utilize the new security model, you first must configure a
security policy and then specify which policy to use when running Java programs.

The design of the policy APIs in JDK 1.2 does not mandate how a security
policy is expressed externally to the Java runtime system. It specifies only the
APIs to the Policy object. Thus a JDK implementation can choose to store the

policy information in a database, a directory service, a file system, or other
location. _

The default JDK implementation supports the specification of a security pol-
icy in a flat-file format. Configuring a security policy consists of specifying first
the location and then the content of the policy file. Obviously, policy files should
be well protected against, for example, unauthorized modifications.

4.2.1 Configuring System-Wide and User-Specific Policies

The source location for the policy information utilized by the P01 i cy object is up
to the Policy class implementation. JDK 1.2’s implementation obtains its infor-
mation from the static locations at which policy configuration files can be found.
A policy file can be composed using a simple text editor or po'l i cytoo'l, which is

a graphical tool. The next section discusses the content of a policy file.
A single system-wide policy file and _a single-user policy filehave default

locations. The default system policy file is located at

  
<java. home>/l ib/secur'ity/java. policy

I

”here <j ava . home> is a system property specifying the directory into which the
/ JDK was installed. The default user policy file is located at
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<user.home>/.java.policy

where <use r . home> is a system property specifying the user’s home directory.

The default P01 1 cy object is initialized the first time its getPe r‘m'i ssions
method is called or whenever its refresh method is called. Initialization involves

parsing the policy configuration files and then populating the Policy object.

When the P01 ‘i cy object is initialized, the system policy is loaded in first followed

by the user policy. If neither policy is present, a built-in policy is used. This built—

in policy is the same as the original sandbox policy.

Policy file locations are specified in the security properties file, which is
located at

<java.home>/lib/security/java.security

These locations are specified as the values of properties whose names are of the

form pol 'i cy . url .n, where n is a number. For example, the default system and

user policy files are defined in the security properties file as follows.

policy.ur'l .1=${java. home}/'l1'b/security/java.pol1' cy

policy.ur'1.2=${user.home}/.java.policy

Here ${j ava. home} is a special designation for property expansion, which is dis-

cussed later in this chapter.

You can change the security properties file. For example, you can comment

out the second line to skip the default user policy file. You can also specify multi-

ple policy files to form a composite security policy. You do this by specifying sev-

eral URLs (including ones of the form http : //) that refer to the file locations.

Then the content of all of the designated policy files will be used to populate the

P01 icy object. ' >

Note that n in ur'l .n must start with 1 and be consecutive integers. When the

P01 icy object is initialized, the first policy file must be given by policy. W1 .1,

the second by policy. ur'l .2, and so on until there are no more policy files.

If you specify, for example policy. ur‘l . 1 and policy. u H .3 but not
po'l 1' cy. url .2, then po'l1'cy.ur'| .3 is never read.

4.2.2 Configuring Application-Specific Policies

The policy files given in the security properties file (as described in the previous

section) are system-wide in the sense that the same set of policy files will be used

when running any applet or application. You may specify an additional or a differ-

ent policy file when invoking the execution of an application. This can be done via

the —Djava. security. po'l 1' cy command line argument, which sets the value of

the java. secu ri ty . policy property; for example:

-fi.___4
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java —Djava.security.manager —Djava.security.policy=someURL someApp

Here, someURL is a URL specifying the location of another policy file. In this
case, this policy file will be used in addition to all of the policy files specified in
the security properties file.

The —Dj ava . secu r1" ty.manager‘ argument ensures that the default security
manager is installed so that the application is run with a security policy in effect.
This option is not required if the application someApp itself installs a security
manager. Suppose you use the following (note the double equals signs):

java —Djava.security.manager —Djava.security.po1icy==someURL someApp

Then only the specified policy file located at someURL will be used; all others will
be ignored.

When running applets using appl etv-i ewe r, you can specify a policy using
the —Dj ava. secu r‘i ty . p01 1' cy argument as follows:

appletviewer —Djava.security.policy=someURL someApplet

The policy file value given in the —Djava. security. pol icy option will be
ignored for both command java and app'l etV'i ewer if the property, pol -
1'cy.a'| lowSystemProperty is set to false. This property, which can be set in
the security properties file, is by default set to true.

4.2.3 Configuring an Alternative Pol -i cy Class Implementation

An alternative policy class can be given to replace the default policy class, as long
as this alternative class is a subclass of the abstract Policy class and implements
the getPerm'i ssi ons method (and other methods as necessary).

You can change the default Policy implementation without changing the
JDK code. A property named pol icy . provider can be given in the security
properties file java. secu r‘i ty as follows:

policy.provider=Po1icyClassName

The default value of this property is

policy.provider=sun.security.provider.PolicyFile

By changing the property value to specify another class, you substitute a new
Policy class, as in

policy.provider=com.mycom.MyPolicy
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When the Policy object is to be initialized, this class is used, rather than the

default implementation class Po'l 1' cyF1'l e. When indicating an alternative P01 1 cy

class, you must specify the fully qualified name of the desired P01 1' cy implemen—
tation class, such as com. sun . secu r1' ty . MyPol 1' cyC'l ass.

4.2.4 Default Policy File Format

The policy configuration files for a JDK installation specify the permissions
(which types of system resource accesses) that are allowed by code from specified
code sources. For an applet or an application to be allowed to perform secured

actions (such as reading or writing a file), it must be granted permission for that
particular action. In the default Policy implementation, that permission must be
granted by a grant entry in a policy configuration file.1

The syntax of the default policy configuration file format includes a list of

entries. It contains zero or more entries that start with the grant keyword and

optionally a keysto re entry. A keystore is a protected database of private keys
and their associated digital certificates, such as X509 certificate chains, authenti-

cating the corresponding public keys. The default keystore implementation in
JDK 1.2 implements the keystore as a file. X509 certificates are discussed in Sec-

tion 4.4. You can use keytool to create and administer keystores. The keystore
specified in a policy configuration file is used to look up the public keys of the
signers specified in the grant entries of the file. A keystore entry must appear in a
policy configuration file if any grant entries specify signer aliases.

At this time, only one keystore entry is allowed in the policy file—others after
the first one are ignored. The entry may appear anywhere outside of the file’s
grant entries and has the following syntax: b

keystore "some—keystore—u r'l ", " keystore—type";

Here, "some—keystore—ur'l" specifies the URL location of the keystore and
"keystore—type" specifies the keystore type. The URL is typically relative to
the policy file location. Thus, if the policy file is specified in the security proper-
ties file as

policy . url . l=http://foo . bar . com/fum/some . pol 1' cy

and that policy file has an entry keystore " . keystore", then the keystore Will
be loaded from

 

1 One exception is that code always automatically has permission to read files from its own
CodeSou rce and the subdirectories of that CodeSource. It does not need explicit permis-sion to do so.
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http://Foo.bar.com/fum/Lkeystore

The keystore URL can also be given as absolute, such as

keystore "http://foo.bar.com/Fum/.keystore".

A keystore type defines the storage and data format of the keystore informa—
tion, and the algorithms used to protect private keys in the keystore and the integ—
rity of the keystore itself. The default type supported in JDK 1.2 is a proprietary
keystore type named “JKS”. .

Code being executed is always considered to come from a particular code
source (represented by an object of type CodeSou rce). The code source includes
not only the location (URL) from which the applet originated, but also a reference
to the certificates containing the public keys corresponding to the private keys
used to sign the code. Certificates in a code source are referenced by (symbolic)
alias names from the user’s keystore.

Each grant entry in a policy file consists essentially of a CodeSource and its
permissions. To represent the set of certificates that may be part of a Code—
Sou rce , a policy file simply include a list of signer names, which are aliases that
map to the actual certificates via a keystore. The alias design is useful because
certificates can be large and can contain binary data and unprintable characters,
while a policy file should be easy to View and to edit.

The permission segment of each grant entry can include a number of permis—
sion entries. Following is the basic format of a grant entry.

grant signedBy "signer—names", codeBase "URL" {

permission permission—class—name "target—name", ”action",
signedBy "signer—names";

permission permission—class—name "target-name", "action",
signedBy "signer—names";

};

A grant entry must begin with the word “grant.” The signedBy and codeBase
name/value pairs are optional. The order of these fields does not matter.

The si gnedBy field is optional in that if it is omitted, it signifies “any signer,”
that is, whether the code is signed and by whom does not matter. Its value, when
specified, is a string alias that is mapped (using the keystore) to a set of public
keys that are associated with the signers. These keys are used to verify that classes
from the specified code source are really signed by these signers. This value can
be a/comma—separated string containing names of multiple signers, for example

119
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"Adam, Eve , Char1 es", which means “signed by Adam and Eve and Charles.”
Note that the relationship is AND, not OR.

Similarly, the absence of a codeBase entry signifies “any code,” that is, where
the code originates from does not matter.

An informal BNF grammar for the policy file format is given next (terms that
are not capitalized are terminals).

Po1icyFi1e ——> Po1icyEntry I Po1icyEntry; Po1icyFi1e

Po1icyEntry ——> grant {PermissionEntry}; I

grant SignerEntry {PermissionEntry} I

grant CodebaseEntry {PermissionEntry} I

grant SignerEntry, CodebaseEntry {Permission—Entry} I

grant CodebaseEntry, SignerEntry {PermissionEntry} |
keystore "ur1"

SignerEntry -—> signedBy (a comma—separated 1ist of strings)

CodebaseEntry -~> codeBase (a string representation of a URL)

PermissionEntry ——> OnePermission | OnePermission Permission—Entry

OnePermission ——> permission permission—c1ass—name ;

[ "target—name” ] [, ”action—1ist"] g
[, SignerEntry]; i

Note that a codeBase value is a URL and thus a forward slash “I” (never a

backslash, “\”) should always be used as the directory separator, even when the

code source is on an MS-Windows system. For example, if the source location for

code on an MS-Windows system is C:"somepath"app", then the policy code—
Base entry should look like this.

grant codeBase "file:/C:/somepath/api/" {

}

A permission entry must begin with the word “permission.” permi ssi on—

c1 ass —name in the previous grammar would actually be a specific permission
type, such as java. io . Fi 1 ePe rmi ssi on or java . 1 ang . RuntimePe rmi ssi on.

The action, for example read, write, access, or other, is required for many
permission types, such as java. io . Fi 1 ePermi ssion (which specifies the type of
file access permitted). It is not required for categories for which it is not necessary,
such as java. 1 ang . Runti mePermi ssi on—you either have the permission speci-
fied by the "target-name" following permission-c1ass—name,0r you do not.  
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The si gned By name/value pair for a permission entry is optional. If present, it
indicates a signed permission. That is, the Pe rmi ssi on class itself must be signed
by the given alias(es) in order for the permission to be granted. For example, sup-
pose you have the following grant entry.

grant {

permission Foo "foobar", signedBy "FooSoFt";
}

This permission of type Foo is granted if the Foo.class permission has been
signed by the “FooSoft” alias, or if Foo.c'| ass is a system class, since system
classes are not subject to policy restrictions.

This per—permission signer field is included to prevent spoofing when a per-
mission class does not reside with the Java runtime installation. For example, a
copy of the com . abc .TVPe rmi ssi on class can be downloaded as part of a remote
JAR file, and the user policy might include an entry that refers to it. Because the
archive is not long—lived, the second time that the com . abc .TVPe rmi ssi on class

is downloaded, possibly from a different Web site, the second copy absolutely
must be authentic. This is because the presence of the permission entry in the user
policy might reflect the user’s confidence or belief in the first copy of the class
bytecode. '

We chose to use digital signatures to ensure authenticity, rather than storing (a
hash value of) the first copy of the bytecode and using it to compare with the sec-
ond copy. We did this because the author of the Permission class can legiti-
mately update the class file to reflect a new design or implementation.

Items in a pefmission entry must appear in the following order:
(permissiom, permission—class—name, "target—name",
"action", signedBy "signer—names").

An entry is terminated with a semicolon. Case is unimportant for the identifiers
(permission, signedBy, codeBase, and so on) but is significant for permis-
si on—c'l ass-name or for any string that is passed in as a value.

In the specification of a java. i o . Fi'l ePermi ssi on, "target—name" is a file

path. On an MS-Windows system, whenever directly specifying a file path in a
string (but not in a codeBase URL), you need to include two backslashes “\\” for

each single backslash in the path, as in this example.

grant {

permission java.io.FilePermission

"C:\\users\\cathy\\foo.bat", "read”;
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Tokenize r), which allows “\” to be used as an escape string. An example, is
“\n” to indicate a new line. Thus two backslashes are required to indicate a sin-

gle backslash. After the tokenizer has processed'the above file path string, in the
process converting double backslashes to single backslashes, the result is
"C:\users\cathy\foo . bat". '

l l

i 1 This is because the strings are processed by a tokenizer ( j ava.io.St ream—l

E 1

4.2.5 Policy File Examples

This section offers several examples of policy files. Following are examples of
two entries in a policy configuration file. As with Java programs, lines preceded
with // are cements and are not interpreted.

// If the code is signed by "Duke", grant it read/write access

// to all files in /tmp:
grant signedBy "Duke" {

permission java.io.FilePermission "/tmp/*", "read,write";
}:

// Grant everyone the following permission:
grant {

permission java.util.PropertyPermission "java.vendor";
}:

Here are the contents of another sample policy configuration file.

grant signedBy "sysadmin", codeBase "file:/home/sysadmin/" {

permission java.security.SecurityPermission

"Security.insertProvider.*";

permission java.security.SecurityPermission
"Security.removeProvider.*";

permission java.security.SecurityPermission

"Security.setProperty.*";
}:

l This example specifies that only applet code that was loaded from a signed JAR
‘ file (Whose signature can be verified using the public key referenced by the alias
‘ name “sysadmin” in the keystore) from beneath the /h0me/Sysadmi n/ directory

on the local file system can call methods in the Secu ri ty class to add or remove

providers or to set security properties.

Since the code source contains two components, codeBase and si gnedBy, \\
and either (or both) components may be omitted, the following policy is still valid.

  
\\
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grant signedBy "sysadmin" {

permission java.security.SecurityPermission

"Security.insertProvider.*";

permission java.security.SecurityPermission

"Security.removeProvider.*";
};

This policy says that code that comes in a JAR file signed by “sysadmin” can add
or remove providers regardless of from where the JAR file originated. Here is an
example without a signer.

grant codeBase "file:/home/sysadmin/" {

permission java.security.SecurityPermission

"Security.insertProvider.*";

permission java.security.SecurityPermission

"Security.removeProvider.*";
}:

In this case, code that comes from anywhere beneath the /home/sysadm1‘ n/ direc-
tory on the local file system can add or remove providers. The code does not need
to be signed.

Following is an example that does not mention codeBase or si gnedBy.
grant {

per ission java.security.SecurityPermission

"Security.insertProvider.*";

permission java.security.SecurityPermission

"Security.removeProvider.*";
};

Under this security policy, any code (regardless of where it originated, or whether
it is signed, or who signed it) can add or remove providers. Obviously, this policy
is too liberal for many situations.

4.2.6 Property Expansion in Policy Files

To make policy configuration and specification easier, IDK 1.2 allows property
expansion both in policy files and in the security properties file. Property expan—
sion is similar to expanding variables in a UNIX shell. That is, when a string of
the form {some . property} appears in a policy file or in the security properties
file, it will be expanded to the value of the system property; Suppose you have

permission java.io.FilePermission "${user.home}", ”read";
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This entry, when processed, will expand "${user.home}" to the value of the
user . home system property. If that property’s value is "/home/cathy", then the
previous permission line is equivalent to

permission java.io.Fi1ePermission "/home/cathy", "read";

To assist in the creation of platform-independent policy files, JDK 1.2 intro—
duces the special notation "${/} " as a shortcut for "${fi1e . separator}". Thus
you can write lines such as

permission java.io.Fi1ePermission "${user.home}${/}*", "read";

If you are using a Solaris system and the value of the user . home system prop—
erty is "/home/cathy", the previous line gets expanded to

permission java.io.Fi1ePermission "/home/cathy/*", "read";

If you are using an MS-Windows system and the user.home system value is
"C : \users\cathy", the expansion result is

permission java.io.Fi1ePermission ”C:\users\cathy\*", "read";

As a special case, if a property in a codeBase string, such as grant codeBase
"fi 'I e : ${java . home}/1 i b/ext/" is expanded, the system assumes that you are
on a UNIX system (due to the use of slashes) and then any file separator charac-
ters in that grant entry will be automatically expanded (or converted) to “/ ”. If
this entry is used on an MS-Windows system, the expansion result is

grant codeBase "fi 1 e:C:/jdkl. 2/11' b/ext/"

even if java. home is set to C:\jdkl. 2. As a result, when specifying a codeBase
string, you should use ${/}.

Because property expansion can take place anywhere that a double—quoted
string is allowed in the policy file, the fields "si gner—names", "URL", "target—
name", and "acti on" can all be expanded. You can disable property expansion
by setting to false the value of the pol icy. expandProperties property in the
security properties file. The default value of this property is true.

Nested properties do not expand properly. For example, "${user . ${foo}}"
does not result in ${user . home}, even if the Foo property is set to "home". This
is because the property parser does not recognize nested properties. Rather, it sim-
ply looks for the first “${” and then keeps looking until it finds the first “}”. It tries
to interpret the result (in this case, "${u'se r. $foo}") as a property but fails when
there is no such property.
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If a property expansion is given in a grant entry and property expansion fails,
the entry is ignored. For example, suppose the system property foo is not defined
and you have the following.

grant codeBase "${foo}" {

permission ...;

permission ...;

};

then all of the permissions in this grant entry are ignored.

On the other hand, if you have the following:

grant {

permission Foo "${foo}";

permission Bar;

};

then only the pe rmi ssi on Foo entry is ignored and Permission Bar is granted.
If you have keystore "${foo}" and the system property foo is not defined,

then the entire keystore entry is ignored.

Expansion of a property in a string takes place after the tokenizer has pro-
cessed the string, thus for string "${user . home}\\foo . bat", the tokenizer first

processes the string, converting the double backslashes to a single backslash, and
the result is "${user.home}\foo.bat". Then ${user.home} is expanded and
the end result ’ "C:\users\cathy\foo.bat", assuming that the user.home
value is "C:\users\cathy". In this example, to achieve platform independence,
the string should be initially specified without any explicit slashes, that is, by
using the "${/}" property instead, as in "${user . home}${/}foo . bat".

4.3 Digital Certificates

Within a security policy, a signedBy keyword is used tospecify that a piece of
code must be digitally signed by an entity. The entity may be a person, organiza—
tion, program, computer, business, bank, or other. 51' gnedBy merely gives an alias

of the entity, whereas a database called keystore maintains a mapping between32
alias and its public key. In practice, the public key is oftenstored inside a public-
lgy certificate.

A public-key certificate is a digitally signed statement from one entity that
says the public key (and some other information) of another entity has some spe—
cific value. According to this description, a public key and its associated informa-
tion is certified by another public key. So there can be a chain of certificates,
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Certificate 1

Certificate 2

Certificate 3

Figure 4.1 Certificate chain.

depicted in Figure 4.1, in which each certificate contains a public key that is used
to certify the public key in the succeeding certificate. The first, top-level, certifi—
cate, often called the root certificate, does not have another public key to certify
it. Thus it normally is a self-signed certificate in that its own public key is used to
certify itself.

Root certificates often are issued by a Certificate Authority, which can act as a
Trusted Third Party (TTP) to issue root certificates. A Certificate Authority (CA)
is an entity such as a business that is trusted to sign (issue) digital certificates for
other entities. It is typically assumed that CAs will create only valid and reliable
certificates, as they are bound legally to do so. Use of such a certificate implies
that one trusts the entity that signed the certificate. In some cases, such as root or

top-level CA certificates, the issuer signs its own certificate. Many public CAs are
available, for example VeriSign, Inc., but anyone can also run his or her own CA,
for example by using one of the readily available commercial server products.

To facilitate interoperability, the international body Comité Consultatif Inter-
national Téléphonique et Télégraphique (CCITT), which sets international com-

munication standards, created a standard certificate format. This certificate is

called X. 509, the most recent version being X509 v3. The most Widely used for-
mat, it is especially popular in Web browsers such as Navigator and IE that sup-
port the SSL (secure sockets layer) protocol. SSL is a security protocol that
provides privacy and authentication for network traffic and uses certificates to
negotiate and establish a secure communication channel between the browser and

the Web server. It is defined by the IETF (Internet Engineering Task Force) and is
succeeded by the Transport Layer Security (TLS) protocol. X509 certificates are

also used to sign JAR files, in secure e-mail products such as PEM and S/MIME,
and in e—commerce protocols such as SET. \

All X509 certificates have the following data, in addition to the signatur?
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0 Version. The version of the X509 standard that applies to this certificate. The

version affects what information can be specified in a certificate. So far, three
versions are defined.2

9 Serial number. The serial number, assigned by the entity that created the cer-
tificate so as to distinguish it from other certificates it issues. This information

is used in numerous ways, for example when a certificate is revoked, its serial
number is placed in a Certificate Revocation List. A Certificate Revocation

List (CRL) is a time-stamped list identifying revoked certificates. It is signed
by a CA and often made freely available in a public repository.

o Signature algorithm identifier. The algorithm used by the CA to sign the cer-
tificate.

o Issuer name. The X500 name of the entity that signed the certificate. This is
normally a CA.

0 Validity period. The time period for which the certificate is valid. Each certif-

icate is valid for only a limited amount of time. This period is described by a
start date and time and an end date and time and can be as short as a few sec—

onds or almost as long as a century. This is the expected period for which en-

tities can rely on the public value, provided the associated private key has not
been compromised. The validity period chosen depends on a number of fac-

tors, such as the strength of the private key used to sign the certificate and/or

the amount one is willing to pay for a certificate.

6 Subject name. The name of the entity whose public key the certificate identi-

fies. This name uses the X500 standard, so it is intended to be unique across

the Internet. It is the Distinguished Name (DN) of the entity, for example:

CN=Java Duke, OU=Java Software, O=Sun Microsystems, C=US

These refer, respectively, to the subject’s common name (CN), organizational
unit (CU), organization (0), and country (C). Additional fields include local i —

tyName, the locality (city) name such as Palo Alto, and stateName, the
state or province name, such as California.

9 Subject public key information. The public key of the entity being named,

together with an algorithm identifier that specifies to which public key crypto-
system this key belongs and any associated key parameters.
 

The IETF Public-Key Infrastructure (X509) working group (PKIX) is in the process of de-
fining standards for the Internet Public Key Infrastructure.
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All of the data in a certificate is encoded using two related standards, ASN.1/

DER. Abstract Syntax Notation l (ASN.1) describes data. Definite Encoding
Rules (DER) describe a single way to store and transfer that data.

Certificates are often stored using the printable encoding format defined by
the Internet RFC 1421 standard, instead of their binary encoding. This certificate
format, also called Base64 encoding, facilitates exporting certificates to other
applications (for example, via e-mail). In its Base64 encoding, the encoded certif-
icate is bounded at the beginning and the end by, respectively, by

————— BEGIN CERTI FICATE— ————

and

————— END CERTIFICATE——-——.

Three versions of X509 are available.

1. X509 vl, available since 1988, is widely deployed and the most generic.

2. X509 v2 introduced the concept of subject and issuer unique identifiers to han-

dle the possibility of reuse of subject and/or issuer names. Most certificate pro—
file documents strongly recommend that names not be reused and that

certificates not make use of unique identifiers. Version 2 certificates are not

widely used.

3. X509 v3 is the most recent (since 1996) and supports the notion of extensions.
Anyone may define an extension and include it in the certificate. Some com-

mon extensions in use today are

a. KeyUsage, which limits the use of the keys to particular purposes such as
signing only, and

b. A1 ternativeNames, which allows other identities to also be associated

with this public key, for example, DNS names, e—mail addresses, IP
addresses.

Extensions can be marked “critical” to indicate that the extension should be

checked and enforced/used. For example, if a certificate has the KeyUsage
extension marked critical and set to keyCer'tS-ign, then if this certificate is

presented during SSL communication, it should be rejected, as the certificate

extension indicates that the associated private key should be used only for
signing certificates and not for SSL use. \\\
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Certificates are available in a number of ways. You can create a self-signed

certificate by using the right tools, such as keytoo'l, which is explained later in

this chapter. However, some people will accept only certificates signed by a CA.
The value a CA provides is that of a neutral and trusted introduction service, based

in part on its verification requirements, which are openly published in its Certifi-
cation Service Practices (CSP).

Or you can request a certificate from a CA. In this case, keytool can assist in

generating the request, called a Certificate Signing Request (CSR). Basically, to

obtain a certificate from a CA you need a matched pair of public and private keys,

which are often generated by a special tool such as keytoo'l or by a browser. You

also need to provide information about the entity being certified, such as name and

address. You will normally need to provide proof to show the correctness of this

information. You then submit the required information in a self—signed certificate

so that the CA can verify its integrity.

JDK 1.2 contains a rich set of Java APIs for accessing and managing certifi-

cates. The certificate API, found in the java. security. cer‘t package, includes
the following classes.

9 Ce rti fi cateFacto ry. Defines the functionality of a certificate factory,

which is used to generate certificates (and associated CRL objects) from their

encoding.

0 Certificate. An abstract class for managing a variety of certificates. It is an

abstraction for certificates that have different formats bilt important common

uses. For example, different types of certificates, such as X509 certificates and

those obtained from the encryption tool Pretty Good Privacy (PGP), share gen—

eral certificate functionality (such as encoding and verifying) and some types

of information (such as the public key).

9 CRL. An abstract class for managing a variety of CRLs.

o X509Cert'i f1' cat e. An abstract class for X509 certificates. It provides a stan—

dard way to access all of the attributes of an X509 certificate.

9 X509Extens1‘on. The interface for X509 extensions, which are defined for

X509 v3 certificates and X509 v2 CRLs. These extensions provide mecha—

nisms for associating additional attributes with users or public keys, such as for

managing the certification hierarchy and for managing CRL distribution.
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o X509CRL. An abstract class for an X509 CRL.

t The next section describes keytool, which generates, displays, imports, and
exports‘X.509 certificates.

4.4 Helpful Security Tools

To assist developers, JDK 1.2 is delivered with these security tools: keytoo'l,
po'l 1' cytoo‘l, and jarsi gne r. These are covered in this section. First, however, it

I

l

l

o X509CRLEnt r'y. An abstract class for a CRL entry.

i discusses keystore databases.
4.4.1 Keystore Databases

Recall from Section 4.2.4 that a keystore is a protected database that holds private
keys and certificates for an enterprise. The default keystore implementation in
JDK 1.2 implements the keystore as a file, as depicted in Figure 4.2. Access to a
keystore is gnarded by a password, which is chosen at the time the keystore is cre—
ated, normally by the person who creates the keystore. A keystore so protected can
be changed only by someone who can provide the current password. In addition,
each private key in a keystore can be guarded, for extra security, by its own pass—
word. 
 

Key entry

Cert entry

Key entry

Entries

protected by
passwords

Cert entry

Key entry .

\\\\

Figure 4.2 Keystore. ‘ \«zc
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Information from a keystore is used by other tools, such as jarsigner, to

generate or verify digital signatures for JAR files. A JAR file packages class files,

images, sounds, and/or other digital data in a single file. jars-i gner verifies the

digital signature of a JAR file, using the certificate that comes with it (it is
included in the signature block file of the JAR file). It then checks whether the

public key of that certificate is trusted, that is, whether it is contained in the speci-
fied keystore.3

A keystore contains two types of entries: key entries and a trusted certificate

entry. The key entry holds sensitive cryptographic key information and is stored in

a protected format to prevent unauthorized access. Typically, a key stored in this

type of entry is either a secret key or a private key accompanied by the certificate
chain for the corresponding public key. keytool and jar‘si gner, as delivered in

JDK 1.2, do not handle secret keys.

The trusted certificate entry contains a single public key certificate belonging
to an entity. It is called a trusted certificate because the keystore owner, by accept—
ing this entry into the keystore, trusts that the public key in the certificate indeed

belongs to the identity identified by the subject—that is, the owner—of the certifi-

cate. The issuer of the certificate vouches for this by signing the certificate.

All keystore entries (key and trusted certificate entries) are accessed via

unique aliases. Aliases are case-insensitive; for example, the aliases “Hugo” and

“hugo” refer to the same keystore entry. You specify an alias when you add an

entity to the keystore using the ‘—genkey command to generate a key pair (public
and private key) or the —import command to add a certificate or certificate chain to

the list of trusted certificates. Subsequent keytoo'l commands must use this same

alias to refer to the entity. For example, suppose you use the alias “duke” to gener-
ate a new public/private key pair and wrap the public key in a self-signed certifi—
cate via the following command:

keytool —genkey —alias duke —keypass dukekeypasswd

This command specifies an initial password of dukekeypasswd that will be

required by subsequent commands to access the private key associated with the

alias “duke.” To change the private key password of duke, you use a command

like the following, which changes the password from dukekeypasswd to newpas s:

3 The keytool and jarsigner tools replace the javakey tool provided in JDK 1.1. These
' new tools provide more features than javakey, including the ability to protect the keystore

and private keys with passwords and the ability to verify signatures, in addition to generat—
ing them. The new keystore architecture replaces the identity database that j avakey created
and managed. You can import the information from an identity database into a keystore via
keytool ’s —identitydb command.
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keytool —keypasswd —al'ias duke —keypass dukekeypasswd —new newpass

For better security, a password should not be specified on a command line or
in a script unless for testing purposes or you are on a secure system. If you do not
specify a required password option on a command line, you will be prompted forone.

Recall that a keystore by default is implemented as a file. Each keytoo'l com-
mand has an option for specifying the name and location of this persistent key-
store file. During keystore creation, if you do not specify a —keys to re option, the
keystore is by default stored in a file named . keys to re in the user’s home direc-

tory, as determined by the use r . home system property. On a Solaris system,
user.home defaults to the user’s home directory. On an MS—Windows system,
given username uName, the use r . home property value defaults as follows.

C:\W1' nnt\Prof1' 1 es\uName On multiuser Windows NT systems
C: \W'i ndows\Profi 1es\uName On multiuser Windows 95 systems
C:\W‘i ndows On single-user Windows 95 systems

Thus, if the username is cathy, user. home defaults to

C : \Wi nnt\Prof1' 'l es\cathy On multiuser Windows NT systems
C :\W1' ndows\ProF1' 'l es\cathy 0n multiuser Windows 95 systems

The KeySto re class provided in the java. security package supplies inter-
faces for accessing and modifying the information in a keystore. Nevertheless,
multiple different concrete implementations can be imagined, where each imple-
mentation is for a particular type 'of keystore. Also, keystore implementations are
provider-based. More specifically, the application interfaces supplied by
KeySto r‘e are implemented in terms of a service provider interface (SP1). A pro-
vider is a package or a set of packages that supply a concrete implementation of a
subset of services that can be accessed from the Java security API. Thus a corre-
sponding abstract KeystoreSpi class, also in the java. secu r1' ty package,
defines the SP1 methods that providers must implement. To provide a keystore
implementation, the client must implement a provider and supply a KeystoreSpi
subclass implementation. Chapter 7 describes how to implement a provider.

Applications can choose different types of keystore implementations from dif-
ferent providers, using the getInstance method supplied in the KeySto re class.
A keystore type defines the storage and data format of the keystore information, as
well as the algorithms used to protect private keys in the keystore and the integrity
of the keystore itself. Keystore implementations of different types need not be
compatible in implementation details such as fimnat. The JDK 1.2 default imple-
mentation of the keystore uses a proprietary kew\store\type named “JKS.” Types
are not case-sensitive; thus “jks” would be considered tliesamgas “JKS.”

\
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keytool works on any file-based keystore implementation. It treats the key—
store location that is passed to it at the command line as a filename and converts it

to a Fi 1 eIn putSt ream, from which it loads the keystore information. You also

can specify a keystore type at the command line. For example, if you have a pro-
vider package that supplies a keystore implementation for a keystore type called
“pkcle,” you can use the command

keysto r'e . type=pkcslz

If you do not explicitly specify a keystore type, keytoo'l chooses a keystore
implementation based on the value of the keystore.type property specified in
the security properties file. The KeyStor‘e class defines a static method, get-
DefaultType, that lets applications and applets retrieve the value of the key—
store.type property. The following line of code creates an instance of the

default keystore type:

KeyStore keyStore = KeyStore.getInstance(KeyStor‘e.getDefau'lt—TypeO);

4.4.2 Keytool

keytoo'l can be used to create public/private key pairs and self-signed certificates.
These keys and certificates are kept in a keystore, which can be managed also
through the use of keytoo'l. For example, you can display, import, and export
X509 V1, v2, and V3 certificates stored as files and to generate new, self-signed V1
certificates.4 ‘

keytoo'l allows users to specify any key pair generation and signature algo—
rithm supplied by any of the cryptographic service providers that are registered
with the Java runtime environment. The default key pair generation algorithm is
Digital Signature Algorithm (DSA). The size of a DSA key must be in the range
of 512 to 1,024 bits and must be a multiple of 64. The default key size for any
algorithm is 1,024 bits. The signature algorithm is derived from the algorithm of
the underlying private key. For example, if the underlying private key is of type
“DSA,” the default signature algorithm is SHAlwithDSA, and if the underlying
private key is of type “RSA,” the default signature algorithm is MDSwithRSA.

keytool ’s default implementation currently handles X509 certificates. Given

a sample DN string

 

4 Even though the underlying certificate package supports X509 v3 format, keytoo] gener-
ates only X.509 vl—formatted certificates due to command-line complexity in dealing with
various extensions and options. One can easily imagine extended or customized keytoo'l s
that take advantage of the v3 format.
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"CN=Mar'k Smith, 0U=JavaSoft, O=Sun, L=Palo Alto, S=CA, C=US"

you can use the following command (which must be typed on a single line) to gen-
erate a key for this DN:

keytoo'l —genkey —dname "CN=Mark Smith, 0U=Java$oft, O=Sun,
L=Palo Alto, S=CA, C=US" alias mark

a:

Keyword abbreviations are case—insensitive; for example, “CN,” “cn, and
“Cu” are all treated the same. However, the order of the keywords does matter in
that each subcomponent must appear in the designated order CN, DU, 0, L, S, C.
However, not all subcomponents need be present; subsets are allowed, for example:

CN=Mark Smith, OU=JavaSoft, O=Sun, C=US

If a DN component string is needed for a command but is not supplied on the
command line, the user will be prompted for the string.

keytoo'l can create and manage keystore key entries that each contain a pri-
vate key and an associated certificate chain. The first certificate in the chain con-
tains the public key corresponding to the private key. When a key is first
generated, the chain starts off containing a single element, a self-signed certifi-
cate. When a new public/private key pair is generated, the public key is wrapped
in a self-signed certificate. Later, after a CSR has been generated and sent to a CA,
the response from the CA is imported and the self-signed certificate is replaced by
a chain of certificates. At the bottom of the chain is the certificate (reply) issued
by the CA that is authenticating the subject’s public key.

The next certificate in the chain authenticates the CA’s public key. Often, this
is a self-signed certificate and also the last certificate in the chain. In other cases,
the CA might return a chain of certificates. Here, the bottom certificate in the
chain is the same, but the second certificate in the chain is a certificate signed by a
different CA, which is authenticating the public key of the CA that received the
CSR. The next certificate authenticates the second CA’s key, and so on, until a
self—signed root certificate is reached. Each certificate in the chain (after the first)
thus authenticates the public key of the signer of the previous certificate in the
chain. .

Many CAs return only the issued certificate, with no supporting chain, espe—
cially when the hierarchy is flat, that is, there are no intermediate CAs. In this
case, the certificate chain must be established from trusted certificate information
already stored in the keystore. ‘

An additional reply format, defined by the PKCS#7 standard, includes the
supporting certificate chain in addition to_the issued certificate. Both reply formats

can be handled by keytool. \\\
\\

\
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The root CA certificate is self-signed. However, the trust aspect of the root’s
public key does not come from the root certificate itself because anybody could
generate a self—signed certificate with the DN. Before you add the root CA certifi—

cate to your keystore, you should ensure its authenticity. For example, suppose a
certificate is in a file named /tmp/ce rt. Before you consider adding the certifi-
cate to your list of trusted certificates, execute a -printcert command to view its
fingerprints, for example:

keytoo1 ——printcert ——fi1e /tmp/cert

Owner: CN=11, 0U:11, 0:11, L=11, 5:11, C=11

Issuer: CN=11, OU=11, 0:11, L=11, 5:11, C=11
Seria1 Number: 59092b34

Va1id from: Thu Sep 25 18:01:13 PDT 1997 unti1: Wed Dec 24 17:01:13
PST 1997

Certificate Fingerprints:

MDS: 11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F .

SHAl: 20:36:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

In fact, before adding a certificate to the list of trusted certificates in the keystore,
keytoo1 prints out the certificate information and prompts you to verify it. You
then have the option of aborting the import operation.

keytoo1 can import a certificate from a file using, for example, in response to
the following command:

keytoo1 ——import ——a1ias joe ——Fi1e jcertfi1e.cer

This command imports the certificates in the file jce rtfi 1 e . car and stores it in

the keystore entry identified by the alias “joe.” Certificates read by the -import and
—printce11 commands can be either in Base64 or binary-encoded. You can import
either a certificate to add it to a list of trusted certificates or a certificate reply
received from a CA as the result of submitting a CSR to that CA. Which is

imported is indicated by the value of the -alias option. If the alias exists in the

database and identifies an entry with a private key, then importing a certificate
reply is assumed. keytoo1 checks whether the public key in the certificate reply
matches the public key stored with the alias. If the alias identifies an existing cer—
tificate entry, the new certificate will not be imported. Otherwise, the alias will be
created and associated with the imported certificate.

To export a certificate to a file, use the —export command, as in

keytoo1 —-export —-a1ias jane ——fi1e janecertfi1e.cer

This command exports jane’s certificate to the file j anecertfi 1 e . ce r. By default,
it outputs a binary—encode certificate, but it also can output a Base64 certificate.
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To print the contents of a keystore entry, you use the -1ist command, as in

keytool —list —alias joe

If an alias is not specified, the contents of the keystore are printed. The -list com-
mand by default prints the MD5 fingerprint of a certificate. If the -verbose option
is specified, it prints the certificate in human—readable format.

keytool has built—in default values for the following options:

—alias "mykey"
—keyalg "DSA"

—keysize 1024

—validity 90

—keystore the file named . keys tore in the user’s home directory
—fi 1 e stdin if reading; stdout if writing

Refer to the on-line JDK 1.2 documentation for a detailed explanation of all com-
mand options in keytoo'l. The following commands also output help information:

keytoo'l

keytool —he'| p

Keytool Usage Example

Following is an example to create and manage a keystore that has your public/
private key pair and certificates from entities you trust.

First, you need to create a keystore and generate the key pair. You can use the
following command, typed on a single line:

keytool ——genkey ——dname "cn=Mark Smith, ou=JavaSoft, o=Sun,

c=US" ——alias business ——keypass kpi135 ——keystore /working/
mykeystor‘e ——storepass ab987c ——validity 180

This command creates the keystore mykeysto re in the working directory
(assuming it does not already exist) and assigns it the password (sto r'epas's)
ab987c. It generates a public/private key pair for the entity whose DN (dname) has
a common name Mark Smith, organizational unit JavaSoft, organization Sun,
and two-letter country code US. It uses the default DSA key generation algorithm
to create the keys, both 1,024 bits long.

The command creates a self—signed certificate (using the default SHA lwithDSA

signature algorithm) that includes the\public key and the DN information. This

certificate will be valid for 180 days, a}d\is associated with the private key in a
keystore entiy referred to by the alias “bus'igss.” The private key is assigned the
password kpi135. \ \

\\
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The command can be significantly shorter if option defaults are accepted,
since you are prompted for any required values that are not specified and have no
defaults. Thus you could simply type the following:

keytool ——genkey

In this case, a keystore entry with alias “mykey” is created, with a newly gener-
ated key pair and a certificate that is valid for 90 days. The rest of the examples in
this section assume you executed the -genkey command without options specified
and that you responded to the prompts with values equal to those given in the -genkey
command used at the beginning of this section.

So far, all you have is a self-signed certificate. A certificate is more likely to
be trusted by others if it is signed by a CA. To get such a signature, you first gen—
erate a CSR, using the following command:

keytool ——certreq ——fi1e MarkJ.csr

This command creates a CSR (for the entity identified by the default alias
“mykey”) and puts the request in the file named Ma rkJ . cs r. You then submit this

file to a CA. The CA will authenticate you as the requestor (usually, this is done
off—line) and return a certificate, signed by it, authenticating your public key. (In
some cases, it will return a chain of certificates.)

You need to replace your self—signed certificate with a certificate chain, where

each certificate in the chain authenticates the public key of the signer of the previ—
ous certificate in the chain, up to the root CA. Before youimport the certificate
reply from a CA, you need one or more trusted certificates in your keystore. You
determine which one as follows.

1. If the certificate reply is a certificate chain, you need only the top certificate of

the chain (that is, the root CA certificate authenticating that CAs public key).

2. If the certificate reply is a single certificate, you need a certificate for the issu-

ing CA (the one that signed it), and if that certificate is not self-signed, you
need a certificate for its signer, and so on, up to a self-signed root CA
certificate.

The default keystore file in JDK 1.2 ships with five VeriSign root CA certifi-
cates, so you probably will not need to import a VeriSign certificate as a trusted

certificate in your keystore. But if you request a signed certificate from a different

CA and your keystore does not contain a certificate authenticating that CA’s pub-
lic key, you will need to import a trusted certificate from the CA.
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A certificate from a CA is usually either self-signed or signed by another CA
(in which case you also need a certificate authenticating that CA’s public key).
Suppose company ABC, Inc., is a CA and you obtain a file named ABCCA. ce r that

contains purportedly a self-signed certificate from ABC, authenticating that CA’s
public key. Be very careful to ensure the certificate is valid prior to importing it as
a trusted certificate. If you trust that the certificate is valid, then add it to your key-
store using the following command:

keytoo'l "import -—a'|1'as abc ——f1'1e ABCCA.cer

This command creates a trusted certificate entry in the keystore, with the data
from the file ABCCA. ce r‘, and assigns the alias “abc” t0 the entry.

Once you have imported a certificate authenticating the public key of the CA
to which you submitted your CSR (or there is already such a certificate in the
cacerts file), you can import the certificate reply, thereby replacing your self-
signed certificate with a certificate chain. This is the chain returned by the CA in
response to your CSR (if the CA reply is a chain) or one constructed (if the CA
reply is a single certificate) using the certificate reply and trusted certificates that
are already available in the keystore in which you imported the reply or in the
cacerts keystore file.

For example, suppose you sent your CSR to VeriSign. You can then import the
reply by using the following command (assume the returned certificate is named
VSMarkJ . cer):

keytool —-1'mport -trustcacerts ——f=1"le VSMar'kJ.cer'

Suppose you have used j ars1' gne r to sign a JAR file. Clients who want to use

the file will want to authenticate your signature. They can import your public key
certificate into their keystore as a trusted entry, or you can export the certificate
and supply it to your clients. For example, you can copy your certificate to a file
named MJ . cer (assume the entry is aliased by “mykey”):

keytoo‘l ——export ——a'|'ias mykey ——f1"|e MJ.cer

Using that certificate and the signed JAR file, a client can use jar'signer‘ to
authenticate your signature.

Suppose your DN changes, for example because you have changed depart-
ments or moved to a different city. You may still use the same public/private key
while updating your DN. For example, suppose your name is Susan Miller and

you created your initial key entry with\the alias “sMiller” and this DN:
\

"cn=Susan M1"|'|er‘, ou=F1'nance DeWent, o=BlueSoft, c=us"
\\

\\7,
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If you later change from the Finance Department to the Accounting Department,
you can still use the previously generated public/private key pair but update your
DN by doing the following.

1. Copy (clone) your key entry:

keytool ——keyclone "alias sM-iller ——dest sM'iHerNew

This command will prompt for the stor‘epass password and for the initial
and destination private key passwords, since they are not provided at the com-
mand line.

2. Change the certificate chain associated with the copy so that the first certificate

in the chain uses your new DN. Start by generating a self-signed certificate
with the appropriate name:

keytool ——se1fcert ——alias sMillerNew —dname "cn=Susan Miller,

ou=Accounting Department, o=BlueSoft, c=us"

3. Generate a CSR using the information in the new certificate:

keytool -—certreq —a1ias sMillerNew

and import the CA certificate reply:

keytool ——import ——alias sMillerNew ——fi1e VSSMillerNew.cer

4. You might want to remove the initial key entry that used your old DN:

keytool --de1ete ——a1ias sMiller

MS-Windows also includes a version of the keytool. On-line JDK 1.2 docu-

mentation explains its usage, which is essentially the same as the Solaris version
used in these examples.

4.4.3 Policy Tool

p01 -i cytooi enables you to create new policy files and modify existing ones. Start

p011 cytoo'l by typing the following at the command line to display the Policy
Tool window (Figure 4.3):

policytool

When you start the policy tool, the Policy Tool window displays, showing pol-
icy inforrnation for what is sometimes called the user policyfile. This information
includes the policy filename, the keystore URL (if any), and the codeBase and
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sFigure 4.3 policytoo‘l snapshot.

si gnedBy parts of each policy entry in the policy file. By default, this file is a file
named . java. policy in your home directory. If poli cytool cannot find this
file, it reports that fact and displays a blank Policy Tool window. (The first time
you run pol i cytool, a user policy file does not exist unless you have created one
manually.) You can then either open whatever policy file you want to work on or
create a new policy file, by adding policy entries, optionally specifying a keystore,
and saving the file.

For example, suppose you want to specify the keystore named “mykeystore”
in the /tes ts/ directory On a Solaris system, you would do the following.

 

1. Type the following URL into the text box labeled New KeyStore URL:
f1 1 e : /tests/mykeysto re

 
pol 'i cytool can read a keystore from any location that can be specified usinga URL.

 
2. Specify the keystore type, if needed, by typing the type into the text box New

KeyStore Type; for example, “JKS,” the proprietary keystore type supported
by Sun Microsystems. If you do not explicitly specify a keystore type, pol 1‘ — 
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cytool chooses a keystore implementation based on the value of the

keys to re . type property specified in the security properties file.

3. Click OK.

The text box labeled Keystore shows the keystore URL and type.

To add a new policy entry, do the following.

1. Click the Add Policy Entry button in the Policy Tool window to display the
Policy Entry dialog box.

2. Using this dialog box, specify an optional codeBase entry indicating the URL
location from where the code originates. For example, to indicate code from

the "local /3 avaSoft/TE STS/ directory, type the following into the CodeBase
text box:

Fil e: /JavaSoft/TESTS/

Also type into the text box the following:

a. An optional 51’ gnedBy entry that is the alias name from the keystore used
to reference the signer whose private key was used to sign the code. For
example, to indicate the alias “duke,” type duke into the signedBy text
box.

b. One or more permission entries that indicate which permissions are granted
to the code from the source indicated by the codeBase and si gnedBy val—
ues (or to any code if no such values are specified).

To add a new permission, do the following:

1. Click the Add Permission button in the Policy Entry dialog box to display the
Permissions dialog box. Then type or select the following:

a. A permission type. To specify a permission type defined by you or others,
type the permission type into the text box. Or double-click one of the built-

in types from the drop-down list labeled Permission.

The complete permission type name appears in the text box to the right of
the drop-down list.

b. A permission target name. If you selected a built—in permission type from
the Permission drop—down list and permissions of that type have specific
target name values, then the drop-down list labeled Target Name contains a
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list of those values from which you can choose. In the case that the target
name possibilities are infinite, but there are some built-in target name spec-
ifications that have special meanings, such target names will appear in the
drop-down list. For example, the special target name of “<<ALL FILES”
will appear in the list for File Permissions.

To specify a target name not available in the drop—down list, type the target
name into the text box to the right of the Target Name drop-down list.

c. One or more actions, if actions are relevant. Some permissions have only
a target name and no actions. For these, leave the text box to the right of the
Actions drop-down list blank. (It will automatically be darkened and
unavailable for this type of built—in permission.) For permissions requiring
action specifications, type the comma-separated list of actions into the text
box or select them from the drop—down list. For example, to specify both
read and write access to a file specified for a F1" 1 ePe mi 551' on, first select
read (or write—the order does not matter) from the list. The word read
appears in the text box. Then select Write; the word write will be appended,
preceded by a comma and a space.

d. A signedBy alias. Type the alias into the text box to the right of the Signed
By label, if needed. The 51' gnedBy value for a permission entry is optional.
If present, it indicates a signed permission. That is, the Permission class
itself must be signed by the given alias(es) in order for the permission to be
granted.

2. When you have finished specifying the permission information, click OK.

The new permission appears in a line in the Policy Entry dialog box. Add
more permissions by following the same sequence of steps.

Once you have finished adding policy entries, click Done in the Policy Entry
dialog box. The Policy Tool window displays, containing a line for each new pol—
icy entry. The lines contain only the codeBase and signedBy information (if
any). If neither was specified in the Policy Entry dialog box, all that displays is
codeBase <ALL>. If the policy entry contains any 51 gnedBy aliases that do not
yet existin your keystore, a warning displays to that effect when you close the
policy entry. In this case, click OK and either make a note to create such an alias
or edit the policy entry to fix the alias if it was wrong.

You also can edit or remove an existing permission. To edit an existing per-
mission, follow these steps. \\
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1. In the Policy Entry dialog box, click the line for that permission and then click

the Edit Permission button. (Alternatively, you can double-click the line for

that permission.)

The Permissions dialog box displays. It looks as it does when you are adding a

new permission, except that it is filled with the permission information for the

selected permission.

2. To change the information, either make new selections from the drop-down

lists or replace the information in the text boxes.

3. When you are done, click OK.

The Policy Entry dialog box displays the permission with any modifications

you made.

: To remove an existing permission, select the line for that permission in the

Policy Entry dialog box and then click the Remove Permission button.

If pol 1' cytool reports that warnings have been stored in the Warning Log,

you can view that log by clicking the View Warning Log command in the Edit

menu. For example, if you have a policy file with a keystore URL specifying a

keystore that does not yet exist, you will get such a warning at various times, for

example when you open the file, that will be stored in the Log. You can continue
to work on the policy file even if warnings exist.

MS—Windows includes a version of p01 1' cytool that works essentially in the

same way. '

4.4.4 Jar-signer

JDK 1.2 introduced a new tool called jar‘si gne r. Recall that the JAR enables the

packaging of class files, images, sounds, and other data in a single file for faster

and easier distribution. A tool named ja r enables developers to produce JAR files.

jarsigner can sign JAR files and verify the signatures and integrity of signed

JAR files. Attaching digital signatures to a JAR file helps to ensure that its authen-

ticity can be verified by recomputing the signature based on the current JAR con-

tent and comparing it with the stored signature. If the two do not match, this

means that either the content or the signature in the JAR file was modified. Thus,

as long as the private key is kept secret, someone without the private key cannot

forge a signed JAR file.

' jarsigner uses private key and certificate information from a keystore to

generate the digital signatures for JAR files. Thus, when using j arsi gner to sign

a JAR file, you first must specify the keystore location as a URL, as well as the

alias for the keystore entry containing the private key needed to generate the sig- - E

Wém Li.
J
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nature. For example, the following will sign the JAR file named MyJARFi 'I e . j ar
using the private key associated with the alias “duke” in the keystore named “mys-
tore” in the worki ng directory. Since no output file is specified, it overwrites
MyJARF'i l e. jar with the signed JAR file.

jars-igner —keystore /wor'king/mystore —storepass myspass
—keypass dukekeypasswd MyJARFile.jar duke

Because keystores may be of different types, if you do not explicitly specify a
keystore type, j arsi gner chooses a keystore implementation based on the value
of the keys to re .type property specified in the security properties file.

Currently, JDK 1.2’s default implementation of j arsi gner can sign only zip
files or JAR files created by the JDK jartool .5 It signs a JAR file by using either
SHAlwithDSA or MD5withRSA. A SHAlwithDSA algorithm is available from
the default SUN provider. -

When jarsi gner' is used to sign a JAR file, the output signed JAR file is
exactly the same as the input JAR file, except that it has two additional files placed
in the META—INF directory: a signature file with a SF extension and a signature
block file with a DSA extension.

A signature file (the SF file) looks similar to the manifest file in that, for each
source file included in the JAR file, it contains the filename, the name of the digest
algorithm used (SHA), and a SHA digest value, each given on a separate line. In
the manifest file, the SHA digest value for each source file is the digest (hash) of
the binary data in the source file. In the SF file, however, the digest value for a
given source file is the hash of the three lines in the manifest file for the source
file. The SF also, by default, includes a header containing a hash of the whole
manifest file. The presence of the header enables verification optimization, as
described later in the chapter.6

The SF file is signed, and the signature is placed in the DSA file. The DSA file
also contains, encoded within, the certificate or certificate chain from the keystore
that authenticates the public key corresponding to the private key used for signing.
j arsj gner can use the certificate (chain) to verify the signature.

A successful JAR file verification occurs if the signature(s) are valid and none
of the files that were in the JAR file when the signatures were generated were
changed since then. JAR file verification involves the following steps.

  5 JAR files are the same as zip files, e ept they also have a META—INF/MANIFEST.MF file.
Such a file will automatically be create hen j arsi gner signs a zip file.

6 The signed header can also be used to assist 'n\sealing a Java software package stored inside
a JAR such that no other class can belong toihe same package unless the other class is
signed by the same signature key. \\~
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1. Verify the signature of the SF file itself. The verification ensures that the sig-
nature stored in each signature block (DSA) file was in fact generated using the
private key corresponding to the public key whose certificate (or certificate

Chain) also appears in the DSA file. It also ensures that the signature is a valid
signature of the corresponding signature (SF) file and thus that the SF file is
tamper-free.

2. Verify the digest listed in each entry in the SF file with each corresponding sec-
tion in the manifest. The SF file may include a header containing a hash of the
entire manifest file. When the header is present, then the verification can sim-

ply check to see whether the hash in the header indeed matches the hash of the

manifest file. If that is the case, verification proceeds to the next step. Other-
wise, the hash in each source file information section in the SF file must be

checked to determine whether it equals the hash of its corresponding section in
the manifest file. The hash of the manifest file that is stored in the SF file. header

might not equal the hash of the current manifest file, for example when one or
more files are added to the JAR file (using the jartoo'l) after the signature
(and thus the SF file) was generated. When the jartool is used to add files,
the manifest file is changed (sections are added to it for the new files), but the
SF file is not. Given that the interest here is in only those signed files, a verifi-
cation is still considered successful if signatures and hashes of these files
verify.

3. Verify each file that is mentioned in the SF file. 3' ar'too'l reads each file in the

JAR file that has an entry in the SF file. While reading, it computes the file’s
digest and then compares the result with the digest for the file in the manifest

section. The digests should be the same, or else verification fails. If any secu—
rity-sensitive verification failures occur during the verification process, the
process is stopped and a security exception is thrown that is caught and dis-
played by jar‘si gne r‘.

A JAR file can be signed by multiple people simply by running ja r'si gne r on
the file multiple times, specifying the alias for a different person each time, as in
the following command sequence:

jarsigner‘ myBundle.jar susan

jarsigner myBund'le.jar kevin
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When a JAR file is signed multiple times, the resulting JAR file will contain
multiple SF and DSA files, one pair of SF and DSA files for each signature. In the
previous example, the output JAR file includes files with the following names:

SUSAN . SF

SUSAN . DSA

KEVIN. SF

KEVIN . DSA

Refer to the JDK 1.2 on-line documentation for j arsigner’s options.

jars1' gner Compatibility with JDK 1.1

In JDK 1.1, a tool called j avakey was provided to perform jar signing tasks. The
tool was too simplistic for the complicated range of tasks it had to handle and so

has been replaced in JDK 1.2 by keytoo'l and jarsi gne r. These new tools pro-
vide more features than javakey, including the abilities to protect the keystore
and private keys with passwords and to verify signatures in addition to generatingthem.

j avakey generated and managed an identity database that was a mixture
(speaking in JDK 1.2 terms) of security policy and keystore. The new keystore
architecture replaces the identity database and uses a more standard storage for—
mat. To ensure backward compatibility, JDK 1.2 has the following properties.

9 Importing the information from an identity database into a keystore is possible,
via keytool ’s -identitydb command. Only trusted identities in the identity
database may be imported into a JDK 1.2 keystore.

9 j arsi gner can sign JAR files that were previously signed by using j avakey.

0 j arsi gner can verify JAR files signed by using javakey. Thus it recognizes
and can work with signer aliases that are from a JDK 1.1 identity database rath—
er than a JDK 1.2 keystore.

Because the keystore plays a critical role in a security policy, the question
arises regarding how to integrate the binary-trust model—codified by j avakey in
JDK 1.1—and the fine-grained trust model in JDK 1.2. More specifically, when
the JVM encounters a JAR file /in an environment containing a mixture of identity

database, keystore, and securifiy policy, what permissions does the JVM grant to
the classes inside the JAR file A number of other questions must be considered
when deciding this.
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9 Q1: Is the JAR file signed?

0 Q2: Is the verified signer present in the identity database? Is the Signer trusted?

0 Q3: Has the verified signer been imported from the identity database into the
keystore?

9 Q4: Does the security policy explicitly grant permissions to the verified signer?

 
Table 4.1 shows how JAR files that were signed in JDK 1.1.x are treated in

JDK 1.2. Default permission denotes permissions that are granted to all code by
default, Policy permission denotes the permissions explicitly granted to a particu—
lar set of signers, and All permission denotes the permission that implies every
other permission. An entry containing yes/no means it can be either yes or no.

A few points presented in the table are worth explaining. First, if a signer
(identity/alias) is mentioned in the policy file, it must be present in the keystore in
order for the policy file to have any effect on the permissions granted. Second, the
policy file/keystore combination has precedence over a trusted identity in the iden-
tity database in that if such a combination exists, then the trusted signer is not
given all permission, as was the case in JDK 1.1. Third, untrusted identities
declared in JDK 1.1’s identity database are ignored in JDK 1.2. If an untrusted

identity is also present in the keystore and mentioned in the policy, then JDK 1.2’s
policy is in effect and the entry in the identity database is ignored. Otherwise, the
JAR file is treated as if it is unsigned. Finally, if a trusted identity is not present in
the keystore or is not mentioned in the policy, then the binary-trust model is
applied and the signer is given all permissions.

. Table 4.1 Permissions Granted when Mixing javakey and Keystorea  Q1 Q2 Q3 Q4 Permission

No Yes/no Yes/no Yes/no Default

Yes No Yes/no No Default

Yes No Yes Yes Default + policy
Yes Yes/untrusted Yes/no No Default

Yes Yes/untrusted No Yes Default

Yes Yes/untrusted Yes Yes Default + policy
' Yes Yes/trusted Yes/no No All

Yes Yes/trusted No Yes All

Yes Yes/trusted Yes Yes Default + policyM
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4.4.5 Code Signing Example

Here is an example of signing and verifying a JAR file. Suppose you have a JAR
file, bundle. jar, that you want to sign by using the private key of the user whose

keystore alias is “jane” in the keystore named “mystore” in the wo rki ng directory.
Suppose the keystore password is myspass and the password for jane’s private key
is j638k1m. You can use the following command (on a single line) to sign the JAR
file and name the signed JAR file sbundl e . jar.

jarsigner —keystore /working/mystore —storepass myspass

—keypass j638k1m —signedjar sbundle.jar bundle.jar JANE

The resulting SF and DSA files are JANE. SF and JANE.DSA.

To verify a signed JAR file, use a command such as

jarsigner —verify sbundle.jar

If the verification is successful, the message “jar verified.” displays. Otherwise, an

error message appears. You can get more information about the verification pro-
cess by using the —verbose option, as follows.

jarsigner -verify —verbose sbundle.jar

198 Fri Sep 26 16:14:06 PDT 1997 META—INF/MANIFEST.MF

199 Fri Sep 26 16:22:10 PDT 1997 META—INF/JANE.SF

1013 Fri Sep 26 16:22:10 PDT 1997 META—INF/JANE.DSA

smk 2752 Fri Sep 26 16:12:30 PDT 1997 AclEx.class

smk 849 Fri Sep 26 16:12:46 PDT 1997 test.c1ass

s = signature was verified

m = entry is listed in manifest
k = at least one certificate‘was found in keystore

jar verified.

If, when verifying, you specify the —certs option along with the -verify and
—verbose options, the output includes

9 certificate information Iior each signer of the JAR file, including the certificate1

type, \
9 the signer’s DN information (if, and only if, the certificate is an X509), and,

o the keystore alias for the signer, in parentheses, if the public key certificate in
the JAR file matches that in a\keystore entry.
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Here is an example.

jarsigner —keystore

198

199

1013

208

1087

smk 2752

Fri

Fri

Fri

Fri

Fri

Fri

Sep

Sep

Sep

Sep

Sep

Sep

mystore —verify

26

26

26

26

26

26

16:

16:

16

16:

16

l6

14:

22:

:22:

23:

:23:

:12:

06

10

10

30

30

30

PDT

PDT

PDT

PDT

PDT

PDT

—verbose —certs myTest.jar

1997 META—INF/MANIFEST.MF

1997 META—INF/JANE.SF

1997 META—INF/JANE.DSA

1997 META—INF/JAVATEST.SF

1997 META—INF/JAVATEST.DSA
1997 Tst.c1ass

X.509, CN=Test Group, 0U=Java Software, O=Sun Microsystems, L=CUP,
S=CA, C=US (javatest)

X.509, CN=Jane Smith, OU=Java Software, O=Sun, L=cup, S=ca, C=us
(JANE)

3U)

||
signature was verified

entry is listed in manifest

k = at Teast one certificate was found in keystore

jar verified.

If the certificate for a signer is not an X509, no DN information is available.

In this case, just the certificate type and the alias are shown. For example, if the
certificate is a PGP certificate and the alias is “bob,” you would get this as output:

PGP, (bob)

If a JAR file has been signed using the JDK 1.1 javakey tool, and thus the

signer is an alias in an identity database, the verification output includes an “i”
symbol. If the JAR file has been signed by both an alias in an identity database and
an alias in a keystore, the output includes the symbols “i” and “k.” When the -certs

option is used, any identity database aliases are shown within square brackets
(such as “duke” in the following example) rather than within the parentheses used
for keystore aliases; for example:

jarsigner —keystore mystore —verify —verbose —certs writeFile.jar

198 Fri Sep 26 16:14:06 PDT 1997 META—INF/MANIFEST.MF

199 Fri Sep 26 16:22:10 PDT 1997 META—INF/JANE.SF

1013 Fri Sep 26 16:22:10 PDT 1997 META—INF/JANE.DSA

199 Fri Sep 27 12:22:30 PDT 1997 META—INF/DUKE.SF
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1013 Fri Sep 27 12:22:30 PDT 1997 META—INF/DUKE DSA

smki 2752 Fri Sep 26 16:12:30 PDT 1997 writeFile.htm1

X.509, CN=Jane Smith, OU=Java Software, O=Sun, L=cup, S=ca, C=us
(JANE)

X.509, CN=Duke, 0U=Java Software, O=Sun, L=cup, S=ca, C=us [duke]

signature was verified

entry is listed in manifest

at least one certificate was found in keystore

at 1east one certificate was found in identity scope

73m
ll

.1.
H

jar verified.

MS-Windows includes a version of jarsi gner that works essentially in the
same way.

4.5 Managing Security Policies for Nonexperts

This chapter has discussed the technical details of deploying the JDK 1.2 security
architecture, as well as how to configure security policies, create keys and certifi—

cates, and sign Java classes. The overall complexity might appear overwhelming
to the nonexpert computer user. This complexity is the natural result of JDK 1.2’s

having a feature-rich security architecture that must cater to a wide range of needs,
such as those that arise in programming secure enterprise applications.

Two approaches are useful for the nonexpert when dealing with this complex—
ity. One is to call in professional care and management. In the case of an enter-

prise environment, system administrators and information resource departments
can be made responsible for establishing and deploying security policies on behalf

of other corporate employees. Technical details in this and preceding chapters
have shown that the Java security architecture design has taken this into account

and has introduced a number of ways for the user to defer or delegate security pol-
icy decisions to another party. For example, employees can be instructed to con-

figure theirbrowsers to point to a centrally controlled Web page to obtain the
current security policy. Or th company might want to customize a version of the

browser, which it then distrib tes to employees.

Developers of enterpris applications can also incorporate security policy
management in such a way th t the typical user does not have to deal with, or even

be aware of, the underlying security management features. In the case of the indi-

vidual outside of the corporate exhonment, Internet Service Providers (ISPs) are\
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also a good source for security advice and management. For example, many ISPs
already offer limited security mechanisms such as firewalls and junk mail filter-
ing. Thus it is quite reasonable for them to offer security policy management help
regarding executable content and mobile code.

The second approach to security management for the nonexpert is to focus on
the human interface. Field experience and controlled studies have shown that it is

extremely hard for the vast majority of computer and Internet users to understand

security issues, which range from terminology to solutions to consequences.
Moreover, different users interpret things so differently that it is very difficult to
describe security in the same way to a diverse group of people. Thus JDK 1.2 has
not attempted to provide a uniform human—computer interface to deal with secu-

rity policy and management. Instead, it expects that software vendors will inte—
grate such functionalities into their own system environments and customize the

contents and presentations to suit the particular set of users of their systems.
For example, computer systems vendors have traditionally shipped security

management software with their operation systems. In the near future, many such
systems will have Java technology bundled with or integrated into them. In these
cases, the accompanying security management software likely will be enhanced
with suitable components to manage Java security issues. The benefit of this is
that those people who use the management software can continue to use a familiar
software with a familiar interface.

Moreover, application developers can choose to embed security solutions in
such a way that they are invisible to users. For example, imagine a Java-based
application that provides AOL-style Internet access and user experience. Such an
application might use many Java features, such as dynamic component upgrading,
and provide services such as secure access to e—mail messages. Thus the applica—
tion will depend on extensive security technology, which calls for security man—
agement. In this case, the application can “lock in” the particular security policies
that are needed to make it work and not provide any customization capability in
this respect. As a result, apart from the initial login process, users do not have to
deal with any further security issues, and indeed might not even be aware that

complicated security decisions are being made throughout the application.
Security management and user interface remains an under-studied subject,

partly because the Internet brought security into the mainstream for the first time,
making it an everyday concern, and partly because older technologies have gener—
ally not had security as a design goal. As time goes by and extensive security solu—
tions are deployed ubiquitously, developers will gain valuable insight into this
important aspect of security technology.
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CHAPTER 5

Customizing the Security
Architecture

      
          

 
    

 
  

  
 

   

The ofi‘ice ofgovernment is not to confer happiness,
but to give men opportunity to work out happiness for themselves.

—William Ellery Charming

Chapter 4 discussed various customization possibilities when deploying the
Java security architecture. This chapter goes a step further to investigate some

concrete customization examples.

5.1 Creating New Permission Types

Recall that JDK 1.2 introduced a new hierarchy of typed and parameterized access

permissions that is rooted by an abstract class, java.securi ty.Perm1' ssion.

Other permissions are subclassed either from the Permission class or one of its

subclasses and generally should belong in packages of their own. For example, the

permission representing file system access is located in the Java I/0 package, as

java. 1 o . F1 '| ePerm‘i ssj on. is java. 1'0 Other permission classes that are new in
JDK 1.2 include

0 java . net . Socket Pe mi 551' on for access to network resources,

9 java .1ang . Ru nti mePe rmi ssi on for access to runtime system resources such

as properties, and

, 9 java. awt .AWTPermi ssion for access to windowing resources.

153
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In other words, access methods and parameters to most of the controlled

resources, including access to Java properties and packages, are represented by the
new permission classes.

Applications are free to add new categories of permissions. However, it is
essential that, apart from official releases, no one extend the permissions that are
built into JDK, either by adding new functionality or by introducing additional
keywords into a class such as java. l ang . Runti mePermi ssi on. Refraining from
doing this maintains consistency. To create a new pennission, the following steps
are recommended, as shown by an example.

Suppose an application developer from company ABC wants to create a cus—

tomized permission to “watch TV.” The first question is can you use an existing
Permission object such as the catch-all RuntimePe rmission object or do you
need a custom object. Assume that you want to create a new permission class,
named com . abc . Permission, which extends the abstract class java. secu-
rity. Permission (or one of its subclasses). You also design another new class,
com . abc .TVPermi ssion, that extends com.abc. Permission .1

public class com.abc.Permission extends java.security.Per-
mission

public class com.abc.TVPermission extends com.abc.Permission

You must make sure that the i mpl i es () method, among other methods,
is correctly implemented. If more—elaborate TVPermi ssi ons, such as channel —

l : 13 or channel —*, are allowed, then you might need to implement a TVPermi s—
sionCol l ecti on object that knows how to deal with the semantics of these.

Then, you need to include these new permission classes with the application pack-
age so that when your application needs them, they can be found by the class
loaders.

Next, you want the application’s resource management code, when checking
to see if a permission should be granted, to call AccessControl l er’s checkPer—

mission method, using a com . abc .TVPermi ssion object as the parameter.

public void switchChannel(int channel) {

com.abc.TVPermission tvper'm = new

com. abc.TVPer‘mission(channel, "watch");

AccessControl 1 er . checkPer‘mi ssion(tvperm);
/

} /

 

1 Class com.abc .TVPermi s ioncan directly extend java.securi ty. Permi ssion as the
intermediate com . abc. Perm ' ssi onis not always required.\
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Finally, to grant this permission to applications and applets, you' need to enter

appropriate entries into the security policy. How to configure the policy was dis-
cussed in detail in previous chapters. Basically, you put the string representation

of this permission in the policy file so that this permission can be automatically
configured for each domain granted the permission. An example of the policy file

entry specifying permission to watch channel 5 is as follows, which grants to any
code the privilege to watch channel 5.

grant {

permission com.abc.TVPermission "5", "watch”;
}

When adding a new permission, you should create a new permission class and
not add a new method to the security manager. Prior to JDK 1.2, in order to enable

checking of a new type of access, you had to add a new method to the Secu r1' ty-
Manager class. In JDK 1.2, the newly introduced checkPe rmission() method

applies to all permission types. '

To exercise the built-in access control algorithm, your code should always
invoke a permission check by directly calling the checkPe rmi ssi on() method of

the AccessControl 'I e r class. It is not essential that you examine whether there is

a class loader or a security manager. On the other hand, if the access control algo-
rithm should be left to the installed Secu ri tyManager class, then the method

Secu ri tyManager . checkPermi ssion() should be invoked instead. Although

the default implementation of SecurityManager' . checkPe_rmi ssi on() is to turn
around and call AccessControl 1 er . checkPermi ssi on ( ), the Secu ri tyMan~

ager class can be customized, as shown later in this chapter.

5.2 Composite Permissions

An application might need to be granted many permissions so that it can do its job.

Sometimes it is tedious to have to spell out, one by one, the permissions granted.

For example, a computer game might need permissions that includes socket per-

mission to connect to the game server, file permission to access a locally stored
high-score file, and property permission to look up the player’s expert level.

In this case, a “shorthand” that represents all of the said permissions would be

very helpful. One way to approach this issue is to create a composite permission,

such as a MyGamePe rm'i ssi on, that implies all of the required permissions. Then
the game software can be granted simply a MyGamePe rmi ssi on.

A composite permission may be implemented in any of several ways. A
Pe rm1' ssi on‘Co‘l 'l ecti on class is one example that can imply a range of different
types of permissions. Or a new class Composi tePe r'mi ssion can be defined. In
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fact, A1 1 Permission is just such a composite permission that implies every
permission.2

However, there is a hidden complication in doing this. When searching a
given set of permissions to match a required permission, the default implementa-
tion of ‘AccessCont r‘o11er‘ optimizes the search by looking up the type of the
required permission and examining only those given permissions with the appro-
priate types. For example, when a file access is required, the AccessContro11 e r
looks into all given Fi1ePermissions and also knows to check if there is an

A11 Permission. When a new type of permission is introduced that can imply a
different type of permission, the default AccessContr‘o11er does not know this

fact in advance. To solve this problem, JDK 1.2’s implementation could be

changed so that it always compares every given permission with the required per-
mission. This, however, would potentially have resulted in a big performance hit.
A better solution is to introduce a new type, say CompositePe mission, and

require that all composite permissions must be of this type. Then the default
AccessContro11er can be enhanced to look for all given CompositePe r‘mis-

si ons. In this way, performance is affected only when a large number of Compos-
itePer'm‘i ssi ons are granted.

5.3 Customizing Security Policy

The security policy first is processed by the P01 icy class and then is enforced by
the Securi tyManager‘, so customizing either class would customize the Po11'cy

implementation. As a first example, suppose you want to allow file access only
during office hours, 9 AM to 5 PM. That is, during office hours the security policy
decides who can access what files. Outside of office hours, no one can access any
file, no matter what the security policy says. To achieve this, you can implement a
T1' meOfDaySecu r‘i tyManage r class, as follows.

pub1ic c1ass TimeOfDaySecurityManager extends SecurityManager {
pub1ic void checkPermission(Permission perm) {

if (perm instanceof Fi1ePermission) {

Date d = new Date();

int i = d.getHours();

if ((1‘ >= 9) fiat (1' < 17))
super.che kPermission(perm);

  
2 We could have implemented a NoPe mi 5 s i on (or Ze roPe mi 5 s 1' on), for completeness, but

we did not manage to get this ' before code-freeze time.
\\
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else

throw new SecurityException("Out of office hour");
} else super.checkPermission(perm);

}

The Ti meOfDaySecu r'i tyManager checks to see if the permission to be checked
is a FilePe rmission. If it is, Ti meOfDaySecurityManager computes the cur-
rent time. If the time is inside office hours, it invokes the built-in Secu ri tyMan-

ager to check the security policy. Otherwise, it throws a security exception. An
application that wishes to enforce the given office hour restriction should install

this Ti meOfDaySecu r‘i tyManager' in place of the built-in Secu ri tyManage r.
The next example concerns the need to keep a record of resource access that

was granted or denied, for audit purposes later. Suppose you design a simple
Audi ti ngSecuri tyManager class as follows.

public class AuditSecurityManager extends SecurityManager {

public void checkPermission(Permission perm) {
Audit.enterRecord(perm);

super.checkPermission(perm);

}

Assume that you also have an Audi t class with a method to store an audit record

in a safe place. A variation is to enter the audit record after checkPe mi 5 si on and

also record the access control result. To do that, you first must catch the potential
Secu ri tyExcepti on thrown and then rethrow it later.

public class AuditSecurityManager extends SecurityManager {

public void checkPermission(Permission perm) {
try {

super.checkPermission(perm);

Audit.enterRecord(perm, true);

}catch (SecurityException e) {

Audit.enterRecord(perm, false);
throw e;

}

To implement complex security policies, you need to spend potentially a lot
more effort. For example, if you want to enforce a multilevel security policy, you
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first must create sensitivity labels for each object.3 The JVM also has to keep track
of interaction between objects and might have to change object labels dynamically
(as in a high water-mark model). Then the SecurityManager’s checkPe mi s—
51 on method will base its decision on the labels of the objects involved in the cur—
rent thread of execution. As another example, to implement a Chinese Wall
(separation of duty) model the JVM must not only monitor object interaction but
also keep a history of it. Much research and experimentation is needed in this area.

5.4 Migrating JDK 1.1-Based Security Managers

In JDK 1.1, the java.lang.Securi tyManager class was abstract. The default
implementations of the SecurityManager’s check methods always just threw
exceptions. The result was that developers who wanted their applications (such as
a browser) to install a security manager had to write their own security manager
and provide appropriate concrete implementations of the methods that threw
exceptions by default, primarily the check methods.

In JDK 1.2, Securi tyManager is concrete so that it can be used as—is as the
default security manager in applications. Moreover, its design is also greatly
improved. Thus developers who have written their own security manager classes
for their applications should consider migrating to JDK 1.2-based security
manager classes. In most cases, they should simply use the built-in default
implementation.

A number of technical details must be done right in this migration process.
This section is devoted to such issues. It begins with a review of JDK 1.1-style
security manager classes and then examines JDK 1.2’s improvements.

5.4.1 JDK 1.1 Security Manager Classes

In JDK 1.1, local applications and correctly digitally signed applets were trusted
to have full access to vital system resources, such as the file system, while
unsigned applets were not trusted and could access only limited resources. A
security manager was responsible for determining which resource accesses were
allowed. In both JDK 1.1 (and therefore in JDK 1.2), the Secu r1" tyManager class
contains many methods with names that begin with the word “check,” sometimes
called the check methods. Examples are checkRead and checkConnect. Various
methods in the Java libraries cal a check method before performing each poten—
tially security—sensitive operatio . A security manager routine simply returns if
the operation is permitted, but it throws a security exception if the operation is not  

3 This can be done perhaps most con‘veniently by adding a security—level attribute to the base
class, the Object class, but that wo\uld be a very significant change.

\\
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permitted. The security manager is thereby given an opportunity to prevent com-
pletion of the operation by throwing an exception. The only exception to this con-
vention is checkTopLeve'l Wi ndow, which returns a boo'l ean value instead.

The other methods contained in the Secu ri tyManage r class are those related
to Class loader existence and depth:

currentClassLoader

currentLoadedClass 5
inClassLoader

classLoaderDepth

It is important to understand these four methods, as JDK 1.1-style security
managers typically base access control decisions on two variables:

1. Whether a class with a class loader (that is, an applet in JDK 1.1) is on the stack 3

2. The class loader depth, that is, how far down the stack is the most recent-oc-

currence of a method from a class defined using a class loader

For example, a typical JDK 1.1-style security manager has a checkExit
method like the following.

public void checkExit(int status) {

if (inClassLoader()) {

throw new SecurityException();
}

}

Such a method would not allow Runti me . exi t to be called when any class
defined with a class loader (that is, an applet) is on the stack.

Here is another example.

public void checkCreateClassLoader() {

if (ClassLoaderDepth() == 2) {

throw new SecurityException();
}

}

This method says that the class loader depth cannot be 2. That is, the method that
called the method that called checkCr'eateC'l assLoader must not be in a class

defined with a class loader. For example, the constructor for java. 1 ang . C'l ass—
Loader‘ calls checkCr‘eateCl assLoader, which means the method that calls the

constructor for java. 1 ang . Cl assLoade r must not have a class loader. Thus

applets cannot directly create class loaders.
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There is a big difference between these two examples, even though both
attempt to prevent applets from performing actions. In the first example, check—

Exit will throw an exception if an applet is anywhere on the stack. Thus even

built-in JDK code cannot exit the JVM if it was called from an applet. In the sec—
ond example, JDK code is sometimes allowed to create a class loader (for exam—

ple, when class loader depth is not 2), even if it was called by an applet. That is
because the depth of a class with a class loader is used, and not the fact that there
is a class loader.

Previous chapters discussed how error-prone these class loader depth methods

can be. For the Secu r'i tyManager' in JDK 1.2, these methods are deprecated and

are no longer called by any check methods. They should not be used by any newly

written security managers and should be eliminated from existing security manag—
ers as well. However, the interfaces are maintained for backward compatibility.

5.4.2 Accommodating JDK 1.1 Security Managers on JDK 1.2

Sometimes an application with an old JDK 1.1 security manager has to be run on

the new JDK 1.2 platform. To accommodate this, the implementation of some

methods in the Secu r'1' tyManager class were changed to take into account new
features introduced in JDK 1.2.

The four methods mentioned in the previous section have all been modified in
three ways:

1. They skip system class loaders.

2. They stop checking after they reach a method on the stack that was marked

privileged.

3. They treat the current stack as fully trusted under certain circumstances.

Skip System Class Loaders

A system class loader is defined as a class loader that is equal to the system class
loader (as returned by ClassLoader.getSystemClassLoader‘) or one of its

ancestors. Since classes loaded by the system class loader include application

classes (loaded off of CLASSPATrI), extension classes, and the built-in JDK classes,
this modification enables these ethods to ignore such code.

This change was made bec use if you run an application that installs a custom

security manager and that secu ‘ty manager is loaded off of CLASSPATH in JDK

1.2, it will have a system class oader associated with it. Recall that application
classes did not have a class loaller in JDK 1.1. If you called a method such as
cl assLoaderDepth from within the custom security manager and that method\
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was not modified to ignore classes loaded by a system class loader, it would

always return 0, which would not be very useful. Similarly, if class loader meth-
ods were not changed so that they would skip system classes and a custom secu—

rity manager was loaded off of CLASSPATH, security holes might develop when the

security manager was making decisions based on, for example, disallowing an

operation if cl assLoade r'Depth() ==

Stop Checking after Reaching a Privileged Method

These four methods stop checking after they reach a method on the stack that was
marked privileged (according to JDK 1.2’s definition of privileged). This change

was needed because, for example, the JDK code need to open files for internal

use. Some JDK 1.1—style security managers have a checkRead method that looks

like the following.

public void checkRead(String file) {
if (inClassLoaderU) {

throw new SecurityException(..);
}

}

Without the modifications, such a check invoked when running JDK 1.2

would cause a security exception to be thrown when the JDK itself tried to read a

file when a class with a nonsystem class loader was on the stack. Under the new

security model, all JDK code that tries to perform an operation that its caller might

not be allowed to do has a doPri v1" 1 eged block around it. Modifying inCl ass—

Loader‘ just to examine the stack up to and including the frame containing the

privileged code results in the inC'l ass Loader method’s returning fa'l se. This in

turn allows the read to occur when the code at the top of the stack is JDK code and

is loaded by the system class loader or one of its ancestors.

JDK 1.2 attempts to maintain the stack depth as used in JDK 1.1—style security

managers. For example, the constructor for java. security. SecureClass—

Loade r has an explicit call to Secu r1" tyManage r‘ . checkC r'eateCl assLoade r,

even though the constructor for its super class (C'I ass Loader) also does. If the

check was not placed in the constructor for Secu reCl assLoade r, then a JDK

1.1—style security manager would allow untrusted code to extend Secu reC'I ass-

Loader and construct class loaders, since the class loader depth would always be

greater than 2.

When you are porting an existing JDK 1.1—sty1e security manager, first and

foremost you are advised to analyze all of your custom security manager methods

before running your security manager under JDK 1.2. Failure to do so could result

in a security hole or prevent the proper operation of the JDK. This is due to the
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fragile nature of JDK 1.1-style security managers. Where possible, you should
just use the default implementation of the JDK 1.2 Secu ri tyManage r. This helps
give users and administrators consistent behavior. If this is not possible, you need
to take great care when extending the Securi tyManager class and overriding
existing methods.

. For example, if you override the checkReadCStri ng fi 1 e) method so that it
always throws a security exception, then the JDK itself might fail to operate prop—
erly. That is, if some JDK code needs to open a file (to read a properties file or
load a JAR file, for example), then throwng a security exception for every read
attempt would cause such opens to always fail.

In general, you should override the default methods only if you intend to
loosen security, not to make it stronger. To tighten security, you should modify the
default policy files and/or install a custom java. security. Pol icy class or
object. When overriding security manager methods, you should place a call to the
super. check method at the point where your overridden check method would
throw an exception, as in the following example.

public class MySecurityManager extends SecurityManager {
public void checkRead(String file) {

if (someCustomSecurityCheckFails()) {
super.checkRead(file);

}

}

Here, if your custom security check fails, then supe r. checkRead gets called. The
default implementation of checkRead invokes checkPe mi 551' on, which by
default invokes the AccessCont roller. This latter invocation enables system
code that has done an AccessControl 1 er . doPrivi l eged before trying to read a
file to succeed in reading that file, thereby allowing the JDK itself to function cor-
rectly. All other code will be subjected to the current policy in effect, and an
access control exception will be thrown if access to that file has not been granted.
In other words, your JDK 1.1—style security manager code, by calling
super. check, will have given the JDK 1.2 built-in SecurityManager and
AccessControl l e r a chance to handle situations that are particular to JDK 1.2.

Nevertheless, you should ot call super. check methods when overriding
some of the check methods. T is is because the default implementation of these
methods might not be as strict s the policy you are implementing in the overrid-
den method. For example, the default checkAccess(Th readGroup 9) method
protects only the system thread group. If you intend to protect threads in distinct
thread groups from each other (er example, applet thread groups), then you do
not want to call super . checkAccess () at the point you would normally throw a\
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security exception, as doing that would defeat the purpose of your customized
check. Instead, you place a call to s u pe r . checkAcces s( ) as the first statement in

your overridden method, as in the following example.

public class MySecurityManager extends SecurityManager {

public void checkAccess(ThreadGroup g) {

// A call to super will throw an exception if someone

// is trying to modify the system thread group.

super.checkAccess(g);

// Now perform checks to see if the current caller

// can modify thread group 9, based on to which applet

// thread group the caller belongs.

'Il'eat Current Stack as Fully Trusted

The third change is related to the second and gives these four methods the follow-

ing behavior. When they encounter a doPri vil eged stack frame with a Secu ri —
tyContext (or AccessControl Context) that was granted All Pe rmi ssi on, they

treat the current stack as fully trusted, or in JDK 1.1’s sense, as if there is no class

loader on the stack. This is because a doPri vi l eged frame with All Pe rmi ssi on

indicates that the caller of this method must be allowed to do anything it wants,

regardless of what its callers are. This fully privileged situation is equivalent to
when a call to checkPe rmi ssi on with java.security.All Permission does

not result in a security exception.

5.4.3 Modifying JDK 1.1 Security Managers for JDK 1.2

This section lists the changes made to java . l ang . Secu ri tyManager methodsin

JDK 1.2. Also included are suggestions regarding any overrides you might want to

make. When modifying your JDK 1.1—style security manager class for JDK 1.2,

you really should try to use the built-in JDK 1.2 security manager as is, if at all

possible.

To start, as mentioned earlier, the following methods have been deprecated
and should not be used:

public boolean getInCheck();

protected ClassLoader currentClassLoaderC);

protected Class currentLoadedClass();
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protected int cl assDepth(Stri ng name);

protected int classLoaderDepth();

protected bool ean inC1ass(String name);

protected boolean inCiassLoaderO;

Following are the other methods.

protected boolean i nCheck;

This field is now deprecated, and any use of it within the JDK has been

removed. Instead of using inCheck, you should use checkPermi ssion along
with doPrivi l eged.

public SecurityManager( );

This constructor was modified to allow multiple Securi tyManager's to be
created, assuming the caller has RuntimePermission("createSecurity—
Manager") permission.

protected native C'Iass[] getClassContextO;

This method is unchanged. A call to it can be used to emulate the 1.1 behavior

of the methods that have been changed in JDK 1.2 (cu rrentClass Loade r,
cu rrentLoadedCl ass, c'l ass LoaderDepth, and i nC'l assLoade r).

public Object getSecuri tyConteXt( );

This method was modified to return a java. secu ri ty .AccessContro'l Con—
text object that is created with a call to java. secu rity.AccessCont r01 —
1 er . getContext. In JDK 1.1, it returned null by default.

public void checkPermission(Permission perm);

This method is new in JDK 1.2. It calls java.secur‘i ty.AccessControl —
'Ier . checkPermi ssion with the given permission. Internally, the JDK
always calls Securi tyManager‘.checkPermission instead of calling the
AccessCont roller directly. This allows people to override this method to
provide additional functionality, such as auditing and graphical user interface
(GUI) dialog boxes.

public void checikPermission(Permission perm, Object context);

This method is n in JDK 1.2. If context is an instance of Access-
ControlContext, en the method AccessControlContext.checkPer—

mission will be invoked on the given context with the specified permission.
If context is not an instance of AccessControl Context, then a security
exception is thrown.
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9 public void checkCreateClassLoader();

This method was modified to call checkPermi ssi on with the permission
Runti mePermi ssi on("createCl assLoader" ). If this method is overrid-

den, then a call to super . checkCreateCl assLoader should be made at the

point the overridden method would normally throw an exception, as the sec-
ond example in Section 5.4.2.2.

0 public void checkAccess(Thread t);

This method was modified. If the thread argument is a system thread—a
thread that belongs to the thread 'group that has a null parent—then this
method calls checkPermi ssi on with the RuntimePermi ssi on("modi fy—

Thread ") permission. Applications that want a stricter policy should override

this method, where supe r. checkAccess or its equivalent should be called by
the first statement in the overridden method. Moreover, the resulting method
also should check to see if the calling thread has the Ru nti mePe rmi s—

si on("modi fyTh read") permission, and if it does, return silently. This is to
ensure that code granted that permission (such as the JDK itself) is allowed to
manipulate any thread.

An example overridden method implementation follows.

public class MySecurityManager extends SecurityManager {
public void checkAccess(Thread t) {

// A call to super will throw an exception if someone

// is trying to modify a system thread.
super.checkAccess(t);

if (someCustomSecurityCheckForOtherThreadsFails()) {

// If the check fails, instead of throwing an
// exception, call checkPermission, which will

// throw an exception if needed.
checkPermission(new

RuntimePermission("modifyThread"));

}

9 public void checkAccess(ThreadGroup g);

This method was modified. If the thread group argument is the system thread
group (that is, it has a null parent), then this method calls checkPermi ssi on
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with the RuntimePermi ssion("modi fyThreadG r'oup") permission. Appli—
cations that want a stricter policy should override this method, where
super . checkAccess or its equivalent should be called by the first statement
in the overridden method. Moreover, the resulting method also should check
to see if the caller has the RuntimePermi ssion("modifyThr'eadGroup")
permission, and if it does, return silently. This is to ensure that code granted
that permission (such as the JDK itself) is allowed to manipulate any thread
group.

public void checkExitCint status);

This method was modified to call checkPe rmi ssi on with the Runtime-
Permi ssi on ( "exi tVM") permission. If this method is overridden, then a call
to super.checkExit should be made at the point the overridden method
would normally throw an exception.

public void checkExec(String cmd);

This method was modified to call checkPer‘mission with a FilePermis—
si on. If cmd is an absolute path, then it is passed as-is as the target for Fi l e—
Permission. If cmd is not absolute, then the special target <<ALL FILES» is
used. This target is used because it is difficult to determine the actual path of
the command that will be executed on an individual platform due to such
things as environment variables. If this method is overridden, then a call to
super. checkExec should be made at the point the overridden method would
normally throw an exception.

public void CheckLink(String lib);

This method was modified to call checkPermission with the Runtime—
Permission("loadLibrary»."+lib) permission. If this method is overrid-
den, then a call to super.checkLink should be made at the point the
overridden method would normally throw an exception.

public void checkReadCFileDescriptor fd);

This method was modified to call checkPermi ssion with the Runtime—
Permission("readFileDescri ptor'") permission. If this method is over—
ridden, then a call t super.checkRead should be made at the point the
overridden method w uld normally throw an exception.

public void checkifieadfitring file);

This method was modi ed to call checkPe rmi ssion with the Pi l ePermis—

sion('Fi l e, "read") pefission. If this method is overridden, then a call tosupe r . checkRead should e made at the point the overridden method would
normally throw an exception.
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9 public void checkRead(String file, Object context);

This method was modified. If context is an instance of AccessControl—

Context, then the AccessCont rol Context . checkPermi ssi on method will

be invoked on the given context with the FilePermission(file,"read")

permission. If context is not an instance of AccessControl Context, then a

SecurityException is thrown. If this method is overridden, then a call to

super. checkRead should be made at the point the overridden method would

normally throw an exception.

9 public void checkWrite(FileDescriptor fd);

This method was modified to call checkPermi ssi on with the permission

Runti mePermi ssi on("wri teFi l eDescri pto r"). If this method is overrid-

den, then a call to super . checkWri te should be made at the point the over-

ridden method would normally throw an exception.

o public void checkWrite(String file);

This method was modified to call checkPermission with the permission
Fi l ePe rmi ssi on ( fi l e , "wri te" ). If this method is overridden, then a call

to super.checkWrite should be made at the point the overridden method

would normally throw an exception.

9 public void checkDelete(String file);

This method was modified to call checkPe rmi ssi on with the Fi l ePe mi 5—

sion(fil e , "del ete") permission. If this method is overridden, then a call

to super . checkDel ete should be made at the point the overridden method

would normally throw an exception.

0 public void checkConnect(String host, int port);

This method was modified to call the checkPermi ssi on method with the per-

mission SocketPermi ssi on(host+" : "+port , "connect") if the port is not
—1 and with Socket Pe rmi ssi on ( host , " resol ve" ) otherwise. This behav-

ior is consistent with JDK 1.1, where a port equal to —1 indicates that an IP

address lookup is being performed. If this method is overridden, then a call to

supe r . checkConnect should be made at the point the overridden method

would normally throw an exception.

0 public void checkConnect(Stri ng host, int port, Object context);

This method was modified. If context is an instance of AccessControl—

Context and if the port is not —1, then this method invokes the method

AccessControl Context.checkPermission on the given context with the
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SocketPermissionChost+":"+port,"connect") permission. If the port
is —1, it uses SocketPermission(host,"resolve"). If context is not an
instance of AccessControlContext, then a security exception is thrown. If
this method is overridden, then a call to super.checkConnect should be
made at the point the overridden method would normally throw an exception.
public void checkListen(int port);

This method was modified. This method calls checkPe rmi ssi on with
SocketPermi ssion("local host:"+port,"listen") if the port is not 0
and with SocketPe rmi ssi on("l ocal host : 1024—" , "l i sten”) otherwise.
If this method is overridden, a call to super. checkLi sten should be made at
the point the overridden method would normally throw an exception.

public void checkAccept(String host, int port);

This method was modified to call checkPe r‘mi ssi on with the permission
SocketPer‘mi ssion(host+" : "+port , "accept"). If this method is overrid-
den, then a call to supe r' . checkAccept should be made at the point the over-
ridden method would normally throw an exception.

public void checkMulticastCInetAddress maddr);

This method was modified to call the checkPermission method with
the permission Soc|<etPermission(maddr.getHostAddressC),"accept,
connect"). If this method is overridden, then a call to super.check—
Multicast should be made at the point the overridden method would
normally throw an exception.

public void checkMulticast’(InetAddr‘ess maddr, byte ttl);

This method was modified to call checkPe rmi ssi on with the permission
SocketPermi ssion(maddr . getHostAddress () ,"accept , connect"). If this
method is overridden, then a call to supe r. checkMul ti cast should be made at
the point the overridden method would normally throw an exception.

public void checkProperti esAccess ( );

This method was modified to call checkPe rmi ssion with the Prope rtyPe r—
mission("*", "re d,write") permission. If this method is overridden,
then a call to super. heckPropertiesAccess should be made at the point
the overridden method\would normally throw an exception.\

public void checkPrbpertyAccessfitring key);

This method was modified\tr{call checkPe rmi ssi on with the P rope rtyPer—
mi ssi on ( key, " r‘ead ") permission. If this method is overridden, then a call

i____l
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to supe r . checkPr'opertyAccess should be made at the point the overridden

method would normally throw an exception.

0 public boolean checkTopLevelWindow(Object window);

This method was modified to call checkPe rmi ssi on with the permission
AWTPermi ssi on("showWi ndowWi thoutWarni ngBanner" ). It returns true

if a Secu ri tyExcepti on is not thrown and fal se otherwise. If this method is

overridden, then a call to super. checkTopLevel Wi ndow should be made at

the point the overridden method would normally return fal se and the value

of super . checkTopLevel Wi ndow should be returned. For example:

public cl ass MySecuri tyManager extends Securi tyManager {

public void checkTopLevelWi ndow(Obj ect window) {

if (someCustomSecu ri tyCheckFai l s( )) '{
r‘etu rn super . checkTopLevelWi ndow(wi ndow);

} else return true;

}

0 public void checkPrint]obAccess();

This method was modified to call checkPermi ssi on with the Ru nti me—

Permissi on("queuePri ntJob") permission. If this method is overridden,

then a call to super. checkPrintJobAccess should be made at the point the

overridden method would normally throw an exception.

9 public void checkSystemClipboardAccess();

This method was modified to call checkPe rmi ssi on with the AWTPe rmis—

si on( "accessCl i pboard") permission. If this method is overridden, then a

call to super.checkSystemClipboardAccess should be made at the point

the overridden method would normally throw an exception.

9 public void checkAthventQueueAccess();

This method was modified to call checkPermission with the AWTPermis—

sion( "accessEventQueue") permission. If this method is overridden, then

a call to super.checkAthventQueueAccess should be made at the point

the overridden method would normally throw an exception.

 
9 public void checkPackageAccess(String pkg);

This method was modified. It first obtains a comma-separated list of restricted

packages via a call to java.security.Security.getProperty("pack—

age.access") and checks to see if pkg starts with or equals any of the 
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packages. If it does, then checkPermission is called with the Runtime—

Permission("accessClassInPackage."+pkg) permission. If this method ’
is overridden, then super. checkPackageAccess should be called as the first
line in the overridden method.

public void checkPackageDefinition(String pkg);

This method was modified. It first obtains a comma-separated list of restricted
packages Via a call to java. security. Security.getProperty("pack—
age . defi nition") and checks to see if pkg starts with or equals any of the
packages. If it does, then checkPe rmission gets called with the Runtime—
Permi ssion ( "defi neC'l assInPackage . "+pkg) permission. If this method
is overridden, then super . checkPackageDefi ni tion should be called as the
first line in the overridden method.

pub'l i c void checkSetFactory( );

This method was modified to call checkPermission with the Runtime—

Permi ssi on("setFacto ry") permission. If this method is overridden, then
a call to super. checkSetFactory should be made at the point the overrid-
den method would normally throw an exception.

public void checkMemberAccess(C'|ass c'lazz, int which);

This method was modified. The default policy is to allow access to public
members, as well as access to classes that have the same class loader as the
caller. In all other cases, it calls checkPermission with the Runtime—
Permission("accessDeclaredMembers") permission. If this method is
overridden, then a call to super. checkMemberAccess cannot be made, as the
default implementation of checkMemberAccess relies on the fact that the

. code being checked is at a location on the stack with depth 4, as in the
following.

someCal'ler[3]

java. lang . Cl ass . someRefl ecti onAPI [2]

java. 1 ang . C'I ass . checkMemberAccess [1]

SecurityManager.checkMemberAccess [0]

To emulate this behavior,/ you would need to call getC'l assContext and

examine the class loader 15f the class at index 3, just as the default check—Membe rAccess method does.
\

if (which != Member.PUB|\_\IC) {
C'lass stack[] = getClassContextO;\\

\  
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if ((stack.1ength<4) ||

(stack[3].getClassLoader() != c1azz.getC1assLoader())) {
if (checkMemberAccessPermission == nu11)

checkMemberAccessPermission =

new RuntimePermission("accessDeclaredMembers");

checkPermission(checkMemberAccessPermission);

}

This is the only security manager method in JDK 1.2 that is still based on a
caller’s depth. This is to allow a caller to reflect on classes from the same class
loader from which it came.

0 public void checkSecurityAccess(String target);

This method was modified to call checkPermi ssion with a Securi ty—
Permi ssion object for the given target. If this method is overridden, then a
call to super . checkSecuri tyAccess should be made at the point the over—
ridden method would normally throw an exception.

9 public ThreadG roup getTh r‘eadGroup( );

This method is unchanged.
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CHAPTER 6  

 

Object Security

Ifwe cannot secure all our rights, let us secure what we can.
—Thomas Jefferson

As you develop applications using the Java language and platform, and espe-
cially when you consider security features, you knowingly or unknowingly
depend on the underlying object orientation, such as data encapsulation, object
name space partition, and type safety. This dependence is also evident in the pro-
tection of the runtime’s internal state, which is often represented and maintained
as Java objects. For example, when using the Java RMI (Remote Method Invoca-

tion) package to build distributed Java applications that span across multiple
JVMs, you will sometimes find it convenient or even necessary to protect the state
of an object for integrity and confidentiality when the state is transported from one
machine to another. These security requirements exist when concerned objects are
inside a runtime system (for example, in memory), in transit (for example, stored
in IP packets), or stored externally (for example, saved on disk).

This means that there is a whole range of object-level security issues that must
be correctly dealt with during system development, in addition to code—signing
and policy-driven, fine-grained access control mechanisms. This chapter provides
a number of techniques for achieving secure programming in Java. It also
describes three new interfaces for signing, sealing (encrypting), and guarding Java
objects. It begins by discussing some good general practices.

6.1 Security Exceptions

It is not uncommon for a piece of code to catch an exception thrown from lower-
level code and then either mask this by translating the exception into a higher-
level exception and rethrowing it or do some processing that results basically in its
“swallowing” the exception.
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For example, suppose you write a class MyPasswordChecker that checks a

user’s password when the user logs in. If the password check fails because the

usemame does not exist, it is bad practice to let the user know that the name has

been given wrongly, as doing this would help an attacker to guess available user—

names. Instead, a more general error message should be given, such as “login
failed.”

public class MyPasswordChecker {

public void check(String name, String password)

throws LoginFailureException {

try { .

// Call the real password checking routine.

} catch (NoSuchUserException e) {

throw new LoginFailureException():
}

}

However, you should be extremely careful when writing code that masks
or swallows security exceptions (such as AccessContr‘ol Exception and

Secu ri tyExcepti on) because such an action could potentially mask serious

security breaches. Sometimes developers get annoyed by a security exception and
take matters into their own hands by substituting their own security policy deci-
sion for that of AccessControl 1 er or Secu ri tyManager‘. This attitude of “just-
make—the—code-work” is very dangerous, especially if the code being developed
might be run as system code and thus be fully trusted. Often, software design can
be improved to avoid having to catch and swallow undesirable exceptions.

6.2 Fields and Methods

The Java language provides four access modes, which should be used properly:
public, protected, package private, and private. A common example of improper
use is the inexperienced programmer who, when writing a time zone class, mis-

takenly declares fields or Klanables that are publicly accessible:

public TimeZone d faultZone:

This design has a nu ber of problems. First, any person or code (including

untrusted code) can aciess this field and directly change the value of the default
time zone. Second, bec use multiple threads can access this field, some synchro-
nization is needed. Folldwing is a better design.
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private TimeZone defaultZone: null;

public synchronized void setDefault(TimeZone zone) {
defaultZone = zone;

}

Suppose that after product release, you decide that a security check is needed
to guard against unauthorized modification to the value of the default time zone,
defau'l tZone . You can add a couple lines of security code for the next release of
the product, as follows.

private TimeZone defaultZone: nuil;

public synchronized void setDefau1t(TimeZone zone) {
AccessControTler.CheckPermission(new

TimeZonePermission("setDefau1t”));
defaultZone = zone;

break backward compatibility. That is, a third-party application that runs on the
earlier version of the release will still have the same API available when running
on the new release. If the Ti meZone was directly exposed as a public field, as in
the first design, a security check (or a synchronization feature) could not be added
without changing existing APIs.

To recap, never design public fields or variables that can be accessed directly.
Instead, declare these fields as private and provide public accessor methods that
mediate access to such fields. Moreover, decide carefully, for every single public
method, if any such access is sensitive and might require a security check. If a
field is intended to be a constant, it can be public but should be made static and
final, as discussed in the next section.

Even when methods or fields are protected, as long as the class is not final a
subclass can access them. Because an attacker can easily provide a subclass, secu—
rity can be compromised. Similarly, package private methods and fields can be
accessed by any class in the same package. Unless the package is sealed properly,
an attacker can easily write a class and declare that class to belong to the package
and thus gain access to the package’s private methods and fields. Always review
all protected and package private methods and fields to see if they should be made
private, and if not, whether they should be accessed via accessor methods that per-
form security checks.
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6.3 Static Fields

A static field is a per-class field in the sense that its value is shared by all objects
instantiated from the same class. Static fields are a mine field that can cause unin—

tended interactions between supposedly independent subsystems. They offer even
less protection than do per-object fields. This is because in the latter case, you
must have an object’s reference in order to access the field, whereas in the former

case, anyone can access the field simply by using the class name directly.

As a result, directly exposed, nonfinal public static variables are extremely
bad news for security. Never design a class with such variables. Instead, declare
them as static private, with appropriate public static accessor methods. You still

have to decide carefully if these accessor methods should invoke security checks.
If you have a product already released with such dangerous variables, you

should review all nonfinal public static variables and carefully assess the potential
damage they can cause. You should eliminate the worst offenders even though
doing so breaks backward compatibility. For the rest, if you must keep them for
backward compatibility, you can only hope that no one can come up with a way to
exploit them.

Another dangerous aspect of static fields is that they can create type safety
problems if used casually. For example, a part of the system code might be
designed to share a static field internally and have defined a static field Foo. If Foo

is typed too loosely, an untrusted applet or application can plant an object of a
subtype or a type that is incompatible with what the system programmer intended
(for example, when Foo is declared to be of type java. 1 ang .Object). This kind
of substitution can create very subtle security problems that are difficult to detect
and correct.

6.4 Private Object State and Object Immutability

Most objects have private, internal states that should not be randomly modified.
Often, other objects need to query the state information. Many programmers
implement the query method using a simple r'etu r'n statement, as in the following
example. /

pubiic MyC'Iass {‘ ’

private boo‘lein status = false;

public void set\§tatus(boolean s) {. \

status = s, \}  
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public boolean getStatus() {
return 5;

}

}

No problem so far. However, if status is not a simple boo'l ean but rather an
array of boo'l ean, serious problems can occur, as here.

public MyClass {

private boolean[] status = null;

public boolean[] getStatus() {
return 5;

}

}

In this example, once another object obtains reference to status 5, it can change
the value of 5 without MyCl ass’s consent. This is because, unlike boolean, an
array of booleans (or an array of anything) is mutable. Such a consequence might
not be What the designer of MyCl ass intended, since uncontrolled modification to
internal state can lead to incorrect or even malicious results.

There is a twist to this problem. In the example with an array of booleans, the
simplest way to implement the setStatus method is as follows.

public void setStatus(boolean[] s) {
status = s;

l-

Again, because 5 is mutable, even after MyC'l ass has “taken possession of” it, the
object that supplied 5 to MyC'I ass can still change the value of 5. Many program—
mers overlook this possibility.

Thus you should never return a mutable object to potentially malicious code.
Further, you should never directly store a mutable object (by assigning the array
reference to an internal variable) if the source of the object can be malicious.
Because any code can potentially be malicious, the best practice is to clone or
copy the objects before returning or storing them.

This discussion brings up the important point of being able to distinguish
immutable objects from mutable ones and of the benefit of making objects immu-
table when possible. For example, array, Vector, and Has htabl e are mutable.

Even if an array contains only immutable objects (such as St ring), the array itself
is still mutable and anyone with a reference to the array can change entire objects
contained in the array.
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Figuring out whether an object is immutable is not always easy. This is
because immutability depends on what fields and methods are available and

whether objects used in those cases are also immutable. This analysis might need
to be done recursively, until all loose ends are tracked down and resolved to be
innnutable.

A final word on immutable objects. Because a password is typically seen as a
string of characters, it is common to see Java programs where a St ring is used to

represent a password. Given that a String is immutable, however, there is no way
for the application program to erase it when it is no longer needed. Its fate is left
entirely with the JVM’s garbage collector. For better security, you should use
char[ ] to represent passwords and wipe out the content of the array after use.

6.5 Privileged Code

Recall that you can use the Pr‘i vi 1 egedActi on interface to mark a segment of the
code as privileged in the sense that it can then make use of all of its own privi-
leges, independent of its callers’ privileges. If a piece of trusted code (such as sys-
tem code) is privileged, it can load libraries (including native code), read any file,
read system properties, and so on. This privileged code segment is a critical region
in which mistakes can be made and errors can be costly.

When writing privileged code, always try to keep it as short as possible. This
practice not only reduces the chance of making mistakes but also makes auditing
the code easier so as to ensure it is accessing only the minimal amount of pro-
tected resources.

Also, watch out for the use of tainted variables, that is, variables that are set

by the caller (that is, passed in as parameters) and thus are not under the control of

the privileged code. For example, consider the following privileged code to open a
file. '

public FileInputStream getFileToRead(String filename) {
FileInputStream fn =

(FileInputStream) AccessController.doPrivileged(new
PrivilegedAction() {

public Object run() {

return new FileInputStream(filename);
}

):
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This code can be used to open a font file when displaying images for applets, even
though the original calling applet classes would not have access to the actual font
file. However, this example has two flaws. One is that the method is public, so
anyone can call it. The other is that there is no sanity check on the filename, so the
code blindly opens any file requested by the caller. Either flaw alone can be a
problem.1 Combined, they create the worst possible situation, as now anyone can
call this method to open any file desired (assuming the privileged code has the
appropriate permissions, which any system code does).

The problem does not stop at public methods. Even if you change get Fi 'I e-
ToRead to be nonpublic, another public 'method can turn around and invoke

getFi 'I eToRead. In this case, once again a tainted variable is used indirectly by
privileged code and security could be compromised.

The most conservative way to design such methods is to make them private so
that they are not callable from outside of their own class.

6.6 Serialization

Serialization is a feature that allows a class’s or object’s nontransient state to be
serialized, for example for purposes of transporting the class or object to another
machine and then deserializing it at the destination. RMI uses serialization exten—
sively, as do other packages. Default implementations of two methods, write-
Object and readObject, are invoked for serialization and deserialization,
respectively. You also can write, for a serializable class, wri teObj ect and
readObj ect methods to customize how serialization and deserialization are done.

Security-conscious implementors should keep in mind that a serializable

class’s readObject method is, in effect, a public constructor that takes as input
the values for each of the serialized object’s nontransient fields and creates a new

object. As the input to readObj ect can be provided by an adversary whose goal is
to compromise the object under construction, you cannot safely assume that the
input content was generated Via the serialization of a properly constructed object
of the correct type. As a result, if readObject blindly takes its input, various
security problems can occur. This is true whether r'eadObj ect is implicit (that is,
default provided by the JDK implementation) or explicit (that is, provided by the
serializable class in question). In fact, the default implementation of readObj ect
does no validity checking whatsoever.

In good defensive programming, if a class has any private or package private
fields on which it maintains invariants, an explicit readObj ect method should be
 

1 A different set of problems can occur if untrusted code can take advantage of the first prob-
lem and cause a large number of arbitrary files to be opened.
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provided that checks that these invariants are satisfied, as in the following
example.

private void readObject(0bjectInputStream s) throws

IOException, ClassNotFoundException {
s.defau1tReadObject();

if (<invariants are not satisfied>)

throw new java.io.StreamCorruptedException();
}

Further, if a class has any object reference fields that are private or package
private, and the class depends on the fact that these object references are not avail-
able outside of the class (or package), the objects referenced by those fields must
be defensively copied as part of the deserialization process. That is, the subobjects
deserialized from the stream should be treated as untrusted input in that newly cre-
ated objects, initialized to have the same value as the deserialized subobjects,
should be substituted for the subobjects by the readObj ect method.

For example, suppose an object has a private byte array field, b, that must
remain private. Then b should be a clone of the result from readObject, as
follows.

private void readObject(0bjectInputStream s) throws

IOException, ClassNotFoundException {
s.defaultRead0bject();

b = (byte[])b.clone();

if (<invariants are not satisfied>)

throw new java.io.StreamCorruptedException();
}

Note that calling c'l one is not always the right way to defensively copy a sub-
object. If the clone method cannot be counted on to produce an independent copy
(and not to “steal” a reference to the copy), for example, when the class of the sub-
object is not final, an alternative way should be used to produce the copy.

As a conservative alternative to using an explicit readObj ect method to
ensure the integrity of deserialized objects, you can use a readResolve method

instead, calling a public constructor from within that method. This absolutely
guarantees that the deserialized object is one that could have been produced with a
public constructor.

Here are some more points to remember when implementing a Se ria'liz—
abl e interface. First, use the transient keyword for a field that contain direct

handles to system resources and information relative to an address space. Other-
wise, if a resource such as a file handle is not declared transient, then while the

object is serialized, that part of the state can be altered. This results in the object,
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after being deserialized, having improper access to resources and thereby causing
security breaches or errors. In fact, for correctness reasons, system-specific refer-
ences should be declared transient, since they make no sense in a different envi-
ronment in which the object is to be deserialized.

Second, as stated earlier in the section, you should guarantee that a deserial—

ized object does not have state that violates some invariants by having a class
define its own deserializing methods. Because deserializing an object is a kind of
object creation, if untrusted code has a restriction regarding object creation, then
you must ensure that that untrusted code has the same restriction when it deserial-

izes the object. To illustrate the problem; consider the situation when an applet
creates a frame. Security requires that a frame always be created to include a

warning label “This is an applet window.” If the frame is serialized (by anyone,
including the applet) and then deserialized by an applet, you must ensure that the
frame comes back up with the same warning banner.

Finally, when the state of a serialized object is outside of the JVM, such as

when being transported to another machine, the state can potentially be corrupted.
Although such corruption cannot be directly prevented by the Java security sys-
tem, measures can be taken to detect if corruption has occurred. One way is to

encrypt the byte stream produced by serialization. Another way is to use
S'i gnedObject and Seal edObject, which are covered later in this chapter. How-

ever, such measures do not come free, as cryptographic keys must be managed,
and this is far from a trivial task.

6.7 Inner Classes

The way inner class is currently defined has some security implications. Suppose
that class A has a private field that is accessible only from within the class itself.
Further suppose that A is rewritten to use inner classes and now encloses an inner

class B that requires access to the private field. During compilation, the compiler
automatically inserts into the definition of A a (package private) access method to

the private field so that B can call this method. A side effect of this design is that
any class in the same package as A and B will be able to call the access method

and thus access the private field that had been forbidden to it prior to the use of

inner classes. Transforming a field from private to package private does not natu-
rally lead to security problems, but you must take care to examine the conse-
quence of such transformations.

The use of inner classes has another design side effect. Suppose that class B is
a protected member of class A. After compilation, B’s class file defines itself as a

public class, but an attribute in the class file correctly records the protection mode

bit. Similarly, if B is a private member of A, B’s class file defines itself as having

Page 192 0f275



Page 193 of 275

} 182

   
Page 193 0f275

SIGNING OBJECTS

package scope with an attribute that declares the true access protection mode. This
side effect is not a problem by itself. However, any implementation of the JVM

must perform the extra check and honor the true protection attributes.

6.8 Native Methods

Be careful when using native methods. Native methods, by definition, are outside

of the Java security system. Neither the scourity manager nor any other Java secu-
rity mechanism is designed to control the behavior of native code. Thus errors or

security breaches in native code can be a lot more deadly. You should examine

native methods for the parameters they take and the values they return. In particu-
lar, if a native method does something that effectively bypasses Java security
checks, you must be very careful about the access mode of the method. If the

mode is public, then anyone can call the method. You must examine the conse—

quences and decide if that method should not be made private.

6.9 Signing Objects

Recall the earlier discussion about the need to protect an object when it is in seri-
alized state and during transit. In fact, quite a few situations exist when the authen-

ticity of an object and its state must be assured. Following are two examples.

9 An object acting as an authentication or authorization token is passed around

internally to any Java runtime as part of the security system functions. Such a

token must be unforgeable, and any (innocent or malicious) modification to its
state must be detected.

9 An object is transported across machines (JVMS), and its authenticity still
needs to be verified.

9 An object’ 8 state is stored outside of the Java runtime, for example, onto a disk
for JVM restarting purposes.

The class java. security.SignedObject defines interfaces to sign objects. A
series of nested SignedObjects can be used to construct a logical sequence of
signatures that resemble a chain of authorization and delegation.

A Si gnedObj ect contains the signed object and its signature. The signed
object must be serializable. Informally speaking, a Se r1' a1 1' zabl e object is an
object that implements the Se ri al 'i zab'l e interface. In this way, the interface sup—
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Figure 6.1 Signed objects.

ports readObjectO and writeObjectO method calls that convert an object’s
in-memory representation to and from an “on—the-wire” format that can be trans-

mitted Via input and output streams provided on the Java platform.
If the signature is not null, it contains a valid digital signature of the signed

object, as depicted in Figure 6.1. _
The underlying signing algorithm can be, among others, the NIST standard

DSA, using DSA and SHA-l. The algorithm is specified using the same conven—
tion for signatures, such as SHA-lwithDSA. Sun’s JDK always has a built-in
implementation of DSAWithSHA—l.

The signed object is a “deep copy” (in serialized form) of an original object.
Once the copy is made, further manipulation of the original object has no side
effect on the copy. In fact, a Si gnedObj ect is immutable.

The signature of the Si gnedObj ect class is as follows. For brevity, exception
declarations are not listed.

public SignedObject(Serializable object, PrivateKey signingKey,
Signature signingEngine)

public Object getObject();

public byte[] getSignature();

public String getAlgorithm();

public boolean verify(PublicKey verificationKey,
Signature verificationEngine);

This class is intended to be subclassed in the future so as to allow multiple sig-
natures on the same signed object. In this case, existing method calls in this base
class are fully compatible semantically. In particular, any get method returns the
unique value if there is only one signature and an arbitrary value from the set of
signatures if there is more than one signature.

The underlying signing algorithm is designated by a Si gnatu re parameter to
the sign and veri fy method calls. A typical usage for signing follows.
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Signature signingEngine =

Signature.getInstance(algorithm, provider);
SignedObject so =

new SignedObject(myobject, privatekey, signingEngine);

A typical usage for verification and object retrieval is as follows (having

‘ received SignedObject so): '

‘ Signature verificationEngi ne =
Signature.getInstance(algorithm, provider);

if (so.verify(pub1ickey, verificationEngineD
try { '

Object myobj so.get0bject();

} catch (ClassNotFoundException e) {};

ll
 

Obviously, for verification to succeed, the specified public key must be the
public key corresponding to the private key used to generate the signature. Also,
the security of Si gnedObject depends on the underlying digital signature algo-
rithm and key management system not having been compromised. The signing or
verification engine does not need to be initialized, as it will be reinitialized inside
the verify method.

getObj ect( ) in a sense loses typing information by returning an object of the
type Object, so the signed objects likely will be Used between collaborating par—
ties so that the correct casting can be done. For example, the previous code can be
changed as follows.

String myobject = new String("Greetings.");

tl‘y {

String myobj = (String) so.get0bject();

l
l

J if (so.verify(publickey, verificationEngine))
I } catch (ClassNotFoundException e) {};

In fact, it is probably more common to subclass Si gnedObj ect so that the

correct casting is performed inside the subclass. In this way, static typing informa-
tion is better preserved.

More importantly, for flexibility reasons, the verify method allows custom-

ized signature engines, which can implement signature algorithms that are not
installed formally as part of a cryptography provider. However, it is crucial that

the programmer writing the verifier code be aware what Signature engine is
being used, as its own implementation of verify is invoked to verify a signature.
In other words, a malicious Signature might choose to always return true on
verification in an attempt to bypass security checks. For similar reasons, verify
in the Si gnedObject class is final.
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Note that signing objects is different from signing JAR files that contain class

files, a feature that first appeared in JDK 1.1.x, Navigator 3.x, and IE 3.x. Signing

code facilitates the authentication of static code (bytecode in the case of Java tech—

nology, native code in the case of Microsoft’s Authenticode), while signing

objects deals with objects that might represent a complex transaction application

complete with active state information.

6.10 Sealing Objects

The previous section discussed the Si gnedObject class, which provides object

authenticity or integrity. The class Seal edObj ect, on the other hand, protects an

object’s confidentiality.2 These two classes may be combined to provide integrity
and confidentiality at the same time.3 In fact, from a technical design perspective,
designing the two classes into one would have been a better choice. In reality,

class Seal edObject is not even in the java.securi ty package. Instead, it is

included in the javax . crypto package as part of the Java Cryptography Exten—

sion (JCE) 1.2. This design choice was influenced solely by current US. regula-

tions regarding the exporting of encryption software.

Given any Serial 1 zabl e object, you can create a Seal edObject that

embeds in its content the original object, in serialized format. Then, a crypto-

graphic algorithm, such as DES, can be applied to the content to protect its confi—

dentiality. The encrypted content can later be decrypted by using the

corresponding algorithm with the correct decryption key.

After decryption, the original content can be obtained in object form through

deserialization. The content, while encrypted, is not available to anyone who does

not possess the correct decryption key, assuming that the cryptosystem is secure.

The signature of the Seal edObject class is as follows. Exception declara-
tions have been left out.

2 For those who are interested in researching the history of secure objects, earlier work on
secure network objects using Modula—3 and Oblique [78] is related to Si gnedObject and
Seal edObj ect in that there was the high—level abstraction of secure remote object invoca-
tion. However, this abstraction was implemented by establishing a secure communication
channel between the two end points and using this charmel to send plain object and data. In
other words, there was no explicit concept of signing and sealing objects directly.
Experience in security system design indicates that blindly signing encrypted data is some-
times dangerous. Thus you should create and sign a Si gnedObj ect first and then use that
SignedObject to create a SealedObject.
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public SealedObject(Serializable object, Cipher c);
public final Object getObject(Cipher, c);
public final Object getObject(Key, k)

public final Object getObject(Key, k, String provider);

A typical usage of this class is illustrated with the following code segments.
First, a DES key is generated and the DES cipher is initialized.

KeyGenerator keyGen = KeyGenerator.getInstance("DES");
SecretKey desKey = keyGen.generateKey();
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, desKey);

Next, a Sea'l edObject is created and encrypted. Note that the Cipher object
must be fully initialized with the correct algorithm, key, padding scheme, and so
on, before being applied to a Sea'l edObj ect.

String s_= new String("Greetings");

SealedObject so = new SealedObject(s, cipher);

Later, the original object is decrypted and retrieved.

cipher.init(Cipher.DECRYPT_MODE, desKey);
try {

String s = (String) so.get0bject(cipher);
} catch (ClassNotFoundException e) {};

As the case with SignedObject, Seal edObject may be subclassed to pro-
vide better static typing information.

6.11 Guarding Objects

Apart from SignedObject that provides object authenticity, JDK 1.2 introduced an
interface, Guard, and a class, GuardedObject, that can be used for object-level
access control. A java.securi ty.GuardedObject is an object that is used to
protect access to another object. Once an object is encapsulated by a Guarded-
Object, access to that object is controlled by the getObj ect method. This
method controls access to the object by invoking the checkGuard method on the
java. securi ty.Guard object that is guarding access. If access is not allowed, a
Securi tyExcepti on will be thrown. This is illustrated in Figure 6.2, where solid
lines represent method calls and dotted lines represent object references.
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Figure 6.2 Guard and GuardedObject.

Here, when a requestor asks for an object that is guarded by a GuardedObject
with a particular Guard, first the Guard is consulted, and then the reference to the

desired object is returned to the requester, if the Guard allows it.

One major motivation for having the GuardedObject class is that often the

supplier of a resource is not in the same execution context (such as a thread) as the
consumer of that resource. In this case, a security check within the security con—
text of the supplier is often inappropriate because the check should occur within
the security context of the consumer.

For example, when a file server thread responds to a request to open a file for
reading and this request comes from a different environment, the decision to sup-
ply the file must take into account information about the requestor, such as its
AccessControl Context. However, sometimes the consumer cannot provide the
supplier with such information, for several reasons.

0 The consumer program does not always know ahead of time what information

should be provided (this is quite possible in a dynamically changing environ-

ment), and it is undesirable (for example, for performance reasons) to engage
in a dialog or negotiation for each request.

0 The consumer regards information about its execution environment as being
too security-sensitive to pass on to another party. '

9 There is too much information or data to pass on.

9 Information about the execution environment of the consumer cannot be inter—

preted by the supplier.

To make access control in these situations more uniform and easier to pro-
gram, GuardedObject was designed so that the supplier of the resource can cre-

ate an object representing the resource and a GuardedObj ect containing an
embedded resource object and then provide the GuardedObj ect to the consumer.
In creating the Guardedobject, the supplier also specifies a Guard object such
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that anyone (including the consumer) can obtain the resource object only when
certain checks (for example, security checks) inside the Guard are satisfied.

Guard is an interface, so any object can choose to become a Guard.

Using Gua rd edObj ect has several benefits.

9 You can correctly embed the protection mechanism together with the protected

object so that access to the object is guaranteed to occur in a context in which

the protection mechanism will allow it.

Q You can delay an access control decision from time of request to time of actual

access, thus simplifying server programs.

0 You can replace often used access control lists with object stores and simply
store a set of GuardedObjects.

o The designer of a class does not need to specify the class’s protection seman-

tics, as long as any object instantiated from this class is protected within a

GuardedObj ect and the associated Gua rd object implements the correct secu-

rity checks.

6 The same programming pattern can be used to encapsulate an object’s protec-

tion mechanisms, which can differ for the object’s different method invoca-
tions, all inside a Guard.

Note that because the built-in base class java. secu r'i ty . Permission

implements the Gua rd interface, all permissions of this type, including all permis-

sions (on file, network, runtime, and other resources) defined in JDK, are instantly
usable as Guard objects.

The interface Guard contains only one method:

void checkGuardCObject object) ;

Following is the signature of the Gua rdedObj ect class.

pub'lic GuardedObject(Object object, Guard guard);

pub'lic Object getObjectO;

6.11.1 Examples of Using GuardedObject

The following example uses GuardedObj ect to encapsulate an object’s protection

semantics completely inside an appropriate Guard object. Note, this is just an
example. There is no plan to massively change such classes in JDK to use
GuardedObjeCt.  
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The class java. io . Fi l eInputSt ream is used as an example, and a stream is
created with a given filename, as follows:

FileInputStream fis = new FileInputStream("/a/b/c");

The implementation of this constructor must be aware that a security check needs

to be done, must understand what sort of check is appropriate, and also must

sprinkle all constructors with the same (or similar) checks. .

This class may be rewritten as follows. First, the class java. secu ri ty . Per—

mission is made a Guard object by the addition of a new method defined as
follows.

public abstract Permission implements Guard {

public void checkGuar‘dO {

AccessControl'ler‘.checkPer'mi ssi on(this);

}

This implementation ensures that a proper access control check takes place within

the consumer context, when access to the stream is first requested.

' Now the provider side of the code can be simply as follows.

FileInputStream fis = new Fi'IeInputStream("/a/b/c");

FilePermission p = new FilePermission("/a/b/c", "read");

GuardedObject g = new GuardedObject(fis, p);

After object 9 is passed to the consumer, the following code will recover the

Fi 'I eInputSt ream, but only if the consumer is permitted to obtain read access to
the file "/a/b/c".

Fi'leInputStream fis = (FileInputStr'eam) g.get0bject();

Note that the implementation of Fi l eInputSt ream itself need not be secu—

rity-aware (as long as it is always protected by a GuardedObject). This design

does not further perform security checks once a Fi l eInputSt ream is returned to

the consumer. This is the same behavior implemented in the Fi l eInputSt ream

class today.

Another potential application of GuardedObject is in the implementation of

deferred object requests in the Java IDL (interface definition language) or a simi-

lar product. The obvious implementation of this CORBA—style API is to spin a

separate thread in the ORB implementation to actually make the (deferred)

request. This new thread is created by the ORB implementation, so any informa—

tion about what code originated the request is lost, thereby making security check-

ing difficult, if not impossible. With GuardedObject, the new thread can simply
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return a properly guarded object. This forces a security check to occur when the

requestor attempts to retrieve the object.

Guard and Gua rd edObj ect can be extended (subclassed) to implement arbi-

trary guarding semantics. For example, the Guard object can check for signature

information on class files, thus resulting in a design that is similar to the Gate pat-
tern and the Permit class in the Java Electronic Commerce Framework [20]. In

fact, the guard concept in GuardedObj ect is similar to the well-known guard con-

cept in programming language research. It has been used elsewhere, albeit mostly

in specialized forms, for example as a pattern [16]. Its combination with

java. security . Permission is a novel feature that makes Guard very powerful

for access control on the Java platform.

As another example, hypothetically we can radically rewrite the PE '1 eInput— '

St ream class as follows. For every constructor that does not take a Guard object 9

as the parameter, a suitable Guard is automatically generated. For every access

method (such as read (bytes )), the uniform security check in the form of
g . checkGuardO is invoked first.

As with Si gnedObject, subclassing GuardedObject can better preserve
static typing information, where the base classes are intended to be used between

cooperating parties so that the receiving party should know What type of object to
expect.
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CHAPTER 7
 

Programming Cryptography

Security is the chiefpretence ofcivilization.
—George Bernard Shaw

Earlier chapters briefly covered some of the basic concepts of cryptography, as
well as code signing and the use of certificates, which depend on public-key cryp-
tosystems. This chapter goes behind the scenes to look at the Java Cryptography
Architecture (JCA) that underlies the APIs and the tools.

JCA first appeared in JDK 1.1. It had fairly limited functionalities that
included APIs for digital signatures and message digests. JDK 1.2 significantly
extends the JCA into a framework for accessing and developing cryptographic
functionality for the Java platform. Loosely speaking, JCA encompasses the parts
of the JDK 1.2 security API that is related to cryptography, such as the new certif-
icate management infrastructure that supports X.509 v3 certificates. It also

includes a provider architecture that allows for multiple and interoperable cryp-
tography implementations, as well as a set of associated conventions and specifi-
cations.

JCA logically covers both the crypto APIs defined in JDK 1.2 and the JCE

(Java Cryptography Extension) 1.2, which provides features for encryption, key
exchange, MAC (message authentication code), and a number of other encryp-
tion—related classes. Thus the JDK and JCE together provide a comprehensive set
of platform-independent cryptography APIs. At this time, the JCE is released sep-
arately as an extension to the JDK, in accordance with U. S. regulations concern—
ing the export of cryptography. This chapter covers architectural issues that span
JDK and JCE but focuses detailed discussion only on those interfaces that are partof JDK.

 

1 A companion book on JCE 1.2 is planned.
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7.1 Design Principles

The design of JCA is guided by two principles:

9 ‘ Algorithm independence and extensibility

0 Implementation independence and interoperability

Algorithm independence is achieved by defining types of cryptographic ser-
vices classes, called service classes, that provide the functionality of these crypto-
graphic algorithms. Examples include the MessageDi gest, S1" gnatu re, and
KeyFacto ry classes.

Implementation independence is achieved by using a provider—based architec-
ture. I discussed the general idea of providers in Chapter 4. A provider in the con-
text of JCA means a Cryptographic Service Provider (CSP), a package or set of
packages that implement one or more JCA cryptography services, such as digital
signature algorithms, message digest algorithms, and key conversion services. An
application may simply request a particular type of object (such as a Si gnatu re
object) that implements a particular service (such as the DSA signature algorithm)
and receive an implementation from one of the installed providers. If desired, it
may instead request an implementation from a specific provider. Providers may be
updated transparently to the application, for example when faster or more secure
versions are available.

An example is random number generation. JDK 1.1 contains a platform—
independent implementation that can be inefficient on some machines. In addi-
tion, the implementation is hard-coded and cannot be easily customized. JDK 1.2
enables you to easily configure a customized service that utilizes good random
number sources available on a particular platform, such as Linux.

Given the general nature of the API design, implementation interoperability is
obtainedin the sense that even though various implementations might have differ—
ent characteristics, they can work with each other, such as using each other’s keys
or verifying each other’s signatures. For example, when the appropriate key fac—
tory implementations are installed, for the same algorithm a key generated by one
provider would be usable by another and a signature generated by one provider
would be verifiable by another. This would apply even though one provider might
be implemented in software, while the other is implemented in hardware and one
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CSP #1 CSP #2 CSP #3

Figure 7.1 JCA architecture.

might be platform-independent, while the other is platform-specific. The interface

design is also extensible in that new algorithms that fit in one of the supported ser-
vice classes can easily be added.

Figure 7.1 depicts the architectural outline of JCA. By following the two
design principles given earlier, JCA brings major benefits to the cryptographic
software market. On the one hand, application software developers have only one
set of APIs (JCA) to worry about, no matter what algorithms they choose to use or

what provider packages they install. 0n the other hand, crypto toolkit or library
vendors can compete with each other in intellectual property (for example, pat—
ented algorithms and techniques) and performance optimization, While maintain-
ing full interoperability with each other at the level of JCA APIs.

7.2 Cryptographic Services and Service Providers

JCA introduces the notion of the CSP. In JDK 1.1, a provider could, for example,
contain an implementation of one or more digital signature algorithms, message
digest algorithms, and key generation algorithms. JDK 1.2 adds five services:

9 Key factories

o Keystore creation and key management

9 Algorithm parameter management
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9 Algorithm parameter generation

9 Certificate factories

JDK 1.2 also enables a provider to supply a random number generation (RNG)
algorithm. '

Each JDK installation typically has one or more provider packages installed,
and users may add new providers statically or dynamically. Each provider is
referred to by a unique name. Users may configure their runtimes with different
providers and specify a preference order for each. JCA offers a set of APIs that

allow users to query which providers are installed and What services they support.
If the application requests a specific provider, only objects from that provider are
returned. If no specific provider is given, then a default provider is chosen. When
multiple providers are available, a preference order is established. This is the order
in which providers are searched for requested services. When a requested service
is not provided by the most preferred provider, the next desirable provider is
examined, and so on.

For example, suppose you have two providers installed in your JVM,
Providerl and Provider2. Further suppose that Providerl implements
SHAlwithDSA and MD5 while Provider2 implements SHAlwithDSA,
MD5withRSA, and MD5.

If Providerl has preference order 1 (the highest priority) and Provider2 has
preference order 2, then the following behavior will occur.

0 If you are looking for an MD5 implementation, and both providers supply
such an implementation, the Providerl implementation is returned because
Providerl has the highest priority and thus is searched first.

9 If you are looking for an MD5withRSA signature algorithm, Providerl is first

searched. No implementation is found, so Provider2 is searched. An imple—
mentation is found there and returned.

0 If you are looking for a SHAlwithRSA signature algorithm, neither installed
provider implements it, so a NoSuchA'I go r1' thmExcepti on is raised.

Sun’s version of the Java runtime environment comes stande with a default
provider, “SUN.” Other Java runtime environments might not necessarily supply  
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the “SUN” provider. The “SUNT’ provider package includes implementation of the
following:

9

O

The Digital Signature Algorithm (DSA), described in NIST FIPS 186

The MD5 (RFC 1321) and SHA—l (NIST FIPS 180—1) message digest algo-
rithms

A DSA key pair generator for generating a pair of public and private keys suit-

able for the DSA algorithm

A DSA algorithm parameter generator

A DSA algorithm parameter manager

A DSA key factory providing bidirectional conversions between (opaque)

DSA private and public key objects and their underlying key material

A proprietary SHAlPRNG pseudorandom number generation algorithm, fol-
lowing the recommendations in the IEEE P1363 standard

A certificate factory for X509 certificates and CRLs (Certificate Revocation

Lists)

A keystore for the proprietary keystore type named “JKS”

A service class defines a cryptographic service in an abStract fashion without

a concrete implementation. A cryptographic service is always associated with a

particular algorithm or type. It either

0

O

6

provides cryptographic operations (like those for digital signatures and mes—

sage digests),

generates or supplies the cryptographic material (keys or parameters) required

for cryptographic operations, or

generates data objects (keystores or certificates) that encapsulate cryptograph—

ic keys (which can be used in a cryptographic operation) in a secure fashion.

An example service class is 51' gnatu re. It provides access to the functionality

of a DSA. A DSA key factory supplies a DSA private or public key (from its

encoding or transparent specification) in a format usable by the initSign or

i m' We r1" fy methods, respectively, of a DSA S'i gnatu re object.
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Programmers can request and utilize instances of the service classes to carry
out corresponding operations. The following service classes are defined in
JDK 1.2.

o MessageDi gest. Used to calculate the message digest (hash) of specified data.

9 S1" gnatu re. Used to sign data and verify digital signatures.

o KeyPai rGene rato r. Used to generate a pair of public and private keys suit-
able for a specified algorithm.

0 KeyFactory. Used to convert opaque cryptographic keys of type “Key” into
key specifications (transparent representations of the underlying key material),
and vice versa.

9 Ce rti fi cateFacto r‘y. Used to create public key certificates and CRLs.

o KeyStore. Used to create and manage a keystore.

9 Al go ri thmParamete r's. Used to manage the parameters for a particular algo—
rithm, including parameter encoding and decoding.

9 A1 go r1' thmParamete rGene rato r. Used to generate a set of parameters suit-
able for a specified algorithm.

9 Secu reRandom. Used to generate random or pseudorandom numbers.

A generator and a factory differ within the JCA context in that the former cre-
ates objects with new contents, whereas the latter creates objects from existing
material (for example, an encoding).

A service class provides the interface to the functionality of a specific type of
cryptographic service (independent of a particular cryptographic algorithm). It
defines APIs that allow applications to access the specific type of cryptographic
service it provides. The actual implementations (from one or more providers) are
those for specific algorithms.

The application interfaces supplied by a service class are implemented in
terms of a SPI (service provider interface). That is, for each service class, there is

l a corresponding abstract SPI class that defines the SPI methods that cryptographic
service providers must implement.k The Signature service class, for example, provides access to the functional-
ity of a DSA. The actual implementation supplied in a Si gnatur‘eSpi subclass} would be that for a specific kind of signature algorithm, such as SHAlwithDSA,

1 SHAlwithRSA, or MD5withRSA. 
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nnn  
API class

SPI class

Figure 7.2 API and SP1 in a
service class.

An instance of a service class—the API object (and of its corresponding SPI

class)—is created by a call to the getInstance method of the service class. The

instance encapsulates (as a private field) an instance of the corresponding SPI

class, the SPI object. All API methods of an API object are declared final, and

their implementations invoke the corresponding SPI methods of the encapsulated

SPI object (Figure 7.2).

The name of each SPI class is the same as that of the corresponding service

class, followed by Spi. For example, the SPI class corresponding to the Si gna—
tu re service class is the S1" gnatur'eSpi class. Each SPI class is abstract. To sup-

ply the implementation of a particular type of service, for a specific algorithm, a

provider must subclass the corresponding SPI class and provide implementations
for all of the abstract methods.

Another example of a service class is the MessageD‘l gest class, which pro-

vides access to a message digest algorithm. Its implementations, in Message—

D1' gestSp‘i subclasses, may be those of various message digest algorithms such as
SHA-l, MD5, or MD2.

As a final example, the KeyFactory service class supports the conversion

from opaque keys to transparent key specifications, and vice versa. The actual

implementation supplied in a KeyFacto r‘ySpi' subclass is for a specific type of

key, for example, DSA public and private keys.

Implementation for various cryptography services are provided by JCA CSPs,

such as “SUN.” A provider may also implement services that are not generally

available, such as one of the RSA—based signature algorithms or the MD2 message

digest algorithm.

7.2.] Installing and Adding 3 Provider

The basic mechanism for obtaining an appropriate object, for example a

Signature object, is as follows. Suppose you are a user and you request such an

object by calling the getInstance method in the Si gnatu re class, specifying the
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name of a signature algorithm (such as SHAlwithDSA), and, optionally, the name
of the provider Whose implementation is desired. For example, a government
agency might want to use a provider implementation that has received government
certification.

Also suppose that the provider you want to use is not installed. When a
requested provider is not installed, a NoSuchProvi derExcepti on is thrown, even
if a different installed provider implements the algorithm requested. So you need
to install a provider. This involves installing the provider package classes and con—
figuring the provider. There are two ways to install the provider classes:

9 Place a zip or JAR file containing the classes anywhere on CLASSPATH.

0 Supply the provider JAR file as an installed or bundled extension.

Next, you need to add the provider to the list of approved providers. You can
do this statically or dynamically. To do it statically, edit the Java security proper-
ties file. One property you can set there is

security.provider.n=masterClassName

This declares a provider and specifies its preference order, n. The preference order
is the order in which providers are searched for requested algorithms.

maste rC'l assName specifies the provider’s master class, which is specified in
the provider’s documentation. This class is always a subclass of the Provider
class. Its constructor sets the values of various properties that are required for the
JCA APIs to look up the algorithms or other facilities implemented by the pro-
vider. Suppose that the master class is COM. abcd . provider .Ade and that you
want to configure Abcd as your third preferred provider. To do so, you add the fol-
lowing line to the security properties file:

security.provider.3=COM.abcd.provider.Abcd

You also can register a provider dynamically by calling either the addPro—
vi de r or inse rtProvi de rAt method in the Secu ri ty class. This type of registra-
tion is not persistent and can be done only by trusted programs that are granted
sufficient permission. For example, the following policy specifies that only code
that is loaded from a signed JAR file from beneath the /home/sys admi n/ directory
on the local file system can call methods in the Security class to add or remove
providers or to set security properties. (The JAR file’s signature can be verified
using the public key referenced by the alias “sysadmin” in the user’s keystore.)

grant signedBy "sysadmin", codeBase "file:/home/sysadmin/*" {
permission java.security.SecurityPermission

"Security.insertProvider.*”;
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permission java.security.SecurityPermission

”Security.removeProvider.*";

permission java.security.SecurityPermission

"Security.setProperty.*";
};

7.3 Cryptography Classes

This section describes the design and usage of classes that are central to JCA.

7.3.1 java . security . Security

The Security class manages installed providers and security—wide properties. It
contains only static methods and is never instantiated.

public static String getAlgorithmPropertyCString algName,
String propName)

public static int insertProviderAt(Provider provider,
int position)

public static int addProvider(Provider provider)

public static void removeProvider(String name)

public static Provider[] getProvidersO

public static Provider getProvider(String name)

public static String getProperty(String key)

public static void setProperty(String key, String datum)

The getProvi de rs () method returns an array containing all of the installed
providers (technically, the Provider subclass for each package provider). The
order of the providers in the array is their preference order. The addProvider
method adds a provider to the end of the list of installed providers. It returns the
preference position at which the provider was added, or —1 if the provider was not
added because it was already installed.

The i nse rtProvi derAt method attempts to add a new provider at a specified
position in the preference order in which providers are searched for requested
algorithms (if no specific provider is requested). A provider cannot be added again
if it is already installed. If the given provider gets installed at the requested posi—
tion, the provider that used to be at that position, as well as all providers with a
position greater than that position, are shifted down, toward the end of the list of

installed providers. This method returns the actual preference position at which
the provider was added, or —1 if the provider was not added because it was already
installed.
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The removeProvi der method removes the named provider. It returns silently
if the Provider is not installed. When the specified provider is removed, all pro-
viders located at a position greater than where the specified provider was are
shifted up one position, toward the head of the list of installed providers. To
change the preference position of an installed provider, you must first remove it
and then reinsert it at the new preference position.

7.3.2 java . security . Provider

Each Provide r class instance has a name, a version number, and a string descrip-
tion of the provider and its services. You can query the Provide r instance for this
information by calling the following methods:

public String getName()

public double getVersion()

public String getInfo()

7.3.3 java . security . MessageDi gest

The MessageDi gest class is a service class designed to provide the functionality
of cryptographically secure message digests such as SHAl or MD5. A crypto-
graphically secure message digest takes arbitrary—sized input (a byte array) and
generates a fixed—size output, called a digest or hash. It should be computationally
infeasible to find two messages that hash to the same value, and the digest should
not reveal anything about the input that was used to generate it. Thus message
digests are sometimes called the “digital fingerprints” of data.

To compute a digest, you first create a message digest instance. As with all
service classes, a MessageDi gest object for a particular type of message digest
algorithm is obtained by calling the getInstance static factory method on the
MessageDigest class:

public static MessageDigest getInstance(String algorithm)

The algorithm name is case—insensitive. For example, all of the following calls are
equivalent:

MessageDigest.getInstance("SHA")

MessageDigest.getInstance(“sha")

MessageDigest.getInstance("sHa")

A caller may optionally specify the name of a provider, which will guarantee
that the implementation of the algorithm requested is from the named provider:
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public static MessageDigest getInstance(String algorithm,

String provider)

A call to the getInstance method returns an initialized message digest

object; thus it does not need further initialization.

Next, to calculate the digest of some data, you supply the data to the initial-

ized message digest object. This is done by making one or more calls to one of the

update methods:

public void update(byte input)

public void update(byte[] input)

public void update(byte[] input, int offset, int len)

After the data has been supplied by calls to update methods, the digest is com-

puted using a call to one of the digest methods:

public byte[] digest()

public byte[] digest(byte[] input)

public int digest(byte[] but. int offset, int la“)

The first two methods return the computed digest. The third stores the computed

digest in the provided buffer buf, starting at offset. '| en is the number of bytes in

burc allotted for the digest. The method returns the number of bytes actually stored

in buf. A call to the digest method that takes an input byte array argument is

equivalent to making a call to public void update(byte[] input) with the

specified input, followed by a call to the digest method without any arguments.

7.3.4 java. security . Signature

The Signature class is a service class designed to provide the functionality of a

cryptographic digital signature algorithm such as SHAlWithDSA and

MDSwithRSA. A cryptographically secure signature algorithm takes arbitrary-sized

input and a private key and generates a relatively short (often fixed—size) string of

bytes, called the signature. The signature has the following properties.

1. When the public key corresponding to the private key used to generate the sig-

nature is provided, it should be possible to verify the authenticity and integrity

of the input.

2. The signature and the public key do not reveal anything about the private key.

A Signature object can be used to sign data. It can also be used to verify

whether an alleged signature is in fact the authentic signature of the data associated

Page 212 of 275

201

 
F44



Page 213 of 275

202 CRYPTOGRAPHY CLASSES

with it. Signature objects are modal objects. That is, a Signature object is

always in a given state in which it may do only one type of operation. States are

represented as final integer constants defined in their respective classes (such as

Si gnatu re). A Signature object may have three states:

1.UNINITIALIZED

2.SIGN

3.VERIFY

To sign or verify a signature, you create 21 Signature instance. As with all

service classes, a Si gnatu re object for a particular type of signature algorithm is

obtained by calling the getInstance static factory method on the Signature
class.

public static Signature getInstance(String algorithm)

public static Signature getInstance(String algorithm,

String provider)

A Si gnatu re object must be initialized before it can be used. When it is first

created, a Signature object is in the UNINITIALIZED state. The Signature class

defines two initialization methods, ini tSi gn and ini tVeri fy, which change the

state to SIGN and VERIFY, respectively. The initialization method depends on

whether the object is going to be first used for signing or for verification. If for

signing, the object must first be initialized with the private key of the entity whose
signature is going to be generated. This initialization is done by calling the
initSign method:

public fi nal void i ni tSi gn(Pri vateKey pri vateKey)

This method puts the Signature object in the SIGN state.

If the Signature object is going to be first used for verification, it must be

initialized with the public key of the entity Whose signature is going to be verified.
This initialization is done by calling the i ni tVeri fy method:

public final void initVerify(PublicKey publicKey)

This method puts the Si gnatu re object in the VERIFY state.
If the Signature object has been initialized for signing (if it is in the SIGN

state), the data to be signed can then be supplied to the object. This is done by
making one or more calls to one of the update methods:

public final void updateryte b)

public final void update(byte[] data)

public ‘Final void updateryteH data, int off, int len)
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Calls to the update method(s) .should be made until all of the data to be signed

has been supplied to the Signature object.

To generate the signature, simply call one of the sign methods:

public final byte[] sign()

public final int sign(byte[] outbuf, int offset, int len)

The first method returns the signature result in a byte array. The second stores the

signature result in the provided buffer outbu f, starting at offs et. 1 en is the num—

ber of bytes in outbuf allotted for the signature. The method returns the number

of bytes actually stored. The signature is encoded as a standard ASN.1 sequence

of two integers, r and s.

A call to a sign method resets the Signature object to the state it was in

when previously initialized for signing via a call to ini tSi gn. That is, the object

is reset and available to generate another signature with the same private key, if

desired, Via new calls to update and si gn. Alternatively, a new call can be made

to ini tSi gn specifying a different private key or to ini tVe ri fy to initialize the

Si gnatu re object to verify a signature.

If the Si gnatu re object has been initialized for verification (it is in the

VERIFY state), it can then verify whether an alleged signature is in fact the authen-

tic signature of the data associated with it. The process begins by supplying the

data to be verified (as opposed to the signature itself) to the object. This is done by

making one or more calls to one of the update methods:

public final void update(byte b)

public final void update(byte[] data)

public final void update(byte[] data, int off, int len)

Calls to the update method(s) should be made until all of the data has been sup-

plied to the Signature object.

The signature can then be verified by calling the verify method:

public final boolean verify(byte[] encodedSignatUI‘E)

The argument must be a byte array containing the signature encoded as a stan-

dard ASN.1 sequence of two integers, r and s. This is an often—used, standard

encoding. It is the same as that produced by the sign method. The verify

method returns a bool ean indicating whether the encoded signature is the authen-

tic signature of the data supplied to the update method(s).

A call to the ve ri fy method resets the Si gnatu re object to the state it was in

when previously initialized for verification via a call to ini tVeri fy. That is, the

object is reset and available to verify another signature from the identity whose

public key was specified in the call to ini tVeri fy. Alternatively, a new call can

be made either to ini tVeri fy specifying a different public key to initialize the
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Si gnatu re object for verifying a signature from a different entity or to 1' m' tSi gn
to initialize the Si gnatu re object for generating a signature.

7.3.5 , Algorithm Parameters

JCA is designed to handle many crypto algorithms. These algorithms can be very
different. In particular, each tends to have unique requirements with regard to var-
ious parameters, such as key size and defined constant. To organize these parame-
ters, an algorithm parameter specification is defined for each algorithm and all
such specifications are divided into a small set of classes.

An algorithm parameter specification is a transparent representation of the
sets of parameters used with an algorithm. This means that you can access each
parameter value in the set individually, through one of the get methods defined in

the corresponding specification class (for example, DSAParameterSpec defines
getP, getQ, and getG methods, which access p, q, and g, respectively). By con-
trast, in an opaque representation, as supplied by the Al gorithmParamete rs

class, you have no direct access to the parameter fields. Rather, you can get only
the name of the algorithm associated with the parameter set (Via getAl go r1" thm)
and some kind of encoding for the parameter set (via getEncoded). You can call
the getPar‘ameterSpec method to convert an Al gori thmPar‘amete rs object to a
transparent specification.

Algorithm Parameter Specification Interfaces and Classes

This section discusses the algorithm parameter specification interfaces and classes
in the java. secu r1' ty and java . secu r'1' ty. spec packages:

9 Al gor'i thmParameterSpec

o DSAParameterSpec

9 Al gori thmParamete rs

9 Al gori thmParameterGenerator

A'l gori thmParameterSpec. This interface is the base interface for the transpar—
ent specification of cryptographic parameters. It contains no methods or constants.

Its only purpose is to group (and provide type safety for) all parameter specifica-
tions. All parameter specifications must implement this interface.

DSAParameterSpec . This class, which implements the Al gori thmParamete r—

Spec interface, specifies the set of parameters used with the DSA algorithm. It has
the following methods: ,  
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public BigInteger getPC)

public BigInteger getQ()

I . public BigInteger getGC)

These return the DSA algorithm parameters: the prime p, the subprime q, and the
base g.

Al gori thmParameters . This service class provides an opaque representation of
cryptographic parameters. As with all service classes, an object of it for a particu—
lar type of algorithm is obtained by calling the getInstance static factory
method (with a case—insensitive argument) on this class. A caller may optionally
specify the name of a provider, thereby guaranteeing that the algorithm parameter
implementation requested is from the named provider.

public static AlgorithmParameters getInstance(String algorithm)

public static AlgorithmParameters getInstanceCString algorithm,
String provider)

Once an Al go ri thmPar‘amete rs object is instantiated, it must be initialized

via a call to ini 1:, using an appropriate parameter specification or parameter
encoding.

public void init(AlgorithmParameterSpec paramSpec)
l public void init(byte[] params)

public void init(byte[] params, String format)

pa rams is an array containing the encoded parameters, and format is the name of

the decoding format. In the ini t method with a pa rams argument but no format
argument, the primary decoding format for parameters is used. The primary
decoding format is ASN.1, if an ASN.1 specification for the parameters exists.
Note that Al go rithmPa ramete rs objects may be initialized only once and thus
are not meant for reuse.

A byte encoding of the parameters represented in an Al go ri thmPa ramete rs
object may be obtained Via a call to the getEn coded method:

public byte[] getEncodedC)

This method returns the parameters in their primary encoding format.
To have the parameters returned in a specified encoding format, use this

getEncoded method:

public byte[] 9etEncoded(String format)
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If format is null, the primary encoding format for parameters is used, as in the
other getEncoded method.2

A transparent parameter specification for the algorithm parameters may be
obtained from an Al go ri thmParameters object via a call to the get Paramete r—
Spec method:

public AlgorithmPar‘ameterSpec getParameterSpec(Class paramSpec)

paramSpec identifies the specification class in which the parameters should be
returned. That class could be, for example, DSAParameterSpec.class to indi-

cate that the parameters should be returned in an instance of DSAParameterSpec
(which is in the java. security. spec package).

Al go ri thmParamete rGene rater. This service class generates a set of parame—
ters suitable for the algorithm that is specified when an Al go ri thmPar‘amete r—
Generator instance is created. To get an Al gori thmParameterGener‘ator‘

object for a particular type of algorithm, call the getInstance static factory
method on the Al go r‘i thmParamete r'Gene rator class.

public static Al gor'i thmParameterGenerator

getInstance(Stri ng algorithm)

public static Al gorithmParameterGenerator

getInstance(Stri ng algorithm, String provider)

The Al go r‘ithmParameterGene rator object can be initialized in either of
two ways:

9 Algorithm-independent

§ Algorithm-specific

The algorithm—independent approach uses the fact that all parameter genera-
tors share two concepts, those of a source of randomness and a size. Although the
concept of size is universally shared by all algorithm parameters, it is interpreted
differently for different algorithms. For example, in the case of parameters for the
DSA algorithm, the size is the prime modulus, in bits. When this approach is used,
any algorithm-specific parameter generation values default to some standard
values.

 

2 In the default Al gori thmParameter‘s implementation, supplied by the “SUN” provider,
the format argument is currently ignored.
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An i ni t method takes these two universally shared types of arguments. There
is also one that takes just a size argument; it uses a system-provided source of
randomness.

public void init(int size, SecureRandom random);
public void init(int size)

In the algorithm-specific approach, a parameter generator object is initialized
using algorithm-specific semantics, which are represented by a set of algorithm—
specific parameter generation values supplied in an Al go ri thmPa ramete rSpec
object.

public void i ni t(Al gori thmParameterSpec genParamSpec ,
SecureRandom random)

public void i ni t(Al gori thmParameterSpec genParamSpec)

In the generation of the system parameters in, for example, the Diffle—
Hellman scheme, the parameter generation values usually consist of the size of the
prime modulus and the size of the random exponent, both specified in bits. The
Diffie—Hellman algorithm is outside of the scope of JDK and is supplied as part of
ICE 1.2.

Once you have created and initialized an Al go rithmParameterGene r'ator'

object, you can generate the algorithm parameters using the generateParame-
te rs method:

public AlgorithmParameters generateParametersO

7.3.6 java. security.Key and java. security.spec.KeySpec

This section describes the following interfaces and their subinterfaces:

o Key

9 Publ i cKey

O Pri vateKey

o KeySpec

Key

Key is the top—level interface for all opaque keys. It defines the functionality
shared by all opaque key objects. All opaque keys have three characteristics:

0 An algorithm—~the key algorithm for that key

6 An encoded form

0 A format

Page 218 of 275



Page 219 of 275

  
Page 219 of 275

208 CRYPTOGRAPHY CLASSES

The key algorithm denotes the algorithm such as DSA or RSA associated with

key that will work in combination with related algorithms such as MDSwi thRSA

and SHAlwi thRSA. The name of the algorithm of a key is obtained using the get
method

public String getAlgorithmO

The encoded form is an external encoded form for the key used when a stan-
dard representation of the key is needed outside of the JVM, as when transmitting
the key to some other party. The key is encoded according to a standard format
(such as X509 or PKCS#8) and is returned using this get method:

public byte[] getEncodedO

The format is the format of the encoded key and is returned by this get
method:

public String getFormatO

Keys are generally obtained through key generators, certificates, key specifi—
cations (using a KeyFactory), or a KeyStore implementation that accesses a key-
store database used to manage keys. Using a KeyFacto ry, you can parse encoded
keys in an algorithm-specific manner. Similarly, you can use Ce rti fi cate—
Factory to parse certificates.

Pub] 1'cKey and PrivateKey

The Publ i cKey and PrivateKey interfaces both extend the Key interface. They
are methodless interfaces used for type safety and type identification.

A key specification is a transparent representation of the key material that
constitutes a key. If the key is stored on a hardware device, its specification may
contain information that helps identify the key on the device. A key’s being trans-
parent means that you can access each key material value individually, through
one of the get methods defined in the corresponding specification class. For
example, DSAPrivateKeySpec defines getX, getP, getQ, and getC. methods to
access the private key x and the DSA algorithm parameters used to calculate the

key: the prime p, the subprime q, and the base g.

A key may be specified either in an algorithm-specific way or in an algorithm—
independent encoding format such as ASN.1. For example, a DSA private key
may be specified by its components x, p, q, and by using its DER encoding.
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KeySpec

The KeySpec interface contains no methods or constants. Its only purpose is to
group (and provide type safety for) all key specificationsjAll key specifications
must implement this interface.

DSAPrivateKeySpec. This class implements the KeySpec interface, specifying
a DSA private key with its associated parameters. It has the following methods
that return the private key x and the DSA algorithm parameters used to calculate
the key: the prime p, the subprime q, and the base g:

public BigInteger getX()

public BigInteger getP()v
public BigInteger getQ()

public BigInteger getG()

DSAPu bl i cKeySpec. This class implements the KeySpec interface, specifying a
DSA public key with its associated parameters. It has the following methods that
return the public key y and the DSA algorithm parameters used to calculate the
key: the prime p, the subprime q, and the base g:

public BigInteger getY()

public BigInteger getP()

public BigInteger getQ()

public BigInteger getG()

RSAPrivateKeySpec . This class implements the KeySpec interface, specifying
an RSA private key. It has the following methods to return the RSA modulus n and

private exponent d values that constitute the RSA private key:

public BigInteger getModulus()

public BigInteger getPrivateExponent()

RSAPri vateCrtKeySpec . This class extends the RSAPrivateKeySpec class and
specifies an RSA private key, as defined in the PKCS#1 standard, using the Chi-
nese Remainder Theorem (CRT) information values. It has the following methods,
in addition to the methods inherited from its superclass RSAPr'i vateKeySpec:

public BigInteger getPublicExponent()

public BigInteger getPrimeP()

public BigInteger getPrimeQ()

public BigInteger getPrimeExponentP()

public BigInteger getPrimeExponentQ()

public BigInteger getCrtCoefficient()
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These methods return the public exponent e and the CRT information integers: the
prime factor p of the modulus n, the prime factor q of n, the exponent d mod (p —
l), the exponent d mod (q — 1), and the CRT coefficient (inverse of q) mod p. A11
RSAprivate key logically consists of only the modulus and the private exponent.
The presence of the CRT values is intended for efficiency.

RSAPubl i cKeySpec. This class implements the KeySpec interface and specifies
an RSA public key. It has the following methods that return the RSA modulus n

and public exponent e values that constitute the RSA public key:

public BigInteger getModulus()

public BigInteger getPublicExponent()

EncodedKeySpec. This abstract class implements the KeySpec interface and

represents a public or private key in encoded format. Its getEncoded and get—
Format methods return the encoded key and the name of the encoding format,
respectively:

public abstract byte[] getEncoded();

public abstract String getFOFmatC);

PKCSBEncodedKeySpec . This subclass of EncodedKeySpec represents the DER
encoding of a private key, according to the format specified in the PKCS#8 stan—

dard. Its getEncoded method returns the key bytes, encoded according to the
PKCS#8 standard. Its getFo rmat method returns the string "PKCS#8". The
X509EncodedKeySpec class, which is a subclass of EncodedKeySpec, represents
the DER encoding of a public or private key, according to the format specified in
the X509 standard. Its getEncoded method returns the key bytes, encoded
according to the X509 standard. Its getFo rmat method returns the string
"X . 509".

7.3.7 java . security. KeyFactory and

java . securi ty . cert . Certi f1' cateFactory

This section reviews the factory classes for generating keys and certificates.

KeyFactor-y

The KeyFactory class is a service class designed to provide conversions between

opaque cryptographic keys (of type Key) and key specifications (transparent repre-
sentations of the underlying key material). Key factories are bidirectional. That is,
you can build an opaque Key object from a given key specification (key material)
or retrieve the underlying key material of a Key object.
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Multiple compatible key specifications may exist for the same key. For exam—

ple, a DSA public key may be specified by its components y, p, q, and g or by

using its DER encoding according to the X509 standard. A key factory can be

used to translate between compatible key specifications. Key parsing can be

achieved through translation between compatible key specifications. For example,

when you translate from X509EncodedKeySpec to DSAPubl icKeySpec, you basi-

cally are parsing the encoded key into its components.

To get a KeyFacto ry object for a particular type of key algorithm, you call the

getInstance static factory method on the KeyFacto ry class.

public static KeyFactory getInstance(String algorithm)

public static KeyFactory getInstance(String algorithm,
String provider)

A caller may optionally specify the name of a provider, which will guarantee

that the implementation of the key factory requested is from the named provider of
the Key Facto ry. '

If you have a key specification for a public or private key, you can obtain an

opaque Pu bl i cKey or PrivateKey object from the specification by using the

generatePubl i c or gene ratePri vate method, respectively:

public PublicKey generatePublic(KeySpec keySpec)

public PrivateKey generatePrivate(KeySpec keySpec)

Conversely, if you have a Key object, you can get a corresponding keySpec
object by calling the getKeySpec method:

public KeySpec getKeySpec(Key key, Class keySpec)

KeySpec identifies the specification class in which the key material should be

returned. It could be, for example, DSAPu bl i cKeySpec . cl ass to indicate that the

key material should be returned in an instance of the DSAPubl i cKeySpec class.

Certi 'Fi cateFactory

The Ce rti fi cateFacto ry class is a service class that defines the functionality of a

certificate factory. A certificate factory is used to generate certificate and CRL objects
from their encodings. A certificate factory for an X509 certificate must return certifi-

cates and CRLs that are instances ofjava. security. cert .X509Certifi cate and

java.secu ri ty.cert.X509CRL, respectively. '
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9 To get a Ce rti fi cateFacto ry object for a particular certificate or CRL type,
call the getInstance static factory method on the Certi fi cateFactory
class:

public static CertificateFactory getInstance(String type)

0 To specify a provider, use this getInstance method:

public static CertificateFactory getInstance(String type,
String provider)

9 To generate a certificate object and initialize it with the data read from an input
stream, use the gene rateCe r'ti fi cate method:

public final Certificate generateCertificate(InputStream is)

e To return a (possibly empty) collection View of the certificates read from a giv-
en input stream, use the gene rateCe rti fi cates method:

public final Collection generateCertificates(InputStream is)

0 To generate a CRL object and initialize it with the data read from an input
stream, use the gene rateCRL method:

public final CRL generateCRL(InputStream is)

9 To return a (possibly empty) collection View of the CRLs read from a given in-
put stream, use the gene rateCRLs method:

public final Collection generateCRLs(InputStream is)

7.3.8 KeyPai r and KeyPai rGenerator

The KeyPai r class is a holder for a key pair (a public key and a private key). It has
two public methods, one each for returning the private key and public key:

public PrivateKey getPrivate()

public PublicKey getPublic()

The KeyPai rGene rator class is a service class used to generate pairs of pub-
lic and private keys. The generation can be algorithm—independent or algorithm-
specific, depending on how the object is initialized.

All key pair generation starts with a KeyPai rGenerato r. A key pair genera-
tor for a particular algorithm creates a public/piivate key pair that can be used with
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i this algorithm. It also associates algorithm-specific parameters with each of the
generated keys. To create a KeyPai rGenerato r, use one of the factory methods:

public static KeyPairGenerator getInstance(String algorithm)

public static KeyPairGenerator getInstance(String algorithm,
String provider)

A key pair generator needs to be initialized before it can generate keys. In
most cases, algorithm-independent initialization is sufficient. All key pair genera-
tors share two concepts, those of a source of randomness and a key size. The key
size is interpreted differently for different algorithms. For example, in the case of
the DSA algorithm, the size is the length of the modulus.

One initialize method takes these two universally shared types of argu—
ments, while another one takes just a key size argument because it uses a system—
provided source of randomness:

public void initialize(int keysize)

public void initialize(int keysize, SecureRandom random)

Since no other parameters are specified when you call the above algorithm-
independent i ni ti al ize methods, the provider must decide what to do about any
algorithm-specific parameters to be associated with each key. For example, if the

l algorithm is DSA and the modulus size (key size) is 512, 768, or 1,024, then the

1 “SUN” provider uses a set of precomputed values for the p, q, and g parameters. If
the modulus size is not one of these values, the “SUN” provider creates a new set
of parameters. Other providers might have precomputed parameter sets for more
than just the three modulus sizes mentioned here. Still others might not have a list
of precomputed parameters at all and instead always create new parameter sets.

4 In some cases, you need an algorithm-specific initialization, for example
i when a set of algorithm—specific parameters already exists (as is the case for so—

called “community parameters” in DSA). Two initialize methods take an

Al gorithmParameterSpec argument. One does not take a Secu reRandom argu-
; ment, in which case its source of randomness is provided by the system.

public void initialize(AlgorithmParameterSpec params)

public void initialize(AlgorithmParameterSpec params,
SecureRandom random)

To generate a key pair, call the following method from KeyPai rGenerato r:

public KeyPair generateKeyPair()

Multiple calls to gene rateKeyPai r yield different key pairs.
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7.3.9 java.security.KeyStore

The KeySto re class defines interfaces to access and modify the information in a

keystore. Chapter 4 described the keystore, which can be used to manage a repos-

itory of keys and certificates, and demonstrated its use by the keytoo'l utih'ty. This

section discusses KeySto re’s API design and implementation.

KeyStore is used by keytool, jarsi gner, and policytool. It is also used

by the default Pol icy implementation when it processes policy files. JDK users

can write additional security applications that use or extend KeySto re.

Multiple different concrete implementations are possible, where each imple-

mentation is for a particular type of keystore. For example, one implementation

might provide persistent keystores, while another can use smart cards. Thus key—

store implementations of different types are not meant to be compatible.

A KeySto re implementation is provider-based. A corresponding abstract

KeystoreSpi class specifies the SP1 interfaces. The Provider class typically

subclasses from KeystoreSpi. JDK contains a default keystore implementation

of a proprietary keystore type (format) called “JKS.”

KeySto re represents an in—memory collection of keys and certificates and

manages two types of entries: key entry and trusted certificate entry. To create a

KeyStore object, call the getInstance static factory method on the KeySto re

class and optionally specify the name of a provider:

public static KeyStore getInstance(String type)

public static KeyStore getInstance(String type,

String provider)

Before a KeyStore object can be used, the actual keystore data must be

loaded into memory Via the load method:

public final void load(InputStream stream, char[] password)

The optional password is used to check the integrity of the keystore data. If no

password is supplied, no integrity check is performed. If you want to create an

empty keystore, pass null as the InputSt ream argument to the load method.

Each entry in a keystore is identified by a unique alias string. An enumeration

of the alias names present in the keystore can be obtained as follows:

public final Enumeration aliases()

The following methods determine whether the entry specified by the given

alias is a key entry or a trusted certificate entry: ,

public final boolean isKeyEntry(String alias)

public final boolean isCertiFicateEntry(String alias)



Page 226 of 275

PROGRAMMING CRYPTOGRAPHY

The following methods manipulate the content of the keystore:

public final void setCertificateEntry(String alias,
Certificate cert)

public final void 5etKeyEntry(String alias, byte[] key,
Certificate[] chain)

public Final void setKeyEntry(String alias, Key key,

char[] password, Certificate[] chain)

public final void deleteEntry(String alias)

public Final Key getKey(String alias, char[] password)

public Final Certificate getCertificate(String alias)

public Final Certificate[] getCertificateChain(String alias)

public final String getCertificateAlias(Certificate cert)

public final void store(0utputStream stream, char[] password)

7.4 Randomness and Seed Generators

A basic concept of cryptography is random number generation. This is because

randomness is the source of security in cryptography and is very useful (and
sometimes essential) when generating keys and providing unique identifiers (for
example, in challenge—response protocols).

The base class of a random number generator is java. util .Random, intro-

duced in JDK 1.0. In the context here, the generator does not actually produce
pure random numbers; rather, it produces pseudorandom numbers.

Random uses a 48—bit seed, which is modified using a linear congruent formula
[37]. Here are its interfaces:

public Random()

public Random(long seed)

void setSeedClong seed)

protected int next(int bits)

'boolean nextBoolean()

void nextBytes(byte[] bytes)

double nextDouble()

float nextFloat()

double nextGaussian()

int nextInt()

int nextInt(int n)

long nextLong()
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Basically, you can construct a Random object and assign it a seed either in the

constructor or Via the setSeed method. If a seed is not assigned explicitly, it is by

default a value based on the time at which the object is created. After the object
has been initialized, various next methods can be called to obtain the next random

number in different forms. The generator is deterministic in that if two instances

of Random are created with the same seed and if the same sequence of method

calls is made for each, both instances will generate and return identical sequences

of numbers. Subclasses of Random are permitted to use other algorithms.

Security savvy readers will have noticed by now that neither the default seed-

ing scheme nor the subsequent number generation algorithm produces numbers

that are as unpredictable as a security application would normally require. This is

why java. security . SecureRandom is needed—it provides a cryptographically

strong pseudorandom number generator (PRNG). This class is discussed next.

7.4.1 java . security. SecureRandom

Like other algorithm-based classes in JDK, the SecureRandom class provides

implementation-independent algorithms, whereby an application requests a partic-

ular PRNG algorithm and is handed back a SecureRandom object for that algo-

rithm. It can also request a particular algorithm from a specific provider. For

example, the default provider “SUN” supports a built-in algorithm named
SHAlPRNG.

public static SecureRandom getInstance(String algorithm)

public static SecureRandom getInstance(String algorithm,

String provider)

public SecureRandom()

public SecureRandomeyte[] seed)

public void setSeed(byte[] seed)

public void setSeed(long seed)

protected final int next(int numBits)

public static byte[] getSeedCint numBytes)

 
Using getInstance is the preferred way to obtain SecureRandom objects,

even though public constructors can still be called. If these constructors are called,

the default provider with the default algorithm is used.

The Secu reRandom implementation attempts to completely randomize the

internal state of the generator itself. However, this seeding process does not hap-

pen until the first time that random output is needed, that is, when nextBytes is

called. Thus the caller can explicitly seed the SecureRandom object by calling

setSeed right after getInstance, as in this example.

. ______g
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SecureRandom random = SecureRandom.getInstance("SHAlPRNG");
random.setSeed(seed); '

Once the Secu reRandom object has been seeded, it attempts to produce bits as
random as the original seeds. At any time, a SecureRandom object might be
reseeded using one of the setSeed methods. The newly given seed supplements
rather than replaces the existing seed. Thus repeated calls do not reduce random—

ness. Secu reRandom itself can also help with seed generation, for example for
another Secu r'eRandom object, via the gene rateSeed method.

7.5 Code Examples

This section presents several examples to further illustrate how you can use the
classes discussed in this chapter.

7.5.1 Example 1: Computing a Message Digest

The first example computes a message digest using the algorithm SHA. Suppose
you have a message composed of three byte arrays: 1'1, 1'2, and 1'3. First you cre-
ate a properly initialized message digest object. Then you run the three byte
arrays through the message digest object to calculate the hash, as follows.

MessageDigest sha = MessageDigest.getInstance("SHA");
sha.update(il);

sha.update(i2);

sha.update(13);

byte[] hash = sha.digest();

The call to the method digest signals the end of the input message. It can
also take the last segment of the input as a parameter, as in the following.

sha.update(il);

sha.update(12);

byte[] hash = sha.digest(i3);

After the message digest has been calculated, the message digest object is
automatically reset and ready to receive new data and calculate its digest. All
former state (that is, the data supplied to update calls) is lost.

In some hash implementations, you can obtain intermediate hash values

through cloning. Suppose you want to calculate separate hashes for three separate
messages of this form:
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\ 11

i1 and 1'2

‘il, 'iZ, and ‘i 3

You can perform the computations as follows.

/* compute the hash for 11 */

sha.update(i1); [
byte[] ilHash = sha.clone().digest(); :

/* compute the hash for i1 and i2 */

sha.update(i2);

byte[] ileash = sha.clone().digest();

/* compute the hash for i1, i2 and i3 */

i sha.update(13); ‘
byte[] i123hash = sha.digest();

This works only if the SHA implementation is cloneable. One way to deter-

mine whether cloning is possible is to attempt to clone the MessageDi gest object i

and see if the potential exception is thrown.

7.5.2 Example 2: Generating a Public/Private Key Pair

The second example generates a public/private key pair for the algorithm DSA.

Keys are generated with a 1,024-bit modulus, using a user-derived seed, called l
userSeed. First, you get a KeyPai rGenerator object for generating keys for the

DSA algorithm. Then, to initialize the KeyPai rGenerator, you need a random

seed, obtained from a Secu reRandom object.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");
SecureRandom random = ‘

SecureRandom.getInstance("SHAlPRNG", "SUN");

random . setSeed(userSeed); l
l

keyGen.initialize(1024, random);

Suppose you already have a set of DSA-specific parameters—p, q, and g—
that you want to use to generate your key pair. Then the key pair generator should

be initialized differently, as in the following example.

 
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");

DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, 9);

SecureRandom random = |

SecureRandom.getInstance("SHAlPRNG", "SUN"); l
l
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random.setSeed(userSeed)r
keyGen.initialize(dsaSpec, random);

Finally, you generate the key pair:

KeyPair pair = keyGen.generateKeyPair();

7.5.3 Example 3: Generating and Verifying Signatures

This example generates and verifies a signature using the key pair generated in

Example 2. First, you create a Signature object. Then, using the key pair gener—

ated in Example 2, you initialize the object with the private key and sign a byte

array called data.

Signature dsa = Signature.getInstance("SHAlwithDSA");

/* Initializing the object with a private key */

PrivateKey priv = pair.getPrivate();

dsa.initSign(priv);

/* Update and sign the data */

dsa.update(data);

byte[] sig = dsa.sign();

Verifying the signature is straightforward.

/* Initializing the object with the public key */

PublicKey pub = pair.getPublic();

dsa.initVerify(pub);

/* Update and verify the data */

dsa.update(data);

boolean verifies = dsa.verify(sig);

System.out.println("signature verifies: " + verifies);

Suppose that rather than having a public/private key pair, you have only the
components of your DSA private key: x, p, q, and g (the base). Further suppose

that you want to use your private key to digitally sign some data, which is in a
byte array named someData. Then the following code should be used. This also
illustrates how to create a key specification and use a key factory to obtain a

Pri vateKey from the key specification.

DSAPrivateKeySpec dsaPrierySpec =
new DSAPrivateKeySpec(x, p, q, 9);
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KeyFactory keyFactory = KeyFactory.getInstance("DSA");
PrivateKey priery =

keyFactory.generatePrivate(dsaPriery—Spec);

Signature 519 = Signature.getInstance("SHAlwithDSA");
sig.initSign(priery);

sig.update(someData);

byte[] signature sig.sign();

Now suppose that your personal attorney, Alice, wants to use the data you
signed. For her to do so and so that she can verify your signature, you need to send
her three things: the data, the signature, and the public key corresponding to the
private key you used to sign the data. You can store the someData bytes in one file
and the signature bytes in another and send both files to Alice. For the public key,
assume, as in the previous signing example, that you have the components of the
DSA public key corresponding to the DSA private key used to sign the data. Then
you can create a DSAPub'I 1' cKeySpec from those components:

DSAPublicKeySpec dsaPubKeySpec =

new DSAPublicKeySpec(y. P. q, 9);

You still need to extract the key bytes so that you can put them in a file. To do

this, you first call the gene ratePub1 1' c method on the DSA key factory already
created in Example 2 and then extract the (encoded) key bytes.

 
PublicKey pubKey = keyFactory.generatePub1ic(dsaPubKeySpec);
byte[] encKey = pubKey.getEncoded();

You now can store these bytes in a file and send the file to Alice along with
the files containing the data and the signature.

Once Alice receives these files, she copies the data bytes from the data file to

a byte array named data, the signature bytes from the signature file to a byte
array named 51' gnature, and the encoded public key bytes from the public key
file to a byte array named encoded PubKey. To verify the signature, she runs the

following code, which uses a key factory to instantiate a DSA public key from its
encoding.

X509EncodedKeySpec pubKeySpec =

new X509EncodedKeySpec(encodedPubKey);

KeyFactory keyFactory = KeyFactory.getInstance("DSA");

PubiicKey pubKey = keyFactory.generatePubliC(pubKeySpec);

Signature sig = Signature.getInstance("SHA1withDSA");
sig.initVerify(pubKey);

Page 231 of 275



Page 232 of 275

PROGRAMMING CRYPTOGRAPHY 221

sig.update(data);

sig.verify(signature);

Alice can also convert Publ i cKey to a DSAPu bl i cKeySpec in order to access

the key components.

DSAPublicKeySpec dsaPubKeySpec =

(DSAPublicKeySpec) keyFactory.getKeySpec(pubKey,

DSAPublicKeySpec.class)

BigInteger y dsaPubKeySpec.getY();

BigInteger p = dsaPubKeySpec.getP();

BigInteger q = dsaPubKeySpec.getQ();

BigInteger g = dsaPubKeySpec.getG();

7.5.4 Example 4: Reading a File That Contains Certificates

The final example in this chapter reads a file that contains certificates. In the first,
the certificates are Base64—encoded. Such certificates are each bounded at the

1 beginning and the end, respectively, by

————— BEGIN CERTIFICATE—————

l and

————— END CERTIFICATE—————.

In this process, you convert the Fi l eInputSt ream, which does not support
the mark and reset methods, to a ByteArrayInputSt ream, which does support
those methods. You do this so that each call to gene rateCe rti fi cate consumes

only one certificate and the read position of the input stream is positioned to the
next certificate in the file.

FileInputStream fis = new FileInputStream(filename);

DataInputStream dis = new DataInputStream(Fis);
CertificateFactory Cf =

CertificateFactory.getInstance("X.509");

byte[] bytes = new byte[dis.available()];
dis.readFully(bytes);

ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
while (bais.available() > 0) {

Certificate cert = cf.generateCertificate(bais);

System.out.println(cert.toString());
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L Next, you parse a PKCS#7-formatted certificate reply stored in a file and
extract all of the certificates from it.

FileInputStream fis = new Fi1eInputStream(filename);
CertificateFactory cf =

CertiticateFactory.getInstance("X.509");

Collection c = cf.generateCertiFicates(fis);
Iterator i = c.iterator();

while (i.hasNext()) {

Certificate cert = (Certificate) i.next();
System.out.println(cert);

 
7.6 Standard Names

Whether in Java documentation or code, algorithms, certificates, and keystore
types are referred to by specialized names. These names are not chosen randomly,
but rather according to adopted standards. This section lists the names used and

explains their backgrounds.

7.6.1 Message Digest Algorithms

Message digest algorithm names can be specified when generating an instance of
MessageDigest.

0 SHA. The Secure Hash Algorithm as defineddn Secure Hash Standard, NIST
FIPS 180-1 '

o MD2. The MD2 message digest algorithm as defined in RFC 1319

o MD5. The MD5 message digest algorithm as defined in RFC 1321

7.6.2 Key and Parameter Algorithms

1 Key and parameter algorithm names can be specified when generating an instance
of KeyPai rGenerato r, KeyFactory, Al go r-i thmPa ramete rGenerato r, and
Al gorithmParameters.

9 RSA. The RSA encryption algorithm as defined in PKCS#1

9 BSA. The Digital Signature Algorithm as defined in FIPS PUB 186
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7.6.3 Digital Signature Algorithms

The DSA names can be specified when generating an instance of Si gnatu re .

o SHA-lwithDSA. The DSA with SHA-l signature algorithm, which uses the
SHA-l digest algorithm and DSA to create and verify DSA digital signatures
as defined in FIPS PUB 186

o MD2withRSA. The MD2 with RSA encryption signature algorithm, which

uses the MD2 digest algorithm and RSA to create and verify RSA digital sig-
natures as defined in PKCS#1

o MDSwithRSA. The MDS with RSA encryption signature algorithm, which

uses the MD5 digest algorithm and RSA to create and verify RSA digital sig—
natures as defined in PKCS#1

o SHA-lwithRSA. The signature algorithm with SHA-l and the RSA encryp-

tion algorithm as defined in the OSI Interoperability Workshop, using the pad-

ding conventions described in PKCS#1

7.6.4 Random Number Generation Algorithms

Random number generation algorithm names can be specified when generating an
instance of SecureRandom.

9 SHAlPRNG. The name of the PRNG algorithm supplied by the “SUN”

provider

This implementation follows the IEEE P1363 standard (given in its Appendix

G.7, “Expansion of source bits”) and uses SHA—l as the foundation of the PRNG.

It computes the SHA-l hash over a true—random seed value concatenated with a

64-bit counter, which is incremented by 1 for each operation. Of the 160-bit SHA-l

output, only 64 bits are used.

7.6.5 Certificate Types

Certificate types can be specified when generating an instance of Ce rti f1 cate—
Facto ry.

o X.509. The certificate type defined in X.509
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l
l

7.6.6 Keystore Types

Keystore types can be specified when generating an instance of KeySto re.

9 JKS. The name of the keystore implementation provided by the “SUN” pro—
vider

o PKCSIZ. The transfer syntax for personal identity information as defined in
PKCS#12

7.7 Algorithm Specifications

When implementing crypto algorithms, a provider should comply with existing

standard specifications. Following are some of these specifications and their rela-

tionships with JDK implementations. In particular, for each algorithm specifica—

tion, some or all of the following fields are given.

9 Name. The name by which the algorithm is known. This is the name passed to

the getI n stance method (when requesting the algorithm) and returned by the

getAl go r'i thm method to determine the name of an existing algorithm object.

These methods are in the service classes Signature, MessageDi gest, Key—

Pa1' r'Gene rato r, and A1 go r‘i thmPar‘amete rGene rate r.

0 Type. The type of algorithm: Signature, MessageDigest, KeyPai rGener-

ato r, or ParameterGenerator.

9 Description. General notes about the algorithm, including any standards im—

plemented by the algorithm, applicable patents, and so on.

9 Key Pair Algorithm (optional). The keypair algorithm for this algorithm.

9 Key Size (optional). Legal key sizes for a keyed algorithm or key generation

algorithm.

9 Size (optional). Legal sizes for algorithm parameter generation for an algo—

rithm parameter generation algorithm.

0 Parameter Defaults (optional). Default parameter values for a key generation

algorithm.

9 Signature Format (optional). The format of the signature fora Signature

algorithm, that is, the input and output of the verify and sign methods,

respectively. .
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7.7.1 SHA-1 Message Digest Algorithm

Name: SHA

Type: MessageDi gest

Description: The message digest algorithm as defined in NIST’s FIPS 180—1.

The output of this algorithm is a 160-bit digest.

7.7.2 MD2 Message Digest Algorithm

Name: MD2

Type: MessageDi gest

Description: The message digest algorithm as defined in RFC 1319. The out-

put of this algorithm is a 128—bit (16-byte) digest.

7.7.3 MDS Message Digest Algorithm

Name: MDS

Type: MessageDi gest

Description: The message digest algorithm as defined in RFC 1321. The out-

put of this algorithm is a 128—bit (16-byte) digest.

7.7.4 Digital Signature Algorithm

Name: SHA-lwithDSA

Type: 51' gnatu re

Description: The signature algorithm described in NIST FIPS 186, using DSA

with the SHA-1 message digest algorithm.

Key Pair Algorithm: DSA

Signature Format: An ASN.1 sequence of two INTEGER values I and s, in that
order.

SEQUENCE ::= { r‘ INTEGER, s INTEGER }

7.7.5 RSA-Based Signature Algorithms

Names: MD2withRSA, MD5withRSA, and SHA—lwithRSA

Type: Signature

Description: The signature algorithms that use the MD2, MDS, and SHA-1

message digest algorithms (respectively) with RSA encryption.
Key Pair Algorithm: RSA
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Signature Format: A DER-encoded PKCS#1 block. The data encrypted is the
digest of the data signed.

7.7.6 DSA KeyPair Generation Algorithm

Name: DSA

Type: KeyPa'i r'Generator‘

Description: The key pair generation algorithm described in NIST FIPS 186
for DSA.

Key Size: The length, in bits, of the modulus p. This must range from 512 to
1,024 and must be a multiple of 64. The default key size is 1,024.

Parameter Defaults: The following default parameter values are used for key-

sizes of 512, 768, and 1,024 bits. The use of the parameter named counter is

explained in the FIPS document.
For 512-bit key parameters:

SEED = b869c82b 35d70elb 1ff91b28 e37a62ec dc34409b

counter = 123

p = Fca682ce 8e12caba 26efch7 110e526d b078b05e decbcdle
b4a208f3 a81617ae 01f35b91 a4766df6 3413C5e1 2ed0899b
cdi32acd 50d9915l bdc43ee7 37592e17

962eddcc 369cba8e bb260e66 b6a126d9 346e38c5.0
||

9 = 678471b2 7a9cf44e e91a49c5 l47db1a9 aaf244F0 5a434d64
86931d2d l427lb9e 35030b71 fd73da17 9069b32e 2935630e
1C206235 4d0d320a 6c416e50 be794ca4

For 768-bit key parameters:

 
SEED = 77d0f8c4 dadlSeb8 c4f2f8d6 726cefd9 6d5bb399

counter = 263

e9364259 9d355f37 C97ffd35 67120b8e 25C9Cd43 e927b3a9

670Fbec5 d89014l9 22d2c3b3 ad248009 3799869d le846aab
49Fab0ad 26d2ce6a 22219d47 0bce7d77 7d4a21fb e9c270b5

7F607002 f3cef839 3694cf45 ee3688c1 138c56ab 127a3daf

'0
H

q = 9cdbd84c 9f1ac2f3 8d0f80f4 2ab952e7 338bf511

30470ad5 a005fbl4 ce2d9dcd 87e38bc7 dlblc5fa cbaecbe9

5f190aa7 a31d23c4 dbbcbe06 17454440 la5b2c02 0965d8c2

bd2171d3 66844577 1F74ba08 4d2029d8 3C1C1585 47f3a9f1

a2715be2 3d51ae4d 3e5alf6a 7064f316 933a346d 3f529252

D
II 
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For 1,024-bit key parameters:

SEED = 8d515589 4229d5e6 89ee01e6 018a237e 2cae64cd

counter = 92

p = fd7f5381
C31e3f80

f6cb9b55

@47b1022

83f6d3c5

2203199d

q = 976%508f

f7ela085

f9574c0b
167123e8

e0a3ae1e

cca4f1be

64014c3b

O
H

1d751229

b6512669

6cd78l3b

c24fbba9

1ec30235

d14801c7

15230bcc

d69b3dde

3d078267

4c281613

2bb3a675

a8519089

fecf492a

52df4a9c

455d4022

801d346f

d7feb7c6

S4135a16

b292b982

cbbcabSc

5159578e
b7cf0932

916ea37f

a883dfel

2eece4e7

51fb593d

f26660b7

1bf83b57

9132f675

a2eb840b

36b857b9

bad4594f

8cc8a6el

0bFa2135

5ae59f06

7.7.7 RSA KeyPair Generation Algorithm

Name: RSA

Type: KeyPa-i r'Gene rate r-

Description: The key pair generation algorithrn described in PKCS#1.

Key Size: Any integer that is a multiple of 8, greater than or equal to 512.

7.7.8 DSA Parameter Generation Algorithm

Iqarne:I)S[X

Type: Paramete rGene rator

Description: The parameter generation algorithm described in NIST FIPS 186
for DSA.

Size: The length, in bits, of the modulus p. This must range from 512 to 1,024

f6llb752

8d58fabf

6b9950a5

e7c6a8a6

f3ae2b61

f0581cf5

7994afbb

e6710710

3c167a8b

62F1Fb62

928b665e

and must be a multiple of 64. The default size is 1,024.
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c5f5ba30

a49f9fe8

150f04fb

d72aeff2

Fa3aea82

8180b449

547c8d28

7301243b

807b5525
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CHAPTER 8

Future Directions

    
   

    
  

   
 

              

All progress is precarious, and the solution of one problem
brings us face toface with another problem.

—Martin Luther King, Jr.

Wth the release of JDK 1.2 and JCE 1.2, Java security has entered an exciting
new phase. This is not the beginning of the end, but rather the end of the begin—

ning, as much remains to be done. This chapter touches on some future directions
anticipated for Java security technology.

8.1 Security Management

It is accepted wisdom that anything hard to use does not get used in practice.
Security is no exception. In JDK 1.2, the Java security development team at Sun

Microsystems tried to achieve the goal of simplicity. We designed only the mini-
mum APIs necessary to do a particular job. We distributed functionalities among

the classes in such a way that each class is logically self—contained and easy to

understand. And we chose simple class and method names while maintaining their

accuracy and clarity.

Another feature important to making the security architecture useful in the

real world is security management. As said in earlier chapters, JDK itself is not an

end-user product, so it might not be the best place to bundle security management
software. Instead, system vendors and application builders can create and present

the right interfaces (including GUIs) to their respective customers.
Nevertheless, Java Plug-In, a browser plug-in with a Java runtime environ-

ment, is increasingly being used directly by end users to upgrade the JVM in their

browsers. As a result, the Java Plug-In, as a product directly derived from JDK,

can be improved with more management features. For example, it can use the
same certificate database that is already present in the browsers, thus eliminating

the need to maintain a separate certificate database for it.
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Also, when the plug—in encounters previously unknown applets and applica-
tions on the Internet, it needs a solution to give the applets their needed privileges
in order to run them as they are designed. One approach to this deployment issue
is to design a way for the developer to specify the required permissions and a way
to help the browser user to understand the meaning and implications of granting
those permissions.1

Security management is not just for end users. Application developers often
do not want to become experts in security simply to write secure applications.
They would benefit, for example, from interfaces that they can call to obtain secu—

rity services without having to know the specifics, such as encryption algorithms,
key sizes, and protocol types. Such simple security APIs should greatly increase
productivity, as well as the security quality of the resulting applications.

 
8.2 JDK Feature Enhancement

Several security features, according to customer feedback, are worth investigating
‘ for a future version of the JDK. One is resource consumption management. This is

relatively easy to implement in some cases, for example when limiting the number
of windows an application can pop up at any one time, but a lot more difficult in

other cases, for example when limiting memory, CPU, or file system usage in real
l time and with good performance.

i Another feature is the design of class loaders. These are still very delicate in
terms of security implications; the current way the Cl assLoade r classes are spec-
ified can still be improved. Applets and applications can create class loaders only
if the system security policy is configured to allow this to happen, with the only
exception of URLCl assLoade r. Such a severe restriction might impede the devel—
opment of certain applications. Much research is needed on this topic.

A third feature is instant revocation, whereby a granted privilege can be
revoked immediately after a change in security policy. Currently, the new policy
becomes effective only after its content is refreshed and only for newly started
applications or applets. To implement instant revocation might require the privi—
lege system to register itself (as listeners) with the Policy object (and perhaps
each Permission object, if permissions may change their content dynamically).
The Po'l1' cy' object then would promise to notify the system if it changed its secu-
rity policy.

 
l

1 For a not-so-good analogy for the specification of required permissions, consider that when
you buy shrink-wrapped software, the back of the box typically says things such as “16MB
RAM required, 32MB RAM recommended.” 
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Another feature related to security policy is the composition of security poli-

cies. Currently, each security manager enforces a particular type of security pol—

icy. To enforce a new policy, which might be some combination of two existing

policies, you currently need to implement a new Secu r'i tyManage r. Ideally, secu-

rity policies could be composed without a total rewrite of existing security man-
ager classes.

JDK 1.2 introduced a conservative and robust access control algorithm that

can prevent some programming mistakes from turning into security holes. Addi-

tional techniques that further this effort are available. For example, recall that the

doPri v1”! eged primitive in a sense “enables” all permissions granted to a piece of

code. In some cases, an application might want to enable only some of its granted

permissions. This selective enabling further reduces the security impact of making

a programming mistake. We can contemplate enriching the primitive so that it

takes an additional parameter, possibly of type Permission, Per‘m'i 551' on—

Col '1 ect'i on, or Permissions, that specifies the permissions to be enabled.

Another way to reduce security liabilities is to subdivide the system domain.

For convenience, the system domain can be thought of as a single, large collection

of all system code. For better protection, however, system code should be run in

multiple system domains, where each domain protects a particular type of

resource and is given a special set of rights. For example, if file system code and

network system code run in separate domains, with the former having no rights to

the networking resources and the latter having no rights to the file system

resources, the risks and consequences of an error or security flaw in one system

domain is more likely to be confined within its boundary.

Moreover, protection domains currently are created transparently as a result of

class loading. Providing explicit primitives to create a new domain might be use-

ful. Often, a domain supports inheritance in that a subdomain automatically inher-

its the parent domain’s security attributes, except in certain cases where the parent

further restricts or expands the subdomain explicitly.

Finally, a way to consistently handle nonclass content is needed. When

applets or applications are run with signed content (classes and other resources),

the JAR and Manifest specifications on code signing allow a very flexible for-

mat. The classes within the same archive can be unsigned, signed with one key, or

signed with multiple keys. Other resources within the archive, such as audio Clips
and graphic images, can also be signed or unsigned. However, it is unclear

whether images and audio clips should be required to be signed with the same key

if any class in the archive is signed. If images and audio files are signed with dif—

ferent keys, can they be placed in the same appl etvi ewer‘ (or browser page) or

should they be sent to different Viewers? Such questions are not easy to answer.

Any response requires consistency across platforms and products in order to be

most effective. The current approach is to process all images and audio clips

whether or not they are signed. This temporary solution should be improved once
a consensus is reached.
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8.3 Java Authentication and Authorization Service

When Java technology is used to construct not just a single desktop but a full-

fledged distributed system, a whole new range of distributed systems security
issues (such as those mentionedin Chapter 1) must be tackled For example addi-
tional mechanisms are needed to make RMI secure in the presence of hostile net-

work attacks. For Jini, Sun’s recently launched connection technology based on
Java that enables digital devices to simply connect together, service registration
and location must be securely managed if the environment contains coexisting but
potentially mutually hostile parties. A full set of higher-level services must be

secured, such as transactions for e-commerce. In addition, many lower—level secu-

rity protocols can be leveraged, such as the network security protocols Kerberos

and IPv6. This playing field is too large to speculate about in this. short section, but
a critical foundation for all of these issues is a facility to authenticate users and to
use this information to perform access control.

Recall that JDK 1.2 uses a security policy to decide the granting of individual
access permissions to running code and that the decision depends on the code’s

characteristics, for example where the code is coming from and whether it is digi-
tally signed and if so by whom. Such a code—centric style of access control is

unusual. Traditional security measures, most commonly found in sophisticated
operating systems, are user-centric, in that they apply control on the basis of who

is running an application and not on which application is running. Code—centric

access control is justified largely because a user surfing the Web and running exe-
cutable content it has encountered (for example, mobile code written in Java)
retains essentially a constant identity. On the other hand, the user might trust one
piece of mobile code more than others and would like to run this code with more

privileges. Thus it is natural to control the security of mobile code in a code-centric
style.

Nevertheless, Java is becoming widely used in a multiuser environment. For

example, a public Internet terminal, an enterprise application (such as the salary
tool at Sun Microsystems), or a server handling numerous rental Palm Pilot units

all must deal with different users, either concurrently or sequentially, and must
grant these users different privileges based on their identities.

The Java Authentication and Authorization Service (JAAS) is designed to
provide a standard programming interface for authenticating users and for assign-
ing privileges.2 Together with JDK 1. 2, an application can provide code—centric
access control, user—centric access control, or a combination of both. JAAS also

 

2 The JAAS specification outlined here is under public design review, so the descriptions are
subject to change.
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lays the groundwork to support a general mechanism for cross-protection domain

authorization and the “running-on-behalf-of” style delegation.

Authentication has been a topic of security research for decades. However, the

Java environment presents unique challenges. The design of JAAS was motivated

by the following requirements.

0 Extensibility. A need exists for a small but well-grounded set of Java program-

ming interfaces for authentication and authorization that can easily be extended.

0 Plugability. Different systems can easily incorporate their new or existing

authentication capabilities into the JAAS framework.

¢ Compatibility. The code-based access control architecture, introduced in JDK

1.2, and the new user-based access control mechanism in JAAS can coexist in-

dependently and can also be seamlessly combined to implement sophisticated

security policies.

Several existing standards support authentication, including the Generic Secu—

rity Services Application Programmer’s Interface (GSS-API) and Simple Authen-

tication and Security Layer Application Programmer’s Interface (SASL). SASL

represents a framework that provides authentication support for connection—based

protocols. Thus it caters to applications that perform network authentication. Like
JAAS, SASL also has a modular architecture. GSS mechanisms such as Kerberos

or the Simple Public Key Mechanism (SPKM) may be plugged in under the SASL

framework. JAAS, on the other hand, also provides support for authentication in a
standalone nonconnection-oriented environment. Thus JAAS and SASL/GSS

complement each other to provide both local and network—based support for
authentication.

One scenario in which these architectures might coexist involves environ—

ments that rely on Kerberos (and possibly other services) for authentication. JAAS

login modules could be plugged under the login application to authenticate the

user, when initially logging in, to both the underlying operating system as well as

to Kerberos (to obtain the user’s Kerberos Ticket Granting ticket). By installing a

Kerberos login module, the user would not have to perform additional steps, such
as execute the command k'i nit at a later time to obtain the ticket. When the user

executes client applications that are attempting to authenticate across the network

to certain servers that use the Kerberos protocol, those applications could then use

SASL, which would presumably have the appropriate Kerberos mechanism

plugged in to perform the actual authentication.
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8.3.1 Subjects and Principals

Users often depend on computing services to assist them in performing work. To
identify its users, a computing service typically relies on usemames. However,

users might not have the same name for each service and in fact might even have a

different name for each individual service. Furthermore, a service might be a user
of other services and subsequently might also have multiple names. JAAS uses the

term subject to refer to any user of a computing service. Both users and computing
services, therefore, represent subjects. The term principal represents a name asso-
ciated with a subject. Since subjects may haVe multiple names (potentially one for
each service with which it interacts), a subject essentially consists of a collection
of principals [35, 41].

Principals become associated with a subject only if that subject successfully
authenticates to a service. Authentication represents the process by which one ver-
ifies the identity of another and must be performed in a secure fashion; otherwise,

a perpetrator might impersonate others to gain unrestricted access to a system.
Authentication typically involves the subject’s demonstrating some form of evi-

dence to prove its identity. Such evidence might be information only the subject
would likely know (for example, a password or PIN) or have (for example, a fin-
gerprint or voice pattern).

When a subject attempts to authenticate to a service, it typically provides the
proof of its identity along with its name. If the authentication attempt succeeds,
the service associates a service—specific principal, using the given name, with the
subject. Applications and services can then always determine the identity of the
subject simply by referencing the relevant principal associated with that subject.

8.3.2 Credentials

Some services might want to associate other security-related attributes and data

with a subject in addition to principal information. JAAS calls such generic secu-
rity—related attributes credentials. A credential might contain information that can

be used to authenticate the subject to additional services in the future. A Kerberos

ticket [60] represents such a credential. Credentials might also contain or refer—

ence data that simply enables the subject to perform certain activities. Crypto-
graphic keys, for example, represent credentials that enable the subject to sign or
encrypt data.

Although Kerberos tickets and cryptographic keys exemplify common types
of credentials, credentials can represent a wider range of security—related data.

Applications running on behalf of users must coordinate with the services upon
which they depend so as to agree on the kinds of credentials that are needed and

that can be understood or recognized during their interactions. Thus, while some
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credentials might be standard or well recognized, others might be application— and
service-specific. In addition, credential implementations do not necessarily have
to contain the actual security-related data; they might simply reference that data.
This occurs when the data must physically reside on a separate server or hardware
device (for example, private keys on a smart card).

A subject must successfully authenticate to a service to obtain credentials.

applications running on behalf of the subject may (with the proper permissions)
then access and use those credentials. JAAS does not impose any restrictions
regarding credential delegation to third parties. Rather, it either allows each cre-
dential implementation to specify its own delegation protocol (as Kerberos does)
or leaves delegation decisions up to the applications.

8.3.3 Pluggable and Stacked Authentication

 
 

 
 

¢ ' ' ‘ Configuration

Kerberos

Figure 8.1 Pluggable authentication.
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When attempting to authenticate a subject, an application calls into the

authentication framework, which JAAS defines as a login context. The login con-
text consults a configuration, which determines the authentication service, or login
module, which gets plugged in under that application. Because the application
interfaces only with the login context, it remains completely independent of the
configured login module. ,

Each login module authenticates subjects uniquely. For example, a conven-
tional password-based login module prompts for a username and verifies a pass-
word; a smart card login module informs the subject to insert its card into the card

reader and verifies a PIN; and a biometric login module prompts for a username

and verifies the subject’s fingerprint. Depending on the security requirements of
the application, a system administrator configures the appropriate login module.
In fact, system administrators may also plug multiple login modules under an

application. This type of stacked configuration is depicted in Figure 8.2.

A subject authenticates to the login modules in the order specified by the con—
figuration. In general, regardless of whether a login module fails, the subject con—
tinues to authenticate to the ensuing login modules on the stack. This helps hide
the source of failure from potential attackers. Additional parameters within the

configuration allow for exceptions to this rule and also determine which login
modules must succeed for the overall authentication to succeed. Details on the

login configuration specifics appear on page 238.

The login context reports a successful authentication status back to the calling
application only if all of the necessary login modules (as determined by the con—

Application

Configuration

 
Figure 8.2 Stacked authentication.
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I figuration) succeed. To guarantee this, the login context performs the authentica-
tion steps in two phases. Both phases must complete successfully for the login

i context to return an overall authentication status noting success.

1. The login context invokes each configured login module and instructs it to ver—

ify the identity of the subject only. If all of the necessary login modules suc-

cessfully pass this phase, the login context then enters the second phase.

2. The login context invokes each configured login module again, instructing it

to formally commit the authentication process. During this phase, each login

module associates any relevant principals, which hold the authenticated user-

names, and credentials with the subject.

Thus, once the overall authentication process has completed, the calling applica—

tion can traverse through a subject’s collection of principals to obtain its various

identities and can traverse through a subject’s credentials to access supplementary

data. Some login modules might associate only credentials (and not principals)

with the subject. A smart card module, for example, might authenticate the subject

by verifying a provided PIN and upon success simply associate with the subject a
credential referencing a cryptographic key on the card. The smart card module in

this case does not associate a principal with the subject.

If either the first or second phase fails, the login context invokes each config-

ured login module and instructs them to abort the entire authentication attempt.
Each login module then cleans up any relevant state it had associated with the

authentication attempt.

During this two-phase process, if a particular login module fails it does not

sleep and it does not attempt to retry the authentication. Otherwise, the subject

attempting the authentication can detect which login module failed. The calling
application owns the responsibility of performing tasks such as retry and may
elect to perform them after each complete round (two phases) of authentication.

During the authentication process, login modules have the choice and ability

to share information with each other; whether one does depends on its security

requirements. One motivation for sharing information is to help achieve single
sign—on. For example, stacked login modules may share usemame and password

information, thereby enabling users to enter that information only once but still

get authenticated to multiple services. In the case of subjects’ having different

usernames and passwords for each service, login modules may also coordinate

with each other to map such information into the relevant service—specific infor-

mation. Thus, although the subject enters only a single usemame and password,

that information gets mapped into the respective service-specific usernames and
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passwords, thereby enabling the subject to again authenticate to multiple services
with relative ease.

Configuration

The JAAS login configuration specifies the login modules to be plugged in under

a particular application. The configuration syntax is based on that defined by

PAM. Following is an example.

Login {

com.sun.secur'ity.auth.Samp1eLoginModule REQUIRED debug=true;

com.sun.security.auth.Solar-isLog1'nModu‘le REQUIRED;
}

Each entry in the configuration is indexed Via an application name, Logi n in

this example, and contains a list of login modules configured for that application.

Authentication proceeds down the list in the exact order listed, with the flag value

REQUIRED controlling the overall behavior.

Following is a description of the valid flag values.

REQUIRED. The login module is required to succeed. Regardless of whether it

succeeds or fails, however, authentication still proceeds down the login mod-

ule list. It must continue, even when faced with failure, because aborting at

that point would give potential attackers useful information, such as which

module failed and why.

REQUISITE. The login module is required to succeed. If it succeeds, authenti—

cation continues down the 10gin module list. If it fails, control immediately re—

turns to the application (authentication does not proceed down the login
module list).

SUFFICIENT. The login module is not required to succeed. If it does succeed,

control immediately returns to the application (authentication does not proceed

down the login module list). If it fails, authentication continues down the login
module list. ‘

OPTIONAL. The login module is not required to succeed. If it succeeds or fails,

authentication still proceeds down the login module list.

The overall authentication succeeds only if all REQUIRED and REQUISITE

login modules succeed. If no REQUIRED or REQUISITE login modules are config-

ured for an application, then at least one SUFFICIENT or OPTIONAL login module

must succeed. You can also use a Log1' nModu'I e to define options to support

debugging/testing capabilities. To do this, use the key-value pair debug=t rue.
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8.3.4 Callbacks

By using the login context, applications remain independent from underlying
login modules. However, login modules may be plugged under any type of appli-
cation. Regardless of the type of application a login module gets plugged under, it

must be able to garner information from and display information to subjects via

the calling application. For example, a login module that requires usemame and

password information needs the ability to prompt the subject for such information

without knowing whether the calling application has a GUI.

The login context solves this problem by allowing applications to specify a

callback that underlying login modules may use to interact with subjects. Applica-

tions provide a callback implementation to the login context, which passes it

directly to each login module. Login modules may then invoke the callback to gar—

ner or display the relevant information. The callback, implemented by the applica—

tion, inherently knows whether to construct a graphical window or to simply use a

standard output stream. The callback design and usage is depicted in Figure 8.3.

8.3.5 Access Control

The current JDK 1.2 Secu r1" tyManager class implementation enforces code
source-based access controls, controls based on where code came from and who

signed it. The JAAS SecurityManager implementation augments this security
manager with subject-based access controls, controls based on who runs code.

Both the code source-based checks and subject—based checks must pass in order

for the JAAS Secu r'i tyManage r‘ to grant access to sensitive resources.

Application

 
 

Figure 8.3 Callback design and usage.
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Authentication serves as the basis for authorization [41]. Specifically, once an

application knows the exact identity of a subject, it can then specify exactly what

set of operations that subject may perform. Since a subject simply represents a

nameless container holding relevant information for a user, while principals repre-

sent authenticated identities for that subject, the set of permissions granted to a

subject depends on the principals associated with that subject and not on the sub-

V ject itself. In other words, permissions are granted to a subject based on its authen-

ticated principals [41]. The exact set of permissions granted can be configured

Within an external access control policy.

The policy syntax that JAAS uses is a simple extension of the JDK 1.2 policy

syntax specified for code source-based access control, with the addition of a prin-

cipal entry to the grant statement. Thus the code source-based policy grants per:

missions to code sources (a URL, together with a signer alias), whereas the JAAS

policy grants permissions to principals (identified by the principal classname and

the name of the principal itself).

i

E Permission Granting

grant Principal com.sun.security.auth.SolarisPrincipa'l “gong" {

permission java.lang.RuntimePermission "queuePrintJob";

permission java.io.FilePermission "/home/gong", "read, write"; ;

}

Here, any subject with an associated SolarisPri nci pa1 principal that has the

name “gong” is granted permission to queue print jobs, as well as permission toa”

read and write files from “gong 5 home directory.

Enforcing User-Centric Security Policies

In JAAS, applications associate subjects with a thread of operation in order to

have access controls enforced on that subject. When that operation executes, the

JAAS Securi tyManager retrieves the associated subject and checks that it has

been granted the necessary permissions before permitting sensitive operations to

occur and before permitting access to sensitive resources. If the subject has not

been granted sufficient permissions, SecurityManager throws a Security-
Exce pti on.

While executing, operations may invoke other operations, thereby creating a

sequence of nested operations. When this occurs, each nested operation gets

pushed onto a stack. When the JAAS SecurityManager must make an access

control decision, it investigates the stack and retrieves all of the subjects associ—

ated with the operations on the stack. It checks and ensures that every subject on

the stack is granted the necessary permissions. If one or more subjects do not have

the necessary permissions, Secu ri tyManager throws a Securi tyException. As
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a result, the overall permissions of the entire stack effectively equals the intersec-
tion of permissions granted to the individual subjects on the stack.

In some cases, an operation and associated subject might want to exercise
their own permissions and not be dependent, for overall access to be granted, on
previous operations on the stack also having the same permissions. This occurs
when an executing operation, with an associated subject, queries another opera-
tion, with a different associated subject, to perform a certain task on its behalf.

While the queried operation certainly has the necessary permissions to perform
the requested task, the initial operation typically does not. With the previously
described access control model, access would be denied. To overcome this prob-
lem, the queried operation, if it has permission, may declare itself privileged.
When privileged, the operation does not require its callers or requestors to have
been granted the same permissions as itself in order for overall access to a

resource to be granted. Only the operation itself, along with its associated subject,
needs to have the necessary permission.

Note that if a privileged operation subsequently invokes a nonprivileged oper-
ation, then access control decisions again become based on the intersection of per-
missions granted to both subjects associated with the privileged, and ensuing
nonprivileged, operations. The privileged operation in JAAS is modeled after the
doPr‘ivi 1 eged interface in JDK 1.2.

8.3.6 JAAS Implementation

The JAAS implementation consists of approximately 25 classes and interfaces
arranged within three packages.

9 javax . security. auth

This package contains the fundamental classes required by the JAAS frame—
work, including the Subject class and Credential interface. Although prin-
cipals are also a fundamental concept, they do not have a corresponding class
or interface in JAAS. Rather, JAAS uses the principal interface already pro-
vided by JDK, java. security. Principal. The package also includes the
basic classes required for authorization. Specifically, it includes a Secu ri ty-
Manager class and an access control Policy class.

6 javax.security.auth.'log‘in

This package contains classes that support pluggable authentication. It
includes a LoginContext class, Logi nModul e interface, 1091' n Configu—
ration class, and Logi nEx cepti on class (to report authentication failures).
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o javax . security . auth . call back

This package contains different callback classes that login modules may use
to interact with subjects. This includes a Cal 1 bac kHand'l er class and Cal 1 -

ba'ck interface and several callback implementations, such as NameCal 'I back,
PasswordCa'l "I back, TextInputCal 'I back, and TextOutputCal 1 back.

Also included among the packages, but not described here, are various

Permission classes for proper security Checking and Exception classes for

proper error handling.

8.4 Conclusion

In this book, I took you on a tour inside the Java security architecture. The tour

included the various security features that the Java platform provides at multiple
layers—at the language level, within the JVM, and throughout core libraries and

extensions—as well as the customizations done by applications and applets. You

viewed such issues as type safety, object-level security, security policies, fine-
grained access control, and security deployment issues And you visited Java
cryptography architecture, which includes support for digital signatures and certif-
icates in JDK and the separately released JCE (Java Cryptography Extension).

The development of the JDK has progressed from the original JDK 1.0, to

JDK 1.1, to JDK 1.2. Somewhat parallel to this, separate security extensions also
have come into being—first JCE and then JAAS. And the road continues forward.

A few major Java technology trends underlie this development Understand-
ing these help to see where Java security is headed.

First'1s that the industrial adoption of Java technology has moved from focus-

ing exclusively on the client side to being deployed also on the server side. Cou-

pled with this new focus is a growing need to handle security issues that are
commonplace within an enterprise environment, For example, treating one JVM

as owned by a single user is no longer sufficient. Instead, a server application run-
ning inside one JVM can represent multiple users. As another example, mission-
critical applications must tolerate failure and survive denial-of-service attacks.

Thus resource control inside JVMs is becoming more important. As a result, the

future holds extensive improvement in security for this application space, with
JCE and JAAS being just the start.

The second trend is that the world is getting smaller. Java technology is being
deployed on information and Internet appliances such as smart cards, personal
digital assistants (PDAs), cell phones, pagers, Internet-capable screen phones, and
TV set~top boxes. These devices have unique requirements compared with the
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typical desktop system to which JDK is targeted. Being smallish in size and mem-

ory and relatively underpowered, they often adopt specialized Java platforms,
such as Personal]ava and EmbeddedJava. Further, the targeted application envi—

ronment for these devices have stronger, not weaker, security requirements. For

example, a cell phone manufacturer might allow a phone service provider com-

pany, as the original equipment manufacturer (OEM) of the phones, to add

vendor-specific features, while not wanting any party to be able to change the ker-
nel of the phone. '

The situation can be more complicated when, for example, third parties such

as a hotel chain start to partner with the phone company to offer loyalty programs.
When a new software feature upgrade is dynamically downloaded from the hotel
chain to the phone over a wireless connection, it is crucial to ensure the authentic—

ity of the upgrade, the integrity of the wireless connection, and secure isolation

between the upgrade (and its sibling application software) and those other soft-
ware already installed.

To ensure that platforms such as PersonalJava and EmbeddedJava have strong
security, one major challenge is to design security features that fit into a small

footprint. For example, to meet customer security requirements on set-top boxes
and others, the fine-grained access control architecture designed for JDK 1.2 has

been ported to PersonalJava.3 It turns out that the entire security package, includ—
ing the digital signature infrastructure (and particularly support for digital certifi—
cates), is too big; for example, X509 was obviously not designed for devices
currently on the mass market that have small memories. Nevertheless, we man—

aged to achieve the goals because in JDK 1.2 the access control mechanism is

related to the signature and certificate infrastructure Via a single interface,

java.security.cert.Certif1‘cate. There are no other API dependencies

between the two mechanisms. As a result, the crypto features can be made

optional, while the access control mechanism can be enhanced to work normally if
the crypto features are available and to treat all code as unsigned if they are not.

A related trend is that the world is becoming more connected. This increases

the need for secure communication, secure mobile and disconnected operations,
secure on-ljne transactions, and so on.

The last trend is that the hot points surrounding Java technology are no longer

just platform and infrastructure issues. More and more, applications coming to
market bring new kinds of security design issues that include security user inter-

face and policy management. Traditionally, security technology has focused more

on platforms (such as operating systems and networking protocols) and less on

3 A not-yet—publicly-available document describes this porting in more detail. L. Gong, Per—
sonalJava Security Architecture, Draft version 0.1, April 6, 1998.
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applications (most of which run as fully trusted). Thus substantial work still
remains in this area.

It has taken thirty or so years for computer security to come of age and
become a mainstream technology, but still there is a lot to do and many challenges
and opportunities to meet. We live in interesting times.
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241

policytool, 114—116, 139—143, 214
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