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- PREFACE 
My primary goal in writing this book was to explain the Java virtual 
machine-and several core Java APis closely related to the virtual 
machine-to Java programmers. Although the Java virtual machine 
incorporates technologies that have been tried and proven in other pro­
gramming languages, prior to Java, many of these technologies had not 
yet entered into common use. As a consequence, many programmers will 
encounter these technologies for the first time as they begin to program 
in Java. Garbage collection, multi-threading, exception handling, dynamic 
extension-even the use of a virtual machine itself-might be new to 
many programmers. The aim of this book is to help programmers under­
stand how all these things work, and in the process we hope to help them 
become more adept at Java programming. 

Another goal I had in mind as I wrote this book was to experiment a 
bit with the changing nature of text. Web pages have three interesting 
characteristics that differentiate them from paper-based text: they are 
dynamic (can evolve over time), they are interactive (especially if you 
embed Java applets in them), and they are interconnected (you can eas­
ily navigate from one to another). Besides the traditional text and figures, 
this book includes several Java applets (in a mini-Web site on the 
CD-ROM) that serve as interactive illustrations of the concepts presented 
in the text. In addition, I maintain a Web site at artima. com on the 
Internet that serves as a launching point for readers to find more (and 
more current) information about the topics covered in the book. This book 
is composed of all of these components: text, figures, interactive illustra­
tions, and constantly evolving links to further reading. 

Bill Venners 

XV 
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- - INTRODUCTJON 
This book describes the Java virtual machine, the abstract computer on 
which all Java programs run, and several core Java APis that have an inti­
mate relationship with the virtual machine. Through a combination of tuto­
rial explanations, working examples, reference material, and applets that 
interactively illustrate the concepts presented in the text, this book pro­
vides an in-depth, technical survey of Java as a technology. 

The Java programming language seems poised to be the next popular lan­
guage for mainstream commercial software development-the next step after 
C and C++. One of the fundamental reasons why Java is a likely candidate for 
this role is that Java's architecture helps programmers deal with emerging 
hardware realities. Java has features that the shifting hardware environment 
is demanding-features that are made possible by the Java virtual machine. 

The evolution of programming languages has (to a great extent) been 
driven by changes in the hardware being programmed. As hardware has 
grown faster, cheaper, and more powerful, software has become larger and 
more complex. The migration from assembly languages to procedural lan­
guages, such as C, and to object oriented languages, such as C++, was 
largely driven by a need to manage ever greater complexity-complexity 
made possible by increasingly powerful hardware. 

Today, the progression towards cheaper, faster, and more powerful hardwEJTe 
continues, as does the need for managing increasing software complexity. 
Building on C and C++, Java helps programmers deal with complexity by ren­
dering impossible certain kinds ofbugs that frequently plague C and C++ pro­
grammers. Java's inherent memory safety-garbage collection, lack of pointer 
arithmetic, and run-time checks on the use of references-prevents most mem­
ory bugs from ever occurring in Java programs. Java's memory safety makes 
programmers more productive and helps them manage complexity. 

In addition, besides the ongoing increase in the capabilities of hard­
ware, there is another fundamental shift taking place in the hardware 
environment: the network. As networks interconnect more and more com­
puters and devices, new demands are being made on software. With the 
rise of the network, platform independence and security have become 
more important than they were in the past. 

The Java virtual machine is responsible for the memory safety, platform 
independence, and security features of the Java programming language. 
Although virtual machines have been around for a long time, prior to 
Java, they had not quite entered the mainstream. Given today's emerging 

xvii 
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Introduction 

hardware realities, however, software developers needed a programming 
language with a virtual machine, and Sun hit the market window with Java. 

Thus, the Java virtual machine embodies the right software features 
for the coming years of computing. This book will help you get to know 
this virtual machine and some closely related Java APis. Armed with this 
knowledge, you will be better able to take maximum advantage of Java's 
unique architecture in your own endeavors. 

Who Should Read the Book? 
This book is aimed primarily at professional software developers and stu­
dents who want to understand Java technology. I assume that you are 
familiar, although not necessarily proficient, with the Java language. 
Reading this book should help you add a depth to your knowledge of Java 
programming. If you are one of the elite few who are actually writing Java 
compilers or creating implementations of the Java virtual machine, this 
book can serve as a companion to the Java virtual machine specification. 
Where the specification specifies, this book explains. 

How to Use the Book 
This book has five basic parts: 

1. An introduction to Java's architecture (Chapters 1 through 4) 

2. An in-depth, technical tutorial of Java internals (Chapters 5 
through 20) 

3. A class file and instruction set reference (Chapter 6 and Appen­
dixes A through C) 

4. Interactive illustrations and example source code (on the 
CD-ROM) 

5. The Java Virtual Machine Resources Page (http : I I www. art i rna . 
comlinsidejvmlresourcesl) 

An Introduction to Java's Architecture 

Chapters 1 through 4 (Part I of this book) give an overview of Java's archi­
tecture, including the motivations behind (and the implications of) Java's 
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Introduction xix 

architectural design. These chapters show how the Java virtual machine 
relates to the other components of Java's architecture: the class file, API, 
and language. If you want a basic understanding of Java as a technology, 
consult these chapters. Here are some specific points of interest from this 
portion of the book: 

81 For an overview of Java's architecture and a discussion of its inher­
ent tradeoff's, see Chapter 1, "Introduction to Java's Architecture." 

81 For a discussion of what platform independence really means, how 
Java's architecture supports this feature, and seven steps to create 
a platform-independent Java program, see Chapter 2, "Platform 
Independence." 

II For a description of the security model built into Java's core archi­
tecture, including an elaborate working example that demon­
strates the fine-grained access control made possible by the 
Version 1.2 security framework, see Chapter 3, "Security." 

81 For a discussion of the new paradigm of network-mobile software, 
see Chapter 4, "Network Mobility." 

A Tutorial of Java Internals 

Chapters 5 through 20 (Part II of this book) give an in-depth technical 
description of the inner workings of the Java virtual machine and related 
core Java APis. These chapters will help you understand how Java pro­
grams actually work. All of the material in Part II is presented in a tuto­
ria1 manner with many examples. Here are some specific points of interest 
from this portion of the book: 

81 For a comprehensive overview of the inner workings of the Java 
virtual machine, see Chapter 5, "The Java Virtual Machine." 

81 If you are parsing, generating, or simply peering into Java class 
files, see Chapter 6, "The Java Class File," for a complete tutorial 
and reference on the class file format. 

81 For a discussion of the lifetime of a class inside the Java virtual 
machine, including the circumstances in which classes can be 
unloaded, see Chapter 7, "The Lifetime of a Type." 

81 For a thorough explanation of Java's linking model, including a 
tutorial and examples on using forName () and class loaders to 
dynamically extend Java applications with new types at run time, 
see Chapter 8, "The Linking Model." 
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Ill For a discussion of garbage collection and finalization, an explana­
tion of soft, weak, and phantom references, and suggestions on 
how to use finalizers, see Chapter 9, "Garbage Collection." 

Ill For a tutorial on the Java virtual machine's instruction set, read 
Chapters 10 through 20. 

Ill For an explanation of monitors and how you can use them to write 
thread-safe Java code, see Chapter 20, "Thread Synchronization." 

A Class File and Instruction Set Reference 

In addition to being a tutorial on the Java class file, Chapter 6, "The Java 
Class File," serves as a complete reference of the class file format. Simi­
larly, Chapters 10 through 20 form a tutorial of the Java virtual machine's 
instruction set, and Appendixes A through C serve as a complete refer­
ence of the instruction set. If you need to look up something, check out 
these chapters and the appendixes. 

Interactive Illustrations and 
Example Source Code 

For most of this book's chapters, material associated with the chapter­
such as example code or simulation applets-appears on the CD-ROM. 

The applets directory of the CD-ROM contains a mini-Web site called 
the "Interactive Illustrations Web Site," which includes 15 Java applets 
that illustrate the concepts presented in the text. These interactive illus­
trations form an integral part of this book. Eleven of the applets simulate 
the Java virtual machine by executing bytecodes. The other applets illus­
trate garbage collection, twos-complement and IEEE 754 floating-point 
numbers, and the process of loading of class files. The applets can be 
viewed on any platform by any Java-capable browser. The source code for 
the simulation applets is also included on the CD-ROM. 

The copyright notice accompanying the HTML, . java, and . class 
files for the Interactive Illustrations Web Site enables you to post the Web 
site on any network, including the Internet-providing that you adhere 
to a few simple rules. For example, you must post the Web site in its 
entirety (you cannot make any changes to it), and you cannot charge peo-
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ple to look at the site. The full text of the copyright notice is given in the 
introduction to this book. 

All of the example source code shown in this book appears on the 
CD-ROM in both source and compiled (class files) form. If some example 
code in the text strikes you as interesting (or dubious), you can try it for 
yourself. 

Most of the example code is for illustrative purposes and is not likely 
to be of much practical use besides helping you understand Java. Never­
theless, you are free to cut and paste from the example code, use it in your 
own programs, and distribute it in binary (such as Java class file) format. 
The full text of the copyright notice for the example source code is shown 
in the introduction. 

The Java Virtual Machine Resources Page 

To help you find more information and keep abreast of changes, I main­
tain several pages at artima.com with links to further reading about the 
material presented in this book. The main URL for these pages of links 
is the Java Virtual Machine Resources Page at http: I /www. artima. 
com/insidejvm/resources/. 

Chapter-by-Chapter Summary 

Part 1: Java's Architecture 

Chapter 1: Introduction to Java's Architecture This chapter gives 
an introduction to Java as a technology and gives an overview of Java's 
architecture, discusses why Java is important, and examines Java's pros 
and cons. 

Chapter 2: Platform Independence This chapter shows how Java's 
architecture enables programs to run on any platform, discusses the fac­
tors that determine the true portability of Java programs, and examines 
the relevant tradeoffs. 

Chapter 3: Security This chapter gives an in-depth overview of the secu­
rity model built into Java's core architecture and traces the evolution of 
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Java's security model, from the basic sandbox ofVersion 1.0 through the code 
signing and authentication ofVersion 1.1, to the fine-grained access control 
ofVersion 1.2. 

Chapter 4: Network Mobility This chapter examines the new para­
digm of network-mobile software heralded by the arrival of Java and 
shows how Java's architecture makes this functionality possible. 

Part II: Java Internals 

Chapter 5: The Java Virtual Machine This chapter gives a detailed 
overview of the Java virtual machine's internal architecture. Accompa­
nying the chapter on the CD-ROM is an applet called Eternal Math, which 
simulates the Java virtual machine by executing a short sequence of byte­
codes. 

Chapter 6: The Java Class File This chapter describes the contents 
of the class file, including the structure and format of the constant pool, 
and serves as both a tutorial and a complete reference for the Java class 
file format. Accompanying the chapter on the CD-ROM is an applet called 
Getting Loaded, which simulates the process of the Java virtual machine 
loading a Java class file. 

Chapter 7: The Lifetime of a Class This chapter follows the lifetime 
of a type (class or interface) from the type's initial entrance into the vir­
tual machine to its ultimate exit. The chapter discusses the processes of 
loading, linking, and initialization; object instantiation, garbage collec­
tion, and finalization; and type unloading. 

Chapter 8: The Linking Model This chapter takes an in-depth look 
at Java's linking model and describes the parent-delegation model of class 
loaders, constant pool resolution, name spaces, and loading constraints. 
The chapter also shows how to use forName () and class loaders to enable 
a Java application to dynamically extend itself at run time. 

Chapter 9: Garbage Collection This chapter describes various 
garbage-collection techniques and explains how garbage collection works 
in Java virtual machines, including a discussion of the train algorithm 
and soft, weak, and phantom references. Accompanying this chapter on 
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the CD-ROM is an applet called Heap of Fish, which simulates a com­
pacting, mark-and-sweep, garbage-collected heap. 

Chapter 10: Stack and Local Variable Operations This chapter 
describes the Java virtual machine instructions that focus most exclu­
sively on the operand stack-those that push constants onto the operand 
stack, perform generic stack operations, and transfer values back and 
forth between the operand stack and local variables. Accompanying this 
chapter on the CD-ROM is an applet called Fibonacci Forever, which sim­
ulates the Java virtual machine executing a method that generates the 
Fibonacci sequence. 

Chapter 11: Type Conversion This chapter describes the instructions 
that convert values from one primitive type to another. Accompanying the 
chapter on the CD-ROM is an applet called Conversion Diversion, which 
simulates the Java virtual machine's execution of a method that performs 
type conversion. 

Chapter 12: Integer Arithmetic This chapter describes integer arith­
metic in the Java virtual machine, explains twos-complement arithmetic, 
and describes the instructions that perform integer arithmetic. Accompa­
nying this chapter on the CD-ROM are two applets that interactively 
illustrate the material presented in the chapter. One applet, called Inner 
Int, enables you to view and manipulate a twos-complement number. The 
other applet, called Prime Time, simulates the Java virtual machine exe­
cuting a method that generates prime numbers. 

Chapter 13: Logic This chapter describes the instructions that per­
form bitwise, logical operations inside the Java virtual machine. These 
instructions include opcodes to perform shifting and Boolean operations 
on integers. Accompanying this chapter on the CD-ROM is an applet 
called Logical Results, which simulates the Java virtual machine's exe­
cution of a method that uses several of the logic opcodes. 

Chapter 14: Floating-Point Arithmetic This chapter describes the 
floating-point numbers and the instructions that perform floating-point 
arithmetic inside the Java virtual machine specification. Accompanying 
this chapter on the CD-ROM are two applets that interactively illustrate 
the material presented in the chapter. One applet, called Inner Float, 
enables you to view and manipulate the individual components that make 
up a floating-point number. The other applet, called Circle of Squares, 
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simulates the Java virtual machine's execution of a method that uses sev­
eral floating-point opcodes. 

Chapter 15: Objects and Arrays This chapter describes the Java vir­
tual machine instructions that create and manipulate objects and arrays. 
Accompanying this chapter on the CD-ROM is an applet called Three­
DimensionalArray, which simulates the Java virtual machine's execution 
of a method that allocates and initializes a three-dimensional array. 

Chapter 16: Control Flow This chapter describes the instructions 
that cause the Java virtual machine to conditionally or unconditionally 
branch to a different location within the same method. Accompanying this 
chapter on the CD-ROM is an applet called Saying Tomato, which simu­
lates the Java virtual machine's execution of a method that includes byte­
codes that perform table jumps (the compiled version of a Java switch 
statement). 

Chapter 17: Exceptions This chapter shows how exceptions are imple­
mented in bytecodes and describes the instruction for throwing an excep­
tion explicitly, explains exception tables, and shows how catch clauses 
work. Accompanying this chapter on the CD-ROM is an applet called Play 
Ball!, which simulates the Java virtual machine executing a method that 
throws and catches exceptions. 

Chapter 18: Finally Clauses This chapter shows how finally clauses 
are implemented in bytecodes and describes the relevant instructions 
with examples of their use. The chapter also describes some surprising 
behavior exhibited by finally clauses in Java source code and explains this 
behavior at the bytecode level. Accompanying this chapter on the 
CD-ROM is an applet called Hop Around, which simulates the Java vir­
tual machine executing a method that includes finally clauses. 

Chapter 19: Method Invocation and Return This chapter describes 
the four instructions that the Java virtual machine uses to invoke meth­
ods and the situations in which each instruction is used. 

Chapter 20: Thread Synchronization This chapter describes moni­
tors-the mechanism that Java uses to support synchronization-and 
shows how they are used by the Java virtual machine. The chapter also 
shows how one aspect of monitors, the locking and unlocking of data, is sup­
ported in the instruction set. 
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Appendix A: Instruction Set by Opcode Mnemonic This appendix 
lists the opcodes alphabetically by mnemonic. For each opcode, you are 
given the mnemonic, opcode byte value, instruction format (the operands, 
if any), a snapshot image of the stack before and after the instruction is 
executed, and a description of the instruction's execution. Appendix A 
serves as the primary instruction -set reference of the book. 

Appendix B: Opcode Mnemonic by Functional Group This appen­
dix organizes the instructions by functional group. The organization used 
in this appendix corresponds to the order in which the instructions are 
described in Chapters 10 through 20. 

Appendix C: Opcode Mnemonic by Opcode This appendix orga­
nizes the opcodes in numerical order. For each numerical value, you are 
given the mnemonic. 

Appendix D: Slices of Pi: A Simulation of the Java Virtual Machine 
This final appendix describes one final applet, Slices of Pi, that is part of 
the Interactive Illustrations Web Site. This applet simulates the Java vir­
tual machine calculating pi. 

Copyright Notices 
Here is the text ofthe copyright notice that appears in each of the exam­
ple source files (any item on the CD-ROM that is not in either the 
applets or j dk directories): 

Copyright© 1997-1999 Bill Venners. All rights reserved. 
Source code file from the book "Inside the Java 2 Virtual Machine," by Bill 

Venners, published by McGraw-Hill, 1997-1999, ISBN: 0-07-135093-4. 
This source file may not be copied, modified, or redistributed EXCEPT as 

allowed by the following statements: You may freely use this file for your 
own work, including modifications and distribution in compiled (class files, 
native executable, etc.) form only. You may not copy and distribute this file. 
You may not remove this copyright notice. You may not distribute modified 
versions of this source file. You may not use this file in printed media with­
out the express permission of Bill Venners. 

BILL VENNERS MAKES NO REPRESENTATIONS OR WARRANTIES 
ABOUT THE SUITABILITY OF THIS SOFTWARE, EITHER EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WAR-
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RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PUR­
POSE, OR NON-INFRINGEMENT. BILL VENNERS SHALL NOT BE 
LIABLE FOR ANY DAMAGES SUFFERED BY A LICENSEE AS A 
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE 
OR ITS DERNATIVES. 

The HTML pages (including the applets) and Java source files for the 
Interactive Illustrations Web Site (stored in the applets directory of the 
CD-ROM) all bear the following copyright notice: 

All the web pages and Java applets delivered in the applets directory of 
the CD-ROM, consisting of".html," ".gif," ".class," and ".java" files, are copy­
righted© 1996, 1997 by Bill Venners, and all rights are reserved. This mate­
rial may be copied and placed on any commercial or non-commercial web 
server on any network (including the internet) provided that the following 
guidelines are followed: 

a. All the web pages and Java Applets (".html," ".gif," ".class," and ".java" 
files), including the source code, that are delivered in the applets 

directory of the CD-ROM that accompanies the book must be pub­
lished together on the same web site. 

b. All the web pages and Java Applets (".html," ".gif," ".class," and ".java" 
files) must be published "as is" and may not be altered in any way. 

c. All use and access to this web site must be free, and no fees can be 
charged to view these materials, unless express written permission is 
obtained from Bill Venners. 

d. The web pages and Java Applets may not be distributed on any media, 
other than a web server on a network, and may not accompany any 
book or publication. 

BILL VENNERS MAKES NO REPRESENTATIONS OR WARRANTIES 
ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WAR­
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PUR­
POSE, OR NON-INFRINGEMENT. BILL VENNERS SHALL NOT BE 
LIABLE FOR ANY DAMAGES SUFFERED BY A LICENSEE AS A 
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE 
OR ITS DERNATIVES. 

Some Terminology 

In this book, I have attempted to use terminology that is consistent with 
the Java language and Java virtual machine specifications. In case you 
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are not familiar with this terminology, I would like to clarify a few terms 
up front. 

First of all, in this book I have attempted to be meticulous about my 
usage of the terms type and class. In Java jargon, variables and expres­
sions have type. Objects and arrays have class. Every variable and expres­
sion in a Java program has a type that is known at compile time: either 
a primitive type (int, long, float, double, etc.) or a reference type (a 
class, interface, or array). The type of a variable or expression determines 
the range and kind of values it can have, the operations it supports, and 
the meaning of those operations. 

At run time, every object and array has a class. Although an object is 
an instance of its class and all of its superclasses, it only has one class. 
An object's class can be any of the following: 

• The class mentioned in the class instance creation expression that 
created the object 

• The class represented by the Class object upon which newin­
stance () was invoked to create the object 

• The class of the object upon which clone () was invoked to create 
the object 

IB The class of an object that was created by deserializing a previ­
ously serialized object 

Array classes have names such as [D or [ [ [[I, which are not valid iden­
tifiers in the Java language. (Array class names are described in Chapter 6, 
"The Java Class File.") If at run time a variable that has a reference type is 
not null, then that variable refers to an object whose class is compatible 
with the type of the variable. 

To complicate the terminology situation a bit more, the specifications 
contain one other usage of the term type. Because a variable can declare 
a class or interface as its type, classes and interfaces define new types for 
the program to use. (The capability to define new types is, of course, one 
of the fundamental concepts of object-oriented programming.) Through­
out this book, I attempt to use the term classes to mean just classes (not 
classes and interfaces). Likewise, I use the term interfaces to mean just 
interfaces. When I want to refer to both, I sometimes say classes and inter­
faces, but often I just say types. For example, when I say, ''When the class 
loader loads a new type ... ," I mean, "When the class loader loads a new 
class or interface." In this sense, type is not referring to the compile-time 
notion of a variable's type; rather, it refers to the new type that each class 
and interface definition represents. 
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---­Figure 0-1 
An Inheritance 
hierarchy 

Introduction 

Another set of terminology I would like to clarify up front are the terms 
used by the Java specifications to describe the relationships between 
types (classes and interfaces) in an in~eritance hierarchy. Consider 
the inheritance hierarchy shown in the Figure 0-1. In this figure, class 
CockerSpaniel extends class Dog, which extends class Animal, which 
extends class Object. In addition, interface Friendly extends interface 
Happy, and class Dog implements interface Friendly. 

In Java terminology, classes higher than a class in an inheritance hier­
archy are superclasses; classes beneath a class are subclasses. In the fol­
lowing figure, Dog's superclasses are Animal and Object, and Dog is a 
subclass of both Animal and Object. The superclass that is directly 
higher than a class in the inheritance hierarchy is the class's direct super­
class. A subclass directly beneath a class is its direct subclass. For exam-

Happy 
<<:interface>> 

Friendly 
<<:interface>> 
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ple, Animal is the direct superclass of Dog, and CockerSpaniel is a 
direct subclass of Dog. 

This sub- and super-terminology can be applied to interfaces, as well. 
For example, interfaces Happy and Friendly are superinterfaces of both 
Dog and CockerSpaniel. Interface Friendly is a direct superinterface 
of Dog and a direct subinterface of Happy. 

One last way to use the sub- and super-terminology is by grouping both 
classes and interfaces under the name type. In Figure 0-1, Friendly, Dog, 
and CockerSpaniel are subtypes of Happy. Object, Animal, Happy, 
Friendly, and Dog are all supertypes of CockerSpaniel. 

Font Conventions 
Used in this Book 
Throughout this book, I use a fixed-width font for Java code and Java vir­
tual machine opcode mnemonics. In the text, I use fixed-width font for 
Java language keywords only in certain cases-in an attempt to maximize 
readability. For example, I say public method instead of public method, 
because in this case, public is being used as a regular English adjective 
(in a sense of the word that is understood in Java circles)-not necessar­
ily as the Java keyword. 

Java Versions and Specification 
Editions 
The text of this book is current to the Java 2 SDK Version 1.2 and the sec­
ond edition of the Java virtual machine specification. Although little of the 
material covered by this book changed between Versions 1.0 and 1.1, a 
great deal changed between Versions 1.1 and 1.2. Moreover, the second 
edition of the Java virtual machine specification clarified many issues 
contained in the first edition of the specification, as well as making a few 
amendments. 

One change that occurred in JDK Version 1.0.2 was a change in the 
semantics of the invokespecial instruction, which is described in Chap-
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ter 19, "Method Invocation," and in Appendix A. Two attributes were 
added to the class-file format in Version 1.1 to support inner classes, and 
an attribute was added to support the @deprecated j avadoc tag. They 
are described in Chapter 6, "The Java Class File." Also, the API of the 
ClassLoader class was extended in Version 1.1. Chapter 8, "The Link­
ing Model," demonstrates the use of the 1.1 version of this API. 

Several of the Java APis described in this book underwent significant 
changes between Version 1.1, which was covered by the first edition of this 
book, and Version 1.2, which is covered by this second edition. Perhaps the 
most significant API changes that affected this book are the many API 
changes that support the Version 1.2 security model. All of the compo­
nents of the Version 1.2 security model-the basic sandbox, code signing 
and authentication, policies and policy files, permissions, code sources, 
protection domains, and the stack inspection algorithms of the access con­
troller-are described in detail in Chapter 3, "Security." The strictfp 
keyword added to the Java language in Version 1.2 and the correspond­
ing access flag added to the Java class-file format are explained in Chap­
ter 6, "The Java Class File." The class-loader parent-delegation model 
introduced in Version 1.2-and several new methods introduced inVer­
sion 1.2 to classes java .lang. Class and java .lang. ClassLoader­
are described in Chapter 8, "The Linking Model." Soft, weak, and phantom 
references, which were added as the java .lang. ref package of the Ver­
sion 1.2 Java API, are described in Chapter 9, "Garbage Collection." 

Aside from several new APis introduced to Java in Version 1.2, this 
book incorporates the many clarifications and amendments to the origi­
nal Java virtual machine specification that were printed in the second edi­
tion of the specification. For example, the second edition of the Java 
virtual machine specification documented a new set ofloading constraints 
that ensure type-safe linking in the presence of multiple class loaders. 
These loading constraints are described and are demonstrated by a code 
example in Chapter 8, "The Linking Model." The revised floating-point 
rules for Java virtual machines given in the second edition of the specifi­
cation are explained in Chapter 14, "Floating-Point Arithmetic." This 
second edition of this book also incorporates many corrections and clari­
fications to the specification of class-file version numbers, method invo­
cation, and the loading, linking, and initialization of types. 

The bytecode examples shown throughout this book were generated by 
the j avac compiler from various incarnations of Sun's JDK Version 1.1. 
Keep in mind that there is more than one way to compile a class. Differ­
ent compilers, even different versions of the same compiler, could gener­
ate different results. 
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The source code of the simulation applets (the interactive illustrations) 

adhere to Java Version 1.0. As I discuss in Chapter 2, "Platform Inde­
pendence," one of the realities of Java's platform-independence promise is 
that you have to decide when a version of the Java Platform has been dis­
tributed widely enough to make it worthwhile to target that version. 
Although I had a 1.1 version of the Java virtual machine simulator 
applets working in 1997, when it came time to deliver the CD-ROM mate­
rial for the first edition of this book to the publisher, I opted to drop the 
code back to Version 1.0. At the time, neither Netscape Communicator nor 
Microsoft Internet Explorer fully supported Version 1.1. Because these 
applets are not example source but are software products in their own 
right, I felt that it did not make sense to release them in Version 1.1. As 
a consequence, the applets will work in browsers that support either Ver­
sions 1.0, 1.1, or 1.2-and hopefully many versions into the future. 

Request for Comments 
If you have a suggestion on how to improve this book or wish to report a bug 
or error, please visit http:/ /www.artima.com/insidejvm/feedback. 
html. This page will give you instructions on how to submit your comment. 
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to Java's 

Architecture 

At the heart of Java technology lies the Java virtual 
machine-the abstract computer on which all Java pro­
grams run. Although the name "Java" is generally used to 
refer to the Java programming language, there is more to 
Java than just the language. The Java virtual machine, 
Java Application Programming Interface (API), and Java 
class file work together with the language to make Java 
programs run. 

The first four chapters of this book (collectively called 
"Part 1: Java's Architecture") show how the Java virtual 
machine fits into the big picture. These chapters show 
how the virtual machine relates to the other components 
of Java's architecture: the class file, API, and language. 
They describe the motivation behind-and the implica­
tions of-the overall design of Java technology. 
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Chapter One 

This chapter gives an introduction to Java as a technology, offers an 
overview of Java's architecture, discusses why Java is important, and 
examines Java's pros and cons. 

Why Java? 
Over the ages, people have used tools to help them accomplish tasks. 
But lately, their tools have been getting smarter and interconnected. Micro­
processors have appeared inside many commonly used items, and increas­
ingly, these microprocessors have been connected to networks. As the heart 
of personal computers and workstations, for example, microprocessors have 
been routinely connected to networks. They have also appeared inside 
devices with more specific functionality than the personal computer or the 
workstation. Televisions, VCRs, audio components, fax machines, scanners, 
printers, cellular phones, personal digital assistants, pagers, and wrist­
watches all have been enhanced with microprocessors, and most have been 
connected to networks. Given the increasing capabilities and decreasing 
costs of information-processing and data-networking technologies, the net­
work is rapidly extending its reach. 

The emerging infrastructure of smart devices and computers intercon­
nected by networks represents a new environment for software-an envi­
ronment that presents new challenges and offers new opportunities for 
software developers. Java is well suited to help software developers meet 
challenges and seize opportunities presented by the emerging computing 
environment, because Java was designed for networks. Its suitability for 
networked environments is inherent in its architecture, which enables 
secure, robust, platform-independent programs to be delivered across net­
works and run on a great variety of computers and devices. 

- - The Challenges and 
Opportunities of Networks 
One challenge presented to software developers by the increasingly 
network-centric hardware environment is the wide range of devices that 
networks interconnect. A typical network usually has many different 
kinds of attached devices, with diverse hardware architectures, operating 
systems, and purposes. Java addresses this challenge by enabling the ere-
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ation of platform-independent programs. A single Java program can run 
unchanged on a wide range of computers and devices. Compared with pro­
grams compiled for a specific hardware and operating system, platform­
independent programs written in Java can be easier and cheaper to 
develop, administer, and maintain. 

Another challenge the network presents to software developers is secu­
rity. In addition to their potential for good, networks represent an avenue 
for malicious programmers to steal or destroy information, steal comput­
ing resources, or simply be a nuisance. Virus writers, for example, can 
place their wares on the network for unsuspecting users to download. 
Java addresses the security challenge by providing an environment in 
which programs downloaded across a network can be run with customized 
degrees of security. 

One aspect of security is simple program robustness. Like devious code 
written by malicious programmers, bug-filled code written by well-meaning 
programmers can potentially destroy information, monopolize compute 
cycles, or cause systems to crash. Java's architecture guarantees a certain 
level of program robustness by preventing certain types of pernicious bugs, 
such as memory corruption, from ever occurring in Java programs. This 
architecture establishes trust that downloaded code will not inadvertently 
(or intentionally) crash, but it also has an important benefit unrelated to 
networks: the architecture makes programmers more productive. Because 
Java prevents many types of bugs from ever occurring, Java programmers 
do not need to spend time trying to find and fix them. 

One opportunity created by an omnipresent network is online software 
distribution. Java takes advantage of this opportunity by enabling the 
transmission of binary code in small pieces across networks. This capa­
bility can make Java programs easier and cheaper to deliver than pro­
grams that are not network mobile. This transmission can also simplify 
version control. Because the most recent version of a Java program can 
be delivered on demand across a network, you do not need to worry about 
which version your end-users are running. They will always get the most 
recent version each time they use your program. 

Mobile code gives rise to another opportunity: mobile objects, the trans­
mission ofboth code and state across the network. Java realizes the promise 
of object mobility in its APis for object serialization and Remote Method Invo­
cation (RMI). Built on top of Java's underlying architecture, object serializa­
tion and RMI provide an infrastructure that enables the various components 
of distributed systems to share objects. The network mobility of objects makes 
possible new models for distributed systems programming, effectively bring­
ing the benefits of object-oriented programming to the network. 
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Platform independence, security, and network mobility are three facets 
of Java's architecture that work together to make Java suitable for the 
emerging network computing environment. Because Java programs are 
platform independent, network mobility of code and objects is more prac­
tical. The same code can be sent to all the computers and devices that 
the network interconnects. Objects can be exchanged between various 
components of a distributed system, which can be running on different 
kinds of hardware. Java's built-in security framework also helps make 
network mobility of software more practical. By reducing risk, the secu­
rity framework helps to build trust in a new paradigm of network-mobile 
software. 

- - The Architecture 
Java's architecture arises from four distinct (but interrelated) technologies: 

Ill the Java programming language 

II the Java class file format 

Ill the Java API 

II the Java virtual machine 

When you write and run a Java program, you are tapping into the 
power of these four technologies. You express the program in source files 
written in the Java programming language, compile the source to Java 
class files, and run the class files on a Java virtual machine. When you 
write your program, you access system resources (such as 1/0, for exam­
ple) by calling methods in the classes that implement the Java API. As 
your program runs, it fulfills your program's Java API calls by invoking 
methods in class files that implement the Java API. You can see the rela­
tionship between these four parts in Figure 1-1. 

Together, the Java virtual machine and Java API form a "platform" for 
which all Java programs are compiled. In addition to being called the Java 
runtime system, the combination of the Java virtual machine and Java 
API is called the Java Platform (or, starting with version 1.2, the Java 2 
Platform). Java programs can run on many different kinds of computers, 
because the Java Platform can itself be implemented in software. As you 
can see in Figure 1-2, a Java program can run anywhere the Java Plat­
form is present. 
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Figure 1-1 
The Java program­
ming environment 

Figure 1-2 
Java programs run 
on top of the Java 
Platform. 
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At the heart of Java's network orientation is the Java virtual machine, 
which supports all three prongs of Java's network-oriented architecture: 
platform independence, security, and network mobility. 

The Java virtual machine is an abstract computer. Its specification 
defines certain features every Java virtual machine must have but leaves 
many choices to the designers of each implementation. For example, 
although all Java virtual machines must be able to execute Java bytecodes, 
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---­Figure 1-3 
A basic block 
diagram of the Java 
virtual machine 

Chapter One 

they may use any technique to execute them. Also, the specification is flex­
ible enough to enable a Java virtual machine to be implemented either 
completely in software-or to varying degrees in hardware. The flexible 
nature of the Java virtual machine's specification enables it to be imple­
mented on a wide variety of computers and devices. 

A Java virtual machine's main job is to load class files and execute the 
bytecodes they contain. As you can see in Figure 1-3, the Java virtual 
machine contains a class loader, which loads class files from both the pro­
gram and the Java API. Only those class files from the Java API that 
are actually needed by a running program are loaded into the virtual 
machine. The bytecodes are executed in an execution engine. 

The execution engine is one part of the virtual machine that can vary 
in different implementations. On a Java virtual machine implemented in 
software, the simplest kind of execution engine just interprets the byte­
codes one at a time. Another kind of execution engine-one that is faster 
but requires more memory-is ajust-in-time compiler. In this scheme, the 
bytecodes of a method are compiled to native machine code the first time 
the method is invoked. The native machine code for the method is then 
cached, so the code can be reused the next time that same method is 
invoked. A third type of execution engine is an adaptive optimizer. In this 
approach, the virtual machine starts by interpreting bytecodes but mon­
itors the activity of the running program and identifies the most heavily 
used areas of code. As the program runs, the virtual machine compiles to 
native machine code and optimizes only these heavily used areas. The rest 
of the of code, which is not heavily used, remains as bytecodes-which 
the virtual machine continues to interpret. This adaptive optimization 
approach enables a Java virtual machine to spend typically 80 percent to 

Your 
program 's ___ .,.. 
class files 

The 
JavaAPI's 
class files 
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90 percent of its time executing highly optimized native code, while 
requiring it to compile and optimize only the 10 percent to 20 percent of 
the code that really matters for performance. Lastly, on a Java virtual 
machine built on top of a chip that executes Java bytecodes natively, the 
execution engine is actually embedded in the chip. 

Sometimes, the Java virtual machine is called the Java interpreter; how­
ever, given the various ways in which bytecodes can be executed, this term 
can be misleading. While "Java interpreter" may seem to imply that a vir­
tual machine is interpreting bytecodes, the term "interpreter" is really 
being used in a different sense in this case. When talking about execution 
techniques, interpreting is a particular technique known for its easy imple­
mentation and slow execution. But "Java interpreter" just means "Java vir­
tual machine," and says nothing about execution technique. 

When running on a Java virtual machine that is implemented in soft­
ware on top of a host operating system, a Java program interacts with the 
host by invoking native methods. In Java, there are two kinds of methods: 
Java and native. A Java method is written in the Java language, compiled 
to bytecodes, and stored in class files. A native method is written in some 
other language, such as C, C++, or assembly, and is compiled to the native 
machine code of a particular processor. Native methods are stored in a 
dynamically linked library whose exact form is platform specific. While 
Java methods are platform independent, native methods are not. When a 
running Java program calls a native method, the virtual machine loads 
the dynamic library that contains the method and invokes it. As you can 
see in Figure 1-4, native methods are the connection between a Java pro­
gram and an underlying host operating system. 

You can use native methods to give your Java programs direct access 
to the resources of the underlying operating system. Their use, however, 
will render your program platform specific, because the dynamic libraries 
containing the native methods are platform specific. In addition, the use 
of native methods may render your program specific to a particular imple­
mentation of the Java Platform. One native method interface, the Java 
Native Interface (JNI), enables native methods to work with any Java 
Platform implementation on a particular host computer. Vendors of the 
Java Platform, however, are not necessarily required to support JNI. They 
may provide their own proprietary native method interfaces in addition 
to JNI (or, depending on their contract, in place of JNI). 

Java gives you a choice. If you want to access resources of a particular 
host that are unavailable through the Java API, you can write a platform­
specific Java program that calls native methods. If you want to keep your 
program platform independent, however, you must access the system 
resources of the underlying operating system only through the Java API. 
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A Java virtual 
machine imple­
mented in software 
on top of a host 
operating system 
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Chapter One 

The 
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class files 

One aspect of the Java virtual machine that plays an importa,nt role in 
both security and network mobility is the class loader architecture. In the 
block diagrams of Figures 1-3 and 1-4 (shown previously), a single mys­
terious cube identifies itself as "the class loader." In reality, though, there 
may be more than one class loader inside a Java virtual machine. Thus, 
the class loader cube of the block diagram actually represents a subsys­
tem that may involve many class loaders. The Java virtual machine has 
a flexible class loader architecture that enables a Java application to load 
classes in custom ways. 

A Java application can use two types of class loaders: a ''bootstrap" 
class loader and user-defined class loaders. The bootstrap class loader 
(there is only one of them) is part of the Java virtual machine implemen­
tation. For example, if a Java virtual machine is implemented as a C pro­
gram on top of an existing operating system, then the bootstrap class 
loader will be part of that C program. The bootstrap class loader loads 
classes, including the classes of the Java API, in some default way, usu­
ally from the local disk. (The bootstrap class loader has also been called 
the primordial class loader, system class loader, or default class loader. In 
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---­Figure 1-5 
Javas class loader 
architecture 

version 1.2, the name "system class loader" was given a new meaning 
(described in Chapter 3, "Security"). 

At run time, a Java application can install user-defined class loaders 
that load classes in custom ways, such as by downloading class files across 
a network. While the bootstrap class loader is an intrinsic part of the vir­
tual machine implementation, user-defined class loaders are not. Instead, 
user-defined class loaders are written in Java, compiled to class files, 
loaded into the virtual machine, and instantiated just like any other 
object. They are really just another part of the executable code of a run­
ning Java application. You can see a graphical depiction of this architec­
ture in Figure 1-5. 

Because of user-defined class loaders, at compile time you do not have 
to know all the classes that may ultimately take part in a running Java 
application. User-defined class loaders enable you to dynamically extend 
a Java application at run time. As the application runs, it can determine 
what extra classes are needed and load them through one or more user­
defined class loaders. Because you write the class loader in Java, you can 
load classes in any manner expressible in Java code. You can download 
them across a network, get them out of some kind of database, or even 
calculate them on the fly. 

For each class it loads, the Java virtual machine keeps track of which 
class loader-whether bootstrap or user-defined-loaded the class. When 

objects on the heap 

part of the Java Virtual Machine implementation 
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a loaded class first refers to another class, the virtual machine requests 
the referenced class from the same class loader that originally loaded 
the referencing class. For example, if the virtual machine loads class 
Volcano through a particular class loader, it will attempt to load any 
classes Volcano refers to through the same class loader. If Volcano 
refers to a class named Lava, perhaps by invoking a method in class 
Lava, the virtual machine will request Lava from the class loader that 
loaded Volcano. The Lava class returned by the class loader is dynam­
ically linked with class Volcano. 

Because the Java virtual machine takes this approach to loading 
classes, by default classes can only see other classes that were loaded b:y 
the same class loader. In this way, Java's architecture enables you to cre­
ate multiple name-spaces inside a single Java application. Each class 
loader in your running Java program has its own name-space, which is 
populated by the names of all the classes it has loaded. 

A Java application can instantiate multiple user-defined class loaders 
either from the same class or from multiple classes. The application can, 
therefore, create as many (and as many different kinds of) user-defined 
class loaders as necessary. Classes l9aded by different class loaders are in 
different name-spaces and cannot gain access to each other, unless the 
application explicitly permits this access. When you write a Java appli­
cation, you can segregate classes loaded from different sources into 
different name-spaces. In this way, you can use Java's class loader archi­
tecture to control any interaction between code loaded from different 
sources. In particular, you can prevent hostile code from gaining access to 
and subverting friendly code. 

One example of dynamic extension is the Web browser, which uses user­
defined class loaders to download the class files for applets across a net­
work. A Web browser fires off a Java application that installs a user-defined 
class loader-usually called an applet class loader-that knows how to 
request class files from a HyperText Transport Protocol (HTTP) server. 
Applets are an example of dynamic extension, because at startup, the Java 
application does not know which class files the browser will ask it to down­
load across the network. The class files to download are determined at run 
time as the browser encounters pages that contain Java applets. 

The Java application started by the Web browser usually creates a dif­
ferent user-defined class loader for each location on the network from 
which it retrieves class files. As a result, class files from different sources 
are loaded by different user-defined class loaders. This action places them 
into different name-spaces inside the host Java application. Because the 
class files for applets from different sources are placed in separate name-

l 
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spaces, the code of a malicious applet is restricted from interfering 
directly with class files downloaded from any other source. 

By enabling you to instantiate user-defined class loaders that know how 
to download class files across a network, Java's class loader architecture 
supports network mobility. Java also supports security by enabling you to 
load class files from different sources through different user-defined class 
loaders. This feature puts the class files from different sources into differ­
ent name-spaces, which enables you to restrict or prevent access between 
code loaded from different sources. 

The Java Class File 

The Java class file helps make Java suitable for networks, mainly in the 
areas of platform independence and network mobility. Its role in platform 
independence is serving as a binary form for Java programs. This form is 
expected by the Java virtual machine but is independent of underlying 
host platforms. This approach breaks with the tradition followed by lan­
guages such as Cor C++, because programs written in these languages 
are most often compiled and linked into a single, binary, executable file 
specific to a particular hardware platform and operating system. In gen­
eral, a binary executable file for one platform will not work on another 
platform. The Java class file, by contrast, is a binary file that can be run 
on any hardware platform and operating system that hosts the Java vir­
tual machine. 

When you compile and link a C++ program, the executable binary file 
you get is specific to a particular target hardware platform and operating 
system, because it contains machine language specific to the target 
processor. A Java compiler, by contrast, translates the instructions of the 
Java source files into bytecodes, which are the "machine language" of the 
Java virtual machine. 

In addition to processor-specific machine language, another platform­
dependent attribute of a traditional binary executable file is the byte order 
of integers. In executable binary files for the Intel X86 family of processors, 
for example, the byte order is little-endian, or lower-order byte first. In exe­
cutable files for the PowerPC chip, however, the byte order is big-endian, 
or higher-order byte first. In a Java class file, byte order is big-endian­
regardless of which platform generated the file and independent of what­
ever platforms may eventually use the file. 

In addition to its support for platform independence, the Java class file 
plays a critical role in Java's architectural support for network mobility. 
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First, class files were designed to be compact so they can more quickly 
move across a network. Also, because Java programs are dynamically 
linked and can be extended dynamically, class files can be downloaded as 
needed. This feature helps a Java application manage the time it takes to 
download class files across a network, so the end-user's wait time can be 
kept to a minimum. 

The Java API 

The Java API helps make Java suitable for networks through its support 
for platform independence and security. The Java API is a set of run-time 
libraries that give you a standard way to access the system resources of 
a host computer. When you write a Java program, you assume that the 
class files of the Java API will be available at any Java virtual machine 
that may ever have the privilege of running your program. This assump­
tion is relatively safe, because the Java virtual machine and the class 
files for the Java API are the required components of any implementa­
tion of the Java Platform. When you run a Java program, the virtual 
machine loads the Java API class files that are referred to by your pro­
gram's class files. The combination of all loaded class files (from your 
program and from the Java API) and any loaded dynamic libraries (con­
taining native methods) constitute the full program executed by the Java 
virtual machine. 

The class files of the Java API are inherently specific to the host plat­
form. The API's functionality must be implemented expressly for a partic­
ular platform before that platform can host Java programs. To access the 
native resources ofthe host, the Java API calls native methods. As you can 
see in Figure 1-6, the class files of the Java API invoke native methods 
so your Java program doesn't have to do this task. In this manner, the Java 
API's class files provide a Java program with a standard, platform­
independent interface to the underlying host. To the Java program, the 
Java API looks the same and behaves predictably-no matter what plat­
form happens to be underneath. Precisely because the Java virtual 
machine and Java API are implemented specifically for each particular 
host platform, Java programs themselves can be platform independent. 

The internal design of the Java API is also geared towards platform 
independence. For example, the graphical user interface (GUI) libraries of 
the Java API, the Abstract Windows Toolkit (AWT), and Swing are 
designed to facilitate the creation of user interfaces that work on all plat­
forms. Creating platform-independent user interfaces is inherently diffi-
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Figure 1·6 
A platform-indepen­
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cult, given that the native look and feel of user interfaces vary greatly 
from one platform to another. The AWT library's architecture does not 
coerce implementations of the Java API to give Java programs a user 
interface that looks exactly the same everywhere. Instead, the architec­
ture encourages implementations to adopt the look and feel of the under­
lying platform. The Swing library offers even more flexibility, enabling the 
look and feel to be chosen by the programmer. Also, because the size of 
fonts, buttons, and other user-interface components will vary from plat­
form to platform, the AWT and Swing include layout managers to posi­
tion the elements of a window or dialog box at run time. Rather than 
forcing you to indicate exact X andY coordinates for the various elements 
that constitute a dialog box, for example, the layout manager positions the 
coordinates when your dialog box is displayed. With the aim of making 
the dialog look its best on each platform, the layout manager will likely 
position the dialog box elements slightly different on different platforms. 
In these ways and in many others, the internal architecture of the Java 
API is aimed at facilitating the platform independence of the Java pro­
grams that use the application. 

In addition to facilitating platform independence, the Java API con­
tributes to Java's security model. Before they perform any action that 
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could potentially be harmful (such as writing to the local disk), the meth­
ods of the Java API check for permission by querying the security man­
ager. The security manager is a special object that defines a custom 
security policy for the application. A security manager could, for example, 
forbid access to the local disk. If the application requested a local disk 
write by invoking a method from the Java API, that method would first 
check with the security manager. Upon learning from the security man­
ager that disk access is forbidden, the Java API would refuse to perform 
the write. In Java 1.2, the job of the security manager was in many ways 
taken over by the access controller, a class that performs stack inspection 
to determine whether the operation should be permitted. (For backwards 
compatibility, the security manager still exists in Java 1.2.) By enforcing 
the security policy established by the security manager and access con­
troller, the Java API helps to establish a safe environment in which you 
can run potentially unsafe code. 

The Java Programming Language 

Although Java was designed for the network, its utility is not restricted 
to networks. Platform independence, network mobility, and security are 
of prime importance in a networked computing environment, but you may 
not always find yourself facing network-oriented problems. As a result, 
you may not always want to write programs that are platform indepen­
dent. You may not always want to deliver your programs across networks 
or limit their capabilities with security restrictions. There may be times 
when you use Java technology primarily because you want to obtain the 
advantages of the Java programming language. 

As a whole, Java technology leans heavily in the direction of networks, 
but the Java programming language is quite general purpose. The Java 
language enables you to write programs that take advantage of many 
software technologies: 

II object-orientation 

II multi-threading 

II structured error handling 

II garbage collection 

II dynamic linking 

II dynamic extension 
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Instead of serving as a test bed for new and experimental software 
technologies, the Java language combines in a new way concepts and tech­
niques that had already been tried and proven in other languages. These 
concepts and techniques make the Java programming language a power­
ful, general-purpose tool that you can apply to a variety of situations­
independent of whether they involve a network. 

At the beginning of a new project, you may be faced with the question, 
"Should I use C++ (or some other language) for my next project, or should 
I use Java?". As an implementation language, Java has some advantages 
and some disadvantages..()ver other languages. One of the most compelling 
reasons for using Java as a language is that it can enhance developer pro­
ductivity. The main disadvantage is potentially slower execution speed. 

First and foremost, Java is an object-oriented language. One promise of 
object-orientation is that it promotes the reuse of code, resulting in better 
productivity for developers. This feature may make Java tnore attractive 
than a procedural language such as C but does not add much value to Java 
over C++. Yet, compared to C++, Java has some significant differences that 
can improve a developer's productivity. This productivity boost comes 
mostly from Java's restrictions on direct memory manipulation. 

In Java, there is no way to directly access memory by arbitrarily cast­
ing pointers to a different type or by using pointer arithmetic, as there is 
in C++. Java requires that you strictly obey rules of type when working 
with objects. If you have a reference (similar to a pointer in C++) to an 
object of type Mountain, you can only manipulate it as a Mountain. You 
cannot cast the reference to type Lava and manipulate the memory as if 
it were a Lava, nor can you simply add an arbitrary offset to the refer­
ence (as pointer arithmetic permits you to do in C++). In Java, you can 
cast a reference to a different type-but only if the object really is of the 
new type. For example, if the Mountain reference actually referred to an 
instance of class Volcano (a specialized type of Mountain), you could cast 
the Mountain reference to a Volcano reference. Because Java enforces 
strict type rules at run time, you are not able to directly manipulate mem­
ory in ways that can accidentally corrupt the program. As a result, you 
can never create certain kinds of bugs in Java programs that regularly 
harass C++ programmers and hamper their productivity. 

Another way that Java prevents you from inadvertently corrupting 
memory is through automatic garbage collection. Java has a new opera­
tor, just like C++, that you use to allocate memory on the heap for a new 
object. But unlike C++, Java has no corresponding delete operator, 
which C++ programmers use to free the memory for an object that is no 
longer needed by the program. In Java, you merely stop referencing an 
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object, and at some later time, the garbage collector will reclaim the mem­
ory occupied by the object. 

The garbage collector prevents Java programmers from needing to 
explicitly indicate which objects should be freed. As a C++ project grows 
in size and complexity, it often becomes increasingly difficult for pro­
grammers to determine when an object should be freed (or even whether 
an object has already been freed). This situation results in memory leaks, 
where unused objects are never freed, and memory corruption, where the 
same object is accidentally freed multiple times. Both kinds of memory 
troubles cause C++ programs to crash, but tracking down the exact source 
of the problem is difficult. You can be more productive in Java primarily 
because you do not have to chase down memory corruption bugs. You can 
also be more productive, however, because when you no longer have to 
worry about explicitly freeing memory, program design becomes easier. 

A third way that Java protects the integrity of memory at run time is 
array bounds checking. In C++, arrays are really shorthand for pointer 
arithmetic, which brings with it the potential for memory corruption. C++ 
enables you to declare an array of 10 items, then write to the 11th item 
(although that action tramples on memory). In Java, arrays are full­
fledged objects, and array bounds are checked each time an array is used. 
If you create an array of 10 items in Java and try to write to the 11th, 
Java will throw an exception. Java will not let you corrupt memory by 
writing beyond the end of an array. 

One final example of how Java ensures program robustness is by 
checking object references each time they are used, to make sure they are 
not null. In C++, using a null pointer usually results in a program crash. 
In Java, using a null reference results in an exception being thrown. 

The productivity boost you can get just by using the Java language 
results in quicker development cycles and lower development costs. You 
can realize further cost savings if you take advantage of the potential 
platform independence of Java programs. Even if you are not concerned 
about a network, you may still want to deliver a program on multiple plat­
forms. Java can make support for multiple platforms easier (and there­
fore, cheaper). 

Architectural Tradeoffs 
Although Java's network-oriented features are desirable, especially in a 
networked environment, they do not come for free. They required tradeoffs 
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against other desirable features. Whenever a potential tradeoff between 
desirable characteristics arose, the designers of Java made the architec­
tural choice that made better sense in a networked world. Hence, Java is 
not the right tool for every job. Java is suitable for solving problems that 
involve networks and has functionality in many problems that do not 
involve networks, but its architectural tradeoffs will disqualify it for cer­
tain types of jobs. 

One of the prime costs of Java's network-oriented features is a poten­
tial reduction in program execution speed compared to other technologies 
such as C++. Indeed, achieving satisfactory performance was one of the 
most frustrating struggles for Java developers in the first few years of 
Java's existence. Nevertheless, although the early experience with Java 
may have encouraged the developer community to conclude that Java is 
slow, this was not necessarily the right conclusion. Although Java can be 
slow, it is not inherently slow. As virtual machine technology has 
advanced, great strides have been made in performance-even so far as 
to bring Java performance on par with natively compiled C. 

The first Java virtual machine that appeared in 1995 executed byte­
codes with an interpreter-a simple technique that yields poor perfor­
mance. Before long, just-in-time compilers appeared that greatly improved 
Java's performance compared to interpreters, but they still left Java per­
formance well behind natively compiled C++. With the most recent 
advances in virtual machine technology, however, Java's speed penalty is 
diminishing significantly, if not vanishing altogether. Advanced techniques 
such as adaptive optimization have enabled Java programs to run at 
speeds comparable to natively compiled C. 

Although the recent advances in Java performance are good news, 
they do not necessarily signal the end of developer frustrations about 
Java performance. The trouble for developers is that although certain 
Java virtual machine implementations may yield stunning performance, 
developers cannot always select the virtual machine on which their Java 
programs will run. One of the promises of Java's architecture is that a 
Java program will run "anywhere," and that also means on any Java vir­
tual machine. If you are writing a server application in Java intended 
for in-house use, you may be able to select the virtual machine imple­
mentation on which your application will run. But as soon as you have 
multiple customers for your Java program, you will likely need to 
get your program to have acceptable performance on many virtual 
machine implementations. Also, in a world consisting of the kind of dis­
tributed systems encouraged by Java's architecture (with code and 
objects flying over the network from one virtual machine to another), 

Page 48 of 280



lJ Chapter One 

developers basically lose all control over the virtual machine imple­
mentations on which their programs will run. 

Ultimately, whether or not performance will be a problem for you and 
how you would go about dealing with that problem depends on what 
exactly you are trying to do. Fortunately, Java is a flexible tool, giving you 
many ways to deal with potential performance troubles. If, for example, 
what you need to provide is a monolithic executable (such as a word 
processor or server process), you could do the following tasks: 

II Deliver a virtual machine along with your program. 

II Implement time-critical sections of your program as native methods. 

II Compile the whole program to a monolithic executable in the 
tradition ofC and C++. 

II Compile to a monolithic executable at the end-user's machine at 
install time. 

Probably the most powerful way to manage performance of a mono­
lithic application is by being able to pick the virtual machine yoursel£ 
Executing part or all of your program natively may be the best approach 
in some situations, however. 

Compiling a Java program to a monolithic executable, which is some­
times referred to as "ahead-of-time compiling," can help improve perfor­
mance-but usually at the cost of making it impossible for the program 
to use Java's dynamic extension capabilities. Ahead-of-time compiling per­
forms static, not dynamic, linking and yields fully linked, monolithic 
native executables that do not usually have the capability to bring in and 
dynamically link to new types at run time. For Java programs that would 
not use dynamic extension anyway, however, ahead-of-time compiling 
should yield an executable program that behaves exactly like the program 
would if executed on a traditional virtual machine. Because many embed­
ded systems have no need for dynamic extension and usually have 
resource constraints, ahead-of-time compiling is often used to compile a 
Java program to a native executable image that can be burned into Read­
Only Memory (ROM) for an embedded system. Ahead-of-time compiling 
can also be used for a desktop application, as long as it does not use 
dynamic extension. If you are struggling to solve performance problems 
of a relatively stand-alone Java program that does not use dynamic exten­
sion, ahead-of-time compiling may be able to help. 

Managing performance becomes more difficult, however, when you 
are developing not a monolithic application but a distributed system­
especially one in which code and objects will be moving from virtual 
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machine to virtual machine. This kind of object-oriented network pro­
gramming is, after all, one of the big promises of Java's architecture. In 
such cases, the best way to manage performance is in the way you design 
your system. Here, you must resort to traditional mechanisms for improv­
ing performance, such as minimizing network traffic and selecting the 
best algorithm, and to other standard approaches for performance tuning 
in any language. 

Although program speed is a concern when you use Java, there are 
ways you can address this issue. By appropriate use of the various tech­
niques for developing, delivering, and executing Java programs, you can 
often satisfy end-users' expectations for speed. As long as you are able to 
address the speed issue successfully, you can use the Java language and 
realize its benefits: productivity for the developer and program robustness 
for the end-user. 

Besides performance, another tradeoff of Java's network-oriented archi­
tecture is the lack of control of memory management and thread schedul­
ing. Garbage collection can help make programs more robust, which is a 
valuable security guarantee in a networked environment. But garbage col­
lection adds a level of uncertainty to the run-time performance of the pro­
gram. You cannot always be sure when or if a garbage collector will decide 
it is time to collect garbage or how long the process will take. In addition, 
the Java virtual machine specification discusses thread scheduling in only 
general terms. This looseness in the specification of thread behavior helps 
make it easier to port the Java virtual machine to many different kinds of 
hardware. Although virtual machine portability is important in a net­
worked environment, the vague specification of thread scheduling leaves 
programmers with little knowledge and no control of how their threads will 
be scheduled. This lack of control of memory management and thread 
scheduling makes Java a questionable candidate for software problems that 
require a real-time response to events. 

Still another tradeoff arises from Java's goal of platform independence. 
One difficulty inherent in any API that attempts to provide cross-platform 
functionality is the lowest-common-denominator problem. Although there 
is much overlap between operating systems, each operating system usu­
ally has a handful of traits all its own. An API that aims to give programs 
access to the system services of any operating system has to decide which 
capabilities to support. If a feature exists on only one operating system, 
the designers of the API may decide not to include support for that fea­
ture. If a feature exists on most operating systems but not all, the design­
ers may decide to support the feature anyway. This task will require an 
implementation of something similar in the API on operating systems 
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that lack the feature. Both of these lowest-common-denominator kinds of 
choices may, to some degree, offend developers and users on the affected 
operating systems. 

What is worse, not only does the lowest-common-denominator problem 
afflict the designers of a platform-independent API, but it also affects the 
designer of a program that uses that API. Take user interface as an exam­
ple. The AWT attempts to give your program a user interface that adopts 
the native look on each platform. Nevertheless, you might find it difficult 
to design a user interface in which the components interact in a way that 
feels native on every platform, although the individual components may 
have the native look. So, on top of the lowest-common-denominator 
choices that were made when the AWTwas designed, you may find your­
self faced with your own lowest-common-denominator choices when you 
use the AWT. The Swing library gives you more options, but ultimately 
you still have to wrestle with differences in end-user expectations when 
you design a cross-platform user interface. 

One last tradeoff stems from the dynamically linked nature of Java pro­
grams, combined with the close relationship between Java class files and 
the Java programming language. Because Java programs are dynamically 
linked, the references from one class file to another are symbolic. In a 
statically linked executable, references between classes are direct pointers 
or offsets. Inside a Java class file, by contrast, a reference to another class 
spells out the name of the other class in a text string. If the reference is to 
a field, the field's name and descriptor (the field's type) are also specified. 
If the reference is to a method, the method's name and descriptor (the 
method's return type and number and types of its arguments) are speci­
fied. Moreover, not only do Java class files contain symbolic references to 
the fields and methods of other classes, but they also contain symbolic ref­
erences to their own fields and methods. Java class files also may contain 
optional debugging information that includes the names and types oflocal 
variables. A class file's symbolic information and the close relationship 
between the bytecode instruction set and the Java language make it quite 
easy to decompile Java class files back into Java source. This feature, in 
tum, makes it quite easy for your competitors to borrow heavily from your 
hard work. 

While it has always been possible for competitors to decompile a stat­
ically linked binary executable and glean insights into your program, by 
comparison, decompilation is far easier with an intermediate (not yet 
linked) binary form, such as Java class files. Decompilation of statically 
linked binary executables is more difficult, not only because the symbolic 
information (the original class, field, method, and local variable names) is 
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missing, but also because statically linked binaries are usually heavily 
optimized. The more optimized a statically linked binary is, the less it cor­
responds to the original source code. Still, if you have an algorithm buried 
in your binary executable, and it is worth the trouble to your competitors, 
they can peer into your binary executable and retrieve that algorithin. 

Fortunately, there is a way to combat the easy borrowing of your intel­
lectual property. You can obfuscate your class files. Obfuscation alters 
your class files by changing the names of classes, fields, methods, and local 
variables without altering the operation of the program. Your program 
can still be decompiled but will no longer have the (hopefully) meaning­
ful names you originally gave to all of your classes, fields, methods, and 
local variables. For large programs, obfuscation can make the code that 
comes out of the decompiler so cryptic as to require nearly the same effort 
to steal your work as would be required by a statically linked executable. 

Conclusion 
So, what is the main point of Java's architecture? As shown in this chap­
ter, the Java programming language is a general-purpose tool that has 
distinct advantages over other technologies. In particular, Java can yield 
better programmer productivity and improved program robustness­
with, for the most part-acceptable performance, compared to older pro­
gramming technologies such as C and C++. Yet, the main focus of the 
design of Java's architecture was not just to make programmers more pro­
ductive and programs more robust, but to provide a tool for the emerging 
network-centric computing environment. Java's architecture paves the 
way for new network-oriented software architectures that take full advan­
tage of Java's support for network mobility of code and objects. 

The Resources Page 
For links to more information about the material presented in this chap­
ter, visit the resources page at http: I /www. artima. com/insidejvm/ 
resources. 
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The previous chapter showed how Java's architecture 
makes it a useful tool for developing software in a net­
worked environment. The next three chapters take a 
closer look at how Java's architecture accomplishes its 
suitability for networks. This chapter examines platform 
independence in detail, shows how Java's architecture 
enables programs to run on any platform, discusses the 
factors that determine the true portability of Java pro­
grams, and looks at the relevant tradeoffs. 
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- - Why Platform Independence? 
One of the key reasons why Java technology is useful in a networked enVi­
ronment is that Java makes it possible to create binary executables that 
will run unchanged on multiple platforms. This feature is important in a 
networked environment, because networks usually interconnect many dif­
ferent kinds of computers and devices. In a typical enterprise environment, 
for example, a network might connect Macintoshes in the art department, 
UNIX workstations in engineering, and PCs running Windows everywhere 
else. Although this arrangement enables various kinds of computers and 
devices within the company to share data, it requires a great deal of admin­
istration. Such a network presents a system administrator with the task of 
keeping different platform-specific editions of programs up to date on many 
different kinds of computers. Programs that can run without change on any 
networked computer, regardless of the computer's type, make the system 
administrator's job simpler-especially if those programs can actually be 
delivered across the network. 

In addition, the emerging proliferation of network-enabled, embedded 
devices represents another environment in which Java's platform inde­
pendence is useful. In the workplace, for example, various kinds of 
embedded devices, such as printers, scanners, and fax machines, are typ­
ically connected to the internal network. Network-connected, embedded 
devices have also appeared in consumer domains, such as in the home 
and in the car. In the embedded world, Java's platform independence can 
also help simplify system administration. Jini technology, which aims to 
bring plug and play to the network, simplifies the task of administering 
a dynamic environment of network-connected, embedded devices for con­
sumers at home and for systems administrators at work. Once a device 
is plugged into the network, it can access other devices attached to the 
network. Other devices can access it, as well. To achieve this ease of con­
nectivity, Jini-enabled devices exchange objects across the network-a 
technique that would be impossible without Java's support for platform 
independence. 

From the developer's perspective, Java can reduce the cost and time 
required to develop and deploy applications on multiple platforms. 
Although historically, many (or most) applications have been supported 
on only one platform, often the reason was that the cost involved in sup­
porting multiple platforms was not worth the added return. Java can help 
make multi-platform support affordable for more types of programs. 

On the other hand, Java's platform independence can act as a disadvan­
tage, as well as an advantage, for software developers. If you are developing 
and selling a software product, Java's support for platform independence can 
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help you compete in more markets. Instead of developing a product that 
runs only on Windows, for example, you can write one that runs on Windows, 
OS/2, Solaris, and Linux. With Java, you can have more potential customers. 
The trouble is, so can everyone else. Imagine, for example, that you have 
focused your efforts on writing great software for Solaris. Java makes it 
easier for others to write software that competes in your chosen market 
niche. With Java, therefore, you may not only end up with more potential 
customers-but also with more potential competitors. 

But perhaps most significantly for developers, the fact that Java code 
can run unchanged on multiple platforms gives the network a homoge­
neous execution environment that enables new kinds of distributed 
systems built around network-mobile objects. APis such as object serial­
ization, Remote Method Invocation (RMI), and Jini take advantage of this 
underlying capability to bring object-oriented programming out of the vir­
tual machine and onto the network. (More information on Jini is given in 
Chapter 4, "Network Mobility.") 

Java's Architectural Support 
for Platform Independence 
Support for platform independence, like support for security and network 
mobility, is spread throughout Java's architecture. All the components of 
the architecture-the language, the class file, the API, and the virtual 
machine-play a role in enabling platform independence. 

The Java Platform 

Java's architecture supports the platform independence of Java programs 
in several ways, but primarily through the Java Platform itself The Java 
Platform acts as a buffer between a running Java program and the under­
lying hardware and operating system. Java programs are compiled to run 
on a Java virtual machine, with the assumption that the class files of the 
Java API will be available at run time. The virtual machine runs the pro­
gram, while the API gives the program access to the underlying com­
puter's resources. No matter where a Java program goes, it only needs to 
interact with the Java Platform. The program does not need to worry 
about the underlying hardware and operating system. As a result, the 
application can run on any computer that hosts a Java Platform. 
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The Java Language 

The Java programming language reflects Java's platform independence 
in one principal way: the ranges and behavior of its primitive types are 
defined by the language. In languages such as Cor C++, the range of the 
primitive type intis determined by its size, and its size is determined by 
the target platform. The size of an int inC or C++ is generally chosen by 
the compiler to match the word size of the platform for which the program 
is compiled. This statement means that a C++ program might have a dif­
ferent behavior when compiled for different platforms, merely because the 
ranges of the primitive types are not consistent across the platforms. For 
example, no matter what underlying platform might be hosting the pro­
gram, an int in Java behaves as a signed 32-bit two's complement num­
ber. A float adheres to the 32-bit IEEE 754 floating point standard. This 
consistency is also reflected in the internals of the Java virtual machine 
-which has primitive data types that match those of the language-and 
in the class file, where the same primitive data types appear. By guaran­
teeing that primitive types behave the same on all platforms, the Java 
language itself promotes the platform independence of Java programs. 

The Java Class File 

As mentioned in the previous chapter, the class file defines a binary for­
mat that is specific to the Java virtual machine. Java class files can be 
generated on any platform. They can be loaded and run by a Java virtual 
machine that sits on top of any platform. Their format, including the big­
endian order of multi-byte values, is strictly defined and independent of 
any platform that hosts a Java virtual machine. 

Scaleability 

One aspect of Java's support for platform independence is its scaleability. 
The Java Platform can be implemented on a wide range of hosts with 
varying levels of resources, from embedded devices to mainframe com­
puters. 

Although Java first came to prominence by riding on top of a wave that 
was crashing through the desktop computer industry (the World Wide 
Web), Java was initially envisioned as a technology for embedded and con­
sumer devices, not for desktop computers. Part of the early reasoning 

Page 56 of 280



Platform Independence 27 

behind Java was that although Microsoft and Intel had a dominant clutch 
on the desktop market, no such dominance existed in the embedded and 
consumer systems markets. Microprocessors had been appearing in 
device after device for years-in audio-video equipment, cellular phones, 
printers, fax machines, and copiers-and the coming trend was that 
increasingly, embedded microprocessors would be connected to networks. 
An original design goal of Java, therefore, was to provide a way for soft­
ware to be delivered across networks to any kind of embedded device­
independent of its microprocessor and operating system. 

To accomplish this goal, the Java run-time system (the Java Platform) 
had to be compact enough to be implemented in software using the 
resources available to a typical embedded system. Embedded micro­
processors often have special constraints, such as small memory footprint, 
no hard disk, a non-graphical display, or no display. These constraints 
mean that embedded and consumer systems usually do not have the need 
or the memory to support the full Java API. 

To address the special requirements of embedded and consumer sys­
tems, Sun Microsystems, Inc. created several incarnations of the Java 
Platform with smaller API requirements for embedded and consumer sys­
tems: 

II the Java Personal Platform (for consumer devices) 

II the Java Embedded Platform (for embedded devices) 

II the Java Card Platform (for SmartCards) 

These Java Platforms are composed of a Java virtual machine and a 
smaller shell of run-time libraries that are available in the standard Java 
Platform. The difference between the standard and the Personal Platform, 
therefore, is that the Personal Platform guarantees the availability of 
fewer Java API run-time libraries. The Embedded Platform guarantees 
fewer APis than the Personal Platform, and the Card Platform guaran­
tees fewer than the Embedded. Yet, although each platform addresses a 
progressively smaller execution environment with progressively tighter 
constraints on resources, the APis are not necessarily subsets of each 
other. Each API subset is geared towards a particular target and there­
fore includes just the APis that make sense for that target. 

In addition to guaranteeing the smallest set of APis, the Card Platform, 
which is targeted at SmartCards, uses only a subset of the full Java vir-

' tual machine instruction set. Only a subset of the features of the Java lan-
guage are supported by this smaller instruction set. As a result, only Java 
programs that restrict themselves to features available on the Card Plat­
form can run on a SmartCard. 
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Although Sun attempted to address the special API needs of the 
embedded and consumer markets with these three subsets, the special 
API needs of these markets turned out to be a bit too heterogeneous for 
the three API subsets to adequately address. Because of the special 
constraints of embedded systems, especially the small memory footprint 
and lack of disk storage, vendors of embedded systems are often under 
tremendous economic pressure to pick and choose APis. Because of the 
low price points for embedded devices, vendors often simply cannot afford 
to include APis that are not directly needed by their device. Despite the 
three subsets defined by Sun, vendors still felt the need to define and sup­
port their own API subsets. 

Eventually, Sun recognized that its three subsets would not suffice and 
changed its approach to defining API standards for the embedded and 
consumer worlds. Instead of trying to define "one-API-fits-all" subsets, 
such as Personal and Embedded Java, Sun defined a minimal API set that 
it called the Java 2 Platform, Micro Edition (J2ME). On top of J2ME, Sun 
planned to facilitate the definition of API subsets by individual industry 
segments appropriate for its market niche (such as automobile, TV set­
top box, screen phone, wireless pagers and cellular phones, personal dig­
ital assistants, etc.). Sun called these API subsets "profiles." The old 
Personal and Embedded platforms become profiles in the new approach. 

Because the Java Platform is compact, it can be implemented on a wide 
variety of embedded and consumer systems. The potential compactness 
of the Java Platform, however, does not restrict implementation at the 
opposite end of the spectrum. The Java Platform also scales up to personal 
computers, workstations, and mainframes. Although, in Java's early 
years, Java Virtual Machine implementation had scaling difficulties on 
the server side. Virtual machines were tuned for servers, and now many 
implementations yield good performance on the server side. At this end 
of the spectrum, Sun has defined an API superset: the Java 2 Enterprise 
Edition (J2EE). In addition to the standard Java APis, the J2EE includes 
other APis that are useful in enterprise server environments, such as 
servlets and Enterprise JavaBeans. 

In the end, Sun's revised approach to defining APis yielded three basic 
API sets, which demonstrate the scaleability of the Java Platform: 

II Enterprise Edition (J2EE) 

II Standard Edition (J2SE) 

II Micro Edition (J2ME) 

At the high end, the existence of the Enterprise Edition signifies the 
utility of the Java Platform in high-end servers. In the middle, the Stan-

Page 58 of 280



L 

Platform Independence 9 

-

dard Edition carries on the tradition started by applets in browsers of the 
Java Platform on the desktop. At the low end, the Micro Edition, aug­
mented with industry profiles, shows that the Java Platform can scale 
down and mold itself to meet the requirements of a great variety of con­
sumer and embedded environments. 

Factors that Influence 
Platform Independence 
Java's architecture facilitates the creation of platform-independent soft­
ware but also enables you to create software that is platform specific. 
When you write a Java program, platform independence is an option. 

The degree of platform independence of any Java program depends on 
several factors. As a developer, some of these factors are beyond your con­
trol, but most are within your control. Primarily, the degree of platform 
independence of any Java program you write depends on how you write 
the program. 

Java Platform Deployment 

The most basic factor determining a Java program's platform indepen­
dence is the extent to which the Java Platform has been deployed on mul­
tiple platforms. Java programs will only run on computers and devices 
that host a Java Platform. Thus, before one of your Java programs will 
run on a particular computer owned by, say, your friend Alicia, two things 
must happen. First, the Java Platform must be ported to Alicia's particu­
lar type of hardware and operating system. Once the port has been done 
by some Java Platform vendor, that port must in some way be installed 
on Alicia's computer. So, a critical factor determining the true extent of 
platform independence of Java programs-and one that is beyond the con­
trol of the average developer-is the availability of Java Platform imple­
mentations and their distribution. 

Fortunately for the Java developer, the deployment of the Java Plat­
form has proceeded with great momentum, starting with Web browsers 
and moving on to desktop, workstation, network operating systems, and 
many different kinds of consumer and embedded devices. Therefore, it is 
increasingly likely that your friend Alicia will have a Java Platform 
implementation on her computer or device. 
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The Java Platform Version and Edition 

The deployment of the Java Platform is a bit more complicated, however, 
because not all standard run-time libraries are guaranteed to be available 
at every Java Platform. The basic set of libraries guaranteed to be avail­
able at a Java Platform is called the Standard API. Sun calls a 1.2 Java 
virtual machine accompanied by the class files that constitute the stan­
dard API the Java 2 Platform, Standard Edition. This edition of the 
Java Platform has the minimum set of Java API libraries that you can 
assume will be available at desktop computers and workstations. But, as 
described earlier, Sun also defines API sets for the Micro and Enterprise 
Editions of the Java 2 Platform and encourages the development of API 
profiles to augment the Micro Edition in various consumer and embed­
ded industry segments. In addition, Sun defines some standard run-time 
libraries that it considers optional for the Standard Edition and calls 
these Standard Extension APis. These libraries include services such as 
telephony and commerce and media such as audio, video, or 3D. If your 
program uses libraries from the Standard Extension API, the program 
will run anywhere those standard extension API libraries are available. 
But the program will not run on a computer that implements only the 
basic Standard Edition Platform. Some of the Standard Extension APis, 
on the other hand, are guaranteed to be available at any implementation 
of the Enterprise Edition. Given the variety of API editions and profiles, 
the Java 2 Platform hardly represents a single, homogeneous execution 
environment that will-in all cases-enable code that is written once to 
run anywhere. 

Another complicating factor is that in a sense, the Java Platform is a mov­
ing target because it evolves over time. Although the Java virtual machine 
is likely to evolve gradually, the Java API will probably change more fre­
quently. Over time, features will be added to and removed from both the 
Standard Edition and Standard Extension APis, and parts of the Standard 
Extension API may migrate into the Standard Edition. The changes made 
to the Java Platform should, for the most part, be backwards compatible, 
meaning that they will not break existing Java programs, but some changes 
may not be backwards compatible. As obsolete features are removed in a 
new version of the Java Platform, existing Java programs that depend upon 
those features will not run on the new version. Also, changes may not be for­
wards compatible, meaning programs that are compiled for a new version 
of the Java Platform will not necessarily work on an old version. The 
dynamic nature of the Java Platform complicates things somewhat for the 
developer wishing to write a Java program that will run on any computer. 
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In theory, your program should run on all computers that host a Java 
2 Platform Standard Edition, as long as you depend only upon the run­
time libraries in the standard API. In practice, however, new versions of 
the standard API will take time to percolate everywhere. When your pro­
gram depends on newly added features of the latest version of the stan­
dard API, there may be some hosts that cannot run the program because 
they have an older version. This problem is not new to software develop­
ers. Programs written for Windows 95, for example, did not work on the 
previous version of the operating system, Windows 3.1. Because Java 
enables the network delivery of software, however, this incompatibility 
becomes a more acute problem. The promise of Java is not only that it is 
easy to port programs from one platform to another, but that the same 
piece of binary Java code can be sent across the network and run on any 
computer or device. 

As a developer, you cannot control the release cycles or deployment 
schedules of the Java Platform, but you can choose the Java Platform edi­
tion and version upon which your programs depend. In practice, therefore, 
you will have to decide when a new version of the Java Platform has been 
distributed to a great enough extent to justify writing programs for that 
version. 

Native Methods 

Besides the Java Platform version and edition your program depends on, 
the other major factor determining the extent of platform independence of 
your Java program is whether or not you call native methods. The most 
important rule to follow when you are writing a platform-independent Java 
program is to not directly or indirectly invoke any native methods that are 
not part of the Java API. As you can see in Figure 2-1, calling native meth­
ods outside the Java API renders your program platform specific. 

Calling native methods directly is appropriate in situations where you 
do not desire platform independence. In general, native methods are use­
ful in three cases: 

Ill For accessing features of an underlying host platform that are not 
accessible through the Java API 

Ill For accessing a legacy system or using an already existing library 
that is not written in Java 

Ill For speeding up the performance of a program by implementing 
time-critical code as native methods 
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A platform-specific 
Java program 
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If you need to use native methods and also need your program to run 
on several platforms, you will have to port the native methods to all the 
required platforms. This porting must be done the old-fashioned way, and 
once you have done this task, you will have to figure out how to deliver 
the platform-specific, native method libraries to the appropriate hosts. 
Because Java's architecture was designed to simplify multi-platform sup­
port, your initial goal in writing a platform-independent Java program 
should be to avoid native methods altogether and interact with the host 
only through the Java API. 

Non-Standard Run-Time Libraries 

Native methods are not inherently incompatible with platform indepen­
dence. What is important is whether or not the methods you invoke are 
implemented "everywhere." Implementations of the Java API on operat­
ing systems such as Windows or Solaris use native methods to access the 
host. When you call a method in the Java API, you are certain the method 
will be available everywhere. You do not care if the method is imple­
mented as a native method in some places. 

Java Platform implementations can come from a variety of vendors, 
and although every vendor must supply the standard run-time libraries 
of the Java API, individual vendors may also supply extra libraries. If you 

Page 62 of 280



, 'Platform Independence 

' 

I 

33 
I' 

are interested in platform independence, you must remain aware of 
whether any non-standard run-time libraries you use call native meth­
ods. Non-standard libraries that do not call native methods do not 
degrade your program's platform independence. Using non-standard 
libraries that do call native methods, however, yields the same result as 
calling native methods directly. This usage renders your program plat­
form specific. 

Virtual Machine Dependencies 

Two other rules to follow when writing a platform-independent Java pro­
gram involve portions of the Java virtual machine that can be imple­
mented differently by different vendors. The rules are as follows: 

1. Do not depend upon timely finalization for program correctness. 

2. Do not depend upon thread prioritization for program correctness. 

These two rules address the variations allowed in the Java virtual 
machine specification for garbage collection and threads. 

All Java virtual machines must have a garbage-collected heap, but dif­
ferent implementations can use different garbage collection techniques. 
This flexibility in the Java virtual machine specification means that the 
objects of a particular Java program can be garbage collected at com­
pletely different times on different virtual machines. This feature, in turn, 
means that finalizers, which are run by the garbage collector before an 
object is freed, can run at different times on different virtual machines. If 
you use a finalizer to free finite memory resources such as file handles, 
your program may run on some virtual machine implementations but not 
others. On some implementations, your program could run out of the 
finite resource before the garbage collector gets around to invoking the 
finalizers that free the resource. 

Another variation allowed in different implementations of the Java vir­
tual machine involves thread prioritization. The Java virtual machine 
specification guarantees that all runnable threads are at the highest pri­
ority in your program will get some CPU time. The specification also guar­
antees that lower-priority threads will run when higher-priority threads 
are blocked. The specification does not prohibit lower-priority threads 
from running when higher-priority threads are not blocked, however. On 
some virtual machine implementations, therefore, lower-priority threads 
may get some CPU time-even when the higher-priority threads are not 
blocked. If your program depends on correctness of this behavior, however, 
it may work on some virtual machine implementations but not on others. 
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To keep your multi-threaded Java program platform independent, you 
must rely on synchronization-not prioritization-to coordinate interac­
tivity between threads. 

User Interface Dependencies 

Another major variation between different Java Platform implementations 
is the interface. User interface is one of the more difficult issues in writing 
platform-independent Java programs. The AWT user interface library gives 
you a set of basic user-interface components that map to native components 
on each platform. The Swing library gives you advanced components that 
do not map directly to native components. From this raw material, you 
must build an interface with which end-users on many different platforms 
will feel comfortable. This task is not always easy. 

End-users on different platforms are accustomed to different ways of 
interacting with their computers. The metaphors are different. The com­
ponents are different. The interaction between the components is differ­
ent. Although the AWT and Swing libraries make it fairly easy to create 
a user interface that runs on multiple platforms, they do not necessarily 
make it easy to devise an interface that keeps end-users happy on multi­
ple platforms. 

Buge in Java Platform Implementations 

One final source of variation among different implementations of the Java 
Platform is bugs. Although Sun has developed a comprehensive suite of 
tests that Java Platform implementations must pass, it is still possible 
that some implementations will be distributed with bugs in them. The 
only way you can defend yourself against this possibility is through test­
ing. If there is a bug, you can determine through testing whether the bug 
affects your program. If so, you can attempt to find a way to work around 
this problem. 

Testing 

Given the allowable differences between Java Platform implementations, 
the platform-dependent ways you can potentially write a Java program, 
and the simple possibility of bugs in any particular Java Platform imple­
mentation, you should (if possible) test your Java programs on all plat-

Page 64 of 280



Platform Independence 

-

forms on which you are claiming that the program runs. Java programs 
are not platform independent to a great enough extent that you only need 
to test them on one platform. You still need to test a Java program on mul­
tiple platforms, and you should probably test it on the various Java Plat­
form implementations that are likely to be found on each host computer 
on which you claim your program runs. In practice, therefore, testing your 
Java program on the various host computers and Java Platform imple­
mentations that you plan to claim your program works on is a key factor 
in making your program platform independent. 

Seven Steps to Platform 
Independence 
Java's architecture enables you to choose between platform independence 
and other concerns. You make your choice by the way in which you write 
your program. If your goal is to take advantage of platform-specific fea­
tures not available through the Java API, to interact with a legacy sys­
tem, to use an existing library not written in Java, or to maximize the 
execution speed of your program, you can use native methods to help you 
achieve that goal. In such cases, your programs will have reduced plat­
form independence, and that will usually be acceptable. If, on the other 
hand, your goal is platform independence, then you should follow certain 
rules when writing your program. The following seven steps outline one 
path you can take to maximize your program's portability: 

1. Choose a set of host computers and devices that you will claim 
your program runs on (your "target hosts"). 

2. Choose an edition and version of the Java Platform that you feel 
is well enough distributed among your target hosts. Write your 
program to run on this version of the Java Platform. 

3. For each target host, choose a set of Java Platform implementa­
tions that you will claim your program runs on (your "target run 
times"). 

4. Write your program so that it accesses the host computer only 
through the standard run -time libraries of the Java API. (Do not 
invoke native methods or use vendor-specific libraries that invoke 
native methods.) 

5. Write your program so that it does not depend for correctness on 
timely finalization by the garbage collector or on thread prioritization. 
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6. Strive to design a user interface that works well on all of your 
target hosts. 

7. Test your program on all of your target run times and all of your 
target hosts. 

If you follow the seven steps outlined here, your Java program will def­
initely run on all your target hosts. If your target hosts cover most major 
Java Platform vendors on most major host computers, there is a good 
chance that you program will run in many other places, as well. 

If you wish, you can have your program certified as "100% Pure Java." 
There are several reasons that you may wish to do this task if you are writ­
ing a program that you want to be platform independent. For example, if 
your program is certified 100% Pure, you can brand your program with the 
"100% Pure Java" coffee cup icon. You can also potentially participate in co­
marketing programs with Sun. You may, however, wish to go through the 
certification process simply as an added check on the platform indepen­
dence of your program. In this case, you have the option of just running 
"100% Pure" verification tools that you can download for free. These tools 
will report problems with your program's "purity'' without requiring you to 
go through the full certification process. 

The "100% Pure" certification is not quite a full measure of platform 
independence. Part of platform independence is that end-users' expecta­
tions are fulfilled on multiple platforms. The "100% Pure" testing process 
does not attempt to measure end-user fulfillment; rather, it only checks 
to make certain your program depends only on the standard APis. You 
could write a Java program that passes the "100% Pure" tests but still 
does not work well on all platforms from the end-user's perspective. 
Nonetheless, running your code through the "100% Pure" testing process 
can be a worth~'b.ile step on the road to creating a platform-independent 
Java program. 

- - The Politics of Platform 
Independence 
AB illustrated in Figure 2-2, Java Platform vendors are allowed to extend the 
standard components of the Java Platform in non-standard and platform­
specific ways, but they must always support the standard components. In 
the future, Sun Microsystems intends to prevent the standard compo­
nents ofthe Java Platform from splitting into several competing, slightly 
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Java Platform imple­
mentations from dif­
ferent vendors 

Java Platform from 
Vendor 1 

Java Platform from 
Vendor2 

incompatible systems (as happened, for instance, with UNIX). The license 
that all Java Platform vendors must sign requires compatibility at the 
level of the Java virtual machine and the Java API but permits differen­
tiation in the areas of performance and extensions. There is some flexi­
bility, as mentioned earlier, in the way vendors are allowed to implement 
threads, garbage collection, and user interface look and feel. If Sun's plans 
occur as scheduled, the core components of the Java Platform will remain 
a standard to which all vendors faithfully adhere, and the ubiquitous 
nature of the standard Java Platform will enable you to write programs 
that really are platform independent. 

You can rely on the standard components of the Java Platform because 
every Java Platform vendor must support them. If you write a program that 
only depends on these components, the program should "run anywhere" but 
may suffer to some extent from the lowest-common-denominator problem. 
Yet, because vendors are allowed to extend the Java Platform, they can give 
you a way to write platform-specific programs that take full advantage of 
the features of the underlying host operating system. The presence of both 
required standard components and permitted vendor extensions at any 
Java Platform implementation gives developers a choice. This arrangement 
enables developers to balance platform independence with other concerns. 

There is currently a marketing battle raging for the hearts and minds 
of software developers over how they will write Java programs-in par­
ticular, whether or not they will choose to write platform-independent or 
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platform-specific programs. The choice that Java graciously gives to devel­
opers also potentially threatens some vested interests in the software 
industry. 

Java's support for platform independence threatens to weaken the 
"lock" enjoyed by operating system vendors. If all of your software runs 
on only one operating system, then your next computer will also probably 
run that same operating system. You are "locked into" one operating sys­
tem vendor because your investment in software depends on an API 
proprietary to that vendor. You are also likely locked into one hardware 
architecture because the binary form of your programs requires a partic­
ular kind of microprocessor. Instead, if much of your software is written 
to the Java API and is stored as bytecodes in class files, it becomes eas­
ier for you to migrate to a different operating system vendor the next time 
you buy a computer. Because the Java Platform can be implemented in 
software on top of existing operating systems, you can switch operating 
systems and take all of your old platform-independent, Java-based soft­
ware with you. 

Microsoft dominates the desktop operating system market largely because 
most available software runs only on Microsoft operating systems. Continu­
ing this status quo is in Microsoft's strategic interest, so Microsoft is encour­
aging developers to use Java as a language to write programs that run only 
on Microsoft platforms. Weakening Microsoft's lock on the operating system 
market is in just about every other operating system vendor's strategic inter­
est, so the other players are encouraging developers to write Java programs 
that are platform independent. For example, Sun, N etscape, IBM, and many 
others banded together to promote Sun's "100% Pure Java initiative," 
through which they hoped to educate and persuade developers to go the 
platform-independence route. 

Microsoft's approach to Java is to make Windows the best platform on 
which to develop and run Java programs. They want developers to use 
Microsoft's tools and libraries, whether the developer chooses platform 
independence or not. Still, in the "spin" Microsoft gives to Java in promo­
tional material to developers, Microsoft strongly favors the platform­
specific Windows path. Microsoft extols the virtues of using Java to write 
programs that take full advantage of the Windows platform. 

Sun and the other operating system vendors behind the 100% Pure 
Java initiative are attempting to counter Microsoft's spin with some of 
their own. The promotional material from these companies focuses on the 
benefits of writing platform-independent Java programs. 

On one level, it is a battle between two icons. If you write your Java 
program Microsoft's way, you get to brand your product with a Windows 
icon that displays the famous four-paneled Windows logo. If you go the 
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100% Pure Java route, you get to brand your product with a 100% Pure 
Java icon that displays the famous steaming coffee cup logo. 

As a developer, the politics and propaganda swirling around the soft­
ware industry should not be a major factor when you decide how to write 
a particular Java program. For some programs you write, platform inde­
pendence may be the right approach. For others, a platform-specific pro­
gram may make more sense. In each individual case, you can make a 
decision based on what you feel your customers want and how you want 
to position yourself in the marketplace with respect to your competitors. 

Platform Independence 
and Network-Mobile Objects 
As mentioned previously in this chapter, the original design target for 
Java technology was embedded devices. This target was chosen in part 
because given that the desktop was controlled by Microsoft and Intel, 
embedded devices represented the most open market. But also, embedded 
devices were targeted because they were destined to play a role in a com­
ing hardware revolution-the proliferation of diskless, embedded devices 
connected to high-bandwidth (often, wireless) networks. 

Three years after Java was first released by Sun, Sun announced the 
emergence of Jini. Jini is an attempt at defining an architecture for the 
"computer" represented by the emerging environment of embedded and 
consumer devices connected to a ubiquitous network. The Jini architecture 
relies heavily on network-mobile objects. In a world of Jini-enabled devices, 
objects fly across the network between Java Platform implementations in 
embedded and consumer devices, desktop computers, and servers. The Java 
Platform implementations that will host these network-mobile objects will 
reside in a great variety of devices and computer hardware, which will be 
manufactured by many different vendors. This architecture significantly 
raises the bar for platform independence. 

For Jini to work in the real world, objects written by one qevice vendor 
will have to execute properly in Java Platform execution environments 
provided by other device vendors. Testing your network-mobile code on all 
platforms it will eventually run on, as recommended by the Seven Steps 
to Platform Independence presented earlier in this chapter, will be basi­
cally impossible. Because so many vendors will be producing so many dif­
ferent kinds of devices, with new devices appearing at an ever-increasing 
rate, it will be generally impossible to predict all the places where 

Page 69 of 280



Chapter Two 

network-mobile code embedded in any particular device will execute. 
Thus, other approaches to testing will have to be developed, such as com­
patibility test suites for network-mobile code. In addition, for Jini to work 
in the real world, the homogeneity of execution environments must be 
realized to the greatest extent possible. Lastly, programmers will likely 
need to consider the possibility of differences in execution environments 
when they write network-mobile code, and they will need to program 
defensively. 

The Resources Page 
For links to more information about Java and platform independence, 
visit the resources page for this chapter: http: I /www. artima. com/ 
insidejvm/resources. 
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Aside from platform independence, which we discussed in 
the previous chapter, the other major technical challenge 
that a network-oriented software technology must deal 
with is security. Because networks enable computers to 
share data and distribute processing, they can potentially 
serve as a way to break into a computer system-enabling 
someone to steal information, alter or destroy informa­
tion, or steal computing resources. As a consequence, con­
necting a computer to a network raises many security 
issues. 

To address the security concerns raised by networks, 
Java's architecture comes with an extensive, built-in secu­
rity model that has evolved with each major release of the 
Java platform. This chapter gives an overview of the secu­
rity model built into Java's core architecture and traces its 
evolution. 
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Why Security? 
Java's security model is one of the key architectural features that makes 
it an appropriate technology for networked environments. Security is 
important because networks represent a potential avenue of attack to any 
computer that is hooked to them. This concern becomes especially strong 
in an environment in which software is downloaded across the network 
and is executed locally, as is done, for example, with Java applets and Jini 
service objects. Because the class files for an applet are automatically 
downloaded when a user goes to the containing Web page in a browser, it 
is likely that a user will encounter applets from untrusted sources. Sim­
ilarly, the class files for a Jini service object are downloaded from a code­
base specified by the service provider when it registers its service with 
the Jini lookup service. Because Jini enables spontaneous networking in 
which users entering a new environment can look up and access locally 
available services, users bf Jini services will more than likely encounter 
service objects from untrusted sources. Without any security, these auto­
matic code download schemes would be a convenient way to distribute 
malicious code. Thus, Java's security mechanisms help make Java suit­
able for networks, because they establish a needed trust in the safety of 
executing network-mobile code. 

Java's security model is focused on protecting end-users from hostile 
programs (and bugs in otherwise benevolent programs) that are down­
loaded across a network from untrusted sources. To accomplish this goal, 
Java provides a customizable "sandbox" in which untrusted Java pro­
grams can be placed. The sandbox restricts the activities of the untrusted 
program. The program can do anything within the boundaries of its sand­
box but cannot take any action outside those boundaries. For example, the 
original sandbox for untrusted Java applets in Version 1.0 prohibited 
many activities, including the following: 

• Reading or writing to the local disk 

• Making a network connection to any hosts except the host from 
which the applet came 

• Creating a new process 

• Loading a new dynamic library 

By making it impossible for downloaded code to perform certain 
actions, Java's security model protects the end-user from the threats of 
hostile and buggy code. 
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Because the sandbox security model imposes strict controls on what 
untrusted code can and cannot do, users are able to run untrusted code with 
relative security. Unfortunately for the programmers and users of 1.0 sys­
tems, however, the original sandbox was so restrictive that well-meaning 
(but untrusted) code was often unable to do useful work. In Version 1.1, 
the original sandbox model was augmented with a trust model based on 
code signing and authentication. The signing and authentication capa­
bility enables the receiving system to verify that a set of class files (in a 
JAR file) has been digitally signed (in effect, blessed as trustworthy) by 
some entity and that the class files have not been altered since they were 
signed. This process enables end-users and system administrators to ease 
the restrictions of the sandbox for code that has been digitally signed by 
trusted parties. 

Although the security APis released with Version 1.1 include support 
for authentication, they do not offer much help in establishing anything 
more than an aU-or-nothing trust policy (in other words, either code is 
completely trusted or completely untrusted). Java's next major release, 
Version 1.2, provided APis to assist with establishing fine-grained secu­
rity policies based on authentication of digitally signed code. The remain­
der of this chapter will trace the evolution of Java's security model from 
the basic sandbox ofVersion 1.0, through the code signing and authenti­
cation ofVersion 1.1, to the fine-grained access control ofVersion 1.2. 

The Basic Sandbox 
In the world of personal computers, you traditionally had to trust software 
before running it. You achieved security by being careful only to use soft­
ware from trusted sources and by regularly scanning for viruses. Once 
software gained access to your system, it had full reign. If the software 
was malicious, it could do a great deal of damage-because there were no 
restrictions placed on it by the run-time environment of your computer. 
So, in the traditional security scheme, you tried to prevent malicious code 
from ever gaining access to your computer in the first place. 

The sandbox security model makes it easier to work with software that 
comes from sources you do not fully trust. Instead of approaching security 
by requiring you to prevent any code that you do not trust from ever mak­
ing its way into your computer, the sandbox model enables you to welcome 
code from any source. AE, code from an untrusted source runs, however, the 
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sandbox restricts the code from taking any actions that could possibly hann 
your system. You do not need to figure out what code you can and cannot 
trust. You do not need to scan for viruses. The sandbox itself prevents any 
viruses or other malicious, buggy code that you might invite into your com­
puter from doing any damage to your system. 

If you have a properly skeptical mind, you will need to be convinced 
that a sandbox has no leaks before you trust it to protect your system. To 
make sure that the sandbox has no leaks, Java's security model involves 
every aspect of its architecture. If there were areas in Java's architecture 
where security was not considered, a malicious programmer (known as a 
cracker) could likely exploit those areas to circumvent the sandbox. To 
understand the sandbox, therefore, you must look at several different 
parts of Java's architecture and understand how they work together. 

The fundamental components responsible for Java's sandbox are as follows: 

Ill The class loader architecture 

II The class file verifier 

Ill Safety features built into the Java virtual machine (and the language) 

Ill The security manager and the Java API 

One of the greatest strengths of Java's sandbox security model is that 
two of these components-the class loader and security manager-are 
customizable. By customizing these components, you can create a cus­
tomized security policy for a Java application. Unfortunately, this capa­
bility for customization does not come for free, because the flexibility of 
the architecture creates some risks of its own. Class loaders and security 
managers are complicated enough that the mere act of customization can 
potentially produce errors that open security holes. 

In each major release of the Java API, changes were made to make the 
task of creating a custom security policy less error prone. The most sig­
nificant change occurred in Version 1.2, which introduced a new and more 
elaborate architecture for access control. In Versions 1.0 and 1.1, access 
control, which involves both the specification of a security policy and the 
enforcement of that policy at run time, is the responsibility of an object 
called the security manager. To establish a custom policy in Versions 1.0 
and 1.1, you have to write your own custom security manager. In Version 
1.2, you can take advantage of a security manager supplied with the Java 
2 platform. This ready-made security manager enables you to specify a 
security policy in an ASCII policy file separate from the program. At run 
time, the ready-made security manager enlists the help of a class called 
the access controller to enforce the security policy specified in the policy 
file. The access control infrastructure introduced in Version 1.2 provides 

Page 74 of 280



Security 

-

a flexible and easily customized default implementation of the security 
manager that should suffice for the majority of your security needs. For 
backwards compatibility and to enable parties with special security needs 
to override the default functionality provided by the ready-made security 
manager, Version 1.2 applications can still install their own security man­
ager. Using the ready made security manager (and the extensive access 
control infrastructure that comes with it) is optional. 

The Class Loader Architecture 
In Java's sandbox, the class loader architecture is the first line of defense. 
After all, the class loader brings code into the Java virtual machine-code 
that could be hostile or buggy. The class loader architecture contributes 
to Java's sandbox in three ways: 

1. Preventing malicious code from interfering with benevolent code 

2. Guarding the borders of the trusted class libraries 

3. Placing code into categories (called protection domains) that will 
determine which actions the code can take 

The class loader architecture prevents malicious code from interfering 
with benevolent code by providing separate name spaces for classes 
loaded by different class loaders. A name space is a set of unique names 
-one name for each loaded class-that the Java virtual machine main­
tains for each class loader. Once a Java virtual machine has loaded a class 
named Volcano into a particular name space, for example, it is impossi­
ble to load a different class named Volcano into that same name space. 
You can load multiple Volcano classes into a Java virtual machine, how­
ever, because you can create multiple name spaces inside a Java applica­
tion by creating multiple class loaders. If you create three separate name 
spaces (one for each of the three class loaders) in a running Java appli­
cation, then by loading one Volcano class into each name space, your pro­
gram could load three different Volcano classes into your application. 

N arne spaces contribute to security, because you can place a shield 
between classes loaded into different name spaces. Inside the Java virtual 
machine, classes in the same name space can interact with one another 
directly. Classes in different name spaces, however, cannot even detect 
each other's presence unless you explicitly provide a mechanism that 
enables them to interact. If a malicious class, once loaded, had guaran­
teed access to every other class currently loaded by the virtual machine, 
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Figure 3-1 
Class loaders and 
name spaces 

Chapter Three 

that class could potentially learn things it should not know or could inter­
fere with the proper execution of your program. 

Figure 3-1 shows the name spaces associated with two class loaders, 
both of which have loaded a type named Volcano. Each name in a name 
space is associated with the type data in the method area that defines the 
type with that name. Figure 3-1 shows arrows from the names in the 
name spaces to the types in the method area that define the type. The 
class loader on the left, which is shown in dark gray, has loaded the two 
dark-gray types named Climber and Volcano. The class loader on the 
right, which is shown in light gray, has loaded the two light-gray types 
named BakingSoda and Volcano. Because of the nature of name spaces, 
when the Climber class mentions the Volcano class, it refers to the 
dark-gray Volcano-the Volcano loaded in the same name space. The 
class has no way ofknowing that the other Volcano, which is sitting in the 
same virtual machine, even exists. For details about how the class loader 
architecture achieves its separation of name spaces, see Chapter 8, "The 
Linking Model." 

The class loader architecture guards the borders of the trusted class 
libraries by making it possible for trusted packages to be loaded with dif­
ferent class loaders than untrusted packages. Although you can grant spe­
cial access privileges between types belonging to the same package by 
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giving members protected or package access, this special access is granted 
to members of the same package at runtime-only if they were loaded by 
the same class loader. 

Often, a user-defined class loader relies on other class loaders-at the 
least, upon the class loaders created at virtual machine startup-to help 
it fulfill some of the class-load requests that come its way. Prior to Ver­
sion 1.2, class loaders had to explicitly ask for the help of other class load­
ers. A class loader could ask another user-defined class loader to load a 
class by invoking loadClass () on a reference to that user-defined class 
loader. Or, a class loader could ask the bootstrap class loader to attempt 
to load a class by invoking findSystemClass (),a static method defined 
in class ClassLoader. In Version 1.2, the process by which one class 
loader asks another class loader to try to load a type was formalized into 
a parent-delegation model. Starting with Version 1.2, each class loader 
except the bootstrap class loader has a "parent" class loader. Before a par­
ticular class loader attempts to load a type in its custom way, by default 
it "delegates" the job to its parent-asking its parent to try to load the 
type. The parent, in turn, asks its parent to try to load the type. The del­
egation process continues all the way to the bootstrap class loader, which 
is (in general) the last class loader in the delegation chain. If a class 
loader's parent class loader can load a type, the class loader returns that 
type. Otherwise, the class loader attempts to load the type itsel£ 

In most Java virtual machine implementations prior to Version 1.2, the 
built-in class loader (which was then called the primordial class loader) was 
responsible for loading locally available class files. Such class files usually 
included the class files that made up the Java application being executed, 
plus any libraries needed by the application (including the class files of the 
Java API). Although the manner in which the class files for requested types 
were located was implementation specific, many implementations searched 
directories and JAR files in an order specified by a class path. 

In Version 1.2, the job of loading locally available class files was 
parceled out to multiple class loaders. The built-in class loader, previously 
called the primordial class loader, was renamed the "bootstrap" class 
loader to indicate that it was now responsible for loading only the class 
files ofthe core Java API. The name bootstrap class loader comes from the 
idea that the class files of the core Java API are the class files required 
to ''bootstrap" the Java virtual machine. 

The responsibility for loading other class files, such as the class files 
for the application being executed, class files for installed or downloaded 
standard extensions, class files for libraries discovered in the class path, 
and so on, was issued in Version 1.2 to user-defined class loaders. When 
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a Version 1.2 Java virtual machine starts its execution, therefore, it cre­
ates at least one and probably more user-defined class loaders before the 
application even starts. All of these class loaders are connected in one 
chain of parent-child relationships. At the top of the chain is the bootstrap 
class loader, and at the bottom of the chain is what came (in Version 1.2) 
to be called the "system class loader." Prior to Version 1.2, the name "sys­
tem class loader" was sometimes used to refer to the built-in class loader, 
which was also called the primordial class loader. In Version 1.2, the name 
system class loader was more formally defined to mean the default dele­
gation parent for new user-defined class loaders created by a Java appli­
cation. This default delegation parent will usually be the user-defined 
class loader that loaded the initial class of the application, but it might 
be any user-defined class loader decided upon by the designers of the Java 
platform implementation. 

For example, imagine that you write a Java application that installs a 
class loader whose particular manner of loading class files is by down­
loading them across a network. Imagine that you run this application on 
a virtual machine that instantiates two user-defined class loaders on 
startup: an "installed extensions" class loader and a "class path" class 
loader. These class loaders are connected in a parent-child relationship 
chain, along with the bootstrap class loader (as shown in Figure 3-2). The 
class path's class loader's parent is the installed extensions class loader 
whose parent is the bootstrap class loader. As shown in Figure 3-2, the 
class path class loader is designated as the system class loader-the 
default delegation parent for new user-defined class loaders instantiated 
by the application. Assume that when your application instantiates its 
network class loader, it specifies the system class loader as its parent. 

Imagine that during the course of running the Java application, a 
request is made of your class loader to load a class named Volcano. Your 
class loader would first ask its parent, the class path class loader, to find 
and load the class. The class path class loader, in turn, would make the 
same request of its parent, the installed extensions class loader. This class 
loader would also first delegate the request to its parent, the bootstrap 
class loader. Assuming that class Volcano is not a part of the Java API, 
part of an installed extension, or on the class path, all of these class load­
ers would return without supplying a loaded class named Volcano. When 
the class path class loader indicates that neither it nor any of its parents 
can load the class, your class loader could then attempt to load the 
Volcano class in its custom manner by downloading it across the net­
work. Assuming that your class loader could download class Volcano, 
that Volcano class could then play a role in the application's future 
course of execution. 
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To continue with the same example, assume that at some time later a 
method of class Volcano is invoked for the first time, and that method 
references class java. util. HashMap from the Java API. Because it is 
the first time that the reference was used by the running program, the 
virtual machine asks your class loader (the one that loaded Volcano) to 
load java. util. HashMap. As before, your class loader first passes the 
request to its parent class loader, and the request becomes delegated all 
the way to the bootstrap class loader. In this case, however, the bootstrap 
class loader can return a java. util. Hashmap class back to your class 
loader. Because the bootstrap class loader can find the class, the installed 
extensions class loader does not attempt to look for the type in the 
installed extensions. The class path class loader does not attempt to look 
for the type on the class path. Also, your class loader does not attempt to 
download the type from the network. All of these class loaders merely 
return the java. util. HashMap class returned by the bootstrap class 
loader. From that point forward, the virtual machine uses that java. 
util. HashMap class whenever class Volcano references a class named 
java.util.HashMap. 
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Given this background information about how class loaders work, you 
are now ready to look at how class loaders can be used to protect trusted 
libraries. The class loader architecture guards the borders of the trusted 
class libraries by preventing untrusted classes from pretending to be 
trusted. If a malicious class could successfully trick the Java virtual 
machine into believing that it was a trusted class from the Java API, that 
malicious class could potentially break through the sandbox barrier. By 
preventing untrusted classes from impersonating trusted classes, the 
class loader architecture blocks one potential approach to compromising 
the security of the Java run time. 

Given the parent-delegation model, the bootstrap class loader can 
attempt to load types before the standard extensions class loader, which 
can attempt to load types before the class path class loader, which can 
attempt to load types before your network class loader. Thus, given the 
manner in which the parent-child delegation chain is built, the most 
trusted library-the core Java API-is checked first for each type. Next, 
the standard extensions are checked. Then, local class files that are sit­
ting on the class path are checked. Therefore, if some mobile code loaded 
by your network class loader wants to download a type across the network 
with the same name as an item in the Java API, such as java .lang. 
Integer, its action will fail. If a class file for java. lang. Integer exists 
in the Java API, the bootstrap class loader will load it. The network class 
loader will not attempt to download and define a class named 
java .lang. Integer. Rather, it will simply use the type returned by its 
parent-the one loaded by the bootstrap class loader. In this way, the class 
loader architecture prevents untrusted code from replacing trusted 
classes with their own versions. 

Consider a different situation, however. What if the mobile code, rather 
than trying to replace a trusted type, wants to insert a brand-new type 
into a trusted package? Imagine what would happen if your network class 
loader from the previous example was requested to load a class named 
java .lang. Virus. As before, this request would first be delegated all 
the way up the parent-child chain to the bootstrap class loader. Although 
the bootstrap class loader is responsible for loading the class files of the 
core Java API, which includes a package named java. lang, it is unable 
to find a member of the java. lang package with the name Virus. 
Assuming that this class was also not found among the installed exten­
sions or on the local class path, your class loader would proceed to attempt 
to download the type across the network. 

Assume that your class loader is successful in the download attempt and 
defines the type named java .lang. Virus. Java permits classes in the same 

Page 80 of 280



Security 51 

package to grant each other special access privileges that are not granted to 
classes outside the package. Therefore, because your class loader loaded a 
class (java .lang. Virus) that (by its name) brazenly declares itself to be 
part of the Java API, you might expect that it could gain special access to the 
trusted classes of java. lang and could possibly use that special access for 
devious purposes. The class loader mechanism thwarts this code from gain­
ing special access to the trusted types in the java .lang package, because 
the Java virtual machine only grants that special package access between 
types loaded into the same package by the same class loader. Because the 
trusted class files of the Java API's java. lang package were loaded by the 
bootstrap class loader, and the malicious java. lang. Virus class was 
loaded by your network class loader, these types do not belong to the same 
runtime package. The term runtime package, which first appeared in the sec­
ond edition of the Java Virtual Machine Specification, refers to a set of types 
that belong to the same package and were all loaded by the same class loader. 
Before enabling access to package-visible members (members declared with 
protected or package access) between two types, the virtual machine makes 
sure not only that the two types belong to the same package, but that they 
belong to the same runtime package (that they were loaded by the same class 
loader). Thus, because java .lang. Virus and the members of java .lang 
from the core Java API do not belong to the same runtime package, 
java .lang. Virus cannot access the package-visible members and types of 
the Java API's java. lang package. 

This concept of a runtime package is one motivation for using different 
class loaders to load different kinds of classes. The bootstrap class loader 
loads the class files of the core Java API. These class files are the most 
trusted. An installed extensions class loader loads class files from any 
installed extensions. Installed extensions are quite trusted, but they do 
not need to be trusted to the extent that they can gain access to package­
visible members of the Java API by simply inserting new types into those 
packages. Because installed extensions are loaded with a different class 
loader than the core API, they cannot gain this access. Likewise, code 
found on the class path by the class path class loader cannot gain access 
to package-visible members of the installed extensions or to the Java API. 

Another way that class loaders can be used to protect the borders of 
trusted class libraries is by simply prohibiting the loading of certain for­
bidden types. For example, you might have installed some packages that 
contain classes that you want your application to load through your net­
work class loader's parent-the class path class loader-but not through 
your own network class loader. Assume that you have created a package 
named absolutepower and have installed it somewhere on the local 
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class path where it is accessible by the class path class loader. Also 
assume that you do not want classes loaded by your class loader to be able 
to load any class from the absolutepower package. In this case, you 
would write your class loader such that the first thing the loader does is 
make sure that the requested class does not declare itself a member of 
the absolutepower package. If such a class is requested, your class 
loader-rather than passing the class name to its parent class loader­
would throw a security exception. 

The only way that a class loader can know whether or not a class is from 
a forbidden package, such as absolutepower, is by the class's name. Thus, 
a class loader must have a list of the names of forbidden packages. Because 
the name of class absolutepower. FancyClassLoader indicates that it 
is part of the absolutepower package-and the absolutepower pack­
age is on the list of forbidden packages-your class loader should abso­
lutely throw a security exception. 

Besides shielding classes in different name spaces and protecting the 
borders of trusted class libraries, class loaders play one other security 
role: they must place each loaded class into a protection domain, which 
defines what permissions the code will be given as it runs. More infor­
mation about this vitally important security job of class loaders will be 
given later in this chapter. 

The Class File Verifier 
Working in conjunction with the class loader, the class file verifier ensures 
that loaded class files have a proper internal structure and that they are 
consistent. If the class file verifier discovers a problem with a class file, it 
throws an exception. Although compliant Java compilers should not gen­
erate malformed class files, a Java virtual machine cannot determine how 
a particular class file was created. Because a class file is simply a 
sequence of bytes, a virtual machine cannot know whether a particular 
class file was generated by a well-meaning Java compiler or by shady 
crackers who were bent on compromising the integrity of the virtual 
machine. As a consequence, all Java virtual machine implementations 
have a class file verifier that can be invoked on class files to make sure 
that the types they define are safe to use. 

One of the security goals that the class file verifier helps achieve is pro­
gram robustness. If a buggy compiler or savvy cracker generated a class 
file that contained a method whose bytecodes included an instruction to 
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jump beyond the end of the method, that method could-if invoked­
cause the virtual machine to crash. Thus, for the sake of robustness, the 
virtual machine should verify the integrity of the bytecodes it imports. 

The class file verifier of the Java virtual machine does most checking 
before bytecodes are executed. Rather than checking every time it encoun­
ters a jump instruction as it executes bytecodes, for example, it analyzes 
bytecodes (and verifies their integrity) once, before they are ever executed. 
As part of its verification of bytecodes, the Java virtual machine makes 
sure that all jump instructions cause a jump to another valid instruction 
in the bytecode stream of the method. In most cases, checking all byte­
codes once (before they are executed) is a more efficient way to guaran­
tee robustness than checking every bytecode instruction every time it is 
executed. 

The class file verifier operates in four distinct passes. During pass one, 
which takes place as a class is loaded, the class file verifier checks the 
internal structure of the class file to make sure that it is safe to parse. 
During passes two and three, which take place during linking, the class 
file verifier makes sure that the type data obeys the semantics of the Java 
programming language, including verifying the integrity of any bytecodes 
it contains. During pass four, which takes place as symbolic references are 
resolved in the process of dynamic linking, the class file verifier confirms 
the existence of symbolically referenced classes, fields, and methods. 

Pass One: Structural Checks on the Class File 

During pass one, the class file verifier makes certain that the sequence of 
bytes it will attempt to import as a type conform to the basic structure of 
a Java class file. The verifier performs many checks during this pass. For 
example, every class file must start with the same four bytes (the magic 
number): OxCAFEBABE. The purpose of the magic number is to make it 
easy for the class file parser to reject files that were either damaged or 
that were never intended to be class files in the first place. Thus, the first 
thing a class file verifier probably checks is that the imported file does 
indeed begin with OxCAFEBABE. The verifier also makes sure that the 
major and minor version numbers declared in the class file are within the 
range supported by that implementation of the Java virtual machine. 

Also during pass one, the class file verifier checks to make sure that 
the class file is neither truncated nor enhanced with extra trailing bytes. 
Although different class files can be different lengths, each individual 
component contained inside a class file indicates its length, as well as its 
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type. The verifier can use the component types and lengths to determine 
the correct total length for each individual class file. In this way, the ver­
ifier can make sure that the imported file has a length consistent with its 
internal contents. 

The point of pass one is to ensure that the sequence of bytes that sup­
posedly define a new type adhere sufficiently to the Java class file format 
to enable them to be parsed into implementation-specific, internal data 
structures in the method area. Passes two, three, and four take place not 
on the binary data in the class file format, but on the implementation­
specific data structures in the method area. 

Pass Two: Semantic Checks on the Type Data 

Pass two of the class file verifier performs checking that can be done with­
out looking at the bytecodes and without examining (or loading) any other 
types. During this pass, the verifier looks at individual components to 
make sure that they are well-formed instances of their type of component. 
For example, a method descriptor (its return type and the number and 
types of its parameters) is stored in the class file as a string that must 
adhere to a certain context-free grammar. One check that the verifier per­
forms on individual components is to make sure that each method 
descriptor is a well-formed string of the appropriate grammar. 

In addition, the class file verifier checks that the class itself adheres to 
certain constraints placed upon it by the specification of the Java pro­
gramming language. For example, the verifier enforces the rule that all 
classes, except class Object, must have a superclass. Also during pass 
two, the verifier makes sure that final classes are not subclassed and that 
final methods are not overridden. In addition, it checks that constant pool 
entries are valid and that all indexes into the constant pool refer to the 
correct type of constant pool entry. Thus, the class file verifier checks some 
of the Java language rules at run time that should have been enforced at 
compile time. Because the verifier has no way of knowing whether the 
class file was generated by a benevolent, bug-free compiler, it checks each 
class file to make sure that the rules are followed. 

Pass Three: Bytecode Verification 

Once the class file verifier has successfully completed the pass two checks, 
it turns its attention to the bytecodes. During this pass, which is com-
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monly called the "bytecode verifier," the Java virtual machine performs a 
data-flow analysis on the streams of bytecodes that represent the meth­
ods of the class. To understand the bytecode verifier, you need to under­
stand bytecodes and frames. 

The bytecode streams that represent Java methods are a series of one­
byte instructions called opcodes, each of which can be followed by one or 
more operands. The operands supply extra data needed by the Java vir­
tual machine to execute the opcode instruction. Executing bytecodes one 
opcode after another constitutes a thread of execution inside the Java vir­
tual machine. Each thread is awarded its own Java stack, which is made 
up of discrete frames. Each method invocation receives its own frame, 
which we can define as a section of memory where it stores local variables 
and intermediate results of computation (among other items). The part of 
the frame in which a method stores intermediate results is called the 
method's operand stack. An opcode and its (optional) operands might refer 
to the data stored on the operand stack or in the local variables of the 
method's frame. Thus, the virtual machine can use data on the operand 
stack, in the local variables, or both, in addition to any data stored as 
operands following an opcode when it executes the opcode. 

The bytecode verifier does a great deal of checking, from checking to 
make sure that no matter which path of execution is taken to get to a cer­
tain opcode in the bytecode stream, the operand stack always contains the 
same number and types of items. The bytecode verifier also checks to 
make sure that no local variable is accessed before it is known to contain 
a proper value. The bytecode checks that fields of the class are always 
assigned values of the proper type and that methods of the class are 
always invoked with the correct number and types of arguments. The 
bytecode verifier also checks to make sure that each opcode is valid, that 
each opcode has valid operands, and that for each opcode, values of the 
proper type are in the local variables and are on the operand stack. These 
are just a few of the many checks performed by the bytecode verifier, 
which can (through all of its checking) verify that a stream of bytecodes 
is safe for the Java virtual machine to execute. 

The bytecode verifier does not attempt to detect all safe programs. If it 
did, it would encounter the Halting Problem. The Halting Problem, a well­
known theorem in computer science, states that you cannot write a pro­
gram that can determine whether any program fed to it as input will halt 
when it is executed. Whether or not a program will halt is called an "unde­
cidable" property of the program, because you cannot write a program 
that can tell you 100 percent of the time whether or not any given pro­
gram has this property. The undecideability of the Halting Problem 
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extends to many properties of computer programs, including whether or 
not a set of Java bytecodes would be safe.for a Java virtual machine to 
execute. 

The way the bytecode verifier circumvents the Halting Problem is by 
not attempting to pass all safe programs. Although you cannot write a 
program that can determine whether or not any given program will halt, 
you can write a program that recognizes some programs that will halt. 
For example, if the first instruction of a program is halted, that program 
will halt. If a program has no loops in it, it will halt, and so on. Similarly, 
although you cannot write a verifier that will pass all bytecode streams 
that are safe for the virtual machine to execute, you can write a verifier 
that will pass some of them. That task is what Java's bytecode verifier 
does. The verifier checks to make sure that a certain set of rules are fol­
lowed by each set of bytecodes fed to it. If a set of bytecodes obeys all of 
the rules, then the verifier knows that the bytecodes are safe for the vir­
tual machine to execute. If not, the bytecodes might or might not be safe 
for the virtual machine to execute. Thus, the verifier avoids the Halting 
Problem by recognizing some, but not all, safe bytecode streams. Given 
the nature of the constraints checked by the bytecode verifier, any pro­
gram that can be written in the Java programming language can be com­
piled to bytecodes that will pass the verifier. Some programs that could 
not possibly be expressed in the Java programming language will pass the 
verifier. And some programs (also not expressible in Java source code) 
that would otherwise be safe for the virtual machine to execute will not 
pass the verifier. 

Passes one, two, and three of the class file verifier make sure that the 
imported class file is properly formed, is internally consistent, adheres to 
the constraints of the Java programming language, and contains byte­
codes that will be safe for the Java virtual machine to execute. If the class 
file verifier finds that any of these conditions are not true, it throws an 
error, and the program never uses the class file. 

Pass Four: Verification of 
Symbolic References 

Pass four of the class file verifier takes place when the symbolic references 
contained in a class file are resolved in the process of dynamic linking. 
During pass four, the Java virtual machine follows the references from the 
class file being verified to the referenced class files to make sure that the 
references are correct. Because pass four must examine other classes that 
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are external to the class file being checked, pass four might require that 
new classes are loaded. Most Java virtual machine implementations will 
likely delay loading classes until the program actually uses them. If an 
implementation does load classes earlier, perhaps in an attempt to speed 
up the loading process, then it must still give the impression that it is 
loading classes as late as possible. If, for example, a Java virtual machine 
discovers during early loading that it cannot find a certain referenced 
class, it does not throw a NoClassDefFoundError error until (and 
unless) the referenced class is used for the first time by the running pro­
gram. Thus, if a Java virtual machine performs early linking, pass four 
could happen shortly after pass three. In Java virtual machines that 
resolve each symbolic reference the first time they are used, however, pass 
four will happen much later than pass three as bytecodes are executed. 

Pass four of class file verification is really just part of the process of 
dynamic linking. When a class file is loaded, it contains symbolic refer­
ences to other classes and their fields and methods. A symbolic reference 
is a character string that gives the name and possibly other information 
about the referenced item-enough information to uniquely identify a 
class, field, or method. Thus, symbolic references to other classes give the 
full name of the class, while symbolic references to the fields of other 
classes give the class name, field name, and field descriptor; and symbolic 
references to the methods of other classes give the class name, method 
name, and method descriptor. 

Dynamic linking is the process of resolving symbolic references into 
direct references. As the Java virtual machine executes bytecodes and 
encounters an opcode that, for the first time, uses a symbolic reference to 
another class, the virtual machine must resolve the symbolic reference. 
The virtual machine performs two basic tasks during resolution: 

1. Finding the class being referenced (and loading it if necessary) 

2. Replacing the symbolic reference with a direct reference, such as a 
pointer or offset, to the class, field, or method 

The virtual machine remembers the direct reference so that if it 
encounters the same reference again later, it can immediately use the 
direct reference without spending time resolving the symbolic reference 
again. 

When the Java virtual machine resolves a symbolic reference, pass four 
of the class file verifier makes sure that the reference is valid. If the ref­
erence is not valid-for instance, if the class cannot be loaded or if the 
class exists but does not contain the referenced field or method-then the 
class file verifier throws an error. 
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As an example, consider again the Volcano class. If a method of class 
Volcano invokes a method in a class named Lava, then the name and 
descriptor of the method in Lava are included as part of the binary data 
in the class file for Volcano. When Volcano's method first invokes 
Lava's method during the course of execution, the Java virtual machine 
makes sure that a method exists in class Lava that has a name and 
descriptor that matches those expected by class Volcano. If the symbolic 
reference (class name, method name, and descriptor) is correct, the vir­
tual machine replaces it with a direct reference, such as a pointer, which 
it will use from now on. But if the symbolic reference from class Volcano 
does not match any method in class Lava, pass four verification fails, and 
the Java virtual machine throws a NoSuchMethodError. 

Binary Compatibility 

The reason why pass four of the class file verifier must look at classes that 
refer to one another to make sure that they are compatible is because 
Java programs are dynamically linked. Java compilers will often recom­
pile classes that depend on a class you have changed, and in doing so, they 
will detect any incompatibility at compile time. There might be times, 
however, when your compiler does not recompile a dependent class. For 
example, if you are developing a large system, you will likely partition the 
various parts of the system into packages. If you compile each package 
separately, then a change to one class in a package would likely cause a 
recompilation of affected classes within that same package-but not nec­
essarily in any other package. Moreover, if you are using someone else's 
packages, especially if your program downloads class files from someone 
else's package across a network as it runs, then it might be impossible for 
you to check for compatibility at compile time. For this reason, pass four 
of the class file verifier must check for compatibility at run time. 

As an example of incompatible changes, imagine that you compiled 
class Volcano (from the previous example) with a Java compiler. Because 
a method in Volcano invokes a method in another class called Lava, the 
Java compiler would look for a class file or a source file for class Lava to 
make sure that there was a method in Lava with the appropriate name, 
return type, and number and types of arguments. If the compiler could 
not find any Lava classes, or if it encountered a Lava class that did not 
contain the desired method, the compiler, would then generate an error 
and would not create a class file for Volcano. Otherwise, the Java com­
piler would produce a class file for Volcano that is compatible with the 
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class file for Lava. In this case, the Java compiler refused to generate a 
class file for Volcano that was not already compatible with class Lava. 

The converse, however, is not necessarily true. The Java compiler could 
conceivably generate a class file for Lava that is not compatible with 
Volcano. If the Lava class does not refer to Volcano, you could poten­
tially change the name of the method that Volcano invokes from the 
Lava class and then recompile only the Lava class. If you tried to run 
your program using the new version of Lava, but you still used the old 
version of Volcano that was not recompiled since you made your change 
to Lava, then the Java virtual machine would (as a result of pass four 
class-file verification) throw a NoSuchMethodError when Volcano 
attempted to invoke the now non-existent method in Lava. 

In this case, the change to class Lava broke binary compatibility with 
the pre-existing class file for Volcano. In practice, this situation might 
arise when you update a library you have been using and your existing 
code is not compatible with the new version of the library. To make it eas­
ier to alter the code for libraries, the Java programming language was 
designed to enable you to make many kinds of changes to a class that do 
not require recompilation of classes that depend upon the language. The 
changes you can make, which are listed in the Java Language Specifica­
tion, are called the rules of binary compatibility. These rules clearly define 
what can be changed, added, or deleted in a class without breaking binary 
compatibility with pre-existing class files that depend on the changed 
class. For example, it is always a binary compatible change to add a new 
method to a class, but never to delete a method that other classes are 
using. So, in the case of Lava, you violated the rules of binary compati­
bility when you changed the name of the method used by Volcano, 
because you (in essence) deleted the old method and added a new one. If 
you had instead added the new method and then rewritten the old method 
so that it calls the new method, that change would have been binary com­
patible with any pre-existing class file that already used Lava, including 
Volcano. 

Safety Features Built Into 
the Java Virtual Machine 
Once the Java virtual machine has loaded a class and has performed 
passes one through three of class-file verification, the bytecodes are ready 
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to be executed. Besides the verification of symbolic references (pass four 
of class-file verification), the Java virtual machine has several other built­
in security mechanisms operating as bytecodes are executed. These mech­
anisms, most of which are elements of Java's type safety, are listed in 
Chapter 1 as features of the Java programming language that make Java 
programs robust. Not surprisingly, these features are also part of the Java 
virtual machine: 

II Type-safe reference casting 

II Structured memory access (no pointer arithmetic) 

II Automatic garbage collection (cannot explicitly free allocated 
memory) 

II Array bounds checking 

II Checking references for null 

By granting a Java program-only type safe, which provides structured 
ways to access memory, the Java virtual machine makes Java programs 
more robust, but it also makes their execution more secure. A program 
that corrupts memory, crashes, and possibly causes other programs to 
crash represents one kind of security breach. If you are running a mis­
sion-critical server process, for example, it is critical that the process does 
not crash. This level of robustness is also important in embedded systems, 
such as a cellular phone, which people do not usually expect to have to 
reboot. Another reason why unrestrained memory access would be a secu­
rity risk is because a cracker could potentially use it to subvert the secu­
rity system. If, for example, a cracker could learn where in memory a class 
loader is stored, the cracker could assign a pointer to that memory and 
manipulate the class loader's data. By enforcing structured access to 
memory, the Java virtual machine yields programs that are robust but 
that also frustrate crackers who dream of harnessing the internal mem­
ory of the Java virtual machine for their own devious plots. 

Another safety feature built into the Java virtual machine-one that 
serves as a backup for structured memory access-is the unspecified man­
ner in which the run-time data areas are laid out inside the Java virtual 
machine. The runtime data areas are the memory areas in which the Java 
virtual machine stores the data it needs to execute a Java application: 
Java stacks (one for each thread); a method area, where bytecodes are 
stored; and a garbage-collected heap, where the objects created by the run­
ning program are stored. If you peer into a class file, you will not find any 
memory addresses. When the Java virtual machine loads a class file, it 
decides where in its internal memory to put the bytecodes and other data 
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it parses from the class file. When the Java virtual machine starts a 
thread, it decides where to put the Java stack it creates for the thread. 
When it creates a new object, it decides where in memory to put the object. 
Thus, a cracker cannot predict by looking at a class file where in memory 
the data representing that class, or objects instantiated from that class, 
will be kept. What is worse (for the cracker) is that the cracker cannot 
determine anything about memory layout by reading the Java virtual 
machine specification. The manner in which a Java virtual machine lays 
out its internal data is not part of the specification. The designers of each 
Java virtual machine implementation decide which data structures their 
implementation will use to represent the run-time data areas and where 
in memory their implementation will place them. As a result, even if a 
cracker were somehow able to break through the Java virtual machine's 
memory access restrictions, they would next be faced with the difficult 
task of finding something to subvert by searching the structure. 

The prohibition on unstructured memory access is not something the 
Java virtual machine must actively enforce on a running program; rather, 
it is intrinsic to the bytecode instruction set itself. Just as there is no way 
to express an unstructured memory access in the Java programming lan­
guage, there is also no way to express it in bytecodes-even if you write 
the bytecodes by hand. Thus, the prohibition on unstructured memory 
access is a firm barrier against the malicious manipulation of memory. 

There is a way, however, to penetrate the security barriers erected by 
the mechanisms that support type safety in a Java virtual machine. 
Although the bytecode instruction set does not give you an unsafe, 
unstructured way to access memory, there is a way you can avoid byte­
codes: native methods. Basically, when you call a native method, Java's 
security sandbox becomes dust in the wind. First of all, the robustness 
guarantees do not hold for native methods. Although you cannot corrupt 
memory from a Java method, you can from a native method. Most impor­
tantly, however, native methods do not go through the Java API (they are 
used to circumvent the Java API), so the security manager is not checked 
before a native method attempts to do something that could be potentially 
damaging. (This process is often how the Java API itself gets anything 
done, of course. But the native methods used by the Java API are 
"trusted.") Thus, once a thread gets into a native method, no matter what 
security policy was established inside the Java virtual machine, it does 
not apply anymore to that thread-as long as that thread continues to 
execute the native method. For this reason, the security manager includes 
a method that establishes whether or not a program can load dynamic 
libraries, which are necessary for invoking native methods. Untrusted 
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applets, for example, are not permitted to load a new dynamic library; 
therefore, they cannot install their own new native methods. They can, 
however, call methods in the Java API-methods which might be native, 
but are always trusted. When a thread invokes a native method, that 
thread leaps outside the sandbox. The security model for native methods 
is, therefore, the same security model described earlier as the traditional 
approach to computer security: you have to trust a native method before 
you call the method. 

One final mechanism built into the Java virtual machine that con­
tributes to security is structured error handling with exceptions. Because 
of its support for exceptions, the Java virtual machine has something 
structured to do when a security violation occurs. Instead of crashing, the 
Java virtual machine can throw an exception or an error, which might 
result in the death of the offending thread but should not crash the sys­
tem. Throwing an error (as opposed to throwing an exception) almost 
always results in the death of the thread in which the error was thrown. 
This situation is usually a major inconvenience to a running Java pro­
gram but will not necessarily result in termination of the entire program. 
If the program has other threads doing useful tasks, those threads might 
have the capacity to carry on without their recently departed colleague. 
Throwing an exception, on the other hand, could result in the death of the 
thread but is often used as a way to transfer control from the point in the 
program where the exception condition arose to the point in the program 
where the exception condition is handled. 

The Security Manager 
and the Java API 
The first three prongs of Java's security model-the class loader archi­
tecture, the class file verifier, and the safety features built into Java-all 
work together to achieve a common goal: protecting the internal integrity 
of a Java virtual machine instance and the application it is running from 
malicious or buggy code that it might load. By contrast, the fourth prong 
of the security model-the security manager-is geared towards protect­
ing assets that are external to the virtual machine from malicious or 
buggy code running within the virtual machine. The security manager is 
a single object that serves as the centralpoint for access control-the 
controlling of access to external assets-within a running Java virtual 
machine. 
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The security manager defines the outer boundaries of the sandbox. 
Because it is customizable, the security manager enables a custom secu­
rity policy to be established for an application. The Java API enforces the 
custom security policy by asking the security manager for permission 
before it takes any action that is potentially unsafe. To ask the security 
manager for permission, the methods of the Java API invoke check meth­
ods on the security manager object. These methods are called check meth­
ods because their names all begin with the substring check. For example, 
the security manager's checkRead () method determines whether or not 
a thread can read to a specified file. The checkWri te () method deter­
mines whether or not a thread can write to a specified file. The imple­
mentation of these methods is what defines the custom security policy of 
the application. 

Because the Java API always checks with the security manager before 
it performs a potentially unsafe action, the Java API will not perform any 
action that is forbidden under the security policy established by the secu­
rity manager. If the security manager forbids an action, the Java API will 
not perform that action. 

When a Java application starts, it has no security manager. The application, 
however, can install one by passing a reference to an instance of java . lang. 
Securi tyManager or one of its subclasses to setSecuri tyManager () , a 
static method of class java .lang. System. If an application does not 
install a security manager, there are no restrictions placed on any activ­
ities requested of the Java API; rather, the Java API will do whatever it 
is asked. (For this reason, Java applications by default do not have any 
security restrictions, such as those that limit the activities of untrusted 
applets.) If the application does install a security manager, then in Ver­
sion 1.0 or Version 1.1, that security manager will be in charge for the 
entire remainder of the lifetime of that application. This security manager 
cannot be replaced, extended, or changed. From that point on, the Java 
API will only fulfill those requests that are sanctioned by the security 
manager. In Version 1.2, however, the currently installed security 
manager can be replaced by code that has permission to replace it by 
invoking System. setSecuri tyManager () with a reference to a differ­
ent security manager object. 

In general, a check method of the security manager throws a security 
exception if the checked-upon activity is forbidden and simply returns if 
the activity is permitted. Therefore, there are two steps involved in the 
procedure that a Java API method generally follows when it is about to 
perform a potentially unsafe activity. First, the Java API code checks to 
determine whether a security manager has been installed. If not, it skips 
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step two and continues with the potentially unsafe action. Otherwise, in 
step two, it calls the appropriate check method in the security manager. 
If the action is forbidden, the check method will throw a security excep­
tion, which will cause the Java API method to immediately abort. The 
potentially unsafe action will never be taken. If, on the other hand, the 
action is permitted, then the check method will simply return. In this 
case, the Java API method carries on and performs the potentially unsafe 
action. 

As mentioned earlier in this chapter, the security manager is respon­
sible for two items: specifying a security policy, and enforcing that policy. 
The security policy, which outlines the kind of code that will be permitted 
to take a certain kind(s) of action(s), is defined by the code of the security 
manager's check methods. The policy is enforced by the behavior of the 
check methods when they are invoked. 

Prior to Version 1.2, java .lang. Securi tyManager was an abstract 
class. To establish a custom security policy in Version 1.0 or Version 1.1, you 
had to write your own security manager by subclassing Securi tyManager 
and implementing its check methods. Your application would instantiate 
and install the security manager, and from that point forward (for the 
remainder of the life of the application), the security manager would enforce 
the security policy that you defined in the code of its check methods. 

Although the customizability of the security manager was one of the 
greatest strengths of Java's security model, it was also a potential weak 
point. Writing a security manager is a complicated and error-prone task. 
Any mistakes made when implementing the check methods of a security 
manager could potentially translate into security holes at run time. To 
help make it easier and less error prone for developers and end-users to 
establish fine-grained security policies based on signed code, the java. 
lang. Securi tyManager class in Version 1.2 is a concrete class that pro­
vides a default implementation of the security manager. (In the remain­
der of this book, this default implementation of the security manager 
provided with Version 1.2 will be called the concrete Securi tyManager.) 
Your application can instantiate and install this security manager explic­
itly or can install it automatically. In Sun's Java 2 SDK Version 1.2, 
for example, you can specify that the concrete Securi tyManager is 
installed by using the -Dj ava. security. manager option on the com­
mand line. 

The concrete Securi tyManager class enables you to define your cus­
tom policy not in Java code, but in an ASCII file called a policy file. In the 
policy file, you grant permissions to code so'urces. Permissions are defined 
in terms of classes that are subclasses of java. security. Permission. 
For example, java. io. FilePermission represents permission to read, 
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write, execute, or delete a file. Code sources are composed of a codebase 
URL from which the code was loaded and a set of signers that vouched 
for the code. When the security manager is created, it parses the policy 
file and creates CodeSource and Permission objects. These objects are 
encapsulated in a single Policy object that expresses the policy at run 
time. Only one Policy object can be installed at any time. 

Class loaders place types into protection domains, which encapsulate 
all the permissions granted to the code source represented by the loaded 
type. Each type loaded into a Version 1.2 virtual machine belongs to one 
(and only one) protection domain. The virtual machine remembers the 
protection domain and uses it when deciding whether or not the code can 
take potentially unsafe actions. 

When the check methods ofthe concrete SecurityManager are invoked, 
most of them pass the request on to a class called the AccessController. 
The AccessController, using the information contained in the protection 
domain objects of the classes whose methods are on the call stack, 
performs stack inspection to determine whether the action should be 
permitted. 

The security manager has undergone quite a bit of change in Version 
1.2. In Versions 1.0 and 1.1, each check method indicates what is being 
checked in its method name. To check whether or not it is acceptable to 
read a certain file, the Java API invokes the checkRead () method on the 
security manager and passes the path name of the file to read as a para­
meter. For example, before attempting to read a file called /tmp/ 
finances. dat, the security manager invokes checkRead ( "/tmp/ 
finances. dat") on the security manager. 

The security manager declares 28 of these check methods-which, in 
the remainder of this chapter, will be referred to as legacy check meth­
ods. Although new methods were added to the security manager in Ver­
sion 1.2 that would otherwise render these legacy check methods obsolete, 
to maintain backwards compatibility, the Java API continues to call the 
legacy check methods just as it did in prior releases. 

The 28 legacy check methods are listed here, along with the potentially 
unsafe action that triggers their invocation by the code of the Java API: 

II checkConnect (String host, int port) -Opens a socket 
connection to the specified host and port number 

B checkConnect(String host, int port, Object context)­
Opens a socket connection to the specified host and port number 
under the passed security context 

II checkAccept (String host, int port) -Accepts a socket 
connection from the specified host and port number 
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ll checkCreateClassLoader () -Creates a new class loader 

ll checkAccess (Th:read t) -Modifies a thr~ad (changes its prior­
ity, stops it, etc.) 

ll checkAccess (ThreadGroup t) -Mqdifies a thread group (adds 
a new thread, sets daemons, etc.) 

ll checkExi t () -Causes the application to exit 

II checkLink ( ) -Loads a dynamic library that contains native methods 

ll checkRead (FileDescriptor fd) -Reads from the specified file 

ll checkRead (String file) -Reads from the specified file 

ll checkRead(String file, Object context) -Reads from the 
specified file under the passed security context 

ll checkWrite (FileDescriptor fd) -Writes to the specified file 

II checkWrite (String file) -Writes to the specified file 

ll checkDelete (String file) -Deletes the specified file 

II checkListen (int port) -Waits for a connection on the speci­
fied local port number 

ll checkMulticast (Ined.Address maddr) -Joins, leaves, sends, 
or receives IP multicast 

ll checkMulticast(Ined.Address maddr, byte ttl)­
Joins, leaves, sends, or receives IP multicast 

ll checkPropertiesAccess ()-Accesses or modifies system prop­
erties in general 

ll checkPropertiesAccess (String key) -Accesses or modifies 
the specified system property 

II checkTopLevel Window (Object Window) -Brings up the speci-
fied window without any warning 

II checkPrintJobAccess () -Initiates a print job request 

ll checkSystemClipboard.Access ()-Accesses the system's clipboard 

II checkAWTEventQueueAccess () -Accesses the AWT event queue 

ll checkPackageAccess (String pkg) -Accesses types from the 
specified package (used by class loaders) 

ll checkPackageDefinition (String pkg) -Adds a new class to 
the specified package (used by class loaders) 

ll checkSetFactory ( ) -Sets the socket factory that ServerSocket 
or Socket uses or sets the URL stream handler that URL uses 

II checkMemberAccess ()-Accesses class information via there­
flection API 
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In Version 1.2, a set of permission classes was defined whose instances 
represent the actions that code can take. A new pair of check methods 
were added in Version 1.2 to class java .lang. SecurityManager, both 
named checkPermission (): 

Ill checkPermission (Permission perm) -Takes an action that 
requires the specified permission 

Ill checkPermission(Permission perm, Object context)­
Takes an action that requires the specified permission under the 
passed security context 

The checkPermission () methods accept a reference to a Permission 
object, which indicates the action that is being requested. Thus, this method 
provides an alternative way to ask the security manager whether it is accept­
able to perform a potentially unsafe action. For example, to determine whether 
it is acceptable to read file /tmp/finances. dat, the Java API in Version 1.2 
could take either of two approaches. The Java API could take the old-fashioned 
approach and invoke the legacy method checkRead () , passing the String 
"/tmp/finances. dat" as a parameter, or it could take the fresh, new 
approach of creating a java. io. FilePermission object and passing 
Strings "/tmp/finances .dat" and "read" to the FilePermission con­
structor. The Java API could then pass this Permission object to the security 
manager's checkPermission () method. 

Both the old-fashioned approach of invoking a legacy check method and 
the fresh new approach of creating a permission object and invoking 
checkPermission () should yield the same result. To maintain backwards 
compatibility with security managers that were written for Versions 1.0 or 
1.1, however, the Version 1.2 Java API continues to take the old-fashioned 
approach. The Version 1.2 Java API continues to call the 28 legacy 
check methods. Nevertheless, in the concrete SecurityManager class, the 
legacy methods are (for the most part) implemented in terms of the new 
checkPermission () method. So, by invoking the legacy method on the 
concrete SecurityManager, the Java API is indirectly invoking the 
checkPermission () method anyway. For example, the checkRead () 
method implementation in the concrete Securi tyManager simply instan­
tiates a new FilePermission object, passing the path name String 
passed to it to the FilePermission's constructor, along with the String 
"read". The checkRead () method then invokes checkPermission (), 
passing a reference to the FilePermission object. 

At times, the Java API might also invoke checkPermission () 
directly. For new concepts of potentially unsafe actions introduced in 
Version 1.2 and later, no legacy check methods exist. Thus, in some situ­
ations, the Java API might create a new Permission object for which no 

Page 97 of 280



68 Chapter Three 

relevant check methods exist and pass that Permission object directly 
to the security manager's checkPermission () method. 

In the concrete Securi tyManager class, the checkPermission () method 
also delegates the job of deciding whether or not to permit another method to 
perform the action. The concrete Securi tyManager's checkPermission () 
method simply invokes the static checkPermission () method of class 
java. security. AccessController, passing along the permission object. 
The AccessController class, therefore, is the actual entity responsible for 
enforcing the security policy when you use the concrete SecurityManager. 

All of these changes in Version 1.2 are backwards compatible with Ver­
sions 1.1 and 1.0. In other words, if you created a security manager for 
Version 1.1, it should still work as expected in Version 1.2. You can still 
create a custom security manager in Version 1.2 as well, which enables 
anyone with special security needs that are not adequately addressed by 
the concrete Securi tyManager implementation to create a different 
kind of security infrastructure. Most people's security needs, however, will 
more than likely be met by taking advantage of the flexibility and exten­
sibility built into the concrete SecurityManager. 

Code Signing and Authentication 
A critical piece of Java's security model is the support for authentication 
introduced in Java 1.1 in the java. security package and its subpack­
ages. The authentication capabilities expand your ability to establish mul­
tiple security policies by enabling you to implement a sandbox that varies 
depending on who vouched for the code. Authentication enables you to 
verify that a set of class files was blessed as trustworthy by some party 
-and that the class files were not altered en route to your virtual 
machine. Thus, to the extent that you trust the party who vouched for the 
code, you can ease the restrictions placed on the code by the sandbox. You 
can establish different security restrictions for code that is signed by dif­
ferent parties. 

To vouch for, or sign, a piece of code, you must first generate a pub­
lic/private key pail". You should keep the private key private, but you can 
make the public key public. At the least, you must somehow get the pub­
lic key to anyone who wants to establish a security policy based on your 
signature. (As illustrated later in this section, distributing public keys is 
not necessarily as easy as it might seem.) o·nce you have a public/private 
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key pair, ·you must place the class files and any other files you want to 
sign into a JAR file. You then use a tool, such as j arsigner from the Ver­
sion 1.2 SDK, to sign the entire JAR file. The signer tool will first perform 
a one-way hash calculation on the contents of the JAR file to generate a 
hash. The tool will then sign the hash with your private key and add the 
signed hash to the JAR file. The signed hash represents your digital sig­
nature of the contents of the JAR file. When you distribute the JAR file 
that contains the signed hash, anyone with your public key can verify two 
things about the JAR file: that you indeed signed the JAR file, and that 
the contents of the JAR file were not in any way altered since you 
attached your signature. 

The first step in the digital signing process is the one-way hash calcu­
lation, which takes a big number as input and generates a small number 
(called the hash). In the case of a JAR file, the big-number input to the 
calculation is the stream of bytes that make up the contents of the JAR 
file. The one-way hash calculation is called one-way because given just the 
hash (the small number), it is impossible to calculate the input (the big 
number). In other words, the hash value does not contain enough infor­
mation about the input to enable the input to be regenerated from the 
hash. The calculation goes just one way, from big to small and from input 
to hash. 

The hash, which is also called a message digest, serves as a kind of fin­
gerprint for the input. Although different inputs can produce the same 
hash, the hash is considered unique enough in practice to represent the 
i.ilput from which it was generated. Much like a fingerprint can be used 
to identify the individual who made the fingerprint, a hash can be used 
to identify the input that caused the one-way hash algorithm to produce 
the hash. The hash is used during the authentication process to verify 
that the input is identical to the input that produced the original hash. 
In other Words, the hash verifies that the input was not changed en route 
to its destination. 

Given that it is impossible to reconstruct the input given just the hash, 
a hash is only useful if the input is also available. Thus, you normally 
transmit both the input and the hash together. By themselves, the com­
bination of an input and its hash is not secure, however, because even an 
extremely unimaginative cracker could simply replace both the input and 
the hash. To prevent this scenario from occurring, you encrypt the hash 
with your private key before sending the hash. The reason why you 
encrypt the hash rather than simply encrypting the entire JAR file is 
because private-key encryption is a time-consuming process. In general, 
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you will find it much faster to calculate a one-way hash from the JAR file 
contents and encrypt the hash with a private key than to encrypt the 
entire JAR file with the private key. A cracker will only have the capa­
bility to replace both an input and an encrypted hash if the cracker has 
your private key, which you are supposed to keep secret. Thus, the com­
bination of input and encrypted hash is more frustrating to a potential 
cracker than the mere combination of input and hash, because in theory, 
the cracker does not have your private key. 

Anything encrypted with your private key can be decrypted with your 
public key. With public/private key pairs, it is difficult to generate the pri­
vate key if you only have the public key. If you can keep your private key 
out of the hands of crackers, therefore, their best option is to try to replace 
the input with a different input that yields the same hash value. If the 
cracker wishes to replace one class file in your JAR file with a different 
class file that performs some devious act, for example, the odds are 
extremely high that the revised JAR file (the one that contains the devi­
ous class file) will produce a different hash. But the cracker could add ran­
dom data to the JAR file until the one-way hash calculation on the altered 
JAR file produces the same hash value as the original. If the cracker can 
produce such an alternative input-one that both helps the cracker 
achieve his or her nefarious goals and generates the same hash as your 
original input-then the cracker would not need your private key. Because 
the cracker's input generates the same hash value as your original input, 
and you have already signed that hash value with your private key, then 
the cracker can simply place your signed hash in a JAR file with his or 
her input. What prevents a cracker from taking this approach? Unfortu­
nately for the cracker, such an approach would more than likely take too 
much time to be feasible. 

Because one-way hash algorithms generate a small number (themes­
sage digest or hash) from a big number (the input), different inputs can 
produce the same hash. One-way hash algorithms tend to spread out the 
inputs that produce the same hash in a sufficiently random manner, so 
the likelihood of getting the same hash value depends primarily on the 
size of the hash. For example, if you use a hash value that is eight bits 
wide, your one-way hash algorithm will only have 256 unique hash val­
ues from which to choose. If you have a JAR file that produces the hash 
value 100 and you start calculating the eight-bit hash with this algorithm 
on other JAR files, you should not be surprised if every 256 times or so 
you receive the hash value 100. The more bits contained in the hash, of 
course, the less often the algorithm will produce the same hash. In prac­
tice, 64- and 128-bit hash values are common and are considered large 
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---­Figure 3-3 
Digitally signing 
aJAR file 
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enough to render the process of finding a different input that produces the 
same hash computationally unfeasible. The main barrier preventing a 
cracker from replacing your benevolent input with a malicious input that 
serves the cracker's evil purposes and produces the same hash, therefore, 
is the time and resources that the cracker would have to devote to search­
ing for that malicious input. 

The last step in the digital signing process, after you have generated 
the hash value and encrypted it with your private key, is to add the 
encrypted hash value to the same JAR file that contains the files from 
which you generated the hash value originally. A signed JAR file, there­
fore, contains the input-the class and data files you wanted to vouch for 
-plus the hash value (generated from the input) encrypted with your pri­
vate key. The encrypted hash represents your digital signature of the class 
and data files contained in the same JAR file. The process of signing a 
JAR file is shown graphically in Figure q-3. 

To authenticate a JAR file that you have purportedly signed, the recip­
ient must decrypt the signed hash with your public key. The result should 
be equal to the original hash that you calculated on the contents of the 
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---­Figure 3-4 
Authenticating a 
digitally signed 
JAR file 
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JAR file. To verify that the JAR file contents were not changed since you 
signed them, the recipient simply applies the one-way hash algorithm on 
the contents of the JAR file, just as you did during the signing process. 
(You never encrypted the contents of the JAR file, so anyone can see them. 
You only added a digital signature to the JAR file.) If the hash value gen­
erated by the algorithm matches the decrypted hash value, the recipient 
concludes that you did indeed vouch for this JAR file and that the con­
tents of the JAR file did not change since you added your signature. The 
code contained in the JAR file can be placed inside a relaxed sandbox that 
represents the trust that the recipient places in your signature. The 
process of verifying a digitally signed JAR file is shown in Figure 3-4. 

Although the authentication technology first introduced in Java Ver­
sion 1.1 is firmly founded in reliable mathematics, the math does not solve 
every problem. In fact, Java's authentication technology raises several 
questions. For example, the authentication technology says nothing about 
who you should trust and to what extent you should trust them. To what 
extent do you trust some small company that you do not recognize? To 
what extent do you trust a big company whose name is a household word? 
To what extent do you trust a different department in your own company? 
What are the chances that any particular company (or department) has 

signature 
verifies: 

YES or NO 
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a rogue employee who managed to slip a time bomb into a JAR file that 
the company signed? No cryptographic algorithm can answer these ques­
tions for you. 

Another security issue stems from the assumption that is inherent in 
the authentication technology that private keys will be kept under lock 
and key. If private keys are not kept private, the entire authentication 
scheme is reduced to strenuous mathematical activity that is not only 
ineffective but dangerous, because it can give a false sense of security. You 
are responsible for keeping your own private keys private. You can only 
hope that any entity on whose signature authority you grant code access 
to your system has kept their private keys private. For any party, estab­
lishing a key-management scheme that prevents private keys from being 
leaked (remember those rogue employees?) can be a challenging task. 

Another question raised by the technology involves the distribution of 
public keys. Although it might seem surprising at first, the assumption 
inherent in the authentication technology that public keys will be made 
public creates some security issues of its own. For example, imagine that 
you want to relax your sandbox for code vouched for by a guy named 
Evan. To do so, you need Evan's public key. But how exactly do you obtain 
his public key? If you know Evan personally, you can invite him over for 
coffee and ask him to bring his public key so he can give it to you in per­
son. But what if you do not know Evan personally? You might think that 
you could simply visit Evan's Web site and grab his public key from his 
Web page. Alternatively, perhaps you could phone Evan and ask him to 
send you his public key in an e-mail. Evan should have no problem send­
ing you-a stranger-his public key, because public keys are designed to 
be public. Evan does not need to worry about who gets his public key. He 
could hire a biplane to write his public key on the sky over Silicon Valley 
and still feel confident he was operating within the rules delineated by 
Java's authentication technology. So, what is the problem? The problem 
is that although Evan does not need to worry about your identity when 
he sends you his public key, you need to worry about his. Evan will be 
happy to send you his public key, but how do you know that the public 
key you receive is really the one that Evan sent? 

The difficulty of public key distribution is that no matter what means 
of communication you use, the message-the public key-could potentially 
be tampered with in transit. When you visit Evan's Web page, it is possi­
ble that the Web page is intercepted and changed en route to your browser, 
perhaps by Dastardly Doug, a cracker of international repute. When you 
think you are copying Evan's public key from his Web page, you could actu­
ally be copying Dastardly Doug's. Doug could also have intercepted Evan's 

Page 103 of 280



74 Chapter Three 

e-mail and replaced Evan's beneficent public key with his own dastardly 
public key. Doug could even have donned one of his many clever disguises 
and. piloted the biplane high above Silicon Valley, inscribing his public key 
among the clouds in place of Evan's. If Doug can successfully replace 
Evan's public key with his own, Doug can pretend to be Evan and take 
advantage of the trust you place in Evan's signature to break into your 
system. 

But wait a minute. Isn't the difficulty of public key distribution just 
another authentication problem-the kind of problem the authentication 
technology itself is designed to address? The answer to this question is 
yes. By turning authentication back on itself, Evan can make it far more 
difficult for Dastardly Doug to replace Evan's public key with his own. 

To address the difficulties of public key distribution, several Certificate 
Authorities (CAs) have been established for the purpose of vouching for 
public keys. Evan, for example, could go to a certificate authority and pre­
sent his credentials (birth certificate, driver's license, passport, and so on) 
and his public key. Once convinced that Evan is who he says he is, the CA 
would sign Evan's public key with the certificate authority's private key. 
The resulting sequence of numbers is called a certificate. Instead of dis­
tributing his public key, then, Evan would distribute his certificate. 

You could grab Evan's certificate from his Web page, from an e-mail, or 
via any other unsecured communications medium. When you get the cer­
tificate, you decrypt it with the CA's public key and receive Evan's public 
key. The certificate scheme makes it much less likely that Doug will be 
able to swap his public key for Evan's. To do so, Doug would need the CA's 
private key. 

Although certificates improve the public key distribution situation 
immensely, some issues still remain. First of all, how exactly do you obtain 
the CA's public key? You need this public key to authenticate the public 
keys of anyone else. Well, if you know any employees in the CA person­
ally, you could invite them over for coffee and ask them to bring their pub­
lic key to give to you in person. But what if you do not know any 
employees in the CA? Then, there is the nagging question of why you 
should trust the CA. A CA can pretend to be anyone. Isn't a CA just as 
susceptible as the next company to the vagaries of rogue employees? 

Despite all of these concerns, the code-signing capabilities introduced 
in Java Version 1.1 generally offer you enough security to enable you to 
relax your sandbox when necessary. Although the authentication tech­
nology does not eliminate all risks associated with relaxing the sandbox, 
it can help minimize the risks. Security is a tradeoff between cost and 
risk: the lower the security risk, th:e higher the cost of security. You must 
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weigh the costs associated with any computer or network security strat­
egy against the costs of the theft or destruction of the information or com­
puting resources being protected. The nature of your computer or network 
security strategy should be shaped by the value of the assets you are try­
ing to protect. Java's authentication technology is a useful tool that, in 
concert with Java's sandbox, can help you manage the costs and risks of 
running network-mobile code on your systems. 

A Code-Signing Example 
For an example of code signing with the j arsigner tool of the Java 2 
SDK Version 1.2, consider the following types: Doer, Friend, and 
Stranger. The first type, Doer, defines an interface that the other two 
types, classes Friend and Stranger, implement: 

II On CD-ROM in file 
II securitylex21comlartimalsecurityldoer1Doer.java 
package com.artima.security.doer; 

public interface Doer { 

void doYourThing(); 
} 

Doer declares just one method: doYourThing () . Class Friend and 
class Stranger implement this method in the exact same way. In fact, 
besides their names, the two classes are identical: 

II On CD-ROM in file 
II securitylex2lcomlartimalsecuritylfriend1Friend.java 
package com.artima.security.friend; 
import com.artima.security.doer.Doer; 
import java.security.AccessController; 
import java.security.PrivilegedAction; 

publ~c class Friend implements Doer { 

private Doer next; 
private boolean direct; 

public Friend(Doer next, boolean direct) { 
this.next = next; 
this.direct = direct; 

} 
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public void doYourThing() { 

} 

if (direct) { 

next.doYourThing(); 
} 
else { 

AccessController.doPrivileged( 
new PrivilegedAction() { 

public Object run() { 
next.doYourThing(); 
return null; 

} 
} 

) ; 

} 

II On CD-ROM in file 
II securitylex2lcomlartimalsecuritylstranger1Stranger.java 
package com.artima.security.stranger; 
import com.artima.security.doer.Doer; 
import java.security.AccessController; 
import java.security.PrivilegedAction; 

public class Stranger implements Doer { 

} 

private Doer next; 
private boolean direct; 

public Stranger(Doer next, boolean direct) { 
this.next = next; 
this.direct = direct; 

} 

public void doYourThing() { 

} 

if (direct) { 

next.doYourThing(); 
} 
else { 

AccessController.doPrivileged( 
new PrivilegedAction() { 

public Object run() { 
next.doYourThing(); 
return null; 

} 
} 

) ; 

} 

Page 106 of 280



Security 

These types-Doer, Friend, and Stranger-are designed to illustrate 
the stack inspection mechanism of the access controller. The motivation 
behind their design will be made clear later in this chapter, when we give 
you several examples of stack inspection. At this point, however, the class 
files generated by compiling Friend and Stranger must be signed to 
prepare them for the upcoming stack inspection examples. The class files 
generated from Friend. java will be signed by a party referred to fondly 
as "friend." The class files generated from Stranger. java will be 
signed by a party referred to somewhat suspiciously as "stranger." The 
class file generated by Doer will not be signed. 

To prepare the class files for signing, they must first be placed into JAR 
files. Because the class files for Friend and Stranger need to be signed 
by two different parties, they will be collected into two different JAR files. 
The two class files generated by compiling Friend. java-Friend. 
class and Friend$1. class-will be placed into a JAR file called 
friend. jar. Similarly, the two class files generated by compiling 
Stranger. java-Stranger. class and Stranger$1. class-will be 
placed into a JAR file called stranger. jar. (Note that although all 
of the files in these examples are in the security I ex2 directory of the 
CD-ROM, to repeat any of the commands that generate files, you will have 
to copy the entire security I ex2 directory hierarchy to a writeable 
media, such as a hard disk. You probably knew that already, however.) 

Friend. java's class files are dropped by the j avac compiler in the 
security I ex2/ com/ artima/ security/friend directory. Because class 
Friend is declared in the com. artima. security. friend package, 
Friend. java's class files must be placed in the JAR file in the 
com/ artima/ security I friend directory. The following command, exe­
cuted in the security/ex2 directory, will place Friend.class and 
Friend$1. class into a newly created JAR file called friend. jar, 
which is placed in the current directory, security/ex2: 

jar cvf friend.jar com/artima/security/friend/*.c1ass 

Once the previous command completes, the class files for Friend. java 
must be removed so they will not be found by the Java virtual machine 
when it runs the access control examples: 

rm com/artima/security/friend/Friend.c1ass 
rm com/artima/security/friend/Friend$l.class 

Filling a JAR file with Stranger. java's class files, which are dropped 
by javac in the security/ex2/com/artima/security/stranger 
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directory, requires a similar process. From the security I ex2 directory, 
the following command must be executed: 

jar cvf stranger.jar com/artima/security/stranger/*.class 
rm com/artima/security/stranger/Stranger.class 
rm com/artima/security/stranger/Stranger$l.class 

To sign a JAR file with the j arsigner tool from the Java 2 SDK Ver­
sion 1.2, a public/private key pair for the signer must already exist in a 
keystore file, which is a file for storing named, password-protected keys. 
The keytool program of the Java 2 SDK Version 1.2 can be used to gen­
erate a new key pair, to associate the key pair with a name or alias, and 
to protect it with a password. The alias, which is unique within each key­
store file, is used to identify a particular key pair in a particular keystore 
file. The password for a key pair is required to access or change the infor­
mation contained in the keystore file for that key pair. 

The access control examples expect a keystore file named i vj mkeys in 
the security I ex2 directory containing key pairs for the aliases 
"friend" and "stranger." The following command, executed from the 
security I ex2 directory, will generate the key pair for the alias friend 
with the password friend4life. In the process, the command will cre­
ate the keystore file named ijvmkeys: 

keytool -genkey -alias friend -keypass friend4life 
-validity 10000 -keystore ijvmkeys 

The -validity 1 o 0 0 0 command-line argument of the previous keytool 
command indicates that the key pair should be valid for 10,000 days. Over 
the course of 27 years, then, the key pair will likely outlive the product 
life cycle of this edition of this book. When the command runs, it will 
prompt you for a keystore password, which is a general password required 
for making any kind of access to or change in the keystore file. The key­
store password given to ijvmkeys is "ijvm2ed". 

The key pair for stranger can be generated with a similar command: 

keytool -genkey -alias stranger -keypass stranger4life 
-validity 10000 -keystore ijvmkeys 

Now that the keystore file ijvmkeys contains key pairs for friend 
and stranger-and the JAR files friend. jar and stranger. jar con­
tain the appropriate class files-the JAR files can finally be signed. The 
following jarsigner command, executed from the exampleslex2 direc­
tory, will sign the class files contained in friend. jar using friend's pri­
vate key: 
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jarsigner -keystore ijvmkeys -storepas~ ijvm2ed -keypass 
friend4life friend.jar friend 

A similar command will sign the class files contained in 
stranger. jar with stranger's private key: 

jarsigner -keystore ijvmkeys -storepass ijvm2ed -keypass 
stranger4life stranger.jar stranger 

Whew, that was a lot of work just to sign two JAR files. Keep in mind 
that in the real world, you would have to make sure that no one with bad 
intent got hold of your private keys and that you kept track of them. In 
other words, do not lose the keystore file, remember the passwords, etc. 
In addition, you will have to give your public keys to anyone who will use 
your signature to give your code access to their system. 

Policy 
As mentioned previously, one of the greatest advantages of Java's sand­
box security model is that the sandbox can be customized. The code sign­
ing and authentication technology introduced in Java Version 1.1 enables 
your running application to differe~tiate code to which you attribute dif­
ferent degrees of trust. By customizing the sandbox, trusted code can be 
given more access to system resources than untrusted code. This feature 
prevents untrusted code from accessing the system but enables trusted 
code to access the system and do useful work. The real power of Java's 
security architecture, however, lies in the capability to grant varying 
degrees of trust to code that has different levels of partial access to the 
system. 

Microsoft offers an authentication technology similar to Java's for 
ActiveX controls, but ActiveX controls do not run inside a sandbox. Thus, 
withActiveX, a chunk ofmobile code is either completely trusted or com­
pletely untrusted. If untrusted, the ActiveX control is denied the oppor­
tunity to run. If trusted, the ActiveX control is enabled to run and is given 
full access to the system. While this functionality is a big improvement 
from no authentication at all, if. some malicious or buggy code becomes 
authenticated, then the dangerous code has full access to the system. One 
of the strengths of Java's security architecture is that code can be given 
access only to the resources it needs. If some malicious or buggy code 
becomes authenticated, it has fewer opportunities to do damage. For 
example, instead of being able to delete all files on a local hard disk, the 
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malicious or buggy code might only have the capability to delete the files 
in a particular directory set aside just for the malicious code. 

One major goal of the Version 1.2 security infrastructure is to make it 
easier and less error prone to establish fine~grained access control poli­
cies based on signed code. To assign different system-access privileges to 
different units of code, Java's access control mechanism must have the 
capability to ascertain which privileges should be given to each individ­
ual piece of code. To facilitate this process, each piece of code (each class 
file) loaded into a Version 1.2 or higher Java virtual machine is associated 
with a code source. The code source basically indicates where the code 
came from and who, if anyone, has vouched for the code by signing the 
code. In the Version 1.2 security model, permissions (system-access priv­
ileges) are assigned to code sources. Thus, if a piece of code requests access 
to a particular system resource, the Java virtual machine will grant the 
code access to that resource only if such access is a privilege associated 
with that code's code source. 

In the Version 1.2 security infrastructure, an access control policy for 
an entire Java application is represented by a single instance of a sub­
class of the abstract class java . security. Policy. Each application has 
just one Policy object in effect at any given time. Code that has permis­
sion can replace the current Policy object with a new one by invoking 
Policy. setPolicy () and by passing a reference to the new Policy 
object. Class loaders consult the Policy object to help them decide which 
privileges to grant code as they import the code into the virtual machine. 

A security policy is a mapping from a set of properties that character­
ize running code to the permissions granted to the code. In the Version 
1.2 security infrastructure, the properties that characterize running code 
are collectively called the code source. A code source is represented by a 
java. security. Code Source object, which contains a java. net. URL to 
represent the codebase and an array of zero or more certificate objects to 
represent the signers. Certificate objects are instances of subclasses of the 
abstract class java. security. cert. Certificate. A Certificate is 
an abstraction that represents a binding of a principal to a public key and 
another principal (the certificate authority mentioned previously) that 
vouches for that binding. The CodeSource object contains an array 
of Certificate objects, because the same code can be signed (vouched 
for) by more than one party. The signatures are usually obtained from a 
JAR file. 

All of the tools and access control infrastructure that accompanies the 
concrete SecurityManager in Version 1.2 work only with certificates. 
None work with bare public keys. If you do not have a certificate author-
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ity handy, you can sign your own public key with your private key and 
generate a self-signed certificate. The keytool program from the Java 2 
SDK Version 1.2 always generates a self-signed certificate when it gen­
erates keys. In the code-signing example given earlier in this chapter, for 
instance, the keytool created not only public/private key pairs but also 
created self-signed certificates for the aliases friend and stranger. 

A permission is represented by an instance of a subclass of the abstract 
class java. security. Permission. A permission object has three prop­
erties: a type, a name, and an optional action. A permission's type is indi­
cated by the name of the permission class. Some examples of permission 
types are: java. io. FilePermission, java. net. SocketPermission, 
and java.awt.AWTPermission. A permission's name is encapsulated 
inside the Permission object. For example, the name of a FilePermission 
might be: "/my/finances. dat"; the name of a Socket Permission might 
be "applets.artima.com:2000"; and the name of an AWTPermission 
might be "showWindowWithoutBannerWarning". The third property of 
a Permission object is its action. Not all permissions have an action. 
An example of an action for a FilePermission is "read, write", and 
an example for a SocketPermission is "accept, connect". A 
FilePermission with the name /my/finances. dat and action 
read, write represents permission to read and write to the file 
/my/finances. dat. Both name and action are represented by Strings. 

The Java API has a large hierarchy of permissions that represent 
potentially dangerous actions that code might wish to take. You can also 
create your own permission classes to represent custom permissions that 
you can use for your own purposes. For example, you could create per­
mission classes that represent permission to access particular records of 
your proprietary database. Defining custom permission classes is one way 
that you can extend the Version 1.2 security mechanism to reflect your 
own needs. If you create your own Permission classes, you can use them 
like any ofthe built-in Permission classes from the Java API. 

In the Policy object, each CodeSource is associated with one or more 
Permission objects. The Permission objects with which a CodeSource 
is associated are encapsulated in an instance of a subclass of java. 
security. PermissionCollection. Class loaders can invoke Policy. 
get Policy () to get a reference to the policy object currently in effect. 
They can then invoke getPermissions () on the Policy object, passing 
a CodeSource to get a PermissionCollection of Permission 
objects for the passed Codesource. A class loader can then use the 
PermissionCollection retrieved from the Policy object to help it 
decide which permissions the code it is about to import will be granted. 
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Policy File 

java. security. Policy is an abstract class. One of the implementation 
details of concrete Policy subclasses is how an instance of the subclass 
learns what the policy should be. Subclasses can take various app~oaches, 
such as deserializing a previously serialized policy object, extracting the 
policy from a database, or reading the policy from a file. The concrete pol­
icy subclass supplied by Sun with the Version 1.2 Java platform takes 
the latter approach: it enables you to express your security policy in a 
context-free grammar in an ASCII policy file. 

A policy file consists of a series of grant clauses, each of which grants 
a code source a set of permissions. As mentioned previously, a code source 
consists of a codebase, which is a URL from which code was loaded, and 
a set of signers. In the policy file, signers are designated with the alias 
with which the signer's public key is stored in a keystore file. The key­
store can be explicitly specified in the policy file in a keys tore statement. 

As an example of a policy file, consider the policyfile. txt file from 
the security/ex2 directory ofthe CD-ROM: 

keystore "ijvmkeys"; 

grant signedBy "friend" { 

}; 

permission java.io.FilePermission "question.txt", 
"read"; 
permission java.io.FilePermission "answer.txt", "read"; 

grant signedBy "stranger" { 
permission java.io.FilePermission "question.txt", 
"read"; 

}; 

grant codeBase "file:${com.artima.ijvm.cdrom.home}/ 
security/ex2/*" { 

}; 

permission java.io.FilePermission "question.txt", 
"read"; 
permission java.io.FilePermission "answer.txt", "read"; 

The first statement in the policyfile. txt file is a keystore state­
ment: 

keystore "ijvmkeys"; 

This keystore statement indicates that the key aliases mentioned in 
the rest of the policy file refer to certificates stored in a file called 
"i j vmkeys" . Because this filename includes no path, the file must be 
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located in the current directory-the directory in which the Java appli­
cation using this policy file is started. 

The second statement in the policy file is a grant statement: 

grant signedBy "friend" { 
permission java.io.FilePermission "question.txt", 
"read"; 
permission java.io.FilePermission "answer.txt", "read"; 

}; 

This statement grants two permissions to any code signed by the entity 
with the alias "friend." The granted permissions are as follows: per­
mission to read a file named question. txt, and permission to read a file 
named answer. txt. Because these filenames appear with no path, both 
files must be in the current directory-the directory in which the appli­
cation is started. Because no codebase is mentioned in the grant clause, 
code signed by friend can come from any codebase. All code signed by 
friend, regardless of codebase, will be awarded permission to read 
question. txt and answer. txt. 

The third statement in policyfile. txt is another grant statement, 
similar in form to the first: 

grant signedBy "stranger" { 
permission java.io.FilePermission "question.txt", 
"read"; 

}; 

This statement grants one permission to any code signed by the entity 
with the alias "stranger": permission to read a file named question. 
txt. This file must be sitting in the current directory-the directory in 
which the application is started. Because no codebase is mentioned in the 
grant clause, code signed by stranger can come from any codebase and 
will still be awarded permission to read question. txt. Note that 
although stranger can read the question contained in question. txt, 
stranger is not permitted to peek at the answer contained in 
answer. txt. This situation contrasts with the privileges awarded to 
friend, which can read both the question and the answer. 

The fourth and final statement in this policy file is yet another grant 
statement: 

grant codeBase "file:${com.artima.ijvm.cdrom.home}/ 
security/ex2/*" { 

}; 

permission java.io.FilePermission "question.txt", 
"read"; 
permission java.io.FilePermission "answer.txt", "read"; 
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This final grant statement grants two permissions to any code that was 
loaded from a particular directory: permission to read a file named quest ion. 
txt, and permission to read a file named answer. txt. Both files must be 
in the current directory-the directory in which the application is started. 
Note that this grant statement does not mention any signers. The code 
can be signed by anyone or by no one. As long as it is loaded from the indi­
cated directory, the code will be granted the listed permissions. 

The codebase URL in this grant statement takes the form of a file: 
URL that includes a property, $ {com. art ima. i j vm. cdrom. home}. If 
you run the AccessControl example programs described later in this 
chapter, you will have to set the com. artima. ijvm. cdrom.home prop­
erty to the path of the CD-ROM that comes with this book (or to 
whichever directory you have moved the security subdirectory from the 
CD-ROM). The Policy object that is instantiated based on the contents 
of policyfile. txt will take the com. artima. ijvm. cdrom.home 
property into account when it constructs the URL for the Code Source for 
this grant clause. 

Protection Domains 
As class loaders load types into the Java virtual machine, they assign each 
type into a protection domain. A protection domain defines all the per­
missions that are granted to a particular code source. (A protection 
domain corresponds to one or more grant clauses in a policy file.) Each 
type loaded into a Java virtual machine belongs to one and only one pro­
tection domain. 

The class loader knows the codebase and the signers of any class or inter­
face it loads and uses that information to create a CodeSource object. The 
class loader passes the CodeSource object to the getPermissions () 
method of the currently used Policy object to obtain an instance of a sub­
class of the abstract class java. security. PermissionCollection. The 
PermissionCollection holds references to all Permission objects 
granted to the given code source by the current policy. With both the 
CodeSource that it created and the PermissionCollection it got from 
the Policy object, it can instantiate a new ProtectionDomain object. 
It places the code into a protection domain by passing the appropriate 
ProtectionDomain object to the defineClass () method, an instance 
method of class ClassLoader that user-defined class loaders call to import 
type data into the Java virtual machine. This assigning classes into pro­
tection domains is a critical job which, as mentioned earlier in this chap-
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ter, is one of three ways the class loader architecture supports Java's sand­
box security model. 

Although the Policy object represents a global mapping from code 
sources to permissions, in the end the class loader is the responsible party 
that decides which permissions the code will receive when it runs. A class 
loader could, for example, completely ignore the current policy and just 
assign permissions randomly. Or, a class loader could add permissions to 
those returned by the policy object's getPermissions () method. For 
example, a class loader for loading applet code could add a permission to 
make a socket connection back to the host, from which the applet came to 
the permissions granted to the code by the policy (if any). As you can see, 
the class loader plays a crucial security role as it loads classes. 

For a graphical depiction of protection domains, code sources, and per­
missions, consider Figure 3-5. In this figure, the method area and heap are 
shown after the code inside friend. jar is loaded under the policy defined 
by policyfile. txt. friend. jar is a JAR file in the security/ 
ex2 I jars directory of the CD-ROM, and policyf ile. txt is an ASCII 
policy file in the security I ex2 directory. The friend. jar file contains 
two class files: Friend. class and Friend$1. class. As described in the 
code-signing example earlier in this chapter, both of these class files have 
been signed by friend. When these classes are defined by the class loader, 
they are placed into a protection domain whose CodeSource object indi­
cates two things. First, the CodeSource indicates that the class files were 
loaded from a local jar file whose URL is file: I I If I I security I 
ex2/jars/friend.jar. Second, the CodeSource indicates that the 
class files were signed by friend, an alias associated with a certificate 
in the local keystore. The ProtectionDomain object encapsulates a 
reference to the CodeSource object and to a java. security. 
Permissions object. java. security. Permissions, a concrete sub­
class of the abstract java. security. PermissionCollection class, 
represents a heterogeneous collection of permissions. The Fermi s s ions 
object holds references to two java.io.FilePermission objects. 
These two FilePermissions grant the privilege to read files named 
question. txt and answer. txt in the current directory. 

When a class loader imported Friend and Friend$1 into the method 
area shown in Figure 3-5, the class loader passed a reference to the 
ProtectionDomain object to defineClass (),along with the bytes of 
the class files. The defineClass () method associated the type data 
in the method area for Friend and Friend$1 with the passed 
ProtectionDomain object. This association is shown graphically in 
Figure 3-5, which includes arrows that represent references to the 
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---­Figure 3-5 
Protection domains, 
code sources, and 
permissions 

Class Data in 
Method Area 

ProtectionDomain 

Permissions 

Objects on the Heap 
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Friend$1 

Codebase URL: 
fi1e:///Wsecurity/ex2/jars/friend.jar 

Signed by: friend 

FilePermission 

name: question. txt 
action: read 

name: answer.txt 
action: read 

ProtectionDomain object held as part of the type data in the method 
area for Friend and Friend$1. 

The Access Controller 
Class java. security. AccessController provides a default security 
policy enforcement mechanism that uses stack inspection to determine 
whether or not potentially unsafe actions should be permitted. The access 
controller cannot be instantiated, because it is not an object. Rather, the 
access controller is a bundle of static methods collected in a single class. The 
central method of the AccessController is its static checkPermission () 
method, which decides whether or not a particular action is permitted. This 
method returns void and takes a reference to a Permission object as its 
only parameter. Similar to the check methods of the security manager, if 
the AccessController decides that the operation should be permitted, 
its checkPermission () method simply returns silently. But if the 
AccessController decides that an operation should be forbidden, 
its checkPermission () method completes abruptly by throwing an 
AccessControlException or by throwing one of its subclasses. 

As mentioned previously, the concrete SecurityManager's implementa­
tion of the legacy check methods (such as checkRead () and checkWri te () ) 
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simply instantiate an appropriate Permission object and invoke the con­
crete SecurityManager's checkPermission () method. The concrete 
Securi tyManager's checkPermission () method simply invokes 
checkPermission () on theAccessController. Thus, ifyou install the 
concrete SecurityManager, the AccessController is the ultimate 
entity that decides whether or not potentially unsafe actions will be per­
mitted. 

The basic algorithm implemented by the AccessController's 
checkPermission () method makes certain that every frame on the call 
stack has permission to perform the potentially unsafe action. Each stack 
frame represents some method that has been invoked by the current 
thread. Each method is defined in some class, and each class belongs to 
some protection domain. Also, each protection domain contains a set of 
permissions, so each stack frame is indirectly associated with a set of per­
missions. For an action represented by the Permission object passed to 
the AccessController's checkPermission () method to be enabled, 
the basic algorithm of the AccessController requires that the permis­
sions associated with each frame on the call stack must include or imply 
that the Permission is passed to checkPermission (). 

The AccessController's checkPermission () method inspects the 
stack from the top down. As soon as it encounters a frame that does not have 
permission, it throws an AccessControlException. By throwing the 
exception, the AccessController indicates that the action should not be 
permitted. On the other hand, if the checkPermission () method reaches 
the bottom of the stack without encountering ~y frames that do not have 
permission to perform the potentially unsafe action, checkPermission () 
returns silently. By returning rather than throwing an exception, the 
AccessController indicates that the action should be permitted. 

The actual algorithm implemented by the AccessController's 
checkPermission () method is a bit more complex than the basic algo­
rithm described here. By invoking any of several doPri vileged () meth­
ods of class AccessController, programs can (in effect) cause the 
AccessController to stop its frame-by-frame search before it reaches 
the bottom of the stack. We will describe the doPri vileged () method 
later in this chapter. 

The implies( ) Method 

To determine whether or not the action represented by the Permission 
object passed to the AccessController's checkPermission () method 
is included among (or implied by) the permissions associated with the 
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code on the call stack, the AccessController makes use of an impor­
tant method called implies () . The implies () method is declared in 
class Permission, as well as in classes PermissionCollection and 
ProtectionDomain. implies () takes a Permission object as its only 
parameter and returns a Boolean true or false. The implies () method 
of class Permission determines whether the permission represented by 
one Permission object is naturally implied by the permission repre­
sented by a different Permission object. The implies () methods of 
PermissionCollection and ProtectionDomain determine whether 
the passed Permission is included among or implied by the collection of 
Permission objects encapsulated in the PermissionCollection or 
ProtectionDomain. 

For example, a permission to read all of the files in the /tmp directory 
would naturally imply a permission to read /tmp/f-a specific file in the 
/tmp directory. The converse of this statement, however, is not true. If you 
asked a FilePermission object that represents the permission to read 
any file in the I tmp directory if it implies the permission to read file 
/tmp/f, the implies() method should return true. But if you ask a 
FilePermission object representing the permission to read /tmp/f if 
it implies the permission to read any file in the /tmp directory, the 
implies() method should return false. 

The Examplel application from the security/ex! directory of the 
CD-ROM demonstrates this meaning of implies (): 

import java.security.Permission; 
import java.io.FilePermission; 
import java.io.File; 

II On CD-ROM in file securitylexliExamplel.java 
class Example! { 

public static void main(String[] args) { 

char sep = File.separatorChar; 

II Read permission for "ltmplf" 
Permission file = new FilePermission( 

sep + "tmp" + sep + "f" I "read") ; 

II Read permission for "ltmpl*"1 which 
II means all files in the ltmp directory 
II (but not any files in subdirectories 
I I of ltmp> 
Permission star = new FilePermission( 

sep + "tmp" + sep + "*"I "read") ; 

boolean starimpliesFile 
boolean fileimpliesStar 

star.implies(file); 
file.implies(star); 
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} 
} 

I I Prints "Star implies file = true" 
System.out.println("Star implies file 

+ starimpliesFile}; 

II Prints "File implies star = false" 
System.out.println("File implies star 

+ fileimpliesStar}; 

89 

The Examplel application creates two FilePermission objects: one 
that represents read permission for a particular directory, and another 
that represents read permission for a particular file in that same direc­
tory. The FilePermission object referenced from local variable star 
represents the permission to read any file in /tmp. The FilePermission 
object referenced from local variable file represents the permission to 
read file /tmp/f. When executed, this application prints the following 
lines: 

Star implies file 
File implies star 

true 
false 

The implies () method is used by the AccessController to determine 
whether a thread has permission to take actions. If the checkPermission () 
method of the AccessController is invoked to determine whether that 
thread has permission to read file /tmp/f, for example, the AccessCon­
troller can invoke the implies () method on the ProtectionDomain 
objects associated with each frame of that thread's call stack. To each 
implies () method, the AccessController can pass the FilePermission 
object representing permission to read file /tmp/f that was passed to its 
checkPermission () method. The implies () method of each Protec­
tionDomain object can invoke implies () on the PermissionCollection 
it encapsulates, passing along the same FilePermission. Each Permis­
sionCollection can, in turn, invoke implies () on the Permission 
objects it contains-once again passing along a reference to the same 
FilePermission object. As soon as a PermissionCollection's 
implies () method encounters one Permission object whose implies () 
method returns true, the PermissionCollection's implies () method 
returns true. Only if none of the implies() methods of the Permission 
objects contained in a PermissionCollection return true does the 
PermissionCollection return false. The ProtectionDomain's 
implies () method simply returns what the PermissionCollection's 
implies () method returns. If the AccessController receives a true from 
the implies () method of a ProtectionDomain associated with a particu­
lar stack frame, the code represented by that stack frame has permission to 
perform the potentially unsafe action. 
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Stack Inspection Examples 

The next few sections give several examples to illustrate the manner in 
which the AccessController performs stack inspection. In the upcom­
ing examples, code signed by both friend and stranger will be trusted 
to some extent, but friend code will be trusted more than stranger 
code. In particular, code signed by both friend and stranger will be 
given permission to read a file named question. txt, which contains a 
question. Although code signed by friend will be given permission to 
read a file named answer. txt, which contains the answer to the ques­
tion asked in question. txt, code signed by stranger will not. These 
permissions granted to friend and stranger are those outlined in the 
policyfile. txt file from the security/ex2 directoryofthe CD-ROM, 
which was described earlier in this chapter. Each of the upcoming exam­
ples will take their policy from policyfile. txt. 

The stack inspection examples all make use of classes that implement 
the Doer interface: 

II On CD-ROM in file 
II securitylex2lcomlartimalsecurityldoer1Doer.java 
package com.artima.security.doer; 

public interface Doer { 

void doYourThing(); 
} 

To be a Doer, a class must provide an implementation for one method: 
doYourThing () . Classes that implement Doer can do whatever they feel 
like in their doYourThing () method. For example, here is a class named 
TextFileDisplayer that implements Doer. This class displays the con­
tents of a text file. 

II On CD-ROM in file securitylex21TextFileDisplayer.java 

import com.artima.security.doer.Doer; 
import java.io.FileReader; 
import java.io.CharArrayWriter; 
import java.io.IOException; 

public class TextFileDisplayer implements Doer { 

private String fileName; 

public TextFileDisplayer(String fileName) { 
this.fileName = fileName; 

} 
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} 

public void doYourThing() { 

} 

try { 

} 

FileReader fr =new FileReader(fileName); 

try { 

} 

CharArrayWriter caw new 
CharArrayWriter(); 

int c; 
while ( (c = fr.read()) != -1) { 

caw.write(c); 
} 

System.out.println(caw.toString()); 

catch (IOException e) { 
} 
finally { 

try { 
fr. close() ; 

} 
catch (IOException e) { 
} 

} 

catch (IOException e) { 
} 

When you create a TextFileDisplayer object, you must pass a file 
path name to its constructor. The TextFileDisplayer constructor 
stores the passed path name in the filename instance variable. When 
you invoke doYourThing () on the TextFileDisplayer object, it will 
attempt to open and read the contents of the file and print them at the 
standard output. 

Another example of a doYourThing () method comes from classes 
Friend and Stranger, which appeared earlier in this chapter in the 
code-signing example and are shown again here to refresh your memory: 

II On CD-ROM in file 
II securitylex2lcomlartimalsecuritylfriend1Friend.java 
package com.artima.security.friend; 
import com.artima.security.doer.Doer; 
import java.security.AccessController; 
import java.security.PrivilegedAction; 

public class Friend implements Doer { 

private Doer next; 
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private boolean direct; 

public Friend(Doer next, boolean direct) { 
this.next = next; 
this.direct = direct; 

} 

public void doYourThing() { 

} 

if (direct) { 

next.doYourThing(); 
} 
else { 

AccessController.doPrivileged( 
new PrivilegedAction() { 

public Object run() { 
next.doYourThing(); 
return null; 

} 
} 

) ; 

} 

II On CD-ROM in file 
II securitylex2lcomlartimalsecuritylstranger1Stranger.java 
package com.artima.security.stranger; 
import com.artima.security.doer.Doer; 
import java.security.AccessController; 
import java.security.PrivilegedAction; 

public class Stranger implements Doer { 

private Doer next; 
private boolean direct; 

public Stranger(Doer next, boolean direct) { 
this.next = next; 
this.direct = direct; 

} 

public void doYourThing() { 

if (direct) { 

next.doYourThing(); 
} 
else { 

AccessController.doPrivileged( 
new PrivilegedAction() { 

public Object run() { 
next.doYourThing(); 
return null; 
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} 
} 

) ; 

} 
} 

} 

Friend and Stranger have much in common. They have identical 
instance variables, constructors, and doYourThing () methods. They dif­
fer only in their package and simple names. When you create a new 
Friend or Stranger object, you must pass to the constructor a Boolean 
value and a reference to another object whose class implements the Doer 
interface. The constructor stores the passed Doer reference in the 
instance variable, next, and the Boolean value in the instance variable, 
direct. When doYourThing () is invoked on either a Friend or 
Stranger object, the method invokes doYourThing ()-either directly or 
indirectly-on the Doer reference contained in next. If direct is true, 
Friend or Stranger's doYourThing () just invokes doYourThing () 
directly on next. Otherwise, Friend or Stranger's doYourThing () 
invokes doYourThing () on next indirectly, by way of a doPri vileged () 
call. 

A Stack Inspection That Says "Yes" 

As the first stack inspection example, consider the Example2a applica­
tion: 

II On CD-ROM in file securitylex21Example2a.java 
import com.artima.security.friend.Friend; 
import com.artima.security.stranger.Stranger; 

II This succeeds because everyone has permission to 
II read answer.txt 
class Example2a { 

} 

public static void main(String[] args) { 

} 

TextFileDisplayer tfd = new TextFileDisplayer 
("question.txt"); 

Friend friend= new Friend(tfd, true); 

Stranger stranger= new Stranger(friend, true); 

stranger.doYourThing(); 
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The Example2a application creates three Doer objects: a TextFileDis­
player, a Stranger, and a Friend. The TextFileDisplayer constructor 
is passed the String, "question. txt". When its doYourThing () 
method is invoked, it will attempt to open a file named question. txt 
in the current directory for reading and will attempt to print its contents 
to the standard output. The Friend object's constructor is passed a ref­
erence to the TextFileDisplayer object (a Doer) and the Boolean 
value true. Because the passed Boolean value is true, when Friend's 
doYourThing () method is invoked, it will directly invoke 
doYourThing () on the TextFileDisplayer object. The Stranger 
object's constructor is passed a reference to the Friend object (also a 
Doer) and to the Boolean value true. Because the passed Boolean value 
is true, when Stranger's doYourThing () method is invoked, it will 
directly invoke doYourThing () on the Friend object. After creating 
these three Doer objects and hooking them together as described, 
Example2a's main () method invokes doYourThing () on the Stranger 
object. Now, the fun begins. 

When the Example2a program invokes doYourThing () on the Stranger 
object referenced from the stranger variable, the Stranger object invokes 
doYourThing () on the Friend object, which invokes doYourThing () on 
the TextFileDisplayer object. TextFileDisplayer's doYourThing () 
method attempts to open and read a file called "question. txt" in 
the current directory (the directory in which the Example2a application 
was started) and print its contents to the standard output. When 
TextFileDisplayer's doYourThing () method creates a new 
FileReader object, the FileReader's constructor creates a new 
FileinputStream whose constructor checks to see whether or not a 
security manager has been installed. In this case, the concrete Securi­
tyManager has been installed, so the FileinputStream's constructor 
invokes checkRead () on the concrete SecurityManager. The 
checkRead () method instantiates a new FilePermission object rep­
resenting permission to read file question. txt and passes that object 
to the concrete SecurityManager's checkPermission () method, 
which passes the object on to the checkPermission () method of the 
AccessController. The AccessController's checkPermission () 
method performs the stack inspection to determine whether this thread 
should be permitted to open file question. txt for reading. 

Figure 3-6 shows the call stack when the AccessController's 
checkPermission () method is invoked. In this figure, each frame of the 
call stack is represented by a horizontal row that is composed of several 
elements. The leftmost element in each stack frame row, which is labeled 
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---­Figure 3-6 
Stack inspection 
for Example2a, 
where all frames 
have permission 

class, is the fully qualified name of the class in which the method repre­
sented by that stack frame is defined. The next element to the right, which 
is labeled method, gives the name of the method. The next element, which 
is labeled protection domain, indicates the protection domain with which 
each frame is associated. Farthest to the right is an arrow that shows the 
progression of the AccessController's checkPermission () method 
as it checks to see whether each stack frame has permission to perform 
the requested action. Just to the left of the arrow is a number for each 
stack frame. Similar to all images of the stack shown in this book, the top 
of the stack appears at the bottom of the picture. Thus, in Figure 3-6, the 
top of the stack is the frame numbered 10. 

The protection domain column of the stack diagram shown in Figure 
3-6 shows each frame associated with one of four protection domains, 
called "FRIEND,""STRANGER,""CD-ROM," and "BOOTSTRAP." Three of 
these protection domains correspond to grant clauses in policyfile. 
txt. The FRIEND protection domain corresponds to the grant clause that 
gives permission to any code signed by friend to read question. txt 
and answer. txt. The STRANGER protection domain corresponds to the 
grant clause that gives permission to any code signed by stranger to read 
question. txt. The CD-ROM protection domain corresponds to the grant 
clause that gives permission to any code loaded from the "${com. 
artima.ijvm.cdrom.home}/security/ex2f' directory to read question. txt 
and answer. txt. The fourth and final protection domain, called 
BOOTSTRAP, does not correspond to any grant clause in policyfile. 
txt. Rather, the BOOTSTRAP protection domain represents the permissions 
granted to any code loaded by the bootstrap class loader, which is responsi­
ble for loading the class files of the Java API. Code in the BOOTSTRAP 
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protection domain is granted java .lang. AllPermission, which gives 
it permission to do any action. 

To get the Example2a application to demonstrate stack inspection as 
intended, you must start the application with an appropriate command. 
When using the java program from the Java 2 SDK Version 1.2, you will 
find that the appropriate command takes the following form: 

java -Djava.security.manager -Djava.security.policy= 
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\ 
InsideJVM\manuscript\cdrom -cp 
.;jars/friend.jar;jars/stranger.jar Example2a 

This command, which is contained in the ex2a. bat file in the security I 
ex2 directory of the CD-ROM, is an example of the kind of command 
that you will need to get the example to work. By defining the 
java. security. manager property on the command line, you indicate 
that you want the concrete Securi tyManager to be automatically 
installed. Because the Example2a application does not install a security 
manager explicitly, if you neglect to define the java. security. manager 
property on the command line, no security manager will be installed-and 
the code will have the capacity to do any task. The - cp argument sets up the 
class path, which causes the virtual machine to look for class files in the cur­
rent directory and in the friend. jar and stranger. jar files in the jars 
subdirectory. The com. artima. ijvm. cdrom. home property indicates the 
directory in which Doer, Example2a, and TextFileDisplayer are 
located. The third grant clause in policyfile. txt uses this property 
and corresponds to the protection domain called "CD-ROM." As a result, 
types Doer, Example2a, and TextFileDisplayer will be loaded into 
the CD-ROM protection domain and will be granted permission to read 
to both question. txt and answer. txt. To execute Example2a on your 
own system, you must set the com. artima. ijvm. cdrom. home property 
to the securitylex2 directory of your CD-ROM or to whichever 
directory you might have copied the security I ex2 directory from the 
CD-ROM. 

When the AccessController performs its stack inspection, it starts 
at the top of the stack-frame 10-and heads down to frame one, which 
is the frame for the first method invoked by this thread, main () of class 
Example2a. In the case of the Example2a application, every frame on 
the call stack has permission to perform the action-to read the file 
"question. txt". This situation occurs because all four protection 
domains represented on the call stack-FRIEND, STRANGER, 
CD-ROM, and BOOTSTRAP-include or imply a FilePermission 
for reading question. txt in the current directory. When the 
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AccessController's checkPermission () method reaches the bot­
tom of the stack without having encountered any frames that do not 
have permission to read the file, it returns normally without throwing 
an exception. The FileinputStream opens the file for reading. The 
Example2a application reads the contents of question. txt and prints 
them to the standard output, which looks similar to the following: 

To what extent does complexity threaten security? 

A Stack Inspection That Says "No" 

As an example of a stack inspection that results in denied permission, 
consider the Example2b application from the security I ex2 directory of 
the CD-ROM: 

II On CD-ROM in file securitylex21Example2b.java 
import com.artima.security.friend.Friend; 
import com.artima.security.stranger.Stranger; 

II This fails because the Stranger code doesn't have 
II pe~ission to read file question.txt 

class Example2b { 

public static void main(String[] args) { 

TextFileDisplayer tfd = new 
TextFileDisplayer("answer.txt"); 

Friend friend= new Friend(tfd, true); 

Stranger stranger= new Stranger(friend, true); 

stranger.doYourThing(); 
} 

} 

The only difference between Example2b and the previous example, 
Example2a, is that whereas Example2a passes the filename "question. 
txt" to the TextFileDisplayer constructor, Example2b passes the 
filename "answer . txt". This small change to the application makes a 
big difference on the outcome of the program, however, because one of the 
methods on the stack does not have permission to access "answer. txt". 

When the Example2b program invokes doYourThing () on the 
Stranger object referenced from the stranger variable, the Stranger 
object invokes doYourThing () on the Friend object, which invokes 
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doYourThing () on the TextFileDisplayer object. TextFileDis­
player's doYourThing () method attempts to open and read a file called 
"answer. txt" in the current directory (the directory in which the 
Example2b application was started) and print its contents to the stan­
dard output. When TextFileDisplayer's doYourThing () method cre­
ates a new FileReader object, the FileReader constructor creates a 
new FileinputStream whose constructor checks to see whether or not 
a security manager has been installed. In this case, the concrete 
SecurityManager has been installed, so the FileinputStream's con­
structor invokes checkRead () on the concrete SecurityManager. The 
checkRead () method instantiates a new FilePermission object rep­
resenting the permission to read file answer. txt and passes that object 
to the concrete SecurityManager's checkPermission () method, 
which passes the object on to the checkPermission () method of the 
AccessController. The AccessController's checkPermission () 
method performs the stack inspection to determine whether this thread 
should be permitted to open the file answer. txt for reading. 

The call stack to be inspected in Example2b, which is shown in 
Figure 3-7, looks identical to the call stack that was inspected in 
Example2a. The only difference is that this time, rather than making 
sure that every frame on the stack has permission to read file q 
uestion. txt, the AccessController will make sure that every 
frame on the stack has permission to read answer. txt. As always, 
staclt inspection starts at the top of the stack and proceeds down the 
stack towards frame one. But this time, the inspection process never 
actually reaches frame one. When the AccessController reaches 
frame two, it discovers that the code of the Stranger class, to whom the 
doYourThing () method of frame two belongs, does not have permission 
to read "answer. txt". Because all frames of the stack must have per­
mission, the stack inspection process do not need to go farther than 
frame two. The AccessController's checkPermission () method 
throws an AccessControl exception. 

To get the Example2b application to work as intended, you must start 
the application with an appropriate command. When using the java pro­
gram from the Java 2 SDK Version 1.2, the appropriate command takes 
the following form: 

java -Djava.security.manager -Djava.security.policy= 
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\ 
I~sideJVM\manuscript\cdrom -cp .;jars/friend.jar;jars/ 
stranger.jar Example2b 
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This command, which is contained in the ex2b. bat file in the security I 
ex2 directory ofthe CD-ROM, is an example ofthe kind of command that 
you will need to get the example to work. As before, to execute Example2b 
on your own system, you must set the com. artima. ijvm. cdrom. home 
property to the securitylex2 directory of your CD-ROM-or to 
whichever directory you might have copied the security I ex2 directory 
from the CD-ROM. When you run this program, you should see the fol­
lowing output: 

Exception in thread "main" java.security. 
AccessControlException: access denied (java.io. 
FilePermission answer.txt read) 

at java.security.AccessControlContext. 
checkPermission(AccessContro1Context.java:195) 
at java.security.AccessController.checkPermission 
(AccessController.java:403) 
at java.lang.SecurityManager.checkPermission 
(SecurityManager.java:549) 
at java.lang.SecurityManager.checkRead 
(SecurityManager.java:873) 
at java.io.FileinputStream.<init>(FileinputStream. 
java:65) 
at java.io.FileReader.<init>(FileReader.java:35) 
at TextFileDisplayer.doYourThing(TextFileDisplayer. 
java, Compiled Code) 
at com.artima.security.friend.Friend.doYourThing 
(Friend. java: 21) 
at com.artima.security.stranger.Stranger.doYourThing 
(Stranger.java:21) 
at Example2b.main(Example2b.java:l8) 
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The doPrivileged() Method 

The basic algorithm illustrated so far in this chapter, in which the 
AccessController inspects the stack from top to bottom-stubbornly 
requiring that every frame should have permission to perform an action 
-prevents less-trusted code from hiding behind more-trusted code. 
Because the AccessController looks all the way down the call stack, 
it will eventually find any method that is not trusted to perform the 
requested action. For example, although the untrusted Stranger 
object of Example2b places the trusted code of Friend and 
TextFileDisplayer between it and the Java API method that attempts 
to open file answer. txt, the untrusted Stranger code cannot 
hide behind that trusted code. As shown in Figure 3-7, although the 
AccessController must look through eight frames that have permis­
sion to read answer. txt before it encounters frame two, it eventually 
reaches frame two. Once it arrives at frame two, it discovers the 
doYourThing () method of class Stranger, whose associated protection 
domain does not have permission to read answer. txt. As a result of this dis­
covery, the AccessController throws anAccessControllerException, 
thereby prohibiting the read. 

The basic AccessController algorithm prevents any code from per­
forming (or causing to perform) any action that the code is not trusted to 
carry out. Methods belonging to a less-powerful protection domain, there­
fore, cannot gain privileges by invoking methods belonging to more pow­
erful protection domains. The basic algorithm also implies that methods 
belonging to more powerful protection domains must give up privileges 
when calling methods belonging to less powerful protection domains. 
Although the basic algorithm provides behavior that is desirable in gen­
eral, the AccessController's stubborn insistence that all frames on the 
call stack have permission to perform the requested action can be a bit 
restrictive at times. 

Sometimes code farther up the call stack (closer to the top of the stack) 
might wish to perform an action that code farther down the call stack 
might not be permitted to do. For example, imagine that an untrusted 
applet asks the Java API to render a string of text in bold Helvetica font 
on its applet panel. To fulfill this request, the Java API might need to open 
a font file on the local disk to load a bold Helvetica font with which to ren­
der the text on behalf of the applet. Because it belongs to the Java API, 
the class making the explicit request to open the font file more than likely 
has permission to open the file. The code of the untrusted applet, however, 
which is represented by a stack frame farther down the call stack, more 
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than likely does not have permission to open the file. Given the basic algo­
rithm, the AccessController would prevent the opening of the font file 
because the code for the untrusted applet, sitting somewhere on the stack, 
does not have permission to open the file. 

To enable trusted code to perform actions for which less-trusted 
code farther down the call stack might not have permission, the AccessCon­
troller class offers four overloaded static methods called doPri vileged () . 
Each of these methods accepts as a parameter an object that implements 
either the java. security. Pri vilegedAction or java. security. 
PrivilegedExceptionAction interface. Both of these interfaces 
declare one method called run ( ) that takes no parameters and returns 
void. The only difference between these two interfaces is that whereas 
PrivilegedExceptionAction's run () method declares Exception in 
its throws clause, PrivilegedAction declares no throws clause. To 
perform an action despite the existence of less-trusted code farther 
down the call stack, you create an object that implements one of the 
PrivilegedAction interfaces whose run () method performs the action 
and pass that object to doPri vileged () . 

When you invoke doPri vileged (),as when you invoke any method, 
a new frame is pushed onto the stack. In the context of a stack 
inspection by the AccessController, a frame for a doPri vileged () 
method invocation signals an early termination point for the inspection 
process. If the protection domain associated with the method that 
invoked doPri vileged () has permission to perform the requested 
action, the AccessController returns immediately. The protection 
domain permits the action even if code farther down the stack does not 
have permission to perform the action. 

If an untrusted applet asks the Java API to render a test string 
on its applet panel, therefore, the Java API code can open the local font 
file by wrapping the file open action in a doPri vileged () call. The 
AccessController will enable such a request, although the untrusted 
applet code does not have permission to open the file. Because the frame for 
the untrusted applet code is beneath the frame for the doPri vileged () 
invocation by the Java API code, the AccessController will not even con­
sider the permissions of the untrusted applet code. 

For an example of a doPrivileged () method invocation, consider 
again the doYourThing () method of class Friend: 

II On CD-ROM in file 
II securitylex21comlartimalsecuritylfriend1Friend.java 
package com.artima.security.friend; 
import com.artima.security.doer.Doer; 
import java.security.AccessController; 
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import java.security.PrivilegedAction; 

public class Friend implements Doer { 

} 

private Doer next; 
private boolean direct; 

public Friend(Doer next, boolean direct) { 
this.next = next; 
this.direct = direct; 

} 

public void doYourThing() { 

} 

if (direct) { 

next.doYourThing(); 
} 
else { 

AccessController.doPrivileged( 
new PrivilegedAction() { 

public Object run() { 
next.doYourThing(); 
return null; 

} 
} 

) ; 

} 

If the direct instance variable is false, then Friend's doYourThing () 
method will simply invoke doYourThing () directly on the next reference. 
But if direct is true, doYourThing () will wrap the invocation of 
doYourThing () on the next reference in a doPri vileged () call. To do 
so, Friend instantiates an anonymous inner class that implements 
Pri vilegedAction, whose run () method invokes doYourThing () on 
next and passes that object to doPri vileged (). 

To see Friend's doPri vileged () invocation in action, consider the 
Example2c application from the security/ex2 directory ofthe CD-ROM: 

II On CD-ROM in file securitylex21Example2c.java 
import com.artima.security.friend.Friend; 
import com.artima.security.stranger.Stranger; 

II This succeeds because Friend code executes a 
II doPrivileged() call. (Passing false as 
II the second arg to Friend constructor causes 
II it to do a doPrivileged().) 
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class Example2c { 

} 

public static void main(String[] args) { 

} 

TextFileDisplayer tfd = new TextFileDisplayer 
("answer.txt"); 

Friend friend= new Friend(tfd, false); 

Stranger stranger= new Stranger(friend, true); 

stranger.doYourThing(); 

Only one difference exists between the main () method of the Example2c 
application and the main () method of the previous example: Example2b. 
When the Example2b application instantiated the Friend object, it 
passed true as the second parameter. Example2c passes false. If you 
look back at the code for Friend (and Stranger) shown earlier in this· 
chapter, you will see that this parameter is used to decide whether to 
invoke doYourThing () directly on the Doer passed as the first parame­
ter to the constructor. Because Example3c passes false, the Friend 
class will not invoke doYourThing () directly but will invoke it indirectly 
via an AccessController. doPrivileged () invocation. 

When the Example2c program invokes doYourThing () on the 
Stranger object referenced from the stranger variable, the Stranger 
object invokes doYourThing () on the Friend object, which (because 
direct is false) invokes doPrivileged (), passing the anonymous 
inner class instance that implements PrivilegedAction. The doPriv­
ileged () method invokes run() on the passed PrivilegedAction 
object, which invokes doYourThing () on the TextFileDisplayer 
object. 

As in the previous example, TextFileDisplayer's doYourThing () 
method attempts to open and read a file called "answer. txt" in the 
current directory and print its contents to the standard output. 
When TextFileDisplayer's doYourThing () method creates a new 
FileReader object, the FileReader constructor creates a new 
FileinputStream whose constructor checks to see whether or not 
a security manager has' been installed. Once again, the concrete 
SecurityManager has been installed, so the FileinputStream's 
constructor invokes checkRead () on the concrete SecurityManager. 
The checkRead () method instantiates a new FilePermission object 
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representing permission to read the file answer. txt and passes that object 
to the concrete SecurityManager's checkPermission () method, 
which passes the object on to the checkPermission () method of the 
AccessController. The AccessController's checkPermission () 
method performs the stack inspection to determine whether this thread 
should be permitted to open file answer . txt for reading. The stack 
appears as shown in Figure 3-8. 

The call stack to be inspected in Example2c looks similar to the call 
stacks inspected in Example2a and Example2b. The difference is that 
Example2c's call stack has two extra frames: frame four, which repre­
sents the doPri vileged () invocation, and frame five, which represents 
the run () invocation on the Pri vilegedAction object. As always, stack 
inspection starts at the top of the stack and proceeds down the stack 
towards frame one. But once again, the inspection process will not actu­
ally reach frame one. When the AccessController reaches frame four, 
it discovers a doPri vileged () invocation. As a result of this discovery, 
the Acces scan troller makes one more check on the code represented by 
frame three. This code invoked doPri vileged () and has permission to 
read answer. txt. Because frame three is associated with the FRIEND 
protection domain, which does have permission to read question. 
txt, the AccessController's checkPermission () method returns 
normally. Because the AccessController stopped its inspection at 
frame three, it never considered frame two. Because frame two is associ­
ated with the STRANGER protection domain, it does not have permission 
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to read answer. txt. Thus, by invoking doPrivileged (),the Friend 
code could read file answer. txt-although the code beneath it on the call 
stack did not have permission to open the file. 

To get the Example2c application to work as intended, you must (as 
with the previous examples) start the application with an appropriate 
command. When using the java program from Java 2 SDK Version 1.2, 
the appropriate command takes the following form: 

java -Djava.security.manager -Djava.security.policy= 
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\ 
InsideJVM\manuscript\cdrom -cp .;jars/friend.jar;jars/ 
stranger.jar Example2c 

This command, which is contained in the ex2c .bat file in the security/ 
ex2 directory of the CD-ROM, is an example of the kind of command that 
you will need to get the example to work. As before, to execute Example2c 
on your own system, you must set the com. art i rna . i j vm. 
cdrom. home property to the se~uri ty I ex2 directory of your 
CD-ROM or to whichever directory you might have copied the secu­
rity/ex2 directory from the CD-ROM. When you run this program, it 
should print the contents of answer. txt as follows: 

Complexity threatens security to a significant extent. The 
more 
complicated a security infrastructure becomes, the more 
likely 
parties responsible for configuring security will either 
make 
mistakes that open up security holes or avoid using the 
security infrastructure altogether. 

A Futile Use of doPrivileged( ) 

You should understand that a method can never grant itself more priv­
ileges than it already has with a doPrivileged () invocation. By call­
ing doPrivileged (), a method is merely enabling privileges that it 
already possesses. The method is telling the AccessController that 
it is taking responsibility for exercising its own permissions, and that 
the AccessController should ignore the permissions of its callers. 
Thus, the doPrivileged () call in the previous example, Example2c, 
enabled answer. txt to be read because Friend, the class that executed 
the doPri vileged (),already had permission to read the file-and so did 
all the frames above it on the stack. 
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For an example of a futile attempt to use doPrivileged (),consider 
the Example2d application from the security I ex2 directory of the 
CD-ROM: 

II On CD-ROM in file securitylex21Example2d.java 
import com.artima.security.friend.Friend; 
import com.artima.security.stranger.Stranger; 

II This fails because even though Stranger does 
II a doPrivileged() call, Stranger doesn't have 
II permission to read question.txt. (Passing 
II false as second arg to Stranger constructor 
II causes it to do a doPrivileged().) 

class Example2d { 

} 

public static void main(String[] args) { 

} 

TextFileDisplayer tfd = new TextFileDisplayer 
("answer.txt"); 

Stranger stranger= new Stranger(tfd, false); 

Friend friend= new Friend(stranger, true); 

friend.doYourThing(); 

The difference between Example2d and the previous example, 
Example2c, is that the Stranger and Friend objects have swapped posi­
tions and roles. The Stranger object is now farther up the stack, with the 
Friend below it on the stack. And this time, it is Stranger that will 
make the call to doPri vileged () , not Friend. 

When the Example2d program invokes doYourThing () on the Friend 
object referenced from the friend variable, the Friend object invokes 
doYourThing () on the Stranger object-which, because direct is 
false-invokes doPrivileged(), passing the anonymous inner-class 
instance that implements Pri vileged.Action. The doPri vileged () 
method invokes run() on the passed Pri vi leged.Act ion object, which 
invokes doYourThing () on the TextFileDisplayer object. 

As in the previous two examples, TextFileDisplayer's 
doYourThing () method attempts to open and read a file called 
"answer. txt" in the current directory and print its contents to the stan­
dard output. When TextFileDisplayer's doYourThing () method cre­
ates a new FileReader object, the FileReader constructor creates a 
new FileinputStream whose constructor checks to see whether or not 
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a security manager has been installed. As in all of the examples, the con­
crete SecurityManager has been installed, so the FileinputStream's 
constructor invokes checkRead () on the concrete Securi tyManager. 
The checkRead () method instantiates a new FilePermission object 
that represents the permission to read the file answer. txt and passes that 
object to the concrete Securi tyManager's checkPermission () method, 
which passes the object on to the checkPermission () method of the 
AccessController. The AccessController's checkPermission () 
method performs the stack inspection to determine whether this thread 
should be permitted to open file answer. txt for reading. The stack pre­
sented to the AccessController by Example2d is shown in Figure 3-9. 

The call stack to be inspected in Example2d looks similar to the call 
stack inspected in Example2c. The only difference is that Friend and 
Stranger have swapped positions. As always, stack inspection starts at 
the top of the stack and proceeds down the stack towards frame one. But 
alas, once again the inspection process will not actually reach frame one. 
When the AccessController reaches frame five, it discovers a stack 
frame associated with the STRANGER protection domain, which does not 
have permission to read answer. txt. As a result of this discovery, the 
AccessController throws an AccessControlException, indicating 
that the requested read of answer. txt should not be performed. 

Had the Stranger class possessed the capability to enlist the assis­
tance of an instance of some class that implemented Pri vi legedAct ion, 
performed the desired invocation of the TextFileDisplayer's 
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doYourThing () method, and belonged to a protection domain that had 
permission to read answer. txt, then Stranger's attempt to open 
answer. txt with the help of doPri vileged () would have still been 
futile. Imagine, for example, that the code of the run ( ) method repre­
sented by frame five ofExample2d's call stack had been associated with 
the CD-ROM protection domain. In that case, the AccessController 
would have determined that frame five had permission to 
open answer. txt and continued to frame four. At frame four, the 
AccessController would have discovered the doPri vileged () invo­
cation. As a result of this discovery, the AccessController would make 
one more check: it would make certain that the method that invoked 
doPri vileged (),which in this case was Stranger's doYourThing () 
method represented by stack frame three, has permission to read file 
answer. txt. Because frame three is associated with the STRANGER pro­
tection domain that does not have permission to read answer. txt, the 
AccessController would still throw an AccessControlException. 

To get the Example2d application to work as intended, you must start 
the application with yet another appropriate command. When using the 
java program from the Java 2 SDK Version 1.2, the appropriate com­
mand takes the following form: 

java -Djava.security.manager -Djava.security.policy= 
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\ 
InsideJVM\manuscript\cdrom -cp .;jars/friend.jar;jars/ 
stranger.jar Example2d 

This command, which is contained in the ex2d. bat file in the security/ 
ex2 directory of the CD-ROM, is an example of the kind of command you 
will need to get the example to work. As before, to execute Example2d on 
your own system, you must set the com. artima. ijvm. cdrom.home 
property to the security I ex2 directory of your CD-ROM or to whichever 
directory you might have copied the security I ex2 directory from the 
CD-ROM. When you run this program, you should see the kind of output 
that crackers everywhere hate to see: 

Exception in thread "main" java. 
security.AccessControlException: access denied 
(java.io.FilePermission answer.txt read) 

at java.security.AccessControlContext. 
checkPermission(AccessControlContext.java:l95) 

at java.security.AccessController.checkPermission 
(AccessController.java:403) 
at java.lang.SecurityManager.checkPermission 
(SecurityManager.java:549) 
at java.lang.SecurityManager.checkRead 
(SecurityManager.java:873) 
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at java.io.FileinputStream.<init>(FileinputStream. 
java: 65) 
at java.io.FileReader.<init>(FileReader.java:35) 
at TextFileDisplayer.doYourThing(TextFileDisplayer. 
java, Compiled Code) 
at com.artima.security.stranger.Stranger$l.run 
(Stranger.java:27) 
at java.security.AccessController.doPrivileged 
(Native Method) 
at com.artima.security.stranger.Stranger.doYourThing 
(Stranger.java:24) 
at com.artima.security.friend.Friend.doYourThing 
(Friend.java:21) 
at Example2d.main(Example2d.java:21) 

Missing Pieces and 
Future Directions 
Java's security model, while far reaching, does not address all potential 
threats posed by mobile code. For example, two potential activities of mali­
cious mobile code that are not currently addressed by Java's security 
model are as follows: 

II Allocating memory until it runs out 

II Firing off threads until everything slows to a crawl 

These kinds of attacks are called denial of service, because they deny 
the end-users from using their own computers. The Java security model 
does not currently offer ways to limit the usage of threads or memory by 
untrusted code. The difficulty in attempting to thwart this kind of hostile 
code is that it is hard to tell the difference, for example, between a hos­
tile applet allocating a lot of memory and an image-processing applet 
attempting to do useful work. Nevertheless, this kind of attack is a seri­
ous concern in certain situations, such as mission-critical servers that run 
Java servlets. 

Another area not currently incorporated into the security model is the 
idea of awarding permissions to principals on whose behalf code is being 
executed. A familiar example of this kind of access control is the UNIX 
operating system, which controls access to files based on a user ID that 
can only be obtained via an correct login name and password. As this kind 
of access control will be important in distributed systems such as those 
made possible by Jini, Sun is actively working to add this kind of user­
centric security functionality to Java. The aim ofthe Java Authentication 
and Authorization Service (JAAS) is to enable access control to be based 
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not just on the permissions granted to code bases and signers, but also on 
permissions granted to principals: the users who execute the code. 

Security Beyond the Architecture 
To be effective, a computer or network security strategy must be compre­
hensive. It cannot consist exclusively of a sandbox for running down­
loaded Java code. For instance, it may not matter much that the Java 
applets you download from the Internet and run on your computer can't 
read the word processing file of your top-secret business plan if you: 

Ill routinely download untrusted native executables from the 
Internet and run them 

Ill throw away extra printed copies of your business plan without 
shredding them 

Ill leave your doors unlocked when you're gone 

Ill hire someone to help you who is actually a spy for your arch-rival 

In the context of a comprehensive security strategy, however, Java's 
security model can play a useful role. 

The nice thing about Java's security model is that once you set it up, it 
does most of the work for you. You don't have to worry about whether a 
particular program is trusted or not-the Java runtime will determine 
that for you; and if it is untrusted, the Java runtime will protect your 
assets by encasing the untrusted code in a sandbox. The trouble is that, 
even though the designers of Java's security infrastructure did a good job 
of keeping things as simple as possible, the high degree functionality and 
flexibility offered by the security infrastructure demands a significant 
degree of complexity. As mentioned in the answer. txt file, which class 
Stranger so very much wanted to read in the AccessController 
examples given earlier in this chapter, complexity itself can represent a 
threat to security. The more complicated a security infrastructure 
becomes, the more likely parties responsible for configuring security will 
either make mistakes that open up security holes or avoid using the secu­
rity infrastructure altogether. 

End-users of Java software cannot rely solely on the security mecha­
nisms built into Java's architecture. They must have a comprehensive 
security policy appropriate to their actual security requirements. Simi­
larly, the security strategy of Java technology itself does not rely exclu­
sively on the architectural security mechanisms described in this chapter. 
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For example, one aspect of Java's security strategy is that anyone can sign 
a license agreement and get a copy of the source code of Sun's Java Plat­
form implementation. Instead of keeping the internal implementation of 
Java's security architecture a secret ''black box," it is open to anyone who 
wishes to look at it. This encourages security experts seeking a good tech­
nical challenge to try and find security holes in the implementation. When 
security holes are discovered, they can be patched. Thus, the openness of 
Java's internal implementation is part of Java's overall security strategy. 
Besides openness, there are several other aspects to Java's overall secu­
rity strategy that don't directly involve its architecture. For more infor­
mation about Java's overall security strategy, visit the resources page. 

The Resources Page 
For more information about Java and security, see the resources page: 
http://www.artima.com/insidejvm/resources/. 
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The previous four chapters of this book gave a broad over­
view of Java's architecture. They showed how the Java vir­
tual machine fits into the overall architecture, relative to 
other components such as the language and the API. The 
remainder of this book will focus more narrowly on the Java 
virtual machine. This chapter gives an overview of the Java 
virtual machine's internal architecture. 

The Java virtual machine is called virtual because it is an 
abstract computer defined by a specification. To run a Java 
program, you need a concrete implementation of the abstract 
specification. This chapter primarily describes the abstract 
specification of the Java virtual machine. To illustrate the 
abstract definition of certain features, however, this chapter 
also discusses various ways in which those features could be 
implemented. 
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What Is a Java Virtual Machine? 
To understand the Java virtual machine, you must first be aware that you 
might be talking about any of three different items. You might be speak­
ing of any of the following: 

Ill The abstract specification 

Ill A concrete implementation 

Ill A run-time instance 

The abstract specification is a concept described in detail in the book The 
Java Virtual Machine Specification, by Tim Lindholm and Frank Yellin. 
Concrete implementations, which exist on many platforms and come from 
many vendors, are either all software or a combination of hardware and 
software. A run-time instance hosts a single running Java application. 

Each Java application runs inside a run-time instance of some concrete 
implementation of the abstract specification of the Java virtual machine. 
In this book, the term "Java virtual machine" is used in all three of these 
senses. Where the intended sense is not clear from the context, we added 
one of the following terms-specification, implementation, or instance­
to the term Java virtual machine. 

The Lifetime of a Java 
Virtual Machine 
A run-time instance of the Java virtual machine has a clear mission in 
life: to run one Java application. When a Java application starts, a run­
time instance is born. When the application completes, the instance dies. 
If you start three Java applications at the same time-on the same com­
puter, using the same concrete implementation-you will receive three 
Java virtual machine instances. Each Java application runs inside its own 
Java virtual machine. 

A Java virtual machine instance starts running its solitary application 
by invoking the main () method of some initial class. The main () method 
must be public or static, must return void, and must accept one para­
meter: a String array. Any class with such a main () method can be used 
as the starting point for a Java application. 

For example, consider an application that prints out its command line 
arguments as such: 
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II On CD-ROM 
class Echo { 

in file jvmlexliEcho.java 

} 

public static void main(String[] args) { 
int len = args.length; 

} 

for (int i = 0; i < len; ++i) { 
System.out.print(args[i] + ""); 

} 
System.out.println(); 

1351 

You must (in some implementation-dependent way) give a Java virtual 
machine the name of the initial class that has the main () method that 
will start the entire application. One real-world example of a Java virtual 
machine implementation is the java program from Sun's Java 2 SDK. If 
you wanted to run the Echo application using Sun's java on Windows 98, 
for example, you would type in a command such as the following: 

java Echo Greetings, Planet. 

The first word in the command, "java," indicates that the Java virtual 
machine from Sun's Java 2 SDK should be run by the operating system. 
The second word, "Echo," is the name of the initial class. Echo must have 
a public static method called main () that returns void and that takes a 
String array as its only parameter. The subsequent words, "Greetings, 
Planet.," are the command-line arguments for the application. These 
words are passed to the main () method in the String array in the order 
in which they appear on the command line. Therefore, for the previous 
example, the contents of the String array that are passed to main in 
Echo are 1:!-S follows: 

arg [ 0] is "Greetings," 

arg [ 1] is "Planet." 

The main () method of an application's initial class serves as the start­
ing point for that application's initial thread. The initial thread can, in 
turn, fire off other threads. 

Inside the Java virtual machine, threads come in two flavors: daemon 
and non-daemon. A daemon thread is ordinarily a thread used by the vir­
tual machine itself, such as a thread that performs garbage collection. The 
application, however, can mark any threads that it creates as daemon 
threads. The initial thread of an application-the one that begins at 
main ()-is a non-daemon thread. 

A Java application continues to execute (the virtual machine instance 
continues to live) as long as any non-daemon threads are still running. 
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When all non-daemon threads of a Java application terminate, the virtual 
machine instance will exit. If permitted by the security manager, the 
application can also cause its own demise by invoking the exit () method 
of class Runtime or class System. 

In the Echo application (shown previously), the main () method does 
not invoke any other threads. Mter it prints out the command-line argu­
ments, main ( ) returns. This action terminates the application's only non­
daemon thread, which causes the virtual machine instance to exit. 

The Architecture of the Java 
Virtual Machine 
In the Java virtual machine specification, the behavior of a virtual machine 
instance is described in terms of subsystems, memory areas, data types, 
and instructions. These components describe an abstract inner architecture 
for the abstract Java virtual machine. The purpose of these components is 
not so much to dictate an inner architecture for implementations but to 
provide a way to strictly define the external behavior of implementations. 
The specification defines the required behavior of any Java virtual machine 
implementation in terms of these abstract components and their interac­
tions. 

Figure 5-l shows a block diagram of the Java virtual machine that 
includes the major subsystems and memory areas described in the spec­
ification. As mentioned in previous chapters, each Java virtual machine 
has a class loader subsystem, which is a mechanism for loading types 
(classes and interfaces) when given fully qualified names. Each Java vir­
tual machine also has an execution engine, which is a mechanism respon­
sible for executing the instructions contained in the methods of loaded 
classes. 

When a Java virtual machine runs a program, it needs memory to store 
many items-including bytecodes and other information that it extracts 
from loaded class files, objects that the program instantiates, parameters 
to methods, return values, local variables, and intermediate results of 
computations. The Java virtual machine organizes the memory it needs 
to execute a program into several runtime data areas. 

Although the same runtime data areas exist in some form in every Java 
virtual machine implementation, their specification is quite abstract. 
Many decisions about the structural details of the runtime data areas are 
left to the designers of individual implementations. 
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---­Figure 5-1 
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Different implementations of the virtual machine can have different 
memory constraints. Some implementations might have a lot of memory 
in which to work, while others might have little. Some implementations 
might have the capacity to take advantage of virtual memory, while oth­
ers might not. The abstract nature of the specification of the runtime data 
areas helps make it easier to implement the Java virtual machine on a 
wide variety of computers and devices. 

Some runtime data areas are shared among all of an application's 
threads, and others are unique to individual threads. Each instance of the 
Java virtual machine has one method ar(?a and one heap. These areas are 
shared by all threads running inside the virtual machine. When the vir­
tual machine loads a class file, it parses information about a type from 
the binary data contained in the class file, then places this type informa­
tion into the method area. As the program runs, the virtual machine 
places all objects that the program instantiates onto the heap. See Figure 
5-2 for a graphical depiction of these memory areas. 

As each new thread comes into existence, it receives its own PC regis­
ter (program counter) and Java stack. If the thread is executing a Java 
method (not a native method), the value of the PC register tells the next 
instruction to execute. A thread's Java stack stores the state of Java 

Page 146 of 280



138 

Figure 5-2 
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method invocations (not native invocations) for the thread. The state of a 
Java method invocation includes its local variables, the parameters with 
which it was invoked, its return value (if any), and intermediate calculations. 
The state of native method invocations is stored in an implementation­
dependent way in native method stacks, as well as possibly in registers or 
other implementation-dependent memory areas. 

The Java stack is composed of stack frames (or frames), which contain 
the state of one Java method invocation. When a thread invokes a method, 
the Java virtual machine pushes a new frame onto that thread's Java 
stack. When the method completes, the virtual machine pops and discards 
the frame for that method. 

The Java virtual machine has no registers to hold intermediate data 
values. The instruction set uses the Java stack for storage of intermedi­
ate data values. This approach was taken by Java's designers to keep the 
Java virtual machine's instruction set compact and to facilitate imple­
mentation on architectures with few or irregular general-purpose 
registers. In addition, the stack-based architecture of the Java virtual 
machine's instruction set facilitates the code optimization work done by 
just-in-time and dynamic compilers that operate at run time in some vir­
tual machine implementations. 

See Figure 5-3 for a graphical depiction of the memory areas that the 
Java virtual machine creates for each thread. These areas are private to 
the owning thread, and no thread can access the PC register or Java stack 
of another thread. 
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---­Figure 5-3 
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Figure 5-3 shows a snapshot of a virtual machine instance in which 
three threads are executing. At the instant of the snapshot, threads one 
and two are executing Java methods. Thread three is executing a native 
method. 

In Figure 5-3, as in all graphical depictions of the Java stack in this 
book, the stacks are shown growing downward. The top of each stack is 
shown at the bottom of the figure. Stack frames for currently executing 
methods are shown in a lighter shade. For threads that are currently exe­
cuting a Java method, the PC register indicates that the next instruction 
should execute. In Figure 5-3, such PC registers (the ones for threads one 
and two) are shown in a lighter shade. Because thread three is currently 
executing a native method, the contents of its PC register-the one shown 
in dark gray-are undefined. 

Data Types 

The Java virtual machine computes by performing operations on certain 
types of data. Both the data types and operations are strictly defined by 
the Java virtual machine specification. The data types can be divided into 
a set of primitive types and a reference type. Variables of the primitive types 
hold primitive values, and variables of the reference type hold reference 
values. Reference values refer to objects but are not objects themselves. 
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-ll~-­Figure 5-4 
Data types of the 
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Primitive values, by contrast, do not refer to anything. They are the actual 
data. In Figure 5-4, you can see a graphical depiction of the Java virtual 
machine's families of data types. 

All of the primitive types of the Java programming language are prim­
itive types of the Java virtual machine. Although boolean qualifies as a 
primitive type of the Java virtual machine, the instruction set has limited 
support for this type. When a compiler translates Java source code into 
bytecodes, it uses ints or bytes to represent booleans. In the Java vir­
tual machine, the integer zero represents false, and any non-zero inte­
ger represents true. Operations involving boolean values use ints. 
Arrays of boolean are accessed as arrays of byte, although they can be 
represented on the heap as arrays of byte or as bit fields. 

The primitive types of the Java programming language, other than 
boolean, form the numeric types of the Java virtual machine. The 
numeric types are divided between the integral types byte, short, int, 
long, and char and between the floating-point types float and double. 
As with the Java programming language, the primitive types of the Java 
virtual machine have the same range everywhere. A long in the Java vir­
tual machine always acts similar to a 64-bit, signed twos complement 
number, which is independent of the underlying host platform. 
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Table 5-l 

Ranges of the Java 
virtual machines 
data types 

The Java virtual machine works with one other primitive type that is 
unavailable to the Java programmer: the returnAddress type. This 
primitive type is used to implement finally clauses of Java programs. 
The use of the returnAddress type is described in detail in Chapter 18, 
"Finally Clauses." 

The reference type of the Java virtual machine is named reference. 
Values of type reference come in three flavors: the class type, the inter­
face type, and the array type.AI.l three types have values that are references 
to dynamically created objects. The class type's values are references to 
class instances. The array type's values are references to arrays, which are 
full-fledged objects in the Java virtual machine. The interface type's values 
are references to class instances that implement an interface. One other 
reference value is the null value, which indicates that the reference 
variable does not refer to any object. 

The Java virtual machine specification defines the range of values for 
each ofthe data types but does not define their sizes. The number of bits 
used to store each data-type value is a decision that the designers of 
individual implementations have to make. The ranges of the Java vir­
tual machine's data types are shown in Table 5-l. We give you more 
information about the floating-point ranges in Chapter 14, "Floating 
Point Arithmetic." 

byte 8-bit signed two's complement integer (-27 to 21-1, inclusive) 

short 16-bit signed two's complement integer (-215 to 215-1, inclusive) 

int 32-bit signed two's complement integer (-231 to 231-1, inclusive) 

long 64-bit signed two's complement integer (-263 to 263-1, inclusive) 

char 16-bit unsigned Unicode character (0 to 216-1, inclusive) 

float 32-bit IEEE 754 single-precision float 

double 64-bit IEEE 754 double-precision float 

returnAddress Address of an opcode within the same method 

reference Reference to an object on the heap or to null 
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Word Size 

The basic unit of size for data values in the Java virtual machine is the 
word-a fixed size chosen by the designer of each Java virtual machine 
implementation. The word size must be large enough to hold a value of 
type byte, short, int, char, float, returnAddress, or reference. 
Two words must be large enough to hold a value of type long or double. 
An implementation designer must therefore choose a word size that is at 
least 32 bits but otherwise can pick whatever word size will yield the most 
efficient implementation. The word size is often chosen to be the size of a 
native pointer on the host platform. 

The specification of many of the Java virtual machine's runtime data 
areas are based on this abstract concept of a word. For example, two sec­
tions of a Java stack frame-the local variables and operand stack-are 
defined in terms of words. These areas can contain values of any of the 
virtual machine's data types. When placed into the local variables or 
operand stack, a value occupies either one or two words. 

As they run, Java programs cannot determine the word size of their 
host virtual machine implementation. The word size does not affect the 
behavior of a program; rather, it is only an internal attribute of a virtual 
machine implementation. 

The Class Loader Subsystem 

The part of a Java virtual machine implementation that takes care of 
finding and loading types is the class loader subsystem. Chapter 1, "Intro­
duction to Java's Architecture," gives an overview of this subsystem. 
Chapter 3, "Security," shows how the subsystem fits into Java's security 
model. This chapter describes the class loader subsystem in more detail 
and shows how it relates to the other components of the virtual machine's 
internal architecture. 

As mentioned in Chapter 1, the Java virtual machine contains two 
kinds of class loaders: a bootstrap class loader and a user-defined class 
loader. The bootstrap class loader is part of the virtual machine imple­
mentation, and user-defined class loaders are part of the running Java 
application. Classes loaded by different class loaders are placed into sep­
arate name spaces inside the Java virtual machine. 

The class loader subsystem involves many other parts of the Java 
virtual machine and several classes from the java. lang library. 
For example, user-defined class loaders are regular Java objects whose 
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class descends from java .lang. ClassLoader. The methods of class 
ClassLoader enable Java applications to access the virtual machine's 
class-loading machinery. Also, for every type that a Java virtual machine 
loads, it creates an instance of class java .lang. Class to represent that 
type. ;Like all objects, user-defined class loaders and instances of class 
Class reside on the heap. Data for loaded types resides in the method area. 

Loading, Linking, and Initialization The class loader subsystem is 
responsible for more than just locating and importing the binary data for 
classes. This subsystem must also verify the correctness of imported 
classes, allocate and initialize memory for class variables, and assist with 
the resolution of symbolic references. These activities are performed in a 
strict order: 

1. Loading Finding and importing the binary data for a type 

2. Linking Performing verification, preparation, and (optionally) 
resolution 

a. Verification Ensuring the correctness of the imported type 

b. Preparation Allocating memory for class variables and initial­
izing the memory to default values 

c. Resolution Transforming symbolic references from the type 
into direct references 

3. Initialization Invoking Java code that initializes class variables 
to their proper starting values 

The details of these processes are given Chapter 7, "The Lifetime of a 
Type." 

The Bootstrap Class Loader Java virtual machine implementations 
must have the capability to recognize and load classes and interfaces 
stored in binary files that conform to the Java class file format. An im­
plementation is free to recognize other binary forms besides class files, 
but it must recognize class files. 

Every Java virtual machine implementation has a bootstrap class loader 
that knows how to load trusted classes-including the classes of the Java 
API. The Java virtual machine specification does not define how the boot­
strap loader should locate classes. Implementation designers must make 
that decision. 

Given a fully qualified type name, the bootstrap class loader must in 
some way attempt to produce the data that defines the type. One common 
approach is demonstrated by the Java virtual machine implementation 
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in Sun's Version 1.1 JDK for Windows 98. This implementation searches 
a user-defined directory path stored in an environment variable called 
CLASSPATH. The bootstrap class loader looks in each directory (in the 
order the directories appear in the CLASSPATH) until it finds a file with 
the appropriate name: the type's simple name plus". class". Unless the 
type is part of the unnamed package, the bootstrap loader expects the file 
to be in a subdirectory of one the directories in the CLASSPATH. The path 
name of the subdirectory is built from the package name of the type. For 
example, if the bootstrap class loader is searching for class java. lang. 
Object, it will look for Object. class in the java \lang subdirectory of 
each CLASSPATH directory. 

In Version 1.2, the bootstrap class loader of Sun's Java 2 SDK only 
looks in the directory in which the system classes (the class files of the 
Java API) were installed. The bootstrap class loader of the implementa­
tion of the Java virtual machine from Sun's Java 2 SDK does not look on 
the CLASS PATH. In Sun's Java 2 SDK virtual machine, searching the class 
path is the job of the system class loader, a user-defined class loader that 
is created automatically when the virtual machine starts. More informa­
tion about the class-loading scheme of Sun's Java 2 SDK is given in Chap­
ter 8, "The Linking Model." 

User-Defined Class Loaders Although user-defined class loaders 
themselves are part of the Java application, four of the methods in class 
ClassLoader are gateways to the Java virtual machine: 

II Four of the methods declared in class java.lang. 
ClassLoader: 
protected final Class defineClass(String name, byte data[], 

int offset, int length); 
protected final Class defineClass(String name, byte data[], 

int offset, int length, ProtectionDomain 
protectionDomain); 
protected final Class findSystemClass(String name); 
protected final void resolveClass(Class c); 

Any Java virtual machine implementation must take care to connect 
these methods of class ClassLoader to the internal class loader sub­
system. 

The two overloaded defineClass () methods accept a byte array, 
data[], as input. Starting at position offset in the array and continu­
ing for length bytes, class ClassLoader expects binary data conform­
ing to the Java class file format-binary data that represents a new type 
for the running application-with the fully qualified name specified in 
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name. The type is assigned to either a default protection domain, if the 
first version of defineClass () is used, or to the protection domain object 
referenced by the protectionDomain parameter. Every Java virtual 
machine implementation must make sure that the defineClass () method 
of class ClassLoader can cause a new type to be imported into the method 
area. 

The findSystemClass () method accepts a String representing a fully 
qualified name of a type. When a user-defined class loader invokes this method 
in Versions 1.0 and 1.1, the class loader requests that the virtual machine 
attempts to load the named type via its bootstrap class loader. If the bootstrap 
class loader has already loaded or successfully loads the type, it returns a ref­
erence to the Class object representing the type. If it cannot locate the binary 
data for the type, the loader throws ClassNotFoundException. In Version 
1.2, the findSystemClass () method attempts to load the requested type 
from the system class loader. Every Java virtual machine implementation 
must make sure that the findSystemClass () method can invoke the boot­
strap class loader (ifrunningVersion 1.0 or 1.1) or system class loader (ifrun­
ningVersion 1.2 or later) in this way. 

The resol veClass () method accepts a reference to a Class instance. 
This method causes the type represented by the Class instance to be 
linked (if it has not already been linked). The defineClass () method 
described previously only takes care of loading. (See the previous section, 
"Loading, Linking, and Initialization," for definitions of these terms.) 
When defineClass () returns a Class instance, the binary file for the 
type has definitely been located and imported into the method area but 
has not necessarily been linked and initialized. Java virtual machine 
implementations make sure that the resol veClass () method of class 
ClassLoader can cause the class loader subsystem to perform linking. 

The details ofhow a Java virtual machine performs class loading, link­
ing, and initialization with user-defined class loaders is given in Chapter 
8, "The Linking Model." 

Name Spaces As mentioned in Chapter 3, "Security," each class loader 
maintains its own name space populated by the types it has loaded. Be­
cause each class loader has its own name space, a single Java application 
can load multiple types with the same fully qualified name. A type's fully 
qualified name, therefore, is not always enough to uniquely identify the 
type inside a Java virtual machine instance. If multiple types of that same 
name have been loaded into different name spaces, the identity of the 
class loader that loaded the type (the identity of the name space it is in) 
will also be needed to uniquely identify that type. 
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Name spaces arise inside a Java virtual machine instance as a result 
of the process of resolution. As part of the data for each loaded type, the 
Java virtual machine keeps track of the class loader that imported the 
type. When the virtual machine needs to resolve a symbolic reference from 
one class to another, it requests the referenced class from the same class 
loader that loaded the referencing class. This process is described in detail 
in Chapter 8, "The Linking Model." 

The Method Area 

Inside a Java virtual machine instance, information about loaded types 
is stored in a logical area of memory called the method area. When the 
Java virtual machine loads a type, it uses a class loader to locate the 
appropriate class file. The class loader reads the class file-a linear 
stream of binary data-and passes it to the virtual machine. The virtual 
machine extracts information about the type from the binary data and 
stores the information in the method area. Memory for class (static) vari­
ables declared in the class is also taken from the method area. 

The manner in which a Java virtual machine implementation repre­
sents type information internally is a decision of the implementation 
designer. For example, multi-byte quantities in class files are stored in 
big-endian order (most significant byte first). When the data is imported 
into the method area, however, a virtual machine can store the data in 
any manner. If an implementation sits on top of a little-endian processor, 
the designers might decide to store multi-byte values in the method area 
in little-endian order (less significant byte first). 

The virtual machine will search through and use the type information 
stored in the method area as it executes the application it is hosting. 
Designers must attempt to devise data structures that will facilitate 
speedy execution of the Java application, but they must also think of com­
pactness. If designing an implementation that will operate under low 
memory constraints, designers might decide to trade some execution 
speed in favor of compactness. If designing an implementation that will 
run on a virtual memory system, designers might decide to store redun­
dant information in the method area to facilitate execution speed. (If the 
underlying host does not offer virtual memory but does offer a hard disk, 
designers could create their own virtual memory system as part of their 
implementation.) Designers can choose whatever data structures and 
organization(s) that they feel optimize their implementation's perfor­
mance in the context of its requirements. 
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All threads share the same method area, so access to the method area's 
data structures must be designed to be threadsafe. If two threads are 
attempting to find a class called Lava, for example, and Lava has not yet 
been loaded, only one thread should be permitted to load Lava while the 
other one waits. 

The size of the method area does not need to be fixed. As the Java appli­
cation runs, the virtual machine can expand and contract the method area 
to fit the application's needs. Also, the memory of the method area does 
not need to be contiguous; instead, it could be allocated on a heap-even 
on the virtual machine's own heap. Implementations can enable users or 
programmers to specify an initial size for the method area, as well as a 
maximum or minimum size. 

The method area can also be garbage collected. Because Java programs 
can be dynamically extended via user-defined class loaders, classes can 
become unreferenced by the application. If a class becomes unreferenced, 
a Java virtual machine can unload the class (garbage collect the class) to 
keep the memory occupied by the method area at a minimum. The unload­
ing of classes-including the conditions under which a class can become 
unreferenced-is described in Chapter 7, "The Lifetime of a Type." 

Type Infonnation For each type it loads, a Java virtual machine must 
store the following kinds of information in the method area: 

Jl The fully qualified name of the type 

• The fully qualified name of the type's direct superclass (unless the 
type is an interface or class java .lang. Object, neither of which 
have a superclass) 

Ill Whether or not the type is a class or an interface 

ll The type's modifiers (some subset of public, abstract, or final) 

II An ordered list of the fully qualified names of any direct 
superinterfaces 

Inside the Java class file and Java virtual machine, type names are 
always stored as fully qualified names. In Java source code, a fully qual­
ified name is the name of a type's package, plus a dot, plus the type's sim­
ple name. For exampl~, the fully qualified name of class Object in 
package java .lang is java .lang. Object. In class files, the dots are 
replaced by slashes, as in java/lang/Object. In the method area, fully 
qualified names can be represented in whichever form and data struc­
tures a designer chooses. 
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In addition to the basic type information listed previously, the virtual 
machine must also store the following information for each loaded type: 

Ill The constant pool for the type 

Field information 

Ill Method information 

Ill All class (static) variables declared in the type, except constants 

A reference to class ClassLoader 

Ill A reference to class Class 

This data is described in the following sections. 

The Constant Pool For each type it loads, a Java virtual machine must 
store a constant pool. A constant pool is an ordered set of constants used 
by the type, including literals (string, integer, and floating point con­
stants) and symbolic references to types, fields, and methods. Entries in 
the constant pool are referenced by index, much like the elements of an 
array. Because it holds symbolic references to all types, fields, and meth­
ods used by a type, the constant pool plays a central role in the dynamic 
linking of Java programs. The constant pool is described in more detail 
later in this chapter and in Chapter 6, "The Java Class File." 

Field Information For each field declared in the type, the following in­
formation must be stored in the method area. In addition to the informa­
tion for each field, the order in which the fields are declared by the class 
or interface must also be recorded. Here is the list for fields: 

The field's name 

Ill The field's type 

Ill The field's modifiers (some subset of public, private, 
protected,static,final,volatile,transient) 

Method Information For each method declared in the type, the fol­
lowing information must be stored in the method area. As with fields, the 
order in which the methods are declared by the class or interface must be 
recorded, as well as the data. Here is the list: 

Ill The method's name 

Ill The method's return type (or void) 
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Ill The number and types (in order) of the method's parameters 

II The method's modifiers (some subset of public, private, 
protected,static,final,synchronized,native,or 
abstract) 

In addition to the items listed previously, the following information 
must also be stored with each method that is not abstract or native: 

II The method's bytecodes 

Ill The sizes of the operand stack and local variables sections of the 
method's stack frame (these are described in a later section of this 
chapter) 

Ill An exception table (this concept is described in Chapter 17, 
"Exceptions") 

Class Variables Class variables are shared among all instances of a 
class and can be accessed even in the absence of any i~stance. These vari­
abies are associated with the class-not with instances of the class-so 
they are logically part of the class data in the method area. Before a Java 
virtual machine uses a class, it must allocate memory from the method 
area for each non-final class variable declared in the class. 

Constants (class variables declared final) are not treated in the same 
way as non-final class variables. Every type that uses a final class vari­
able gets a copy of the constant value in its own constant pool. As part of 
the constant pool, final class variables are stored in the method area­
just like non-final class variables. Whereas non-final class variables are 
stored as part of the data for the type that declares them, however, final 
class variables are stored as part of the data for any type that uses them. 
This special treatment of constants is explained in more detail in Chap­
ter 6, "The Java Class File." 

A Reference to Class ClassLoader For each type it loads, a Java 
virtual machine must keep track of whether or not the type was loaded 
via the bootstrap class loader or by a user-defined class loader. For those 
types loaded via a user-defined class loader, the virtual machine must 
store a reference to the user-defined class loader that loaded the type. 
This information is stored as part of the type's data in the method area. 

The virtual machine uses this information during dynamic linking. 
When one type refers to another type, the virtual machine requests the 
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referenced type from the same class loader that loaded the referencing 
type. This process of dynamic linking is also central to the way the vir­
tual machine forms separate name spaces. To properly perform dynamic 
linking and maintain multiple name spaces, the virtual machine needs to 
know which class loader loaded each type in its method area. The details 
of dynamic linking and name spaces are given in Chapter 8, "The Link­
ing Model." 

A Reference to Class Class An instance of class java .lang. Class 
is created by the Java virtual machine for every type it loads. The virtual 
machine must (in some way) associate a reference to the Class instance 
for a type with the type's data in the method area. 

Your Java programs can obtain and use references to Class objects. 
One static method in class Class enables you to obtain a reference to the 
Class instance for any loaded class: 

II A method declared in class java.lang.Class: 
public static Class forName(String className); 

If you invoke forName ("java .lang. Object"), for example, you will 
receive a reference to the Class object that represents java .lang. 
Object. If you invoke forName ("java. util. Enumeration"), you will 
receive a reference to the Class object that represents the Enumeration 
interface from the java. util package. You can use forName () to obtain 
a Class reference for any loaded type from any package, as long as the 
type can be (or already has been) loaded into the current name space. If 
the virtual machine is unable to load the requested type into the current 
name space, forName () will throw ClassNotFoundException. 

An alternative way to obtain a Class reference is to invoke getClass () 
on any object reference. This method is inherited by every object from class 
Object itself: 

II A method declared in class java.lang.Object: 
public final Class getClass(); 

If you have a reference to an object of class java .lang. Integer, for 
example, you could get the Class object for java .lang. Integer simply 
by invoking get Class () on your reference to the Integer object. 

Given a reference to a Class object, you can find out information about 
the type by invoking methods declared in Class. If you look at these 
methods, you will quickly realize that class Class gives the running 
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application access to the information stored in the method area. Here are 
some of the methods declared in class Class: 

II Some of the methods declared in class java.lang.Class: 
public String getName(); 
public Class getSuperClass(); 
public boolean isinterface(); 
public Class[] getinterfaces(); 
public ClassLoader getClassLoader(); 

These methods simply return information about a loaded type. getName ( ) 
returns the fully qualified name of the type, and getSuperClass () returns 
the Class instance for the type's direct superclass. If the type is class 
java. lang. Object or is an interface, none of which have a superclass, then 
getSuperClass () returns null. is Interface () returns true if the 
Class object describes an interface and returns false if it describes a 
class. get Interfaces () returns an array of Class objects, one for 
each direct superinterface. The superinterfaces appear in the array in the 
order they are declared as superinterfaces by the type. If the type has no 
direct superinterfaces, get Interfaces () returns an array of length zero. 
getClassLoader () returns a reference to the ClassLoader object that 
loaded this type or returns null if the type was loaded by the bootstrap class 
loader. All of this information comes straight from the method area. 

Method Tables The type information stored in the method area must 
be organized to be quickly accessible. In addition to the raw type infor­
mation listed previously, implementations might include other data struc­
tures that hasten access to the raw data. One example of such a data 
structure is a method table. For each non-abstract class that a Java vir­
tual machine loads, the machine could generate a method table and in­
clude it as part of the class information stored in its method area. A 
method table is an array of direct references to all of the instance meth­
ods that might be invoked on a class instance, including instance meth­
ods inherited from superclasses. (A method table is not helpful in the case 
of abstract classes or interfaces, because the program will never instan­
tiate these items.) A method table enables a virtual machine to quickly 
locate an instance method invoked on an object. Method tables are de­
scribed in detail in Chapter 8, "The Linking Model." 

An Example of Method Area Use As an example of how the Java vir­
tual machine uses the information it stores in the method area, consider 
the following classes: 
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II On CD-ROM in file jvmlex21Lava.java 
class Lava { 

private int speed 5; II 5 kilometers per hour 

void flow () { 
} 

} 

II On CD-ROM in file jvmlex21Volcano.java 
class Volcano { 

} 

public static void main(String[] args) { 
Lava lava= new Lava(); 
lava. flow(); 

} 

The following paragraphs describe how an implementation might exe­
cute the first instruction in the bytecodes for the main ( ) method of the 
Volcano application. Different implementations of the Java virtual 
machine can operate in different ways. The following description illus­
trates one way-but not the only way-in which a Java virtual machine 
could execute the first instruction of volcano's main () method. 

To run the Volcano application, you give the name Volcano to a Java 
virtual machine in an implementation-dependent manner. Given the 
name Volcano, the virtual machine finds and reads file Volcano. class. 
Then, the machine extracts the definition of class Volcano from the 
binary data in the imported class file and places the information into the 
method area. The virtual machine then invokes the main () method by 
interpreting the bytecodes stored in the method area. As the virtual 
machine executes main (),it maintains a pointer to the constant pool (a 
data structure in the method area) for the current class (class Volcano). 

NOTE: Note that this Java virtual machine has already begun to 
execute the bytecodes for main () in class Volcano, although it has not 
yet loaded class Lava. Like many (probably most) implementations of the 
Java virtual machine, this implementation does not wait until all classes 
used by the application are loaded before it begins executing main () . 
This implementation loads classes only as it needs them. 

main () 's first instruction tells the Java virtual machine to allocate 
enough memory for the class listed in constant pool entry one. The virtual 
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machine uses its pointer to Volcano's constant pool to look up entry one 
and finds a symbolic reference to class Lava. The machine checks the 
method area to see whether Lava has already been loaded. 

The symbolic reference is just a string giving the class's fully qualified 
name: "Lava". Here, you can see that the method area must be organized 
so that a class can be located as quickly as possible, given only the class's 
fully qualified name. Implementation designers can choose whichever 
algorithm and data structures that best fit their needs-a hash table, a 
search tree, anything. This same mechanism can be used by the static 
forName () method of class Class, which returns a Class reference 
when given a fully qualified name. 

When the virtual machine discovers that it has not yet loaded a class 
called "Lava," it proceeds to find and read file Lava. class. The machine 
extracts the definition of class Lava from the imported binary data and 
places the information into the method area. 

The Java virtual machine then replaces the symbolic reference in 
Volcano's constant pool entry one, which is the string "Lava" with a 
pointer to the class data for Lava. If the virtual machine ever has to use 
Volcano's constant pool entry one again, it will not have to go through the 
relatively slow process of searching the method area for class Lava when 
given only a symbolic reference-the string "Lava". The machine can just 
use the pointer to access the class data for Lava in a quicker fashion. This 
process of replacing symbolic references with direct references (in this 
case, a native pointer) is called constant pool resolution. The symbolic ref­
erence is resolved into a direct reference by searching the method area 
until the referenced entity is found-loading new classes if necessary. 

Finally, the virtual machine is ready to allocate memory for a new 
Lava object. Once again, the virtual machine consults the information 
stored in the method area and uses the pointer (which was just placed into 
Volcano's constant pool entry one) to the Lava data (which was just 
imported into the method area) to find out how much heap space a Lava 
object requires. 

A Java virtual machine can always determine the amount of memory 
required to represent an object by looking into the class data stored in the 
method area. The actual amount of heap space required by a particular 
object, however, is implementation dependent. The internal representa­
tion of objects inside a Java virtual machine is another decision left to 
implementation designers. Object representation is discussed in more 
detail later in this chapte!. 
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Once the Java virtual machine has determined the amount of heap 
space required by a Lava object, it allocates that space on the heap and 
initializes the instance variable speed to zero (its default initial value). 
If class Lava's superclass, Object, has any instance variables, those are 
also initialized to default initial values. (The details of initialization of 
both classes and objects are given in Chapter 7, "The Lifetime of a Type.") 

The first instruction of main () completes by pushing a reference to the 
new Lava object onto the stack. A later instruction will use the reference 
to invoke Java code that initializes the speed variable to its proper ini­
tial value, five. Another instruction will use the reference to invoke the 
flow () method on the referenced Lava object. 

The Heap 

Whenever a class instance or array is created in a running Java applica­
tion, the memory for the new object is allocated from a single heap. 
Because there is only one heap inside a Java virtual machine instance, 
all threads share the heap. Because a Java application runs inside its own 
exclusive Java virtual machine instance, there is a separate heap for 
every individual running application. Two different Java applications can­
not trample on each other's heap data. Two different threads of the same 
application, however, could trample on each other's heap data. For this 
reason, you must be concerned about proper synchronization of multi­
threaded access to objects (heap data) in your Java programs. 

The Java virtual machine has an instruction that allocates memory on 
the heap for a new object but has no instruction for freeing that memory. 
Just as you cannot explicitly free an object in Java source code, you can­
not explicitly free an object in Java bytecodes. The virtual machine itself 
is responsible for deciding whether and when to free memory occupied by 
objects that are no longer referenced by the running application. Usually, 
a Java virtual machine implementation uses a garbage collector to man­
age the heap. 

Garbage Collection A garbage collector's primary function is to auto­
matically reclaim the memory used by objects that are no longer refer­
enced by the running application. The collector might also move objects 
as the application runs to reduce heap fragmentation. 

A garbage collector is not strictly required by the Java virtual machine 
specification. The specification only requires that an implementation 
manages its own heap in some manner. For example, an implementation 
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could simply have a fixed amount of heap space available and could 
throw an OutOfMemory exception when that space fills up. While this 
implementation might not win many prizes, it does qualify as a Java vir­
tual machine. The Java virtual machine specification does not say how 
much memory an implementation must make available to running pro­
grams. The machine specification also does not say how an implemen­
tation must manage its heap. Rather, it only says to implementation 
designers that the program will be allocating memory from the heap, not 
freeing it. Designers must figure out how they want to deal with this 
situation. 

No garbage collection technique is dictated by the Java virtual machine 
specification. Designers can use whichever techniques seem most appro­
priate, given their goals, constraints, and talents. Because references to 
objects can exist in many places-Java stacks, the heap, the method area, 
native method stacks-the choice of garbage collection technique heavily 
influences the design of an implementation's run-time data areas. Vari­
ous garbage collection techniques are described in Chapter 9, "Garbage 
Collection." 

As with the method area, the memory that makes up the heap does not 
need to be contiguous and can be expanded and contracted as the running 
program progresses. An implementation's method area could, in fact, be 
implemented on top of its heap. In other words, when a virtual machine 
needs memory for a freshly loaded class, it could take that memory from 
the same heap on which objects reside. The same garbage collector that 
frees memory occupied by unreferenced objects could take care of finding 
and freeing (unloading) unreferenced classes. Implementations might 
enable users or programmers to specifY an initial size for the heap, as well 
as a maximum and minimnm size. 

Object Representation The Java virtual machine specification is 
silent in regards to how objects should be represented on the heap. Ob­
ject representation-an integral aspect of the overall design of the heap 
and garbage collector-is a decision left to implementation designers. 

The instance variables declared in the object's class and all of its super­
classes make up the primary data that must (in some way) be represented 
for each object. Given an object reference, the virtual machine must have 
the capability to quickly locate the instance data for the object. In addi­
tion, there must be some way to access an object's class data (stored in 
the method area) when given a reference to the object. For this reason, 
the memory allocated for an object usually includes some kind of pointer 
to the method area. 

Page 164 of 280



156 

-Figure 5-5 
Splitting an object 
across a handle pool 
and object pool 

Chapter Five 

One possible heap design divides the heap into two parts: a handle pool 
and an object pool. An object reference is a native pointer to a handle pool 
entry. A handle pool entry has two components: a pointer to instance data 
in the object pool, and a pointer to class data in the method area. The 
advantage of this scheme is that the virtual machine can easily combat 
heap fragmentation. When the virtual machine moves an object in the 
object pool, it only needs to update one pointer with the object's new 
address: the relevant pointer in the handle pool. The disadvantage of this 
approach is that every point of access to an object's instance data requires 
dereferencing two pointers. This approach to object representation is shown 
graphically in Figure 5-5. This kind of heap is demonstrated interactively 
by the HeapOfFish applet described in Chapter 9, "Garbage Collection." 

Another design makes an object reference a native pointer to a bundle 
of data that contains the object's instance data and a pointer to the 
object's class data. This approach requires dereferencing only one pointer 
to access an object's instance data but makes moving objects more com­
plicated. When the virtual machine moves an object to combat fragmen­
tation of this kind of heap, it must update every reference to that object 
anywhere in the runtime data areas. This approach to object representa­
tion is shown graphically in Figure 5-6. 
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----Figure 5-6 
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The virtual machine needs to get from an object reference to that 
object's class data for several reasons. When a running program attempts 
to cast an object reference to another type, the virtual machine must 
check to see whether the type being cast to is the actual class of the ref­
erenced object or whether it is one of its supertypes. The machine must 
perform the same check when a program performs an instanceof oper­
ation. In either case, the virtual machine must look into the class data 
of the referenced object. When a program invokes an instance method, 
the virtual machine must perform dynamic binding. In other words, the 
machine must choose the method to invoke based not on the type of 
the reference, but on the class of the object. To do this task, the machine 
must once again have access to the class data (given only a reference to 
the object). 

No matter which object representation an implementation uses, a 
method table is probably close at hand for each object. Because method 
tables hasten the invocation of instance methods, they can play an impor­
tant role in achieving good overall performance for a virtual machine 
implementation. Method tables are not required by the Java virtual 
machine specification and might not exist in all implementations. Imple­
mentations that have extremely low memory requirements, for instance, 
might not have the capacity to afford the extra memory space that method 
tables occupy. If an implementation does use method tables, however, an 
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object's method table will likely be quickly accessible when only given a 
reference to the object. 

One way that an implementation could connect a method table to an 
object reference is shown graphically in Figure 5-7. This figure shows that 
the pointer kept with the instance data for each object points to a special 
structure. The special structure has two components: 

A pointer to the full class data for the object 

The method table for the object 

The method table is an array of pointers to the data for each instance 
method that can be invoked on objects of that class. The method data 
pointed to by method table includes the following information: 

The sizes of the operand stack and local variables sections of the 
method's stack 

The method's bytecodes 

An exception table 

This data gives the virtual machine enough information to invoke the 
method. The method table include pointers to data for methods declared 
explicitly in the object's class or methods inherited from superclasses. In 
other words, the pointers in the method table might point to methods 
defined in the object's class or any of its superclasses. More information 
about method tables is given in Chapter 8, "The Linking Model." 

If you are familiar with the inner workings of C++, you might recog­
nize the method table as being similar to the Virtual Table (VTBL) of C++ 
objects. In C++, objects are represented by their instance data plus an 
array of pointers to any virtual functions that can be invoked on the 
object. This approach could also be taken by a Java virtual machine imple­
mentation. An implementation could include a copy of the method table 
for a class as part of the heap image for every instance of that class. This 
approach would consume more heap space than the approach shown in 
Figure 5-7, but it might yield slightly better performance on a system that 
has large quantities of available memory. 

One other kind of data that is not shown in Figures 5-5 and 5-6 but is 
logically part of an object's data on the heap is the object's lock. Each 
object in a Java virtual machine is associated with a lock (or mutex) that 
a program can use to coordinate multi-threaded access to the object. Only 
one thread at a time can own an object's lock. While a particular thread 
owns a particular object's lock, only that thread can access that object's 
instance variables. All other threads that attempt to access the object's 
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variables have to wait until the owning thread releases the object's lock. 
If a thread requests a lock that is already owned by another thread, the 
requesting thread has to wait until the owning thread releases the lock. 
Once a thread owns a lock, it can request the same lock multiple times, 
but then it has to release the lock the same number of times before the 
lock is made available to other threads. If a thread requests a lock three 
times, for example, that thread will continue to own the lock until it has 
released the lock three times. 

Many objects will go through their entire lifetimes without ever being 
locked by a thread. The data required to implement an object's lock is not 
needed unless a thread actually requests a lock. As a result, many imple­
mentations-such as the ones shown in Figure 5-5 and 5-6-might not 
include a pointer to lock data within the object itself. Such implementa­
tions must create the necessary data to represent a lock when the lock is 
requested for the first time. In this scheme, the virtual machine must 
associate the lock with the object in some indirect way, such as by plac­
ing the lock data into a search tree based on the object's address. 

Along with data that implements a lock, every Java object is logically 
associated with data that implements a wait set. Whereas locks help 
threads to work independently on shared data without interfering with 
one another, wait sets help threads to cooperate-to work towards a com­
mon goal. 
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Wait sets are used in conjunction with wait and notify methods. Every 
class inherits from Object three wait methods (overloaded forms 
of a method called wait ()) and two notify methods (notify () and 
notifyAll ()).When a thread invokes a wait method on an object, the 
Java virtual machine suspends that thread and adds it to that object's wait 
set. When a thread invokes a notifY method on an object, the virtual 
machine will at some time wake up one or more threads from that object's 
wait set. As with the data that implements an object's lock, the data that 
implements an object's wait set is not needed unless a wait or notifY 
method is actually invoked on the object. As a result, many implementa­
tions of the Java virtual machine might keep the wait set data separate 
from the actual object data. Such implementations could allocate the data 
needed to represent an object's wait set when a wait or notify method is 
first invoked on that object by the running application. For more informa­
tion about locks and wait sets, see Chapter 20, "Thread Synchronization." 

One last example of a type of data that can be included as part of the 
image of an object on the heap is any data needed by the garbage collec­
tor. The garbage collector must (in some way) keep track of which objects 
are referenced by the program. This task invariably requires data to be 
kept for each object on the heap. The kind of data required depends upon 
the garbage-collection technique being used. For example, if an imple­
mentation uses a mark and sweep algorithm, it must have the capability 
to mark an object as referenced or unreferenced. For each unreferenced 
object, it might also need to indicate whether or not the object's finalizer 
has been run. As with thread locks, this data can be kept separate from 
the object image. Some garbage-collection techniques only require this 
extra data while the garbage collector is actually running. A mark and 
sweep algorithm, for instance, could potentially use a separate bitmap for 
marking referenced and unreferenced objects. More detail about various 
garbage-collection techniques and the data that each of these techniques 
requires is given in Chapter 9, "Garbage Collection." 

In addition to data that a garbage collector uses to distinguish between 
referenced and unreferenced objects, a garbage collector needs data to keep 
track of the objects on which it has already executed a finalizer. Garbage 
collectors must run the finalizer on any object whose class declares a final­
izer before it reclaims the memory occupied by that object. The Java lan­
guage specification states that a garbage collector will only execute an 
object's finalizer once, but the specification permits finalizer to resurrect the 
object (to make the object referenced again). When the object becomes 
unreferenced for a second time, the garbage collector must not finalize the 
object again. Because most objects will probably not have a finalizer-and 
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few of those will resurrect their objects-this scenario of garbage collecting 
the same object twice will probably be extremely rare. As a result, the data 
used to keep track of objects that have already been finalized, although log­
ically part of the data associated with an object, will probably not be part 
of the object representation on the heap. In most cases, garbage collectors 
will keep this information in a separate place. Chapter 9, "Garbage Collec­
tion," gives more information about finalization. 

Array Representation In Java, arrays are full-fledged objects. Like 
objects, arrays are always stored on the heap, and implementation 
designers can decide how they want to represent arrays on the heap. 

Arrays have a Class instance associated with their class, similar to 
any other object. All arrays of the same dimension and type have the same 
class. The length of an array (or the lengths of each dimension of a multi­
dimensional array) does not play any role in establishing the array's class. 
For example, an array of three ints has the same class as an array of300 
ints. The length of an array is considered part of its instance data. 

The name of an array's class has one open square bracket for each 
dimension, plus a letter or string representing the array's type. For exam­
ple, the class name for an array of in ts is 11 [I 11 • The class name for a 
three-dimensional array of bytes is 11 [ [ [B 11 • The class name for a two­
dimensional array of Objects is 11 [ [Lj ava .lang. Object 11 • The full 
details of this naming convention for array classes is given in Chapter 6, 
"The Java Class File." 

Multi-dimensional arrays are represented as arrays of arrays. A two­
dimensional array of ints, for example, would be represented by a one­
dimensional array of references to several one-dimensional arrays of 
ints. This scenario is shown graphically in Figure 5-8. 

The data that must be kept on the heap for each array is the array's 
length, the array data, and some kind of reference to the array's class data. 
Given a reference to an array, the virtual machine must have the capacity 
to determine the array's length, to obtain and set its elements by index 
(checking to make sure that the array bounds are not exceeded), and to 
invoke any methods declared by Object, the direct superclass of all arrays. 

The Program Counter 

Each thread of a running program has its own Program Counter (PC) reg­
ister, which is created when the thread is started. The PC register is one 
word in size, so it can hold both a native pointer and a returnAddress. 
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As a thread executes a Java method, the PC register contains the address 
of the current instruction being executed by the thread. An address can 
be a native pointer or an offset from the beginning of a method's byte­
codes. If a thread is executing a native method, the value of the PC reg­
ister is undefined. 

The Java Stack 

When a new thread is launched, the Java virtual machine creates a new 
Java stack for the thread. As mentioned earlier, a Java stack stores a 
thread's state in discrete frames. The Java virtual machine only performs 
two operations directly on Java stacks: pushing and popping frames. 

The method that is currently being executed by a thread is the thread's 
current method. The stack frame for the current method is the current 
frame. The class in which the current method is defined is called the cur­
rent class, and the current class's constant pool is the current constant 
pool. As it executes a method, the Java virtual machine keeps track of the 
current class and current constant pool. When the virtual machine 
encounters instructions that operate on data stored in the stack frame, it 
performs those operations on the current frame. 
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When a thread invokes a Java method, the virtual machine creates and 
pushes a new frame onto the thread's Java stack. This new frame then 
becomes the current frame. As the method executes, it uses the frame to 
store parameters, local variables, intermediate computations, and other 
data. 

A method can complete in either of two ways. If a method completes by 
returning, it is said to have normal completion. If it completes by throw­
ing an exception, it is said to have abrupt completion. When a method 
completes, whether normally or abruptly, the Java virtual machine pops 
and discards the method's stack frame. The frame for the previous method 
then becomes the current frame. 

All of the data on a thread's Java stack is private to that thread. A 
thread has no way to access or alter the Java stack of another thread. For 
this reason, you never need to worry about synchronizing multi-threaded 
access to local variables in your Java programs. When a thread invokes a 
method, the method's local variables are stored in a frame on the invok­
ing thread's Java stack. Only one thread can ever access those local vari­
ables: the thread that invoked the method. 

Similar to the method area and heap, the Java stack and stack frames 
do not need to be contiguous in memory. Frames could be allocated on a 
contiguous stack, allocated on a heap, or allocated based on some combi­
nation of the two. The actual data structures used to represent the Java 
stack and stack frames is a decision left to implementation designers. 
Implementations might enable users or programmers to specify an initial 
size for Java stacks, as well as a maximum or minimum size. 

The Stack Frame 

The stack frame has three parts: local variables, operand stack, and frame 
data. The sizes of the local variables and operand stack, which are mea­
sured in words, depend on the needs of each individual method. These sizes 
are determined at compile time and are included in the class-file data for 
each method. The size of the frame data is implementation dependent. 

When the Java virtual machine invokes a Java method, it checks the 
class data to determine the number of words required by the method in 
the local variables and operand stack. Then, the machine creates a stack 
frame of the proper size for the method and pushes it onto the Java stack. 

Local Variables The local variables section of the Java stack frame is 
organized as a zero-based array of words. Instructions that use a value 
from the local variables section provide an index to the zero-based array. 

,,, 
i 
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-Figure 5-9 
Method parameters 
on the local variables 
section of a Java 
stack 

Chapter Five 

Values of type int, float, reference, and returnAddress occupy one 
entry in the local variables array. Values of type byte, short, and char 
are converted to int before being stored in the local variables. Values of 
type long and double occupy two consecutive entries in the array. 

To refer to a long or double value in the local variables, you will use 
instructions to provide the index of the first of the two consecutive entries 
occupied by the value. For example, if a long occupies array entries three 
and four, instructions would refer to that long value by index three. 
All values in the local variables are word aligned. Dual-entry longs and 
doubles can start at any index. 

The local variables section contains a method's parameters and local 
variables. Compilers place the parameters into the local variable array 
first in the order in which they are declared. Figure 5-9 shows the local 
variables section for the following two methods: 

II On CD-ROM in file jvmlex31Example3a.java 
class Example3a { 

} 

public static int runClassMethod(int i, long 1, float f, 
double d, Object o, byte b) { 

return 0; 
} 

public int runinstanceMethod(char c, double d, short s, 
boolean b) { 

return 0; 
} 

runClassMethod() runinstanceMethod() 

index 

0 
1 

3 
4 

6 
7 

type 

int 

long 

float 

double 

reference 
int 

parameter 

inti 

long I 

float f 

doubled 

Object o 
byteb 

index 

0 
1 
2 

4 
5 

type parameter 

reference hidden this 
int charc 

double doubled 

int shorts 
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Figure 5-9 shows that the first parameter in the local variables for 
runinstanceMethod () is of type reference, although no such para­
meter appears in the source code. This reference is the hidden this ref­
erence that is passed to every instance method. Instance methods use this 
reference to access the instance object data upon which they were· 
invoked. As you can see by looking at the local variables for 
runClassMethod () in Figure 5-9, class methods do not receive a hidden 
this. Class methods are not invoked on objects, so you cannot directly 
access a class's instance variables from a class method because there is 
no instance associated with the method invocation. 

Also note that types byte, short, char, and boolean in the source code 
become ints in the local variables. This characteristic is also true of the 
operand stack. As mentioned earlier, the boolean type is not supported 
directly by the Java virtual machine. The Java compiler always uses ints 
to represent boolean values in the local variables ~r in the operand 
stack. Data types byte, short, and char, however, are supported directly 
by the Java virtual machine. These types can be stored on the heap as 
instance variables or as array elements, or in the method area as class 
variables. When placed into local variables or the operand stack, however, 
values of type byte, short, and char are converted into ints. They are 
manipulated as ints while on the stack frame, then are converted back 
into byte, short, or char types when stored back into the heap or 
method area. 

Note that Object o is passed as a reference to runClassMethod (). 
In Java, all objects are passed by reference. Because all objects are stored 
on the heap, you will never find an image of an object in the local vari­
ables or operand stack-only object references. 

Aside from a method's parameters, which compilers must place into 
the local variables array first and in order of declaration, Java compil­
ers can arrange the local variables array as they wish. Compilers can 
place the method's local variables into the array in any order, and they 
can use the same array entry for more than one local variable. For exam­
ple, if two local variables have limited scopes that do not overlap, such 
as the i and j local variables in Example3b, compilers are free to use 
the same array entry for both variables. During the first half of the 
method, before j comes into scope, entry zero could be used for i. Dur­
ing the second half of the method, after i has gone out of scope, entry 
zero could be used for j . 

II On CD-ROM in file jvmlex31Example3b.java 
class Example3b { 
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} 

public static void runtwoLoops{} { 

} 

for {int i = 0; i < 10; ++i} { 
System.out.println{i}; 

} 

for {int j = 9; j >= 0; -j} { 
System.out.println{j}; 

} 

Chapter Five 

As with all of the other run-time memory areas, implementation 
designers can use whichever data structures they deem most appropriate 
to represent the local variables. The Java virtual machine specification 
does not indicate how longs and doubles should be split across the two 
array entries they occupy. Implementations that use a word size of 64 bits 
could, for example, store the entire long or double in the lower part of the 
two consecutive entries, leaving the higher entry unused. 

Operand Stack Similar to the local variables, the operand stack is or­
ganized as an array of words. Unlike the local variables, however, which 
are accessed via array indices, the operand stack is accessed by pushing 
and popping values. If an instruction pushes a value onto the operand 
stack, a later instruction can pop and use that value. 

The virtual machine stores the same data types in the operand stack 
that it stores in the local variables: int, long, float, double, reference, 
and returnType. The machine converts values of type byte, short, and 
char to int before pushing them onto the operand stack. 

Other than the program counter, which cannot be directly accessed by 
instructions, the Java virtual machine has no registers. The Java virtual 
machine is stack based, rather than register based, because its instruc­
tions take their operands from the operand stack rather than from regis­
ters. Instructions can also take operands from other places, such as 
immediately following the opcode (the byte representing the instruction) 
in the bytecode stream or from the constant pool. The Java virtual machine 
instruction set's main focus of attention, however, is the operand stack. 

The Java virtual machine uses the operand stack as a work space. 
Many instructions pop values from the operand stack, operate on them, 
and then push the result. For example, the iadd instruction adds two 
integers by popping two ints off the top of the operand stack, adding 
them, and pushing the int result. Here is how a Java virtual machine 
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---­Figure 5-10 
Adding two local 
variables 

would add two local variables that contain ints and would store the int 
result in a third local variable: 

iload 0 
iload 1 
iadd 
istore 2 

II push the int in local variable 0 
II push the int in local variable 1 
II pop two ints, add them, push result 
II pop int, store into local variable 2 

In this sequence ofbytecodes, the first two instructions, iload_O and 
iload _1, push the ints stored in local variable positions zero and one 
onto the operand stack. The iadd instruction pops those two int values, 
adds them, and pushes the int result back onto the operand stack. The 
fourth instruction, istore_2, pops the result of the add off the top of the 
operand stack and stores it into local variable position two. In Figure 
5-10, you can see a graphical depiction of the state of the local variables 
and operand stack while executing these instructions. In this figure, 
unused slots of the local variables and operand stack are left blank. 

Frame Data In addition to the local variables and operand stack, the 
Java stack frame includes data to support constant pool resolution, nor­
mal method return, and exception dispatch. This data is stored in the 
frame data portion of the Java stack frame. 

Many instructions in the Java virtual machine's instruction set refer to 
entries in the constant pool. Some instructions merely push constant val­
ues oftype int, long, float, double, or String from the constant pool 
onto the operand stack. Some instructions use constant pool entries to refer 
to classes or arrays to instantiate, fields to access, or methods to invoke. 
Other instructions determine whether a particular object is a descendant 
of a particular class or interface specified by a constant pool entry. 

local 
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before 
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Whenever the Java virtual machine encounters any of the instructions 
that refer to an entry in the constant pool, it uses the frame data's 
pointer to the constant pool to access that information. As mentioned ear­
lier, references to types, fields, and methods in the constant pool are ini­
tially symbolic. When the virtual machine looks up a constant pool entry 
that refers to a class, interface, field, or method, that reference might still 
be symbolic. If so, the virtual machine must resolve the reference at that 
time. 

Aside from constant pool resolution, the frame data must assist the vir­
tual machine with processing a normal or abrupt method completion. If 
a method completes normally (by returning), the virtual machine must 
restore the stack frame of the invoking method. The machine must also 
set the PC register to point to the instruction in the invoking method that 
follows the instruction that invoked the completing method. If the com­
pleting method returns a value, the virtual machine must push that value 
onto the operand stack of the invoking method. 

The frame data must also contain some kind of reference to the 
method's exception table, which the virtual machine uses to process any 
exceptions thrown during the course of execution of the method. An excep­
tion table, which is described in detail in Chapter 17, "Exceptions," defines 
ranges within the bytecodes of a method that are protected by catch 
clauses. Each entry in an exception table gives a starting and ending posi­
tion of the range protected by a catch clause, an index into the constant 
pool that gives the exception class being caught, and a starting position 
of the catch clause's code. 

When a method throws an exception, the Java virtual machine uses the 
exception table referred to by the frame data to determine how to handle 
the exception. If the virtual machine finds a matching catch clause in the 
method's exception table, it transfers control to the beginning of that catch 
clause. If the virtual machine does not find a matching catch clause, then 
the method completes abruptly. The virtual machine uses the information 
in the frame data to restore the invoking method's frame and then 
rethrows the same exception in the context of the invoking method. 

In addition to data that supports constant pool resolution, normal 
method return, and exception dispatch, the stack frame might also 
include other information that is implementation dependent, such as data 
to support debugging. 

Possible Implementations of the Java Stack Implementation de­
signers can represent the Java stack in whichever way they wish. As men­
tioned earlier, one potential way to implement the stack is by allocating 

Page 177 of 280



r 

The Java Virtual Machine 11691 

---­Figure 5-11 
Allocating frames 
from a heap 

each frame separately from a heap. As an example, consider the follow­
ing class: 

II On CD-ROM in file jvmlex31Example3c.java 
class Example3c { 

} 

public static void addAndPrint(} { 

} 

double result= addTwoTypes(l, 88.88}; 
System.out.println(result}; 

public static double addTwoTypes(int i, double d) { 
return i + d; 

} 

Figure 5-11 shows three snapshots of the Java stack for a thread that 
invokes the add.AndPrint () method. In the implementation of the Java 
virtual machine represented in this figure, each frame is allocated sepa­
rately from a heap. To invoke the addTwoTypes () method, use the 
add.AndPrint () method which first pushes an int one and double 
88.88 onto its operand stack, then invokes the addTwoTypes () method. 
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The instruction to invoke addTwoTypes () refers to a constant pool 
entry. The Java virtual machine looks up the entry and resolves the entry 
if necessary. 

Note that the add.AndPrint () method uses the constant pool to iden­
tify the addTwoTypes () method, although it is part of the same class. 
Similar to references to fields and methods of other classes, references to 
the fields and methods of the same class are initially symbolic and must 
be resolved before they are used. 

The resolved constant pool entry points to information in the method 
area about the addTwoTypes () method. The virtual machine uses this 
information to determine the sizes required by addTwoTypes () for the 
local variables and operand stack. In the class file generated by Sun's 
j avac compiler from JDK Version 1.1, addTwoTypes () requires three 
words in the local variables and four words in the operand stack. (As men­
tioned earlier, the size of the frame data portion is implementation depen­
dent.) The virtual machine allocates just enough memory for the 
addTwoTypes () frame from a heap, then pops the double and int 
parameters (88.88 and one) from add.AndPrint () 's operand stack and 
places them into addTwoType ( ) 's local variable slots one and zero. 

When addTwoTypes () returns, it first pushes the double return value 
(in this case, 89.88) onto its operand stack. The virtual machine uses the 
information in the frame data to locate the stack frame of the invoking 
method, add.AndPrint () . The machine then pushes the double return value 
onto add.AndPrint () 's operand stack and then frees the memory occupied 
by addTwoType () 's frame. The virtual machine makes add.AndPrint () 's 
frame current and continues executing the add.AndPrint () method at the 
first instruction past the addTwoType () method invocation. 

Figure 5-12 shows snapshots of the Java stack of a different virtual 
machine implementation executing the same methods. Instead of allo­
cating each frame separately from a heap, this implementation allocates 
frames from a contiguous stack. This approach enables the implementa­
tion to overlap the frames of adjacent methods. The portion of the invok­
ing method's operand stack that contains the parameters to the invoked 
method becomes the base of the invoked method's local variables. 
In this example, add.AndPrint () 's entire operand stack becomes 
addTwoType () 's entire local variables section. 

This approach saves memory space, because the same memory is used 
by the calling method to store the parameters as is used by the invoked 
method to access the parameters. This approach also saves time, because 
the Java virtual machine does not have to spend time copying the para­
meter values from one frame to another. 
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---­Figure 5-12 
Allocating frames 
from a contiguous 
stack 
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Note that the operand stack of the current frame is always at the top 
of the Java stack. Although this situation might be easier to visualize in 
the contiguous memory implementation of Figure 5-12, it is true no mat­
ter how the Java stack is implemented. (As mentioned earlier, in all of the 
graphical images of the stack shown in this book, the stack grows down­
ward. The top of the stack is always shown at the bottom of the picture.) 
Instructions that push values onto (or pop values oft) the operand stack 
always operate on the current frame. Thus, pushing a value onto the 
operand stack can be seen as pushing a value onto the top of the entire 
Java stack. In the remainder of this book, pushing a value onto the stack 
refers to pushing a value onto the operand stack of the current frame. 

One other possible approach to implementing the Java stack is a hybrid 
of the two approaches shown in Figure 5-11 and Figure 5-12. A Java vir­
tual machine implementation can allocate a chunk of contiguous memory 
from a heap when a thread starts. In this memory, the virtual machine 
can use the overlapping-frames approach shown in Figure 5-12. If the 
stack outgrows the contiguous memory, the virtual machine can allocate 
another chunk of contiguous memory from the heap. Then, the machine 
can use the separate-frames approach shown in Figure 5-11 to connect the 
invoking method's frame sitting in the old chunk with the invoked 
method's frame sitting in the new chunk. Within the new chunk, it can 
once again use the contiguous memory approach. 
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Native Method Stacks 

In addition to all of the runtime data areas (described previously) that are 
defined by the Java virtual machine specification, a running Java appli­
cation can use other data areas created by or for native methods. When a 
thread invokes a native method, it enters a new world in which the struc­
tures and security restrictions of the Java virtual machine no longer ham­
per its freedom. A native method can likely access the runtime data areas 
of the virtual machine (depending on the native method interface), but it 
can also do anything else it wants. The method can use registers inside 
the native processor, allocate memory on any number of native heaps, or 
use any kind of stack. 

Native methods are inherently implementation dependent. Implemen­
tation designers are free to decide which mechanisms they will use to 
enable a Java application running on their implementation to invoke 
native methods. 

Any native method interface will use some kind of native method stack. 
When a thread invokes a Java method, the virtual machine creates a new 
frame and pushes it onto the Java stack. When a thread invokes a native 
method, however, that thread leaves the Java stack behind. Instead of 
pushing a new frame onto the thread's Java stack, the Java virtual 
machine will simply dynamically link to and directly invoke the native 
method. One way to think of this process is that the Java virtual machine 
is dynamically extending itself with native code-as if the Java virtual 
machine implementation is just calling another (dynamically linked) 
method within itself at the bequest of the running Java program. 

If an implementation's native method interface uses a C-linkage model, 
then the native method stacks are C stacks. When a C program invokes 
a C function, the stack operates in a certain way. The arguments to the 
function are pushed onto the stack in a certain order. The return value is 
passed back to the invoking function in a certain way. This behavior is 
true for the native method stacks in that implementation. 

A native method interface will more than likely have the capacity to 
call back into the Java virtual machine and invoke a Java method (once 
again, this decision is up to the designers). In this case, the thread leaves 
the native method stack and enters another Java stack. 

Figure 5-13 shows a graphical depiction of a thread that invokes a 
native method that calls back into the virtual machine to invoke another 
Java method. This figure shows the full picture of what a thread can 
expect inside the Java virtual machine. A thread might spend its entire 
lifetime executing Java methods and working with frames on its Java 
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---­Figure 5-13 
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stack, or it might jump back and forth between the Java stack and native 
method stacks. 

As depicted in Figure 5-13, a thread first invoked two Java methods­
the second of which invoked a native method. This act caused the virtual 
machine to use a native method stack. In this figure, the native method 
stack is shown as a finite amount of contiguous memory space. Assume 
this item is a C stack. The stack area used by each C-linkage function is 
shown in gray and is bounded by a dashed line. The first C-linkage func­
tion, which was invoked as a native method, invoked another C-linkage 
function. The second C-linkage function invoked a Java method through 
the native method interface. This Java method invoked another Java 
method, which is the current method shown in the figure. 

As with the other runtime memory areas, the memory occupied by 
native method stacks does not need to be a fixed size. This memory can 
expand and contract as needed by the running application. Implementa­
tions can enable users or programmers to specify an initial size for the 
method area, as well as a maximum or minimum size. 

Execution Engine 

At the core of any Java virtual machine implementation is its execution 
engine. In the Java virtual machine specification, the behavior of the 
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execution engine is defined in terms of an instruction set. For each 
instruction, the specification describes in detail what an implementation 
should do when it encounters the instruction as it executes bytecodes, but 
the specification says little about how. As mentioned in previous chapters, 
implementation designers are free to decide how their implementations 
will execute bytecodes. Their implementations can interpret, just-in-time 
compile, execute natively in silicon, use a combination of these techniques, 
or dream up some brand-new technique. 

Similar to the three senses of the term Java virtual machine described 
at the beginning of this chapter, the term execution engine can also be 
used in any of three senses: an abstract specification, a concrete imple­
mentation, or a run-time instance. The abstract specification defines the 
behavior of an execution engine in terms of the instruction set. Concrete 
implementations, which can use a variety of techniques, are either soft­
ware, hardware, or a combination of both. A run-time instance of an exe­
cution engine is a thread. 

Each thread of a running Java application is a distinct instance of the 
virtual machine's execution engine. From the beginning of its lifetime to 
the end, a thread is either executing bytecodes or native methods. A 
thread can execute bytecodes directly (by interpreting or executing 
natively in silicon) or indirectly (by just-in-time compiling and executing 
the resulting native code). A Java virtual machine implementation might 
use other threads that are invisible to the running application, such as 
a thread that performs garbage collection. Such threads do not need to 
be instances of the implementation's execution engine. All threads that 
belong to the running application, however, are execution engines in 
action. 

The Instruction Set A method's bytecode stream is a sequence of in­
structions for the Java virtual machine. Each instruction consists of a one­
byte opcode followed by zero or more operands. The opcode indicates the 
operation to be performed. Operands supply extra information needed by 
the Java virtual machine to perform the operation specified by the opcode. 
The opcode itself indicates whether or not it is followed by operands and 
which form the operands take (if any). Many Java virtual machine in­
structions take no operands and therefore consist only of an opcode. De­
pending upon the opcode, the virtual machine might refer to data stored 
in other areas in addition to (or instead of) operands that trail the opcode. 
When the virtual machine executes an instruction, it might use entries 
in the current constant pool, entries in the current frame's local variables, 
or values sitting on top of the current frame's operand stack. 
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The abstract execution engine runs by executing bytecodes one 
instruction at a time. This process takes place for each thread (execution 
engine instance) of the application running in the Java virtual machine. 
An execution engine fetches an opcode, and if that opcode has operands, 
it fetches the operands. The engine executes the action requested by the 
opcode and its operands, then fetches another opcode. Execution of byte­
codes continues until a thread completes, either by returning from its 
starting method or by not catching a thrown exception. 

From time to time, the execution engine might encounter an instruc­
tion that requests a native method invocation. On such occasions, the exe­
cution engine will dutifully attempt to invoke that native method. When 
the native method returns (if it completes normally, not by throwing an 
exception), the execution engine will continue executing the next instruc­
tion in the bytecode stream. 

One way you can think of native methods, therefore, is as programmer­
customized extensions to the Java virtual machine's instruction set. If 
an instruction requests an invocation of a native method, the execution 
engine invokes the native method. Running the native method is how the 
Java virtual machine executes the instruction. When the native method 
returns, the virtual machine moves on to the next instruction. If the 
native method completes abruptly (by throwing an exception), the virtual 
machine follows the same steps to handle the exception as it does when 
any instruction throws an exception. 

Part of the job of executing an instruction is determining the next instruc­
tion to execute. An execution engine determines the next opcode to fetch in 
one of three ways. For many instructions, the next opcode to execute directly 
follows the current opcode and its operands, if any, in the bytecode stream. 
For some instructions, such as goto or return, the execution engine deter­
mines the next opcode as part of its execution of the current instruction. If 
an instruction throws an exception, the execution engine determines the 
next opcode to fetch by searching for an appropriate catch clause. 

Several instructions can throw exceptions. The a throw instruction, for 
example, throws an exception explicitly. This instruction is the compiled 
form of the throw statement in Java source code. Every time the a throw 
instruction is executed, it will throw an exception. Other instructions 
throw exceptions only when certain conditions are encountered. For 
example, if the Java virtual machine discovers (to its chagrin) that the 
program is attempting to divide an integer by zero, it will throw an 
ArithmeticException. This situation can occur while executing any of 
four instructions-idi v, ldi v, irem, and lrem-which perform divisions 
or calculate remainders on ints or longs. 
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Each type of opcode in the Java virtual machine's instruction set has 
a mnemonic. In the typical assembly language style, streams of Java byte­
codes can be represented by their mnemonics followed by (optional) 
operand values. 

For an example of method's bytecode stream and mnemonics, consider 
the doMathForever () method of this class: 

II On CD-ROM in file jvmlex41Act.java 
class Act { 

} 

public static void doMathForever() { 
int i = 0; 
for (;;) { 

i += 1; 
i *= 2; 

} 
} 

The stream of bytecodes for doMathForever () can be disassembled 
into mnemonics as follows. The Java virtual machine specification does not 
define any official syntax for representing the mnemonics of a method's 
bytecodes. The code shown as follows illustrates the manner in which 
streams of bytecode mnemonics will be represented in this book. The left­
hand column shows the offset in bytes from the beginning of the method's 
bytecodes to the start of each instruction. The center column shows the 
instruction and any operands. The right-hand column contains comments, 
which are preceded with a double slash (just as in Java source code). 

II Bytecode stream: 03 3b 84 00 01 1a 05 68 3b a7 ff f9 
II Disassembly: 
II Method void doMathForever() 
II Left column: offset of instruction from beginning of method 
II I Center column: instruction mnemonic and any operands 
I I I I Right column: comment 

0 iconst 0 II 03 
1 is tore 
2 iinc 0, 
5 iload 0 
6 iconst 
7 imul 
8 is tore 
9 go to 2 

0 
1 

2 

0 

II 3b 
I I 84 oo 01 
II 1a 
II 05 
II 68 
II 3b 

I I a7 ff f9 

This way of representing mnemonics is similar to the output of the 
j avap program of Sun's Java 2 SDK. j avap enables you to look at the 
bytecode mnemonics of the methods of any class file. Note that jump 
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addresses are given as offsets from the beginning of the method. The goto 
instruction causes the virtual machine to jump to the instruction at off­
set two (an iinc). The actual operand in the stream is minus seven. To 
execute this instruction, the virtual machine adds the operand to the cur­
rent contents of the PC register. The result is the address of the i inc 
instruction at offset two. To make the mnemonics easier to read, the 
operands for jump instructions are shown as if the addition has already 
taken place. Instead of saying "go to -7 ," the mnemonics say, "goto 2 ." 

The central focus of the Java virtual machine's instruction set is the 
operand stack. Values are generally pushed onto the operand stack before 
they are used. Although the Java virtual machine has no registers for 
storing arbitrary values, each method has a set of local variables. The 
instruction set treats the local variables as a set of registers that are 
referred to by indexes. Nevertheless, other than the i inc instruction, 
which increments a local variable directly, values stored in the local vari­
ables must be moved to the operand stack before being used. 

For example, to divide one local variable by another, the virtual 
machine must push both onto the stack, perform the division, and then 
store the result back in the local variables. To move the value of an array 
element or object field into a local variable, the virtual machine must first 
push the value onto the stack, then store it into the local variable. To set 
an array element or object field to a value stored in a local variable, the 
virtual machine must follow the reverse procedure. First, it must push the 
value of the local variable onto the stack, then pop it off the stack and into 
the array element or object field on the heap. 

Several goals-some of which are conflicting-guided the design of the 
Java virtual machine's instruction set. These goals are basically the same 
as those described in Part I of this book as the motivation behind Java's 
entire architecture: platform independence, network mobility, and security. 

The platform independence goal was a major influence in the design 
of the instruction set. The instruction set's stack-centered approach, 
described previously, was chosen instead of a register-centered approach 
to facilitate efficient implementation on architectures with few or irregu­
lar registers, such as the Intel80X86. This feature of the instruction set­
the stack-centered design-makes it easier to implement the Java virtual 
machine on a wide variety of host architectures. 

Another motivation for Java's stack-centered instruction set is that com­
pilers usually use a stack-based architecture to pass an intermediate com­
piled form or the compiled program to a linker/optimizer. The Java class 
file, which is in many ways similar to the Unix . o or Windows . obj file 
emitted by a C compiler, actually represents an intermediate, compiled 
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form of a Java program. In the case of Java, the virtual machine serves as 
a (dynamic) linker and might serve as an optimizer. The stack-centered 
architecture of the Java virtual machine's instruction set facilitates the 
optimization that can be performed at run time in conjunction with execu­
tion engines that perform just-in-time compiling or adaptive optimization. 

As mentioned in Chapter 4, "Network Mobility," one major design con­
sideration was class-file compactness. Compactness is important because 
it facilitates speedy transmission of class files across networks. In the 
bytecodes stored in class files, all instructions-except two that deal with 
table jumping-are aligned on byte boundaries. The total number of 
opcodes is small enough so that opcodes occupy only one byte. This design 
strategy favors class-file compactness, possibly at the cost of some per­
formance when the program runs. In some Java virtual machine imple­
mentations, especially those executing bytecodes in silicon, the single-byte 
opcode might preclude certain optimizations that could improve perfor­
mance. Also, better performance might have been possible on some imple­
mentations if the bytecode streams were word aligned instead of byte 
aligned. (An implementation could always realign bytecode streams or 
translate opcodes into a more efficient form as classes are loaded. Byte­
codes are byte aligned in the class file and in the specification of the 
abstract method area and execution engine. Concrete implementations 
can store the loaded bytecode streams any way they wish.) 

Another goal that guided the design of the instruction set was the capa­
bility for bytecode verification, especially all at once by a data-flow ana­
lyzer. The verification capability is needed as part of Java's security 
framework. The capability to use a data-flow analyzer on the bytecodes 
when they are loaded, rather than verifying each instruction as it is exe­
cuted, facilitates the execution speed. One way this design goal manifests 
itself in the instruction set is that most opcodes indicate the type on which 
they operate. 

For example, instead of simply having one instruction that pops a word 
from the operand stack and stores it in a local variable, the Java virtual 
machine's instruction set has two instructions. One instruction, istore, 
pops and stores an int. The other instruction, fstore, pops and stores a 
float. Both of these instructions perform the same function when exe­
cuted: they pop a word and store it. Distinguishing between popping and 
storing an in t versus a float is important only to the verification process. 

For many instructions, the virtual machine needs to know the types 
being operated on to know how to perform the operation. For example, the 
Java virtual machine supports two ways of adding two words together, 
yielding a one-word result. One addition treats the words as ints, while 
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Table 5-2 

Type prefixes of 
bytecode 
mnemonics 

the other treats the words as floats. The difference between these two 
instructions facilitates verification but also tells the virtual machine 
whether it should perform integer or floating-point arithmetic. 

A few instructions operate on any type. The dup instruction, for exam­
ple, duplicates the top word of a stack regardless of its type. Some instruc­
tions, such as go to, do not operate on typed values. The majority of the 
instructions, however, operate on a specific type. The mnemonics for most 
of these typed instructions indicate their type by a single character pre­
fix that starts their mnemonic. Table 5-2 shows the prefixes for the vari­
ous types. A few instructions, such as arraylength or instanceof, do 
not include a prefix because their type is obvious. The arraylength 
opcode requires an array reference, and the instanceof opcode requires 
an object reference. 

Values on the operand stack must be used in a manner appropriate to 
their type. It is illegal, for example, to push four ints, then add them as 
if they were two longs. Also, it is illegal to push a float value onto the 
operand stack from the local variables, then store it as an int in an array 
on the heap. Furthermore, it is illegal to push a double value from an 
object field on the heap, then store the topmost of its two words into the 
local variables as a value of type reference. The strict type rules that 
are enforced by Java compilers must also be enforced by Java virtual 
machine implementations. 

Implementations must also observe rules when executing instructions 
that perform generic stack operations that are type independent. As men­
tioned previously, the dup instruction pushes a copy of the top word of the 

byte b baload load byte from array 

short s sa load load short from array 

int i iaload load int from array 

long 1 laload load long from array 

char c caload load char from array 

float f fa load load float from array 

double d daload load double from array 

reference a aaload load reference from array 

i 

I. 

. I 
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Table 5-3 

Storage and com-
putation types 
inside the Java vir-
tual machine 

Chapter Five 

stack (irrespective of type). This instruction can be used on any value that 
occupies one word-an int, float, reference, or returnAddress. Y 
ou cannot use dup when the top of the stack contains either a long or 
double, which are the data types that occupy two consecutive operand 
stack locations. A long or double sitting on the top of the operand stack 
can be duplicated in its entirety by the dup2 instruction, which pushes a 
copy of the top two words onto the operand stack. The generic instructions 
cannot be used to split dual-word values. 

To keep the instruction set small enough to enable each opcode to be 
represented by a single byte, not all operations are supported on all types. 
Most operations are not supported for types byte, short, and char. 
These types are converted to int when they are moved from the heap or 
method area to the stack frame. They are operated on as ints, then are 
converted back to byte, short, or char before being stored back into the 
heap or method area. 

Table 5-3 shows the computation types that correspond to each storage 
type in the Java virtual machine. As used here, a storage type is the man­
ner in which values of the type are represented on the heap. The storage 
type corresponds to the type of the variable in Java source code. A com­
putation type is the manner in which the type is represented on the Java 
stack frame. 

Implementations of the Java virtual machine must in some way ensure 
that values are operated on by instructions that are appropriate to their 
type. They can verify bytecodes up front as part of the class verification 

Minimum Words in 
Bits in Heap or Computation the Java 

Storage Type Method Area Type Stack Frame 

byte 8 int load byte from array 1 

short 16 int load short from array 1 

int 32 int load int from array 1 

long 64 long load long from array 2 

char 16 int load char from array 1 

float 32 float load float from array 1 

double 64 double load double from array 2 

reference 32 reference load reference from array 1 
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process or on the fly as the program executes, or they can use some com­
bination of both. Bytecode verification is described in more detail in Chap­
ter 7, "The Lifetime of a Type." The entire instruction set is covered in 
detail in Chapters 10 through 20. 

Execution Techniques Various execution techniques that can be used 
by an implementation-interpreting, just-in-time compiling, adaptive op­
timization, and native execution in silicon-were described in Chapter 1, 
"Introduction to Java's Architecture." The main point to remember about 
execution techniques is that an implementation can use any technique to 
execute bytecodes, as long as it adheres to the semantics of the Java vir­
tual machine instruction set. 

One of the most interesting and speedy execution techniques is adap­
tive optimization. The adaptive optimization technique, which is used by 
several existing Java virtual machine implementations (including Sun's 
Hotspot virtual machine) borrows from techniques used by earlier vir­
tual machine implementations. The original JVMs interpreted bytecodes 
one at a time. Second-generation JVMs added a JIT compiler, which 
compiles each method to native code upon first execution, then executes 
the native code. Thereafter, whenever the method is called, the native 
code is executed. Adaptive optimizers, taking advantage of information 
available only at run time, attempt to combine bytecode interpretation 
and compilation to native in the way that will yield optimum perfor­
mance. 

An adaptive optimizing virtual machine begins by interpreting all code, 
but it monitors the execution of that code. Most programs spend 80 to 90 
percent of their time executing 10 to 20 percent of the code. By monitor­
ing the program execution, the virtual machine can figure out which 
methods represent the program's hot spot-the 10 to 20 percent of the 
code that is executed 80 to 90 percent of the time. 

When the adaptive optimizing virtual machine decides that a particu­
lar method is in the hot spot, it fires a background thread that compiles 
those bytecodes to native and heavily optimizes the native code. Mean­
while, the program can still execute that method by interpreting its byte­
codes. Because the program is not held up and because the virtual 
machine is only compiling and optimizing the hot spot (perhaps 10 to 20 
percent of the code), the virtual machine has more time than a traditional 
JIT to perform optimizations. 

The adaptive optimization approach yields a program in which the code 
that is executed 80 to 90 percent of the time is native code (as heavily 
optimized as statically compiled C++, with a memory footprint not much 
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bigger than a fully interpreted Java program). In other words, this pro­
gram is fast. An adaptive optimizing virtual machine can keep the old 
bytecodes around in case a method moves out of the hot spot. (The hot spot 
might move somewhat as the program executes.) If a method moves out 
of the hot spot, the virtual machine can discard the compiled code and 
revert to interpreting that method's bytecodes. 

As you might have noticed, an adaptive optimizer's approach to mak­
ing Java programs run fast is similar to the approach that programmers 
should take to improve a program's performance. An adaptive optimizing 
virtual machine, unlike a regular JIT-compiling virtual machine, does 
not carry out premature optimization. The adaptive optimizing virtual 
machine begins by interpreting bytecodes. As the program runs, the vir­
tual machine profiles the program to find the program's hot spot, which 
means the 10 to 20 percent of the code that is executed 80 to 90 percent 
of the time. Like a good programmer, the adaptive optimizing virtual 
machine just focuses its optimization efforts on that time-critical code. 

There is a bit more to the adaptive optimization story, however. Adap­
tive optimizers can be tuned for the run-time characteristics of Java 
programs-in particular, of well-designed Java programs. According to 
David Griswold, Hotspot manager at JavaSoft, "Java is a lot more object­
oriented than C++. You can measure that; you can look at the rates of 
method invocations, dynamic dispatches, and such things. And the rates 
[for Java] are much higher than they are in C++." Now, this high rate of 
method invocations and dynamic dispatches is especially prominent in a 
well-designed Java program, because one aspect of a well-designed Java 
program is highly factored, fine-grained design-in other words, lots of 
compact, cohesive methods and objects. 

This run-time characteristic of Java programs-the high frequency of 
method invocations and dynamic dispatches-affects performance in two 
ways. First, there is an overhead associated with each dynamic dispatch. 
Second (and more significantly), method invocations reduce the effective­
ness of compiler optimization. 

Method invocations reduce the effectiveness of optimizers, because 
optimizers do not perform well across method-invocation boundaries. As 
a result, optimizers end up focusing on the code between method invoca­
tions. The greater the method invocation frequency, the fewer amount of 
code the optimizer has to work with between method invocations, and the 
less effective the optimization becomes. 

The standard solution to this problem is inlining-the copying of an 
invoked method's body directly into the body of the invoking method. 
Inlining eliminates method calls and gives the optimizer more code with 
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which to work, making possible more effective optimization at the cost of 
increasing the run-time memory footprint of the program. 

The trouble is that inlining is harder with object-oriented languages 
such as Java and C++ than with non-object-oriented languages such as 
C, because object-oriented languages use dynamic dispatching. The prob­
lem is worse in Java than in C++, because Java has a greater call fre­
quency and a greater percentage of dynamic dispatches than C++. 

A regular optimizing static compiler for a C program can inline in a 
straight-forward manner, because there is one function implementation 
for each function call. The trouble with inlining in object-oriented lan­
guages is that dynamic method dispatch means that there might be mul­
tiple function (or method) implementation for any given function call. In 
other words, the Java virtual machine might have many different imple­
mentations of a method to choose from at run time, based on the class of 
the object on which the method is being invoked. 

One solution to the problem of inlining a dynamically dispatched 
method call is to just inline all of the method implementations that might 
be selected at run time. The trouble with this solution is that in cases 
where there are many method implementations, the size of the optimized 
code can grow large. 

One advantage that adaptive optimization has over static compilation 
is that because it happens at run time, it can use information that is not 
available to a static compiler. For example, although there might be 30 
possible implementations that are called for a particular method invoca­
tion, perhaps only two of them are ever called at run time. The adaptive 
optimization approach enables only those two to be inlined, thereby min­
imizing the size of the optimized code. 

Threads The Java virtual machine specification defines a threading 
model that aims to facilitate implementation on a wide variety of archi­
tectures. One goal of the Java threading model is to enable implementa­
tion designers, where possible and appropriate, to use native threads. Al­
ternatively, designers can implement a thread mechanism as part of their 
virtual machine implementation. One advantage to using native threads 
on a multi-processor host is that different threads of a Java application 
can run simultaneously on different processors. 

One tradeoff of Java's threading model is that the specification of pri­
orities is the lowest common denominator. A Java thread can run at any 
one of 10 priorities. Priority one is the lowest, and priority 10 is the high­
est. If designers use native threads, they can map the 10 Java priorities 
onto the native priorities in whatever manner seems most appropriate. 

Page 192 of 280



184 Chapter Five 

The Java virtual machine specification defines the behavior of threads at 
different priorities only by indicating that all threads at the highest pri­
ority will receive some CPU time. Threads at lower priorities are guar­
anteed to receive CPU time only when all higher-priority threads are 
blocked. Lower-priority threads might receive some CPU time when 
higher-priority threads are not blocked, but there are no guarantees. 

The specification does not assume time-slicing between threads of dif­
ferent priorities, because not all architectures time-slice. (As used here, 
time-slicing means that all threads at all priorities will be guaranteed 
some CPU time, even when no threads are blocked.) Even among those 
architectures that time-slice, the algorithms used to allot time slots to 
threads at various priorities can differ greatly. 

As mentioned in Chapter 2, "Platform Independence," you must not rely 
on time-slicing for program correctness. You should use thread priorities 
only to give the Java virtual machine hints at the tasks on which it should 
spend more time. To coordinate the activities of multiple threads, you 
should use synchronization. 

The thread implementation of any Java virtual machine must support 
two aspects of synchronization: object locking and thread wait and notify. 
Object locking helps keep threads from interfering with one another 
while working independently on shared data. Thread wait and notify 
helps threads cooperate with one another while working together toward 
some common goal. Running applications access the Java virtual 
machine's locking capabilities via the instruction set and access its wait 
and notify capabilities via the wait(), notify(), and notifyAll () 
methods of class Object. For more details, see Chapter 20, "Thread Syn­
chronization." 

In the Java virtual machine specification, the behavior of Java threads 
is defined in terms of variables, a main memory, and working memories. 
Each Java virtual machine instance has a main memory, which contains 
all of the program's variables (instance variables of objects, components 
of arrays, and class variables). Each thread has a working memory in 
which the thread stores working copies of variables that it uses or assigns. 
Local variables and parameters, because they are private to individual 
threads, can be logically seen as part of either the working memory or the 
main memory. 

The Java virtual machine specification defines many rules that gov­
ern the low-level interactions of threads with main memory. For exam­
ple, one rule states that all operations on primitive types, except in some 
cases longs and doubles, are atomic. For example, if two threads com­
pete to write two different values to an int variable, even in the absence 

Page 193 of 280



The Java Virtual Machine ! 185 

of synchronization, the variable will end up with one value or the other. 
The variable will not contain a corrupted value. In other words, one thread 
will win the competition and will write its value to the variable first. The 
losing thread does not need to sulk, however, because it will write its value 
to the variable second, overwriting the winning thread's value. 

The exception to this rule is any long or double variable that is not 
declared volatile. Rather than being treated as a single, atomic, 64-bit 
value, such variables can be treated by some implementations as two 
atomic, 32-bit values. Storing a non-volatile long to memory, for exam­
ple, could involve two 32-bit write operations. This non-atomic treatment 
of longs and doubles means that two threads competing to write two dif­
ferent values to a long or double variable can legally yield a corrupted 
result. 

Although implementation designers are not required to treat opera­
tions involving non-volatile longs and doubles atomically, the Java vir­
tual machine specification encourages them to do so anyway. This 
non-atomic treatment of longs and doubles is an exception to the gen­
eral rule that operations on primitive types are atomic. This exception was 
created with the intention of facilitating efficient implementation of the 
threading model on processors that do not provide efficient ways to trans­
fer 64-bit values to and from memory. In the future, this exception might 
be eliminated. For the time being, however, Java programmers must be 
sure to synchronize access to shared longs and doubles. 

Fundamentally, the rules governing low-level thread behavior specify 
when a thread can and must complete the following actions: 

1. Copying values of variables from the main memory to its working 
memory 

2. Writing values from its working memory back into the main 
memory 

For certain conditions, the rules specify a precise and predictable order 
of memory reads and writes. For other conditions, however, the rules do 
not specify any order. The rules are designed to enable Java programmers 
to build multi-threaded programs that exhibit predictable behavior while 
giving implementation designers some flexibility. This flexibility enables 
designers of Java virtual machine implementations to take advantage of 
standard hardware and software techniques that can improve the per­
formance of multi-threaded applications. 

The fundamental, high-level implication of all of the low-level rules 
that govern the behavior ofthreads is as follows: If access to certain vari­
ables is not synchronized, threads are enabled to update those variables 

Page 194 of 280



186 Chapter Five 

in main memory in any order. Without synchronization, your multi­
threaded applications might exhibit surprising behavior on some Java 
virtual machine implementations. With proper use of synchronization, 
however, you can create multi-threaded Java applications that behave in 
a predictable way on any implementation of the Java virtual machine. 

Native Method Interface 

Java virtual machine implementations are not required to support any 
particular native method interface. Some implementations might support 
no native method interfaces at all. Others might support several inter­
faces, each geared towards a different purpose. 

Sun's JNI is geared towards portability. JNI is designed so that it can 
be supported by any implementation of the Java virtual machine, no mat­
ter which garbage-collection technique or object representation the imple­
mentation uses. In turn, this feature enables developers to link the same 
(JNI-compatible) native method binaries to any JNI-supporting virtual 
machine implementation on a particular host platform. 

Implementation designers can choose to create proprietary native 
method interfaces in addition to (or instead of) JNI. To achieve its porta­
bility, JNI uses indirection through pointers to pointers and pointers to 
functions. To obtain the ultimate in performance, designers of an imple­
mentation might decide to offer their own low-level native method 
interface that is tied closely to the structure of their particular imple­
mentation. Designers could also decide to offer a higher-level native 
method interface than JNI, such as an interface that brings Java objects 
into a component software model. 

To do useful work, a native method must have the capacity to interact 
(to some degree) with the internal state of the Java virtual machine 
instance. For example, a native method interface might enable native 
methods to do some or all of the following actions: 

Passing and returning data 

Accessing instance variables or invoking methods in objects on the 
garbage-collected heap 

Accessing class variables or invoking class methods 

Accessing arrays 

Locking an object on the heap for exclusive use by the current 
thread 
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Ill Creating new objects on the garbage-collected heap 

Ill Loading new classes 

Ill Throwing new exceptions 

II Catching exceptions thrown by Java methods that the native 
method invoked 

Ill Catching asynchronous exceptions thrown by the virtual machine 

II Indicating to the garbage collector that it no longer needs to use a 
particular object 

Designing a native method interface that offers these services can be 
complicated. The design needs to ensure that the garbage collector does 
not free any objects that are being used by native methods. If an imple­
mentation's garbage collector moves objects to keep heap fragmentation 
at a minimum, the native method interface design must make sure that 
the following situations can occur: 

1. An object can be moved after its reference has been passed to a 
native method 

2. Any objects whose references have been passed to a native method 
are pinned until the native method returns or otherwise indicates 
that it is finished with the objects 

As you can see, native method interfaces are intertwined with the inner 
workings of a Java virtual machine. 

The Real Machine 
As mentioned at the beginning of this chapter, all of the subsystems, run­
time data areas, and internal behaviors defined by the Java virtual 
machine specification are abstract. Designers are not required to orga­
nize their implementations around real components that map closely 
to the abstract components of the specification. The abstract internal 
components and behaviors are merely a vocabulary with which the 
specification defines the required external behavior of any Java virtual 
machine implementation. 

In other words, an implementation can be anything on the inside as long 
as it behaves like a Java virtual machine on the outside. Implementations 
must have the capability to recognize Java class files and must adhere to 
the semantics of the Java code that the class files contain. Otherwise, 
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anything goes. How bytecodes are executed, how the runtime data areas 
are organized, how garbage collection is accomplished, how threads are 
implemented, how the bootstrap class loader finds classes, which native 
method interfaces are supported-these are some of the many decisions 
left to implementation designers. 

The flexibility of the specification gives designers the freedom to tailor 
their implementations to fit their circumstances. In some implementa­
tions, minimizing usage of resources can be critical. In other implemen­
tations where resources are plentiful, maximizing performance might be 
the one and only goal. 

By clearly marking the line between the external behavior and the 
internal implementation of a Java virtual machine, the specification pre­
serves compatibility among all implementations while promoting inno­
vation. Designers are encouraged to apply their talents and creativity 
towards building even better Java virtual machines. 

Eternal Math: A Simulation 
The CD-ROM contains several simulation applets that serve as interac­
tive illustrations for the material presented in this book. The applet 
shown in Figure 5-14 simulates a Java virtual machine executing a few 
bytecodes. You can run this applet by loading applets/EternalMath. 
html from the CD-ROM into any Java-enabled Web browser or applet 
viewer that supports JDK Version 1.0. 

The simulation instructions represent the body ofthe doMathForever () 
method of class Act, shown previously in the Instruction Set section of 
this chapter. This simulation shows the local variables and operand stack 
of the current frame, the PC register, and the bytecodes in the method 
area. This simulation also shows an optop register, which you can think 
of as part of the frame data of this particular implementation of the Java 
virtual machine. The optop register always points to one word beyond the 
top of the operand stack. 

The applet has four buttons: Step, Reset, Run, and Stop. Each time you 
press the Step button, the Java virtual machine simulator will execute the 
instruction pointed to by the PC register. Initially, the PC register points 
to an iconst_O instruction. The first time you press the Step button, 
therefore, the virtual machine will execute icons t _ 0 and will push a zero 
onto the stack and set the PC register to point to the next instruction to 
execute. Subsequent presses of the Step button will execute subsequent 
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instructions, and the PC register will lead the way. If you press the Run 
button, the simulation will continue with no further coaxing on your part 
until you press the Stop button. To start the simulation again, press the 
Reset button. 

The value of each register (PC and optop) is shown two ways. The con­
tents of each register, an integer offset from the beginning of either the 
method's bytecodes or the operand stack, is shown in an edit box. Also, a 
small arrow (either pc> or optop>) indicates the location contained in the 
register. 

In the simulation, the operand stack is shown growing down the panel 
(up in memory offsets) as words are pushed onto the stack. The top of the 
stack recedes up the panel as words are popped from the stack. 

The doMathForever () method only has one local variable, i, which 
sits at array position zero. The first two instructions, iconst_O and 
istore_O, initialize the local variable to zero. The next instruction, 
iinc, increments i by one. This instruction implements the i += 1 state­
ment from doMathForever ().The next instruction, iload_O, pushes 
the value of the local variable onto the operand stack. iconst_2 pushes 
an int 2 onto the operand stack. imul pops the top two ints from the 
operand stack, multiplies them, and pushes the result. The istore_O 
instruction pops the result of the multiply and puts it into the local vari­
able. The previous four instructions implement the i * = 2 statement 
from doMathForever ().The last instruction, goto, sends the program 
counter back to the iinc instruction. The goto implements the for (;;) 
loop of doMathForever (). 

With enough patience and clicks of the Step button (or a long enough 
run of the Run button), you can receive an arithmetic overflow. When the 
Java virtual machine encounters such a condition, it simply truncates (as 
shown by this simulation). The machine does not throw any exceptions. 

For each step of the simulation, a panel at the bottom of the applet con­
tains an explanation of what the next instruction will do (see Figure 5-14). 

On the CD-ROM 
The CD-ROM contains the source code examples from this chapter in the 
j vm directory. The Eternal Math applet is contained on a Web page on the 
CD-ROM in file applets/EternalMath.html. The source code for this 
applet is found alongside its class files in the applets/JVMSimulators 
and applets/JVMSimulators/COM/artima/jvmsim directories. 
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Figure 5-14 
The Et:rnal Math 
applet 
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imul will pop two integers, mulhpry them, and push the result. 

The Resources Page 

For links to more information about the Java virtual machine, visit the 
resources page at http: I /www. artima. com/insidejvm/resources/. 
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The previous chapter (the first ofPart II), "Java Internals," 
gave an overview of the Java virtual machine. The next 
four chapters will focus on different aspects of the Java vir­
tual machine. This chapter takes a look at the Java class 
file and describes the contents of the class file, including 
the structure and format of the constant pool. This chap­
ter serves as a complete reference for the Java class file 
format. 

Accompanying this chapter on the CD-ROM is an applet 
that interactively illustrates the material presented in the 
chapter. The applet, called Getting Loaded, simulates 
the Java virtual machine loading a Java class file. At the 
end of this chapter, you will find a description of this applet 
and instructions on how to use the application. 
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Chapter Six 

What Is a Java Class File? 
The Java class file is a precisely defined binary file format for Java pro­
grams. Each Java class file represents a complete description of one Java 
class or interface. There is no way to put more than one class or interface 
into a single class file. The precise definition of the class file format 
ensures that any Java class file can be loaded and correctly interpreted 
by any Java virtual machine, no matter which system produced the class 
file or which system hosts the virtual machine. 

Although the class file is related to the Java language architecturally, 
it is not inextricably linked to the Java language. As shown in Figure 
6-1, you could write programs in other languages and compile them to 
class files, or you could compile your Java programs to a different binary 
file format. You can, in fact, express valid programs in Java class file form 
that are impossible to express in Java source code. Nevertheless, most 
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Table 6-1 

Class file "primitive 
types" 

Java programmers will likely use the class file as the primary vehicle for 
delivering their programs to Java virtual machines. 

As mentioned in earlier chapters, the Java class file is a binary stream 
of 8-bit bytes. Data items are stored sequentially in the class file, with no 
padding between adjacent items. The lack of padding helps keep class files 
compact. Items that occupy more than one byte are split into several con­
secutive bytes that appear in big-endian (higher bytes first) order. 

Just as your Java classes can contain varying numbers of fields, meth­
ods, method parameters, local variables, and so on, the Java class file can 
contain many items that vary in size or number from one class file to 
another. In the class file, the size or length of a variable-length item pre­
cedes the actual data for the item. This feature enables class file streams 
to be parsed from beginning to end, reading the size of an item first, fol­
lowed by the item data. 

What Is in a Class File? 
The Java class file contains everything a Java virtual machine needs to 
know about one Java class or interface. The remainder of this chapter 
describes the class file format using tables. Each table has a name and 
shows an ordered list of items that can appear in a class file. Items appear 
in the table in the order in which they appear in the class file. Each item 
has a type, a name, and a count. The type is either a table name or one of 
the "primitive types" shown in Table 6-1. All values stored in items of type 
u2, u4, and us appear in the class file in big-endian order. 

The major components of the class file, in their order of appearance in 
the class file, are shown in Table 6-2 as items in the variable-length 
ClassFile table. 

ul 

u2 

u4 

u8 

a single, unsigned byte 

two unsigned bytes 

four unsigned bytes 

eight unsigned bytes 
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Table 6-2 

Format of a 
ClassFile Table 

Chapter She 

·Name Count 

u4 magic 1 

u2 minor version 1 

u2 major_version 1 

u2 constant_pool_count 1 

cp_info constant _pool constant_pool_count 1 

u2 access_flags 1 

u2 this class 1 

u2 super_class 1 

u2 interfaces count 1 

u2 interfaces interfaces count 

u2 fields count 1 

field info fields fields count 

u2 methods count 1 

method info methods methods count 

u2 attributes count 1 

attribute info attributes attributes count 

The items of the ClassFile table are as follows: 

magic 

The first four bytes of every Java class file are its magic number, 
OxCAFEBABE. The magic number makes non-Java class files easier to 
identify. If a file does not start with OxCAFEBABE, it definitely is not a 
Java class file. A magic number can be chosen by a file format's design­
ers to be any arbitrary number that is not already in widespread use. The 
magic number for the Java class file was chosen back in the days when 
"Java" was called "Oak." According to Patrick Naughton, a key member of 
the original Java team, the magic number was chosen "long before the 
name Java was ever uttered in reference to this language. We were look­
ing for something fun, unique, and easy to remember. It is only a coinci­
dence that OxCAFEBABE, an oblique reference to the cute baristas at 
Peet's Coffee, was foreshadowing for the name Java." 
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minor_version and major_ version 

The second four bytes of the class file contain the minor and major version 
numbers. As Java technology evolves, new features may occasionally be added 
to the Java class file format. Each time the class file format changes, the ver­
sion numbers will change, as well. To the Java virtual machine, the version 
numbers identify the format to which a particular class file adheres. Java vir­
tual machines will generally be able to load class files with a given major ver­
sion number and a range of minor version numbers. Java virtual machines 
must reject class files with version numbers outside their valid range. 

The Java virtual machine implementation in Sun's JDK release 1.0.2 
supports class file format versions 45.0 (the major version number is 45, 
while the minor version number is 0) through 45.3. The virtual machines 
in alll.1 releases of the JDK can support class file format versions 45.0 
through 45.65535. In the 1.2 SDK from Sun, the virtual machine can sup­
port versions 45.0 through 46.0. 

1.0 or 1.1 compilers should generate class files with version number 
45.3. The j avac compiler in Sun's 1.2 SDK, by default, also generates 
class files with version 45.3. But if -target 1 . 2 is specified on the 
j avac command line, the 1.2 compiler will generate class files with ver­
sion 46.0. Class files created with the -target 1 . 2 flag will not run on 
1.0 or 1.1 virtual machines. 

The second edition of the Java virtual machine specification altered the 
interpretation of the major and minor version numbers of the class file. 
According to the second edition, the major version number of a class file 
is intended to correspond to a major release of the Java platform. (For 
example, with the release of the Java 2 Platform, the major version num­
ber was increased from 45 to 46.) The minor version numbers are 
intended to correspond to individual releases of a particular major plat­
form release. Thus, although a difference in class file format will definitely 
be identifiable via a difference in version number, a difference in version 
number does not necessarily indicate a difference in class file format. 
Rather, a difference in version number may indicate only that the class 
file was generated by or is intended for a different release of the Java 
Platform-although the class file format has not changed. 

constant_pool_count and constant_pool 

Following the magic and version numbers in the class file is the con­
stant pool. As mentioned in Chapter 5, "The Java Virtual Machine," the 
constant pool contains the constants associated with the class or interface 
defined by the file. Constants such as literal strings, final variable values, 
class names, and method names are stored in the constant pool. The con­
stant pool is organized as a list of entries. A count of the number of entries 
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Table 6-3 

Constant pool tags 

Chapter Six 

in the list, constant_pool_count, precedes the actual list, constant_ 
pool. 

Many entries in the constant pool refer to other entries in the constant 
pool, and many items that follow the constant pool in the class file refer 
back to entries in the constant pool. Throughout the class file, constant 
pool entries are referred to by the integer index that indicates their posi­
tion in the constant _pool list. The first entry in the list has an index 
of one, the second has an index of two, and so on. Although there is no 
entry in the constant _pool list that has an index of zero, the missing 
Oth entry is included in the constant_pool_count. For example, if a 
constant_pool list includes 14 entries (with indexes one through 14), 
the constant_pool_count would be 15. 

Each constant pool entry starts with a one-byte tag that indicates the 
type of constant making its home at that position in the list. Once a Java 
virtual machine grabs and interprets this tag, it knows what to expect after 
the tag. Table 6-3 shows the names and values of the constant pool tags. 

For each tag shown in Table 6-3, there is a corresponding table. The 
name of the table is formed by appending "_info" to the tag name. For 

... E~i~Type 

CONSTANT UtfB 
string 

CONSTANT_Integer 

CONSTANT Float 

CONSTANT_Long 

CONSTANT_Double 

CONSTANT_Class 

CONSTANT_String 

CONSTANT Fieldref 

CONSTANT Methodref 
method 

CONSTANT_InterfaceMethodref 

CONSTANT_NameAndType 

tag "X~~e Jlescription 

1 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

A UTF-8 encoded Unicode 

An int literal value 

A float literal value 

A long literal value 

A double literal value 

A symbolic reference to a class 
or interface 

A String literal value 

A symbolic reference to a field 

A symbolic reference to a 

declared in a class 

A symbolic reference to a 
method declared in an interface 

Part of a symbolic reference to a 
field or method 
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example, the table that corresponds to the CONSTANT_ Class tag is called 
CONSTANT Class info. The CONSTANT Utf8 info table stores a com­
pressed form of unicode strings. The tables for the various kinds of con­
stant pool entries are described in detail later in this chapter. 

The constant pool plays an important role in the dynamic linking of 
Java programs. In addition to literal constant values, the constant pool 
contains the following kinds of symbolic references: 

II Fully qualified names of classes and interfaces 

Ill Field names and descriptors 

II Method names and descriptors 

A field is an instance or class variable of the class or interface. A field 
descriptor is a string that indicates the field's type. A method descriptor is 
a string that indicates the method's return type and the number, order, and 
types of its parameters. The constant pool's fully qualified names and 
method and field descriptors are used at run time to link code in this class 
or interface with code and data in other classes and interfaces. The class 
file contains no information about the eventual memory layout of its com­
ponents, so classes, fields, and methods cannot be referenced directly by 
the bytecodes in the class file. The Java virtual machine resolves the actual 
address of any referenced item at run time, given a symbolic reference 
from the constant pool. For example, bytecode instructions that invoke a 
method give constant pool index of a symbolic reference to the method to 
invoke. This process of using the symbolic references in the constant pool 
is described in more detail in Chapter 8, "The Linking Model." 

access_flags 

The first two bytes after the constant pool, the access flags, reveal sev­
eral pieces of information about the class or interface defined in the file. 
To start with, the access flags indicate whether the file defines a class or 
an interface. The access flags also indicate which modifiers were used in 
the declaration of the class or interface. Classes and interfaces can be pub­
lic or abstract. Classes can be final, but final classes cannot be abstract. 
Interfaces cannot be final. The bits used for the various flags are shown 
in Table 6-4. 

The ACC _SUPER flag exists for backwards compatibility with Sun's older 
Java compilers. In Sun's older Java virtual machines, the invoke special 
instruction had more relaxed semantics. All new compilers should set the 
ACC _SUPER flag. All new implementations of the Java virtual machine 
should implement the newer, stricter invokespecial semantics. (See the 
invokespecial instruction in Appendix A for a description of these 
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Table 6-4 

Flag bits in the 
access_flags 
1tem of 
ClassFile tables 

Chapter Six 

.Flag Name Value Meaning If Set Set By 

ACC PUBLIC OxOOOl Type is public Classes and interfaces 

ACC FINAL OxOOlO Class is final Classes only 

ACC SUPER Ox0020 Use new Classes and interfaces 
invokespecial 
semantics 

ACC INTERFACE Ox0200 Type is an interface, All interfaces, 
not a class no classes 

ACC ABSTRACT Ox0400 Type is abstract All interfaces, 
some classes 

semantics.) Sun's older compilers generate class files with the ACC _SUPER 

flag set to zero. Sun's older Java virtual machines ignore the flag if it is set. 
All unused bits in access_flags must be set to zero by compilers and 

ignored by Java virtual machine implementations. 

this class 

The next two bytes are the this_ class item, an index into the con­
stant pool. The constant pool entry at position this_class must be a 
CONSTANT_Class_info table, which has two parts: a tag and a 
name_ index. The tag will have the value CONSTANT_ Class. The constant 
pool entry at position name_index will be a CONSTANT_Utf8_info table 
containing the fully qualified name of the class or interface. 

The this_class item provides a glimpse of how the constant pool is 
used. By itself, the this_class item is just an index into the constant pool. 
When a Java virtual machine looks up the constant pool entry at the posi­
tion this_class, it will find an entry that identifies itself via its 
tag as a CONSTANT_Class_info. The Java virtual machine knows that 
CONSTANT_Class_info entries always have an index into the constant 
pool, called name_index, following their tag. So the virtual machine looks 
up the constant pool entry at position name _index, where it should find a 
CONSTANT_ Ut f 8 _info entry that contains the fully qualified name of the 
class or interface. See Figure 6-2 for a graphical depiction of this process. 

super_class 

Following this_class in the class file is the super_class item, 
another two-byte index into the constant pool. The constant pool entry at 
position super_class will be a CONSTANT Class info entry that 
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---­Figure 6-2 
Example of constant 
pool usage constant pool 

entry #1 

constant pool 
entry #7 

this class 

refers to the fully qualified name of this class's superclass. Because the 
base class of every object !n Java programs is the java .lang. Object 
class, the super_class constant pool index will be valid for every class 
except Object. For Object, super_class is a zero. For interfaces, the 
constant pool entry at position super_ class is java. lang. Object. 

interfaces count and interfaces 

The component that follows super_class starts with interfaces_ 
count, a count of the number ofsuperinterfaces directly implemented by 
the class or extended by the interface defined in this file. Immediately fol­
lowing the count is interfaces, an array that contains one index into 
the constant pool for each superinterface directly implemented by this 
class or interface. Each superinterface is represented by a CONSTANT_ 
Class_info entry in the constant pool that refers to the fully qualified 
name of the interface. Only direct superinterfaces, those that appear in 
the implements clause of the class or the extends clause of the inter­
face declaration, appear in this array. The superinterfaces appear in the 
array in the order in which they appear (left to right) in the implements 
or extends clause. 
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fields count and fields 

Following the interfaces component in the class file is a description of 
the fields declared by this class or interface. This component starts with 
fields_count, a count of the number of fields that includes both class 
and instance variables. Following the count is a list of variable-length 
field_info tables, one for each field. (The fields_count indicates the 
number of field_info tables in the list.) The only fields that appear in 
the fields list are those that are declared by the class or interface 
defined in the file. No fields inherited from superclasses or superinter­
faces appear in the fields list. On the other hand, the fields list could 
include fields not mentioned in a corresponding Java source file, because 
Java compilers may add fields to classes or interfaces during compilation. 
For example, to the fields list of an inner class, the Java compiler adds 
instance variables to hold references to each enclosing class instance. Any 
fields in the fields list that were not mentioned in the source, but were 
instead added by the compiler, should be marked with a Synthetic 
attribute. 

Each field info table reveals information about one field. The table 
contains the field's name, descriptor, and modifiers. If the field is declared 
as final, the field_info table also reveals the field's constant value. 
Some of this information is contained in the field_ info table itself, and 
some is contained in constant pool locations referred to by the table. The 
field_info table is described in more detail later in this chapter. 

methods count and methods 

Following the fields in the class file is a description of the methods 
which are declared by the class or interface. This component starts with 
methods_count, a two-byte count of the number of methods in the class 
or interface. The count includes only those methods that are explicitly 
defined by this class or interface. (The count does not include any meth­
ods inherited from superclasses or superinterfaces.) Following the method 
count are the methods themselves, described in a list of method_info 
tables. (The methods_count indicates the number of method_info 
tables in the list.) 

The method_ info table contains several pieces of information about 
the method, including the method's name and descriptor (its return type 
and argument types). If the method is not abstract and not native, the 
method_info table includes the number of stack words required for the 
method's local variables, the maximum number of stack words required 
for the method's operand stack, a table of exceptions caught by the 
method, the bytecode sequence, and optional line number and local 
variable tables. If the method can throw any checked exceptions, 
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the method_ info table includes a list of those checked exceptions. The 
method_info table is described in detail later in this chapter. 

attributes count and attributes 

The last component in the class file are the attributes, which give gen­
eral information about the particular class or interface defined by the file. 
The attributes component starts with attributes_count, a count of 
the number of attribute_info tables appearing in the subsequent 
attributes list. The first item in each attribute info table is an 
index into the constant pool of a CONSTANT_UtfS_info table that gives 
the attribute's name. 

Attributes come in many varieties. Several varieties are defined by the 
Java virtual machine specification, but anyone can create their own vari­
eties of attributes (following certain rules) and place them into class files. 
Java virtual machine implementations must silently ignore any attrib­
utes they do not recognize. The rules surrounding the creation of new 
varieties of attributes are described later in this chapter. 

Attributes appear in several places in the class file, not just in the 
attributes item of the top-level ClassFile table. The attributes that 
appear in the ClassFile table give more information about the class or 
interface define by the file. Attributes that give more information about 
a field may be included as part of field_info table. Attributes that 
give more information about a method may be included as part of a 
method info table. 

The Java virtual machine specification defines two kinds of attributes 
that may appear in the attributes list of the ClassFile table: SourceCode 
and InnerClasses. These two attributes are described in detail later in 
this chapter. 

Special Strings 
The symbolic references contained in the constant pool involve three spe­
cial kinds of strings: fully qualified names, simple names, and descriptors. 
All symbolic references include the fully qualified name of a class or inter­
face. Symbolic references to fields include a simple field name and field 
descriptor, in addition to a fully qualified type name. Symbolic references 
to methods include a simple method name and method descriptor, in addi­
tion to a fully qualified type name. 

The same special strings that are used in symbolic references are also 
used simply to describe the class or interface being defined by the class 
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file. The name of the class or interface being defined, for example, is given 
as a fully qualified name. For each field declared by the class or interface, 
the constant pool contains a simple name and field descriptor. For each 
method declared by the class or interface, the constant pool contains a 
simple name and method descriptor. 

Fully Qualified Names 

Whenever constant pool entries refer to classes and interfaces, they give 
the fully qualified name of the class or interface. In the class file, fully 
qualified names have their dots replaced with slashes. For example, the 
representation of the fully qualified name of java. lang. Object in the 
class file is java/lang/Object. The fully qualified name of java. util. 
Hash table in the class file is j ava/util/Hashtable. 

Simple Names 

The names of fields and methods appear in constant pool entries as sim­
ple (not fully qualified) names. For example, a constant pool entry that 
refers to the String toString () method of class java .lang. Object 
would give its method name as 11 toString 11 • A constant pool entry that 
refers to the java. io. PrintStream out field of class java .lang. 
System would specify the field name simply as 11 out 11 • 

Descriptors 

Symbolic references to fields and methods include a descriptor string, in 
addition to a fully qualified class or interface name and a simple field or 
method name. A field descriptor gives the field's type. A method descrip­
tor gives the method's return type and the number, types, and order of the 
method's parameters. 

Field and method descriptors are defined by the context-free grammar 
shown as follows. Nonterminals of this grammar, such as FieldType, are 
shown in italic font. Terminals, such as B or v, are shown in fixed-width 
font. The asterisk character (*) stands for zero or more occurrences of the 
item that precedes it placed side by side (with no intervening white 
space). 
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FieldDescriptor: 
FieldType 

Componen tType: 
FieldType 

FieldType: 
Base Type 
ObjectType 
ArrayType 

BaseType: 
B 
c 
D 
F 
I 
J 
s 
z 

ObjectType: 
L<classname>; 

ArrayType: 
[ ComponentType 

MethodDescriptor: 
( ParameterDescriptor* ) ReturnDescriptor 

ParameterDescriptor: 
FieldType 

ReturnDescriptor: 
FieldType 
v 

The meaning of each of the BaseType terminals is shown in Table 6-5. 
The v terminal represents methods that return void. Each of the eight 
Base Type characters, the ReturnDescriptor v, the L and ; of ObjectType, 
the [ of ArrayType, and the ( and ) characters of MethodDescriptor are 
all ASCII characters. (Except for the null character, each Unicode char­
acter that corresponds to an ASCII character is represented in UTF -8 
form by that ASCII character.) The <classname> portion of an Object­
Type is a fully qualified name. This fully qualified name, like all fully qual­
ified names in the class file, appears with dots replaced by slashes. 

Table 6-6 shows some examples of field descriptors, and Table 6-7 
shows some examples of method descriptors. Note that the method 
descriptors for instance methods do not include the hidden this para­
meter passed as the first argument to all instance methods. Rather, this 
parameter is implicitly passed by all Java virtual machine instructions 
that invoke instance methods. 

A method descriptor can contain only as many parameters as will fit 
into 255 words. The hidden this reference passed to instance methods 
occupies one word, and any parameters of the primitive types long or 
double occupy two words. Any other parameter occupies one word. 
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Table 6-5 

BaseType terminals 

Table 6-6 

Examples of field 
descriptors. {The 
this reference IS 
never passed to 
class methods, 
because class 
methods are not 
Invoked on an 
object.) 

Table 6-7 

Examples of 
method descriptors 

Terminal Type 

B byte 

c char 

D double 

F float 

I int 

J long 

s short 

z boolean 

Descriptor 

I 

[ [J 

[Ljava/lang/Object; 

Ljava/util/Hashtable; 

[ [ [Z 

Descriptor 

()I 

()Ljava/lang/String; 

( [Ljava/lang/String;)V 

()V 

(JI)V 

(ZILjava/lang/String;II)Z 

( [BII) I 

Chapter Six 

Field Declarat1~J:l, ·· .·. 

int i; 

long[][] windingRoad; 

java.lang.Object[] stuff; 

java.util.Hashtable ht; 

boolean[][][] isReady; 

Method Deciaration 

int getSize(); 

String toString(); 

void main(String[] args); 

void wait() 

void wait(long timeout, int nanos) 

boolean regionMatches(boolean 
ignoreCase, int toOffset, String 
other, int ooffset, int len); 

int read(byte[] b, int off, int len); 
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Table 6-8 

General form of a 
cp _info table 

The Constant Pool 
The constant pool is an ordered list ofvariable-length cp_info tables, 

each of which follows the general form shown in Table 6-8. The tag item 
of a cp _info table, an unsigned byte, indicates the table's variety and 
format. cp_info tables come in 11 varieties, each of which is described 
in detail in the following sections. 

The CONSTANT_Utf8_info Table 

The variable-length CONSTANT_UtfB_info table stores one constant 
string value in a modified UTF -8 format. This table is used to store many 
different kinds of strings, including the following: 

II string literals that get instantiated as String objects 

II the fully qualified name of the class or interface being defined 

II the fully qualified name of the superclass (if any) of the class 
being defined 

II the fully qualified names of any superinterfaces of the class or 
interface being defined 

II the simple names and descriptors of any fields declared by the 
class or interface 

II the simple names and descriptors of any methods declared by the 
class or interface 

II fully qualified names of any referenced classes and interfaces 

II simple names and descriptors of any referenced fields 

II simple names and descriptors of any referenced methods 

II strings associated with attributes 

As you can see from this list, four basic kinds of information are stored 
in CONSTANT_UtfB_info tables: string literals, descriptions of the class 
or interface being defined, symbolic references to other classes and inter­
faces, and strings associated with attributes. Some examples of strings 

ul tag 1 

ul info depends on tag value 
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CONSTANT Utf8 
info table 
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associated with attributes are as follows: the name of the attribute, the 
name of the source file from which the class file was generated, and the 
names and descriptors of local variables. 

The UTF -8 encoding scheme permits all two-byte unicode characters 
to be represented in a string but enables ASCII characters (except the null 
character) to be represented by just one byte. Table 6-9 shows the format 
of a CONSTANT Utf8 info table. - -

The items in the CONSTANT Utf8 info table are as follows: 

tag 

The tag item has the value CONSTANT_Utf8 (1). 

length 

The length item gives the length in bytes of the subsequent bytes 
item. 

bytes 

The bytes item contains the characters of the string which are stored 
in a modified UTF-8 format. Characters in the range 1 \u0001 1 through 
1 \u007f 1 (all the ASCII characters except the null character) are repre­
sented by one byte: 

byteO 
7 6 5 4 3 2 1 0 

l"~r1 6 l 5 l 4 l 3 1 2 1 1 l 0 l 
The null character, 1 \uOOOO 1 , and the characters in the range 

1 \uooso 1 through 1 \u07ff 1 are represented by two bytes: 

byteO bytel 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Type Name Count 

ul tag 1 

u2 length 1 

ul bytes length 
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Table 6-10 

Format of a 
CONSTANT 
Integer_info 
table 

Characters in the range 1 \uoaoo 1 through 1 \uffff' are represented 
by three bytes: 

byteO byte I byte2 
7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0 

The encoding ofUTF-8 strings in the bytes item of CONSTANT_Utf8 
_info tables differs from the standard UTF-8 format in two ways. First, 
in the standard UTF -8 encoding scheme, the null character is repre­
sented by one byte. In a CONSTANT_Utf8_info table, null characters 
are represented by two bytes. This two-byte encoding of nulls means that 
the bytes item never contains any byte equal to zero. The second way 
the bytes item of a CONSTANT_Utf8_info departs from the standard 
UTF -8 encoding is that only one-, two-, and three-byte encodings are used 
in the bytes item. The standard UTF-8 includes longer formats that are 
not used in CONSTANT Utf8 info tables. 

The CONSTANT_Integer_info Table 

The fixed-length CONSTANT_Integer_info table stores a constant int 
value. This table is used only to store int literals and is not used in sym­
bolic references. Table 6-10 shows the format of a CONSTANT_Integer_ 
info table. 

The items in the CONSTANT_Integer_info table are as follows: 

tag 

The tag item has the value CONSTANT_Integer (3). 

bytes 

The bytes item contains the int value stored in big-endian order. 

ul tag 1 

u4 bytes 1 
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Format of a 
CONSTANT 
Float info 
table 

Table 6-12 

Format of a 
CONSTANT_Long_ 
info table 
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The CONSTANT_Float_info Table 

The fixed-length CONSTANT_Float_info table stores a constant float 
value. This table is used only to store float literals and is not used in symbolic 
references. Table 6-11 shows the format of a CONSTANT Float info table. 

The items in the CONSTANT Float info table are as follows: - -
tag 

The tag item has the value CONSTANT_ Float (4). 

bytes 

The bytes item contains the float value stored in big-endian order. 
For the details of the representation of float in the Java class file, see 
Chapter 14, "Floating Point Arithmetic." 

The CONSTANT_Long_info Table 

The fixed-length CONSTANT _Long_ info table stores a constant long value. 
This table is only used to store long literals and is not used in symbolic ref­
erences. Table 6-12 shows the format of a CONSTANT_Long_info table. 

As noted previously, a long occupies two slots in the constant pool 
table. In the class file, a long entry is just followed by the next entry, but 
the index of the next entry is two more than that of the long entry. 

The items of the CONSTANT_Long_info table are as follows: 

tag 

The tag item has the value CONSTANT_ Long (5). 

ul tag 1 

u4 bytes 1 

ul tag 1 

us bytes 1 
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Table 6-13 

Format of a 
CONSTANT 
Double info 
table 

bytes 

The bytes item contains the long value stored in big-endian order. 

The CONSTANT_Double_info Table 

The fixed-length CONSTANT_ Double_ info table stores a constant double 
value. This table is used only to store double literals and is not used in sym­
bolic references. Table 6-13 shows the format of a CONSTANT Double info 
table. 

As noted previously, a double occupies two slots in the constant pool 
table. In the class file, a double entry is just followed by the next entry, 
but the index of the next entry is two more than that of the double entry. 

The items of the CONSTANT Double info table are as follows: 

tag 

The tag item has the value CONSTANT_Double (6). 

bytes 

The bytes item contains the double value stored in big-endian order. 
For the details of the representation of double in the Java class file, see 
Chapter 14, "Floating Point Arithmetic." 

The CONSTANT_Class_info Table 

The fixed-length CONSTANT_ Class _info table represents a class or inter­
face in symbolic references. All symbolic references, whether they refer to a 
class, interface, field, or method, include a CONSTANT_ Class_ info table. 
Table 6-14 shows the format of a CONSTANT Class info table. - -

The items in the CONSTANT Class info table are as follows: 

tag 

The tag item has the value CONSTANT_Class (7). 

name index 

The name_index item gives the index of a CONSTANT_Utf8_info 
table that contains a fully qualified name of a class or interface. 

ul tag 1 

uB bytes 1 
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CONSTANT 
Class info 
table 

Table 6-15 

Format of a 
CONSTANT 
String_ info 
table 

ul tag 

u2 name_index 

ul tag 

u2 string_ index 

1 

1 

1 

1 

Chapter Six 

Because arrays are full-fledged objects in Java, CONSTANT_Class_ 
info tables can also represent array classes. The name_index item of 
such a CONSTANT Class info table refers to a CONSTANT UtfB info - - - -
table that contains the array's descriptor, which serves _as the name of the 
array class. For example, the class name for the double[] [] array type 
is its descriptor, [ [D. The class name for the net . j ini . core. lookup. 
Servicertem[] [] [] arraytypeisitsdescriptor, [ [ [Lnet/jini/core/ 
lookup/Serviceitem;. Because a Java array can have no more than 
255 dimensions, an array descriptor can have no more than 255 leading 
[ characters. 

The CONSTANT_String_info Table 

The fixed-length CONSTANT_String_info represents a literal string 
value, which will be represented as an instance of class java. lang. 
String. This table is only used to represent literal strings and is not used 
in symbolic references. Table 6-15 shows the format of a CONSTANT_ 
String_info table. 

The items of the CONSTANT_String_info table are as follows: 

tag 

The tag item has the value CONSTANT_String (8). 

string_ index 

The string_ index item gives the index of a CONSTANT_UtfB_info 
entry that contains the value of the literal string. 
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Table 6-16 

Format of a 
CONSTANT 
Fieldref info 
table 

ul 

u2 

u2 

tag 

class index 

name_and_type_index 

1 

1 

1 

The CONSTANT_Fieldref_info Table 

The fixed-length CONSTANT_Fieldref_info table represents a symbolic 
reference to a field. Table 6-16 shows the format of a CONSTANT Fieldref 
info table. 

The items of the CONSTANT Fieldref info table are as follows: 

tag 

The tag item has the value CONSTANT_Fieldref (9). 

class index 

The class_index gives the index of the CONSTANT Class info 
entry for the class or interface that declares the referenced field. 

Note that the CONSTANT_Class_info specified by class_index 
may represent an interface, not just a class. Although interfaces can 
declare fields, those fields are by definition public, static, and final. As 
mentioned in earlier chapters, class files do not contain symbolic refer­
ences to static final fields of other classes if those fields are initialized 
with compile-time constants. Instead, class files contain a copy of the con­
stant value of any such static final fields it uses. For example, if a class 
uses a static final field of type float that is declared in an interface 
and is initialized to a compile-time constant, the class would have a 
CONSTANT_Float_info table in its own constant pool that stores the 
float value. But if the interface initialized its static final field with an 
expression that can only be evaluated at run time, the class that uses the 
field would have a CONSTANT_Fieldref_info table in its constant pool 
that symbolically refers to the field in the interface. For more informa­
tion about this special treatment of static final fields, see Chapter 8, "The 
Linking Model." 

name_and_type_index 

The name_and_type_index provides the index of a CONSTANT_ 
NameAndType _info entry that gives the field's simple name and descriptor. 
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The CONSTANT_Methodref_info Table 

The fixed-length CONSTANT_Methodref_info table represents a sym­
bolic reference to a method declared in a class (not in an interface). Table 
6-17 shows the format of a CONSTANT Methodref info table. 

The items of the CONSTANT Methodref info table are as follows: 

tag 

The tag item has the value CONSTANT_Methodref (10). 

class index 

The class_ index gives the index of a CONSTANT_ Class_ info entry for 
the class that declares the referenced method. The CONSTANT Class info 
table specified by class_ index must be a class and not an interface. 
Symbolic references to methods declared in interfaces use CONSTANT_ 
InterfaceMethodref. 

name_and_type_index 

The name_and_type_index gives the index of a CONSTANT 
NameAndType_info entry that gives the method's simple name and 
descriptor. If the method's simple name begins with a < character 
( 

1 \u003c 1 
), the method must be an instance initialization method. Its 

simple name must be <init>, and its return type must be void. Oth­
erwise, the method name must be a valid Java programming language 
identifier. 

The CONSTANT_InterfaceMethodref_info Table 

The fixed-length CONSTANT_InterfaceMethodref_info table is a 
symbolic reference to a method declared in an interface (not in a class). 
The format of a CONSTANT InterfaceMethodref info table is 
shown in Table 6-18. 

The items in the CONSTANT_InterfaceMethodref_info table are as 
follows: 

ul tag 1 

u2 class index 1 

u2 name_and_type_index 1 
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Table 6-18 

Format of a 
CONSTANT Inter 
faceMethodref 
info table 

Table 6-19 

Format of a 
CONSTANT 
NameAndType_ 
info table 

ul 

u2 

u2 

ul 

u2 

u2 

tag 

tag 

class_index 

name_and_type_index 

tag 

name_index 

descriptor_index 

1 

1 

1 

1 

1 

1 

The tag item has the value CONSTANT_InterfaceMethodref (11). 

class index 

The class_ index gives the index of a CONSTANT_ Class_ info entry for 
the interface that declares the referenced method. The CONSTANT Class 
info table specified by class index must be an interface and not a class. 
Symbolic references to methods declared in classes use CONSTANT_ Methodref. 

name_and_type_index 

The name_and_type_index provides the index of a CONSTANT_ 
NameAndType_info entry that gives the method's simple name and 
descriptor. 

The CONSTANT_NameAndType_info Table 

The fixed-length CONSTANT_ NameAndType _info table forms part of a sym­
bolic reference to a field or method. This table gives constant pool entries of 
the simple name and the descriptor of the referenced field or method. Table 
6-19 shows the format of a CONSTANT_ NameAndType _ info table. 

The items of the CONSTANT_NameAndType_info table are as follows: 
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tag 

The tag item has the value CONSTANT_ NameAndType (12). 

name index 

The name_index gives the index of a CONSTANT_Utf8_info entry 
that gives the name of the field or method. The name must be either a 
valid Java programming language identifier or < ini t >. 

descriptor_index 

The descriptor_index gives the index of a CONSTANT_Utf8_info 
entry that holds the descriptor of the field or method. The descriptor must 
be a valid field or method descriptor. 

Fields 
Each field (class variable and instance variable) declared in a class or inter­
face is described by a variable-length field_ info table in the class file. 
No two fields in the same class file can have the same name and descrip­
tor. (Note that although no two fields declared in the same class or inter­
face can have the same name in the Java programming language, two fields 
can have the same name in the class file--as long as the descriptor is dif­
ferent. In other words, although you cannot declare two fields with the 
same name but different types in the same class or interface in the Java 
language, two such fields can legally appear in the same Java class file.) 
The format of the field info table is shown in Table 6-20. 

The items in the field info table are as follows: 

access_flags 

The modifiers used in declaring the field are placed into the field's 
access_flags item. Table 6-21 shows the bits used by each flag. 

u2 access_flags 1 

u2 name index 1 -

u2 descriptor_index 1 

u2 attributes count 1 -

attribute info attributes attributes count - -
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Table 6-21 

Flags in the 
access 
flags item of 
field info 
tables 

ACC PUBLIC OxOOOl Field is public Classes and interfaces 

ACC PRIVATE Ox0002 Field is private Classes only 

ACC PROTECTED Ox0004 Field is protected Classes only 

ACC_STATIC Ox0008 Field is static Classes and interfaces 

ACC FINAL OxOOlO Field is final Classes and interfaces 

ACC VOLATILE Ox0040 Field is volatile Classes only 

ACC TRANSIENT Ox0080 Field is transient Classes only 

For fields declared in a class (not an interface), one of ACC_PUBLIC, 
ACC_PRIVATE, and ACC_PROTECTED may be set (at most). ACC_FINAL 
and ACC VOLATILE must not both be set. All fields declared in interfaces 
must have (and can only have) the ACC_PUBLIC, ACC_STATIC, and 
ACC_FINAL flags set. 

All unused bits in access_flags must be set to zero and ignored by 
Java virtual machine implementations. 

name index 

The name_index gives the index of a CONSTANT_Utf8_info entry 
that gives the simple (not fully qualified) name of the field. Each field 
name in a class file must be a valid field name in the Java programming 
language. 

descriptor_index 

The descriptor_index gives the index of a CONSTANT_Utf8_info 
entry that gives the descriptor of the field. 

attributes count and attributes 

The attributes item is a list of attribute info tables. The 
attributes count indicates the number of attribute info tables in - -
the list. A field can have any number of attributes in its list. Three kinds 
of attributes defined by the Java virtual machine specification that may 
appear in this item are ConstantValue, Deprecated, and Synthetic. 
These three attributes are described in detail later in this chapter. The 
only field attribute that Java virtual machine implementations are 
required to recognize is the ConstantValue attribute. Implementations 
must ignore any attributes they do not recognize. 
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-Methods 

Table 6-22 

Format of a 
method info 
table 

Each method declared in a class or interface or generated by the compiler 
is described in the class file by a variable-length method_info table. No 
two methods in the same class file can have the same name and descrip­
tor. Note that although no two methods declared in the same class or inter­
face in the Java programming language can have the same signature (the 
descriptor minus the return type), two methods can have the same signa­
ture in the class file so long as the descriptor is different. In other words, 
when in the same class in a Java source file, if you try to declare two meth­
ods with the same name and number and types of parameters but differ­
ent return types, the program will not compile. In the Java programming 
language, you cannot overload methods by varying only the return type. 
Two such methods can coexist happily in a Java class file, however. 

The two types of compiler-generated methods that may appear in class 
files are instance initialization methods (named < ini t >) and class and 
interface initialization methods (named <clinit>). For more information 
on the compiler-generated methods, see Chapter 7, "The Lifetime of a 
Class." The format ofthe method_info table is shown in Table 6-22. 

The items in the method_info table are as follows: 

access_flags 

The modifiers used in declaring the method are placed into the 
method's access_flags item. Table 6-23 shows the bits used by each 
flag. The ACC _STRICT flag was added in 1.2 and indicates that all expres­
sions in the method should be evaluated in FP-strict mode. FP-strict mode 
is described in detail in Chapter 14, "Floating-Point Arithmetic." 

For methods declared in a class (not an interface), one of ACC _PUBLIc, 
ACC _PRIVATE, and ACC _PROTECTED may be set (at most). If a method's 
ACC_ABSTRACT flag is set, then its ACC_PRIVATE, ACC_STATIC, 
ACC_FINAL,ACC_SYNCHRONIZED,ACC_NATIVE,andACC_STRICTflags 
must not be set. All methods declared in interfaces must have their 

u2 access_flags 1 

u2 name index 1 -

u2 descriptor_index 1 

u2 attributes count 1 -

attribute info attributes attributes count - -

I 

__L 
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Table 6-23 

Flags in the 
access_flags 
item of 
method info 
tables 

ACC PUBLIC OxOOOl 

ACC PRIVATE Ox0002 

ACC PROTECTED Ox0004 

ACC STATIC OxOOOB 

ACC FINAL Ox0010 

ACC_SYNCHRONIZED Ox0020 

ACC_NATIVE OxOlOO 

ACC ABSTRACT Ox0400 

ACC STRICT OxOBOO 

Method is public 

Method is private 

Method is protected 

Method is static 

Method is final 

Method is synchronized 

Method is native 

Method is abstract 

Method is strict FP 

Classes and all 
methods of interfaces 

Classes only 

Classes only 

Classes only 

Classes only 

Classes only 

Classes only 

Classes and all 
methods of interfaces 

Classes and the 
<clinit> method 
of interfaces 

ACC_PUBLIC and ACC_ABSTRACT flags set. Interface methods may have 
no other flags set, except for the interface initialization (<clinit>) 
method, which may have its ACC_STRICT flag set. 

Instance initialization ( < ini t >) methods may only use flags ACC _ 
PUBLIC, ACC _PRIVATE, and ACC _PROTECTED. Because class and interface 
initialization ( < c l ini t >) methods are invoked by the Java virtual machine 
and never directly by Java bytecodes, the bits of the access_flags for 
<clinit> methods-except for ACC_STRICT-are ignored. 

All unused bits in access_flags must be set to zero and ignored by 
Java virtual machine implementations. 

name index 

The name_ index gives the index of a CONSTANT_UtfB_info entry 
that gives the simple (not fully qualified) name of the method. The name 
must be either <init>, <clinit>, or a valid method name (simple, not 
fully qualified) in the Java programming language. 

descriptor_index 

The descriptor_index gives the index of a CONSTANT_UtfB_info 
entry that gives the descriptor of the method. 

attributes count and attributes 

The attributes item is a list of attribute info tables. The 
attributes count indicates the number of attribute_info tables in 
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the list. A field can have any number of attributes in its list. Four kinds 
of attributes defined by the Java virtual machine specification that may 
appear in this item are Code, Deprecated, Exceptions, and Synthetic. 
These four attributes are described in detail later in this chapter. The only 
method attributes that Java virtual machine implementations are required 
to recognize are the Code and Exceptions attributes. Implementations 
must ignore any attributes they do not recognize. 

Attributes 
As mentioned previously, attributes appear in several places inside a Java 
class file. They can appear in the ClassFile, field_info, method_ 
info, and Code_attribute tables. The Code_attribute table, an 
attribute itself, is described later in this section. 

The Java virtual machine specification defines nine types of attributes, 
which are shown in Table 6-24. To correctly interpret Java class files, all 
Java virtual machine implementations must recognize three of these attrib­
utes: Code, ConstantValue, and Exceptions. To properly implement the 
Java and Java 2 platform class libraries, implementations must recognize 
InnerClasses and Synthetic attributes. Implementations can choose 
whether to recognize or ignore the other predefined attributes. (The 

Name. 

Code 

ConstantValue 

Deprecated 

Exceptions 

InnerClasses 

LineNumberTable 

LocalVariableTable 

SourceFile 

Synthetic 

·· .. Us~dB~ 

method_info 

field info 

field_info, 
method info 

method info 

ClassFile 

Code attribute 

Code attribute 

ClassFile 

field_info, 
method info 

Descrtpli()~ 

The bytecodes and other data for 
one method 

The value of a final variable 

An indicator that a field or method 
has been deprecated 

The checked exceptions that a 
method may throw 

A list of inner and outer classes 

A mapping of line numbers to 
bytecodes for one method 

A description of the local variables 
for one method 

The name of the source file 

An indicator that a field or method 
was generated by the compiler 
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Table 6-25 

Format of an 
attribute info 
table 

u2 attribute_name_index 1 

u4 attribute_length 1 

ul info attribute_length 

Deprecated, InnerClasses, and Synthetic attributes were added in 
Java 1.1.) All of these predefined attributes are described in detail later in 
this chapter. 

Anyone (besides Sun) who wishes to add a new attribute to a Java class 
file must follow these two rules: 

1. Any attribute that is not predefined by the specification must not 
affect the semantics of class or interface types. New attributes can 
only add more information to the class file, such as information 
used during debugging. 

2. The attribute must be named using the reverse Internet domain 
name scheme that is defined for package naming in the Java Lan­
guage Specification. For example, if you had the Internet domain 
name artima. com and you wished to create a new attribute 
named CompilerVersion, you would name the attribute 
com.artima.CompilerVersion. 

Attribute Format 

Every attribute follows the same general format of the variable-length 
attribute_info table, shown in Table 6-25. The first two bytes of an 
attribute, the attribute_name_index, form an index into the constant 
pool of a CONSTANT_Utf8_info table that contains the string name of the 
attribute. Each at tribute_ info, therefore, identifies its "type" by the first 
item in its table, much like the way cp info tables identify their type by the 
initial tag byte. The difference is that whereas the type of a cp _info table 
is indicated by an unsigned byte value, such as 3 (CONSTANT_Integer_ 
info), the type of an attribute_info table is indicated by a string. 

Following the attribute_name_index is a four-byte attribute_ 
length item, which gives the length ofthe entire attribute_info table 
minus the initial six bytes. (The attribute_length item can be zero.) 
This length is necessary, because anyone following certain rules (outlined 
below) is allowed to add attributes to a Java class file. Java virtual 
machine implementations are allowed to recognize new attributes. 
Implementations must ignore any attributes they do not recognize. The 
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attribute_length enables virtual machines to skip unrecognized 
attributes as they parse the class file. 

The items of the attribute info table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT_Utf8_info entry that contains the name of the attribute. 

attribute_length 

The attribute_length item indicates the length (in bytes) of the 
attribute data, excluding the initial six bytes that contain the at tribute_ 
name_index and attribute_ length. 

info 

The info item contains the attribute data. 

The Code Attribute 

The variable-length Code_attribute table defines the bytecode sequence 
and other information for a method. One Code_attribute table appears in 
the method_ info table of every method that is not abstract or native. The 
format of a Code attribute table is shown in Table 6-26. 

The items of the Code attribute table are as follows: 

u2 attribute name index 

u4 attribute_length 

u2 max stack 

u2 max_locals 

u4 code_length 

ul code 

u2 exception_table_length 

exception_info exception_table 

u2 attributes count 

attribute_info attributes 

1 

1 

1 

1 

1 

code_length 

1 

exception_table_length 

1 

attributes_count 
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attribute name index 

The at tribute_ name_ index item gives the index in the constant pool 
of a CONSTANT_UtfB_info entry that contains the string "Code". 

attribute_length 

The attribute_length item gives the length in bytes of the Code 
attribute excluding the initial six bytes that contain the attribute_ 
name_index and attribute_length items. 

max stack 

The max_stack item gives the maximum number ofwords that will be 
on the operand stack of this method at any point during its execution. 

max locals 

The max_ locals item gives the number ofwords in the local variables 
that are required by this method. The virtual machine must allocate an 
array of local variables of length max_locals whenever it invokes the 
method being described by this Code attribute. This array will be used to 
store parameters passed to the method and local variables used by the 
method. The maximum valid local variable index for a value of type long 
or double is max locals-2. The maximum valid local variable index for 
a value of any other type is max_locals-1. 

code_length and code 

The code _length item gives the length (in bytes) of the bytecode 
stream for this method. The bytecodes themselves appear in the code 
item. The value of code_length must be greater than zero. 

exception_table_length and exception_ table 

The exception_table item is a list of exception_info tables. Each 
exception_ info table describes one exception table entry. The exception_ 
table_length item gives the number of exception_info tables that 
appear in the exception_table list. The order in which the exception_ 
info tables appear in the list is the order in which the Java virtual machine 
will check for a matching exception handler (catch clause) if an exception is 
thrown while this method executes. The format of an exception_ info table 
is shown in Table 6-27 and is described in the next section, ''The exception_ 
info Table." For more information about exception tables, see Chapter 17, 
''Exceptions." 

attributes count and attributes 

The attributes item is a list of attribute info tables. The 
attributes count indicates the number of attribute info tables in 
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u2 start_pc 1 

u2 end_pc 1 

u2 handler_pc 1 

u2 catch_type 1 

the list. The two kinds of attributes defined by the Java virtual machine 
specification that may appear in this item are LineNumberTable and 
Local VariableTable. These two attributes are described in detail later 
in this chapter. Java virtual machine implementations are permitted to 
ignore any attributes in the attributes item of the Code attribute and 
are required to ignore any they do not recognize. 

The exception_info Table The fixed-length exception_info table de­
scribes one exception table entry. This table appears in the Code attribute's 
exception _info item, which is composed of a list of exception _info ta­
bles. The format of the exception_info table is shown in Table 6-27. For 
more information about exception tables, see Chapter 17, "Exceptions." 

The items in the exception_info table are as follows: 

start_pc 

The start_pc item gives the offset from the beginning of the code 
array for the beginning of the range covered by this exception handler. 

end_pc 

The end_pc item gives the offset from the beginning of the code array 
for one byte past the end of the range covered by this exception handler. 

handler_pc 

The handler_pc item gives the offset from the beginning of the code 
array for the instruction to jump to the first instruction of the exception 
handler-if a thrown exception is caught by this entry. 

catch_type 

The catch_type item gives the constant pool index of a CONSTANT_ 
Class_ info entry for the type of exception caught by this exception han­
dler. The CONSTANT_Class_info entry must represent class java. 
lang. Throwable or one of its subclasses. 
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Table 6-28 

Format of a 
ConstantValue 
attribute table 

If the value of catch_type is zero (which is not a valid index into the 
constant pool, because the constant pool starts at index one), the excep­
tion handler handles all exceptions. A catch_type of zero is used to 
implement finally clauses. See Chapter 18, "Finally Clauses," for more 
information about how finally clauses are implemented. 

The Constant Value Attribute 

The fixed-length ConstantValue attribute appears in field_info 
tables for fields that have a constant value. At most, one ConstantVal ue 
attribute may appear in the attributes item of a given field_info 
table. In the access_flags of a field_info table which includes a 
ConstantValue attribute, the ACC_STATIC flag must be set. The ACC_ 
FINAL flag may also be set, although this action is not required. When the 
virtual machine initializes a field that has a ConstantValue attribute, 
it assigns the constant value to the field. This assignment occurs imme­
diately before the virtual machine invokes the class or interface initial­
ization method for the class or interface in which the field is declared. The 
format of a ConstantValue attribute table is shown in Table 6-28. 

The items of the ConstantValue attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT UtfB info entry that contains the string "Constant­
Value". 

attribute_length 

The attribute_length item of a ConstantValue_attribute is 
always 2. 

constantvalue index 

The constantvalue_index item gives the index in the constant pool 
of an entry that gives a constant value. Table 6-29 shows the type of entry 
for each type of field. 

u2 attribute_name_index 1 

u4 attribute_length 1 

u2 constantvalue index 1 

Page 232 of 280



Table 6-29 

Constant pool 
entry types for 
constant value 
attributes 

Table 6-30 

Format of a 
Deprecated_ 
attribute table 

Chapter Six 

byte,short,char,int,boolean CONSTANT_Integer_info 

long CONSTANT_Long_info 

float CONSTANT Float info - -

double CONSTANT Double info - -

java.lang.String CONSTANT_String_info 

u2 attribute name index 1 

u4 attribute_length 1 

The Deprecated Attribute 

The fixed-length Deprecated attribute, which may optionally appear in the 
attributes items of field_info, method_info, and ClassFile tables, 
indicates that a field, method, or type has been deprecated. (Deprecated 
means that although the field, method, or type still exists and functions as 
expected, programmers are encouraged not to use that approach. Rather, pro­
grammers are encouraged to use some other preferred field, method, type, or 
approach, instead of using the deprecated item.) A compiler, virtual machine, 
or any other tool that reads class files can use the Deprecated attribute to 
notify the programmer that the program is using a deprecated field, method, 
or type. The Deprecated attribute was added in Java 1.1 to support the 
®deprecated tag in documentation comments used by the javadoc tool. 
The format of a Deprecated_attribute is shown in Table 6-30. 

The items of the Deprecated_attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT_UtfB_info entry that contains the string "Deprecated". 

attribute_length 

The attribute_length must be zero. 
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Table 6-31 

Format of an 
Exceptions_ 
attribute table 

u2 attribute name index 1 

u4 attribute_length 1 

u2 number_of_exceptions 1 

u2 exception_index_table number_of_exceptions 

The Exceptions Attribute 

The variable-length Exceptions attribute lists the checked exceptions that 
a method may throw. One Exceptions_attribute table appears in the 
method_info table of every method that may throw checked exceptions. 
The format of an Exceptions_attribute table is shown in Table 6-31. 

A method should only throw an exception if it is an instance or subclass 
of either RuntimeException, Error, or one ofthe exceptions listed in the 
method's Exceptions attribute. Although this rule should be enforced by 
Java compilers, it is not enforced by Java virtual machines. Thus, the Excep­
tions attribute exists in the Java class file for the benefit of Java compilers. 

The items of the Exceptions_attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT_Utf8_info entry that contains the string, "Exceptions". 

attribute_length 

The attribute_length item provides the length (in bytes) of the 
Exceptions_attribute, excluding the initial six bytes that contain the 
attribute_name_index and attribute_length items. 

number_of_exceptions and exception_index_table 

The exception_index_table is an array ofindexes into the constant 
pool ofCONSTANT_Class_info entries for the exceptions declared in this 
method's throws clause. In other words, the exception_index_table 
lists all the checked exceptions in which this method may throw. The num­
ber_of_exceptions item indicates the number of indexes in the array. 

The InnerClasses Attribute 

The variable-length InnerClasses attribute describes the names, access 
flags, and enclosing types of any nested types that are declared as members 
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of, or are otherwise mentioned by, a class or interface. (A nested type is a type 
that is not a member of a package, but rather is a member of a class or inter­
face.) If the code of a class or interface refers to a nested type, the constant 
pool oftliat class or interface will contain a CONSTANT_Class_info entry 
for that nested type. The constant pool must also contain a CONSTANT_ 
Class_ info entry for each nested type (if any) that is declared as an imme­
diate member of a class or interface-even if the class or interface would not 
ot~erwise mention the nested type. If the constant pool of a class or inter­
face contains any CONSTANT_ Class_ info entries for nested types, the class 
file for that class or interface must contain one InnerClasses attribute 
table in the attributes item of its ClassFile table. The format of an 
InnerClasses attribute table is shown in Table 6-32. 

The Java virtual machine does not currently verifY that class files rep­
resenting types mentioned by an InnerClasses_attribute table are 
consistent with the InnerClasses attribute. 

The items of an InnerClasses attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of a 
CONSTANT_Utf8_info entry that contains the string "InnerClasses". 

attribute_length 

The attribute_length item gives the length of the InnerClasses_ 
attribute in bytes, excluding the initial six bytes that contain the 
attribute_name_index and attribute_length items. 

number of classes and classes 

The classes item is an array of inner_class_info tables. The 
number_of_classes gives the number of inner_class_info tables 
that appear in the classes array. The format of the inner_ class_ info 
table is shown in Table 6-33 and is described in the next section, "The 
inner_class_info Table." 

The classes item of the InnerClasses attribute contains one 
inner class info table for each nested class mentioned in a CONSTANT - - -

u2 attribute_name_index 

u4 attribute_length 

u2 number_of_classes 

inner_classes_info classes 

1 

1 

1 

number_of_classes 
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Table 6-33 

Format of an 
inner class 
info table 

u2 inner class info index - - -

u2 outer_class_info_index 

u2 inner_name_index 

u2 inner_class_access_flags 

1 

1 

1 

1 

Class_info entcyofthe constant pool. Because a CONSTANT_ Class_info 
entcy must appear in an enclosing type's constant pool for each nested type 
declared as an immediate member of that enclosing type, the classes item 
of the enclosing type's InnerClasses attribute will definitely contain an 
inner_class_info table for each nested type declared as an immediate 
member of the enclosing type. 

For example, if class Rain, class Snow, and interface Wet are declared as 
members of class Weather, the InnerClasses attribute for Weather will 
definitely contain an inner_class_info table for Rain, Snow, and Wet. 
Likewise, if class Thunder is declared as a member of class Rain (which is 
declared inside Weather), the InnerClasses attribute for Rain will defi­
nitely contain an inner_class_info table for Thunder. An inner_ 
class_info table for class Thunder may also appear in Weather's 
InnerClasses attribute, but not necessarily. Because Thunder is not 
declared as a member of Weather, Thunder will appear in Weather's 
InnerClasses attribute only ifWeather's code explicitly refers to Thunder. 

In addition to mentioning all nested types declared as members, the 
InnerClasses attribute will mention all enclosing classes of a nested type. 
All types always mention themselves in their own constant pool, in the 
CONSTANT_Class_info entcy referred to by the this_class item of their 
ClassFile table. Thus, if the type being defined by a class file is a nested type 
(not a member of a package, but a member of some other class or interface), 
the type being defined will appear in its own InnerClasses attribute. 
Because the outer class info index item of the inner class info - - - - -
table for a given nested type refers to the enclosing type of that nested type, 
the InnerClasses attribute in the class file that defines a nested type will 
include an inner_ class_ info table for all of its enclosing types. 

For example, if class Thunder is declared as a member of class Rain, class 
Rain as a member of class Weather, and class Weather as a member of a 
package, the InnerClasses attribute for class Thunder will definitely 
include inner_class_info tables for both of its enclosing types, Rain and 
Weather. Similarly, the InnerClasses attribute for class Rain will defi­
nitely include an inner_class_info table for its enclosing type, Weather. 
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The inner_class_info Table The fixed-length inner_class_info 
table, which is contained in the classes item of an InnerClasses at­
tribute, provides information about a type that is either a nested type it­
self or is a type in which at least one other type is declared as a member. 
(In other words, each inner_class_ info table describes a type that 
is either a nested type, an enclosing type, or both.) The format of the 
inner class info table is shown in Table 6-33. 

The items of the inner class info table are as follows: 

inner class info index 

The inner_class_info_index gives an index into the constant pool 
for the CONSTANT_Class_info entry that represents the nested class 
described by this inner_class_info table. 

outer class info index 

The outer_class_info_index gives an index into the constant pool 
for the CONSTANT_Class_info entry (ofthe type in which a nested type 
described by this inner_class_info table is declared as a member). 
If this inner_ class_ info table does not describe a nested type, the 
outer class info index must be zero. inner class info tables 

- - - - -
may describe types that are not nested (in other words, types that are 
declared as members of a package), because enclosing types are also men­
tioned in the InnerClasses attribute. The outermost enclosing type of 
any nested type will always be a member of a package. 

For example, if class Rain is declared as a member of class Weather, 
and class Weather is declared as a member of a package, class Rain's 
InnerClasses attribute will include an inner class info table for 
Weather. Because Weather is declared as a member of a package, its 
outer class info index will be zero. 

inner name index 

Unless this inner_class_info table describes an anonymous inner 
class, the inner_ name _index gives an index in the constant pool for a 
CONSTANT_Utf8_info entry that gives the simple name of the type 
described by this inner_class_info table. If this inner_class_info 
table describes an anonymous inner class, the inner_ name _index will 
be zero. 

Note that for any type described by an inner_class_info table, you 
can always obtain the name of the type by conducting a two-step lookup 
process: First, follow the inner_class_info_index to a CONSTANT_ 
Class_info entry for the type. Then, follow CONSTANT_Class_info 
entry's name_ index item to a CONSTANT_ Ut f 8 _info entry that gives the 
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Table 6-34 

Flag bits in the 
inner class 
access_flags 
item of 
inner class 
info tables 

simple name of the type. For anonymous inner classes, this two-step 
lookup process will yield the name given to the anonymous inner class 
by the compiler. For any other (non-anonymous) type described by an 
inner_class_info table, the two-step lookup process will yield the 
same name referred to by the inner_ name_ index. The inner_ name_ 
index, therefore, is not strictly needed for getting at the name of a type 
described by a inner_class_info table. Rather, the inner_name_ 
index serves primarily to differentiate those types that started out as 
anonymous inner classes in the source code (whose names were generated 
by a compiler) from non-anonymous types (whose names were typed into 
the source code by a programmer). 

inner_class_access_flags 

The inner_class_access_flags item gives the access flags for the 
inner class. Compilers use these flags to recover information about the 
declaration of nested classes when the original source code is not avail­
able. The flags used in this item are shown in Table 6-34. All unused bits 
in inner_class_access_flags must be set to zero by compilers and 
ignored by Java virtual machine implementations. 

The LineNumberTable Attribute 

The variable-length LineNumberTable attribute maps offsets in a method's 
bytecode stream to line numbers in the source file. One LineNumberTable _ 
attribute table may appear (it is optional) in the attributes component of 
Code attribute tables. The format of a LineNumberTable attribute 
table is shown in Table 6-35. 

ACC PUBLIC OxOOOl Marked or implicitly public in the source 

ACC PRIVATE Ox0002 Marked private in the source 

ACC PROTECTED Ox0004 Marked protected in the source 

ACC STATIC Ox0008 Marked or implicitly static in the source 

ACC FINAL OxOOlO Marked final in the source 

ACC INTERFACE Ox0200 Was an interface in the source 

ACC_ABSTRACT Ox0400 Marked or implicitly abstract in the source 
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Format of a 
LineNumber­
Table 
attribute table 

Chapter Six 

u2 attribute_name_index 1 

u4 attribute_length 1 

u2 line_number_table_length 1 

line number info line number table line number table - - - - - - -
length 

The items of the LineNumberTable attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT_UtfB_info entry that contains the string "Line_Number_ 
Table". 

attribute_length 

The attribute_length item provides the length (in bytes) of the 
LineNumberTable_attribute, excluding the initial six bytes that con­
tain the attribute_name_index and attribute_length items. 

line_number_table_length and line_number_table 

The line_number_table item is an array of line_number_info 
tables. The line_number_table_length gives the number of line_ 
number_ info tables that appear in the 1 ine _number_ table array. The 
tables in this array may appear in any order, and there may be more than 
one table for the same line number. The format of a line number info 
is shown in Table 6-36 and is described in the next section. 

The line_number_info Table The fixed-length line_number_ 
info table, which is contained in the line_number_table item of a 
LineNumberTable_attribute table, relates one source code line num­
ber to an instruction in the bytecode array which corresponds to the 
beginning of the compiled form ofthat line of source code. The format of 
a line number info is shown in Table 6-36. - -

The items of the line number info table are as follows: 

start_pc 

The start _pc item gives an offset from the beginning of the code array 
where a new line begins. The value of start_pc must be less than the 
value of the code _length item found in the Code attribute to which this 
LineNumberTable attribute belongs. 
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Table 6-36 

Format of a 
line number 
info table 

Table 6-37 

Format of a 
Local Variable­
Table 
attribute table 

u2 start_pc 

u2 line number 

u2 

u4 

u2 

local variable info - -

line number 

1 

1 

attribute_name_index 

attribute_length 

local_variable_table_ 
length 

local_ variable_ table 

1 

1 

1 

local_variable_ 
table_length 

The 1 ine _number item gives the line number of the line that begins 
at start_pc. 

The LocalVariableTable Attribute 

The variable-length Local VariableTable attribute maps words in the 
local variables portion of the method's stack frame to names and descrip­
tors of local variables in the source code. One Local VariableTable 
attribute table may appear (but is optional) in the attributes compo­
nent of Code at tribute tables. The format of a Local VariableTable 
attribute table is shown in Table 6-37. 

The items in the LocalVariableTable attribute table are as 
follows: 

attribute name index - -
The attribute_name_index gives the index in the constant pool of a 

CONSTANT_Utf8_info entry that contains the string "Localattribute_ 
length". 

The attribute_length item gives the length (in bytes) of the 
Local VariableTable_attribute, excluding the initial six bytes that 
contain the attribute_name_index and attribute_length items. 
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Format of a 
local 
variable info 
table 
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local_variable_table_length and local_ variable_ table 

The local_ variable_table item is an array of local_ variable_ 
info tables. The local_ variable_table_length gives the number of 
local_variable_info tables that appear in the local_variable_ 
table array. The format of a local_variable_info table is shown in 
Table 6-38 and is described in the next section. 

The local_variable_info Table The fixed-length local_variable_ 
info table, which is contained in the local_variable_table item of a 
LocalVariableTable_attribute table, relates one source code local 
variable name and type to its scope in the bytecode array and index in 
the local variables of the stack frame. The format of a local variable - -
info is shown in Table 6-38. 

The items in the local variable info table are as follows: 

start_pc and length 

The start_pc item gives an offset in the code array ofthe start of an 
instruction. The length item gives the length of the range of code that 
starts with start_pc for which a local variable is valid. The byte at off­
set start _pc + length from the beginning of the code array must either 
be the first byte of an instruction or the first byte past the end of the code 
array. 

name index 

The name_ index item gives an index in the constant pool of a 
CONSTANT_Utf8_info entry for the name of the local variable. 

descriptor_index 

The descriptor_index item gives an index in the constant pool of a 
CONSTANT_Utf8_info entry that contains the descriptor for this local 
variable. (A local variable descriptor adheres to the same grammar as a 
field descriptor.) 

u2 start_pc 1 

u2 length 1 

u2 name index 1 

u2 descriptor_index 1 

u2 index 1 
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Table 6-39 

Format of a 
SourceFile 
attribute table 

index 

The index item gives the index in the local variable portion of this 
method's stack frame, where the data for this local variable is kept as the 
method executes. If the local variable is of type long or double, the data 
occupies two words at positions index and index + 1. Otherwise, the 
data occupies one word at position index. 

The SourceFile Attribute 

The fixed-length SourceF:lle attribute, which may optionally appear in 
the attributes component of a ClassFile table, gives the name of the 
source file from which the class file was generated. No more than one 
SourceFile_attribute table can appear in the attributes table of a 
ClassFile table. The format of a SourceFile attribute table is 
shown in Table 6-39. 

The items of the SourceFile attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT_Utf8_info entry that contains the string "SourceFile". 

attribute_length 

The attribute_length item of a SourceFile_attribute is always 
two. 

sourcefile index 

The sourcefile_index item gives the index in the constant pool of 
a CONSTANT_ Ut f 8 _info entry that contains the name of the source file. 
The source file name never includes a directory path. 

u2 attribute name index 

u4 attribute_length 

u2 sourcefile index 

1 

1 

1 
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Format of a 
Synthetic_ 
attribute table 
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The Synthetic Attribute 

The fixed-length Synthetic attribute, which may optionally appear in the 
attributes items of field_info, method_info, and ClassFile tables, 
indicates that a field, method, or type was generated by the compiler. A class 
member that does not appear in the source code must be marked with a 
Synthetic attribute. The Synthetic attribute was added in Java 1.1 to sup­
port nested classes. The format of a Synthetic_ at tribute is shown in Table 
6-40. 

The items in the Synthetic_attribute table are as follows: 

attribute name index 

The attribute_name_index gives the index in the constant pool of 
a CONSTANT_Utf8_info entry that contains the string "Synthetic". 

attribute_length 

The attribute_length must be zero. 

Getting Loaded: A Simulation 
The Getting Loaded applet, shown in Figure 6-3, simulates a Java virtual 
machine loading a class file. The class file being loaded in the simulation was 
generated by the 1.1 j avac compiler from the following Java source code. 
Although the snippet of code used in the simulation may not be useful in the 
real world, it does compile to a real class file and provides a reasonably simple 
example of the class-file format. This class is the same one used in the Eternal 
Math simulation applet described in Chapter 5, ''The Java Virtual Machine." 

II On CD-ROM in file classfilelexliAct.java 
class Act { 

} 

u2 

u4 

public static void doMathForever() { 
int I = 0; 
for (;;) { 

I += 1; 
I *= 2; 

} 
} 

attribute name index 1 

attribute_length 1 
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---­Figure 6-3 
The Getting Loaded 
applet 

: Applet V1ewe1 Gettlngloaded class 11!!1~ 13 
Applet 

GETTING LOADED 

Step 24. doMathForeverO's Access Flags, Name Index, and Descnptor Index 

0009 
OOOF 
0005 

15 
5 

access_flags 
name_index 
descnptor _mdex 

This is the beginning of the array of method_mfo tables that 
immediately follows the methods_count. The first method_info table, 
methods[O], g1ves mformat1on about the doMathForeverO method The 
second method_ info table, methods[ 1], gives information about the 
ActO constructor. 

The first three parts of methods[O[ are shown here access_flags 

;.Step··. 

Back I JVM I 0009000F00050001 00090000003000020001 OOOOOOOC033B8400011AO I Server I 
Reset 

The Getting Loaded applet enables you to drive the class load simula­
tion one step at a time. For each step along the way, you can read about 
the next chunk of bytes that is about to be consumed and interpreted by 
the Java virtual machine. Just press the "Step" button to cause the Java 
virtual machine to consume the next chunk. Pressing "Back" will undo the 
previous step, and pressing "Reset" will return the simulation to its orig­
inal state, enabling you to start over. 

The Java virtual machine is shown at the bottom left-hand side as it 
consumes the stream of bytes that makes up the class file Act. class. 
The bytes are shown in hex streaming out of a server on the bottom right­
hand side. The bytes travel right to left, between the server and the Java 
virtual machine, one chunk at a time. The chunk of bytes to be consumed 
by the Java virtual machine on the next "Step" button press are shown in 
red. These highlighted bytes are described in the large text area above the 
Java virtual machine. Any remaining bytes beyond the next chunk are 
shown in black. 

As mentioned in previous sections, many items in the class file refer to 
constant pool entries. To make it easier for you to look up constant pool 
entries as you step through the simulation, a list of the contents of Act's 
constant pool is shown in Table 6-41. 

Each chunk of bytes is fully explained in the text area. Because there 
is a lot of detail in the text area, you may wish to skim through all the 
steps first to get the general idea, then look back for more details. 
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constant pool 
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1 CONSTANT_Class - info 7 

2 CONSTANT_Class - info 16 

3 CONSTANT_Methodref - info 2,4 

4 CONSTANT_NameAndType_info 6,5 

5 CONSTANT Utf8 info "()V" -

6 CONSTANT Utf8 info "<init>" -

7 CONSTANT Utf8 info "Act" -

8 CONSTANT_Utf8 - info "Act. java" 

9 CONSTANT_Utf8 - info "Code" 

10 CONSTANT Utf8 info "ConstantValue" -

11 CONSTANT Utf8 - info "Exceptions" 

12 CONSTANT Utf8 info "LineNumberTable" -

13 CONSTANT_Utf8 - info "Local Variables" 

14 CONSTANT Utf8 info "SourceFile" -

15 CONSTANT Utf8 info "doMathForever" -

16 CONSTANT Utf8 info "java/lang/Object" -

On the CD-ROM 
The CD-ROM contains the source code examples from this chapter in t;h.e 
classfile directory. The Getting Loaded applet is contained in a Web 
page on the CD-ROM in file applets/GettingLoaded. html. The source 
code for this applet is found alongside its class files in the applets/ 
Get t ingLoaded directory. 

The Resources Page 
For more information about class files, visit the resources page: 
http://www.artima.com/insidejvm/resources/. 
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201,202-204,209-210,211 

Page 249 of 280



Index 

Synthetic attribute, 234 
version numbers in, 195 

class initialization method, Java types, 
246-251 

class instantiation, 254-264 
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loading of Java types ~ith, 280-285 
loading operations in, 143 
malicious versus trusted classes and, 50-51 
mobility concepts and, 132 
name spaces in, 10-11,45,46,46, 142, 

145-146 
parent-delegation model for, 47-49, 
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linking and, 269, 279-287 
new Instance() method for, 254-255 
resolution and, 279-287 
subclasses, 243 
superclasses, 242, 243 

client/server applications 
mobility concepts and, 114-115 
service objects and, 129-131, 130 

<clinit> ()method for initialization of Java 
types, 247-251 
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instance initialization method for, 258-264 
instanceof opcode, 440 
instruction set, 17 4-181, 3 85 
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method information for data in, 148-149 
numeric data types, 140 
object lifetime and, 253-265 
passive use of, 239, 251-253 
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forN arne ( ) dynamic extension and, 

333-336 
Greet Application and, dynamic extension 

of, 318-323 
interfaces and, 289-290 
late resolution and, 271 
loading constraints and, 292-294, 343-353 
loadip.g of Java types for, 280-285 
method t~ples and, 300-303, 300,301, 
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OBJECTS AND JAVA SEMINAR 

A Five-Day Intensive, Hands-On, 
Seminar Taught by Bill Venners 

This course covers the full extent of the Java language and several of the 
core APis, including input/output, AWT, Java 2D, Swing, network pro­
gramming, and RMI. A special emphasis is placed on understanding 
Java's object-oriented nature and on effective use of the language con­
structs, such as interfaces, exceptions, and threads. 

Ill Taught in-house by Bill Venners 

Ill Includes in-class programming exercises 

Ill Also available in condensed, lecture-only format 

Ill Can be customized to suit your needs 

For more details about this seminar and others offered by Bill Venners, 
visit www. artima. com. 
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In this superb piece of work, Bill Venners explains in detail the inner workings 
of the Java Virtual Machine (JVM) by presenting possible implementations of 
many parts of that intricate piece of software. It is therefore a welcome complement 
to Sun's official specification. Each concept is clearly presented, often with the help 
of sample code. The accompanying CD also contains enlightening demos about the 
inner workings of the virtual machine. This book will be greatly appreciated not 
only by VM implementers, but also by anyone just curious to understand a com­
ponent that's at the very heart of Java. 

Antoine Trux, a Project Manager at Nokia Research Center in Helsinki, Fin­
land, JAVA Report, December, 1998. Inside the JAVA Virtual Machine was the 

winner of one of JAVA Report's 1998 Writer's Choice Awards. 

Before I delve into the structure and content of this book, I would like to men­
tion the aspect ofVenners's book that impressed me most of all: the sheer atten­
tion to detail and consistent accuracy of his writing. 

The recurring (and expensive-to-produce) features in these chapters [5 through 
20] are the animated, interactive, and enlightening applets that bring to life those 
chapters' main topics. The garbage collection chapter, for example, not only contains 
a good introduction to various modem garbage collection algorithms but also in­
cludes a Heap of Fish applet to let the reader accumulate a real, hands-on un­
derstanding of garbage collection issues and possible solutions. 

The simple fact is that Venners's book is excellent, and his is the book I have to 
recommend. 

Laurence Vanhelsuwe, Java World Magazine, March, 1998. 

Thank you for your excellent book. I've been writing programs in Java for a cou­
ple of years now, and it has really helped me get insight into the guts of the lan­
guage. Thanks again for a wonderful read! 

Noah S. Friedland, PhD 

Recently bought your book, which is worlds easier then reading the JVM Spec­
ification! I also love your applets. They make things a lot easier to understand. 

Paul Bathen 

Your book, Inside the Java Virtual Machine, is one of the best-written and most 
helpful books in my Java collection. 

Louis Barton 

I just finished your book, Inside the Java Virtual Machine, and would like to 
thank you for a very useful piece of work! 

Antoine Trux 

A detailed and methodical book on Java Virtual Machine. This book is a must 
if you are planning on writing a JVM on your own or you have ever been wonder­
ing 'What the heck it takes to execute a .class file.' This book is a welcome relief to 
all those who may have just read the specification on Java Virtual Machine and 
are looking for something more explanatory. 

Gopal Ananthraman 

I'm really enjoying reading your book. It has lots of good stuff that I feel will 
make me a better Java programmer. 

Joel Nylund, Principal, American Management Systems 
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I purchased a copy of Inside the Java Virtual Machine. Although I've only read 

Chapters 7 and 8, I'm extremely pleased and impressed by the detail therein. You 
answered many questions that surfaced, including, "which class loader does the VM 
construe to have loaded classes for which a dynamic class loader delegated re­
sponsibility by calling ClassLoader. f indSystemClass () ?" 

While I was at Lotus Development Corporation I coauthored a text for Prentice­
Hall titled Inside the Lotus Add-In Toolkit. The technology we discussed was 
similar to Java-a platform neutral, partially compiled language whose byte codes 
required a runtime virtual machine on which to execute. 

Our goal as authors was to convey technical material with accuracy and good 
humor. We really sweated the terminology and paid special attention to consistency 
and technical detail-as developers we wanted this text to be useful and correct. 
As readers, we polished our English usage because we dreaded reading most pop­
ular technical texts. 

All this is by way of reinforcing my feedback on your work. When an author 
takes the time to write complete sentences, to develop a conversational tone, to be 
consistent in terminology, and to provide real value added rather than simply re­
iterating (often imprecisely) the published specifications, I sit up and take notice. 

David McCall 

The best Java book if you really want to go under the hood. Inside JVM is an 
awsome book if you really want to know the ins and outs of JVM. I am amazed with 
the ability of Mr. Bill as a technical writer. I will strongly recomend this book for 
any serious Java developer who needs to know Java beyond the buzz words. 

Rashid Jilani, on AMAZON. COM 

A great book. 
This is the best Java book I have read so far. Bill is a great software engineer 

and writer. If you want to know about the inside of JVM, this is a must have. 

Michael Young, on AMAZON. COM 
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EXHIBIT A 
JAVA DEVELOPMENT KIT VERSION 1.1.4 BINARY CODE LICENSE 

This binary code license ("License") contains rights and restrictions associated with use of the accompanying soft­
ware and documentation ("Software"). Read the License carefully before installing the Software. By installing the 
Software you agree to the terms and conditions of this License. 
1. Limited License Grant. Sun grants to you ("Licensee") a non-exclusive, non-transferable limited license to use 
the Software without fee for evaluation of the Software and for development of Java symbol228 \f"Symbol" \s 
12 %o compatible applets and applications. Licensee may make one archival copy of the Software. Licensee may not 
re-distribute the Software in whole or in part, either separately or included with a product. Refer to the Java Run­
time Environment Version 1.1.4 binary code license (http://www.javasoft.com/ products/JDK/1.1.4/index.html) for 
the availability of runtime code which may be distributed with Java compatible applets and applications. 
2. Java Platform Interface. Licensee may not modifY the Java Platform Interface ("JPI", identified as classes 
contained within the "java" package or any subpackages of the "java" package), by creating additional classes within 
the JPI or otherwise causing the addition to or modification of the classes in the JPI. In the event that Licensee 
creates any Java-related API and distributes such API to others for applet or application development, Licensee 
must promptly publish an accurate specification for such API for free use by all developers of Java-based software. 
3. Restrictions. Software is confidential copyrighted information of Sun and title to all copies is retained by Sun 
and/or its licensors. Licensee shall not modify, decompile, disassemble, decrypt, extract, or otherwise reverse engi­
neer Software. Software may not be leased, assigned, or sublicensed, in whole or in part. Software is not de­
signed or intended for use in on-line control of aircraft, air traffic, aircraft navigation or aircraft com­
munications; or in the design, construction, operation or maintenance of any nuclear facility. 
Licensee warrants that it will not use or redistribute the Software for such purposes. 
4. Trademarks and Logos. This License does not authorize Licensee to use any Sun name, trademark or logo. 
Licensee acknowledges that Sun owns the Java trademark and all Java-related trademarks, logos and icons includ­
ing the Coffee Cup and Duke ("Java Marks") and agrees to: (i) to comply with the Java Trademark Guidelines at 
http://java.com/trademarks.html; (ii) not do anything harmful to or inconsistent with Sun's rights in the Java 
Marks; and (iii) assist Sun in protecting those rights, including assigning to Sun any rights acquired by Licensee in 
any Java Mark. 
5. Disclaimer of Warranty. Software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR 
IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER­
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EX­
CLUDED. 
6. Limitation of Liability. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUF­
FERED BY LICENSEE OR ANY THIRD PARTY AS A RESULT OF USING OR DISTRIBUTING SOFTWARE. IN 
NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR 
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER 
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABIL­
ITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 
7. Termination. Licensee may terminate this License at any time by destroying all copies of Software. This Li­
cense will terminate immediately without notice from Sun if Licensee fails to comply with any provision of this Li­
cense. Upon such termination, Licensee must destroy all copies of Software. 
8. Export Regulation. Software, including technical data, is subject to U.S. export control laws, including the U.S. 
Export Administration Act and its associated regulations, and may be subject to export or import regulations in 
other countries. Licensee agrees to comply strictly with all such regulations and acknowledges that it has the re­
sponsibility to obtain licenses to export, re-export, or import Software. Software may not be downloaded, or other­
wise exported or re-exported (i) into, or to a national or resident of, Cuba, Iraq, Iran, North Korea, Libya, Sudan, 
Syria or any country to which the U.S. has embargoed goods; or (ii) to anyone on the U.S. Treasury Department's 
list of Specially Designated Nations or the U.S. Commerce Department's Table of Denial Orders. 
9. Restricted Rights. Use, duplication or disclosure by the United States government is subject to the restrictions 
as set forth in the Rights in Technical Data and Computer Software Clauses in DFARS 252.227-7013(c)(l)(ii) and 
FAR 52.227-19(c)(2) as applicable. 
10. Governing Law. Any action related to this License will be governed by California law and controlling U.S. fed­
erallaw. No choice of law rules of any jurisdiction will apply. 
11. Severability. If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in 
any jurisdiction, then such provisions are herewith waived to the extent necessary for the License to be otherwise en­
forceable in such jurisdiction. However, if in Sun's opinion deletion of any provisions of the License by operation of 
this paragraph unreasonably compromises the rights or increase the liabilities of Sun or its licensors, Sun reserves 
the right to terminate the License and refund the fee paid by Licensee, if any, as Licensee's sole and exclusive remedy. 
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SOFTWARE AND INFORMATION LICENSE 

The software and information on this diskette (collectively referred to as the "Product'') are the property of The 
McGraw-Hill Companies, Inc. ("McGraw-Hill") and are protected by both United States copyright law and inter­
national copyright treaty provision. You must treat this Product just like a book, except that you may copy it into 
a computer to be used and you may make archival copies of the Products for the sole purpose of backing up our 
software and protecting your investment from loss. 

By saying "just like a book," McGraw-Hill means, for example, that the Product may be used by any number of 
people and may be freely moved from one computer location to another, so long as there is no possibility of the 
Product (or any part of the Product) being used at one location or on one computer while it is being used at an­
other. Just a book cannot be read by two different people in two different places at the same time, neither can the 
Product be used by two different people in two different places at the same time (unless, of course, McGraw-Hill's 
rights are being violated). 

McGraw-Hill reserves the right to alter or modifY the contents of the Product at any time. 
This agreement is effective until terminated. The Agreement will terminate automatically without notice if you 

fail to comply with any provisions of this Agreement. In the event of termination by reason of your breach, you 
will destroy or erase all copies of the Product installed on any computer system or made for backup purposes and 
shall expunge the Product from your data storage facilities. 

LIMITED WARRANTY 

McGraw-Hill warrants the physical diskette(s) enclosed herein to be free of defects in materials and workmanship 
for a period of sixty days from the purchase date. If McGraw-Hill receives written notification within the warranty 
period of defects in materials or workmanship, and such notification is determined by McGraw-Hill to be correct, 
McGraw-Hill will replace the defective diskette(s). Send request to: 

Customer Service 
McGraw-Hill 
Gahanna Industrial Park 
860 Taylor Station Road 
Blacklick, OH 43004-9615 

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement 
of defective diskette(s) and shall not include or extend any claim for or right to cover any other damages, includ­
ing but not limited to, loss of profit, data, or use of the software, or special, incidental, or consequential damages 
or other similar claims, even if McGraw-Hill has been specifically advised as to the possibility of such damages. 
In no event will McGraw-Hill's liability for any damages to you or any other person ever exceed the lower of sug­
gested list price or actual price paid for the license to use the Product, regardless of any form of the claim. 

THE McGRAW-IDLL COMPANIES, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MER­
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, McGraw-Hill makes no rep­
resentation or warranty that the Product is fit for any particular purpose and any implied warranty of mer­
chantability is limited to the sixty day duration of the Limited Warranty covering the physical diskette(s) only (and 
not the software or information) and is otherwise expressly and specifically disclaimed. 

This Limited Warranty gives you specific legal rights; you may have others which may vary from state to state. 
Some states do not allow the exclusion of incidental or consequential damages, or the limitation on how long an 
implied warranty lasts, so some of the above may not apply to you. 

This Agreement constitutes the entire agreement between the parties relating to use of the Product. The terms 
of any purchase order shall have no effect on the terms of this Agreement. Failure of McGraw-Hill to insist at any 
time on strict compliance with this Agreement shall not constitute a waiver of any rights under this Agreement. 
This Agreement shall be construed and governed in accordance with the laws of New York. If any provision of this 
Agreement is held to be contrary to law, that provision will be enforced to the maximum extent permissible and 
the remaining provisions will remain in force and effect. 

Page 278 of 280



.I 
Page 279 of 280Page 279 of 280

  



Java/Programming 

1111111111 il llll lllll llllllll ll llll ll lll 
X001BD73C9 

Inside the Java 2 Virtual Machine 
Used, Good 

$49.99 U.S.A. 

Page 280 of 280


