
Page 1 of 280 GOOGLE EXHIBIT 1032

_ Applicationcevelopment

Page 1 of 280 GOOGLEEXHIBIT 1032

Page 2 of 280

Venners

haw

Page 2 of 280

INSIDE THE JAVA
VIRTUAL MACHINE

SECOND EDITION

Page 3 of 280

Inside the
Java

Virtual
Machine

Bill Venners

Second Edition

McGraw-Hill
New York San Francisco Washington, D.C.

Auckland Bogota Caracas Lisbon London Madrid
Mexico City Milan Montreal New Delhi San Juan

Singapore Sydney Tokyo Toronto

Page 4 of 280

McGraw-Hill
A Division ofTheMcGmw·HillCompanies

iZ

Copyright© 1999 by The McGraw-Hill Companies, Inc. All Rights Reserved.
Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

Portions of this book were derived from articles written by Bill Venners and
first published in the column "Under the Hood" of Java World, a division of Web
Publishing, Inc., June, 1996 through October, 1997.

1 2 3 4 5 6 7 8 9 0 AGM/AGM 9 0 4 3 2 1 0 9

PIN 135094-2
Part of ISBN 0-07-135093-4

The sponsoring editor for this book was Simon Yates and the production
supervisor was Clare Stanley. It was set in Century Schoolbook by Douglas &
Gayle, Limited.

Printed and bound by Quebecor I Martinsburg.

Throughout this book, trademarked names are used. Rather than put a trade­
mark symbol after every occurrence of a trademarked name, we used the names
in an editorial fashion only, and to the benefit of the trademark owner, with no
intention of infringement of the trademark. Where such designations appear in
this book, they have been printed with initial .caps.

Information contained in this work has been obtained by The McGraw-Hill
Companies, Inc. (''McGraw-Hill") from sources believed to be reliable. However,
neither McGraw-Hill nor its authors guarantees the accuracy or completeness
of any information published herein and neither McGraw-Hill nor its authors
shall be responsible for any errors, omissions, or damages arising out of use of
this information. This work is published with the understanding that
McGraw-Hill and its authors are supplying information but are not attempt­
ing to render engineering or other professional services. If such servi,ces are
required, the assistance of an appropriate professional should be sought.

0 This book is printed on recycled, acid-free paper containing a minimum of 50
percent recycled de-inked fiber.

Page 5 of 280

To my parents

Page 6 of 280

To my parents

Page 6 of 280

CONTENTS

Preface XN

Introduction XNii
Acknowledgments xxxii

Chapter 1 Introduction to Javas Architecture

Why Java? 2
The Challenges and Opportunities of Networks 2
The Architecture 4

The Java Virtual Machine 5
The Class Loader Architecture 8

The Java Class File 11
The Java API 12
The Java Programming Language 14

Architectural Tradeoffs 16
Conclusion 21
The Resources Page 21

Chapter 2 Platform Independence 23

Why Platform Independence? 24
Javas Architectural Support for Platform Independence 25

The Java Platform 25
The Java Language 26
The Java Class File 26
Scaleability 26

Factors that Influence Platform Independence 29
Java Platform Deployment 29
The Java Platform Version and Edition 30
Native Methods 31
Non-Standard Run-Time Libraries 32
Virtual Machine Dependencies 33
User Interface Dependencies 34
Bugs in Java Platform Implementations 34
Testing 34

Seven Steps to Platform Independence 35
The Politics of Platform Independence 36
Platform Independence and Network-Mobile Objects 39

The ~esources Page 40

vii

Page 7 of 280

viii Contents

Chapter 3 Security 41

Why Security? 42
The Basic Sandbox 43
The Class Loader Architecture 45
The Class File Verifier 52

Pass One: Structural Checks on the Class File 53
Pass Two: Semantic Checks on the Type Data 54
Pass Three: Bytecode Verification 54
Pass Four: Venfication of Symbolic References 56
Binary Compatibility 58

Safety Features Built Into the Java Virtual Machine 59
The Security Manager and the Java API 62
Code Signing and Authentication 68
A Code-Signing Example 75
Policy 79

Policy File 82
Protection Domains 84
The Access Controller 86

The implies{) Method 87
Stack Inspection Examples 90
A Stack Inspection That Says "Yes" 93
A Stack Inspection That Says "No" 97
The doPrivileged{) Method 100
A Futile Use of doPrivileged{) 105

Missing Pieces and Future Directions 109
Security Beyond the Architecture 110
The Resources Page Ill

Chapter 4 Network Mobility 113

Why Network Mobility? 114
A New Software Paradigm 116
Javas Architectural Support for Network Mobility 120
The Applet: An Example of Network-Mobile Code 122
The Jini Service Object: An Example of Network-Mobile Objects 125

What is Jini? 126
How Jini Works 126
The Benefits of the Service Object 129

Network Mobility: The Design Center of Java 131
The Resources Page 132

Page 8 of 280

Chapter 5

Chapter 6

The Java Vrrtual Machine

What Is a Java Virtual Machine?

The Lifetime of a Java Virtual Machine

The Architecture of the Java Virtual Machine

Data Types

Won] Size

The Class Loader Subsystem

The Method Area

The Heap

The Program Counter

The Java Stack

The Stack Frame

Native Method Stacks

Execution Engine

Native Method Interface

The Real Machine

Eternal Math: A Simulation

On the CD-ROM

The Resources Page

The Java Class File

What Is a Java Class File?

What Is in a Class File?

Special Strings

Fully Qualified Names

Simple Names

Descriptors

The Constant Pool

The CONSTANT_Utf8_info Table

The CONSTANT _Integer _info Table

The CONSTANT _Fioat_info Table

The CONSTANT _Long_info Table

The CONSTANT _Double_info Table

The CONSTANT_Ciass_info Table

The CONSTANT _String_info Table

The CONSTANT _Fieldref_info Table

The CONSTANT_Methodref_info Table

The CONSTANT _lnterfaceMethodref_info Table

The CONSTANT_NameAndType_info Table

LJ
133

134

134

136

139

142

142

146

154

161

162

163

172

173

186

187

188

189

190

191

192

193

201

202

202

202

205

205

207

208

208

209

209

210

211

212

212

213

Page 9 of 280

Chapter 7

Chapter 8

Fields

Methods

Attributes

Attribute Format

The Code Attribute

The ConstantValue Attribute

The Deprecated Attribute

The Exceptions Attribute

The lnnerCiasses Attribute

The UneNumberTable Attribute

The LocaiVariableTable Attribute

The SourceFile Attribute

The Synthetic Attribute

Gett1ng Loaded: A Simulation

On the CD-ROM

The Resources Page

The Lifetime of a Type

Type Loading, Linking, and Initialization

Load1ng

Verification

Preparation

Resolution

Initialization

The Lifetime of an Object

Class Instantiation

Garbage Collection and Finalization of Objects

Unloading of Types

On the CD-ROM

The Resources Page

The Linking Model

Contents

214
216
218
219
220
223
224
225
225
229
231
233
234
234
236
236

237

238
240
241
244
245
245
253
254
264
265
268
268

269

Dynamic Linking and Resolution 270
Resolution and Dynamic Extension 272
Class Loaders and the Parent-Delegation Model 276
Constant Pool Resolution 277

Resolution of CONSTANT_Ciass_info Entries 278

Resolution of CONSTANT_Fieldref_info Entries 287
Resolution of CONSTANT_Methodref_info Entries 288
Resolution of CONSTANT _lnterfaceMethodref_info Entries 289
Resolution of CONSTANT _String_info Entries 290

L

Page 10 of 280

Contents

Resolution of Other Types of Entries 292

Loading Constraints 292

Compile-Time Resolution of Constants 294

Direct References 296

_quick Instructions 305

Example: The Linking of the Salutation Application 306

Example: The Dynamic Extension of the Greet Application 3 1 8

Using a 1. 1 User-Defined Class Loader 323

Using a Version 1 .2 User-Defined Class Loader 329

Example: Dynamic Extension with forName{) 333

Example: Unloading Unreachable Greeters 336

Example: Type Safety and Loading Constraints 343

On the CD-ROM 353

The Resources Page 353

Chapter 9 Garbage Collection 355

Why Garbage Collection? 356

Garbage Collection Algorithms 357

Reference Counting Collectors 358

Tracing Collectors 359

Compacting Collectors 359

Copying Collectors 360

Generational Collectors 362

Adaptive Collectors 362

The Train Algorithm 363

Cars, Trains, and a Railway Station 364

Collecting Cars 366

Remembered Sets and Popular Objects 367

Finalization 368

The Reachability Life Cycle of Objects 370

Reference Objects 37 1

Reachability State Changes 373

Caches, Canonicalizing Mappings, and Pre-Mortem Cleanup 376

Heap of Fish: A Simulation 378

Allocate Fish 379

Assign References 38 1

Garbage Collect 382

Compact Heap 383

On the CD-ROM 384

The Resources Page 384

Page 11 of 280

LJ ;

Contents

Chapter 10 Stack and Local Variable Operations 385

Pushing Constants onto the Stack 386
Generic Stack Operations 389
Pushing Local Variables onto the Stack 389
Popping to Local Variables 390
The wide Instruction 392
Fibonacci Forever: A Simulation 394
On the CD-ROM 397
The Resources Page 397

Chapter 11 Type Conversion 399

The Conversion Opcodes 400
Conversion Diversion: A Simulation 402
On the CD-ROM 405
The Resources Page 405

Chapter 12 Integer Arithmetic 407

Twos-Complement Arithmetic 408
Inner lnt: A Java int Reveals Its Inner Nature 409
Arithmetic Opcodes 409
Prime Time: A Simulation 412
On the CD-ROM 416
The Resources Page 416

Chapter 13 Logic 417

The Logic Opcodes 418
Logical Results: A Simulation 419
On the CD-ROM 421
The Resources Page 422

Chapter 14 Floating-Point Arithmetic 423

Floating-Point Numbers 424
Inner Float: A Java float Reveals its Inner Nature 427
Floating Point Modes 428

Floating-Point Value Sets 429
Floating-Point Value Set Conversion 430
Implications of the Relaxed Rules 431

The Floating Point Opcodes 431
Circle of Squares: A Simulation 434

·--
Page 12 of 280

Contents LJ
On the CD-ROM 436
The Resources Page 436

Chapter 15 Objects and Arrays 437

A Refresher on Objects and Arrays 438
Opcodes for Objects 438
Opcodes for Arrays 440
Three-Dimensional Array: A Simulation 443
On the CD-ROM 447
The Resources Page 447

Chapter 16 Control Flow 449

Conditional Branching 450
Unconditional Branching 453
Conditional Branching with Tables 453
Saying Tomato: A Simulation 455
On the CD-ROM 457
The Resources Page 458

Chapter 17 Exceptions 459

Throwing and Catching Exceptions 460
The Exception Table 464
Play Ball!: A Simulation 465
On the CD-ROM 468
The Resources Page 468

Chapter 18 Finally Clauses 469

Miniature Subroutines 470
Asymmetrical Invocation and Return 471
Hop Around: A Simulation 474
On the CD-ROM 477
The Resources Page 478

Chapter 19 Method Invocation and Return 479

Method Invocation 480
Invoking a Java Method 481
Invoking a Native Method 482

Other Forms of Method Invocation 482
The invokespecial Instruction 483

invokespecial and <init>() 483

Page 13 of 280

I
l.__ __ xiv

invokespecial and Private Methods

invokespeCial and super

The invokeinterface Instruction

Invocation Instructions and Speed

Examples of Method Invocation

Returning from Methods

On the CD-ROM

The Resources Page

Chapter 20 Thread Synchronization

Monitors

Object Locking

Synchronization Support 1n the Instruction Set

Synchronized Statements

Synchronized Methods

Coordination Support 1n Class Object

On the CD-ROM

The Resources Page

Appendix A

Appendix B

Appendix C

Appendix D

Index

r
Contents !

486
487
490
490
491
495
496
496

497

498
503
505
505
508
51 I
51 I
512

513
649
659
667

677

i
I

_L
Page 14 of 280

- PREFACE
My primary goal in writing this book was to explain the Java virtual
machine-and several core Java APis closely related to the virtual
machine-to Java programmers. Although the Java virtual machine
incorporates technologies that have been tried and proven in other pro­
gramming languages, prior to Java, many of these technologies had not
yet entered into common use. As a consequence, many programmers will
encounter these technologies for the first time as they begin to program
in Java. Garbage collection, multi-threading, exception handling, dynamic
extension-even the use of a virtual machine itself-might be new to
many programmers. The aim of this book is to help programmers under­
stand how all these things work, and in the process we hope to help them
become more adept at Java programming.

Another goal I had in mind as I wrote this book was to experiment a
bit with the changing nature of text. Web pages have three interesting
characteristics that differentiate them from paper-based text: they are
dynamic (can evolve over time), they are interactive (especially if you
embed Java applets in them), and they are interconnected (you can eas­
ily navigate from one to another). Besides the traditional text and figures,
this book includes several Java applets (in a mini-Web site on the
CD-ROM) that serve as interactive illustrations of the concepts presented
in the text. In addition, I maintain a Web site at artima. com on the
Internet that serves as a launching point for readers to find more (and
more current) information about the topics covered in the book. This book
is composed of all of these components: text, figures, interactive illustra­
tions, and constantly evolving links to further reading.

Bill Venners

XV

Page 15 of 280

- - INTRODUCTJON
This book describes the Java virtual machine, the abstract computer on
which all Java programs run, and several core Java APis that have an inti­
mate relationship with the virtual machine. Through a combination of tuto­
rial explanations, working examples, reference material, and applets that
interactively illustrate the concepts presented in the text, this book pro­
vides an in-depth, technical survey of Java as a technology.

The Java programming language seems poised to be the next popular lan­
guage for mainstream commercial software development-the next step after
C and C++. One of the fundamental reasons why Java is a likely candidate for
this role is that Java's architecture helps programmers deal with emerging
hardware realities. Java has features that the shifting hardware environment
is demanding-features that are made possible by the Java virtual machine.

The evolution of programming languages has (to a great extent) been
driven by changes in the hardware being programmed. As hardware has
grown faster, cheaper, and more powerful, software has become larger and
more complex. The migration from assembly languages to procedural lan­
guages, such as C, and to object oriented languages, such as C++, was
largely driven by a need to manage ever greater complexity-complexity
made possible by increasingly powerful hardware.

Today, the progression towards cheaper, faster, and more powerful hardwEJTe
continues, as does the need for managing increasing software complexity.
Building on C and C++, Java helps programmers deal with complexity by ren­
dering impossible certain kinds ofbugs that frequently plague C and C++ pro­
grammers. Java's inherent memory safety-garbage collection, lack of pointer
arithmetic, and run-time checks on the use of references-prevents most mem­
ory bugs from ever occurring in Java programs. Java's memory safety makes
programmers more productive and helps them manage complexity.

In addition, besides the ongoing increase in the capabilities of hard­
ware, there is another fundamental shift taking place in the hardware
environment: the network. As networks interconnect more and more com­
puters and devices, new demands are being made on software. With the
rise of the network, platform independence and security have become
more important than they were in the past.

The Java virtual machine is responsible for the memory safety, platform
independence, and security features of the Java programming language.
Although virtual machines have been around for a long time, prior to
Java, they had not quite entered the mainstream. Given today's emerging

xvii

Page 16 of 280

Introduction

hardware realities, however, software developers needed a programming
language with a virtual machine, and Sun hit the market window with Java.

Thus, the Java virtual machine embodies the right software features
for the coming years of computing. This book will help you get to know
this virtual machine and some closely related Java APis. Armed with this
knowledge, you will be better able to take maximum advantage of Java's
unique architecture in your own endeavors.

Who Should Read the Book?
This book is aimed primarily at professional software developers and stu­
dents who want to understand Java technology. I assume that you are
familiar, although not necessarily proficient, with the Java language.
Reading this book should help you add a depth to your knowledge of Java
programming. If you are one of the elite few who are actually writing Java
compilers or creating implementations of the Java virtual machine, this
book can serve as a companion to the Java virtual machine specification.
Where the specification specifies, this book explains.

How to Use the Book
This book has five basic parts:

1. An introduction to Java's architecture (Chapters 1 through 4)

2. An in-depth, technical tutorial of Java internals (Chapters 5
through 20)

3. A class file and instruction set reference (Chapter 6 and Appen­
dixes A through C)

4. Interactive illustrations and example source code (on the
CD-ROM)

5. The Java Virtual Machine Resources Page (http : I I www. art i rna .
comlinsidejvmlresourcesl)

An Introduction to Java's Architecture

Chapters 1 through 4 (Part I of this book) give an overview of Java's archi­
tecture, including the motivations behind (and the implications of) Java's

Page 17 of 280

Introduction xix

architectural design. These chapters show how the Java virtual machine
relates to the other components of Java's architecture: the class file, API,
and language. If you want a basic understanding of Java as a technology,
consult these chapters. Here are some specific points of interest from this
portion of the book:

81 For an overview of Java's architecture and a discussion of its inher­
ent tradeoff's, see Chapter 1, "Introduction to Java's Architecture."

81 For a discussion of what platform independence really means, how
Java's architecture supports this feature, and seven steps to create
a platform-independent Java program, see Chapter 2, "Platform
Independence."

II For a description of the security model built into Java's core archi­
tecture, including an elaborate working example that demon­
strates the fine-grained access control made possible by the
Version 1.2 security framework, see Chapter 3, "Security."

81 For a discussion of the new paradigm of network-mobile software,
see Chapter 4, "Network Mobility."

A Tutorial of Java Internals

Chapters 5 through 20 (Part II of this book) give an in-depth technical
description of the inner workings of the Java virtual machine and related
core Java APis. These chapters will help you understand how Java pro­
grams actually work. All of the material in Part II is presented in a tuto­
ria1 manner with many examples. Here are some specific points of interest
from this portion of the book:

81 For a comprehensive overview of the inner workings of the Java
virtual machine, see Chapter 5, "The Java Virtual Machine."

81 If you are parsing, generating, or simply peering into Java class
files, see Chapter 6, "The Java Class File," for a complete tutorial
and reference on the class file format.

81 For a discussion of the lifetime of a class inside the Java virtual
machine, including the circumstances in which classes can be
unloaded, see Chapter 7, "The Lifetime of a Type."

81 For a thorough explanation of Java's linking model, including a
tutorial and examples on using forName () and class loaders to
dynamically extend Java applications with new types at run time,
see Chapter 8, "The Linking Model."

Page 18 of 280

lxxJ
t .

Introduction

Ill For a discussion of garbage collection and finalization, an explana­
tion of soft, weak, and phantom references, and suggestions on
how to use finalizers, see Chapter 9, "Garbage Collection."

Ill For a tutorial on the Java virtual machine's instruction set, read
Chapters 10 through 20.

Ill For an explanation of monitors and how you can use them to write
thread-safe Java code, see Chapter 20, "Thread Synchronization."

A Class File and Instruction Set Reference

In addition to being a tutorial on the Java class file, Chapter 6, "The Java
Class File," serves as a complete reference of the class file format. Simi­
larly, Chapters 10 through 20 form a tutorial of the Java virtual machine's
instruction set, and Appendixes A through C serve as a complete refer­
ence of the instruction set. If you need to look up something, check out
these chapters and the appendixes.

Interactive Illustrations and
Example Source Code

For most of this book's chapters, material associated with the chapter­
such as example code or simulation applets-appears on the CD-ROM.

The applets directory of the CD-ROM contains a mini-Web site called
the "Interactive Illustrations Web Site," which includes 15 Java applets
that illustrate the concepts presented in the text. These interactive illus­
trations form an integral part of this book. Eleven of the applets simulate
the Java virtual machine by executing bytecodes. The other applets illus­
trate garbage collection, twos-complement and IEEE 754 floating-point
numbers, and the process of loading of class files. The applets can be
viewed on any platform by any Java-capable browser. The source code for
the simulation applets is also included on the CD-ROM.

The copyright notice accompanying the HTML, . java, and . class
files for the Interactive Illustrations Web Site enables you to post the Web
site on any network, including the Internet-providing that you adhere
to a few simple rules. For example, you must post the Web site in its
entirety (you cannot make any changes to it), and you cannot charge peo-

Page 19 of 280

Introduction

-

ple to look at the site. The full text of the copyright notice is given in the
introduction to this book.

All of the example source code shown in this book appears on the
CD-ROM in both source and compiled (class files) form. If some example
code in the text strikes you as interesting (or dubious), you can try it for
yourself.

Most of the example code is for illustrative purposes and is not likely
to be of much practical use besides helping you understand Java. Never­
theless, you are free to cut and paste from the example code, use it in your
own programs, and distribute it in binary (such as Java class file) format.
The full text of the copyright notice for the example source code is shown
in the introduction.

The Java Virtual Machine Resources Page

To help you find more information and keep abreast of changes, I main­
tain several pages at artima.com with links to further reading about the
material presented in this book. The main URL for these pages of links
is the Java Virtual Machine Resources Page at http: I /www. artima.
com/insidejvm/resources/.

Chapter-by-Chapter Summary

Part 1: Java's Architecture

Chapter 1: Introduction to Java's Architecture This chapter gives
an introduction to Java as a technology and gives an overview of Java's
architecture, discusses why Java is important, and examines Java's pros
and cons.

Chapter 2: Platform Independence This chapter shows how Java's
architecture enables programs to run on any platform, discusses the fac­
tors that determine the true portability of Java programs, and examines
the relevant tradeoffs.

Chapter 3: Security This chapter gives an in-depth overview of the secu­
rity model built into Java's core architecture and traces the evolution of

Page 20 of 280

l~ii Introduction

Java's security model, from the basic sandbox ofVersion 1.0 through the code
signing and authentication ofVersion 1.1, to the fine-grained access control
ofVersion 1.2.

Chapter 4: Network Mobility This chapter examines the new para­
digm of network-mobile software heralded by the arrival of Java and
shows how Java's architecture makes this functionality possible.

Part II: Java Internals

Chapter 5: The Java Virtual Machine This chapter gives a detailed
overview of the Java virtual machine's internal architecture. Accompa­
nying the chapter on the CD-ROM is an applet called Eternal Math, which
simulates the Java virtual machine by executing a short sequence of byte­
codes.

Chapter 6: The Java Class File This chapter describes the contents
of the class file, including the structure and format of the constant pool,
and serves as both a tutorial and a complete reference for the Java class
file format. Accompanying the chapter on the CD-ROM is an applet called
Getting Loaded, which simulates the process of the Java virtual machine
loading a Java class file.

Chapter 7: The Lifetime of a Class This chapter follows the lifetime
of a type (class or interface) from the type's initial entrance into the vir­
tual machine to its ultimate exit. The chapter discusses the processes of
loading, linking, and initialization; object instantiation, garbage collec­
tion, and finalization; and type unloading.

Chapter 8: The Linking Model This chapter takes an in-depth look
at Java's linking model and describes the parent-delegation model of class
loaders, constant pool resolution, name spaces, and loading constraints.
The chapter also shows how to use forName () and class loaders to enable
a Java application to dynamically extend itself at run time.

Chapter 9: Garbage Collection This chapter describes various
garbage-collection techniques and explains how garbage collection works
in Java virtual machines, including a discussion of the train algorithm
and soft, weak, and phantom references. Accompanying this chapter on

Page 21 of 280

Introduction xxiii

the CD-ROM is an applet called Heap of Fish, which simulates a com­
pacting, mark-and-sweep, garbage-collected heap.

Chapter 10: Stack and Local Variable Operations This chapter
describes the Java virtual machine instructions that focus most exclu­
sively on the operand stack-those that push constants onto the operand
stack, perform generic stack operations, and transfer values back and
forth between the operand stack and local variables. Accompanying this
chapter on the CD-ROM is an applet called Fibonacci Forever, which sim­
ulates the Java virtual machine executing a method that generates the
Fibonacci sequence.

Chapter 11: Type Conversion This chapter describes the instructions
that convert values from one primitive type to another. Accompanying the
chapter on the CD-ROM is an applet called Conversion Diversion, which
simulates the Java virtual machine's execution of a method that performs
type conversion.

Chapter 12: Integer Arithmetic This chapter describes integer arith­
metic in the Java virtual machine, explains twos-complement arithmetic,
and describes the instructions that perform integer arithmetic. Accompa­
nying this chapter on the CD-ROM are two applets that interactively
illustrate the material presented in the chapter. One applet, called Inner
Int, enables you to view and manipulate a twos-complement number. The
other applet, called Prime Time, simulates the Java virtual machine exe­
cuting a method that generates prime numbers.

Chapter 13: Logic This chapter describes the instructions that per­
form bitwise, logical operations inside the Java virtual machine. These
instructions include opcodes to perform shifting and Boolean operations
on integers. Accompanying this chapter on the CD-ROM is an applet
called Logical Results, which simulates the Java virtual machine's exe­
cution of a method that uses several of the logic opcodes.

Chapter 14: Floating-Point Arithmetic This chapter describes the
floating-point numbers and the instructions that perform floating-point
arithmetic inside the Java virtual machine specification. Accompanying
this chapter on the CD-ROM are two applets that interactively illustrate
the material presented in the chapter. One applet, called Inner Float,
enables you to view and manipulate the individual components that make
up a floating-point number. The other applet, called Circle of Squares,

Page 22 of 280

xxiv IntrodJ.Iction

simulates the Java virtual machine's execution of a method that uses sev­
eral floating-point opcodes.

Chapter 15: Objects and Arrays This chapter describes the Java vir­
tual machine instructions that create and manipulate objects and arrays.
Accompanying this chapter on the CD-ROM is an applet called Three­
DimensionalArray, which simulates the Java virtual machine's execution
of a method that allocates and initializes a three-dimensional array.

Chapter 16: Control Flow This chapter describes the instructions
that cause the Java virtual machine to conditionally or unconditionally
branch to a different location within the same method. Accompanying this
chapter on the CD-ROM is an applet called Saying Tomato, which simu­
lates the Java virtual machine's execution of a method that includes byte­
codes that perform table jumps (the compiled version of a Java switch
statement).

Chapter 17: Exceptions This chapter shows how exceptions are imple­
mented in bytecodes and describes the instruction for throwing an excep­
tion explicitly, explains exception tables, and shows how catch clauses
work. Accompanying this chapter on the CD-ROM is an applet called Play
Ball!, which simulates the Java virtual machine executing a method that
throws and catches exceptions.

Chapter 18: Finally Clauses This chapter shows how finally clauses
are implemented in bytecodes and describes the relevant instructions
with examples of their use. The chapter also describes some surprising
behavior exhibited by finally clauses in Java source code and explains this
behavior at the bytecode level. Accompanying this chapter on the
CD-ROM is an applet called Hop Around, which simulates the Java vir­
tual machine executing a method that includes finally clauses.

Chapter 19: Method Invocation and Return This chapter describes
the four instructions that the Java virtual machine uses to invoke meth­
ods and the situations in which each instruction is used.

Chapter 20: Thread Synchronization This chapter describes moni­
tors-the mechanism that Java uses to support synchronization-and
shows how they are used by the Java virtual machine. The chapter also
shows how one aspect of monitors, the locking and unlocking of data, is sup­
ported in the instruction set.

Page 23 of 280

Introduction

-

LJ
Appendix A: Instruction Set by Opcode Mnemonic This appendix
lists the opcodes alphabetically by mnemonic. For each opcode, you are
given the mnemonic, opcode byte value, instruction format (the operands,
if any), a snapshot image of the stack before and after the instruction is
executed, and a description of the instruction's execution. Appendix A
serves as the primary instruction -set reference of the book.

Appendix B: Opcode Mnemonic by Functional Group This appen­
dix organizes the instructions by functional group. The organization used
in this appendix corresponds to the order in which the instructions are
described in Chapters 10 through 20.

Appendix C: Opcode Mnemonic by Opcode This appendix orga­
nizes the opcodes in numerical order. For each numerical value, you are
given the mnemonic.

Appendix D: Slices of Pi: A Simulation of the Java Virtual Machine
This final appendix describes one final applet, Slices of Pi, that is part of
the Interactive Illustrations Web Site. This applet simulates the Java vir­
tual machine calculating pi.

Copyright Notices
Here is the text ofthe copyright notice that appears in each of the exam­
ple source files (any item on the CD-ROM that is not in either the
applets or j dk directories):

Copyright© 1997-1999 Bill Venners. All rights reserved.
Source code file from the book "Inside the Java 2 Virtual Machine," by Bill

Venners, published by McGraw-Hill, 1997-1999, ISBN: 0-07-135093-4.
This source file may not be copied, modified, or redistributed EXCEPT as

allowed by the following statements: You may freely use this file for your
own work, including modifications and distribution in compiled (class files,
native executable, etc.) form only. You may not copy and distribute this file.
You may not remove this copyright notice. You may not distribute modified
versions of this source file. You may not use this file in printed media with­
out the express permission of Bill Venners.

BILL VENNERS MAKES NO REPRESENTATIONS OR WARRANTIES
ABOUT THE SUITABILITY OF THIS SOFTWARE, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WAR-

Page 24 of 280

XXVI Introduction

RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PUR­
POSE, OR NON-INFRINGEMENT. BILL VENNERS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY A LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERNATIVES.

The HTML pages (including the applets) and Java source files for the
Interactive Illustrations Web Site (stored in the applets directory of the
CD-ROM) all bear the following copyright notice:

All the web pages and Java applets delivered in the applets directory of
the CD-ROM, consisting of".html," ".gif," ".class," and ".java" files, are copy­
righted© 1996, 1997 by Bill Venners, and all rights are reserved. This mate­
rial may be copied and placed on any commercial or non-commercial web
server on any network (including the internet) provided that the following
guidelines are followed:

a. All the web pages and Java Applets (".html," ".gif," ".class," and ".java"
files), including the source code, that are delivered in the applets

directory of the CD-ROM that accompanies the book must be pub­
lished together on the same web site.

b. All the web pages and Java Applets (".html," ".gif," ".class," and ".java"
files) must be published "as is" and may not be altered in any way.

c. All use and access to this web site must be free, and no fees can be
charged to view these materials, unless express written permission is
obtained from Bill Venners.

d. The web pages and Java Applets may not be distributed on any media,
other than a web server on a network, and may not accompany any
book or publication.

BILL VENNERS MAKES NO REPRESENTATIONS OR WARRANTIES
ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WAR­
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PUR­
POSE, OR NON-INFRINGEMENT. BILL VENNERS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY A LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERNATIVES.

Some Terminology

In this book, I have attempted to use terminology that is consistent with
the Java language and Java virtual machine specifications. In case you

Page 25 of 280

Introduction xxvii

are not familiar with this terminology, I would like to clarify a few terms
up front.

First of all, in this book I have attempted to be meticulous about my
usage of the terms type and class. In Java jargon, variables and expres­
sions have type. Objects and arrays have class. Every variable and expres­
sion in a Java program has a type that is known at compile time: either
a primitive type (int, long, float, double, etc.) or a reference type (a
class, interface, or array). The type of a variable or expression determines
the range and kind of values it can have, the operations it supports, and
the meaning of those operations.

At run time, every object and array has a class. Although an object is
an instance of its class and all of its superclasses, it only has one class.
An object's class can be any of the following:

• The class mentioned in the class instance creation expression that
created the object

• The class represented by the Class object upon which newin­
stance () was invoked to create the object

• The class of the object upon which clone () was invoked to create
the object

IB The class of an object that was created by deserializing a previ­
ously serialized object

Array classes have names such as [D or [[[[I, which are not valid iden­
tifiers in the Java language. (Array class names are described in Chapter 6,
"The Java Class File.") If at run time a variable that has a reference type is
not null, then that variable refers to an object whose class is compatible
with the type of the variable.

To complicate the terminology situation a bit more, the specifications
contain one other usage of the term type. Because a variable can declare
a class or interface as its type, classes and interfaces define new types for
the program to use. (The capability to define new types is, of course, one
of the fundamental concepts of object-oriented programming.) Through­
out this book, I attempt to use the term classes to mean just classes (not
classes and interfaces). Likewise, I use the term interfaces to mean just
interfaces. When I want to refer to both, I sometimes say classes and inter­
faces, but often I just say types. For example, when I say, ''When the class
loader loads a new type ... ," I mean, "When the class loader loads a new
class or interface." In this sense, type is not referring to the compile-time
notion of a variable's type; rather, it refers to the new type that each class
and interface definition represents.

Page 26 of 280

xxviii

---­Figure 0-1
An Inheritance
hierarchy

Introduction

Another set of terminology I would like to clarify up front are the terms
used by the Java specifications to describe the relationships between
types (classes and interfaces) in an in~eritance hierarchy. Consider
the inheritance hierarchy shown in the Figure 0-1. In this figure, class
CockerSpaniel extends class Dog, which extends class Animal, which
extends class Object. In addition, interface Friendly extends interface
Happy, and class Dog implements interface Friendly.

In Java terminology, classes higher than a class in an inheritance hier­
archy are superclasses; classes beneath a class are subclasses. In the fol­
lowing figure, Dog's superclasses are Animal and Object, and Dog is a
subclass of both Animal and Object. The superclass that is directly
higher than a class in the inheritance hierarchy is the class's direct super­
class. A subclass directly beneath a class is its direct subclass. For exam-

Happy
<<:interface>>

Friendly
<<:interface>>

Page 27 of 280

Introduction w
ple, Animal is the direct superclass of Dog, and CockerSpaniel is a
direct subclass of Dog.

This sub- and super-terminology can be applied to interfaces, as well.
For example, interfaces Happy and Friendly are superinterfaces of both
Dog and CockerSpaniel. Interface Friendly is a direct superinterface
of Dog and a direct subinterface of Happy.

One last way to use the sub- and super-terminology is by grouping both
classes and interfaces under the name type. In Figure 0-1, Friendly, Dog,
and CockerSpaniel are subtypes of Happy. Object, Animal, Happy,
Friendly, and Dog are all supertypes of CockerSpaniel.

Font Conventions
Used in this Book
Throughout this book, I use a fixed-width font for Java code and Java vir­
tual machine opcode mnemonics. In the text, I use fixed-width font for
Java language keywords only in certain cases-in an attempt to maximize
readability. For example, I say public method instead of public method,
because in this case, public is being used as a regular English adjective
(in a sense of the word that is understood in Java circles)-not necessar­
ily as the Java keyword.

Java Versions and Specification
Editions
The text of this book is current to the Java 2 SDK Version 1.2 and the sec­
ond edition of the Java virtual machine specification. Although little of the
material covered by this book changed between Versions 1.0 and 1.1, a
great deal changed between Versions 1.1 and 1.2. Moreover, the second
edition of the Java virtual machine specification clarified many issues
contained in the first edition of the specification, as well as making a few
amendments.

One change that occurred in JDK Version 1.0.2 was a change in the
semantics of the invokespecial instruction, which is described in Chap-

Page 28 of 280

Introduction

ter 19, "Method Invocation," and in Appendix A. Two attributes were
added to the class-file format in Version 1.1 to support inner classes, and
an attribute was added to support the @deprecated j avadoc tag. They
are described in Chapter 6, "The Java Class File." Also, the API of the
ClassLoader class was extended in Version 1.1. Chapter 8, "The Link­
ing Model," demonstrates the use of the 1.1 version of this API.

Several of the Java APis described in this book underwent significant
changes between Version 1.1, which was covered by the first edition of this
book, and Version 1.2, which is covered by this second edition. Perhaps the
most significant API changes that affected this book are the many API
changes that support the Version 1.2 security model. All of the compo­
nents of the Version 1.2 security model-the basic sandbox, code signing
and authentication, policies and policy files, permissions, code sources,
protection domains, and the stack inspection algorithms of the access con­
troller-are described in detail in Chapter 3, "Security." The strictfp
keyword added to the Java language in Version 1.2 and the correspond­
ing access flag added to the Java class-file format are explained in Chap­
ter 6, "The Java Class File." The class-loader parent-delegation model
introduced in Version 1.2-and several new methods introduced inVer­
sion 1.2 to classes java .lang. Class and java .lang. ClassLoader­
are described in Chapter 8, "The Linking Model." Soft, weak, and phantom
references, which were added as the java .lang. ref package of the Ver­
sion 1.2 Java API, are described in Chapter 9, "Garbage Collection."

Aside from several new APis introduced to Java in Version 1.2, this
book incorporates the many clarifications and amendments to the origi­
nal Java virtual machine specification that were printed in the second edi­
tion of the specification. For example, the second edition of the Java
virtual machine specification documented a new set ofloading constraints
that ensure type-safe linking in the presence of multiple class loaders.
These loading constraints are described and are demonstrated by a code
example in Chapter 8, "The Linking Model." The revised floating-point
rules for Java virtual machines given in the second edition of the specifi­
cation are explained in Chapter 14, "Floating-Point Arithmetic." This
second edition of this book also incorporates many corrections and clari­
fications to the specification of class-file version numbers, method invo­
cation, and the loading, linking, and initialization of types.

The bytecode examples shown throughout this book were generated by
the j avac compiler from various incarnations of Sun's JDK Version 1.1.
Keep in mind that there is more than one way to compile a class. Differ­
ent compilers, even different versions of the same compiler, could gener­
ate different results.

Page 29 of 280

Introduction LJ
The source code of the simulation applets (the interactive illustrations)

adhere to Java Version 1.0. As I discuss in Chapter 2, "Platform Inde­
pendence," one of the realities of Java's platform-independence promise is
that you have to decide when a version of the Java Platform has been dis­
tributed widely enough to make it worthwhile to target that version.
Although I had a 1.1 version of the Java virtual machine simulator
applets working in 1997, when it came time to deliver the CD-ROM mate­
rial for the first edition of this book to the publisher, I opted to drop the
code back to Version 1.0. At the time, neither Netscape Communicator nor
Microsoft Internet Explorer fully supported Version 1.1. Because these
applets are not example source but are software products in their own
right, I felt that it did not make sense to release them in Version 1.1. As
a consequence, the applets will work in browsers that support either Ver­
sions 1.0, 1.1, or 1.2-and hopefully many versions into the future.

Request for Comments
If you have a suggestion on how to improve this book or wish to report a bug
or error, please visit http:/ /www.artima.com/insidejvm/feedback.
html. This page will give you instructions on how to submit your comment.

Page 30 of 280

ACKNOWLEDGMENTS
I'd like to thank Michael O'Connell, the former editor-in-chief of Java­
World, for giving me the opportunity to write about Java. I'd also like to
thank Jill Steinberg, the current editor-in-chief, and the rest of the gang
at JavaWorld for all their help with my original JavaWorld column,
"Under the Hood."

Thanks to my agent, Laura Belt, of Adler & Robin, who-after reading
one of my Java World columns back in 1996, e-mailed me and inquired
whether I'd like to write a book-and then phoned me within five min­
utes of my pressing the reply button.

As this second edition owes much to the first, I'd like to once again
thank some people who helped me with the first edition. Thanks again to
Judy Brief, my editor at McGraw-Hill, for the first edition. She helped me
reach the finish line the first time around. Thanks to Tim Lindholm and
Jeff Rice, both of whom navigated through the manuscript of the first edi­
tion in search of technical bugs. Thanks also to the local reviewers of my
first edition: Siew Chuah, Terrin Eager, Peter Eldredge, Steve Engle, Matt
Gerrans, Mark Johnson, Barbara Laird, Steve Schmidt, and Anil
Somani-all of whom read partial drafts of the manuscript. Your feedback
and moral support were invaluable. Also, a special thanks goes to the
Coffee Society of Cupertino, who cheerily welcomed my reviewers and me
on many a Wednesday night, although none of us were young and few of
us were pierced.

Thanks to everyone who submitted errata reports for the first edition,
especially Antoine Trux, who found the majority of them.

Thanks to Kurt and Heidi Sohn, who let me invade their vacation home
in Adrazhofen, Germany, where I completed the updates to Chapters 8
and 14.

Thanks goes also to Li Gong of Sun Microsystems, who reviewed the
new security chapter.

Thanks very much to Kee Yong Chuah, who set me up with an Inter­
net dial-up account that worked in Malaysia, where I happened to be
when the page proofs needed author review.

Thanks to those at D&G Limited, who helped form my manuscript into
the book you're holding: Alan Harris, project manager; Kelly Dobbs, pro­
duction manager; and Claudia Bell, layout technician.

Finally, thanks to Simon Yates, my editor at McGraw-Hill, and Jennifer
Perillo, managing editor, for all their assistance and patience as I worked
to complete this project.

xxxii

Page 31 of 280

Introduction
to Java's

Architecture

At the heart of Java technology lies the Java virtual
machine-the abstract computer on which all Java pro­
grams run. Although the name "Java" is generally used to
refer to the Java programming language, there is more to
Java than just the language. The Java virtual machine,
Java Application Programming Interface (API), and Java
class file work together with the language to make Java
programs run.

The first four chapters of this book (collectively called
"Part 1: Java's Architecture") show how the Java virtual
machine fits into the big picture. These chapters show
how the virtual machine relates to the other components
of Java's architecture: the class file, API, and language.
They describe the motivation behind-and the implica­
tions of-the overall design of Java technology.

Page 32 of 280

-

Chapter One

This chapter gives an introduction to Java as a technology, offers an
overview of Java's architecture, discusses why Java is important, and
examines Java's pros and cons.

Why Java?
Over the ages, people have used tools to help them accomplish tasks.
But lately, their tools have been getting smarter and interconnected. Micro­
processors have appeared inside many commonly used items, and increas­
ingly, these microprocessors have been connected to networks. As the heart
of personal computers and workstations, for example, microprocessors have
been routinely connected to networks. They have also appeared inside
devices with more specific functionality than the personal computer or the
workstation. Televisions, VCRs, audio components, fax machines, scanners,
printers, cellular phones, personal digital assistants, pagers, and wrist­
watches all have been enhanced with microprocessors, and most have been
connected to networks. Given the increasing capabilities and decreasing
costs of information-processing and data-networking technologies, the net­
work is rapidly extending its reach.

The emerging infrastructure of smart devices and computers intercon­
nected by networks represents a new environment for software-an envi­
ronment that presents new challenges and offers new opportunities for
software developers. Java is well suited to help software developers meet
challenges and seize opportunities presented by the emerging computing
environment, because Java was designed for networks. Its suitability for
networked environments is inherent in its architecture, which enables
secure, robust, platform-independent programs to be delivered across net­
works and run on a great variety of computers and devices.

- - The Challenges and
Opportunities of Networks
One challenge presented to software developers by the increasingly
network-centric hardware environment is the wide range of devices that
networks interconnect. A typical network usually has many different
kinds of attached devices, with diverse hardware architectures, operating
systems, and purposes. Java addresses this challenge by enabling the ere-

Page 33 of 280

Introduction to Java's Architecture lJ
ation of platform-independent programs. A single Java program can run
unchanged on a wide range of computers and devices. Compared with pro­
grams compiled for a specific hardware and operating system, platform­
independent programs written in Java can be easier and cheaper to
develop, administer, and maintain.

Another challenge the network presents to software developers is secu­
rity. In addition to their potential for good, networks represent an avenue
for malicious programmers to steal or destroy information, steal comput­
ing resources, or simply be a nuisance. Virus writers, for example, can
place their wares on the network for unsuspecting users to download.
Java addresses the security challenge by providing an environment in
which programs downloaded across a network can be run with customized
degrees of security.

One aspect of security is simple program robustness. Like devious code
written by malicious programmers, bug-filled code written by well-meaning
programmers can potentially destroy information, monopolize compute
cycles, or cause systems to crash. Java's architecture guarantees a certain
level of program robustness by preventing certain types of pernicious bugs,
such as memory corruption, from ever occurring in Java programs. This
architecture establishes trust that downloaded code will not inadvertently
(or intentionally) crash, but it also has an important benefit unrelated to
networks: the architecture makes programmers more productive. Because
Java prevents many types of bugs from ever occurring, Java programmers
do not need to spend time trying to find and fix them.

One opportunity created by an omnipresent network is online software
distribution. Java takes advantage of this opportunity by enabling the
transmission of binary code in small pieces across networks. This capa­
bility can make Java programs easier and cheaper to deliver than pro­
grams that are not network mobile. This transmission can also simplify
version control. Because the most recent version of a Java program can
be delivered on demand across a network, you do not need to worry about
which version your end-users are running. They will always get the most
recent version each time they use your program.

Mobile code gives rise to another opportunity: mobile objects, the trans­
mission ofboth code and state across the network. Java realizes the promise
of object mobility in its APis for object serialization and Remote Method Invo­
cation (RMI). Built on top of Java's underlying architecture, object serializa­
tion and RMI provide an infrastructure that enables the various components
of distributed systems to share objects. The network mobility of objects makes
possible new models for distributed systems programming, effectively bring­
ing the benefits of object-oriented programming to the network.

Page 34 of 280

I

~ Chapter One

Platform independence, security, and network mobility are three facets
of Java's architecture that work together to make Java suitable for the
emerging network computing environment. Because Java programs are
platform independent, network mobility of code and objects is more prac­
tical. The same code can be sent to all the computers and devices that
the network interconnects. Objects can be exchanged between various
components of a distributed system, which can be running on different
kinds of hardware. Java's built-in security framework also helps make
network mobility of software more practical. By reducing risk, the secu­
rity framework helps to build trust in a new paradigm of network-mobile
software.

- - The Architecture
Java's architecture arises from four distinct (but interrelated) technologies:

Ill the Java programming language

II the Java class file format

Ill the Java API

II the Java virtual machine

When you write and run a Java program, you are tapping into the
power of these four technologies. You express the program in source files
written in the Java programming language, compile the source to Java
class files, and run the class files on a Java virtual machine. When you
write your program, you access system resources (such as 1/0, for exam­
ple) by calling methods in the classes that implement the Java API. As
your program runs, it fulfills your program's Java API calls by invoking
methods in class files that implement the Java API. You can see the rela­
tionship between these four parts in Figure 1-1.

Together, the Java virtual machine and Java API form a "platform" for
which all Java programs are compiled. In addition to being called the Java
runtime system, the combination of the Java virtual machine and Java
API is called the Java Platform (or, starting with version 1.2, the Java 2
Platform). Java programs can run on many different kinds of computers,
because the Java Platform can itself be implemented in software. As you
can see in Figure 1-2, a Java program can run anywhere the Java Plat­
form is present.

Page 35 of 280

Introduction to Java's Architecture

Figure 1-1
The Java program­
ming environment

Figure 1-2
Java programs run
on top of the Java
Platform.

compile-time environment
~--------------------------------.
I

: Your program's source files

' .------:--. .---"'----, .-----. I
'

I Your program's class files !
I I

~--------------------------------~

Your
class files

move
locally

or though
a network

The Java Virtual Machine

run-time environment

f --y~~~-;~~;;~~~~-;i;;;fii~~-- -:
I

' ' I JavaAPI's class files
'--------------------------------

At the heart of Java's network orientation is the Java virtual machine,
which supports all three prongs of Java's network-oriented architecture:
platform independence, security, and network mobility.

The Java virtual machine is an abstract computer. Its specification
defines certain features every Java virtual machine must have but leaves
many choices to the designers of each implementation. For example,
although all Java virtual machines must be able to execute Java bytecodes,

Page 36 of 280

6

---­Figure 1-3
A basic block
diagram of the Java
virtual machine

Chapter One

they may use any technique to execute them. Also, the specification is flex­
ible enough to enable a Java virtual machine to be implemented either
completely in software-or to varying degrees in hardware. The flexible
nature of the Java virtual machine's specification enables it to be imple­
mented on a wide variety of computers and devices.

A Java virtual machine's main job is to load class files and execute the
bytecodes they contain. As you can see in Figure 1-3, the Java virtual
machine contains a class loader, which loads class files from both the pro­
gram and the Java API. Only those class files from the Java API that
are actually needed by a running program are loaded into the virtual
machine. The bytecodes are executed in an execution engine.

The execution engine is one part of the virtual machine that can vary
in different implementations. On a Java virtual machine implemented in
software, the simplest kind of execution engine just interprets the byte­
codes one at a time. Another kind of execution engine-one that is faster
but requires more memory-is ajust-in-time compiler. In this scheme, the
bytecodes of a method are compiled to native machine code the first time
the method is invoked. The native machine code for the method is then
cached, so the code can be reused the next time that same method is
invoked. A third type of execution engine is an adaptive optimizer. In this
approach, the virtual machine starts by interpreting bytecodes but mon­
itors the activity of the running program and identifies the most heavily
used areas of code. As the program runs, the virtual machine compiles to
native machine code and optimizes only these heavily used areas. The rest
of the of code, which is not heavily used, remains as bytecodes-which
the virtual machine continues to interpret. This adaptive optimization
approach enables a Java virtual machine to spend typically 80 percent to

Your
program 's ___ .,..
class files

The
JavaAPI's
class files

Page 37 of 280

Introduction to Java's Architecture 7

90 percent of its time executing highly optimized native code, while
requiring it to compile and optimize only the 10 percent to 20 percent of
the code that really matters for performance. Lastly, on a Java virtual
machine built on top of a chip that executes Java bytecodes natively, the
execution engine is actually embedded in the chip.

Sometimes, the Java virtual machine is called the Java interpreter; how­
ever, given the various ways in which bytecodes can be executed, this term
can be misleading. While "Java interpreter" may seem to imply that a vir­
tual machine is interpreting bytecodes, the term "interpreter" is really
being used in a different sense in this case. When talking about execution
techniques, interpreting is a particular technique known for its easy imple­
mentation and slow execution. But "Java interpreter" just means "Java vir­
tual machine," and says nothing about execution technique.

When running on a Java virtual machine that is implemented in soft­
ware on top of a host operating system, a Java program interacts with the
host by invoking native methods. In Java, there are two kinds of methods:
Java and native. A Java method is written in the Java language, compiled
to bytecodes, and stored in class files. A native method is written in some
other language, such as C, C++, or assembly, and is compiled to the native
machine code of a particular processor. Native methods are stored in a
dynamically linked library whose exact form is platform specific. While
Java methods are platform independent, native methods are not. When a
running Java program calls a native method, the virtual machine loads
the dynamic library that contains the method and invokes it. As you can
see in Figure 1-4, native methods are the connection between a Java pro­
gram and an underlying host operating system.

You can use native methods to give your Java programs direct access
to the resources of the underlying operating system. Their use, however,
will render your program platform specific, because the dynamic libraries
containing the native methods are platform specific. In addition, the use
of native methods may render your program specific to a particular imple­
mentation of the Java Platform. One native method interface, the Java
Native Interface (JNI), enables native methods to work with any Java
Platform implementation on a particular host computer. Vendors of the
Java Platform, however, are not necessarily required to support JNI. They
may provide their own proprietary native method interfaces in addition
to JNI (or, depending on their contract, in place of JNI).

Java gives you a choice. If you want to access resources of a particular
host that are unavailable through the Java API, you can write a platform­
specific Java program that calls native methods. If you want to keep your
program platform independent, however, you must access the system
resources of the underlying operating system only through the Java API.

Page 38 of 280

---­Figure 1-4
A Java virtual
machine imple­
mented in software
on top of a host
operating system

.---------------------------------------.
: The Java Virtual Machine :
I

Your
program's -+---Jilo­

classfiles

The Class Loader Architecture

Chapter One

The
JavaAPI's
class files

One aspect of the Java virtual machine that plays an importa,nt role in
both security and network mobility is the class loader architecture. In the
block diagrams of Figures 1-3 and 1-4 (shown previously), a single mys­
terious cube identifies itself as "the class loader." In reality, though, there
may be more than one class loader inside a Java virtual machine. Thus,
the class loader cube of the block diagram actually represents a subsys­
tem that may involve many class loaders. The Java virtual machine has
a flexible class loader architecture that enables a Java application to load
classes in custom ways.

A Java application can use two types of class loaders: a ''bootstrap"
class loader and user-defined class loaders. The bootstrap class loader
(there is only one of them) is part of the Java virtual machine implemen­
tation. For example, if a Java virtual machine is implemented as a C pro­
gram on top of an existing operating system, then the bootstrap class
loader will be part of that C program. The bootstrap class loader loads
classes, including the classes of the Java API, in some default way, usu­
ally from the local disk. (The bootstrap class loader has also been called
the primordial class loader, system class loader, or default class loader. In

Page 39 of 280

Introduction to Java's Architecture 9

---­Figure 1-5
Javas class loader
architecture

version 1.2, the name "system class loader" was given a new meaning
(described in Chapter 3, "Security").

At run time, a Java application can install user-defined class loaders
that load classes in custom ways, such as by downloading class files across
a network. While the bootstrap class loader is an intrinsic part of the vir­
tual machine implementation, user-defined class loaders are not. Instead,
user-defined class loaders are written in Java, compiled to class files,
loaded into the virtual machine, and instantiated just like any other
object. They are really just another part of the executable code of a run­
ning Java application. You can see a graphical depiction of this architec­
ture in Figure 1-5.

Because of user-defined class loaders, at compile time you do not have
to know all the classes that may ultimately take part in a running Java
application. User-defined class loaders enable you to dynamically extend
a Java application at run time. As the application runs, it can determine
what extra classes are needed and load them through one or more user­
defined class loaders. Because you write the class loader in Java, you can
load classes in any manner expressible in Java code. You can download
them across a network, get them out of some kind of database, or even
calculate them on the fly.

For each class it loads, the Java virtual machine keeps track of which
class loader-whether bootstrap or user-defined-loaded the class. When

objects on the heap

part of the Java Virtual Machine implementation

Page 40 of 280

10 Chapter One

a loaded class first refers to another class, the virtual machine requests
the referenced class from the same class loader that originally loaded
the referencing class. For example, if the virtual machine loads class
Volcano through a particular class loader, it will attempt to load any
classes Volcano refers to through the same class loader. If Volcano
refers to a class named Lava, perhaps by invoking a method in class
Lava, the virtual machine will request Lava from the class loader that
loaded Volcano. The Lava class returned by the class loader is dynam­
ically linked with class Volcano.

Because the Java virtual machine takes this approach to loading
classes, by default classes can only see other classes that were loaded b:y
the same class loader. In this way, Java's architecture enables you to cre­
ate multiple name-spaces inside a single Java application. Each class
loader in your running Java program has its own name-space, which is
populated by the names of all the classes it has loaded.

A Java application can instantiate multiple user-defined class loaders
either from the same class or from multiple classes. The application can,
therefore, create as many (and as many different kinds of) user-defined
class loaders as necessary. Classes l9aded by different class loaders are in
different name-spaces and cannot gain access to each other, unless the
application explicitly permits this access. When you write a Java appli­
cation, you can segregate classes loaded from different sources into
different name-spaces. In this way, you can use Java's class loader archi­
tecture to control any interaction between code loaded from different
sources. In particular, you can prevent hostile code from gaining access to
and subverting friendly code.

One example of dynamic extension is the Web browser, which uses user­
defined class loaders to download the class files for applets across a net­
work. A Web browser fires off a Java application that installs a user-defined
class loader-usually called an applet class loader-that knows how to
request class files from a HyperText Transport Protocol (HTTP) server.
Applets are an example of dynamic extension, because at startup, the Java
application does not know which class files the browser will ask it to down­
load across the network. The class files to download are determined at run
time as the browser encounters pages that contain Java applets.

The Java application started by the Web browser usually creates a dif­
ferent user-defined class loader for each location on the network from
which it retrieves class files. As a result, class files from different sources
are loaded by different user-defined class loaders. This action places them
into different name-spaces inside the host Java application. Because the
class files for applets from different sources are placed in separate name-

l

!
I _...

Page 41 of 280

Introduction to Java's Architecture

spaces, the code of a malicious applet is restricted from interfering
directly with class files downloaded from any other source.

By enabling you to instantiate user-defined class loaders that know how
to download class files across a network, Java's class loader architecture
supports network mobility. Java also supports security by enabling you to
load class files from different sources through different user-defined class
loaders. This feature puts the class files from different sources into differ­
ent name-spaces, which enables you to restrict or prevent access between
code loaded from different sources.

The Java Class File

The Java class file helps make Java suitable for networks, mainly in the
areas of platform independence and network mobility. Its role in platform
independence is serving as a binary form for Java programs. This form is
expected by the Java virtual machine but is independent of underlying
host platforms. This approach breaks with the tradition followed by lan­
guages such as Cor C++, because programs written in these languages
are most often compiled and linked into a single, binary, executable file
specific to a particular hardware platform and operating system. In gen­
eral, a binary executable file for one platform will not work on another
platform. The Java class file, by contrast, is a binary file that can be run
on any hardware platform and operating system that hosts the Java vir­
tual machine.

When you compile and link a C++ program, the executable binary file
you get is specific to a particular target hardware platform and operating
system, because it contains machine language specific to the target
processor. A Java compiler, by contrast, translates the instructions of the
Java source files into bytecodes, which are the "machine language" of the
Java virtual machine.

In addition to processor-specific machine language, another platform­
dependent attribute of a traditional binary executable file is the byte order
of integers. In executable binary files for the Intel X86 family of processors,
for example, the byte order is little-endian, or lower-order byte first. In exe­
cutable files for the PowerPC chip, however, the byte order is big-endian,
or higher-order byte first. In a Java class file, byte order is big-endian­
regardless of which platform generated the file and independent of what­
ever platforms may eventually use the file.

In addition to its support for platform independence, the Java class file
plays a critical role in Java's architectural support for network mobility.

Page 42 of 280

Chapter One

First, class files were designed to be compact so they can more quickly
move across a network. Also, because Java programs are dynamically
linked and can be extended dynamically, class files can be downloaded as
needed. This feature helps a Java application manage the time it takes to
download class files across a network, so the end-user's wait time can be
kept to a minimum.

The Java API

The Java API helps make Java suitable for networks through its support
for platform independence and security. The Java API is a set of run-time
libraries that give you a standard way to access the system resources of
a host computer. When you write a Java program, you assume that the
class files of the Java API will be available at any Java virtual machine
that may ever have the privilege of running your program. This assump­
tion is relatively safe, because the Java virtual machine and the class
files for the Java API are the required components of any implementa­
tion of the Java Platform. When you run a Java program, the virtual
machine loads the Java API class files that are referred to by your pro­
gram's class files. The combination of all loaded class files (from your
program and from the Java API) and any loaded dynamic libraries (con­
taining native methods) constitute the full program executed by the Java
virtual machine.

The class files of the Java API are inherently specific to the host plat­
form. The API's functionality must be implemented expressly for a partic­
ular platform before that platform can host Java programs. To access the
native resources ofthe host, the Java API calls native methods. As you can
see in Figure 1-6, the class files of the Java API invoke native methods
so your Java program doesn't have to do this task. In this manner, the Java
API's class files provide a Java program with a standard, platform­
independent interface to the underlying host. To the Java program, the
Java API looks the same and behaves predictably-no matter what plat­
form happens to be underneath. Precisely because the Java virtual
machine and Java API are implemented specifically for each particular
host platform, Java programs themselves can be platform independent.

The internal design of the Java API is also geared towards platform
independence. For example, the graphical user interface (GUI) libraries of
the Java API, the Abstract Windows Toolkit (AWT), and Swing are
designed to facilitate the creation of user interfaces that work on all plat­
forms. Creating platform-independent user interfaces is inherently diffi-

Page 43 of 280

Introduction to Java's Architecture 13

Figure 1·6
A platform-indepen­
dent Java program Java

program

r------------------------ -------------------------------~-------------------

' '

Java methods (Java API)
I
I
I

cult, given that the native look and feel of user interfaces vary greatly
from one platform to another. The AWT library's architecture does not
coerce implementations of the Java API to give Java programs a user
interface that looks exactly the same everywhere. Instead, the architec­
ture encourages implementations to adopt the look and feel of the under­
lying platform. The Swing library offers even more flexibility, enabling the
look and feel to be chosen by the programmer. Also, because the size of
fonts, buttons, and other user-interface components will vary from plat­
form to platform, the AWT and Swing include layout managers to posi­
tion the elements of a window or dialog box at run time. Rather than
forcing you to indicate exact X andY coordinates for the various elements
that constitute a dialog box, for example, the layout manager positions the
coordinates when your dialog box is displayed. With the aim of making
the dialog look its best on each platform, the layout manager will likely
position the dialog box elements slightly different on different platforms.
In these ways and in many others, the internal architecture of the Java
API is aimed at facilitating the platform independence of the Java pro­
grams that use the application.

In addition to facilitating platform independence, the Java API con­
tributes to Java's security model. Before they perform any action that

Page 44 of 280

14 Chapter One

could potentially be harmful (such as writing to the local disk), the meth­
ods of the Java API check for permission by querying the security man­
ager. The security manager is a special object that defines a custom
security policy for the application. A security manager could, for example,
forbid access to the local disk. If the application requested a local disk
write by invoking a method from the Java API, that method would first
check with the security manager. Upon learning from the security man­
ager that disk access is forbidden, the Java API would refuse to perform
the write. In Java 1.2, the job of the security manager was in many ways
taken over by the access controller, a class that performs stack inspection
to determine whether the operation should be permitted. (For backwards
compatibility, the security manager still exists in Java 1.2.) By enforcing
the security policy established by the security manager and access con­
troller, the Java API helps to establish a safe environment in which you
can run potentially unsafe code.

The Java Programming Language

Although Java was designed for the network, its utility is not restricted
to networks. Platform independence, network mobility, and security are
of prime importance in a networked computing environment, but you may
not always find yourself facing network-oriented problems. As a result,
you may not always want to write programs that are platform indepen­
dent. You may not always want to deliver your programs across networks
or limit their capabilities with security restrictions. There may be times
when you use Java technology primarily because you want to obtain the
advantages of the Java programming language.

As a whole, Java technology leans heavily in the direction of networks,
but the Java programming language is quite general purpose. The Java
language enables you to write programs that take advantage of many
software technologies:

II object-orientation

II multi-threading

II structured error handling

II garbage collection

II dynamic linking

II dynamic extension

Page 45 of 280

--

Introduction to Java's Architecture

Instead of serving as a test bed for new and experimental software
technologies, the Java language combines in a new way concepts and tech­
niques that had already been tried and proven in other languages. These
concepts and techniques make the Java programming language a power­
ful, general-purpose tool that you can apply to a variety of situations­
independent of whether they involve a network.

At the beginning of a new project, you may be faced with the question,
"Should I use C++ (or some other language) for my next project, or should
I use Java?". As an implementation language, Java has some advantages
and some disadvantages..()ver other languages. One of the most compelling
reasons for using Java as a language is that it can enhance developer pro­
ductivity. The main disadvantage is potentially slower execution speed.

First and foremost, Java is an object-oriented language. One promise of
object-orientation is that it promotes the reuse of code, resulting in better
productivity for developers. This feature may make Java tnore attractive
than a procedural language such as C but does not add much value to Java
over C++. Yet, compared to C++, Java has some significant differences that
can improve a developer's productivity. This productivity boost comes
mostly from Java's restrictions on direct memory manipulation.

In Java, there is no way to directly access memory by arbitrarily cast­
ing pointers to a different type or by using pointer arithmetic, as there is
in C++. Java requires that you strictly obey rules of type when working
with objects. If you have a reference (similar to a pointer in C++) to an
object of type Mountain, you can only manipulate it as a Mountain. You
cannot cast the reference to type Lava and manipulate the memory as if
it were a Lava, nor can you simply add an arbitrary offset to the refer­
ence (as pointer arithmetic permits you to do in C++). In Java, you can
cast a reference to a different type-but only if the object really is of the
new type. For example, if the Mountain reference actually referred to an
instance of class Volcano (a specialized type of Mountain), you could cast
the Mountain reference to a Volcano reference. Because Java enforces
strict type rules at run time, you are not able to directly manipulate mem­
ory in ways that can accidentally corrupt the program. As a result, you
can never create certain kinds of bugs in Java programs that regularly
harass C++ programmers and hamper their productivity.

Another way that Java prevents you from inadvertently corrupting
memory is through automatic garbage collection. Java has a new opera­
tor, just like C++, that you use to allocate memory on the heap for a new
object. But unlike C++, Java has no corresponding delete operator,
which C++ programmers use to free the memory for an object that is no
longer needed by the program. In Java, you merely stop referencing an

Page 46 of 280

16 Chapter One

object, and at some later time, the garbage collector will reclaim the mem­
ory occupied by the object.

The garbage collector prevents Java programmers from needing to
explicitly indicate which objects should be freed. As a C++ project grows
in size and complexity, it often becomes increasingly difficult for pro­
grammers to determine when an object should be freed (or even whether
an object has already been freed). This situation results in memory leaks,
where unused objects are never freed, and memory corruption, where the
same object is accidentally freed multiple times. Both kinds of memory
troubles cause C++ programs to crash, but tracking down the exact source
of the problem is difficult. You can be more productive in Java primarily
because you do not have to chase down memory corruption bugs. You can
also be more productive, however, because when you no longer have to
worry about explicitly freeing memory, program design becomes easier.

A third way that Java protects the integrity of memory at run time is
array bounds checking. In C++, arrays are really shorthand for pointer
arithmetic, which brings with it the potential for memory corruption. C++
enables you to declare an array of 10 items, then write to the 11th item
(although that action tramples on memory). In Java, arrays are full­
fledged objects, and array bounds are checked each time an array is used.
If you create an array of 10 items in Java and try to write to the 11th,
Java will throw an exception. Java will not let you corrupt memory by
writing beyond the end of an array.

One final example of how Java ensures program robustness is by
checking object references each time they are used, to make sure they are
not null. In C++, using a null pointer usually results in a program crash.
In Java, using a null reference results in an exception being thrown.

The productivity boost you can get just by using the Java language
results in quicker development cycles and lower development costs. You
can realize further cost savings if you take advantage of the potential
platform independence of Java programs. Even if you are not concerned
about a network, you may still want to deliver a program on multiple plat­
forms. Java can make support for multiple platforms easier (and there­
fore, cheaper).

Architectural Tradeoffs
Although Java's network-oriented features are desirable, especially in a
networked environment, they do not come for free. They required tradeoffs

Page 47 of 280

"'"

Introduction to Java's Architecture lJ
against other desirable features. Whenever a potential tradeoff between
desirable characteristics arose, the designers of Java made the architec­
tural choice that made better sense in a networked world. Hence, Java is
not the right tool for every job. Java is suitable for solving problems that
involve networks and has functionality in many problems that do not
involve networks, but its architectural tradeoffs will disqualify it for cer­
tain types of jobs.

One of the prime costs of Java's network-oriented features is a poten­
tial reduction in program execution speed compared to other technologies
such as C++. Indeed, achieving satisfactory performance was one of the
most frustrating struggles for Java developers in the first few years of
Java's existence. Nevertheless, although the early experience with Java
may have encouraged the developer community to conclude that Java is
slow, this was not necessarily the right conclusion. Although Java can be
slow, it is not inherently slow. As virtual machine technology has
advanced, great strides have been made in performance-even so far as
to bring Java performance on par with natively compiled C.

The first Java virtual machine that appeared in 1995 executed byte­
codes with an interpreter-a simple technique that yields poor perfor­
mance. Before long, just-in-time compilers appeared that greatly improved
Java's performance compared to interpreters, but they still left Java per­
formance well behind natively compiled C++. With the most recent
advances in virtual machine technology, however, Java's speed penalty is
diminishing significantly, if not vanishing altogether. Advanced techniques
such as adaptive optimization have enabled Java programs to run at
speeds comparable to natively compiled C.

Although the recent advances in Java performance are good news,
they do not necessarily signal the end of developer frustrations about
Java performance. The trouble for developers is that although certain
Java virtual machine implementations may yield stunning performance,
developers cannot always select the virtual machine on which their Java
programs will run. One of the promises of Java's architecture is that a
Java program will run "anywhere," and that also means on any Java vir­
tual machine. If you are writing a server application in Java intended
for in-house use, you may be able to select the virtual machine imple­
mentation on which your application will run. But as soon as you have
multiple customers for your Java program, you will likely need to
get your program to have acceptable performance on many virtual
machine implementations. Also, in a world consisting of the kind of dis­
tributed systems encouraged by Java's architecture (with code and
objects flying over the network from one virtual machine to another),

Page 48 of 280

lJ Chapter One

developers basically lose all control over the virtual machine imple­
mentations on which their programs will run.

Ultimately, whether or not performance will be a problem for you and
how you would go about dealing with that problem depends on what
exactly you are trying to do. Fortunately, Java is a flexible tool, giving you
many ways to deal with potential performance troubles. If, for example,
what you need to provide is a monolithic executable (such as a word
processor or server process), you could do the following tasks:

II Deliver a virtual machine along with your program.

II Implement time-critical sections of your program as native methods.

II Compile the whole program to a monolithic executable in the
tradition ofC and C++.

II Compile to a monolithic executable at the end-user's machine at
install time.

Probably the most powerful way to manage performance of a mono­
lithic application is by being able to pick the virtual machine yoursel£
Executing part or all of your program natively may be the best approach
in some situations, however.

Compiling a Java program to a monolithic executable, which is some­
times referred to as "ahead-of-time compiling," can help improve perfor­
mance-but usually at the cost of making it impossible for the program
to use Java's dynamic extension capabilities. Ahead-of-time compiling per­
forms static, not dynamic, linking and yields fully linked, monolithic
native executables that do not usually have the capability to bring in and
dynamically link to new types at run time. For Java programs that would
not use dynamic extension anyway, however, ahead-of-time compiling
should yield an executable program that behaves exactly like the program
would if executed on a traditional virtual machine. Because many embed­
ded systems have no need for dynamic extension and usually have
resource constraints, ahead-of-time compiling is often used to compile a
Java program to a native executable image that can be burned into Read­
Only Memory (ROM) for an embedded system. Ahead-of-time compiling
can also be used for a desktop application, as long as it does not use
dynamic extension. If you are struggling to solve performance problems
of a relatively stand-alone Java program that does not use dynamic exten­
sion, ahead-of-time compiling may be able to help.

Managing performance becomes more difficult, however, when you
are developing not a monolithic application but a distributed system­
especially one in which code and objects will be moving from virtual

Page 49 of 280

L

Introduction to Java's Architecture 19

machine to virtual machine. This kind of object-oriented network pro­
gramming is, after all, one of the big promises of Java's architecture. In
such cases, the best way to manage performance is in the way you design
your system. Here, you must resort to traditional mechanisms for improv­
ing performance, such as minimizing network traffic and selecting the
best algorithm, and to other standard approaches for performance tuning
in any language.

Although program speed is a concern when you use Java, there are
ways you can address this issue. By appropriate use of the various tech­
niques for developing, delivering, and executing Java programs, you can
often satisfy end-users' expectations for speed. As long as you are able to
address the speed issue successfully, you can use the Java language and
realize its benefits: productivity for the developer and program robustness
for the end-user.

Besides performance, another tradeoff of Java's network-oriented archi­
tecture is the lack of control of memory management and thread schedul­
ing. Garbage collection can help make programs more robust, which is a
valuable security guarantee in a networked environment. But garbage col­
lection adds a level of uncertainty to the run-time performance of the pro­
gram. You cannot always be sure when or if a garbage collector will decide
it is time to collect garbage or how long the process will take. In addition,
the Java virtual machine specification discusses thread scheduling in only
general terms. This looseness in the specification of thread behavior helps
make it easier to port the Java virtual machine to many different kinds of
hardware. Although virtual machine portability is important in a net­
worked environment, the vague specification of thread scheduling leaves
programmers with little knowledge and no control of how their threads will
be scheduled. This lack of control of memory management and thread
scheduling makes Java a questionable candidate for software problems that
require a real-time response to events.

Still another tradeoff arises from Java's goal of platform independence.
One difficulty inherent in any API that attempts to provide cross-platform
functionality is the lowest-common-denominator problem. Although there
is much overlap between operating systems, each operating system usu­
ally has a handful of traits all its own. An API that aims to give programs
access to the system services of any operating system has to decide which
capabilities to support. If a feature exists on only one operating system,
the designers of the API may decide not to include support for that fea­
ture. If a feature exists on most operating systems but not all, the design­
ers may decide to support the feature anyway. This task will require an
implementation of something similar in the API on operating systems

Page 50 of 280

Chapter One

that lack the feature. Both of these lowest-common-denominator kinds of
choices may, to some degree, offend developers and users on the affected
operating systems.

What is worse, not only does the lowest-common-denominator problem
afflict the designers of a platform-independent API, but it also affects the
designer of a program that uses that API. Take user interface as an exam­
ple. The AWT attempts to give your program a user interface that adopts
the native look on each platform. Nevertheless, you might find it difficult
to design a user interface in which the components interact in a way that
feels native on every platform, although the individual components may
have the native look. So, on top of the lowest-common-denominator
choices that were made when the AWTwas designed, you may find your­
self faced with your own lowest-common-denominator choices when you
use the AWT. The Swing library gives you more options, but ultimately
you still have to wrestle with differences in end-user expectations when
you design a cross-platform user interface.

One last tradeoff stems from the dynamically linked nature of Java pro­
grams, combined with the close relationship between Java class files and
the Java programming language. Because Java programs are dynamically
linked, the references from one class file to another are symbolic. In a
statically linked executable, references between classes are direct pointers
or offsets. Inside a Java class file, by contrast, a reference to another class
spells out the name of the other class in a text string. If the reference is to
a field, the field's name and descriptor (the field's type) are also specified.
If the reference is to a method, the method's name and descriptor (the
method's return type and number and types of its arguments) are speci­
fied. Moreover, not only do Java class files contain symbolic references to
the fields and methods of other classes, but they also contain symbolic ref­
erences to their own fields and methods. Java class files also may contain
optional debugging information that includes the names and types oflocal
variables. A class file's symbolic information and the close relationship
between the bytecode instruction set and the Java language make it quite
easy to decompile Java class files back into Java source. This feature, in
tum, makes it quite easy for your competitors to borrow heavily from your
hard work.

While it has always been possible for competitors to decompile a stat­
ically linked binary executable and glean insights into your program, by
comparison, decompilation is far easier with an intermediate (not yet
linked) binary form, such as Java class files. Decompilation of statically
linked binary executables is more difficult, not only because the symbolic
information (the original class, field, method, and local variable names) is

Page 51 of 280

Introduction to Java's Architecture lJ
missing, but also because statically linked binaries are usually heavily
optimized. The more optimized a statically linked binary is, the less it cor­
responds to the original source code. Still, if you have an algorithm buried
in your binary executable, and it is worth the trouble to your competitors,
they can peer into your binary executable and retrieve that algorithin.

Fortunately, there is a way to combat the easy borrowing of your intel­
lectual property. You can obfuscate your class files. Obfuscation alters
your class files by changing the names of classes, fields, methods, and local
variables without altering the operation of the program. Your program
can still be decompiled but will no longer have the (hopefully) meaning­
ful names you originally gave to all of your classes, fields, methods, and
local variables. For large programs, obfuscation can make the code that
comes out of the decompiler so cryptic as to require nearly the same effort
to steal your work as would be required by a statically linked executable.

Conclusion
So, what is the main point of Java's architecture? As shown in this chap­
ter, the Java programming language is a general-purpose tool that has
distinct advantages over other technologies. In particular, Java can yield
better programmer productivity and improved program robustness­
with, for the most part-acceptable performance, compared to older pro­
gramming technologies such as C and C++. Yet, the main focus of the
design of Java's architecture was not just to make programmers more pro­
ductive and programs more robust, but to provide a tool for the emerging
network-centric computing environment. Java's architecture paves the
way for new network-oriented software architectures that take full advan­
tage of Java's support for network mobility of code and objects.

The Resources Page
For links to more information about the material presented in this chap­
ter, visit the resources page at http: I /www. artima. com/insidejvm/
resources.

Page 52 of 280

Platform
Independence

The previous chapter showed how Java's architecture
makes it a useful tool for developing software in a net­
worked environment. The next three chapters take a
closer look at how Java's architecture accomplishes its
suitability for networks. This chapter examines platform
independence in detail, shows how Java's architecture
enables programs to run on any platform, discusses the
factors that determine the true portability of Java pro­
grams, and looks at the relevant tradeoffs.

Page 53 of 280

2 4 Chapter Two

- - Why Platform Independence?
One of the key reasons why Java technology is useful in a networked enVi­
ronment is that Java makes it possible to create binary executables that
will run unchanged on multiple platforms. This feature is important in a
networked environment, because networks usually interconnect many dif­
ferent kinds of computers and devices. In a typical enterprise environment,
for example, a network might connect Macintoshes in the art department,
UNIX workstations in engineering, and PCs running Windows everywhere
else. Although this arrangement enables various kinds of computers and
devices within the company to share data, it requires a great deal of admin­
istration. Such a network presents a system administrator with the task of
keeping different platform-specific editions of programs up to date on many
different kinds of computers. Programs that can run without change on any
networked computer, regardless of the computer's type, make the system
administrator's job simpler-especially if those programs can actually be
delivered across the network.

In addition, the emerging proliferation of network-enabled, embedded
devices represents another environment in which Java's platform inde­
pendence is useful. In the workplace, for example, various kinds of
embedded devices, such as printers, scanners, and fax machines, are typ­
ically connected to the internal network. Network-connected, embedded
devices have also appeared in consumer domains, such as in the home
and in the car. In the embedded world, Java's platform independence can
also help simplify system administration. Jini technology, which aims to
bring plug and play to the network, simplifies the task of administering
a dynamic environment of network-connected, embedded devices for con­
sumers at home and for systems administrators at work. Once a device
is plugged into the network, it can access other devices attached to the
network. Other devices can access it, as well. To achieve this ease of con­
nectivity, Jini-enabled devices exchange objects across the network-a
technique that would be impossible without Java's support for platform
independence.

From the developer's perspective, Java can reduce the cost and time
required to develop and deploy applications on multiple platforms.
Although historically, many (or most) applications have been supported
on only one platform, often the reason was that the cost involved in sup­
porting multiple platforms was not worth the added return. Java can help
make multi-platform support affordable for more types of programs.

On the other hand, Java's platform independence can act as a disadvan­
tage, as well as an advantage, for software developers. If you are developing
and selling a software product, Java's support for platform independence can

Page 54 of 280

Platform Independence 25

help you compete in more markets. Instead of developing a product that
runs only on Windows, for example, you can write one that runs on Windows,
OS/2, Solaris, and Linux. With Java, you can have more potential customers.
The trouble is, so can everyone else. Imagine, for example, that you have
focused your efforts on writing great software for Solaris. Java makes it
easier for others to write software that competes in your chosen market
niche. With Java, therefore, you may not only end up with more potential
customers-but also with more potential competitors.

But perhaps most significantly for developers, the fact that Java code
can run unchanged on multiple platforms gives the network a homoge­
neous execution environment that enables new kinds of distributed
systems built around network-mobile objects. APis such as object serial­
ization, Remote Method Invocation (RMI), and Jini take advantage of this
underlying capability to bring object-oriented programming out of the vir­
tual machine and onto the network. (More information on Jini is given in
Chapter 4, "Network Mobility.")

Java's Architectural Support
for Platform Independence
Support for platform independence, like support for security and network
mobility, is spread throughout Java's architecture. All the components of
the architecture-the language, the class file, the API, and the virtual
machine-play a role in enabling platform independence.

The Java Platform

Java's architecture supports the platform independence of Java programs
in several ways, but primarily through the Java Platform itself The Java
Platform acts as a buffer between a running Java program and the under­
lying hardware and operating system. Java programs are compiled to run
on a Java virtual machine, with the assumption that the class files of the
Java API will be available at run time. The virtual machine runs the pro­
gram, while the API gives the program access to the underlying com­
puter's resources. No matter where a Java program goes, it only needs to
interact with the Java Platform. The program does not need to worry
about the underlying hardware and operating system. As a result, the
application can run on any computer that hosts a Java Platform.

Page 55 of 280

26 Chapter Two

The Java Language

The Java programming language reflects Java's platform independence
in one principal way: the ranges and behavior of its primitive types are
defined by the language. In languages such as Cor C++, the range of the
primitive type intis determined by its size, and its size is determined by
the target platform. The size of an int inC or C++ is generally chosen by
the compiler to match the word size of the platform for which the program
is compiled. This statement means that a C++ program might have a dif­
ferent behavior when compiled for different platforms, merely because the
ranges of the primitive types are not consistent across the platforms. For
example, no matter what underlying platform might be hosting the pro­
gram, an int in Java behaves as a signed 32-bit two's complement num­
ber. A float adheres to the 32-bit IEEE 754 floating point standard. This
consistency is also reflected in the internals of the Java virtual machine
-which has primitive data types that match those of the language-and
in the class file, where the same primitive data types appear. By guaran­
teeing that primitive types behave the same on all platforms, the Java
language itself promotes the platform independence of Java programs.

The Java Class File

As mentioned in the previous chapter, the class file defines a binary for­
mat that is specific to the Java virtual machine. Java class files can be
generated on any platform. They can be loaded and run by a Java virtual
machine that sits on top of any platform. Their format, including the big­
endian order of multi-byte values, is strictly defined and independent of
any platform that hosts a Java virtual machine.

Scaleability

One aspect of Java's support for platform independence is its scaleability.
The Java Platform can be implemented on a wide range of hosts with
varying levels of resources, from embedded devices to mainframe com­
puters.

Although Java first came to prominence by riding on top of a wave that
was crashing through the desktop computer industry (the World Wide
Web), Java was initially envisioned as a technology for embedded and con­
sumer devices, not for desktop computers. Part of the early reasoning

Page 56 of 280

Platform Independence 27

behind Java was that although Microsoft and Intel had a dominant clutch
on the desktop market, no such dominance existed in the embedded and
consumer systems markets. Microprocessors had been appearing in
device after device for years-in audio-video equipment, cellular phones,
printers, fax machines, and copiers-and the coming trend was that
increasingly, embedded microprocessors would be connected to networks.
An original design goal of Java, therefore, was to provide a way for soft­
ware to be delivered across networks to any kind of embedded device­
independent of its microprocessor and operating system.

To accomplish this goal, the Java run-time system (the Java Platform)
had to be compact enough to be implemented in software using the
resources available to a typical embedded system. Embedded micro­
processors often have special constraints, such as small memory footprint,
no hard disk, a non-graphical display, or no display. These constraints
mean that embedded and consumer systems usually do not have the need
or the memory to support the full Java API.

To address the special requirements of embedded and consumer sys­
tems, Sun Microsystems, Inc. created several incarnations of the Java
Platform with smaller API requirements for embedded and consumer sys­
tems:

II the Java Personal Platform (for consumer devices)

II the Java Embedded Platform (for embedded devices)

II the Java Card Platform (for SmartCards)

These Java Platforms are composed of a Java virtual machine and a
smaller shell of run-time libraries that are available in the standard Java
Platform. The difference between the standard and the Personal Platform,
therefore, is that the Personal Platform guarantees the availability of
fewer Java API run-time libraries. The Embedded Platform guarantees
fewer APis than the Personal Platform, and the Card Platform guaran­
tees fewer than the Embedded. Yet, although each platform addresses a
progressively smaller execution environment with progressively tighter
constraints on resources, the APis are not necessarily subsets of each
other. Each API subset is geared towards a particular target and there­
fore includes just the APis that make sense for that target.

In addition to guaranteeing the smallest set of APis, the Card Platform,
which is targeted at SmartCards, uses only a subset of the full Java vir-

' tual machine instruction set. Only a subset of the features of the Java lan-
guage are supported by this smaller instruction set. As a result, only Java
programs that restrict themselves to features available on the Card Plat­
form can run on a SmartCard.

Page 57 of 280

Chapter Two

Although Sun attempted to address the special API needs of the
embedded and consumer markets with these three subsets, the special
API needs of these markets turned out to be a bit too heterogeneous for
the three API subsets to adequately address. Because of the special
constraints of embedded systems, especially the small memory footprint
and lack of disk storage, vendors of embedded systems are often under
tremendous economic pressure to pick and choose APis. Because of the
low price points for embedded devices, vendors often simply cannot afford
to include APis that are not directly needed by their device. Despite the
three subsets defined by Sun, vendors still felt the need to define and sup­
port their own API subsets.

Eventually, Sun recognized that its three subsets would not suffice and
changed its approach to defining API standards for the embedded and
consumer worlds. Instead of trying to define "one-API-fits-all" subsets,
such as Personal and Embedded Java, Sun defined a minimal API set that
it called the Java 2 Platform, Micro Edition (J2ME). On top of J2ME, Sun
planned to facilitate the definition of API subsets by individual industry
segments appropriate for its market niche (such as automobile, TV set­
top box, screen phone, wireless pagers and cellular phones, personal dig­
ital assistants, etc.). Sun called these API subsets "profiles." The old
Personal and Embedded platforms become profiles in the new approach.

Because the Java Platform is compact, it can be implemented on a wide
variety of embedded and consumer systems. The potential compactness
of the Java Platform, however, does not restrict implementation at the
opposite end of the spectrum. The Java Platform also scales up to personal
computers, workstations, and mainframes. Although, in Java's early
years, Java Virtual Machine implementation had scaling difficulties on
the server side. Virtual machines were tuned for servers, and now many
implementations yield good performance on the server side. At this end
of the spectrum, Sun has defined an API superset: the Java 2 Enterprise
Edition (J2EE). In addition to the standard Java APis, the J2EE includes
other APis that are useful in enterprise server environments, such as
servlets and Enterprise JavaBeans.

In the end, Sun's revised approach to defining APis yielded three basic
API sets, which demonstrate the scaleability of the Java Platform:

II Enterprise Edition (J2EE)

II Standard Edition (J2SE)

II Micro Edition (J2ME)

At the high end, the existence of the Enterprise Edition signifies the
utility of the Java Platform in high-end servers. In the middle, the Stan-

Page 58 of 280

L

Platform Independence 9

-

dard Edition carries on the tradition started by applets in browsers of the
Java Platform on the desktop. At the low end, the Micro Edition, aug­
mented with industry profiles, shows that the Java Platform can scale
down and mold itself to meet the requirements of a great variety of con­
sumer and embedded environments.

Factors that Influence
Platform Independence
Java's architecture facilitates the creation of platform-independent soft­
ware but also enables you to create software that is platform specific.
When you write a Java program, platform independence is an option.

The degree of platform independence of any Java program depends on
several factors. As a developer, some of these factors are beyond your con­
trol, but most are within your control. Primarily, the degree of platform
independence of any Java program you write depends on how you write
the program.

Java Platform Deployment

The most basic factor determining a Java program's platform indepen­
dence is the extent to which the Java Platform has been deployed on mul­
tiple platforms. Java programs will only run on computers and devices
that host a Java Platform. Thus, before one of your Java programs will
run on a particular computer owned by, say, your friend Alicia, two things
must happen. First, the Java Platform must be ported to Alicia's particu­
lar type of hardware and operating system. Once the port has been done
by some Java Platform vendor, that port must in some way be installed
on Alicia's computer. So, a critical factor determining the true extent of
platform independence of Java programs-and one that is beyond the con­
trol of the average developer-is the availability of Java Platform imple­
mentations and their distribution.

Fortunately for the Java developer, the deployment of the Java Plat­
form has proceeded with great momentum, starting with Web browsers
and moving on to desktop, workstation, network operating systems, and
many different kinds of consumer and embedded devices. Therefore, it is
increasingly likely that your friend Alicia will have a Java Platform
implementation on her computer or device.

Page 59 of 280

Chapter Two

The Java Platform Version and Edition

The deployment of the Java Platform is a bit more complicated, however,
because not all standard run-time libraries are guaranteed to be available
at every Java Platform. The basic set of libraries guaranteed to be avail­
able at a Java Platform is called the Standard API. Sun calls a 1.2 Java
virtual machine accompanied by the class files that constitute the stan­
dard API the Java 2 Platform, Standard Edition. This edition of the
Java Platform has the minimum set of Java API libraries that you can
assume will be available at desktop computers and workstations. But, as
described earlier, Sun also defines API sets for the Micro and Enterprise
Editions of the Java 2 Platform and encourages the development of API
profiles to augment the Micro Edition in various consumer and embed­
ded industry segments. In addition, Sun defines some standard run-time
libraries that it considers optional for the Standard Edition and calls
these Standard Extension APis. These libraries include services such as
telephony and commerce and media such as audio, video, or 3D. If your
program uses libraries from the Standard Extension API, the program
will run anywhere those standard extension API libraries are available.
But the program will not run on a computer that implements only the
basic Standard Edition Platform. Some of the Standard Extension APis,
on the other hand, are guaranteed to be available at any implementation
of the Enterprise Edition. Given the variety of API editions and profiles,
the Java 2 Platform hardly represents a single, homogeneous execution
environment that will-in all cases-enable code that is written once to
run anywhere.

Another complicating factor is that in a sense, the Java Platform is a mov­
ing target because it evolves over time. Although the Java virtual machine
is likely to evolve gradually, the Java API will probably change more fre­
quently. Over time, features will be added to and removed from both the
Standard Edition and Standard Extension APis, and parts of the Standard
Extension API may migrate into the Standard Edition. The changes made
to the Java Platform should, for the most part, be backwards compatible,
meaning that they will not break existing Java programs, but some changes
may not be backwards compatible. As obsolete features are removed in a
new version of the Java Platform, existing Java programs that depend upon
those features will not run on the new version. Also, changes may not be for­
wards compatible, meaning programs that are compiled for a new version
of the Java Platform will not necessarily work on an old version. The
dynamic nature of the Java Platform complicates things somewhat for the
developer wishing to write a Java program that will run on any computer.

Page 60 of 280

Platform Independence

I I
LnJ

In theory, your program should run on all computers that host a Java
2 Platform Standard Edition, as long as you depend only upon the run­
time libraries in the standard API. In practice, however, new versions of
the standard API will take time to percolate everywhere. When your pro­
gram depends on newly added features of the latest version of the stan­
dard API, there may be some hosts that cannot run the program because
they have an older version. This problem is not new to software develop­
ers. Programs written for Windows 95, for example, did not work on the
previous version of the operating system, Windows 3.1. Because Java
enables the network delivery of software, however, this incompatibility
becomes a more acute problem. The promise of Java is not only that it is
easy to port programs from one platform to another, but that the same
piece of binary Java code can be sent across the network and run on any
computer or device.

As a developer, you cannot control the release cycles or deployment
schedules of the Java Platform, but you can choose the Java Platform edi­
tion and version upon which your programs depend. In practice, therefore,
you will have to decide when a new version of the Java Platform has been
distributed to a great enough extent to justify writing programs for that
version.

Native Methods

Besides the Java Platform version and edition your program depends on,
the other major factor determining the extent of platform independence of
your Java program is whether or not you call native methods. The most
important rule to follow when you are writing a platform-independent Java
program is to not directly or indirectly invoke any native methods that are
not part of the Java API. As you can see in Figure 2-1, calling native meth­
ods outside the Java API renders your program platform specific.

Calling native methods directly is appropriate in situations where you
do not desire platform independence. In general, native methods are use­
ful in three cases:

Ill For accessing features of an underlying host platform that are not
accessible through the Java API

Ill For accessing a legacy system or using an already existing library
that is not written in Java

Ill For speeding up the performance of a program by implementing
time-critical code as native methods

Page 61 of 280

Figure 2-1
A platform-specific
Java program

Chapter Two

If you need to use native methods and also need your program to run
on several platforms, you will have to port the native methods to all the
required platforms. This porting must be done the old-fashioned way, and
once you have done this task, you will have to figure out how to deliver
the platform-specific, native method libraries to the appropriate hosts.
Because Java's architecture was designed to simplify multi-platform sup­
port, your initial goal in writing a platform-independent Java program
should be to avoid native methods altogether and interact with the host
only through the Java API.

Non-Standard Run-Time Libraries

Native methods are not inherently incompatible with platform indepen­
dence. What is important is whether or not the methods you invoke are
implemented "everywhere." Implementations of the Java API on operat­
ing systems such as Windows or Solaris use native methods to access the
host. When you call a method in the Java API, you are certain the method
will be available everywhere. You do not care if the method is imple­
mented as a native method in some places.

Java Platform implementations can come from a variety of vendors,
and although every vendor must supply the standard run-time libraries
of the Java API, individual vendors may also supply extra libraries. If you

Page 62 of 280

, 'Platform Independence

'

I

33
I'

are interested in platform independence, you must remain aware of
whether any non-standard run-time libraries you use call native meth­
ods. Non-standard libraries that do not call native methods do not
degrade your program's platform independence. Using non-standard
libraries that do call native methods, however, yields the same result as
calling native methods directly. This usage renders your program plat­
form specific.

Virtual Machine Dependencies

Two other rules to follow when writing a platform-independent Java pro­
gram involve portions of the Java virtual machine that can be imple­
mented differently by different vendors. The rules are as follows:

1. Do not depend upon timely finalization for program correctness.

2. Do not depend upon thread prioritization for program correctness.

These two rules address the variations allowed in the Java virtual
machine specification for garbage collection and threads.

All Java virtual machines must have a garbage-collected heap, but dif­
ferent implementations can use different garbage collection techniques.
This flexibility in the Java virtual machine specification means that the
objects of a particular Java program can be garbage collected at com­
pletely different times on different virtual machines. This feature, in turn,
means that finalizers, which are run by the garbage collector before an
object is freed, can run at different times on different virtual machines. If
you use a finalizer to free finite memory resources such as file handles,
your program may run on some virtual machine implementations but not
others. On some implementations, your program could run out of the
finite resource before the garbage collector gets around to invoking the
finalizers that free the resource.

Another variation allowed in different implementations of the Java vir­
tual machine involves thread prioritization. The Java virtual machine
specification guarantees that all runnable threads are at the highest pri­
ority in your program will get some CPU time. The specification also guar­
antees that lower-priority threads will run when higher-priority threads
are blocked. The specification does not prohibit lower-priority threads
from running when higher-priority threads are not blocked, however. On
some virtual machine implementations, therefore, lower-priority threads
may get some CPU time-even when the higher-priority threads are not
blocked. If your program depends on correctness of this behavior, however,
it may work on some virtual machine implementations but not on others.

Page 63 of 280

Chapter Two

To keep your multi-threaded Java program platform independent, you
must rely on synchronization-not prioritization-to coordinate interac­
tivity between threads.

User Interface Dependencies

Another major variation between different Java Platform implementations
is the interface. User interface is one of the more difficult issues in writing
platform-independent Java programs. The AWT user interface library gives
you a set of basic user-interface components that map to native components
on each platform. The Swing library gives you advanced components that
do not map directly to native components. From this raw material, you
must build an interface with which end-users on many different platforms
will feel comfortable. This task is not always easy.

End-users on different platforms are accustomed to different ways of
interacting with their computers. The metaphors are different. The com­
ponents are different. The interaction between the components is differ­
ent. Although the AWT and Swing libraries make it fairly easy to create
a user interface that runs on multiple platforms, they do not necessarily
make it easy to devise an interface that keeps end-users happy on multi­
ple platforms.

Buge in Java Platform Implementations

One final source of variation among different implementations of the Java
Platform is bugs. Although Sun has developed a comprehensive suite of
tests that Java Platform implementations must pass, it is still possible
that some implementations will be distributed with bugs in them. The
only way you can defend yourself against this possibility is through test­
ing. If there is a bug, you can determine through testing whether the bug
affects your program. If so, you can attempt to find a way to work around
this problem.

Testing

Given the allowable differences between Java Platform implementations,
the platform-dependent ways you can potentially write a Java program,
and the simple possibility of bugs in any particular Java Platform imple­
mentation, you should (if possible) test your Java programs on all plat-

Page 64 of 280

Platform Independence

-

forms on which you are claiming that the program runs. Java programs
are not platform independent to a great enough extent that you only need
to test them on one platform. You still need to test a Java program on mul­
tiple platforms, and you should probably test it on the various Java Plat­
form implementations that are likely to be found on each host computer
on which you claim your program runs. In practice, therefore, testing your
Java program on the various host computers and Java Platform imple­
mentations that you plan to claim your program works on is a key factor
in making your program platform independent.

Seven Steps to Platform
Independence
Java's architecture enables you to choose between platform independence
and other concerns. You make your choice by the way in which you write
your program. If your goal is to take advantage of platform-specific fea­
tures not available through the Java API, to interact with a legacy sys­
tem, to use an existing library not written in Java, or to maximize the
execution speed of your program, you can use native methods to help you
achieve that goal. In such cases, your programs will have reduced plat­
form independence, and that will usually be acceptable. If, on the other
hand, your goal is platform independence, then you should follow certain
rules when writing your program. The following seven steps outline one
path you can take to maximize your program's portability:

1. Choose a set of host computers and devices that you will claim
your program runs on (your "target hosts").

2. Choose an edition and version of the Java Platform that you feel
is well enough distributed among your target hosts. Write your
program to run on this version of the Java Platform.

3. For each target host, choose a set of Java Platform implementa­
tions that you will claim your program runs on (your "target run
times").

4. Write your program so that it accesses the host computer only
through the standard run -time libraries of the Java API. (Do not
invoke native methods or use vendor-specific libraries that invoke
native methods.)

5. Write your program so that it does not depend for correctness on
timely finalization by the garbage collector or on thread prioritization.

Page 65 of 280

Chapter Two

6. Strive to design a user interface that works well on all of your
target hosts.

7. Test your program on all of your target run times and all of your
target hosts.

If you follow the seven steps outlined here, your Java program will def­
initely run on all your target hosts. If your target hosts cover most major
Java Platform vendors on most major host computers, there is a good
chance that you program will run in many other places, as well.

If you wish, you can have your program certified as "100% Pure Java."
There are several reasons that you may wish to do this task if you are writ­
ing a program that you want to be platform independent. For example, if
your program is certified 100% Pure, you can brand your program with the
"100% Pure Java" coffee cup icon. You can also potentially participate in co­
marketing programs with Sun. You may, however, wish to go through the
certification process simply as an added check on the platform indepen­
dence of your program. In this case, you have the option of just running
"100% Pure" verification tools that you can download for free. These tools
will report problems with your program's "purity'' without requiring you to
go through the full certification process.

The "100% Pure" certification is not quite a full measure of platform
independence. Part of platform independence is that end-users' expecta­
tions are fulfilled on multiple platforms. The "100% Pure" testing process
does not attempt to measure end-user fulfillment; rather, it only checks
to make certain your program depends only on the standard APis. You
could write a Java program that passes the "100% Pure" tests but still
does not work well on all platforms from the end-user's perspective.
Nonetheless, running your code through the "100% Pure" testing process
can be a worth~'b.ile step on the road to creating a platform-independent
Java program.

- - The Politics of Platform
Independence
AB illustrated in Figure 2-2, Java Platform vendors are allowed to extend the
standard components of the Java Platform in non-standard and platform­
specific ways, but they must always support the standard components. In
the future, Sun Microsystems intends to prevent the standard compo­
nents ofthe Java Platform from splitting into several competing, slightly

Page 66 of 280

Platform Independence LJ
---­Figure 2-2
Java Platform imple­
mentations from dif­
ferent vendors

Java Platform from
Vendor 1

Java Platform from
Vendor2

incompatible systems (as happened, for instance, with UNIX). The license
that all Java Platform vendors must sign requires compatibility at the
level of the Java virtual machine and the Java API but permits differen­
tiation in the areas of performance and extensions. There is some flexi­
bility, as mentioned earlier, in the way vendors are allowed to implement
threads, garbage collection, and user interface look and feel. If Sun's plans
occur as scheduled, the core components of the Java Platform will remain
a standard to which all vendors faithfully adhere, and the ubiquitous
nature of the standard Java Platform will enable you to write programs
that really are platform independent.

You can rely on the standard components of the Java Platform because
every Java Platform vendor must support them. If you write a program that
only depends on these components, the program should "run anywhere" but
may suffer to some extent from the lowest-common-denominator problem.
Yet, because vendors are allowed to extend the Java Platform, they can give
you a way to write platform-specific programs that take full advantage of
the features of the underlying host operating system. The presence of both
required standard components and permitted vendor extensions at any
Java Platform implementation gives developers a choice. This arrangement
enables developers to balance platform independence with other concerns.

There is currently a marketing battle raging for the hearts and minds
of software developers over how they will write Java programs-in par­
ticular, whether or not they will choose to write platform-independent or

Page 67 of 280

Chapter Two

platform-specific programs. The choice that Java graciously gives to devel­
opers also potentially threatens some vested interests in the software
industry.

Java's support for platform independence threatens to weaken the
"lock" enjoyed by operating system vendors. If all of your software runs
on only one operating system, then your next computer will also probably
run that same operating system. You are "locked into" one operating sys­
tem vendor because your investment in software depends on an API
proprietary to that vendor. You are also likely locked into one hardware
architecture because the binary form of your programs requires a partic­
ular kind of microprocessor. Instead, if much of your software is written
to the Java API and is stored as bytecodes in class files, it becomes eas­
ier for you to migrate to a different operating system vendor the next time
you buy a computer. Because the Java Platform can be implemented in
software on top of existing operating systems, you can switch operating
systems and take all of your old platform-independent, Java-based soft­
ware with you.

Microsoft dominates the desktop operating system market largely because
most available software runs only on Microsoft operating systems. Continu­
ing this status quo is in Microsoft's strategic interest, so Microsoft is encour­
aging developers to use Java as a language to write programs that run only
on Microsoft platforms. Weakening Microsoft's lock on the operating system
market is in just about every other operating system vendor's strategic inter­
est, so the other players are encouraging developers to write Java programs
that are platform independent. For example, Sun, N etscape, IBM, and many
others banded together to promote Sun's "100% Pure Java initiative,"
through which they hoped to educate and persuade developers to go the
platform-independence route.

Microsoft's approach to Java is to make Windows the best platform on
which to develop and run Java programs. They want developers to use
Microsoft's tools and libraries, whether the developer chooses platform
independence or not. Still, in the "spin" Microsoft gives to Java in promo­
tional material to developers, Microsoft strongly favors the platform­
specific Windows path. Microsoft extols the virtues of using Java to write
programs that take full advantage of the Windows platform.

Sun and the other operating system vendors behind the 100% Pure
Java initiative are attempting to counter Microsoft's spin with some of
their own. The promotional material from these companies focuses on the
benefits of writing platform-independent Java programs.

On one level, it is a battle between two icons. If you write your Java
program Microsoft's way, you get to brand your product with a Windows
icon that displays the famous four-paneled Windows logo. If you go the

Page 68 of 280

I
I

Platform Independence l39

-

100% Pure Java route, you get to brand your product with a 100% Pure
Java icon that displays the famous steaming coffee cup logo.

As a developer, the politics and propaganda swirling around the soft­
ware industry should not be a major factor when you decide how to write
a particular Java program. For some programs you write, platform inde­
pendence may be the right approach. For others, a platform-specific pro­
gram may make more sense. In each individual case, you can make a
decision based on what you feel your customers want and how you want
to position yourself in the marketplace with respect to your competitors.

Platform Independence
and Network-Mobile Objects
As mentioned previously in this chapter, the original design target for
Java technology was embedded devices. This target was chosen in part
because given that the desktop was controlled by Microsoft and Intel,
embedded devices represented the most open market. But also, embedded
devices were targeted because they were destined to play a role in a com­
ing hardware revolution-the proliferation of diskless, embedded devices
connected to high-bandwidth (often, wireless) networks.

Three years after Java was first released by Sun, Sun announced the
emergence of Jini. Jini is an attempt at defining an architecture for the
"computer" represented by the emerging environment of embedded and
consumer devices connected to a ubiquitous network. The Jini architecture
relies heavily on network-mobile objects. In a world of Jini-enabled devices,
objects fly across the network between Java Platform implementations in
embedded and consumer devices, desktop computers, and servers. The Java
Platform implementations that will host these network-mobile objects will
reside in a great variety of devices and computer hardware, which will be
manufactured by many different vendors. This architecture significantly
raises the bar for platform independence.

For Jini to work in the real world, objects written by one qevice vendor
will have to execute properly in Java Platform execution environments
provided by other device vendors. Testing your network-mobile code on all
platforms it will eventually run on, as recommended by the Seven Steps
to Platform Independence presented earlier in this chapter, will be basi­
cally impossible. Because so many vendors will be producing so many dif­
ferent kinds of devices, with new devices appearing at an ever-increasing
rate, it will be generally impossible to predict all the places where

Page 69 of 280

Chapter Two

network-mobile code embedded in any particular device will execute.
Thus, other approaches to testing will have to be developed, such as com­
patibility test suites for network-mobile code. In addition, for Jini to work
in the real world, the homogeneity of execution environments must be
realized to the greatest extent possible. Lastly, programmers will likely
need to consider the possibility of differences in execution environments
when they write network-mobile code, and they will need to program
defensively.

The Resources Page
For links to more information about Java and platform independence,
visit the resources page for this chapter: http: I /www. artima. com/
insidejvm/resources.

Page 70 of 280

ecurity

Aside from platform independence, which we discussed in
the previous chapter, the other major technical challenge
that a network-oriented software technology must deal
with is security. Because networks enable computers to
share data and distribute processing, they can potentially
serve as a way to break into a computer system-enabling
someone to steal information, alter or destroy informa­
tion, or steal computing resources. As a consequence, con­
necting a computer to a network raises many security
issues.

To address the security concerns raised by networks,
Java's architecture comes with an extensive, built-in secu­
rity model that has evolved with each major release of the
Java platform. This chapter gives an overview of the secu­
rity model built into Java's core architecture and traces its
evolution.

Page 71 of 280

Chapter Three

Why Security?
Java's security model is one of the key architectural features that makes
it an appropriate technology for networked environments. Security is
important because networks represent a potential avenue of attack to any
computer that is hooked to them. This concern becomes especially strong
in an environment in which software is downloaded across the network
and is executed locally, as is done, for example, with Java applets and Jini
service objects. Because the class files for an applet are automatically
downloaded when a user goes to the containing Web page in a browser, it
is likely that a user will encounter applets from untrusted sources. Sim­
ilarly, the class files for a Jini service object are downloaded from a code­
base specified by the service provider when it registers its service with
the Jini lookup service. Because Jini enables spontaneous networking in
which users entering a new environment can look up and access locally
available services, users bf Jini services will more than likely encounter
service objects from untrusted sources. Without any security, these auto­
matic code download schemes would be a convenient way to distribute
malicious code. Thus, Java's security mechanisms help make Java suit­
able for networks, because they establish a needed trust in the safety of
executing network-mobile code.

Java's security model is focused on protecting end-users from hostile
programs (and bugs in otherwise benevolent programs) that are down­
loaded across a network from untrusted sources. To accomplish this goal,
Java provides a customizable "sandbox" in which untrusted Java pro­
grams can be placed. The sandbox restricts the activities of the untrusted
program. The program can do anything within the boundaries of its sand­
box but cannot take any action outside those boundaries. For example, the
original sandbox for untrusted Java applets in Version 1.0 prohibited
many activities, including the following:

• Reading or writing to the local disk

• Making a network connection to any hosts except the host from
which the applet came

• Creating a new process

• Loading a new dynamic library

By making it impossible for downloaded code to perform certain
actions, Java's security model protects the end-user from the threats of
hostile and buggy code.

Page 72 of 280

Security 43

Because the sandbox security model imposes strict controls on what
untrusted code can and cannot do, users are able to run untrusted code with
relative security. Unfortunately for the programmers and users of 1.0 sys­
tems, however, the original sandbox was so restrictive that well-meaning
(but untrusted) code was often unable to do useful work. In Version 1.1,
the original sandbox model was augmented with a trust model based on
code signing and authentication. The signing and authentication capa­
bility enables the receiving system to verify that a set of class files (in a
JAR file) has been digitally signed (in effect, blessed as trustworthy) by
some entity and that the class files have not been altered since they were
signed. This process enables end-users and system administrators to ease
the restrictions of the sandbox for code that has been digitally signed by
trusted parties.

Although the security APis released with Version 1.1 include support
for authentication, they do not offer much help in establishing anything
more than an aU-or-nothing trust policy (in other words, either code is
completely trusted or completely untrusted). Java's next major release,
Version 1.2, provided APis to assist with establishing fine-grained secu­
rity policies based on authentication of digitally signed code. The remain­
der of this chapter will trace the evolution of Java's security model from
the basic sandbox ofVersion 1.0, through the code signing and authenti­
cation ofVersion 1.1, to the fine-grained access control ofVersion 1.2.

The Basic Sandbox
In the world of personal computers, you traditionally had to trust software
before running it. You achieved security by being careful only to use soft­
ware from trusted sources and by regularly scanning for viruses. Once
software gained access to your system, it had full reign. If the software
was malicious, it could do a great deal of damage-because there were no
restrictions placed on it by the run-time environment of your computer.
So, in the traditional security scheme, you tried to prevent malicious code
from ever gaining access to your computer in the first place.

The sandbox security model makes it easier to work with software that
comes from sources you do not fully trust. Instead of approaching security
by requiring you to prevent any code that you do not trust from ever mak­
ing its way into your computer, the sandbox model enables you to welcome
code from any source. AE, code from an untrusted source runs, however, the

Page 73 of 280

Chapter Three

sandbox restricts the code from taking any actions that could possibly hann
your system. You do not need to figure out what code you can and cannot
trust. You do not need to scan for viruses. The sandbox itself prevents any
viruses or other malicious, buggy code that you might invite into your com­
puter from doing any damage to your system.

If you have a properly skeptical mind, you will need to be convinced
that a sandbox has no leaks before you trust it to protect your system. To
make sure that the sandbox has no leaks, Java's security model involves
every aspect of its architecture. If there were areas in Java's architecture
where security was not considered, a malicious programmer (known as a
cracker) could likely exploit those areas to circumvent the sandbox. To
understand the sandbox, therefore, you must look at several different
parts of Java's architecture and understand how they work together.

The fundamental components responsible for Java's sandbox are as follows:

Ill The class loader architecture

II The class file verifier

Ill Safety features built into the Java virtual machine (and the language)

Ill The security manager and the Java API

One of the greatest strengths of Java's sandbox security model is that
two of these components-the class loader and security manager-are
customizable. By customizing these components, you can create a cus­
tomized security policy for a Java application. Unfortunately, this capa­
bility for customization does not come for free, because the flexibility of
the architecture creates some risks of its own. Class loaders and security
managers are complicated enough that the mere act of customization can
potentially produce errors that open security holes.

In each major release of the Java API, changes were made to make the
task of creating a custom security policy less error prone. The most sig­
nificant change occurred in Version 1.2, which introduced a new and more
elaborate architecture for access control. In Versions 1.0 and 1.1, access
control, which involves both the specification of a security policy and the
enforcement of that policy at run time, is the responsibility of an object
called the security manager. To establish a custom policy in Versions 1.0
and 1.1, you have to write your own custom security manager. In Version
1.2, you can take advantage of a security manager supplied with the Java
2 platform. This ready-made security manager enables you to specify a
security policy in an ASCII policy file separate from the program. At run
time, the ready-made security manager enlists the help of a class called
the access controller to enforce the security policy specified in the policy
file. The access control infrastructure introduced in Version 1.2 provides

Page 74 of 280

Security

-

a flexible and easily customized default implementation of the security
manager that should suffice for the majority of your security needs. For
backwards compatibility and to enable parties with special security needs
to override the default functionality provided by the ready-made security
manager, Version 1.2 applications can still install their own security man­
ager. Using the ready made security manager (and the extensive access
control infrastructure that comes with it) is optional.

The Class Loader Architecture
In Java's sandbox, the class loader architecture is the first line of defense.
After all, the class loader brings code into the Java virtual machine-code
that could be hostile or buggy. The class loader architecture contributes
to Java's sandbox in three ways:

1. Preventing malicious code from interfering with benevolent code

2. Guarding the borders of the trusted class libraries

3. Placing code into categories (called protection domains) that will
determine which actions the code can take

The class loader architecture prevents malicious code from interfering
with benevolent code by providing separate name spaces for classes
loaded by different class loaders. A name space is a set of unique names
-one name for each loaded class-that the Java virtual machine main­
tains for each class loader. Once a Java virtual machine has loaded a class
named Volcano into a particular name space, for example, it is impossi­
ble to load a different class named Volcano into that same name space.
You can load multiple Volcano classes into a Java virtual machine, how­
ever, because you can create multiple name spaces inside a Java applica­
tion by creating multiple class loaders. If you create three separate name
spaces (one for each of the three class loaders) in a running Java appli­
cation, then by loading one Volcano class into each name space, your pro­
gram could load three different Volcano classes into your application.

N arne spaces contribute to security, because you can place a shield
between classes loaded into different name spaces. Inside the Java virtual
machine, classes in the same name space can interact with one another
directly. Classes in different name spaces, however, cannot even detect
each other's presence unless you explicitly provide a mechanism that
enables them to interact. If a malicious class, once loaded, had guaran­
teed access to every other class currently loaded by the virtual machine,

Page 75 of 280

46

Figure 3-1
Class loaders and
name spaces

Chapter Three

that class could potentially learn things it should not know or could inter­
fere with the proper execution of your program.

Figure 3-1 shows the name spaces associated with two class loaders,
both of which have loaded a type named Volcano. Each name in a name
space is associated with the type data in the method area that defines the
type with that name. Figure 3-1 shows arrows from the names in the
name spaces to the types in the method area that define the type. The
class loader on the left, which is shown in dark gray, has loaded the two
dark-gray types named Climber and Volcano. The class loader on the
right, which is shown in light gray, has loaded the two light-gray types
named BakingSoda and Volcano. Because of the nature of name spaces,
when the Climber class mentions the Volcano class, it refers to the
dark-gray Volcano-the Volcano loaded in the same name space. The
class has no way ofknowing that the other Volcano, which is sitting in the
same virtual machine, even exists. For details about how the class loader
architecture achieves its separation of name spaces, see Chapter 8, "The
Linking Model."

The class loader architecture guards the borders of the trusted class
libraries by making it possible for trusted packages to be loaded with dif­
ferent class loaders than untrusted packages. Although you can grant spe­
cial access privileges between types belonging to the same package by

namespace 1

• • •
Climber

• • l)

Volcano
• • .. I Volcano I

type data in the
method area

namespace 2

• •
4

Baking Soda
• • •

Volcano
• •
0

Page 76 of 280

Security

giving members protected or package access, this special access is granted
to members of the same package at runtime-only if they were loaded by
the same class loader.

Often, a user-defined class loader relies on other class loaders-at the
least, upon the class loaders created at virtual machine startup-to help
it fulfill some of the class-load requests that come its way. Prior to Ver­
sion 1.2, class loaders had to explicitly ask for the help of other class load­
ers. A class loader could ask another user-defined class loader to load a
class by invoking loadClass () on a reference to that user-defined class
loader. Or, a class loader could ask the bootstrap class loader to attempt
to load a class by invoking findSystemClass (),a static method defined
in class ClassLoader. In Version 1.2, the process by which one class
loader asks another class loader to try to load a type was formalized into
a parent-delegation model. Starting with Version 1.2, each class loader
except the bootstrap class loader has a "parent" class loader. Before a par­
ticular class loader attempts to load a type in its custom way, by default
it "delegates" the job to its parent-asking its parent to try to load the
type. The parent, in turn, asks its parent to try to load the type. The del­
egation process continues all the way to the bootstrap class loader, which
is (in general) the last class loader in the delegation chain. If a class
loader's parent class loader can load a type, the class loader returns that
type. Otherwise, the class loader attempts to load the type itsel£

In most Java virtual machine implementations prior to Version 1.2, the
built-in class loader (which was then called the primordial class loader) was
responsible for loading locally available class files. Such class files usually
included the class files that made up the Java application being executed,
plus any libraries needed by the application (including the class files of the
Java API). Although the manner in which the class files for requested types
were located was implementation specific, many implementations searched
directories and JAR files in an order specified by a class path.

In Version 1.2, the job of loading locally available class files was
parceled out to multiple class loaders. The built-in class loader, previously
called the primordial class loader, was renamed the "bootstrap" class
loader to indicate that it was now responsible for loading only the class
files ofthe core Java API. The name bootstrap class loader comes from the
idea that the class files of the core Java API are the class files required
to ''bootstrap" the Java virtual machine.

The responsibility for loading other class files, such as the class files
for the application being executed, class files for installed or downloaded
standard extensions, class files for libraries discovered in the class path,
and so on, was issued in Version 1.2 to user-defined class loaders. When

Page 77 of 280

48 Chapter Three

a Version 1.2 Java virtual machine starts its execution, therefore, it cre­
ates at least one and probably more user-defined class loaders before the
application even starts. All of these class loaders are connected in one
chain of parent-child relationships. At the top of the chain is the bootstrap
class loader, and at the bottom of the chain is what came (in Version 1.2)
to be called the "system class loader." Prior to Version 1.2, the name "sys­
tem class loader" was sometimes used to refer to the built-in class loader,
which was also called the primordial class loader. In Version 1.2, the name
system class loader was more formally defined to mean the default dele­
gation parent for new user-defined class loaders created by a Java appli­
cation. This default delegation parent will usually be the user-defined
class loader that loaded the initial class of the application, but it might
be any user-defined class loader decided upon by the designers of the Java
platform implementation.

For example, imagine that you write a Java application that installs a
class loader whose particular manner of loading class files is by down­
loading them across a network. Imagine that you run this application on
a virtual machine that instantiates two user-defined class loaders on
startup: an "installed extensions" class loader and a "class path" class
loader. These class loaders are connected in a parent-child relationship
chain, along with the bootstrap class loader (as shown in Figure 3-2). The
class path's class loader's parent is the installed extensions class loader
whose parent is the bootstrap class loader. As shown in Figure 3-2, the
class path class loader is designated as the system class loader-the
default delegation parent for new user-defined class loaders instantiated
by the application. Assume that when your application instantiates its
network class loader, it specifies the system class loader as its parent.

Imagine that during the course of running the Java application, a
request is made of your class loader to load a class named Volcano. Your
class loader would first ask its parent, the class path class loader, to find
and load the class. The class path class loader, in turn, would make the
same request of its parent, the installed extensions class loader. This class
loader would also first delegate the request to its parent, the bootstrap
class loader. Assuming that class Volcano is not a part of the Java API,
part of an installed extension, or on the class path, all of these class load­
ers would return without supplying a loaded class named Volcano. When
the class path class loader indicates that neither it nor any of its parents
can load the class, your class loader could then attempt to load the
Volcano class in its custom manner by downloading it across the net­
work. Assuming that your class loader could download class Volcano,
that Volcano class could then play a role in the application's future
course of execution.

Page 78 of 280

Security

---­Figure 3-2
A parent-child class
loader delegation
chain

r---
I
I
I
I

bootstrap class loader

49

1

·-------1 I

--·---------·------------------------------' I

standard extensions class loader

class path class loader

... , I
/ ,_--I ,_

To continue with the same example, assume that at some time later a
method of class Volcano is invoked for the first time, and that method
references class java. util. HashMap from the Java API. Because it is
the first time that the reference was used by the running program, the
virtual machine asks your class loader (the one that loaded Volcano) to
load java. util. HashMap. As before, your class loader first passes the
request to its parent class loader, and the request becomes delegated all
the way to the bootstrap class loader. In this case, however, the bootstrap
class loader can return a java. util. Hashmap class back to your class
loader. Because the bootstrap class loader can find the class, the installed
extensions class loader does not attempt to look for the type in the
installed extensions. The class path class loader does not attempt to look
for the type on the class path. Also, your class loader does not attempt to
download the type from the network. All of these class loaders merely
return the java. util. HashMap class returned by the bootstrap class
loader. From that point forward, the virtual machine uses that java.
util. HashMap class whenever class Volcano references a class named
java.util.HashMap.

Page 79 of 280

Chapter Three

Given this background information about how class loaders work, you
are now ready to look at how class loaders can be used to protect trusted
libraries. The class loader architecture guards the borders of the trusted
class libraries by preventing untrusted classes from pretending to be
trusted. If a malicious class could successfully trick the Java virtual
machine into believing that it was a trusted class from the Java API, that
malicious class could potentially break through the sandbox barrier. By
preventing untrusted classes from impersonating trusted classes, the
class loader architecture blocks one potential approach to compromising
the security of the Java run time.

Given the parent-delegation model, the bootstrap class loader can
attempt to load types before the standard extensions class loader, which
can attempt to load types before the class path class loader, which can
attempt to load types before your network class loader. Thus, given the
manner in which the parent-child delegation chain is built, the most
trusted library-the core Java API-is checked first for each type. Next,
the standard extensions are checked. Then, local class files that are sit­
ting on the class path are checked. Therefore, if some mobile code loaded
by your network class loader wants to download a type across the network
with the same name as an item in the Java API, such as java .lang.
Integer, its action will fail. If a class file for java. lang. Integer exists
in the Java API, the bootstrap class loader will load it. The network class
loader will not attempt to download and define a class named
java .lang. Integer. Rather, it will simply use the type returned by its
parent-the one loaded by the bootstrap class loader. In this way, the class
loader architecture prevents untrusted code from replacing trusted
classes with their own versions.

Consider a different situation, however. What if the mobile code, rather
than trying to replace a trusted type, wants to insert a brand-new type
into a trusted package? Imagine what would happen if your network class
loader from the previous example was requested to load a class named
java .lang. Virus. As before, this request would first be delegated all
the way up the parent-child chain to the bootstrap class loader. Although
the bootstrap class loader is responsible for loading the class files of the
core Java API, which includes a package named java. lang, it is unable
to find a member of the java. lang package with the name Virus.
Assuming that this class was also not found among the installed exten­
sions or on the local class path, your class loader would proceed to attempt
to download the type across the network.

Assume that your class loader is successful in the download attempt and
defines the type named java .lang. Virus. Java permits classes in the same

Page 80 of 280

Security 51

package to grant each other special access privileges that are not granted to
classes outside the package. Therefore, because your class loader loaded a
class (java .lang. Virus) that (by its name) brazenly declares itself to be
part of the Java API, you might expect that it could gain special access to the
trusted classes of java. lang and could possibly use that special access for
devious purposes. The class loader mechanism thwarts this code from gain­
ing special access to the trusted types in the java .lang package, because
the Java virtual machine only grants that special package access between
types loaded into the same package by the same class loader. Because the
trusted class files of the Java API's java. lang package were loaded by the
bootstrap class loader, and the malicious java. lang. Virus class was
loaded by your network class loader, these types do not belong to the same
runtime package. The term runtime package, which first appeared in the sec­
ond edition of the Java Virtual Machine Specification, refers to a set of types
that belong to the same package and were all loaded by the same class loader.
Before enabling access to package-visible members (members declared with
protected or package access) between two types, the virtual machine makes
sure not only that the two types belong to the same package, but that they
belong to the same runtime package (that they were loaded by the same class
loader). Thus, because java .lang. Virus and the members of java .lang
from the core Java API do not belong to the same runtime package,
java .lang. Virus cannot access the package-visible members and types of
the Java API's java. lang package.

This concept of a runtime package is one motivation for using different
class loaders to load different kinds of classes. The bootstrap class loader
loads the class files of the core Java API. These class files are the most
trusted. An installed extensions class loader loads class files from any
installed extensions. Installed extensions are quite trusted, but they do
not need to be trusted to the extent that they can gain access to package­
visible members of the Java API by simply inserting new types into those
packages. Because installed extensions are loaded with a different class
loader than the core API, they cannot gain this access. Likewise, code
found on the class path by the class path class loader cannot gain access
to package-visible members of the installed extensions or to the Java API.

Another way that class loaders can be used to protect the borders of
trusted class libraries is by simply prohibiting the loading of certain for­
bidden types. For example, you might have installed some packages that
contain classes that you want your application to load through your net­
work class loader's parent-the class path class loader-but not through
your own network class loader. Assume that you have created a package
named absolutepower and have installed it somewhere on the local

Page 81 of 280

52 Chapter Three

class path where it is accessible by the class path class loader. Also
assume that you do not want classes loaded by your class loader to be able
to load any class from the absolutepower package. In this case, you
would write your class loader such that the first thing the loader does is
make sure that the requested class does not declare itself a member of
the absolutepower package. If such a class is requested, your class
loader-rather than passing the class name to its parent class loader­
would throw a security exception.

The only way that a class loader can know whether or not a class is from
a forbidden package, such as absolutepower, is by the class's name. Thus,
a class loader must have a list of the names of forbidden packages. Because
the name of class absolutepower. FancyClassLoader indicates that it
is part of the absolutepower package-and the absolutepower pack­
age is on the list of forbidden packages-your class loader should abso­
lutely throw a security exception.

Besides shielding classes in different name spaces and protecting the
borders of trusted class libraries, class loaders play one other security
role: they must place each loaded class into a protection domain, which
defines what permissions the code will be given as it runs. More infor­
mation about this vitally important security job of class loaders will be
given later in this chapter.

The Class File Verifier
Working in conjunction with the class loader, the class file verifier ensures
that loaded class files have a proper internal structure and that they are
consistent. If the class file verifier discovers a problem with a class file, it
throws an exception. Although compliant Java compilers should not gen­
erate malformed class files, a Java virtual machine cannot determine how
a particular class file was created. Because a class file is simply a
sequence of bytes, a virtual machine cannot know whether a particular
class file was generated by a well-meaning Java compiler or by shady
crackers who were bent on compromising the integrity of the virtual
machine. As a consequence, all Java virtual machine implementations
have a class file verifier that can be invoked on class files to make sure
that the types they define are safe to use.

One of the security goals that the class file verifier helps achieve is pro­
gram robustness. If a buggy compiler or savvy cracker generated a class
file that contained a method whose bytecodes included an instruction to

Page 82 of 280

Security 53

jump beyond the end of the method, that method could-if invoked­
cause the virtual machine to crash. Thus, for the sake of robustness, the
virtual machine should verify the integrity of the bytecodes it imports.

The class file verifier of the Java virtual machine does most checking
before bytecodes are executed. Rather than checking every time it encoun­
ters a jump instruction as it executes bytecodes, for example, it analyzes
bytecodes (and verifies their integrity) once, before they are ever executed.
As part of its verification of bytecodes, the Java virtual machine makes
sure that all jump instructions cause a jump to another valid instruction
in the bytecode stream of the method. In most cases, checking all byte­
codes once (before they are executed) is a more efficient way to guaran­
tee robustness than checking every bytecode instruction every time it is
executed.

The class file verifier operates in four distinct passes. During pass one,
which takes place as a class is loaded, the class file verifier checks the
internal structure of the class file to make sure that it is safe to parse.
During passes two and three, which take place during linking, the class
file verifier makes sure that the type data obeys the semantics of the Java
programming language, including verifying the integrity of any bytecodes
it contains. During pass four, which takes place as symbolic references are
resolved in the process of dynamic linking, the class file verifier confirms
the existence of symbolically referenced classes, fields, and methods.

Pass One: Structural Checks on the Class File

During pass one, the class file verifier makes certain that the sequence of
bytes it will attempt to import as a type conform to the basic structure of
a Java class file. The verifier performs many checks during this pass. For
example, every class file must start with the same four bytes (the magic
number): OxCAFEBABE. The purpose of the magic number is to make it
easy for the class file parser to reject files that were either damaged or
that were never intended to be class files in the first place. Thus, the first
thing a class file verifier probably checks is that the imported file does
indeed begin with OxCAFEBABE. The verifier also makes sure that the
major and minor version numbers declared in the class file are within the
range supported by that implementation of the Java virtual machine.

Also during pass one, the class file verifier checks to make sure that
the class file is neither truncated nor enhanced with extra trailing bytes.
Although different class files can be different lengths, each individual
component contained inside a class file indicates its length, as well as its

Page 83 of 280

l54 Chapter Three

type. The verifier can use the component types and lengths to determine
the correct total length for each individual class file. In this way, the ver­
ifier can make sure that the imported file has a length consistent with its
internal contents.

The point of pass one is to ensure that the sequence of bytes that sup­
posedly define a new type adhere sufficiently to the Java class file format
to enable them to be parsed into implementation-specific, internal data
structures in the method area. Passes two, three, and four take place not
on the binary data in the class file format, but on the implementation­
specific data structures in the method area.

Pass Two: Semantic Checks on the Type Data

Pass two of the class file verifier performs checking that can be done with­
out looking at the bytecodes and without examining (or loading) any other
types. During this pass, the verifier looks at individual components to
make sure that they are well-formed instances of their type of component.
For example, a method descriptor (its return type and the number and
types of its parameters) is stored in the class file as a string that must
adhere to a certain context-free grammar. One check that the verifier per­
forms on individual components is to make sure that each method
descriptor is a well-formed string of the appropriate grammar.

In addition, the class file verifier checks that the class itself adheres to
certain constraints placed upon it by the specification of the Java pro­
gramming language. For example, the verifier enforces the rule that all
classes, except class Object, must have a superclass. Also during pass
two, the verifier makes sure that final classes are not subclassed and that
final methods are not overridden. In addition, it checks that constant pool
entries are valid and that all indexes into the constant pool refer to the
correct type of constant pool entry. Thus, the class file verifier checks some
of the Java language rules at run time that should have been enforced at
compile time. Because the verifier has no way of knowing whether the
class file was generated by a benevolent, bug-free compiler, it checks each
class file to make sure that the rules are followed.

Pass Three: Bytecode Verification

Once the class file verifier has successfully completed the pass two checks,
it turns its attention to the bytecodes. During this pass, which is com-

Page 84 of 280

Security 55

monly called the "bytecode verifier," the Java virtual machine performs a
data-flow analysis on the streams of bytecodes that represent the meth­
ods of the class. To understand the bytecode verifier, you need to under­
stand bytecodes and frames.

The bytecode streams that represent Java methods are a series of one­
byte instructions called opcodes, each of which can be followed by one or
more operands. The operands supply extra data needed by the Java vir­
tual machine to execute the opcode instruction. Executing bytecodes one
opcode after another constitutes a thread of execution inside the Java vir­
tual machine. Each thread is awarded its own Java stack, which is made
up of discrete frames. Each method invocation receives its own frame,
which we can define as a section of memory where it stores local variables
and intermediate results of computation (among other items). The part of
the frame in which a method stores intermediate results is called the
method's operand stack. An opcode and its (optional) operands might refer
to the data stored on the operand stack or in the local variables of the
method's frame. Thus, the virtual machine can use data on the operand
stack, in the local variables, or both, in addition to any data stored as
operands following an opcode when it executes the opcode.

The bytecode verifier does a great deal of checking, from checking to
make sure that no matter which path of execution is taken to get to a cer­
tain opcode in the bytecode stream, the operand stack always contains the
same number and types of items. The bytecode verifier also checks to
make sure that no local variable is accessed before it is known to contain
a proper value. The bytecode checks that fields of the class are always
assigned values of the proper type and that methods of the class are
always invoked with the correct number and types of arguments. The
bytecode verifier also checks to make sure that each opcode is valid, that
each opcode has valid operands, and that for each opcode, values of the
proper type are in the local variables and are on the operand stack. These
are just a few of the many checks performed by the bytecode verifier,
which can (through all of its checking) verify that a stream of bytecodes
is safe for the Java virtual machine to execute.

The bytecode verifier does not attempt to detect all safe programs. If it
did, it would encounter the Halting Problem. The Halting Problem, a well­
known theorem in computer science, states that you cannot write a pro­
gram that can determine whether any program fed to it as input will halt
when it is executed. Whether or not a program will halt is called an "unde­
cidable" property of the program, because you cannot write a program
that can tell you 100 percent of the time whether or not any given pro­
gram has this property. The undecideability of the Halting Problem

Page 85 of 280

Chapter Three

extends to many properties of computer programs, including whether or
not a set of Java bytecodes would be safe.for a Java virtual machine to
execute.

The way the bytecode verifier circumvents the Halting Problem is by
not attempting to pass all safe programs. Although you cannot write a
program that can determine whether or not any given program will halt,
you can write a program that recognizes some programs that will halt.
For example, if the first instruction of a program is halted, that program
will halt. If a program has no loops in it, it will halt, and so on. Similarly,
although you cannot write a verifier that will pass all bytecode streams
that are safe for the virtual machine to execute, you can write a verifier
that will pass some of them. That task is what Java's bytecode verifier
does. The verifier checks to make sure that a certain set of rules are fol­
lowed by each set of bytecodes fed to it. If a set of bytecodes obeys all of
the rules, then the verifier knows that the bytecodes are safe for the vir­
tual machine to execute. If not, the bytecodes might or might not be safe
for the virtual machine to execute. Thus, the verifier avoids the Halting
Problem by recognizing some, but not all, safe bytecode streams. Given
the nature of the constraints checked by the bytecode verifier, any pro­
gram that can be written in the Java programming language can be com­
piled to bytecodes that will pass the verifier. Some programs that could
not possibly be expressed in the Java programming language will pass the
verifier. And some programs (also not expressible in Java source code)
that would otherwise be safe for the virtual machine to execute will not
pass the verifier.

Passes one, two, and three of the class file verifier make sure that the
imported class file is properly formed, is internally consistent, adheres to
the constraints of the Java programming language, and contains byte­
codes that will be safe for the Java virtual machine to execute. If the class
file verifier finds that any of these conditions are not true, it throws an
error, and the program never uses the class file.

Pass Four: Verification of
Symbolic References

Pass four of the class file verifier takes place when the symbolic references
contained in a class file are resolved in the process of dynamic linking.
During pass four, the Java virtual machine follows the references from the
class file being verified to the referenced class files to make sure that the
references are correct. Because pass four must examine other classes that

Page 86 of 280

Security

are external to the class file being checked, pass four might require that
new classes are loaded. Most Java virtual machine implementations will
likely delay loading classes until the program actually uses them. If an
implementation does load classes earlier, perhaps in an attempt to speed
up the loading process, then it must still give the impression that it is
loading classes as late as possible. If, for example, a Java virtual machine
discovers during early loading that it cannot find a certain referenced
class, it does not throw a NoClassDefFoundError error until (and
unless) the referenced class is used for the first time by the running pro­
gram. Thus, if a Java virtual machine performs early linking, pass four
could happen shortly after pass three. In Java virtual machines that
resolve each symbolic reference the first time they are used, however, pass
four will happen much later than pass three as bytecodes are executed.

Pass four of class file verification is really just part of the process of
dynamic linking. When a class file is loaded, it contains symbolic refer­
ences to other classes and their fields and methods. A symbolic reference
is a character string that gives the name and possibly other information
about the referenced item-enough information to uniquely identify a
class, field, or method. Thus, symbolic references to other classes give the
full name of the class, while symbolic references to the fields of other
classes give the class name, field name, and field descriptor; and symbolic
references to the methods of other classes give the class name, method
name, and method descriptor.

Dynamic linking is the process of resolving symbolic references into
direct references. As the Java virtual machine executes bytecodes and
encounters an opcode that, for the first time, uses a symbolic reference to
another class, the virtual machine must resolve the symbolic reference.
The virtual machine performs two basic tasks during resolution:

1. Finding the class being referenced (and loading it if necessary)

2. Replacing the symbolic reference with a direct reference, such as a
pointer or offset, to the class, field, or method

The virtual machine remembers the direct reference so that if it
encounters the same reference again later, it can immediately use the
direct reference without spending time resolving the symbolic reference
again.

When the Java virtual machine resolves a symbolic reference, pass four
of the class file verifier makes sure that the reference is valid. If the ref­
erence is not valid-for instance, if the class cannot be loaded or if the
class exists but does not contain the referenced field or method-then the
class file verifier throws an error.

Page 87 of 280

Chapter Three

As an example, consider again the Volcano class. If a method of class
Volcano invokes a method in a class named Lava, then the name and
descriptor of the method in Lava are included as part of the binary data
in the class file for Volcano. When Volcano's method first invokes
Lava's method during the course of execution, the Java virtual machine
makes sure that a method exists in class Lava that has a name and
descriptor that matches those expected by class Volcano. If the symbolic
reference (class name, method name, and descriptor) is correct, the vir­
tual machine replaces it with a direct reference, such as a pointer, which
it will use from now on. But if the symbolic reference from class Volcano
does not match any method in class Lava, pass four verification fails, and
the Java virtual machine throws a NoSuchMethodError.

Binary Compatibility

The reason why pass four of the class file verifier must look at classes that
refer to one another to make sure that they are compatible is because
Java programs are dynamically linked. Java compilers will often recom­
pile classes that depend on a class you have changed, and in doing so, they
will detect any incompatibility at compile time. There might be times,
however, when your compiler does not recompile a dependent class. For
example, if you are developing a large system, you will likely partition the
various parts of the system into packages. If you compile each package
separately, then a change to one class in a package would likely cause a
recompilation of affected classes within that same package-but not nec­
essarily in any other package. Moreover, if you are using someone else's
packages, especially if your program downloads class files from someone
else's package across a network as it runs, then it might be impossible for
you to check for compatibility at compile time. For this reason, pass four
of the class file verifier must check for compatibility at run time.

As an example of incompatible changes, imagine that you compiled
class Volcano (from the previous example) with a Java compiler. Because
a method in Volcano invokes a method in another class called Lava, the
Java compiler would look for a class file or a source file for class Lava to
make sure that there was a method in Lava with the appropriate name,
return type, and number and types of arguments. If the compiler could
not find any Lava classes, or if it encountered a Lava class that did not
contain the desired method, the compiler, would then generate an error
and would not create a class file for Volcano. Otherwise, the Java com­
piler would produce a class file for Volcano that is compatible with the

Page 88 of 280

Security 59

class file for Lava. In this case, the Java compiler refused to generate a
class file for Volcano that was not already compatible with class Lava.

The converse, however, is not necessarily true. The Java compiler could
conceivably generate a class file for Lava that is not compatible with
Volcano. If the Lava class does not refer to Volcano, you could poten­
tially change the name of the method that Volcano invokes from the
Lava class and then recompile only the Lava class. If you tried to run
your program using the new version of Lava, but you still used the old
version of Volcano that was not recompiled since you made your change
to Lava, then the Java virtual machine would (as a result of pass four
class-file verification) throw a NoSuchMethodError when Volcano
attempted to invoke the now non-existent method in Lava.

In this case, the change to class Lava broke binary compatibility with
the pre-existing class file for Volcano. In practice, this situation might
arise when you update a library you have been using and your existing
code is not compatible with the new version of the library. To make it eas­
ier to alter the code for libraries, the Java programming language was
designed to enable you to make many kinds of changes to a class that do
not require recompilation of classes that depend upon the language. The
changes you can make, which are listed in the Java Language Specifica­
tion, are called the rules of binary compatibility. These rules clearly define
what can be changed, added, or deleted in a class without breaking binary
compatibility with pre-existing class files that depend on the changed
class. For example, it is always a binary compatible change to add a new
method to a class, but never to delete a method that other classes are
using. So, in the case of Lava, you violated the rules of binary compati­
bility when you changed the name of the method used by Volcano,
because you (in essence) deleted the old method and added a new one. If
you had instead added the new method and then rewritten the old method
so that it calls the new method, that change would have been binary com­
patible with any pre-existing class file that already used Lava, including
Volcano.

Safety Features Built Into
the Java Virtual Machine
Once the Java virtual machine has loaded a class and has performed
passes one through three of class-file verification, the bytecodes are ready

Page 89 of 280

60 Chapter Three

to be executed. Besides the verification of symbolic references (pass four
of class-file verification), the Java virtual machine has several other built­
in security mechanisms operating as bytecodes are executed. These mech­
anisms, most of which are elements of Java's type safety, are listed in
Chapter 1 as features of the Java programming language that make Java
programs robust. Not surprisingly, these features are also part of the Java
virtual machine:

II Type-safe reference casting

II Structured memory access (no pointer arithmetic)

II Automatic garbage collection (cannot explicitly free allocated
memory)

II Array bounds checking

II Checking references for null

By granting a Java program-only type safe, which provides structured
ways to access memory, the Java virtual machine makes Java programs
more robust, but it also makes their execution more secure. A program
that corrupts memory, crashes, and possibly causes other programs to
crash represents one kind of security breach. If you are running a mis­
sion-critical server process, for example, it is critical that the process does
not crash. This level of robustness is also important in embedded systems,
such as a cellular phone, which people do not usually expect to have to
reboot. Another reason why unrestrained memory access would be a secu­
rity risk is because a cracker could potentially use it to subvert the secu­
rity system. If, for example, a cracker could learn where in memory a class
loader is stored, the cracker could assign a pointer to that memory and
manipulate the class loader's data. By enforcing structured access to
memory, the Java virtual machine yields programs that are robust but
that also frustrate crackers who dream of harnessing the internal mem­
ory of the Java virtual machine for their own devious plots.

Another safety feature built into the Java virtual machine-one that
serves as a backup for structured memory access-is the unspecified man­
ner in which the run-time data areas are laid out inside the Java virtual
machine. The runtime data areas are the memory areas in which the Java
virtual machine stores the data it needs to execute a Java application:
Java stacks (one for each thread); a method area, where bytecodes are
stored; and a garbage-collected heap, where the objects created by the run­
ning program are stored. If you peer into a class file, you will not find any
memory addresses. When the Java virtual machine loads a class file, it
decides where in its internal memory to put the bytecodes and other data

Page 90 of 280

Security

it parses from the class file. When the Java virtual machine starts a
thread, it decides where to put the Java stack it creates for the thread.
When it creates a new object, it decides where in memory to put the object.
Thus, a cracker cannot predict by looking at a class file where in memory
the data representing that class, or objects instantiated from that class,
will be kept. What is worse (for the cracker) is that the cracker cannot
determine anything about memory layout by reading the Java virtual
machine specification. The manner in which a Java virtual machine lays
out its internal data is not part of the specification. The designers of each
Java virtual machine implementation decide which data structures their
implementation will use to represent the run-time data areas and where
in memory their implementation will place them. As a result, even if a
cracker were somehow able to break through the Java virtual machine's
memory access restrictions, they would next be faced with the difficult
task of finding something to subvert by searching the structure.

The prohibition on unstructured memory access is not something the
Java virtual machine must actively enforce on a running program; rather,
it is intrinsic to the bytecode instruction set itself. Just as there is no way
to express an unstructured memory access in the Java programming lan­
guage, there is also no way to express it in bytecodes-even if you write
the bytecodes by hand. Thus, the prohibition on unstructured memory
access is a firm barrier against the malicious manipulation of memory.

There is a way, however, to penetrate the security barriers erected by
the mechanisms that support type safety in a Java virtual machine.
Although the bytecode instruction set does not give you an unsafe,
unstructured way to access memory, there is a way you can avoid byte­
codes: native methods. Basically, when you call a native method, Java's
security sandbox becomes dust in the wind. First of all, the robustness
guarantees do not hold for native methods. Although you cannot corrupt
memory from a Java method, you can from a native method. Most impor­
tantly, however, native methods do not go through the Java API (they are
used to circumvent the Java API), so the security manager is not checked
before a native method attempts to do something that could be potentially
damaging. (This process is often how the Java API itself gets anything
done, of course. But the native methods used by the Java API are
"trusted.") Thus, once a thread gets into a native method, no matter what
security policy was established inside the Java virtual machine, it does
not apply anymore to that thread-as long as that thread continues to
execute the native method. For this reason, the security manager includes
a method that establishes whether or not a program can load dynamic
libraries, which are necessary for invoking native methods. Untrusted

Page 91 of 280

Chapter Three

applets, for example, are not permitted to load a new dynamic library;
therefore, they cannot install their own new native methods. They can,
however, call methods in the Java API-methods which might be native,
but are always trusted. When a thread invokes a native method, that
thread leaps outside the sandbox. The security model for native methods
is, therefore, the same security model described earlier as the traditional
approach to computer security: you have to trust a native method before
you call the method.

One final mechanism built into the Java virtual machine that con­
tributes to security is structured error handling with exceptions. Because
of its support for exceptions, the Java virtual machine has something
structured to do when a security violation occurs. Instead of crashing, the
Java virtual machine can throw an exception or an error, which might
result in the death of the offending thread but should not crash the sys­
tem. Throwing an error (as opposed to throwing an exception) almost
always results in the death of the thread in which the error was thrown.
This situation is usually a major inconvenience to a running Java pro­
gram but will not necessarily result in termination of the entire program.
If the program has other threads doing useful tasks, those threads might
have the capacity to carry on without their recently departed colleague.
Throwing an exception, on the other hand, could result in the death of the
thread but is often used as a way to transfer control from the point in the
program where the exception condition arose to the point in the program
where the exception condition is handled.

The Security Manager
and the Java API
The first three prongs of Java's security model-the class loader archi­
tecture, the class file verifier, and the safety features built into Java-all
work together to achieve a common goal: protecting the internal integrity
of a Java virtual machine instance and the application it is running from
malicious or buggy code that it might load. By contrast, the fourth prong
of the security model-the security manager-is geared towards protect­
ing assets that are external to the virtual machine from malicious or
buggy code running within the virtual machine. The security manager is
a single object that serves as the centralpoint for access control-the
controlling of access to external assets-within a running Java virtual
machine.

Page 92 of 280

Security

The security manager defines the outer boundaries of the sandbox.
Because it is customizable, the security manager enables a custom secu­
rity policy to be established for an application. The Java API enforces the
custom security policy by asking the security manager for permission
before it takes any action that is potentially unsafe. To ask the security
manager for permission, the methods of the Java API invoke check meth­
ods on the security manager object. These methods are called check meth­
ods because their names all begin with the substring check. For example,
the security manager's checkRead () method determines whether or not
a thread can read to a specified file. The checkWri te () method deter­
mines whether or not a thread can write to a specified file. The imple­
mentation of these methods is what defines the custom security policy of
the application.

Because the Java API always checks with the security manager before
it performs a potentially unsafe action, the Java API will not perform any
action that is forbidden under the security policy established by the secu­
rity manager. If the security manager forbids an action, the Java API will
not perform that action.

When a Java application starts, it has no security manager. The application,
however, can install one by passing a reference to an instance of java . lang.
Securi tyManager or one of its subclasses to setSecuri tyManager () , a
static method of class java .lang. System. If an application does not
install a security manager, there are no restrictions placed on any activ­
ities requested of the Java API; rather, the Java API will do whatever it
is asked. (For this reason, Java applications by default do not have any
security restrictions, such as those that limit the activities of untrusted
applets.) If the application does install a security manager, then in Ver­
sion 1.0 or Version 1.1, that security manager will be in charge for the
entire remainder of the lifetime of that application. This security manager
cannot be replaced, extended, or changed. From that point on, the Java
API will only fulfill those requests that are sanctioned by the security
manager. In Version 1.2, however, the currently installed security
manager can be replaced by code that has permission to replace it by
invoking System. setSecuri tyManager () with a reference to a differ­
ent security manager object.

In general, a check method of the security manager throws a security
exception if the checked-upon activity is forbidden and simply returns if
the activity is permitted. Therefore, there are two steps involved in the
procedure that a Java API method generally follows when it is about to
perform a potentially unsafe activity. First, the Java API code checks to
determine whether a security manager has been installed. If not, it skips

Page 93 of 280

w Chapter Three

step two and continues with the potentially unsafe action. Otherwise, in
step two, it calls the appropriate check method in the security manager.
If the action is forbidden, the check method will throw a security excep­
tion, which will cause the Java API method to immediately abort. The
potentially unsafe action will never be taken. If, on the other hand, the
action is permitted, then the check method will simply return. In this
case, the Java API method carries on and performs the potentially unsafe
action.

As mentioned earlier in this chapter, the security manager is respon­
sible for two items: specifying a security policy, and enforcing that policy.
The security policy, which outlines the kind of code that will be permitted
to take a certain kind(s) of action(s), is defined by the code of the security
manager's check methods. The policy is enforced by the behavior of the
check methods when they are invoked.

Prior to Version 1.2, java .lang. Securi tyManager was an abstract
class. To establish a custom security policy in Version 1.0 or Version 1.1, you
had to write your own security manager by subclassing Securi tyManager
and implementing its check methods. Your application would instantiate
and install the security manager, and from that point forward (for the
remainder of the life of the application), the security manager would enforce
the security policy that you defined in the code of its check methods.

Although the customizability of the security manager was one of the
greatest strengths of Java's security model, it was also a potential weak
point. Writing a security manager is a complicated and error-prone task.
Any mistakes made when implementing the check methods of a security
manager could potentially translate into security holes at run time. To
help make it easier and less error prone for developers and end-users to
establish fine-grained security policies based on signed code, the java.
lang. Securi tyManager class in Version 1.2 is a concrete class that pro­
vides a default implementation of the security manager. (In the remain­
der of this book, this default implementation of the security manager
provided with Version 1.2 will be called the concrete Securi tyManager.)
Your application can instantiate and install this security manager explic­
itly or can install it automatically. In Sun's Java 2 SDK Version 1.2,
for example, you can specify that the concrete Securi tyManager is
installed by using the -Dj ava. security. manager option on the com­
mand line.

The concrete Securi tyManager class enables you to define your cus­
tom policy not in Java code, but in an ASCII file called a policy file. In the
policy file, you grant permissions to code so'urces. Permissions are defined
in terms of classes that are subclasses of java. security. Permission.
For example, java. io. FilePermission represents permission to read,

Page 94 of 280

Security 65

write, execute, or delete a file. Code sources are composed of a codebase
URL from which the code was loaded and a set of signers that vouched
for the code. When the security manager is created, it parses the policy
file and creates CodeSource and Permission objects. These objects are
encapsulated in a single Policy object that expresses the policy at run
time. Only one Policy object can be installed at any time.

Class loaders place types into protection domains, which encapsulate
all the permissions granted to the code source represented by the loaded
type. Each type loaded into a Version 1.2 virtual machine belongs to one
(and only one) protection domain. The virtual machine remembers the
protection domain and uses it when deciding whether or not the code can
take potentially unsafe actions.

When the check methods ofthe concrete SecurityManager are invoked,
most of them pass the request on to a class called the AccessController.
The AccessController, using the information contained in the protection
domain objects of the classes whose methods are on the call stack,
performs stack inspection to determine whether the action should be
permitted.

The security manager has undergone quite a bit of change in Version
1.2. In Versions 1.0 and 1.1, each check method indicates what is being
checked in its method name. To check whether or not it is acceptable to
read a certain file, the Java API invokes the checkRead () method on the
security manager and passes the path name of the file to read as a para­
meter. For example, before attempting to read a file called /tmp/
finances. dat, the security manager invokes checkRead ("/tmp/
finances. dat") on the security manager.

The security manager declares 28 of these check methods-which, in
the remainder of this chapter, will be referred to as legacy check meth­
ods. Although new methods were added to the security manager in Ver­
sion 1.2 that would otherwise render these legacy check methods obsolete,
to maintain backwards compatibility, the Java API continues to call the
legacy check methods just as it did in prior releases.

The 28 legacy check methods are listed here, along with the potentially
unsafe action that triggers their invocation by the code of the Java API:

II checkConnect (String host, int port) -Opens a socket
connection to the specified host and port number

B checkConnect(String host, int port, Object context)­
Opens a socket connection to the specified host and port number
under the passed security context

II checkAccept (String host, int port) -Accepts a socket
connection from the specified host and port number

Page 95 of 280

w Chapter Three

ll checkCreateClassLoader () -Creates a new class loader

ll checkAccess (Th:read t) -Modifies a thr~ad (changes its prior­
ity, stops it, etc.)

ll checkAccess (ThreadGroup t) -Mqdifies a thread group (adds
a new thread, sets daemons, etc.)

ll checkExi t () -Causes the application to exit

II checkLink () -Loads a dynamic library that contains native methods

ll checkRead (FileDescriptor fd) -Reads from the specified file

ll checkRead (String file) -Reads from the specified file

ll checkRead(String file, Object context) -Reads from the
specified file under the passed security context

ll checkWrite (FileDescriptor fd) -Writes to the specified file

II checkWrite (String file) -Writes to the specified file

ll checkDelete (String file) -Deletes the specified file

II checkListen (int port) -Waits for a connection on the speci­
fied local port number

ll checkMulticast (Ined.Address maddr) -Joins, leaves, sends,
or receives IP multicast

ll checkMulticast(Ined.Address maddr, byte ttl)­
Joins, leaves, sends, or receives IP multicast

ll checkPropertiesAccess ()-Accesses or modifies system prop­
erties in general

ll checkPropertiesAccess (String key) -Accesses or modifies
the specified system property

II checkTopLevel Window (Object Window) -Brings up the speci-
fied window without any warning

II checkPrintJobAccess () -Initiates a print job request

ll checkSystemClipboard.Access ()-Accesses the system's clipboard

II checkAWTEventQueueAccess () -Accesses the AWT event queue

ll checkPackageAccess (String pkg) -Accesses types from the
specified package (used by class loaders)

ll checkPackageDefinition (String pkg) -Adds a new class to
the specified package (used by class loaders)

ll checkSetFactory () -Sets the socket factory that ServerSocket
or Socket uses or sets the URL stream handler that URL uses

II checkMemberAccess ()-Accesses class information via there­
flection API

Page 96 of 280

Security 67

In Version 1.2, a set of permission classes was defined whose instances
represent the actions that code can take. A new pair of check methods
were added in Version 1.2 to class java .lang. SecurityManager, both
named checkPermission ():

Ill checkPermission (Permission perm) -Takes an action that
requires the specified permission

Ill checkPermission(Permission perm, Object context)­
Takes an action that requires the specified permission under the
passed security context

The checkPermission () methods accept a reference to a Permission
object, which indicates the action that is being requested. Thus, this method
provides an alternative way to ask the security manager whether it is accept­
able to perform a potentially unsafe action. For example, to determine whether
it is acceptable to read file /tmp/finances. dat, the Java API in Version 1.2
could take either of two approaches. The Java API could take the old-fashioned
approach and invoke the legacy method checkRead () , passing the String
"/tmp/finances. dat" as a parameter, or it could take the fresh, new
approach of creating a java. io. FilePermission object and passing
Strings "/tmp/finances .dat" and "read" to the FilePermission con­
structor. The Java API could then pass this Permission object to the security
manager's checkPermission () method.

Both the old-fashioned approach of invoking a legacy check method and
the fresh new approach of creating a permission object and invoking
checkPermission () should yield the same result. To maintain backwards
compatibility with security managers that were written for Versions 1.0 or
1.1, however, the Version 1.2 Java API continues to take the old-fashioned
approach. The Version 1.2 Java API continues to call the 28 legacy
check methods. Nevertheless, in the concrete SecurityManager class, the
legacy methods are (for the most part) implemented in terms of the new
checkPermission () method. So, by invoking the legacy method on the
concrete SecurityManager, the Java API is indirectly invoking the
checkPermission () method anyway. For example, the checkRead ()
method implementation in the concrete Securi tyManager simply instan­
tiates a new FilePermission object, passing the path name String
passed to it to the FilePermission's constructor, along with the String
"read". The checkRead () method then invokes checkPermission (),
passing a reference to the FilePermission object.

At times, the Java API might also invoke checkPermission ()
directly. For new concepts of potentially unsafe actions introduced in
Version 1.2 and later, no legacy check methods exist. Thus, in some situ­
ations, the Java API might create a new Permission object for which no

Page 97 of 280

68 Chapter Three

relevant check methods exist and pass that Permission object directly
to the security manager's checkPermission () method.

In the concrete Securi tyManager class, the checkPermission () method
also delegates the job of deciding whether or not to permit another method to
perform the action. The concrete Securi tyManager's checkPermission ()
method simply invokes the static checkPermission () method of class
java. security. AccessController, passing along the permission object.
The AccessController class, therefore, is the actual entity responsible for
enforcing the security policy when you use the concrete SecurityManager.

All of these changes in Version 1.2 are backwards compatible with Ver­
sions 1.1 and 1.0. In other words, if you created a security manager for
Version 1.1, it should still work as expected in Version 1.2. You can still
create a custom security manager in Version 1.2 as well, which enables
anyone with special security needs that are not adequately addressed by
the concrete Securi tyManager implementation to create a different
kind of security infrastructure. Most people's security needs, however, will
more than likely be met by taking advantage of the flexibility and exten­
sibility built into the concrete SecurityManager.

Code Signing and Authentication
A critical piece of Java's security model is the support for authentication
introduced in Java 1.1 in the java. security package and its subpack­
ages. The authentication capabilities expand your ability to establish mul­
tiple security policies by enabling you to implement a sandbox that varies
depending on who vouched for the code. Authentication enables you to
verify that a set of class files was blessed as trustworthy by some party
-and that the class files were not altered en route to your virtual
machine. Thus, to the extent that you trust the party who vouched for the
code, you can ease the restrictions placed on the code by the sandbox. You
can establish different security restrictions for code that is signed by dif­
ferent parties.

To vouch for, or sign, a piece of code, you must first generate a pub­
lic/private key pail". You should keep the private key private, but you can
make the public key public. At the least, you must somehow get the pub­
lic key to anyone who wants to establish a security policy based on your
signature. (As illustrated later in this section, distributing public keys is
not necessarily as easy as it might seem.) o·nce you have a public/private

Page 98 of 280

Security

key pair, ·you must place the class files and any other files you want to
sign into a JAR file. You then use a tool, such as j arsigner from the Ver­
sion 1.2 SDK, to sign the entire JAR file. The signer tool will first perform
a one-way hash calculation on the contents of the JAR file to generate a
hash. The tool will then sign the hash with your private key and add the
signed hash to the JAR file. The signed hash represents your digital sig­
nature of the contents of the JAR file. When you distribute the JAR file
that contains the signed hash, anyone with your public key can verify two
things about the JAR file: that you indeed signed the JAR file, and that
the contents of the JAR file were not in any way altered since you
attached your signature.

The first step in the digital signing process is the one-way hash calcu­
lation, which takes a big number as input and generates a small number
(called the hash). In the case of a JAR file, the big-number input to the
calculation is the stream of bytes that make up the contents of the JAR
file. The one-way hash calculation is called one-way because given just the
hash (the small number), it is impossible to calculate the input (the big
number). In other words, the hash value does not contain enough infor­
mation about the input to enable the input to be regenerated from the
hash. The calculation goes just one way, from big to small and from input
to hash.

The hash, which is also called a message digest, serves as a kind of fin­
gerprint for the input. Although different inputs can produce the same
hash, the hash is considered unique enough in practice to represent the
i.ilput from which it was generated. Much like a fingerprint can be used
to identify the individual who made the fingerprint, a hash can be used
to identify the input that caused the one-way hash algorithm to produce
the hash. The hash is used during the authentication process to verify
that the input is identical to the input that produced the original hash.
In other Words, the hash verifies that the input was not changed en route
to its destination.

Given that it is impossible to reconstruct the input given just the hash,
a hash is only useful if the input is also available. Thus, you normally
transmit both the input and the hash together. By themselves, the com­
bination of an input and its hash is not secure, however, because even an
extremely unimaginative cracker could simply replace both the input and
the hash. To prevent this scenario from occurring, you encrypt the hash
with your private key before sending the hash. The reason why you
encrypt the hash rather than simply encrypting the entire JAR file is
because private-key encryption is a time-consuming process. In general,

Page 99 of 280

70 Chapter Three

you will find it much faster to calculate a one-way hash from the JAR file
contents and encrypt the hash with a private key than to encrypt the
entire JAR file with the private key. A cracker will only have the capa­
bility to replace both an input and an encrypted hash if the cracker has
your private key, which you are supposed to keep secret. Thus, the com­
bination of input and encrypted hash is more frustrating to a potential
cracker than the mere combination of input and hash, because in theory,
the cracker does not have your private key.

Anything encrypted with your private key can be decrypted with your
public key. With public/private key pairs, it is difficult to generate the pri­
vate key if you only have the public key. If you can keep your private key
out of the hands of crackers, therefore, their best option is to try to replace
the input with a different input that yields the same hash value. If the
cracker wishes to replace one class file in your JAR file with a different
class file that performs some devious act, for example, the odds are
extremely high that the revised JAR file (the one that contains the devi­
ous class file) will produce a different hash. But the cracker could add ran­
dom data to the JAR file until the one-way hash calculation on the altered
JAR file produces the same hash value as the original. If the cracker can
produce such an alternative input-one that both helps the cracker
achieve his or her nefarious goals and generates the same hash as your
original input-then the cracker would not need your private key. Because
the cracker's input generates the same hash value as your original input,
and you have already signed that hash value with your private key, then
the cracker can simply place your signed hash in a JAR file with his or
her input. What prevents a cracker from taking this approach? Unfortu­
nately for the cracker, such an approach would more than likely take too
much time to be feasible.

Because one-way hash algorithms generate a small number (themes­
sage digest or hash) from a big number (the input), different inputs can
produce the same hash. One-way hash algorithms tend to spread out the
inputs that produce the same hash in a sufficiently random manner, so
the likelihood of getting the same hash value depends primarily on the
size of the hash. For example, if you use a hash value that is eight bits
wide, your one-way hash algorithm will only have 256 unique hash val­
ues from which to choose. If you have a JAR file that produces the hash
value 100 and you start calculating the eight-bit hash with this algorithm
on other JAR files, you should not be surprised if every 256 times or so
you receive the hash value 100. The more bits contained in the hash, of
course, the less often the algorithm will produce the same hash. In prac­
tice, 64- and 128-bit hash values are common and are considered large

Page 100 of 280

Security

---­Figure 3-3
Digitally signing
aJAR file

71

enough to render the process of finding a different input that produces the
same hash computationally unfeasible. The main barrier preventing a
cracker from replacing your benevolent input with a malicious input that
serves the cracker's evil purposes and produces the same hash, therefore,
is the time and resources that the cracker would have to devote to search­
ing for that malicious input.

The last step in the digital signing process, after you have generated
the hash value and encrypted it with your private key, is to add the
encrypted hash value to the same JAR file that contains the files from
which you generated the hash value originally. A signed JAR file, there­
fore, contains the input-the class and data files you wanted to vouch for
-plus the hash value (generated from the input) encrypted with your pri­
vate key. The encrypted hash represents your digital signature of the class
and data files contained in the same JAR file. The process of signing a
JAR file is shown graphically in Figure q-3.

To authenticate a JAR file that you have purportedly signed, the recip­
ient must decrypt the signed hash with your public key. The result should
be equal to the original hash that you calculated on the contents of the

Page 101 of 280

72

---­Figure 3-4
Authenticating a
digitally signed
JAR file

Chapter Three

JAR file. To verify that the JAR file contents were not changed since you
signed them, the recipient simply applies the one-way hash algorithm on
the contents of the JAR file, just as you did during the signing process.
(You never encrypted the contents of the JAR file, so anyone can see them.
You only added a digital signature to the JAR file.) If the hash value gen­
erated by the algorithm matches the decrypted hash value, the recipient
concludes that you did indeed vouch for this JAR file and that the con­
tents of the JAR file did not change since you added your signature. The
code contained in the JAR file can be placed inside a relaxed sandbox that
represents the trust that the recipient places in your signature. The
process of verifying a digitally signed JAR file is shown in Figure 3-4.

Although the authentication technology first introduced in Java Ver­
sion 1.1 is firmly founded in reliable mathematics, the math does not solve
every problem. In fact, Java's authentication technology raises several
questions. For example, the authentication technology says nothing about
who you should trust and to what extent you should trust them. To what
extent do you trust some small company that you do not recognize? To
what extent do you trust a big company whose name is a household word?
To what extent do you trust a different department in your own company?
What are the chances that any particular company (or department) has

signature
verifies:

YES or NO

Page 102 of 280

Security l73
a rogue employee who managed to slip a time bomb into a JAR file that
the company signed? No cryptographic algorithm can answer these ques­
tions for you.

Another security issue stems from the assumption that is inherent in
the authentication technology that private keys will be kept under lock
and key. If private keys are not kept private, the entire authentication
scheme is reduced to strenuous mathematical activity that is not only
ineffective but dangerous, because it can give a false sense of security. You
are responsible for keeping your own private keys private. You can only
hope that any entity on whose signature authority you grant code access
to your system has kept their private keys private. For any party, estab­
lishing a key-management scheme that prevents private keys from being
leaked (remember those rogue employees?) can be a challenging task.

Another question raised by the technology involves the distribution of
public keys. Although it might seem surprising at first, the assumption
inherent in the authentication technology that public keys will be made
public creates some security issues of its own. For example, imagine that
you want to relax your sandbox for code vouched for by a guy named
Evan. To do so, you need Evan's public key. But how exactly do you obtain
his public key? If you know Evan personally, you can invite him over for
coffee and ask him to bring his public key so he can give it to you in per­
son. But what if you do not know Evan personally? You might think that
you could simply visit Evan's Web site and grab his public key from his
Web page. Alternatively, perhaps you could phone Evan and ask him to
send you his public key in an e-mail. Evan should have no problem send­
ing you-a stranger-his public key, because public keys are designed to
be public. Evan does not need to worry about who gets his public key. He
could hire a biplane to write his public key on the sky over Silicon Valley
and still feel confident he was operating within the rules delineated by
Java's authentication technology. So, what is the problem? The problem
is that although Evan does not need to worry about your identity when
he sends you his public key, you need to worry about his. Evan will be
happy to send you his public key, but how do you know that the public
key you receive is really the one that Evan sent?

The difficulty of public key distribution is that no matter what means
of communication you use, the message-the public key-could potentially
be tampered with in transit. When you visit Evan's Web page, it is possi­
ble that the Web page is intercepted and changed en route to your browser,
perhaps by Dastardly Doug, a cracker of international repute. When you
think you are copying Evan's public key from his Web page, you could actu­
ally be copying Dastardly Doug's. Doug could also have intercepted Evan's

Page 103 of 280

74 Chapter Three

e-mail and replaced Evan's beneficent public key with his own dastardly
public key. Doug could even have donned one of his many clever disguises
and. piloted the biplane high above Silicon Valley, inscribing his public key
among the clouds in place of Evan's. If Doug can successfully replace
Evan's public key with his own, Doug can pretend to be Evan and take
advantage of the trust you place in Evan's signature to break into your
system.

But wait a minute. Isn't the difficulty of public key distribution just
another authentication problem-the kind of problem the authentication
technology itself is designed to address? The answer to this question is
yes. By turning authentication back on itself, Evan can make it far more
difficult for Dastardly Doug to replace Evan's public key with his own.

To address the difficulties of public key distribution, several Certificate
Authorities (CAs) have been established for the purpose of vouching for
public keys. Evan, for example, could go to a certificate authority and pre­
sent his credentials (birth certificate, driver's license, passport, and so on)
and his public key. Once convinced that Evan is who he says he is, the CA
would sign Evan's public key with the certificate authority's private key.
The resulting sequence of numbers is called a certificate. Instead of dis­
tributing his public key, then, Evan would distribute his certificate.

You could grab Evan's certificate from his Web page, from an e-mail, or
via any other unsecured communications medium. When you get the cer­
tificate, you decrypt it with the CA's public key and receive Evan's public
key. The certificate scheme makes it much less likely that Doug will be
able to swap his public key for Evan's. To do so, Doug would need the CA's
private key.

Although certificates improve the public key distribution situation
immensely, some issues still remain. First of all, how exactly do you obtain
the CA's public key? You need this public key to authenticate the public
keys of anyone else. Well, if you know any employees in the CA person­
ally, you could invite them over for coffee and ask them to bring their pub­
lic key to give to you in person. But what if you do not know any
employees in the CA? Then, there is the nagging question of why you
should trust the CA. A CA can pretend to be anyone. Isn't a CA just as
susceptible as the next company to the vagaries of rogue employees?

Despite all of these concerns, the code-signing capabilities introduced
in Java Version 1.1 generally offer you enough security to enable you to
relax your sandbox when necessary. Although the authentication tech­
nology does not eliminate all risks associated with relaxing the sandbox,
it can help minimize the risks. Security is a tradeoff between cost and
risk: the lower the security risk, th:e higher the cost of security. You must

Page 104 of 280

Security 75

weigh the costs associated with any computer or network security strat­
egy against the costs of the theft or destruction of the information or com­
puting resources being protected. The nature of your computer or network
security strategy should be shaped by the value of the assets you are try­
ing to protect. Java's authentication technology is a useful tool that, in
concert with Java's sandbox, can help you manage the costs and risks of
running network-mobile code on your systems.

A Code-Signing Example
For an example of code signing with the j arsigner tool of the Java 2
SDK Version 1.2, consider the following types: Doer, Friend, and
Stranger. The first type, Doer, defines an interface that the other two
types, classes Friend and Stranger, implement:

II On CD-ROM in file
II securitylex21comlartimalsecurityldoer1Doer.java
package com.artima.security.doer;

public interface Doer {

void doYourThing();
}

Doer declares just one method: doYourThing () . Class Friend and
class Stranger implement this method in the exact same way. In fact,
besides their names, the two classes are identical:

II On CD-ROM in file
II securitylex2lcomlartimalsecuritylfriend1Friend.java
package com.artima.security.friend;
import com.artima.security.doer.Doer;
import java.security.AccessController;
import java.security.PrivilegedAction;

publ~c class Friend implements Doer {

private Doer next;
private boolean direct;

public Friend(Doer next, boolean direct) {
this.next = next;
this.direct = direct;

}

Page 105 of 280

}

Chapter Three

public void doYourThing() {

}

if (direct) {

next.doYourThing();
}
else {

AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
next.doYourThing();
return null;

}
}

) ;

}

II On CD-ROM in file
II securitylex2lcomlartimalsecuritylstranger1Stranger.java
package com.artima.security.stranger;
import com.artima.security.doer.Doer;
import java.security.AccessController;
import java.security.PrivilegedAction;

public class Stranger implements Doer {

}

private Doer next;
private boolean direct;

public Stranger(Doer next, boolean direct) {
this.next = next;
this.direct = direct;

}

public void doYourThing() {

}

if (direct) {

next.doYourThing();
}
else {

AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
next.doYourThing();
return null;

}
}

) ;

}

Page 106 of 280

Security

These types-Doer, Friend, and Stranger-are designed to illustrate
the stack inspection mechanism of the access controller. The motivation
behind their design will be made clear later in this chapter, when we give
you several examples of stack inspection. At this point, however, the class
files generated by compiling Friend and Stranger must be signed to
prepare them for the upcoming stack inspection examples. The class files
generated from Friend. java will be signed by a party referred to fondly
as "friend." The class files generated from Stranger. java will be
signed by a party referred to somewhat suspiciously as "stranger." The
class file generated by Doer will not be signed.

To prepare the class files for signing, they must first be placed into JAR
files. Because the class files for Friend and Stranger need to be signed
by two different parties, they will be collected into two different JAR files.
The two class files generated by compiling Friend. java-Friend.
class and Friend$1. class-will be placed into a JAR file called
friend. jar. Similarly, the two class files generated by compiling
Stranger. java-Stranger. class and Stranger$1. class-will be
placed into a JAR file called stranger. jar. (Note that although all
of the files in these examples are in the security I ex2 directory of the
CD-ROM, to repeat any of the commands that generate files, you will have
to copy the entire security I ex2 directory hierarchy to a writeable
media, such as a hard disk. You probably knew that already, however.)

Friend. java's class files are dropped by the j avac compiler in the
security I ex2/ com/ artima/ security/friend directory. Because class
Friend is declared in the com. artima. security. friend package,
Friend. java's class files must be placed in the JAR file in the
com/ artima/ security I friend directory. The following command, exe­
cuted in the security/ex2 directory, will place Friend.class and
Friend$1. class into a newly created JAR file called friend. jar,
which is placed in the current directory, security/ex2:

jar cvf friend.jar com/artima/security/friend/*.c1ass

Once the previous command completes, the class files for Friend. java
must be removed so they will not be found by the Java virtual machine
when it runs the access control examples:

rm com/artima/security/friend/Friend.c1ass
rm com/artima/security/friend/Friend$l.class

Filling a JAR file with Stranger. java's class files, which are dropped
by javac in the security/ex2/com/artima/security/stranger

Page 107 of 280

78 Chapter Three

directory, requires a similar process. From the security I ex2 directory,
the following command must be executed:

jar cvf stranger.jar com/artima/security/stranger/*.class
rm com/artima/security/stranger/Stranger.class
rm com/artima/security/stranger/Stranger$l.class

To sign a JAR file with the j arsigner tool from the Java 2 SDK Ver­
sion 1.2, a public/private key pair for the signer must already exist in a
keystore file, which is a file for storing named, password-protected keys.
The keytool program of the Java 2 SDK Version 1.2 can be used to gen­
erate a new key pair, to associate the key pair with a name or alias, and
to protect it with a password. The alias, which is unique within each key­
store file, is used to identify a particular key pair in a particular keystore
file. The password for a key pair is required to access or change the infor­
mation contained in the keystore file for that key pair.

The access control examples expect a keystore file named i vj mkeys in
the security I ex2 directory containing key pairs for the aliases
"friend" and "stranger." The following command, executed from the
security I ex2 directory, will generate the key pair for the alias friend
with the password friend4life. In the process, the command will cre­
ate the keystore file named ijvmkeys:

keytool -genkey -alias friend -keypass friend4life
-validity 10000 -keystore ijvmkeys

The -validity 1 o 0 0 0 command-line argument of the previous keytool
command indicates that the key pair should be valid for 10,000 days. Over
the course of 27 years, then, the key pair will likely outlive the product
life cycle of this edition of this book. When the command runs, it will
prompt you for a keystore password, which is a general password required
for making any kind of access to or change in the keystore file. The key­
store password given to ijvmkeys is "ijvm2ed".

The key pair for stranger can be generated with a similar command:

keytool -genkey -alias stranger -keypass stranger4life
-validity 10000 -keystore ijvmkeys

Now that the keystore file ijvmkeys contains key pairs for friend
and stranger-and the JAR files friend. jar and stranger. jar con­
tain the appropriate class files-the JAR files can finally be signed. The
following jarsigner command, executed from the exampleslex2 direc­
tory, will sign the class files contained in friend. jar using friend's pri­
vate key:

Page 108 of 280

Security

-

jarsigner -keystore ijvmkeys -storepas~ ijvm2ed -keypass
friend4life friend.jar friend

A similar command will sign the class files contained in
stranger. jar with stranger's private key:

jarsigner -keystore ijvmkeys -storepass ijvm2ed -keypass
stranger4life stranger.jar stranger

Whew, that was a lot of work just to sign two JAR files. Keep in mind
that in the real world, you would have to make sure that no one with bad
intent got hold of your private keys and that you kept track of them. In
other words, do not lose the keystore file, remember the passwords, etc.
In addition, you will have to give your public keys to anyone who will use
your signature to give your code access to their system.

Policy
As mentioned previously, one of the greatest advantages of Java's sand­
box security model is that the sandbox can be customized. The code sign­
ing and authentication technology introduced in Java Version 1.1 enables
your running application to differe~tiate code to which you attribute dif­
ferent degrees of trust. By customizing the sandbox, trusted code can be
given more access to system resources than untrusted code. This feature
prevents untrusted code from accessing the system but enables trusted
code to access the system and do useful work. The real power of Java's
security architecture, however, lies in the capability to grant varying
degrees of trust to code that has different levels of partial access to the
system.

Microsoft offers an authentication technology similar to Java's for
ActiveX controls, but ActiveX controls do not run inside a sandbox. Thus,
withActiveX, a chunk ofmobile code is either completely trusted or com­
pletely untrusted. If untrusted, the ActiveX control is denied the oppor­
tunity to run. If trusted, the ActiveX control is enabled to run and is given
full access to the system. While this functionality is a big improvement
from no authentication at all, if. some malicious or buggy code becomes
authenticated, then the dangerous code has full access to the system. One
of the strengths of Java's security architecture is that code can be given
access only to the resources it needs. If some malicious or buggy code
becomes authenticated, it has fewer opportunities to do damage. For
example, instead of being able to delete all files on a local hard disk, the

Page 109 of 280

80 Chapter Three

malicious or buggy code might only have the capability to delete the files
in a particular directory set aside just for the malicious code.

One major goal of the Version 1.2 security infrastructure is to make it
easier and less error prone to establish fine~grained access control poli­
cies based on signed code. To assign different system-access privileges to
different units of code, Java's access control mechanism must have the
capability to ascertain which privileges should be given to each individ­
ual piece of code. To facilitate this process, each piece of code (each class
file) loaded into a Version 1.2 or higher Java virtual machine is associated
with a code source. The code source basically indicates where the code
came from and who, if anyone, has vouched for the code by signing the
code. In the Version 1.2 security model, permissions (system-access priv­
ileges) are assigned to code sources. Thus, if a piece of code requests access
to a particular system resource, the Java virtual machine will grant the
code access to that resource only if such access is a privilege associated
with that code's code source.

In the Version 1.2 security infrastructure, an access control policy for
an entire Java application is represented by a single instance of a sub­
class of the abstract class java . security. Policy. Each application has
just one Policy object in effect at any given time. Code that has permis­
sion can replace the current Policy object with a new one by invoking
Policy. setPolicy () and by passing a reference to the new Policy
object. Class loaders consult the Policy object to help them decide which
privileges to grant code as they import the code into the virtual machine.

A security policy is a mapping from a set of properties that character­
ize running code to the permissions granted to the code. In the Version
1.2 security infrastructure, the properties that characterize running code
are collectively called the code source. A code source is represented by a
java. security. Code Source object, which contains a java. net. URL to
represent the codebase and an array of zero or more certificate objects to
represent the signers. Certificate objects are instances of subclasses of the
abstract class java. security. cert. Certificate. A Certificate is
an abstraction that represents a binding of a principal to a public key and
another principal (the certificate authority mentioned previously) that
vouches for that binding. The CodeSource object contains an array
of Certificate objects, because the same code can be signed (vouched
for) by more than one party. The signatures are usually obtained from a
JAR file.

All of the tools and access control infrastructure that accompanies the
concrete SecurityManager in Version 1.2 work only with certificates.
None work with bare public keys. If you do not have a certificate author-

Page 110 of 280

Security 81

ity handy, you can sign your own public key with your private key and
generate a self-signed certificate. The keytool program from the Java 2
SDK Version 1.2 always generates a self-signed certificate when it gen­
erates keys. In the code-signing example given earlier in this chapter, for
instance, the keytool created not only public/private key pairs but also
created self-signed certificates for the aliases friend and stranger.

A permission is represented by an instance of a subclass of the abstract
class java. security. Permission. A permission object has three prop­
erties: a type, a name, and an optional action. A permission's type is indi­
cated by the name of the permission class. Some examples of permission
types are: java. io. FilePermission, java. net. SocketPermission,
and java.awt.AWTPermission. A permission's name is encapsulated
inside the Permission object. For example, the name of a FilePermission
might be: "/my/finances. dat"; the name of a Socket Permission might
be "applets.artima.com:2000"; and the name of an AWTPermission
might be "showWindowWithoutBannerWarning". The third property of
a Permission object is its action. Not all permissions have an action.
An example of an action for a FilePermission is "read, write", and
an example for a SocketPermission is "accept, connect". A
FilePermission with the name /my/finances. dat and action
read, write represents permission to read and write to the file
/my/finances. dat. Both name and action are represented by Strings.

The Java API has a large hierarchy of permissions that represent
potentially dangerous actions that code might wish to take. You can also
create your own permission classes to represent custom permissions that
you can use for your own purposes. For example, you could create per­
mission classes that represent permission to access particular records of
your proprietary database. Defining custom permission classes is one way
that you can extend the Version 1.2 security mechanism to reflect your
own needs. If you create your own Permission classes, you can use them
like any ofthe built-in Permission classes from the Java API.

In the Policy object, each CodeSource is associated with one or more
Permission objects. The Permission objects with which a CodeSource
is associated are encapsulated in an instance of a subclass of java.
security. PermissionCollection. Class loaders can invoke Policy.
get Policy () to get a reference to the policy object currently in effect.
They can then invoke getPermissions () on the Policy object, passing
a CodeSource to get a PermissionCollection of Permission
objects for the passed Codesource. A class loader can then use the
PermissionCollection retrieved from the Policy object to help it
decide which permissions the code it is about to import will be granted.

Page 111 of 280

Chapter Three

Policy File

java. security. Policy is an abstract class. One of the implementation
details of concrete Policy subclasses is how an instance of the subclass
learns what the policy should be. Subclasses can take various app~oaches,
such as deserializing a previously serialized policy object, extracting the
policy from a database, or reading the policy from a file. The concrete pol­
icy subclass supplied by Sun with the Version 1.2 Java platform takes
the latter approach: it enables you to express your security policy in a
context-free grammar in an ASCII policy file.

A policy file consists of a series of grant clauses, each of which grants
a code source a set of permissions. As mentioned previously, a code source
consists of a codebase, which is a URL from which code was loaded, and
a set of signers. In the policy file, signers are designated with the alias
with which the signer's public key is stored in a keystore file. The key­
store can be explicitly specified in the policy file in a keys tore statement.

As an example of a policy file, consider the policyfile. txt file from
the security/ex2 directory ofthe CD-ROM:

keystore "ijvmkeys";

grant signedBy "friend" {

};

permission java.io.FilePermission "question.txt",
"read";
permission java.io.FilePermission "answer.txt", "read";

grant signedBy "stranger" {
permission java.io.FilePermission "question.txt",
"read";

};

grant codeBase "file:${com.artima.ijvm.cdrom.home}/
security/ex2/*" {

};

permission java.io.FilePermission "question.txt",
"read";
permission java.io.FilePermission "answer.txt", "read";

The first statement in the policyfile. txt file is a keystore state­
ment:

keystore "ijvmkeys";

This keystore statement indicates that the key aliases mentioned in
the rest of the policy file refer to certificates stored in a file called
"i j vmkeys" . Because this filename includes no path, the file must be

Page 112 of 280

Security 83

located in the current directory-the directory in which the Java appli­
cation using this policy file is started.

The second statement in the policy file is a grant statement:

grant signedBy "friend" {
permission java.io.FilePermission "question.txt",
"read";
permission java.io.FilePermission "answer.txt", "read";

};

This statement grants two permissions to any code signed by the entity
with the alias "friend." The granted permissions are as follows: per­
mission to read a file named question. txt, and permission to read a file
named answer. txt. Because these filenames appear with no path, both
files must be in the current directory-the directory in which the appli­
cation is started. Because no codebase is mentioned in the grant clause,
code signed by friend can come from any codebase. All code signed by
friend, regardless of codebase, will be awarded permission to read
question. txt and answer. txt.

The third statement in policyfile. txt is another grant statement,
similar in form to the first:

grant signedBy "stranger" {
permission java.io.FilePermission "question.txt",
"read";

};

This statement grants one permission to any code signed by the entity
with the alias "stranger": permission to read a file named question.
txt. This file must be sitting in the current directory-the directory in
which the application is started. Because no codebase is mentioned in the
grant clause, code signed by stranger can come from any codebase and
will still be awarded permission to read question. txt. Note that
although stranger can read the question contained in question. txt,
stranger is not permitted to peek at the answer contained in
answer. txt. This situation contrasts with the privileges awarded to
friend, which can read both the question and the answer.

The fourth and final statement in this policy file is yet another grant
statement:

grant codeBase "file:${com.artima.ijvm.cdrom.home}/
security/ex2/*" {

};

permission java.io.FilePermission "question.txt",
"read";
permission java.io.FilePermission "answer.txt", "read";

Page 113 of 280

Chapter Three

This final grant statement grants two permissions to any code that was
loaded from a particular directory: permission to read a file named quest ion.
txt, and permission to read a file named answer. txt. Both files must be
in the current directory-the directory in which the application is started.
Note that this grant statement does not mention any signers. The code
can be signed by anyone or by no one. As long as it is loaded from the indi­
cated directory, the code will be granted the listed permissions.

The codebase URL in this grant statement takes the form of a file:
URL that includes a property, $ {com. art ima. i j vm. cdrom. home}. If
you run the AccessControl example programs described later in this
chapter, you will have to set the com. artima. ijvm. cdrom.home prop­
erty to the path of the CD-ROM that comes with this book (or to
whichever directory you have moved the security subdirectory from the
CD-ROM). The Policy object that is instantiated based on the contents
of policyfile. txt will take the com. artima. ijvm. cdrom.home
property into account when it constructs the URL for the Code Source for
this grant clause.

Protection Domains
As class loaders load types into the Java virtual machine, they assign each
type into a protection domain. A protection domain defines all the per­
missions that are granted to a particular code source. (A protection
domain corresponds to one or more grant clauses in a policy file.) Each
type loaded into a Java virtual machine belongs to one and only one pro­
tection domain.

The class loader knows the codebase and the signers of any class or inter­
face it loads and uses that information to create a CodeSource object. The
class loader passes the CodeSource object to the getPermissions ()
method of the currently used Policy object to obtain an instance of a sub­
class of the abstract class java. security. PermissionCollection. The
PermissionCollection holds references to all Permission objects
granted to the given code source by the current policy. With both the
CodeSource that it created and the PermissionCollection it got from
the Policy object, it can instantiate a new ProtectionDomain object.
It places the code into a protection domain by passing the appropriate
ProtectionDomain object to the defineClass () method, an instance
method of class ClassLoader that user-defined class loaders call to import
type data into the Java virtual machine. This assigning classes into pro­
tection domains is a critical job which, as mentioned earlier in this chap-

Page 114 of 280

Security 85

ter, is one of three ways the class loader architecture supports Java's sand­
box security model.

Although the Policy object represents a global mapping from code
sources to permissions, in the end the class loader is the responsible party
that decides which permissions the code will receive when it runs. A class
loader could, for example, completely ignore the current policy and just
assign permissions randomly. Or, a class loader could add permissions to
those returned by the policy object's getPermissions () method. For
example, a class loader for loading applet code could add a permission to
make a socket connection back to the host, from which the applet came to
the permissions granted to the code by the policy (if any). As you can see,
the class loader plays a crucial security role as it loads classes.

For a graphical depiction of protection domains, code sources, and per­
missions, consider Figure 3-5. In this figure, the method area and heap are
shown after the code inside friend. jar is loaded under the policy defined
by policyfile. txt. friend. jar is a JAR file in the security/
ex2 I jars directory of the CD-ROM, and policyf ile. txt is an ASCII
policy file in the security I ex2 directory. The friend. jar file contains
two class files: Friend. class and Friend$1. class. As described in the
code-signing example earlier in this chapter, both of these class files have
been signed by friend. When these classes are defined by the class loader,
they are placed into a protection domain whose CodeSource object indi­
cates two things. First, the CodeSource indicates that the class files were
loaded from a local jar file whose URL is file: I I If I I security I
ex2/jars/friend.jar. Second, the CodeSource indicates that the
class files were signed by friend, an alias associated with a certificate
in the local keystore. The ProtectionDomain object encapsulates a
reference to the CodeSource object and to a java. security.
Permissions object. java. security. Permissions, a concrete sub­
class of the abstract java. security. PermissionCollection class,
represents a heterogeneous collection of permissions. The Fermi s s ions
object holds references to two java.io.FilePermission objects.
These two FilePermissions grant the privilege to read files named
question. txt and answer. txt in the current directory.

When a class loader imported Friend and Friend$1 into the method
area shown in Figure 3-5, the class loader passed a reference to the
ProtectionDomain object to defineClass (),along with the bytes of
the class files. The defineClass () method associated the type data
in the method area for Friend and Friend$1 with the passed
ProtectionDomain object. This association is shown graphically in
Figure 3-5, which includes arrows that represent references to the

Page 115 of 280

86

---­Figure 3-5
Protection domains,
code sources, and
permissions

Class Data in
Method Area

ProtectionDomain

Permissions

Objects on the Heap

Chapter Three

Friend$1

Codebase URL:
fi1e:///Wsecurity/ex2/jars/friend.jar

Signed by: friend

FilePermission

name: question. txt
action: read

name: answer.txt
action: read

ProtectionDomain object held as part of the type data in the method
area for Friend and Friend$1.

The Access Controller
Class java. security. AccessController provides a default security
policy enforcement mechanism that uses stack inspection to determine
whether or not potentially unsafe actions should be permitted. The access
controller cannot be instantiated, because it is not an object. Rather, the
access controller is a bundle of static methods collected in a single class. The
central method of the AccessController is its static checkPermission ()
method, which decides whether or not a particular action is permitted. This
method returns void and takes a reference to a Permission object as its
only parameter. Similar to the check methods of the security manager, if
the AccessController decides that the operation should be permitted,
its checkPermission () method simply returns silently. But if the
AccessController decides that an operation should be forbidden,
its checkPermission () method completes abruptly by throwing an
AccessControlException or by throwing one of its subclasses.

As mentioned previously, the concrete SecurityManager's implementa­
tion of the legacy check methods (such as checkRead () and checkWri te ())

Page 116 of 280

Security

L

simply instantiate an appropriate Permission object and invoke the con­
crete SecurityManager's checkPermission () method. The concrete
Securi tyManager's checkPermission () method simply invokes
checkPermission () on theAccessController. Thus, ifyou install the
concrete SecurityManager, the AccessController is the ultimate
entity that decides whether or not potentially unsafe actions will be per­
mitted.

The basic algorithm implemented by the AccessController's
checkPermission () method makes certain that every frame on the call
stack has permission to perform the potentially unsafe action. Each stack
frame represents some method that has been invoked by the current
thread. Each method is defined in some class, and each class belongs to
some protection domain. Also, each protection domain contains a set of
permissions, so each stack frame is indirectly associated with a set of per­
missions. For an action represented by the Permission object passed to
the AccessController's checkPermission () method to be enabled,
the basic algorithm of the AccessController requires that the permis­
sions associated with each frame on the call stack must include or imply
that the Permission is passed to checkPermission ().

The AccessController's checkPermission () method inspects the
stack from the top down. As soon as it encounters a frame that does not have
permission, it throws an AccessControlException. By throwing the
exception, the AccessController indicates that the action should not be
permitted. On the other hand, if the checkPermission () method reaches
the bottom of the stack without encountering ~y frames that do not have
permission to perform the potentially unsafe action, checkPermission ()
returns silently. By returning rather than throwing an exception, the
AccessController indicates that the action should be permitted.

The actual algorithm implemented by the AccessController's
checkPermission () method is a bit more complex than the basic algo­
rithm described here. By invoking any of several doPri vileged () meth­
ods of class AccessController, programs can (in effect) cause the
AccessController to stop its frame-by-frame search before it reaches
the bottom of the stack. We will describe the doPri vileged () method
later in this chapter.

The implies() Method

To determine whether or not the action represented by the Permission
object passed to the AccessController's checkPermission () method
is included among (or implied by) the permissions associated with the

Page 117 of 280

88 Chapter Three

code on the call stack, the AccessController makes use of an impor­
tant method called implies () . The implies () method is declared in
class Permission, as well as in classes PermissionCollection and
ProtectionDomain. implies () takes a Permission object as its only
parameter and returns a Boolean true or false. The implies () method
of class Permission determines whether the permission represented by
one Permission object is naturally implied by the permission repre­
sented by a different Permission object. The implies () methods of
PermissionCollection and ProtectionDomain determine whether
the passed Permission is included among or implied by the collection of
Permission objects encapsulated in the PermissionCollection or
ProtectionDomain.

For example, a permission to read all of the files in the /tmp directory
would naturally imply a permission to read /tmp/f-a specific file in the
/tmp directory. The converse of this statement, however, is not true. If you
asked a FilePermission object that represents the permission to read
any file in the I tmp directory if it implies the permission to read file
/tmp/f, the implies() method should return true. But if you ask a
FilePermission object representing the permission to read /tmp/f if
it implies the permission to read any file in the /tmp directory, the
implies() method should return false.

The Examplel application from the security/ex! directory of the
CD-ROM demonstrates this meaning of implies ():

import java.security.Permission;
import java.io.FilePermission;
import java.io.File;

II On CD-ROM in file securitylexliExamplel.java
class Example! {

public static void main(String[] args) {

char sep = File.separatorChar;

II Read permission for "ltmplf"
Permission file = new FilePermission(

sep + "tmp" + sep + "f" I "read") ;

II Read permission for "ltmpl*"1 which
II means all files in the ltmp directory
II (but not any files in subdirectories
I I of ltmp>
Permission star = new FilePermission(

sep + "tmp" + sep + "*"I "read") ;

boolean starimpliesFile
boolean fileimpliesStar

star.implies(file);
file.implies(star);

Page 118 of 280

Security

}
}

I I Prints "Star implies file = true"
System.out.println("Star implies file

+ starimpliesFile};

II Prints "File implies star = false"
System.out.println("File implies star

+ fileimpliesStar};

89

The Examplel application creates two FilePermission objects: one
that represents read permission for a particular directory, and another
that represents read permission for a particular file in that same direc­
tory. The FilePermission object referenced from local variable star
represents the permission to read any file in /tmp. The FilePermission
object referenced from local variable file represents the permission to
read file /tmp/f. When executed, this application prints the following
lines:

Star implies file
File implies star

true
false

The implies () method is used by the AccessController to determine
whether a thread has permission to take actions. If the checkPermission ()
method of the AccessController is invoked to determine whether that
thread has permission to read file /tmp/f, for example, the AccessCon­
troller can invoke the implies () method on the ProtectionDomain
objects associated with each frame of that thread's call stack. To each
implies () method, the AccessController can pass the FilePermission
object representing permission to read file /tmp/f that was passed to its
checkPermission () method. The implies () method of each Protec­
tionDomain object can invoke implies () on the PermissionCollection
it encapsulates, passing along the same FilePermission. Each Permis­
sionCollection can, in turn, invoke implies () on the Permission
objects it contains-once again passing along a reference to the same
FilePermission object. As soon as a PermissionCollection's
implies () method encounters one Permission object whose implies ()
method returns true, the PermissionCollection's implies () method
returns true. Only if none of the implies() methods of the Permission
objects contained in a PermissionCollection return true does the
PermissionCollection return false. The ProtectionDomain's
implies () method simply returns what the PermissionCollection's
implies () method returns. If the AccessController receives a true from
the implies () method of a ProtectionDomain associated with a particu­
lar stack frame, the code represented by that stack frame has permission to
perform the potentially unsafe action.

Page 119 of 280

90 Chapter Three

Stack Inspection Examples

The next few sections give several examples to illustrate the manner in
which the AccessController performs stack inspection. In the upcom­
ing examples, code signed by both friend and stranger will be trusted
to some extent, but friend code will be trusted more than stranger
code. In particular, code signed by both friend and stranger will be
given permission to read a file named question. txt, which contains a
question. Although code signed by friend will be given permission to
read a file named answer. txt, which contains the answer to the ques­
tion asked in question. txt, code signed by stranger will not. These
permissions granted to friend and stranger are those outlined in the
policyfile. txt file from the security/ex2 directoryofthe CD-ROM,
which was described earlier in this chapter. Each of the upcoming exam­
ples will take their policy from policyfile. txt.

The stack inspection examples all make use of classes that implement
the Doer interface:

II On CD-ROM in file
II securitylex2lcomlartimalsecurityldoer1Doer.java
package com.artima.security.doer;

public interface Doer {

void doYourThing();
}

To be a Doer, a class must provide an implementation for one method:
doYourThing () . Classes that implement Doer can do whatever they feel
like in their doYourThing () method. For example, here is a class named
TextFileDisplayer that implements Doer. This class displays the con­
tents of a text file.

II On CD-ROM in file securitylex21TextFileDisplayer.java

import com.artima.security.doer.Doer;
import java.io.FileReader;
import java.io.CharArrayWriter;
import java.io.IOException;

public class TextFileDisplayer implements Doer {

private String fileName;

public TextFileDisplayer(String fileName) {
this.fileName = fileName;

}

Page 120 of 280

Security

}

public void doYourThing() {

}

try {

}

FileReader fr =new FileReader(fileName);

try {

}

CharArrayWriter caw new
CharArrayWriter();

int c;
while ((c = fr.read()) != -1) {

caw.write(c);
}

System.out.println(caw.toString());

catch (IOException e) {
}
finally {

try {
fr. close() ;

}
catch (IOException e) {
}

}

catch (IOException e) {
}

When you create a TextFileDisplayer object, you must pass a file
path name to its constructor. The TextFileDisplayer constructor
stores the passed path name in the filename instance variable. When
you invoke doYourThing () on the TextFileDisplayer object, it will
attempt to open and read the contents of the file and print them at the
standard output.

Another example of a doYourThing () method comes from classes
Friend and Stranger, which appeared earlier in this chapter in the
code-signing example and are shown again here to refresh your memory:

II On CD-ROM in file
II securitylex2lcomlartimalsecuritylfriend1Friend.java
package com.artima.security.friend;
import com.artima.security.doer.Doer;
import java.security.AccessController;
import java.security.PrivilegedAction;

public class Friend implements Doer {

private Doer next;

Page 121 of 280

92

}

Chapter Three

private boolean direct;

public Friend(Doer next, boolean direct) {
this.next = next;
this.direct = direct;

}

public void doYourThing() {

}

if (direct) {

next.doYourThing();
}
else {

AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
next.doYourThing();
return null;

}
}

) ;

}

II On CD-ROM in file
II securitylex2lcomlartimalsecuritylstranger1Stranger.java
package com.artima.security.stranger;
import com.artima.security.doer.Doer;
import java.security.AccessController;
import java.security.PrivilegedAction;

public class Stranger implements Doer {

private Doer next;
private boolean direct;

public Stranger(Doer next, boolean direct) {
this.next = next;
this.direct = direct;

}

public void doYourThing() {

if (direct) {

next.doYourThing();
}
else {

AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
next.doYourThing();
return null;

Page 122 of 280

Security

}
}

) ;

}
}

}

Friend and Stranger have much in common. They have identical
instance variables, constructors, and doYourThing () methods. They dif­
fer only in their package and simple names. When you create a new
Friend or Stranger object, you must pass to the constructor a Boolean
value and a reference to another object whose class implements the Doer
interface. The constructor stores the passed Doer reference in the
instance variable, next, and the Boolean value in the instance variable,
direct. When doYourThing () is invoked on either a Friend or
Stranger object, the method invokes doYourThing ()-either directly or
indirectly-on the Doer reference contained in next. If direct is true,
Friend or Stranger's doYourThing () just invokes doYourThing ()
directly on next. Otherwise, Friend or Stranger's doYourThing ()
invokes doYourThing () on next indirectly, by way of a doPri vileged ()
call.

A Stack Inspection That Says "Yes"

As the first stack inspection example, consider the Example2a applica­
tion:

II On CD-ROM in file securitylex21Example2a.java
import com.artima.security.friend.Friend;
import com.artima.security.stranger.Stranger;

II This succeeds because everyone has permission to
II read answer.txt
class Example2a {

}

public static void main(String[] args) {

}

TextFileDisplayer tfd = new TextFileDisplayer
("question.txt");

Friend friend= new Friend(tfd, true);

Stranger stranger= new Stranger(friend, true);

stranger.doYourThing();

Page 123 of 280

Chapter Three

The Example2a application creates three Doer objects: a TextFileDis­
player, a Stranger, and a Friend. The TextFileDisplayer constructor
is passed the String, "question. txt". When its doYourThing ()
method is invoked, it will attempt to open a file named question. txt
in the current directory for reading and will attempt to print its contents
to the standard output. The Friend object's constructor is passed a ref­
erence to the TextFileDisplayer object (a Doer) and the Boolean
value true. Because the passed Boolean value is true, when Friend's
doYourThing () method is invoked, it will directly invoke
doYourThing () on the TextFileDisplayer object. The Stranger
object's constructor is passed a reference to the Friend object (also a
Doer) and to the Boolean value true. Because the passed Boolean value
is true, when Stranger's doYourThing () method is invoked, it will
directly invoke doYourThing () on the Friend object. After creating
these three Doer objects and hooking them together as described,
Example2a's main () method invokes doYourThing () on the Stranger
object. Now, the fun begins.

When the Example2a program invokes doYourThing () on the Stranger
object referenced from the stranger variable, the Stranger object invokes
doYourThing () on the Friend object, which invokes doYourThing () on
the TextFileDisplayer object. TextFileDisplayer's doYourThing ()
method attempts to open and read a file called "question. txt" in
the current directory (the directory in which the Example2a application
was started) and print its contents to the standard output. When
TextFileDisplayer's doYourThing () method creates a new
FileReader object, the FileReader's constructor creates a new
FileinputStream whose constructor checks to see whether or not a
security manager has been installed. In this case, the concrete Securi­
tyManager has been installed, so the FileinputStream's constructor
invokes checkRead () on the concrete SecurityManager. The
checkRead () method instantiates a new FilePermission object rep­
resenting permission to read file question. txt and passes that object
to the concrete SecurityManager's checkPermission () method,
which passes the object on to the checkPermission () method of the
AccessController. The AccessController's checkPermission ()
method performs the stack inspection to determine whether this thread
should be permitted to open file question. txt for reading.

Figure 3-6 shows the call stack when the AccessController's
checkPermission () method is invoked. In this figure, each frame of the
call stack is represented by a horizontal row that is composed of several
elements. The leftmost element in each stack frame row, which is labeled

Page 124 of 280

Security

---­Figure 3-6
Stack inspection
for Example2a,
where all frames
have permission

class, is the fully qualified name of the class in which the method repre­
sented by that stack frame is defined. The next element to the right, which
is labeled method, gives the name of the method. The next element, which
is labeled protection domain, indicates the protection domain with which
each frame is associated. Farthest to the right is an arrow that shows the
progression of the AccessController's checkPermission () method
as it checks to see whether each stack frame has permission to perform
the requested action. Just to the left of the arrow is a number for each
stack frame. Similar to all images of the stack shown in this book, the top
of the stack appears at the bottom of the picture. Thus, in Figure 3-6, the
top of the stack is the frame numbered 10.

The protection domain column of the stack diagram shown in Figure
3-6 shows each frame associated with one of four protection domains,
called "FRIEND,""STRANGER,""CD-ROM," and "BOOTSTRAP." Three of
these protection domains correspond to grant clauses in policyfile.
txt. The FRIEND protection domain corresponds to the grant clause that
gives permission to any code signed by friend to read question. txt
and answer. txt. The STRANGER protection domain corresponds to the
grant clause that gives permission to any code signed by stranger to read
question. txt. The CD-ROM protection domain corresponds to the grant
clause that gives permission to any code loaded from the "${com.
artima.ijvm.cdrom.home}/security/ex2f' directory to read question. txt
and answer. txt. The fourth and final protection domain, called
BOOTSTRAP, does not correspond to any grant clause in policyfile.
txt. Rather, the BOOTSTRAP protection domain represents the permissions
granted to any code loaded by the bootstrap class loader, which is responsi­
ble for loading the class files of the Java API. Code in the BOOTSTRAP

class
Example2b

com. artima. security.stranger. Stranger
com. artima. security.friend.Friend

TextFileDisplayer
java.io.FileReader

java.io.FileJnputStream
java.lang. Security Manager
java. lang. Security Manager

java.security.AccessController
java.security.AccessControlContext

method

main()
do Y ourThing()
do Your Thing()
do YourThing()
<init>()
<init>()
check'Read()
check:Permission()
checkPermission()
checkPermission()

protection
domain
CDR OM

STRANGER
FRIEND
CD ROM

BOOTSTRAP
BOOTSTRAP
BOOTSTRAP
BOOTSTRAP
BOOTSTRAP
BOOTSTRAP

1
2
3
4
5
6
7
8
9
10

Page 125 of 280

96 Chapter Three

protection domain is granted java .lang. AllPermission, which gives
it permission to do any action.

To get the Example2a application to demonstrate stack inspection as
intended, you must start the application with an appropriate command.
When using the java program from the Java 2 SDK Version 1.2, you will
find that the appropriate command takes the following form:

java -Djava.security.manager -Djava.security.policy=
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\
InsideJVM\manuscript\cdrom -cp
.;jars/friend.jar;jars/stranger.jar Example2a

This command, which is contained in the ex2a. bat file in the security I
ex2 directory of the CD-ROM, is an example of the kind of command
that you will need to get the example to work. By defining the
java. security. manager property on the command line, you indicate
that you want the concrete Securi tyManager to be automatically
installed. Because the Example2a application does not install a security
manager explicitly, if you neglect to define the java. security. manager
property on the command line, no security manager will be installed-and
the code will have the capacity to do any task. The - cp argument sets up the
class path, which causes the virtual machine to look for class files in the cur­
rent directory and in the friend. jar and stranger. jar files in the jars
subdirectory. The com. artima. ijvm. cdrom. home property indicates the
directory in which Doer, Example2a, and TextFileDisplayer are
located. The third grant clause in policyfile. txt uses this property
and corresponds to the protection domain called "CD-ROM." As a result,
types Doer, Example2a, and TextFileDisplayer will be loaded into
the CD-ROM protection domain and will be granted permission to read
to both question. txt and answer. txt. To execute Example2a on your
own system, you must set the com. artima. ijvm. cdrom. home property
to the securitylex2 directory of your CD-ROM or to whichever
directory you might have copied the security I ex2 directory from the
CD-ROM.

When the AccessController performs its stack inspection, it starts
at the top of the stack-frame 10-and heads down to frame one, which
is the frame for the first method invoked by this thread, main () of class
Example2a. In the case of the Example2a application, every frame on
the call stack has permission to perform the action-to read the file
"question. txt". This situation occurs because all four protection
domains represented on the call stack-FRIEND, STRANGER,
CD-ROM, and BOOTSTRAP-include or imply a FilePermission
for reading question. txt in the current directory. When the

Page 126 of 280

Security

I_

AccessController's checkPermission () method reaches the bot­
tom of the stack without having encountered any frames that do not
have permission to read the file, it returns normally without throwing
an exception. The FileinputStream opens the file for reading. The
Example2a application reads the contents of question. txt and prints
them to the standard output, which looks similar to the following:

To what extent does complexity threaten security?

A Stack Inspection That Says "No"

As an example of a stack inspection that results in denied permission,
consider the Example2b application from the security I ex2 directory of
the CD-ROM:

II On CD-ROM in file securitylex21Example2b.java
import com.artima.security.friend.Friend;
import com.artima.security.stranger.Stranger;

II This fails because the Stranger code doesn't have
II pe~ission to read file question.txt

class Example2b {

public static void main(String[] args) {

TextFileDisplayer tfd = new
TextFileDisplayer("answer.txt");

Friend friend= new Friend(tfd, true);

Stranger stranger= new Stranger(friend, true);

stranger.doYourThing();
}

}

The only difference between Example2b and the previous example,
Example2a, is that whereas Example2a passes the filename "question.
txt" to the TextFileDisplayer constructor, Example2b passes the
filename "answer . txt". This small change to the application makes a
big difference on the outcome of the program, however, because one of the
methods on the stack does not have permission to access "answer. txt".

When the Example2b program invokes doYourThing () on the
Stranger object referenced from the stranger variable, the Stranger
object invokes doYourThing () on the Friend object, which invokes

Page 127 of 280

w Chapter Three

doYourThing () on the TextFileDisplayer object. TextFileDis­
player's doYourThing () method attempts to open and read a file called
"answer. txt" in the current directory (the directory in which the
Example2b application was started) and print its contents to the stan­
dard output. When TextFileDisplayer's doYourThing () method cre­
ates a new FileReader object, the FileReader constructor creates a
new FileinputStream whose constructor checks to see whether or not
a security manager has been installed. In this case, the concrete
SecurityManager has been installed, so the FileinputStream's con­
structor invokes checkRead () on the concrete SecurityManager. The
checkRead () method instantiates a new FilePermission object rep­
resenting the permission to read file answer. txt and passes that object
to the concrete SecurityManager's checkPermission () method,
which passes the object on to the checkPermission () method of the
AccessController. The AccessController's checkPermission ()
method performs the stack inspection to determine whether this thread
should be permitted to open the file answer. txt for reading.

The call stack to be inspected in Example2b, which is shown in
Figure 3-7, looks identical to the call stack that was inspected in
Example2a. The only difference is that this time, rather than making
sure that every frame on the stack has permission to read file q
uestion. txt, the AccessController will make sure that every
frame on the stack has permission to read answer. txt. As always,
staclt inspection starts at the top of the stack and proceeds down the
stack towards frame one. But this time, the inspection process never
actually reaches frame one. When the AccessController reaches
frame two, it discovers that the code of the Stranger class, to whom the
doYourThing () method of frame two belongs, does not have permission
to read "answer. txt". Because all frames of the stack must have per­
mission, the stack inspection process do not need to go farther than
frame two. The AccessController's checkPermission () method
throws an AccessControl exception.

To get the Example2b application to work as intended, you must start
the application with an appropriate command. When using the java pro­
gram from the Java 2 SDK Version 1.2, the appropriate command takes
the following form:

java -Djava.security.manager -Djava.security.policy=
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\
I~sideJVM\manuscript\cdrom -cp .;jars/friend.jar;jars/
stranger.jar Example2b

Page 128 of 280

r ~ty
' ---­Figure 3-7

Stack inspection
for Example2b,
where frame two
does not have
permission

class method
protection

domain

'--------'

1
2
3
4
5
6
7
8
9
10

This command, which is contained in the ex2b. bat file in the security I
ex2 directory ofthe CD-ROM, is an example ofthe kind of command that
you will need to get the example to work. As before, to execute Example2b
on your own system, you must set the com. artima. ijvm. cdrom. home
property to the securitylex2 directory of your CD-ROM-or to
whichever directory you might have copied the security I ex2 directory
from the CD-ROM. When you run this program, you should see the fol­
lowing output:

Exception in thread "main" java.security.
AccessControlException: access denied (java.io.
FilePermission answer.txt read)

at java.security.AccessControlContext.
checkPermission(AccessContro1Context.java:195)
at java.security.AccessController.checkPermission
(AccessController.java:403)
at java.lang.SecurityManager.checkPermission
(SecurityManager.java:549)
at java.lang.SecurityManager.checkRead
(SecurityManager.java:873)
at java.io.FileinputStream.<init>(FileinputStream.
java:65)
at java.io.FileReader.<init>(FileReader.java:35)
at TextFileDisplayer.doYourThing(TextFileDisplayer.
java, Compiled Code)
at com.artima.security.friend.Friend.doYourThing
(Friend. java: 21)
at com.artima.security.stranger.Stranger.doYourThing
(Stranger.java:21)
at Example2b.main(Example2b.java:l8)

Page 129 of 280

100 Chapter Three

The doPrivileged() Method

The basic algorithm illustrated so far in this chapter, in which the
AccessController inspects the stack from top to bottom-stubbornly
requiring that every frame should have permission to perform an action
-prevents less-trusted code from hiding behind more-trusted code.
Because the AccessController looks all the way down the call stack,
it will eventually find any method that is not trusted to perform the
requested action. For example, although the untrusted Stranger
object of Example2b places the trusted code of Friend and
TextFileDisplayer between it and the Java API method that attempts
to open file answer. txt, the untrusted Stranger code cannot
hide behind that trusted code. As shown in Figure 3-7, although the
AccessController must look through eight frames that have permis­
sion to read answer. txt before it encounters frame two, it eventually
reaches frame two. Once it arrives at frame two, it discovers the
doYourThing () method of class Stranger, whose associated protection
domain does not have permission to read answer. txt. As a result of this dis­
covery, the AccessController throws anAccessControllerException,
thereby prohibiting the read.

The basic AccessController algorithm prevents any code from per­
forming (or causing to perform) any action that the code is not trusted to
carry out. Methods belonging to a less-powerful protection domain, there­
fore, cannot gain privileges by invoking methods belonging to more pow­
erful protection domains. The basic algorithm also implies that methods
belonging to more powerful protection domains must give up privileges
when calling methods belonging to less powerful protection domains.
Although the basic algorithm provides behavior that is desirable in gen­
eral, the AccessController's stubborn insistence that all frames on the
call stack have permission to perform the requested action can be a bit
restrictive at times.

Sometimes code farther up the call stack (closer to the top of the stack)
might wish to perform an action that code farther down the call stack
might not be permitted to do. For example, imagine that an untrusted
applet asks the Java API to render a string of text in bold Helvetica font
on its applet panel. To fulfill this request, the Java API might need to open
a font file on the local disk to load a bold Helvetica font with which to ren­
der the text on behalf of the applet. Because it belongs to the Java API,
the class making the explicit request to open the font file more than likely
has permission to open the file. The code of the untrusted applet, however,
which is represented by a stack frame farther down the call stack, more

Page 130 of 280

Security 101

than likely does not have permission to open the file. Given the basic algo­
rithm, the AccessController would prevent the opening of the font file
because the code for the untrusted applet, sitting somewhere on the stack,
does not have permission to open the file.

To enable trusted code to perform actions for which less-trusted
code farther down the call stack might not have permission, the AccessCon­
troller class offers four overloaded static methods called doPri vileged () .
Each of these methods accepts as a parameter an object that implements
either the java. security. Pri vilegedAction or java. security.
PrivilegedExceptionAction interface. Both of these interfaces
declare one method called run () that takes no parameters and returns
void. The only difference between these two interfaces is that whereas
PrivilegedExceptionAction's run () method declares Exception in
its throws clause, PrivilegedAction declares no throws clause. To
perform an action despite the existence of less-trusted code farther
down the call stack, you create an object that implements one of the
PrivilegedAction interfaces whose run () method performs the action
and pass that object to doPri vileged () .

When you invoke doPri vileged (),as when you invoke any method,
a new frame is pushed onto the stack. In the context of a stack
inspection by the AccessController, a frame for a doPri vileged ()
method invocation signals an early termination point for the inspection
process. If the protection domain associated with the method that
invoked doPri vileged () has permission to perform the requested
action, the AccessController returns immediately. The protection
domain permits the action even if code farther down the stack does not
have permission to perform the action.

If an untrusted applet asks the Java API to render a test string
on its applet panel, therefore, the Java API code can open the local font
file by wrapping the file open action in a doPri vileged () call. The
AccessController will enable such a request, although the untrusted
applet code does not have permission to open the file. Because the frame for
the untrusted applet code is beneath the frame for the doPri vileged ()
invocation by the Java API code, the AccessController will not even con­
sider the permissions of the untrusted applet code.

For an example of a doPrivileged () method invocation, consider
again the doYourThing () method of class Friend:

II On CD-ROM in file
II securitylex21comlartimalsecuritylfriend1Friend.java
package com.artima.security.friend;
import com.artima.security.doer.Doer;
import java.security.AccessController;

Page 131 of 280

102 Chapter Three

import java.security.PrivilegedAction;

public class Friend implements Doer {

}

private Doer next;
private boolean direct;

public Friend(Doer next, boolean direct) {
this.next = next;
this.direct = direct;

}

public void doYourThing() {

}

if (direct) {

next.doYourThing();
}
else {

AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
next.doYourThing();
return null;

}
}

) ;

}

If the direct instance variable is false, then Friend's doYourThing ()
method will simply invoke doYourThing () directly on the next reference.
But if direct is true, doYourThing () will wrap the invocation of
doYourThing () on the next reference in a doPri vileged () call. To do
so, Friend instantiates an anonymous inner class that implements
Pri vilegedAction, whose run () method invokes doYourThing () on
next and passes that object to doPri vileged ().

To see Friend's doPri vileged () invocation in action, consider the
Example2c application from the security/ex2 directory ofthe CD-ROM:

II On CD-ROM in file securitylex21Example2c.java
import com.artima.security.friend.Friend;
import com.artima.security.stranger.Stranger;

II This succeeds because Friend code executes a
II doPrivileged() call. (Passing false as
II the second arg to Friend constructor causes
II it to do a doPrivileged().)

Page 132 of 280

Security 103

class Example2c {

}

public static void main(String[] args) {

}

TextFileDisplayer tfd = new TextFileDisplayer
("answer.txt");

Friend friend= new Friend(tfd, false);

Stranger stranger= new Stranger(friend, true);

stranger.doYourThing();

Only one difference exists between the main () method of the Example2c
application and the main () method of the previous example: Example2b.
When the Example2b application instantiated the Friend object, it
passed true as the second parameter. Example2c passes false. If you
look back at the code for Friend (and Stranger) shown earlier in this·
chapter, you will see that this parameter is used to decide whether to
invoke doYourThing () directly on the Doer passed as the first parame­
ter to the constructor. Because Example3c passes false, the Friend
class will not invoke doYourThing () directly but will invoke it indirectly
via an AccessController. doPrivileged () invocation.

When the Example2c program invokes doYourThing () on the
Stranger object referenced from the stranger variable, the Stranger
object invokes doYourThing () on the Friend object, which (because
direct is false) invokes doPrivileged (), passing the anonymous
inner class instance that implements PrivilegedAction. The doPriv­
ileged () method invokes run() on the passed PrivilegedAction
object, which invokes doYourThing () on the TextFileDisplayer
object.

As in the previous example, TextFileDisplayer's doYourThing ()
method attempts to open and read a file called "answer. txt" in the
current directory and print its contents to the standard output.
When TextFileDisplayer's doYourThing () method creates a new
FileReader object, the FileReader constructor creates a new
FileinputStream whose constructor checks to see whether or not
a security manager has' been installed. Once again, the concrete
SecurityManager has been installed, so the FileinputStream's
constructor invokes checkRead () on the concrete SecurityManager.
The checkRead () method instantiates a new FilePermission object

Page 133 of 280

104

---­Figure 3-8
Stack inspection for
Example2c, which
stops at frame three

Chapter Three

representing permission to read the file answer. txt and passes that object
to the concrete SecurityManager's checkPermission () method,
which passes the object on to the checkPermission () method of the
AccessController. The AccessController's checkPermission ()
method performs the stack inspection to determine whether this thread
should be permitted to open file answer . txt for reading. The stack
appears as shown in Figure 3-8.

The call stack to be inspected in Example2c looks similar to the call
stacks inspected in Example2a and Example2b. The difference is that
Example2c's call stack has two extra frames: frame four, which repre­
sents the doPri vileged () invocation, and frame five, which represents
the run () invocation on the Pri vilegedAction object. As always, stack
inspection starts at the top of the stack and proceeds down the stack
towards frame one. But once again, the inspection process will not actu­
ally reach frame one. When the AccessController reaches frame four,
it discovers a doPri vileged () invocation. As a result of this discovery,
the Acces scan troller makes one more check on the code represented by
frame three. This code invoked doPri vileged () and has permission to
read answer. txt. Because frame three is associated with the FRIEND
protection domain, which does have permission to read question.
txt, the AccessController's checkPermission () method returns
normally. Because the AccessController stopped its inspection at
frame three, it never considered frame two. Because frame two is associ­
ated with the STRANGER protection domain, it does not have permission

class method
protection

domain

Page 134 of 280

Security

to read answer. txt. Thus, by invoking doPrivileged (),the Friend
code could read file answer. txt-although the code beneath it on the call
stack did not have permission to open the file.

To get the Example2c application to work as intended, you must (as
with the previous examples) start the application with an appropriate
command. When using the java program from Java 2 SDK Version 1.2,
the appropriate command takes the following form:

java -Djava.security.manager -Djava.security.policy=
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\
InsideJVM\manuscript\cdrom -cp .;jars/friend.jar;jars/
stranger.jar Example2c

This command, which is contained in the ex2c .bat file in the security/
ex2 directory of the CD-ROM, is an example of the kind of command that
you will need to get the example to work. As before, to execute Example2c
on your own system, you must set the com. art i rna . i j vm.
cdrom. home property to the se~uri ty I ex2 directory of your
CD-ROM or to whichever directory you might have copied the secu­
rity/ex2 directory from the CD-ROM. When you run this program, it
should print the contents of answer. txt as follows:

Complexity threatens security to a significant extent. The
more
complicated a security infrastructure becomes, the more
likely
parties responsible for configuring security will either
make
mistakes that open up security holes or avoid using the
security infrastructure altogether.

A Futile Use of doPrivileged()

You should understand that a method can never grant itself more priv­
ileges than it already has with a doPrivileged () invocation. By call­
ing doPrivileged (), a method is merely enabling privileges that it
already possesses. The method is telling the AccessController that
it is taking responsibility for exercising its own permissions, and that
the AccessController should ignore the permissions of its callers.
Thus, the doPrivileged () call in the previous example, Example2c,
enabled answer. txt to be read because Friend, the class that executed
the doPri vileged (),already had permission to read the file-and so did
all the frames above it on the stack.

Page 135 of 280

w Chapter Three

For an example of a futile attempt to use doPrivileged (),consider
the Example2d application from the security I ex2 directory of the
CD-ROM:

II On CD-ROM in file securitylex21Example2d.java
import com.artima.security.friend.Friend;
import com.artima.security.stranger.Stranger;

II This fails because even though Stranger does
II a doPrivileged() call, Stranger doesn't have
II permission to read question.txt. (Passing
II false as second arg to Stranger constructor
II causes it to do a doPrivileged().)

class Example2d {

}

public static void main(String[] args) {

}

TextFileDisplayer tfd = new TextFileDisplayer
("answer.txt");

Stranger stranger= new Stranger(tfd, false);

Friend friend= new Friend(stranger, true);

friend.doYourThing();

The difference between Example2d and the previous example,
Example2c, is that the Stranger and Friend objects have swapped posi­
tions and roles. The Stranger object is now farther up the stack, with the
Friend below it on the stack. And this time, it is Stranger that will
make the call to doPri vileged () , not Friend.

When the Example2d program invokes doYourThing () on the Friend
object referenced from the friend variable, the Friend object invokes
doYourThing () on the Stranger object-which, because direct is
false-invokes doPrivileged(), passing the anonymous inner-class
instance that implements Pri vileged.Action. The doPri vileged ()
method invokes run() on the passed Pri vi leged.Act ion object, which
invokes doYourThing () on the TextFileDisplayer object.

As in the previous two examples, TextFileDisplayer's
doYourThing () method attempts to open and read a file called
"answer. txt" in the current directory and print its contents to the stan­
dard output. When TextFileDisplayer's doYourThing () method cre­
ates a new FileReader object, the FileReader constructor creates a
new FileinputStream whose constructor checks to see whether or not

Page 136 of 280

Security

---­Figure 3-9
The stack inspection
for Example2d,
where frame five
does not have
permission

a security manager has been installed. As in all of the examples, the con­
crete SecurityManager has been installed, so the FileinputStream's
constructor invokes checkRead () on the concrete Securi tyManager.
The checkRead () method instantiates a new FilePermission object
that represents the permission to read the file answer. txt and passes that
object to the concrete Securi tyManager's checkPermission () method,
which passes the object on to the checkPermission () method of the
AccessController. The AccessController's checkPermission ()
method performs the stack inspection to determine whether this thread
should be permitted to open file answer. txt for reading. The stack pre­
sented to the AccessController by Example2d is shown in Figure 3-9.

The call stack to be inspected in Example2d looks similar to the call
stack inspected in Example2c. The only difference is that Friend and
Stranger have swapped positions. As always, stack inspection starts at
the top of the stack and proceeds down the stack towards frame one. But
alas, once again the inspection process will not actually reach frame one.
When the AccessController reaches frame five, it discovers a stack
frame associated with the STRANGER protection domain, which does not
have permission to read answer. txt. As a result of this discovery, the
AccessController throws an AccessControlException, indicating
that the requested read of answer. txt should not be performed.

Had the Stranger class possessed the capability to enlist the assis­
tance of an instance of some class that implemented Pri vi legedAct ion,
performed the desired invocation of the TextFileDisplayer's

class method
protection

domain
1
2
3
4
5

t:=:=;~~~~~~ t-z::::::;;~~----jf-n,~~~:-1 ~

I -~~~~~~iii~~~~~~ I ~;:::v:v:;:;c;;:;:;;::;-A-:nill

'----------'
12

Page 137 of 280

108 Chapter Three

doYourThing () method, and belonged to a protection domain that had
permission to read answer. txt, then Stranger's attempt to open
answer. txt with the help of doPri vileged () would have still been
futile. Imagine, for example, that the code of the run () method repre­
sented by frame five ofExample2d's call stack had been associated with
the CD-ROM protection domain. In that case, the AccessController
would have determined that frame five had permission to
open answer. txt and continued to frame four. At frame four, the
AccessController would have discovered the doPri vileged () invo­
cation. As a result of this discovery, the AccessController would make
one more check: it would make certain that the method that invoked
doPri vileged (),which in this case was Stranger's doYourThing ()
method represented by stack frame three, has permission to read file
answer. txt. Because frame three is associated with the STRANGER pro­
tection domain that does not have permission to read answer. txt, the
AccessController would still throw an AccessControlException.

To get the Example2d application to work as intended, you must start
the application with yet another appropriate command. When using the
java program from the Java 2 SDK Version 1.2, the appropriate com­
mand takes the following form:

java -Djava.security.manager -Djava.security.policy=
policyfile.txt -Dcom.artima.ijvm.cdrom.home=d:\books\
InsideJVM\manuscript\cdrom -cp .;jars/friend.jar;jars/
stranger.jar Example2d

This command, which is contained in the ex2d. bat file in the security/
ex2 directory of the CD-ROM, is an example of the kind of command you
will need to get the example to work. As before, to execute Example2d on
your own system, you must set the com. artima. ijvm. cdrom.home
property to the security I ex2 directory of your CD-ROM or to whichever
directory you might have copied the security I ex2 directory from the
CD-ROM. When you run this program, you should see the kind of output
that crackers everywhere hate to see:

Exception in thread "main" java.
security.AccessControlException: access denied
(java.io.FilePermission answer.txt read)

at java.security.AccessControlContext.
checkPermission(AccessControlContext.java:l95)

at java.security.AccessController.checkPermission
(AccessController.java:403)
at java.lang.SecurityManager.checkPermission
(SecurityManager.java:549)
at java.lang.SecurityManager.checkRead
(SecurityManager.java:873)

Page 138 of 280

Security

-

109

at java.io.FileinputStream.<init>(FileinputStream.
java: 65)
at java.io.FileReader.<init>(FileReader.java:35)
at TextFileDisplayer.doYourThing(TextFileDisplayer.
java, Compiled Code)
at com.artima.security.stranger.Stranger$l.run
(Stranger.java:27)
at java.security.AccessController.doPrivileged
(Native Method)
at com.artima.security.stranger.Stranger.doYourThing
(Stranger.java:24)
at com.artima.security.friend.Friend.doYourThing
(Friend.java:21)
at Example2d.main(Example2d.java:21)

Missing Pieces and
Future Directions
Java's security model, while far reaching, does not address all potential
threats posed by mobile code. For example, two potential activities of mali­
cious mobile code that are not currently addressed by Java's security
model are as follows:

II Allocating memory until it runs out

II Firing off threads until everything slows to a crawl

These kinds of attacks are called denial of service, because they deny
the end-users from using their own computers. The Java security model
does not currently offer ways to limit the usage of threads or memory by
untrusted code. The difficulty in attempting to thwart this kind of hostile
code is that it is hard to tell the difference, for example, between a hos­
tile applet allocating a lot of memory and an image-processing applet
attempting to do useful work. Nevertheless, this kind of attack is a seri­
ous concern in certain situations, such as mission-critical servers that run
Java servlets.

Another area not currently incorporated into the security model is the
idea of awarding permissions to principals on whose behalf code is being
executed. A familiar example of this kind of access control is the UNIX
operating system, which controls access to files based on a user ID that
can only be obtained via an correct login name and password. As this kind
of access control will be important in distributed systems such as those
made possible by Jini, Sun is actively working to add this kind of user­
centric security functionality to Java. The aim ofthe Java Authentication
and Authorization Service (JAAS) is to enable access control to be based

I:
''

I,
i I
!

i I
I

!

I
II

I I ill

Page 139 of 280

Chapter-Three

not just on the permissions granted to code bases and signers, but also on
permissions granted to principals: the users who execute the code.

Security Beyond the Architecture
To be effective, a computer or network security strategy must be compre­
hensive. It cannot consist exclusively of a sandbox for running down­
loaded Java code. For instance, it may not matter much that the Java
applets you download from the Internet and run on your computer can't
read the word processing file of your top-secret business plan if you:

Ill routinely download untrusted native executables from the
Internet and run them

Ill throw away extra printed copies of your business plan without
shredding them

Ill leave your doors unlocked when you're gone

Ill hire someone to help you who is actually a spy for your arch-rival

In the context of a comprehensive security strategy, however, Java's
security model can play a useful role.

The nice thing about Java's security model is that once you set it up, it
does most of the work for you. You don't have to worry about whether a
particular program is trusted or not-the Java runtime will determine
that for you; and if it is untrusted, the Java runtime will protect your
assets by encasing the untrusted code in a sandbox. The trouble is that,
even though the designers of Java's security infrastructure did a good job
of keeping things as simple as possible, the high degree functionality and
flexibility offered by the security infrastructure demands a significant
degree of complexity. As mentioned in the answer. txt file, which class
Stranger so very much wanted to read in the AccessController
examples given earlier in this chapter, complexity itself can represent a
threat to security. The more complicated a security infrastructure
becomes, the more likely parties responsible for configuring security will
either make mistakes that open up security holes or avoid using the secu­
rity infrastructure altogether.

End-users of Java software cannot rely solely on the security mecha­
nisms built into Java's architecture. They must have a comprehensive
security policy appropriate to their actual security requirements. Simi­
larly, the security strategy of Java technology itself does not rely exclu­
sively on the architectural security mechanisms described in this chapter.

Page 140 of 280

Security LJ
For example, one aspect of Java's security strategy is that anyone can sign
a license agreement and get a copy of the source code of Sun's Java Plat­
form implementation. Instead of keeping the internal implementation of
Java's security architecture a secret ''black box," it is open to anyone who
wishes to look at it. This encourages security experts seeking a good tech­
nical challenge to try and find security holes in the implementation. When
security holes are discovered, they can be patched. Thus, the openness of
Java's internal implementation is part of Java's overall security strategy.
Besides openness, there are several other aspects to Java's overall secu­
rity strategy that don't directly involve its architecture. For more infor­
mation about Java's overall security strategy, visit the resources page.

The Resources Page
For more information about Java and security, see the resources page:
http://www.artima.com/insidejvm/resources/.

Page 141 of 280

The Java
Virtual Machine

The previous four chapters of this book gave a broad over­
view of Java's architecture. They showed how the Java vir­
tual machine fits into the overall architecture, relative to
other components such as the language and the API. The
remainder of this book will focus more narrowly on the Java
virtual machine. This chapter gives an overview of the Java
virtual machine's internal architecture.

The Java virtual machine is called virtual because it is an
abstract computer defined by a specification. To run a Java
program, you need a concrete implementation of the abstract
specification. This chapter primarily describes the abstract
specification of the Java virtual machine. To illustrate the
abstract definition of certain features, however, this chapter
also discusses various ways in which those features could be
implemented.

Page 142 of 280

Chapter Five

What Is a Java Virtual Machine?
To understand the Java virtual machine, you must first be aware that you
might be talking about any of three different items. You might be speak­
ing of any of the following:

Ill The abstract specification

Ill A concrete implementation

Ill A run-time instance

The abstract specification is a concept described in detail in the book The
Java Virtual Machine Specification, by Tim Lindholm and Frank Yellin.
Concrete implementations, which exist on many platforms and come from
many vendors, are either all software or a combination of hardware and
software. A run-time instance hosts a single running Java application.

Each Java application runs inside a run-time instance of some concrete
implementation of the abstract specification of the Java virtual machine.
In this book, the term "Java virtual machine" is used in all three of these
senses. Where the intended sense is not clear from the context, we added
one of the following terms-specification, implementation, or instance­
to the term Java virtual machine.

The Lifetime of a Java
Virtual Machine
A run-time instance of the Java virtual machine has a clear mission in
life: to run one Java application. When a Java application starts, a run­
time instance is born. When the application completes, the instance dies.
If you start three Java applications at the same time-on the same com­
puter, using the same concrete implementation-you will receive three
Java virtual machine instances. Each Java application runs inside its own
Java virtual machine.

A Java virtual machine instance starts running its solitary application
by invoking the main () method of some initial class. The main () method
must be public or static, must return void, and must accept one para­
meter: a String array. Any class with such a main () method can be used
as the starting point for a Java application.

For example, consider an application that prints out its command line
arguments as such:

Page 143 of 280

The Java Virtual Machine

II On CD-ROM
class Echo {

in file jvmlexliEcho.java

}

public static void main(String[] args) {
int len = args.length;

}

for (int i = 0; i < len; ++i) {
System.out.print(args[i] + "");

}
System.out.println();

1351

You must (in some implementation-dependent way) give a Java virtual
machine the name of the initial class that has the main () method that
will start the entire application. One real-world example of a Java virtual
machine implementation is the java program from Sun's Java 2 SDK. If
you wanted to run the Echo application using Sun's java on Windows 98,
for example, you would type in a command such as the following:

java Echo Greetings, Planet.

The first word in the command, "java," indicates that the Java virtual
machine from Sun's Java 2 SDK should be run by the operating system.
The second word, "Echo," is the name of the initial class. Echo must have
a public static method called main () that returns void and that takes a
String array as its only parameter. The subsequent words, "Greetings,
Planet.," are the command-line arguments for the application. These
words are passed to the main () method in the String array in the order
in which they appear on the command line. Therefore, for the previous
example, the contents of the String array that are passed to main in
Echo are 1:!-S follows:

arg [0] is "Greetings,"

arg [1] is "Planet."

The main () method of an application's initial class serves as the start­
ing point for that application's initial thread. The initial thread can, in
turn, fire off other threads.

Inside the Java virtual machine, threads come in two flavors: daemon
and non-daemon. A daemon thread is ordinarily a thread used by the vir­
tual machine itself, such as a thread that performs garbage collection. The
application, however, can mark any threads that it creates as daemon
threads. The initial thread of an application-the one that begins at
main ()-is a non-daemon thread.

A Java application continues to execute (the virtual machine instance
continues to live) as long as any non-daemon threads are still running.

Page 144 of 280

136 Chapter Five

When all non-daemon threads of a Java application terminate, the virtual
machine instance will exit. If permitted by the security manager, the
application can also cause its own demise by invoking the exit () method
of class Runtime or class System.

In the Echo application (shown previously), the main () method does
not invoke any other threads. Mter it prints out the command-line argu­
ments, main () returns. This action terminates the application's only non­
daemon thread, which causes the virtual machine instance to exit.

The Architecture of the Java
Virtual Machine
In the Java virtual machine specification, the behavior of a virtual machine
instance is described in terms of subsystems, memory areas, data types,
and instructions. These components describe an abstract inner architecture
for the abstract Java virtual machine. The purpose of these components is
not so much to dictate an inner architecture for implementations but to
provide a way to strictly define the external behavior of implementations.
The specification defines the required behavior of any Java virtual machine
implementation in terms of these abstract components and their interac­
tions.

Figure 5-l shows a block diagram of the Java virtual machine that
includes the major subsystems and memory areas described in the spec­
ification. As mentioned in previous chapters, each Java virtual machine
has a class loader subsystem, which is a mechanism for loading types
(classes and interfaces) when given fully qualified names. Each Java vir­
tual machine also has an execution engine, which is a mechanism respon­
sible for executing the instructions contained in the methods of loaded
classes.

When a Java virtual machine runs a program, it needs memory to store
many items-including bytecodes and other information that it extracts
from loaded class files, objects that the program instantiates, parameters
to methods, return values, local variables, and intermediate results of
computations. The Java virtual machine organizes the memory it needs
to execute a program into several runtime data areas.

Although the same runtime data areas exist in some form in every Java
virtual machine implementation, their specification is quite abstract.
Many decisions about the structural details of the runtime data areas are
left to the designers of individual implementations.

Page 145 of 280

The Java Virtual Machine 137

---­Figure 5-1
The internal architec­
ture of the Java vir­
tual machine

·-

class files -----

Java
stacks

runtime data areas

1

pc
registers

native
method
stacks

:-----------------: Native

: native method : +---- method
: interface : libraries
I I
~----------------~

Different implementations of the virtual machine can have different
memory constraints. Some implementations might have a lot of memory
in which to work, while others might have little. Some implementations
might have the capacity to take advantage of virtual memory, while oth­
ers might not. The abstract nature of the specification of the runtime data
areas helps make it easier to implement the Java virtual machine on a
wide variety of computers and devices.

Some runtime data areas are shared among all of an application's
threads, and others are unique to individual threads. Each instance of the
Java virtual machine has one method ar(?a and one heap. These areas are
shared by all threads running inside the virtual machine. When the vir­
tual machine loads a class file, it parses information about a type from
the binary data contained in the class file, then places this type informa­
tion into the method area. As the program runs, the virtual machine
places all objects that the program instantiates onto the heap. See Figure
5-2 for a graphical depiction of these memory areas.

As each new thread comes into existence, it receives its own PC regis­
ter (program counter) and Java stack. If the thread is executing a Java
method (not a native method), the value of the PC register tells the next
instruction to execute. A thread's Java stack stores the state of Java

Page 146 of 280

138

Figure 5-2
Runtime data areas
that are shared
among all threads

method area

Chapter Five

o 0 Q vev
8o8
o~O v~v

heap

method invocations (not native invocations) for the thread. The state of a
Java method invocation includes its local variables, the parameters with
which it was invoked, its return value (if any), and intermediate calculations.
The state of native method invocations is stored in an implementation­
dependent way in native method stacks, as well as possibly in registers or
other implementation-dependent memory areas.

The Java stack is composed of stack frames (or frames), which contain
the state of one Java method invocation. When a thread invokes a method,
the Java virtual machine pushes a new frame onto that thread's Java
stack. When the method completes, the virtual machine pops and discards
the frame for that method.

The Java virtual machine has no registers to hold intermediate data
values. The instruction set uses the Java stack for storage of intermedi­
ate data values. This approach was taken by Java's designers to keep the
Java virtual machine's instruction set compact and to facilitate imple­
mentation on architectures with few or irregular general-purpose
registers. In addition, the stack-based architecture of the Java virtual
machine's instruction set facilitates the code optimization work done by
just-in-time and dynamic compilers that operate at run time in some vir­
tual machine implementations.

See Figure 5-3 for a graphical depiction of the memory areas that the
Java virtual machine creates for each thread. These areas are private to
the owning thread, and no thread can access the PC register or Java stack
of another thread.

Page 147 of 280

The Java Virtual Machine

---­Figure 5-3
Runtime data areas
that are exclusive to
each thread

thread 1

pc registers

thread 1 thread 2 thread 3

Java stacks

native
method
stacks

Figure 5-3 shows a snapshot of a virtual machine instance in which
three threads are executing. At the instant of the snapshot, threads one
and two are executing Java methods. Thread three is executing a native
method.

In Figure 5-3, as in all graphical depictions of the Java stack in this
book, the stacks are shown growing downward. The top of each stack is
shown at the bottom of the figure. Stack frames for currently executing
methods are shown in a lighter shade. For threads that are currently exe­
cuting a Java method, the PC register indicates that the next instruction
should execute. In Figure 5-3, such PC registers (the ones for threads one
and two) are shown in a lighter shade. Because thread three is currently
executing a native method, the contents of its PC register-the one shown
in dark gray-are undefined.

Data Types

The Java virtual machine computes by performing operations on certain
types of data. Both the data types and operations are strictly defined by
the Java virtual machine specification. The data types can be divided into
a set of primitive types and a reference type. Variables of the primitive types
hold primitive values, and variables of the reference type hold reference
values. Reference values refer to objects but are not objects themselves.

Page 148 of 280

140

-ll~-­Figure 5-4
Data types of the
Java virtual machine

Chapter Five

Primitive values, by contrast, do not refer to anything. They are the actual
data. In Figure 5-4, you can see a graphical depiction of the Java virtual
machine's families of data types.

All of the primitive types of the Java programming language are prim­
itive types of the Java virtual machine. Although boolean qualifies as a
primitive type of the Java virtual machine, the instruction set has limited
support for this type. When a compiler translates Java source code into
bytecodes, it uses ints or bytes to represent booleans. In the Java vir­
tual machine, the integer zero represents false, and any non-zero inte­
ger represents true. Operations involving boolean values use ints.
Arrays of boolean are accessed as arrays of byte, although they can be
represented on the heap as arrays of byte or as bit fields.

The primitive types of the Java programming language, other than
boolean, form the numeric types of the Java virtual machine. The
numeric types are divided between the integral types byte, short, int,
long, and char and between the floating-point types float and double.
As with the Java programming language, the primitive types of the Java
virtual machine have the same range everywhere. A long in the Java vir­
tual machine always acts similar to a 64-bit, signed twos complement
number, which is independent of the underlying host platform.

boolean

retumAddress

class types ~ .. ' '... . . ".... ·
reference

.._. _____ ll!llllr· ..•.. i'i~i~~~~~~·t;;;~;;
'.......·

array types :

Page 149 of 280

r
~ r The Java Virtual Machine

Table 5-l

Ranges of the Java
virtual machines
data types

The Java virtual machine works with one other primitive type that is
unavailable to the Java programmer: the returnAddress type. This
primitive type is used to implement finally clauses of Java programs.
The use of the returnAddress type is described in detail in Chapter 18,
"Finally Clauses."

The reference type of the Java virtual machine is named reference.
Values of type reference come in three flavors: the class type, the inter­
face type, and the array type.AI.l three types have values that are references
to dynamically created objects. The class type's values are references to
class instances. The array type's values are references to arrays, which are
full-fledged objects in the Java virtual machine. The interface type's values
are references to class instances that implement an interface. One other
reference value is the null value, which indicates that the reference
variable does not refer to any object.

The Java virtual machine specification defines the range of values for
each ofthe data types but does not define their sizes. The number of bits
used to store each data-type value is a decision that the designers of
individual implementations have to make. The ranges of the Java vir­
tual machine's data types are shown in Table 5-l. We give you more
information about the floating-point ranges in Chapter 14, "Floating
Point Arithmetic."

byte 8-bit signed two's complement integer (-27 to 21-1, inclusive)

short 16-bit signed two's complement integer (-215 to 215-1, inclusive)

int 32-bit signed two's complement integer (-231 to 231-1, inclusive)

long 64-bit signed two's complement integer (-263 to 263-1, inclusive)

char 16-bit unsigned Unicode character (0 to 216-1, inclusive)

float 32-bit IEEE 754 single-precision float

double 64-bit IEEE 754 double-precision float

returnAddress Address of an opcode within the same method

reference Reference to an object on the heap or to null

Page 150 of 280

142 Chapter Five

Word Size

The basic unit of size for data values in the Java virtual machine is the
word-a fixed size chosen by the designer of each Java virtual machine
implementation. The word size must be large enough to hold a value of
type byte, short, int, char, float, returnAddress, or reference.
Two words must be large enough to hold a value of type long or double.
An implementation designer must therefore choose a word size that is at
least 32 bits but otherwise can pick whatever word size will yield the most
efficient implementation. The word size is often chosen to be the size of a
native pointer on the host platform.

The specification of many of the Java virtual machine's runtime data
areas are based on this abstract concept of a word. For example, two sec­
tions of a Java stack frame-the local variables and operand stack-are
defined in terms of words. These areas can contain values of any of the
virtual machine's data types. When placed into the local variables or
operand stack, a value occupies either one or two words.

As they run, Java programs cannot determine the word size of their
host virtual machine implementation. The word size does not affect the
behavior of a program; rather, it is only an internal attribute of a virtual
machine implementation.

The Class Loader Subsystem

The part of a Java virtual machine implementation that takes care of
finding and loading types is the class loader subsystem. Chapter 1, "Intro­
duction to Java's Architecture," gives an overview of this subsystem.
Chapter 3, "Security," shows how the subsystem fits into Java's security
model. This chapter describes the class loader subsystem in more detail
and shows how it relates to the other components of the virtual machine's
internal architecture.

As mentioned in Chapter 1, the Java virtual machine contains two
kinds of class loaders: a bootstrap class loader and a user-defined class
loader. The bootstrap class loader is part of the virtual machine imple­
mentation, and user-defined class loaders are part of the running Java
application. Classes loaded by different class loaders are placed into sep­
arate name spaces inside the Java virtual machine.

The class loader subsystem involves many other parts of the Java
virtual machine and several classes from the java. lang library.
For example, user-defined class loaders are regular Java objects whose

Page 151 of 280

The Java Virtual Machine 143

class descends from java .lang. ClassLoader. The methods of class
ClassLoader enable Java applications to access the virtual machine's
class-loading machinery. Also, for every type that a Java virtual machine
loads, it creates an instance of class java .lang. Class to represent that
type. ;Like all objects, user-defined class loaders and instances of class
Class reside on the heap. Data for loaded types resides in the method area.

Loading, Linking, and Initialization The class loader subsystem is
responsible for more than just locating and importing the binary data for
classes. This subsystem must also verify the correctness of imported
classes, allocate and initialize memory for class variables, and assist with
the resolution of symbolic references. These activities are performed in a
strict order:

1. Loading Finding and importing the binary data for a type

2. Linking Performing verification, preparation, and (optionally)
resolution

a. Verification Ensuring the correctness of the imported type

b. Preparation Allocating memory for class variables and initial­
izing the memory to default values

c. Resolution Transforming symbolic references from the type
into direct references

3. Initialization Invoking Java code that initializes class variables
to their proper starting values

The details of these processes are given Chapter 7, "The Lifetime of a
Type."

The Bootstrap Class Loader Java virtual machine implementations
must have the capability to recognize and load classes and interfaces
stored in binary files that conform to the Java class file format. An im­
plementation is free to recognize other binary forms besides class files,
but it must recognize class files.

Every Java virtual machine implementation has a bootstrap class loader
that knows how to load trusted classes-including the classes of the Java
API. The Java virtual machine specification does not define how the boot­
strap loader should locate classes. Implementation designers must make
that decision.

Given a fully qualified type name, the bootstrap class loader must in
some way attempt to produce the data that defines the type. One common
approach is demonstrated by the Java virtual machine implementation

Page 152 of 280

144 Chapter Five

in Sun's Version 1.1 JDK for Windows 98. This implementation searches
a user-defined directory path stored in an environment variable called
CLASSPATH. The bootstrap class loader looks in each directory (in the
order the directories appear in the CLASSPATH) until it finds a file with
the appropriate name: the type's simple name plus". class". Unless the
type is part of the unnamed package, the bootstrap loader expects the file
to be in a subdirectory of one the directories in the CLASSPATH. The path
name of the subdirectory is built from the package name of the type. For
example, if the bootstrap class loader is searching for class java. lang.
Object, it will look for Object. class in the java \lang subdirectory of
each CLASSPATH directory.

In Version 1.2, the bootstrap class loader of Sun's Java 2 SDK only
looks in the directory in which the system classes (the class files of the
Java API) were installed. The bootstrap class loader of the implementa­
tion of the Java virtual machine from Sun's Java 2 SDK does not look on
the CLASS PATH. In Sun's Java 2 SDK virtual machine, searching the class
path is the job of the system class loader, a user-defined class loader that
is created automatically when the virtual machine starts. More informa­
tion about the class-loading scheme of Sun's Java 2 SDK is given in Chap­
ter 8, "The Linking Model."

User-Defined Class Loaders Although user-defined class loaders
themselves are part of the Java application, four of the methods in class
ClassLoader are gateways to the Java virtual machine:

II Four of the methods declared in class java.lang.
ClassLoader:
protected final Class defineClass(String name, byte data[],

int offset, int length);
protected final Class defineClass(String name, byte data[],

int offset, int length, ProtectionDomain
protectionDomain);
protected final Class findSystemClass(String name);
protected final void resolveClass(Class c);

Any Java virtual machine implementation must take care to connect
these methods of class ClassLoader to the internal class loader sub­
system.

The two overloaded defineClass () methods accept a byte array,
data[], as input. Starting at position offset in the array and continu­
ing for length bytes, class ClassLoader expects binary data conform­
ing to the Java class file format-binary data that represents a new type
for the running application-with the fully qualified name specified in

Page 153 of 280

The Java Virtual Machine

name. The type is assigned to either a default protection domain, if the
first version of defineClass () is used, or to the protection domain object
referenced by the protectionDomain parameter. Every Java virtual
machine implementation must make sure that the defineClass () method
of class ClassLoader can cause a new type to be imported into the method
area.

The findSystemClass () method accepts a String representing a fully
qualified name of a type. When a user-defined class loader invokes this method
in Versions 1.0 and 1.1, the class loader requests that the virtual machine
attempts to load the named type via its bootstrap class loader. If the bootstrap
class loader has already loaded or successfully loads the type, it returns a ref­
erence to the Class object representing the type. If it cannot locate the binary
data for the type, the loader throws ClassNotFoundException. In Version
1.2, the findSystemClass () method attempts to load the requested type
from the system class loader. Every Java virtual machine implementation
must make sure that the findSystemClass () method can invoke the boot­
strap class loader (ifrunningVersion 1.0 or 1.1) or system class loader (ifrun­
ningVersion 1.2 or later) in this way.

The resol veClass () method accepts a reference to a Class instance.
This method causes the type represented by the Class instance to be
linked (if it has not already been linked). The defineClass () method
described previously only takes care of loading. (See the previous section,
"Loading, Linking, and Initialization," for definitions of these terms.)
When defineClass () returns a Class instance, the binary file for the
type has definitely been located and imported into the method area but
has not necessarily been linked and initialized. Java virtual machine
implementations make sure that the resol veClass () method of class
ClassLoader can cause the class loader subsystem to perform linking.

The details ofhow a Java virtual machine performs class loading, link­
ing, and initialization with user-defined class loaders is given in Chapter
8, "The Linking Model."

Name Spaces As mentioned in Chapter 3, "Security," each class loader
maintains its own name space populated by the types it has loaded. Be­
cause each class loader has its own name space, a single Java application
can load multiple types with the same fully qualified name. A type's fully
qualified name, therefore, is not always enough to uniquely identify the
type inside a Java virtual machine instance. If multiple types of that same
name have been loaded into different name spaces, the identity of the
class loader that loaded the type (the identity of the name space it is in)
will also be needed to uniquely identify that type.

Page 154 of 280

146 Chapter Five

Name spaces arise inside a Java virtual machine instance as a result
of the process of resolution. As part of the data for each loaded type, the
Java virtual machine keeps track of the class loader that imported the
type. When the virtual machine needs to resolve a symbolic reference from
one class to another, it requests the referenced class from the same class
loader that loaded the referencing class. This process is described in detail
in Chapter 8, "The Linking Model."

The Method Area

Inside a Java virtual machine instance, information about loaded types
is stored in a logical area of memory called the method area. When the
Java virtual machine loads a type, it uses a class loader to locate the
appropriate class file. The class loader reads the class file-a linear
stream of binary data-and passes it to the virtual machine. The virtual
machine extracts information about the type from the binary data and
stores the information in the method area. Memory for class (static) vari­
ables declared in the class is also taken from the method area.

The manner in which a Java virtual machine implementation repre­
sents type information internally is a decision of the implementation
designer. For example, multi-byte quantities in class files are stored in
big-endian order (most significant byte first). When the data is imported
into the method area, however, a virtual machine can store the data in
any manner. If an implementation sits on top of a little-endian processor,
the designers might decide to store multi-byte values in the method area
in little-endian order (less significant byte first).

The virtual machine will search through and use the type information
stored in the method area as it executes the application it is hosting.
Designers must attempt to devise data structures that will facilitate
speedy execution of the Java application, but they must also think of com­
pactness. If designing an implementation that will operate under low
memory constraints, designers might decide to trade some execution
speed in favor of compactness. If designing an implementation that will
run on a virtual memory system, designers might decide to store redun­
dant information in the method area to facilitate execution speed. (If the
underlying host does not offer virtual memory but does offer a hard disk,
designers could create their own virtual memory system as part of their
implementation.) Designers can choose whatever data structures and
organization(s) that they feel optimize their implementation's perfor­
mance in the context of its requirements.

Page 155 of 280

The Java Virtual Machine 147

All threads share the same method area, so access to the method area's
data structures must be designed to be threadsafe. If two threads are
attempting to find a class called Lava, for example, and Lava has not yet
been loaded, only one thread should be permitted to load Lava while the
other one waits.

The size of the method area does not need to be fixed. As the Java appli­
cation runs, the virtual machine can expand and contract the method area
to fit the application's needs. Also, the memory of the method area does
not need to be contiguous; instead, it could be allocated on a heap-even
on the virtual machine's own heap. Implementations can enable users or
programmers to specify an initial size for the method area, as well as a
maximum or minimum size.

The method area can also be garbage collected. Because Java programs
can be dynamically extended via user-defined class loaders, classes can
become unreferenced by the application. If a class becomes unreferenced,
a Java virtual machine can unload the class (garbage collect the class) to
keep the memory occupied by the method area at a minimum. The unload­
ing of classes-including the conditions under which a class can become
unreferenced-is described in Chapter 7, "The Lifetime of a Type."

Type Infonnation For each type it loads, a Java virtual machine must
store the following kinds of information in the method area:

Jl The fully qualified name of the type

• The fully qualified name of the type's direct superclass (unless the
type is an interface or class java .lang. Object, neither of which
have a superclass)

Ill Whether or not the type is a class or an interface

ll The type's modifiers (some subset of public, abstract, or final)

II An ordered list of the fully qualified names of any direct
superinterfaces

Inside the Java class file and Java virtual machine, type names are
always stored as fully qualified names. In Java source code, a fully qual­
ified name is the name of a type's package, plus a dot, plus the type's sim­
ple name. For exampl~, the fully qualified name of class Object in
package java .lang is java .lang. Object. In class files, the dots are
replaced by slashes, as in java/lang/Object. In the method area, fully
qualified names can be represented in whichever form and data struc­
tures a designer chooses.

Page 156 of 280

148 Chapter Five

In addition to the basic type information listed previously, the virtual
machine must also store the following information for each loaded type:

Ill The constant pool for the type

Field information

Ill Method information

Ill All class (static) variables declared in the type, except constants

A reference to class ClassLoader

Ill A reference to class Class

This data is described in the following sections.

The Constant Pool For each type it loads, a Java virtual machine must
store a constant pool. A constant pool is an ordered set of constants used
by the type, including literals (string, integer, and floating point con­
stants) and symbolic references to types, fields, and methods. Entries in
the constant pool are referenced by index, much like the elements of an
array. Because it holds symbolic references to all types, fields, and meth­
ods used by a type, the constant pool plays a central role in the dynamic
linking of Java programs. The constant pool is described in more detail
later in this chapter and in Chapter 6, "The Java Class File."

Field Information For each field declared in the type, the following in­
formation must be stored in the method area. In addition to the informa­
tion for each field, the order in which the fields are declared by the class
or interface must also be recorded. Here is the list for fields:

The field's name

Ill The field's type

Ill The field's modifiers (some subset of public, private,
protected,static,final,volatile,transient)

Method Information For each method declared in the type, the fol­
lowing information must be stored in the method area. As with fields, the
order in which the methods are declared by the class or interface must be
recorded, as well as the data. Here is the list:

Ill The method's name

Ill The method's return type (or void)

Page 157 of 280

The Java Virtual Machine

Ill The number and types (in order) of the method's parameters

II The method's modifiers (some subset of public, private,
protected,static,final,synchronized,native,or
abstract)

In addition to the items listed previously, the following information
must also be stored with each method that is not abstract or native:

II The method's bytecodes

Ill The sizes of the operand stack and local variables sections of the
method's stack frame (these are described in a later section of this
chapter)

Ill An exception table (this concept is described in Chapter 17,
"Exceptions")

Class Variables Class variables are shared among all instances of a
class and can be accessed even in the absence of any i~stance. These vari­
abies are associated with the class-not with instances of the class-so
they are logically part of the class data in the method area. Before a Java
virtual machine uses a class, it must allocate memory from the method
area for each non-final class variable declared in the class.

Constants (class variables declared final) are not treated in the same
way as non-final class variables. Every type that uses a final class vari­
able gets a copy of the constant value in its own constant pool. As part of
the constant pool, final class variables are stored in the method area­
just like non-final class variables. Whereas non-final class variables are
stored as part of the data for the type that declares them, however, final
class variables are stored as part of the data for any type that uses them.
This special treatment of constants is explained in more detail in Chap­
ter 6, "The Java Class File."

A Reference to Class ClassLoader For each type it loads, a Java
virtual machine must keep track of whether or not the type was loaded
via the bootstrap class loader or by a user-defined class loader. For those
types loaded via a user-defined class loader, the virtual machine must
store a reference to the user-defined class loader that loaded the type.
This information is stored as part of the type's data in the method area.

The virtual machine uses this information during dynamic linking.
When one type refers to another type, the virtual machine requests the

Page 158 of 280

150 Chapter Five

referenced type from the same class loader that loaded the referencing
type. This process of dynamic linking is also central to the way the vir­
tual machine forms separate name spaces. To properly perform dynamic
linking and maintain multiple name spaces, the virtual machine needs to
know which class loader loaded each type in its method area. The details
of dynamic linking and name spaces are given in Chapter 8, "The Link­
ing Model."

A Reference to Class Class An instance of class java .lang. Class
is created by the Java virtual machine for every type it loads. The virtual
machine must (in some way) associate a reference to the Class instance
for a type with the type's data in the method area.

Your Java programs can obtain and use references to Class objects.
One static method in class Class enables you to obtain a reference to the
Class instance for any loaded class:

II A method declared in class java.lang.Class:
public static Class forName(String className);

If you invoke forName ("java .lang. Object"), for example, you will
receive a reference to the Class object that represents java .lang.
Object. If you invoke forName ("java. util. Enumeration"), you will
receive a reference to the Class object that represents the Enumeration
interface from the java. util package. You can use forName () to obtain
a Class reference for any loaded type from any package, as long as the
type can be (or already has been) loaded into the current name space. If
the virtual machine is unable to load the requested type into the current
name space, forName () will throw ClassNotFoundException.

An alternative way to obtain a Class reference is to invoke getClass ()
on any object reference. This method is inherited by every object from class
Object itself:

II A method declared in class java.lang.Object:
public final Class getClass();

If you have a reference to an object of class java .lang. Integer, for
example, you could get the Class object for java .lang. Integer simply
by invoking get Class () on your reference to the Integer object.

Given a reference to a Class object, you can find out information about
the type by invoking methods declared in Class. If you look at these
methods, you will quickly realize that class Class gives the running

Page 159 of 280

The Java Virtual Machine

application access to the information stored in the method area. Here are
some of the methods declared in class Class:

II Some of the methods declared in class java.lang.Class:
public String getName();
public Class getSuperClass();
public boolean isinterface();
public Class[] getinterfaces();
public ClassLoader getClassLoader();

These methods simply return information about a loaded type. getName ()
returns the fully qualified name of the type, and getSuperClass () returns
the Class instance for the type's direct superclass. If the type is class
java. lang. Object or is an interface, none of which have a superclass, then
getSuperClass () returns null. is Interface () returns true if the
Class object describes an interface and returns false if it describes a
class. get Interfaces () returns an array of Class objects, one for
each direct superinterface. The superinterfaces appear in the array in the
order they are declared as superinterfaces by the type. If the type has no
direct superinterfaces, get Interfaces () returns an array of length zero.
getClassLoader () returns a reference to the ClassLoader object that
loaded this type or returns null if the type was loaded by the bootstrap class
loader. All of this information comes straight from the method area.

Method Tables The type information stored in the method area must
be organized to be quickly accessible. In addition to the raw type infor­
mation listed previously, implementations might include other data struc­
tures that hasten access to the raw data. One example of such a data
structure is a method table. For each non-abstract class that a Java vir­
tual machine loads, the machine could generate a method table and in­
clude it as part of the class information stored in its method area. A
method table is an array of direct references to all of the instance meth­
ods that might be invoked on a class instance, including instance meth­
ods inherited from superclasses. (A method table is not helpful in the case
of abstract classes or interfaces, because the program will never instan­
tiate these items.) A method table enables a virtual machine to quickly
locate an instance method invoked on an object. Method tables are de­
scribed in detail in Chapter 8, "The Linking Model."

An Example of Method Area Use As an example of how the Java vir­
tual machine uses the information it stores in the method area, consider
the following classes:

Page 160 of 280

1 52 Chapter Five

II On CD-ROM in file jvmlex21Lava.java
class Lava {

private int speed 5; II 5 kilometers per hour

void flow () {
}

}

II On CD-ROM in file jvmlex21Volcano.java
class Volcano {

}

public static void main(String[] args) {
Lava lava= new Lava();
lava. flow();

}

The following paragraphs describe how an implementation might exe­
cute the first instruction in the bytecodes for the main () method of the
Volcano application. Different implementations of the Java virtual
machine can operate in different ways. The following description illus­
trates one way-but not the only way-in which a Java virtual machine
could execute the first instruction of volcano's main () method.

To run the Volcano application, you give the name Volcano to a Java
virtual machine in an implementation-dependent manner. Given the
name Volcano, the virtual machine finds and reads file Volcano. class.
Then, the machine extracts the definition of class Volcano from the
binary data in the imported class file and places the information into the
method area. The virtual machine then invokes the main () method by
interpreting the bytecodes stored in the method area. As the virtual
machine executes main (),it maintains a pointer to the constant pool (a
data structure in the method area) for the current class (class Volcano).

NOTE: Note that this Java virtual machine has already begun to
execute the bytecodes for main () in class Volcano, although it has not
yet loaded class Lava. Like many (probably most) implementations of the
Java virtual machine, this implementation does not wait until all classes
used by the application are loaded before it begins executing main () .
This implementation loads classes only as it needs them.

main () 's first instruction tells the Java virtual machine to allocate
enough memory for the class listed in constant pool entry one. The virtual

Page 161 of 280

The Java Virtual Machine 153

machine uses its pointer to Volcano's constant pool to look up entry one
and finds a symbolic reference to class Lava. The machine checks the
method area to see whether Lava has already been loaded.

The symbolic reference is just a string giving the class's fully qualified
name: "Lava". Here, you can see that the method area must be organized
so that a class can be located as quickly as possible, given only the class's
fully qualified name. Implementation designers can choose whichever
algorithm and data structures that best fit their needs-a hash table, a
search tree, anything. This same mechanism can be used by the static
forName () method of class Class, which returns a Class reference
when given a fully qualified name.

When the virtual machine discovers that it has not yet loaded a class
called "Lava," it proceeds to find and read file Lava. class. The machine
extracts the definition of class Lava from the imported binary data and
places the information into the method area.

The Java virtual machine then replaces the symbolic reference in
Volcano's constant pool entry one, which is the string "Lava" with a
pointer to the class data for Lava. If the virtual machine ever has to use
Volcano's constant pool entry one again, it will not have to go through the
relatively slow process of searching the method area for class Lava when
given only a symbolic reference-the string "Lava". The machine can just
use the pointer to access the class data for Lava in a quicker fashion. This
process of replacing symbolic references with direct references (in this
case, a native pointer) is called constant pool resolution. The symbolic ref­
erence is resolved into a direct reference by searching the method area
until the referenced entity is found-loading new classes if necessary.

Finally, the virtual machine is ready to allocate memory for a new
Lava object. Once again, the virtual machine consults the information
stored in the method area and uses the pointer (which was just placed into
Volcano's constant pool entry one) to the Lava data (which was just
imported into the method area) to find out how much heap space a Lava
object requires.

A Java virtual machine can always determine the amount of memory
required to represent an object by looking into the class data stored in the
method area. The actual amount of heap space required by a particular
object, however, is implementation dependent. The internal representa­
tion of objects inside a Java virtual machine is another decision left to
implementation designers. Object representation is discussed in more
detail later in this chapte!.

Page 162 of 280

154 Chapter Five

Once the Java virtual machine has determined the amount of heap
space required by a Lava object, it allocates that space on the heap and
initializes the instance variable speed to zero (its default initial value).
If class Lava's superclass, Object, has any instance variables, those are
also initialized to default initial values. (The details of initialization of
both classes and objects are given in Chapter 7, "The Lifetime of a Type.")

The first instruction of main () completes by pushing a reference to the
new Lava object onto the stack. A later instruction will use the reference
to invoke Java code that initializes the speed variable to its proper ini­
tial value, five. Another instruction will use the reference to invoke the
flow () method on the referenced Lava object.

The Heap

Whenever a class instance or array is created in a running Java applica­
tion, the memory for the new object is allocated from a single heap.
Because there is only one heap inside a Java virtual machine instance,
all threads share the heap. Because a Java application runs inside its own
exclusive Java virtual machine instance, there is a separate heap for
every individual running application. Two different Java applications can­
not trample on each other's heap data. Two different threads of the same
application, however, could trample on each other's heap data. For this
reason, you must be concerned about proper synchronization of multi­
threaded access to objects (heap data) in your Java programs.

The Java virtual machine has an instruction that allocates memory on
the heap for a new object but has no instruction for freeing that memory.
Just as you cannot explicitly free an object in Java source code, you can­
not explicitly free an object in Java bytecodes. The virtual machine itself
is responsible for deciding whether and when to free memory occupied by
objects that are no longer referenced by the running application. Usually,
a Java virtual machine implementation uses a garbage collector to man­
age the heap.

Garbage Collection A garbage collector's primary function is to auto­
matically reclaim the memory used by objects that are no longer refer­
enced by the running application. The collector might also move objects
as the application runs to reduce heap fragmentation.

A garbage collector is not strictly required by the Java virtual machine
specification. The specification only requires that an implementation
manages its own heap in some manner. For example, an implementation

Page 163 of 280

r

The Java Virtual Machine l_155

could simply have a fixed amount of heap space available and could
throw an OutOfMemory exception when that space fills up. While this
implementation might not win many prizes, it does qualify as a Java vir­
tual machine. The Java virtual machine specification does not say how
much memory an implementation must make available to running pro­
grams. The machine specification also does not say how an implemen­
tation must manage its heap. Rather, it only says to implementation
designers that the program will be allocating memory from the heap, not
freeing it. Designers must figure out how they want to deal with this
situation.

No garbage collection technique is dictated by the Java virtual machine
specification. Designers can use whichever techniques seem most appro­
priate, given their goals, constraints, and talents. Because references to
objects can exist in many places-Java stacks, the heap, the method area,
native method stacks-the choice of garbage collection technique heavily
influences the design of an implementation's run-time data areas. Vari­
ous garbage collection techniques are described in Chapter 9, "Garbage
Collection."

As with the method area, the memory that makes up the heap does not
need to be contiguous and can be expanded and contracted as the running
program progresses. An implementation's method area could, in fact, be
implemented on top of its heap. In other words, when a virtual machine
needs memory for a freshly loaded class, it could take that memory from
the same heap on which objects reside. The same garbage collector that
frees memory occupied by unreferenced objects could take care of finding
and freeing (unloading) unreferenced classes. Implementations might
enable users or programmers to specifY an initial size for the heap, as well
as a maximum and minimnm size.

Object Representation The Java virtual machine specification is
silent in regards to how objects should be represented on the heap. Ob­
ject representation-an integral aspect of the overall design of the heap
and garbage collector-is a decision left to implementation designers.

The instance variables declared in the object's class and all of its super­
classes make up the primary data that must (in some way) be represented
for each object. Given an object reference, the virtual machine must have
the capability to quickly locate the instance data for the object. In addi­
tion, there must be some way to access an object's class data (stored in
the method area) when given a reference to the object. For this reason,
the memory allocated for an object usually includes some kind of pointer
to the method area.

Page 164 of 280

156

-Figure 5-5
Splitting an object
across a handle pool
and object pool

Chapter Five

One possible heap design divides the heap into two parts: a handle pool
and an object pool. An object reference is a native pointer to a handle pool
entry. A handle pool entry has two components: a pointer to instance data
in the object pool, and a pointer to class data in the method area. The
advantage of this scheme is that the virtual machine can easily combat
heap fragmentation. When the virtual machine moves an object in the
object pool, it only needs to update one pointer with the object's new
address: the relevant pointer in the handle pool. The disadvantage of this
approach is that every point of access to an object's instance data requires
dereferencing two pointers. This approach to object representation is shown
graphically in Figure 5-5. This kind of heap is demonstrated interactively
by the HeapOfFish applet described in Chapter 9, "Garbage Collection."

Another design makes an object reference a native pointer to a bundle
of data that contains the object's instance data and a pointer to the
object's class data. This approach requires dereferencing only one pointer
to access an object's instance data but makes moving objects more com­
plicated. When the virtual machine moves an object to combat fragmen­
tation of this kind of heap, it must update every reference to that object
anywhere in the runtime data areas. This approach to object representa­
tion is shown graphically in Figure 5-6.

the handle pool ' the object pool '

ptr into object pool ~
instance data

ins.tance data

an object reference p,- ptr to class data:; instance data

I ptr into handle poolY ~instancedata
the heap

'\.

Y\
class
data

the method area

Page 165 of 280

The Java Virtual Machine

----Figure 5-6
Keeping object data
in one place

an object reference

the method area

The virtual machine needs to get from an object reference to that
object's class data for several reasons. When a running program attempts
to cast an object reference to another type, the virtual machine must
check to see whether the type being cast to is the actual class of the ref­
erenced object or whether it is one of its supertypes. The machine must
perform the same check when a program performs an instanceof oper­
ation. In either case, the virtual machine must look into the class data
of the referenced object. When a program invokes an instance method,
the virtual machine must perform dynamic binding. In other words, the
machine must choose the method to invoke based not on the type of
the reference, but on the class of the object. To do this task, the machine
must once again have access to the class data (given only a reference to
the object).

No matter which object representation an implementation uses, a
method table is probably close at hand for each object. Because method
tables hasten the invocation of instance methods, they can play an impor­
tant role in achieving good overall performance for a virtual machine
implementation. Method tables are not required by the Java virtual
machine specification and might not exist in all implementations. Imple­
mentations that have extremely low memory requirements, for instance,
might not have the capacity to afford the extra memory space that method
tables occupy. If an implementation does use method tables, however, an

Page 166 of 280

158 Chapter Five

object's method table will likely be quickly accessible when only given a
reference to the object.

One way that an implementation could connect a method table to an
object reference is shown graphically in Figure 5-7. This figure shows that
the pointer kept with the instance data for each object points to a special
structure. The special structure has two components:

A pointer to the full class data for the object

The method table for the object

The method table is an array of pointers to the data for each instance
method that can be invoked on objects of that class. The method data
pointed to by method table includes the following information:

The sizes of the operand stack and local variables sections of the
method's stack

The method's bytecodes

An exception table

This data gives the virtual machine enough information to invoke the
method. The method table include pointers to data for methods declared
explicitly in the object's class or methods inherited from superclasses. In
other words, the pointers in the method table might point to methods
defined in the object's class or any of its superclasses. More information
about method tables is given in Chapter 8, "The Linking Model."

If you are familiar with the inner workings of C++, you might recog­
nize the method table as being similar to the Virtual Table (VTBL) of C++
objects. In C++, objects are represented by their instance data plus an
array of pointers to any virtual functions that can be invoked on the
object. This approach could also be taken by a Java virtual machine imple­
mentation. An implementation could include a copy of the method table
for a class as part of the heap image for every instance of that class. This
approach would consume more heap space than the approach shown in
Figure 5-7, but it might yield slightly better performance on a system that
has large quantities of available memory.

One other kind of data that is not shown in Figures 5-5 and 5-6 but is
logically part of an object's data on the heap is the object's lock. Each
object in a Java virtual machine is associated with a lock (or mutex) that
a program can use to coordinate multi-threaded access to the object. Only
one thread at a time can own an object's lock. While a particular thread
owns a particular object's lock, only that thread can access that object's
instance variables. All other threads that attempt to access the object's

Page 167 of 280

The Java Virtual Machine 159

Figure 5-7
Keeping the method
table close at hand

I
method

table

\

ptr to special structure

instance data

instance data

the hea

ptr to full class data

ptr to method data

ptr to method data

ptr to method data

Cl
Cl
Cl

the method area

an object reference

I ptr into heap I

variables have to wait until the owning thread releases the object's lock.
If a thread requests a lock that is already owned by another thread, the
requesting thread has to wait until the owning thread releases the lock.
Once a thread owns a lock, it can request the same lock multiple times,
but then it has to release the lock the same number of times before the
lock is made available to other threads. If a thread requests a lock three
times, for example, that thread will continue to own the lock until it has
released the lock three times.

Many objects will go through their entire lifetimes without ever being
locked by a thread. The data required to implement an object's lock is not
needed unless a thread actually requests a lock. As a result, many imple­
mentations-such as the ones shown in Figure 5-5 and 5-6-might not
include a pointer to lock data within the object itself. Such implementa­
tions must create the necessary data to represent a lock when the lock is
requested for the first time. In this scheme, the virtual machine must
associate the lock with the object in some indirect way, such as by plac­
ing the lock data into a search tree based on the object's address.

Along with data that implements a lock, every Java object is logically
associated with data that implements a wait set. Whereas locks help
threads to work independently on shared data without interfering with
one another, wait sets help threads to cooperate-to work towards a com­
mon goal.

Page 168 of 280

160 Chapter Five

Wait sets are used in conjunction with wait and notify methods. Every
class inherits from Object three wait methods (overloaded forms
of a method called wait ()) and two notify methods (notify () and
notifyAll ()).When a thread invokes a wait method on an object, the
Java virtual machine suspends that thread and adds it to that object's wait
set. When a thread invokes a notifY method on an object, the virtual
machine will at some time wake up one or more threads from that object's
wait set. As with the data that implements an object's lock, the data that
implements an object's wait set is not needed unless a wait or notifY
method is actually invoked on the object. As a result, many implementa­
tions of the Java virtual machine might keep the wait set data separate
from the actual object data. Such implementations could allocate the data
needed to represent an object's wait set when a wait or notify method is
first invoked on that object by the running application. For more informa­
tion about locks and wait sets, see Chapter 20, "Thread Synchronization."

One last example of a type of data that can be included as part of the
image of an object on the heap is any data needed by the garbage collec­
tor. The garbage collector must (in some way) keep track of which objects
are referenced by the program. This task invariably requires data to be
kept for each object on the heap. The kind of data required depends upon
the garbage-collection technique being used. For example, if an imple­
mentation uses a mark and sweep algorithm, it must have the capability
to mark an object as referenced or unreferenced. For each unreferenced
object, it might also need to indicate whether or not the object's finalizer
has been run. As with thread locks, this data can be kept separate from
the object image. Some garbage-collection techniques only require this
extra data while the garbage collector is actually running. A mark and
sweep algorithm, for instance, could potentially use a separate bitmap for
marking referenced and unreferenced objects. More detail about various
garbage-collection techniques and the data that each of these techniques
requires is given in Chapter 9, "Garbage Collection."

In addition to data that a garbage collector uses to distinguish between
referenced and unreferenced objects, a garbage collector needs data to keep
track of the objects on which it has already executed a finalizer. Garbage
collectors must run the finalizer on any object whose class declares a final­
izer before it reclaims the memory occupied by that object. The Java lan­
guage specification states that a garbage collector will only execute an
object's finalizer once, but the specification permits finalizer to resurrect the
object (to make the object referenced again). When the object becomes
unreferenced for a second time, the garbage collector must not finalize the
object again. Because most objects will probably not have a finalizer-and

Page 169 of 280

The Java Virtual Machine

few of those will resurrect their objects-this scenario of garbage collecting
the same object twice will probably be extremely rare. As a result, the data
used to keep track of objects that have already been finalized, although log­
ically part of the data associated with an object, will probably not be part
of the object representation on the heap. In most cases, garbage collectors
will keep this information in a separate place. Chapter 9, "Garbage Collec­
tion," gives more information about finalization.

Array Representation In Java, arrays are full-fledged objects. Like
objects, arrays are always stored on the heap, and implementation
designers can decide how they want to represent arrays on the heap.

Arrays have a Class instance associated with their class, similar to
any other object. All arrays of the same dimension and type have the same
class. The length of an array (or the lengths of each dimension of a multi­
dimensional array) does not play any role in establishing the array's class.
For example, an array of three ints has the same class as an array of300
ints. The length of an array is considered part of its instance data.

The name of an array's class has one open square bracket for each
dimension, plus a letter or string representing the array's type. For exam­
ple, the class name for an array of in ts is 11 [I 11 • The class name for a
three-dimensional array of bytes is 11 [[[B 11 • The class name for a two­
dimensional array of Objects is 11 [[Lj ava .lang. Object 11 • The full
details of this naming convention for array classes is given in Chapter 6,
"The Java Class File."

Multi-dimensional arrays are represented as arrays of arrays. A two­
dimensional array of ints, for example, would be represented by a one­
dimensional array of references to several one-dimensional arrays of
ints. This scenario is shown graphically in Figure 5-8.

The data that must be kept on the heap for each array is the array's
length, the array data, and some kind of reference to the array's class data.
Given a reference to an array, the virtual machine must have the capacity
to determine the array's length, to obtain and set its elements by index
(checking to make sure that the array bounds are not exceeded), and to
invoke any methods declared by Object, the direct superclass of all arrays.

The Program Counter

Each thread of a running program has its own Program Counter (PC) reg­
ister, which is created when the thread is started. The PC register is one
word in size, so it can hold both a native pointer and a returnAddress.

Page 170 of 280

---­Figure 5-8
One possible heap
representation for
arrays

Chapter Five

int [] [] ar =

new int [2] [2]; j
I ar Can 8,miy re£) -(

the method area

As a thread executes a Java method, the PC register contains the address
of the current instruction being executed by the thread. An address can
be a native pointer or an offset from the beginning of a method's byte­
codes. If a thread is executing a native method, the value of the PC reg­
ister is undefined.

The Java Stack

When a new thread is launched, the Java virtual machine creates a new
Java stack for the thread. As mentioned earlier, a Java stack stores a
thread's state in discrete frames. The Java virtual machine only performs
two operations directly on Java stacks: pushing and popping frames.

The method that is currently being executed by a thread is the thread's
current method. The stack frame for the current method is the current
frame. The class in which the current method is defined is called the cur­
rent class, and the current class's constant pool is the current constant
pool. As it executes a method, the Java virtual machine keeps track of the
current class and current constant pool. When the virtual machine
encounters instructions that operate on data stored in the stack frame, it
performs those operations on the current frame.

Page 171 of 280

The Java Virtual Machine 163

When a thread invokes a Java method, the virtual machine creates and
pushes a new frame onto the thread's Java stack. This new frame then
becomes the current frame. As the method executes, it uses the frame to
store parameters, local variables, intermediate computations, and other
data.

A method can complete in either of two ways. If a method completes by
returning, it is said to have normal completion. If it completes by throw­
ing an exception, it is said to have abrupt completion. When a method
completes, whether normally or abruptly, the Java virtual machine pops
and discards the method's stack frame. The frame for the previous method
then becomes the current frame.

All of the data on a thread's Java stack is private to that thread. A
thread has no way to access or alter the Java stack of another thread. For
this reason, you never need to worry about synchronizing multi-threaded
access to local variables in your Java programs. When a thread invokes a
method, the method's local variables are stored in a frame on the invok­
ing thread's Java stack. Only one thread can ever access those local vari­
ables: the thread that invoked the method.

Similar to the method area and heap, the Java stack and stack frames
do not need to be contiguous in memory. Frames could be allocated on a
contiguous stack, allocated on a heap, or allocated based on some combi­
nation of the two. The actual data structures used to represent the Java
stack and stack frames is a decision left to implementation designers.
Implementations might enable users or programmers to specify an initial
size for Java stacks, as well as a maximum or minimum size.

The Stack Frame

The stack frame has three parts: local variables, operand stack, and frame
data. The sizes of the local variables and operand stack, which are mea­
sured in words, depend on the needs of each individual method. These sizes
are determined at compile time and are included in the class-file data for
each method. The size of the frame data is implementation dependent.

When the Java virtual machine invokes a Java method, it checks the
class data to determine the number of words required by the method in
the local variables and operand stack. Then, the machine creates a stack
frame of the proper size for the method and pushes it onto the Java stack.

Local Variables The local variables section of the Java stack frame is
organized as a zero-based array of words. Instructions that use a value
from the local variables section provide an index to the zero-based array.

,,,
i

Page 172 of 280

164

-Figure 5-9
Method parameters
on the local variables
section of a Java
stack

Chapter Five

Values of type int, float, reference, and returnAddress occupy one
entry in the local variables array. Values of type byte, short, and char
are converted to int before being stored in the local variables. Values of
type long and double occupy two consecutive entries in the array.

To refer to a long or double value in the local variables, you will use
instructions to provide the index of the first of the two consecutive entries
occupied by the value. For example, if a long occupies array entries three
and four, instructions would refer to that long value by index three.
All values in the local variables are word aligned. Dual-entry longs and
doubles can start at any index.

The local variables section contains a method's parameters and local
variables. Compilers place the parameters into the local variable array
first in the order in which they are declared. Figure 5-9 shows the local
variables section for the following two methods:

II On CD-ROM in file jvmlex31Example3a.java
class Example3a {

}

public static int runClassMethod(int i, long 1, float f,
double d, Object o, byte b) {

return 0;
}

public int runinstanceMethod(char c, double d, short s,
boolean b) {

return 0;
}

runClassMethod() runinstanceMethod()

index

0
1

3
4

6
7

type

int

long

float

double

reference
int

parameter

inti

long I

float f

doubled

Object o
byteb

index

0
1
2

4
5

type parameter

reference hidden this
int charc

double doubled

int shorts
int boolean b

Page 173 of 280

The Java Virtual Machine

Figure 5-9 shows that the first parameter in the local variables for
runinstanceMethod () is of type reference, although no such para­
meter appears in the source code. This reference is the hidden this ref­
erence that is passed to every instance method. Instance methods use this
reference to access the instance object data upon which they were·
invoked. As you can see by looking at the local variables for
runClassMethod () in Figure 5-9, class methods do not receive a hidden
this. Class methods are not invoked on objects, so you cannot directly
access a class's instance variables from a class method because there is
no instance associated with the method invocation.

Also note that types byte, short, char, and boolean in the source code
become ints in the local variables. This characteristic is also true of the
operand stack. As mentioned earlier, the boolean type is not supported
directly by the Java virtual machine. The Java compiler always uses ints
to represent boolean values in the local variables ~r in the operand
stack. Data types byte, short, and char, however, are supported directly
by the Java virtual machine. These types can be stored on the heap as
instance variables or as array elements, or in the method area as class
variables. When placed into local variables or the operand stack, however,
values of type byte, short, and char are converted into ints. They are
manipulated as ints while on the stack frame, then are converted back
into byte, short, or char types when stored back into the heap or
method area.

Note that Object o is passed as a reference to runClassMethod ().
In Java, all objects are passed by reference. Because all objects are stored
on the heap, you will never find an image of an object in the local vari­
ables or operand stack-only object references.

Aside from a method's parameters, which compilers must place into
the local variables array first and in order of declaration, Java compil­
ers can arrange the local variables array as they wish. Compilers can
place the method's local variables into the array in any order, and they
can use the same array entry for more than one local variable. For exam­
ple, if two local variables have limited scopes that do not overlap, such
as the i and j local variables in Example3b, compilers are free to use
the same array entry for both variables. During the first half of the
method, before j comes into scope, entry zero could be used for i. Dur­
ing the second half of the method, after i has gone out of scope, entry
zero could be used for j .

II On CD-ROM in file jvmlex31Example3b.java
class Example3b {

Page 174 of 280

}

public static void runtwoLoops{} {

}

for {int i = 0; i < 10; ++i} {
System.out.println{i};

}

for {int j = 9; j >= 0; -j} {
System.out.println{j};

}

Chapter Five

As with all of the other run-time memory areas, implementation
designers can use whichever data structures they deem most appropriate
to represent the local variables. The Java virtual machine specification
does not indicate how longs and doubles should be split across the two
array entries they occupy. Implementations that use a word size of 64 bits
could, for example, store the entire long or double in the lower part of the
two consecutive entries, leaving the higher entry unused.

Operand Stack Similar to the local variables, the operand stack is or­
ganized as an array of words. Unlike the local variables, however, which
are accessed via array indices, the operand stack is accessed by pushing
and popping values. If an instruction pushes a value onto the operand
stack, a later instruction can pop and use that value.

The virtual machine stores the same data types in the operand stack
that it stores in the local variables: int, long, float, double, reference,
and returnType. The machine converts values of type byte, short, and
char to int before pushing them onto the operand stack.

Other than the program counter, which cannot be directly accessed by
instructions, the Java virtual machine has no registers. The Java virtual
machine is stack based, rather than register based, because its instruc­
tions take their operands from the operand stack rather than from regis­
ters. Instructions can also take operands from other places, such as
immediately following the opcode (the byte representing the instruction)
in the bytecode stream or from the constant pool. The Java virtual machine
instruction set's main focus of attention, however, is the operand stack.

The Java virtual machine uses the operand stack as a work space.
Many instructions pop values from the operand stack, operate on them,
and then push the result. For example, the iadd instruction adds two
integers by popping two ints off the top of the operand stack, adding
them, and pushing the int result. Here is how a Java virtual machine

Page 175 of 280

The Java Virtual Machine

---­Figure 5-10
Adding two local
variables

would add two local variables that contain ints and would store the int
result in a third local variable:

iload 0
iload 1
iadd
istore 2

II push the int in local variable 0
II push the int in local variable 1
II pop two ints, add them, push result
II pop int, store into local variable 2

In this sequence ofbytecodes, the first two instructions, iload_O and
iload _1, push the ints stored in local variable positions zero and one
onto the operand stack. The iadd instruction pops those two int values,
adds them, and pushes the int result back onto the operand stack. The
fourth instruction, istore_2, pops the result of the add off the top of the
operand stack and stores it into local variable position two. In Figure
5-10, you can see a graphical depiction of the state of the local variables
and operand stack while executing these instructions. In this figure,
unused slots of the local variables and operand stack are left blank.

Frame Data In addition to the local variables and operand stack, the
Java stack frame includes data to support constant pool resolution, nor­
mal method return, and exception dispatch. This data is stored in the
frame data portion of the Java stack frame.

Many instructions in the Java virtual machine's instruction set refer to
entries in the constant pool. Some instructions merely push constant val­
ues oftype int, long, float, double, or String from the constant pool
onto the operand stack. Some instructions use constant pool entries to refer
to classes or arrays to instantiate, fields to access, or methods to invoke.
Other instructions determine whether a particular object is a descendant
of a particular class or interface specified by a constant pool entry.

local
variables

operand
stack

before
starting

after
iload 0

0
1
2

after
iload 1

0
1
2

after
iadd

0
1
2

after
istore 2

Page 176 of 280

168 Chapter Five

Whenever the Java virtual machine encounters any of the instructions
that refer to an entry in the constant pool, it uses the frame data's
pointer to the constant pool to access that information. As mentioned ear­
lier, references to types, fields, and methods in the constant pool are ini­
tially symbolic. When the virtual machine looks up a constant pool entry
that refers to a class, interface, field, or method, that reference might still
be symbolic. If so, the virtual machine must resolve the reference at that
time.

Aside from constant pool resolution, the frame data must assist the vir­
tual machine with processing a normal or abrupt method completion. If
a method completes normally (by returning), the virtual machine must
restore the stack frame of the invoking method. The machine must also
set the PC register to point to the instruction in the invoking method that
follows the instruction that invoked the completing method. If the com­
pleting method returns a value, the virtual machine must push that value
onto the operand stack of the invoking method.

The frame data must also contain some kind of reference to the
method's exception table, which the virtual machine uses to process any
exceptions thrown during the course of execution of the method. An excep­
tion table, which is described in detail in Chapter 17, "Exceptions," defines
ranges within the bytecodes of a method that are protected by catch
clauses. Each entry in an exception table gives a starting and ending posi­
tion of the range protected by a catch clause, an index into the constant
pool that gives the exception class being caught, and a starting position
of the catch clause's code.

When a method throws an exception, the Java virtual machine uses the
exception table referred to by the frame data to determine how to handle
the exception. If the virtual machine finds a matching catch clause in the
method's exception table, it transfers control to the beginning of that catch
clause. If the virtual machine does not find a matching catch clause, then
the method completes abruptly. The virtual machine uses the information
in the frame data to restore the invoking method's frame and then
rethrows the same exception in the context of the invoking method.

In addition to data that supports constant pool resolution, normal
method return, and exception dispatch, the stack frame might also
include other information that is implementation dependent, such as data
to support debugging.

Possible Implementations of the Java Stack Implementation de­
signers can represent the Java stack in whichever way they wish. As men­
tioned earlier, one potential way to implement the stack is by allocating

Page 177 of 280

r

The Java Virtual Machine 11691

---­Figure 5-11
Allocating frames
from a heap

each frame separately from a heap. As an example, consider the follow­
ing class:

II On CD-ROM in file jvmlex31Example3c.java
class Example3c {

}

public static void addAndPrint(} {

}

double result= addTwoTypes(l, 88.88};
System.out.println(result};

public static double addTwoTypes(int i, double d) {
return i + d;

}

Figure 5-11 shows three snapshots of the Java stack for a thread that
invokes the add.AndPrint () method. In the implementation of the Java
virtual machine represented in this figure, each frame is allocated sepa­
rately from a heap. To invoke the addTwoTypes () method, use the
add.AndPrint () method which first pushes an int one and double
88.88 onto its operand stack, then invokes the addTwoTypes () method.

before invocation ,
'

of add Two Types() i
0
1

frames for /
addAndPrint()

after invocation
of addTwoTypes()

0
I

0
I

/

-
frame for ~

'
add Two Types() ""-.....

after addTwoTypes()
returns

0
1

local
variables

frame data

operand
stack

Page 178 of 280

170 Chapter Five

The instruction to invoke addTwoTypes () refers to a constant pool
entry. The Java virtual machine looks up the entry and resolves the entry
if necessary.

Note that the add.AndPrint () method uses the constant pool to iden­
tify the addTwoTypes () method, although it is part of the same class.
Similar to references to fields and methods of other classes, references to
the fields and methods of the same class are initially symbolic and must
be resolved before they are used.

The resolved constant pool entry points to information in the method
area about the addTwoTypes () method. The virtual machine uses this
information to determine the sizes required by addTwoTypes () for the
local variables and operand stack. In the class file generated by Sun's
j avac compiler from JDK Version 1.1, addTwoTypes () requires three
words in the local variables and four words in the operand stack. (As men­
tioned earlier, the size of the frame data portion is implementation depen­
dent.) The virtual machine allocates just enough memory for the
addTwoTypes () frame from a heap, then pops the double and int
parameters (88.88 and one) from add.AndPrint () 's operand stack and
places them into addTwoType () 's local variable slots one and zero.

When addTwoTypes () returns, it first pushes the double return value
(in this case, 89.88) onto its operand stack. The virtual machine uses the
information in the frame data to locate the stack frame of the invoking
method, add.AndPrint () . The machine then pushes the double return value
onto add.AndPrint () 's operand stack and then frees the memory occupied
by addTwoType () 's frame. The virtual machine makes add.AndPrint () 's
frame current and continues executing the add.AndPrint () method at the
first instruction past the addTwoType () method invocation.

Figure 5-12 shows snapshots of the Java stack of a different virtual
machine implementation executing the same methods. Instead of allo­
cating each frame separately from a heap, this implementation allocates
frames from a contiguous stack. This approach enables the implementa­
tion to overlap the frames of adjacent methods. The portion of the invok­
ing method's operand stack that contains the parameters to the invoked
method becomes the base of the invoked method's local variables.
In this example, add.AndPrint () 's entire operand stack becomes
addTwoType () 's entire local variables section.

This approach saves memory space, because the same memory is used
by the calling method to store the parameters as is used by the invoked
method to access the parameters. This approach also saves time, because
the Java virtual machine does not have to spend time copying the para­
meter values from one frame to another.

Page 179 of 280

The Java Virtual Machine

---­Figure 5-12
Allocating frames
from a contiguous
stack

before invocation
of addTwoTypes()

0
I

after invocation
of add Two Types()

after addTwoTypes()
returns

0
I

Note that the operand stack of the current frame is always at the top
of the Java stack. Although this situation might be easier to visualize in
the contiguous memory implementation of Figure 5-12, it is true no mat­
ter how the Java stack is implemented. (As mentioned earlier, in all of the
graphical images of the stack shown in this book, the stack grows down­
ward. The top of the stack is always shown at the bottom of the picture.)
Instructions that push values onto (or pop values oft) the operand stack
always operate on the current frame. Thus, pushing a value onto the
operand stack can be seen as pushing a value onto the top of the entire
Java stack. In the remainder of this book, pushing a value onto the stack
refers to pushing a value onto the operand stack of the current frame.

One other possible approach to implementing the Java stack is a hybrid
of the two approaches shown in Figure 5-11 and Figure 5-12. A Java vir­
tual machine implementation can allocate a chunk of contiguous memory
from a heap when a thread starts. In this memory, the virtual machine
can use the overlapping-frames approach shown in Figure 5-12. If the
stack outgrows the contiguous memory, the virtual machine can allocate
another chunk of contiguous memory from the heap. Then, the machine
can use the separate-frames approach shown in Figure 5-11 to connect the
invoking method's frame sitting in the old chunk with the invoked
method's frame sitting in the new chunk. Within the new chunk, it can
once again use the contiguous memory approach.

Page 180 of 280

172 Chapter Five

Native Method Stacks

In addition to all of the runtime data areas (described previously) that are
defined by the Java virtual machine specification, a running Java appli­
cation can use other data areas created by or for native methods. When a
thread invokes a native method, it enters a new world in which the struc­
tures and security restrictions of the Java virtual machine no longer ham­
per its freedom. A native method can likely access the runtime data areas
of the virtual machine (depending on the native method interface), but it
can also do anything else it wants. The method can use registers inside
the native processor, allocate memory on any number of native heaps, or
use any kind of stack.

Native methods are inherently implementation dependent. Implemen­
tation designers are free to decide which mechanisms they will use to
enable a Java application running on their implementation to invoke
native methods.

Any native method interface will use some kind of native method stack.
When a thread invokes a Java method, the virtual machine creates a new
frame and pushes it onto the Java stack. When a thread invokes a native
method, however, that thread leaves the Java stack behind. Instead of
pushing a new frame onto the thread's Java stack, the Java virtual
machine will simply dynamically link to and directly invoke the native
method. One way to think of this process is that the Java virtual machine
is dynamically extending itself with native code-as if the Java virtual
machine implementation is just calling another (dynamically linked)
method within itself at the bequest of the running Java program.

If an implementation's native method interface uses a C-linkage model,
then the native method stacks are C stacks. When a C program invokes
a C function, the stack operates in a certain way. The arguments to the
function are pushed onto the stack in a certain order. The return value is
passed back to the invoking function in a certain way. This behavior is
true for the native method stacks in that implementation.

A native method interface will more than likely have the capacity to
call back into the Java virtual machine and invoke a Java method (once
again, this decision is up to the designers). In this case, the thread leaves
the native method stack and enters another Java stack.

Figure 5-13 shows a graphical depiction of a thread that invokes a
native method that calls back into the virtual machine to invoke another
Java method. This figure shows the full picture of what a thread can
expect inside the Java virtual machine. A thread might spend its entire
lifetime executing Java methods and working with frames on its Java

Page 181 of 280

The Java Virtual Machine

---­Figure 5-13
The stack for a
thread that invokes
Java and native
methods

this Java method
invokes a native
method

the current
frame

Java stacks

a native
method

stack

This C function
invokes another
Cfunction

This C function
invoices a Java
method

stack, or it might jump back and forth between the Java stack and native
method stacks.

As depicted in Figure 5-13, a thread first invoked two Java methods­
the second of which invoked a native method. This act caused the virtual
machine to use a native method stack. In this figure, the native method
stack is shown as a finite amount of contiguous memory space. Assume
this item is a C stack. The stack area used by each C-linkage function is
shown in gray and is bounded by a dashed line. The first C-linkage func­
tion, which was invoked as a native method, invoked another C-linkage
function. The second C-linkage function invoked a Java method through
the native method interface. This Java method invoked another Java
method, which is the current method shown in the figure.

As with the other runtime memory areas, the memory occupied by
native method stacks does not need to be a fixed size. This memory can
expand and contract as needed by the running application. Implementa­
tions can enable users or programmers to specify an initial size for the
method area, as well as a maximum or minimum size.

Execution Engine

At the core of any Java virtual machine implementation is its execution
engine. In the Java virtual machine specification, the behavior of the

~ - '

i.
I

I!

Page 182 of 280

174 Chapter Five

execution engine is defined in terms of an instruction set. For each
instruction, the specification describes in detail what an implementation
should do when it encounters the instruction as it executes bytecodes, but
the specification says little about how. As mentioned in previous chapters,
implementation designers are free to decide how their implementations
will execute bytecodes. Their implementations can interpret, just-in-time
compile, execute natively in silicon, use a combination of these techniques,
or dream up some brand-new technique.

Similar to the three senses of the term Java virtual machine described
at the beginning of this chapter, the term execution engine can also be
used in any of three senses: an abstract specification, a concrete imple­
mentation, or a run-time instance. The abstract specification defines the
behavior of an execution engine in terms of the instruction set. Concrete
implementations, which can use a variety of techniques, are either soft­
ware, hardware, or a combination of both. A run-time instance of an exe­
cution engine is a thread.

Each thread of a running Java application is a distinct instance of the
virtual machine's execution engine. From the beginning of its lifetime to
the end, a thread is either executing bytecodes or native methods. A
thread can execute bytecodes directly (by interpreting or executing
natively in silicon) or indirectly (by just-in-time compiling and executing
the resulting native code). A Java virtual machine implementation might
use other threads that are invisible to the running application, such as
a thread that performs garbage collection. Such threads do not need to
be instances of the implementation's execution engine. All threads that
belong to the running application, however, are execution engines in
action.

The Instruction Set A method's bytecode stream is a sequence of in­
structions for the Java virtual machine. Each instruction consists of a one­
byte opcode followed by zero or more operands. The opcode indicates the
operation to be performed. Operands supply extra information needed by
the Java virtual machine to perform the operation specified by the opcode.
The opcode itself indicates whether or not it is followed by operands and
which form the operands take (if any). Many Java virtual machine in­
structions take no operands and therefore consist only of an opcode. De­
pending upon the opcode, the virtual machine might refer to data stored
in other areas in addition to (or instead of) operands that trail the opcode.
When the virtual machine executes an instruction, it might use entries
in the current constant pool, entries in the current frame's local variables,
or values sitting on top of the current frame's operand stack.

Page 183 of 280

The Java Virtual Machine 175

The abstract execution engine runs by executing bytecodes one
instruction at a time. This process takes place for each thread (execution
engine instance) of the application running in the Java virtual machine.
An execution engine fetches an opcode, and if that opcode has operands,
it fetches the operands. The engine executes the action requested by the
opcode and its operands, then fetches another opcode. Execution of byte­
codes continues until a thread completes, either by returning from its
starting method or by not catching a thrown exception.

From time to time, the execution engine might encounter an instruc­
tion that requests a native method invocation. On such occasions, the exe­
cution engine will dutifully attempt to invoke that native method. When
the native method returns (if it completes normally, not by throwing an
exception), the execution engine will continue executing the next instruc­
tion in the bytecode stream.

One way you can think of native methods, therefore, is as programmer­
customized extensions to the Java virtual machine's instruction set. If
an instruction requests an invocation of a native method, the execution
engine invokes the native method. Running the native method is how the
Java virtual machine executes the instruction. When the native method
returns, the virtual machine moves on to the next instruction. If the
native method completes abruptly (by throwing an exception), the virtual
machine follows the same steps to handle the exception as it does when
any instruction throws an exception.

Part of the job of executing an instruction is determining the next instruc­
tion to execute. An execution engine determines the next opcode to fetch in
one of three ways. For many instructions, the next opcode to execute directly
follows the current opcode and its operands, if any, in the bytecode stream.
For some instructions, such as goto or return, the execution engine deter­
mines the next opcode as part of its execution of the current instruction. If
an instruction throws an exception, the execution engine determines the
next opcode to fetch by searching for an appropriate catch clause.

Several instructions can throw exceptions. The a throw instruction, for
example, throws an exception explicitly. This instruction is the compiled
form of the throw statement in Java source code. Every time the a throw
instruction is executed, it will throw an exception. Other instructions
throw exceptions only when certain conditions are encountered. For
example, if the Java virtual machine discovers (to its chagrin) that the
program is attempting to divide an integer by zero, it will throw an
ArithmeticException. This situation can occur while executing any of
four instructions-idi v, ldi v, irem, and lrem-which perform divisions
or calculate remainders on ints or longs.

Page 184 of 280

176 Chapter Five

Each type of opcode in the Java virtual machine's instruction set has
a mnemonic. In the typical assembly language style, streams of Java byte­
codes can be represented by their mnemonics followed by (optional)
operand values.

For an example of method's bytecode stream and mnemonics, consider
the doMathForever () method of this class:

II On CD-ROM in file jvmlex41Act.java
class Act {

}

public static void doMathForever() {
int i = 0;
for (;;) {

i += 1;
i *= 2;

}
}

The stream of bytecodes for doMathForever () can be disassembled
into mnemonics as follows. The Java virtual machine specification does not
define any official syntax for representing the mnemonics of a method's
bytecodes. The code shown as follows illustrates the manner in which
streams of bytecode mnemonics will be represented in this book. The left­
hand column shows the offset in bytes from the beginning of the method's
bytecodes to the start of each instruction. The center column shows the
instruction and any operands. The right-hand column contains comments,
which are preceded with a double slash (just as in Java source code).

II Bytecode stream: 03 3b 84 00 01 1a 05 68 3b a7 ff f9
II Disassembly:
II Method void doMathForever()
II Left column: offset of instruction from beginning of method
II I Center column: instruction mnemonic and any operands
I I I I Right column: comment

0 iconst 0 II 03
1 is tore
2 iinc 0,
5 iload 0
6 iconst
7 imul
8 is tore
9 go to 2

0
1

2

0

II 3b
I I 84 oo 01
II 1a
II 05
II 68
II 3b

I I a7 ff f9

This way of representing mnemonics is similar to the output of the
j avap program of Sun's Java 2 SDK. j avap enables you to look at the
bytecode mnemonics of the methods of any class file. Note that jump

Page 185 of 280

The Java Virtual Machine 177

addresses are given as offsets from the beginning of the method. The goto
instruction causes the virtual machine to jump to the instruction at off­
set two (an iinc). The actual operand in the stream is minus seven. To
execute this instruction, the virtual machine adds the operand to the cur­
rent contents of the PC register. The result is the address of the i inc
instruction at offset two. To make the mnemonics easier to read, the
operands for jump instructions are shown as if the addition has already
taken place. Instead of saying "go to -7 ," the mnemonics say, "goto 2 ."

The central focus of the Java virtual machine's instruction set is the
operand stack. Values are generally pushed onto the operand stack before
they are used. Although the Java virtual machine has no registers for
storing arbitrary values, each method has a set of local variables. The
instruction set treats the local variables as a set of registers that are
referred to by indexes. Nevertheless, other than the i inc instruction,
which increments a local variable directly, values stored in the local vari­
ables must be moved to the operand stack before being used.

For example, to divide one local variable by another, the virtual
machine must push both onto the stack, perform the division, and then
store the result back in the local variables. To move the value of an array
element or object field into a local variable, the virtual machine must first
push the value onto the stack, then store it into the local variable. To set
an array element or object field to a value stored in a local variable, the
virtual machine must follow the reverse procedure. First, it must push the
value of the local variable onto the stack, then pop it off the stack and into
the array element or object field on the heap.

Several goals-some of which are conflicting-guided the design of the
Java virtual machine's instruction set. These goals are basically the same
as those described in Part I of this book as the motivation behind Java's
entire architecture: platform independence, network mobility, and security.

The platform independence goal was a major influence in the design
of the instruction set. The instruction set's stack-centered approach,
described previously, was chosen instead of a register-centered approach
to facilitate efficient implementation on architectures with few or irregu­
lar registers, such as the Intel80X86. This feature of the instruction set­
the stack-centered design-makes it easier to implement the Java virtual
machine on a wide variety of host architectures.

Another motivation for Java's stack-centered instruction set is that com­
pilers usually use a stack-based architecture to pass an intermediate com­
piled form or the compiled program to a linker/optimizer. The Java class
file, which is in many ways similar to the Unix . o or Windows . obj file
emitted by a C compiler, actually represents an intermediate, compiled

Page 186 of 280

178 Chapter Five

form of a Java program. In the case of Java, the virtual machine serves as
a (dynamic) linker and might serve as an optimizer. The stack-centered
architecture of the Java virtual machine's instruction set facilitates the
optimization that can be performed at run time in conjunction with execu­
tion engines that perform just-in-time compiling or adaptive optimization.

As mentioned in Chapter 4, "Network Mobility," one major design con­
sideration was class-file compactness. Compactness is important because
it facilitates speedy transmission of class files across networks. In the
bytecodes stored in class files, all instructions-except two that deal with
table jumping-are aligned on byte boundaries. The total number of
opcodes is small enough so that opcodes occupy only one byte. This design
strategy favors class-file compactness, possibly at the cost of some per­
formance when the program runs. In some Java virtual machine imple­
mentations, especially those executing bytecodes in silicon, the single-byte
opcode might preclude certain optimizations that could improve perfor­
mance. Also, better performance might have been possible on some imple­
mentations if the bytecode streams were word aligned instead of byte
aligned. (An implementation could always realign bytecode streams or
translate opcodes into a more efficient form as classes are loaded. Byte­
codes are byte aligned in the class file and in the specification of the
abstract method area and execution engine. Concrete implementations
can store the loaded bytecode streams any way they wish.)

Another goal that guided the design of the instruction set was the capa­
bility for bytecode verification, especially all at once by a data-flow ana­
lyzer. The verification capability is needed as part of Java's security
framework. The capability to use a data-flow analyzer on the bytecodes
when they are loaded, rather than verifying each instruction as it is exe­
cuted, facilitates the execution speed. One way this design goal manifests
itself in the instruction set is that most opcodes indicate the type on which
they operate.

For example, instead of simply having one instruction that pops a word
from the operand stack and stores it in a local variable, the Java virtual
machine's instruction set has two instructions. One instruction, istore,
pops and stores an int. The other instruction, fstore, pops and stores a
float. Both of these instructions perform the same function when exe­
cuted: they pop a word and store it. Distinguishing between popping and
storing an in t versus a float is important only to the verification process.

For many instructions, the virtual machine needs to know the types
being operated on to know how to perform the operation. For example, the
Java virtual machine supports two ways of adding two words together,
yielding a one-word result. One addition treats the words as ints, while

Page 187 of 280

r
The Java Virtual Machine 179

Table 5-2

Type prefixes of
bytecode
mnemonics

the other treats the words as floats. The difference between these two
instructions facilitates verification but also tells the virtual machine
whether it should perform integer or floating-point arithmetic.

A few instructions operate on any type. The dup instruction, for exam­
ple, duplicates the top word of a stack regardless of its type. Some instruc­
tions, such as go to, do not operate on typed values. The majority of the
instructions, however, operate on a specific type. The mnemonics for most
of these typed instructions indicate their type by a single character pre­
fix that starts their mnemonic. Table 5-2 shows the prefixes for the vari­
ous types. A few instructions, such as arraylength or instanceof, do
not include a prefix because their type is obvious. The arraylength
opcode requires an array reference, and the instanceof opcode requires
an object reference.

Values on the operand stack must be used in a manner appropriate to
their type. It is illegal, for example, to push four ints, then add them as
if they were two longs. Also, it is illegal to push a float value onto the
operand stack from the local variables, then store it as an int in an array
on the heap. Furthermore, it is illegal to push a double value from an
object field on the heap, then store the topmost of its two words into the
local variables as a value of type reference. The strict type rules that
are enforced by Java compilers must also be enforced by Java virtual
machine implementations.

Implementations must also observe rules when executing instructions
that perform generic stack operations that are type independent. As men­
tioned previously, the dup instruction pushes a copy of the top word of the

byte b baload load byte from array

short s sa load load short from array

int i iaload load int from array

long 1 laload load long from array

char c caload load char from array

float f fa load load float from array

double d daload load double from array

reference a aaload load reference from array

i

I.

. I

Page 188 of 280

180

Table 5-3

Storage and com-
putation types
inside the Java vir-
tual machine

Chapter Five

stack (irrespective of type). This instruction can be used on any value that
occupies one word-an int, float, reference, or returnAddress. Y
ou cannot use dup when the top of the stack contains either a long or
double, which are the data types that occupy two consecutive operand
stack locations. A long or double sitting on the top of the operand stack
can be duplicated in its entirety by the dup2 instruction, which pushes a
copy of the top two words onto the operand stack. The generic instructions
cannot be used to split dual-word values.

To keep the instruction set small enough to enable each opcode to be
represented by a single byte, not all operations are supported on all types.
Most operations are not supported for types byte, short, and char.
These types are converted to int when they are moved from the heap or
method area to the stack frame. They are operated on as ints, then are
converted back to byte, short, or char before being stored back into the
heap or method area.

Table 5-3 shows the computation types that correspond to each storage
type in the Java virtual machine. As used here, a storage type is the man­
ner in which values of the type are represented on the heap. The storage
type corresponds to the type of the variable in Java source code. A com­
putation type is the manner in which the type is represented on the Java
stack frame.

Implementations of the Java virtual machine must in some way ensure
that values are operated on by instructions that are appropriate to their
type. They can verify bytecodes up front as part of the class verification

Minimum Words in
Bits in Heap or Computation the Java

Storage Type Method Area Type Stack Frame

byte 8 int load byte from array 1

short 16 int load short from array 1

int 32 int load int from array 1

long 64 long load long from array 2

char 16 int load char from array 1

float 32 float load float from array 1

double 64 double load double from array 2

reference 32 reference load reference from array 1

Page 189 of 280

L

The Java Virtual Machine 181

process or on the fly as the program executes, or they can use some com­
bination of both. Bytecode verification is described in more detail in Chap­
ter 7, "The Lifetime of a Type." The entire instruction set is covered in
detail in Chapters 10 through 20.

Execution Techniques Various execution techniques that can be used
by an implementation-interpreting, just-in-time compiling, adaptive op­
timization, and native execution in silicon-were described in Chapter 1,
"Introduction to Java's Architecture." The main point to remember about
execution techniques is that an implementation can use any technique to
execute bytecodes, as long as it adheres to the semantics of the Java vir­
tual machine instruction set.

One of the most interesting and speedy execution techniques is adap­
tive optimization. The adaptive optimization technique, which is used by
several existing Java virtual machine implementations (including Sun's
Hotspot virtual machine) borrows from techniques used by earlier vir­
tual machine implementations. The original JVMs interpreted bytecodes
one at a time. Second-generation JVMs added a JIT compiler, which
compiles each method to native code upon first execution, then executes
the native code. Thereafter, whenever the method is called, the native
code is executed. Adaptive optimizers, taking advantage of information
available only at run time, attempt to combine bytecode interpretation
and compilation to native in the way that will yield optimum perfor­
mance.

An adaptive optimizing virtual machine begins by interpreting all code,
but it monitors the execution of that code. Most programs spend 80 to 90
percent of their time executing 10 to 20 percent of the code. By monitor­
ing the program execution, the virtual machine can figure out which
methods represent the program's hot spot-the 10 to 20 percent of the
code that is executed 80 to 90 percent of the time.

When the adaptive optimizing virtual machine decides that a particu­
lar method is in the hot spot, it fires a background thread that compiles
those bytecodes to native and heavily optimizes the native code. Mean­
while, the program can still execute that method by interpreting its byte­
codes. Because the program is not held up and because the virtual
machine is only compiling and optimizing the hot spot (perhaps 10 to 20
percent of the code), the virtual machine has more time than a traditional
JIT to perform optimizations.

The adaptive optimization approach yields a program in which the code
that is executed 80 to 90 percent of the time is native code (as heavily
optimized as statically compiled C++, with a memory footprint not much

Page 190 of 280

182 Chapter Five

bigger than a fully interpreted Java program). In other words, this pro­
gram is fast. An adaptive optimizing virtual machine can keep the old
bytecodes around in case a method moves out of the hot spot. (The hot spot
might move somewhat as the program executes.) If a method moves out
of the hot spot, the virtual machine can discard the compiled code and
revert to interpreting that method's bytecodes.

As you might have noticed, an adaptive optimizer's approach to mak­
ing Java programs run fast is similar to the approach that programmers
should take to improve a program's performance. An adaptive optimizing
virtual machine, unlike a regular JIT-compiling virtual machine, does
not carry out premature optimization. The adaptive optimizing virtual
machine begins by interpreting bytecodes. As the program runs, the vir­
tual machine profiles the program to find the program's hot spot, which
means the 10 to 20 percent of the code that is executed 80 to 90 percent
of the time. Like a good programmer, the adaptive optimizing virtual
machine just focuses its optimization efforts on that time-critical code.

There is a bit more to the adaptive optimization story, however. Adap­
tive optimizers can be tuned for the run-time characteristics of Java
programs-in particular, of well-designed Java programs. According to
David Griswold, Hotspot manager at JavaSoft, "Java is a lot more object­
oriented than C++. You can measure that; you can look at the rates of
method invocations, dynamic dispatches, and such things. And the rates
[for Java] are much higher than they are in C++." Now, this high rate of
method invocations and dynamic dispatches is especially prominent in a
well-designed Java program, because one aspect of a well-designed Java
program is highly factored, fine-grained design-in other words, lots of
compact, cohesive methods and objects.

This run-time characteristic of Java programs-the high frequency of
method invocations and dynamic dispatches-affects performance in two
ways. First, there is an overhead associated with each dynamic dispatch.
Second (and more significantly), method invocations reduce the effective­
ness of compiler optimization.

Method invocations reduce the effectiveness of optimizers, because
optimizers do not perform well across method-invocation boundaries. As
a result, optimizers end up focusing on the code between method invoca­
tions. The greater the method invocation frequency, the fewer amount of
code the optimizer has to work with between method invocations, and the
less effective the optimization becomes.

The standard solution to this problem is inlining-the copying of an
invoked method's body directly into the body of the invoking method.
Inlining eliminates method calls and gives the optimizer more code with

Page 191 of 280

The Java Virtual Machine 183

which to work, making possible more effective optimization at the cost of
increasing the run-time memory footprint of the program.

The trouble is that inlining is harder with object-oriented languages
such as Java and C++ than with non-object-oriented languages such as
C, because object-oriented languages use dynamic dispatching. The prob­
lem is worse in Java than in C++, because Java has a greater call fre­
quency and a greater percentage of dynamic dispatches than C++.

A regular optimizing static compiler for a C program can inline in a
straight-forward manner, because there is one function implementation
for each function call. The trouble with inlining in object-oriented lan­
guages is that dynamic method dispatch means that there might be mul­
tiple function (or method) implementation for any given function call. In
other words, the Java virtual machine might have many different imple­
mentations of a method to choose from at run time, based on the class of
the object on which the method is being invoked.

One solution to the problem of inlining a dynamically dispatched
method call is to just inline all of the method implementations that might
be selected at run time. The trouble with this solution is that in cases
where there are many method implementations, the size of the optimized
code can grow large.

One advantage that adaptive optimization has over static compilation
is that because it happens at run time, it can use information that is not
available to a static compiler. For example, although there might be 30
possible implementations that are called for a particular method invoca­
tion, perhaps only two of them are ever called at run time. The adaptive
optimization approach enables only those two to be inlined, thereby min­
imizing the size of the optimized code.

Threads The Java virtual machine specification defines a threading
model that aims to facilitate implementation on a wide variety of archi­
tectures. One goal of the Java threading model is to enable implementa­
tion designers, where possible and appropriate, to use native threads. Al­
ternatively, designers can implement a thread mechanism as part of their
virtual machine implementation. One advantage to using native threads
on a multi-processor host is that different threads of a Java application
can run simultaneously on different processors.

One tradeoff of Java's threading model is that the specification of pri­
orities is the lowest common denominator. A Java thread can run at any
one of 10 priorities. Priority one is the lowest, and priority 10 is the high­
est. If designers use native threads, they can map the 10 Java priorities
onto the native priorities in whatever manner seems most appropriate.

Page 192 of 280

184 Chapter Five

The Java virtual machine specification defines the behavior of threads at
different priorities only by indicating that all threads at the highest pri­
ority will receive some CPU time. Threads at lower priorities are guar­
anteed to receive CPU time only when all higher-priority threads are
blocked. Lower-priority threads might receive some CPU time when
higher-priority threads are not blocked, but there are no guarantees.

The specification does not assume time-slicing between threads of dif­
ferent priorities, because not all architectures time-slice. (As used here,
time-slicing means that all threads at all priorities will be guaranteed
some CPU time, even when no threads are blocked.) Even among those
architectures that time-slice, the algorithms used to allot time slots to
threads at various priorities can differ greatly.

As mentioned in Chapter 2, "Platform Independence," you must not rely
on time-slicing for program correctness. You should use thread priorities
only to give the Java virtual machine hints at the tasks on which it should
spend more time. To coordinate the activities of multiple threads, you
should use synchronization.

The thread implementation of any Java virtual machine must support
two aspects of synchronization: object locking and thread wait and notify.
Object locking helps keep threads from interfering with one another
while working independently on shared data. Thread wait and notify
helps threads cooperate with one another while working together toward
some common goal. Running applications access the Java virtual
machine's locking capabilities via the instruction set and access its wait
and notify capabilities via the wait(), notify(), and notifyAll ()
methods of class Object. For more details, see Chapter 20, "Thread Syn­
chronization."

In the Java virtual machine specification, the behavior of Java threads
is defined in terms of variables, a main memory, and working memories.
Each Java virtual machine instance has a main memory, which contains
all of the program's variables (instance variables of objects, components
of arrays, and class variables). Each thread has a working memory in
which the thread stores working copies of variables that it uses or assigns.
Local variables and parameters, because they are private to individual
threads, can be logically seen as part of either the working memory or the
main memory.

The Java virtual machine specification defines many rules that gov­
ern the low-level interactions of threads with main memory. For exam­
ple, one rule states that all operations on primitive types, except in some
cases longs and doubles, are atomic. For example, if two threads com­
pete to write two different values to an int variable, even in the absence

Page 193 of 280

The Java Virtual Machine ! 185

of synchronization, the variable will end up with one value or the other.
The variable will not contain a corrupted value. In other words, one thread
will win the competition and will write its value to the variable first. The
losing thread does not need to sulk, however, because it will write its value
to the variable second, overwriting the winning thread's value.

The exception to this rule is any long or double variable that is not
declared volatile. Rather than being treated as a single, atomic, 64-bit
value, such variables can be treated by some implementations as two
atomic, 32-bit values. Storing a non-volatile long to memory, for exam­
ple, could involve two 32-bit write operations. This non-atomic treatment
of longs and doubles means that two threads competing to write two dif­
ferent values to a long or double variable can legally yield a corrupted
result.

Although implementation designers are not required to treat opera­
tions involving non-volatile longs and doubles atomically, the Java vir­
tual machine specification encourages them to do so anyway. This
non-atomic treatment of longs and doubles is an exception to the gen­
eral rule that operations on primitive types are atomic. This exception was
created with the intention of facilitating efficient implementation of the
threading model on processors that do not provide efficient ways to trans­
fer 64-bit values to and from memory. In the future, this exception might
be eliminated. For the time being, however, Java programmers must be
sure to synchronize access to shared longs and doubles.

Fundamentally, the rules governing low-level thread behavior specify
when a thread can and must complete the following actions:

1. Copying values of variables from the main memory to its working
memory

2. Writing values from its working memory back into the main
memory

For certain conditions, the rules specify a precise and predictable order
of memory reads and writes. For other conditions, however, the rules do
not specify any order. The rules are designed to enable Java programmers
to build multi-threaded programs that exhibit predictable behavior while
giving implementation designers some flexibility. This flexibility enables
designers of Java virtual machine implementations to take advantage of
standard hardware and software techniques that can improve the per­
formance of multi-threaded applications.

The fundamental, high-level implication of all of the low-level rules
that govern the behavior ofthreads is as follows: If access to certain vari­
ables is not synchronized, threads are enabled to update those variables

Page 194 of 280

186 Chapter Five

in main memory in any order. Without synchronization, your multi­
threaded applications might exhibit surprising behavior on some Java
virtual machine implementations. With proper use of synchronization,
however, you can create multi-threaded Java applications that behave in
a predictable way on any implementation of the Java virtual machine.

Native Method Interface

Java virtual machine implementations are not required to support any
particular native method interface. Some implementations might support
no native method interfaces at all. Others might support several inter­
faces, each geared towards a different purpose.

Sun's JNI is geared towards portability. JNI is designed so that it can
be supported by any implementation of the Java virtual machine, no mat­
ter which garbage-collection technique or object representation the imple­
mentation uses. In turn, this feature enables developers to link the same
(JNI-compatible) native method binaries to any JNI-supporting virtual
machine implementation on a particular host platform.

Implementation designers can choose to create proprietary native
method interfaces in addition to (or instead of) JNI. To achieve its porta­
bility, JNI uses indirection through pointers to pointers and pointers to
functions. To obtain the ultimate in performance, designers of an imple­
mentation might decide to offer their own low-level native method
interface that is tied closely to the structure of their particular imple­
mentation. Designers could also decide to offer a higher-level native
method interface than JNI, such as an interface that brings Java objects
into a component software model.

To do useful work, a native method must have the capacity to interact
(to some degree) with the internal state of the Java virtual machine
instance. For example, a native method interface might enable native
methods to do some or all of the following actions:

Passing and returning data

Accessing instance variables or invoking methods in objects on the
garbage-collected heap

Accessing class variables or invoking class methods

Accessing arrays

Locking an object on the heap for exclusive use by the current
thread

Page 195 of 280

The Java Virtual Machine

Ill Creating new objects on the garbage-collected heap

Ill Loading new classes

Ill Throwing new exceptions

II Catching exceptions thrown by Java methods that the native
method invoked

Ill Catching asynchronous exceptions thrown by the virtual machine

II Indicating to the garbage collector that it no longer needs to use a
particular object

Designing a native method interface that offers these services can be
complicated. The design needs to ensure that the garbage collector does
not free any objects that are being used by native methods. If an imple­
mentation's garbage collector moves objects to keep heap fragmentation
at a minimum, the native method interface design must make sure that
the following situations can occur:

1. An object can be moved after its reference has been passed to a
native method

2. Any objects whose references have been passed to a native method
are pinned until the native method returns or otherwise indicates
that it is finished with the objects

As you can see, native method interfaces are intertwined with the inner
workings of a Java virtual machine.

The Real Machine
As mentioned at the beginning of this chapter, all of the subsystems, run­
time data areas, and internal behaviors defined by the Java virtual
machine specification are abstract. Designers are not required to orga­
nize their implementations around real components that map closely
to the abstract components of the specification. The abstract internal
components and behaviors are merely a vocabulary with which the
specification defines the required external behavior of any Java virtual
machine implementation.

In other words, an implementation can be anything on the inside as long
as it behaves like a Java virtual machine on the outside. Implementations
must have the capability to recognize Java class files and must adhere to
the semantics of the Java code that the class files contain. Otherwise,

·I
I

I I

Page 196 of 280

188 Chapter Five

anything goes. How bytecodes are executed, how the runtime data areas
are organized, how garbage collection is accomplished, how threads are
implemented, how the bootstrap class loader finds classes, which native
method interfaces are supported-these are some of the many decisions
left to implementation designers.

The flexibility of the specification gives designers the freedom to tailor
their implementations to fit their circumstances. In some implementa­
tions, minimizing usage of resources can be critical. In other implemen­
tations where resources are plentiful, maximizing performance might be
the one and only goal.

By clearly marking the line between the external behavior and the
internal implementation of a Java virtual machine, the specification pre­
serves compatibility among all implementations while promoting inno­
vation. Designers are encouraged to apply their talents and creativity
towards building even better Java virtual machines.

Eternal Math: A Simulation
The CD-ROM contains several simulation applets that serve as interac­
tive illustrations for the material presented in this book. The applet
shown in Figure 5-14 simulates a Java virtual machine executing a few
bytecodes. You can run this applet by loading applets/EternalMath.
html from the CD-ROM into any Java-enabled Web browser or applet
viewer that supports JDK Version 1.0.

The simulation instructions represent the body ofthe doMathForever ()
method of class Act, shown previously in the Instruction Set section of
this chapter. This simulation shows the local variables and operand stack
of the current frame, the PC register, and the bytecodes in the method
area. This simulation also shows an optop register, which you can think
of as part of the frame data of this particular implementation of the Java
virtual machine. The optop register always points to one word beyond the
top of the operand stack.

The applet has four buttons: Step, Reset, Run, and Stop. Each time you
press the Step button, the Java virtual machine simulator will execute the
instruction pointed to by the PC register. Initially, the PC register points
to an iconst_O instruction. The first time you press the Step button,
therefore, the virtual machine will execute icons t _ 0 and will push a zero
onto the stack and set the PC register to point to the next instruction to
execute. Subsequent presses of the Step button will execute subsequent

Page 197 of 280

The Java Virtual Machine 189

instructions, and the PC register will lead the way. If you press the Run
button, the simulation will continue with no further coaxing on your part
until you press the Stop button. To start the simulation again, press the
Reset button.

The value of each register (PC and optop) is shown two ways. The con­
tents of each register, an integer offset from the beginning of either the
method's bytecodes or the operand stack, is shown in an edit box. Also, a
small arrow (either pc> or optop>) indicates the location contained in the
register.

In the simulation, the operand stack is shown growing down the panel
(up in memory offsets) as words are pushed onto the stack. The top of the
stack recedes up the panel as words are popped from the stack.

The doMathForever () method only has one local variable, i, which
sits at array position zero. The first two instructions, iconst_O and
istore_O, initialize the local variable to zero. The next instruction,
iinc, increments i by one. This instruction implements the i += 1 state­
ment from doMathForever ().The next instruction, iload_O, pushes
the value of the local variable onto the operand stack. iconst_2 pushes
an int 2 onto the operand stack. imul pops the top two ints from the
operand stack, multiplies them, and pushes the result. The istore_O
instruction pops the result of the multiply and puts it into the local vari­
able. The previous four instructions implement the i * = 2 statement
from doMathForever ().The last instruction, goto, sends the program
counter back to the iinc instruction. The goto implements the for (;;)
loop of doMathForever ().

With enough patience and clicks of the Step button (or a long enough
run of the Run button), you can receive an arithmetic overflow. When the
Java virtual machine encounters such a condition, it simply truncates (as
shown by this simulation). The machine does not throw any exceptions.

For each step of the simulation, a panel at the bottom of the applet con­
tains an explanation of what the next instruction will do (see Figure 5-14).

On the CD-ROM
The CD-ROM contains the source code examples from this chapter in the
j vm directory. The Eternal Math applet is contained on a Web page on the
CD-ROM in file applets/EternalMath.html. The source code for this
applet is found alongside its class files in the applets/JVMSimulators
and applets/JVMSimulators/COM/artima/jvmsim directories.

Page 198 of 280

190

Figure 5-14
The Et:rnal Math
applet

Chapter Five

E.IERNAL MATH

pc 1

,llf.;:ef

0

3 2
3
4
5

Operand stack
pc» 7

9
10
n

imul will pop two integers, mulhpry them, and push the result.

The Resources Page

For links to more information about the Java virtual machine, visit the
resources page at http: I /www. artima. com/insidejvm/resources/.

Page 199 of 280

The Java
Class File

The previous chapter (the first ofPart II), "Java Internals,"
gave an overview of the Java virtual machine. The next
four chapters will focus on different aspects of the Java vir­
tual machine. This chapter takes a look at the Java class
file and describes the contents of the class file, including
the structure and format of the constant pool. This chap­
ter serves as a complete reference for the Java class file
format.

Accompanying this chapter on the CD-ROM is an applet
that interactively illustrates the material presented in the
chapter. The applet, called Getting Loaded, simulates
the Java virtual machine loading a Java class file. At the
end of this chapter, you will find a description of this applet
and instructions on how to use the application.

Page 200 of 280

Figure 6-1
The non-exclusive
relationship of the
Java language and
class file

Chapter Six

What Is a Java Class File?
The Java class file is a precisely defined binary file format for Java pro­
grams. Each Java class file represents a complete description of one Java
class or interface. There is no way to put more than one class or interface
into a single class file. The precise definition of the class file format
ensures that any Java class file can be loaded and correctly interpreted
by any Java virtual machine, no matter which system produced the class
file or which system hosts the virtual machine.

Although the class file is related to the Java language architecturally,
it is not inextricably linked to the Java language. As shown in Figure
6-1, you could write programs in other languages and compile them to
class files, or you could compile your Java programs to a different binary
file format. You can, in fact, express valid programs in Java class file form
that are impossible to express in Java source code. Nevertheless, most

program
in Java

language

program
in Java

language

Java

Java

Page 201 of 280

The Java Class File 193

Table 6-1

Class file "primitive
types"

Java programmers will likely use the class file as the primary vehicle for
delivering their programs to Java virtual machines.

As mentioned in earlier chapters, the Java class file is a binary stream
of 8-bit bytes. Data items are stored sequentially in the class file, with no
padding between adjacent items. The lack of padding helps keep class files
compact. Items that occupy more than one byte are split into several con­
secutive bytes that appear in big-endian (higher bytes first) order.

Just as your Java classes can contain varying numbers of fields, meth­
ods, method parameters, local variables, and so on, the Java class file can
contain many items that vary in size or number from one class file to
another. In the class file, the size or length of a variable-length item pre­
cedes the actual data for the item. This feature enables class file streams
to be parsed from beginning to end, reading the size of an item first, fol­
lowed by the item data.

What Is in a Class File?
The Java class file contains everything a Java virtual machine needs to
know about one Java class or interface. The remainder of this chapter
describes the class file format using tables. Each table has a name and
shows an ordered list of items that can appear in a class file. Items appear
in the table in the order in which they appear in the class file. Each item
has a type, a name, and a count. The type is either a table name or one of
the "primitive types" shown in Table 6-1. All values stored in items of type
u2, u4, and us appear in the class file in big-endian order.

The major components of the class file, in their order of appearance in
the class file, are shown in Table 6-2 as items in the variable-length
ClassFile table.

ul

u2

u4

u8

a single, unsigned byte

two unsigned bytes

four unsigned bytes

eight unsigned bytes

Page 202 of 280

194

Table 6-2

Format of a
ClassFile Table

Chapter She

·Name Count

u4 magic 1

u2 minor version 1

u2 major_version 1

u2 constant_pool_count 1

cp_info constant _pool constant_pool_count 1

u2 access_flags 1

u2 this class 1

u2 super_class 1

u2 interfaces count 1

u2 interfaces interfaces count

u2 fields count 1

field info fields fields count

u2 methods count 1

method info methods methods count

u2 attributes count 1

attribute info attributes attributes count

The items of the ClassFile table are as follows:

magic

The first four bytes of every Java class file are its magic number,
OxCAFEBABE. The magic number makes non-Java class files easier to
identify. If a file does not start with OxCAFEBABE, it definitely is not a
Java class file. A magic number can be chosen by a file format's design­
ers to be any arbitrary number that is not already in widespread use. The
magic number for the Java class file was chosen back in the days when
"Java" was called "Oak." According to Patrick Naughton, a key member of
the original Java team, the magic number was chosen "long before the
name Java was ever uttered in reference to this language. We were look­
ing for something fun, unique, and easy to remember. It is only a coinci­
dence that OxCAFEBABE, an oblique reference to the cute baristas at
Peet's Coffee, was foreshadowing for the name Java."

Page 203 of 280

The Java Class File 195

minor_version and major_ version

The second four bytes of the class file contain the minor and major version
numbers. As Java technology evolves, new features may occasionally be added
to the Java class file format. Each time the class file format changes, the ver­
sion numbers will change, as well. To the Java virtual machine, the version
numbers identify the format to which a particular class file adheres. Java vir­
tual machines will generally be able to load class files with a given major ver­
sion number and a range of minor version numbers. Java virtual machines
must reject class files with version numbers outside their valid range.

The Java virtual machine implementation in Sun's JDK release 1.0.2
supports class file format versions 45.0 (the major version number is 45,
while the minor version number is 0) through 45.3. The virtual machines
in alll.1 releases of the JDK can support class file format versions 45.0
through 45.65535. In the 1.2 SDK from Sun, the virtual machine can sup­
port versions 45.0 through 46.0.

1.0 or 1.1 compilers should generate class files with version number
45.3. The j avac compiler in Sun's 1.2 SDK, by default, also generates
class files with version 45.3. But if -target 1 . 2 is specified on the
j avac command line, the 1.2 compiler will generate class files with ver­
sion 46.0. Class files created with the -target 1 . 2 flag will not run on
1.0 or 1.1 virtual machines.

The second edition of the Java virtual machine specification altered the
interpretation of the major and minor version numbers of the class file.
According to the second edition, the major version number of a class file
is intended to correspond to a major release of the Java platform. (For
example, with the release of the Java 2 Platform, the major version num­
ber was increased from 45 to 46.) The minor version numbers are
intended to correspond to individual releases of a particular major plat­
form release. Thus, although a difference in class file format will definitely
be identifiable via a difference in version number, a difference in version
number does not necessarily indicate a difference in class file format.
Rather, a difference in version number may indicate only that the class
file was generated by or is intended for a different release of the Java
Platform-although the class file format has not changed.

constant_pool_count and constant_pool

Following the magic and version numbers in the class file is the con­
stant pool. As mentioned in Chapter 5, "The Java Virtual Machine," the
constant pool contains the constants associated with the class or interface
defined by the file. Constants such as literal strings, final variable values,
class names, and method names are stored in the constant pool. The con­
stant pool is organized as a list of entries. A count of the number of entries

Page 204 of 280

196

Table 6-3

Constant pool tags

Chapter Six

in the list, constant_pool_count, precedes the actual list, constant_
pool.

Many entries in the constant pool refer to other entries in the constant
pool, and many items that follow the constant pool in the class file refer
back to entries in the constant pool. Throughout the class file, constant
pool entries are referred to by the integer index that indicates their posi­
tion in the constant _pool list. The first entry in the list has an index
of one, the second has an index of two, and so on. Although there is no
entry in the constant _pool list that has an index of zero, the missing
Oth entry is included in the constant_pool_count. For example, if a
constant_pool list includes 14 entries (with indexes one through 14),
the constant_pool_count would be 15.

Each constant pool entry starts with a one-byte tag that indicates the
type of constant making its home at that position in the list. Once a Java
virtual machine grabs and interprets this tag, it knows what to expect after
the tag. Table 6-3 shows the names and values of the constant pool tags.

For each tag shown in Table 6-3, there is a corresponding table. The
name of the table is formed by appending "_info" to the tag name. For

... E~i~Type

CONSTANT UtfB
string

CONSTANT_Integer

CONSTANT Float

CONSTANT_Long

CONSTANT_Double

CONSTANT_Class

CONSTANT_String

CONSTANT Fieldref

CONSTANT Methodref
method

CONSTANT_InterfaceMethodref

CONSTANT_NameAndType

tag "X~~e Jlescription

1

3

4

5

6

7

8

9

10

11

12

A UTF-8 encoded Unicode

An int literal value

A float literal value

A long literal value

A double literal value

A symbolic reference to a class
or interface

A String literal value

A symbolic reference to a field

A symbolic reference to a

declared in a class

A symbolic reference to a
method declared in an interface

Part of a symbolic reference to a
field or method

Page 205 of 280

The Java Class File

example, the table that corresponds to the CONSTANT_ Class tag is called
CONSTANT Class info. The CONSTANT Utf8 info table stores a com­
pressed form of unicode strings. The tables for the various kinds of con­
stant pool entries are described in detail later in this chapter.

The constant pool plays an important role in the dynamic linking of
Java programs. In addition to literal constant values, the constant pool
contains the following kinds of symbolic references:

II Fully qualified names of classes and interfaces

Ill Field names and descriptors

II Method names and descriptors

A field is an instance or class variable of the class or interface. A field
descriptor is a string that indicates the field's type. A method descriptor is
a string that indicates the method's return type and the number, order, and
types of its parameters. The constant pool's fully qualified names and
method and field descriptors are used at run time to link code in this class
or interface with code and data in other classes and interfaces. The class
file contains no information about the eventual memory layout of its com­
ponents, so classes, fields, and methods cannot be referenced directly by
the bytecodes in the class file. The Java virtual machine resolves the actual
address of any referenced item at run time, given a symbolic reference
from the constant pool. For example, bytecode instructions that invoke a
method give constant pool index of a symbolic reference to the method to
invoke. This process of using the symbolic references in the constant pool
is described in more detail in Chapter 8, "The Linking Model."

access_flags

The first two bytes after the constant pool, the access flags, reveal sev­
eral pieces of information about the class or interface defined in the file.
To start with, the access flags indicate whether the file defines a class or
an interface. The access flags also indicate which modifiers were used in
the declaration of the class or interface. Classes and interfaces can be pub­
lic or abstract. Classes can be final, but final classes cannot be abstract.
Interfaces cannot be final. The bits used for the various flags are shown
in Table 6-4.

The ACC _SUPER flag exists for backwards compatibility with Sun's older
Java compilers. In Sun's older Java virtual machines, the invoke special
instruction had more relaxed semantics. All new compilers should set the
ACC _SUPER flag. All new implementations of the Java virtual machine
should implement the newer, stricter invokespecial semantics. (See the
invokespecial instruction in Appendix A for a description of these

Page 206 of 280

198

Table 6-4

Flag bits in the
access_flags
1tem of
ClassFile tables

Chapter Six

.Flag Name Value Meaning If Set Set By

ACC PUBLIC OxOOOl Type is public Classes and interfaces

ACC FINAL OxOOlO Class is final Classes only

ACC SUPER Ox0020 Use new Classes and interfaces
invokespecial
semantics

ACC INTERFACE Ox0200 Type is an interface, All interfaces,
not a class no classes

ACC ABSTRACT Ox0400 Type is abstract All interfaces,
some classes

semantics.) Sun's older compilers generate class files with the ACC _SUPER

flag set to zero. Sun's older Java virtual machines ignore the flag if it is set.
All unused bits in access_flags must be set to zero by compilers and

ignored by Java virtual machine implementations.

this class

The next two bytes are the this_ class item, an index into the con­
stant pool. The constant pool entry at position this_class must be a
CONSTANT_Class_info table, which has two parts: a tag and a
name_ index. The tag will have the value CONSTANT_ Class. The constant
pool entry at position name_index will be a CONSTANT_Utf8_info table
containing the fully qualified name of the class or interface.

The this_class item provides a glimpse of how the constant pool is
used. By itself, the this_class item is just an index into the constant pool.
When a Java virtual machine looks up the constant pool entry at the posi­
tion this_class, it will find an entry that identifies itself via its
tag as a CONSTANT_Class_info. The Java virtual machine knows that
CONSTANT_Class_info entries always have an index into the constant
pool, called name_index, following their tag. So the virtual machine looks
up the constant pool entry at position name _index, where it should find a
CONSTANT_ Ut f 8 _info entry that contains the fully qualified name of the
class or interface. See Figure 6-2 for a graphical depiction of this process.

super_class

Following this_class in the class file is the super_class item,
another two-byte index into the constant pool. The constant pool entry at
position super_class will be a CONSTANT Class info entry that

Page 207 of 280

The Java Class File 199

---­Figure 6-2
Example of constant
pool usage constant pool

entry #1

constant pool
entry #7

this class

refers to the fully qualified name of this class's superclass. Because the
base class of every object !n Java programs is the java .lang. Object
class, the super_class constant pool index will be valid for every class
except Object. For Object, super_class is a zero. For interfaces, the
constant pool entry at position super_ class is java. lang. Object.

interfaces count and interfaces

The component that follows super_class starts with interfaces_
count, a count of the number ofsuperinterfaces directly implemented by
the class or extended by the interface defined in this file. Immediately fol­
lowing the count is interfaces, an array that contains one index into
the constant pool for each superinterface directly implemented by this
class or interface. Each superinterface is represented by a CONSTANT_
Class_info entry in the constant pool that refers to the fully qualified
name of the interface. Only direct superinterfaces, those that appear in
the implements clause of the class or the extends clause of the inter­
face declaration, appear in this array. The superinterfaces appear in the
array in the order in which they appear (left to right) in the implements
or extends clause.

Page 208 of 280

200 Chapter Six

fields count and fields

Following the interfaces component in the class file is a description of
the fields declared by this class or interface. This component starts with
fields_count, a count of the number of fields that includes both class
and instance variables. Following the count is a list of variable-length
field_info tables, one for each field. (The fields_count indicates the
number of field_info tables in the list.) The only fields that appear in
the fields list are those that are declared by the class or interface
defined in the file. No fields inherited from superclasses or superinter­
faces appear in the fields list. On the other hand, the fields list could
include fields not mentioned in a corresponding Java source file, because
Java compilers may add fields to classes or interfaces during compilation.
For example, to the fields list of an inner class, the Java compiler adds
instance variables to hold references to each enclosing class instance. Any
fields in the fields list that were not mentioned in the source, but were
instead added by the compiler, should be marked with a Synthetic
attribute.

Each field info table reveals information about one field. The table
contains the field's name, descriptor, and modifiers. If the field is declared
as final, the field_info table also reveals the field's constant value.
Some of this information is contained in the field_ info table itself, and
some is contained in constant pool locations referred to by the table. The
field_info table is described in more detail later in this chapter.

methods count and methods

Following the fields in the class file is a description of the methods
which are declared by the class or interface. This component starts with
methods_count, a two-byte count of the number of methods in the class
or interface. The count includes only those methods that are explicitly
defined by this class or interface. (The count does not include any meth­
ods inherited from superclasses or superinterfaces.) Following the method
count are the methods themselves, described in a list of method_info
tables. (The methods_count indicates the number of method_info
tables in the list.)

The method_ info table contains several pieces of information about
the method, including the method's name and descriptor (its return type
and argument types). If the method is not abstract and not native, the
method_info table includes the number of stack words required for the
method's local variables, the maximum number of stack words required
for the method's operand stack, a table of exceptions caught by the
method, the bytecode sequence, and optional line number and local
variable tables. If the method can throw any checked exceptions,

Page 209 of 280

The Java Class File

I I
~~

the method_ info table includes a list of those checked exceptions. The
method_info table is described in detail later in this chapter.

attributes count and attributes

The last component in the class file are the attributes, which give gen­
eral information about the particular class or interface defined by the file.
The attributes component starts with attributes_count, a count of
the number of attribute_info tables appearing in the subsequent
attributes list. The first item in each attribute info table is an
index into the constant pool of a CONSTANT_UtfS_info table that gives
the attribute's name.

Attributes come in many varieties. Several varieties are defined by the
Java virtual machine specification, but anyone can create their own vari­
eties of attributes (following certain rules) and place them into class files.
Java virtual machine implementations must silently ignore any attrib­
utes they do not recognize. The rules surrounding the creation of new
varieties of attributes are described later in this chapter.

Attributes appear in several places in the class file, not just in the
attributes item of the top-level ClassFile table. The attributes that
appear in the ClassFile table give more information about the class or
interface define by the file. Attributes that give more information about
a field may be included as part of field_info table. Attributes that
give more information about a method may be included as part of a
method info table.

The Java virtual machine specification defines two kinds of attributes
that may appear in the attributes list of the ClassFile table: SourceCode
and InnerClasses. These two attributes are described in detail later in
this chapter.

Special Strings
The symbolic references contained in the constant pool involve three spe­
cial kinds of strings: fully qualified names, simple names, and descriptors.
All symbolic references include the fully qualified name of a class or inter­
face. Symbolic references to fields include a simple field name and field
descriptor, in addition to a fully qualified type name. Symbolic references
to methods include a simple method name and method descriptor, in addi­
tion to a fully qualified type name.

The same special strings that are used in symbolic references are also
used simply to describe the class or interface being defined by the class

Page 210 of 280

202 Chapter Six

file. The name of the class or interface being defined, for example, is given
as a fully qualified name. For each field declared by the class or interface,
the constant pool contains a simple name and field descriptor. For each
method declared by the class or interface, the constant pool contains a
simple name and method descriptor.

Fully Qualified Names

Whenever constant pool entries refer to classes and interfaces, they give
the fully qualified name of the class or interface. In the class file, fully
qualified names have their dots replaced with slashes. For example, the
representation of the fully qualified name of java. lang. Object in the
class file is java/lang/Object. The fully qualified name of java. util.
Hash table in the class file is j ava/util/Hashtable.

Simple Names

The names of fields and methods appear in constant pool entries as sim­
ple (not fully qualified) names. For example, a constant pool entry that
refers to the String toString () method of class java .lang. Object
would give its method name as 11 toString 11 • A constant pool entry that
refers to the java. io. PrintStream out field of class java .lang.
System would specify the field name simply as 11 out 11 •

Descriptors

Symbolic references to fields and methods include a descriptor string, in
addition to a fully qualified class or interface name and a simple field or
method name. A field descriptor gives the field's type. A method descrip­
tor gives the method's return type and the number, types, and order of the
method's parameters.

Field and method descriptors are defined by the context-free grammar
shown as follows. Nonterminals of this grammar, such as FieldType, are
shown in italic font. Terminals, such as B or v, are shown in fixed-width
font. The asterisk character (*) stands for zero or more occurrences of the
item that precedes it placed side by side (with no intervening white
space).

Page 211 of 280

The Java Class File

FieldDescriptor:
FieldType

Componen tType:
FieldType

FieldType:
Base Type
ObjectType
ArrayType

BaseType:
B
c
D
F
I
J
s
z

ObjectType:
L<classname>;

ArrayType:
[ComponentType

MethodDescriptor:
(ParameterDescriptor*) ReturnDescriptor

ParameterDescriptor:
FieldType

ReturnDescriptor:
FieldType
v

The meaning of each of the BaseType terminals is shown in Table 6-5.
The v terminal represents methods that return void. Each of the eight
Base Type characters, the ReturnDescriptor v, the L and ; of ObjectType,
the [of ArrayType, and the (and) characters of MethodDescriptor are
all ASCII characters. (Except for the null character, each Unicode char­
acter that corresponds to an ASCII character is represented in UTF -8
form by that ASCII character.) The <classname> portion of an Object­
Type is a fully qualified name. This fully qualified name, like all fully qual­
ified names in the class file, appears with dots replaced by slashes.

Table 6-6 shows some examples of field descriptors, and Table 6-7
shows some examples of method descriptors. Note that the method
descriptors for instance methods do not include the hidden this para­
meter passed as the first argument to all instance methods. Rather, this
parameter is implicitly passed by all Java virtual machine instructions
that invoke instance methods.

A method descriptor can contain only as many parameters as will fit
into 255 words. The hidden this reference passed to instance methods
occupies one word, and any parameters of the primitive types long or
double occupy two words. Any other parameter occupies one word.

Page 212 of 280

204

Table 6-5

BaseType terminals

Table 6-6

Examples of field
descriptors. {The
this reference IS
never passed to
class methods,
because class
methods are not
Invoked on an
object.)

Table 6-7

Examples of
method descriptors

Terminal Type

B byte

c char

D double

F float

I int

J long

s short

z boolean

Descriptor

I

[[J

[Ljava/lang/Object;

Ljava/util/Hashtable;

[[[Z

Descriptor

()I

()Ljava/lang/String;

([Ljava/lang/String;)V

()V

(JI)V

(ZILjava/lang/String;II)Z

([BII) I

Chapter Six

Field Declarat1~J:l, ·· .·.

int i;

long[][] windingRoad;

java.lang.Object[] stuff;

java.util.Hashtable ht;

boolean[][][] isReady;

Method Deciaration

int getSize();

String toString();

void main(String[] args);

void wait()

void wait(long timeout, int nanos)

boolean regionMatches(boolean
ignoreCase, int toOffset, String
other, int ooffset, int len);

int read(byte[] b, int off, int len);

Page 213 of 280

The Java Class File 205

-

Table 6-8

General form of a
cp _info table

The Constant Pool
The constant pool is an ordered list ofvariable-length cp_info tables,

each of which follows the general form shown in Table 6-8. The tag item
of a cp _info table, an unsigned byte, indicates the table's variety and
format. cp_info tables come in 11 varieties, each of which is described
in detail in the following sections.

The CONSTANT_Utf8_info Table

The variable-length CONSTANT_UtfB_info table stores one constant
string value in a modified UTF -8 format. This table is used to store many
different kinds of strings, including the following:

II string literals that get instantiated as String objects

II the fully qualified name of the class or interface being defined

II the fully qualified name of the superclass (if any) of the class
being defined

II the fully qualified names of any superinterfaces of the class or
interface being defined

II the simple names and descriptors of any fields declared by the
class or interface

II the simple names and descriptors of any methods declared by the
class or interface

II fully qualified names of any referenced classes and interfaces

II simple names and descriptors of any referenced fields

II simple names and descriptors of any referenced methods

II strings associated with attributes

As you can see from this list, four basic kinds of information are stored
in CONSTANT_UtfB_info tables: string literals, descriptions of the class
or interface being defined, symbolic references to other classes and inter­
faces, and strings associated with attributes. Some examples of strings

ul tag 1

ul info depends on tag value

Page 214 of 280

Table 6-9

Format of a
CONSTANT Utf8
info table

Chapter Six

associated with attributes are as follows: the name of the attribute, the
name of the source file from which the class file was generated, and the
names and descriptors of local variables.

The UTF -8 encoding scheme permits all two-byte unicode characters
to be represented in a string but enables ASCII characters (except the null
character) to be represented by just one byte. Table 6-9 shows the format
of a CONSTANT Utf8 info table. - -

The items in the CONSTANT Utf8 info table are as follows:

tag

The tag item has the value CONSTANT_Utf8 (1).

length

The length item gives the length in bytes of the subsequent bytes
item.

bytes

The bytes item contains the characters of the string which are stored
in a modified UTF-8 format. Characters in the range 1 \u0001 1 through
1 \u007f 1 (all the ASCII characters except the null character) are repre­
sented by one byte:

byteO
7 6 5 4 3 2 1 0

l"~r1 6 l 5 l 4 l 3 1 2 1 1 l 0 l
The null character, 1 \uOOOO 1 , and the characters in the range

1 \uooso 1 through 1 \u07ff 1 are represented by two bytes:

byteO bytel
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Type Name Count

ul tag 1

u2 length 1

ul bytes length

Page 215 of 280

The Java Class File 207

Table 6-10

Format of a
CONSTANT
Integer_info
table

Characters in the range 1 \uoaoo 1 through 1 \uffff' are represented
by three bytes:

byteO byte I byte2
7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0

The encoding ofUTF-8 strings in the bytes item of CONSTANT_Utf8
_info tables differs from the standard UTF-8 format in two ways. First,
in the standard UTF -8 encoding scheme, the null character is repre­
sented by one byte. In a CONSTANT_Utf8_info table, null characters
are represented by two bytes. This two-byte encoding of nulls means that
the bytes item never contains any byte equal to zero. The second way
the bytes item of a CONSTANT_Utf8_info departs from the standard
UTF -8 encoding is that only one-, two-, and three-byte encodings are used
in the bytes item. The standard UTF-8 includes longer formats that are
not used in CONSTANT Utf8 info tables.

The CONSTANT_Integer_info Table

The fixed-length CONSTANT_Integer_info table stores a constant int
value. This table is used only to store int literals and is not used in sym­
bolic references. Table 6-10 shows the format of a CONSTANT_Integer_
info table.

The items in the CONSTANT_Integer_info table are as follows:

tag

The tag item has the value CONSTANT_Integer (3).

bytes

The bytes item contains the int value stored in big-endian order.

ul tag 1

u4 bytes 1

Page 216 of 280

Table 6-11

Format of a
CONSTANT
Float info
table

Table 6-12

Format of a
CONSTANT_Long_
info table

Chapter Six

The CONSTANT_Float_info Table

The fixed-length CONSTANT_Float_info table stores a constant float
value. This table is used only to store float literals and is not used in symbolic
references. Table 6-11 shows the format of a CONSTANT Float info table.

The items in the CONSTANT Float info table are as follows: - -
tag

The tag item has the value CONSTANT_ Float (4).

bytes

The bytes item contains the float value stored in big-endian order.
For the details of the representation of float in the Java class file, see
Chapter 14, "Floating Point Arithmetic."

The CONSTANT_Long_info Table

The fixed-length CONSTANT _Long_ info table stores a constant long value.
This table is only used to store long literals and is not used in symbolic ref­
erences. Table 6-12 shows the format of a CONSTANT_Long_info table.

As noted previously, a long occupies two slots in the constant pool
table. In the class file, a long entry is just followed by the next entry, but
the index of the next entry is two more than that of the long entry.

The items of the CONSTANT_Long_info table are as follows:

tag

The tag item has the value CONSTANT_ Long (5).

ul tag 1

u4 bytes 1

ul tag 1

us bytes 1

Page 217 of 280

The Java Class File 209

Table 6-13

Format of a
CONSTANT
Double info
table

bytes

The bytes item contains the long value stored in big-endian order.

The CONSTANT_Double_info Table

The fixed-length CONSTANT_ Double_ info table stores a constant double
value. This table is used only to store double literals and is not used in sym­
bolic references. Table 6-13 shows the format of a CONSTANT Double info
table.

As noted previously, a double occupies two slots in the constant pool
table. In the class file, a double entry is just followed by the next entry,
but the index of the next entry is two more than that of the double entry.

The items of the CONSTANT Double info table are as follows:

tag

The tag item has the value CONSTANT_Double (6).

bytes

The bytes item contains the double value stored in big-endian order.
For the details of the representation of double in the Java class file, see
Chapter 14, "Floating Point Arithmetic."

The CONSTANT_Class_info Table

The fixed-length CONSTANT_ Class _info table represents a class or inter­
face in symbolic references. All symbolic references, whether they refer to a
class, interface, field, or method, include a CONSTANT_ Class_ info table.
Table 6-14 shows the format of a CONSTANT Class info table. - -

The items in the CONSTANT Class info table are as follows:

tag

The tag item has the value CONSTANT_Class (7).

name index

The name_index item gives the index of a CONSTANT_Utf8_info
table that contains a fully qualified name of a class or interface.

ul tag 1

uB bytes 1

Page 218 of 280

Table 6-14

Format of a
CONSTANT
Class info
table

Table 6-15

Format of a
CONSTANT
String_ info
table

ul tag

u2 name_index

ul tag

u2 string_ index

1

1

1

1

Chapter Six

Because arrays are full-fledged objects in Java, CONSTANT_Class_
info tables can also represent array classes. The name_index item of
such a CONSTANT Class info table refers to a CONSTANT UtfB info - - - -
table that contains the array's descriptor, which serves _as the name of the
array class. For example, the class name for the double[] [] array type
is its descriptor, [[D. The class name for the net . j ini . core. lookup.
Servicertem[] [] [] arraytypeisitsdescriptor, [[[Lnet/jini/core/
lookup/Serviceitem;. Because a Java array can have no more than
255 dimensions, an array descriptor can have no more than 255 leading
[characters.

The CONSTANT_String_info Table

The fixed-length CONSTANT_String_info represents a literal string
value, which will be represented as an instance of class java. lang.
String. This table is only used to represent literal strings and is not used
in symbolic references. Table 6-15 shows the format of a CONSTANT_
String_info table.

The items of the CONSTANT_String_info table are as follows:

tag

The tag item has the value CONSTANT_String (8).

string_ index

The string_ index item gives the index of a CONSTANT_UtfB_info
entry that contains the value of the literal string.

Page 219 of 280

The Java Class File

Table 6-16

Format of a
CONSTANT
Fieldref info
table

ul

u2

u2

tag

class index

name_and_type_index

1

1

1

The CONSTANT_Fieldref_info Table

The fixed-length CONSTANT_Fieldref_info table represents a symbolic
reference to a field. Table 6-16 shows the format of a CONSTANT Fieldref
info table.

The items of the CONSTANT Fieldref info table are as follows:

tag

The tag item has the value CONSTANT_Fieldref (9).

class index

The class_index gives the index of the CONSTANT Class info
entry for the class or interface that declares the referenced field.

Note that the CONSTANT_Class_info specified by class_index
may represent an interface, not just a class. Although interfaces can
declare fields, those fields are by definition public, static, and final. As
mentioned in earlier chapters, class files do not contain symbolic refer­
ences to static final fields of other classes if those fields are initialized
with compile-time constants. Instead, class files contain a copy of the con­
stant value of any such static final fields it uses. For example, if a class
uses a static final field of type float that is declared in an interface
and is initialized to a compile-time constant, the class would have a
CONSTANT_Float_info table in its own constant pool that stores the
float value. But if the interface initialized its static final field with an
expression that can only be evaluated at run time, the class that uses the
field would have a CONSTANT_Fieldref_info table in its constant pool
that symbolically refers to the field in the interface. For more informa­
tion about this special treatment of static final fields, see Chapter 8, "The
Linking Model."

name_and_type_index

The name_and_type_index provides the index of a CONSTANT_
NameAndType _info entry that gives the field's simple name and descriptor.

Page 220 of 280

Table 6-17

Format of a
CONSTANT
Methodref info
table

Chapter Six

The CONSTANT_Methodref_info Table

The fixed-length CONSTANT_Methodref_info table represents a sym­
bolic reference to a method declared in a class (not in an interface). Table
6-17 shows the format of a CONSTANT Methodref info table.

The items of the CONSTANT Methodref info table are as follows:

tag

The tag item has the value CONSTANT_Methodref (10).

class index

The class_ index gives the index of a CONSTANT_ Class_ info entry for
the class that declares the referenced method. The CONSTANT Class info
table specified by class_ index must be a class and not an interface.
Symbolic references to methods declared in interfaces use CONSTANT_
InterfaceMethodref.

name_and_type_index

The name_and_type_index gives the index of a CONSTANT
NameAndType_info entry that gives the method's simple name and
descriptor. If the method's simple name begins with a < character
(

1 \u003c 1
), the method must be an instance initialization method. Its

simple name must be <init>, and its return type must be void. Oth­
erwise, the method name must be a valid Java programming language
identifier.

The CONSTANT_InterfaceMethodref_info Table

The fixed-length CONSTANT_InterfaceMethodref_info table is a
symbolic reference to a method declared in an interface (not in a class).
The format of a CONSTANT InterfaceMethodref info table is
shown in Table 6-18.

The items in the CONSTANT_InterfaceMethodref_info table are as
follows:

ul tag 1

u2 class index 1

u2 name_and_type_index 1

Page 221 of 280

The Java Class File 213

Table 6-18

Format of a
CONSTANT Inter
faceMethodref
info table

Table 6-19

Format of a
CONSTANT
NameAndType_
info table

ul

u2

u2

ul

u2

u2

tag

tag

class_index

name_and_type_index

tag

name_index

descriptor_index

1

1

1

1

1

1

The tag item has the value CONSTANT_InterfaceMethodref (11).

class index

The class_ index gives the index of a CONSTANT_ Class_ info entry for
the interface that declares the referenced method. The CONSTANT Class
info table specified by class index must be an interface and not a class.
Symbolic references to methods declared in classes use CONSTANT_ Methodref.

name_and_type_index

The name_and_type_index provides the index of a CONSTANT_
NameAndType_info entry that gives the method's simple name and
descriptor.

The CONSTANT_NameAndType_info Table

The fixed-length CONSTANT_ NameAndType _info table forms part of a sym­
bolic reference to a field or method. This table gives constant pool entries of
the simple name and the descriptor of the referenced field or method. Table
6-19 shows the format of a CONSTANT_ NameAndType _ info table.

The items of the CONSTANT_NameAndType_info table are as follows:

Page 222 of 280

L£14

Table 6-20

Format of a
field info
table

Chapter Six

tag

The tag item has the value CONSTANT_ NameAndType (12).

name index

The name_index gives the index of a CONSTANT_Utf8_info entry
that gives the name of the field or method. The name must be either a
valid Java programming language identifier or < ini t >.

descriptor_index

The descriptor_index gives the index of a CONSTANT_Utf8_info
entry that holds the descriptor of the field or method. The descriptor must
be a valid field or method descriptor.

Fields
Each field (class variable and instance variable) declared in a class or inter­
face is described by a variable-length field_ info table in the class file.
No two fields in the same class file can have the same name and descrip­
tor. (Note that although no two fields declared in the same class or inter­
face can have the same name in the Java programming language, two fields
can have the same name in the class file--as long as the descriptor is dif­
ferent. In other words, although you cannot declare two fields with the
same name but different types in the same class or interface in the Java
language, two such fields can legally appear in the same Java class file.)
The format of the field info table is shown in Table 6-20.

The items in the field info table are as follows:

access_flags

The modifiers used in declaring the field are placed into the field's
access_flags item. Table 6-21 shows the bits used by each flag.

u2 access_flags 1

u2 name index 1 -

u2 descriptor_index 1

u2 attributes count 1 -

attribute info attributes attributes count - -

Page 223 of 280

The Java Class File

Table 6-21

Flags in the
access
flags item of
field info
tables

ACC PUBLIC OxOOOl Field is public Classes and interfaces

ACC PRIVATE Ox0002 Field is private Classes only

ACC PROTECTED Ox0004 Field is protected Classes only

ACC_STATIC Ox0008 Field is static Classes and interfaces

ACC FINAL OxOOlO Field is final Classes and interfaces

ACC VOLATILE Ox0040 Field is volatile Classes only

ACC TRANSIENT Ox0080 Field is transient Classes only

For fields declared in a class (not an interface), one of ACC_PUBLIC,
ACC_PRIVATE, and ACC_PROTECTED may be set (at most). ACC_FINAL
and ACC VOLATILE must not both be set. All fields declared in interfaces
must have (and can only have) the ACC_PUBLIC, ACC_STATIC, and
ACC_FINAL flags set.

All unused bits in access_flags must be set to zero and ignored by
Java virtual machine implementations.

name index

The name_index gives the index of a CONSTANT_Utf8_info entry
that gives the simple (not fully qualified) name of the field. Each field
name in a class file must be a valid field name in the Java programming
language.

descriptor_index

The descriptor_index gives the index of a CONSTANT_Utf8_info
entry that gives the descriptor of the field.

attributes count and attributes

The attributes item is a list of attribute info tables. The
attributes count indicates the number of attribute info tables in - -
the list. A field can have any number of attributes in its list. Three kinds
of attributes defined by the Java virtual machine specification that may
appear in this item are ConstantValue, Deprecated, and Synthetic.
These three attributes are described in detail later in this chapter. The
only field attribute that Java virtual machine implementations are
required to recognize is the ConstantValue attribute. Implementations
must ignore any attributes they do not recognize.

Page 224 of 280

21 6 Chapter Six

-Methods

Table 6-22

Format of a
method info
table

Each method declared in a class or interface or generated by the compiler
is described in the class file by a variable-length method_info table. No
two methods in the same class file can have the same name and descrip­
tor. Note that although no two methods declared in the same class or inter­
face in the Java programming language can have the same signature (the
descriptor minus the return type), two methods can have the same signa­
ture in the class file so long as the descriptor is different. In other words,
when in the same class in a Java source file, if you try to declare two meth­
ods with the same name and number and types of parameters but differ­
ent return types, the program will not compile. In the Java programming
language, you cannot overload methods by varying only the return type.
Two such methods can coexist happily in a Java class file, however.

The two types of compiler-generated methods that may appear in class
files are instance initialization methods (named < ini t >) and class and
interface initialization methods (named <clinit>). For more information
on the compiler-generated methods, see Chapter 7, "The Lifetime of a
Class." The format ofthe method_info table is shown in Table 6-22.

The items in the method_info table are as follows:

access_flags

The modifiers used in declaring the method are placed into the
method's access_flags item. Table 6-23 shows the bits used by each
flag. The ACC _STRICT flag was added in 1.2 and indicates that all expres­
sions in the method should be evaluated in FP-strict mode. FP-strict mode
is described in detail in Chapter 14, "Floating-Point Arithmetic."

For methods declared in a class (not an interface), one of ACC _PUBLIc,
ACC _PRIVATE, and ACC _PROTECTED may be set (at most). If a method's
ACC_ABSTRACT flag is set, then its ACC_PRIVATE, ACC_STATIC,
ACC_FINAL,ACC_SYNCHRONIZED,ACC_NATIVE,andACC_STRICTflags
must not be set. All methods declared in interfaces must have their

u2 access_flags 1

u2 name index 1 -

u2 descriptor_index 1

u2 attributes count 1 -

attribute info attributes attributes count - -

I

__L
Page 225 of 280

The Java Class File 21

Table 6-23

Flags in the
access_flags
item of
method info
tables

ACC PUBLIC OxOOOl

ACC PRIVATE Ox0002

ACC PROTECTED Ox0004

ACC STATIC OxOOOB

ACC FINAL Ox0010

ACC_SYNCHRONIZED Ox0020

ACC_NATIVE OxOlOO

ACC ABSTRACT Ox0400

ACC STRICT OxOBOO

Method is public

Method is private

Method is protected

Method is static

Method is final

Method is synchronized

Method is native

Method is abstract

Method is strict FP

Classes and all
methods of interfaces

Classes only

Classes only

Classes only

Classes only

Classes only

Classes only

Classes and all
methods of interfaces

Classes and the
<clinit> method
of interfaces

ACC_PUBLIC and ACC_ABSTRACT flags set. Interface methods may have
no other flags set, except for the interface initialization (<clinit>)
method, which may have its ACC_STRICT flag set.

Instance initialization (< ini t >) methods may only use flags ACC _
PUBLIC, ACC _PRIVATE, and ACC _PROTECTED. Because class and interface
initialization (< c l ini t >) methods are invoked by the Java virtual machine
and never directly by Java bytecodes, the bits of the access_flags for
<clinit> methods-except for ACC_STRICT-are ignored.

All unused bits in access_flags must be set to zero and ignored by
Java virtual machine implementations.

name index

The name_ index gives the index of a CONSTANT_UtfB_info entry
that gives the simple (not fully qualified) name of the method. The name
must be either <init>, <clinit>, or a valid method name (simple, not
fully qualified) in the Java programming language.

descriptor_index

The descriptor_index gives the index of a CONSTANT_UtfB_info
entry that gives the descriptor of the method.

attributes count and attributes

The attributes item is a list of attribute info tables. The
attributes count indicates the number of attribute_info tables in

Page 226 of 280

Table 6-24

Types of
attribute info
tables defined by
the specification

Chapter Six

the list. A field can have any number of attributes in its list. Four kinds
of attributes defined by the Java virtual machine specification that may
appear in this item are Code, Deprecated, Exceptions, and Synthetic.
These four attributes are described in detail later in this chapter. The only
method attributes that Java virtual machine implementations are required
to recognize are the Code and Exceptions attributes. Implementations
must ignore any attributes they do not recognize.

Attributes
As mentioned previously, attributes appear in several places inside a Java
class file. They can appear in the ClassFile, field_info, method_
info, and Code_attribute tables. The Code_attribute table, an
attribute itself, is described later in this section.

The Java virtual machine specification defines nine types of attributes,
which are shown in Table 6-24. To correctly interpret Java class files, all
Java virtual machine implementations must recognize three of these attrib­
utes: Code, ConstantValue, and Exceptions. To properly implement the
Java and Java 2 platform class libraries, implementations must recognize
InnerClasses and Synthetic attributes. Implementations can choose
whether to recognize or ignore the other predefined attributes. (The

Name.

Code

ConstantValue

Deprecated

Exceptions

InnerClasses

LineNumberTable

LocalVariableTable

SourceFile

Synthetic

·· .. Us~dB~

method_info

field info

field_info,
method info

method info

ClassFile

Code attribute

Code attribute

ClassFile

field_info,
method info

Descrtpli()~

The bytecodes and other data for
one method

The value of a final variable

An indicator that a field or method
has been deprecated

The checked exceptions that a
method may throw

A list of inner and outer classes

A mapping of line numbers to
bytecodes for one method

A description of the local variables
for one method

The name of the source file

An indicator that a field or method
was generated by the compiler

Page 227 of 280

The Java Class File

Table 6-25

Format of an
attribute info
table

u2 attribute_name_index 1

u4 attribute_length 1

ul info attribute_length

Deprecated, InnerClasses, and Synthetic attributes were added in
Java 1.1.) All of these predefined attributes are described in detail later in
this chapter.

Anyone (besides Sun) who wishes to add a new attribute to a Java class
file must follow these two rules:

1. Any attribute that is not predefined by the specification must not
affect the semantics of class or interface types. New attributes can
only add more information to the class file, such as information
used during debugging.

2. The attribute must be named using the reverse Internet domain
name scheme that is defined for package naming in the Java Lan­
guage Specification. For example, if you had the Internet domain
name artima. com and you wished to create a new attribute
named CompilerVersion, you would name the attribute
com.artima.CompilerVersion.

Attribute Format

Every attribute follows the same general format of the variable-length
attribute_info table, shown in Table 6-25. The first two bytes of an
attribute, the attribute_name_index, form an index into the constant
pool of a CONSTANT_Utf8_info table that contains the string name of the
attribute. Each at tribute_ info, therefore, identifies its "type" by the first
item in its table, much like the way cp info tables identify their type by the
initial tag byte. The difference is that whereas the type of a cp _info table
is indicated by an unsigned byte value, such as 3 (CONSTANT_Integer_
info), the type of an attribute_info table is indicated by a string.

Following the attribute_name_index is a four-byte attribute_
length item, which gives the length ofthe entire attribute_info table
minus the initial six bytes. (The attribute_length item can be zero.)
This length is necessary, because anyone following certain rules (outlined
below) is allowed to add attributes to a Java class file. Java virtual
machine implementations are allowed to recognize new attributes.
Implementations must ignore any attributes they do not recognize. The

Page 228 of 280

2

Table 6-26

Format of a
Code attribute
table

Chapter Six

attribute_length enables virtual machines to skip unrecognized
attributes as they parse the class file.

The items of the attribute info table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT_Utf8_info entry that contains the name of the attribute.

attribute_length

The attribute_length item indicates the length (in bytes) of the
attribute data, excluding the initial six bytes that contain the at tribute_
name_index and attribute_ length.

info

The info item contains the attribute data.

The Code Attribute

The variable-length Code_attribute table defines the bytecode sequence
and other information for a method. One Code_attribute table appears in
the method_ info table of every method that is not abstract or native. The
format of a Code attribute table is shown in Table 6-26.

The items of the Code attribute table are as follows:

u2 attribute name index

u4 attribute_length

u2 max stack

u2 max_locals

u4 code_length

ul code

u2 exception_table_length

exception_info exception_table

u2 attributes count

attribute_info attributes

1

1

1

1

1

code_length

1

exception_table_length

1

attributes_count

Page 229 of 280

The Java Class File

attribute name index

The at tribute_ name_ index item gives the index in the constant pool
of a CONSTANT_UtfB_info entry that contains the string "Code".

attribute_length

The attribute_length item gives the length in bytes of the Code
attribute excluding the initial six bytes that contain the attribute_
name_index and attribute_length items.

max stack

The max_stack item gives the maximum number ofwords that will be
on the operand stack of this method at any point during its execution.

max locals

The max_ locals item gives the number ofwords in the local variables
that are required by this method. The virtual machine must allocate an
array of local variables of length max_locals whenever it invokes the
method being described by this Code attribute. This array will be used to
store parameters passed to the method and local variables used by the
method. The maximum valid local variable index for a value of type long
or double is max locals-2. The maximum valid local variable index for
a value of any other type is max_locals-1.

code_length and code

The code _length item gives the length (in bytes) of the bytecode
stream for this method. The bytecodes themselves appear in the code
item. The value of code_length must be greater than zero.

exception_table_length and exception_ table

The exception_table item is a list of exception_info tables. Each
exception_ info table describes one exception table entry. The exception_
table_length item gives the number of exception_info tables that
appear in the exception_table list. The order in which the exception_
info tables appear in the list is the order in which the Java virtual machine
will check for a matching exception handler (catch clause) if an exception is
thrown while this method executes. The format of an exception_ info table
is shown in Table 6-27 and is described in the next section, ''The exception_
info Table." For more information about exception tables, see Chapter 17,
''Exceptions."

attributes count and attributes

The attributes item is a list of attribute info tables. The
attributes count indicates the number of attribute info tables in

Page 230 of 280

222

Table 6-27

Format of an
exception_info
table

Chapter Six

u2 start_pc 1

u2 end_pc 1

u2 handler_pc 1

u2 catch_type 1

the list. The two kinds of attributes defined by the Java virtual machine
specification that may appear in this item are LineNumberTable and
Local VariableTable. These two attributes are described in detail later
in this chapter. Java virtual machine implementations are permitted to
ignore any attributes in the attributes item of the Code attribute and
are required to ignore any they do not recognize.

The exception_info Table The fixed-length exception_info table de­
scribes one exception table entry. This table appears in the Code attribute's
exception _info item, which is composed of a list of exception _info ta­
bles. The format of the exception_info table is shown in Table 6-27. For
more information about exception tables, see Chapter 17, "Exceptions."

The items in the exception_info table are as follows:

start_pc

The start_pc item gives the offset from the beginning of the code
array for the beginning of the range covered by this exception handler.

end_pc

The end_pc item gives the offset from the beginning of the code array
for one byte past the end of the range covered by this exception handler.

handler_pc

The handler_pc item gives the offset from the beginning of the code
array for the instruction to jump to the first instruction of the exception
handler-if a thrown exception is caught by this entry.

catch_type

The catch_type item gives the constant pool index of a CONSTANT_
Class_ info entry for the type of exception caught by this exception han­
dler. The CONSTANT_Class_info entry must represent class java.
lang. Throwable or one of its subclasses.

Page 231 of 280

The Java Class File

Table 6-28

Format of a
ConstantValue
attribute table

If the value of catch_type is zero (which is not a valid index into the
constant pool, because the constant pool starts at index one), the excep­
tion handler handles all exceptions. A catch_type of zero is used to
implement finally clauses. See Chapter 18, "Finally Clauses," for more
information about how finally clauses are implemented.

The Constant Value Attribute

The fixed-length ConstantValue attribute appears in field_info
tables for fields that have a constant value. At most, one ConstantVal ue
attribute may appear in the attributes item of a given field_info
table. In the access_flags of a field_info table which includes a
ConstantValue attribute, the ACC_STATIC flag must be set. The ACC_
FINAL flag may also be set, although this action is not required. When the
virtual machine initializes a field that has a ConstantValue attribute,
it assigns the constant value to the field. This assignment occurs imme­
diately before the virtual machine invokes the class or interface initial­
ization method for the class or interface in which the field is declared. The
format of a ConstantValue attribute table is shown in Table 6-28.

The items of the ConstantValue attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT UtfB info entry that contains the string "Constant­
Value".

attribute_length

The attribute_length item of a ConstantValue_attribute is
always 2.

constantvalue index

The constantvalue_index item gives the index in the constant pool
of an entry that gives a constant value. Table 6-29 shows the type of entry
for each type of field.

u2 attribute_name_index 1

u4 attribute_length 1

u2 constantvalue index 1

Page 232 of 280

Table 6-29

Constant pool
entry types for
constant value
attributes

Table 6-30

Format of a
Deprecated_
attribute table

Chapter Six

byte,short,char,int,boolean CONSTANT_Integer_info

long CONSTANT_Long_info

float CONSTANT Float info - -

double CONSTANT Double info - -

java.lang.String CONSTANT_String_info

u2 attribute name index 1

u4 attribute_length 1

The Deprecated Attribute

The fixed-length Deprecated attribute, which may optionally appear in the
attributes items of field_info, method_info, and ClassFile tables,
indicates that a field, method, or type has been deprecated. (Deprecated
means that although the field, method, or type still exists and functions as
expected, programmers are encouraged not to use that approach. Rather, pro­
grammers are encouraged to use some other preferred field, method, type, or
approach, instead of using the deprecated item.) A compiler, virtual machine,
or any other tool that reads class files can use the Deprecated attribute to
notify the programmer that the program is using a deprecated field, method,
or type. The Deprecated attribute was added in Java 1.1 to support the
®deprecated tag in documentation comments used by the javadoc tool.
The format of a Deprecated_attribute is shown in Table 6-30.

The items of the Deprecated_attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT_UtfB_info entry that contains the string "Deprecated".

attribute_length

The attribute_length must be zero.

Page 233 of 280

The Java Class File

Table 6-31

Format of an
Exceptions_
attribute table

u2 attribute name index 1

u4 attribute_length 1

u2 number_of_exceptions 1

u2 exception_index_table number_of_exceptions

The Exceptions Attribute

The variable-length Exceptions attribute lists the checked exceptions that
a method may throw. One Exceptions_attribute table appears in the
method_info table of every method that may throw checked exceptions.
The format of an Exceptions_attribute table is shown in Table 6-31.

A method should only throw an exception if it is an instance or subclass
of either RuntimeException, Error, or one ofthe exceptions listed in the
method's Exceptions attribute. Although this rule should be enforced by
Java compilers, it is not enforced by Java virtual machines. Thus, the Excep­
tions attribute exists in the Java class file for the benefit of Java compilers.

The items of the Exceptions_attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT_Utf8_info entry that contains the string, "Exceptions".

attribute_length

The attribute_length item provides the length (in bytes) of the
Exceptions_attribute, excluding the initial six bytes that contain the
attribute_name_index and attribute_length items.

number_of_exceptions and exception_index_table

The exception_index_table is an array ofindexes into the constant
pool ofCONSTANT_Class_info entries for the exceptions declared in this
method's throws clause. In other words, the exception_index_table
lists all the checked exceptions in which this method may throw. The num­
ber_of_exceptions item indicates the number of indexes in the array.

The InnerClasses Attribute

The variable-length InnerClasses attribute describes the names, access
flags, and enclosing types of any nested types that are declared as members

Page 234 of 280

226

Table 6-32

Format of an
InnerClasses
attribute table

Chapter Six

of, or are otherwise mentioned by, a class or interface. (A nested type is a type
that is not a member of a package, but rather is a member of a class or inter­
face.) If the code of a class or interface refers to a nested type, the constant
pool oftliat class or interface will contain a CONSTANT_Class_info entry
for that nested type. The constant pool must also contain a CONSTANT_
Class_ info entry for each nested type (if any) that is declared as an imme­
diate member of a class or interface-even if the class or interface would not
ot~erwise mention the nested type. If the constant pool of a class or inter­
face contains any CONSTANT_ Class_ info entries for nested types, the class
file for that class or interface must contain one InnerClasses attribute
table in the attributes item of its ClassFile table. The format of an
InnerClasses attribute table is shown in Table 6-32.

The Java virtual machine does not currently verifY that class files rep­
resenting types mentioned by an InnerClasses_attribute table are
consistent with the InnerClasses attribute.

The items of an InnerClasses attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of a
CONSTANT_Utf8_info entry that contains the string "InnerClasses".

attribute_length

The attribute_length item gives the length of the InnerClasses_
attribute in bytes, excluding the initial six bytes that contain the
attribute_name_index and attribute_length items.

number of classes and classes

The classes item is an array of inner_class_info tables. The
number_of_classes gives the number of inner_class_info tables
that appear in the classes array. The format of the inner_ class_ info
table is shown in Table 6-33 and is described in the next section, "The
inner_class_info Table."

The classes item of the InnerClasses attribute contains one
inner class info table for each nested class mentioned in a CONSTANT - - -

u2 attribute_name_index

u4 attribute_length

u2 number_of_classes

inner_classes_info classes

1

1

1

number_of_classes

Page 235 of 280

The Java Class File 227

Table 6-33

Format of an
inner class
info table

u2 inner class info index - - -

u2 outer_class_info_index

u2 inner_name_index

u2 inner_class_access_flags

1

1

1

1

Class_info entcyofthe constant pool. Because a CONSTANT_ Class_info
entcy must appear in an enclosing type's constant pool for each nested type
declared as an immediate member of that enclosing type, the classes item
of the enclosing type's InnerClasses attribute will definitely contain an
inner_class_info table for each nested type declared as an immediate
member of the enclosing type.

For example, if class Rain, class Snow, and interface Wet are declared as
members of class Weather, the InnerClasses attribute for Weather will
definitely contain an inner_class_info table for Rain, Snow, and Wet.
Likewise, if class Thunder is declared as a member of class Rain (which is
declared inside Weather), the InnerClasses attribute for Rain will defi­
nitely contain an inner_class_info table for Thunder. An inner_
class_info table for class Thunder may also appear in Weather's
InnerClasses attribute, but not necessarily. Because Thunder is not
declared as a member of Weather, Thunder will appear in Weather's
InnerClasses attribute only ifWeather's code explicitly refers to Thunder.

In addition to mentioning all nested types declared as members, the
InnerClasses attribute will mention all enclosing classes of a nested type.
All types always mention themselves in their own constant pool, in the
CONSTANT_Class_info entcy referred to by the this_class item of their
ClassFile table. Thus, if the type being defined by a class file is a nested type
(not a member of a package, but a member of some other class or interface),
the type being defined will appear in its own InnerClasses attribute.
Because the outer class info index item of the inner class info - - - - -
table for a given nested type refers to the enclosing type of that nested type,
the InnerClasses attribute in the class file that defines a nested type will
include an inner_ class_ info table for all of its enclosing types.

For example, if class Thunder is declared as a member of class Rain, class
Rain as a member of class Weather, and class Weather as a member of a
package, the InnerClasses attribute for class Thunder will definitely
include inner_class_info tables for both of its enclosing types, Rain and
Weather. Similarly, the InnerClasses attribute for class Rain will defi­
nitely include an inner_class_info table for its enclosing type, Weather.

Page 236 of 280

Chapter Six

The inner_class_info Table The fixed-length inner_class_info
table, which is contained in the classes item of an InnerClasses at­
tribute, provides information about a type that is either a nested type it­
self or is a type in which at least one other type is declared as a member.
(In other words, each inner_class_ info table describes a type that
is either a nested type, an enclosing type, or both.) The format of the
inner class info table is shown in Table 6-33.

The items of the inner class info table are as follows:

inner class info index

The inner_class_info_index gives an index into the constant pool
for the CONSTANT_Class_info entry that represents the nested class
described by this inner_class_info table.

outer class info index

The outer_class_info_index gives an index into the constant pool
for the CONSTANT_Class_info entry (ofthe type in which a nested type
described by this inner_class_info table is declared as a member).
If this inner_ class_ info table does not describe a nested type, the
outer class info index must be zero. inner class info tables

- - - - -
may describe types that are not nested (in other words, types that are
declared as members of a package), because enclosing types are also men­
tioned in the InnerClasses attribute. The outermost enclosing type of
any nested type will always be a member of a package.

For example, if class Rain is declared as a member of class Weather,
and class Weather is declared as a member of a package, class Rain's
InnerClasses attribute will include an inner class info table for
Weather. Because Weather is declared as a member of a package, its
outer class info index will be zero.

inner name index

Unless this inner_class_info table describes an anonymous inner
class, the inner_ name _index gives an index in the constant pool for a
CONSTANT_Utf8_info entry that gives the simple name of the type
described by this inner_class_info table. If this inner_class_info
table describes an anonymous inner class, the inner_ name _index will
be zero.

Note that for any type described by an inner_class_info table, you
can always obtain the name of the type by conducting a two-step lookup
process: First, follow the inner_class_info_index to a CONSTANT_
Class_info entry for the type. Then, follow CONSTANT_Class_info
entry's name_ index item to a CONSTANT_ Ut f 8 _info entry that gives the

Page 237 of 280

The Java Class File

Table 6-34

Flag bits in the
inner class
access_flags
item of
inner class
info tables

simple name of the type. For anonymous inner classes, this two-step
lookup process will yield the name given to the anonymous inner class
by the compiler. For any other (non-anonymous) type described by an
inner_class_info table, the two-step lookup process will yield the
same name referred to by the inner_ name_ index. The inner_ name_
index, therefore, is not strictly needed for getting at the name of a type
described by a inner_class_info table. Rather, the inner_name_
index serves primarily to differentiate those types that started out as
anonymous inner classes in the source code (whose names were generated
by a compiler) from non-anonymous types (whose names were typed into
the source code by a programmer).

inner_class_access_flags

The inner_class_access_flags item gives the access flags for the
inner class. Compilers use these flags to recover information about the
declaration of nested classes when the original source code is not avail­
able. The flags used in this item are shown in Table 6-34. All unused bits
in inner_class_access_flags must be set to zero by compilers and
ignored by Java virtual machine implementations.

The LineNumberTable Attribute

The variable-length LineNumberTable attribute maps offsets in a method's
bytecode stream to line numbers in the source file. One LineNumberTable _
attribute table may appear (it is optional) in the attributes component of
Code attribute tables. The format of a LineNumberTable attribute
table is shown in Table 6-35.

ACC PUBLIC OxOOOl Marked or implicitly public in the source

ACC PRIVATE Ox0002 Marked private in the source

ACC PROTECTED Ox0004 Marked protected in the source

ACC STATIC Ox0008 Marked or implicitly static in the source

ACC FINAL OxOOlO Marked final in the source

ACC INTERFACE Ox0200 Was an interface in the source

ACC_ABSTRACT Ox0400 Marked or implicitly abstract in the source

Page 238 of 280

Table 6-35

Format of a
LineNumber­
Table
attribute table

Chapter Six

u2 attribute_name_index 1

u4 attribute_length 1

u2 line_number_table_length 1

line number info line number table line number table - - - - - - -
length

The items of the LineNumberTable attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT_UtfB_info entry that contains the string "Line_Number_
Table".

attribute_length

The attribute_length item provides the length (in bytes) of the
LineNumberTable_attribute, excluding the initial six bytes that con­
tain the attribute_name_index and attribute_length items.

line_number_table_length and line_number_table

The line_number_table item is an array of line_number_info
tables. The line_number_table_length gives the number of line_
number_ info tables that appear in the 1 ine _number_ table array. The
tables in this array may appear in any order, and there may be more than
one table for the same line number. The format of a line number info
is shown in Table 6-36 and is described in the next section.

The line_number_info Table The fixed-length line_number_
info table, which is contained in the line_number_table item of a
LineNumberTable_attribute table, relates one source code line num­
ber to an instruction in the bytecode array which corresponds to the
beginning of the compiled form ofthat line of source code. The format of
a line number info is shown in Table 6-36. - -

The items of the line number info table are as follows:

start_pc

The start _pc item gives an offset from the beginning of the code array
where a new line begins. The value of start_pc must be less than the
value of the code _length item found in the Code attribute to which this
LineNumberTable attribute belongs.

Page 239 of 280

The Java Class File 231

Table 6-36

Format of a
line number
info table

Table 6-37

Format of a
Local Variable­
Table
attribute table

u2 start_pc

u2 line number

u2

u4

u2

local variable info - -

line number

1

1

attribute_name_index

attribute_length

local_variable_table_
length

local_ variable_ table

1

1

1

local_variable_
table_length

The 1 ine _number item gives the line number of the line that begins
at start_pc.

The LocalVariableTable Attribute

The variable-length Local VariableTable attribute maps words in the
local variables portion of the method's stack frame to names and descrip­
tors of local variables in the source code. One Local VariableTable
attribute table may appear (but is optional) in the attributes compo­
nent of Code at tribute tables. The format of a Local VariableTable
attribute table is shown in Table 6-37.

The items in the LocalVariableTable attribute table are as
follows:

attribute name index - -
The attribute_name_index gives the index in the constant pool of a

CONSTANT_Utf8_info entry that contains the string "Localattribute_
length".

The attribute_length item gives the length (in bytes) of the
Local VariableTable_attribute, excluding the initial six bytes that
contain the attribute_name_index and attribute_length items.

Page 240 of 280

Table 6-38

Format of a
local
variable info
table

Chapter Six

local_variable_table_length and local_ variable_ table

The local_ variable_table item is an array of local_ variable_
info tables. The local_ variable_table_length gives the number of
local_variable_info tables that appear in the local_variable_
table array. The format of a local_variable_info table is shown in
Table 6-38 and is described in the next section.

The local_variable_info Table The fixed-length local_variable_
info table, which is contained in the local_variable_table item of a
LocalVariableTable_attribute table, relates one source code local
variable name and type to its scope in the bytecode array and index in
the local variables of the stack frame. The format of a local variable - -
info is shown in Table 6-38.

The items in the local variable info table are as follows:

start_pc and length

The start_pc item gives an offset in the code array ofthe start of an
instruction. The length item gives the length of the range of code that
starts with start_pc for which a local variable is valid. The byte at off­
set start _pc + length from the beginning of the code array must either
be the first byte of an instruction or the first byte past the end of the code
array.

name index

The name_ index item gives an index in the constant pool of a
CONSTANT_Utf8_info entry for the name of the local variable.

descriptor_index

The descriptor_index item gives an index in the constant pool of a
CONSTANT_Utf8_info entry that contains the descriptor for this local
variable. (A local variable descriptor adheres to the same grammar as a
field descriptor.)

u2 start_pc 1

u2 length 1

u2 name index 1

u2 descriptor_index 1

u2 index 1

Page 241 of 280

The Java Class File 233

Table 6-39

Format of a
SourceFile
attribute table

index

The index item gives the index in the local variable portion of this
method's stack frame, where the data for this local variable is kept as the
method executes. If the local variable is of type long or double, the data
occupies two words at positions index and index + 1. Otherwise, the
data occupies one word at position index.

The SourceFile Attribute

The fixed-length SourceF:lle attribute, which may optionally appear in
the attributes component of a ClassFile table, gives the name of the
source file from which the class file was generated. No more than one
SourceFile_attribute table can appear in the attributes table of a
ClassFile table. The format of a SourceFile attribute table is
shown in Table 6-39.

The items of the SourceFile attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT_Utf8_info entry that contains the string "SourceFile".

attribute_length

The attribute_length item of a SourceFile_attribute is always
two.

sourcefile index

The sourcefile_index item gives the index in the constant pool of
a CONSTANT_ Ut f 8 _info entry that contains the name of the source file.
The source file name never includes a directory path.

u2 attribute name index

u4 attribute_length

u2 sourcefile index

1

1

1

Page 242 of 280

I I
~

Table 6-40

Format of a
Synthetic_
attribute table

Chapter Six

The Synthetic Attribute

The fixed-length Synthetic attribute, which may optionally appear in the
attributes items of field_info, method_info, and ClassFile tables,
indicates that a field, method, or type was generated by the compiler. A class
member that does not appear in the source code must be marked with a
Synthetic attribute. The Synthetic attribute was added in Java 1.1 to sup­
port nested classes. The format of a Synthetic_ at tribute is shown in Table
6-40.

The items in the Synthetic_attribute table are as follows:

attribute name index

The attribute_name_index gives the index in the constant pool of
a CONSTANT_Utf8_info entry that contains the string "Synthetic".

attribute_length

The attribute_length must be zero.

Getting Loaded: A Simulation
The Getting Loaded applet, shown in Figure 6-3, simulates a Java virtual
machine loading a class file. The class file being loaded in the simulation was
generated by the 1.1 j avac compiler from the following Java source code.
Although the snippet of code used in the simulation may not be useful in the
real world, it does compile to a real class file and provides a reasonably simple
example of the class-file format. This class is the same one used in the Eternal
Math simulation applet described in Chapter 5, ''The Java Virtual Machine."

II On CD-ROM in file classfilelexliAct.java
class Act {

}

u2

u4

public static void doMathForever() {
int I = 0;
for (;;) {

I += 1;
I *= 2;

}
}

attribute name index 1

attribute_length 1

Page 243 of 280

The Java Class File 235

---­Figure 6-3
The Getting Loaded
applet

: Applet V1ewe1 Gettlngloaded class 11!!1~ 13
Applet

GETTING LOADED

Step 24. doMathForeverO's Access Flags, Name Index, and Descnptor Index

0009
OOOF
0005

15
5

access_flags
name_index
descnptor _mdex

This is the beginning of the array of method_mfo tables that
immediately follows the methods_count. The first method_info table,
methods[O], g1ves mformat1on about the doMathForeverO method The
second method_ info table, methods[1], gives information about the
ActO constructor.

The first three parts of methods[O[are shown here access_flags

;.Step··.

Back I JVM I 0009000F00050001 00090000003000020001 OOOOOOOC033B8400011AO I Server I
Reset

The Getting Loaded applet enables you to drive the class load simula­
tion one step at a time. For each step along the way, you can read about
the next chunk of bytes that is about to be consumed and interpreted by
the Java virtual machine. Just press the "Step" button to cause the Java
virtual machine to consume the next chunk. Pressing "Back" will undo the
previous step, and pressing "Reset" will return the simulation to its orig­
inal state, enabling you to start over.

The Java virtual machine is shown at the bottom left-hand side as it
consumes the stream of bytes that makes up the class file Act. class.
The bytes are shown in hex streaming out of a server on the bottom right­
hand side. The bytes travel right to left, between the server and the Java
virtual machine, one chunk at a time. The chunk of bytes to be consumed
by the Java virtual machine on the next "Step" button press are shown in
red. These highlighted bytes are described in the large text area above the
Java virtual machine. Any remaining bytes beyond the next chunk are
shown in black.

As mentioned in previous sections, many items in the class file refer to
constant pool entries. To make it easier for you to look up constant pool
entries as you step through the simulation, a list of the contents of Act's
constant pool is shown in Table 6-41.

Each chunk of bytes is fully explained in the text area. Because there
is a lot of detail in the text area, you may wish to skim through all the
steps first to get the general idea, then look back for more details.

Page 244 of 280

Table 6-41

Class Acts
constant pool

Chapter Six

1 CONSTANT_Class - info 7

2 CONSTANT_Class - info 16

3 CONSTANT_Methodref - info 2,4

4 CONSTANT_NameAndType_info 6,5

5 CONSTANT Utf8 info "()V" -

6 CONSTANT Utf8 info "<init>" -

7 CONSTANT Utf8 info "Act" -

8 CONSTANT_Utf8 - info "Act. java"

9 CONSTANT_Utf8 - info "Code"

10 CONSTANT Utf8 info "ConstantValue" -

11 CONSTANT Utf8 - info "Exceptions"

12 CONSTANT Utf8 info "LineNumberTable" -

13 CONSTANT_Utf8 - info "Local Variables"

14 CONSTANT Utf8 info "SourceFile" -

15 CONSTANT Utf8 info "doMathForever" -

16 CONSTANT Utf8 info "java/lang/Object" -

On the CD-ROM
The CD-ROM contains the source code examples from this chapter in t;h.e
classfile directory. The Getting Loaded applet is contained in a Web
page on the CD-ROM in file applets/GettingLoaded. html. The source
code for this applet is found alongside its class files in the applets/
Get t ingLoaded directory.

The Resources Page
For more information about class files, visit the resources page:
http://www.artima.com/insidejvm/resources/.

Page 245 of 280

INDEX
Note: boldface numbers indicate illustrations.

100 percent Pure Java certification, platform
independence, 36

aaload opcode, 443
aastore opcode, 444

A

abrupt completion of methods in, 163
Abstract Windows Toolkit (AWT), 12-13

layout managers for, 13
platform independence of, 12-13, 20
security and, 66

access control (see also security), 44-45,
50-51,62-68,80,86-109
AccessController for, 86-109
class loaders for, 50-51
Java Authentication and Authorization

Service (JAAS), 109-110
memory and, 60
security and, 80
security manager and, 62-68

Access Controller, 14, 86-109
checkPermission() method in, 87
doPrivileged() method in, 100-109
implies() method in, 87-89, 87
stack inspection by, examples of "yes" and

"no," 90-99
access flags, class files 196-197
aconst_null opcode, 387
acquiring the monitor for synchronization,

498
active use of Java types, 239, 251-253
ActiveX, security and, 79

--
adaptive garbage collection, 362-363
adaptive optimization, 6-7, 181-183
administration across distributed systems,

mobility concepts and, 115-116
ahead-of-time compilers, 18
aload, aload_xx.x opcodes, 392
AND (see logic)
anewarray opcode, 442
applet class loaders, 10
applets, 122-125, 124

browser use of, 123-125
class loaders and, 125
dynamic linking and, 125
HTML tags for, 124
mobility concepts and, 122-125, 124
platform independence and, 123
security, 123
symbol reference and, 125

application programming interface (API), 1,
4, 12-14, 13, 19-20

applications for Java, 2
architecture of Java (see also class files; plat­

form independence; virtual machine), 1-21
ahead-of-time compilers and, 18
application programming interface (API)

for, 1, 4, 12-14, 13, 19-20
class files and, 20
class files in, 1, 4, 8-11, 9, 11-12
compilers and, 18
distributed applications and, 17-19
Java API for, 12-14, 13
Java/Java 2 platform in, 4-5, 5
mobility concepts and, 11-12, 120-122
names paces and, 10-11

Page 246 of 280

platform independence and, 11-12, 19-20,
23-40

programming language for, 4, 14-16
resources Web site for, 21
speed of execution, 17
tradeoffs of 16-21
virtual machine defined for, 1, 4, 5-7, 6, 8,

136-187
areturn opcode, 495
arithmetic

floating-point arithmetic, 423-436
integer arithmetic, 407-416

array data type, 141
arraylength opcode, 442
arrays, 161,162,437-447

arrays of arrays, 161
bounds checking for, 16, 60
class files and, 210
linking and, 278-279
local variables versus, 438
multi-dimension or arrays-of-arrays, 161
opcodes for, 440-443
primitive types and, 438
resolution and, 278-279
storing, 444
Three-Dimensional Array applet for,

443-447,444
arrays of arrays, 161
ArrayTYpe descriptors in, 203
astore, astore_xx:x opcodes, 393
asymmetrical invocation of finally clauses,

471-474
atomic types, 184-185
attributes, 215, 218-229

class files, 201
code as, 220--223
ConstantValue, 223,224

Index

deprecated, 224, 225
exception_info table for, 222
exceptions, 225
formato~219-220,219

inner_class_info table for, 228-229
InnerClasses, 225-229
line_number_info table for, 230--231
LineNumberTable, 229-231
local_ variable_info table for, 232-233
LocalVariableTable, 231-233
service objects, Jini technology and, 128
SourceFile, 233
Synthetic, 234
types of, 218-219, 218

authentication (see also security), 43, 68-75
JAR files and, 69-73, 71, 72, 77-79
Java Authentication and Authorization

Service (JAAS), 109-110

B

baload opcode, 443
BaseTYpe descriptors in, 203, 204
bastore opcode, 444
big-endian byte order in class files, 11, 146, 193
binary compatibility

class files and, 58-56, 121
mobility concepts and, 121

binary data, binary files, 3, 11, 20, 240--241
Java types and, 240--241

binding, 480
bipush opcode, 389
bootstrap class loaders (see also class

loaders), 8-11, 9, 47-49, 132, 142,
143-144,188,241,264-268

bounds checking, arrays, 16, 60

Page 247 of 280

Index

branching, 449-458
conditional branching in, 450-452
conditional branching with tables in,

453-455
unconditional branching in, 453

browsers and applets, 123-125
bugs, security and, 42, 44, 79-80

platform independence and, 34
built-in class loaders, 48-50
bytecodes, bytecode processing, 5-6,

174-181,188,243
class file verifier actions on, 53
data flow analyzer for, 244
finally clauses and, 469-478
frames in, 55
Halting Problem and, 55-56
Java stack and, 55
opcodesin,55
operand stack in, 55
_quick instructions, 305-306
threads in, 55
verification of, through class file verifier,

54,244

c

C++ versus Java programming language, 15
platform independence and, 26

caches for garbage collection, 376-378
caload opcode, 443
canonicializing mappings for garbage

collection,376-378
castore opcode, 444
catching exceptions, 460-464
central processing unit (CPU), mobility

concepts and, 114

certificate authorities (CA) and, 74-75, 80-81
check methods for security manager; 65-68
checkcastopcode,440
checkPermission() method, 87
Circle of Squares applet, 423,434-436, 435
class class reference in, 150--151
class data type, 141
class file verifier, 52-59

binary compatibility and, 58-56
bytecode analysis through, 53
bytecode verification with, 54-56
Halting Problem and, 55-56
robustness and, 52-53
security and, 44
semantic checks on type data with, 54
structural checks on class file with, 53-54
symbolic reference verification with, 56-58

class files, 1, 4, 6, 11-12, 20, 187, 191-236
access flags in, 196-197
arrays in, 210
ArrayType descriptors in, 203
attributesin,201,215,218-229
BaseType descriptors in, 203, 204
big-endian byte order in, 11, 146, 193
binary compatibility and, 58-56, 121
binary files and, 11
bytecode verification with, 54-56
class reference in, 150-151, 209-210
code attribute in, 220--223
compactness of, 121, 122, 178
constant pool in, 195-201, 196,

205-214,270
CONSTANT_Class_info table for,

209-210,278-287
CONSTANT_Double_info table for, 209
CONSTANT_Fieldref_info table for, 211,

287-288

Page 248 of 280

680

CONSTANT_Float_info table, 208
CONSTANT_Integer_info table for, 207
CONSTANT _InterfaceMethodref_info table

for, 212-213, 289-290
CONSTANT_Long_info table for,

208-209
CONSTANT_Methodref_info table for,

212,288-289
CONSTANT_NameAndType_info table for,

213-214
CONSTANT_String_info table for, 210,

211
CONSTANT_Utf8_info table for,

205-207,206
ConstantValue attribute, 223, 224
contents and components of, 193-201
deprecated attributed, 224, 225
descriptors in, 20, 201, 202-204
double integers in, 209
dynamic linking and, 196
exception_info table for, 222
exceptions attribute, 225
field descriptors in, 196, 200, 203,204
fieldsin,200,211,214-215
FieldType descriptors, 202-203
floating-point numbers in, 208
fully qualified names in, 201, 202
Getting Loaded applet for, 191, 234-236,

235,236
Halting Problem and, 55-56
inner_class_info table for, 228-229
InnerClasses attribute, 225-229
integer types in, 207
interfaces in, 199-200, 212-213
language of Java and, 192, 192
line_number_info table for, 230-231
LineNumberTable attribute, 229-231,229

Index

little-endian byte order in, 11, 146, 193
local_ variable_info table for, 232-233
LocalVariableTable attribute, 231-233
long integers in, 208-209
magic number in, 194
major version numbers in, 195
method descriptors in, 196, 200-201,

203,204
MethodDescriptors in, 203
methods in, 212, 216-218
minor version numbers in, 195
mobility concepts and, 11-12, 120,

121, 132
namesin,213-214
obfuscation of, 21
ObjectType descriptors in, 203
platform independence and, 26
primitive types in, 193-194
referencing, 20
relationships within, 192, 192
resolution of other CONSTANT _info

entries,292
RetumDescriptors in, 203
semantic checks, class file verifier

and, 54
simple names in, 201, 202
SourceFile attribute, 233
specialstringsin,201-204
strings in, 210, 211
structural checks on, class file verifier and,

53-54
superclasses in, 151198-199, 242, 243
superinterfaces in, 199-200
symbolic reference verification in,

56-58
symbolic references in, 20, 56-58, 153, 196,

201,202-204,209-210,211

Page 249 of 280

Index

Synthetic attribute, 234
version numbers in, 195

class initialization method, Java types,
246-251

class instantiation, 254-264
class loaders, 6, 6, 8-11, 9, 136, 137,

142-146, 149-150, 188
access control in, 50-51
applet class loaders, 10
applets and, 125
bootstrap, 47-49, 142, 143-144, 188, 241,

265-268
built-in, 48-50
current, 278
defineClass() method for, 144-145
defining, 277
dynamic extension in, 10
findSystemClass() method for, 145
forbidden packages/types and, 51-52
fully qualified names in, 145
initialization operations in, 143, 277
Java types, 241
linking and, 143, 269, 276-277
loading constraints and, 292-294, 343-353
loading of Java types ~ith, 280-285
loading operations in, 143
malicious versus trusted classes and, 50-51
mobility concepts and, 132
name spaces in, 10-11,45,46,46, 142,

145-146
parent-delegation model for, 47-49,

276-277
primordial, 47-49
protection domains in, 145
referenced versus referencing class, 10
resolveClass() method for, 145
runtime packages and, 51

w
security and, 44, 45-52, 66, 343-353
system, 48-50, 144
unloading of types and, 265-268, 336-343
user-defined, 47,48-50, 142-143, 144-145,

241,265-268,323-333
user-defined, version 1.1, 323-329
user-defined, version 1.2, 329-333

classes, 187
clone() method for, 254
getObject () method for, 254
inner_class_info table for, 228-229
InnerClasses attribute of, 225-229
instantiation of, 254-264
linking and, 269, 279-287
new Instance() method for, 254-255
resolution and, 279-287
subclasses, 243
superclasses, 242, 243

client/server applications
mobility concepts and, 114-115
service objects and, 129-131, 130

<clinit> ()method for initialization of Java
types, 247-251

clipboard, security and, 66
clone() method, 254
code attribute as, 220-223
code signing, 43, 68-75

example of, 75-79
hash algorithms and, 69
JAR files for, 69-73, 71, 72, 77-79

code source
policies and, 80
security and, 64-65, 80

compacting garbage collection, 359-360,
383-384

compacting heap, 383-384
compactness of class files, 121, 122, 17 8

Page 250 of 280

compilers, 6, 18
ahead-of-time compilers, 18

compile-time resolution of constants, 294--296
computation types, 180
conditional branching in, 450-452
conditional branching with tables in, 453-455
conservative style garbage collection, 358
constant pool in, 148, 152-153, 168,

195-201,196,205-214,243,270
compile-time resolution of constants,

294--296
CONSTANT_Class_info table in, 209-210,

278-287
CONSTANT_Double_info table in, 209
CONSTANT_Fieldref_info table in, 211,

287-288
CONSTANT_Float_info table, 208
CONSTANT_Integer_info table for, 207
CONSTANT _InterfaceMethodref_info table

in,212-213,289-290
CONSTANT_Long_info table in, 208-209
CONSTANT_Methodref_info table in, 212,

288-289
CONSTANT_NameAndType_info table in,

213-214
CONSTANT_String_info table in, 210, 211,

290-292
CONSTANT_Utf8_info table in,

205-207,206
ConstantValue attribute, 223, 224
current, 162
direct references, 296-305, 300,301,

302,303
method tables, 300-303, 300,301,302,303
resolution of, 270, 277-278
resolution of CONSTANT_ Class_info

entries,278-287

Index

resolution of CONSTANT_Fieldref_info
entries,287-288

resolution of CONSTANT_
InterfaceMethodref_info entries, 289-290

resolution of CONSTANT_Methodref_info
entries, 288-289

resolution of CONSTANT_String_info
entries,290-292

resolution of other CONSTANT _info
entries, 292

runtime constant pool, 270
constant variables, 149
CONSTANT_Class_info table, 209-210

resolution of, 278-287
CONSTANT_Double_info table for, 209
CONSTANT_Fieldref_info, 211

resolution and, 287-288
CONSTANT_Float_info table, 208
CONSTANT_Integer_info table for, 207
CONSTANT _InterfaceMethodref_info,

212-213
resolution and, 289-290

CONSTANT_Long_info table for, 208-209
CONSTANT_Methodref_info, 212

resolution and, 288-289
CONSTANT_Methodref_info table for, 212
CONSTANT_NameAndType_info table for,

213-214
CONSTANT_String_info, 210, 211

resolution and, 290-292
CONSTANT_Utf8_info table for,

205-207,206
ConstantValue attribute, 223, 224
constraints, loading constraints, resolution

and,292-294,343-353
content services, mobility concepts and,

117-119

Page 251 of 280

Index

controlflow,449-458
branching in, 449
conditional branching in, 450--452
conditional branching with tables in,

453-455
jumpsin,449,453-455
resource Web page for, 458
Saying Tomato applet for, 449,

455-457,455
Three-Dimensional Arrays applet for, 437
unconditional branching in, 453

Conversion Diversion applet, 399,
402-405,403

conversion of types, 399-405
cooperation in synchronization, 498, 499
coordination in synchronization, 511
copying garbage collection, 360-361, 361
current class loader, 278
current constant pool, 162
current frame, 162
current method, 162
current narnespace, 278

D

dadd opcode, 432
daemon threads, virtual machine and,

135-136
daload opcode, 443
dastore opcode, 444
data flow analyzer, 244
data types (see Java types)
dcmpg/dcmpl opcode, 451
dconst_.xx.x opcodes, 387
ddiv opcode, 433
defineClass() method, 144-145

w
defining class loader, 277
Delete operations, security and, 66
denial-of-service attacks, 109
deployment of Java Platform, platform

independence and, 29
deprecated attributed, 224, 225
descriptors, 20, 201, 202-204
design of Java, 2
digital certificates, 7 4-7 5
digital signature, 43, 68-75
direct references, 296-305, 300, 301,

302,303
discovery protocol for Jini technology

and, 127
disruptive algorithms for garbage

collection, 363
distributed applications, distributed

processing, 3, 17-19
mobility concepts and, 115, 116-118
platform independence and, 24, 29, 35-36
service objects and, 129-131, 130

dload, dload_.xx.x opcodes, 391
drnul opcode, 432
domains, protection domains, 65, 84-86, 86
doPrivileged() method, 100-109
double integers in, 209
double value set for floating-point arithmetic,

429-430
double-extended-exponent value set for

floating-point arithmetic, 430
download time and processing, mobility

concepts and, 121-122
downloading files, security and, 42
drem opcode, 433
dreturn opcode, 495
dstore, dstore_.xx.x opcodes, 393
dsub opcode, 432

Page 252 of 280

684

dup, dup_xxx opcodes, 390
dynamic (late) binding, 157,480
dynamic extension, 10, 14, 272-275, 318-323

forName () and, 333-336
Greet Application of, 318-323
mobility concepts and, 121, 122
resolution and, 272-275, 318-323

dynamic linking, 14, 57, 242
applets and, 125
class files, 196
method area and, 150
mobility concepts and, 120-121, 122
name spaces, 150
resolution and, 270-272

E

early resolution and, 271
embedded devices

Java Embedded Platform, 27
platform independence and, 24, 26, 27, 28,

39-40
encryption, 69-7 5

keystore files, 78, 82
entering the monitor for synchronization,

498
entry sets in synchronization, 498, 503
error handling, 14

security and, 62
eteral math simulation, 188-189, 190
event queue, security and, 66
exception table, 168,464-465
exception_info table, 222
exceptions, 459-468

catching, 460-464
exception table for, 464-465

Play Ball simulation applet for, 459,
465-468,466

resource Web page for, 468
throwing, 460-464

exceptions attribute, 225
execution engine, 6, 136, 137

adaptive optimization in, 181-183
computation types, 180
data types in, 178-180
execution techniques for, 181-183
inlining in, 182-183
instruction set in, 17 4-181
opcodesin, 174-181
operands in, 174-181
storage types in, 180
synchronization and, 184-186
threading in, 183-186

exponent of floating-point arithmetic,
424-427

F

fadd opcode, 432
faload opcode, 443
fastore opcode, 444
fcmpg/fcmpl opcode, 451
fdiv opcode, 433
Fibonacci Forever applet, 386,

394-397,395
field descriptors, class files, 196, 200,

203,204
field information for data types, 148
fields, 200, 214-215, 243

linking and, 287-288
resolution and, 287-288

FieldTYpe descriptors, 202-203

Index

Page 253 of 280

Index

finalization of objects, 160--161, 264-265,
368-370

finally clauses, 469-478
asymmetrical invocation of, 471-474
Hop Around applet for, 469,474-477,474
miniature subroutine action of, 470-471
opcodes for, 470
resource Web page for, 478
return in, 471-474

findSystemClass() method, 145
first-in first-out (FIFO) entry set for

synchronization, 503
fload, fload_xx.x opcodes, 391
float value set for floating-point arithmetic,

429-430
float-extended-exponent value set for floating­

point arithmetic, 430
floating-point arithmetic, 140, 208, 423-436

Circle of Squares applet for, 423,
434-436,435

conversion of value sets in, 430-431
defining floating-point numbers for, 424
double value set for, 429-430
double-extended-exponent value set for, 430
exponento~424-427

float value set for, 429-430
float-extended-exponent value set for, 430
FP-default mode for, 429
FP-strict mode for, 429
Inner Float applet for, 423,427,428
mantissa of, 424-427
modes for, 428-431
normalization in, 424-427
not a number (NaN) value in, 425,426
opcodes for, 431-434
radix of, 424-427
relaxing rules for, 431

resources Web page for, 436
sign of, 424-427
value sets for, 429-431

floating-point numbers in, 140, 208
fmul opcode, 432

685

forbidden packages/types and, 51-52
forName ()dynamic extension and, 333-336
FP-default mode for floating-point arithmetic,

429
FP-strict mode for floating-point arithmetic,

429
fragmentation, 356
frames (see also Java stack; stack frame), 55,

138, 142
current, 162
frame data in, 167-168

frem opcode, 433
fretum opcode, 495
fsub opcode, 432
fully qualified names in, 145, 147, 201, 202

G

garbage collection, 14, 15-16, 19, 154-155,
160-161,188,264,355-384,438
adaptive, 362-363
algorithms for, 357-358
caches for, 376-378
canonicializing mappings for, 376-378
changes of reachability states and, 373-376
compacting, 359-360, 383-384
conservative style, 358
copying,360-361,361
disruptive algorithms for, 363
finalization of objects and, 160--161,

264-265,368-370

Page 254 of 280

fragmentation and, 356
freeing memory using, 356
generational, 362, 364
heap area in memory for, 60, 438
Heap of Fish applet for, 355, 378-384, 380,

381,383,384
incremental, 363
integrity of programs through, 356-357
mark and sweep algorithm, 160
phantom reachable states and, 371-373,

372,375-376,377-378
platform independence and, 33, 35
popular objects and, 367, 368
pre-mortem cleanup and, 376-378
reachability for, 357, 370-378
reachable state and, 370
reference counting and, 358-359
reference objects and, 371-373, 372
reference queues and, 373, 374
remembered sets and, 367-368
resource Web page for, 384
resurrectable state and, 370, 375
roots and root sets, 357-358
softly reachable states and, 371-373, 372,

375,376-378
stop-and-copy, 360-361, 361
strongly reachable states and, 374
tracing, 358, 359
train algorithm for, 363-368,365
unloading of types and, 265-268
unreachable state and, 370, 375
weakly reachable states and, 371-373, 372,

375,376-378
generational garbage collection, 362, 364
getfield opcode, 439, 440
getObject () method, 254
getstatic opcode, 439, 440

Index

Getting Loaded applet, 191,234-236,235,236
goto opcodes, 453
grant clauses, 82-84, 82
graphical user interface (GUI), platform

independence and, 12, 34, 36
Greet Application

dynamic extension of, 318-323
dynamic extension of, version 1.1 user­

defined class loader and, 323-329
dynamic extension of, version 1.2 user­

defined class loader and, 329-333
unloading Java types, 336-343

Halting Problem, 55-56
handle pool in, 156, 156
hash algorithms and, 69
heap, 137, 153-161

allocating objects to, 379-380, 380
arraysin, 161,162
assigning references to objects in,

381-382,381
compacting of, 383-384
dynamic binding and, 157
fragmentation and, 356
garbage collection in, 154-155, 160-161,

355-384,382-383,383,438
handle pool in, 156, 156
Heap of Fish applet for, 355, 378-384, 380,

381,383,384
Java stack and, 168-171, 169, 171
locksin,497,503-505
mark and sweep algorithm, 160
method tables for, 157-158
mutex (see locks)

Page 255 of 280

Index

object pool in, 156, 156
object representation in, 155-161
pointers in, 155, 156, 157
referencing in, 155-161
wait sets for, 159-160

Heap of Fish applet, 355, 378-384, 380, 381,
383,384

Hop Around applet, 469, 4 7 4-4 77, 47 4
HTML, applet tags, 124
hypertext transport protocol (HTTP), 10

I

i2xxx conversion opcodes, 400
iadd opcode, 410
iaload opcode, 443
iand opcode, 418
iastore opcode, 444
iconst_xxx opcodes, 387
idiv opcode, 411
if_acmpxx opcodes, 452
if_icmpxxx conditional branching

opcodes, 451
ifnonnull opcode, 452
ifnull opcode, 452
ifxx conditional branching opcodes, 450
iinc opcode, 410
iload, iload_xxx opcodes, 391
implies() method, 87-89
imul opcode, 411
incremental garbage collection, 363
ineg opcode, 413
<init> () method, 258-264

invokespecial instruction and, 483-486
initialization of Java types, 238-240, 238,

245-253

initialization of classes, 154
initialization operations in class loaders,

143,277
inlining in, 182-183
Inner Float applet, 423,427, 428
Inner Int applet, 407, 409, 409
inner_class_info table for, 228-229
InnerClasses attribute, 225-229
instance initialization method for, 258-264
instanceof opcode, 440
instruction set, 17 4-181, 3 85

mnemonic for, 176, 179
_quick instructions, 305-306

integer arithmetic, 407-416
Inner Int applet for, 407,409, 409
opcodes for, 409-412
Prime Time simulation applet for,

412-416,412
resources Web page for, 416
two's complement numbers in, 407,

408-409
integers, 207
integral data types, 140
interfaces, 141, 199-200, 212-213

initialization method, Java types, 246-251
invokeinterface instruction for, 490
linking and, 269, 289-290
resolution and, 289-290

interpreter, 7
invocation of methods, 479-496

dynamic (late) binding in, 480
examples of, 491-495
<init>() and invokespecial instruction in,

483-486
instance versus class methods, 480
invokeinterface instruction for, 490
Java method invocation, 481-482

Page 256 of 280

native method invocation, 482
opcodes for, 480
private methods and invokespecial

instruction in, 486-487
resource Web page for, 496
returning from methods in, 495
special invocation (invokespecial

instruction),482-489
speed of processing and, 490
static (early) binding in, 480
super keyword and invokespecial instruction

in, 487-489
invokeinterface instruction for, 490
invokespecial instruction, 482-489

<init>() method and, 483-486
private methods and, 486-487
super keyword and invokespecial instruction

in, 487-489
invokestatic opcode, 480
invokevirtualopcode,480
ior opcode, 418
IP address and Jini technology and, 127
irem opcode, 413
ireturn opcode, 495
ishl/ishr opcodes, 418
istore, istore_xxx opcodes, 392
isub opcode, 411
iushr opcode, 418
ixor opcode, 418

J

JAR files
code signing and, 69-73, 71, 72, 77-79
keystore files and, 78
mobility concepts and, 122

Index

Java 2 Enterprise Edition (J2EE) and, 28-29
Java 2 Platform, Micro Edition (J2ME) and,

28-29
Java 2 Standard Edition (J2SE), 28-29

platform independence and, 30-31
Java API, security and, 63-64, 67-58

security manager and, 63-64, 63
Java applets (see applets)
Java Archive (JAR) files (see JAR files)
Java Authentication and Authorization Ser-

vice (JAAS), 109-110
Java Card Platform, platform independence

and,27
Java Embedded Platform, platform indepen-

dence and, 27
Java interpreter and, 7
Java methods, 7
Java Native Interface (JNI) (see Jini technol­

ogy)
Java Personal Platform, platform indepen­

dence and, 27
Java stack (see also operand stack; stack

frames), 55, 137-138, 142, 162-163
abrupt completion of methods in, 163
constant pool in, 168, 195-201, 196,

205-214,270
current constant pool, 162
current frame, 162
current method in, 162
exception tables in, 168
Fibonacci Forever applet for, 386,

394-397,395
frame data in, 167-168
generic operations for, 389, 390
implementation of, 168-171, 169, 171
local variables and, 163-166, 164
memory allocation in, 163

Page 257 of 280

Index

native method stacks in, 172-173, 173
normal completion of methods in, 163
objects versus, 438
operand stack and, 166-167, 167, 171,

177, 179
popping to local variables in, 390--392
pushing constants onto operand stack,

386-389
pushing local variables onto operand stack,

389-390
stack frame in, 163-171
wide instruction for, 392-394

Javatypes, 139-141,140,178-180,237-268
active use of, 239, 251-253
array data type in, 141
binary data for, 240-241
class data type, 141
class initialization method, 246-251
class instantiation and, 254-264
class loader and, 241
class loader reference in, 149-150
classlife directory for, on companion

disk, 268
<clinit> () method for initialization of,

247-251
computation types, 180
constant pool in, 148, 152-153
constant variables in, 149
Conversion Diversion applet for, 399,

402-405,403
conversion of, 399-405
double integers in, 209
field information for types in, 148
finalization of objects and, 264-265
floating-point data types, 140, 208
fully quantified names in, 147
garbage collection and, 264

initial values for, 244-245
initialization of, 238-240, 238, 245-253
instance initialization method for, 258-264
integers, 140, 207
interface data type, 141
interface initialization method, 246-251
lifetime of, 237-268
linking of, 238-240, 238
loading of, 238-240,238,240-241,

280--285
long integers in, 208-209
memory allocation for, 244-245
method information for data in, 148-149
numeric data types, 140
object lifetime and, 253-265
passive use of, 239, 251-253
preparation of, 238-240, 238, 244-245
primitive values/primitive data types,

139-141,193-194,244-245,438
reference values/ reference data types,

139-141
resolution of, 238-240, 238, 245
resource Web page for, 268
security and, 343-353
semantic checks, class file verifier and, 54
simple names in, 147
storage types in, 180
strings in, 210, 211
unloading of, 265-268
verification of, 238-240, 238, 241-244

Java Virtual Machine Specification, The, 134
Java/Java 2 Platform, 4-5, 5

platform independence and, 25
Jini service object, 125-131, 125
Jini technology, 186

attributes of service objects in, 128
benefits of service object use in, 129-131

Page 258 of 280

discovery protocol for, 127
IP address and, 127
join protocol for, 127-128
lookup protocol for, 127, 128-129
lookup services, 126, 127
mobility concepts and, 125-131
native methods and, 186
platform independence and, 24, 39-40
presence announcement in, 127
runtime infrastructure of, 126-127
security and, 42, 109
service IDs in, 128
service items in, 127-128
service objects and, 128, 129-131
service registrar for, 127
service templates in, 128
services provided by, 126

join protocol for Jini technology and,
127-128

jsr,jsr_w opcode, 470
jumps, 449-458, 453-455
just-in-time compiler of, 6

keystore filess, 78, 82
keytool program, 81

ladd opcode, 410
laload opcode, 443
land opcode, 419

K

L

last-in first-out (LIFO) entry set for
synchronization, 503

lastore opcode, 444
late resolution and, 271
layout managers, 13
lcomp opcode, 451
lconst_xxx opcodes, 387
Ide, ldc_xxx opcodes, 389
ldiv opcode, 411
lifetime of type (see Java types)
Lindholm, Tim, 134
line_number_info table for, 230-231
LineNumberTable attribute, 229-231
linking,57,238-240,238,269-353

arrays,278-279

Index

class loaders and, 143, 276-277, 323-329,
329-333

classes and, 279-287
compile-time resolution of constants and,

294-296
constant pool resolution and, 277-278
direct references and, 296-305, 300,301,

302,303
dynamic extension and, 272-275, 318-323
dynamic linking and, 270-272
early resolution and, 271
fields and, 287-288
forN arne () dynamic extension and,

333-336
Greet Application and, dynamic extension

of, 318-323
interfaces and, 289-290
late resolution and, 271
loading constraints and, 292-294, 343-353
loadip.g of Java types for, 280-285
method t~ples and, 300-303, 300,301,

302,303
methods and, 288-289
parent-delegation model for, 276-277

Page 259 of 280

r
Index

_quick instructions for, 305-306
resolution and, 270-272
resolution of CONSTANT_Class_info

entries,278-287
resolution of CONSTANT_Fieldref_info

entries, 287-288
resolution of CONSTANT_InterfaceMetho­

dref_info entries, 289-290
resolution of CONSTANT_Methodref_info

entries,288-289
resolution of CONSTANT_String_info

entries, 290-292
resolution of other CONSTANT_info

entries,292
resources Web page for, 353
runtime constant pool, 270
Salutation application example of, 306-318,

311,313,314,316,317
stringsand,290-292
type safety and, 343-353, 343
unloading Java types and, 336-343

little-endian byte order in class files, 11,
146, 193

lload, lload_xxx opcodes, 391
lmul opcode, 411
lneg opcode, 413
loading constraints, linking and, 292-294,

343-353
loading operations (see also class loaders),

143,238-240,238,240-241,269
local variables, 142, 163-166, 164, 386

arrays versus, 438
Fibonacci Forever applet demonstrating,

386,394-397,395
LocalVariableTable attribute, 231-233
popping to local variables in operand stack,

390-392

691

pushing local variables onto operand stack,
389-390

wide instruction for, 392-394
local_ variable_info table for, 232-233
LocalVariableTable attribute, 231-233
locking/unlocking, 158-159

synchronization, 497, 503-505
logic, 417--422

Logical Results applet for, 417,
419--421,419

opcodes for, 418--419
resources Web page for, 422

Logical Results applet, 417,419--421,419
login security, 109
long integers in, 208-209
lookup protocol, Jini technology and, 127,

128-129
lookup services, Jini technology and,

126, 127
lookupswitch opcode, 454
lor opcode, 419
lrem opcode, 413
lreturn opcode, 495
lshl/lshr opcodes, 418
!store, lstore_xxx opcodes, 393
lsub opcode, 411
lushr opcode, 418
lxor opcode, 419

M

magic number, 194
main () method, virtual machine invocation

through, 134-135, 152
main memory, threading, 184
malicious versus trusted classes and, 50-51

Page 260 of 280

16J2
mantissa of floating-point arithmetic,

424--427
Marimba Castanet, 122
mark and sweep algorithm, 160
memory (see also garbage collection; heap),

138
access control to, 60
corrupted memory, 16
freeing memory, 16
Java frame and, 163, 168-171, 169, 171
Java types allocation and, 244-245
leaks in memory, 16
method areas, 60
native method stacks, 172-173, 173
runtime data areas in, 60
security and, 60, 109
stack frame and, 163
threading in, 184

method area, 60, 137
big-endian byte order in class files, 146
class class reference in, 150-151
class loader reference in, 149-150
constant pool in, 148, 152-153
constant variables in, 149
data types in, 147
dynamic linking in, 150
field information for types in, 148
fully quantified names in, 147
little-endian byte order in class files, 146
method information for data in, 148-149
method tables in, 151
name spaces in, 150
resolution in, constant pool, 153
simple names in, 147
symbolic references in, 153
threading, 147
type information, 147

use of, example, 151-154
virtual machine and, 146-154

method descriptors in class files, 196,

200-201
method descriptors, 203, 204

Index

method information for data, 148-149
method tables, 151, 157-158, 300-303, 300,

301,302,303
virtual table (VTBL) versus, 158

MethodDescriptors in, 203
methods, 7, 216-218, 243

abrupt completion of methods in, 163
adaptive optimization in, 181-183
current method, 162
dynamic (late) binding in, 480
<init>() and invokespecial instruction in,

483--486
inlining in, 182-183
instance versus class methods, invocation

of, 480
invocation and return in, 479--496
invokeinterface instruction for, 490
Java method invocation, 481--482
Java stack operations and, 162-163
linking and, 288-289
native method invocation for, 482
normal completion of methods in, 163
opcodes for invocation of, 480
private methods and invokespecial

instruction in, 486--487
remote method invocation (RMI), 3, 25,

125, 131
resolution and, 288-289
returning from methods in, 495
signature of, 485
special invocation (invokespecial

instruction) and, 482--489

Page 261 of 280

r
Index

static (early) binding in, 480
super keyword and invokespecial instruction

in, 487-489
synchronized methods as, 504, 508-511

Microsoft, platform independence and ver­
sus., 38-39

miniature subroutine action of finally clauses,
470-471

mnemonic for opcodes, 176, 179
mobility of code and objects in Java, 3, 4,

113-132
administration across distributed systems

and, 115-116
applets and, 122-125, 124
applications for, 114-116
architectural support for, 120-122
bandwidth and, 116
binary compatibility and, 121
bootstrap class loaders and, 132
central processing unit (CPU) and, 114
class files and, 120, 121, 132
class loaders and, 132
client/server applications and, 114-115
compactness of class files, 121, 122, 178
content services and 117-119
distributed processing and, 115, 116-118
download time and processing in, 121-122
dynamic extensions and, 121, 122
dynamic linking and, 120-121, 122
Java Archive (JAR) files and, 122
Jini service object and, 125-131
Jini technology, 125-131
namespaces and, 132
platform independence and, 25, 39-40, 120
resources Web page for, 132
security and, 120, 132
security manager and, 132

service objects and, 125-131
shared applications/files and, 114
software development paradigms and, 119
user-defined class loaders and, 132

modes for floating-point arithmetic, 428-431
monitor for synchronization, 497,498-503
monitorenter opcode, 506
monitorexit opcode, 506
multianewarray opcode, 442
multicast security, 66
multi-dimensional arrays, 161
multi-thread programming, 14
mutex (see locks)
mutual exclusion in synchronization, 498, 499

N

name spaces, 10-11
class loaders and, 142, 145-146
current, 278
dynamic linking, 150
method area and, 150
mobility concepts and, 132
security, 45-46, 46
virtual machine and, 150

naming conventions
fully qualified names in, 147, 201, 202
simple names in, 201, 202

native method stack, 138, 172-173, 173
native methods, 7, 186-187

invocation of, 482
Jini technology for, 186
native method stacks for, 138, 172-173, 173
platform independence and, 31-32, 35
run-time libraries and, 32-33
security and versus, 61-62, 66

Page 262 of 280

network-mobile objects (see mobility)
networks and Java, 2-4
new opcode, 439
newarray opcode, 442
newlnstance() method, 254-255
non-daemon threads, virtual machine and,

135-136
non-standard run-time libraries, platform

independence and, 32-33, 35
nop opcode, 390
normal completion of methods in, 163
normalization floating-point arithmetic,

424-427
not a number (NaN) value in floating-point

arithmetic, 425, 426
notify command for synchronization,

499-500,502-503,512
null reference checking, 60
numeric data types, 140

0

obfuscation of class files, 21
object-oriented programming, 14, 15
object pool in, 156, 156
objects, 253-265, 437-447

finalization of objects and, 368-370
garbage collection and, 264
<init> ()method, 258-264
instance initialization method for, 258-264
Java stack versus, 438
opcodes for, 438-440
reachability and garbage collection and,

370-378
ObjectType descriptors in, 203
op codes, 55, 174-181

Index

_quick instructions, 305-306
array, 440-443
conditional branching, 450-452
conversion, 400-402
finally clause, 470
floating-point arithmetic, 431-434
generic stack operations with, 389, 390
integer arithmetic, 409-412
jump, 454
logic, 418-419
method invocation, 480
mnemonic for, 176, 179
object, 438-440
pushing constants onto stack with, 386-389
returning from methods, 495
unconditional branching, 453

operand stack, 55, 142, 166-167, 167, 171,
177,179,386
Fibonacci Forever applet for, 386,

394-397,395
generic operations for, 389, 390
popping to local variables in, 390-392
pushing constants onto, 386-389
pushing local variables onto, 389-390
resources Web page for, 397
string literals and, 389
wide instruction for, 392-394

operands, 55, 174-181
OR (see logic)
owning the monitor for synchronization, 498

p

parent-delegation model for class loaders,
47-49,276-277

passive use of Java types, 239, 251-253

Page 263 of 280

Index

password security, 109
PC register (see program counter)
permissions, 64-65, 67-68, 81

Access Controller, 86-109
checkPerrnission() method, 87
implies() method, 87-89

phantom reachable states and garbage
collection, 371-373, 372, 375-376,
377-378

platform independence, 2, 4, 7, 11-12, 19-20,
23-40
100 percent Pure Java certification and, 36
Abstract Windows Toolkit (AWT) and,

12-13
applets and, 123
architectural support for, 25-29
bugs in Java implementations and, 34
class files and, 26
deployment of Java Platform and, 29
disadvantages of, 24-25
distributed applications and, 24, 29, 35-36
embedded devices and, 24, 26, 27, 28,39-40
factors influencing, 29
garbage collection and, 33, 35
graphical user interface (GUI) and, 12, 36
Java 2 Enterprise Edition (J2EE) and, 28-29
Java 2 Platform, Micro Edition (J2ME) and,

28-29
Java 2 Standard Edition (J2SE), 28-29,

30-31
Java Card Platform and, 27
Java Embedded Platform and, 27
Java Personal Platform and, 27
Java/Java 2 Platform and, 25
Jini technology and, 24, 39-40
Microsoft versus, 38-39
mobility and, 25, 39-40, 120

native methods and, 31-32, 35
non-standard run-time libraries and,

32-33,35
porting applications and, 32
programming language and, 26
remote method invocation (RMI) and, 25
resource Web site for, 40
run-time libraries and, 32-33, 35
scalability and, 26-29
Standard API and, 30-31
Standard Extension APis and, 30-31
standardization versus, 36-39
steps to, 35-36
Swing and, 12-13
testing and, 34-35, 36
threading and, 33-34, 35
user interface dependencies and, 34
vendors versus, politics of, 36-39
version and edition differences and, 30-31
virtual machine dependencies and, 33-34

Play Ball simulation applet, 459,465-468,466
pointers (see also referencing), 15, 155,

156, 157
policies and policy files, 44, 64, 82-84

code source and, 80
security and, 79-84

pop opcode, 390
pop2 opcode, 390
popping to local variables in operand stack,

390-392
popular objects and garbage collection,

367,368
port number security, 65, 66
porting applications, platform independence

and,32
pre-mortem cleanup and garbage collection,

376-378

Page 264 of 280

preparation of Java types, 238-240, 238,
244-245

presence announcement in Jini technology
and, 127

Prime Time prime number simulation applet,
412-416,412

primitive values/primitive data types,
139-141,193-194,244-245,438

primordial class loaders, 47-49
printing security, 66
private methods and invokespecial instruction

in, 486-487
program counter, 137-138, 161-162
programming language for Java, 4, 14-16

class files, 20, 192
platform independence and, 26

protection domains, 65, 84-86, 86, 145
public/private key, 68-75

keystore files for, 78, 82
pushing constants onto operand stack,

386-389
pushing local variables onto operand stack,

389-390
putfield opcode, 439, 440
putstatic opcode, 439, 440

Q

_quick instructions, 305-306

R

radix of floating-point arithmetic, 424-427
reachability for garbage collection, 357,

370-378

Index

reachable state and garbage collection, 370
Read operation security, 66
reference counting garbage collection,

358-359
reference objects and garbage collection,

371-373,372
reference queues and garbage collection,

373,374
reference values/ reference data types,

139-141
referenced versus referencing class, 10
referencing, 15

assigning references to objects in heap,
381-382,381

checking, 16
class class reference in, 150-151
class file, 20
direct references, 296-305, 300,301,

302,303
dynamic linking and, 57
heap and, 155-161
null reference checking in, 16, 60
security and, 60
symbolic reference in, 20, 56-58, 153, 196,

201,202-204,209-210,211,242-243,
279-280

type-safe reference casting and, 60
reflection API, security and, 66
regions for monitor in synchronization, 498
releasing the monitor for synchronization,

498
remembered sets and garbage collection,

367-368
remote method invocation (RMI), 3, 25,

125, 131
resolution, 269

arrays, 278-279

Page 265 of 280

Index

classes, 279-287
compile-time resolution of constants, 294-296
constant pool, 153, 270, 277-278
CONSTANT _Fieldref_info entries,

287-288
direct references, 296-305, 300,301,

302,303
dynamic extension and, 272-275, 318-323
dynamic linking and, 270-272
early resolution and, 271
field, 287-288
interface, 289-290
Javatypes,245,238-240,238
late resolution and, 271
loading constraints, 292-294, 343-353
loading of Java types and, 280-285
method tables and, 300-303, 300, 301,

302,303
method, 288-289
resolution of CONSTANT _Methodref_info

entriesand,288-289
resolution of other CONSTANT_info

entries and, 292
runtime constant pool and, 270
string,290-292
symbolic reference and, 279-280

resolveClass() method, 145
resurrectable state and garbage collection,

370,375
ret opcode, 470
return in finally clauses, 471-474
return opcode, 495
ReturnDescriptors in, 203
returning from methods, 495
robustness of Java, 3
robustness of programs, class file verifier and,

52-53

697

roots and root sets garbage collection,
357-358

runtime constant pool, 270
runtime data areas, 60, 136, 137, 137-138,

138,139
runtime infrastructure, Jini technology and,

126-127
run-time instance of virtual machine and,

134-136
run-time libraries

native methods and, 32-33
non-standard, platform independence and,

32-33,32
platform independence and, 32-33, 35

runtime packages, 51

s

saload opcode, 443
Salutation application example of linking and,

306-318,311,313,314,316,317
sandbox security (see also class file verifier;

security), 42-45
class file verifier, 52-59
class loader in, 44, 45-52
namespace security in, 45-46, 46
security manager and, 44, 63

sastore opcode, 444
Saying Tomato applet, 449, 455-457, 455
scaleability, platform independence and,

26-29
security (see also access control), 3, 4, 13-14,

41-111
Abstract Windows Toolkit (AWT), 66
access control and, 44-45, 50-51, 62-68,

80,86-109

Page 266 of 280

!~-J'' ! F 1

1698'
l

Access Controller for, 14, 86-109
ActiveX and, 79
applets, 123
array bounds checking and, 60
authentication and, 43, 68-75
binary compatibility and, 58-56
bugsand,42,44, 79-80
built-in safety features of virtual machine

for, 59-62
bytecode verification, class file verifier,

54-56
certificate authorities (CA) and, 74-75,

80-81
check methods for security manager in,

65-68
class file verifier in sandbox and, 44,

52-59
class loader in sandbox and, 44, 45-52
class loaders and, 66, 343-353
clipboard, 66
code signing and, 43, 68-75,75-79
code sources and, 64-65, 80
Delete operations, 66
denial-of-service attacks and, 109
digital certificates for, 7 4-7 5
digital signatures for, 43, 68-75
do Privileged() method for, 100-109
downloading files and, 42
encryption and, 69-75
error handling and, 62
event queue, 66
future of, 109-110
garbage collection and, 60
grant clauses, 82-84
Halting Problem and, 55-56
hash algorithms and, 69
implementing special security in, 110-111

Index

JAR files and code signing in, 69-73, 71,
72, 77-79

JavaAPiand,44,63-64,67-58
Java applets and, 42
Java Authentication and Authorization

Service (JAAS), 109-110
Java types and, 343-353
Jini technology and, 42, 109
keystore files, 78, 82
keytool program, 81
loading constraints and, 343-353
login, 109
malicious versus trusted classes and, 50-51
memory and, 60, 109
mobility concepts and, 120, 132
multicasts, 66
namespace security in, 45-46, 46
native methods versus, 61-62, 66
null reference checking, 60
passwords, 109
permissions and, 64-65, 67-68, 81
policies and policy files for, 44, 64,

79-84
port numbers and, 65, 66
printing, 66
protection domains and, 65, 84-86, 86
public/private keys, 68-75
Read operations, 66
referencing and, 60
reflection API, 66
resources Web page on, 111
sandbox for, 42-45
security manager and, 14, 44, 62-68
semantic checks, class file verifier and, 54
sockets and, 65, 66
stack inspection by Access Controller,

examples of "yes" and "no," 90-99

Page 267 of 280

Index

structural class-file checks, class file verifier
and, 53-54

structured memory access and, 60
symbolic reference verification and, 56-58
system properties, 66
threads, 66, 109
trust models for, 43
type-safe reference casting and, 60
user Ids, 109
virtual machine and, 44, 59-62
Write operations, 66

security manager, 14, 44, 62-68
access control through, 62-68
check methods for, 65-68
codesourcesand,64-65
customization of, 64
Java API and, 63-64, 67-58
mobility concepts and, 132
permissions and, 64-65, 67-58
policy files and, 64
protection domains and, 65, 84-86, 86

semantic checks, class file verifier and, 54
serialization of objects, 3, 125, 131
service IDs, Jini technology and, 128
service items in Jini technology and, 127-128
service objects

Jini technology and, 126, 128, 129-131
mobility concepts and, 129-131

service objects, 125-131, 125
service registrar for Jini technology, 127
service templates for Jini technology, 128
shared applications/files, mobility concepts

and, 114
sign of floating-point arithmetic, 424-427
signal-and-continue monitor in

synchronization, 500
signature of method, 485

simple names in, 14 7, 201, 202
sipush opcode, 389
Smart Cards, Java Card Platform, 27
socketsecurity,65,66
softly reachable states and garbage collection,

371-373,372,375,376-378
software development, mobility concepts and,

119
SourceFile attribute, 233
speed of execution, 17

_quick instructions, 305-306
stack (see Java stack; operand stack; stack

frame)
stack frame (see also Java stack; operand

stack), 138, 163-171
constant pool in, 168, 195-201, 196,

206-214,270
exception tables in, 168
frame data in, 167-168
local variables and, 163-166, 164
memory allocation in, 163
operand stack and, 166-167, 167, 171,

177, 179
stack inspection, doPrivileged() method,

100-109
stack inspection by Access Controller, exam­

ples of "yes" and "no," 90-99
Standard API, platform independence and,

30-31
Standard Extension APis, platform indepen­

dence and, 30-31
standardization versus, platform indepen­

dence and, 36-39
static (early) binding in, 480
stop-and-copy garbage collection,

360-361,361
storage types in, 180

Page 268 of 280

sttings,210,211,243
linking and, 290-292
operand stack operations on, 389
resolution and, 290-292

strongly reachable states and garbage
collection, 374

structural class-file checks, class file verifier
and, 53-54

subclasses, 243
super keyword and invokespecial instruction

in, 487-489
superclasses, 151198-199, 242, 243
superinterfaces, 199-200
swap opcode, 390
Swing, 12-13

layout managers for, 13
platform independence of, 12-13, 20

symbolic references, 20, 153, 201, 202-204,
209-210,211,212,242-243
applets and, 125
class files, 196
loading constraints. 292-294, 343-353
resolution and, 279-280
Salutation application example of, 306-318,

311,313,314,316,317
verification of, class file verifier and, 56-58

synchronization, 497-512
acquiring the monitor for, 498
action of thread through monitor in,

501-503,501
class object, coordination support and, 511
cooperation in, 498, 499
coordination in, 511
entering the monitor for, 498
entry sets in, 498, 503
first-in first-out (FIFO) entry set for, 503
instruction set support for, 505-511

Index

last-in first-out (LIFO) entry set for, 503
locking/unlocking in, 497, 503-505
monitor for, 497, 498-503, 501
mutual exclusion in, 498, 499
notify command for, 499-500,

502-503,512
owning the monitor for, 498
regions for monitor in, 498
releasing the monitor for, 498
signal-and-continue monitor in, 500
synchronized methods and, 504, 508-511
synchronized statements and, 504, 505-508
timeouts for threads in, 502
wait command for, 499-500, 512
wait-and-notify monitor for, 499-500

synchronized methods, 504, 508-511
synchronized statements, 504, 505-508
Synthetic atttibute, 234
system class loaders, 48-50, 144
system property security, 66

T

tableswitch opcode, 454
testing, platform independence and,

34-35,36
threading, 19, 183-186

atomic types in, 184-185
bytecodes and, 55
current method in, 162
daemon threads in, 135-136
Java stack and, 137-138, 168-171, 169,171
locking/unlocking in, 158-159, 503-505
main memory in, 184
method area and, 14 7
native method stacks, 172-173, 173

Page 269 of 280

Index

non-daemon threads in, 135-136
platform independence and, 33-34, 35
program counter in, 161-162
security and, 66, 109
synchronization and, 184-186,497-512
timeouts, 502
time-slicing in, 184
variables in, 184
virtual machine and, 135-136,

138-139,139
wait sets, 159-160
working memories in, 184

Three-Dimensional Array applet, 437,
443-447,444

throwing exceptions, 460-464
timeouts in threads, 502
time-slicing, 184
tracing garbage collection, 358, 359
train algorithm for garbage collection,

363-368,365
trust models, 43
two's complement numbers, 407, 408-409
type conversion, 399-405,
types (see Java types),
type-safe reference casting and, 60

u

unconditional branching, 453
uniform resource locator (URL), 124
unloading Java types, 265-268, 336-343
unreachable state and garbage collection,

370,375
user Id security, 109
user-defined class loaders, 8-11, 9, 47,48-50,

142-144,241,265-268,323-333

mobility concepts and, 132
version 1.1, 323-329
version 1.2, 329-333

v

701

value sets for floating-point arithmetic,
429-431

variables (see also local variables)
constant variables in, 149
LocalVariableTable attribute, 231-233
popping to local variables in operand stack,

390-392
pushing local variables onto operand stack,

389-390
wide instruction for local variables, 392-394

vendors versus platform independence and,
36-39

verification of Java types, 238-240, 238,
241-244

version and edition differences, platform
independence and, 30-31

virtual machine, 1, 4, 5-7, 8, 133-190
abstract specification to define, 134
adaptive optimization in, 6-7, 181-183
ahead-of-time compilers, 18
application programming interface (API)

for, 12-14, 13, 19-20
architecture of, 136-187, 137
arrays and, 141,161,162,437-447
big-endian byte order in class files, 146
class class reference in, 150-151
class data type, 141
class files and, 6, 11-12
class loader of, 6, 6, 8-11, 9, 136, 137,

142-146, 149-150

Page 270 of 280

~02
compilers in, 6, 18
constant pool in, 148, 152-153, 168,

195-201,196,205-214,270
constant variables in, 149
controlflowin,449-458
daemon threads in, 135-136
data types for, 139-141, 140, 147
defined, 134
dependencies of, platform independence

versus, 33-34
distributed applications, 17-19
dynamic linking in, 150
error handling and, 62
exception tables in, 168
exceptions, 459-468
execution engine in, 6, 136, 137, 173-186
field information for types in, 148
flexibility of, 5-6
floating-point arithmetic and, 140, 423-436
frame data in, 167-168
frames and, 138, 142
fully quantified names in, 147
garbage collection, 19, 33, 154-155,

160-161,355-384
heap and, 137, 153-154, 154-161
holding data in, 138
implementation of, 134
initialization of classes in, 154
instruction set in, 17 4-181
integer arithmetic, 140, 407-416
interface data type, 141
Java interpreter and, 7
Java methods, 7
Java stack and, 137-138, 142, 162-163,

168-171,169
Jini technology and, 7, 186
just-in-time compiler of, 6

Index

lifetime of, 134-136
little-endian byte order in class files, 146
local variables and, 142, 163-166, 164
logic in, 417-422
main() method to invoke, 134-135, 152
memory allocation in (see heap)
method area in 137, 146-154
method information for data in, 148-149
method tables in, 151, 157-158
methods and, 7
mobility of, 11-12
name spaces in, 150
native methods and, 7, 12, 61-62, 138,

172-173,173,186-187
non-daemon threads in, 135-136
numeric data types, 140
object representation in, 155-161, 437-447
opcodesin, 174-181
operand stack and, 142, 166-167, 167, 171,

177, 179
PC register (see program counter)
platform independence and, 7, 11-12,

19-20, 23-40,
primitive values/primitive data types,

139-141
program counter, 137-138, 161-162
protection domains and, 65, 84-86, 86
_quick instructions, 305-306
reference values/ reference data types,

139-141, 155-161
resolution in, constant pool, 153
resources Web page for, 190
roots and root sets, 357-358
runtime data areas, 136, 137, 137-138, 138,

139
run-time instance of, 134-136
security and, 44, 59-62

Page 271 of 280

Index

simple names in, 147
specification to define, 134
speed of execution, 17
stack frame in, 138, 163-171
symbolic references in, 153
synchronization and, 184-186
threading in, 33-34, 135-136, 138-139,

139, 183-186
virtual table (VTBL) versus method table

in, 158
word size, 142

virtual math, eteral math simulation,
188-189,190

virtual table (VTBL) in, 158

w

wait command for synchronization,
499-500,512

wait sets, 159-160

bJ
wait-and-notify monitor for synchronization,

499-500
weakly reachable states and garbage

collection,371-373,372,375,376-378
wideinstruction,392-394,410,470
word size, virtual machine and, 142
working memory, threading, 184
World Wide Web development and Java, 123
Write operation security, 66

XOR (see logic)

Yellin, Frank, 134

Page 272 of 280

OBJECTS AND JAVA SEMINAR

A Five-Day Intensive, Hands-On,
Seminar Taught by Bill Venners

This course covers the full extent of the Java language and several of the
core APis, including input/output, AWT, Java 2D, Swing, network pro­
gramming, and RMI. A special emphasis is placed on understanding
Java's object-oriented nature and on effective use of the language con­
structs, such as interfaces, exceptions, and threads.

Ill Taught in-house by Bill Venners

Ill Includes in-class programming exercises

Ill Also available in condensed, lecture-only format

Ill Can be customized to suit your needs

For more details about this seminar and others offered by Bill Venners,
visit www. artima. com.

Page 273 of 280

In this superb piece of work, Bill Venners explains in detail the inner workings
of the Java Virtual Machine (JVM) by presenting possible implementations of
many parts of that intricate piece of software. It is therefore a welcome complement
to Sun's official specification. Each concept is clearly presented, often with the help
of sample code. The accompanying CD also contains enlightening demos about the
inner workings of the virtual machine. This book will be greatly appreciated not
only by VM implementers, but also by anyone just curious to understand a com­
ponent that's at the very heart of Java.

Antoine Trux, a Project Manager at Nokia Research Center in Helsinki, Fin­
land, JAVA Report, December, 1998. Inside the JAVA Virtual Machine was the

winner of one of JAVA Report's 1998 Writer's Choice Awards.

Before I delve into the structure and content of this book, I would like to men­
tion the aspect ofVenners's book that impressed me most of all: the sheer atten­
tion to detail and consistent accuracy of his writing.

The recurring (and expensive-to-produce) features in these chapters [5 through
20] are the animated, interactive, and enlightening applets that bring to life those
chapters' main topics. The garbage collection chapter, for example, not only contains
a good introduction to various modem garbage collection algorithms but also in­
cludes a Heap of Fish applet to let the reader accumulate a real, hands-on un­
derstanding of garbage collection issues and possible solutions.

The simple fact is that Venners's book is excellent, and his is the book I have to
recommend.

Laurence Vanhelsuwe, Java World Magazine, March, 1998.

Thank you for your excellent book. I've been writing programs in Java for a cou­
ple of years now, and it has really helped me get insight into the guts of the lan­
guage. Thanks again for a wonderful read!

Noah S. Friedland, PhD

Recently bought your book, which is worlds easier then reading the JVM Spec­
ification! I also love your applets. They make things a lot easier to understand.

Paul Bathen

Your book, Inside the Java Virtual Machine, is one of the best-written and most
helpful books in my Java collection.

Louis Barton

I just finished your book, Inside the Java Virtual Machine, and would like to
thank you for a very useful piece of work!

Antoine Trux

A detailed and methodical book on Java Virtual Machine. This book is a must
if you are planning on writing a JVM on your own or you have ever been wonder­
ing 'What the heck it takes to execute a .class file.' This book is a welcome relief to
all those who may have just read the specification on Java Virtual Machine and
are looking for something more explanatory.

Gopal Ananthraman

I'm really enjoying reading your book. It has lots of good stuff that I feel will
make me a better Java programmer.

Joel Nylund, Principal, American Management Systems

Page 274 of 280

-
I purchased a copy of Inside the Java Virtual Machine. Although I've only read

Chapters 7 and 8, I'm extremely pleased and impressed by the detail therein. You
answered many questions that surfaced, including, "which class loader does the VM
construe to have loaded classes for which a dynamic class loader delegated re­
sponsibility by calling ClassLoader. f indSystemClass () ?"

While I was at Lotus Development Corporation I coauthored a text for Prentice­
Hall titled Inside the Lotus Add-In Toolkit. The technology we discussed was
similar to Java-a platform neutral, partially compiled language whose byte codes
required a runtime virtual machine on which to execute.

Our goal as authors was to convey technical material with accuracy and good
humor. We really sweated the terminology and paid special attention to consistency
and technical detail-as developers we wanted this text to be useful and correct.
As readers, we polished our English usage because we dreaded reading most pop­
ular technical texts.

All this is by way of reinforcing my feedback on your work. When an author
takes the time to write complete sentences, to develop a conversational tone, to be
consistent in terminology, and to provide real value added rather than simply re­
iterating (often imprecisely) the published specifications, I sit up and take notice.

David McCall

The best Java book if you really want to go under the hood. Inside JVM is an
awsome book if you really want to know the ins and outs of JVM. I am amazed with
the ability of Mr. Bill as a technical writer. I will strongly recomend this book for
any serious Java developer who needs to know Java beyond the buzz words.

Rashid Jilani, on AMAZON. COM

A great book.
This is the best Java book I have read so far. Bill is a great software engineer

and writer. If you want to know about the inside of JVM, this is a must have.

Michael Young, on AMAZON. COM

Page 275 of 280

- - ABOUT THE AUTHOR

Bill Venners provides software consulting services to Silicon Valley and
the world under the name Artima Software Company (http://

www.artima.com). You can reach him at bv®artima.com.

II
I

I
I
I

Page 276 of 280

EXHIBIT A
JAVA DEVELOPMENT KIT VERSION 1.1.4 BINARY CODE LICENSE

This binary code license ("License") contains rights and restrictions associated with use of the accompanying soft­
ware and documentation ("Software"). Read the License carefully before installing the Software. By installing the
Software you agree to the terms and conditions of this License.
1. Limited License Grant. Sun grants to you ("Licensee") a non-exclusive, non-transferable limited license to use
the Software without fee for evaluation of the Software and for development of Java symbol228 \f"Symbol" \s
12 %o compatible applets and applications. Licensee may make one archival copy of the Software. Licensee may not
re-distribute the Software in whole or in part, either separately or included with a product. Refer to the Java Run­
time Environment Version 1.1.4 binary code license (http://www.javasoft.com/ products/JDK/1.1.4/index.html) for
the availability of runtime code which may be distributed with Java compatible applets and applications.
2. Java Platform Interface. Licensee may not modifY the Java Platform Interface ("JPI", identified as classes
contained within the "java" package or any subpackages of the "java" package), by creating additional classes within
the JPI or otherwise causing the addition to or modification of the classes in the JPI. In the event that Licensee
creates any Java-related API and distributes such API to others for applet or application development, Licensee
must promptly publish an accurate specification for such API for free use by all developers of Java-based software.
3. Restrictions. Software is confidential copyrighted information of Sun and title to all copies is retained by Sun
and/or its licensors. Licensee shall not modify, decompile, disassemble, decrypt, extract, or otherwise reverse engi­
neer Software. Software may not be leased, assigned, or sublicensed, in whole or in part. Software is not de­
signed or intended for use in on-line control of aircraft, air traffic, aircraft navigation or aircraft com­
munications; or in the design, construction, operation or maintenance of any nuclear facility.
Licensee warrants that it will not use or redistribute the Software for such purposes.
4. Trademarks and Logos. This License does not authorize Licensee to use any Sun name, trademark or logo.
Licensee acknowledges that Sun owns the Java trademark and all Java-related trademarks, logos and icons includ­
ing the Coffee Cup and Duke ("Java Marks") and agrees to: (i) to comply with the Java Trademark Guidelines at
http://java.com/trademarks.html; (ii) not do anything harmful to or inconsistent with Sun's rights in the Java
Marks; and (iii) assist Sun in protecting those rights, including assigning to Sun any rights acquired by Licensee in
any Java Mark.
5. Disclaimer of Warranty. Software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER­
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EX­
CLUDED.
6. Limitation of Liability. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUF­
FERED BY LICENSEE OR ANY THIRD PARTY AS A RESULT OF USING OR DISTRIBUTING SOFTWARE. IN
NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABIL­
ITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
7. Termination. Licensee may terminate this License at any time by destroying all copies of Software. This Li­
cense will terminate immediately without notice from Sun if Licensee fails to comply with any provision of this Li­
cense. Upon such termination, Licensee must destroy all copies of Software.
8. Export Regulation. Software, including technical data, is subject to U.S. export control laws, including the U.S.
Export Administration Act and its associated regulations, and may be subject to export or import regulations in
other countries. Licensee agrees to comply strictly with all such regulations and acknowledges that it has the re­
sponsibility to obtain licenses to export, re-export, or import Software. Software may not be downloaded, or other­
wise exported or re-exported (i) into, or to a national or resident of, Cuba, Iraq, Iran, North Korea, Libya, Sudan,
Syria or any country to which the U.S. has embargoed goods; or (ii) to anyone on the U.S. Treasury Department's
list of Specially Designated Nations or the U.S. Commerce Department's Table of Denial Orders.
9. Restricted Rights. Use, duplication or disclosure by the United States government is subject to the restrictions
as set forth in the Rights in Technical Data and Computer Software Clauses in DFARS 252.227-7013(c)(l)(ii) and
FAR 52.227-19(c)(2) as applicable.
10. Governing Law. Any action related to this License will be governed by California law and controlling U.S. fed­
erallaw. No choice of law rules of any jurisdiction will apply.
11. Severability. If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in
any jurisdiction, then such provisions are herewith waived to the extent necessary for the License to be otherwise en­
forceable in such jurisdiction. However, if in Sun's opinion deletion of any provisions of the License by operation of
this paragraph unreasonably compromises the rights or increase the liabilities of Sun or its licensors, Sun reserves
the right to terminate the License and refund the fee paid by Licensee, if any, as Licensee's sole and exclusive remedy.

Page 277 of 280

SOFTWARE AND INFORMATION LICENSE

The software and information on this diskette (collectively referred to as the "Product'') are the property of The
McGraw-Hill Companies, Inc. ("McGraw-Hill") and are protected by both United States copyright law and inter­
national copyright treaty provision. You must treat this Product just like a book, except that you may copy it into
a computer to be used and you may make archival copies of the Products for the sole purpose of backing up our
software and protecting your investment from loss.

By saying "just like a book," McGraw-Hill means, for example, that the Product may be used by any number of
people and may be freely moved from one computer location to another, so long as there is no possibility of the
Product (or any part of the Product) being used at one location or on one computer while it is being used at an­
other. Just a book cannot be read by two different people in two different places at the same time, neither can the
Product be used by two different people in two different places at the same time (unless, of course, McGraw-Hill's
rights are being violated).

McGraw-Hill reserves the right to alter or modifY the contents of the Product at any time.
This agreement is effective until terminated. The Agreement will terminate automatically without notice if you

fail to comply with any provisions of this Agreement. In the event of termination by reason of your breach, you
will destroy or erase all copies of the Product installed on any computer system or made for backup purposes and
shall expunge the Product from your data storage facilities.

LIMITED WARRANTY

McGraw-Hill warrants the physical diskette(s) enclosed herein to be free of defects in materials and workmanship
for a period of sixty days from the purchase date. If McGraw-Hill receives written notification within the warranty
period of defects in materials or workmanship, and such notification is determined by McGraw-Hill to be correct,
McGraw-Hill will replace the defective diskette(s). Send request to:

Customer Service
McGraw-Hill
Gahanna Industrial Park
860 Taylor Station Road
Blacklick, OH 43004-9615

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement
of defective diskette(s) and shall not include or extend any claim for or right to cover any other damages, includ­
ing but not limited to, loss of profit, data, or use of the software, or special, incidental, or consequential damages
or other similar claims, even if McGraw-Hill has been specifically advised as to the possibility of such damages.
In no event will McGraw-Hill's liability for any damages to you or any other person ever exceed the lower of sug­
gested list price or actual price paid for the license to use the Product, regardless of any form of the claim.

THE McGRAW-IDLL COMPANIES, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MER­
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, McGraw-Hill makes no rep­
resentation or warranty that the Product is fit for any particular purpose and any implied warranty of mer­
chantability is limited to the sixty day duration of the Limited Warranty covering the physical diskette(s) only (and
not the software or information) and is otherwise expressly and specifically disclaimed.

This Limited Warranty gives you specific legal rights; you may have others which may vary from state to state.
Some states do not allow the exclusion of incidental or consequential damages, or the limitation on how long an
implied warranty lasts, so some of the above may not apply to you.

This Agreement constitutes the entire agreement between the parties relating to use of the Product. The terms
of any purchase order shall have no effect on the terms of this Agreement. Failure of McGraw-Hill to insist at any
time on strict compliance with this Agreement shall not constitute a waiver of any rights under this Agreement.
This Agreement shall be construed and governed in accordance with the laws of New York. If any provision of this
Agreement is held to be contrary to law, that provision will be enforced to the maximum extent permissible and
the remaining provisions will remain in force and effect.

Page 278 of 280

.I
Page 279 of 280Page 279 of 280

Java/Programming

1111111111 il llll lllll llllllll ll llll ll lll
X001BD73C9

Inside the Java 2 Virtual Machine
Used, Good

$49.99 U.S.A.

Page 280 of 280

