

US006131166*A*

United States Patent [19]

Wong-Insley

[11] Patent Number: 6,131,166 [45] Date of Patent: Oct. 10, 2000

[54] SYSTEM AND METHOD FOR CROSS-PLATFORM APPLICATION LEVEL POWER MANAGEMENT

[75] Inventor: Becky Wong-Insley, Sunnyvale, Calif.

[73] Assignee: Sun Microsystems, Inc., Palo Alto,

Calif.

[21] Appl. No.: **09/256,826**

[22] Filed: Feb. 24, 1999

Related U.S. Application Data

[63]	Continuation of application No. 09/042,211, Mar. 13, 1998.
[51]	Int. Cl. ⁷
[52]	U.S. Cl. 713/300; 713/320; 713/330;
	709/302
[58]	Field of Search
	713/330, 201; 709/1, 101, 100, 302; 706/45;
	707/10; 717/1, 4; 379/10

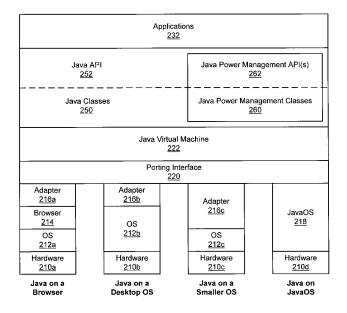
[56] References Cited

U.S. PATENT DOCUMENTS

10/1997	Pearce	713/300
12/1997	Fontarelli	713/600
12/1998	Stanley et al	713/322
9/1999	Nowlin, Jr	713/323
11/1999	Kou	713/323
	12/1997 12/1998 9/1999	10/1997 Pearce 12/1997 Fontarelli 12/1998 Stanley et al. 9/1999 Nowlin, Jr. 11/1999 Kou

OTHER PUBLICATIONS

"Advanced Configuration and Power Interface," ACPI—PC Webopaedia Definition and Links, http://webopedia.internet.com/TERM/A/A/ACPI.html, Dec. 22, 1998, pp. 1–2. "1.6 ACPI Specification and the Structure of ACPI," ACPI—http://www.teleport.com/~acpi/acpihtml/topic7.htm, Dec. 28, 1998, pp. 1–2.


"3.1 System Power Mangement," ACPI—http://www.tele-port.com/~acpi?acpihtml.topic23.htm, Dec. 28, 1998, pp. 1. "OnNow Power Management Architecture for Applications," Microsoft OnNow Design Initiative White Paper, 1996–1997 Microsoft Corportation, pp. 1–19.

Primary Examiner—Ario Etienne Attorney, Agent, or Firm—Conley, Rose & Tayon P.C.; B. Noel Kivlin

[57] ABSTRACT

A framework for the development of applications which manage the power resources and power states of powermanageable computer systems and attached devices. In one embodiment, the power management framework comprises a plurality of JavaTM programming interfaces (APIs) which are part of the JavaTM Platform. Therefore, the same framework is configured to enable the same power-aware Java™ applications to execute on many different computing platforms, operating systems, and computer hardware. The programming interfaces comprise a system-level programming interface, a notification programming interface, an exception programming interface, and a device-level programming interface. The system-level programming interface permits Java™ applications to obtain a current system power state and, with the proper privilege, to influence the current system power state. The notification programming interface permits JavaTM applications to be notified regarding transitions from one system power state to another system power state. The exception programming interface permits Java™ applications to be notified regarding errors in power management. The device-level programming interface permits Java™ applications to obtain a current device power state and, with the proper privilege, to influence the current device power state. The power management framework defines a plurality of standardized system power states, standardized device power states, and power state transitions.

42 Claims, 6 Drawing Sheets

Oct. 10, 2000

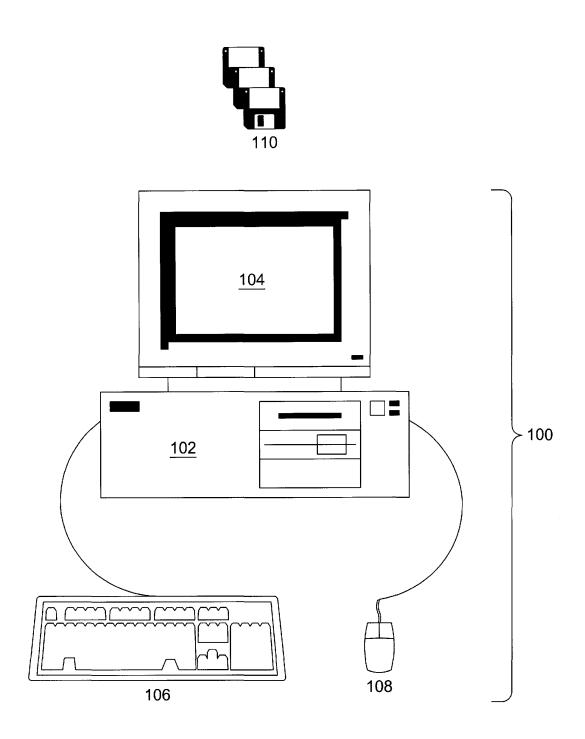



FIG. 1 (PRIOR ART)

		A	pplication 232	าร			
226	26 Java Base API				Java Standard Extension API		
<u>224</u>	Java Base Classes			Java Base Classes Java Standard Extension Classes			<u>22</u>
		Java \	/irtual Ma 222	achine			
		Port	ting Inter <u>220</u>	face			
Adapter 216a		Adapter 216b		Adapter		:	
Browser 214		OS <u>212b</u>		<u>216c</u>		JavaC <u>218</u>	
OS <u>212a</u>				OS <u>212c</u>			
Hardware 210a		Hardware <u>210b</u>		Hardware <u>210c</u>		Hardwa 210c	
Java on a Browser	_	Java on a Desktop OS	-	Java on a Smaller OS	_	Java o JavaC	

FIG. 2 (PRIOR ART)

Applications 232							
Java API <u>252</u>				Java Power Management API(s) 262			
Java Classes 250				Java Power Management Classes 260			
Java Virtual Machine 222							
Porting Interface 220							
Adapter 216a Browser		Adapter 216b		Adapter 216c		JavaOS	
214 OS 212a		OS <u>212b</u>		OS <u>212c</u>		<u>218</u>	
Hardware <u>210a</u>		Hardware <u>210b</u>		Hardware <u>210c</u>		Hardware <u>210d</u>	
Java on a Browser		Java on a Desktop OS		Java on a Smaller OS		Java on JavaOS	

Relative Power Consumption

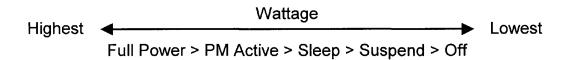


FIG. 4

Relative Wakeup Latency

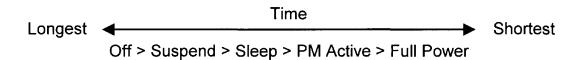


FIG. 5

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

