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Errata 

A list of the errors found in this book along with corresponding 
corrections is updated periodically. For the most recent electronic 
version, send email to: 

schneier@counterpane.com 

For the most recent printed version, send a stamped, self-addressed 
envelope to: 

AC Corrections 
Counterpane Systems 
101 E. Minnekaka Parkway 
Minneapolis, MN 55419 

Readers are encouraged to distribute electronic or printed versions 
of this list to other readers of this book. 
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Foreword 
By Whitfield Diffie 

The literature of cryptography has a curious history. Secrecy, of course, has always 
played a central role, but until the First World War, important developments appeared 
in print in a more or less timely fashion and the field moved forward in much the 
same way as other specialized disciplines. As late as 1918, one of the most influential 
cryptanalytic papers of the twentieth century, William F. Friedman's monograph The 
Index of Coincidence and Its Applications in Cryptography, appeared as a research 
report of the private Riverbank Laboratories [577]. And this, despite the fact that the 
work had been done as part of the war effort. In the same year Edward H. Hebern of 
Oakland, California filed the first patent for a rotor machine [710], the device destined 
to be a mainstay of military cryptography for nearly 50 years. 

After the First World War, however, things began to change. U.S. Army and Navy 
organizations, working entirely in secret, began to make fundamental advances in 
cryptography. During the thirties and forties a few basic papers did appear in the 
open literature and several treatises on the subject were published, but the latter 
were farther and farther behind the state of the art. By the end of the war the transi­
tion was complete. With one notable exception, the public literature had died. That 
exception was Claude Shannon's paper "The Communication Theory of Secrecy 
Systems," which appeared in the Bell System Technical Journal in 1949 [1432]. It 
was similar to Friedman's 1918 paper, in that it grew out of wartime work of Shan­
non's. After the Second World War ended it was declassified, possibly by mistake. 

From 1949 until 1967 the cryptographic literature was barren. In that year a dif­
ferent sort of contribution appeared: David Kahn's history, The Codebreakers [794]. 
It didn't contain any new technical ideas, but it did contain a remarkably complete 
history of what had gone before, including mention of some things that the govern­
ment still considered secret. The significance of The Codebreakers lay not just in its 
remarkable scope, but also in the fact that it enjoyed good sales and made tens of 
thousands of people, who had never given the matter a moment's thought, aware of 
cryptography. A trickle of new cryptographic papers began to be written. 
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Foreword by Whitfield Diffie 

At about the same time, Horst Feistel, who had earlier worked on identification 
friend or foe devices for the Air Force, took his lifelong passion for cryptography to 
the IBM Watson Laboratory in Yorktown Heights, New York. There, he began devel­
opment of what was to become the U.S. Data Encryption Standard; by the early 
1970s several technical reports on this subject by Feistel and his colleagues had been 
made public by IBM [1482,1484,552]. 

This was the situation when I entered the field in late 1972. The cryptographic lit­
erature wasn't abundant, but what there was included some very shiny nuggets. 

Cryptology presents a difficulty not found in normal academic disciplines: the need 
for the proper interaction of cryptography and cryptanalysis. This arises out of the fact 
that in the absence of real communications requirements, it is easy to propose a sys­
tem that appears unbreakable. Many academic designs are so complex that the would­
be cryptanalyst doesn't know where to start; exposing flaws in these designs is far 
harder than designing them in the first place. The result is that the competitive pro­
cess, which is one strong motivation in academic research, cannot take hold. 

When Martin Hellman and I proposed public-key cryptography in 1975 [496], one 
of the indirect aspects of our contribution was to introduce a problem that does not 
even appear easy to solve. Now an aspiring cryptosystem designer could produce 
something that would be recognized as clever-something that did more than just 
turn meaningful text into nonsense. The result has been a spectacular increase in 
the number of people working in cryptography, the number of meetings held, and 
the number of books and papers published. 

In my acceptance speech for the Donald E. Fink award-given for the best expos­
itory paper to appear in an IEEE journal-which I received jointly with Hellman in 
1980, I told the audience that in writing "Privacy and Authentication," I had an 
experience that I suspected was rare even among the prominent scholars who popu­
late the IEEE awards ceremony: I had written the paper I had wanted to study, but 
could not find, when I first became seriously interested in cryptography. Had I been 
able to go to the Stanford bookstore and pick up a modern cryptography text, I 
would probably have learned about the field years earlier. But the only things avail­
able in the fall of 1972 were a few clelssic papers and some obscure technical reports. 

The contemporary researcher has no such problem. The problem now is choosing 
where to start among the thousands of papers and dozens of books. The contempo­
rary researcher, yes, but what about the contemporary programmer or engineer who 
merely wants to use cryptography? Where does that person turn? Until now, it has 
been necessary to spend long hours hunting out and then studying the research lit­
erature before being able to design the sort of cryptographic utilities glibly described 
in popular articles. 

This is the gap that Bruce Schneier's Applied Cryptography has come to fill. 
Beginning with the objectives of communication security and elementary examples 
of programs used to achieve these objectives, Schneier gives us a panoramic view of 
the fruits of 20 years of public research. The title says it all; from the mundane 
objective of having a secure conversation the very first time you call someone to the 
possibilities of digital money and cryptographically secure elections, this is where 
you'll find it. 
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Not satisfied that the book was about the real world merely because it went all 
the way down to the code, Schneier has included an account of the world in which 
cryptography is developed and applied, and discusses entities ranging from the Inter­
national Association for Cryptologic Research to the NSA. 

When public interest in cryptography was just emerging in the late seventies and 
early eighties, the National Security Agency (NSA), America's official cryptographic 
organ, made several attempts to quash it. The first was a letter from a long-time 
NSA employee allegedly, avowedly, and apparently acting on his own. The letter 
was sent to the IEEE and warned that the publication of cryptographic material was 
a violation of the International Traffic in Arms Regulations (ITAR). This viewpoint 
turned out not even to be supported by the regulations themselves-which con­
tained an explicit exemption for published material-but gave both the public prac­
tice of cryptography and the 1977 Information Theory Workshop lots of unexpected 
publicity. 

A more serious attempt occurred in 1980, when the NSA funded the American 
Council on Education to examine the issue with a view to persuading Congress to 
give it legal control of publications in the field of cryptography. The results fell far 
short of NSA's ambitions and resulted in a program of voluntary review of crypto­
graphic papersi researchers were requested to ask the NSA's opinion on whether dis­
closure of results would adversely affect the national interest before publication. 

As the eighties progressed, pressure focused more on the practice than the study 
of cryptography. Existing laws gave the NSA the power, through the Department of 
State, to regulate the export of cryptographic equipment. As business became more 
and more international and the American fraction of the world. market declined, the 
pressure to have a single product in both domestic and offshore markets increased. 
Such single products were subject to export control and thus the NSA acquired sub­
stantial influence not only over what was exported, but also over what was sold in 
the United States. 

As this is written, a new challenge confronts the public practice of cryptography. 
The government has augmented the widely published and available Data Encryp­
tion Standard, with a secret algorithm implemented in tamper-resistant chips. 
These chips will incorporate a codified mechanism of government monitoring. The 
negative aspects of this "key-escrow" program range from a potentially disastrous 
impact on personal privacy to the high cost of having to add hardware to products 
that had previously encrypted in software. So far key escrow products are enjoying 
less than stellar sales and the scheme has attracted widespread negative comment, 
especially from the independent cryptographers. Some people, however, see more 
future in programming than politicking and have redoubled their efforts to provide 
the world with strong cryptography that is accessible to public scrutiny. 

A sharp step back from the notion that export control law could supersede the 
First Amendment seemed to have been taken in 1980 when the Federal Register 
announcement of a revision to ITAR included the statement: " ... provision has 
been added to make it clear that the regulation of the export of technical data does 
not purport to interfere with the First Amendment rights of individuals." But the 
fact that tension between the First Amendment and the export control laws has not 
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gone away should be evident from statements at a conference held by RSA Data 
Security. NSA's representative from the export control office expressed the opinion 
that people who published cryptographic programs were "in a grey area" with 
respect to the law. If that is so, it is a grey area on which the first edition of this book 
has shed some light. Export applications for the book itself have been granted, with 
acknowledgement that published material lay beyond the authority of the Muni­
tions Control Board. Applications to export the enclosed programs on disk, how­
ever, have been denied. 

The shift in the NSA's strategy, from attempting to control cryptographic research 
to tightening its grip on the development and deployment of cryptographic prod­
ucts, is presumably due to its realization that all the great cryptographic papers in 
the world do not protect a single bit of traffic. Sitting on the shelf, this volume may 
be able to do no better than the books and papers that preceded it, but sitting next 
to a workstation, where a programmer is writing cryptographic code, it just may. 

Whitfield Diffie 
Mountain View, CA 
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There are two kinds of cryptography in this world: cryptography that will stop your 
kid sister from reading your files, and cryptography that will stop major govern­
ments from reading your files. This book is about the latter. 

If I take a letter, lock it in a safe, hide the safe somewhere in New York, then tell 
you to read the letter, that's not security. That's obscurity. On the other hand, if I 
take a letter and lock it in a safe, and then give you the safe along with the design 
specifications of the safe and a hundred identical safes with their combinations so 
that you and the world's best safecrackers can study the locking mechanism-and 
you still can't open the safe and read the letter-that's security. 

For many years, this sort of cryptography was the exclusive domain of the mili­
tary. The United States' National Security Agency (NSA), and its counterparts in 
the former Soviet Union, England, France, Israel, and elsewhere, have spent billions 
of dollars in the very serious game of securing their own communications while try­
ing to break everyone else's. Private individuals, with far less expertise and budget, 
have been powerless to protect their own privacy against these governments. 

During the last 20 years, public academic research in cryptography has exploded. 
While classical cryptography has been long used by ordinary citizens, computer 
cryptography was the exclusive domain of the world's militaries since World War II. 
Today, state-of-the-art computer cryptography is practiced outside the secured walls 
of the military agencies. The layperson can now employ security practices that can 
protect against the most powerful of adversaries-security that may protect against 
military agencies for years to come. 

Do average people really need this kind of security? Yes. They may be planning a 
political campaign, discussing taxes, or having an illicit affair. They may be design­
ing a new product, discussing a marketing strategy, or planning a hostile business 
.~eover. Or they may be living in a country that does not respect the rights of pri­
;Vacy of its citizens. They may be doing something that they feel shouldn't be illegal, 
~ d,> 
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but is. For whatever reason, the data and communications are personal, private, and 
no one else's business. 

This book is being published in a tumultuous time. In 1994, the Clinton admin­
istration approved the Escrowed Encryption Standard (including the Clipper chip 
and Fortezza card) and signed the Digital Telephony bill into law. Both of these ini­
tiatives try to ensure the government's ability to conduct electronic surveillance. 

Some dangerously Orwellian assumptions are at work here: that the government 
has the right to listen to private communications, and that there is something 
wrong with a private citizen trying to keep a secret from the government. Law 
enforcement has always been able to conduct court-authorized surveillance if pos­
sible, but this is the first time that the people have been forced to take active mea­
sures to make themselves available for surveillance. These initiatives are not 
simply government proposals in some obscure area; they are preemptive and unilat­
eral attempts to usurp powers that previously belonged to the people. 

Clipper and Digital Telephony do not protect privacy; they force individuals to 
unconditionally trust that the government will respect their privacy. The same law 
enforcement authorities who illegally tapped Martin Luther King Jr.'s phones can 
easily tap a phone protected with Clipper. In the recent past, local police authorities 
have either been charged criminally or sued civilly in numerous jurisdictions­
Maryland, Connecticut, Vermont, Georgia, Missouri, and Nevada-for conducting 
illegal wiretaps. It's a poor idea to deploy a technology that could some day facilitate 
a police state. 

The lesson here is that it is insufficient to protect ourselves with laws; we need to 
protect ourselves with mathematics. Encryption is too important to be left solely to 
governments. 

This book gives you the tools you need to protect your own privacy; cryptography 
products may be declared illegal, but the information will never be. 

How To READ THIS BooK 

I wrote Applied Cryptography to be both a lively introduction to the field of cryp­
tography and a comprehensive reference. I have tried to keep the text readable with­
out sacrificing accuracy. This book is not intended to be a mathematical text. 
Although I have not deliberately given any false information, I do play fast and loose 
with theory. For those interested in formalism, there are copious references to the 
academic literature. 

Chapter 1 introduces cryptography, defines many terms, and briefly discusses pre­
computer cryptography. 

Chapters 2 through 6 (Part I) describe cryptographic protocols: what people can do 
with cryptography. The protocols range from the simple (sending encrypted mes­
sages from one person to another) to the complex (flipping a coin over the telephone) 
to the esoteric (secure and anonymous digital money exchange). Some of these pro­
tocols are obvious; others are almost amazing. Cryptography can solve a lot of prob­
lems that most people never realized it could. 
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Chapters 7 through 10 (Part ll) discuss cryptographic techniques. All four chapters in 
this section are important for even the most basic uses of cryptography. Chapters 7 and 
8 are about keys: how long a key should be in order to be secure, how to generate keys, 
how to store keys, how to dispose of keys, and so on. Key management is the hardest 
part of cryptography and often the Achilles' heel of an otherwise secure system. Chap­
ter 9 discusses different ways of using cryptographic algorithms, and Chapter 10 gives 
the odds and ends of algorithms: how to choose, implement, and use algorithms. 

Chapters 11 through 23 (Part ill) list algorithms. Chapter 11 provides the mathe­
matical background. This chapter is only required if you are interested in public-key 
algorithms. If you just want to implement DES (or something similar), you can skip 
ahead. Chapter 12 discusses DES: the algorithm, its history, its security, and some 
variants. Chapters 13, 14, and 15 discuss other block algorithms; if you want some­
thing more secure than DES, skip to the section on IDEA and triple-DES. If you want 
to read about a bunch of algorithms, some of which may be more secure than DES, 
read the whole chapter. Chapters 16 and 17 discuss stream algorithms. Chapter 18 
focuses on one-way hash functions; MD5 and SHA are the most common, although 
I discuss many more. Chapter 19 discusses public-key encryption algorithms, Chap­
ter 20 discusses public-key digital signature algorithms, Chapter 21 discusses public­
key identification algorithms, and Chapter 22 discusses public-key key exchange 
algorithms. The important algorithms are RSA, DSA, Fiat-Shamir, and Diffie­
Hellman, respectively. Chapter 23 has more esoteric public-key algorithms and pro­
tocols; the math in this chapter is quite complicated, so wear your seat belt. 

Chapters 24 and 25 (Part IV) turn to the real world of cryptography. Chapter 24 
discusses some of the current implementations of these algorithms and protocols, 
while Chapter 25 touches on some of the political issues surrounding cryptography. 
These chapters are by no means intended to be comprehensive. 

Also included are source code listings for 10 algorithms discussed in Part ill. I was 
unable to include all the code I wanted to due to space limitations, and crypto­
graphic source code cannot otherwise be exported. (Amazingly enough, the State 
Department allowed export of the first edition of this book with source code, but 
denied export for a computer disk with the exact same source code on it. Go figure.) 
An associated source code disk set includes much more source code than I could fit 
in this book; it is probably the largest collection of cryptographic source code out­
side a military institution. I can only send source code disks to U.S. and Canadian 
citizens living in the U.S. and Canada, but hopefully that will change someday. If 
you are interested in implementing or playing with the cryptographic algorithms in 
this book, get the disk. See the last page of the book for details. 

One criticism of this book is that its encyclopedic nature takes away from its 
readability. This is true, but I wanted to provide a single reference for those who 
might come across an algorithm in the academic literature or in a product. For those 
who are more interested in a tutorial, I apologize. A lot is being done in the field; 
this is the first time so much of it has been gathered between two covers. Even so, 
space considerations forced me to leave many things out. I covered topics that I felt 
were important, practical, or interesting. If I couldn't cover a topic in depth, I gave 
references to articles and papers that did. 
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I have done my best to hunt down and eradicate all errors in this book, but many 
have assured me that it is an impossible task. Certainly, the second edition has far 
fewer errors than the first. An errata listing is available from me and will be period­
ically posted to the Usenet newsgroup sci.crypt. If any reader finds an error, please 
let me know. I'll send the first person to find each error in the book a free copy of the 
source code disk. 
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CHAPTER 1 

Foundations 

1.1 TERMINOLOGY 

Sender and Receiver 
Suppose a sender wants to send a message to a receiver. Moreover, this sender 

wants to send the message securely: She wants to make sure an eavesdropper can­
not read the message. 

Messages and Encryption 
A message is plaintext (sometimes called cleartext). The process of disguising a 

message in such a way as to hide its substance is encryption. An encrypted message 
is ciphertext. The process of turning ciphertext back into plaintext is decryption. 
This is all shown in Figure 1.1. 

(If you want to follow the ISO 7498-2 standard, use the terms "encipher" and 
"decipher." It seems that some cultures find the terms "encrypt" and "decrypt" 
offensive, as they refer to dead bodies.) 

The art and science of keeping messages secure is cryptography, and it is practiced 
by cryptographers. Cryptanalysts are practitioners of cryptanalysis, the art and sci­
ence of breaking ciphertext; that is, seeing through the disguise. The branch of 
mathematics encompassing both cryptography and cryptanalysis is cryptology and 
its practitioners are cryptologists. Modern cryptologists are generally trained in the­
oretical mathematics-they have to be. 

Original 
Plaintext I . I Ciphertext I Plaintext 
------~~~. Encrypt1on . ~. Decryption J ~ 

Figure 1.1 Encryption and Decryption. 
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Plaintext is denoted by M, for message, or P, for plaintext. It can be a stream of 
bits, a text file, a bitmap, a stream of digitized voice, a digital video image ... what­
ever. As far as a computer is concerned, M is simply binary data. (After this chapter, 
this book concerns itself with binary data and computer cryptography.) The plain­
text can be intended for either transmission or storage. In any case, M is the message 
to be encrypted. 

Ciphertext is denoted by C. It is also binary data: sometimes the same size as M, 
sometimes larger. (By combining encryption with compression, C may be smaller 
than M. However, encryption does not accomplish this.) The encryption function E, 
operates on M to produce C. Or, in mathematical notation: 

E(M)=C 

In the reverse process, the decryption function D operates on C to produce M: 

D(C)=M 

Since the whole point of encrypting and then decrypting a message is to recover 
the original plaintext, the following identity must hold true: 

D(E(M))=M 

Authentication, Integrity, and Nonrepudiation 
In addition to providing confidentiality, cryptography is often asked to do other 

jobs: 

Authentication. It should be possible for the receiver of a message to 
ascertain its origini an intruder should not be able to masquerade as 
someone else. 

Integrity. It should be possible for the receiver of a message to verify 
that it has not been modified in transiti an intruder should not be able 
to substitute a false message for a legitimate one. 

Nonrepudiation. A sender should not be able to falsely deny later that 
he sent a message. 

These are vital requirements for social interaction on computers, and are analo­
gous to face-to-face interactions. That someone is who he says he is ... that some­
one's credentials-whether a driver's license, a medical degree, or a passport-are 
valid ... that a document purporting to come from a person actually came from that 
person .... These are the things that authentication, integrity, and nonrepudiation 
provide. 

Algorithms and Keys 
A cryptographic algorithm, also called a cipher, is the mathematical function used 

for encryption and decryption. (Generally, there are two related functions: one for 
encryption and the other for decryption.) 

Page 26 of 174



1.1 Terminology 

If the security of an algorithm is based on keeping the way that algorithm works 
a secret, it is a restricted algorithm. Restricted algorithms have historical interest, 
but are woefully inadequate by today's standards. A large or changing group of users 
cannot use them, because every time a user leaves the group everyone else must 
switch to a different algorithm. If someone accidentally reveals the secret, everyone 
must change their algorithm. 

Even more damning, restricted algorithms allow no quality control or standard­
ization. Every group of users must have their own unique algorithm. Such a group 
can't use off-the-shelf hardware or software products; an eavesdropper can buy the 
same product and learn the algorithm. They have to write their own algorithms and 
implementations. If no one in the group is a good cryptographer, then they won't 
know if they have a secure algorithm. 

Despite these major drawbacks, restricted algorithms are enormously popular for 
low-security applications. Users either don't realize or don't care about the security 
problems inherent in their system. 

Modern cryptography solves this problem with a key, denoted by K. This key might 
be any one of a large number of values. The range of possible values of the key is called 
the keyspace. Both the encryption and decryption operations use this key (i.e., they 
are dependent on the key and this fact is denoted by the K subscript), so the functions 
now become: 

EK(M)=C 

DK(C)=M 

Those functions have the property that (see Figure 1.2): 

DK(EK(M)) = M 

Some algorithms use a different encryption key and decryption key (see Figure 
1.3). That is, the encryption key, K1, is different from the corresponding decryption 
key, K2• In this case: 

EK](M) = c 
DK2(C)=M 

DK2!EK] (M)) = M 

All of the security in these algorithms is based in the key (or keys); none is based 
in the details of the algorithm. This means that the algorithm can be published and 
analyzed. Products using the algorithm can be mass-produced. It doesn't matter if an 

Key Key r l Original 
Plaintext Ciphertext Plaintext 

1 Encryption 1 ·1 Decryption 1r----

Figure 1.2 Encryption and decryption with a key. 
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Encryption Decryption 
Key Key t f Original 

Plaintext Ciphertext Plaintext 
----+J. 1 Encryption 1 ·1 Decryption 11-----

Figure 1.3 Encryption and decryption with two different keys. 

eavesdropper knows your algorithm; if she doesn't know your particular key, she 
can't read your messages. 

A cryptosystem is an algorithm, plus all possible plain texts, ciphertexts, and keys. 

Symmetric Algorithms 

There are two general types of key-based algorithms: symmetric and public-key. 
Symmetric algorithms, sometimes called conventional algorithms, are algorithms 
where the encryption key can be calculated from the decryption key and vice versa. 
In most symmetric algorithms, the encryption key and the decryption key are the 
same. These algorithms, also called secret-key algorithms, single-key algorithms, or 
one-key algorithms, require that the sender and receiver agree on a key before they 
can communicate securely. The security of a symmetric algorithm rests in the key; 
divulging the key means that anyone could encrypt and decrypt messages. As long 
as the communication needs to remain secret, the key must remain secret. 

Encryption and decryption with a symmetric algorithm are denoted by: 

EK(M) = c 
DK(C)=M 

Symmetric algorithms can be divided into two categories. Some operate on the 
plaintext a single bit (or sometimes byte) at a time; these are called stream algo­
rithms or stream ciphers. Others operate on the plaintext in groups of bits. The 
groups of bits are called blocks, and the algorithms are called block algorithms or 
block ciphers. For modern computer algorithms, a typical block size is 64 bits­
large enough to preclude analysis and small enough to be workable. (Before com­
puters, algorithms generally operated on plaintext one character at a time. You can 
think of this as a stream algorithm operating on a stream of characters.) 

Public-Key Algorithms 

Public-key algorithms (also called asymmetric algorithms) are designed so that 
the key used for encryption is different from the key used for decryption. Further­
more, the decryption key cannot (at least in any reasonable amount of time) be cal­
culated from the encryption key. The algorithms are called "public-key" because 
the encryption key can be made public: A complete stranger can use the encryption 
key to encrypt a message, but only a specific person with the corresponding decryp-
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tion key can decrypt the message. In these systems, the encryption key is often 
called the public key, and the decryption key is often called the private key. The pri­
vate key is sometimes also called the secret key, but to avoid confusion with sym­
metric algorithms, that tag won't be used here. 

Encryption using public key K is denoted by: 

EK(M)=C 

Even though the public key and private key are different, decryption with the cor­
responding private key is denoted by: 

DK(C)=M 

Sometimes, messages will be encrypted with the private key and decrypted with 
the public key; this is used in digital signatures (see Section 2.6). Despite the possi­
ble confusion, these operations are denoted by, respectively: 

EK(M)=C 

DK(C)=M 

Cryptanalysis 

The whole point of cryptography is to keep the plaintext (or the key, or both) 
secret from eavesdroppers (also called adversaries, attackers, interceptors, interlop­
ers, intruders, opponents, or simply the enemy). Eavesdroppers are assumed to have 
complete access to the communications between the sender and receiver. 

Cryptanalysis is the science of recovering the plaintext of a message without 
access to the key. Successful cryptanalysis may recover the plaintext or the key. It 
also may find weaknesses in a cryptosystem that eventually lead to the previous 
results. (The loss of a key through noncryptanalytic means is called a compromise.) 

An attempted cryptanalysis is called an attack. A fundamental assumption in 
cryptanalysis, first enunciated by the Dutchman A. Kerckhoffs in the nineteenth 
century, is that the secrecy must reside entirely in the key [794]. Kerckhoffs 
assumes that the cryptanalyst has complete details of the cryptographic algorithm 
and implementation. (Of course, one would assume that the CIA does not make a 
habit of telling Massad about its cryptographic algorithms, but Massad probably 
finds out anyway.) While real-world cryptanalysts don't always have such detailed 
information, it's a good assumption to make. If others can't break an algorithm, 
even with knowledge of how it works, then they certainly won't be able to break it 
without that knowledge. 

There are four general types of cryptanalytic attacks. Of course, each of them 
assumes that the cryptanalyst has complete knowledge of the encryption algo­
rithm used: 

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of several 
messages, all of which have been encrypted using the same encryption 
algorithm. The cryptanalyst's job is to recover the plaintext of as many 
messages as possible, or better yet to deduce the key (or keys) used to 
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encrypt the messages, in order to decrypt other messages encrypted with 
the same keys. 

Given: C1 = Ek!PI), C2 = Ek(P2), ... C1 = Ek(P1) 

Deduce: Either Pl> P2, ... PH k; or an algorithm 
to infer P, + 1 from C; + 1 = Ek(P; +I) 

2. Known-plaintext attack. The cryptanalyst has access not only to the 
ciphertext of several messages, but also to the plaintext of those messages. 
His job is to deduce the key !or keys) used to encrypt the messages or an 
algorithm to decrypt any new messages encrypted with the same key !or 
keys). 

Given: P~> C1 = EdPJ), P2, C2 = Ek(P2), ... P~> C; = EzAP1) 

Deduce: Either k, or an algorithm 
to infer P; + 1 from C, + 1 = Ek(P; +I) 

3. Chosen-plaintext attack. The cryptanalyst not only has access to the 
ciphertext and associated plaintext for several messages, but he also 
chooses the plaintext that gets encrypted. This is more powerful than a 
known-plaintext attack, because the cryptanalyst can choose specific 
plaintext blocks to encrypt, ones that might yield more information about 
the key. His job is to deduce the key (or keys) used to encrypt the messages 
or an algorithm to decrypt any new messages encrypted with the same key 
!or keys). 

Given: Pl> C1 = Ek(PI), P2, C2 = Ek(P2 ), ••• P~> C; = Ek(P;), 
where the cryptanalyst gets to choose PI> P2, ... P1 

Deduce: Either k, or an algorithm to infer P; + 1 from C; + 1 = Ek(P1 + I) 

4. Adaptive-chosen-plaintext attack. This is a special case of a chosen­
plaintext attack. Not only can the cryptanalyst choose the plaintext that is 
encrypted, but he can also modify his choice based on the results of previ­
ous encryption. In a chosen-plaintext attack, a cryptanalyst might just be 
able to choose one large block of plaintext to be encrypted; in an adaptive­
chosen-plaintext attack he can choose a smaller block of plaintext and 
then choose another based on the results of the first, and so forth. 

There are at least three other types of cryptanalytic attack. 

5. Chosen-ciphertext attack. The cryptanalyst can choose different cipher­
texts to be decrypted and has access to the decrypted plaintext. For exam­
ple, the cryptanalyst has access to a tamperproof box that does automatic 
decryption. His job is to deduce the key. 

Given: C~> P1 = Dk(CI), C2, P2 = Dk(C2), ... C, P; = Dk(C;) 

Deduce: k 
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This attack is primarily applicable to public-key algorithms and will be 
discussed in Section 19.3. A chosen-ciphertext attack is sometimes effec­
tive against a symmetric algorithm as well. (Sometimes a chosen-plaintext 
attack and a chosen-ciphertext attack are together known as a chosen-text 
attack.) 

6. Chosen-key attack. This attack doesn't mean that the cryptanalyst can 
choose the key; it means that he has some knowledge about the relation­
ship between different keys. It's strange and obscure, not very practical, 
and discussed in Section 12.4. 

7. Rubber-hose cryptanalysis. The cryptanalyst threatens, blackmails, or tor­
tures someone until they give him the key. Bribery is sometimes referred 
to as a purchase-key attack. These are all very powerful attacks and often 
the best way to break an algorithm. 

Known-plaintext attacks and chosen-plaintext attacks are more common than 
you might think. It is not unheard-of for a cryptanalyst to get a plaintext message 
that has been encrypted or to bribe someone to encrypt a chosen message. You may 
not even have to bribe someone; if you give a message to an ambassador, you will 
probably find that it gets encrypted and sent back to his country for consideration. 
Many messages have standard beginnings and endings that might be known to the 
cryptanalyst. Encrypted source code is especially vulnerable because of the regular 
appearance of keywords: #define, struct, else, return. Encrypted executable code has 
the same kinds of problems: functions, loop structures, and so on,. Known-plaintext 
attacks (and even chosen-plaintext attacks) were successfully used against both the 
Germans and the Japanese during World War II. David Kahn's books [794, 795, 796] 
have historical examples of these kinds of attacks. 

And don't forget Kerckhoffs's assumption: If the strength of your new cryptosys­
tem relies on the fact that the attacker does not know the algorithm's inner work­
ings, you're sunk. If you believe that keeping the algorithm's insides secret 
improves the security of your cryptosystem more than letting the academic com­
munity analyze it, you're wrong. And if you think that someone won't disassemble 
your code and reverse-engineer your algorithm, you're nai:ve. (In 1994 this hap­
pened with the RC4 algorithm-see Section 17.1.) The best algorithms we have are 
the ones that have been made public, have been attacked by the world's best cryp­
tographers for years, and are still unbreakable. (The National Security Agency 
keeps their algorithms secret from outsiders, but they have the best· cryptographers 
in the world working within their walls-you don't. Additionally, they discuss 
their algorithms with one another, relying on peer review to uncover any weak­
nesses in their work.) 

Cryptanalysts don't always have access to the algorithms, as when the United 
States broke the Japanese diplomatic code PURPLE during World War II [794]-but 
they often do. If the algorithm is being used in a commercial security program, it is 
simply a matter of time and money to disassemble the program and recover the algo­
rithm. If the algorithm is being used in a military communications system, it is sim-
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ply a matter of time and money to buy (or steal) the equipment and reverse-engineer 
the algorithm. 

Those who claim to have an unbreakable cipher simply because they can't break 
it are either geniuses or fools. Unfortunately, there are more of the latter in the 
world. Beware of people who extol the virtues of their algorithms, but refuse to 
make them public; trusting their algorithms is like trusting snake oil. 

Good cryptographers rely on peer review to separate the good algorithms from 
the bad. 

Security of Algorithms 
Different algorithms offer different degrees of security; it depends on how hard 

they are to break. If the cost required to break an algorithm is greater than the value 
of the encrypted data, then you're probably safe. If the time required to break an 
algorithm is longer than the time the encrypted data must remain secret, then 
you're probably safe. If the amount of data encrypted with a single key is less than 
the amount of data necessary to break the algorithm, then you're probably safe. 

I say "probably" because there is always a chance of new breakthroughs in crypt­
analysis. On the other hand, the value of most data decreases over time. It is impor­
tant that the value of the data always remain less than the cost to break the security 
protecting it. 

Lars Knudsen classified these different categories of breaking an algorithm. In 
decreasing order of severity [858]: 

1. Total break. A cryptanalyst finds the key, K, such that DK(C) = P. 

2. Global deduction. A cryptanalyst finds an alternate algorithm, A, equiva­
lent to DK(C), without knowing K. 

3. Instance (or local) deduction. A cryptanalyst finds the plaintext of an inter­
cepted ciphertext. 

4. Information deduction. A cryptanalyst gains some information about the 
key or plaintext. This information could be a few bits of the key, some 
information about the form of the plaintext, and so forth. 

An algorithm is unconditionally secure if, no matter how much ciphertext a 
cryptanalyst has, there is not enough information to recover the plaintext. In point 
of fact, only a one-time pad (see Section 1.5) is unbreakable given infinite resources. 
All other cryptosystems are breakable in a ciphertext-only attack, simply by trying 
every possible key one by one and checking whether the resulting plaintext is mean­
ingful. This is called a brute-force attack (see Section 7.1). 

Cryptography is more concerned with cryptosystems that are computationally 
infeasible to break. An algorithm is considered computationally secure (sometimes 
called strong) if it cannot be broken with available resources, either current or 
future. Exactly what constitutes "available resources" is open to interpretation. 

You can measure the complexity (see Section 11.1) of an attack in different ways: 
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1. Data complexity. The amount of data needed as input to the attack. 

2. Processing complexity. The time needed to perform the attack. This is 
often called the work factor. 

3. Storage requirements. The amount of memory needed to do the attack. 

As a rule of thumb, the complexity of an attack is taken to be the minimum of 
these three factors. Some attacks involve trading off the three complexities: A faster 
attack might be possible at the expense of a greater storage requirement. 

Complexities are expressed as orders of magnitude. If an algorithm has a process­
ing complexity of 2128

, then 2128 operations are required to break the algorithm. 
(These operations may be complex and time-consuming.) Still, if you assume that 
you have enough computing speed to perform a million operations every second and 
you set a million parallel processors against the task, it will still take over 1019 years 
to recover the key. That's a billion times the age of the universe. 

While the complexity of an attack is constant (until some cryptanalyst finds a bet­
ter attack, of course), computing power is anything but. There have been phenome­
nal advances in computing power during the last half-century and there is no reason 
to think this trend won't continue. Many cryptanalytic attacks are perfect for paral­
lel machines: The task can be broken down into billions of tiny pieces and none of 
the processors need to interact with each other. Pronouncing an algorithm secure 
simply because it is infeasible to break, given current technology, is dicey at best. 
Good cryptosystems are designed to be infeasible to break with the computing 
power that is expected to evolve many years in the future. 

Historical Terms 
Historically, a code refers to a cryptosystem that deals with linguistic units: 

words, phrases, sentences, and so forth. For example, the word "OCELOT" might be 
the ciphertext for the entire phrase "TURN LEFT 90 DEGREES," the word "LOL­
LIPOP" might be the ciphertext for "TURN RIGHT 90 DEGREES," and the words 
"BENT EAR" might be the ciphertext for "HOWITZER." Codes of this type are not 
discussed in this book; see [794, 795]. Codes are only useful for specialized circum­
stances. Ciphers are useful for any circumstance. If your code has no entry for 
"ANTEATERS," then you can't say it. You can say anything with a cipher. 

1.2 STEGANOGRAPHY 

Steganography serves to hide secret messages in other messages, such that the 
secret's very existence is concealed. Generally the sender writes an innocuous mes­
sage and then conceals a secret message on the same piece of paper. Historical tricks 
include invisible inks, tiny pin punctures on selected characters, minute differences 
between handwritten characters, pencil marks on typewritten characters, grilles 
which cover most of the message except for a few characters, and so on. 
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More recently, people are hiding secret messages in graphic images. Replace the 
least significant bit of each byte of the image with the bits of the message. The 
graphical image won't change appreciably-most graphics standards specify more 
gradations of color than the human eye can notice-and the message can be stripped 
out at the receiving end. You can store a 64-kilobyte message in a 1024 x 1024 grey­
scale picture this way. Several public-domain programs do this sort of thing. 

Peter Wayner's mimic functions obfuscate messages. These functions modify a 
message so that its statistical profile resembles that of something else: the classi­
fieds section of The New York Times, a play by Shakespeare, or a newsgroup on the 
Internet [1584, 1585]. This type of steganography won't fool a person, but it might 
fool some big computers scanning the Internet for interesting messages. 

1.3 SUBSTITUTION CIPHERS AND TRANSPOSITION CIPHERS 

Before computers, cryptography consisted of character-based algorithms. Different 
cryptographic algorithms either substituted characters for one another or transposed 
characters with one another. The better algorithms did both, many times each. 

Things are more complex these days, but the philosophy remains the same. The 
primary change is that algorithms work on bits instead of characters. This is actu­
ally just a change in the alphabet size: from 26 elements to two elements. Most good 
cryptographic algorithms still combine elements of substitution and transposition. 

Substitution Ciphers 
A substitution cipher is one in which each character in the plaintext is substi­

tuted for another character in the ciphertext. The receiver inverts the substitution 
on the ciphertext to recover the plaintext. 

In classical cryptography, there are four types of substitution ciphers: 

A simple substitution cipher, or monoalphabetic cipher, is one in 
which each character of the plaintext is replaced with a correspond­
ing character of ciphertext. The cryptograms in newspapers are sim­
ple substitution ciphers. 
A homophonic substitution cipher is like a simple substitution cryp­
tosystem, except a single character of plaintext can map to one of sev­
eral characters of ciphertext. For example, "A" could correspond to 
either 5, 13, 25, or 56, "B" could correspond to either 7, 19, 31, or 42, 
and so on. 
A polygram substitution cipher is one in which blocks of characters 
are encrypted in groups. For example, "ABA" could correspond to 
"RTQ," "ABB" could correspond to "SLL," and so on. 

A polyalphabetic substitution cipher is made up of multiple simple 
substitution ciphers. For example, there might be five different sim­
ple substitution ciphers used; the particular one used changes with 
the position of each character of the plaintext. 
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The famous Caesar Cipher, in which each plaintext character is replaced by the 
character three to the right modulo 26 ("A" is replaced by "D," "B" is replaced by 
"E," ... , "W" is replaced by "Z," "X" is replaced by "A," "Y" is replaced by "B," 
and "Z" is replaced by "C") is a simple substitution cipher. It's actually even sim­
pler, because the ciphertext alphabet is a rotation of the plaintext alphabet and not 
an arbitrary permutation. 

ROT13 is a simple encryption program commonly found on UNIX systemsi it is 
also a simple substitution cipher. In this cipher, "A" is replaced by "N," "B" is 
replaced by "0," and so on. Every letter is rotated 13 places. 

Encrypting a file twice with ROT13 restores the original file. 

P = ROT13 (ROT13 (P)) 

ROT13 is not intended for securityi it is often used in Usenet posts to hide poten­
tially offensive text, to avoid giving away the solution to a puzzle, and so forth. 

Simple substitution ciphers can be easily broken because the cipher does not hide 
the underlying frequencies of the different letters of the plaintext. All it takes is 
about 25 English characters before a good cryptanalyst can reconstruct the plaintext 
[1434]. An algorithm for solving these sorts of ciphers can be found in [578,587, 
1600,78,1475, 1236,880]. A good computer algorithm is [703]. 

Homophonic substitution ciphers were used as early as 1401 by the Duchy of Man­
tua [794]. They are much more complicated to break than simple substitution ciphers, 
but still do not obscure all of the statistical properties of the plaintext language. With 
a known-plaintext attack, the ciphers are trivial to break. A ciphertext-only attack is 
harder, but only takes a few seconds on a computer. Details are in [1261]. 

Polygram substitution ciphers are ciphers in which groups of letters are encrypted 
together. The Playfair cipher, invented in 1854, was used by the British during 
World War I [794]. It encrypts pairs of letters together. Its cryptanalysis is discussed 
in [587,1475,880]. The Hill cipher is another example of a polygram substitution 
cipher [732]. Sometimes you see Huffman coding used as a cipheri this is an insecure 
polygram substitution cipher. 

Polyalphabetic substitution ciphers were invented by Leon Battista in 1568 [794]. 
They were used by the Union army during the American Civil War. Despite the fact 
that they can be broken easily [819,577,587,794] (especially with the help of com­
puters), many commercial computer security products use ciphers of this form 
[1387, 1390, 1502]. (Details on how to break this encryption scheme, as used in Word­
Perfect, can be found in [135,139].) The Vigenere cipher, first published in 1586, and 
the Beaufort cipher are also examples of polyalphabetic substitution ciphers. 

Polyalphabetic substitution ciphers have multiple one-letter keys, each of which 
is used to encrypt one letter of the plaintext. The first key encrypts the first letter of 
the plaintext, the second key encrypts the second letter of the plaintext, and so on. 
After all the keys are used, the keys are recycled. If there were 20 one-letter keys, 
then every twentieth letter would be encrypted with the same key. This is called the 
period of the cipher. In classical cryptography, ciphers with longer periods were sig­
nificantly harder to break than ciphers with short periods. There are computer tech­
niques that can easily break substitution ciphers with very long periods. 
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A running-key cipher-sometimes called a book cipher-in which one text is 
used to encrypt another text, is another example of this sort of cipher. Even though 
this cipher has a period the length of the text, it can also be broken easily [576, 794]. 

Transposition Ciphers 
In a transposition cipher the plaintext remains the same, but the order of charac­

ters is shuffled around. In a simple columnar transposition cipher, the plaintext is 
written horizontally onto a piece of graph paper of fixed width and the ciphertext is 
read off vertically (see Figure 1.4). Decryption is a matter of writing the ciphertext 
vertically onto a piece of graph paper of identical width and then reading the plain­
text off horizontally. 

Cryptanalysis of these ciphers is discussed in [587, 1475]. Since the letters of the 
ciphertext are the same as those of the plaintext, a frequency analysis on the cipher­
text would reveal that each letter has approximately the same likelihood as in 
English. This gives a very good clue to a cryptanalyst, who can then use a variety of 
techniques to determine the right ordering of the letters to obtain the plaintext. 
Putting the ciphertext through a second transposition cipher greatly enhances secu­
rity. There are even more complicated transposition ciphers, but computers can 
break almost all of them. 

The German ADFGVX cipher, used during World War I, is a transposition cipher 
combined with a simple substitution. It was a very complex algorithm for its day 
but was broken by Georges Painvin, a French cryptanalyst [794]. 

Although many modern algorithms use transposition, it is troublesome because it 
requires a lot of memory and sometimes requires messages to be only certain 
lengths. Substitution is far more common. 

Rotor Machines 
In the 1920s, various mechanical encryption devices were invented to automate 

the process of encryption. Most were based on the concept of a rotor, a mechanical 
wheel wired to perform a general substitution. 

A rotor machine has a keyboard and a series of rotors, and implements a version 
of the Vigenere cipher. Each rotor is an arbitrary permutation of the alphabet, has 26 
positions, and performs a simple substitution. For example, a rotor might be wired 

Plaintext:COMPUTER GRAPHICS MAY BE SLOW BUT AT LEAST IT'S EXPENSIVE. 

COMPUTERGR 
APHICSMAYB 
ESLOWBUTAT 
LEASTITSEX 
PENSIVE 

Ciphertext: CAELP OPSEE MHLAN PlOSS UCWTI TSBI V EM UTE RATS<::; YAERB TX 

Figure 1.4 Columnar transposition cipher. 
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to substitute "F" for "A," "U" for "B, 11 "L 11 for 11 C, 11 and so on. And the output pins 
of one rotor are connected to the input pins of the next. 

For example, in a 4-rotor machine the first rotor might substitute "F 11 for 11 A, 11 the 
second might substitute 11Y 11 for 11F, 11 the third might substitute 11E" for 11Y," and the 
fourth might substitute 11C" for 11E"; 11C" would be the output ciphertext. Then 
some of the rotors shift, so next time the substitutions will be different. 

It is the combination of several rotors and the gears moving them that makes the 
machine secure. Because the rotors all move at different rates, the period for an n­
rotor machine is 26n. Some rotor machines can also have a different number of posi­
tions on each rotor, further frustrating cryptanalysis. 

The best-known rotor device is the Enigma. The Enigma was used by the Ger­
mans during World War II. The idea was invented by Arthur Scherbius and Arvid 
Gerhard Damm in Europe. It was patented in the United States by Arthur Scherbius 
[1383]. The Germans beefed up the basic design considerably for wartime use. 

The German Enigma had three rotors, chosen from a set of five, a plugboard that 
slightly permuted the plaintext, and a reflecting rotor that caused each rotor to oper­
ate on each plaintext letter twice. As complicated as the Enigma was, it was broken 
during World War II. First, a team of Polish cryptographers broke the German 
Enigma and explained their attack to the British. The Germans modified their 
Enigma as the war progressed, and the British continued to cryptanalyze the new 
versions. For explanations of how rotor ciphers work and how they were broken, see 
[794,86,448,498,446,880,1315,1587,690]. Two fascinating accounts of how the 
Enigma was broken are [735, 796]. 

Further Reading 
This is not a book about classical cryptography, so I will not dwell further on these 

subjects. Two excellent precomputer cryptology books are [587,1475]; [448] presents 
some modern cryptanalysis of cipher machines. Dorothy Denning discusses many of 
these ciphers in [456] and [880] has some fairly complex mathematical analysis of the 
same ciphers. Another older cryptography text, which discusses analog cryptogra­
phy, is [99]. An article that presents a good overview of the subject is [579]. David 
Kahn's historical cryptography books are also excellent [794, 795, 796]. 

1.4 SIMPLE XOR 
XOR is exclusive-or operation: 'A' inC or EB in mathematical notation. It's a stan­
dard operation on bits: 

OEBO=O 
OEB1=1 

1EB0=1 

1EB1=0 
Also note that: 

aEf>a=O 

aEBbEf>b=a 
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The simple-XOR algorithm is really an embarrassment; it's nothing more than a 
Vigenere polyalphabetic cipher. It's here only because of its prevalence in commer­
cial software packages, at least those in the MS-DOS and Macintosh worlds 
[1502, 1387]. Unfortunately, if a software security program proclaims that it has a 
"proprietary" encryption algorithm-significantly faster than DES-the odds are 
that it is some variant of this. 

/*Usage: crypto key input_file output_file */ 

void main (int argc, char *argv[Jl 
{ 

FILE *fi, *fo; 
char *cp; 
int c; 

if ((cp = argv[l]J && *cp!='\0' J { 
if ((fi = fopen(argv[2], "rb"JJ !=NULL) 

if ((fo = fopen<argv[3], "wb"JJ !=NULL) 
while ((c = getc(fi JJ != EOFJ { 

if < !*cpl cp = argv[l]; 
c A= *(cp++J; 
putc(c,fol; 

fclose(foJ; 

fcl ose(fi J; 

This is a symmetric algorithm. The plaintext is being XORed with a keyword to 
generate the ciphertext. Since XORing the same value twice restores the original, 
encryption and decryption use exactly the same program: 

P$K=C 

C$K=P 

There's no real security here. This kind of encryption is trivial to break, even 
without computers [587, 1475]. It will only take a few seconds with a computer. 

Assume the plaintext is English. Furthermore, assume the key length is any small 
number of bytes. Here's how to break it: 

1. Discover the length of the key by a procedure known as counting coinci­
dences [577]. XOR the ciphertext against itself shifted various numbers of 
bytes, and count those bytes that are equal. If the displacement is a multi­
ple of the key length, then something over 6 percent of the bytes will be 
equal. If it is not, then less than 0.4 percent will be equal (assuming a ran­
dom key encrypting normal ASCII text; other plaintext will have different 
numbers). This is called the index of coincidence. The smallest displace­
ment that indicates a multiple of the key length is the length of the key. 
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2. Shift the ciphertext by that length and XOR it with itself. This removes 
the key and leaves you with plaintext XORed with the plaintext shifted 
the length of the key. Since English has 1.3 bits of real information per byte 
(see Section 11.1), there is plenty of redundancy for determining a unique 
decryption. 

Despite this, the list of software vendors that tout this toy algorithm as being 
"almost as secure as DES" is staggering [1387]. It is the algorithm (with a 160-bit 
repeated "key") that the NSA finally allowed the U.S. digital cellular phone indus­
try to use for voice privacy. An XOR might keep your kid sister from reading your 
files, but it won't stop a cryptanalyst for more than a few minutes. 

1.5 ONE-TIME PADS 

Believe it or not, there is a perfect encryption scheme. It's called a one-time pad, and 
was invented in 1917 by Major Joseph Mauborgne and AT&T's Gilbert Vernam 
[794]. (Actually, a one-time pad is a special case of a threshold scheme; see Section 
3.7.) Classically, a one-time pad is nothing more than a large nonrepeating set of 
truly random key letters, written on sheets of paper, and glued together in a pad. In 
its original form, it was a one-time tape for teletypewriters. The sender uses each 
key letter on the pad to encrypt exactly one plaintext character. Encryption is the 
addition modulo 26 of the plaintext character and the one-time pad key character. 

Each key letter is used exactly once, for only one message. The sender encrypts 
the message and then destroys the used pages of the pad or used section of the tape. 
The receiver has an identical pad and uses each key on the pad, in turn, to decrypt 
each letter of the ciphertext. The receiver destroys the same pad pages or tape sec­
tion after decrypting the message. New message-new key letters. For example, if 
the message is: 

ONETIMEPAD 

and the key sequence from the pad is 

TBFRGFARFM 

then the ciphertext is 

IPKLPSFHGQ 

because 

O+Tmod 26=1 

N +Bmod26=P 

E + F mod 26 = K 

etc. 
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Assuming an eavesdropper can't get access to the one-time pad used to encrypt 
the message, this scheme is perfectly secure. A given ciphertext message is equally 
likely to correspond to any possible plaintext message of equal size. 

Since every key sequence is equally likely (remember, the key letters are gener­
ated randomly), an adversary has no information with which to cryptanalyze the 
ciphertext. The key sequence could just as likely be: 

POYYAEAAZX 

which would decrypt to: 

SALMON EGGS 

or 

BXFGBMTMXM 

which would decrypt to: 

GREEN FLUID 

This point bears repeating: Since every plaintext message is equally possible, 
there is no way for the cryptanalyst to determine which plaintext message is the 
correct one. A random key sequence added to a nonrandom plaintext message pro­
duces a completely random ciphertext message and no amount of computing power 
can change that. 

The caveat, and this is a big one, is that the key letters have to be generated ran­
domly. Any attacks against this scheme will be against the method used to generate 
the key letters. Using a pseudo-random number generator doesn't counti they 
always have nonrandom properties. If you use a real random source-this is much 
harder than it might first appear, see Section 17.14-it's secure. 

The other important point is that you can never use the key sequence again, ever. 
Even if you use a multiple-gigabyte pad, if a cryptanalyst has multiple ciphertexts 
whose keys overlap, he can reconstruct the plaintext. He slides each pair of cipher­
texts against each other and counts the number of matches at each position. If they 
are aligned right, the proportion of matches jumps suddenly-the exact percentages 
depend on the plaintext language. From this point cryptanalysis is easy. It's like the 
index of coincidence, but with just two "periods" to compare [904]. Don't do it. 

The idea of a one-time pad can be easily extended to binary data. Instead of a one­
time pad consisting of letters, use a one-time pad of bits. Instead of adding the plain­
text to the one-time pad, use an XOR. To decrypt, XOR the ciphertext with the same 
one-time pad. Everything else remains the same and the security is just as perfect. 

This all sounds good, but there are a few problems. Since the key bits must be ran­
dom and can never be used again, the length of the key sequence must be equal to 
the length of the message. A one-time pad might be suitable for a few short mes­
sages, but it will never work for a 1.544 Mbps communications channel. You can 
store 650 megabytes worth of random bits on a CD-ROM, but there are problems. 
First, you want exactly two copies of the random bits, but CD-ROMs are economi-
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cal only for large quantities. And second, you want to be able to destroy the bits 
already used. CD-ROM has no erase facilities except for physically destroying the 
entire disk. Digital tape is a much better medium for this sort of thing. 

Even if you solve the key distribution and storage problem, you have to make sure 
the sender and receiver are perfectly synchronized. If the receiver is off by a bit (or if 
some bits are dropped during the transmission), the message won't make any sense. 
On the other hand, if some bits are altered during transmission (without any bits 
being added or removed-something far more likely to happen due to random noise), 
only those bits will be decrypted incorrectly. But on the other hand, a one-time pad 
provides no authenticity. 

One-time pads have applications in today's world, primarily for ultra-secure low­
bandwidth channels. The hotline between the United States and the former Soviet 
Union was (is it still active?) rumored to be encrypted with a one-time pad. Many 
Soviet spy messages to agents were encrypted using one-time pads. These messages 
are still secure today and will remain that way forever. It doesn't matter how long 
the supercomputers work on the problem. Even after the aliens from Andromeda 
land with their massive spaceships and undreamed-of computing power, they will 
not be able to read the Soviet spy messages encrypted with one-time pads (unless 
they can also go back in time and get the one-time pads). 

1.6 COMPUTER ALGORITHMS 

There are many cryptographic algorithms. These are three of the most common: 

DES (Data Encryption Standard) is the most popular computer encryp­
tion algorithm. DES is a U.S. and international standard. It is a sym­
metric algorithm; the same key is used for encryption and decryption. 

RSA (named for its creators-Rivest, Shamir, and Adleman) is the 
most popular public-key algorithm. It can be used for both encryption 
and digital signatures. 

DSA (Digital Signature Algorithm, used as part of the Digital Signa­
ture Standard) is another public-key algorithm. It cannot be used for 
encryption, but only for digital signatures. 

These are the kinds of stuff this book is about. 

1. 7 lARGE NUMBERS 

Throughout this book, I use various large numbers to describe different things in 
cryptography. Because it is so easy to lose sight of these numbers and what they sig­
nify, Table 1.1 gives physical analogues for some of them. 

These numbers are order-of-magnitude estimates, and have been culled from a 
variety of sources. Many of the astrophysics numbers are explained in Freeman 
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Physical Analogue 

TABLE 1.1 
Large Numbers 

Odds of being killed by lightning (per day) 
Odds of winning the top prize in a U.S. state lottery 
Odds of winning the top prize in a U.S. state lottery 
and being killed by lightning in the same day 

Odds of drowning (in the U.S. per year) 
Odds of being killed in an automobile accident 
(in the U.S. in 1993) 

Odds of being killed in an automobile accident 
(in the U.S. per lifetime) 

Time until the next ice age 
Time until the sun goes nova 
Age of the planet 
Age of the Universe 
Number of atoms in the planet 
Number of atoms in the sun 
Number of atoms in the galaxy 
Number of atoms in the Universe (dark matter excluded) 
Volume of the Universe 

If the Universe is Closed: 
Total lifetime of the Universe 

If the Universe is Open: 
Time until low-mass stars cool off 
Time until planets detach from stars 
Time until stars detach from galaxies 
Time until orbits decay by gravitational radiation 
Time until black holes decay by the Hawking process 
Time until all matter is liquid at zero temperature 
Time until all matter decays to iron 
Time until all matter collapses to black holes 

Number 

1 in 9 billion (233
) 

1 in 4,000,000 (222 ) 

1 in 255 

1 in 59,000 (2 16
) 

1 in 6100 (2 13 ) 

1 in 88 (27
) 

14,000 (2 14
) years 

109 (230
) years 

1 09 (230
) years 

1010 (234
) years 

1051 (2170) 
1057 (2190) 
1067 (2223) 
1077 (2265) 
1084 (228o) cma 

10 11 (237
) years 

1018 (261
) seconds 

1014 (247
) years 

1015 (250
) years 

1019 (264
) years 

1020 (267 ) years 
1064 (2213

) years 
1065 (2 216

) years 
101026 years 
101076 years 

Dyson's paper, "Time Without End: Physics and Biology in an Open Universe," in 
Reviews of Modern Physics, v. 52, n. 3, July 1979, pp. 447-460. Automobile accident 
deaths are calculated from the Department of Transportation's statistic of 163 
deaths per million people in 1993 and an average lifespan of 69.7 years. 
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CHAPTER 2 

Protocol Building Blocks 

2.1 INTRODUCTION TO PROTOCOLS 

The whole point of cryptography is to solve problems. (Actually, that's the whole 
point of computers-something many people tend to forget.) Cryptography solves 
problems that involve secrecy, authentication, integrity, and dishonest people. You 
can learn all about cryptographic algorithms and techniques, but these are academic 
unless they can solve a problem. This is why we are going to look at protocols first. 

A protocol is a series of steps, involving two or more parties; designed to accom­
plish a task. This is an important definition. A "series of steps" means that the pro­
tocol has a sequence, from start to finish. Every step must be executed in turn, and 
no step can be taken before the previous step is finished. "Involving two or more 
parties" means that at least two people are required to complete the protocol; one 
person alone does not make a protocol. A person alone can perform a series of steps 
to accomplish a task (like baking a cake), but this is not a protocol. (Someone else 
must eat the cake to make it a protocol.) Finally, "designed to accomplish a task" 
means that the protocol must achieve something. Something that looks like a pro­
tocol but does not accomplish a task is not a protocol-it's a waste of time. 

Protocols have other characteristics as well: 

Everyone involved in the protocol must know the protocol and all of 
the steps to follow in advance. 
Everyone involved in the protocol must agree to follow it. 

The protocol must be unambiguous; each step must be well defined 
and there must be no chance of a misunderstanding. 
The protocol must be complete; there must be a specified action for 
every possible situation. 
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The protocols in this book are organized as a series of steps. Execution of the pro­
tocol proceeds linearly through the steps, unless there are instructions to branch to 
another step. Each step involves at least one of two things: computations by one or 
more of the parties, or messages sent among the parties. 

A cryptographic protocol is a protocol that uses cryptography. The parties can be 
friends and trust each other implicitly or they can be adversaries and not trust one 
another to give the correct time of day. A cryptographic protocol involves some 
cryptographic algorithm, but generally the goal of the protocol is something beyond 
simple secrecy. The parties participating in the protocol might want to share parts 
of their secrets to compute a value, jointly generate a random sequence, convince 
one another of their identity, or simultaneously sign a contract. The whole point of 
using cryptography in a protocol is to prevent or detect eavesdropping and cheating. 
If you have never seen these protocols before, they will radically change your ideas 
of what mutually distrustful parties can accomplish over a computer network. In 
general, this can be stated as: 

It should not be possible to do more or learn more than what is spec­
ified in the protocol. 

This is a lot harder than it looks. In the next few chapters I discuss a lot of proto­
cols. In some of them it is possible for one of the participants to cheat the other. In 
others, it is possible for an eavesdropper to subvert the protocol or learn secret infor­
mation. Some protocols fail because the designers weren't thorough enough in their 
requirements definitions. Others fail because their designers weren't thorough 
enough in their analysis. Like algorithms, it is much easier to prove insecurity than 
it is to prove security. 

The Purpose of Protocols 
In daily life, there are informal protocols for almost everything: ordering goods 

over the telephone, playing poker, voting in an election. No one thinks much about 
these protocols; they have evolved over time, everyone knows how to use them, and 
they work reasonably well. 

These days, more and more human interaction takes place over computer net­
works instead of face-to-face. Computers need formal protocols to do the same 
things that people do without thinking. If you moved from one state to another and 
found a voting booth that looked completely different from the ones you were used 
to, you could easily adapt. Computers are not nearly so flexible. 

Many face-to-face protocols rely on people's presence to ensure fairness and secu­
rity. Would you send a stranger a pile of cash to buy groceries for you? Would you 
play poker with someone if you couldn't see him shuffle and deal? Would you mail 
the government your secret ballot without some assurance of anonymity? 

It is nai:ve to assume that people on computer networks are honest. It is nai:ve to 
assume that the managers of computer networks are honest. It is even nai:ve to 
assume that the designers of computer networks are honest. Most are, but the dis-
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honest few can do a lot of damage. By formalizing protocols, we can examine ways 
in which dishonest parties can subvert them. Then we can develop protocols that 
are immune to that subversion. 

In addition to formalizing behavior, protocols abstract the process of accomplish­
ing a task from the mechanism by which the task is accomplished. A communica­
tions protocol is the same whether implemented on PCs or VAXs. We can examine 
the protocol without getting bogged down in the implementation details. When we 
are convinced we have a good protocol, we can implement it in everything from 
computers to telephones to intelligent muffin toasters. 

The Players 
To help demonstrate protocols, I have enlisted the aid of several people (see Table 

2.1). Alice and Bob are the first two. They will perform all general two-person pro­
tocols. As a rule, Alice will initiate all protocols and Bob will respond. If the proto­
col requires a third or fourth person, Carol and Dave will perform those roles. Other 
actors will play specialized supporting rolesi they will be introduced later. 

Arbitrated Protocols 
An arbitrator is a disinterested third party trusted to complete a protocol (see Fig­

ure 2.1a). Disinterested means that the arbitrator has no vested interest in the pro­
tocol and no particular allegiance to any of the parties involved. Trusted means that 
all people involved in the protocol accept what he says as true, what he does as cor­
rect, and that he will complete his part of the protocol. Arbitrators can help com­
plete protocols between two mutually distrustful parties. 

In the real world, lawyers are often used as arbitrators. For example, Alice is sell­
ing a car to Bob, a stranger. Bob wants to pay by check, but Alice has no way of 
knowing if the check is good. Alice wants the check to clear before she turns the 
title over to Bob. Bob, who doesn't trust Alice any more than she trusts him, doesn't 
want to hand over a check without receiving a title. 

Alice 
Bob 
Carol 
Dave 
Eve 
Mallory 
Trent 
Walter 
Peggy 
Victor 

TABLE 2.1 
Dramatis Personae 

First participant in all the protocols 
Second participant in all the protocols 
Participant in the three- and four-party protocols 
Participant in the four-party protocols 
Eavesdropper 
Malicious active attacker 
Trusted arbitrator 
Wardeni he'll be guarding Alice and Bob in some protocols 
Prover 
Verifier 
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Trent 

Alice / ---~ Bob a 1iiiir 
(a) Arbitrated protocol 

Alice Bob Trent a ........,._.l _,.... ._ ---/-~-a 
_.... __.. (After the fact) 

/ 

l Evidence J I ,__ __ _____) 

Evidence 

(b) Adjudicated protocol 

Alice Bob a 
(c) Self-enforcing protocol 

Figure 2.1 Types of protocols. 

Enter a lawyer trusted by both. With his help, Alice and Bob can use the following 
protocol to ensure that neither cheats the other: 

( 1) Alice gives the title to the lawyer. 

(2) Bob gives the check to Alice. 

(3) Alice deposits the check. 

(4) After waiting a specified time period for the check to clear, the lawyer 
.gives the title to Bob. If the check does not clear within the specified time 
period, Alice shows proof of this to the lawyer and the lawyer returns the 
title to Alice. 

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check 
has cleared, and to give it back to her if the check does not clear. Bob trusts the 
lawyer to hold the title until the check clears, and to give it to him once it does. The 
lawyer doesn't care if the check clears. He will do his part of the protocol in either 
case, because he will be paid in either case. 
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In the example, the lawyer is playing the part of an escrow agent. Lawyers also act 
as arbitrators for wills and sometimes for contract negotiations. The various stock 
exchanges act as arbitrators between buyers and sellers. 

Bankers also arbitrate protocols. Bob can use a certified check to buy a car from 
Alice: 

( 1) Bob writes a check and gives it to the bank. 

(2) After putting enough of Bob's money on hold to cover the check, the bank 
certifies the check and gives it back to Bob. 

(3) Alice gives the title to Bob and Bob gives the certified check to Alice. 

(4) Alice deposits the check. 

This protocol works because Alice trusts the banker's certification. Alice trusts 
the bank to hold Bob's money for her, and not to use it to finance shaky real estate 
operations in mosquito-infested countries. 

A notary public is another arbitrator. When Bob receives a notarized document 
from Alice, he is convinced that Alice signed the document voluntarily and with her 
own hand. The notary can, if necessary, stand up in court and attest to that fact. 

The concept of an arbitrator is as old as society. There have always been people­
rulers, priests, and so on-who have the authority to act fairly. Arbitrators have a 
certain social role and position in our society; betraying the public trust would jeop­
ardize that. Lawyers who play games with escrow accounts face almost-certain dis­
barment, for example. This picture of trust doesn't always exist in the real world, 
but it's the ideal. · 

This ideal can translate to the computer world, but there are several problems 
with computer arbitrators: 

It is easier to find and trust a neutral third party if you know who the 
party is and can see his face. Two parties suspicious of each other are 
also likely to be suspicious of a faceless arbitrator somewhere else on 
the network. 

The computer network must bear the cost of maintaining an arbitra­
tor. We all know what lawyers charge; who wants to bear that kind of 
network overhead? 

There is a delay inherent in any arbitrated protocol. 

The arbitrator must deal with every transaction; he is a bottleneck in 
large-scale implementations of any protocol. Increasing the number 
of arbitrators in the implementation can mitigate this problem, but 
that increases the cost. 

Since everyone on the network must trust the arbitrator, he repre­
sents a vulnerable point for anyone trying to subvert the network. 

Page 48 of 174



CHAPTER 2 Protocol Building Blocks 

Even so, arbitrators still have a role to play. In protocols using a trusted arbitrator, 
the part will be played by Trent. 

Adjudicated Protocols 
Because of the high cost of hiring arbitrators, arbitrated protocols can be subdi­

vided into two lower-level subprotocols. One is a nonarbitrated subprotocol, exe­
cuted every time parties want to complete the protocol. The other is an arbitrated 
subprotocol, executed only in exceptional circumstances-when there is a dispute. 
This special type of arbitrator is called an adjudicator (see Figure 2.lb). 

An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator, 
he is not directly involved in every protocol. The adjudicator is called in only to 
determine whether a protocol was performed fairly. 

Judges are professional adjudicators. Unlike a notary public, a judge is brought in 
only if there is a dispute. Alice and Bob can enter into a contract without a judge. A 
judge never sees the contract until one of them hauls the other into court. 

This contract-signing protocol can be formalized in this way: 
Nonarbitrated subprotocol (executed every time): 

( 1) Alice and Bob negotiate the terms of the contract. 

(2) Alice signs the contract. 

(3) Bob signs the contract. 

Adjudicated subprotocol (executed only in case of a dispute): 

(4) Alice and Bob appear before a judge. 

(5) Alice presents her evidence. 

(6) Bob presents his evidence. 

(7) The judge rules on the evidence. 

The difference between an adjudicator and an arbitrator (as used in this book) is 
that the adjudicator is not always necessary. In a dispute, a judge is called in to adju­
dicate. If there is no di~pute, using a judge is unnecessary. 

There are adjudicated computer protocols. These protocols rely on the parties to 
be honest; but if someone suspects cheating, a body of data exists so that a trusted 
third party could determine if someone cheated. In a good adjudicated protocol, the 
adjudicator could also determine the cheater's identity. Instead of preventing cheat­
ing, adjudicated protocols detect cheating. The inevitability of detection acts as a 
preventive and discourages cheating. 

Self-Enforcing Protocols 
A self-enforcing protocol is the best type of protocol. The protocol itself guaran­

tees fairness (see Figure 2.lc). No arbitrator is required to complete the protocol. No 
adjudicator is required to resolve disputes. The protocol is constructed so that there 
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cannot be any disputes. If one of the parties tries to cheat, the other party immedi­
ately detects the cheating and the protocol stops. Whatever the cheating party 
hoped would happen by cheating, doesn't happen. 

In the best of all possible worlds, every protocol would be self-enforcing. Unfor­
tunately, there is not a self-enforcing protocol for every situation. 

Attacks against Protocols 
Cryptographic attacks can be directed against the cryptographic algorithms used 

in protocols, against the cryptographic techniques used to implement the algo­
rithms and protocols, or against the protocols themselves. Since this section of the 
book discusses protocols, I will assume that the cryptographic algorithms and tech­
niques are secure. I will only examine attacks against the protocols. 

People can try various ways to attack a protocol. Someone not involved in the pro­
tocol can eavesdrop on some or all of the protocol. This is called a passive attack, 
because the attacker does not affect the protocol. All he can do is observe the proto­
col and attempt to gain information. This kind of attack corresponds to a ciphertext­
only attack, as discussed in Section 1.1. Since passive attacks are difficult to detect, 
protocols try to prevent passive attacks rather than detect them. In these protocols, 
the part of the eavesdropper will be played by Eve. 

Alternatively, an attacker could try to alter the protocol to his own advantage. He 
could pretend to be someone else, introduce new messages in the protocol, delete 
existing messages, substitute one message for another, replay old messages, inter­
rupt a communications channel, or alter stored information in a computer. These 
are called active attacks, because they require active intervention. The form of these 
attacks depends on the network. 

Passive attackers try to gain information about the parties involved in the protocol. 
They collect messages passing among various parties and attempt to cryptanalyze 
them. Active attacks, on the other hand, can have much more diverse objectives. The 
attacker could be interested in obtaining information, degrading system performance, 
corrupting existing information, or gaining unauthorized access to resources. 

Active attacks are much more serious, especially in protocols in which the differ­
ent parties don't necessarily trust one another. The attacker does not have to be a 
complete outsider. He could be a legitimate system user. He could be the system 
administrator. There could even be many active attackers working together. Here, 
the part of the malicious active attacker will be played by Mallory. 

It is also possible that the attacker could be one of the parties involved in the pro­
tocol. He may lie during the protocol or not follow the protocol at all. This type of 
attacker is called a cheater. Passive cheaters follow the protocol, but try to obtain 
more information than the protocol intends them to. Active cheaters disrupt the 
protocol in progress in an attempt to cheat. 

It is very difficult to maintain a protocol's security if most of the parties involved 
are active cheaters, but sometimes it is possible for legitimate parties to detect that 
active cheating is going on. Certainly, protocols should be secure against passive 
cheating. 
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2.2 COMMUNICATIONS USING SYMMETIDC CRYPTOGRAPHY 

How do two parties communicate securely? They encrypt their communications, of 
course. The complete protocol is more complicated than that. Let's look at what 
must happen for Alice to send an encrypted message to Bob. 

(I) Alice and Bob agree on a cryptosystem. 
(2) Alice and Bob agree on a key. 

(3) Alice takes her plaintext message and encrypts it using the encryption 
algorithm and the key. This creates a ciphertext message. 

(4) Alice sends the ciphertext message to Bob. 

(5) Bob decrypts the ciphertext message with the same algorithm and key and 
reads it. 

What can Eve, sitting between Alice and Bob, learn from listening in on this pro­
tocol? If all she hears is the transmission in step (4), she must try to cryptanalyze the 
ciphertext. This passive attack is a ciphertext-only attack; we have algorithms that 
are resistant (as far as we know) to whatever computing power Eve could realisti­
cally bring to bear on the problem. 

Eve isn't stupid, though. She also wants to listen in on steps (I) and (2). Then, she 
would know the algorithm and the key-just as well as Bob. When the message 
comes across the communications channel in step (4), all she has to do is decrypt it 
herself. 

A good cryptosystem is one in which all the security is inherent in knowledge 
of the key and none is inherent in knowledge of the algorithm. This is why key 
management is so important in cryptography. With a symmetric algorithm, Alice 
and Bob can perform step (I) in public, but they must perform step (2) in secret. 
The key must remain secret before, during, and after the protocol-as long as the 
message must remain secret-otherwise the message will no longer be secure. 
(Public-key cryptography solves this problem another way, and will be discussed 
in Section 2.5.) 

Mallory, an active attacker, could do a few other things. He could attempt to 
break the communications path in step (4), ensuring that Alice could not talk to Bob 
at all. Mallory could also intercept Alice's messages and substitute his own. If he 
knew the key (by intercepting the communication in step (2), or by breaking the 
cryptosystem), he could encrypt his own message and send it to Bob in place of the 
intercepted message. Bob would have no way of knowing that the message had not 
come from Alice. If Mallory didn't know the key, he could only create a replacement 
message that would decrypt to gibberish. Bob, thinking the message came from 
Alice, might conclude that either the network or Alice had some serious problems. 

What about Alice? What can she do to disrupt the protocol? She can give a copy of 
the key to Eve. Now Eve can read whatever Bob says. She can reprint his words in 
The New York Times. Although serious, this is not a problem with the protocol. 
There is nothing to stop Alice from giving Eve a copy of the plaintext at any point 
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during the protocol. Of course, Bob could also do anything that Alice could. This 
protocol assumes that Alice and Bob trust each other. 

In summary, symmetric cryptosystems have the following problems: 

Keys must be distributed in secret. They are as valuable as all the 
messages they encrypt, since knowledge of the key gives knowledge 
of all the messages. For encryption systems that span the world, this 
can be a daunting task. Often couriers hand-carry keys to their desti­
nations. 
If a key is compromised (stolen, guessed, extorted, bribed, etc.), then 
Eve can decrypt all message traffic encrypted with that key. She can 
also pretend to be one of the parties and produce false messages to 
fool the other party. 

Assuming a separate key is used for each pair of users in a network, 
the total number of keys increases rapidly as the number of users 
increases. A network of n users requires n(n - 1 )/2 keys. For example, 
10 users require 45 different keys to talk with one another and 100 
users require 4950 keys. This problem can be minimized by keeping 
the number of users small, but that is not always possible. 

2.3 ONE-WAY FUNCTIONS 

The notion of a one-way function is central to public-key cryptography. While not 
protocols in themselves, one-way functions are a fundamental building block for 
most of the protocols discussed in this book. 

One-way functions are relatively easy to compute, but significantly harder to 
reverse. That is, given x it is easy to compute f(x), but given f(x) it is hard to compute 
x. In this context, "hard" is defined as something like: It would take millions of 
years to compute x from f(x), even if all the computers in the world were assigned to 
the problem. 

Breaking a plate is a good example of a one-way function. It is easy to smash a 
plate into a thousand tiny pieces. However, it's not easy to put all of those tiny 
pieces back together into a plate. 

This sounds good, but it's a lot of smoke and mirrors. If we are being strictly math­
ematical, we have no proof that one-way functions exist, nor any real evidence that 
they can be constructed [230,530,600,661]. Even so, many functions look and smell 
one-way: We can compute them efficiently and, as of yet, know of no easy way to 
reverse them. For example, in a finite field x2 is easy to compute, but x1

/
2 is much 

harder. For the rest of this section, I'm going to pretend that there are one-way func­
tions. I'll talk more about this in Section 11.2. 

So, what good are one-way functions? We can't use them for encryption as is. A 
message encrypted with the one-way function isn't useful; no one could decrypt it. 
(Exercise: Write a message on a plate, smash the plate into tiny bits, and then give 
the bits to a friend. Ask your friend to read the message. Observe how impressed 
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he is with the one-way function.) For public-key cryptography, we need something 
else (although there are cryptographic applications for one-way functions-see 
Section 3.2). 

A trapdoor one-way function is a special type of one-way function, one with a 
secret trapdoor. It is easy to compute in one direction and hard to compute in the 
other direction. But, if you know the secret, you can easily compute the function in 
the other direction. That is, it is easy to compute f(x) given x, and hard to compute 
x given f(x). However, there is some secret information, y, such that given f(x) andy 
it is easy to compute x. 

Taking a watch apart is a good example of a trap-door one-way function. It is easy 
to disassemble a watch into hundreds of minuscule pieces. It is very difficult to put 
those tiny pieces back together into a working watch. However, with the secret 
information-the assembly instructions of the watch-it is much easier to put the 
watch back together. 

2.4 ONE-WAY HASH FUNCTIONS 

A one-way hash function has many names: compression function, contraction func­
tion, message digest, fingerprint, cryptographic checksum, message integrity check 
(MIC), and manipulation detection code (MDC). Whatever you call it, it is central to 
modern cryptography. One-way hash functions are another building block for many 
protocols. 

Hash functions have been used in computer science for a long time. A hash func­
tion is a function, mathematical or otherwise, that takes a variable-length input 
string (called a pre-image) and converts it to a fixed-length (generally smaller) output 
string (called a hash value). A simple hash function would be a function that takes 
pre-image and returns a byte consisting of the XOR of all the input bytes. 

The point here is to fingerprint the pre-image: to produce a value that indicates 
whether a candidate pre-image is likely to be the same as the real pre-image. 
Because hash functions are typically many-to-one, we cannot use them to deter­
mine with certainty that the two strings are equal, but we can use them to get a rea­
sonable assurance of accuracy. 

A one-way hash function is a hash function that works in one direction: It is easy 
to compute a hash value from pre-image, but it is hard to generate a pre-image that 
hashes to a particular value. The hash function previously mentioned is not one­
way: Given a particular byte value, it is trivial to generate a string of bytes whose 
XOR is that value. You can't do that with a one-way hash function. A good one-way 
hash function is also collision-free: It is hard to generate two pre-images with the 
same hash value. 

The hash function is public; there's no secrecy to the process. The security of a 
one-way hash function is its one-wayness. The output is not dependent on the input 
in any discernible way. A single bit change in the pre-image changes, on the average, 
half of the bits in the hash value. Given a hash value, it is computationally unfeasi­
ble to find a pre-image that hashes to that value. 

Page 53 of 174



2.5 Communications Using Public-Key Cryptography 

Think of it as a way of fingerprinting files. If you want to verify that someone has 
a particular file (that you also have), but you don't want him to send it to you, then 
ask him for the hash value. If he sends you the correct hash value, then it is almost 
certain that he has that file. This is particularly useful in financial transactions, 
where you don't want a withdrawal of $100 to turn into a withdrawal of $1000 
somewhere in the network. Normally, you would use a one-way hash function 
without a key, so that anyone can verify the hash. If you want only the recipient to 
be able to verify the hash, then read the next section. 

Message Authentication Codes 
A message authentication code (MAC), also known as a data authentication code 

(DAC), is a one-way hash function with the addition of a secret key (see Section 
18.14). The hash value is a function of both the pre-image and the key. The theory 
is exactly the same as hash functions, except only someone with the key can verify 
the hash value. You can create a MAC out of a hash function or a block encryption 
algorithm; there are also dedicated MACs. 

2.5 COMMUNICATIONS USING PuBLIC-KEY CRYPTOGRAPHY 

Think of a symmetric algorithm as a safe. The key is the combination. Someone 
with the combination can open the safe, put a document inside, and close it again. 
Someone else with the combination can open the safe and take the document out. 
Anyone without the combination is forced to learn safecracking. 

In 1976, Whitfield Diffie and Martin Hellman changed that· paradigm of cryptog­
raphy forever [496]. (The NSA has claimed knowledge of the concept as early as 
1966, but has offered no proof.) They described public-key cryptography. They used 
two different keys-one public and the other private. It is computationally hard to 
deduce the private key from the public key. Anyone with the public key can encrypt 
a message but not decrypt it. Only the person with the private key can decrypt the 
message. It is as if someone turned the cryptographic safe into a mailbox. Putting 
mail in the mailbox is analogous to encrypting with the public key; anyone can do 
it. Just open the slot and drop it in. Getting mail out of a mailbox is analogous to 
decrypting with the private key. Generally it's hard; you need welding torches. 
However, if you have the secret (the physical key to the mailbox), it's easy to get 
mail out of a mailbox. 

Mathematically, the process is based on the trap-door one-way functions previ­
ously discussed. Encryption is the easy direction. Instructions for encryption are the 
public key; anyone can encrypt a message. Decryption is the hard direction. It's 
made hard enough that people with Cray computers and thousands (even millions) 
of years couldn't decrypt the message without the secret. The secret, or trapdoor, is 
the private key. With that secret, decryption is as easy as encryption. 

This is how Alice can send a message to Bob using public-key cryptography: 

(1) Alice and Bob agree on a public-key cryptosystem. 
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(2) Bob sends Alice his public key. 
(3) Alice encrypts her message using Bob's public key and sends it to Bob. 

(4) Bob decrypts Alice's message using his private key. 

Notice how public-key cryptography solves the key-management problem with 
symmetric cryptosystems. Before, Alice and Bob had to agree on a key in secret. 
Alice could choose one at random, but she still had to get it to Bob. She could hand 
it to him sometime beforehand, but that requires foresight. She could send it to him 
by secure courier, but that takes time. Public-key cryptography makes it easy. With 
no prior arrangements, Alice can send a secure message to Bob. Eve, listening in on 
the entire exchange, has Bob's public key and a message encrypted in that key, but 
cannot recover either Bob's private key or the message. 

More commonly, a network of users agrees on a public-key cryptosystem. Every 
user has his or her own public key and private key, and the public keys are all pub­
lished in a database somewhere. Now the protocol is even easier: 

( 1) Alice gets Bob's public key from the database. 

(2) Alice encrypts her message using Bob's public key and sends it to Bob. 

(3) Bob then decrypts Alice's message using his private key. 

In the first protocol, Bob had to send Alice his public key before she could send 
him a message. The second protocol is more like traditional mail. Bob is not 
involved in the protocol until he wants to read his message. 

Hybrid Cryptosystems 
The first public-key algorithms became public at the same time that DES was 

being discussed as a proposed standard. This resulted in some partisan politics in the 
cryptographic community. As Diffie described it [494]: 

The excitement public key cryptosystems provoked in the popular and scientific 
press was not matched by corresponding acceptance in the cryptographic estab­
lishment, however. In the same year that public key cryptography was discovered, 
the National Security Agency (NSA), proposed a conventional cryptographic sys­
tem, designed by International Business Machines (IBM), as a federal Data 
Encryption Standard (DES). Marty Hellman and I criticized the proposal on the 
ground that its key was too small, but manufacturers were gearing up to support 
the proposed standard and our criticism was seen by many as an attempt to dis­
rupt the standards-making process to the advantage of our own work. Public key 
cryptography in its turn was attacked, in sales literature [1125] and technical 
papers [849, 1159] alike, more as though it were a competing product than a recent 
research discovery. This, however, did not deter the NSA from claiming its share 
of the credit. Its director, in the words of the Encyclopedia Britannica [1461], 
pointed out that 11 two-key cryptography had been discovered at the agency a 
decade earlier, 11 although no evidence for this claim was ever offered publicly. 

Page 55 of 174



2.5 Communications Using Public-Key Cryptography 

In the real world, public-key algorithms are not a substitute for symmetric algo­
rithms. They are not used to encrypt messages; they are used to encrypt keys. There 
are two reasons for this: 

1. Public-key algorithms are slow. Symmetric algorithms are generally at 
least 1000 times faster than public-key algorithms. Yes, computers are get­
ting faster and faster, and in 15 years computers will be able to do public­
key cryptography at speeds comparable to symmetric cryptography today. 
But bandwidth requirements are also increasing, and there will always be 
the need to encrypt data faster than public-key cryptography can manage. 

2. Public-key cryptosystems are vulnerable to chosen-plaintext attacks. If C 
= E(P), when P is one plaintext out of a set of n possible plaintexts, then a 
cryptanalyst only has to encrypt all n possible plaintexts and compare the 
results with C (remember, the encryption key is public). He won't be able 
to recover the decryption key this way, but he will be able to determine P. 

A chosen-plaintext attack can be particularly effective if there are relatively few 
possible encrypted messages. For example, if P were a dollar amount less than 
$1,000,000, this attack would work; the cryptanalyst tries all million possible dollar 
amounts. (Probabilistic encryption solves the problem; see Section 23.15.) Even if P 
is not as well-defined, this attack can be very effective. Simply knowing that a 
ciphertext does not correspond to a particular plaintext can be useful information. 
Symmetric cryptosystems are not vulnerable to this attack because a cryptanalyst 
cannot perform trial encryptions with an unknown key. 

In most practical implementations public-key cryptography is used to secure and 
distribute session keys; those session keys are used with symmetric algorithms to 
secure message traffic [879]. This is sometimes called a hybrid cryptosystem. 

( 1) Bob sends Alice his public key. 

(2) Alice generates a random session key, K, encrypts it using Bob's public key, 
and sends it to Bob. 

EB(K) 

(3) Bob decrypts Alice's message using his private key to recover the session 
key. 

DB(EB(K)) = K 

(4) Both of them encrypt their communications using the same session key. 

Using public-key cryptography for key distribution solves a very important key­
management problem. With symmetric cryptography, the data encryption key sits 
around until it is used. If Eve ever gets her hands on it, she can decrypt messages 
encrypted with it. With the previous protocol, the session key is created when it is 
needed to encrypt communications and destroyed when it is no longer needed. This 
drastically reduces the risk of compromising the session key. Of course, the private 
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key is vulnerable to compromise, but it is at less risk because it is only used once per 
communication to encrypt a session key. This is further discussed in Section 3.1. 

Merkle's Puzzles 
Ralph Merkle invented the first construction of public-key cryptography. In 1974 

he registered for a course in computer security at the University of California, 
Berkeley, taught by Lance Hoffman. His term paper topic, submitted early in the 
term, addressed the problem of "Secure Communication over Insecure Channels" 
[1064]. Hoffman could not understand Merkle's proposal and eventually Merkle 
dropped the course. He continued to work on the problem, despite continuing fail­
ure to make his results understood. 

Merkle's technique was based on "puzzles" that were easier to solve for the 
sender and receiver than for an eavesdropper. Here's how Alice sends an encrypted 
message to Bob without first having to exchange a key with him. 

( 1) Bob generates 220
, or about a million, messages of the form: "This is puzzle 

number x. This is the secret key number y," where x is a random number 
and y is a random secret key. Both x and y are different for each message. 
Using a symmetric algorithm, he encrypts each message with a different 
20-bit key and sends them all to Alice. 

(2) Alice chooses one message at random and performs a brute-force attack to 
recover the plaintext. This is a large, but not impossible, amount of work. 

(3) Alice encrypts her secret message with the key she recovered and some 
symmetric algorithm, and sends it to Bob along with x. 

(4) Bob knows which secret key y he encrypts in message x, so he can decrypt 
the message. 

Eve can break this system, but she has to do far more work than either Alice or 
Bob. To recover the message in step (3), she has to perform a brute-force attack 
against each of Bob's 220 messages in step ( 1 ); this attack has a complexity of 240

• The 
x values won't help Eve either; they were assigned randomly in step (1). In general, 
Eve has to expend approximately the square of the effort that Alice expends. 

This n to n2 advantage is small by cryptographic standards, but in some circum­
stances it may be enough. If Alice and Bob can try ten thousand keys per second, it 
will take them a minute each to perform their steps and another minute to com­
municate the puzzles from Bob to Alice on a 1.544 MB link. If Eve had comparable 
computing facilities, it would take her about a year to break the system. Other algo­
rithms are even harder to break. 

2.6 DIGITAL SIGNATURES 

Handwritten signatures have long been used as proof of authorship of, or at least 
agreement with, the contents of a document. What is it about a signature that is so 
compelling [1392]? 
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1. The signature is authentic. The signature convinces the document's recip­
ient that the signer deliberately signed the document. 

2. The signature is unforgeable. The signature is proof that the signer, and no 
one else, deliberately signed the document. 

3. The signature is not reusable. The signature is part of the documenti an 
unscrupulous person cannot move the signature to a different document. 

4. The signed document is unalterable. After the document is signed, it can­
not be altered. 

5. The signature cannot be repudiated. The signature and the document are 
physical things. The signer cannot later claim that he or she didn't sign it. 

In reality, none of these statements about signatures is completely true. Signa­
tures can be forged, signatures can be lifted from one piece of paper and moved to 
another, and documents can be altered after signing. However, we are willing to 
live with these problems because of the difficulty in cheating and the risk of 
detection. 

We would like to do this sort of thing on computers, but there are problems. First, 
computer files are trivial to copy. Even if a person's signature were difficult to forge 
(a graphical image of a written signature, for example), it would be easy to cut and 
paste a valid signature from one document to another document. The mere presence 
of such a signature means nothing. Second, computer files are easy to modify after 
they are signed, without leaving any evidence of modification. 

Signing Documents with Symmetric Cryptosystems ahd an Arbitrator 
Alice wants to sign a digital message and send it to Bob. With the help of Trent 

and a symmetric cryptosystem, she can. 
Trent is a powerful, trusted arbitrator. He can communicate with both Alice and 

Bob (and everyone else who may want to sign a digital document). He shares a secret 
key, KA, with Alice, and a different secret key, Ks, with Bob. These keys have been 
established long before the protocol begins and can be reused multiple times for 
multiple signings. 

( 1) Alice encrypts her message to Bob with KA and sends it to Trent. 
(2) Trent decrypts the message with KA. 

(3) Trent takes the decrypted message and a statement that he has received 
this message from Alice, and encrypts the whole bundle with Ks. 

(4) Trent sends the encrypted bundle to Bob. 

(5) Bob decrypts the bundle with Ks. He can now read both the message and 
Trent's certification that Alice sent it. 

How does Trent know that the message is from Alice and not from some 
imposter? He infers it from the message's encryption. Since only he and Alice share 
their secret key, only Alice could encrypt a message using it. 
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Is this as good as a paper signature? Let's look at the characteristics we want: 

1. This signature is authentic. Trent is a trusted arbitrator and Trent knows 
that the message came from Alice. Trent's certification serves as proof to 
Bob. 

2. This signature is unforgeable. Only Alice (and Trent, but everyone trusts 
him) knows KA, so only Alice could have sent Trent a message encrypted 
with KA. If someone tried to impersonate Alice, Trent would have imme­
diately realized this in step (2) and would not certify its authenticity. 

3. This signature is not reusable. If Bob tried to take Trent's certification and 
attach it to another message, Alice would cry foul. An arbitrator (it could 
be Trent or it could be a completely different arbitrator with access to the 
same information) would ask Bob to produce both the message and Alice's 
encrypted message. The arbitrator would then encrypt the message with 
KA and see that it did not match the encrypted message that Bob gave him. 
Bob, of course, could not produce an encrypted message that matches 
because he does not know KA. 

4. The signed document is unalterable. Were Bob to try to alter the document 
after receipt, Trent could prove foul play in exactly the same manner just 
described. 

5. The signature cannot be repudiated. Even if Alice later claims that she 
never sent the message, Trent's certification says otherwise. Remember, 
Trent is trusted by everyone; what he says is true. 

If Bob wants to show Carol a document signed by Alice, he can't reveal his secret 
key to her. He has to go through Trent again: 

( 1) Bob takes the message and Trent's statement that the message came from 
Alice, encrypts them with K8, and sends them back to Trent. 

(2) Trent decrypts the bundle with K8 . 

(3) Trent checks his database and confirms that the original message came 
from Alice. 

(4) Trent re-encrypts the bundle with the secret key he shares with Carol, Kc, 
and sends it to Carol. 

(5) Carol decrypts the bundle with Kc. She can now read both the message and 
Trent's certification that Alice sent it. 

These protocols work, but they're time-consuming for Trent. He must spend his 
days decrypting and encrypting messages, acting as the intermediary between every 
pair of people who want to send signed documents to one another. He must keep a 
database of messages (although this can be avoided by sending the recipient a copy 
of the sender's encrypted message). He is a bottleneck in any communications sys­
tem, even if he's a mindless software program. 
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Harder still is creating and maint~ining someone like Trent, someone that every­
one on the network trusts. Trent has to be infallible; if he makes even one mistake in 
a million signatures, no one is going to trust him. Trent has to be completely secure. 
If his database of secret keys ever got out or if someone managed to modify his pro­
gramming, everyone's signatures would be completely useless. False documents pur­
ported to be signed years ago could appear. Chaos would result. Governments would 
collapse. Anarchy would reign. This might work in theory, but it doesn't work very 
well in practice. 

Digital Signature Trees 
Ralph Merkle proposed a digital signature scheme based on secret-key cryptogra­

phy, producing an infinite number of one-time signatures using a tree structure 
[1067, 1068]. The basic idea of this scheme is to place the root of the tree in some 
public file, thereby authenticating it. The root signs one message and authenticates 
its sub-nodes in the tree. Each of these nodes signs one message and authenticates 
its sub-nodes, and so on. 

Signing Documents with Public-Key Cryptography 
There are public-key algorithms that can be used for digital signatures. In some 

algorithms-RSA is an example (see Section 19.3)-either the public key or the pri­
vate key can be used for encryption. Encrypt a document using your private key, and 
you have a secure digital signature. In other cases-DSA is an example (see Section 
20.1)-there is a separate algorithm for digital signatures that cannot be used for 
encryption. This idea was first invented by Diffie and Hellman [496] and further 
expanded and elaborated on in other texts [1282,1328,1024,1283,426]. See [1099] for 
a good survey of the field. . 

The basic protocol is simple: 

( 1) Alice encrypts the document with her private key, thereby signing the doc­
ument. 

(2) Alice sends the signed document to Bob. 

(3) Bob decrypts the document with Alice's public key, thereby verifying the 
signature. 

This protocol is far better than the previous one. Trent is not needed to either sign 
or verify signatures. (He is needed to certify that Alice's public key is indeed her 
public key.) The parties do not even need Trent to resolve disputes: If Bob cannot 
perform step (3 ), then he knows the signature is not valid. 

This protocol also satisfies the characteristics we're looking for: 

1. The signature is authentic; when Bob verifies the message with Alice's 
public key, he knows that she signed it. 

2. The signature is unforgeable; only Alice knows her private key. 

3. The signature is not reusable; the signature is a function of the document 
and cannot be transferred to any other document. 
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4. The signed document is unalterable; if there is any alteration to the docu­
ment, the signature can no longer be verified with Alice's public key. 

5. The signature cannot be repudiated. Bob doesn't need Alice's help to verify 
her signature. 

Signing Documents and Timestamps 
Actually, Bob can cheat Alice in certain circumstances. He can reuse the docu­

ment and signature together. This is no problem if Alice signed a contract (what's 
another copy of the same contract, more or less?), but it can be very exciting if Alice 
signed a digital check. 

Let's say Alice sends Bob a signed digital check for $100. Bob takes the check to 
the bank, which verifies the signature and moves the money from one account to 
the other. Bob, who is an unscrupulous character, saves a copy of the digital check. 
The following week, he again takes it to the bank (or maybe to a different bank). The 
bank verifies the signature and moves the money from one account to the other. If 
Alice never balances her checkbook, Bob can keep this up for years. 

Consequently, digital signatures often include timestamps. The date and time of 
the signature are attached to the message and signed along with the rest of the mes­
sage. The bank stores this timestamp in a database. Now, when Bob tries to cash 
Alice's check a second time, the bank checks the timestamp against its database. 
Since the bank already cashed a check from Alice with the same timestamp, the 
bank calls the police. Bob then spends 15 years in Leavenworth prison reading up on 
cryptographic protocols. 

Signing Documents with Public-Key Cryptography 
and One-Way Hash Functions 
In practical implementations, public-key algorithms are often too inefficient to 

sign long documents. To save time, digital signature protocols are often imple­
mented with one-way hash functions (432,433]. Instead of signing a document, 
Alice signs the hash of the document. In this protocol, both the one-way hash func­
tion and the digital signature algorithm are agreed upon beforehand. 

(I) Alice produces a one-way hash of a document. 

(2) Alice encrypts the hash with her private key, thereby signing the docu­
ment. 

(3) Alice sends the document and the signed hash to Bob. 

(4) Bob produces a one-way hash of the document that Alice sent. He then, 
using the digital signature algorithm, decrypts the signed hash with Alice's 
public key. If the signed hash matches the hash he generated, the signature , 
is valid. 

Speed increases drastically and, since the chances of two different documents hav­
ing the same 160-bit hash are only one in 2160

, anyone can safely equate a signature 
of the hash with a signature of the document. If a non-one-way hash function were 
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used, it would be an easy matter to create multiple documents that hashed to the 
same value, so that anyone signing a particular document would be duped into sign­
ing a multitude of documents. 

This protocol has other benefits. First, the signature can be kept separate from the 
document. Second, the recipient's storage requirements for the document and sig­
nature are much smaller. An archival system can use this type of protocol to verify 
the existence of documents without storing their contents. The central database 
could just store the hashes of files. It doesn't have to see the files at alli users submit 
their hashes to the database, and the database timestamps the submissions and 
stores them. If there is any disagreement in the future about who created a docu­
ment and when, the database could resolve it by finding the hash in its files. This 
system has vast implications concerning privacy: Alice could copyright a document 
but still keep the document secret. Only if she wished to prove her copyright would 
she have to make the document public. (See Section 4.1). 

Algorithms and Terminology 

There are many digital signature algorithms. All of them are public-key algo­
rithms with secret information to sign documents and public information to verify 
signatures. Sometimes the signing process is called encrypting with a private key 
and the verification process is called decrypting with a public key. This is mislead­
ing and is only true for one algorithm, RSA. And different algorithms have different 
implementations. For example, one-way hash functions and timestamps sometimes 
add extra steps to the process of signing and verifying. Many algorithms can be used 
for digital signatures, but not for encryption. 

In general, I will refer to the signing and verifying processes without any details of 
the algorithms involved. Signing a message with private key K is: 

SK(M) 

and verifying a signature with the corresponding public key is: 

VK(M) 

The bit string attached to the document when signed (in the previous example, 
the one-way hash of the document encrypted with the private key) will be called the 
digital signature, or just the signature. The entire protocol, by which the receiver of 
a message is convinced of the identity of the sender and the integrity of the message, 
is called authentication. Further details on these protocols are in Section 3.2. 

Multiple Signatures 

How could Alice and Bob sign the same digital document? Without one-way hash 
functions, there are two options. One is that Alice and Bob sign separate copies of 
the document itself. The resultant message would be over twice the size of the orig­
inal document. The second is that Alice signs the document first and then Bob signs 
Alice's signature. This works, but it is impossible to verify Alice's signature without 
also verifying Bob's. 
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With one-way hash functions, multiple signatures are easy: 

( 1) Alice signs the hash of the document. 
(2) Bob signs the hash of the document. 

(3) Bob sends his signature to Alice. 

(4) Alice sends the document, her signature, and Bob's signature to Carol. 

(5) Carol verifies both Alice's signature and Bob's signature. 

Alice and Bob can do steps (1) and (2) either in parallel or in series. In step (5), 
Carol can verify one signature without having to verify the other. 

Nonrepudiation and Digital Signatures 
Alice can cheat with digital signatures and there's nothing that can be done about 

it. She can sign a document and then later claim that she did not. First, she signs the 
document normally. Then, she anonymously publishes her private key, conve­
niently loses it in a public place, or just pretends to do either one. Alice then claims 
that her signature has been compromised and that others are using it, pretending to 
be her. She disavows signing the document and any others that she signed using that 
private key. This is called repudiation. 

Timestamps can limit the effects of this kind of cheating, but Alice can always 
claim that her key was compromised earlier. If Alice times things well, she can sign 
a document and then successfully claim that she didn't. This is why there is so 
much talk about private keys buried in tamper-resistant modules-so that Alice 
can't get at hers and abuse it. 

Although nothing can be done about this possible abuse, one can take steps to 
guarantee that old signatures are not invalidated by actions taken in disputing new 
ones. (For example, Alice could "lose" her key to keep from paying Bob for the junk 
car he sold her yesterday and, in the process, invalidate her bank account.) The solu­
tion is for the receiver of a signed document to have it timestamped [453]. 

The general protocol is given in [28]: 

( 1) Alice signs a message. 

(2) Alice generates a header containing some identifying information. She 
concatenates the header with the signed message, signs that, and sends it 
to Trent. 

(3) Trent verifies the outside signature and confirms the identifying informa­
tion. He adds a timestamp to Alice's signed message and the identifying 
information. Then he signs it all and sends it to both Alice and Bob. 

(4) Bob verifies Trent's signature, the identifying information, and Alice's sig­
nature. 

(5) Alice verifies the message Trent sent to Bob. If she did not originate the 
message, she speaks up quickly. 
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Another scheme uses Trent after the fact [209]. After receiving a signed message, 
Bob can send a copy to Trent for verification. Trent can attest to the validity of 
Alice's signature. 

Applications of Digital Signatures 
One of the earliest proposed applications of digital signatures was to facilitate the 

verification of nuclear test ban treaties [1454, 1467]. The United States and the Soviet 
Union (anyone remember the Soviet Union?) permitted each other to put seis­
mometers on the other's soil to monitor nuclear tests. The problem was that each 
country needed to assure itself that the host nation was not tampering with the data 
from the monitoring nation's seismometers. Simultaneously, the host nation needed 
to assure itself that the monitor was sending only the specific information needed 
for monitoring. 

Conventional authentication techniques can solve the first problem, but only dig­
ital signatures can solve both problems. The host nation can read, but not alter, data 
from the seismometer, and the monitoring nation knows that the data has not been 
tampered with. 

2. 7 DIGITAL SIGNATURES WITH ENCRYPTION 

By combining digital signatures with public-key cryptography, we develop a protocol 
that combines the security of encryption with the authenticity of digital signatures. 
Think of a letter from your mother: The signature provides proof of authorship and 
the envelope provides privacy. 

( 1) Alice signs the message with her private key. 

SA(M) 

(2) Alice encrypts the signed message with Bob's public key and sends it to Bob. 

Es(SA(M)) 

(3) Bob decrypts the message with his private key. 

Ds(Es(SA(M))) = SA(M) 

(4) Bob verifies with Alice's public key and recovers the message. 

VA(SA(M)) = M 

Signing before encrypting seems natural. When Alice writes a letter, she signs it 
and then puts it in an envelope. If she put the letter in the envelope unsigned and 
then signed the envelope, then Bob might worry if the letter hadn't been covertly 
replaced. If Bob showed to Carol Alice's letter and envelope, Carol might accuse Bob 
of lying about which letter arrived in which envelope. 

In electronic correspondence as well, signing before encrypting is a prudent prac­
tice [48]. Not only is it more secure-an adversary can't remove a signature from an 
encrypted message and add his own-but there are legal considerations: If the text 
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to be signed is not visible to the signer when he affixes his signature, then the sig­
nature may have little legal force [1312]. And there are some cryptanalytic attacks 
against this technique with RSA signatures (see Section 19.3). 

There's no reason Alice has to use the same public-key/private-key key pair for 
encrypting and signing. She can have two key pairs: one for encryption and the other 
for signatures. Separation has its advantages: she can surrender her encryption key 
to the police without compromising her signature, one key can be escrowed (see 
Section 4.13) without affecting the other, and the keys can have different sizes and 
can expire at different times. 

Of course, timestamps should be used with this protocol to prevent reuse of mes­
sages. Timestamps can also protect against other potential pitfalls, such as the one 
described below. 

Resending the Message as a Receipt 
Consider an implementation of this protocol, with the additional feature of con­

firmation messages. Whenever Bob receives a message, he returns it as a confirma­
tion of receipt. 

( 1) Alice signs a message with her private key, encrypts it with Bob's public 
key, and sends it to Bob. 

EB(SA(M)) 

(2) Bob decrypts the message with his private key and verifies the signature 
with Alice's public key, thereby verifying that Alice signed the message 
and recovering the message. 

VA(DB(EB(SA(M)))) =: M 

(3) Bob signs the message with his private key, encrypts it with Alice's public 
key, and sends it back to Alice. 

EA(SB(M)) 

(4) Alice decrypts the message with her private key and verifies the signature 
with Bob's public key. If the resultant message is the same one she sent to 
Bob, she knows that Bob received the message accurately. 

If the same algorithm is used for both encryption and digital-signature verification 
there is a possible attack [506]. In these cases, the digital signature operation is the 
inverse of the encryption operation: Vx =Ex and Sx = Dx. 

Assume that Mallory is a legitimate system user with his own public and private 
key. Now, let's watch as he reads Bob's mail. First, he records Alice's message to Bob 
in step ( 1 ). Then, at some later time, he sends that message to Bob, claiming that it 
came from him (Mallory). Bob thinks that it is a legitimate message from Mallory, 
so he decrypts the message with his private key and then tries to verify Mallory's 
signature by decrypting it with Mallory's public key. The resultant message, which 
is pure gibberish, is: 

EM(DB(EB(DA(M)))) =: EM(DA(M)) 
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Even so, Bob goes on with the protocol and sends Mallory a receipt: 

EM(Dn(EM(DA(M)))) 

Now, all Mallory has to do is decrypt the message with his private key, encrypt it 
with Bob's public key, decrypt it again with his private key, and encrypt it with 
Alice's public key. Voila! Mallory has M. 

It is not unreasonable to imagine that Bob may automatically send Mallory a 
receipt. This protocol may be embedded in his communications software, for exam­
ple, and send receipts automatically. It is this willingness to acknowledge the receipt 
of gibberish that creates the insecurity. If Bob checked the message for comprehensi­
bility before sending a receipt, he could avoid this security problem. 

There are enhancements to this attack that allow Mallory to send Bob a different 
message from the one he eavesdropped on. Never sign arbitrary messages from other 
people or decrypt arbitrary messages and give the results to other people. 

Foiling the Resend Attack 

The attack just described works because the encrypting operation is the same as 
the signature-verifying operation and the decryption operation is the same as the 
signature operation. A secure protocol would use even a slightly different operation 
for encryption and digital signatures. Using different keys for each operation solves 
the problem, as does using different algorithms for each operation; as do time­
stamps, which make the incoming message and the outgoing message different; as 
do digital signatures with one-way hash functions (see Section 2.6). 

In general, then, the following protocol is secure as the public-key algorithm used: 

( 1) Alice signs a message. 

(2) Alice encrypts the message and signature with Bob's public key (using a 
different encryption algorithm than for the signature) and sends it to Bob. 

(3) Bob decrypts the message with his private key. 

(4) Bob verifies Alice's signature. 

Attacks against Public-Key Cryptography 

In all these public-key cryptography protocols, I glossed over how Alice gets Bob's 
public key. Section 3.1 discusses this in detail, but it is worth mentioning here. 

The easiest way to get someone's public key is from a secure database some­
where. The database has to be public, so that anyone can get anyone else's public 
key. The database also has to be protected from write-access by anyone except 
Trent; otherwise Mallory could substitute any public key for Bob's. After he did 
that, Bob couldn't read messages addressed to him, but Mallory could. 

Even if the public keys are stored in a secure database, Mallory could still substi­
tute one for another during transmission. To prevent this, Trent can sign each pub­
lic key with his own private key. Trent, when used in this manner, is often known 
as a Key Certification Authority or Key Distribution Center (KDC). In practical 
implementations, the KDC signs a compound message consisting of the user's 
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name, his public key, and any other important information about the user. This 
signed compound message is stored in the KDC's database. When Alice gets Bob's 
key, she verifies the KDC's signature to assure herself of the key's validity. 

In the final analysis, this is not making things impossible for Mallory, only more 
difficult. Alice still has the KDC's public key stored somewhere. Mallory would 
have to substitute his own public key for that key, corrupt the database, and substi­
tute his own keys for the valid keys I all signed with his private key as if he were the 
KDC), and then he's in business. But, even paper-based signatures can be forged if 
Mallory goes to enough trouble. Key exchange will be discussed in minute detail in 
Section 3.1. 

2.8 RANDOM AND PSEUDO-RANDOM-SEQUENCE GENERATION 

Why even bother with random-number generation in a book on cryptography? 
There's already a random-number generator built into most every compiler, a mere 
function call away. Why not use that? Unfortunately, those random-number gener­
ators are almost definitely not secure enough for cryptography, and probably not 
even very random. Most of them are embarrassingly bad. 

Random-number generators are not random because they don't have to be. Most 
simple applications, like computer games, need so few random numbers that they 
hardly notice. However, cryptography is extremely sensitive to the properties of 
random-number generators. Use a poor random-number generator and you start get­
ting weird correlations and strange results [1231, 1238]. If you are depending on your 
random-number generator for security, weird correlations and strange results are 
the last things you want. 

The problem is that a random-number generator doesn't produce a random 
sequence. It probably doesn't produce anything that looks even remotely like a ran­
dom sequence. Of course, it is impossible to produce something truly random on a 
computer. Donald Knuth quotes John von Neumann as saying: "Anyone who con­
siders arithmetical methods of producing random digits is, of course, in a state of sin" 
[863]. Computers are deterministic beasts: Stuff goes in one end, completely pre­
dictable operations occur inside, and different stuff comes out the other end. Put the 
same stuff in on two separate occasions and the same stuff comes out both times. Put 
the same stuff into two identical computers, and the same stuff comes out of both of 
them. A computer can only be in a finite number of states (a large finite number, but 
a finite number nonetheless), and the stuff that comes out will always be a deter­
ministic function of the stuff that went in and the computer's current state. That 
means that any random-number generator on a computer (at least, on a finite-state 
machine) is, by definition, periodic. Anything that is periodic is, by definition, pre­
dictable. And if something is predictable, it can't be random. A true random-number 
generator requires some random input; a computer can't provide that. 

Pseudo-Random Sequences 
The best a computer can produce is a pseudo-random-sequence generator. What's 

that? Many people have taken a stab at defining this formally, but I'll hand-wave 
here. A pseudo-random sequence is one that looks random. The sequence's period 
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should be long enough so that a finite sequence of reasonable length-that is, one 
that is actually used-is not periodic. If you need a billion random bits, don't choose 
a sequence generator that repeats after only sixteen thousand bits. These relatively 
short nonperiodic subsequences should be as indistinguishable as possible from 
random sequences. For example, they should have about the same number of ones 
and zeros, about half the runs (sequences of the same bit) should be of length one, 
one quarter of length two, one eighth of length three, and so on. They should not be 
compressible. The distribution of run lengths for zeros and ones should be the same 
[643,863,99,1357]. These properties can be empirically measured and then com­
pared to statistical expectations using a chi-square test. 

For our purposes, a sequence generator is pseudo-random if it has this property: 

1. It looks random. This means that it passes all the statistical tests of ran­
domness that we can find. (Start with the ones in [863].) 

A lot of effort has gone into producing good pseudo-random sequences on com­
puter. Discussions of generators abound in the academic literature, along with vari­
ous tests of randomness. All of these generators are periodic (there's no escaping 
that); but with potential periods of 2256 bits and higher, they can be used for the 
largest applications. 

The problem is still those weird correlations and strange results. Every pseudo­
random-sequence generator is going to produce them if you use them in a certain 
way. And_ that's what a cryptanalyst will use to attack the system. 

Cryptographically Secure Pseudo-Random Sequences 
Cryptographic applications demand much more of a pseudo-random-sequence 

generator than do most other applications. Cryptographic randomness doesn't mean 
just statistical randomness, although that's part of it. For a sequence to be crypto­
graphically secure pseudo-random, it must also have this property: 

2. It is unpredictable. It must be computationally infeasible to predict what 
the next random bit will be, given complete knowledge of the algorithm or 
hardware generating the sequence and all of the previous bits in the stream. 

Cryptographically secure pseudo-random sequences should not be compress­
ible ... unless you know the key. The key is generally the seed used to set the initial 
state of the generator. 

Like any cryptographic algorithm, cryptographically secure pseudo-random­
sequence generators are subject to attack. Just as it is possible to break an encryption 
algorithm, it is possible to break a cryptographically secure pseudo-random-sequence 
generator. Making generators resistant to attack is what cryptography is all about. 

Real Random Sequences 
Now we're drifting into the domain of philosophers. Is there such a thing as ran­

domness? What is a random sequence? How do you know if a sequence is random? Is 
"101110100" more random than "101010101"? Quantum mechanics tells us that 
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there is honest-to-goodness randomness in the real world. But can we preserve that 
randomness in the deterministic world of computer chips and finite-state machines? 

Philosophy aside, from our point of view a sequence generator is real random if it 
has this additional third property: 

3. It cannot be reliably reproduced. If you run the sequence generator twice 
with the exact same input (at least as exact as humanly possible), you will 
get two completely unrelated random sequences. 

The output of a generator satisfying these three properties will be good enough for 
a one-time pad, key generation, and any other cryptographic applications that 
require a truly random sequence generator. The difficulty is in determining whether 
a sequence is really random. If I repeatedly encrypt a string with DES and a given 
key, I will get a nice, random-looking output; you won't be able to tell that it's non­
random unless you rent time on the NSA's DES cracker. 
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CHAPTER 8 

Key Management 

Alice and Bob have a secure communications system. They play mental poker, 
simultaneously sign contracts, even exchange digital cash. Their protocols are 
secure. Their algorithms are top-notch. Unfortunately, they buy their keys from 
Eve's "Keys-R-Us," whose slogan is "You can trust us: Security is the middle name 
of someone our ex-mother-in-law's travel agent met at the Kwik-E-Mart." 

Eve doesn't have to break the algorithms. She doesn't have to rely on subtle flaws 
in the protocols. She can use their keys to read all of Alice's and Bob's message traf­
fic without lifting a cryptanalytic finger. 

In the real world, key management is the hardest part of cryptography. Designing 
secure cryptographic algorithms and protocols isn't easy, but you can rely on a large 
body of academic research. Keeping the keys secret is much harder. 

Cryptanalysts often attack both symmetric and public-key cryptosystems 
through their key management. Why should Eve bother going through all the trou­
ble of trying to break the cryptographic algorithm if she can recover the key because 
of sloppy key storage procedures? Why should she spend $10 million building a 
cryptanalysis machine if she can spend $1000 bribing a clerk? Spending a million 
dollars to buy a well-placed communications clerk in a diplomatic embassy can be 
a bargain. The Walkers sold U.S. Navy encryption keys to the Soviets for years. The 
CIA's director of counterintelligence went for less than $2 million, wife included. 
That's far cheaper than building massive cracking machines and hiring brilliant 
cryptanalysts. Eve can steal the keys. She can arrest or abduct someone who knows 
the keys. She can seduce someone and get the keys that way. (The Marines who 
guarded the U.S. Embassy in Moscow were not immune to that attack.) It's a whole 
lot easier to find flaws in people than it is to find them in cryptosystems. 

Alice and Bob must protect their key to the same degree as all the data it encrypts. 
If a key isn't changed regularly, this can be an enormous amount of data. Unfortu­
nately, many commercial products simply proclaim "We use DES" and forget about 
everything else. The results are not very impressive. 
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For example, the DiskLock program for Macintosh (version 2.1 ), sold at most soft­
ware stores, claims the security of DES encryption. It encrypts files using DES. Its 
implementation of the DES algorithm is correct. However, DiskLock stores the DES 
key with the encrypted file. If you know where to look for the key, and want to read 
a file encrypted with DiskLock's DES, recover the key from the encrypted file and 
then decrypt the file. It doesn't matter that this program uses DES encryption-the 
implementation is completely insecure. 

Further information on key management can be found in [457,98,1273,1225, 
775,357]. The following sections discuss some of the issues and solutions. 

8.1 GENERATING KEYS 

The security of an algorithm rests in the key. If you're using a cryptographically 
weak process to generate keys, then your whole system is weak. Eve need not 
cryptanalyze your encryption algorithm; she can cryptanalyze your key generation 
algorithm. 

Reduced Keyspaces 
DES has a 56-bit key. Implemented properly, any 56-bit string can be the key; 

there are 256 (1016
) possible keys. Norton Discreet for MS-DOS (versions 8.0 and ear­

lier) only allows ASCII keys, forcing the high-order bit of each byte to be zero. The 
program also converts lowercase letters to uppercase (so the fifth bit of each byte is 
always the opposite of the sixth bit) and ignores the low-order bit of each byte, 
resulting in only 240 possible keys. These poor key generation procedures have made 
its DES ten thousand times easier to break than a proper implementation. 

Table 8.1 gives the number of possible keys with various constraints on the input 
strings. Table 8.2 gives the time required for an exhaustive search through all of 
those keys, given a million attempts per second. Remember, there is very little time 
differential between an exhaustive search for 8-byte keys and an exhaustive search 
of 4-, 5-, 6-, 7-, and 8-byte keys. 

All specialized brute-force hardware and parallel implementations will work here. 
Testing a million keys per second (either with one machine or with multiple 
machines in parallel), it is feasible to crack lowercase-letter and lowercase-letter-

Table 8.1 
Number of Possible Keys of Various Keyspaces 

Lowercase letters (26): 
Lowercase letters and digits (36): 
Alphanumeric characters (62): 
Printable characters (95): 
ASCII characters (128): 
8-bit ASCII characters (256): 

4-Byte 5-Byte 6-Byte 7-Byte 

460,000 1.2• 107 3.1 * 108 8.0• 109 

1,700,000 6.0•107 2.2•109 7.8•1010 

1.5•107 9.2•108 5.7•1010 3.5•1012 

8.1•107 7.7•109 7.4•10ll 7.0•1013 

3.4• 1010 

1.1 * 1012 
4.4• 1012 
2.8• 1014 

5.6• 1014 

7.2• 1016 

8-Byte 

2.1 * 10ll 
2.8• 1012 

2.2•1014 

6.6• 1015 

7.2• 1016 

1.8• 1019 
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Table 8.2 
Exhaustive Search of Various Keyspaces (assume one million attempts per second) 

4-Byte 5-Byte 6-Byte 7 -Byte 8-Byte 

Lowercase letters (26): .5 seconds 12 seconds 5 minutes 2.2 hours 2.4 days 
Lowercase letters and digits (36): 1.7 seconds 1 minute 36 minutes 22 hours 33 days 
Alphanumeric characters (62): 15 seconds 15 minutes 16 hours 41 days 6.9 years 
Printable characters (95): 1.4 minutes 2.1 hours 8.5 days 2.2 years 210 years 
ASCII characters ( 128): 4.5 minutes 9.5 hours 51 days 18 years 2300 years 
8-bit ASCII characters (256): 1.2 hours 13 days 8.9 years 2300 years 580,000 years 

and-number keys up to 8 bytes long, alphanumeric-character keys up to 7 bytes 
long, printable character and ASCII-character keys up to 6 bytes long, and S-hit­
ASCII-character keys up to 5 bytes long. 

And remember, computing power doubles every 18 months. If you expect your keys 
to stand up against brute-force attacks for 10 years, you'd better plan accordingly. 

Poor Key Choices 
When people choose their own keys, they generally choose poor ones. They're far 

more likely to choose 11Barney" than 1~*9 (hH/A." This is not always due to poor 
security practices; "Barney" is easier to remember than '~*9 (hH/A." The world's 
most secure algorithm won't help much if the users habitually choose their spouse's 
names for keys or write their keys on little pieces of paper in their wallets. A smart 
brute-force attack doesn't try all possible keys in numerical order; it tries the obvi­
ous keys first. 

This is called a dictionary attack, because the attacker uses a dictionary of com­
mon keys. Daniel Klein was able to crack 40 percent of the passwords on the aver­
age computer using this system [847,848]. No, he didn't try one password after 
another, trying to login. He copied the encrypted password file and mounted the 
attack offline. Here's what he tried: 

1. The user's name, initials, account name, and other relevant personal infor­
mation as a possible password. All in all, up to 130 different passwords 
were tried based on this information. For an account name klone with 
a user named "Daniel V. Klein," some of the passwords that would be 
tried were: klone, kloneO, klone1, klone123, dvk, dvkdvk, dklein, DKlein 
leinad, nielk, dvklein, danielk, DvkkvD, DANIEL-KLEIN, (klone), KleinD, 
and so on. 

2. Words from various databases. These included lists of men's and women's 
names (some 16,000 in all); places (including variations so that "spain," 
"spanish," and "spaniard" would all be considered); names of famous 
people; cartoons and cartoon characters; titles, characters, and locations 
from films and science fiction stories; mythical creatures (garnered from 
Bullfinch's Mythology and dictionaries of mythical beasts); sports (includ-
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ing team names, nicknames, and specialized terms); numbers (both as 
numerals-"2001," and written out-" twelve"); strings of letters and num­
bers ( 11 a," 11 aa," 11 aaa, 11 11 aaaa," etc.); Chinese syllables (from the Pinyin 
Romanization of Chinese, an international standard system of writing Chi­
nese on an English keyboard); the King James Bible; biological terms; collo­
quial and vulgar phrases (such as "fuckyou," 11ibmsux," and "deadhead"); 
keyboard patterns (such as "qwerty," "asdf," and "zxcvbn"); abbreviations 
(such as "roygbiv"-the colors in the rainbow, and "ooottafagvah"-a 
mnemonic for remembering the 12 cranial nerves); machine names 
(acquired from Jete/hosts); characters, plays, and locations from Shake­
speare; common Yiddish words; the names of asteroids; and a collection of 
words from various technical papers Klein previously published. All told, 
more than 60,000 separate words were considered per user (with any inter­
and intra-dictionary duplicates being discarded). 

3. Variations on the words from step 2. This includedmaking the first letter 
uppercase or a control character, making the entire word uppercase, revers­
ing the word (with and without the aforementioned capitalization), chang­
ing the letter 'o' to the digit '0' (so that the word "scholar" would also be 
checked as "schOlar"), changing the letter '1' to the digit '1' (so that the 
word "scholar" would also be checked as "scholar"), and performing sim­
ilar manipulation to change the letter 'z' into the digit '2', and the letter's' 
into the digit '5'. Another test was to make the word into a plural (irre­
spective of whether the word was actually a noun), with enough intelli­
gence built in so that "dress" became "dresses," "house" became 
"houses," and "daisy" became "daisies." Klein did not consider plural­
ization rules exclusively, though, so that "datum" forgivably became 
"datums" (not "data"), while "sphynx" became "sphynxs" (and not 
"sphynges"). Similarly, the suffixes "-ed," "-er," and "-ing" were added to 
transform words like "phase" into "phased," "phaser," and "phasing." 
These additional tests added another 1,000,000 words to the list of possible 
passwords that were tested for each user. 

4. Various capitalization variations on the words from step 2 that were not 
considered in step 3. This included all single-letter capitalization varia­
tions (so that "michael" would also be checked as "michael," "miChael," 
"micHael," "michAel," etc.), double-letter capitalization variations 
("Michael," "MiChael," "MicHael," ... , "miChael," "micHael," etc.), 
triple-letter variations, etc. The single-letter variations added roughly 
another 400,000 words to be checked per user, while the double-letter vari­
ations added another 1,500,000 words. Three-letter variations would have 
added at least another 3,000,000 words per user had there been enough 
time to complete the tests. Tests of four-, five-, and six-letter variations 
were deemed to be impracticable without much more computational 
horsepower to carry them out. 

5. Foreign language words on foreign users. The specific test that was per­
formed was to try Chinese language passwords on users with Chinese 
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names. The Pinyin Romanization of Chinese syllables was used, combin­
ing syllables together into one-, two-, and three-syllable words. Because no 
tests were done to determine whether the words actually made sense, an 
exhaustive search was initiated. Since there are 298 Chinese syllables in 
the Pinyin system, there are 158,404 two-syllable words, and slightly more 
than 16,000,000 three-syllable words. A similar mode of attack could as 
easily be used with English, using rules for building pronounceable non­
sense words. 

6. Word pairs. The magnitude of an exhaustive test of this nature is stagger­
ing. To simplify the test, only words of three or four characters in length 
from /usrfdictfwords were used. Even so, the number of word pairs is 
about ten million. 

A dictionary attack is much more powerful when it is used against a file of keys and 
not a single key. A single user may be smart enough to choose good keys. If a thousand 
people each choose their own key as a password to a computer system, the odds are 
excellent that at least one person will choose a key in the attacker's dictionary. 

Random Keys 
Good keys are random-bit strings generated by some automatic process. If the key 

is 64 bits long, every possible 64-bit key must be equally likely. Generate the key 
bits from either a reliably random source (see Section 17.14) or a cryptographically 
secure pseudo-random-bit generator (see Chapters 16 and 17.) If these automatic 
processes are unavailable, flip a coin or roll a die. 

This is important, but don't get too caught up in arguing about whether random 
noise from audio sources is more random than random noise from radioactive decay. 
None of these random-noise sources will be perfect, but they will probably be good 
enough. It is important to use a good random-number generator for key generation, 
but it is far more important to use good encryption algorithms and key management 
procedures. If you are worried about the randomness of your keys, use the key­
crunching technique described below. 

Some encryption algorithms have weak keys: specific keys that are less secure 
than the other keys. I advise testing for these weak keys and generating a new one if 
you discover one. DES has only 16 weak keys out of 256, so the odds of generating 
any of these keys are incredibly small. It has been argued that a cryptanalyst would 
have no idea that a weak key is being used and therefore gains no advantage from 
their accidental use. It has also been argued that not using weak keys gives a crypt­
analyst information. However, testing for the few weak keys is so easy that it seems 
imprudent not to do so. 

Generating keys for public-key cryptography systems is harder, because often the 
keys must have certain mathematical properties (they may have to be prime, be a 
quadratic residue, etc.). Techniques for generating large random prime numbers are 
discussed in Section 11.5. The important thing to remember from a key manage­
ment point of view is that the random seeds for those generators must be just that: 
random. 
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Generating a random key isn't always possible. Sometimes you need to remember 
your key. (See how long it takes you to remember 25e8 56f2 e8ba c820). If you have 
to generate an easy-to-remember key, make it obscure. The ideal would be some­
thing easy to remember, but difficult to guess. Here are some suggestions: 

Word pairs separated by a punctuation character, for example "tur­
tle*moose" or "zorc~!splat" 

Strings of letters that are an acronym of a longer phrase; for 
example, "Mein Luftkissenfahrzeug ist voller Aale!" generates the key 
"MLivA!" 

Pass Phrases 
A better solution is to use an entire phrase instead of a word, and to convert that 

phrase into a key. These phrases are called pass phrases. A technique called key 
crunching converts the easy-to-remember phrases into random keys. Use a one-way 
hash function to transform an arbitrary-length text string into a pseudo-random-bit 
string. 

For example, the easy-to-remember text string: 

My name is Ozymandias, king of kings. Look on my works, ye mighty, and despair. 

might crunch into this 64-bit key: 

e6cl 4398 5ae9 Oa9b 

Of course, it can be difficult to type an entire phrase into a computer with the 
echo turned off. Clever suggestions to solve this problem would be appreciated. 

If the phrase is long enough, the resulting key will be random. Exactly what "long 
enough" means is open to interpretation. Information theory tells us that standard 
English has about 1.3 bits of information per character (see Section 11.1). For a 64-
bit key, a pass phrase of about 49 characters, or 10 normal English words, should be 
sufficient. As a rule of thumb, figure that you need five words for each 4 bytes of key. 
That's a conservative assumption, since it doesn't take into account case, spacing, 
and punctuation. 

This technique can even be used to generate private keys for public-key cryp­
tography systems: The text string could be crunched into a random seed, and that 
seed could be fed into a deterministic system that generates public-key/private­
key key pairs. 

If you are choosing a pass phrase, choose something unique and easy-to-remember. 
Don't choose phrases from literature-the example from "Ozymandias" is a bad one. 
Both the complete works of Shakespeare and the dialogue from Star Wars are avail­
able on-line and can be used in a dictionary attack. Choose something obscure, but 
personal. Include punctuation and capitalization; if you can, include numbers and 
non-alphanumeric symbols. Poor or improper English, or even a foreign language, 
makes the pass phrase less susceptible to a dictionary attack. One suggestion is to 
use a phrase that is "shocking nonsense": something offensive enough that you are 
likely to remember and unlikely to write down. 
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Despite everything written here, obscurity is no substitute for true randomness. 
The best keys are random keys, difficult as they are to remember. 

X9.17 Key Generation 
The ANSI X9.17 standard specifies a method of key generation (see Figure 8.1) [55]. 

This does not generate easy-to-remember keys; it is more suitable for generating ses­
sion keys or pseudo-random numbers within a system. The cryptographic algorithm 
used to generate keys is triple-DES, but it could just as easily be any algorithm. 

Let EK(X) be triple-DES encryption of X with key K. This is a special key reserved 
for secret key generation. V0 is a secret 64-bit seed. Tis a timestamp. To generate the 
random key R;, calculate: 

R; = EK(EK(T;) ~ V;) 

To generate V; + 11 calculate: 

vi+ 1 = EK(EK(T;) ~ R;) 

To turn R; into a DES key, simply adjust every eighth bit for parity. If you need a 
64-bit key, use it as is. If you need a 128-bit key, generate a pair of keys and con­
catenate them together. 

DoD Key Generation 
The U.S. Department of Defense recommends using DES in OFB mode (see Sec­

tion 9.8) to generate random keys [1144]. Generate a DES key from system interrupt 
vectors, system status registers, and system counters. Generate an initialization 
vector from the system clock, system ID, and date and time. For the plaintext, use 
an externally generated 64-bit quantity: eight characters typed in by a system 
administrator, for example. Use the output as your key. 

8.2 NONLINEAR KEYSPACES 

Imagine that you are a military cryptography organization, building a piece of cryp­
tography equipment for your troops. You want to use a secure algorithm, but you are 

Figure 8.1 ANSI X9.17 key generation. 
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worried about the equipment falling into enemy hands. The last thing you want is 
for your enemy to be able to use the equipment to protect their secrets. 

If you can put your algorithm in a tamperproof module, here's what you can do. 
You can require keys of a special and secret form; all other keys will cause the mod­
ule to encrypt and decrypt using a severely weakened algorithm. You can make it so 
that the odds of someone, not knowing this special form but accidentally stumbling 
on a correct key, are vanishingly small. 

This is called a nonlinear keyspace, because all the keys are not equally strong. 
(The opposite is a linear, or flat, keyspace.) An easy way to do this is to create the 
key as two parts: the key itself and some fixed string encrypted with that key. The 
module decrypts the string with the key; if it gets the fixed string it uses the key nor­
mally, if not it uses a different, weak algorithm. If the algorithm has a 128-bit key 
and a 64-bit block size, the overall key is 192 bits; this gives the algorithm an effec­
tive key of 2128, but makes the odds of randomly choosing a good key one in 264• 

You can be even subtler. You can design an algorithm such that certain keys are 
stronger than others. An algorithm can have no weak keys-keys that are obviously 
very poor-and can still have a nonlinear keyspace. 

This only works if the algorithm is secret and the enemy can't reverse-engineer 
it, or if the difference in key strength is subtle enough that the enemy can't figure 
it out. The NSA did this with the secret algorithms in their Overtake modules (see 
Section 25.1). Did they do the same thing with Skipjack (see Section 13.12)? No 
one knows. 

8.3 TRANSFERRING KEYS 

Alice and Bob are going to use a symmetric cryptographic algorithm to communicate 
securely; they need the same key. Alice generates a key using a random-key genera­
tor. Now she has to give it to Bob-securely. If Alice can meet Bob somewhere (a back 
alley, a windowless room, or one of Jupiter's moons), she can give him a copy of the 
key. Otherwise, they have a problem. Public-key cryptography solves the problem 
nicely and with a minimum of prearrangement, but these techniques are not always 
available (see Section 3.1 ). Some systems use alternate channels known to be secure. 
Alice could send Bob the key with a trusted messenger. She could send it by certified 
mail or via an overnight delivery service. She could set up another communications 
channel with Bob and hope no one is eavesdropping on that one. 

Alice could send Bob the symmetric key over their communications channel­
the one they are going to encrypt. This is foolish; if the channel warrants encryp­
tion, sending the encryption key in the clear over the same channel guarantees that 
anyone eavesdropping on the channel can decrypt all communications. 

The X9.17 standard [55] specifies two types of keys: key-encryption keys and data 
keys. Key-Encryption Keys encrypt other keys for distribution. Data Keys encrypt 
message traffic. These key-encrypting keys have to be distributed manually 
(although they can be secured in a tamperproof device, like a smart card), but only 
seldomly. Data keys are distributed more often. More details are in [75]. This two­
tiered key concept is used a lot in key distribution. 
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Another solution to the distribution problem splits the key into several different 
parts (see Section 3.6) and sends each of those parts over a different channel. One 
part could be sent over the telephone, one by mail, one by overnight delivery ser­
vice, one by carrier pigeon, and so on. (see Figure 8.2). Since an adversary could col­
lect all but one of the parts and still have no idea what the key is, this method will 
work in all but extreme cases. Section 3.6 discusses schemes for splitting a key into 
several parts. Alice could even use a secret sharing scheme (see Section 3. 7), allow­
ing Bob to reconstruct the key if some of the shares are lost in transmission. 

Alice sends Bob the key-encryption key securely, either by a face-to-face meeting 
or the splitting technique just discussed. Once Alice and Bob both have the key­
encryption key, Alice can send Bob daily data keys over the same communications 
channel. Alice encrypts each data key with the key-encryption key. Since the 
amount of traffic being encrypted with the key-encryption key is low, it does not 
have to be changed as often. However, since compromise of the key-encryption key 
could compromise every message encrypted with every key that was encrypted with 
the key-encryption key, it must be stored securely. 

Key Distribution in Large Networks 
Key-encryption keys shared by pairs of users work well in small networks, but can 

quickly get cumbersome if the networks become large. Since every pair of users 
must exchange keys, the total number of key exchanges required in ann-person net­
work is n(n - 1 )/2. 

In a six-person network, 15 key exchanges are required. In a 1000-person network, 
nearly 500,000 key exchanges are required. In these cases, creating a central key 
server (or servers) makes the operation much more efficient. 

Alternatively, any of the symmetric-cryptography or public-key-cryptography 
protocols in Section 3.1 provides for secure key distribution. 

SENDER 
Separates 

Key 

RECEIVER 
Reassembles 

Key 

Figure 8.2 Key distribution via parallel channels. 
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8.4 VERIFYING KEYS 

When Bob receives a key, how does he know it came from Alice and not from some­
one pretending to be Alice? If Alice gives it to him when they are face-to-face, it's easy. 
If Alice sends her key via a trusted courier, then Bob has to trust the courier. If the key 
is encrypted with a key-encryption key, then Bob has to trust the fact that only Alice 
has that key. If Alice uses a digital signature protocol to sign the key, Bob has to trust 
the public-key database when he verifies that signature. (He also has to trust that Alice 
has kept her key secure.) If a Key Distribution Center (KDC) signs Alice's public key, 
Bob has to trust that his copy of the KDC's public key has not been tampered with. 

In the end, someone who controls the entire network around Bob can make him 
think whatever he likes. Mallory could send an encrypted and signed message pur­
porting to be from Alice. When Bob tried to access the public-key database to verify 
Alice's signature, Mallory could substitute his own public key. Mallory could 
invent his own false KDC and exchange the real KDC's public key for his own cre­
ation. Bob wouldn't be the wiser. 

Some people have used this argument to claim that public-key cryptography is 
useless. Since the only way for Alice and Bob to ensure that their keys have not been 
tampered with is to meet face-to-face, public-key cryptography doesn't enhance 
security at all. 

This view is nai:ve. It is theoretically true, but reality is far more complicated. 
Public-key cryptography, used with digital signatures and trusted KDCs, makes it 
much more difficult to substitute one key for another. Bob can never be absolutely 
certain that Mallory isn't controlling his entire reality, but Bob can be confident 
that doing so requires more resources than most real-world Mallorys have access to. 

Bob could also verify Alice's key over the telephone, where he can hear her voice. 
Voice recognition is a really good authentication scheme. If it's a public key, he can 
safely recite it in public. If it's a secret key, he can use a one-way hash function to 
verify the key. Both PGP (see Section 24.12) and the AT&T TSD (see Section 24.18) 
use this kind of key verification. 

Sometimes, it may not even be important to verify exactly whom a public key 
belongs to. It may be necessary to verify that it belongs to the same person to whom 
it belonged last year. If someone sends a signed withdrawal message to a bank, the 
bank does not have to be concerned with who withdraws the money, only whether 
it is the same person who deposited the money in the first place. 

Error Detection during Key Transmission 
Sometimes keys get garbled in transmission. Since a garbled key can mean 

megabytes of undecryptable ciphertext, this is a problem. All keys should be trans­
mitted with some kind of error detection and correction bits. This way errors in 
transmission can be easily detected and, if required, the key can be resent. 

One of the most widely used methods is to encrypt a constant value with the 
key, and to send the first 2 to 4 bytes of that ciphertext along with the key. At the 
receiving end, do the same thing. If the encrypted constants match, then the key 
has been transmitted without error. The chance of an undetected error ranges 
from one in 216 to one in 232

• 
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Key-error Detection during Decryption 
Sometimes the receiver wants to check if a particular key he has is the correct 

symmetric decryption key. If the plaintext message is something like ASCII, he can 
try to decrypt and read the message. If the plaintext is random, there are other tricks. 

The nai:ve approach is to attach a verification block: a known header to the plain­
text message before encryption. At the receiving end, Bob decrypts the header and 
verifies that it is correct. This works, but it gives Eve a known plaintext to help 
cryptanalyze the system. It also makes attacks against short-key ciphers like DES 
and all exportable ciphers easy. Precalculate the checksum once for each key, then 
use that checksum to determine the key in any message you intercept after that. 
This is a feature of any key checksum that doesn't include random or at least differ­
ent data in each checksum. It's very similar in concept to using salt when generat­
ing keys from passphrases. 

Here's a better way to do this [821]: 

(1) Generate an IV (not the one used for the message). 

(2) Use that IV to generate a large block of bits: say, 512. 

(3) Hash the result. 

(4) Use the same fixed bits of the hash, say 32, for the key checksum. 

This gives Eve some information, but very little. If she tries to use the low 32 bits 
of the final hash value to mount a brute-force attack, she has to do multiple encryp­
tions plus a hash per candidate key; brute-force on the key itself would be quicker. 

She also gets no known-plaintext values to try out, and even if she manages to 
choose our random value for us, she never gets a chosen-plaintext out of us, since it 
goes through the hash function before she sees it. 

8.5 USING KEYS 

Software encryption is scary. Gone are the days of simple microcomputers under the 
control of single programs. Now there's Macintosh System 7, Windows NT, and 
UNIX. You can't tell when the operating system will suspend the encryption appli­
cation in progress, write everything to disk, and take care of some pressing task. 
When the operating system finally gets back to encrypting whatever is being 
encrypted, everything will look just fine. No one will ever realize that the operating 
system wrote the encryption application to disk, and that it wrote the key along 
with it. The key will sit on the disk, unencrypted, until the computer writes over 
that area of memory again. It could be minutes or it could be months. It could even 
be never; the key could still be sitting there when an adversary goes over the hard 
drive with a fine-tooth comb. In a preemptive, multitasking environment, you can 
set your encryption operation to a high enough priority so it will not be interrupted. 
This would mitigate the risk. Even so, the whole thing is dicey at best. 

Hardware implementations are safer. Many encryption devices are designed to 
erase the key if tampered with. For example, the IBM PS/2 encryption card has an 

Page 80 of 174



~~ CHAPTER 8 Key Management 
~~~------~~~----~----~~--------------~ 

epoxy unit containing the DES chip, battery, and memory. Of course, you have to 
trust the hardware manufacturer to implement the feature properly. 

Some communications applications, such as telephone encryptors, can use ses­
sion keys. A session key is a key that is just used for one communications session­
a single telephone conversation-and then discarded. There is no reason to store the 
key after it has been used. And if you use some key-exchange protocol to transfer the 
key from one conversant to the other, the key doesn't have to be stored before it is 
used either. This makes it far less likely that the key might be compromised. 

Controlling Key Usage 

In some applications it may be desirable to control how a session key is used. 
Some users may need session keys only for encryption or only for decryption. Ses­
sion keys might only be authorized for use on a certain machine or at a certain time. 
One scheme to handle these sorts of restrictions attaches a Control Vector ( CV) to 
the key; the control vector specifies the uses and restrictions for that key (see Sec­
tion 24.1) [1025,1026). This CV is hashed and XORed with a master key; the result 
is used as an encryption key to encrypt the session key. The resultant encrypted ses­
sion key is then stored with the CV. To recover the session key, hash the CV and 
XOR it with the master key, and use the result to decrypt the encrypted session key. 

The advantages of this scheme are that the CV can be of arbitrary length and that 
it is always stored in the clear with the encrypted key. This scheme assumes quite 
a bit about tamperproof hardware and the inability of users to get at the keys 
directly. This system is discussed further in Sections 24.1 and 24.8. 

8.6 UPDATING KEYS 

Imagine an encrypted data link where you want to change keys daily. Sometimes it's 
a pain to distribute a new key every day. An easier solution is to generate a new key 
from the old key; this is sometimes called key updating. 

All it takes is a one-way function. If Alice and Bob share the same key and they 
both operate on it using the same one-way function, they will get the same result. 
Then they can take the bits they need from the results to create the new key. 

Key updating works, but remember that the new key is only as secure as the old 
key was. If Eve managed to get her hands on the old key, she can perform the key 
updating function herself. However, if Eve doesn't have the old key and is trying a 
ciphertext-only attack on the encrypted traffic, this is a good way for Alice and Bob 
to protect themselves. 

8. 7 STORING KEYS 

The least complex key storage problem is that of a single user, Alice, encrypting 
files for later use. Since she is the only person involved, she is the only person 
responsible for the key. Some systems take the easy approach: The key is stored in 
Alice's brain and never on the system. Alice is responsible for remembering the key 
and entering it every time she needs a file encrypted or decrypted. 
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An example of this system is IPS [881]. Users can either directly enter the 64-bit 
key or enter the key as a longer character string. The system then generates a 64-bit 
key from the character string using a key-crunching technique. 

Another solution is to store the key in a magnetic stripe card, plastic key with an 
embedded ROM chip (called a ROM key), or smart card [556,557,455]. A user could 
then enter his key into the system by inserting the physical token into a special 
reader in his encryption box or attached to his computer terminal. While the user 
can use the key, he does not know it and cannot compromise it. He can use it only 
in the way and for the purposes indicated by the control vector. 

A ROM key is a very clever idea. People understand physical keys, what they sig­
nify and how to protect them. Putting a cryptographic key in the same physical 
form makes storing and protecting that key more intuitive. 

This technique is made more secure by splitting the key into two halves, storing 
one half in the terminal and the other half in the ROM key. The U.S. government's 
STU-III secure telephone works this way. Losing the ROM key does not compro­
mise the cryptographic key-change that key and everything is back to normal. The 
same is true with the loss of the terminal. This way, compromising either the ROM 
key or the system does not compromise the cryptographic key-an adversary must 
have both parts. 

Hard-to-remember keys can be stored in encrypted form, using something similar 
to a key-encryption key. For example, an RSA private key could be encrypted with a 
DES key and stored on disk. To recover the RSA key, the user has to type in the DES 
key to a decryption program. 

If the keys are generated deterministically (with a cryptographically secure pseudo­
random-sequence generator), it might be easier to regenerate the keys from an easy­
to-remember password every time they are required. 

Ideally, a key should never appear unencrypted outside the encryption device. 
This isn't always possible, but it is a worthy goal. 

8.8 BACKUP KEYS 

Alice is the chief financial officer at Secrets, Ltd.-"We don't tell you our motto." 
Like any good corporate officer, she follows the company's security guidelines and 
encrypts all her data. Unfortunately, she ignores the company's street-crossing 
guidelines and gets hit by a truck. What does the company's president, Bob, do? 

Unless Alice left a copy of her key, he's in deep trouble. The whole point of 
encryption is to make files unrecoverable without the key. Unless Alice was a 
moron and used lousy encryption software, her files are gone forever. 

Bob can avoid this in several ways. The simplest is sometimes called key escrow 
(see Section 4.14): He requires all employees to write their keys on paper and give 
them to the company's security officer, who will lock them in a safe somewhere (or 
encrypt them all with a master key). Now, when Alice is bowled over on the Inter­
state, Bob can ask his security officer for her key. Bob should make sure to have the 
combination to the safe himself as well; otherwise, if the se_curity officer is run over 
by another truck, Bob will be out of luck again. · 
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The problem with this key management system is that Bob has to trust his secu­
rity officer not to misuse everyone's keys. Even more significantly, all the employ­
ees have to trust the security officer not to misuse their keys. A far better solution 
is to use a secret-sharing protocol (see Section 3. 7). 

When Alice generates a key, she also divides up that key into some number of 
pieces. She then sends each piece-encrypted, of course-to a different company 
officer. None of those pieces alone is the key, but someone can gather all the pieces 
together and reconstruct the key. Now Alice is protected against any one malicious 
person, and Bob is protected against losing all of Alice's data after her run-in with 
the truck. Or, she could just store the different pieces, encrypted with each of the 
officer's different public keys, on her own hard disk. That way, no one gets involved 
with key management until it becomes necessary. 

Another backup scheme [188] uses smart cards (see Section 24.13) for the tempo­
rary escrow of keys. Alice can put the key to secure her hard drive onto the smart 
card and give it to Bob while she is away. Bob can use the card to get into Alice's hard 
drive, but because the key is stored in the card Bob cannot learn it. And the system 
is bilaterally auditable: Bob can verify that the key will open Alice's drive, and when 
Alice returns she can verify if Bob has used the key and how many times. 

Such a scheme makes no sense for data transmission. On a secure telephone, the 
key should exist for the length of the call and no longer. For data storage, as just 
described, key escrow can be a good idea. I've lost about one key every five years, 
and my memory is better than most. If 200 million people were using cryptography, 
that same rate would equal40 million lost keys per year. I keep copies of my house 
keys with a neighbor because I may lose mine. If house keys were like cryptographic 
keys, and I lost them, I could never get inside and recover my possessions, ever 
again. Just as I keep off-site backups of my data, it makes sense to keep backups of 
my data-encryption keys. 

8. 9 COMPROMISED KEYS 

All of the protocols, techniques, and algorithms in this book are secure only if the 
key (the private key in a public-key system) remains secret. If Alice's key is lost, 
stolen, printed in the newspaper, or otherwise compromised, then all her security 
is gone. 

If the compromised key was for a symmetric cryptosystem, Alice has to change 
her key and hope the actual damage was minimal. If it was a private key, she has big­
ger problems; her public key is probably on servers all over the network. And if Eve 
gets access to Alice's private key, she can impersonate her on the network: reading 
encrypted mail, signing correspondence, entering into contracts, and so forth. Eve 
can, effectively, become Alice. 

It is vital that news of a private key's compromise propagate quickly throughout 
the network. Any databases of public keys must immediately be notified that a par­
ticular private key has been compromised, lest some unsuspecting person encrypt a 
message in that compromised key. 
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One hopes Alice knows when her key was compromised. If a KDC is managing 
the keys, Alice should notify it that her key has been compromised. If there is no 
KDC, then she should notify all correspondents who might receive messages from 
her. Someone should publicize the fact that any message received after her key was 
lost is suspect, and that no one should send messages to Alice with the associated 
public key. The application should be using some sort of timestamp, and then users 
can determine which messages are legitimate and which are suspect. 

If Alice doesn't know exactly when her key was compromised, things are more 
difficult. Alice may want to back out of a contract because the person who stole the 
key signed it instead of her. If the system allows this, then anyone can back out of a 
contract by claiming that his key was compromised before it was signed. It has to be 
a matter for an adjudicator to decide. 

This is a serious problem and brings to light the dangers of Alice tying all of her 
identity to a single key. It would be better for Alice to have different keys for differ­
ent applications-just as she has different physical keys in her pocket for different 
locks. Other solutions to this problem involve biometrics, limits on what can be 
done with a key, time delays, and countersigning. 

These procedures and tips are hardly optimal, but are the best we can do. The 
moral of the story is to protect keys, and protect private keys above all else. 

8.10 LIFETIME OF KEYS 

No encryption key should be used for an indefinite period. It should expire auto­
matically like passports and licenses. There are several reasons for this: 

The longer a key is used, the greater the chance that it will be com­
promised. People write keys down; people lose them. Accidents hap­
pen. If you use the same key for a year, there's a far greater chance of 
compromise than if you use it for a day. 

The longer a key is used, the greater the loss if the key is compro­
mised. If a key is used only to encrypt a single budgetary document on 
a file server, then the loss of the key means only the compromise of 
that document. If the same key is used to encrypt all the budgetary 
information on the file server, then its loss is much more devastating. 

The longer a key is used, the greater the temptation for someone to 
spend the effort necessary to break it-even if that effort is a brute­
force attack. Breaking a key shared between two military units for a 
day would enable someone to read and fabricate messages between 
those units for that day. Breaking a key shared by an entire military 
command structure for a year would enable that same person to read 
and fabricate messages throughout the world for a year. In our 
budget-conscious, post-Cold War world, which key would you choose 
to attack? 
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It is generally easier to do cryptanalysis with more ciphertext 
encrypted with the same key. 

For any cryptographic application, there must be a policy that determines the per­
mitted lifetime of a key. Different keys may have different lifetimes. For a connection­
based system, like a telephone, it makes sense to use a key for the length of the 
telephone call and to use a new one with each call. 

Systems on dedicated communications channels are not as obvious. Keys should 
have relatively short lifetimes, depending on the value of the data and the amount 
of data encrypted during a given period. The key for a gigabit-per-second communi­
cations link might have to be changed more often than the key for a 9600-baud 
modem link. Assuming there is an efficient method of transferring new keys, ses­
sion keys should be changed at least daily. 

Key-encryption keys don't have to be replaced as frequently. They are used only 
occasionally (roughly once per day) for key exchange. This generates little cipher­
text for a cryptanalyst to work with, and the corresponding plaintext has no partic­
ular form. However, if a key-encryption key is compromised, the potential loss is 
extreme: all communications encrypted with every key encrypted with the key­
encryption key. In some applications, key-encryption keys are replaced only once a 
month or once a year. You have to balance the inherent danger in keeping a key 
around for a while with the inherent danger in distributing a new one. 

Encryption keys used to encrypt data files for storage cannot be changed often. 
The files may sit encrypted on disk for months or years before someone needs them 
again. Decrypting them and re-encrypting them with a new key every day doesn't 
enhance security in any way; it just gives a cryptanalyst more to work with. One 
solution might be to encrypt each file with a unique file key, and then encrypt all 
the file keys with a key-encryption key. The key-encryption key should then be 
either memorized or stored in a secure location, perhaps in a safe somewhere. Of 
course, losing this key would mean losing all the individual file keys. 

Private keys for public-key cryptography applications have varying lifetimes, 
depending on the application. Private keys used for digital signatures and proofs of 
identity may have to last years (even a lifetime). Private keys used for coin-flipping 
protocols can be discarded immediately after the protocol is completed. Even if a 
key's security is expected to last a lifetime, it may be prudent to change the key 
every couple of years. The private keys in many networks are good only for two 
years; after that the user must get a new private key. The old key would still have to 
remain secret, in case the user needed to verify a signature from that period. But the 
new key would be used to sign new documents, reducing the number of signed doc­
uments a cryptanalyst would have for an attack. 

8.11 DESTROYING KEYS 

Given that keys must be replaced regularly, old keys must be destroyed. Old keys 
are valuable, even if they are never used again. With them, an adversary can read old 
messages encrypted with those keys [65]. 
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Keys must be destroyed securely (see Section 10.9). If the key is written on paper, 
the paper should be shredded or burned. Be careful to use a high -quality shredder; 
many lousy shredders are on the market. Algorithms in this book are secure against 
brute-force attacks costing millions of dollars and taking millions of years. If an adver­
sary can recover your key by taking a bag of shredded documents from your trash and 
paying 100 unemployed workers in some backwater country ten cents per hour for a 
year to piece the shredded pages together, that would be $26,000 well spent. 

If the key is in a hardware EEPROM, the key should be overwritten multiple 
times. If the key is in a hardware EPROM or PROM, the chip should be smashed 
into tiny bits and scattered to the four winds. If the key is stored on a computer disk, 
the actual bits of the storage should be overwritten multiple times (see Section 10.9) 
or the disk should be shredded. 

A potential problem is that, in a computer, keys can be easily copied and stored in 
multiple locations. Any computer that does its own memory management, con­
stantly swapping programs in and out of memory, exacerbates the problem. There is 
no way to ensure that successful key erasure has taken place in the computer, espe­
cially if the computer's operating system controls the erasure process. The more 
paranoid among you should consider writing a special erasure program that scans all 
disks looking for copies of the key's bit pattern on unused blocks and then erases 
those blocks. Also remember to erase the contents of any temporary, or 11 swap, 11 files. 

8.12 PUBLIC-KEY KEY MANAGEMENT 

Public-key cryptography makes key management easier, but it has its own unique 
problems. Each person has only one public key, regardless of the number of people 
on the network. If Alice wants to send a message to Bob, she has to get Bob's public 
key. She can go about this several ways: 

She can get it from Bob. 

She can get it from a centralized database. 

She can get it from her own private database. 

Section 2.5 discussed a number of possible attacks against public-key cryptogra­
phy, based on Mallory substituting his key for Bob's. The scenario is that Alice 
wants to send a message to Bob. She goes to the public-key database and gets Bob's 
public key. But Mallory, who is sneaky, has substituted his own key for Bob's. (If 
Alice asks Bob directly, Mallory has to intercept Bob's transmission and substitute 
his key for Bob's.) Alice encrypts her message in Mallory's key and sends it to Bob. 
Mallory intercepts the message, decrypts it, and reads it. He re-encrypts it with 
Bob's real key and sends it on to Bob. Neither Alice nor Bob is the wiser. 

Public-key Certificates 

A public-key certificate is someone's public key, signed by a trustworthy person. 
Certificates are used to thwart attempts to substitute one key for another [879]. Bob's 
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certificate, in the public-key database, contains a lot more than his public key. It con­
tains information about Bob-his name, address, and so on-and it is signed by some­
one Alice trusts: Trent (usually known as a certification authority, orCA). By signing 
both the key and the information about Bob, Trent certifies that the information 
about Bob is correct and that the public key belongs to Bob. Alice checks Trent's sig­
nature and then uses the public key, secure in the knowledge that it is Bob's and no 
one else's. Certificates play an important role in a number of public-key protocols 
such as PEM [825] (see Section 24.10) and X.509 [304] (see Section 24.9). 

A complicated noncryptographic issue surrounds this type of system. What is the 
meaning of certification? Or, to put it another way, who is trusted to issue certifi­
cates to whom? Anyone may sign anyone else's certificate, but there needs to be 
some way to filter out questionable certificates: for example, certificates for employ­
ees of one company signed by theCA of another company. Normally, a certification 
chain transfers trust: A single trusted entity certifies trusted agents, trusted agents 
certify company CAs, and company CAs certify their employees. 

Here are some more things to think about: 

What level of trust in someone's identity is implied by his certificate? 

What are the relationships between a person and theCA that certified 
his public key, and how can those relationships be implied by the cer­
tificate? 

Who can be trusted to be the "single trusted entity" at the top of the 
certification chain? 

How long can a certification chain be? 

Ideally, Bob would follow some kind of authentication procedure before the CA 
signs his certificate. Additionally, some kind of timestamp or an indication of the 
certificate's validity period is important to guard against compromised keys [461]. 

Timestamping is not enough. Keys may be invalidated before they have expired, 
either through compromise or for administrative reasons. Hence, it is important the 
CA keep a list of invalid certificates, and for users to regularly check that list. This 
key revocation problem is still a difficult one to solve. 

And one public-key/private-key pair is not enough. Certainly any good imple­
mentation of public-key cryptography needs separate keys for encryption and digi­
tal signatures. This separation allows for different security levels, expiration times, 
backup procedures, and so on. Someone might sign messages with a 2048-bit key 
stored on a smart card and good for twenty years, while they might use a 768-bit key 
stored in the computer and good for six months for encryption. 

And a single pair of encryption and signature keys isn't enough, either. A private 
key authenticates a relationship as well as an identity, and people have more than 
one relationship. Alice might want to sign one document as Alice the individual, 
another as Alice, vice-president of Monolith, Inc., and a third as Alice, president of 
her community organization. Some of these keys are more valuable than others, so 
they can be better protected. Alice might have to store a backup of her work key 
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with the company's security officer; she doesn't want the company to have a copy of 
the key she signed her mortgage with. Just as Alice has multiple physical keys in her 
pocket, she is going to have multiple cryptographic keys. 

Distributed Key Management 
In some situations, this sort of centralized key management will not work. Per­

haps there is no CA whom Alice and Bob both trust. Perhaps Alice and Bob trust 
only their friends. Perhaps Alice and Bob trust no one. 

Distributed key management, used in PGP (see Section 24.12), solves this prob­
lem with introducers. Introducers are other users of the system who sign their 
friends' public keys. For example, when Bob generates his public key, he gives 
copies to his friends: Carol and Dave. They know Bob, so they each sign Bob's key 
and give Bob a copy of the signature. Now, when Bob presents his key to a stranger, 
Alice, he presents it with the signatures of these two introducers. If Alice also 
knows and trusts Carol, she has reason to believe that Bob's key is valid. If she 
knows and trusts Carol and Dave a little, she has reason to believe that Bob's key is 
valid. If she doesn't know either Carol or Dave, she has no reason to trust Bob's key. 

Over time, Bob will collect many more introducers. If Alice and Bob travel in sim­
ilar circles, the odds are good that Alice will know one of Bob's introducers. To pre­
vent against Mallory's substituting one key for another, an introducer must be sure 
that Bob's key belongs to Bob before he signs it. Perhaps the introducer should 
require the key be given face-to-face or verified over the telephone. 

The benefit of this mechanism is that there is no CA that everyone has to trust. 
The down side is that when Alice receives Bob's public key, she has no guarantee 
that she will know any of the introducers and therefore no guarantee that she will 
trust the validity of the key. 
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The Applied Cryptography Source Code Disk Set 

A source code disk set (three disks) associated with this book is available directly from 
the author. Included on these disks you will find: 

Symmetric Algorithms: 
Vigenere Cipher 
Playfair Cipher 
Hill Cipher 
CRYPT{1) 
CRYPT{3) 
Enigma 
DES- 10 versions 
Lucifer - 2 versions 
NewDES 
FEAL-N 
FEAL-XN 
REDOC II 
REDOC III 
LOKI89 
LOKI91 
Khufu 
IDEA - 3 versions 
CA 1.1 
MDC 
GOST 
BLOWFISH 
3-Way 
SAFER K-64 
SAFER K-128 
New DE 
NSEA 
RC4 
PKZIP 
SEAL 
WAKE 

Public-Key Algorithms: 
RSA 
Diffie-Hellman 
DSA 

One-Way Hash Functions: 
Snefru 
N-Hash 
MD4 - 3 versions 
MD5 - 2 versions 
MD2 
SHA 
HAVAL 
RIPE-MD 

Complete Systems: 
RIP EM 
PGP 
TIS-PEM 
RSAREF 

Other: 

Text: 

LaGrange Threshold Scheme 
Mimic Functions 
Probabilistic Prime Number Generation 
Random Number Generation using 

Oscillators 
Random Number Generation using 

Keyboard Latency 
Frequency Analysis 
WordPerfect Password Cracker 

Defense Trade Regulations 
DoD Orange Book 
European Computer Security Green Book 
Various NIST PIPS 
Various Internet RFCs 

And more! 

The disks also include a file containing correc­
tions for all mistakes found in the book, as well as 
any updated information on any of the topics cov­
ered in the text: new algorithms, new protocols, 
new cryptanalytic results, and so on. 

The MS-DOS disks are available from the 
author, and will be updated twice a year. Cost is 
$40 for a set, and $120 for a two-year subscription. 
Please send check or money order in U.S. funds, 
drawn on a U.S. bank, to: 

Bruce Schneier 
Counterpane Systems 
7115 W. North Ave., Suite 16 
Oak Park, IL 60302-1002 

Please allow four weeks for delivery, and 
include your e-mail address if you have one. Due 
to the export restrictions on many of the algo­
rithms on these disks, they will only be mailed to 
addresses within the United States and Canada. 
Apologies to the foreign readers of this book. 
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