
Page 1001 of 1415
GOOGLE EXHIBIT 1004

Part 3 of 3

determining whether the one or more APIs to which the software application requires

access includes a sensitive API;

| determining whether the software application includes an authentic global signature; and
determining whcther the software application includes an authentic digital signature and

signature identification where the one or more APIs to whichthe software application requires

access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software application access to the one or more APIs comprisesthe

steps of:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

denying the software application access to the sensitive API where the one or more APIs

to which the software application requires access includes a sensitive API, the software

application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive API.

112. (New) A code signing system for controlling access to application programming

interfaces (APIs) having signature identificaters by software applications, the code signing

system comprising:

a verification system for authenticating digital signatures provided bythe respective

software applications to access ihe APIs where the signature identifications correspond with the

signature identificaters of the respective APIs and wherea digital signature for a software

application is generated with asignature identification corresponding to a signature identificater

to access at least one API; and

a control system for allowing access to at least one of the APIs wherethe digital signature

provided by the software application is authenticated by the verification system.

113. (New) The code signing system ofclaim 112, wherein a virtual machine comprises the

verification system and the contro! system.

CLI- 1513306v2 12

GOOGLE EXHIBIT 1004

Page 1001 of 1415 Part 3 of 3

Page 1002 of 1415

114. (New) The code signing system of claim 113, wherein the virtual machineis a Java

virtual machine installed on a mobile device.

115. (New) The code signing system of claim 112, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

116. (New) The code signing system of claim 112, whercin the code signing system is

installed on a mobile device and the software application is a Java application for a mobile

device.

117. (New) The code signing system of claim 112, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

118. (New) The code signing system of claim 112, wherein the APIs access at least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UT).

119. (New) The code signing system of claim 112, wherein the digital signature is generated

using a private signaturc key undera signature schemeassociated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

120, (New) The code signing system of claim 119, wherein:

the digital signature is generated by applying the private signature key to a hashofthe

software application underthe signature scheme; and

the verification system authenticates the digital signature by generating a hash ofthe

softwarc application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hashare the same.

CLI- 1513306v2 13

Page 1002 of 1415

Page 1003 of 1415

121. (New) The code signing systemof claim 112, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

aceess said at least one of the APIs.

122. (New) The code signing system of claim 112, wherein the APIs provides accessto at

least one of one or more core functions of a mobile device, an operating system, and hardware on

a mobile device.

123. (New) The code signing system of claim 112, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APIs.

124. (New) A method ofcontrolling access to application programming interfaces (APIs)

having signature identifiers by software applications, the method comprising:
authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the respective APIs and where a digital signature for a software application is generated with a

signature identification corresponding to a signature identifier to access at least one APT; and

allowing accessto at least one of the APIs where the digital signature provided by the

software application is authenticated.

125. (New) The method of claim 124, wherein oncedigital signature and one signature

identification are provided by the software application accessalibraryof at least one ofthe

APIs.

126. (New) The method of claim 124, wherein the digital signature and the signature

identification ofthe software application are generated by a code signing authority.

127. (New) The method of claim 124, wherein the APIs access at least one of a cryptographic

module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (UI).

CLE 19133062 14

Page 1003 of 1415

Page 1004 of 1415

128. (New) The method of claim 124, wherein the digital signature is generated using a

private signature key under a signature scheme associated with the signature identification, and a

public signature key is used to authenticate the digital signature.

129. (New) The method of claim 128, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

130. (New) The method of claim 124, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

131. (New) The method of claim 124, wherein the APIs provides accessto at least one of one
or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

132. (New) The method ofclaim 124, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs

133. (New) A management system for controlling access by software applications to

application programming interfaces (APIs) having at least one signature identifier on a subset of

a plurality of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

software applications that require access to at least one of the APIs with a signature identifier on

the subset of the plurality of mobile devices, where a digital signature for a software application

is generated with a signature identification correspondingto a signature identifier, and the

signature identifications provided to the software applications comprise those signature

CLI- 1513306v2 15

Page 1004 of 1415

Page 1005 of 1415

identifications that correspond to the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device ofthe subset of the plurality of

mobile devices comprises

a verification system for authenticating digital signatures provided bythe respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of

the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

134. (New) The managementsystem of claim 133, wherein a virtual machine comprisesthe

verification system and the control system.

135. (New) The management system of claim 134, wherein the virtual machineis a Java

virtual machine and the software applicationsare Java applications.

136. (New) The managementsystem of claim 133, wherein the control system requires one

digital signature and one signature identification for each library ofat least one of the APIs.

137. (New) The managementsystem of claim 133, wherein the APIs accessat least one of a

cryptographic module, which implements cryptographic algorithms,a data store, a proprietary

data model, and a user interface (UI).

138. (New) The managementsystem of claim 133, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature,

139, (New) The management systemof claim 138, wherein:

the digital signature is generated by applyingtheprivate signature key to a hash of the

software application underthe signature scheme; and

CLI- 1513306v2 16

Page 1005 of 1415

Page 1006 of 1415

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature keyto thedigital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

140. (New) The managementsystem of claim 133, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to
access said at least one of the AP's.

141. (New) The management system of claim 133, wherein the subset of the plurality of

mobile devices comprises mobile devices underthe control of at least one of a corporation and a
carrier.

142. (New) The managementsystem of claim 133, wherein a global digital signature provided

by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

143. (New) A method ofcontrolling access by software applications to application

programminginterfaces (APIs) having at least one signature identifier on a subset ofa plurality

of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subset ofthe plurality of mobile devices,

wherethe signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantially only on

the subset of the plurality of mobile devices: wherein each mobile device of the subset of the

plurality of mobile devices comprises

CLI- 1513306v2 17

Page 1006 of 1415

Page 1007 of 1415

a verification system for authenticating digital signatures provided bythe respective

software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APIs

where the digital signature provided by the software application is authenticated by the
verification system.

144. (New) The method ofclaim 143, wherein a virtual machine comprises the verification

system and the control system.

145. (New) The method of claim 144, wherein the virtual machine is a Java virtual machine

and the software applications are Java applications.

146. (New) The methodof claim 143, wherein the control system requires one digital

signature and onesignature identification for each libraryofat least one of the APIs.

147, (New) The method of claim 143, wherein the APIs accessat least one of a cryptographic

module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

148. (New) The method of claim 143, wherein at least one of the digital signaturesis

generated using a private signature key under a signature scheme associated with a signature

identification, and the verification system uses a public signature keys to authenticate said at

least one ofthe digital signatures.

149. (New) The method of claim 148, wherein:

at least one of the digital signatures is generated by applying the private signature key to
a hash of a software application under the signature scheme: and

the verification system authenticates said at least one ofthe digital signatures by

generating a hash of the software application to obtain a generated hash, applying the public

CLE 1513306v2 18

Page 1007 of 1415

Page 1008 of 1415

signature key to said at least onc of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hashare the same.

150. (New) The method of claim 143, wherein at least onc of the APIs further comprises:

a description string that is displayed to a user whenthe software application attempts to

access said at least one of the APIs.

151. (New) The method of claim 143, wherein the subset ofthe plurality of mobile devices

comprises mobile devices under the contro! of at least one of a corporation anda carrier.

132. (New) A mobile device for a subset of a plurality ofmobile devices, the mobile device

comprising:

an application platform having application programming interfaces (APIs);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

a control system for allowing a software application to access at least one of the APIs

where a digital signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority provides digital signatures and signature identifications

to software applications that require access to at least one of the APIs such that the digital

signature for the software applicationis generated according to a signature schemeofa signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

133. (New) The mobile device of claim 152, wherein a virtual machine comprises the

verification system and the control system.

154. (New) The mobile device of claim 153, wherein the virtual machine is a Java virtual

machine and the software applicationis a Java application.

CLI- 1513306v2 19

Page 1008 of 1415

Page 1009 of 1415

155. (New) The mobile device of claim 152, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

156. (New) The mobile device of claim 152, wherein the APIs of the application platform

access at least one of a cryptographic module, which implements cryptographic algorithms, a

data store, a proprietary data model, and a userinterface (UI).

157. (New) The mobile device of claim 152, wherein the digital signature is generated using a

private signature key underthe signature scheme, andthe verification system uses a public

signature key to authenticate the digital signature.

138. (New) The mobile device of claim 157, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash ofthe

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same,

159. (New) The mobile device of claim 152, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attemptsto

access said at least one of the APIs,

160. (New) A method of controlling access to application programming interfaces (APIs) of

an application platform of a mobile device for a subset of a plurality of mobile devices, the

method comprising:

receiving digital signatures and signature identifications from software applicationsthat

require to access the APIs

authenticating the digital signatures and the signature identifications; and

CLE 1513306v2 20

Page 1009 of 1415

Page 1010 of 1415

allowing a software application to access at least one of the APIs wherea digital

signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require accessto at Icast one of the APIs such

that the digital signature for the software application is generated accordingto a signature

scheme of a signature identification, and wherein the signature identifications provided to the

software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset ofthe plurality ofmobile devices.

161. (New) The method of claim 160, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APIs.

162. (New) ‘he method of claim 160, wherein the APIs of the application platform access at

least one of a cryptographic module, which implements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UD.

163. (New) The method of claim 160, wherein the digital signature is generated using a

private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

164. (New) The method of claim 163, wherein:

the digital signature is generated by applying the private signature keyto a hash of the

software application underthe signature scheme; and

the digital signature is authenticated by generating a hash ofthe software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

CLI- 1553306v2 21

Page 1010 of 1415

Page 1011 of 1415

165. (New) The method of claim 160, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said al least one of the APIs.

CLE. 1513306v2 22

Page 1011 of 1415

Page 1012 of 1415

REMARKS

This paper respondsto the notice of non-compliant amendment mailed May 21, 2007.
The examineris invited to contact the undersignedin case there are any questions or comments.

CLI- 1513306v2

Page 1012 of 1415

Respectfully submitted,

 John V/Biernacki

ReaXo 40,511
Jones, Day
North Point

901 Lakeside Avenue

Cleveland, OI] 44114-1190
(216) 586-7747

23

Page 1013 of 1415

Electronic Acknowledgement Receipt

EFSID: 1811276

Application Number: 10381219

Title of Invention: Software code signing system and method

David B Cochran

Jones Day

North Point

Correspondence Address: 901 Lakeside Avenue

Cleveland 44114-1190

US

Filer Authorized By: Stephen D. Scanlon

Attorney Docket Number: 555255012423

Receipt Date: 25-MAY-2007

Filing Date: 20-MAR-2003

Time Stamp: 11:27:25

Application Type: U.S. National Stage under 35 USC 371

Paymentinformation:

Submitted with Payment no

File Listing:

Page 1013 of 1415

Page 1014 of 1415

Document
Number DocumentDescription File Name File Size(Bytes) Part /.zip| (if appl.)

DocumentDescription

Preliminary Amendment

Applicant Arguments/Remarks Made in an Amendment

Warnings:

Information:

Total Files Size (in bytes): 731624

This Acknowledgement Receipt evidences receipt on the noted date by the USPTOof the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidenceof receipt
similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see
37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date
shownon this AcknowledgementReceipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submissionto enter the national stage of an international application is compliant with the conditions
of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptance of the
application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt,
in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary
componentsfor an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the
International Application Number andof the International Filing Date (Form PCT/RO/105) will be issued in due
course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement
Receiptwill establish the international filing date of the application.

Page 1014 of 1415

Page 1015 of 1415

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O, Box 1450
Alexandria, Virginia 22313-1450
Www. uspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

10/381,219 03/20/2003 David P Yach §55255012423 9761

in meePEXAMINER. EXAMINERDavid B Cochran [examenOd
Jones Day ‘ AVERY,JEREMIAH L
North Point
901 Lakeside Avenue PAPER NUMBER
Cleveland, OH 44114-1190 2131

MAIL DATE DELIVERY MODE

05/21/2007 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

Page 1015 of 1415

Page 1016 of 1415

10381219 YACH ET AL.
Examiner Art Unit

Jeremiah Ave 2131

- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--

Notice of Non-Compliant
Amendment (37 CFR 1.121)

The amendment documentfiled on 03 May 2007is considered non-compliant becauseit has failed to meet the
requirements of 37 CFR 1.121 or 1.4. In orderfor the amendment documentto be compliant, correction of the following
item(s) is required.

THE FOLLOWING MARKED(X) ITEM(S) CAUSE THE AMENDMENT DOCUMENTTO BE NON-COMPLIANT:
CL] 1. Amendmentsto the specification:

(] A. Amended paragraph(s) do not include markings.
[] B. New paragraph(s) should not be underlined.
LC] C. Other

(1 2. Abstract:
] A. Not presented on a separate sheet. 37 CFR 1.72.
CO B. Other

(C) 3. Amendmentsto the drawings:
C) A. The drawings are not properly identified in the top margin as “Replacement Sheet,” “New Sheet,” or

“Annotated Sheet” as required by 37 CFR 1.121(d).
LJ 8. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings

showing amendedfigures, without markings, in compliance with 37 CFR 1.84 are required.
[] C. Other

CL) 4. Amendmentsto the claims:
L] A. A completelisting of all of the claims is not present.
[-] B. Thelisting of claims does not include the text of all pending claims (including withdrawn claims)
(-] C. Each claim has not been provided with the properstatus identifier, and as such, the individual status

of each claim cannotbeidentified. Note: the status of every claim must be indicatedafter its claim
numberby using one ofthe following status identifiers: (Original), (Currently amended), (Canceled),
(Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).

Hy D. The claims of this amendment paper have not been presented in ascending numerical order.E. Other:

(] 5. Other (e.g., the amendmentis unsigned or not signed in accordance with 37 CFR 1.4):
Claims section should start on a separate page from page1.

For further explanation of the amendment format required by 37 CFR 1.121, see MPEP § 714.

TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:

1. Applicant is given no new timeperiodif the non-compliant amendmentis an after-final amendment, an amendment
filed after allowance, or a drawing submission (only). !f applicant wishes to resubmit the non-compliantafter-final
amendmentwith corrections, the entire corrected amendment must be resubmitted.

2. Applicantis given one month, orthirty (30) days, whicheveris longer, from the mail date of this notice to supply the
correction, if the non-compliant amendmentis one of the following: a preliminary amendment, a non-final amendment
(including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental
amendmentfiled within a suspension period under 37 CFR 1.103(a) or (c), and an amendmentfiled in response to a
Quayle action. If any of above boxes1. to 4. are checked, the correction required is only the corrected section of the
non-compliant amendmentin compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) onlyif the non-compliant amendmentis a non-final
amendmentor an amendmentfiled in response to a Quayle action.

Failure to timely respond to this notice will result in:
Abandonmentofthe application if the non-compliant amendmentis a non-final amendment or an amendment
filed in response to a Quayle action; or
Non-entry of the amendmentif the non-compliant amendmentis a preliminary amendmentor supplemental
amendmert.

 Lega! Instruments Examiner (LIE), if applicable Telephone No.
U.S. Patent and Trademark Office Part of Paper No.

Page 1016 of 1415

Page 1017 of 1415

* Continuation Sheet (PTOL-324) Application No.
PTOL-324 (04-06) Notice of Non-Compliant Amendment(37 CFR 1.121)

Page 1017 of 1415

Page 1018 of 1415

* Continuation Sheet (PTOL-324) Application No.

Page 1018 of 1415

Page 1019 of 1415

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of: David P. Yach; Michael S. Brown: Herbert A. Little

Internat'l. Appl'n. No.: PCT/CAO01/01344

Internat'l. Filing Date ; 09/20/2001

USS. Serial No. : 10/381,219

US. Filing Date : 03/20/2003

Priority Date Claimed: 09/21/2000

Title : Softwarc Code Signing System And Method

Art Unit : 2131

Examiner : J. Avery

Docket No. : 355255012423

Commissioner for Patents

Washington, D.C. 20231

Preliminary Amendment

This paper respondsto the notice ofnon-compliant amendment mailed April 3, 2007.
Any fees due should be charged to Jones Day Deposit Account No. 501432, ref: 555255-012423,

Prior to taking up this case for initial examination, please amend the application as
follows.

The Claims

Please cancel original claims 1-56.

Please add the following new claims 57-165.

537. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification, where the digital signature is associated

with the signature identification, comprising:

CELS13306v1 1

Page 1019 of 1415

Page 1020 of 1415

an application platform;

an application programming interface (API) having an associated signature identifier, the

APTis configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in orderto control

access to the API by the software application where the signature identifier correspondsto the

signature identification.

58. (New) The code signing system of claim 57, wherein the virtual machine denies the

software application access to the API if the digital signature is not authenticated.

59. (New) The code signing system of claim 57, wherein the virtual machine purges the

software application if the digital signature is not authenticated.

60. (New) The code signing system of claim 57, wherein the code signing system is installed

on a mobile device.

61. (New) The code signing system of claim 57, wherein the digital signature is generated by

a code signing authority.

62. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification where the digital signature is associated

with the signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature

identifier, each configured to link the software application with a resource on the application

platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification correspondsto

the signature identifier,

wherein the virtual machine verifies the authenticity of the digital signature in orderto

control accesste the plurality of APIs by the software application.

CLi-1513306v1 2

Page 1020 of 1415

Page 1021 of 1415

63. (New) Thecode signing system of claim 62, wherein the plurality of APIs are included

in an APIlibrary.

64, (New) The code signing system of claim 62, wherein one or moreof the plurality of

APIsis classified as sensitive and having an associated signature identifier, and wherein the

virtual machine uses the digital signature and the signature identification to control access to the

sensitive APIs.

65. (New) The code signing system of claim 64, wherein the code signing system operates

in conjunction with a plurality of software applications, wherein one or more ofthe plurality of

software applications has a digital signature and a signature identification, and wherein the

virtual machine verifies the authenticity of the digital signature of each of the one or moreofthe

plurality of software applications, where the signature identification correspondsto the signature

identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

66. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a wireless communication system.

67. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a cryptographic module which implements cryptographic algorithms.

68. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a data store.

69. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a user interface (UI).

70. (New) The code signing system of claim 57, further comprising:

CLE15133G6vi 3

Page 1021 of 1415

Page 1022 of 1415

a plurality of APIlibraries, each of the plurality of API libraries includes a plurality of

APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

71. (New) The code signing system of claim 70, wherein at least one of the plurality of API

libraries is classified as sensitive;

wherein access to a sensitive APIlibrary requiresa digital signature associated with a

signature identification where the signature identification corresponds to a signature identifier

associated with the sensilive API library;

wherein the software application includes at least one digital signature and at least one

associated signature identification for accessing sensitive APIlibraries; and

wherein the virtual machine authenticates the software application for accessing the

sensitive API library by verifying the one digital signature included in the software application

that has a signature identification corresponding to the signature identifier of the sensitive API

library.

72. (New) The code signing system of claim 57, wherein the digital signature is generated

using a private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

73. (New) The code signing system of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

74. (New) The code signing system of claim 60, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

CLI-1$13306vE 4

Page 1022 of 1415

Page 1023 of 1415

75. (New) The code signing system of claim 57, wherein the application platform comprises

an operating system.

76 (New) The code signing system ofclaim 57, wherein the application platform comprises

one or more core functions of a mobile device.

77. (New) The code signing system of claim 57, wherein the application platform comprises

hardware on a mobile device.

78. (New) The code signing system ofclaim 57, wherein the hardware comprises a

subscriber identity module (SIM)card.

79, (New) The code signing system ofclaim 57, wherein the software application is a Java

application for a mobile device.

80. (New) The code signing system of claim 57, wherein the API interfaces with a

cryptographic routine on the application platform.

81, (New) The code signing system of claim 57, wherein the API interfaces with a

proprietary data model onthe application platform.

82. (New) The code signing system of claim 57, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

83. (New) A method of controlling access to sensitive application programminginterfaces

on a mobile device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

application programminginterface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and

CHI-1513306v1 3

Page 1023 of 1415

Page 1024 of 1415

denying the software application access to the sensitive API wherethe signature

identification does not correspond with the signature identifier.

84. (New) The method of claim 83, comprising the additional step of:

purging the software application from the mobile device where the signature

identification does not correspond with the signature identifier.

85. (New) The method of claim 83, wherein the digital signature and the signature

identification are generated by a code signing authority.

86. (New) The method of claim 83, comprising the additional stepsof:

verifying the authenticity of the digital signature where the signature identification

corresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

87. (New) The method of claim 86, comprising the additional step of:

purging the software application from the mobile device where the digital signature is not

authenticated.

88. (New) The method of claim 86, wherein the digital signature is generated by applying a

private signature key to a hash ofthe software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising thestepsof:

storing a public signature key that correspondsto the private signature key on the mobile

device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

89. (New) The method of claim 88, wherein the digital signature is gencrated by calculating

a hash of the software application and applying the private signature key.

CLI-15133G6vi 6

Page 1024 of 1415

Page 1025 of 1415

90. (New) The method of claim 83, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API,

91. (New) The method of claim 90, comprising the additional stepof:

receiving a command from the user granting or denying the software application access

to the sensitive APL

92. (New) A method of controlling access to an application programming interface (API)

having a signature identifier on a mobile device by a software application created by a software

developer, comprising the steps of:

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the software application

where the software application satisfies at least one criterion;;

verifying the authenticity of the digital signature appended to the software application

where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

93. (New) The method of claim 92, wherein the step of determining whether the software

application satisfies at least one criterion is performed by a code signing authority.

94. (New) The method of claim 92, wherein the step ofappending the digital signature and

the signature identification to the software application includes generating the digital signature

comprising the steps of:

calculating a hash ofthe software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

CLI-1513306v1 7

Page 1025 of 1415

Page 1026 of 1415

95. (New) The method of claim 94, wherein the hash of the software application is

calculated using the Secure Hash Algorithm (SHA1}.

96, (New) The method of claim 94, whereinthe step of verifying the authenticity of the

digital signature comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

authenticating the digital signature by comparing the calculated hash with the recovered

hash,

97. (New) The method of claim 96, comprising the further step of denying the software

application access to the API where the digital signature is not authenticated.

98. (New) The method of claim 96, wherein the signature key is a private signature key and

the corresponding signature key is a public signature key.

99. (New) A method ofcontrolling access to a sensitive application programming interface

(APD) having a signature identifier on a mobile device, comprising the steps of:

registering one or more software developers that are trusted to develop software

applications which access the sensitive API;

receiving a hash ofa software application;

determining whether the hash was sent by a registered software developer; and

generating a digital signature using the hash of the software application and asignature

identification correspondingto the signature identifier where the hash was sent by the registered

software developer;

wherein

the digital signature and the signature identification are appended to the software

application; and

CLEIS13306v1 8

Page 1026 of 1415

Page 1027 of 1415

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application where the signature identification

corresponds with the signature identifier.

100. (New) The method of claim 99, wherein the step of generating the digital signatureis

performed by a code signing authority.

101. (New) The method of claim 99, wherein the step of generating the digital signature is

performed by applying a signature key to the hash of the software application.

102. (New) The method of claim 101, wherein the mobile device verifies the authenticity of

the digital signature by performing the additional stepsof:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash;

determining whetherthe digital signature is authentic by comparing the calculated hash

with the recovered hash: and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

103, (New) A methodofrestricting access to application programming interfaces on a mobile

device, comprising the stepsof:

loading a software application having a digital signature and a signature identification on

the mobile device that requires access to one or more application programminginterfaces (APIs)

having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with

the signature identifier; and

denying the software application access to the one or more APIs where the software

application does not include an authentic digital signature.

CLIL-1513306v1 9

Page 1027 of 1415

Page 1028 of 1415

104. (New) The method of claim 103, wherein the digital signature and signature

identification are associated with a type of mobile device.

105. (New) The method of claim 103, comprising the additional step of:

purging the software application from the mobile device where the software application

does not include an authentic digital signature. .

106. (New) The methodof claim 103, wherein:

the software application includesa plurality of digital signatures and signature

identifications; and

the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

107. (New) The method of claim 106, wherein each of the plurality of digital signatures and

associated signature identifications are generated by a respective corresponding code signing

authority.

108. (New) The method of claim 103, wherein the step of determining whether the software

application includes an authentic digital signature comprises the additionalstepsof:

verifying the authenticity of the digital signature where the signature identification

corresponds with respective ones ofthe at least one signature identifier.

109. (New) The method of claim 107, wherein each ofthe plurality of digital signatures and

signature identifications are generated by its corresponding code signing authority by applying a

respective private signature key associated with the code signing authority to a hash of the

software application.

CLI-1513306v1 10

Page 1028 of 1415

Page 1029 of 1415

110. (New) The method of claim 103, wherein the step of authenticating the digital signature

wherethe signature identification correspondswith the signature identifier comprises the steps
of:

verifying that the signature identification corresponds with the signature identifier authenticating

the digital signature where signature identification corresponds with the signature identifier

comprising the stepsof:

storing a public signature key on a mobile device that correspondsto theprivate signature

key associated with the code signing authority which generatesthe digital signature;

generating a hash of the software application to obtain a generated hash:

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

111. (New) The methodof claim 103, wherein:

the mobile device includes a plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any ofthe plurality of APIs requires an authentic global signature;

access to each ofthe plurality of sensitive APIs requires an authentic global signature and

an authentic digital signature associated with a signature identification;

the step of determining whether the software application includes an authentic digital

signature and signature identification comprisesthe steps of:

determining whether the one or more APIs to whichthe software application requires
access includes a sensitive API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and

signature identification where the one or more APIs to which the software application requires

access includes a sensitive AP] and the software application includes an authentic global
signature; and

the step of denying the software application access to the one or more APIs comprises the
steps of:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

CLI-ISE3306v1 li

Page 1029 of 1415

Page 1030 of 1415

denying the software application access to the sensitive API where the one or more APIs

to which the software application requires access includes a sensitive API, the software

application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive API.

112. (New) A code signing system for controlling access to application programming

interfaces (APIs) having signature identificaters by software applications, the code signing

system comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the APIs where the signature identifications correspond with the

signature identificaters of the respective APIs and where a digital signature for a software

application is generated with a signature identification correspondingto a signature identificater

to access at least one API; and

a control system for allowing access to at least one of the APIs wherethe digital signature

provided by the software application is authenticated by the verification system.

113. (New) The code signing system of claim 112, wherein a virtual machine comprises the

verification system and the control system.

114. (New) The code signing system of claim 113, wherein the virtual machine is a Java

virtual machine installed on a mobile device.

115. (New) The code signing system of claim 112, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

116. (New) The code signing system of claim 112, wherein the code signing system is

installed on a mobile device and the software application is a Java application for a mobile

device.

117. (New) The code signing system of claim 112, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

CLI-1513306¥1 12

Page 1030 of 1415

Page 1031 of 1415

118. (New) The code signing system of claim 112, wherein the APIs access at least one ofa

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UD.

119. (New) The code signing system of claim 112, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

120. (New) The code signing system of claim 119, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

121. (New) The code signing system of claim 112, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

122, (New) The code signing system ofclaim 112, wherein the APIs provides access to at

least one of one or more core functions ofa mobile device, an operating system, and hardware on

a mobile device.

123. (New) The code signing system ofclaim 112, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APIs.

CLI-1S13306v1 13

Page 1031 of 1415

Page 1032 of 1415

124. (New) A method of controlling access to application programming interfaces (APIs)

having signature identifiers by software applications, the method comprising:

authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the respective APIs and whereadigital signature for a software application is generated with a

signature identification correspondingto a signature identifier to access at least one API; and

allowing accessto at least one of the APIs wherethe digital signature provided by the

software application is authenticated.

125. (New) The method of claim 124, wherein one digital signature and one signature

identification are provided by the software application access a library of at least one of the

APIs.

126. (New) The method of claim 124, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

127. (New) The method of claim 124, wherein the APIs access at least one ofa cryptographic

module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (UD).

128. (New) The method of claim 124, wherein the digital signature is generated using a

private signature key under a signature schemeassociated with the signature identification, and a

public signature key is used to authenticate the digital signature.

129, New) The method of claim 128, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the digital signature is authenticated by generating a hash ofthe software application to

obiain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

CLI-1S13306¥1 i4

Page 1032 of 1415

Page 1033 of 1415

130. (New) The method of claim 124, wherein at ieast one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access sald at least one of the APIs.

131. (New) The method of claim 124, wherein the APIs provides accessto at least one of one

or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

132. (New) The method of claim 124, wherein verification of a global digital signature

provided by the software application is required for accessing anyof the APIs

133. (New) A management system for controlling access by software applications to

application programming interfaces (APIs) having at least one signature identifier on a subset of

a plurality ofmobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

software applications that require access to at least one of the APIs with a signature identifier on

the subset of the plurality ofmobile devices, where a digital signature for a software application

is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

identifications that correspond to the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of

mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of

the APIs where the digital signaturcs provided by the respective software applicationsare

authenticated by the verification system.

134. (New) The management system of claim 133, wherein a virtual machine comprises the

verification system and the control system.

CLL-E513306vi 15

Page 1033 of 1415

Page 1034 of 1415

135. (New) The management system of claim 134, wherein the virtual machineis a Java

virtual machine and the software applications are Java applications.

136. (New) The management system of claim 133, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

137. (New) The management system ofclaim 133, wherein the APIs accessat least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UD.

138. (New) The management system of claim 133, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

139. (New) The managementsystem of claim 138, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash ofthe

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

140. (New) The management system of claim 133, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attemptsto

access said at least one of the APIs.

CLI-1$13306v1 16

Page 1034 of 1415

Page 1035 of 1415

141. (New) The management system of claim 133, wherein the subset of the plurality of

mobile devices comprises mobile devices under the controlofat least one of a corporation and a
carrier.

142. (New) The management system of claim 133, wherein a global digital signature provided

by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

143. (New) A method of controlling access by software applications to application

programming interfaces (APIs) havingat least one signature identifier on a subset of a plurality

of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subset ofthe plurality of mobile devices,

where the signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantially only on

the subset of the plurality of mobile devices; wherein each mobile device of the subset of the

plurality of mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APIs

wherethe digital signature provided by the software application is authenticated by the

verification system.

144. (New) The method of claim 143, wherein a virtual machine comprises the verification

systern and the control system.

145. (New) The method ofclaim 144, wherein the virtual machine is a Java virtual machine

and the software applications are Java applications.

CLL-1513306v1 17

Page 1035 of 1415

Page 1036 of 1415

146, (New) The method of claim 143, wherein the control system requires onedigital

signature and one signature identification for each library of at least one ofthe APIs.

147, (New) The method ofclaim 143, wherein the APIs access at least one of a cryptographic

module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a userinterface (UI).

148, (New) The method of claim 143, wherein at least one of the digital signaturesis

generated using a private signature key under a signature scheme associated with a signature

identification, and the verification system uses a public signature keys to authenticate said at

least one ofthe digital signatures.

149. (New) The method of claim 148, wherein:

at least one of the digital signatures is generated by applying theprivate signature key to

a hash of a software application under the signature scheme; and

the verification system authenticates said at least one ofthe digital signatures by

generating a hash of the software application to obtain a generated hash, applying the public

signature key to said at least one ofthe digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

150. (New) The method of claim 143, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to
access said at least one of the APIs.

131. (New) The method of claim 143, wherein the subset of the plurality of mobile devices

comprises mobile devices under the controlof at least one of a corporation anda carrier.

152. (New) A mobile device for a subset of a plurality ofmobile devices, the mobile device

comprising:

an application platform having application programminginterfaces (APIs);

ClA-1513306v1 18

Page 1036 of 1415

Page 1037 of 1415

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

a control system for allowing a software application to access at least one of the APIs

where a digital signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority providesdigital signatures and signature identifications

to software applications that require access to at least one of the APIs such that the digital

signature for the software application is generated according to a signature scheme ofa signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to allow access on

the subsetof the plurality of mobile devices.

153. (New) The mobile device of claim 152, wherein a virtual machine comprises the

verification system and the control system.

154. (New) The mobile device of claim 153, wherein the virtual machineis a Java virtual

machine and the software application is a Java application.

155. (New) The mobile device of claim 152, wherein the contro! system requires onedigital

signature and one signature identification for each library of at least one of the APIs.

156. (New) The mobile device of claim 152, wherein the APIs of the application platform

access at least one of a cryptographic module, which implements cryptographic algorithms, a

data store, a proprictary data model, and a user interface (UI).

157. (New) The mobile device of claim 152, wherein the digital signature is generated using a

private signature key under the signature scheme, and the verification system uses a public

signature key to authenticate the digital signature.

158. (New) The mobile device of claim 157, wherein:

CLI-1S13306v1 19

Page 1037 of 1415

Page 1038 of 1415

the digital signature is generated by applying the private signature keyto a hash of the

software application under the signature scheme; and

the verification system authenticatesthe digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

159. (New) The mobile device of claim 152, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

160. GNew) A method of controlling access to application programminginterfaces (APIs) of

an application platform of a mobile device for a subsetof a plurality of mobile devices, the

method comprising:

receiving digital signatures and signature identifications from software applications that

require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to access at least one of the APIs whereadigital

signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require access to at least one of the APIs such

that the digital signature for the software application is generated according to a signature

schemeofa signature identification, and wherein the signature identifications provided to the

software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

161. (New) The method of claim 160, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APIs.

CLI-1913306v1 20

Page 1038 of 1415

Page 1039 of 1415

162. (New) The method of claim 160, wherein the APIs of the application platform access at

least one of a cryptographic module, which implements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UT).

163. (New) The method ofclaim 160, wherein the digital signature is generated using a

private signature key underthe signature scheme, and a public signature key is used to

authenticate the digital signaturc.

164. (New) The method of claim 163, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

165. (New) The method of claim 160, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

aan submitted,

access said at least one of the APIs.

John V. Hernacki
Reg. Ng/40,511
Jones, Day
North Point

901 Lakeside Avenue

Cleveland, OH 44114-1190

CLI-1513306v1 21

Page 1039 of 1415

Page 1040 of 1415

Electronic Acknowledgement Receipt

EFSID: 1740440

Application Number: 10381219

Title of Invention: Software code signing system and method

David B Cochran

Jones Day

North Point

Correspondence Address: 901 Lakeside Avenue

Cleveland 44114-1190

US

Attorney Docket Number: 555255012423

Receipt Date: 03-MAY-2007

Filing Date: 20-MAR-2003

Time Stamp: 12:14:53

Application Type: U.S. National Stage under 35 USC 371

Paymentinformation:

Submitted with Payment no

File Listing:

Page 1040 of 1415

Page 1041 of 1415

Document
Number DocumentDescription File Name File Size(Bytes) Part /.zip| (if appl.)

Preliminary Amendment 10289USPCTPrelim.paf 729990

Warnings:

Information:

This Acknowledgement Receipt evidences receipt on the noted date by the USPTOof the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidenceof receipt
similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary componentsfora filing date (see
37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date
shownon this AcknowledgementReceiptwill establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions
of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptance of the
application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt,
in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary
componentsfor an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the
International Application Numberand of the International Filing Date (Form PCT/RO/105) will be issued in due
course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement
Receiptwill establish the internationalfiling date of the application.

Page 1041 of 1415

Page 1042 of 1415

UNITED STATES PATENT AND TRADEMARK OFFICE Yi
UNITED STATES DEPARTMENTOF COMMERCE
United States Patent and Trademark Office
Address; COMMISSIONER FOR PATENTSP.O. Box 1450 ‘

Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

10/381,219 03/20/2003 David P Yach 355255012423 9761

7590 04/03/2007
: EXAMINER

David B Cochran

Jones Day AVERY,JEREMIAH L

North Point UN PER NUMBER901 Lakeside Avenue

Cleveland, OH 44114-1190 23100

3 MONTHS 04/03/2007 : PAPER

Please find below and/or attached an Office communication concerningthis application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS
from the mailing date of this communication.

PTOL-90A (Rev. 10/06)

Page 1042 of 1415

Page 1043 of 1415

Notice of Non-Compliant 10/381 ,219 YACH ETAL.

Amendment(37 CFR 1.121) Examiner Art Unit P|Jeremiah Ave 2131

-- The MAILING DATEofthis communication appears on the cover sheet with the correspondenceaddress--

The amendment documentfiled on 20 March 2003 is considered non-compliant becauseit has failed to meet the
requirements of 37 CFR 1.121 or 1.4. In order for the amendment documentto be compliant, correction of the following
item(s) is required.

THE FOLLOWING MARKED (X) ITEM(S) CAUSE THE AMENDMENT DOCUMENTTO BE NON-COMPLIANT:
[J 1. Amendmentsto the specification: —

L] A. Amended paragraph(s) do not include markings.
L] B. New paragraph(s) should not be underlined.
CI C. Other .

(1 2. Abstract:
[] A. Not presented on a separate sheet. 37 CFR 1.72.
[] B.Other

CL) 3. Amendmentsto the drawings:
(] A. The drawings are not properly identified in the top margin as “Replacement Sheet,” “New Sheet,” or

“Annotated Sheet” as required by 37 CFR 1.121(d).
(] B. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings

5 showing amendedfigures, without markings, in compliance with 37 CFR 1.84 are required.C. Other .

>] 4. Amendmentsto the claims:
L] A. Acompletelisting of all of the claims is not present. ,
CL] B. Thetisting of claims does notinclude the text of all pending claims (including withdrawn claims)
L] C. Each claim has not been provided with the properstatus identifier, and as such, the individual status

of each claim cannot be identified. Note: the status of every claim mustbeindicated afterits claim
numberby using oneofthe following status identifiers: (Original), (Currently amended), (Canceled),
(Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).

{_] D. The claims of this amendment paper have not been presented in ascending numericalorder.
E. Other: See Continuation Sheet.

L] 5. Other(e.g., the amendmentis unsigned or not signed in accordance with 37 CFR 1.4):

Forfurther explanation of the amendmentformat required by 37 CFR 1.121, see MPEP§ 714.

TIME PERIODSFORFILING A REPLY TO THIS NOTICE:

1. Applicant is given no new timeperiod if the non-compliant amendmentis an after-final anendment or an amendment
filed after allowance. If applicant wishes to resubmit the non-compliant after-final amendment with corrections, the
entire corrected amendment must be resubmitted.

2. Applicant is given one month, orthirty (30) days, whicheveris longer, from the mail date of this notice to supply the
correction, if the non-compliant amendmentis one of the following: a preliminary amendment, a non-final amendment
(including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental
amendmentfiled within a suspension period under 37 CFR 1.103(a) or (c), and an amendmentfiled in response to a
Quayle action. If any of above boxes 1. to 4. are checked, the correction required is only the corrected section of the
non-compliant amendmentin compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) only if the non-compliant amendmentis a non-final
amendment or an amendmentfiled in response to a Quayle action.

Failure to timely respondto this notice will result in:
Abandonmentof the application if the non-compliant amendmentis a non-final amendment or an amendment
filed in response to a Quayle action; or
Non-entry of the amendmentif the non-compliant amendmentis a preliminary amendmentor supplemental
amendment.

Legal Instruments Examiner(LIE), if applicable Telephone No.
U.S. Patent and Trademark Office Part of Paper No. 20070327

Page 1043 of 1415

Page 1044 of 1415

bey
© oe .

Continuation Sheet (PTOL-324) Application No. 10/381,219

Continuation of 4(e) Other: The numbering of the claims within the preliminary amendmentis improper. Claims 1-56 were cancelled and
then claims 1-109 were added. However, MPEP 714 states,inter alia, that "The original numbering of the claims must be preserved
throughoutthe prosecution. When claims are canceled, the remaining claims must not be renumbered. For example, when applicant
cancels all of the claims in the original specification and adds a newsetof claims, the claim listing must include all of the canceled claims
with the status identifier (canceled) (the canceled claims may be aggregated into one statement). The new claims must be numbered
consecutively beginning with the numbernext following the highest numbered claim previously presented (whether entered or not) in
compliance with 37 CFR 1.126." Thus, the newsetof claims cannot begin with claim 1, but must start with claim 57 and ascendin proper
numericalorder.

AYAZ Show
SUPERVISORY PATENT EXnedINES

TECHNOLOGY CEwTER 2100

Page 1044 of 1415

Page 1045 of 1415

.? I3!
Attorney Docket No. 555255012423

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re applicationof: David P. Yach,et al.

‘ Serial No.: 10/381,219

Filed: March 20, 2003

For: SOFTWARE CODE SIGNING SYSTEM AND METHOD

Art Unit: 2131

Examiner: Avery, Jeremiah L.

CommissionerFor Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Sir:

In accordance with the duty of disclosure imposed by 37 C.F.R. § 1.56, applicants hereby

advise the United States Patent and Trademark Office of certain references which may be

material to the determination of patentability of the above-identified application. The references

are identified on the attached Form PTO-1449 and copies of the references are enclosed,if

required. Applicants respectfully request that these references be considered and madeof record

in the present application by completing and returning the enclosed Form PTO-1449.

Nofee is believed to be due for entry of this Information Disclosure Statement.

However, if any fee should be required, please charge such fee to Jones Day's Deposit Account

No. 501432, Reference No. 555255-012423.

Respectfully submitted,

f hereby cersidy that this correspoadeare | é =
it beiag deposited today vith the United i
States Postal Service as first clase maid 40 ReeNe eee
30 envelope addressed to: Commissionse fee oe Day
Patents, P.O. Box 1450, Alexandgi JONES DAY
SI4S ; ~ vA North Pointoo Cb / 200 901 Lakeside Avenue

- yy Cleveland, Ohio 44114By: (216) 586-3939

Page | of 1
CLI-1146631v1

Page 1045 of 1415

Page 1046 of 1415

PTO/SB/08B (08-03)
Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
tespond to a collection of information unless it contains a valid OMB control number.

Complete if Known

 ORMATION DISCLOSURE

STATEMENT BY APPLICANT

NON PATENT LITERATURE DOCUMENTS

Examiner|Cite Include nameof the author (in CAPITAL LETTERS), title of the article (when appropriate), title of
Initials* No." the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue T?

publisher, city and/or country where published.

Communication of Notices of Opposition (R. 57(1) EPC) dated 26-09-2006
and Working Translation, 16 pages

ISO/IEC FCD 7816-9 "Identification cards ...", Part 9: Additional interindustry
commandsand security attributes", 17.06.1999, S. 8 bis 13, 29 bis 31 (D5), 12 pages

ISO/IEC FDIS 7816-8 "Identification cards ...", Part 8: Security related
interindustry commands", 25.06.1998, S. 2, 3, 6 bis 13 (D6), 13 pages

ISO/IEC 7816-4 "Information Technology - Identification Cards...", Part 4:
Interindustry Commandsfor Interchange”, 1995, S. 12 bis 16 (D7), 6 pages

(Use as many sheets as necessary)

Handbuchder Chipkarten, W. Rankl/W.Effing, 3. Auflage Hanser-Verlag
Munchen, 1999, S. 197 bis 203, 261 bis 272, 740, 795 bis 797 (D8), 18 pages

Examiner Date

Signature Considered
“EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609. Drawline through citationif not in conformance and not
considered. Include copyof this form with next communication to applicant.
1 Applicant’s uniquecitation designation number(optional). 2 Applicantis to place a check mark hereif English language Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Timewill vary depending upon the individual case. Any comments on the
amountof time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMSTO THIS ADDRESS. SEND TO:
Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

ifyou need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Page 1046 of 1415

Page 1047 of 1415

©Cocoo| aREOoEeeeePCCPPCCEeeeeeete -EEEEEREGHEEEEEEEEPEEReePROCITEECC |EEEEECEEEEEECEEECEreeceHHERCPECCeoPASSEEaetahthtetaetgEEELEEEElwupbyo|SlSTs88IIs5ARMEREEPeeSEPP|eeCOE|6EEEEESpmesedenastesseneatactastecstastesatentantaestatatacd]PEE

pow.

:CCEEEEECEECEeeSaoeaeeeEECEE§|wabuolsla1s1S

DomelTTPee

SISSIESEePCEPELTYTree:

LTT

7LTT|eeePty)..beSeUERSROESSeSeeeeERRRuEPCCCEECEEEESo ;POSECESEEEEO2s.rEEEEEE

Pat]
PEEREEREERECTcrsEHotSCEEEEHREEEEREEETEEEEEEEREREEESEEEEEeeeTaeCE‘E]pauBUELL"8LayTTeeePLETETTTIT0.. .+:.~—.o,*‘.

|

ROCCEPEPEEPSEePRBIRRRERPIEiletsatatatae
sels(s[stsisiss|

CETTEPCLTmH

TaroEEE

*

CeCe1sTeletelstetatciaintgtareECCEEE| PPRPGESPEEyeSaisSLaISiSalesatasisalTclatatsfatatetialsooEEEeee:
‘+.

~ staple additional sheethere

(LEFTINSIDE}

Page 1047 of 1415

Page 1048 of 1415

rod

Application or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD 'Effective January 1, 2003 1 0 / 38] 2 1 4
CLAIMS AS FILED - PART | SMALL ENTITY OTHER THAN

TYPE CJ OR SMALLENTITY
pomcans
romamacnraco|waaereren|
fromcnancenaiecows|=minezoP

mosrewmewrouans|5ninwa=f

* If the difference in column 1 is less than zero, enter “G" in column 2

OR TOTAL] “A

CLAIMS AS AMENDED- PARTIl OTHER THAN
OR SMALL ENTITY

HIGHEST 7NUMBER AOD!
PREVIOUSLY RATE

PAIDFOR

=4
FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM

 AMENDMENTA +f

 °2 FyyiFH
anOimms

HIGHEST ADDIREMAINING NUMBER -

AFTER PREVIOUSLY RATE [TIONAL RATE|TIONAL
AMENDMENT FEE FEE

X$18=pel

Pe[
[sw|

[|
TOTAL

ADDIT FEE

AMENDMENT8B

Independent

OR 84=

OR +280=

QO x

5
9x

S44ngme

REMAINING NUMBER PRESENT ADDI- ADDI-
AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE|TIONAL

AMENDMENT PAID FOR FEE FEE

 OR] XS18=ca Indenendent
 MENOMENTC

Page 1048 of 1415

Page 1049 of 1415

\
\

 PATENT <
Attomey Docket No. 555255012423

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re applicationof: David P. Yach,et al.

Serial No.: 10/381,219

Filed: March 20, 2003

For: CODESIGNING SYSTEM AND METHOD ECcIVE DArt Unit: 2131 R
DEC 1 7 2003

Examiner: Notyet assigned

Commissioner For Patents

P.O. Box 1450

Alexandria, VA 22313-1450
Sir: “OY hyf

In accordance with the duty of disclosure imposed by 37 C.F-.R. § 1.56, spplicanteagagl//.
Ss

advise the United States Patent and Trademark Office of certain references which may be

material to the determination of patentability of the above-identified application. The references

are identified on the attached Form PTO-1449 and copiesof the references are enclosed.

Applicants respectfully request that these references be considered and madeofrecord in the

present application by completing and returning the enclosed Form PTO-1449.

No fee is believed to be due for entry of this Information Disclosure Statement.

However,if any fee should be required, please charge such fee to Jones Day's Deposit Account

No. 501432, Reference No. 555255012423.

Respectfully submitted,

{ hereby certify that this correspondence

States Postal Service as first class mail ia As
is being deposited today with the United

an envelope addressed to: Commissioner for David B. Cochran
Patents. P.O. Box 1450. Alexandria. VA Reg. No. 39,142
22313-1450 JONES DAY

OnAeJL,20033 North Point
. 901 Lakeside Avenue

By. Cleveland, Ohio 44114
(216) 586-3939

Page 1 of 1
CLI-1146631v1

Page 1049 of 1415

Page 1050 of 1415

‘
4\

~ Page 1050 of 1415

FORM PTO-1449 (Modified)
U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

: ;

(37 CFR 1.98(b))
U.S. PATENT (AND PATENT PUBLICATION) DOCUMENTS

INFORMATIONDISCLOSUBS

STATEMENT BY APPLIC ANS

FaeeeInit. MM/DDIYYYYPpaprfee
eee[Ss[7[7[2[|12/05/2000||Shearetal|et al PTpepoPOEE
Paoeeeve
PET| ||ft PoEEe
PFfaF{[ThhvPdThEhd]hErT2003
PAGTTrTdTrErErETd
PpfATETTEFANOTOQY VENTEeTOY|
PFOtaTEhErThErTPTPe
rTUaeTTrTrTrT

PAKTTET
PacTTTETTP
fameTo TT TetTft

FOREIGN PATENT OR PUBLISHED FOREIGN PATENT APPLICATION

Publication

Exam. Date of the Country or Patent

“SH Document Number Grant Office Class Subclassarteprpeermtteee|gomeoefstYb
SRarf
PareTe
Paap
PARTEhE

EXAMINER:Initial citation considered. Draw line throughcitation if not in conformance and not considered. Include copy of
this form with next communication to applicant.

1 of 1

CLI-1146628v1

Page 1051 of 1415

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/05600

GO6F 12/00 (43) International Publication Date: 4 February 1999 (04.02.99)

(21) International Application Number: PCT/US98/15340|(81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) International Filing Date: 24 July 1998 (24.07.98) SE).

(30) Priority Data: Published
08/901,776 28 July 1997 (28.07.97) US _ Without international search report and to be republished

upon receipt of that report.

(71) Applicant: APPLE COMPUTER, INC. [US/US], Law Dept.,
M/S: 38-PAT,1 Infinite Loop, Cupertino, CA 95014 (US).

(72) Inventors: GARST, Blaine; 3307 Bay Court, Belmont, CA
94002 (US). SERLET, Bertrand, 218 Colorado Avenue,
Palo Alto, CA 94301 (US).

(74) Agents: HECKER, Gary, A. et al; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
(Us).

(54) Title) METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

(57) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API), a toolkit, a framework, a runtime library, a dynamic link library (DLL), an applet (e.g. a Java or ActiveX applet),
or any other reusable resource, The presentinvention allows the resource library to be selectively used only by authorized end user software
programs. The present invention can be used to enforce a “per-program"licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text string and a corresponding license
key are embedded in a program that has been licensed to use a resource library. The license text string and the license key are supplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text string includes information about the terms of the license under which the end user program is allowed to use
the resource library. The license key is used to authenticate the license text string. The resource library in tun is provided with means for
reading the license text string and the license-key, and for determining, using the license key, whether the license text string is authentic
and whether the license text string has been altered. Resource Library functions are made available only to a program having an authentic
and unaltered license text string.

Page 1051 of 1415

Page 1052 of 1415

BF
BG
BJ
BR
BY
CA
co
cG
CH
cl
c™
CN
cu
cz
DE
DK
EE

Page 1052 of 1415

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

BRERGHSAAVAISERS
Spain
Finland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya

Democratic Peopte‘s
Republic of Korea

Kazakstan
Saint Lucia
Liechtenstem
Sri Lanka
Liberi

Lesotho
Lithuania
Luxembourg
Latvia
Monaco
Republic of Moldova
Madagascar
‘The former Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Rassian Federation
Sudan
Sweden
Singapore

BdSSGSSIAZAaIRaRA
Sloveni
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmenistan
Turkey
Trinidad and Tobago
Urkraine
Uganda
United States of America
Uzbekistan
Viet Nam

Yugoslavia
Zimbabwe

Page 1053 of 1415

10

15

20

Page 1053 of 1415

WO 99/05600 PCT/US98/15340

METHOD AND APPARATUSFOR ENFORCING SOFTWARELICENSES

BACKG EIN ON

1. FIELD OF THE NTION

The present invention relates generally to the distribution of computer

software, and more particularly to a method and apparatus for automated

enforcement of computer software licenses.

2. BACKGROUND ART

Some computer software programsuse so-called “resource libraries" to

provide part oftheir functionality. There is usually a license fee required to

use a resource library. Under current schemes, it is not always possible to

chargethelicensefee to all users of a resource library. This problem can be

understood by comparing software structures that use resource libraries with "
basic software structures that do not.

BasicSoftwareStructure

Figure1 illustrates a basic software structure. In the example of Figure

1, the software comprises two layers. These layers are the operating system

110, and the application program 120. Operating system 110 is responsible for

controlling the allocation and usage of hardware resources such as memory,

central processing unit (CPU) time, disk space, and peripheral devices.

erating system 110 provides a variety of specific functions that can be8 Sy: Pp P

Page 1054 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

25

Page 1054 of 1415

utilized by a variety of software programs such as application program 120.

Application program 120 provides specific end user functions, such as word

processing, database management, and others. Application program 120

communicates with the computer hardware via functions provided by

operating system 110. Operating system 110 provides an interface between

hardware 100 and application program 120.

our

Figure 2 illustrates a second software structure. The software structure

of Figure 2 contains an additional layer of software, resource library 215,

interposed between application program 220 and operating system 110.

Resource library 215 provides a pre-packaged set of resources or routines that
can be accessed by software programs such as application program 220 during

execution. These resources provide higher level functions than those

provided by operating system 210. For example, these resources may provide

routines for managing a graphical] user interface, for communicating with

other computers via a network, or for passing messages between program

objects. Typically, resource library 215 provides one or more resources or

functions that can be used by many different software programs. By using the

pre-packaged resources provided by resource library 215, a software program

such as application program 220 can be made smaller and program

development time can be shortened because the program itself need not

include code to provide the functions provided by resource library 215.

Page 1055 of 1415

10

15

20

Page 1055 of 1415

WO 99/05600 PCT/US98/15340

In addition to application programs, resource libraries are used by other

types of software programs, including device drivers, utility programs and

other resource libraries.

Resource library 215 constitutes any set of one or more resources that

exists separately from an application program or other software program and

that can be used by more than one software program. For example, resource

library 215 may comprise an application program interface (API), a toolkit, a

framework, a resource library, a dynamiclink library (DLL), an applet, or any

other reusable resource, including an application program that can be accessed

by another program (e.g. by using object linking and embedding (OLE)).

Examples of resource libraries include Windows DLL's (DLL's used with the

Microsoft Windows (TM)operating environment), the Apple Macintosh (TM)

toolkit, the OpenStep API from NeXT Software, Inc., OLE enabled application

programs such as Microsoft Word (TM), Java packages, and ActiveX applets:

A software program typically utilizes a resource provided by a resource

library by sending an appropriate message to the resource library and

supplying the parametersrequired for the resource to be executed. Assuming

the appropriate parameters have been supplied, the resource executes, and an

appropriate response messageis returned to the requesting program.

A software program may use resources provided by several different

resource libraries, a resource library may be usedby several different programs,

and a resource library may itself use other resource libraries. Figure 3

illustrates a computer system that includes several programs and several

resource libraries. In the example of Figure 3, there are two application”

Page 1056 of 1415

10

15

20

25

Page 1056 of 1415

WO 99/05600 PCT/US98/15340

programs 300 and 310, and three resource libraries 320, 330, and 340.

Application program 300 uses resources provided by operating system 110 and

by resourcelibraries 320 and 330. Application program 310 uses resources

provided by operating system 110 and by resource libraries 330 and 340. The

resources of resourcelibrary 330 are thus shared by application programs 300

and 310.

License Fee

Generally, computersoftware is licensed to an end user for a fee. The

end user pays a single purchase price orlicense fee in exchange for the right to

use the end user program on a computer system. Resourcelibraries are often

packaged or “bundled” with an end user program by the makerof the program

such that the end user receives a copy of resource libraries required by a

program when the end user buys a copy of the program. The price of the

resource library is built into the end user program price. The end user

program developer,in turn, pays a royalty to the resource library vendor for

the right to bundle andresell the resource library.

Since a resource library can be used with multiple end user programs,

once the end user receives a copy of the resource library, the end user can use

the resource library with any other program that is compatible with the

resource library. In this case, the resource library vendorreceives no

additional revenue when the vendor's resource library is used with additional

programs. Accordingly, it would be desirable for a resourcelibrary vendor to
be able to ensure that an end user can use the resource library only with

programs for whichalicense fee has been paid to the vendorfor use of the

Page 1057 of 1415

WO 99/05600 . PCT/US98/15340

resource library. Thus there is a need for a software mechanism for enforcing

software license agreements that automatically ensures that a resource library

can only be used by programsthat have been licensed for use with the

resource library by the resource library vendor.

Page 1057 of 1415

Page 1058 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

SUMMARY OF THE INVENTION

The present invention comprises a method and apparatus for enforcing

software licenses for resource libraries. The term "resource library" as used

herein refers to any reusable software resource that is usable by more than one

program orother resource library. The term "resource library" includes, but is

not limited to, an application program interface (API), a toolkit, a framework,

a runtime library, a dynamiclink library (DLL), an applet (e.g. a Java or

ActiveX applet), an application program whose functionality can be accessed

by other programs(e.g. using OLE) or any other reusable resource. The present

invention allows the resource library to be selectively used only by authorized
end user software programs. The present invention can be used to enforce a
“per-program”licensing scheme for a resource library whereby the resource

library is licensed only for use with particular software programs, as well as

site licenses and other licensing schemes.

In one embodiment, an access authorization indicator such as a license

text string and a corresponding license key are embedded in a program that

has been licensed to use a resource library. The license text string and the

license key are supplied, for example, by a resource library vendorto a

program developer who wants to use the resource library with an end user

program being developed.

The license text string includes information about the terms of the

license under which the end user program is allowed to use the resource

library. In one embodiment, the license key is an algorithmic derivation, such

as, for example, a digital signature, of the license text string that is used to

Page 1058 of 1415

Page 1059 of 1415

10

15

20

Page 1059 of 1415

WO 99/05600 PCT/US98/15340

authenticate the license text string. The resource library in turn is provided

with a checking routine that includes means for reading thelicense text string

and the license key, and for determining, using the license key, whether the

license text string is authentic and whetherthe license text string has been

altered. Resource library functions are made available only to a program

having an authentic and unaltered license text string.

In one embodiment, the license key constitutes the resource library

vendor's digital signature of the license text string. The resource library has a

checking routing for verifying the resource library vendor's digital signature.

The resource library is unlocked and madeavailable for use with the

requesting program only if the license text string is verified as authentic by the
resource library. For a given program, only the resourcelibrary proprietor can
produce a license key for a particular license agreement that will unlock the

resource library for that program.and that program only. Any modification of

the license key or the license agreement text string in the requesting software

program is detected by the checking routine, causing the resourcelibrary to

remain locked. The license text string may also specify an expiration date for

the license, in which case the resource library is unlocked onlyif the

expiration date has not yet occurred.

In one embodiment, a per-site enforcement method is provided, in

which any software program presentat a given user site works with the

resource library once the resource library is provided with the proper per-site

license key.

Page 1060 of 1415

WO 99/05600 PCT/US98/15340

5

10

15

20

25

Page 1060 of 1415

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an example of a softwarestructure.

Figure 2 illustrates an example of a software structure including a

resource library.

Figure 3 illustrates an example of a software structure including several

application programs andresourcelibraries.

Figure 4 illustrates an embodiment of a computer system that can be

used with the present invention.

Figure5 illustrates a software structure of one embodimentof the

present invention.

Figure 6 illustrates a software structure of one embodimentof the

present invention.

Figure 7 is a flow chart illustrating the operation of one embodimentof

the present invention.

Figure 8 illustrates a software structure of one embodimentof the

present invention.

Figure 9 illustrates a software structure of one embodimentof the

present invention.

Page 1061 of 1415

WO 99/05600 PCT/US98/15340

10

15

Page 1061 of 1415

Figure 10 is a flow startillustrating the operation of one embodiment of

the present invention.

Figure 11 is a flow start illustrating the operation of one embodimentof

the present invention.

Figure 12 is a flow start illustrating the operation of one embodimentof

the present invention.

Figure 13 illustrates a software structure of an embodimentof the

present invention using the OpenStep API.

Figure 14 illustrates an embodimentof the invention in which the

resourcelibrary is an applet.

Page 1062 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1062 of 1415

10

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for enforcing software licenses is described. In

the following description, numerous specific details are set forth in order to

provide a more thorough description of the present invention. It will be

apparent, however, to one skilled in the art, that the present invention may be

practiced without these specific details. In other instances, well-known

features have not been described in detail so as not to obscure the invention.

Co ter_S

The present invention can be implemented on anyof a variety of

computer systems, including, without limitation, network computers, special

purpose computers, and general purpose computers such as the general

purpose computerillustrated in Figure 4. The computer system shown in

Figure 4 includes a CPU unit 400 that includes a central processor, main

memory, peripheral interfaces, input-output devices, power supply, and

associated circuitry and devices; a display device 410 which may be a cathode

ray tube display, LCD display, gas-plasmadisplay, or any other computer

display; an input device 430, which may include a keyboard, mouse,digitizer,

or other input device; non-volatile storage 420, which may include magnetic,

re-writable optical, or other mass storage devices; a transportable media drive

425, which may include magnetic, re-writable optical, or other removable,

transportable media, and a printer 450. The computer system may also

include a network interface 440, which may include a modem,allowing the

computer system to communicate with other systems over a communications

networksuch as the Internet. Any of a variety of other configurations of

Page 1063 of 1415

10

15

20

Page 1063 of 1415

WO 99/05600 PCT/US98/15340

11

computer systems mayalso be used. In one embodiment, the computer

system comprises an Intel Pentium (tm) CPU and runsthe Microsoft

Windows95 (tm) operating environment. In another embodiment, the

computer system comprises a Motorola 680X0 series CPU and runs the

NeXTStep operating system.

Whena computer system executes the processes and process flows

described herein, it is a means for enforcing software licenses.

The invention can be implemented in computer program code in any

desired computer programming language.

Licensi dul

Figure 5 is a block diagram illustrating software components of one .

embodimentof the present invention. As shown in Figure 5, this

embodiment, like the prior art embodiment of Figure 2, includes computer
hardware 100, operating system 110, application program 220 and resource

library 215. However, the present invention adds two additional components:

Program licensing module 500 and resource library licensing module 510.

These modules are shown in greater detail in Figure 6.

Figure6 illustrates program licensing module 500 and resource library

licensing module 510 in one embodiment of the present invention. As

shown in Figure 6, program licensing module 500 contains license text string

600 and license key 610. License text string 600 contains data specifying terms
of the software license agreement under which the resource library vendor

Page 1064 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

25

30

Page 1064 of 1415

12

has licensed the program containing program licensing module 510 to use the

vendor's resource library. For example, license text string 600 may include the

following text:

Table 1: Example License Text String

“({c) Copyright 1997. Resource Library Vendor, Inc. Program A is
licensed to use Resource Library D. No expiration date. This
license may not be legally copied or transferred to another
program."

In the example shown in Table 1, license text string 600 specifies the name of

the resource library vendor ("Resource Library Vendor,Inc.), the name of the

program licensed to use the resource library ("Program A"), and the name of

the resource library that has been licensed ("Resource Library D"). License text

string 600 also indicates that the license has "No expiration date."

License key 610 is algorithmically derived from license text string 600.

In one embodiment, license key 610 comprises a digital signature of the

resource library vendor.

A digital signature is a mechanism that has been developed to help

ensure the integrity of electronic messages. A digital signature is used to

authenticate an electronic message and to determine whetheran electronic

message has been altered.

One form of digital signature uses a message digest. A message digestis

a value that is generated when an electronic message is passed through a one

way encryption process (“digesting process”) such as a hashing routine. An

ideal digesting process is one for which the probability that two different

electronic messages will generate the same message digest is near zero. In this

Page 1065 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1065 of 1415

13

form of digital signature, both the originator and the recipient need to know

which digesting process is being used. The originator generates the electronic

message, and generates a message digest by passing the electronic message

through the digesting process. The originator digitally signs the resulting

message digest, for example by performing an algorithmic operation on the

message digest using the originator's private key. Alternatively, instead of

generating a message digest and signing the message digest, a sender may sign

the messageitself.

To verify the authenticity of a digitally signed message, the recipient.

obtains the electronic message and the digital signature of the sender. The .
recipient verifies the digital signature using an appropriate verification

process. For example, in one embodiment, the recipient verifies the digital

signature by performing an algorithmic process on the digital signature using

the sender's public key. The verification process verifies that the electronic
message was(1) digitally signed by the sender, and (2) thatthe electronic _ :
message content was not changed from the timethat it was signed to the time

that the digital signature wasverified.

In the present embodiment of the invention, the "message" that is

digitally signed is license text string 600. The signer is the resource library

vendor. The result is license key 610.

License text string 600 and license key 610 are used by resource library

licensing module 510 to verify that a requesting program has been licensed to

use the resource library. As shown in Figure 6, resource library licensing

module 510 includes a license verification module 620. When a program

Page 1066 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1066 of 1415

14

requests access to the resource library, resource library licensing module 510

readslicense text string 600 and license key 610 from the requesting program.

In one embodiment, license text string 600 and license key 610 are sent to the

resource library by the requesting program along with a requestfor access to

the resource library. In another embodiment, resource library licensing .

module 510 reads license text string 600 and license key 610 from a constant

definition section of the requesting program.

Resource library licensing module 510 uses license key 610 to verify the

content of license text string 600 in the same mannerasa digital signature is

used to verify an electronic message. Using license verification module 620,

resource library licensing module 510 verifies that license text string 600 is

authentic (i.e. was generated by the resource library vendor) and unaltered. If

the verification process is unsuccessful, indicating that the digital signature is

not good, resource library licensing module 510 refuses the requesting

program's requestfor access to the resource library. If the verification process

is successful, resource library licensing module 510 inspects the license to

determine any license limitations included in license text string 600.

The example license text string 600 shown in Table 1 above identifies

“Program A" as the program thatis licensed to use the resource library, and

states that the license has “No expiration date." Resource library licensing

module 510 obtains the name of “Program A" from license text string 600, and

checks whether the requesting program is Program A. If the requesting

program is a program other than Program A, accessto the resource library is
denied.

Page 1067 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

15

Rather than specifying "No expiration date" as in the present example,

license text string 600 may specify an expiration date and/or a beginning date

for the license. If any such dates are specified in license text string 600,

resource library licensing module 510 checks to make sure that the current

date falls within the period of validity of the license prior to granting access to

the resource library. If the current date is not within the license's period of

validity, the requesting program is denied access to the resourcelibrary.

AccessProcedure

The process used by a resource library to grant or deny access to a

requesting program in one embodimentof the invention is illustrated in

Figure 7. In one embodiment, this process occurs the first time a program .

requests access to a resource library. In another embodiment, this process-

occurs each timethe resource library receives a request for access.

As shown in Figure 7, the process begins with a requesting program

making a request to use the resource library at step 700. At step 705, the

resource library obtains the requesting program's license text and license key.

The license text and license key may, for example, be included in the request,

or the resource library may read the license text and license key from a

constant declaration area of the requesting program, or the resource library

may obtain the license text and license key by some other. means.

After obtaining the license text and license key, the resource library

verifies the authenticity of the license text, using the license key, at step 710.

At step 725, a the resource library determines whetherthe verification is

Page 1067 of 1415

Page 1068 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

16

successful. If the authenticity of the license text is not verified, access to the

resource library is denied at step 730.

If the verification of the authenticity of the license text is successful, the

resource library checks the license terms included in the license text at step

735. At step 740, the resource library determines whethera limited validity

period is specified in the license text. If no validity period is specified, the

process continues on to step 755. If a validity period is specified, the resource

library checks whetherthe validity period has expired at step 745. The validity

period will have expired eitherif the current date is before a beginning date

specified in the license text or if the current date is after an expiration date

specified in the license text. If the validity period has expired, access to the

resource library is denied at step 750.

If the validity period has not expired, processing continues to step 755.

At step 755, the resource library determines whether the requesting program is

the same program as the program specified in the license text. If the

requesting program is not the program specified in the license text, access to

the resource library is denied at step 760. If the requesting program is the

program specified in the license text, the resource library checks whether there

are any other license terms contained in the license text at step 765. If there are

no other license terms, access to the resourcelibrary is granted at step 770. If

there are other license terms, the resource library checks whether those terms

are satisfied at step 775. If the terms are notsatisfied, access to the resource

library is denied at step 780. If the termsare satisfied, access to the resource

library is granted at step 785.

Page 1068 of 1415

Page 1069 of 1415

10

15

20

Page 1069 of 1415

WO 99/05600 PCT/US98/15340

17

The invention may be implemented in the Objective-C language.

Objective-C is essentially the ANSI C language with object messaging

extensions. A full description of the Objective-C language appears in "Object-

Oriented Programming and the Objective-C Language,” published by Addison-

Wesley (ISBN 0-201-63251-9) (1993), and incorporated by reference herein.

However, the invention can also be implemented in any other suitable

computer programming language.

Asdescribed below, the invention can be implemented by embedding

appropriate segments of program code in the source code of a program that

uses a resourcelibrary and in the source code of the resourcelibrary itself.The

resource library is compiled to produce an executable implementation which

can be linked to a compiled and executable version of the program.

Application Program Interface (API) a

In one embodimentof the invention, the resource library is an

application program interface ("API"). An API has three major functions: it

receives requests from an application program to carry out fundamental

operations such as receiving user input or displaying output; it converts each

request into a form understandable by the particular operating system then in

use; and it receives responses and results from the operating system, formats

them in a uniform way, and returns them to the application program.

_ APIs generally are prepared in an executable implementation which is

compiled specifically for the underlying operating system. This is necessary

because different operating systems provide different calling mechanisms and

Page 1070 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1070 of 1415

18

communications methods for such primitive operations as reading and

writing a mass storage device. For example, an API may provide a "draw(x,y)"

function that can be called by an application program to draw a pointat

coordinates (x,y) on the display device of a computer system. Uponreceipt of a

draw(x,y) request from an application program, the API converts the request

into a commandorfunction call specific to the operating system then in use.

For example, the API might convert the draw(x,y) request into a series of

machine instructions to load registers with the x,y values and call an

operating system function or generate an interrupt. The person writing the

application program need not worry about such details.

In somecases the APIrefers to or calls functions located in an external

function library such as a set of device drivers rather than directly calling the

operating system. Device drivers are small executable programsthat enable

the operating system to address and work with particular hardware devices

such as video adapters andprinters. Device drivers also constitute a form of

resource library.

Dependingon the operating system, the API can be prepared in any of

several executable formats such as a runtimelibrary, device linked library

(DLL), or other executable file. The API is provided to the end user in one of

these object code versions, or “implementations,” of the API. In industry

usage the term API can refer to a definition or specification of functions in the

API, to the source code of the API that implements such functions, or to the

executable version of such source code which is ultimately distributed to and

used by end users. Examples of APIs are the OpenStep API, available from

Page 1071 of 1415

10

15

20

25

WO 99/05600 PCT/US98/15340

19

NeXTSoftware, Inc., Redwood City, California, and the Visual Basic DLL

available from Microsoft Corporation, Redmond, Washington.

The term API as used herein also includes the Java programming

language. Rather than being distributed in executable form, Java programsare

distributed as packages of "bytecodes."” The bytecodes are compiled at runtime

into executable code by a Java Virtual Machine (JVM)resident on the

computer on which the Java program is run. Different JVM's are used for

different computer processors and operating systems. However, all JVM's

read the same bytecode. Accordingly, Java bytecode programs and packages are

platform independent. Java bytecode programs and packages need only be

written in one form. The JVM's take care of adapting the bytecode to different

computer platforms. Packages of Java bytecode can be used by different Java

programs, and, as such, constitute resource libraries.

Generally the end user can buy the executable version of the API .

implementation separately from any particular application program from its

creator or vendor, or the end user may buy the API implementation bundled

with an application program that requires and uses the API to run.

In either case, the API implementation is installed in executable form

in the end user's computer system (typically by copying it to a mass storage ©

device such as a hard disk). After the API implementation isinstalled, the

end user can launch (begin running) an application program which uses the

API implementation. The application program locates the API
implementation on the hard disk and references, calls, or is linked to the API

implementation. In operation, when the application program needs to carry

Page 1071 of 1415

Page 1072 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1072 of 1415

20

out an operation implemented in the API implementation, such as drawing a

line on the screen, the application program calls the appropriate function in

the API implementation. The appropriate function in turn tells the operating

system (or the device independent windowingextensions, or another device

driver) how to execute the desired operation.

A significant advantage of the use of APIs is that an application

program, such as a word processor, can be written to communicate only with

the API, and not with the operating system. Such an application program can

be moved or ported to a different operating system without modifying the

program source code. Becauseof this, application programs written for APIs

are said to be operating system independent, meaning that the application

program source code can be moved without modification to another

computer system having a different operating system, and recompiled and

linked with an API implementation prepared for that operating system. The

ability to move unmodified application source code to different operating

systems is a key advantage of using APIs.

However, from the point of view of API vendors, APIs also have the

significant disadvantage that an end user needs only one copy of the API to

run multiple application programs which are compatible with the API. Since

the API provides generic input, output, and processing functions, it will work

with a variety of different end user application programs. Somesoftware

vendors desire to restrict use of their API implementations to one application,

or to require the end user to purchase a key to the API for each application

acquired by the end user, so that the end user pays a different or larger fee to

use additional application programs.

Page 1073 of 1415

10

15

20

25

Page 1073 of 1415

WO 99/05600 PCT/US98/15340

21

The present invention provides a way to arrange a resource library such

as an API to work only with particular authorized application or other end

user programs.

API License Embodiment

Asis well known in theart, the source code of a computer program can

be divided into several components including a variables declaration area, a

constant declaration area, and a proceduredefinition area. Figure 9 illustrates

an embodimentof the present invention that is used with an API. As shown

in Figure 9, in this embodiment, an application program 900 is provided with

a LicenseKeyString constant 902 and a LicenseAgreementString constant 904

in the constant declarations area 901 of the application program's source code. _

In the embodimentof Figure 9, LicenseKeyString 902 and

LicenseAgreementString 904 are declared as global string constants.

In one embodiment, LicenseAgreementString 904 contains a text string,

prepared by the vendorof the API, that describes in human readable text the

license restrictions concerning use of the API applicable to the application

program. For example, the LicenseAgreementString may read, "This API is

licensed for individual internal use only for concurrent use only with Word

Processor application program.” The specific text of the

LicenseAgreementString is prepared by the licensor of the API. The text can be

any arbitrary combination of words, symbols, or numbers.

Page 1074 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

The LicenseKeyString 904 contains a key corresponding to and based

upon the LicenseAgreementString 902. For example, the LicenseKeyString
can bea digital signature of the LicenseAgreementString prepared by
providing the LicenseAgreementString and a private key of the API vendorto

a digital signature process. The precise method of generating the
LicenseKeyString is not critical, provided that only the licensor of the API can

generate a unique LicenseKeyString corresponding to the

LicenseAgreementString. The values of the two Strings are created by the
vendorof the API and are provided to the person or companythatis
developing the end user application program (for example, the API vendor

can send the twostring values to the application program developerby e-
mail). The application program developeris instructed by the API vendorto

place the string declarations in the source code of the developer's end user
application program. The two values may be public, so the API vendor or

developer need not keep the values secret or hidden from users of the end

user application program. The twostrings are compiled into the executable

form (or, in the case of Java, the bytecode packages) of the application program.
This binds the LicenseKeyString and LicenseAgreementString into the
executable code (or bytecode) of the application program.

Asfurther shownin Figure 9, API 920 is provided with an UNLOCK

function 923 and a CHECK LICENSEfunction 921 for testing whether the
LicenseKeyString matches the LicenseAgreementString. In the embodiment
of Figure 9, the CHECK LICENSEfunction 921 includes sub-function CHECK
922.

Page 1074 of 1415

Page 1075 of 1415

10

15

20

Page 1075 of 1415

WO 99/05600 PCT/US98/15340
23

API Procedure

Figure 10 is a flow diagram of processing steps of the UNLOCKfunction

923. The process of Figure 10 may, for example, be carried out at runtime,

when both the application program and the API are compiled, linked, and

running.

The UNLOCKfunction is called by the API uponinitialization of the

API, for example, uponbeing called by application program 900 or by some

other calling function, object, or program (the "calling entity"). Processing

begins at step 1002. The UNLOCKfunction first checks to see whether the. API

has been provided with a site license that allows the API to be used with any

calling entity on the computer in which the API has been installed. In this

embodiment,a site license is indicated by adding an appropriate

LicenseKeyString and LicenseAgreementString to the API when the APIis

installed. This process is described in greater detail below. An appropriate.

LicenseAgreementString may, for example, be “APIsite license granted. This

API maybe used with any application program atthe site at which it is

installed." The corresponding appropriate LicenseKeyString may, for

example, be derived by applying the API vendor's private key and a digital

signature process to the LicenseAgreementString.

The process of checkingfora site license begins at step 1004 where the

UNLOCKfunction locates and extracts (to the extent they have been provided

to the API) a LicenseKeyString and a LicenseAgreementString from within the

API. Control is then passed to step 1006 where the function tests whether the
API is licensed undera site license for unrestricted use with any application

Page 1076 of 1415

10

15

20

PCT/US98/15340WO 99/05600

24

program. Thetest of step 1006 is accomplished by verifying the authenticity of
the LicenseKeyString and LicenseAgreementString extracted from the API,
and, if authentic, determining whether the LicenseAgreementString indicates
thata site license has been granted.

The authenticity of the LicenseAgreementString and LicenseKeyString
is determined by passing the LicenseAgreementString, the LicenseKeyString,
and a copy of the API vendor's public key stored in the API implementation to
the CHECKprocess 922. CHECK Process 922 usesa digital signature
authentication ("DSA") Process to verify the authenticity of the
LicenseAgreementString.

The DSA process used by CHECK process 922 can be any digital
signature authentication Process capable of reading an inputstring and a key
purportedly representing the digital signature of the input string, applying an
appropriate authentication process, and determining the validity of the input
string by testing whether the key constitutes the signatory's digital signature of
the inputstring. An exemplary DSA processis disclosed, for example, in U.S.
Patent Application Serial No. 08/484,264, “Method and Apparatus for Digital
Signature Authentication," assigned to the assignee hereof. The DSA
technology of RSA Data Security, Inc. also can be adapted for use with the
invention. A per-session cache can be used to improve execution speed of the
CHECK process.

If the LicenseKeyString is determined to be the API vendor's valid
digital signature of the LicenseAgreementString, the LicenseAgreementString
is inspected to determine whether it indicates thata site license has been

Page 1076 of 1415

Page 1077 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

25

granted. If the LicenseAgreementString does so indicate, the test of step 1006
succeeds and controlis passed to step 1014. At this point the UNLOCK

function returns a positive result to the calling entity, and allows the calling
entity to use the API.

If the test of step 1006 fails, control is passed to step 1008 where the
UNLOCKfunction extracts and reads the LicenseKeyString and _
LicenseAgreementString from a data segment (for example, the compiled
constant declarations area) of the calling entity. Alternatively, the calling
entity may transmit the LicenseKeyString and the LicenseAgreementString to
the API. Having obtainedthecalling entity's LicenseKeyString and
LicenseAgreementString, control is passed to step 1010 where the function |

tests whetherthe calling entity is licensed to use the API. This test comprises
two parts. Onepart, using CHECKprocess 922 as described above, determines

whether the LicenseAgreementStringis a LicenseAgreementString validly
issued by the API vendor. A second part examines the

LicenseAgreementString for the terms of the included license, and determines

whether those terms are met. If the result is positive then control is passed to
step 1014. Atthis point, use of the API with the calling entity is authorized

and the API returns control to the calling entity so that the calling entity
resumes normal execution.

If the result is negative then the calling entity is not licensed to use the

API, and controlis passed to step 1012. At step 1012 the API generates an error
message such as "API Not Licensed For Use With This Application program,”
and declines accessto thecalling entity.

Page 1077 of 1415

Page 1078 of 1415

10

15

20

05600 PCT/US98/15340WO 99/

26

Steps 1006 and 1010 carry outthe license tests by calling the CHECK
LICENSE function 921 shown in Figure 9 and Figure 11. Processing steps of
the CHECK LICENSEfunction 921 areillustrated in Figure 11.

The process flow of the CHECK LICENSEfunction starts at step 1102.
Control is passed to step 1104 where the CHECK LICENSE function assembles
the LicenseKeyString 902, LicenseAgreementString 904, and a copy of the API
vendor's public key 1106 as function call arguments, in preparation for calling
the CHECKfunction 922. As discussed more fully below, the public key 1106 is
prepared by the API vendor based upon a secret private key. The three
arguments are passed to the CHECKfunction at step 1108.

If the CHECKfunction (described in greater detail below) returns a FAIL
or false state, control is passed to step 1124 and the CHECK LICENSEfunction
itself returnsafail state. If the CHECK function returns a PASSortruestate,
controlis passed to step 1112 where the CHECK LICENSE function checks the
terms of the license specified in the LicenseAgreementString. At step 1114, the
CHECK LICENSEfunction checks whetherthe name ofthecalling entity is the
same as the nameofthe licensed entity specified in the

LicenseAgreementString. If the nameof the calling entity is incorrect, control
passes to step 1124, where a fail message is passed to the UNLOCK function.

If the name of the calling entity is correct, the CHECK LICENSE

function tests whether the LicenseAgreementString contains an expiration
date at step 1116. An expiration date can be placed in the ~
LicenseAgreementString by the API vendorto establish a termination date
after which use of the API by the calling entity is no longer allowed. CHECK

Page 1078 of 1415

Page 1079 of 1415

10

15

20

PCT/US98/15340WO 99/05600

27

LICENSEmay,for example, test for an expiration date by searching for a text
string that indicates an expiration date, such as, for example, "expiration date"
or "valid until."

If the test of step 1116 is Positive, controlis passed to Step 1118 where the
CHECK LICENSEfunctiontests whether the current date, as maintained, for
example by a computerclock or operating system, is greater than the
expiration date found in the LicenseAgreementString. If the test of step 1118
passes, control is passed to step 1120. If the test of Step 1118 fails, then CHECK
LICENSEreturns a FAIL message at block 1124.

At step 1120, the CHECK LICENSE function checks whether the
LicenseAgreementString specifies any additionallicense terms. If there are no
other terms, CHECK LICENSEreturns a PASS messageat block 1126. If there’
are other terms, CHECKLICENSE determines whether those terms are met at
block 1122. If any of the other terms are not met, CHECK LICENSEreturns a
FAIL message at block 1124. If all of the additional terms are met, CHECK
LICENSEreturns a PASS message at block 1126.

The operation of the CHECK function called by CHECK LICENSEat
block 1108 is illustrated in Figure 12. As shown in Figure 12, the purpose of
the CHECKfunction is to verify the authenticity of a license agreementstring
byverifying that a corresponding license key string constitutes a valid digital
signature of the license agreement string. The CHECK function begins at step
1202 and receives as input a LicenseKeyString, a LicenseAgreementString, and
a vendor's public key in Step 1203. The public keyis generated by the resource
library vendor using any known public/private key pair generation process, as

Page 1079 of 1415

Page 1080 of 1415

10

15

20

Page 1080 of 1415

WO 99/05600 : PCT/US98/15340

28

is well known in the field of cryptography. For example, key generation using

Fast Elliptical Encryption (FEE) can be done, or Diffie-Hellman key generation

can be used.

In step 1204 the CHECKfunction verifies that the LicenseKeyString

comprises the digital signature of the LicenseAgreementString. In step 1208,

the CHECKfunction tests whether the verification of step 1204 successfully
verified the LicenseKeyString as comprising the digital signature of the

LicenseAgreementString. If so, the LicenseAgreementString is valid, and

CHECK returns a Boolean true or pass value. If not, the

LicenseAgreementString is invalid, and CHECKreturns false orfailure.

Since the LicenseKeyString of the present embodiment comprises the

digital signature of the LicenseAgreementString, the LicenseAgreementString

cannot be changed in any way without the change being detected. Stated more

generally, because the identifier (e.g. the LicenseKeyString) of the inventionis

a unique key mathematically derived from a particular text string that

specifies license terms for a particular end user program (e.g. the

LicenseAgreementString), the identifier can be used to detect any changes to

the license terms. This prevents unauthorized modification of the text string

from extending use of a resource library to an unlicensed program. For

example, if an end user attempts to modify the expiration date using a

debugger or machine languageeditor, the identifier will no longer match the

license text string. Without knowing the private key of the vendor, the end
user cannot generate a matching identifier.

Page 1081 of 1415

10

15

20

25

0 PCT/US98/15340WO 99/0560

29

Whena 127-bit private key's is used by the vendorto create the
identifier used in the present invention, a determined hacker attempting to
forge the private key would need to exhaustively search the 127-bit space,
requiring extensive computing resources and an impractical amountof time.
Thus, the protection provided by the present invention cannot easily be
cracked and thesecurity of the invention as a wholeis extremely high.

In addition to allowing per program resource library licensing, if the
API vendororlicensor desires to grant a site license for the API to the end
user, so that the APIis licensed for use with any numberof application
programs, the API maybe provided with a LicenseKeyString and a
LicenseAgreementString providing for such unrestricted use. In this
embodiment, the API vendor provides a site license key string to the end user
as authorization to use the API with any numberofapplications and other
end user programs atthatsite. Thesite license key string comprises a digital "
signatureofa site license agreementstring created by the API vendor. Thesite
license agreement string may be pre-embeddedin the API by the vendor.
During installation of the API, an installation program provided with the API
asks the end user whethera site license key is known. If so, the end user
enters thesite license key, and the installation program writes thesite license
key to a reserved location in the API. Thereafter, when the API initializes, the
APItests for the presenceofthesite license key. If it is present, and it
comprises a valid digital signaturefor the site license text string stored
elsewhere in the API, the APIis permitted to be used with any application
program which iis callingit.

Page 1081 of 1415

Page 1082 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

25

Page 1082 of 1415

30

enStep_ API

In one embodimentof the invention, the API used is the object-

oriented OpenStep API 820 shown in Figure 8. A specification of the

OpenStep API has been published by NeXT Software, Inc. underthetitle

"OPENSTEP SPECIFICATION,” dated October 18, 1994. Implementations of

the OpenStep API include implementations for the Windows NT andSolaris

operating systems that are available from NeXT Software, Inc. and SunSoft,

Inc., respectively.

As shown in Figure 8, the OpenStep API 820 comprises computer

program code organized as an Application Kit 802, Foundation Kit 808, and
Display Postscript™ system 804. (Display Postscript™ is a trademark of Adobe

Systems Incorporated.)

Application Kit 802 provides basic resources for interactive application

programs that use windows,draw onthe screen, and respond to user actions

on the keyboard and mouse. Application Kit 802 contains components that

define the user interface. These components include classes, protocols, C

language functions, constants and data types that are designed to be used by

virtually every application running under the OpenStep API. A principal

purpose of Application Kit 802 is to provide a framework for implementing a

graphical, event-driven application.

Foundation Kit 808 provides fundamental software functions or

building blocks that application programs use to manage data and resources.

Foundation Kit 808 defines basic utility classes and facilities for handling

Page 1083 of 1415

10

15

20

Page 1083 of 1415

WO 99/05600 PCT/US98/15340

31

multi-byte character sets, object persistency and distribution, and provides an

interface to common operating system facilities. Foundation Kit 808 thus

provides a level of operating system independence, enhancing the developer's
ability to port an application program from one operating system to another.

Display Postscript system 804 provides a device-independent imaging

model for displaying documents on a computer screen. Display Postscript is

defined by Adobe Systems Incorporated. Display Postscript system 804

provides an application-independentinterface to Postscript.

Separate from the API 820, butalso logically located between the

application program 800 and the operating system 810,is a set of device «©

dependent windowing extensions 806. Extensions 806 enable Display

Postscript system 804 to communicate with specific graphics and display
hardware in the end user's computer system, such as the video memory or

other video display hardware.

Figure 13 illustrates an embodimentof the invention used with the

OpenStep APIof Figure 8. As shown in Figure 13, in this embodiment, the
license text string and the license key string of the invention are implemented

in a property list area 1302 (Info.plist) of the application program code 800.

Twostring properties are added to the property list area 1302:

NSLicenseAgreement 1304, that stores thesoftware license terms applicable to
application program 800, and NSLicenseKey 1306, that stores the license key
corresponding to NSLicenseAgreement 1304. In this embodiment, as in the
embodimentof Figure 9, NSLicenseKey 1306 is derived from the

Page 1084 of 1415

ol

10

15

20

30

35

~Page 1084 of 1415

WO 99/05600 PCT/US98/15340

32

NSLicenseAgreementstring 1304 generated from the license agreementstring

using a digital signature process and a vendor's private key.

Example values of the two strings placed in the Info.plist are shown in

Table 2.

Table 2 -- Info.plist Strings

NSLicenseKey = "Ab76LY2GbbO0GqK2KY17BqHy35";

NSLicenseAgreement = "(c) Copyright 1996, EOF AddOnTools
Inc., ReportWriter licensing agreement: This is
demonstration software valid until November 2, 1996.
This software cannot be legally copied.";

In the OpenStep embodimentof Figure 13, the UNLOCK function 1308

is implemented as part of Application Kit 802. In one embodiment, UNLOCK

function 1308 is implemented by adding appropriate code to a non-redefinable

private Application Kit function (such as, for example, _NXAppZone() in

NSApplication.m). An example of source code that may be added is shown in |
Table 3.

Table 3 -- UNLOCK Code added in OpenStep API Implementation

static BOOL licenseChecked = NO;
if (! licenseChecked)

{
NSDictionary *info;
NSString *key, *agreement;
/* First check the unlimited (per-site) license */
info = [NSDictionary

dictionaryWithContentsOfFile:@"/OpenStep/AppKit .dl1/Info
-plist"]; // real path TED

key = [info objectForkey: @"NSLicenseKey"];
agreement = [info

objectForkey: @"NSLicenseAgreement"] ;
if (!NSCheckLicense(key, agreement))

{
/* now check for the per-app license */
info = [[NSBundle mainBundle] infoDictionary] ;

Page 1085 of 1415

10

15

20

30

Page 1085 of 1415

WO 99/05600 PCT/US98/15340

33

key = [info objectForKey:@"NSLicenseKey"];
agreement = {info

objectForkey: @"NSLicenseAgreement "];
if (!NSCheckLicense(key, agreement))

NSLog(@"*** Sorry no valid license for
s@", [NSApp appName]);

}
}

licenseChecked = YES;

}

The NSCheckLicense() function, which is called twice in the code

segment of Table 3, as shown in Figure 13, is implemented in the Foundation

Kit portion 808 of the OpenStep API 820. The NSCheckLicense function 1310

corresponds to the CHECK LICENSEfunction 921 illustrated in Figure 9. The

NSCheckLicense function 1310 verifies NSLicenseAgreementstring 1304

using NSLicenseKey string 1306 and a digital signature authentication process.

The NSCheckLicense function 1310 has the following definition:

extern BOOL NSCheckLicense(NSString *licenseKey,
NSString *licenseAgreement);

The NSCheckLicense function 1310, like the Check License function 921 of

Figure 9, applies a CHECKfunction 1312 to NSLicenseAgreementstring 1304

and NSLicenseKey 1306, using the API vendor's public key, to determine the

validity of NSLicenseAgreementstring 1304. In the embodimentof Figure 13,

CHECK function 1312 includes in its code a copy of the API vendor's public

key 1314.

In the embodimentof Figure 13, API 820 includes a "GEN"process 1316

that can be used by an API vendorto rapidly generate license key strings for

use by CHECK function 1312. GEN process 1316 receives as inputa license

agreementstring and a secret private key, and produces as outputa licensing

Page 1086 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

30

Page 1086 of 1415

34

key string, using a digital signature generating process. The private key may,

for example, be a 127-bit private key, although any other size private key may

be used. The signature generating process used by GEN process 1316 is

compatible with the digital signature authentication process used by CHECK

function 1312. GEN process 1316itself can be made entirely public and

implemented in the API provided that the private key of the API vendoris

maintained in secrecy. For example, the GEN process can be part of the

OpenStep API Foundation Kit 808 as shown in Figure 13. GEN also can be

maintained in a separate program module.

The logical relationship between GEN and CHECKis:

CHECK(GEN(LicenseAgreementString, PrivateKey), Public Key,
LicenseAgreementString) => YES

CHECK(random1, random2) => NO with a very high probability

In one embodimentof the invention, a shell is provided for the GEN

process. The shell can receive as input a license agreement templatestring,

such as:

(c) Copyright 1995, %@, %@ licensing agreement; Demo
software valid until %@; This agreement cannot be
legally copied

where %@ represents additional data to be provided by the API vendor. The

shell then asks the user(i.e. the API vendor). to input the additional data, for

example a company name, a product name, an expiration date, from which

the shell generates a specific license agreement string. The shell then asks for
the private key and applies GEN to create a correspondinglicense key.

Page 1087 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1087 of 1415

35

The same shell can be used for per-program license keys or per-site

license keys, using different templates.

In one embodiment of the invention, an installer program is provided

for installing a resource library on an end user computer. Theinstaller

program is provided with a feature enabling the end user to provide a site

license key duringinstallation. For example, if the resource library is the

OpenStep API, additional code is added to the OpenStep APIinstaller

program. Theuseris asked during theinstallation of the resource library if

the user has obtained a per-site license. If the user replies yes, the user is asked

to enter the site license key string. In one embodiment,the user is also asked

to enter the site license agreementstring. In another embodiment,the site

license agreement string is stored in the resource library, such as, for example,

in the OpenStep API DLL Application Kit's Info.plist resource file. The site

license key.and site license agreementare validated by the CHECK LICENSE
function as described above. Use of the resource library is permitted only if

the site license key string input by the user correspondsto(i.e. is found to

comprise the resource library vendor's digital signature of) the site license

agreementstring.

| The present invention may be used with resource libraries such as Java
class files, Java applets, and Java bytecode packages. Figure 14illustrates an

embodimentof the invention in which the resource library is a Java applet.

In the embodiment shown in Figure 14, an applet is called from an HTML
page 1402 via applet tag 1404. Applet tag 1404 includes the name ofthe

Page 1088 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

25

30

Page 1088 of 1415

36

applet's class file and applet parameters 1406. Applet parameters 1406 include

a license agreementstring parameter 1408 and a license key string parameter

1410. License agreementstring parameter 1408 specifies a license agreement

string that contains terms ofa license to use the called for applet. License key

string parameter 1410 specifies a license key used to authenticate the license

agreementstring. As in other embodiments of the invention,in this

embodiment, the license key string comprises a digital signature by the

resource library (applet) vendorof the license agreementstring. Table 4

illustrates an example of applet tag 1404.

Table 4

<APPLET CODE="Applet.class" WIDTH=250 HEIGHT=75>
<PARAM NAME=LicenseAgreementString VALUE="“Web page
orderform.html licensed to use applet 'Applet.class'>
<PARAM NAME=LicenseKeyString VALUE="4kd094kak2rtx0kzq">
</APPLET>

In the example of Table 4, the license agreementstring specifies the

name of the HTML page("orderform.htm!") and the nameofthe licensed

applet ("applet.class").

As shown in Figure 14, applet 1434 is accessed when HTML page 1402is

loaded by a HTML browser 1430 running in a client computer 1420. In the

embodimentof Figure 14, HTML browser 1430 runs on top of an API 1424

which in turn runs on top of operating system 1422. HTML browser 1430

includes a Java virtual machine 1432 for running Java applets.

Upon encountering applet tag 1404 while loading HTML page 1402,

HTMLbrowser1430retrieves the class files that constitute applet 1434 from

storage locations on client computer 1420 and/or from one or more server

Page 1089 of 1415

10

15

20

Page 1089 of 1415

WO 99/05600 PCT/US98/15340
37

computers, as applicable. Oneofthe class files includes CheckLicenseclassfile

1436. After HTML browser 1430 hasretrieved all the required components of

applet 1434, applet 1434 is initialized. Duringinitialization, or at a later time,

the CheckLicense function provided by CheckLicense class file 1436 is called.

As in other embodiments of the invention, the CheckLicense function

determines whether the requesting entity (HTML page 1402) possessesa valid

license to use the requested resource (applet 1434) by testing the authenticity of

the license specified by LicenseAgreementString parameter 1408 using the

license key specified by LicenseKeyString parameter 1410 and the applet

vendor's public key 1438. If the CheckLicense function determines that HTML

page 1402 possessesa valid license, applet 1434 is allowed to execute. If not,

execution of applet 1434 is terminated, and an error messageis sent to HTML

browser 1430.

Thus, an improved method and apparatus for enforcing software

licenses has been presented. Although the present invention has been ~

described with respect to certain example embodiments,it will be apparent to

those skilled in the art that the present invention is not limited to these

specific embodiments. For example, although the invention has been

described for use in stand-alone computer systems, the invention can be used

to enforce licenses in a network environment as well. Further, although the

operation of certain embodiments has been described in detail using specific

software programs and certain detailed process steps, different software may be
used, and someof the steps may be omitted or other similar steps may be

substituted, without departing from the scopeof the invention. Other

embodiments incorporating the inventive features of the present invention

will be apparent to those skilled in theart.

Page 1090 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1090 of 1415

38

CLAIMS

1. In a computer operating environment comprising a software

program and a software resource, an apparatusfor limiting use of said

software resource comprising: -

an access authorization indicator associated with said software program;

means in said software resource for reading said access authorization

indicator;

means in said software resource for determining whether said access

authorization indicator is valid;

means for allowing access by said software program to said software

resource only if said access authorization indicator is determined to be valid.

2. The apparatus of claim 1 wherein said access authorization

indicator comprises terms of a license for use of said software resource.

3. The apparatus of claim 1 wherein said access authorization

indicator comprises terms ofa site license.

4. The apparatus of claim 1 wherein said access authorization

indicator is embedded in said software program.

5. The apparatus of claim 1 wherein said software resource

comprises an API.

Page 1091 of 1415

10

15

20

Page 1091 of 1415

WO 99/05600 PCT/US98/15340

39

6. The apparatus of claim 1 wherein said software resource

comprises a runtimelibrary.

7. The apparatus of claim 1 wherein said software resource

comprises a dynamic link library.

8. The apparatus of claim 1 wherein said software resource

comprises an applet.

9. The apparatus of claim 1 wherein said software resource

comprises a bytecode package.

10. The apparatus of claim 1 wherein said software resource

comprises an OLE enabled application program.

11. The apparatus of claim 4 wherein said access authorization .

indicatoris specified in a constant declaration area of said software program.

12. The apparatus of claim 4 wherein said access authorization

indicator comprises a property of a property list of said software program.

13. The apparatus of claim 1 further comprising an identifier

associated with said access authorization indicator and wherein said means for

determining the validity of said access authorization indicator comprises

means for determining whether said access authorization indicator is valid

based on said identifier.

Page 1092 of 1415

10

15

20

Page 1092 of 1415

WO 99/05600 : PCT/US98/15340

40

14. The apparatusof claim 13 further comprising means for

receiving said identifier from an enduser.

15. The apparatus of claim 14 further comprising meansfor storing

said identifier in said software resource.

16. The apparatus of claim 13 wherein said identifier is embedded in

said software program.

17. The apparatus of claim 13 wherein said identifier comprises a

digital signature of said access authorization indicator.

18. The apparatus of claim 16 wherein said identifier is specified in a

constant declaration area of said software program.

19. The apparatusof claim 16 wherein said identifier comprises a

property of a property list of said software program.

20. The apparatus of claim 17 wherein said means for determining

whethersaid access authorization indicator is valid based upon said identifier

comprises a means for digital signature authentication.

21.‘ The apparatus of claim 2 further comprising means for

determining whether said terms of said license are met.

Page 1093 of 1415

WO 99/05600 ‘ PCT/US98/15340
41

22. The apparatus of claim 13 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises termsof a license for use

5 of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

23. In a computer operating environment, a method for limiting use

10 of a software resource comprising:

receiving a request from a software program to use said resource; |

obtaining an access authorization indicator associated with said

software program;

determining whether said access authorization indicator is valid; -

15 allowing said software program to use said software resource only if

said access authorization indicator is determined to be valid.

24. The method of claim 23 wherein said access authorization

indicator comprises terms ofa license for use of said software resource.

20

25.|The methodof claim 24 wherein said license comprises a site

license.

26. The method of claim 23 wherein said access authorization

25 indicator is embeddedin said software program.

Page 1093 of 1415

Page 1094 of 1415

WO 99/05600 PCT/US98/15340

42

27. The method of claim 23 wherein said software resource

comprises an API.

28. The method of claim 23 wherein said software resource

5 comprises a runtimelibrary.

29. The method of claim 23 wherein said software resource

comprises a dynamic link library.

10 30. The method of claim 23 wherein said software resource

comprises an applet.

31. The method of claim 23 wherein said software resource

comprises a bytecode package.
15

32. The methodof claim 23 wherein said software resource

comprises an OLE enabled application program.

33. The method of claim 26 wherein said access authorization

20 indicatoris specified in a constant declaration area of said software program.

34. The method of claim 26 wherein said access authorization

indicator comprises a property of a property list area of said software program.

Page 1094 of 1415

Page 1095 of 1415

10

15

20

Page 1095 of 1415

WO 99/05600 PCT/US98/15340

43

35. The method of claim 23 wherein said determining the validity of

said access authorization indicator comprises determining whether said access

authorization indicator is valid based on an identifier associated with said

access authorization indicator.

36.|The method ofclaim 35 further comprising accepting said

identifier from a user.

37. The methodof claim 36 further comprising storing said identifier

in said software resource.

38. The method of claim 35 wherein said identifier is embedded in

said software program.

39. The method of claim 35 wherein said identifier comprises a

digital signature of said access authorization indicator.

40. The method of claim 38 wherein said identifier is specified in a

constant declaration area of said software program.

41. The method of claim 38 wherein said identifier comprises a

property of a property list area of said software program.

42. The method of claim 35 wherein a digital signature

authentication means is used in determining whether said access

authorization indicator is valid based upon said identifier.

Page 1096 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1096 of 1415

43. The method of claim 24 further comprising determining

whether said terms of said license are met.

44. The method of claim 35 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises terms of a license for use

of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

45. A program storage device readable by a machine, tangibly

embodying a program of instructions executable by the machine to perform a

method for limiting use of a software resource, said method comprising:

receiving a request from a software program to use said resource;

obtaining an access authorization indicator associated with said

software program;

determining whether said access authorization indicator is valid;

allowing said software program to use said software resource only if

said access authorization indicator is determined to be valid.

46. The program storage device of claim 45 wherein said access

authorization indicator comprises terms of a license for use of said software

resource.

47. The program storage device of claim 46 wherein said license

comprises a site license.

Page 1097 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

Page 1097 of 1415

45

48. The program storage device of claim 45 wherein said access

authorization indicator is embeddedin said software program.

49. The program storage device of claim 45 wherein said software

resource comprises an API.

50. The program storage device of claim 45 wherein said software

resource comprises a runtimelibrary.

51. The program storage device of claim 45 wherein said software

resource comprises a dynamic link library.

52. The program storage device of claim 45 wherein said software

resource comprises an applet.

53. The program storage device of claim 45 wherein said software

resource comprises a bytecode package.

54. The program storage device of claim 45 wherein said software

resource comprises an OLE enabled application program.

55. The method of claim 48 wherein said access authorization

indicator is specified in a constant declaration area of said software program.

Page 1098 of 1415

10

15

20

Page 1098 of 1415

WO 99/05600 PCT/US98/15340

46

56. The program storage device of claim 48 wherein said access

authorization indicator comprises a property of a property list area of said

software program.

57.|The program storage device of claim 45 wherein said

determining the validity of said access authorization indicator comprises

determining whether said access authorization indicator is valid based on an

identifier associated with said access authorization indicator.

58. The program storage device of claim 57 wherein said method

further comprises accepting said identifier from a user.

59. The program storage device of claim 58 wherein said method

further comprises storing said identifier in said software resource.

60. The program storage device of claim 57 wherein said identifier is

embedded in said software program.

61. The program storage device of claim 57 wherein said identifier

comprises a digital signature of said access authorization indicator.

62. The program storage device of claim 60 wherein said identifier is

specified in a constant declaration area of said software program.

63. The program storage device of claim 60 wherein said identifier

comprises a property of a property list area of said software program.

Page 1099 of 1415

10

15

20

25

Page 1099 of 1415

WO 99/05600 PCT/US98/15340
47

64. The program storage device of claim 57 wherein a digital

signature authentication means is used in determining whether said access

authorization indicator is valid based upon said identifier.

65. The program storage deviceof claim 46 in which said method

further comprises determining whether said terms of said license are met.

66. The program storage device of claim 57 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises terms of a license for-use

of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

67. An article of manufacture comprising:

a computer readable medium having computer readable program code

embodied therein for accessing a resource library, said computer readable

program codein said article of manufacture comprising:

computer readable program code embodying an access authorization

indicator for accessing said resourcelibrary.

68. Thearticle of manufacture of claim 67 wherein said access

authorization indicator comprises terms ofa license for use of said software
resource.

Page 1100 of 1415

10

15

20

25

Page 1100 of 1415

WO 99/05600 PCT/US98/15340

48

69. The article of manufacture of claim 67 wherein said computer

readable program code comprises a software program and wherein said access

authorization indicator is embeddedin said software program.

70. The article of manufacture of claim 67 wherein said software

resource comprises an API.

71. Thearticle of manufacture of claim 67 wherein said software

resource comprises a runtimelibrary.

72. Thearticle of manufacture of claim 67 wherein said software

resource comprises a dynamic link library.

73. The article of manufacture of claim 67 wherein said software

resource comprises an applet.

74. The article of manufacture of claim 67 wherein said software

resource comprises a bytecode package.

75. The article of manufacture of claim 67 wherein said software

resource comprises an OLE enabled application program.

76. The article of manufacture of claim 69 wherein said access

authorization indicator is specified in a constant declaration area of said

software program.

Page 1101 of 1415

10

15

20

Page 1101 of 1415

WO 99/05600 PCT/US98/15340

49

77. The article of manufacture of claim 69 wherein said access

authorization indicator comprises a property of a property list of said software

program.

78. The article of manufacture of claim 67 further comprising

computer readable program code embodying an identifier associated with said

access authorization indicator.

79. The article of manufacture of claim 78 wherein said identifier is

embeddedin said software program.

80. The article of manufacture of claim 78 wherein said identifier

comprises a digital signature of said access authorization indicator.

81. The article of manufacture of claim 78 wherein said identifier is

specified in a constant declaration area of said software program.

82. The article of manufacture of claim 78 wherein said identifier

comprises a property of a property list of said software program.

83. The article of manufacture of claim 78 wherein:

said software program comprises said access authorization indicator and

said identifier;

said access authorization indicator comprises termsof a license for use

of said software resource,

said identifier comprises a digital signature of said access authorization

indicator.

Page 1102 of 1415

WO 99/05600 PCT/US98/15340

1/12

T

Application Program

120

FIG. 1

110

Operating System

Computer Hardware

100

Application Program

=
FIG. 2

Operating System —

Computer Hardware

SUBSTITUTE SHEET (RULE 26)

Page 1102 of 1415

Page 1103 of 1415

WO 99/05600 PCT/US98/15340

2/12

FIG. 3

Application Program 1

Resource Resource

Library 1 Library 2

Operating System

Computer Hardware

Application Program 2

Resource

Library 3

310

320 340

110

100

SUBSTITUTE SHEET (RULE 26)

Page 1103 of 1415

Page 1104 of 1415

WO 99/05600 PCT/US98/15340

3/12

FIG. 4

 Display
divice

Network CD)
intertace

440 Mass storage

Printer

420

 input device

Removable
Media

450 425

430

SUBSTITUTE SHEET (RULE 26)

Page 1104 of 1415

Page 1105 of 1415Page 1105 of 1415

WO 99/05600 PCT/US98/15340

4/2

Application Program

Prog. Lic. Mod.
220

510
50

R.L. Lic. Mod.

Resource Library

Operating System

Computer Hardware

 2s FIG. 5

110

100

Prog. Lic. Mod.

Lic. Text Str.

FIG. 6

License
Verification

R.L. Lic. Mod.

SUBSTITUTE SHEET (RULE 26)

Page 1106 of 1415

WO 99/05600 PCT/US98/15340

5/12

FIG. 7 Z c”™eq.
program
ident. in

text?

 Access denied

Program sends
request message
to resourcelibrary 755

700

Other

termsin
lic. text?

R.L. obtains

program's licence
text and license key

Access granted

705

765

R.L. verifies license

710 Access denied

 Verification
9

uccessful? No
Access granted

Yes Access denied

730

Check License
Terms

735

750

Limited No
validity Period
period? expired? Access Denied

No

740 Y {
es 745 Yes

SUBSTITUTE SHEET (RULE 28)

Page 1106 of 1415

Page 1107 of 1415

WO 99/05600 PCT/US98/15340

6/12

FIG. 8

Application Program820

Application Kit

Display Postscript
System

Foundation

804 Kit

Device-Dependent
Windowing
Extensions

806

Operating System

SUBSTITUTE SHEET (RULE 26)

Page 1107 of 1415

Page 1108 of 1415

WO 99/05600 PCT/US98/15340

7/12

FIG. 9

Application Program

 Constant Declarations

LicenseKeyString

900

901

920
923

921

922

Operating System

910

SUBSTITUTE SHEET (RULE 26)

Page 1108 of 1415

Page 1109 of 1415Page 1109 of 1415

WO 99/05600 PCT/US98/15340

8/12

 Start UNLOCK
function

1002

FIG. 10

Read LicenseKey-
String and License-
AgreementString
from API 1004

Site
License?

Read LicenseKey-
String and License-
AgreementString
from calling entity

Entity
Licensed?

Retum Success/
Grant Access

1012 1014

Retum Fail/

Deny Access

SUBSTITUTE SHEET (RULE 26)

Page 1110 of 1415

WO 99/05600

Start CHECK
LICENSE function

Assemble Public Key,
LicenseKeyString
and License-

1104 AgreementString
as argument

Call CHECK
function

1108

CHECK
function

pass?

No

1110
Yes.

Check licence terms

1112

 Date
limited?

1116

Page 1110 of 1415

PCT/US98/15340

9/12

1102

_-(LicenseAgreementString .
mt

FIG. 11902

Vendor Public Key

1106

1124

Returm FAIL Return PASS

1126

SUBSTITUTE SHEET (RULE 26)

Page 1111 of 1415

WO 99/05600 PCT/US98/15340

10/12

 Start CHECK
function

1202

FIG. 12

Receive

LicenseKeyString,
LicenseAgmtString,

4203 and vendor pub.key

 Verify that
LicenseKeyString
comprisesdigital
signature of

1204 LicenseAgmtString

Retum FAIL

Return PASS

1210 1212

SUBSTITUTE SHEET (RULE 26)

Page 1111 of 1415

Page 1112 of 1415

WO 99/05600 PCT/US98/15340

11/12

FIG. 13

Application Program

820 NSLicenseA greement TT
NSLicenseKey

Application Kit
1308

Foundation

NSCheckDisplay Postscript
System License

804

Device-Dependent
Windowing
Extensions

806

Operating System

_ SUBSTITUTE SHEET (RULE 26)

Page 1112 of 1415

Page 1113 of 1415Page 1113 of 1415

WO 99/05600 PCT/US98/15340

12/12

FIG. 14
1430

HTML Browser

1434

HTML Page

CheckLicense

Vend. Pub. Key

Java Virtual Machine

1404

1424
Operating System

1422

Client Computer

1420

SUBSTITUTE SHEET (RULE 26)

Page 1114 of 1415

‘

oe

5tea he
es4 :t.oakss2*:-~

a.
ed

©dats

Page 1114 of 1415

Page 1115 of 1415

 PCT WORLD INTELLECTUAL PROPERTY ORGANIZATIONIntemational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) international Publication Number: WO 99/05600

GO6F 1/00, 9/46 (43) International Publication Date: 4 February 1999 (04.02.99)

(21) International Application Number: PCT/US98/15340|(81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) International Filing Date: 24 July 1998 (24.07.98) SE).

(30) Priority Data: Published
08/901 ,776 28 July 1997 (28.07.97) US With international search report.

Before the expiration of the time limit for amending the claims

(71) Applicant: APPLE COMPUTER, INC. [US/US]; Law Dept. and to be republished in the event ofthe receipt ofamendments.
M/S: 38-PAT,1 Infinite Loop, Cupertino, CA 95014 (US).

(88) Date of publication of the international search report:
(72) Inventors: GARST, Blaine; 3307 Bay Court, Belmont, CA 14 May 1999 (14.05.99)

94002. (US). SERLET, Bertrand; 218 Colorado Avenue,
Palo Alto, CA 94301 (US). :

(74) Agents: HECKER,Gary, A. et al.; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
(US).

(54) Title) METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

(57) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API),a toolkit, a framework, a runtime library, a dynamic link library (DLL), an applet (e.g. a Java or ActiveX applet),
or any other reusable resource. The present invention allows the resource library to be selectively used only by authorized end user software
programs. The presentinvention can be used to enforce a “per—program"licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text string and a corresponding license
key are embedded in a program that has been licensed to use a resource library. The license text string and the license key are supplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text string includes information about the terms of the license under which the end user program is all wed to use
the resource library. The license key is used to authenticate the license text string. The resource library in cum is provided with means for
reading the license text string and the license key, and for determining, using the license key, whether the license text string is authentic
and whether the license text string has been altered. Resource library functions are made available only to a program having an authentic
and unaltered license text string.

Page 1115 of 1415

Page 1116 of 1415

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Lesotho
Lithuania

Austria Luxembourg
Australia Latvia

Bosnia and Herzegovina i Republic of Mokiova
Barbados
Belgium it The former Yugoslav
Burkina Faso Republic of Macedonia
Bulgaria Mali
Beain
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
Cdce d'Ivoire
Cameroon

qAgcag8eRe
S

S&a5
gas

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
cG
CH
a
CM
CN
cu
cz
DE
DK
EE

BREESERRRSISERE SHORBISZ7288%
Page 1116 of 1415

Page 1117 of 1415

INTE..ATIONAL SEARCH REPORT

Inte onal Application No

PCT/US 98/15340

CLASSIFICATION OF SUBJECT MATTER
TPC 6 G06F1/00 G06F9/46

 According to Intemational Patent Classification (IPC) or to both nationalclassiication and IPC
B. FIELDS SEARCHED
Minimum documentation searened (classification system followed byclassification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentationto the extent that such documentsare included in the fields searched

Electronic data base consulted during (he international search (name of data base and, where practical, search terms used)

 C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *|Citation of document, with indication, where appropriate, of the relevant passages Retevant to ctaim No.

EP 0 667 572 A (IBM) 16 August 1995
see abstract; figure 4
see page 4, line 53 - page 5, line 27
see claims 1-9

EP 0 570 123 A (FISCHER ADDISON M)
18 November 1993

see abstract; figure 3D
see claims 1-57

WO 97 14087 A (ERICKSON JOHN S)
17 April 1997
see abstract; figures 1,4,10,12
see page 7, paragraph 2 - page 9,
paragraph 1

EP 0 778 512 A (SUN MICROSYSTEMS INC)
11 June 1997

[| Further documents are listed in the continuation of box C. x}Patent tamily members are listed in annex.

° Special categones of cited documents: . 7“T” later document publishedafter the intemational filing date

orpriority date and not in contiict with the application but
cited to understand the principle or theory underlying theinvention

“A" document defining the general state of the art which is not
considered to bs of particular relevance

“E" eartier document but published on or after the intemational °X* document of particular relevance: the claimed inventionfitting date cannot be considered novel or cannot be considered to
“L° document which may throw doubts on prionty claim(s) or involve an inventive step whan the document is laken alone

which is cited to establish the publication date of another “Y* document of particular retovance; tha claimed invention
citation or other special reason (as. spectied) cannot be considered to involve an inventive step when the

"QO" document referring to an orat disclosure, use, exhibition or document is combined with one or more other such docu-
other means mants, such combination baing obvious to a personskilled

“P™ document published prior to tha intemational filing date but in the art.
later than the priority date claimed -&* document memberof the same patent tamily

Date of the actuai compilation of the intamationa! search Cate of mailing of the international search report

12 March 1999

Name and mailing address of the ISA
European Patent Office. P.B. 5818 Patentlaan 2
NL - 2260 HV Rijswijk

Tel. (31-70) 340-2040,Tx. 31 651 epo ni.
Fax: (+31-70) 340-3016

19/03/1999

Authorized officer

Powell, D

Form PCTASAZ10 (second sheet) (July 1992)

Page 1117 of 1415

Page 1118 of 1415

INTERNAT NAL SEARCH REPORT

.atermation on patent family members

Inte: onal Application No

PCT/US 98/15340

Publication
date

7230380 29-08-1995
5673315 30-09-1997

5412717 02-05-1995
3820993 18-11-1993
2095087 A 16-11-1993
6103058 15-04-1994
5311591 10-05-1994

5765152 09-06-1998
7662496 30-04-1997

5708709 13-01-1998
9288575 04-11-1997

Form PCTASA/210 (patent tamay annex) (July 1992)

Page 1118 of 1415

Page 1119 of 1415

EP0930793A1

Europaisches Patentamt

European PatentOffice

Office européen des br v ts
(19) 9d
(12)

(43) Date of publication:
21.07.1899 Bulletin 1999/29

(21) Application number: 98310312.8

(22) Date offiling: 16.12.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FIFR GB GRIEITLILU
MC NL PT SE

Designated Extension States:
AL LT LV MK ROSI

(30) Priority: 22.12.1997 US 995606

(71) Applicant: TEXAS INSTRUMENTSINC.
Dallas, Texas 75243 (US)

(72) Inventors:
* MeMahon, Michael (NMI)

Plano, Texas 75074 (US)

(54)

(57) Awireless data platform (10) comprises a plu-
rality of processors (12, 16). Channels of communica-
tion are set up between processors such that they may
communicate information as tasks are performed. A dy-
namic cross compiler (80) executed on one processor
compiles codeinto native processing code for another

|

=

oo a pend

aeier _ = a =

ACAIA
(11) EP 0 930 793 A1

EUROPEAN PATENT APPLICATION

(51) IntcLé: HO4Q 7/32, HO4B 1/38,
GO6F 9/38

¢ Lineberry, Marion C.
Dallas, Texas 75218 (US)

¢ Woolsey, MatthewsA.
Plano, Texas 75023 (US)

¢ Chauvel, Gerard (NMI)
06600 Antibes (FR)

(74) Representative: Potter, Julian Market al
D. Young & Co.,
21 New Fetter Lane

London EC4A 1DA (GB)

Mobile equipment with a plurality of processors

processor. A dynamic crosslinker (82) links the com-
piled code for other processor. Native code mayalso be
downloadedto the platform through use of a JAVA Bean
(90) (or other language type) which encapsulates the
native code. The JAVA Bean can be encrypted and dig-
itally signed for security purposes.

Printed by Jouve, 75001 PARIS (FA)

Page 1119 of 1415

Page 1120 of 1415

10

18

20

25

30

35

40

4s

50

EP 0 930 793 Al

Description

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

{0001} This invention relates in general to mobile electronic
wareplatform for mobile electronic devices.

DESCRIPTION OF THE RELATED ART

[0002] Handheld portable devices are gaining popularity as the power and, hence, functionality of the devices in-
creases. Personal Digital Assistants (PDAs) are currently in widespread use and Smartphones, which combine some
of the capabilities of a cellular phone and a PDA,are expected to havea significant impact on communicationsin the
near future.

[0003] Some devices currently incorporate one or more DSPs (digital signal processor) or other coprocessors for
providing certain discrete features, such as voice recognition, and a general purpose processorfor other data process-
ing functions. The code for the DSP and the codefor the general purpose processoris generally stored in ROMs or
other nonvolatile memories, which are not easily modified. Thus, as improvements and new features becomeavailable,
it is often not possible to upgrade the capabilities of the device. !n particular, it is not possible to maximize the use of
the DSPsor other coprocessor which may be presentin the device.
[0004] Therefore, a need exists for a data processing architecture which can be upgraded and optimizes use of
multiple processors and coprocessors.

BRIEF SUMMARYOF THE INVENTION

[0005] The teachings of the present application disclose a mobile electronic device that comprises a coprocessor
for executing native code, a host processor system operable to execute native code corresponding to the host processor
system and processor independent code. The host processor system is operable to dynamically change the tasks
performed by the digital signal coprocessor. Communication circuitry provides for communication between the host
processor system and the coprocessor.
[0006] This mobile electronic device significant advantages over the prior art. Because the host processor system
can dynamically allocate the tasks being performed by the coprocessor, which maybe a digital-signal processor, to
fully use the coprocessor. The host processor system maydirect a routine to one of a plurality of coprocessors, de-
pending upona variety of factors, such the present capabilities of each processor.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0007] For a more complete understanding of the present invention, and the advantagesthereof, reference is now
madeto the following descriptions taken in conjunction with the accompanying drawings, in which:

Figure1 illustrates a block diagram of a platform architecture particularly suited for general wireless data process-
ing;

Figure 2 illustrates a functional block diagram of the platform of Figure 1;

Figure3illustrates a functional block diagram of dynamic cross compiling and dynamic crosslinking functions;

Figure4illustrate an embodiment of native code for execution on a processor being encapsulated in a JAVA Bean
wrapperfor downloading to a device;

Figure§ illustrates the operation of transferring the encapsulated native code to a processor on a device froma
JAVA Bean located on a remote s rver, and

Figur 6 illustrates a flow diagram describing security featur s associated with the operation of Figure 5.

Page 1120 of 1415

Page 1121 of 1415

1S

20

25

30

35

40

45

$0

55

EP 0 930 793 Al

DETAILED DESCRIPTION OF THE INVENTION

[0008] Figure1 illustrates a preterred embodimentof a generalwireless data platform architecture, which could be
used for example, in the implementation of a Smartphone or PDA. The wireless data ptatform 10 includes a general
purpose (Host) processor 12 coupled to bus structure 14, including data bus 14a, address bus 14b and control bus
14c. One or more DSPs(or other coprocessors) 16, including the core processor16a and the peripheral interface 16b,
are coupled to bus 14 and to memory andtraffic controller 18, which includes a DSP cache memory 18a, a CPU cache
18b, anda MMU (memory managementunit) 18c. Hardware acceleratorcircuit 20 (lor accelerating a portable language
such as JAVA) and a video and LCD controller 22 are also coupled to the memory andtraffic controller 18. The output
of the video and LCD controlier is coupled to an LCD or video display 24.
[0009] Memory & traffic controller 18 is coupled to bus 14 and to the main memory 26, shown as an SDRAM(syn-
chronous dynamic random access memory). Bus 14 is also connectedto I/O controller 28, interface 30, and RAM
ROM 32. Aplurality of devices could be coupledto the wireless data platform 10, such as smartcard 34, keyboard 36,
mouse 38, or one or more serial ports 40, such as a USB (universalserial bus) port or an RS232 serial port. interlace
30 can coupie to a flash memory card 42 and/or a DRAM card 44. The peripheralinterlace 16b can coupte the. DSP
16 toa DAC (digital to analog convener) 46, a network interface 48 or to other devices.
[0010] Thewireless data platform 10 of Figure 1 utilizes both a general purpose processor 12 and a DSP 16. Unlike
current devices in which the DSP 16 is dedicated to specific fixed functions, the DSP 16 of Figure 1 can be used for
any numberof functions. This allows the user to derive the full benefit of the DSP 16.
[0011] One main area in which the DSP 16 can be used is in connection with the man-machine interface (MMI).
Importantly, functions like speech recognition, image and video compression and decompression, data encryption,
text-to-speech conversion, and so on, can be performed much moreefficiently using the DSP 16. The proposed ar-
chitecture allows new functions and enhancements to be easily added to wireless data platform 10.

[0012] !t should be noted thatthe wireless data platform 10 is a general block diagram and many modifications could
be made. For example, Figure 1 illustrates separate DSP and processor caches 18a and 18b. As would be known to
oneskilled in the art, a unified cache could also be used. Further, the hardware acceleration circuit 20 is an optional
item. Such devices speedthe execution of languages such as JAVA; however, the circuil is not necessary for operation
of the device. Further, although the illustrated embodiment showsa single DSP, multiple DSPs (or other coprocessors)
could be coupled to the buses.
[0013] Figure2illustrates a functional software architecture for the wireless data platform 10. This block diagram
presumesthe useof JAVA:it should be noted that languagesother than JAVA could be used as well. Functionally, the
software is divided into two groups, Host processor software and DSP software. The Host software includes one or
more applets 41. The DSP APIclass 43 is a JAVA API package for JAVA applications or applets to access the func-
tionality of the DSP API 50 and Host DSPInterface Layer 52. A JAVAvirtual machine (VM) 45interprets the applets.
The JAVA native interface 47 is the method which the JAVA VM executes host processoror platfonn specific code.

Native tasks 49 are non-JAVA programs which can be executed by the Host processor 12 without using the JAVA
native interface. The DSP API 50, described in greater detail hereinbelow,is an API (application program interface)
used the Host 12 to call to make use of the capabilities of the DSP 16. The Host-DSPInterface Layer 52 provides an
API for the Host 12 and DSP 16 to communicate with each other, with other tasks, or other hardware using channels
via the Host-DSP Communication Protocol. The DSP device driver 54 is the Host based device driver for the Host

RTOS56 (real time operating system) to communicate with the DSP 16. The Host ATOS56is an operating system,
such as NUCLEUSPLUSby Accelerated Technology Incorporated.
[0014] Altematively a non-real time operating system, such as WINDOWSCEby Microsoft Corporation, could b
used. The DSPLibrary 58 contains programs stored tor execution on the DSP 16.
{0015] On the DSPside,one or more tasks 60 can be stored in memory for execution by the DSP16. As described
below,the tasks can be moved in and outof the memory as desired, such that the functionality of the DSP is dynamic,
rather than static. The Host-DSP Interface layer 62 on the DSP side performs the samefunction as the Host-DSP
Interface layer 52 on the Host side, namely it allows the Host 12 and DSP 16 to communicate. The DSP RTOS64 is
the operating system for the DSP processor. The Host Device driver 66 is a DSP based device driver for the DSP
RTOS64 to communicate with the Host 12. The Host-DSP Interface 70 couples the DSP 16 and Host 12.

[0016} In operation, the software architecture shown in Figure 2 uses the DSP 16 asa variable function device, rather
than a fixed function device asin the prior art.

[0017] Accordingly, the DSP functions can be downloaded to the mobile device incorporating the architectur of
Figur 2 to allow the DSP 16 to perform varioussignal processing functions for the Host 12.
[0018] Th DSP-API provides adevice indep ndentinterlac trom the Host 12toth DSP 16. Th functions provide
the Host 12 with th ability to load and schedule tasks on th DSP 16 andto control and communicat with those tasks.
Th APIfunctionsincludecalls to: determine th DSP's available resources, creat and control Host 12 and DSPtasks,
create and contro! data channels between Host 12 and DSP tasks, and communicat_ with tasks. These functions are

Page 1121 of 1415

Page 1122 of 1415

20

26

30

35

40

so

EP 0 930 793 A1

described below. Each function returns a BOOLean result, which will be SUCCESS for a successful operation, or
FAILURE. If the result is FAILURE, the errcode should be checked to determine which error occurred

DSP_G t_MIPS .

BOOL DSP_Get_MIPS(T_DevicelD DeviD, U32 ‘mips, U16 “errcode):
[0019] This function returns the current MIPS availabte on the DSP. This consists of the MIPS capability of the DSP
16 minus a base MIPS value (the MIPS value with no additional dynamic tasks, i.e. the kemel plus API code plus
Givers), Minus the sum of the MIPS ratings for ail ioaded dynamic tasks. The errcode parameterwill contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_Get_Memory_Available

BOOL DSP_Get_Memory_Available(T_DevicelD DeviD, T_Size *progmem, T_Size *datamem, U16 “errcode);
[0020] This function will query the DSP 16 specified by DeviD for the amountsof available memory for both program
memory and data memory. The resultant values are returned in the progmem and datamem parameters. The sizes
are specified in T_DSP_Words. The errcode parameterwiil contain the following possible results:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DOSP_DEVID_NOT_RESPONDING

DSP_Alloc_Mem

BOOL DSP_Alioc_Mem(T_DevicelD DeviID, U16 mempage, T_Size size, T_DSP_Word *‘memptr, U16 “err-
code);

[0021] This function will allocate a block of memory on a DSP 16. The Dev/D specifies which device on which to
allocate the memory. The mempageis 0 for program space, and 1 for data space. The size parameterspecifies the
memory block size in T_DSP_Words. The returned memptr will be a pointer to the memory block on the DSP 16, or
NULLon failure. The escode parameterwill contain the following possible results:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_NOT_ENOUGH_MEMORY
DSP_Free_Mem

BOOL DSP_Free_Mem(T_DevicelD DeviID, U16 mempage, T_DSP_Word *memptr, U16 ‘errcode);
[0022] This function will free a biock of memory on a DSPthat wasallocated with the DSP_Alloc_Mem function. The
DeviD specifies on which device the memory resides. The mempageis 0 for program space, and 1 for data space.
The memptr parameteris the pointer to the memory block. The errcode parameterwill contain the following possibleresults:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_MEMBLOCK_NOT_FOUND

DSP_Get_Code_Info

BOOL DSP_Get_Code_Info(char “Name, T_CodeHadr *codehdr, U16 *errcode);
[0023} This tunction will access the DSP Library table and return the code headerfor the DSP function code specified
by the Name parameter. On return, the location pointed to by the codehar parameterwill contain the code header
information. The errcode parameterwill contain the following possible results:

DSP_SUCCESS

DSP_NAMED_FUNC_NOT_FOUND
DSP_Link_Code

BOOL DSP_Link_Code(T_DevicelD DeviD, T_CodeHdr “codehdr, T_TaskCreate "tes, U16 *errcode);
[0024] This function will link DSP function code so that it will run at a Specified address on the DSP specified by
DeviD. The codehdr param ter points to th code headerforth function. Th dynamic crosslink r will link th code
bas don information inthecod h ader,andinth cod (COFFTil). The dynamic crosslink rwillallocat th memory
as n eded, and link and load th code to the DSP 16. Th tes param t ris a point rto th task creation structure
neededinthe DSP_Cr ate_Task function. DSP_Link_Codewill fill in th code ntry points, priority, and quantum fi. Ids
of the structur in preparation for creating a task. Th errcode paramet 1 will contain the following possible results:

DSP_SUCCESS

Page 1122 of 1415

Page 1123 of 1415

10

15

20

25

30

3S

40

45

50

55

EP 0 930 793 Ai

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NOT_ENOUGH_PROG_MEMORY
DSP_NOT_ENOUGH_DATA_MEMORY
DSP_COULD_NOT_LOAD_CODE

DSP_Put_BLOB
BOOL DSP_Put_BLOB(T_DevicelD DevID, T_HostPir srcaddr, T.DSP_Ptr desiaddr, U16 mempage, T_Size

size, U16 “errcode);

[0025} This function will copy a specified Binary Large Object (BLOB) to the DSP 16. The DeviD specifies on which
DSP 16 to copythe object. The srcaddr parameteris a pointer to the object in Host memory. The destaddris a pointer
to the location to which to copy the object on the DSP 16. The mempageis 0 for program space, and 1 for data space.
The size parameter specifies the size of the object in T_.DSP_Words. The errcode parameterwill contain the following
possible results :

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Create_Task

BOOL DSP_Create_Task(T_DevicelD DevID, T_TaskCreate “Ics, T_TaskID “TaskID, U16 ‘errcode);
{0026] OSP_Create_Task requests the DSP 16 to create a task given the task parameters and the code locations
in the DSP's program space. The Task Creation Structure is show in Table 1:

Table 1.

Task Creation Structure.

T_DSP_Name{|Name User defined namefor the task.
U32 MIPS MIPS used by the task.

T_ChaniID Chanin The channelID usedfor task input.

T_GhaniD ChanOut The channel ID used for task output
T_StrmiD Stmin The stream ID used for task input

T_StmlD StrmOut The stream ID used for task output.

U16 Priority The task’s priority.
U32 Quantum The task's timeslice in system ticks.

T_Size StackReq The amountof stack required. a

T_DSP_Ptr MsgHandler|Pointer to code to handle messagesto the task.
T_HOST_Ptr CallBack Pointer to Host code to handle messages trom the task.

T_DSP_Ptr Create Pointer to code to execute whentask is created.
T_DSP_Ptr Start Pointer to code to execute whentaskis started.

T_DSP_Ptr Suspend Pointer to code to execute whentask is suspended.

T_DSP_Ptr Resume Pointer to code to execute whentask is resumed.

T_DSP_Ptr Stop Pointer to code to execute whentask is stopped.

[0027] Oncethetaskis created, the Create entry pointwill be called, giving the task the opportunity to do any nec-
essary preliminary initialization. The Create, Suspend, Resume, and Stop entry points can be NULL. The resultant
TaskiD contains both the device ID (DeviD), and the DSP's task ID.If the Task/Dis NULL,the create failed. The encode
parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_PRIORITY
DSP_CHANNEL_NOT_FOUND
DSP_ALLOCATION_ERROR

DSP_Start_Te k
BOOL DSP_Start_Task(T_TaskiD TaskID, U16 ‘errcode);

[0028] This function will start a OSP task sp cified by TaskiD. Execution willb gin atth task's Start ntry point. The

Page 1123 of 1415

Page 1124 of 1415

10

5

20

25

30

35

40

45

$0

55

EP 0 930 793 A1

errcode parameterwill contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Suspend_Task
BOOL DSP_Suspend_Task/T_TaskiD TaskID, U16 *errcode);

[0029] This function will suspend a DSP task specified by Task/D. Prior to being suspended, the task’s Suspend
entry point will be called to give the task a chance to perform any necessary housekeeping. The errcode parameter
will contain the following possible resuits:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Resume_Task

BOOL DSP_Resume_Task(T_TaskiD TaskID, U16 “errcode);
{0030] This function will resume a DSPtask that was suspended by DSP_Suspend_tTask. Prior to being resumed,
the task's Resumeentry point will be called to give the task a chance to perform any necessary housekeeping. The
errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
OSP_TASK_NOT_SUSPENDED

DSP_Delete_Task

BOOL DSP_Delete_Task(T_TaskID TaskiD, U16 *errcode);
[0031] This function will delete a DSP task specified by Task/D. Prior to the deletion, the task's Stop entry point will
be called to give the task a chance to perform any necessary cleanup. This should include freeing any memory that
wasallocated by the task, and retuming any resources the task acquired. The errcode parameterwill contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Change_Task_Priority
BOOL DSP_Change_Task_Prorty(T_TaskID TaskID, U16 newpnority, U16 ‘okipriority, U16 “errcode);

[0032] This function will changethe priority of a DSP task specified by TaskiD. The priority will be changed to newp-
riority. The possible values of newpriority are RTOS dependent. Upon retum, the o/dpriority parameterwill be s t to
the previous priority of the task. The errcode parameterwill contain the following possible resuits:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_INVALID_PRIORITY

DSP_Get_Task_Status

BOOL DSP_Get_Task_Status(T_ TaskiD TaskID, U16 “status, U16 ‘priority, T_ChaniD “Input, T_ChanlD ‘Output,
U16 ‘errcode):
[0033] This function returns the status for a DSP task specified by TaskiD. The siatus will be one of the following
values:

DSP_TASK_RUNNING
DSP_TASK_SUSPENDED
OSP_TASK_WAITFOR_SEM
DSP_TASK_WAITFOR_QUEUE
DSP_TASK_WAITFOR_MSG :

[0034] The priority parameter will contain th task's priority, and the Input and Output paramet rs will contain the
task’s input and output chann | IDs, respectively. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND

Page 1124 of 1415

Page 1125 of 1415

20

25

30

35

40

45

$0

EP 0 930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Get_ID_From_Name
BOOL OSP_Get_ID_From_Name(T_DevicelD DeviID, T.DSP_Name Name, T_DSP_ID “ID, U16 “errcode):

[0035] This function returns the ID for a named object on the DSP 16. The named object may be a channel, a task,
a memory block, or any other supported named DSPobject. The errcode parameterwill contain the following possible
results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NAME_NOT_FOUND

DSP_Dbg_Read_Mem
BOOL DSP_Dbg_Read_Mem(DEVICE_ID DeviD, U8 mempage, DSP_PTRaddr, U32 count, DSP_WORD “buf,

U16 *errcode):
[0036] This function requests a block of memory. The mempage specifies program memory (0) or data memory (1).
The adar parameterspecifies the memory starting address, and the Count indicates how many T_DSP_Wordsto read.
The bufparameteris a pointer to a caller provided buffer to which the memory should be copied. The errcode parameter
will contain the foflowing possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DOSP_INVALID_MEMPAGE

DSP_Obg_Write_Mem
BOOL DSP_Dbg_Write_Mem(T_DevicelD DeviD, U16 mempage, T DSP_Ptr addr, T_Count count,

T_DSP_Word *buf, U16 “errcode);

[0037] This function writes a block of memory. The mempagespecifies program memory (0) or data memory (1).

The adorparameter specifies the memory starting address, and the countindicates how many T_DSP_Wordsto write.
The buf parameter is a pointer the buffer containing the memory to write. The errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Dbg_Read_Reg
BOOL DSP_Dbg_Read_Reg(T_DevicelD DevID, U16 RegiD, T_DSP_Word “regvalue, U16 *errcode);

[0038] This function reads a DSP register and retums the value in regvaiue. The Reg/D parameter specifies which
register to return. if the Reg/D is -1, then all of the register values are retumed. The regvalue parameter, which is a
pointer to a caller provided buffer, should point to sufficient storage to hold ail of the values. The register IDs are DSP
specific and will depend on a particular implementation. The errcode parameter will contain the following possible
results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGISTER

OSP_Dbg_Write_Reg
BOOL DSP_Obg_Write_Reg(T_DevicelD DevID, U16 RegiD, T_DSP_Word regvaiue, U16 “errcode);

[0039] This tunction writes a DSP register. The Reg/D parameterspecifies which register to modify. regvalue contains
the new value to write. The register 1Ds are DSP specific and wiil depend on a particular implementation. The errcode
parameterwill contain the following possible results:

OSP_SUCCESS
OSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGISTER

DSP_Dbg_Set_Break
BOOL DSP_Dbg_Set_Break(T_DevicelD DevID, DSP_Ptraddr, U16 *errcode); This iunction sets a br ak point

atthe giv ncod addr ss (addr). Th errcode parameterwill contain the following possible resutts:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND

Page 1125 of 1415

Page 1126 of 1415

10

20

2s

30

40

EP 0 930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_Dbg_Clr_Break

BOOL DSP_Dbg_Cir_Break(T_DevicelD DevID, T_.DSP_Ptr addr, U16 *errcode):
[0040] This function clears a break point that was previously set by DSP_Dbg_Set_Breakat the given code address
(addr). The errcode parameterwill contain the following possible results:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BP_DID_NOT_EXIST

[0041] The DSPDevice Driver 54 handles communications from the Host 12 to the DSP 16. The driver functions will
take the communication requests as specified in the Host-DSP Communications Protocol and handle the transmission
of the information via the available hardware interlace. The device driver is RTOS dependent and communications
hardware dependent. .
[0042] The DSP Library 58 contains the blocks of code that can be downioaded to the DSP 16 for execution. Each
block of code will be previously unlinked, or relocatably linked as a library, so that the dynamic crosslinker can resolve
all address reterences. Each code blockwill also include information about the block's requirements for DSP MIPS
(millions of instructions per second), priority, time slice quantum, and memory. The format tor the code block header
is shown in Table 2. The program memory and data memory sizes are approximations to give the Host 12 a quick
check on whether the DSP can support the task's memory requirements.If there appears to be sufficient space, the
dynamic crosslinker can then attemptto link and load the code.It should be noted that the dynamic crosslinker could
still fail, due to page alignment and contiguity requirements. in the preferred embodiment, the codeis in a version 2
COFFfile format.

Table 2.

 Code Block Header.

U16 Processor The target processor type.
T_DSP_Name|Name Task's name.

U32 MIPS Worst case MIPS required bythe task.
T_Size ProgSize Total program memory size needed.
T_Size DataSize Total data memory size needed.
T_Size inFrameSize Size of a frarne in the task's input channel.
T_Size OutFrameSize|Size of a frame in the task's output channel.
T_Size InStrmSize Size of the task’s input stream FIFO.
T_Size OutStrmSize Size of the task's output stream FIFO.
Ui6 Priority Task's priority.
U32 Quantum Task's time slice quantum (numberof system ticks).
T_Size StackReq Stack required.
T_Size CoffSize Total size of the COFFfile.

T_DSP_Ptr MsgHandler Offset to a message handler entry point for the task.
T_DSP_Ptr Create Offset to a create entry point that is called whenthetaskis created.
T_DSP_Ptr Start Offset to the start of the task's code.

T_DSP_Ptr Suspend Offset to a suspend entry pointthat is called prior to the task being suspended.
T_DSP_Ptr Resume Offset to a resume entry pointthat is called prior to the task being resumed.
T_DSP_Ptr Stop Offset to a stop entry pointthat is called prior to the task being deleted.
T_Host_Ptr CoffPtr Pointer to the location of ihe COFFdata in the DSP Library.

[0043] A procedure for converting portable (processor independent) code, such as JAVA code, into linked target
code is shown in Figure 3. The procedure uses two functions, a dynamic cross compiler 80 and a dynamic crosslinker
82. Each function is imp| m nted on the host proc ssor 12, The dynamic crosslinkeris part of the DSP-API in the
preferr d embodiment. The cross compil r may also be parl of th DSP-API.
[0044] Th dynamic cross compil r80 conv rts portable code into unlinked, executable target proc ssorcod . The
dynamic crosslinker 82 converts the unlinked, executable target processor cod into linked, ex cutabl target proc-
essor code. To do so,it must resolve addresses within a block of cod , prior to loading on the DSP 16. The dynamic

Page 1126 of 1415

Page 1127 of 1415

20

25

30

38

40

45

$0

55

EP 0 930 793 Al

crosslinker 82 links the code segments and data segments of the function, allocates the memory on the DSP 16, and
loads the code and constant data to the DSP 16. The functions are referred to as "cross" compiling and "cross* linking,
becausethe functions (compiling and linking) occur on a different processor(i.e., the host processor 12) from the target
processor which execuies the code(i.e., the DSP 16).
{0045] The dynamic cross compiler 80 accepts previously unlinked code loaded on demand by a useror a user agent
(such as a browser). The codeis processedto either (1) identify “tagged” sections of the code or (2) analyze untagged

code segments for suitability of execution on the DSP 16. A tagged section of source code could delineate source
targetable to a DSP by predetermined markers such as “<start DSP code>" and <end DSP code>" embeddedin the
source code.If a tagged section is identified either directly or through analysis, a decision is madeto either cross
compile or not based on the current processing state of the DSP 16.If a decision is made to compile, the section of
code processed by compiling software that outputs unlinked, executable target processor code, using well known
compiling methods. A decision not to compile could be madeif for example, ihe DSP hasinsufficient available process-
ing capacity (generally stated as available MIPS- million of instructions per second) orinsufficient available memory,
dueto other tasks being executed by the DSP 16. The compiled code can be passed to the dynamic crosslinker 82
for immediate use in the DSP 16, or could be saved in the DSP library 58.
[0046] The dynamic crosslinker82 accepts previously unlinked code, whichis either(1) statically stored in connection
with the host processor 12 or (2) dynamically downloaded to the host processor12 over a network connection (including
global networks such as the Intemet) or (3) dynamically generated by the dynamic cross compiler 80. The dynamic
crosslinker B2 links the input code for a memory starting address of the DSP 16 determined at runtime. The memory
starting address can be determined from a memory map or memory tabie stored on and managedbyeither the host
processor 12 or DSP 16. The dynamic cross linker 82 convert referenced memory locations in the code to actual
memory locations in the DSP 16. These memory locations could include, for example, branch addresses in the code
or references to locations of data in the code.

(0047] In the preferred embodiment, the portable code is in a COFF (common objectfile format) which containsall
information aboutthe code, including whetherit is linked or unlinked.If it is unlinked, symbol tables define the address
which must be changedfor linking the code.
[0048] The conversion process described above has several significant advantages over the prior art. First, the
dynamic cross compiler 80 allows run-time decisions to be made about where to execute the downloaded portable
code. For example, in a system with multiple target processors (such as two DSPs16), the dynamic cross compiler
80 could compile the portable code to any one of the target processors based on available resources or capabilities.
The dynamic crosslinker 82 provides for linking code to run on a target processor which does not support relocatable
code. Since the codeis linked at run-time, memory locations in the DSP 16 (or other target processor) do not need to
be reserved, allowing optimum efficiency of use of all computing resources in the device. Because the compiling is
accomplished with knowledge of the architecture of the platform 10, the compiling can take advantage of processor
andplatform specific features, such asintelligent cache architectures in one or both processors 12 and 16.
[0048] Thus, the DSP 16 can have various functions which are changed dynamically to fully use its processing
capabilities. For example, the user may wish to 12 load a user interface including voice recognition. At that time, the
host processor 12 could download software and dynamically cross compile and cross link the voice recognition software
for execution in the DSP 16. Alternatively, previously compiled software in the DSPlibrary 58 could be dynamically
cross linked, based on the current status of the DSP 16, for execution.

{00S0] The Host Device Driver handles communications from the DSP 16 to the Host Processor 12. The driver
functions takes the communication requests as specified in the Host-DSP Communications Protocol and handlestrans-
mission ofthe informationvia the available hardware interface. The device driver is RTOS dependent and communi-
cations hardware dependent.
[0051] The Host-DSP Communications Protocol governs the communications of commands and data betweenthe
Host 12 and the DSP 16. The communications consist of several paths: messages, data channels, and streams. Mes-
sages are used to sendinitialization parameters and commandsto the tasks. Data channels carry large amounts of
data between tasks and between the DSP 16 and Host 12, in the form of data frames. Streams are used to pass
streamed data between tasks and between the DSP 16 and Host 12.

[0052] Each task has an entry point to a message handler, which handies messages. The messagesare user defined
and will includeinitialization parametersfor the task's function, and commandsfor controlling the task. The tasks send
messages to the Host 12 via the callback specified when the task is created. The prototype for the task's message
handler and the prototype for the Host's callback are shown here:

void TaskMsgHandler(T_ReplyRel replyret, T_MsgID MsgiD, T_Count count, T.OSP_Word *buf);
void HostCallBack(T_ReplyRef replyref T_Msg!D MsgID, T_Count count, T_DSP_Word *buf);

[0053] The replyref param terr fers to an implementation dependent referenc value, which is used to route th

Page 1127 of 1415

Page 1128 of 1415

10

18

20

25

30

35

40

45

$0

EP 0 930 793 Al

reply back to the sender. For every Send_Message call, the recipient must call Reply_Message using the replyref
parameter. The actual messages may appearasfollows:

[Sentence[MeghaFog[wot[eral[maa[coon[bal1
[repmessage|meaPurieg[1|rpwrat[rape[coun[ou1

The mukiword data is sent least-significant word first.
[0054} A TaskiDof 0 in the Send_Messagefunctionindicates a system level message. The system level messages
are used to implement the DSP-API functions
[0055] Following are the Message functions:

Send_Message
BOOL Send_Message(T_TaskiID TaskiID, T_MsgiD MsgID, T_Count count, T_DSP_Word ‘msgbuf,

T_DSP_Word ‘replybuf, T_Size replybutsize, T_Count replycount, U16 “errcode);
[0056] This function will send a user defined message to a task specified by TaskiD. The MsgiD defines the message,
and the msgbufcontains the actual message data. The messagesize is count T_DSP_Words. The reply tothe message
will be contained in the replybufparameter, which points to a buffer of size replybufsize, provided bythe caller. It should

be of sufficient size to handle the reply for the particular message. The errcode parameterwill contain the following
possible rasulls:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

Reply_Message
BOOL Reply_Message(T_ReplyRef replyref, T_Count count, T_DSP_Word “buf, U16 “*errcode);

[0057] This function is used to reply to messages. The replyrefparameteris a reference used to route the reply back
to the senderof the original message, and is implementation specific. The reply is containedin the buf parameter and
its size is count T_DSP_Words. The errcode parameterwill contain the following possible resuits:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BAD_REPLY_REF

[COS8}] The concept of channels is used to transmit frame-based data from one processorto another, or betw en
tasks on the same processor. When created, a channelallocates a specified numberandsize of frames to contain the
data.Initially, the channel!will contain a list of empty frames. Tasks that produce data will request empty framesin
which to put the data, then oncefilled, the frame is returned to the channel. Tasks that consume data will requestfull
frames from the channel, and once emptied, the frame is retumed to the channel. This requesting and returning of
frame buffers allows data to move about with a minimum of copying.
[0059] Each task has a specified Input and Output channel. Once a channelis created, it should be designated as
the input to one task, and the output to another task. A channel's ID includes a device ID, so channels can pass data
betweenprocessors. Channel data flow across {he Host-DSPinterface may appearas follows:

ChanPktFiag|Channel iD|Count|Dataf...}|

The following are the channel functions:
Create_Channel

BOOLCreate_Channel(T_DeviceiD DeviD, T_Size framesize, T_Count numframes, T_ChaniD *“ChannellD, U16
*errcode);
[9060} This function creates a data frame-based communication channel. This creates a channel control structure,
which maintains control of a set of frame buffers, whose count and size are specified in the numframes and framesize
parameters, respectively. When created, the channel allocates the data frames, and adds them to its list of empty
frames. ChannellD will return the 1D of the new channel. If the DeviD is not that of the calling processor, a channel
control structure is created on both the calling processor and th DeviD proc ssor, to control data flowing across the
communicationsint rfac . Th errcode param ter will contain th following possibl results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING

10

Page 1128 of 1415

Page 1129 of 1415

20

25

30

35

40

45

50

EP 0 930 793 A1

CHAN_ALLOCATION_ERROR
Delete_Channel

BOOL Delete_Channel(T_Chan!D ChannellD, U16 “errcode),

[0061] This function deletes an existing channel specified by ChannellD. Tne errcode parameter will contain the
following possible results:

CHAN_SUGCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT RESPONDING
CHAN_CHANNEL_NOT_FOUND

Request_Empty_Frame
BOOL Request_Empty_Frame(T_LocalChan!D Chn, T_DSP_Word **bufptr, BOOL WaitFlag, U16 “errcode);

[0062] This function requests an empty frame from the specified local channel ID. f Chnis NULL, then the task's
output channelis used. Upon retum, the bufptr parameter will contain the pointer to the frame buffer. If the WaitFlag
is TRUE, andthere is no frame buffer available, the caller will be suspended until a buffer becomesavailable. If the
WaitFlag is FALSE, the function will retum regardless. The errcode parameterwill contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_UNAVAILABLE

Return_Full_Frame

BOOL Retum_Full_Frame(T_LocaiChaniD Chn, T_DSP_Word *bufptr, U16 “errcode);
[0063] Oncea task hasfilled a frame buffer, it retumsis to the channel using this function. The buffer pointed to by
bufptr is returned to the channel ID specified. If Chn is NULL, then the task’s output channel is used. The errcode
parameterwill contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR

Request_Full_Frame :BOOL Request_Full_Frame(T_LocalChaniD Chn, T_DSP_Word **bufptr, BOOL WaitFlag, U16 rerrcode):
[0064] This function requestsa full frame of data from the specified local channelID. If Chnis NULL,then the task's
input channelis used. Upon retum, the bufptr parameterwill contain the pointer to the frame buffer. If the WaitFiag is
TRUE, ancthere are nofull frame buffers available, the caller will be suspended until a buffer becomesavailab!.It

the WaitFlag is FALSE, the function will retum regardiess. The errcode parameter will contain the following possible
results:

CHAN_SUCCESS a
CHAN_CHANNEL_NOT_FOUND ‘
CHAN_BUFFER_UNAVAILABLE

Return_Empty_Frame
BOOL Return_Empty_Frame(T_LocalChanlD Chn, T_.DSP_Word “bufptr, U16 “errcode);

[0065] Oncea task has used the data from a frame buffer, it should return the buffer to the channel using this function.
The buffer pointed to by bufptr is returned to the channel ID specified. If Chnis NULL,then the task’s input chann|is
used. The errcode parameterwill contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR

Set_Task_Input_Channel
BOOL Set_Task_Input_Channel{T_Task *TaskID, T.ChaniD ChanlD, U16 “errcode);

[0066] This function sets a task's input channelto the specified channel ID. The errcode parameter will contain the
following possible results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING
CHAN_TASK_NOT_FOUND
CHAN_CHANNEL_NOT_FOUND

Set_Task_Output_Channel
BOOL Set_Task_Output_Channel(T_ Task *TaskID, T_Chan!ID ChanlD, U16 “errcode):

[0067] This function s ts atask’s output channelto the specified channel ID. The errcode parameterwill contain the
following possible results:

CHAN_SUCCESS

"W

Page 1129 of 1415

Page 1130 of 1415

10

1S

20

2s

30

35

40

45

$0

55

EP 0 930 793 A1

CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING
CHAN_TASK_NOT_FOUND
CHAN_CHANNEL_NOT_FOUND

{0068} Streams are used for data. which can not be brokeninto frames, but which continuously flow into and outof
a task. A stream will consist of a circular buffer (FIFO) with associated head andtail pointers to track the data as it
flows in and out. Each task can have a desiqnated input and output stream. Stream data flow across the Host-DSP
interface may appearas foliows:

Following are the stream functions:
Create_Stream

BOOL Create_Stream(T_DevicelD DeviD, T_Size FlFOsize, T_StrmID *StreamiD, U16 *errcode);
[0069] This function creates a FiFO-based communication stream. This creates a stream control structure, which
maintains control of a FIFO of size FiFOsize. When created, the stream allocates an empty FIFO,and initializes head
andtail pointers to handle data flow into and out of the stream. Streami/D will return the ID of the new stream.If the

DevIDis not that of the calling processor, a stream control structure is created on both the calling processor and the
DevID processor, to control data flowing across the communications interface. The errcode parameterwill contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_ALLOCATION_ERROR

Delete_Channe!

BOOL Delete_Stream(T_StrmiD StreamI|D, U16 *errcode);
[0070] This function deletes an existing stream specified by Stream/D. Tne errcode parameterwill contain the fol-
lowing possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STAM_DEVID_NOT_RESPONDING
STAM_STREAM_NOT_FOUND

Get_Stream_Count
BOOL Get_Stream_Count(T_LocalStrmID StrmID, T_Count “count, U16 “errcode):

[0071] This function requests the count of T_.DSP_Words currently in the stream FIFO specified by StrmiD. The
count parameterwill contain the number upon return. The errcode parameterwill contain the following possible resuits:

STAM_SUCCESS
STRM_STREAM_NOT_FOUND

Write_Stream

BOOL Write_Stream(T_LocalStrmID Strm, T.DSP_Word *bufptr, T_Count count, T_Count *countwritten, U16
“*errcode);
[0072] This function will write count number of T.DSP_Wordsto the stream specified by the Strm. If Strmis NULL,
the task's output stream is used. The data is pointed to by the bufptr parameter. Upon return, countwritten will contain
the number of T_.DSP_Wordsactuaily written. The errcode parameterwill coniain the following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND
STRM_STREAM_OVERFLOW

Read_Stream

BOOL Read_Stream(T_LocalStrmiD Strm, T_DSP_Word “bufptr, T_Count maxcount, BOOL WaitFlag, T_Count
*countread, U16 “errcode),

[0073] This function reads data from the stream sp cified by Strm. if Strmis NULL, th task's input stream is used.
Th data will be stored in the buffer pointed to by bufptr. Up to maxcount T_.DSP_Wordswillb = ad from the stream.
The countread parameterwill contain the actual countofth dataread.Th errcode parameterwill contain the following
possible r sults:

STRM_SUCCESS

12

Page 1130 of 1415

Page 1131 of 1415

EP 0 930 793 Al

STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND

Set_Task_Input_Str am
§ BOOL Set_Task_Input_Stream(T_Task *“TaskID, T_StrmID StrmiD, U16 “errcode):

[0074] This function sets a task's input stream to the specified stream ID. The errcode parameter will contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND

10 STRM_DEVID_NOT_RESPONDING
STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

Set_Task_Output_Stream
BOOL Set_Task_Output_Stream(T_Task *TaskID, T_StrmiD StrmiD, U16 “errcode);

18 [0075] This function sets a task’s output stream to the specified stream ID. The errcode parameterwill contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING

20 STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

[0076] Data types used herein are defined in Table 3:

Table 3

ss Signed 8-dit integer. ,
fue|Ursigneséatiniwger——SCSCSSCS*d

30 [sie Signed 16-bit integer.
Unsigned 16-bit integer.

a

w

*

“

7

 T_LocalChanID|Local chann IID.

13

Page 1131 of 1415

Page 1132 of 1415

1S

20

25

30

35

40

45

$0

55

EP 0 930 793 A1

Table 3. (continued)

T.DSP Name Name for DSP objects (RTOS dependent).

T_CodeHdr Code headerstructure for a DSP Library entry.

T_TaskCreate Task creation structure.

[0077] Thesetables define the messages passing between devices(i.e. Host to DSP 16). The device !Ds present
as parametersin the corresponding function calls are not incorporated in the messagessincethey are usedto actually
route the messageto the device. Similarly, task IDs that include a device !D as their upperhalf for the function call will
not include the device ID in the message, but only the DSP's local task 1D portion.

Table 4

 DSP-API Messages

Send Parameters Reply Parameters Direction Host =
DSP

GET_MEM_AVAIL T_Size progmem
T_Size datamem

ALLOC_MEM U16 mempage T_DSP_Word *memptr
T_Size size U16 errcode

FREE_MEM U16 mempage U16 errcode
T_DSP_Word *memptr

PUT_BLOB T_DSP_Ptr destadar U16 errcode =~

U16 mempage
T_Size size

T_DSP_Word BLOB[size]

CREATE_TASK T_TaskCreate tcs T_TaskID TaskID U16 errcode

START_TASK T_TaskID TaskID U16 errcode

SUSPEND_TASK T_TaskID TaskID

>

os

a

4

RESUME_TASK T_TaskID TaskID

DELETE_TASK T_TaskID TaskID U16 errcode

CHANGE_PRIORIT Y|T_TaskID TaskID U16 U16 oldpriority U16 errcode
newpriority

GET_TASK_STATUS T_TaskiD TaskID U16 status ~
U16 priority
T_ChanlD Input
T_Chani!D Output

U16 errcode

GET_ID T_DSP_Name Name T_DSP_ID iD =
U16 errcode

Table 5

DSPInterfa e Layer / Channel interface Lay r Messages

Send Parameters Reply Parameters Direction Host = DSP

CREATE_CHANNEL|T_Size framesize T_ChanID ChannellD 4
‘ T_Count numframes U16 reode

14

Page 1132 of 1415

Page 1133 of 1415

20

25

30

38

40

45

50

SS

EP 0 930 793 At

Table 5 (continued)

 DSPInterface Layer / Channel Interface Layer Messages

|Mssage Send Parameters Reply Parameters Direction Host = DSP
DELETE_CHANNEL T_ChaniD ChannellD|U16 errcode

CREATE_STREAM T_Size FIFOsize T_StrmID Stream!D _
U16 errcode

DELETE_STREAM|I_StrmiD StreamID

Table 6

Debug Messages

Message Send Parameters Reply Parameters Direction Host = DSP

READ_MEM U16 mempage T_DSP_Word memf{count] |
T_DSP_Ptr addr U16 errcode
T_Count count

WRITE_MEM{|U16 mempage U16 ertcode >
T_DSP_Ptr addr

T_Count count

T_DSP_Word mem[count]

READ_REG U16 RegiID DSP_WORDregvalue ~ ve
U16 errcode

WRITE_REG|U16 ReglD U16 errcode ay :
T_DSP_Word regvalue

SET_BREAK|T_DSP_Ptraddr U16 errcode

CLRLBREAK|T_DSP_Pwr addr

BREAK_HIT|T_DSP_Ptraddr U16 ACK

[0078] Figures 4 -6illustrate an embodiment for downloading native code to a target processor(i.e., the host 12 or
DSP 16) in a secure and efficient manner. This embodiment for downloading code could be used, for example,in
downloading code from the Intemet, or other global network, fram a Local or Wide Area Network, or from a peripheral
device, such as a PC Card or Smartcard.

[0079] in Figure 4, an embodiment of a JAVA Bean 90 is shown, where the Bean 90 acts as a wrapperfor native
code 92. The Beanfurther inciudes severalattributes 94, listed as a Code Typeattribute 94a, a Code Sizeattribute
94b and a MIPS Required attribute 94c. The Bean 90 has several actions 96, including a Load Code action 96a, a
Load Parameters action 96b and an Execute Parameter 96c.

[0080] In operation, the Load Code action 96a is used to load external native code (native to the target processor)
into the Bean. Since JAVA Beans havepersistence, the Bean 90 canstoreits intemalstate,including the native code
92 andthe attributes 94. The Load Parameters action 96b retrieves parameters from the native code 92 (using,for
example, the COFFfile format described above) and stores the parameters asattributes 94a-c. The Execute action
96c executes tasks installed in the DSP 16.

[0081] Figure 5 iliustrates use of the Bean $0 to download codeto the target processor.In this example, it is assumed
that the larget processor is the DSP 16 (or one of multiple DSPs 16), although it could be used to download native
code to the host processor 12 as well. Further, it is assumed that the desired Bean 90is resident in a network server,
such as a LAN serveror an Intemet server,although the Bean could be resident in any device in communication with
the platform 10, such as a Smartcard. For a wireless data platiorm 10, the connection to the network server 100 will
often be wireless.

[0082] In Figure 5, the platform 10 is coupled to a network server 100. Th host processor 12, as shown in graater
datail in Figure 2, may ex cute on or more JAVA applets 41 through a JAVAvirtual machine 45. In ord r to download
new code, the host 12 toads an applet 41 containing the Bean 90 from the network s rver 100 or the Bean, without
the containing applet, can be downloaded from the s_rver 100. Once the wrapper Bean 90 has beenretrieved, it can
be queriad for the size of the native code, code type (for which processoris the code int nded) and MiPsr quired.If

18

Page 1133 of 1415

v4

Page 1134 of 1415

20

2s

30

3s

40

4s

50

EP 0 930 793 Al

the intended processor has sufficient resources to run the code 92, the code 92 can be installed to execute on the

intended processor, either the host processor 12 or DSP 16 in the architecture shownin Figure 5. Typically, the native
code 92 will be unlinked, compiled code. Thus, the crosslinker 82 of the DSP-API 50 will link the code to an available
memory location. The Bean would pass the binary native code 92 to the dynamic crosslinker 82, which would install
and execute the code.

(0083] A typical mannerin which a download of native code might occur is when the useris running an applet 41 in
which a DSP function is desired. First, the applet 41 would check to see if the desired code wasinstalled as a task 60
in the DSP or was available in the DSP Library 58.If so, the task could be executed without a download.
[0084] If the task is not stored in the DSP 16 or the DSP library 58, an object (referred to as the " DSPLoader" object
herein) could be created to load the Bean 90.If the DSPLoaderclassis local on the host 12, JAVA will check to seeif
the Beanis available locally as well. In a first instance, there may be a Bean with the code storedlocally. If so, the
code from the Beanis installed to the DSP 16 (or to whichever processor specified by the Code Type). If a Bean without
the codeis stored locally, the Bean can retrieve the code from the appropriate server.
[0085] Onthe other hand, if the DSPLoaderobject is not focal, then JAVA will load the Bean 90 from the server that
wrote the applet 41. The code from the Bean wiil then be installed as described above.
[0086] While the downloading of native code is described in connection with the use of a JAVA Bean, it could also
be accomplished by wrapping the code within another language, such as an ActiveX applet.
[0087} Using a JAVA Bean(or other applet) as a wrapperto the native code hassignificant advantages.First, it
allows a simple, standard method for loading code onto one of a plurality of processors. The Bean is created, codeis
loaded into the Bean and the codeis linked to the appropriate processor. Without wrapping the code within the Bean,
the process may take several hundred steps. Second,it allows multiple pieces of native code to be combined by a
single applet, providing for complex applications to be generated from multiple discrete routines using a single applet
to combine the routines as desired. Third, it takes advantage of the language's security features, thereby protecting
not only the JAVA codein the Bean 90,but the native code 92 as well. Other languages, such as ActiveX, have security
features as well.

[0088] Two of the most important security features are digital signing and encryption. A JAVA Bean or ActiveX applet
may be signed by the source of the code; when the Bean or applet is downloaded, the signature is verified by the
receiving application, which hasa list of trusted sources.If the Bean or applet is signed by a trusted source, it can be
decrypted using standard techniques. Accordingly, the native code is encrypted during transmission along with the
code of the Bean or applet, preventing unauthorized modification of the code. Because the native code is secure and
comesfrom a trusted source, the attributes can also be trusted as accurate.

[0089] Figure6 illustrates a flow chart describing the process of downloading native code for a processor using a
JAVA Bean,it being understood that the native code could be wrappedin an appletof a different language using similar
techniques. In step 110, the encrypted, digitally signed Bean 90 is downloaded to a device running a JAVA virtual
machine. In step 112, the signatureis verified.If it is not froma sourcelisted as a trusted source, exception processing
is enabled in step 114. In the case of the Bean coming from a trusted source, the exception processing function may
give the user an opportunity to accept the Bean,if the user is comfortable with the source.If the signatureis invalid,
the exception processing may delete the Bean 90 and send an appropriate error messageto the user.
[0090] If the signature is valid and comesfroma trusted source, the Bean is decrypted in step 116. This step decrypts
both the JAVA code andthe native code in the Bean.In step 118, the attributes are retrieved from the Bean 90 andin
step 120 the applet determines whether the appropriate processor has sufficient resources to run the code.If not, th
exception processing step 114 may declineto install the native code, or steps may be taken to free resources.If there
are sufficient resources, the code is linked using the cross-linker and installed on the desired processorin step 122.
In step 124, the native code is executed.
[0091] Sample JAVA script fora Bean 90 is provided hereinbelow:

16

Page 1134 of 1415

Page 1135 of 1415

20

25

35

40

$0

55

Page 1135 of 1415

EP 0 930 793 Al

package ti.dsp.loader;

import java.awt.*;
import java.io.*;
import java.net.*;

public class NativeBean extends Canvas implements Serializable
{

public NativeBeanQ) {

setBackground(Color.white);

funcData = new ByteArrayOutputStream();

try {
funcCodeBase = new URL(“http:/Aocalhost");

}
catch (MalformedURLException e) {

17

Page 1136 of 1415

10

15

20

2s

30

35

40

45

50

SS

Page 1136 of 1415

EP 0 930 793 A1

public Dimension getMinimumSizeQ {

retum new Dimension(50, 50);

public void loadCodeQ) {

URL baseURL = null;

try {
baseURL = new URL(funcCodeBase.toString)) + */* + myFunction);

}
catch (MalformedURLException e) {
}

DataInputStream source = null;
int read;
byte] buffer;

buffer = new byte[1024];
try {

source = new DatalnputStream(baseURL.openStream());
}
catch (IOException e) {

System.out.printin("IOException creating streams: * + e);
}

codeSize = 0;

funcData.resetQ);

{
while (true) {

read = source.read(buffer);

if (read == -1)
break;

funcData.write(buffer, 0, read);
}

}
catch (IOException e) {

System.out.printin("IOException: " + e);
}

18

Page 1137 of 1415

20

25

30

35

40

45

$0

55

Page 1137 of 1415

EP 0 930 793 Al

codeSize = funcData.size();
System.outprintIn("Code size = " + codeSize);

try {
source.close();

}
catch (IOException ec) {

System.out.printin("IOException closing: " + ¢);
}

}

public synchronized String getFunctionName() {

return myFunction;
}

public void setFunctionName(Sting function) {

myFuncetion = function;
}

public synchronized String getCodeBase() {

retum funcCodeBase.toStringQ);

}

public void setCodeBase(String newBase) {

try {
funcCodeBase = new URL(newBase);

}
catch (MalformedURLException e) {
}

}

public void installCodeQ) {

FileOutputStream destination = null;
File libFile = new File(myFunction);

try {
destination = new FileOutputStream(libFile);

}
catch (IOException e) {

System.out.printin("IOException creating streams: " + e);
}

if (destination != null) {

19

Page 1138 of 1415

10

15

20

25

30

3S

40

45

$0

55

EP 0 930 793 A1

try {
funcData.writeTa(destination);

}

catch (IOException ¢) { ;
System.out.printin(“IO Exceptioninstalling native code: " + e);1J

}

linkCode(funcData)

Public void loadParameters() {
}

public void executeQ) {
}

public synchronized int getCodeSizeQ) {

return codeSize;
}

public synchronized int getCodeTypeQ {

retum codeType;
}

public void setCodeType(int newType) {

codeType = newType;
}

private int codeSize = 0;
private int codeType = 1:
private String myFunction = "";
private URL funcCodeBase = null;
private ByteArrayOutputStream funcData = null;

[0092] In the script set forth above, the NativeBean(} routine creates the Bean 90 whichwill hold the native code.
The loadCode() routine gets the native code from the server. The getFunctionName() and getCodeBase() routines
retrieve attributes. The installCode() routine calls the cross linker to link the native code to the DSP and to load the
linked code. The loadParameters() routine instructs the Bean to examinethe native code and determineits attribut s.
The getCodesize() and getCodetype() routines transfer the attributes to the requesting applet.
[0093} Although the teachingsdisclosed herein have beendirected to certain exemplary embodiments, various mod-
ifications of these embodiments, as well as altemative embodiments, will be suggested to those skilled in the art.
[0094] Further and particular embodiments of the invention will now be enumerated with reference to the following
numbered clauses.

1. Amobil electronic device, comprising:

a coprocessor for xecuting nativ code;

a host proc ssor system operable to execute native code corresponding to the host processor syst m and
processorindependent code, said host processor system operable to dynamically changethe tasks performed

20

Page 1138 of 1415

Page 1139 of 1415

20

25

35

40

EP 0 930 793 A1

by the digital signal coprocessor, and
citcuitry for communicating between said host processor system and said coprocessor.

2. The mobile electronic device of clause 1 and further comprising network interface circuitry for receiving data
from a network.

3. The mobile electronic device of clause 2 wherein said network interlace circuitry comprises wireless network

circuitry.

4. The mobile electronic device of clause 3 wherein said network interface circuitry comprisescircuitry for inter-

facing with a global network.

5. Amethod of controlling a mobile electronic device comprising the stepsof:

executing native code in a coprocessor,
executing both native code and processor independent codein a host processor system,
dynamically changing the tasks performedbythedigital signal coprocessor with said host processor system,
and

communicating between said host processor system and said coprocessor.

6. The method of clause 5 and further comprising the step of receiving code through a networkinterface.

7. The method of clause 6 and further comprising the step of receiving code through a wireless network interface.

8. The method of clause 6 or 7 and further comprising the step of receiving code through a wireless network
interface from a global network.

9. A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operableto:

execute source code;

identify one or more sections of source code to be executed on one or more of said coprocessors; and
for each identified section of source code, determining a corresponding coprocessor, and
for each identified section of source code, compile said identified section of code into the native code
associated with said corresponding coprocessor andinstall said native code onto said corresponding
coprocessor, and

circuitry for communicating between said host processor system and said coprocessors.

10. The mobile electronic device of clause 9 wherein one or more of said coprocessors comprise digital signal
processors.

Claims

1.

2.

3.

Page 1139 of 1415

A mobile electronic device, comprising:

a coprocessorfor executing native code;

a host processor operable to execute native code corresponding to the host processor and processorinde-
pendentcode, said host processor operable to dynamically change the tasks performedbythe digital signa!
coprocessor; and
circuitry tor communicating between said host processor and said coproc ssor.

Th mobile electronic d vice of Claim 1, wherein said coprocessor compris s a digital signal processor.

The mobile el ctronic device of Claim 1 or Claim 2, wherein said processor ind pendent code compris s JAVA.

21

Page 1140 of 1415

10

18

20

25

30

35

40

45

SO

Page 1140 of 1415

10.

11.

12,

13.

14,

18.

16.

17,

18.

EP 0 930 793 Al

The mobile electronic device of any preceding claim , wherein said host processor system is arranged to generate
native code for said coprocessor.

The mobile electronic device of any preceding claim, wherein said host processoris arranged to generate native
codefor said coprocessor by compiling processor independent source code.

The mobile electronic device of any preceding claim, wherein said host processoris arranged to compile identified
blocks of source code.

The mobile electronic device of any preceding claim. wherein said host processor system is arranged toidentity
blocks of source code that could be executed on the coprocessor and to compile said blocks of code.

The mobile electronic device of any preceding claims, further comprising:
a memory for storing a library of routines that can be downloaded to said coprocessorfor execution.

The mobile electronic device of any preceding claim further comprising a hardware language accelerator

The mobile electronic device of any preceding claim wherein said hardware accelerator comprises a JAVA accel-
erator.

The mobile electronic device of any preceding claim further comprising network interface circuitry for receiving
data from a network.

A method of controlling a mobile electronic device comprising of:

executing native code in a coprocessor;
executing both native code and processor independent code in a host processor
dynamically changing the tasks performed bythe digital signal coprocessor with said host processor and
communicating between said host processor system and said coprocessor.

The method of claim 12 wherein said step of executing native code in a coprocessor comprises executing native
codein a digital signa! processor.

The method of claims 12 and 13 further comprising generating native code for coprocessorin said general process-
ing system.

The method of claim 14 wherein said step of generating native code comprises the step of generating native code
by compiling processor independent source code.

The method of any of claims 12 to 15 further comprising identifying blocks of said source code to compile for
execution on said coprocessor.

The method of any of claims 12-16 further comprising storingalibrary of routines for downloading from said host
processor system to said coprocessorfor execution.

A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code;

identify one or more portions of source code to be executed on one or more of said coprocessors; and
for each identified portion of source code, determining a corresponding coprocessor, and
for each id ntifi d portion of sourc cod , compil said id ntified portion of cod into th nativ code
associated with said corresponding coprocessor and install said native code onto said corr sponding
coprocessor, and

circuitry for communicating between said hos! processor syst m and said coprocessors.

22

Page 1141 of 1415

EP 0 930 793 Al

19. A method of controlling a mobile electronic device, comprising:

executing source code on a host processor system;
identifying one or more portions of source code to be executed on one or more coprocessors: and

5 for each identified portion of source code, determining a corresponding coprocessor. and
for each identified portion of source code, compiling said identified portion of codeinto the Nnalive code asso-
ciated with said corresponding coprocessorand installing said native code onto said corresponding coproc-
essor, and

communicating between said host processor system and said coprocessors.
10

18

20

25

30

38

40

48

$0

55

23

Page 1141 of 1415

Page 1142 of 1415

EP 0 930 793 A1

OL 7 Pn
maceeee

24

Page 1142 of 1415

Page 1143 of 1415

EP 0 930 793 A1

Unlinked
taragt ade

Host Provessor

qo Java Bean

\ PersistectBineryDea G2

Qe -7

2s

Page 1143 of 1415

Page 1144 of 1415

EP 0 930 793 A1

0 . am)”

; _ —~ sw. ki

| . [Newer|
7 I Server

tO

i

124 SyauTe Coe
CoeeESPOWIER PRECETOR

26

Page 1144 of 1415

Page 1145 of 1415Page 1145 of 1415

EP 0 930 793 Al

0 European Patent EUROPEAN SEARCH REPORT Application NumberOffice EP 98 31 0312

DOCUMENTS CONSIDEREDTO BE RELEVANT

=

WO 98 40978 A (SAGEM ;DEMEURE JEAN ANDRE H0407/32
(FR); DIMECH JEAN MARC (FR)) HO4B1/38
17 September 1998 606F 9/38
* page 4, line 22 - line 27 +*
* page 5, line 25 - line 28 *
* page 8, line 26 - line 29 *

EP 0 869 691 A (DEUTSCHE TELEKOM AG)
7 October 1998

* column 2, line 4 - line 22 *

6B 2 310 575 A (WESTINGHOUSE ELECTRIC
CORP) 27 August 1997
* page 5, line 16 - line 25 *

WO 97 26750 A (CELLPORT LABS INC)
24 July 1997
* page 18, line 6 - page 22, line 26 *

TECHNICAL FIELDS

US 4 862 407 A (FETTE BRUCE A &T AL) TECHNICAL FIELDSos 6)
29 August 1989

* column 4, line 49 - line 58 * HO4Q
* column 13, line 14 - line 18 * HO4M

-_—— GO6F

Place of search: ate of compict on of the search Exammner

BERLIN 31 May 1999 Leouffre, M

CATEGORY OF CITED DOCUMENTS T: theory of principle undertying the inventionE: earfier patent doaument, but published on, or
X : particularly relevant if taken alone afer the fling date
¥ : partiadarly relevant if combined witn another D: document cited in the appivation

u: EPOFORM150303.82(POAC)
27

Page 1146 of 1415

EP 0 930 793 Ai .

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 98 31 0312

This annex tists the patent family membersrelating to Ine paremt Gocuments cited in the above-mentioned European search report.
The members are as contained in the Evropean Patent Office EDP file on
The European Patent Office is in no wayliable for these particulars which are merely given for the purpose of information.

31-05-1999

Patent document Publication Patentfamily Publication
ened mn search report caie member(s) date

WO 9840978 A 17-09-1998 FR 2760917 A 18-09-1998 ~
FR 2760918 A 18-09-1998
AU 6921998 A 29-09-1998

EP 0869691 A 07-10-1998 DE 19713965 A 08-10-1998

GB 2310575 A 27-08-1997 AU 1264397 A 28-08-1997

WO 9726750 A 24-07-1997 US 5732074 A 24-03-1998
AU 1825197 A 11-08-1997 _
CA 2243454 A 24-07-1997
EP 0875111 A 04-11-1998

A 29-08-1989 NONE ~oeaaeaaAeeSaeeaNEENSS
EPOFORMPoss

For more details about this annex : see Official Journal of the European Patent Office. No. 12/62

28

Page 1146 of 1415

Page 1147 of 1415

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this documentare accurate representations of
the original documents submitted by the applicant.

Defects in the images mayinclude(butare not limited to):

e BLACK BORDERS

© TEXT CUT OFF AT TOP, BOTTOM ORSIDES

e FADED TEXT

e ILLEGIBLE TEXT

e SKEWED/SLANTED IMAGES

* COLORED PHOTOS

e BLACK OR VERY BLACK AND WHITE DARK PHOTOS

e GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

Asrescanning documents will not correct images,
please do not report the imagesto the

Problem Image Mailbox.

Page 1147 of 1415

Page 1148 of 1415

Te «YARRA PCTIPTO 21 AUS 2003 om
AWUG-21-@03 16:10 FROM: JONES DAY CLEVELAND ID:216 5793 212 PAGE 173

; .

ONES Facsimile TransmissionETTTeeeeeeeeeceaS

North Point, 9014 Lakeside Avenue « Cl veland, Ohio 44114-1190 « (216) 586-3939
Facsimile: (216) 579-0212

e dipejeau@jonesday.com

August 21, 2003

Please hand deliver the following facsimile to:

Name:Office of Initial Patent Examination's Facsimile No.: 703-746-9195
Filing Receipt Corrections .

Company: United States Patent & Trademark Number of pages (including this page): 3
Office

Telephone No.: From: Debra L. Pejeau
Title: Patent & Trademark Assistant

Send Copies To: Direct Telephone No.: (216) 586-7387

JP No.; JP259360

O Copies distributed _ CAM No.: 555255-012-423Operator; itdiale

re?

Originals Will Not Follow

 NOTICE: This communication is intended to be confidential to the person to whom it is addressed, and it is subject lo copyright

protection, if you are not ihe intended recipient or the agent of the intended recipient or if you aré unable to deliver this
communication to the intended recipient, please do not read, copy or use this communication or show it to any other person, but
notify the sender immediately by telephoneatthe direct telephone number noted above. ‘

Message:

Application Number 10/381,219 (Int'l Filing Date 09/20/2001)

DearSir or Madam,

Please correct the applicationtitle on the attached Filing Receipt as indicated and issue a
Corrected Filing Receipt. Thank you.

. Respectfully submitted,
Debra L. Pejeau

Pl ase call us immediately if th facsimile you receiv is incompleteorillegible. Please askfor
the facsimile operator.
CLI-1082528v1

Jones, Day, Reavis & PoguAWA. EAI TMAII® « DALLAS © FRANKFURT » HONG KONG +» HOUSTON « IRVINE « LONDON « LOB ANGELES

Revelvd om «248870022»14034:17:10stem Dayght Tne] ° **RPRBuREM - ShawaHAT. SGRPORE<evoNEy rap! “FORO - Washincron

Page 1148 of 1415

Page 1149 of 1415

.

AUG-21- 3 16:13 FROM:JONES DAY CLEVELAND ID:°216 579 212 PAGE 2/3

x

crore Fe *
a mt

fe . >Ex , Unrrep Stares Parent anp TRADEMARK OFFIGE~

A , UNITED STATES DEPARTMENT OF COMMETLCE,
a Unditral Blasts Patane and Tradech (Ter:

Seen ‘Addreer COMMISSIONER OF PATENTS AHD TRADEMARKS— Kicaamie Veagiie 729136150warnereptagry

10/381 ,219 03/20/2003 2131 3258 * §55255012423 7 109 12

CONFIRMATION NO, 9761

Cevid 6 Cochran ‘ FILING RECEIPTD
North Point CALETACETA
901 Lakeside Avenue *OC06000001 0312502"
Cleveland, OH 44114-1190

Date Mailed: 06/25/2003

Receipt is acknowledged of this regular Patent Application. It will be considered in its order and you wilt be
notifiedtus to thy results of the examination, Pa sure ta prove the OLS), PELIC ATION stor ero meine nore .
NAME OF APPLICANT, and TITLE OF INVENTIOW when inguiling abGut this application, t és tranumitee Ly
check or draft are subject to collection. Please verify the accuracy of the data presented onthis receipt. If an
error ts noted on this Filing Receipt, please write to the Office of Initia) Patent Examination’s Filing
Receipt Corrections, facsimile number 703-746-9195. Please provide a copyofthis Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts”forthis application, please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections (if
appropriate}, .

Applicant(s)}

David P Yach, Waterloo, ON, CANADA; .
Michael S Brown, Waterloo, ON, CANADA;

. . ‘Herbert A Little, Waterloo, ON, CANADA:

Domestic Priority data as claimed by applicant
This application is a 371 of PCT/CA01/01344 09/20/2001
which claims benefit of 60/234,152 09/21/2000
and claims benefit of 60/235,354 09/26/2000
and claims benefit of 60/270,663 02/20/2001

Foreign Applications

Projected Publication Date: 09/25/2003

Non-Publication Request: No

Early Publication Request: No

Title Software.
A Code signing system and method

Received om < 7165780212» at 8/21094:17:19 PH [Easter Dallght Tne]

Page 1149 of 1415

Page 1150 of 1415

s
a /

be »
.a

AWUG-21-03 16:16 FROM: JONES DAY CLEVELAND ID:216 S879 0212 PAGE

Preliminary Class
713

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.114 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184. if the phrase “IF REQUIRED, FOREIGN FILING
LICENSE GRANTED"followed by a date appears on this form, Such licenses ave issued in all applications where
tha conditions for issuance of a license have been met, regardless of whetheror not a license may be required as
set tochin 37 CFR 5.15. The scope and limitations of this license ave set forth in 37 CFR 5.15(a) unless anearlier
license has been issued under 37 CFR 5.15(b). The licenseis subject to revocation upon wiitten natificaiion, The
date indicated is the effective date of the license, unless an earlier license of similar scope has been grantedunder 37 CFR 513 075.14.

TMG Oe foes te be padined by the licensee ane MheY ve USEO al ANY tie UA Uf aner tie eficcdve dale inefeot
unless itis revaked. This license is automatically transferred to any related applications(s) filed under 37 CFR
1.53(d). This license is not retroactive, .

Th grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject
matier as imposed by any Government contract or the provisions of existing laws relating to espionage and the
national securily or the export of technical data. Licensees shouid apprise themsewves of current regulations
especially with respect to certain countries, of other agencies, particularly the Cffice of Defense Trade Controls,
Department of State Gvili) respect to Arms, Munitions and Implements of War (22 CFR 121-1283): the Office of
Export Administration, Department of Commerce (18 CFR 370.10 Qj); the Office of Foreign Assets Control,
Department of Treasury (31 CFR Parts 500+) and the Department of Energy. ,

NOT GRANTED

Nolicense under 35 U.S.C. 184 has been granted at this time,if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOTappearon this form. Applicant may still petition for a license under 37 CFR
5.12, if a license is desired before the expiration of 6 months from the filing date of the application. Jf 6 months
has lapsed from thefiling date of this application and the licensee has not received any indication of a secrecy
order under 35 U.S.C. 181, the licensee may foreignfile the application pursuant to 37 CFR 5.15(b).

Recelved from < 2165790212 > at 121103 4:17:49 PM Easter Daylight Time}

Page 1150 of 1415

373

Page 1151 of 1415

@ Page lof 2
UNITED StaTes PATENT AND TRADEMARK OFFIGE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKSPO. Box 1450

Alexandria, Viginia 22313-1450WHIgOV

10/381,219 David P Yach $55255012423

; PCT/CAO1/01344

aeOeochrany
North Point 09/20/2001 09/21/2000
901 Lakeside Avenue

Cleveland, OH 44114-1190 CONFIRMATIONNO.9761
371 ACCEPTANCE LETTER

ECAC
0C000000010312504

Date Mailed: 06/25/2003

NOTICE OF ACCEPTANCE OF APPLICATION UNDER35 U.S.C 371 AND 37 CFR 1.495

The applicant is hereby advised that the United States Patent and Trademark Office in its capacity as a
Designated / Elected Office (37 CFR 1.495), has determined that the above identified international application has
met the requirements of 35 U.S.C. 371, and is ACCEPTEDfor national patentability examination in the United
States Patent and Trademark Office.

The United States Application Number assigned to the application is shown above and the relevant dates are:

03/20/2003 03/20/2003

DATE OF RECEIPT OF 35 U.S.C. 371(c)(1), (c)(2) and DATE OF RECEIPT OF ALL 35 U.S.C. 371
(c)(4) REQUIREMENTS REQUIREMENTS

A Filing Receipt (PTO-103X) will be issued for the present application in due course. THE DATE APPEARING
ON THE FILING RECEIPT AS THE " FILING DATE” IS THE DATE ON WHICH THE LAST OF THE 35 U.S.C.

371 REQUIREMENTS HAS BEEN RECEIVEDIN THE OFFICE. THIS DATE IS SHOWN ABOVE. Thefiling date
of the aboveidentified application is the internationalfiling date of the intemational application (Article 11(3) and
35 U.S.C. 363). Once the Filing Receipt has been received, send all correspondenceto the Group Art Unit
designated thereon.

The following items have been received:

Copy of the International Application filed on 03/20/2003
Copyof the International Search Report filed on 03/20/2003
Copy of IPE Report filed on 03/20/2003
Preliminary Amendmentsfiled on 03/20/2003
Oath or Declaration filed on 03/20/2003

Request for Immediate Examination filed on 03/20/2003

Copyof references cited in ISR filed on 03/20/2003
U.S. Basic National Feesfiled on 03/20/2003

Assignee Statementfiled on 03/20/2003

Page 1151 of 1415

Page 1152 of 1415

Page 2 of 2

Applicantis remindedthat an
y Communicationto the address given in the h S to the United States Patent and Trademark Office must be Mailed@ading and includ

e the U.S. application no. shown above (37 CFR1 .5)

TAMALA D HOLLAND
Telephone: (703) 305-5483

PART3 - OFFICE COPY
FORM PCT/DO/EO/903 (371 Acceptance Notice)

Page 1152 of 1415

Page 1153 of 1415

DTi6 Rec'd PCT/PTO 20 MAR cus
. Express Mail No. EV 243791125 US

* ; March 20, 2003
FORM PTO- 1350 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER(REV. 01-2003)

TRANSMITTAL LETTER TO THE UNITED STATES |__555255012423
DESIGNATED/ELECTED OFFICE (DO/EO/US)—_[PS.APFLICATIONNO.Gfinonssee37CFRTS

CONCERNINGA FILING UNDER 35 U.S.C.371 10/3812i9
INTERNATIONAL APPLICATION NO. INTERNATIONALFILING DATE PRIORITY DATE CLAIMED

TITLE OF INVENTION

SOFEWARE CODE SIGNING SYSTEM AND METHOD

APPLICANT(S) FOR DO/EO/US
David P. Yach; Michael S. Brown; Herbert Li

Applicant herewith submits to the United States Designated/Elected Office (DOEOIUS) the following items and other information:
1. &R] This is a FIRST submission ofitems concerning a filing under 35 U.S.C. 371.

2. ([] This isa SECOND or SUBSEQUENTsubmission ofitems concerning a filing under 35 U.S.C. 371.

3. ea] This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include
items (5), (6), (9) and (21) indicated below.

4.[[] The US has beenelected (Article 31).
5. Ki A copyofthe International Application as filed (35 U.S.C. 371(c)(2))

a, Ky is attached hereto (required only if not communicated by the International Bureau).
b. rl has been communicated by the International Bureau.
c. Cc] is not required, as the application was filed in the United States Receiving Office (RO/US).

6. C] An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
a. ([] is attachedhereto.
db Q has been previously submitted under 35 U.S.C. 154(d)(4).

7. Ol Amendments to the claims of the Intemational Application under PCT Article 19 (35 U.S.C. 371(c)(3))
C3 are attached hereto (required only if not communicated by the International Bureau).

CT have been communicated by the International Bureau.

Cc] have not been made; however, the time limit for making such amendments has NOTexpired.

{_] have not been made and will not be made.

8. 0 An Enplish language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371 (c)(3)).

9. ot Anoathor declaration of the inventor(s) (35 U.S.C. 371(c)(4)). (3 pqs)
10. a An English language translation of the annexes of the International Preliminary Examination Report under PCT

Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 20 below concern document(s) or information included:

11.{[]|An Information Disclosure Statement under 37 CFR 1.97 and 1.98.

12. i An assignment documentfor recording. A separate cover sheet in compliance with 37 CFR 3.28 $) 3.31 is included.13.) A preliminary amendment. Cconf ?G5) Ss PA 5)
14.[[] An Application Data Sheet under 37 CFR 1.76.

15. C) A substitute specification.

16. BQ A. powerofattorneyandéorcinmpe-ufattiresstetter. 2 £25)
17. Q A computer-readable form ofthe sequencelisting in accordance with PCT Rule]3zer.2 and 37 CFR 1.821 - 1.825.

18.[-] A second copyofthe published international application under 35 U.S.C. 154(d)(4).

19. Cl A second copy ofthe English language translation of the international application under 35 U.S.C. 154(d)(4).

20. CT] Otheritems or information:

page 1 of 2

Page 1153 of 1415

Page 1154 of 1415

21.1% The following fees are submitted: CALCULATIONS PTO USE ONLY
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)):

Neitherinternational preliminary examination fee (37 CFR 1.482)
nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO
and International Search Report not prepared by the EPO or JPO........... $1060.00

International preliminary examination fee (37 CFR 1.482) not paid to
USPTObutInternational Search Report prepared by the EPO or JPO $900.00

International preliminary examination fee (37 CFR 1.482) not paid to USPTO
but international search fee (37 CFR 1.445(a)(2)) paid to USPTO... 2.0.0... $750.00

Internationa! preliminary examination fee (37 CFR 1.482) paid to USPTO
but all claims did not satisfy provisions of PCT Article 33(1)-(4) 3720.00

International preliminary examination fee (37 CFR 1.482) paid to USPTO
and all claims satisfied provisions of PCT Article 33(1)-(4)............. $100.00

ENTER APPROPRIATE BASIC FEE AMOUNT =

Surcharge of $130.00 for furnishing the oath or declarationlater than 30 months
from the earliest claimed priority date (37 CFR 1.492(e)).

CLAIMS NUMBERFILED NUMBER EXTRA

109-20 = = $18.00

Independent claims x $84.00
MULTIPLE DEPENDENT CLAIM(S)(if applicable) + $280.00

TOTAL OF ABOVE CALCULATIONS = [5 2358

oO Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above
are reduced by 1/2. +

Processing fee of $130.00 for furnishing the English translation later than 30 monthsfrom the earliest claimed priority date (37 CFR 1.492(f).

TOTAL FEES ENCLOSED = {$ 3298

Amountto be $refunded

§

. C A check in the amount of $ to cover the abovefees is enclosed.

Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be $
accompanied by an appropriate cover shect (37 CFR 3.28, 3.31). $40.00 per property + 40

. es Please charge my Deposit Account No. _301432 in the amountof$_3298 to coverthe above fees.
A duplicate copy of this sheet is enclosed. ee (ref. 555255012423)
The Commissioneris hereby authorized to nares Shy additional fees which may be required,or credit anyoverpayment to Deposit Account No. 432.4 duplicate copy ofthis sheet is enclosed.

. O Fees are to be charged to a credit card. WARNING:Information on this form may becomepublic. Credit card
information should not be included on this form. Provide credit card information and authorization on PTO-2038.

NOTE: Where an appropriate time limit under 37 CFR 1.495 has not been met, a petition to revive (37 CFR 1.137 (a)
or (b)) mustbefiled and granted to restore the application to pending status.

cr
SEND ALL CORRESPONDENCETO:

David B. Cochran, Esq.
Jones Day
901 Lakeside Ave./North Point David B. Cochran
Cleveland, Ohio 44114 NAME

39,142
REGISTRATION NUMBER

GNATURE

FORM PTO-1390 (REV 01-2003) page 2 of 2

Page 1154 of 1415

Page 1155 of 1415

10/3981219
OTUIRec'A PCTIPTO 20 MAR 2003

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inthe application of : David P. Yach; Michael $. Brown; Herbert A. Little EV 243791125 US
‘Express Mail” Mailing Label No.

Internat'l. Appl!'n. No.: PCT/CA01/01344 Date of Deposit_...March 20, 2003

Internat'l. Filing Date : 09/20/2001 | hereby cerify Ci. oe paper orfees Is
being deposizcd 0"... at et

S. Seri ; . ioned Service “Express "0 “tS. *US. Serial No Not yet assigne service under 34 <. 2 cad
8 is ecerscogl to: Commi: conerU.S. FilingDate : 03/20/2003 wets Wee28 BC,

Priority Date Claimed: 09/21/2000 ByUocK.Ptpth
Title : Software Code Signing System And Method

Art Unit : Notyet assigned

Examiner ‘ Notyet assigned

Docket No. : §55255012243

Date: March 20, 2003

Commissioner for Patents

Washington, D.C. 20231

Preliminary Amendment

Prior to taking up this case for initial examination, please amendthe application as
follows.

The Claims

Please cancel original claims 1-56.

Please add the following new claims 1-109.

1. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification, where the digital signature is associated

with the signature identification, comprising:

an application platform;

CLI-1069294v1

Page 1155 of 1415

Page 1156 of 1415

an application programminginterface (API) having an associated signature identifier, the

APIis configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application where the signature identifier corresponds to the

signature identification.

2. (New) The code signing system of claim 1, wherein the virtual machine denies the

software application accessto the API if the digital signature is not authenticated.

3. (New) The code signing system of claim 1, wherein the virtual machine purges the

software application if the digital signature is not authenticated.

4. (New) Thecodesigning system of claim 1, wherein the code signing system ts installed

on a mobile device.

5. (New) The code signing system of claim 1, wherein the digital signature is generated by

a code signing authority.

6. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification where the digital signature is associated

with the signature identification, comprising:

an application platform;

a plurality of application programminginterfaces (APIs) associated with a signature

identifier, each configuredto link the software application with a resource on the application

platform; and

a virtual machinethat verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification corresponds to

the signature identifier,

wherein the virtual machineverifies the authenticity of the digital signature in orderto

control access to the plurality of APIs by the software application.

CLI-1069294v1

Page 1156 of 1415

Page 1157 of 1415

7. (New) The code signing system ofclaim 6, wherein the plurality of APIs are included in

an API library.

8. (New) The code signing system of claim 6, wherein one or moreofthe plurality of APIs

is classified as sensitive and having an associated signature identifier, and wherein the virtual

machineuses the digital signature and the signature identification to control access to the

sensitive APIs.

9. (New) The code signing system of claim 8, wherein the code signing system operates in

conjunction with a plurality of software applications, wherein one or moreofthe plurality of

software applicationshasa digital signature and a signature identification, and wherein the

virtual machineverifies the authenticity of the digital signature of each of the one or more of the

plurality of software applications, where the signature identification corresponds to the signature

identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

10. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a wireless communication system.

11. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a cryptographic module which implements cryptographic algorithms.

12. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a datastore.

13, (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a user interface (UI).

14. (New) The code signing system of claim 1, further comprising:

CLI-1069294v1

Page 1157 of 1415

Page 1158 of 1415

a plurality of APIlibraries, each of the plurality ofAPI libraries includes a plurality of

APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

15.|(New) The code signing system of claim 14, wherein at least one of the plurality of API

libraries is classified as sensitive;

wherein access to a sensitive APIlibrary requires a digital signature associated with a

signature identification where the signature identification correspondsto a signature identifier

associated with the sensitive API library;

wherein the software application includes at least one digital signature and at least one

associated signature identification for accessing sensitive API libraries; and

wherein the virtual machine authenticates the software application for accessing the

sensitive APIlibrary by verifying the one digital signature included in the software application

that has a signature identification correspondingto the signature identifier of the sensitive AP]

library.

16. (New) The code signing system of claim 1, wherein the digital signature is generated

using a private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

17. (New) The code signing system of claim 16, wherein:

the digital signature is generated by applyingthe private signature key to a hash ofthe

software application; and

the virtual machineverifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

18. (New) The code signing system of claim 4, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

CLI-1069294v1

Page 1158 of 1415

Page 1159 of 1415

19. (New) The code signing system of claim 1, wherein the application platform comprises

an operating system.

20. (New) The code signing system of claim 1, wherein the application platform comprises

one or more core functions of a mobile device.

21. (New) The code signing system of claim 1, wherein the application platform comprises

hardware on a mobile device.

22. (New) The codesigning system ofclaim 21, wherein the hardware comprises a

subscriber identity module (SIM)card.

23. (New) The code signing system of claim 1, wherein the software application is a Java

application for a mobile device.

24. (New) The codesigning system of claim 1, wherein the API interfaces with a

cryptographic routine on the application platform.

25. (New) The code signing system of claim 1, wherein the API interfaces with a proprietary

data model on the application platform.

26. (New) The code signing system of claim 1, wherein the virtual machineis a Java virtual

machineinstalled on a mobile device.

27.|(New) A methodofcontrolling access to sensitive application programming interfaces

on a mobile device, comprising the stepsof:

Soading a software application on the mobile device that requires access to a sensitive

application programminginterface (APJ) having a signature identifier;

determining whetherthe software application includes a digital signature and a signature

identification; and

CLI-1069294v1

Page 1159 of 1415

Page 1160 of 1415

denying the software application accessto the sensitive API where the signature

identification does not correspond with the signature identifier.

28. (New) The method of claim 27, comprising the additionalstep of:

purging the software application from the mobile device where the signature

identification does not correspond with the signature identifier.

29. (New) The methodofclaim 27, wherein the digital signature and the signature

identification are generated by a code signing authority.

30.|(New) The method ofclaim 27, comprising the additional steps of:

verifying the authenticity of the digital signature where the signature identification

corresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

31. (New) The methodofclaim 30, comprising the additional step of:

purging the software application from the mobile device where the digital signature is not

authenticated.

32. (New) The methodofclaim 30, wherein the digital signature is generated by applying a

private signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that correspondsto the private signature key on the mobile

device;

generating a hash ofthe software application to obtain a generated hash,

applying the public signature keyto the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

33. (New) The method of claim 32, wherein the digital signature is generated by calculating

a hash of the software application and applying the private signature key.

CLI-1069294v1

Page 1160 of 1415

Page 1161 of 1415

34.|(New) The method of claim 27, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

35. (New) The methodofclaim 34, comprising the additional step of:

receiving a commandfrom the user granting or denying the software application access

to the sensitive API.

36. (New) A methodofcontrolling access to an application programminginterface (API)

having a signature identifier on a mobile device by a software application created by a software

developer, comprising the steps of:

receiving the software application from the software developer;

determining whetherthe software application satisfies at least one criterion;

appendinga digital signature and a signature identification to the software application

wherethe software application satisfies at least one criterion;;

verifying the authenticity of the digital signature appendedto the software application

where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

37. (New) The method ofclaim 36, wherein the step of determining whetherthe software

application satisfies at least onecriterion is performed by a code signingauthority.

38. (New) The method of claim 36, wherein the step of appendingthe digital signature and

the signature identification to the software application includes generating the digital signature

comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature,

CLI-1069294v1

Page 1161 of 1415

Page 1162 of 1415

39. (New) The method of claim 38, wherein the hash of the software application is

calculated using the Secure Hash Algorithm (SHA1).

40.|(New) The methodofclaim 38, wherein the step of verifying the authenticity of the

digital signature comprises the stepsof:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature keyto the digital signature to obtain a recovered

hash; and

authenticating the digital signature by comparing the calculated hash with the recovered

hash.

41. (New) The method of claim 40, comprising the further step of denying the software

application access to the API where the digital signature is not authenticated.

42. (New) The method of claim 40, wherein the signature key is a private signature key and

the corresponding signature key is a public signature key.

43. (New) A methodof controlling access to a sensitive application programming interface

(API) having a signature identifier on a mobile device, comprising the steps of:

registering one or more software developers that are trusted to develop software

applications which access the sensitive API;

receiving a hash of a software application;

determining whether the hash was sent by a registered software developer; and

generating a digital signature using the hash of the software application and a signature

identification corresponding to the signature identifier where the hash was sent by the registered

software developer;

wherein

the digital signature and the signature identification are appendedto the software

application; and

CLI-1069294v1

Page 1162 of 1415

Page 1163 of 1415

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application wherethe signature identification

corresponds with the signature identifier.

44. (New) The method of claim 43, wherein the step of generating the digital signature is

performed by a code signing authority.

45.|(New) The method of claim 43, wherein the step of generating the digital signature is

performed by applyinga signature key to the hash of the software application.

46.|(New) The method of claim 45, wherein the mobile device verifies the authenticity of the

digital signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the correspondingsignature key to the digital signature to obtain a recovered

hash;

determining whetherthe digital signature is authentic by comparing the calculated hash

with the recovered hash; and

denying the software application access to the sensitive API wherethe digital signatureis

not authenticated.

47, (New) A methodofrestricting access to application programming interfaces on a mobile

device, comprising the steps of:

loading a software application havingadigital signature and a signature identification on

the mobile device that requires access to one or more application programminginterfaces (APIs)

having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with

the signature identifier; and

denying the software application access to the one or more APIs where the software

application does not include an authentic digital signature .

CLI-1069294v1

Page 1163 of 1415

Page 1164 of 1415

48. (New) The methodofclaim 47, wherein the digital signature and signature identification

are associated with a type of mobile device.

49. (New) The method of claim 47, comprising the additionalstep of:

purging the software application from the mobile device where the software application

does not include an authentic digital signature. .

50.|(New) The method of claim 47, wherein:

the software application includesa plurality of digital signatures and signature

identifications; and

the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

51. (New) The method of claim 50, wherein each of the plurality of digital signatures and

associated signature identifications are generated by a respective corresponding codesigning

authority.

52.|(New) The method of claim 47, wherein the step of determining whether the software

application includes an authentic digital signature comprises the additionalsteps of:

verifying the authenticity of the digital signature where the signature identification

corresponds with respective onesof the at least one signature identifier.

53.|(New) The method of claim 51, wherein each of the plurality of digital signatures and —

signatureidentifications are generated by its corresponding code signing authority by applying a

respective private signature key associated with the code signing authority to a hash ofthe

software application.

CLI-1069294v1

Page 1164 of 1415

Page 1165 of 1415

54. (New) The method of claim 47, wherein the step of authenticating the digital signature

where the signature identification corresponds with the signature identifier comprises the steps

of:

verifying that the signature identification corresponds with the signature identifier authenticating

the digital signature where signature identification corresponds with the signature identifier

comprising the steps of:

storing a public signature key on a mobile device that correspondsto the private signature

key associated with the code signing authority which generatesthe digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

55.|(New) The methodofclaim 47, wherein:

the mobile device includesa plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any ofthe plurality of APIs requires an authentic global signature;

access to each ofthe plurality of sensitive APIs requires an authentic global signature and

an authentic digital signature associated with a signature identification;

the step of determining whether the software application includes an authentic digital

signature and signature identification comprises the steps of:

determining whether the one or more APIs to which the software application requires

access includes a sensitive API;

determining whetherthe software application includes an authentic global signature; and

determining whetherthe software application includes an authentic digital signature and

signature identification where the one or more APIs to which the software application requires

access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software application access to the one or more APIs comprises the

stepsof:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

CLI-1069294y1

Page 1165 of 1415

Page 1166 of 1415

denying the software application access to the sensitive API where the one or more APIs

to which the software application requires access includes a sensitive API, the software

application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive API.

56. (New) A code signing system for controlling access to application programming

interfaces (APIs) having signature identificaters by software applications, the code signing

system comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the APIs where the signature identifications correspond with the

signature identificaters of the respective APIs and wherea digital signature for a software

application is generated with a signature identification corresponding to a signature identificater

to access at least one API; and

acontrol system for allowing accessto at least one of the APIs wherethe digital signature

provided by the software application is authenticated bythe verification system.

57. (New) The codesigning system of claim 56, wherein a virtual machine comprisesthe

verification system and the control system.

58. (New) Thecodesigning system of claim 57, wherein the virtual machineis a Java virtual

machine installed on a mobile device.

59. (New) The codesigning system of claim 56, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

60. (New) The code signing system of claim 56, wherein the code signing system is installed

on a mobile device and the software application is a Java application for a mobile device.

61.|(New) The code signing system of claim 56, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

CLI-1069294v1

Page 1166 of 1415

Page 1167 of 1415

62. (New) The codesigning system of claim 56, wherein the APIs accessat least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UD.

63. (New) The code signing system of claim 56, wherein the digital signature is generated

using a private signature key under a signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

64. (New) The code signing system of claim 63, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticatesthe digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

65. (New) The code signing system of claim 56, wherein at least one of the APIs further

comprises:

a description string that 1s displayed to a user when the software application attempts to

access said at least one of the APIs.

66. (New) The code signing system of claim 56, wherein the APIs provides accessto at least

one of one or more core functions of a mobile device, an operating system, and hardware on a

mobile device.

67. (New) The code signing system of claim 56, wherein verification of a globaldigital

signature provided by the software applicationis required for accessing any of the APIs.

68. (New) A method ofcontrolling access to application programming interfaces (APIs)

having signature identifiers by software applications, the method comprising:

CLI-1069294v1t

Page 1167 of 1415

Page 1168 of 1415

authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the respective APIs and whereadigital signature for a software application is generated with a

signature identification corresponding to a signature identifier to access at least one APJ; and

allowing accessto at least one of the APIs where the digital signature provided by the

software application is authenticated.

69.|(New) The method of claim 68, wherein one digital signature and one signature

identification are provided by the software application access a library of at least one ofthe

APIs.

70. (New) The method of claim 68, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

71. (New) The method of claim 68, wherein the APIs accessat least one of a cryptographic

module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (UI).

72. (New) The method of claim 68, wherein the digital signature is generated using a private

signature key under a signature schemeassociated with the signature identification, and a public

signature key is used to authenticate the digital signature.

73. (New) The method of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

74. (New) The method of claim 68, whereinat least one of the APIs further comprises:

CLI-1069294v1

Page 1168 of 1415

Page 1169 of 1415

a descriptionstring that is displayed to a user when the software application attemptsto

accesssaid at least one of the APIs.

75. (New) The method of claim 68, wherein the APIs provides access to at least one of one

or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

76. (New) The method of claim 68, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs

77. (New) A management system for controlling access by software applicationsto

application programming interfaces (APIs) havingat least one signature identifier on a subset of

a plurality of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

software applicationsthat require accessto at least one of the APIs with a signature identifier on

the subset of the plurality of mobile devices, where a digital signature for a software application

is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

identifications that correspondto the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of

mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the respective software applicationsto access at least one of

the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

78. (New) The management system of claim 77, wherein a virtual machine comprises the

verification system and the control system.

CLI-1069294v1

Page 1169 of 1415

Page 1170 of 1415

79. (New) The managementsystem of claim 78, wherein the virtual machineis a Java virtual

machine and the software applications are Java applications.

80. (New) The managementsystem of claim 77, wherein the control system requires one

digital signature and one signature identification for each library ofat least one of the APIs.

81.|(New) The managementsystem of claim 77, wherein the APIs access atleast one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UD.

82.|(New) The management system of claim 77, wherein the digital signature is generated

using a private signature key undera signature scheme associated with the signature

identification, and the verification system uses a public signature key to authenticate the digital

signature.

83. (New) The management system of claim 82, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application underthe signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

84. (New) The management system of claim 77, wherein at least one of the APIs further

comprises:

a descriptionstring that is displayed to a user when the software application attempts to

access said at least one of the APIs.

85. (New) The management system of claim 77, wherein the subset of the plurality of mobile

devices comprises mobile devices under the control of at least one of a corporation and a carrier.

CLI-1069294v1

Page 1170 of 1415

Page 1171 of 1415

86. (New) The managementsystem of claim 77, wherein a global digital signature provided

by the software application has to be authenticated before the software applicationis allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

87.|(New) A method of controlling access by software applications to application

programming interfaces (APIs) havingat least one signature identifier on a subset of a plurality

of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subset ofthe plurality of mobile devices,

wherethe signature identifications provided to the software applications comprise those

signature identifications that correspond to the signature identifiers that are substantially only on

the subset of the plurality of mobile devices; wherein each mobile device ofthe subset of the

plurality of mobile devices comprises

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APIs

where the digital signature provided by the software application is authenticated by the

verification system.

88.|(New) The method of claim 87, wherein a virtual machine comprises the verification

system and the control system.

89. (New) The method of claim 88, wherein the virtual machineis a Java virtual machine

and the software applications are Java applications.

90.|(New) The method of claim 87, wherein the control system requires one digital signature

and one signature identification for each library of at least one of the APIs.

CLI-1069294v1

Page 1171 of 1415

Page 1172 of 1415

91. (New) The method of claim 87, wherein the APIs accessat least one of a cryptographic

module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

92. (New) The method of claim 87, whereinat least one of the digital signatures is generated

using a private signature key under a signature scheme associated with a signature identification,

and the verification system uses a public signature keys to authenticate said at least one of the

digital signatures.

93. (New) The method of claim 92, wherein:

at least one ofthe digital signatures is generated by applying the private signature key to

a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by

generating a hash of the software application to obtain a generated hash, applying the public

signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

94. (New) The method of claim 87, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attemptsto

access said at least one of the APIs.

95.|(New) The methodof claim 87, wherein the subset of the plurality of mobile devices

comprises mobile devices underthe control of at least one of a corporation anda carrier.

96.|(New) A mobile device for a subset of a plurality of mobile devices, the mobile device

comprising:

an application platform having application programminginterfaces (APIs);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

CLI-1069294y1

Page 1172 of 1415

Page 1173 of 1415

a control system for allowing a software application to accessat least one of the APIs

where a digital signature provided by the software application is authenticated by the verification

system;

wherein a code signing authority provides digital signatures and signature identifications

to software applications that require accessto at least one of the APIs such that the digital

signature for the software application is generated according to a signature schemeofa signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to allow access on

the subset ofthe plurality of mobile devices.

97. (New) The mobile device of claim 96, wherein a virtual machine comprises the

verification system and the control system.

98. (New) The mobile device of claim 97, wherein the virtual machine is a Java virtual

machine and the software application is a Java application.

99.|(New) The mobile device of claim 96, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

100. (New) The mobile device of claim 96, wherein the APIs of the application platform

accessat least one of a cryptographic module, which implements cryptographic algorithms, a

data store, a proprietary data model, and a user interface (UI).

101. (New) The mobile device of claim 96, wherein the digital signature is generated using a

private signature key underthe signature scheme,and the verification system uses a public

signature key to authenticate the digital signature.

102. (New) The mobile device of claim 101, wherein:

the digital signature is generated by applyingthe private signature keyto a hash of the

software application under the signature scheme; and

CLI-1069294v1

Page 1173 of 1415

Page 1174 of 1415

the verification system authenticates the digital signature by generating a hashofthe

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

103. (New) The mobile device of claim 96, wherein at least one of the APIs further

comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

104. (New) A method ofcontrolling access to application programming interfaces (APIs) of

an application platform of a mobile device for a subsetof a plurality of mobile devices, the

method comprising:

receiving digital signatures and signature identifications from software applicationsthat

require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to accessat least one of the APIs where a digital

signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require accessto at least one of the APIs such

that the digital signature for the software application is generated according to a signature

schemeofa signature identification, and wherein the signature identifications provided to the

software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

105. (New) The method of claim 104, wherein onedigital signature and one signature

identification is required for accessing each library of at least one of the APIs.

106. (New) The method of claim 104, wherein the APIs of the application platform access at

least one of a cryptographic module, which implements cryptographic algorithms,a data store, a

proprietary data model, and a userinterface (UJ).

CLI-1069294v!

Page 1174 of 1415

Page 1175 of 1415

107. (New) The method of claim 104, wherein the digital signature is generated using a

private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

108. (New) The method of claim 107, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature keyto the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

109. (New) The method of claim 104, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

Respectfully submitted,

Pryynclbln—
avid B. Cochran

Reg. No. 39,142
Jones, Day
North Point

901 Lakeside Avenue

Cleveland, OH 44114-1190

CLI-1069294y1

Page 1175 of 1415

Page 1176 of 1415

‘

Us SKLELY

mut 30MAR 2003 WO 02/25409

_Code SigningSystemAndMethod

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from and is related to the following prior applications:

5 "Code Signing System And Method," United States Provisional Application No. 60/234,152,

filed September 21, 2000; "Code Signing: System And Method,” United States Provisional

Application No. 60/235,354, filed September 26, 2000; and “Code Signing System And

Method," United States Provisional Application No. 60/270,663,filed February 20, 2001.

10 BACKGROUND

L. FIELD OF THE INVENTION

This invention relates generally to the field of security protocols for software

applications. More particularly, the invention provides a code signing system and method thatis

particularly well suited for Java™ applications for mobile communication devices, such as

15 Personal Digital Assistants, cellular telephones, and wireless two-way communication devices

(collectively referred to hereinafter as "mobile devices" or simply “devices’’).

2. DESCRIPTION OF THE RELATED ART

Security protocols involving software code signing schemes are known. Typically, such .

20 security protocols are usedto ensure the reliability of software applications that are downloaded

from the Internet. In a typical software code signing scheme, a digital signature is attached to a

software application that identifies the software developer. Once the software is downloaded by

a user, the user typically must use his or her judgment to determine whether or not the software

1

Page 1176 of 1415

Page 1177 of 1415

WO 02/25409 PCT/CA01/01344

application is reliable, based solely on his or her knowledge of the software developer's

reputation. This type of code signing scheme doesnot ensure that a software application written

by a third party for a mobile device will properly interact with the device's native applications

and other resources. Because typical code signing protocols are not secure and rely solely on the |

5 judgment of the user, there is a serious risk that destructive, "Trojan horse" type software

applications may be downloadedandinstalled onto a mobile device.

There also remains a need for network operators to have a system and method to maintain

control over which software applications are activated on mobile devices.

There remains a further need in 2.5G and 3G networks where corporate clients or

10 network operators would like to control the types of software on the devices issued to its

employees.

SUMMARY

A code signing system and method is provided. The code signing system operates in

15 conjunction with a software application having a digital signature and includes an application

platform, an application programming interface (APY), and a virtual machine. The API is

configured to link the software application with the application platform. The virtual machine

verifies the authenticity of the digital signature in order to control access to the API by the

software application.

20 A code signing system for operation in conjunction with a software application having a

digital signature, according to another embodiment of the invention comprises an application

platform, a plurality of APIs, each configured to link the software application with a resource on

Page 1177 of 1415

Page 1178 of 1415

WO 02/25409 PCT/CA01/01344

the application platform, and a virtual machine that verifies the authenticity of the digital

Signature in order to control access to the API by the software application, wherein the virtual

machine verifies the authenticity of the digital signature in order to control access to the plurality

. of APIs by the software application.

5 According to a further embodiment of the invention, a method of controlling access to

sensitive application programming interfaces on a mobile device comprises the steps of loading a

software application on the mobile device that requires access to a sensitive API, determining

whether or not the software application includes a digital signature associated with the sensitive

API, and if the software application does not inchide a digital signature associated with the

10 sensitive API, then denying the software application access to the sensitive API.

In another embodimentof the invention, a method of controlling access to an application

programming interface (APD on a mobile device by a software application created by a software

developer comprises the steps of receiving the software application from the software developer,

reviewing the software application to determine if it may access the API, if the software

15 application may-access the API, then appending a digital signature to the software application, °

verifying the authenticity of a digital signature appended to a software application, and providing

access to the API to software applications for which the appended digital signature is authentic.

A method of restricting access to a sensitive API on a mobile device, according to a

further embodiment of the invention, comprises the steps of registering one or more software

20 developers that are trusted to design software applications which access the sensitive API,

receiving a hash of a software application, determining if the software application was designed

by one of the registered software developers, and if the software application was designed by one

Page 1178 of 1415

Page 1179 of 1415

WO 02/25409 PCT/CA01/01344

of the registered software developers, then generating a digital signature using the hash of the

software application, wherein the digital signature may be appended to the software application,

and the mobile device verifies the authenticity of the digital signature in order to control access

to the sensitive API by the software application. ©

5 In a still further embodiment, a method ofrestricting access to application programming

interfaces on a mobile device comprises the steps of loading a software application on the mobile

device that requires access to one or more API, determining whether or not the software

application includes a digital signature associated with the mobile device, and if the software

application does not include a digital signature associated with the mobile device, then denying

10 the software application access to the one or more APIs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram illustrating a code signing protocol according to one embodiment of

the invention;

i) Fig. 2 is a flow diagram of the code signing protocol described above with reference to

Fig. 1;

Fig. 3 is a block diagram of a code signing system on a mobile device;

Fig. 3A is a block diagram of a code signing system on a plurality of mobile devices;

Fig. 4 is a flow diagram illustrating the operation of the code signing system described

20 above with reference to Fig. 3 and Fig. 3A;

Fig. 5 is a flow diagram illustrating the management of the code signing authorities

described with reference to Fig. 3A; and

Page 1179 of 1415

Page 1180 of 1415

WO 02/25409 PCT/CA01/01344

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented.

DETAILEDDESCRIPTION

5 Referring now to the drawing figures, Fig. 1 is a diagram illustrating a code signing

protocol according to one embodiment of the invention. An application developer 12 creates a

software application 14 (application Y) for a mobile device that requires access to one or more

sensitive APIs on the mobile device. The software application Y 14 may, for example, be a Java

application that operates on a Java virtual machine installed on the mobile device. An API

10 enables the software application Y to interface with an application platform that may include,for.

example, resources such as the device hardware, operating system and core software and data

models. In order to make function calls to or otherwise interact with such device resources, a

software application Y must access one or more APIs. APIs can thereby effectively “bridge” a

software application and associated device resources. In this description and the appended

15 claims, references to API access should be interpreted to include access of an API in such a way

as to allow a software application Y to interact with one or more corresponding device resources.

Providing access to any APItherefore allows a software application Y to interact with associated.

device resources, whereas denying access to an API prevents the software application Y from

interacting with the associated resources. For example, a database API may communicate with a

20~—device file or data storage system, and access to the database API would provide for interaction

between a software application Y and the file or data storage system. A user interface (UI) API °

would communicate with controllers and/or control software for such device components as a

Page 1180 of 1415

Page 1181 of 1415

WO 02/25409 PCT/CA01/01344

screen, a keyboard, and any other device components that provide output to a user or accept

input from a user. In a mobile device, a radio API may also be provided as an interface to

wireless communication resources such as a transmitter and receiver. Similarly, a cryptographic

- API may be provided to interact with a crypto module which implements crypto algorithms on a

5 device. These are merely illustrative examples of APIs that may be provided on a device. A

device may include any of these example APIs, or different APIs instead of or in addition to
those described above.

Preferably, any API may be classified as sensitive by a mobile device manufacturer, or

possibly by an API author, a wireless network operator, a device owner or operator, or some
10 other entity that may be affected by a virus or malicious code in a device software application.

For instance, a mobile device manufacturer may classify as sensitive those APIs that interface

with cryptographic routines, wireless communication functions, or proprietary data models such

as address book or calendar entries. To protect against unauthorized access to these sensitive

APIs, the application developer 12 is required to obtain one or more digital signatures from the

15 mobile device manufacturer or other entity that classified any APIs as sensitive, or from a code

signing authority 16 acting on behalf of the manufacturer or other entity with an interest in

protecting access to sensitive device APIs, and append the signature(s) to the software

application Y 14.

In one embodiment, a digital signature is obtained for each sensitive API or library that

20 includes a sensitive API to which the software application requires access. In some cases,

multiple signatures are desirable. This would allow a service provider, company or network

operator to restrict some or all software applications loaded or updated onto a particular set of

Page 1181 of 1415

Page 1182 of 1415

WO 02/25409 PCT/CA01/01344

mobile devices. In this multiple-signature scenario, all APIs are restricted and locked until a

“global” signature is verified for a software application. For example, a company may wish to

prevent its employees from executing any software applications onto their devices withoutfirst

obtaining permission from a corporate information technology (IT) or computer services

5 department. All such corporate mobile devices may then be configured to require verification of

at least a global signature before a software application can be executed. Access to sensitive

device APIs and libraries, if any, could then be further restricted, dependent upon verification of

respective corresponding digital signatures.

The binary executable representation of software application Y 14 may be independent of

10 ‘the particular type of mobile device or mode] of a mobile device. Software application Y 14 may

for example be in a write-once-run-anywhere binary format such as is the case with Java

software applications. However, it may be desirable to have a digital signature for each mobile

device type or model, or alternatively for each mobile device platform or manufacturer.

Therefore, software application Y 14 may be submitted to several code signing authorities if

15 software application Y 14 targets several mobile devices.

Software application Y 14 is sent from the application developer 12 to the code signing .

authority 16. In the embodiment shown in Fig. 1, the code signing authority 16 reviews the

software application Y 14, although’as described in further detail below,it is contemplated that

the code signing authority 16 may also or imstead consider the identity of the application

20 developer 12 to determine whether or not the software application Y 14 should be signed. The

code signing authority 16 is preferably one or more representatives from the mobile device

Page 1182 of 1415

Page 1183 of 1415

WO 02/25409 PCT/CA01/01344

manufacturer, the authors of any sensitive APIs, or possibly others that have knowledge of the

operation of the sensitive APIs to which the software application needs access.

if the code signing authority 16 determines that software application Y 14 may access the

sensitive API and therefore should be signed, then a signature (not shown) for the software

5 application Y 14 is generated by the code signing authority 16 and appended to the software

application Y 14. The signed software application Y 22, comprising the software application Y

14 and the digital signature, is then returned to the application developer 12. The digital

signature is preferably a tag that is generated using a private signature key'18 maintained solely

by the code signing authority 16. For example, according to one signature scheme, a hash of the

10 software application Y 14 may be generated, using a hashing algorithm such as the Secure Hash

Algorithm SHA1, and then used with the private signature key 18 to create the digital signature.

In some signature schemes, the private signature key is used to encrypt a hash of information to

be signed, such as software application Y 14, whereas in other schemes, the private key may be

used in other ways to generate a signature from the information to be signed or a transformed

15 version of the information.

The signed software application Y 22 may then be sent to a mobile device 28 or

downloaded by the mobile device 28 over a wireless network 24. It should be understood,

however, that a code signing protocol according to the present invention is not limited to

software applications that are downloaded over a wireless network. For instance, in alternative

20 embodiments, the signed software application Y 22 may be downloaded to a personal computer

via a computer network and loaded to the mobile device through a serial link, or may be acquired

from the application developer 12 in any other manner and loaded onto the mobile device. Once

Page 1183 of 1415

Page 1184 of 1415

WO 02/25409 PCT/CA01/01344

the signed software application Y 22 is loaded on the mobile device 28, each digital signature is

preferably verified with a public signature key 20 before the software application Y 14 is granted

access to a sensitive API library. Although the signed software application Y 22 is loaded onto a

device, it should be appreciated that the software application that may eventually be executed on

5 _ the device is the software application Y 14. As described above, the signed software application

Y 22 includes the software application Y 14 and one or more appended digital signatures (not

shown). When the signatures are verified, the software application Y 14 can be executed on the

device and access any APIs for which corresponding signatures have been verified.

The public signature key 20 corresponds to the private signature key 18 maintained by

10 ‘the code signing authority 16, and is preferably installed on the mobile device along with the

sensitive API. However, the public key 10 may instead be obtained from a public key repository

(not shown), using the device 28 or possibly a personal computer system, and installed on the

device 28 as needed. According to one embodiment of a signature scheme, the mobile device 28

calculates a hash of the software application Y 14 in the signed software application Y 22, using

15 the same hashing algorithm as the code signing authority 16, and uses the digital signature and

the public signature key 20 to recover the hash calculated by the signing authority 16. The

resultant locally calculated hash and the hash recovered from the digital signature are then

compared, and if the hashes are the same, the signature is verified. The software application Y

14 can then be executed on the device 28 and access any sensitive APIs for which the
20 corresponding signature(s) have been verified. As described above, the invention is in no way

limited to this particular illustrative example signature scheme. Other signature schemes,

Page 1184 of 1415

Page 1185 of 1415

WO 02/25409 PCT/CA01/01344

including further public key signature schemes, may also be used in conjunction with the code

signing methods and systems described herein.

Fig. 2 is a flow diagram 30 of the code signing protocol described above with reference

to Fig. 1. The protocol begins at step 32. At step 34, a software developer writes the software

5 application Y for a mobile device that requires access to a sensitive API or library that exposes a

sensitive API (API library A). As discussed above, some or all APIs on a mobile device may be

classified as sensitive, thus requiring verification of a digital signature for access by any software

application such as software application Y. In step 36, application Y is tested by the software

developer, preferably using a device simulator in which the digital signature verification function

10 has been disabled. In this manner, the software developer may debug the software application Y

before the digital signature is acquired from the code signing authority. Once the software

application Y has been written and debugged,it is forwarded to the code signing authority in step

38.

In steps 40 and 42, the code signing authority reviews the software application Y to

15. determine whether or not it should be given access to the sensitive API, and either accepts or

rejects the software application. Thecode signing authority may apply a number of criteria to

determine whether or not to grant the software application access to the sensitive API including,

for example, the size of the software application, the device resources accessed by the API, the

perceived utility of the software application, the interaction with other software applications, the

20 inclusion of a virus or other destructive code, and whether or not the developer has a contractual

obligation or other business arrangement with the mobile device manufacturer. Further details of

managing code signing authorities and developers are described below in reference to Fig.5.

10

Page 1185 of 1415

Page 1186 of 1415

WO 02/25409 PCT/CA01/01344

If the code signing authority accepts the software application Y, then a digital signature,

and preferably a signature identification, are appended to the software application Y in step 46.

As described above, the digital signature may be generated by using a hash of the software

application Y and a private signature key 18. The signature identification is described below

5_with reference to Figs. 3 and 4. Once the digital signature and signature identification are

appended to the software application Y to generate a signed software application, the signed

software application Y is returned to the software-developer in step 48. The software developer

may then license the signed software application Y to be loaded onto a mobile device (step 50).

If the code signing authority rejects the software application Y, however, then a rejection

10 notification is preferably sent to the software developer (step 44), and the software application Y

will be unable to access any API(s) associated with the signature.

In an alternative embodiment, the software developer may provide the code signing

authority with only a hash of the software application Y, or provide the software application Y in

some type of abridged format. If the software application Y is a Java application, then the device

15 independentbinary *.class files may be used in the hashing operation, although device dependent

files such as *.cod files used by the assignee of the present application may instead be used in

hashing or other digital signature operations when software applications are intended for

operation on particular devices or device types. By providing only a hash or abridged version of

the software application Y, the software developer may have the software application Y signed

20 without revealing proprietary code to the code signing authority. The hash of the software

application Y, along with the private signature key 18, may then be used by the code signing

authority to generate the digital signature. If an otherwise abridged version of the software

M1

Page 1186 of 1415

Page 1187 of 1415

WO 02/25409 PCT/CA01/01344

application Y is sent to the code signing authority, then the abridged version may similarly be

used to generate the digital signature, provided that the abridging schemeor algorithm, like a

hashing algorithm, generates different outputs for different inputs. This ensures that every

software application will have a different abridged version and thus a different signature that can

5 only be verified when appendedto the particular corresponding software application from which

the abridged version was generated. Because this embodiment does not enable the code signing

authority to thoroughly review the software application for viruses or other destructive code,

however, a registration process between the software developer and the code signing authority

may also be required. For instance, the code signing authority may agree in advanceto provide a

10 trusted software developer accessto a limited set of sensitive APIs.

In stil] another alternative embodiment, a software application Y may be submitted to

more than one signing authority. Each signing authority may for example be responsible for

signing software applications for particular sensitive APIs or APIs on a particular model of

mobile device or set of mobile devices that supports the sensitive APIs required by a software

15 application. A manufacturer, mobile communication network operator, service provider, or

corporate client for example may thereby have signing authority over the use of sensitive APIs

for their particular mobile device model(s), or the mobile devices operating on a particular

network, subscribing to one or more particular services, or distributed to corporate employees.

A signed software application may then include a software application and at least one appended

20=digital signature appended from each:of the signing authorities. Even though these signing

authorities in this example would be generating a signature for the same software application,

12

Page 1187 of 1415

Page 1188 of 1415

WO 02/25409 PCT/CA01/01344

different signing and signature verification schemes may be associated with the different signing
authorities.

Fig. 3 is a block diagram of a code signing system 60 on a mobile device 62. The system

60 includes a virtual machine 64, a plurality of software applications 66-70, a plurality of API

5 _ libraries 72-78, and an application platform 80. The application platform 80 preferably includes

all of the résources on the mobile device 62 that may be accessed by the software applications —

66-70. For instance, the application platform may include device hardware 82, the mobile

device's operating system 84, or core software and data models 86. Hach API library 72-78

preferably includes a plurality of APIs that interface with a resource available in the application

{0 platform. For instance, one API library might include all of the APIs that interface with a

calendar program and calendar entry data models. Another API library might include all of the
APIs that interface with the transmission circuitry and functions of the mobile device 62. Yet

another API Kibrary might include all of the APIs capable of interfacing with lower-level services

performed by the mobile device's operating system 84. In addition, the plurality of API libraries

1572-78 mayinclude both libraries that expose a sensitive API 74 and 78, such as an interface to a

cryptographic function, and libraries 72 and 76, that may be accessed without exposing sensitive

APIs. Similarly, the plurality of software applications 66-70 may include both signed software

applications 66 and 70 that require access to one or more sensitive APIs, and unsigned software

applications such as 68. The virtual machine 64 is preferably an object oriented run-time

20 environment such as Sun Micro System's J2ME™ Gava 2 Platform, Micro Edition), which
manages the execution of all of the software applications 66-70 operating on the mobile device

62, and links the software applications 66-70 to the various APTlibraries 72-78.

13

Page 1188 of 1415

Page 1189 of 1415

WO 02/25409 PCT/CA01/01344

Software application Y 70 is an example of a signed software application. Each signed

software application preferably includes an actual software application such as software

application Y comprising for example software code that can be executed on the application

platform 80, one or more signature identifications 94 and one or more corresponding digital

5 signatures 96. Preferably each digital signature 96 and associated signature identification 94 in a

signed software application 66 or 70 correspondsto a sensitive API library 74 or 78 to which the

software application X or software application Y requires access. The sensitive API library 74 or

78 may include one or more sensitive APIs. In an alternative embodiment, the signed software

applications 66 and 70 may include a digital signature 96 for each sensitive API within an API

{0 library 74 or 78. The signature identifications 94 may be unique integers or some other meansof

relating a digital signature 96 to a specific API library 74 or 78, API, application platform 80, or

model of mobile device 62.

API library A 78 is an example of an API library that exposes a sensitive API. Each API

library 74 and 78 including a sensitive API should preferably include a description string 88, a

15 public signature key 20, and a signature identifier 92. The signature identifier 92 preferably

corresponds to a signature identification 94 in a signed software application 66 or 70, and

enables the virtual machine 64 to quickly match a digital signature 96 with an API library 74 or

2B. The public signature key 20 corresponds to the private signature key 18 maintained by the

code signing authority, and is used to verify the authenticity of a digital signature 96. The
20 ~=description string 88 may for example be a textual message that is displayed on the mobile |

device when a signed software application 66 or 70 is loaded, or alternatively when a software —

application X or Y attempts to access a sensitive API.

14

Page 1189 of 1415

Page 1190 of 1415

WO 02/25409 PCT/CA01/01344

Operationally, when a signed software application 68-70, respectively including a

software application X, Z, or Y, that requires access to a sensitive API library 74 or 78 is loaded

onto a mobile device, the virtual machine 64 searches the signed for an appended digital

signature 96 associated with the API library 74 or 78. Preferably, the appropriate digital

5 signature 96 is located by the virtual machine 64 by matching the signature identifier 92 in the

API library 74 or 78 with a signature identification 94 on the signed software application. If the

signed software application includes the appropriate digital signature 96, then the virtual

machine 64 verifies its authenticity using the public signature key 20. Then, once the

appropriate digital signature 96 has been located and verified, the description string 88 is

10 preferably displayed on the mobile device before the software application X or Y is executed and

accesses the sensitive API. For instance, the description string 88 may display a messagestating

that “Application Y is attempting to access API Library A," and thereby provide the mobile

device user with the final control to grant or deny accessto the sensitive API.

Fig. 3A is a block diagram of a code signing system 61 on a plurality of mobile devices

15 62K, 62F and 62G. The system 61 includes a plurality of mobile devices each of which only

three are illustrated, mobile devices 62E, 62F and 62G. Also shown is a signed software

application 70, including a software application Y to which two digital signatures 96E and 96F

with corresponding signature identifications 94E and 94F have been appended. In the example

system 61, each pair composed of a digital signature and identification, 94B/96E and 94F/96F,

20~—scorresponds to a model of mobile device 62, API library 78, or associated platform 80. If
signature identifications 94E and 94F correspondto different models of mobile device 62, then

when a signed software application 70 which includes a software application Y that requires

15

Page 1190 of 1415

Page 1191 of 1415

WO 62/25409 PCT/CA01/01344

access to a sensitive API library 78 is loaded onto mobile device 62E, the virtual machine 64

searches the signed software application 70 for a digital signature 96E associated with the API

library 78 by matching identifier 94E with signature identifier 92. Similarly, when a signed

software application 70 including a software application Y that requires access to a sensitive API

5 library 78 is loaded onto a mobile device 62F, the virtual machine 64 in device 62F searches the

signed software application 70 for a digital signature 96F associated with the API library 78.

However, when a software application Y in a signed software application 70 that requires access

- to a sensitive API library 78 is loaded onto a mobile device model for which the application

developer has not obtained a digital signature, device 62G in the example of Fig. 3A, the virtual

10 machine 64 in the device 64G does not find a digital signature appended to the software

application Y and consequently, access to the API library 78 is denied on device 62G. It should
be appreciated from the foregoing description that a software application such as software

application Y may have multiple device-specific, library-specific, or API-specific signatures or

some combination of such signatures appended thereto. Similarly, different signature

15 verification requirements may be configured for the different devices. For example, device 62E

may require verification of both a global signature, as well as additional signatures for any

sensitive APIs.to which a software application. requires access in order for the software

application to be executed, whereas device 62F mayrequire verification of only a global

signature and device 62G may require verification of signatures only for its sensitive APIs. It
20 should also be apparent that a communication system may include devices (not shown) on which

a software application Y received as part of a signed software application such as 70 may

execute without any signature verification. Although a signed software application has one or

16

Page 1191 of 1415

Page 1192 of 1415

WO 02/25409 PCT/CA01/01344

more signatures appended thereto, the software application Y might possibly be executed on
some devices without first having any of its signature(s) verified. Signing of a software

application preferably does not interfere with its execution on devices in which digital signature

verification is not implemented. |

5 Fig. 4 is a flow diagram 100 illustrating the operation of the code signing system

described above with reference to Figs. 3 and 3A. In step 102, a software application is loaded

ontoa mobile device. Once the software application is loaded, the device, preferably using a

virtual machine, determines whether or not the software application requires access to any API

libraries that expose a sensitive API (step 104). If not, then the software application is linked

10 _—-with all of its required API libraries and executed (step 118). If the software application does

require access to a sensitive API, however, then the virtual machine verifies that the software
application includes a valid digital signature associated any sensitive APIs to which access is

required, in steps 106-116.

In step 106, the virtual machine retrieves the public signature key 20 and signature

1S identifier 92 from the sensitive API library. The signature identifier 92 is then used by the

virtual machine in step 108 to determine whetheror not the software application has an appended

digital signature 96 with a corresponding signature identification 94. If not, then the software

application has not been approved for access to the sensitive API by a code signing authority,

and the software application is preferably prevented from being executed in step 116. Tn
20~—alternative embodiments, a software application without a proper digital signature 96 may be

purged from the mobile device, or may be denied access to the API library exposing the sensitive

APIbut executed to the extent possible without access to the API library. It is also contemplated

17

Page 1192 of 1415

Page 1193 of 1415

WO 02/23409 PCT/CA01/01344

that a user may be prompted for an input when signature verification fails, thereby providing for

user control of such subsequent operations as purging of the software application from the

device.

If a digital signature 96 corresponding to the sensitive API library is appended to the

5 software application and located by the virtua] machine, then the virtual machine uses the public

key 20 to verify the authenticity of the digital signature 96 in step 110. This step may be

performed, for example, by using the signature verification scheme described above or other

alternative signature schemes. If the digital signature 96 is not authentic, then the software

application is preferably either not executed, purged, or restricted from accessing the sensitive
10 ~=APJ as described above with reference to step 116. If the digital signature is authentic, however,

then the description string 88 is preferably displayed in step 112, warning the mobile device user

that the software application requires access to a sensitive API, and possibly prompting the user
for authorization to execute or load the software application (step 114). When more than one

signature is to be verified for a software application, then the steps 104-110 are preferably

15 repeated for each signature before the useris prompted in step 112. If the mobile device user in

step 114 authorizes the software application, then it may be executed and linked to the sensitive

API library in step 118.

Fig. 5is a flow diagram 200 illustrating the management of the code signing authorities

described with reference to Fig. 3A. At step 210, an application developer has developed a new

20~~software application which is intended to be executable one or more target device models or

types. The target devices may include sets of devices from different manufacturers, sets of

device models or types from the same manufacturer, or generally any sets of devices having

18

Page 1193 of 1415

Page 1194 of 1415

WO 02/25409 PCT/CAOT1/01344

particular signature and verification requirements. The term “target device” refers to any such

set of devices having a common signature requirement. For example, a set of devices requiring

verification of a device-specific global signature for execution of all software applications may

comprise a target device, and devices that require both a global signature and further signatures

5 for sensitive APIs may be part of more than one target device set. The software application may

be written in a device independent mannerby using at least one known API, supported on at least

one target device with an API library. Preferably, the developed software application is intended

to be executable on several target devices, each of which has its own at least one API library.

At step 220, a code signing authority for one target device receives a target-signing

10 request from the developer. The target signing request includes the software application or a

hash of the software application, a developer identifier, as well as at least one target device

identifier which identifies the target device for which a signature is being requested. At step 230,

the signing authority consults a developer database 235 or other records to determine whether or

not to trust developer 220. This determination can be made according to several criteria

15. discussed above, such as whether or not the developer has a contractual obligation or has entered

into some other type of business arrangement with a device manufacturer, network operator,

‘service provider, or device manufacturer. If the developer is trusted, then the method proceeds at

step 240. However, if the developeris nottrusted, then the software application is rejected (250)

and not signed by the signing authority. Assuming the developer was trusted, at step 240 the

20 signing authority determinesif it has the target private key correspondingto the submitted target

identifier by consulting a private key store such as a target private key database 245. If the target

private key is found, then a digital signature for the software application is generated at step 260

19

Page 1194 of 1415

Page 1195 of 1415

WO 02/25409 PCT/CA01/01344

and the digital signature or a signed software application including the digital signature appended

to the software application is returned to the developerat step 280. However, if the target private

key is not found at step 240, then the software application is rejected at step 270 and nodigital

signature is generated for the software application.

5 Advantageously, if target signing authorities follow compatible embodiments of the

method outlined in Fig. 5, a network of target signing authorities may be established in order to

expediently manage code signing authorities and a developer community code signing process

providing signed software applications for multiple targets with low likelihood of destructive

code.

10 Should any destructive or otherwise problematic code be found in a software application

or suspected.because of behavior exhibited when a software application is executed on a device,

then the registration or privileges of the corresponding application developer with any orall

signing authorities may also be suspended or revoked, since the digital signature provides an

audit trail through which the developer of a problematic software application may be identified.

15 In such an event, devices may be informedof the revocation by being configured to periodically

download signature revocation lists, for example. If software applications for which the

corresponding digital signatures have been revoked are running on a device, the device may then

halt execution of any such software application and possibly purge the software application from

its local storage. If preferred, devices may also be configured to re-execute digital signature

20 verifications, for instance periodically or when a new revocation list is downloaded.

Although a digital signature generated by a signing authority is dependent upon

authentication of the application developer and confirmation that the application developer has

20

Page 1195 of 1415

Page 1196 of 1415

WO 02/25409 PCT/CA01/01344

been properly registered, the digital signature is preferably generated from a hash or otherwise

transformed version of the software application and is therefore application-specific. This

contrasts with known code signing schemes, in which API access is granted to any software

applications arriving from trusted application developers or authors. In the code signing systems

5 and methods described herein, API access is granted on an application-by-application basis and

thus can be morestrictly controlled or regulated.

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented. The mobile communication device 610 is preferably a\

two-way communication device having at least voice and data communication capabilities. The

10=device preferably has the capability to communicate with other computer systems on the Internet.

Depending on the functionality provided by the device, the device may be referred to as a data

messaging device, a two-way pager, a cellular telephone with data messaging capabilities, a

wireless Internet appliance or a data communication device (with or without telephony

capabilities).

15 Where the device 610 is enabled for two-way communications, the device will

incorporate a communication subsystem 611, including a receiver 612, a transmitter 614, and

associated components such as one or more, preferably embedded or internal, antenna elements

616 and 618, local oscillators (LOs) 613, and a processing module such as a digital signal

processor (DSP) 620. As will be apparent to those skilled in the field of communications, the

20 ~=particular design of the communication subsystem 611 will be dependent upon the

communication network in which the device is intended to operate. For example, a device 610

destined for a North American market may include a communication subsystem 611 designed to

21

Page 1196 of 1415

Page 1197 of 1415

WO 02/25409 . PCT/CA01/01344

operate within the Mobitex™ mobile communication system or DataTAC™ mobile

communication system, whereas a device 610 intended for use in Europe may incorporate a
General Packet Radio Service (GPRS) communication subsystem 611.

Network access requirements will also vary depending upon the type of network 919. For

5 example, in the Mobitex and DataTAC networks, mobile devices such as 610 are registered on

the network using a unique identification number associated with each device. In GPRS

networks however, network access is associated with a subscriber or user of a device 610. A

GPRS. device therefore requires a subscriber identity module (not shown), commonly referred to

as a SIM card, in order to operate on a GPRS network. Without a SIM card, a GPRS device will

10 not befully functional. Local or non-network communication functions (if any) may be operable,

but the device 610 will be unable to carry out any functions involving communications over

network 619, other than any legally required operations such as “911” emergency calling.
When required network registration or activation procedures have been completed, a

device 610 may send and receive communication signals over the network 619. Signals received

15 by the antenna 616 through a communication network 619 are input to the receiver 612, which

may perform such common receiver functions as signal amplification, frequency down

conversion,filtering, channel selection and the like, and in the example system shown in Fig. 6,

analog to digital conversion. Analog to digital conversionof a received signal allows more

complex communication functions suchas demodulation and decoding to be performed in. the
20 DSP 620.Ina similar manner, signals to be transmitted are processed, including modulation and

encoding for example, by the DSP 620 and input to the transmitter 614 for digital to analog

22

Page 1197 of 1415

Page 1198 of 1415

WO 02/25409 PCT/CA01/01344

conversion, frequency up conversion, filtering, amplification and transmission over the

communication network 619 via the antenna 618.

The DSP 620 not only processes communication signals, but also provides for receiver

and transmitter control. For example, the gains applied to communication signals in the receiver

5 612 and transmitter 614may be adaptively controlled through automatic gain contro] algorithms

implemented in the DSP 620.

The device 610 preferably includes a microprocessor 638 which controls the overall

operation of the device. Communication functions, including at least data and voice

communications, are performed through the communication subsystem 611. The microprocessor

10 638 also interacts with further device subsysteras or resources such as the display 622, flash

memory 624, random access memory (RAM) 626, auxiliary input/output (I/O) subsystems 628,

serial port 630, keyboard 632, speaker 634, microphone 636, a short-range communications

subsystem 640 and any other device subsystems generally designated as 642. APIs, including

sensitive APIs requiring verification of one or more corresponding digital signatures before

15 access is granted, may be provided on the device 610 to interface between software applications

and any of the resources shownin Fig. 6.

Some of the subsystems shown in Fig. 6 perform communication-related functions,

whereas other subsystems may provide “resident” or on-device functions. Notably, some

subsystems, such as keyboard 632 and display 622 for example, may be used for both

20 communication-related functions, such as entering a text message for transmission over a

communication network, and device-resident functions such as a calculatorortask list.

23

Page 1198 of 1415

Page 1199 of 1415

WO 02/25409 PCT/CA01/01344

Operating system software used by the microprocessor 638, and possibly APIs to be

accessed by software applications, is preferably stored in a persistent store such as flash memory

624, which may instead be a read only memory (ROM)or similar storage element (not shown).

Those skilled in the art will appreciate that the operating system, specific device software

5 applications, or parts thereof, may be temporarily loaded into a volatile store such as RAM 626.

It is contemplated that received and transmitted communication signals may also be stored to

RAM 626.

The microprocessor 638, in addition to its operating system functions, preferably enables

execution of software applications on the device. A predetermined set of applications which

10s control basic device operations, including at least data and voice communication applications for

example, will normally be installed on the device 610 during manufacture. A preferred

application that may be loaded onto the device may be a personal information manager (PIM)

application having the ability to organize and manage data items relating to the device user such

as, but not limited to e-mail, calendar events, voice mails, appointments, and task items.

15 Naturally, one or more memory stores would be available on the device to facilitate storage of

PIM data items on the device. Such PIM application would preferably have the ability to send

and receive data items, via the wireless network. In a preferred embodiment, the PIM data items

are seamlessly integrated, synchronized and updated, via the wireless network, with the device

user’s corresponding data items stored or associated with a host computer system thereby

20 creating a mirrored host computer on the mobile device with respect to the data items at least.

This would be especially advantageous in the case where the host computer system is the mobile

device user’s office computer system. Further applications, including signed software

Page 1199 of 1415

Page 1200 of 1415

WO 02/25409 PCT/CA01/01344

applications as described above, may also be loaded onto the device 610 through the network

619, an auxiliary I/O subsystem 628, serial port 630, short-range communications subsystem 640

or any other suitable subsystem 642. The device microprocessor 638 may then verify any digital

signatures, possibly including both “global” device signatures and API-specific signatures,

5 appendedto such a software application before the software application can be executed by the

microprocessor 638 and/or access any associated sensitive APIs. Such flexibility in application

installation increases the functionality of the device and may provide enhanced on-device

functions, communication-related functions, or both. For example, secure communication

applications may enable electronic commerce functions and other such financial transactions to

10_—be performed using the device 610, through a crypto API and a crypto module which implements

crypto algorithms on the device (not shown).

In a data communication mode, a received signal such as a text message or web page

download will be processed by the communication subsystem 611 and input to the

microprocessor 638, which will preferably further process the received signal for output to the

15 display 622, or alternatively to an auxiliary I/O device 628. A user of device 610 may also
compose data items such as email messages for example, using the keyboard 632, which is

preferably a complete alphanumeric keyboard or telephone-type keypad, in conjunction with the

display 622 and possibly an auxiliary VO device 628. Such composed items may then be

transmitted Over a communication network through the communication subsystem 611.

20 For voice communications, overall operation of the device 610 is substantially similar,

except that received signals would preferably be output to a speaker 634 and signals for

transmission would be generated by a microphone 636. Alternative voice or audio I/O

25

Page 1200 of 1415

Page 1201 of 1415

WO 02/25409 PCT/CA01/01344

subsystems such as a voice message recording subsystem may also be implemented on the

device 610. Although voice or audio signal output is preferably accomplished primarily through

the speaker 634, the display 622 may also be used to provide an indication of the identity of a

calling party, the duration of a voice call, or other voice call related information for example.

5 * -The serial port 630 in Fig. 6 would normally be implemented in a personal digital

assistant (PDA)-type communication device for which synchronization with a user’s desktop

computer (not shown) maybe desirable, but is an optional device component. Such a port 630

would enable a user to set preferences through an external device or software application and
would extend the capabilities of the device by providing for information or software downloads

10 to the device 610 other than through a wireless communication network. The alternate download

path may for example be usedto load an encryption key onto the device through a direct and thus

reliable and trusted connection to thereby enable secure device communication.

A short-range communications subsystem 640 is a further optional component which

may provide for communication between the device 624 and different systems or devices, which

15 need not necessarily be similar devices. For example, the subsystem 640 miay include an infrared

device and associated circuits and components or a Bluetooth™ communication module to

provide for communication with similarly-enabled systems and devices.

The embodiments described herein are examples of structures, systems or methods

having elements corresponding to the elements of the invention recited in the claims. This

20 —s-written description may enable those skilled in the art to make and use embodiments having

alternative elements that likewise correspond to the elements of the invention recited in the

claims. The intended scope of the invention thus includes other structures, systems or methods

26

Page 1201 of 1415

Page 1202 of 1415

WO 02/25409 PCT/CA01/01344

that do not differ from the literal language of the claims, and further includes other structures,

systems or methods with insubstantial differences from theliteral language of the claims.

For example, when a software application is rejected at step 250 in the method shown in

Fig. 5, the signing authority may request that the developer sign a contract or enter into a

5 business relationship with a device manufacturer or other entity on whose behalf the signing

authority acts. Similarly, if a software application is rejected at step 270, authority to sign the

software application may be delegated to a different signing authority. The signing of a software

application following delegation of signing of the software application to the different authority .

can proceed substantially as shown in Fig. 5, wherein the target signing authority that received

10 the original request from the trusted developer at step 220 requests that the software application

be signed by the different signing authority on behalf of the trusted developer from the target

Signing authority. Once a trust relationship has been established between code signing

authorities, target private code signing keys could be shared between code signing authorities to

improve performance of the methodat step 240, or a device may be configured to validate digital

15 signatures from either of the trusted signing authorities.

In addition, although described primarily in the context of software applications, code

signing systems and methods according to the present invention may also be applied to other

device-related components, including but in no way limited to, commands and associated

command arguments, and libraries configured to interface with device resources. Such

20 commands andlibraries may be sent to mobile devices by device manufacturers, device owners,

network operators, service providers, software application developers and the like. It would be

desirable to control the execution of any command that may affect device operation, such as a

27

Page 1202 of 1415

Page 1203 of 1415

WO 02/25409 PCT/CA01/01344

commandto change a device identification code or wireless communication network address for

example, by requiring verification of one or more digital signatures before a command can be

executed on a device, in accordance with the code signing systems and methods describedand

claimed herein.

28

Page 1203 of 1415

Page 1204 of 1415

WO 62/25409 PCT/CA01/01344

Weclaim:

1. Acode signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

5 an application programming interface (API) configured to link the software application

with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application.

10 2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authentic.

3. The code signing system of claim 1, wherein the virtual machine purges the software

application if the digital signature is not authentic.

15

4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

20 signing authority.

29

Page 1204 of 1415

Page 1205 of 1415

WO 02/25409 PCT/CA01/01344

6. A code signing system for operation in conjunction with a software application having a

digita] signature, comprising:

an application platform,

a plurality of application programming interfaces (APIs), each configured to link the

5 software application with a resource on the application platform; and

a virtual machinethat verifies the authenticity of the digital signature in order to control

access to the API by the software application,

wherein the virtual machine verifies the authenticity of the digital signature in order to control

access to the plurality of APIs by the software application.

10

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library. ‘

8. The code signing system of claim 6, wherein one or more ofthe plurality of APIs is classified

15 aS sensitive, and wherein the virtual machine uses the digital signature to control access to the

sensitive APIs.

9. The code signing system of claim 8, for operation in conjunction with a plurality of software

applications, wherein one or moreofthe plurality of software applications has a digital signature,

20 and wherein the virtual machineverifies the authenticity of the digital signature of each of the

one or more of the plurality of software applications in order to control access to the sensitive

APIs by each of the plurality of software applications.

30

Page 1205 of 1415

Page 1206 of 1415

WO 02/25409 PCT/CA01/01344

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system.

5 11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

comprises a data store.
1

10

13. The code signing system of claim 6, wherein the resource on the application platform
jd

comprises a user interface (UD).

14. The code signing system of-claim 1, further comprising:

15 a plurality of API libraries each including a plurality of APIs, wherein the virtual

machine controls accessto the plurality of API libraries by the software application.

15. The code signing system of claim 14, wherein one or more of the plurality of API librariesis

classified as sensitive, and wherein the virtual machineuses the digital signature to control

20 access to the sensitive API libraries by the software application.

31

Page 1206 of 1415

Page 1207 of 1415

WO 02/25409 PCT/CA01/01344

16. The code signing system of claim 15, wherein the software application includes a unique

digital signature for each sensitive API library.

17. The code signing system of claim 16, wherein:

5 the software application includes a signature identification for each unique digital

signature;

each sensitive API library includes a signature identifier, and

the virtual machine compares the signature identification and the signature identifier to

match the unique digital signatures with sensitive API libraries.

10

18. The code signing system of claim 1, wherein the digital signature is generated using a

private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

15 19. The code signing system of claim 18, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

20=digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

32

Page 1207 of 1415

Page 1208 of 1415

WO 02/25409 PCT/CA01/01344

20. The code signing system of claim 1, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

5 21. The code signing system of claim 1, wherein the application platform comprises an

Operating system.

22. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

10

23. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

24. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

15 module (SIM)card.

25. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.

20 26. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

33

Page 1208 of 1415

Page 1209 of 1415

WO 02/25409 PCT/CA01/01344

27. The code signing system of claim 1, wherein the API interfaces with a proprietary data

mode] on the application platform.

28. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

5 installed on a mobile device.

29. A method of controlling access to sensitive application programming interfaces on a mobile

device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

10~—application programming interface (API);

determining whetheror not the software application includes a digital signature

associated with the sensitive API; and

if the software application does not include a digital signature associated with the

sensitive API, then denying the software application access to the sensitive API.

15

30. The method of claim 29, comprising the additional step of:

if the software application does not include a digital signature associated with the

sensitive API, then purging the software application from the mobile device.

20 31. The method of claim 29, wherein the digital signature is generated by a code signing

authority.

34

Page 1209 of 1415

Page 1210 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

32. The method of claim 29, comprising the additional steps of:

if the software application includes a digital signature associated with the sensitive API,

then verifying the authenticity of the digital signature; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

33. The method of claim 32, comprising the additional step of:

if the digital signature is not authentic, then purging the software application from the

mobile device.

34. The method of claim 32, wherein the digital signature is generated by applying a private

signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the stepsof:

storing a public signature key that correspondsto the private signature key on the mobile

device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

35. The method of claim 34, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

35

Page 1210 of 1415

Page 1211 of 1415

WO 02/25409 PCT/CA01/0134+4

36. The method of claim 29, comprising the additional stepof:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

5 37. The method of claim 36, comprising the additional step of:

receiving a commandfrom the user granting or denying the software application access

to the sensitive API.

38. A method of controlling access to an application programming interface (API) on a mobile

10~—device by a software application created by a software developer, comprising the steps of:

receiving the software application from the software developer;

reviewing the software application to determineif it may access the API;

if the software application may access the API, then appending a digital] signature to the

software application;

15 verifying the authenticity of a digital signature appended to a software application; and

providing access to the API to software applications for which the appendeddigital

signature is authentic.

39. The methodof claim 38, wherein the step of reviewing the software application is performed

20. by acode signing authority.

36

Page 1211 of 1415

Page 1212 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

40. The method of claim 38, wherein the step of appending the digital signature to the software

application is performed by a method comprising the stepsof:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

41. The method of claim 40, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHA1).

42. The method of claim 40, wherein the step of verifying the authenticity of a digital signature

comprises the steps of:

providing a corresponding signature key on the mobile device;
calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash.

43. The method of claim 42, comprising the furtherstep of, if the digital signature is not

authentic, then denying the software application access to the API.

37

Page 1212 of 1415

Page 1213 of 1415

WO 02/25409 PCT/CA01/01344

44. The methodof claim 42, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

45. A method of controlling access to a sensitive application programminginterface (API) on a

5 mobile device, comprising the steps of:

registering one or more software developers that are trusted to design software

applications which access the sensitive API;

receiving a hash of a software application;

determining if the software application was designed by one of the registered software

10 developers; and

if the software application was designed by one of the registered software developers,
then generating a digital signature using the hash of the software application, .

wherein

the digital signature may be appended to the software application; and

15 the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application.

46. The method of claim 45, wherein the step of generating the digital signature is performed by
a code signing authority.

20

47. The method of claim 45, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

38

Page 1213 of 1415

Page 1214 of 1415

10

15

20

hash;

WO 02/25409 PCT/CA01/01344

48. The methodof claim 47, wherein the mobile device verifies the authenticity of the digital

signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

49. A method of restricting access to application programming interfaces on a mobile device,

comprising the steps of:

loading a software application on the mobile device that requires access to one or more

application programming interface (APD;

determining whetheror not the software application includes an authentic digital

Signature associated with the mobile device; and |

if the software application does not include an authentic digital signature associated with

the mobile device, then denying the software application access to the one or more APIs.

39

Page 1214 of 1415

Page 1215 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

50. The method of claim 49, comprising the additionalstep of:

if the software application doesnot include an authentic digital signature associated with

the mobile device, then purging the software application from the mobile device.

51. The method of claim 49, wherein:

the software application includesa plurality of digital signatures; and

the plurality of digital signatures includes digital signatures respectively associated with

different types of mobile devices.

$2. The method of claim 51, wherein each of the plurality of digital signatures is generated by a

respective corresponding code signing authority.

53. The method of claim 49, wherein the step of determining whetheror not the software

application includes an authentic digital signature associated with the mobile device comprises

the additional steps of:

determining if the software application includes a digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signature.

54, The methodof claim 53, wherein the one or more APIs includes one or more APIs classified

as sensitive, and the method further comprises the steps of, for each sensitive API:

| determining whetheror not the software application includes an authentic digital _
signature associated with the sensitive API; and

40

Page 1215 of 1415

Page 1216 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

if the software application does not include an authentic digital signature associated with

the sensitive API, then denying the software application access to the sensitive AFI.

55. The method of claim 52, wherein each of the plurality of digital signatures is generated by

its corresponding code signing authority by applying a respective private signature key

associated with the code signing authority to a hash of the software application.

56. The methodof claim 55, wherein the step of determining whetheror notthe software

application includes an authentic digital signature associated with the mobile device comprises

the steps of:

determiningif the software application includesa digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signature,

wherein the step of verifying the authenticity of the digital signature is performed by a method

comprising the steps of:

storing a public signature key on a mobile device that correspondsto the private signature

key associated with the code signing authority which generates the signature associated with the

mobile device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

41

Page 1216 of 1415

Page 1217 of 1415

WO02/25409A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY(PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

 (NYMDAATT

(10) Internationa! Publication Number
WO 02/25409 A2

(31)

(21)

(22)

(25)

(26)

(30)

(71)

GO6F 1/00International Patent Classification’:

International Application Number: =PCT/CA01/01344

International Filing Date:
20 September 2001 (20.09.2001)

Filing Language: English

Publication Language: English

Priority Data: .
60/234,152 21 September 2000 (21.09.2000) US
60/235,354 26 September 2000 (26.09.2000) US
60/270,663 20 February 2001 (20.02.2001) US

Applicant (for all designated States except US): RE-
SEARCHIN MOTIONLIMITED[CA/CA], 295 Phillip
Street, Waterloo, Ontario N2L 3W8 (CA).

(72)
(75)

(74)

(81)

Inventors; and
Inventors/Applicants (for US only): YACH, David, P.
[CA/CA]; 254 Castlefield Avenue, Waterloo, Ontario N2K
2N1 (CA). BROWN, Michael, S. [CA/CA]; 7 Danube
Street, Heidelberg, Ontario NOB 1Y0 (CA). LITTLE,
Herbert, A. [CA/CA]; 504 Old Oak Place, Waterloo,
Ontario N2T 2V8 (CA).

Agent: PATHIYAL, Krishna, K.; Research In Motion
Limited, 295 Phillip Street, Waterloo, Ontario N2L 3W8
(CA).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, Fl, GB, GD, GE, GH,
GM,HR,HU,ID,IL, IN,IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, Mw,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,

[Continued on next page]

(34) Title: CODE SIGNING SYSTEM AND METHOD

1x ApplicationDeveloper Y Code signer

Signed
Application

Y 22

Device

=

Page 1217 of 1415

(57) Abstract: A code signing system and method is pro-
vided. The code signing system operates in conjunction with
a signed software application having a digital signature and
includes an application platform,an application programming
interface (API), and a virtual machine. The API is configured
to link the software application with the application platform.
The virtual machineverifies the authenticity ofthe digital sig-
nature in order to control access to the API by the software
application.

Page 1218 of 1415

107381219

WO 02/25409 PCT/CA01/01344

1/7

Application
Y

 Application

12 Developer Y

Code signer

Signed
Application

Y 22as
—

24

Wireless

Network

29 Application
Y 28

Device
12

EG Va 20

1 Oo”

Figure 1

Page 1218 of 1415

Page 1219 of 1415

WO 02/25409

Figu re 2

»\

52

Page 1219 of 1415

Rejection
Notification to

Software
Developer

10/3812129
PCT/CA01/01344

Application Y uses
_ LibraryA

Test Application Y
in device simulator
with no signature

verification.

36

38

Application Y
forwarded toCode
Signing Authority

Application Y
reviewed by Code
Signing Authority

CadeSigning
Authority signs

Application Y with
Digital Signature

 Accept Code?

Return Application 48
Y to Software
Developerwith

AppendedDigital
Signature

50

Application Y
loaded on Mobile

Device.

Page 1220 of 1415

r
wee ol Xe

WO 02/25409

Page 1220 of 1415

API Library D

API Library C with sensitive API

Application Platform API Library B

API Library A with sensitive API

78

Operating System

Public Key
to Verify

Signaiure

Description
Core Sofware & String

Data Models

Signature
Identifier

Virtual Machine

(

Mobile Device

Figu re 3

10/381 229
PCT/CAO1/01344

Application X (signed)

Application Z

Application Y (signed)

70

Signature Identification -A

Digital Signature - A

ignature Identification -C

Digital Signature - C

Page 1221 of 1415

eetae a 6Pugs aii May 8 oe tb tat, i Of 4 Bi 2 q 9
WO 02/25409 PCT/CA01/01344

4I7

; : !
| {80[~~78

 Application Library with sensitive AP] Application Y
Platform (782 (signed)
Device 94E 96E

Hardware

Operating
System

Description
string

to verify
signature

| a.

Virtual Machine i

| a

64 Li

Mobile Device H
/ Mobile Device i

\tee Device
62E

62F

,) 62G
61

Figure 3A

Page 1221 of 1415

Page 1222 of 1415

. | 107381219
WO 02/25409 PCT/CA01/01344

5/7
102

Application Loaded
on Mobile Device

 Does Application
Need Accessto Sensitive

AP! Library?

Figu re 4

 Virtual Machine’
Retrieves Public

Key and Signature
\dentifier from API

Library

1068

ON

Proper
Signature on
Application?

 Signature
Verified?

User Prompted

116

Application Not
Loadedor Execute >
Executed Application?

Virtual Machine

executes
Application and
linkds with API

Library

120

Page 1222 of 1415

Page 1223 of 1415

107381219
_ wo 02/23409 PCT/CA01/01344+t oe

6/7

Application
Developed

Receive Target
Signing Request

210

220

250
230

Developer DeveloperP Trusted by N—»{ Reject Application
Database .

Authority?

245
Y 270

240

Target
Private Key Havewat N Reject Application
Database y!

260

Y

Sign Application

280. \500
Return

Signature

Figure 5

Page 1223 of 1415

Page 1224 of 1415

PCT/CA01/01344WO 02/25409

7/7

orgcv9

SUOEOIUNLWLUODsweysfsqng|ssss|+Qeebuew-WoUsa01NaqJAUIO|
[0U0ve

19Wiwsuedl,
sjeuBls!eLg|s9¢9ge9:O17
|auoydouoiyy|douol

o_o'029ZL9|peg!Jonnod
i—jdsaJOANIa00y

oreo]TSase5!!ZE9aBo|
pseoghay5

8

ogg5aA_WOq|euas=ao
9z9O/|Aretixny

Page 1224 of 1415

Page 1225 of 1415

~ Express Mail No. EV 243791125 US
March 20, 2003

¥ PTO/SB/01 (03-01)
Approvedfor use through 10/31/2002. OMB 0651-0032

U.S. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit contains a valid OMB contro! number.

at

AttornyDock t Numb r
 DECLARATION FORUTILITY OR

 David P. YACH

DESIGN First Nam _d Inv_ntor
PATENT APPLICATION

Application Number

Filing Date March 20, 2003
Group Art Unit

(37 CFR 1.63)

Declaration LC] Declaration
RSubmitted Oo Submitted after Initial

with Initial Filing (surcharge
Filing (37 CFR 1.16 (e)) ;

required) Examiner Name

As a below namedinventor, | hereby declare that:

My residence, mailing address, and citizenship are as stated below next to my name.

| believe | am theoriginal,first and sole inventor(if only one nameislisted below)or an original,first and joint inventor (if plural
namesarelisted below) of the subject matter whichis claimed and for which a patent is sought on the invention entitled:

SOFTWARECODESIGNING SYSTEM AND METHOD

 ; (Title of the Invention)

the specification of which

is attached hereto

OR

] wasfiled on (MM/DD/YYYY) as United States Application Number or PCT International

Application Number[and was amended on (MM/DD/YYYY)[(if applicable).
I herebystate that | have reviewed and understand the contents of the above identified specification, including the claims, as
amended by any amendmentspecifically referred to above.

| acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56,including for continuation-

in-part applications, material information which becameavailable betweenthefiling date of the prior application and the national orPCT internationalfiling date of the continuation-in-part application.

| hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or(f), or 365(b) of any foreign application(s) for patent, inventor's
or plant breeder's rights certificate(s), or 365(a) of any PCT international application which designated at least one country other
than the United States of America, listed below and have alsoidentified below, by checking the box, any foreign application for
patent, inventor's or plant breeder's rights certificate(s), or any PCT international application havingafiling date before that of theapplication on whichpriority is claimed

Prior Foreign Application Foreign Filing Date Priority Certified Copy Attached?
Number(s) Country MM/DD. Not Claimed YES NO

CL) fF]
C]
LJ
CJ

C| Additional foreign application numbers arelisted on a supplementalpriority data sheet PTO/SB/02B attached hereto:
[Page 1 of 2]

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needsofthe individual case. Any comments on
the amountof time you are required to complete this form should be sentto the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.SEND TO:Assistant Commissioner for Patents, Washington, DC 20231. ~

Page 1225 of 1415

Page 1226 of 1415

PTO/SB/01 (03-01)
Approvedfor use through 10/31/2002, OMB 0651-0032

U.S, Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respondto a collection of information untessit contains a valid OMB controi number.

DECLARATION — Utility or Design Patent Application

Direct all correspondence to: {] customereer[| OR Correspondence address below
David B. Cochran, Esq.

JONES oaiBoin $01LakesideAvenue.AddressNorthPoint,901LakesideAvenue|

Clevelandod Ohio 44114-1190State- ZIP ey

Count Telephone Fax

| hereby declare that all statements made herein of my own knowledgeare true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledgethat willful false statements and the like so
made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that suchwillful false statements may jeopardize the
validity of the application or any patentissued thereon.

NAME OFSOLE OR FIRST INVENTOR: C] A petition has been filed for this unsigned inventor

Given Name avidP.Family Name YACH
(first and middle (if any]) or Surname

Inventor's .Signature fof C AK gi? March 2003

Name

295 Phillip Street
Mailing Address

Waterloo Ontario N2L 3w8 CANADA
City State ZIP Country

NAME OF SECOND INVENTOR:[} A petition has beenfiled for this unsigned inventor

Given Name MichaelS. Family Name BROWN
(first and middle[Ifany]) > or Surname

Waterloo Ontario CANADA Canadian
Residence: City ——-——_— State Country Citizenship

Inventor's
Signature Da Mon (0 Loosite

Waterloo 4 Ontario CANADA CanadianResidence: City Country Citizenship

Mailing Address 295 Phillip Street

CountryA Additional inventors are being named on the 1_'__supplementaAdditional Inventor(s) sheet(s) PTO/SB/02A attached hereto.
[Page 2 of 2]

Page 1226 of 1415

Page 1227 of 1415

PTO/SB/02A (10-00)
Approved for use through 10/31/2002. OMB 0651-0032

US.Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit contains a valid OMB contro! number.

ADDITIONAL INVENTOR(S)

DECLARATION Supplemental Sheet
Page 1 of 1_

HerbertA.LITTLE

Count Citizenship

Family Name
or Surname

Ontario
StateWaterlooResidence’

295 Phillip Street
Mailing Address

 Mailing Address
i CANADA

city Waterloo galaro zipN2L 3W8
Nameof Additional Joint Inventor,if any: CLApetition has beenfiled for this unsigned inventor

Family Name
or Surname

aSignature

‘nessonncydsscountycise
Mailing Address

Mailing Address

fyiteeecms
Name ofAdditional Joint Inventor,if any: COApetition has beenfiled for this unsigned inventor

Family Name
or Surname

Inventor's

Mailing Address

Mailing Address

aPP
Burden Hour Statement: This form is estimated to take 21 minutes to complete. Timewill vary depending upon the needsof the individual case. Any comments
on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington,
DC 20231. DO NOT SEND FEES OR COMPLETED FORMSTO THIS ADDRESS.SENDTO:Assistant Commissionerfor Patents, Washington, DC 20231.

Page 1227 of 1415

Page 1228 of 1415

Express Mail No. EV 243791125 US

on March eSJ)
Please type a plus sign (+)inside this box ——> PTO/SB/81 (02-01)

Appraved for use through 10/31/2002, OMB 0651-0035
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Aci of 1995, no persons ara required to respondto a collection of information unless It display a valid OMB control number.

ApplicatonNumber |

Filing Date _———_____

First Named Inventor

 POWEROF ATTORNEY OR

AUTHORIZATION OF AGENT
fexaminerName|
Attomey Docket Number [555255012423

| hereby appoint:
Place Customer

(] Practitioners at Customer Number [——»|Number Bar Code
OR Label here
Practitioner(s) named below:

PeNameRegistrationNumber|

48091

[Pleasesee attachedsheet——SsSSCCidCSCSSCSCSCS
a

as my/our attorney(s) or agent(s) to prosecute the application identified above, and to transact all
businessin the United States Patent and Trademark Office connected therewith.

Please change the correspondence addressfor the above-identified applicationto:
The above-mentioned Customer Number.

Place CustomerOR

CI Practitioners at Customer Number {sid ———>|Number Bar CodeLabel here

Firm or

In—Sneulare_|dual Name David B. Cochran, Esq.|Address JONES DAY
North Point, 901 Lakeside Avenue

|city —*dClevelandIStateJO=~zip[dtd

| am the:

CL) Applicant/Inventor.

Assignee of record ofthe entire interest. See 37 CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96).

SIGNATUREof Applicant or Assignee of Record

Hy idis, President and Co-CEO,on behaif of Research In Motion Limited

pmsbyaeeSS[owe7Teea
of or assignees of record ofthe entire interest or their representative(s) are required. Submit multiple

formsif more than one signature is required, see below’.

(3 ‘Total of 2 forms are submitted. (PTO/SB/81 (02-01) and “Supplemental PageListing Additional Agems of Record)

Burden Hour Statement: This form is estimated to take 3 minutes to complete. Time will vary dependingupon the needs ofthe individual case. Any comments anthe amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC
20231. DO NOT SEND FEES OR COMPLETED FORMSTO THIS ADDRESS. SEND TO:Assistant Commissioner for Patents, Washington, DC 20231.

Page 1228 of 1415

Page 1229 of 1415

555255012423

SOFTWARE CODESIGNING SYSTEM AND METHOD

* SUPPLEMENTALPAGELISTING ADDITIONAL AGENTS OF RECORD

ADAMO,Kenneth R., Reg. No. 27,299
ARNDT,Barbara E., Reg. No. 37,768
ASAM,Michael R. Reg. No. 51,417
BIERNACKI,John V., Reg. No. 40,511
COCHRAN,David B., Reg. No. 39,142
COOPER,Lorri W., Reg. No. 40,038
FAY, ReganJ., Reg. No. 26,878
FEELING,F. Drexel, Reg. No. 40,602
FRANZ,Paul E., Reg. No. 45,910
GRIFFITH, Calvin P., Reg No. 34,831
MAIORANA,David M., Reg. No. 41,449
O'HEARN, TimothyJ., Reg. No. 31,552
ROSE,Mitchell, Reg. No. 47,906
SAUER,Joseph M., Reg. No. 47,919
SCANLON,Stephen D., Reg. No. 32,755
SERRA, Wayne M., Reg. No. 51,138
SHEAFFER,JennyL., Reg. No. 45,099
SWITZER,H. Duane, Reg. No. 22,431
VARY,Michael W., Reg. No. 30,811
WAMSLEY,IH, James L., Reg. No. 31,578

allof JONES DAY
North Point

901 Lakeside Avenue

Cleveland, Ohio 44114
US

Page 1229 of 1415

Page 1230 of 1415

PTO-1556

(5/87)

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

U.S. Government Printing Office: 2001 — 481-697/59173

Page 1230 of 1415

Page 1231 of 1415

. a Ha.

PATENT APPLICATION FEE DETERMINATIONRECORD
Effective October 1, 2001 ve Bee

CLAIMS AS FILED - PART | SMALL ENTITY OTHER THAN
TYPE C_] OR SMALL ENTITY

RAT

Application or Docket Number

m

 TOTAL CHARGEABLE CLAIMS

INDEPENDENT CLAIMS11,minus3=
MULTIPLE DEPENDENT CLAIM PRESENT CT]

* If the difference in column 1 is less than zero, enter “O” in column 2

CLAIMS AS AMENDED- PARTIl

Column1 Column 2
ae Ta | IGHEST

[ee REMAINING & a : NUMBER PRESENT

7 os AFTER eee=PREVIOUSLY EXTRA ,
. a AMENDMENT " PAID FOR

fratfeosm
independent [«|MinusJwm=|=
FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM CT]

~<A _s ?

 QD §

Ut

OR] +280=

OR TOTAL

OTHER THAN

SMALL ENTITY OR SMALLENTITY.

ADDI- ADDI-
RATE|TIONAL

FEE

ra
xa|
ve |
|

|

FEE

AMENDMENTA

TOTAL

oOa
ryom:

a5z>-

ADDIT. FEE

"HIGHEST
REMAINING Ze) |sNUMBER ADDI- ADDI-

AFTER PREVIOUSLY ‘RA TIONAL TIONAL
AMENDMENT [en PAID FOR FEE | FEE

X$18=

TE

Peep
Pees|

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

AMENDMENTB
oR|_*64=

oOa

>9

5S5>: mm
m

OR| +280=

TOTAL

OR port. FEE
AL

 5

HIGHEST
REMAINING / NUMBER ADDI-

. PREVIOUSLY TIONAL RATE|TIONAL
‘ FEE FEE

Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

oO
ke
z
i
=
Q
z
WwW
=
<

°av xS
i

* Ifthe entry in column 1 Is less than th try in column 2,write "0" in column 3. ‘ TOTAL** ifthe ‘High st Number Previously Paid For” IN THIS SPACEis less than 20, enter "20." snort. FEE P| OR
“*if the “Highest Number Previously Paid For" IN THIS SPACEis less than 3, nter “3.”

Th “Highest Number Previously Paid For’ (Total or Independent) is the high st numberfound in the appropriate box in column1.

FORM PTO-675 (Rev. 8/01) Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCEru S GPO. 7001 an2-174 759197

Page 1231 of 1415

Page 1232 of 1415

TAMALA HOLLAND
FRARALEGAL SPECIALIST
OSSIGNATEU OFFICE:
(703) 305-8488

SERIAL NO. FILING DATE

APPLICANTS)

! MULTIPLE DEPENDENT CLAIM
! PEE CALCULATION SHEET

(FOR USE WITH FORM PTO-875)
i
{

 AFTER

AFTER
3st AMENDMENT E2nd AMENDMENT

:ad..vabape|~||~heeanf~~| ~ae~~
meefm

i|

IHH
Patent and Trademark OfficeUS. DEPARTM

*MAY BE UBED FOR ADDITIONAL CLAIMS OR AMENDMENTS

wifcafcofaqwo]wo]|co]awolxstdie!]oleawoeojrtst)ww&]ODIO

Page 1232 of 1415

Page 1233 of 1415

fot L
ALIGT

ieae
SIGNATED OFETCE-

(703) 3054488

rNRERALFGAL SPE
&.

- TAMALAHOLLAND

i

\d Trademark Office

FILING DATE

US. DEPARTMENT of CO!Patent sn

>i

zz5<8a85S|‘2ae]ele2.[ze]<fz38/8)is8B8]Siefa[efeleeleieyele3/8)818/38a5218(6s[6sbaoat.fe..Pe|PoIPoeSECUTIaATTAPPRATTsiaTSETEEEPEEERTETERSERPareerrPerPreePerey|(3EA=fsts|e=|EEE344E{5lef{=|=felsfafala}=oa245EcalweltSTSSSRrssAledALa]eSalyayAaajaR&3oo|62+]]+i

AFTER

*MAY BE USED FOR ADDITIONAL CLAIMS OR AM

AFTER
1st AMENDMENT f2nd AMENDMENT

LED

{MULTIPLE DEPENDENT CLAIM
: FEE CALCULATION SHEET
| (FOR USE WITH FORM PTO-875)

'

j

AloSoae]

48

 22
23

Page 1233 of 1415

Page 1234 of 1415

ATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCTArticle 18 and Rules 43 and 44)

 FURTHER ‘€e Notification of Transmittal of International Search Reportoeion (Form PCT/ISA/220) as well as, where applicable, item 5 below.
internationalfiling date (day/month/year)

20/09/2001

Applicant's or agent's file reference

PCA-0445
international application No.

PCT/CA 01/ 01344
Applicant

(Eartiest) Priority Date (day/month/year)

21/09/2000

RESEARCH IN MOTION LIMITED |

t

This tnternational Search Report has been prepared by this International Searching Authority and is transmitted to the applicant
according to Article 18. A copy is being transmitted t4 the International Bureau.

This international Search Report consists of a total of 3 sheets.
{tis also accompanied by a copy of each prior art documentcited in this report.

1.

Basis of the report

a. With regard to the language,the international search was carried out on the basis of the internatianal application in the
language in whichit wasfiled, unless otherwise indicated underthis item.

the international search wascarried out on the basis of a translation of the international application furnished to this
Authority (Rule 23.1(b)).

b. With regard to any nucleotide and/or amine acid sequence disclosed in the international application, the international search
was Carried out on the basis of the sequencelisting :

contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readble form.

the statementthat the subsequently furnished written sequence listing does not go beyond the disclosure in the
international application as filed has been furnished.

the statementthat the information recorded in computer readable form is identical to the written sequence listing has been
furnished

Certain claims were found unsearchable (See Box |).
OOOOOOO

Unity of invention is lacking (see Box Il).

With regard to thetitle,

LC] the text is approved as submitted by the applicant.
[X] the text has been established by this Authority to read asfollows:

SOFTWARE CODE SIGNING SYSTEM AND METHOD

5. With regard to the abstract,

the text is approved as submitted by the applicant.

LC] the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box Il, The applicant may,within one month from the date of mailing of this international search report, submit commentsto this Authority.

6. The figure of the drawings to be published with the abstractis Figure No. 2

L) as suggested by the applicant. LC) Noneof the figures.
[X] becausethe applicantfailed to suggest a figure.
LC] because this figure better characterizes the invention.

Form PCT/ISA/210 (first sheet) (July 1998)

Page 1234 of 1415

Page 1235 of 1415

INTERNATIONAL SEARCH REPORT International Application No

A 01/01344

A. CLASSIFICATION OF SUBJECT MA
IPC 7 GO6F1/00

According to International Patent Classification (IPC) or 1o both national classification and IPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 GOQ6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAd

C, DOCUMENTS CONSIDERED TO BE RELEVANT

Category °|Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

WO 99 05600 A (APPLE COMPUTER) 1,2,6,7,
4 February 1999 (1999-02-04) 12-15,

21,26,
27,29, 32

abstract; figures 5,6,9
page 6, line 1 - line 15
page 19, line 4 - line 14
page 20, line 19 -page 21, line 4
page 24, line 6 ~— line 23
page 25, line 23 - line 26

[x] Further documentsarelisted in the continuation of box C. Patent family members are listed in annex.
° Special categories of cited documents : . ' .later document published after the intemationalfiling date
spe ee ape or priority date and notin conflict with the application butA* document defining the general state of the art which is not 5 inci j

consideredto be of particularrelevan cited to understand the principle or theory underlying theinvention

‘Ee eamterdocument but pubfished onorafter the international *X* documentof particular relevance; the claimed inventionfling date cannot be considered novel or cannot be considered to

L document which may throw doubts on priority ciaim(s) or involve an inventive step when fhe documentis taken atonewhichis cited to establish the publication date of another "¥* documentof ji . ps ; ‘villas . particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when thedocumentreferring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled

documentpublished priorto the internationalfiling date but in the art.later than the priority date claimed *& document memberof the same patent family
Date of the actual completion of the intemational search Date of mailing of the international search repon

12 April 2002 22/04/2002
Nameand mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2

Nt 7 2280 HV Rijswijk‘al. (431-70) 340-2040, Tx. 31 651 epo ni,
1 Fax: (431-70) 340-3016 Powell, D

Forn PCT/ASA/210 (second sheet) (July 1992)

page 1 of 2

Page 1235 of 1415

Page 1236 of 1415

INTERNATIONAL SEARCH REPORT

International Application No

A 01/01344
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Gategory °?|Citation of document, with indication,where appropriate, of the relevant passages Relevani to claim No.

EP 0 930 793 A (TEXAS INSTRUMENTS INC)
21 July 1999 (1999-07-21)

abstract; figure 6
page 15, line 54 -page 16, line 5
page 16, line 32 - line 44

US 6 157 721 A (SIBERT W OLIN ET AL)
5 December 2000 (2000-12-05)

abstract; figures 2,3,5,8,14
column 2, line 27 - line 65
column 11, line 7 - line 19
column 15, line 23 - line 41
& AU 36815 97 A (INTERTRUST TECHNOLOGIES
CORP) 19 February 1998 (1998-02-19)

US 5 978 484 A (APPERSON NORMAN ET AL)
2 November 1999 (1999~11-02)

abstract; figure 5
column 2, line 41 - line 60
column 3, line 44 - line 57
column 8, line 17 - line 25

Form PCTASA/210 (continuation of second sheet) (July 1992)

page 2 of 2

Page 1236 of 1415

Page 1237 of 1415

INTERNATIONAL SEARCH REPORT
ation on patent family members

tnternational Application No

A A 01/01344

Patent document Publication Patent family Publication
cited in search report date member(s) date

WO 9905600 A 04-02-1999 =-US 6188995 Bl 13-02-2001
EP 1023664 A2 02-08-2000

9905600 04-02-1999

A 21-07-1999 1249643 05-04-2000
EP 0930793 Al 21-07-1999

11312152 09-11-1999

US 6157721 A 05-12-2000 AU 3205797 05-12-1997
AU 3681597 A 19-02-1998

CN 1225739 A 11-08-1999
EP 0898777 A2 03-03-1999
JP 2001501763 T 06-02-2001
wo 9743761 A2 20-11-1997
US 6292569 B1 18-09-2001

2002023214 21-02-2002

Form PCTASA/210 (patent family annex) (July 1992)

Page 1237 of 1415

Page 1238 of 1415

PCT/CA01/01344

RENT COOPERATION TREAT
From the INTERNATIONAL BUREAU

PCT

Commissioner

NOTIFICATION OF ELECTION US Department of Commerce
United States Patent and Trademark

(PCT Rule 61.2) Office, PCT
2011 South Clark Place Room
CP2/5C24

Arlington, VA 22202
~~-United-States-of America—_

in its capacity as elected Office

 Date of mailing (day/month/year)

17 September 2002 (17.09.02)

international application No. Applicant's or agent'sfile reference

PCT/CA01/01344 PCA-0445

Internationalfiling date (day/month/year) Priority date (day/month/year)

20 September 2001 (20.09.01) 21 September 2000 (21.09.00)

Applicant

YACH,David, P. et al

1. The designated Office is hereby notified of its election made:

in the demandfiled with the International Preliminary Examining Authority an:

22 April 2002 (22.04.02)

‘a in a notice effecting later election filed with the International Bureau on:

2. The election was

[} was not
made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under
Rule 32.2(b).

Autharized officer
TheInternationa! Bureau of WIPO

34, chemin des Colombett s Denise POSPIEZNY
1211 Geneva 20, Switzerland

Facsimile No.: (41-22) 740.14.35 Telephone No.: (41-22) 338.83.38

Form PCT/IB/331 (July 1992) CA0101344

Page 1238 of 1415

Page 1239 of 1415

v

AOAA
WO02/25409:A3

_ (19) World Intellectual) Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY(PCT)

International Bureau

(43) International Publication Date

 UNAM ANO TANEA

(10) International Publication Number

28 March 2002 (28.03.2002) PCT WO 02/25409 A3

(51) International Patent Classification’: GO6F 1/00=(72) Inventors; and
(75) Inventors/Applicants (for US only): YACH, David, P.

(21) International Application Number:=PCT/CAO1/01344 [CA/CA]; 254 Castlefield Avenue, Waterloo, Ontario N2K
2N1 (CA). BROWN, Michael, S. [CA/CA]: 7 Danube

(22) International Filing Date: Street. Heidelberg, Ontario NOB 1Y0 (CA). LITTLE,
20 September2001 (20.09.2001) Herbert, A. (CA/CA]. 504 Old Oak Place, Waterloo,Ontario N2T 2V8 (CA).

(25) Filing Language: English (74) Agent: PATHIYAL, Krishna, K.; Research In Motion
oo. . Limited, 295 Phillip Street, Waterloo, Ontario N2L 3W8

(26) Publication Language: English (CA).

(30) Priority Data: (81) Designated States (national): AE. AG. AL, AM. AT, AU,
60/234,152 21 September 2000 (21.09.2000) US AZ. BA, BB, BG. BR, BY, BZ, CA, CH, CN. CO, CR. CU,
60/235,354 26 September 2000 (26.09.2000) US CZ, DE. DK, DM.DZ, EC, EE, ES, Fl, GB, GD. GE, GH.
60/270,663 20 February 2001 (20.02.2001) US GM. HR. HU,ID, IL, IN, [S. JP, KE, KG, KP. KR, KZ. LC,

LK. LR, LS. LT, LU. LV, MA. MD, MG. MK. MN, MW,

(71) Applicant (for all designated States except US): RE- MX, MZ. NO, NZ, PL. PT, RO, RU. SD, SE, SG, SI. SK.
SEARCHIN MOTION LIMITED [CA/CA}, 295 Phillip
Strect, Waterlou. Ontario N2L 3W8 (CA).

SL. TJ. TM, TR, TT, TZ. UA. UG. US, UZ, VN, YU, ZA.
ZW.

[Continued on next page]

(54) Title: SOFTWARE CODE SIGNING SYSTEM AND METHOD

Page 1239 of 1415

(57) Abstract: A code signing system and methodis provided.
The code signing system operates in conjunction with a signed
software application having a digital signature and includes
an application platform, an application programminginterface
(API), and a virtual machine. The API is configured to link the
software application with the application platform. The virtual
machine verifies the authenticity of the digital signature in
order to control access to the API by the software application.

Page 1240 of 1415

WO 02/25409 A3 eure
(84) Designated States (regional): ARIPO patent (GH. GM. —_before the expiration of the time limit Jor amending the

KE. LS, MW, MZ, SD. SL, SZ, TZ. UG, ZW). Eurasian claims and to be republished in the event ofreceipt of
patent (AM. AZ. BY. KG, KZ, MD. RU. TJ. TM). European amendments
patent (AT, BE. CH. CY, DE, DK, ES, FI, FR. GB. GR.IE.

IT. LU. MC, NL, PT. SE, TR). OAPI paient (BF, BJ. CF. (88) Date of publication ofthe international search report:
} CG, Cl. CM, GA. GN, GQ. GW. ML. MR, NE. SN. TD. 13 June 2002

TG).

For two-letter codes and other abbreviations. refer to the "Guid-
5 Publisbed: ance Notes on Codes andAbbreviations" appearing at the begin-

— with international search report ning ofeach regular issue ofthe PCT Gazette.

Page 1240 of 1415

Page 1241 of 1415

i‘ PATENT COOPERATION TREAT

INTERNATIONAL SEARCH REPORT

(PCT Anticle 18 and Rules 43 and 44)

FOR FURTHER (‘see Notification of Transmittal of International Search Report
ACTION (Form PCT/ISA/220)as well as, where applicable, item 5 below.

internationalfiling date (day/month/year)

20/09/2001

 Applicant's or agent'sfile reference

PCA-0445
International application No.

PCT/CA 01/ 01344
Applicant

 (Earliest) Priority Date (day/month/year)

21/09/2000

 RESEARCH IN MOTION LIMITED

This International Search Report has been preparedbythis International Searching Authority and is transmitted to the applicant
according to Article 18. A copyis being transmitted to the International Bureau.

This International Search Report consists of a total of 3 sheets.

Itis also accompanied by a copy of each prior art documentcited in this report,

1. Basis of the report

a. With regard to the language,the international search was carried out on the basis of the international application in the
language in whichit wasfiled, unless otherwise indicated underthis item.

LC] the international search wascarried out on the basisof a translation ofthe international application furnished to this
Authority (Rule 23.1(b)).

b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search
wasCarried out on the basis of the sequencelisting :

contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

fumished subsequently to this Authority in computer readble form.

the statementthat the subsequently furnished written sequence listing does not go beyondthe disclosure in the
international application as filed has been furnished.

the statementthat the information recorded in computer readableform is identical to the written sequence listing has beenOOOOOOCo furnished

2. Certain claims were found unsearchabie (See Box|).
3. Unity of invention is lacking (see Box Ii).

|
4. With regardto the title,

[_]_the text is approved as submitted by the applicant.
[X] the text has been established by this Authority to read as follows:

SOFTWARE CODE SIGNING SYSTEM AND METHOD

5. With regard to the abstract,

[X]} the text is approved as submitted by the applicant.
' L] the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box Ill. The applicant may,

within one month from the date of mailing of this international search report, submit commentsto this Authority.

6. Thefigure of the drawingsto be published with the abstractis Figure No. a2

[| as suggested by the applicant. [] Noneofthe figures.
[X] because the applicantfailed to suggest a figure.
CL becausethis figure better characterizes the invention.

Form PCT/SA/210 (first sheet) (July 1998)

Page 1241 of 1415

Page 1242 of 1415

 i

CLASSIFICATION OF SUBJEC
Tee 7 GOOF 1/00

INTERNATIONAL SEARCH REPORT ‘national Application No

/CA 01/01344

According to Internationa! Patent Classification (IPC) orto both national classification and IPC

Minimum documentation searched (classification system followed by classification symbois)
IPC 7 GO6F

ew

Documentation searched other than minimum documentation lo the extent that such documents are included in the fietds searched

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Cilation of document, with indication, where appropriate, of the relevant passages

WO 99 05600 A (APPLE COMPUTER)
4 February 1999 (1999-02-04)

abstract; figures 5,6,9
page 6, line 1 - line 15
page 19, line 4 - line 14
page 20, line 19 -page 21, line 4
page 24, line 6 - line 23
page 25, line 23 - line 26

[x] Further documentsarelisted in the continuation of box C. Ix]Patent famity members are listed in annex.
° Special categories of cited documents:

“A" document defining the general state of the ari which is not
considered to be of particular relevance

"E® earlier document but published on or afier the international
filing date

L document which may throw doubts on priority claim(s) or
whichis cited to establish the publication date of another
citation or other speciat reason (as specified)

} "O* documentreferring to an oral disclosure, use, exhibition or‘ other means
P document published prior to the internationat filing date but

later than the priority date claimed

Date of the actual completionof the international search

12 April 2002

Name and mailing address of the ISA
European Patent Office, P.B. 5618 Patentlaan 2
NL - 2280 HV Rijswijk

1 Tel. (431-70) 340-2040, Tx. 31 651 epo ni,Fax: (431-70) 340-3016

Fom PCT/SA/210 (second sheet) (July 1992)

Page 1242 of 1415

*T® later document published after the international filing date
of priority date and not in conflict with {he application but
cited to understandthe principle or theory underlying theinvention

*X" documentof particular relevance; the claimed inventioncannot be considered novel or cannot be considered to
involve an inventive step when the documentis taken alone

Y documentof particular relevance; the claimed invention
cannot be considered lo involve an inventive step when thedocumentis combined with one or more other such docu—
ments, such combination being obvious to a person skilledin the an.

& document memberof he same patent family

Date of mailing of the international search report

22/04/2002
Authorized officer

Powell, D

page 1 of 2

Page 1243 of 1415

INTERNATIONAL SEARCH REPORTY C "national Application No
AT/CA 01/01344

Relevant to claim No.

C«(Continuation) DOCUMENTS CG PERED TO BE RELEVANT

Citation of document, with indicationwhere appropriate, of the relevant passages

EP 0 930 793 A (TEXAS INSTRUMENTS INC) 1,3-6,
21 July 1999 (1999-07-21) 8-10,20,

22-24,
28-33,

’ 36,37

 abstract; figure 6
page 15, line 54 -page 16, line 5
page 16, line 32 - line 44

 34,35

US 6 157 721 A (SIBERT W OLIN ET AL)

11,18,
5 December 2000 (2000-12-05) 19,26,

31,34,
 35, 38-56

 abstract; figures 2,3,5,8,14
column 2, line 27 - line 65
column 11, line 7 - line 19
column 15, line 23 — line 41
& AU 36815 97 A CINTERTRUST TECHNOLOGIES
CORP) 19 February 1998 (1998-02-19)

 US 5 978 484 A CAPPERSON NORMAN ET AL)
2 November 1999 (1999-11-02)

abstract; figure 5
column 2, line 41 - line 60
column 3, line 44 - line 57
column 8, line 17 - line 25

Form PCTASA/210 (continuation of second sheet) (July 1992)

page 2 of 2

Page 1243 of 1415

Page 1244 of 1415

INTERNATIONALSEARCH REPORT
Information on patent family members }_Tatlonal Apptication No

T/CA 01/01344

Patent document Publication Patent famity Publication
cited in search report date member(s) date

WO 9905600 A 04-02-1999 US 6188995 Bl 13-02-2001
EP 1023664 A2 02-08-2000

9905600 04-02-1999

A 21-07-1999 1249643 05-04-2000
EP 0930793 Al 21-07-1999

11312152 09-11-1999

US 6157721 A 05-12-2000 3205797 05-12-1997

AU 3681597 A 19-02-1998
CN 1225739 A 11-08-1999
EP 0898777 A2 03-03-1999
JP=.2001501763 T 06-02-2001
Wo 9743761 A2 20-11-1997
US 6292569 Bl 18-09-2001

2002023214 21-02-2002

Form PCT/ASA/210 (patent family annex) (July 1992)

Page 1244 of 1415

Page 1245 of 1415

WO02/25409

SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Page 1245 of 1415

AZ ——_FOMUIOONNUAOAN Gee CAEATA

Published:

—_without international search report and to be republished
upon receipt ofthat report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes andAbbreviations" appearing at the begin-
ning ofeach regular issue ofthe PCT Gazette.

Page 1246 of 1415

10

)

20

a] pls 7 Express Mail No. EV 243791125 US
March 20, “PO 132 1 2 J 9

DTOGRec'd PCTIPTO 2 > MAR 5003
SOFTWARE CODE SIGNING SYSTEM AND METHOD

EV24 A791 LASUS
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from and is related to the following prior applications:

"Code Signing System And Method,” United States Provisional Application No. 60/234,152,
filed September 21, 2000; "Code Signing System And Method," United States Provisional

Application No. 60/235,354, filed September 26, 2000; and "Code Signing System And

Method,” United States Provisional Application No. 60/270,663, filed February 20, 2001.

BACKGROUND

L. FIELD OF THE INVENTION

This invention relates generally to the field of security protocols for software

applications. More particularly, the invention provides a code signing system and methodthatis

particularly well suited for Java™ ‘applications for mobile communication devices, such as

Personal Digital Assistants, cellular telephones, and wireless two-way communication devices
(collectively referred to hereinafter as “mobile devices" or simply “devices”).

2. DESCRIPTION OF THE RELATED’ART

Security protocols involving software code signing schemes are known. Typically, such

security protocols are used to ensure thereliability of software applications that are downloaded

from the Internet. In a typical software code signing scheme, a digital signature is attached to a

software application that identifies the software developer. Once the software is downloaded by

a user, the user typically must use his or her judgment to determine whether or not the software

1

Page 1246 of 1415

Page 1247 of 1415

ere eN

application is reliable, based solely on his or her knowledge of the software developer's
reputation. This type of code signing scheme doesnot ensure that a software application written

by a third party for a mobile device will properly interact with the device's native applications

and other resources. Because typical code signing protocols are not secure andrely solely on the

5 judgment of the user, there is a serious risk that destructive, “Trojan horse" type software

applications may be downloaded andinstalled onto a mobile device.

There also remains a need for network operators to have a system and methodto maintain

control over which software applications are activated on mobile devices. ° ao

There remains a further need in 2.5G and 3G networks where corporate clients or

10 network operators would like to control the types of software on the devices issued to its

employees.

SUMMARY~

A code signing system and method is provided. The code signing system operates in

15 .- conjunction with a software application having a digital signature and includesan application

platform, an application programming interface (API), and a virtual machine. The ‘API is
configured to link the software application with the application platform. The virtual machine
verifies the authenticity of the digital signature in order to control access to the API by the

software application.

20 A code signing system for operation in conjunction with a software application having a

digital signature, according to another embodiment of the invention comprises an application

platform,a plurality of APIs, each configured to link the software application with a resource on

Page 1247 of 1415

Page 1248 of 1415

the application platform, and a virtual machine that verifies the authenticity of the digital

signature in order to control access to the API by the software application, whereinthe virtual

machine verifies the authenticity of the digital signature in order to contro} access to the plurality. _

of APIs by the software application.

5 According to a further embodiment of the invention, a method of controlling access to

sensitive application programminginterfaces on a mobile device comprises the steps of loading a

software application on the mobile device that requires access to a sensitive API, determining

whether or not the software application includes a digital signature associated with the sensitive

API, and if the software application does not include a digital signature associated with the

10 sensitive API, then denying the software application access to the sensitive API.

In another embodimentof the invention, a method of controlling access to an application

eeeinterface (API) on a mobile device by a software application created by a software

developer comprises the steps of receiving the software application from the software developer,

reviewing the software application to determine if it may access the API, if the software

15 application may access the API, then appending a digital signature to the software application,

verifying the authenticity of a digital signature appendedto a software application, and providing -
access to the APIto software applications for which the appended digital signature is authentic.

A method ofrestricting access to a sensitive API on a mobile device, according toa

further embodiment of the invention, comprises the steps of registering one or more software

20 developers that are trusted to design software applications which access the sensitive API,

receiving a hash of a software application, determining if the software application was designed

by one of the registered software developers, and if the software application was designed by one

Page 1248 of 1415

Page 1249 of 1415

i bar:

of the registered software developers, then generating a digital signature using the hash of the

software application, wherein the digital signature may be appended to the software application,

and the mobile device verifies the authenticityof the digital signature in order to control access
to the sensitive API by the software application.

5 In a still further embodiment, a method ofrestricting access to application programming

interfaces on a mobile device comprises the steps of loading a software application on the mobile

device that requires access to one or more API, determining whether or not the software

application includes a digital signature associated with the mobile device, and if the software

application does not include a digital signature associated with the mobile device, then denying

10 ‘the software application access to the one or more APIs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. | is a diagram illustrating a code signing protocol according to one embodimentof

the invention;

15. Fig. 2 is a flow diagram of the code signing protocol described above with reference to

Figl; | oe a?
Fig. 3 is a block diagram of a code signing system on a mobile device;

Fig. 3A isa block diagram of a code signing system on a plurality of mobile devices;
_ Fig. 4 is a flow diagram illustrating the operation of the code signing system described

20 above with reference to Fig. 3 and Fig. 3A;

Fig. 5 is a flow diagram illustrating the management of the code signing authorities

described with reference to Fig. 3A; and

Page 1249 of 1415

Page 1250 of 1415

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented.

DETAILEDDESCRIPTION .

5 Referring now to the drawing figures, Fig. 1 is a diagram illustrating a code signing

protocol according to one embodimentof the invention. An application developer 12 creates a

software application 14 (application Y) for a mobile device that requires access to one or more

sensitive APIs on the mobile device. The software application Y 14 may, for example, be a Java

application that operates on a Java virtual machine installed on the mobile device. An API

10 enablesthe software application Y to interface with an application platform that may include, for

example, resources such as the device hardware, operating system and core software and data

models. In order to make function calls to or otherwise interact with such device resources, a

software application Y must access one or more APIs. APIs can thereby effectively “bridge” a

software application and associated device resources. In this description and the appended

15 claims, references to API access should be interpreted to include access of an APJ in such a way.

as to allow a software applicationY to interact with one or more corresponding device resources.

Providingaccess to any API therefore allows a software application Y to interact with associated
device resources, whereas denying access to an API prevents the software application Y from

interacting with the associated resources. For example, a database API may communicate with a

20 devicefile or data storage system, and access to the database API would provide forinteraction

between a software application Y and thefile or data storage system. A user interface (UI) API

would communicate with controllers and/or contro! software for such device components as a

Page 1250 of 1415

Page 1251 of 1415

® om

screen, a keyboard, and any other device components that provide output to a user or accept

input from a user. In a mobile device, a radio API may also be provided as an interface to

wireless communication resources suchas a transmitter and receiver. Similarly, a cryptographic

API maybe provided tointeract with a crypto module which implementscrypto algorithms on a

5 device. These are merely illustrative examples of APIs that may be provided on a device. A

device may include any of these example APIs, or different APIs instead of or in addition to

those described above.

Preferably, any API may be classified as sensitive by a mobile device manufacturer, or

possibly by an APJ author, a wireless network operator, a device owner or operator, or some

10 other entity that may be affected by a virus or malicious code in a device software application.

For instance, a mobile device manufacturer may classify as sensitive those APIs that interface

with cryptographic routines, wireless communication functions, or proprietary data models such

as address book or calendar entries. To protect against unauthorized access to these sensitive

APIs, the application developer 12 is required to obtain one or more digital signatures from the

15 mobile device manufacturer or other.entity that classified any APIs as sensitive, or from a code

signing authority 16 acting on behalf of the manufacturer or other entity with an interest in
protecting access to sensitive device APIs, and append the signature(s) to the software

application Y 14,

In one embodiment, a digital signature is obtained for each sensitive API orlibrary that

20 includes a sensitive API to which the software application requires access. In somecases,

multiple signatures are desirable. This would allow a service provider, company or network

operator to restrict some or all software applications loaded or updated onto a particular set of

Page 1251 of 1415

Page 1252 of 1415

mF wooof

mobile devices. In this multiple-signature scenario, all APIs are restricted and lockeduntil a
“global” signature is verified for a software application. For example, a company may wish to

prevent its employees from executing any software applications onto their devices withoutfirst

obtaining permission from a corporate information technology (IT) or computer services

5 department. All such corporate mobile devices may then be configured to require verification of

at least a global signature before a software application can be executed. Access (o sensitive

device APIs andlibraries, if any, could then be further restricted, dependent upon verification of

respective corresponding digital signatures.

The binary executable representation of software application Y 14 may be independentof

10 the particular type of mobile device or model of a mobile device. Software application Y 14 may

for example be in a write-once-run-anywhere binary format such as is the case with Java

software applications. However,it maybe desirable to have a digital signature for each mobile

device type or model, or alternatively for each mobile device platform or manufacturer. ©

Therefore, software application Y 14 may be submitted to several code signing authorities if

15 software application Y 14 targets several mobile devices.

- Software application Y 14 is sent from the application developer 12 to thecode signing
authority 16. In the embodiment shownin Fig. 1, the code signing authority 16 reviews the

software application Y 14, although as described in further detail below, it is contemplated that

the code signing authority 16 may also or instead consider the identity of the application

20 developer 12 to determine whetheror not the software application Y 14 should be signed. The

code signing authority 16 is preferably one or more representatives from the mobile device

Page 1252 of 1415

Page 1253 of 1415

manufacturer, the authors of any sensitive APIs, or possibly others that have knowledge of the

operation of the sensitive APIs to which the software application needs access.

If the code signing authority 16 determines that software application Y 14 may access the

sensitive API and therefore should be signed, then a signature. (not shown) for the software
5 application Y 14 is generated by the code signing authority 16 and appended to the software

application Y 14. The signed software application Y 22, comprising the software application Y

14 and the digital signature, is then returned to the application developer 12. The digital

signature is preferably a tag that is generated using a private signature key 18 maintained solely

by the code signing authority 16. For example, according to one signature scheme,a hash ofthe

10 software application Y 14 may be generated, using a hashing algorithm such as the Secure Hash

Algorithm SHA1, and then used with the private signature key 18 to create the digital signature.

In some signature schemes, the private signature key is used to encrypt a hash of information to

be signed, such as software application Y 14, whereas in other schemes, the private key may be

used in other ways to generate a signature from the information to be signed or a transformed

15. - version of the information.

_The ‘signed software application Y 22 may then be sent to a mobile device 28 or
downloaded by the mobile device 28 over a wireless network 24. It should be understood,

however, that a code signing protocol according to the present invention is not limited to

software applications that are downloaded over a wireless network. For instance, in alternative
20 embodiments, the signed software application Y 22 may be downloaded to a personal computer

via a computer network and loaded to the mobile device through a serial link, or may be acquired

from the application developer 12 in any other manner and loaded onto the mobile device. Once

Page 1253 of 1415

Page 1254 of 1415

the signed software application Y 22 is loaded on the mobile device 28, each digital signature is

preferably verified with a public signature key 20 before the software application Y 14 is granted

access to a sensitive API library. Although the signed software application Y 22 is loaded onto a

device, it should be appreciated that the software application that may eventually be executed on

5 the deviceis the software application Y 14. As described above, the signed software application

Y 22 includes the software application Y 14 and one or more appended digital signatures (not

shown). When the signatures are verified, the software application Y 14 can be executed on the

device and access any APIs for which corresponding signatures have been verified.
The public signature key 20 corresponds to the private signature key 18 maintained by

10 the code signing authority 16, and is preferably installed on the mobile device along with the

sensitive API. However, the public key 10 mayinstead be obtained from a public key repository

(not shown), using the device 28 or possibly a persona] computer system, and installed on the

device 28 as needed. According to one embodimentof a signature scheme, the mobile device 28

calculates a hash of the software application Y 14 in the signed software application Y 22, using

15 the same hashing algorithm as.the code signing authority 16, and uses the digital signature and

the public signature key 20 to recover the hash calculated by the signing authority 16. The
resultant locally calculated hash and the hash recovered from the digital signature are then

compared, and if the hashesare the same,the signature is verified. The software application Y
14 can then be executed on the device 28 and access any sensitive APIs for which the

20 corresponding signature(s) have been verified. As described above, the invention is in no way

limited to this particular illustrative example signature scheme. Other signature schemes,

Page 1254 of 1415

Page 1255 of 1415

7 an

e
' including further public key signature schemes, may also be used in conjunction with the code

signing methods and systems described herein.

Fig. 2 is a flow diagram 30 of the code signing protocol described above with reference

to Fig. 1. The protocol begins at step 32. AtStep 34, software developer writes the software
5 application Y for a mobile device that requires accessto a sensitive API or library that exposes a

; sensitive API (API library A). As discussed above, soine or all APIs on a mobile device may be
. classified as sensitive, thus requiring verification of a digital signature for access by any software

application such as software applicationY. In step 36, application Y is tested by the software

developer, preferably using a device simulator in which the digital signature verification function

“~~ 10 has been disabled. In this manner, the software developer may debug the software application Y

before the digital signature is acquired from the code signing authority. Once the software

: application Y has been written and debugged, itis forwardedto the code signing authority in step
~~ 38, | |

In steps 40 and 42, the code signing authority reviews the software application Y to

; 15. . determine. whether or not it should be given access to the sensitive API, and either accepts or
rejects the software application. The code signingsauthority may apply’a’ number of criteria to
determine whether ornotto grant the software application.access to the sensitive API including,
for example, the size of the software application, the device resources accessed by the API, the

perceived utility of the softwareapplication, the interaction with other software applications, the
20 inclusion of a virus on other destructive code, and whether or not the developer has a contractual

obligation or other business arrangement with the mobile device manufacturer. Furtherdetails of

managing code signing authorities and developers are described below in referenceto Fig.5.

10

Page 1255 of 1415

Page 1256 of 1415

e @
If the code signing authority accepts the software application Y, then a digital signature,

and preferably a signature identification, are appended to the software application Y in step 46.

As described above, the digital signature may be generated by using a hash of the software

application Y and a private signature key 18. The signature identification is described below

5 _-with reference to Figs. 3 and 4. Once the digital signature and signature identification are

appended to the software application Y to generate a signed software application, the signed

software application Y is returned to the software developer in step 48. The software developer

may then license the signed software application Y to be loaded onto a mobile device (step 50).

If the code signing authority rejects the software application Y, however, then a rejection

10 notification is preferably sent to the software developer (step 44), and the software application Y

will be unable to access any API(s) associated with the signature.

In an alternative embodiment, the software developer may provide the code signing

authority with only a hashof the software application Y, or provide the software application Y in

some type of abridged format. If the software application Y is a Java application, then the device

15 independent ‘binary *.class files may be used in the hashing operation, although device dependent

files such as *cod files used by the assignee of the present application may instead be used in
hashing or other digital Signature operations when software applications are intended for

operation on particular devices or device types. By providing only a hash or abridged version of

the software application Y, the software developer may have the software application Y signed

20+without revealing proprietary code to the code signing authority. The hash of the software

application Y, along with the private signature key 18, may then be used by the code signing

authority to generate the digital signature. If an otherwise abridged version of the software

Il

Page 1256 of 1415

Page 1257 of 1415

application Y is sent to the code signing authonity, then the abridged version may similarly be
used to generate the digital signature, provided that the abridging schemeor algorithm,like a

hashing algorithm, generates different outputs for different inputs. This ensures that every

software application will have a different abridged version and thus a different signature that can

5_only be verified when appendedto the particular corresponding software application from which

the abridged version was generated. Because this embodiment does not enable the code signing

authority to thoroughly review the software application for viruses or other destructive code,

however, a registration process between the software developer and the code signing authority

mayalso be required. For instance, the code signing authority may agree in advance to provide a

10 ~ trusted software developer accessto a limited set of sensitive APIs.

In still another alternative embodiment, a software application Y may be submitted to

more than one signing authority. Each signing authority may for example be responsible for

signing software applications for particular sensitive APIs or APIs on a particular model of

mobile device or set of mobile devices that supports the sensitive APIs required by a software

15 ~ application. A manufacturer, ‘mobile communication network operator, service provider, or

“comporate client for example may thereby have signing authority over the use of sensitiveAPIs
for their particular mobile device model(s), or the mobile devices operating on a particular

network, subscribing to one or more particular services, or distributed to corporate employees.

A signed software application may then include a software application and at least one appended

20=digital signature appended from each of the signing authorities. Even though these signing
authorities in this example would be generating a signature for the same software application,

12

Page 1257 of 1415

Page 1258 of 1415

-_ Cs
e

different signing and signature verification schemes may beassociated with the different signing

authorities.

Fig. 3 is a block diagram of a code signing system 60 on a mobile device 62. The system
60 includes a virtual machine 64, a plurality of software applications 66-70, a plurality of API

§ libraries 72-78, and an application platform 80. The application platform 80 preferably includes

all of the resources on the mobile device 62 that may be accessed by the software applications

66-70. For instance, the application platform may include device hardware 82, the mobile

device's operating system 84, or coresoftware and data models 86. Each API library 72-78
preferably includes a plurality of APIs that interface with a resource available in the application

10 platform. For instance, one API library might include all of the APIs that interface with a

calendar program and calendar entry data models. Another API library might includeall of the

APIsthat interface with the transmission circuitry and functions of the mobile device 62. Yet

another API library might includeall of the APIs capable of interfacing with lower-level services

performed by the mobile device's operating system 84. In addition, the plurality of API libraries

15 72-78 may include both libraries that expose a sensitive API 74 and 78, such as an interface toa
cryptographic function, and libraries 72 and 76, that may be accessed without exposing sensitive
APIs. Similarly, the plurality of software applications 66-70 may include both signed software

applications 66 and 70 that require access to one or more sensitive APIs, and unsigned software

applications such as 68. The virtual machine 64 is preferably an object oriented run-time

20 environment such as Sun Micro System's J2ME™ (Java 2 Platform, Micro Edition), which

manages the execution ofall of the software applications 66-70 operating on the mobile device

62, and links the software applications 66-70 to the various API libraries 72-78.

13

Page 1258 of 1415

Page 1259 of 1415

Software application Y 70 is an example of a signed software application. Each signed .

software application preferably includes -an actual software application such as software

application Y comprising for example software code that can be executed on the application
platform 80, one or more signature identifications 94.and one or more corresponding digital

5 signatures 96. Preferably each digital signature 96-and associated signature identification 94 in a

signed software application 66 or 70 correspondsto a sensitive APIlibrary 74 or 78:to which the

software application X or software application Y requires access. The sensitive APIlibrary 74 or

78 may include one or more sensitive APIs. In an alternative embodiment, the signed software

applications 66 and 70 mayinclude a digital signature 96 for each sensitive API within an API

10 ‘library 74 or 78. The signature identifications 94 may be unique integers or some other meansof

relating a digital signature 96 to a specific API library 74 or 78, API, application platform 80, or

model of mobile device 62.

APIlibrary A 78 is an example of an API library that exposes a sensitive API. Each API

Jibrary 74 and 78 including a sensitive API should preferably include a description string 88, a

15 public signature key 20, and a. signature identifier 92. The signature identifier 92 preferably

corresponds to a signature identification 94 in a signed software application 66 or 70, and

enables the virtual machine 64 to quickly match a digital signature 96 with an API library 74 or

78. The public signature key 20 correspondsto the private signature key 18 maintained bythe

code signing authority, and is used to verify the authenticity of a digital signature 96. The

20=description string 88 may for example be a textual message that is displayed on the mobile

device when a signed software application 66 or 70 is loaded, or alternatively when a software

application X or Y attempts to access a sensitive API.

14

Page 1259 of 1415

Page 1260 of 1415

Operationally, when a signed software application 68-70, respectively including a

software application X, Z, or Y, that requires access to a sensitive API library 74 or 78 is loaded

onto a mobile device, ‘the virtual machine 64 searches the signed for an appended digital
signature 96 associated with the API library 74 or 78. Preferably, the appropriate digital

5 signature 96 is located by the virtual machine 64 by matching the signature identifier 92 in the

API library 74 or 78 with a signature identification 94 on the signed software application. If the

signed software application includes the appropriate digital signature 96, then the virtual

machine 64 verifies its authenticity | using the public signature key 20. Then, once the

appropriate digital signature 96 has been located and verified, the description string 88 is

10 preferably displayed on the mobile device before the software application X or Y is executed and

accesses the sensitive API. For instance, the description string 88 may display a messagestating

that "Application Y is attempting to access API Library A," and thereby provide the mobile

device user with the final control to grant or deny access to the sensitive API. |

Fig. 3A is a block diagram of a code signing system 61 on a plurality of mobile devices

15 62E, 62F and 62G. The system 61 includes a plurality. of mobile devices each of which only

three are illustrated, mobile devices 62E, 62F and 62G. Also shown is a signed software.

. application 70, including a software application Y to which two digital signatures 96E and 96F

with corresponding signature identifications 94E and 94F have been appended. In the example

‘system 61, each pair composed of a digital signature and identification, 94E/96E and 94F/96F,

20 corresponds to a model of mobile device 62, API library 78, or associated platform 80. If

signature identifications 94E and 94F correspond to different models of mobile device 62, then

when a signed software application 70 which includes a software application Y that requires

15

Page 1260 of 1415

Page 1261 of 1415

access to a sensitive API library 78 is loaded onto mobile device 62E, the virtual machine 64

—s, —~% One

searches the signed software application 70 for a digital signature 96E associated with the API

library 78 by matching identifier 94E with signature identifier 92. Similarly, when a signed

software application 70 including a software. application Y that requires access to a sensitive API

5 library 78 is loaded onto a mobile device 62F; the virtual machine 64 in device 62F searches the

signed software application 70 for a digital signature 96F associated with the API library 78.

However, when a software application Y in a signed software application 70 that requires access

to a sensitive API library 78 is loaded onto a mobile device model for which the application

developer has not obtained a digital signature, device 62G in the example of Fig. 3A, the virtual

10 machine 64 in the device 64G does not find a digital signature appended to the software

application Y and consequently, access to the APIlibrary 78 is denied on device 62G.It should

be appreciated from the foregoing description that a software. application such as software

application Y may have multiple device-specific, library-specific, or API-specific signatures or

some combination of such signatures appended thereto. Similarly, different signature

15__verification. requirements: may be configured for the different devices. For example, device 62E |
may require verification of both a global signature, as well as additional signatures for any

sensitive APIs to which a software application requires access in order for the software

application to be executed, whereas device 62F may require verification of only a global

signature and device 62G may require verification of signatures only for its sensitive APIs. It

20 should also be apparent that a communication system may include devices (not shown) on which

a software application Y received as part of a signed software application such as 70 may

execute without any signature verification. Although a signed software application has one or

16

Page 1261 of 1415

Page 1262 of 1415

fosens

more signatures appended thereto, the software application Y might possibly be executed on

_)

some devices without first having any of its signature(s) verified. Signing of a software

application preferably does not interfere with its execution on devices in which digital signature

verification is not implemented.

5 Fig. 4 is a flow diagrain 100 illustrating the operation of the code signing system
described above with reference to Figs. 3 and 3A. In step 102, a software application is loaded

onto a mobile device. Once the software application is loaded, the device, preferably using a

virtual machine, determines whetheror not the software application requires access to any API

libraries that expose a sensitive API (step 104). If not, then the software application is linked

10 with all of its required API libraries and executed (step 118). If the software application does

require access to a sensitive API, however, then the virtual machine verifies that the software

application includes a valid digital signature associated any sensitive APIs to which access is
required, in steps. 106-116. ..

In step 106, the virtual machine retrieves the public signature key 20 and signature

15 identifier 92 from the sensitive API library. The signature identifier 92 is then used by the

virtual machine in step 108 to determine whetheror not the software application has an appended

digital signature 96 with a corresponding signature identification 94. If not, then the software

application has not been approvedfor access to the sensitive API by a code signing authority,

aid the. software application is preferably prevented from being executed in step 116. In

20 alternative embodiments, a software application without a proper digital signature 96 may be

purged from the mobile device, or may be denied access to the API library exposing the sensitive

APIbut executed to the extent possible without access to the API library. It is also contemplated

17

Page 1262 of 1415

Page 1263 of 1415

that a user may be prompted for an input whensignature verification fails, thereby providing for

user control of such subsequent operations as purging of the software application from the

device.

If a digital signature 96 corresponding to the sensitive API library is appended to the
5_software application andlocated by the virtual machine, then the virtual machineusesthe public

key 20 to verify the authenticity of the digital signature 96 in step 110. This step may be
performed, for example, by using the signature verification scheme described above or other

alternative signature schemes. If the digital signature 96 is not authentic, then the software
application is preferably either not executed,purged, or restricted frotin accessing the sensitive

10 API as described above with referenceto step 116. If the digital signature is authentic, however,
then the description string 88 is preferably displayed in step 112, warning the mobile device user

that the software application requires access to a sensitive APL, and possibly prompting the user .
for authorization to execute or load the software application (step 114). When more than one

signature is to be verified for a software application, then the steps 104-110 are preferably

15 repeated for each signature before the useris prompted in step 112. If the mobile device user in

step 114 authorizes the software application, then it maybe executed andlinked to the sensitive
APIlibrary in step'l 18.

Fig. 5 is a flow diagram 200 illustrating the management of the code signing authorities
described with reference to Fig. 3A. At step 210, an application developer has developed a new

20 software application which is intended to be executable one or more target device models or

types. The target devices may include sets of devices from different manufacturers, sets of

device models or types from the same manufacturer, or generally any sets of devices having

18

Page 1263 of 1415

Page 1264 of 1415

Lm™ o ~,

particular signature and verification requirements. The term “target device” refers to any such

set of devices having a commonsignature requirement. For example, a set of devices requiring

verification of a device-specific global signature forexecution ofall software applications may

comprise a target device, and devices that require both a global signature and further signatures

5 for sensitive APIs may be part of morethanone target device set. The software application may—-

be written in a device independent mannerby using at least one known API, supported on at least

one target device with an API library. Preferably, the developed software application is intended

to be executable on several target devices, each of whichhasits own atleast one API library.

At step 220, a code signing authority for one target device receives a target-signing

- 10 request from the developer. The target signing request includes the software application or a
hash of the software application, a developer identifier, as well as at least one target device

“identifier which identifies thetarget device for whicha signature is being requested. At step 230,
the signing authority consults.a developer database 235 or other records to determinewhether or

not to trust developer 220. This determination can be made according to several criteria
15 - discussed above, such as whether or not the developer has a contractual obligation or has entered

- into some other type’ of business,arrangement with a device manufacturer, network operator,
service provider, or device manufacturer. If the developeris trusted, then the method proceedsat .
step 240. However,if the developeris not trusted, then the software application is rejected (250)

and not signed by the signing authority. Assuming the developer was trusted, at step 240 the

20 signing authority determinesif it has the target private key corresponding to the submitted target

identifier by consulting a private key store such as a target private key database 245. If the target

private key is found, then a digital signature for the software application is generated at step 260

19

Page 1264 of 1415

Page 1265 of 1415

and the digital signature or a signed software application including the digital signature appended

to the software application is returned to the developerat step 280. However,if the target private

key is not found at step 240, then the software application is tejected at step 270 and no digital

signature is generated for the software application. 7 -

5 _ Advantageously, if target signing authorities follow compatible embodiments of the
method outlined in Fig. 5, a network of target signing authoritiesmay be established in order to |
expediently manage code signing authorities and a developer community code signingprocess

providing signed software applications for multiple targets with low likelihood of destructive
code.

10 ~ Should any destructive or otherwise problematic code be found in a software application

or suspected because of behavior exhibited when a software application is executed on a device,
then the registration orprivileges of the corresponding applicationdeveloper with any or all a
signing authorities may also besuspended or revoked, since the digital signature provides an.

audit trail through which the developer of a problematic software application may be identified.
15 In such an event, devices may be informed of the revocation by being configured to periodically“

download. signature revocation lists, for example. If software applications for which the. a
corresponding digital signatures have. been revoked are running on a device, the device may then
halt execution of any such software application and possibly purge the software applicationfrom

its local storage. If preferred, devices may also be configured to re-execute digital signature
20 verifications, for instance periodically or when a new revocationlist is downloaded.

Although a digital signature generated by a signing authority is dependent upon

authentication of the application developer and confirmation that the application developer has

20

Page 1265 of 1415

Page 1266 of 1415

been properly registered, the digital signature is preferably generated from a hash or otherwise
transformed version of the software application and is therefore application-specific. This

contrasts with known code signing schemes, in which API access is granted to any software
applications arriving from trusted application developers or authors. In the code signing systems

5 and methods described herein, API access is granted on an application-by-application basis and

thuscan be morestrictly controlled or regulated.
Fig. 6 is a block diagram ofa mobile communication device in which a code signing

system and method may be implemented. ‘The mobile communication device 610 is preferably a

two-way communication device having at least voice and data communication capabilities. The
10 device preferably has the capability to communicate with other computer systems on the Internet.

Depending on the functionality provided by the device, the device may be referred to as a data

messaging device, a two-way pager, a cellular telephone with data messaging capabilities, a
wireless Internet .appliance or a data’ communication device (with or without telephony

capabilities).

AS | Where the device 610 is enabled for two-way communications..the device will
incorporate a communication subsystem 611, including a receiver. 612.4 transmitter 614, and

associated components such as one or more, preferably embedded or internal, antenna elements

616 and 618, local oscillators (LOs) 613, and a processing module such as a digital signal

processor (DSP) 620. As will be apparent to those skilled in the field of communications,the

20 particular design of the communication subsystem 611 wiil be dependent upon the

communication network in which the device is intended to operate. For example, a device 610

destined for a North American market may include a communication subsystem 611 designed to

21

Page 1266 of 1415

Page 1267 of 1415

operate within the Mobitex™ mobile communication system or DataTAC™ mobile

communication system, whereas a device 610 intended for use in Europe may incorporate a

General Packet Radio Service (GPRS) communication subsystem 611.

Network access requirements will also vary depending uponthe type of network 919. For

5 example, in the Mobitex and DataTAC networks, mobile devices such as 610 are registered on

meena the network using a unique identification number associated with each device. In GPRS
networks however, network access is associated with a subscriber or user of a device 610. A
GPRS device therefore requires a subscriber identity module (not shown), commonlyreferred to

as a SIM card, in order to operateon a GPRSnetwork. Without a SIM card, a GPRS device will
10 © not be fully functional. Local or non-network communication functions(if any) may be operable,

-but the device 610 will be unable to carry out any functions involving communications over

network 619, other than any legally required operations such as “911” emergencycalling.

When required. network registration or activation procedures have been completed, a

device 610 may send and receive communication signals over the network 619. Signals received
15 | by the antenna 616 through a communication network 619 are input to the receiver 612, which

may - perform such common. receiver functions as signal amplification, frequency down

conversion, filtering, channel selection and the like, and in the example system shown in Fig. 6,

- analog to digital conversion. Analog to digital conversion of a received signal allows more

complex communication functions such as demodulation and decoding to be performed in the

20 DSP 620. In a similar manner, signals to be transmitted are processed, including modulation and

encoding for example, by the DSP 620 and input to the transmitter 614 for digital to analog
See

22

Page 1267 of 1415

Page 1268 of 1415

eooy:
conversion, frequency up conversion, filtering, amplification and transmission over the

communication network 619 via the antenna 618.

The DSP 620 not only processes communication signals, but also provides for receiver

and transmitter control. For example, the gains applied to communication signals in the receiver
5 612 and trafismitter 614 may be adaptively controlled through automatic gain control algorithms

implemented in the DSP 620. oe ;
The device 610 preferably includes a microprocessor 638 which controls the overall

operation of the device. Communication functions, including at least data and voice

communications, are performed through the communication subsystem 611. The microprocessor

10 638 also interacts with further device subsystems or resources such as the display 622, flash

memory 624, random access memory (RAM)626, auxiliary input/output (I/O) subsystems 628,

serial port 630, keyboard 632, speaker 634, microphone 636, a short-range communications

subsystem 640 and any other device subsystems generally designated as 642. APIs, including

sensitive APIs requiring verification of one or more corresponding digital signatures before

15 access is granted, may be provided on the device 610 to interface between software applications

and any of the resources shownin Fig.6.

Some of the subsystems shown in Fig. 6 perform communication-relatedfunctions,

whereas other subsystems may provide “resident” or on-device functions. Notably, some

subsystems, such as keyboard 632 and display 622 for example, may be used for both

20 communication-related functions, such as entering a text message for transmission over a

communication network, and device-resident functions such as a calculatoror tasklist.

23

Page 1268 of 1415

Page 1269 of 1415

my en ON

Operating system software used by the microprocessor 638, and possibly APIs to be

accessed by software applications, is preferably stored in a persistent store such as flash memory

624, which may instead be a read only memory (ROM) or similar storage element (not shown).

Those skilled in the art will appreciate that the operating system, specific device software
5 applications, or parts thereof, may be temporarily loaded intoa volatile store such as RAM 626.

It is contemplated that received and transmitted communication signals may also be stored to
RAM 626. .

The microprocessor 638, in addition to its operating system functions, preferably enables

execution of software applications on the device. A predetermined set of applications which

10 control basic device operations, including at least data and voice communication applications for

example, will normally be installed on the device 610 during manufacture. A preferred

application that may be loaded onto the device may be a personal information manager (PIM)

application having the ability to organize and manage data itemsrelating to the device user such

as, but not limited to e-mail, calendar events, voice mails, appointments, and task items.

‘15 Naturally, one or more memory stores would be available on the device to facilitate-storage of

PIM data items on the device. Such PIM application would preferably have the ability to send

_ and receive data items, via the wireless network. In a preferred embodiment,the PIM data items

are seamlessly integrated, synchronized and updated, via the wireless network, with the device
user’s corresponding data items stored or associated with a host computer system thereby

20 creating a mirrored host computer on the mobile device with respect to the data items atleast.

This would be especially advantageousin the case where the host computer system is the mobile

device user’s office computer system. Further applications, including signed software

24

Page 1269 of 1415

Page 1270 of 1415

eS CN
o e

applications as described above, may also be loaded onto the device 610 through the network

619, an auxiliary I/O subsystem 628,serial port 630, short-range communications subsystem 640

or any other suitable subsystem 642. The device microprocessor 638 maythen verify any digital

signatures, possibly including both “global” device signatures and API-specific signatures,
5 appended to such a software application before the software application can be executed by the

microprocessor 638 and/or access any associated sensitive APIs. Such flexibility in application

installation increases the functionality of the device and may provide enhanced on-deviceoe, sane

functions, communication-related functions, or both. For example, -secure communication

applications may enable electronic commerce functions and other such financial transactions to
10 be performed using the device 610, through a crypto API and a crypto module which implements

crypto algorithms on the device (not shown).

| “In a data communication mode, a received signal such as a text message or web page

download will be processed by the communication subsystem 611 and input to the

microprocessor 638, which will preferably further process the received signal for output to the

15 display 622, or alternatively to an auxiliary I/O device 628. Auser of device 610 may also .—

compose data items such as email messages for example, using the keyboard 632, which is

preferably.a complete alphanumeric keyboard or telephone-type keypad, in conjunction with the ;

display 622 and possibly an auxiliary VO device 628. Such composed items may then. be
transmitted over a communication network through the communication subsystem 611.

20 For voice communications, overall operation of the device 610 is substantially similar,

except that received signals would preferably be output to a speaker 634 and signals for

transmission would be generated by a microphone 636. Alternative voice or audio I/O

25

Page 1270 of 1415

Page 1271 of 1415

—~s imoi : :

subsystems such as a voice message recording subsystem may also be implemented on the

device 610. Although voice or audio signal output is preferably accomplished primarily through

calling party, the duration of a voice call, or other voice call related information for example.
5 The serial port 630 in Fig. 6 would normally be implementedin a personal digital

assistant (PDA)-type communication device for which synchronization with a user’s desktop

_ computer (not shown) maybe desirable,but is an optional device component. Such a port 630
would enable a user to set preferences through an external device or software application and

would extend the capabilities of the device by providing for information or software downloads

10 to the device 610 other than through a wireless communication network. The alternate download

path may for examplebe used to load an encryption key onto the device through a direct and thus

reliable and trusted connection to thereby enable secure device communication.

A short-range communications subsystem 640 is a further optional component which

may provide for communication between the device 624 and different systems or devices, which

15 need not necessarily besimilar devices. For example, the subsystem 640 mayinclude an infrared

device and associated circuits and components or a Bluetooth™ communication module to

provide for communication with similarly-enabled systems and devices.

The embodiments described herein are examples of structures, systems or methods

having elements corresponding to the elements of the invention recited in the claims. This

20 “written description may enable those skilled in the art to make and use embodiments having

alternative elements that likewise correspond to the elements of the invention recited in the

claims. The intended scope of the invention thus includes other structures, systems or methods

26

Page 1271 of 1415

Page 1272 of 1415

“— c™

e
that do not differ from the literal language of the claims, and further includes other structures,

systems or methodswith insubstantial differences from theliteral language ofthe claims.

For example, when a software application is rejected at step 250 in the method shown in

Fig. 5, the signing authority may. request that the developer sign a contract or enter into a
5_business relationship with a device manufacturer or other entity on whose behalf the signing

authority acts. Similarly, if a software application is rejected at step 270, authority to sign the
software application may bedelegatedto a different signing authority. The signing of a software

application following delegation of signing of the software application to the different authority

can proceed substantiallyas shown in Fig. 5, wherein the target signing authority that received

10 the original request from the trusted developer at step 220 requests that the software application

be signed by the different signing authority on behalf of the trusted developer from the target

signing authority. Once a trust relationship has been established between code signing

authorities,target private code signing keys could be shared between codesigning authorities to

improve performance of the methodat step 240, or a device may be configured to validate digital

~— 15 signatures from either of the trusted signing authorities.

‘In addition, although described primarily in the-context of software applications, code

signing systems and methods according to the present invention may ‘also be applied toother

device-related components, including but in no way limited to, commands and associated

command arguments, and libraries configured to interface with device resources. Such

20 commandsandlibraries may be sent to mobile devices by device manufacturers, device owners,

network operators, service providers, software application developers and the like. It would be

desirable to control the execution of any command that may affect device operation, such as a

27

Page 1272 of 1415

Page 1273 of 1415

Lo,

command to change a device identification code or wireless communication network address for

example, by requiring verification of one or more digital signatures before a command can be

executed on a device, in accordance with the code signing systems and methods described and

claimed herein.

28

Page 1273 of 1415

Page 1274 of 1415

DTOGRec'dPCTIPTO 20 MAR 2003
Weclaim: ESRSa

1. A code signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

5 an application programminginterface (API) configured to link the software application

with the application platform; and --

a virtual machine thatverifies the authenticity of the digital signature in order to control

accessto the APIbythe software application.

10 2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authentic.

3. The code signing system of claim 1, wherein the virtual machine purges the software

application if the digital signature is not authentic.

15

4. The code signing system of claim 1, wherein the code signing system is installed ona mobile
device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

20 signing authority.

29

Page 1274 of 1415

Page 1275 of 1415

10

15

20

ms ee

@
6. A code signing system for operation in conjunction with a software application having a

digital signature, comprising:

an application platform;

a plurality of application programminginterfaces (APIs), each configured to link the
software application with a resource on the application platform; and

a virtual machine that verifies the authenticity of the digital signature in orderto control
access to the API by the software application,

wherein the virtual machine verifies the authenticity of the digital signature in order to control

accessto the plurality of APIs by the software application.

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library.

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified

as sensitive, and wherein the virtual machine usesthe digital signature to control access to the

sensitive APIs.

9. The code signing system of claim 8, for operation in conjunction with a plurality of software

applications, wherein one or more of the plurality of software applications hasa digital signature,

and wherein the virtual machine verifies the authenticity of the digital signature of each of the

one or moreofthe plurality of software applications in order to control access to the sensitive

APIs by each ofthe plurality of software applications.

30

Page 1275 of 1415

Page 1276 of 1415

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system. .

5 11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

. comprises a datastore.

10

13. The code signing system of claim 6, wherein the resource on the application platform

comprises a user interface (UD).

14. The code signing system of claim I, further comprising:

15 a plurality of APIlibraries each including a plurality of APIs, wherein the virtual

machine controls accessto the plurality of API libraries by the software application.

15. The code signing system of claim 14, wherein one or more of the plurality of APIlibraries is

classified as sensitive, and wherein the virtual machine usesthe digital signature to control

20 access to the sensitive APIlibraries by the software application.

31

Page 1276 of 1415

Page 1277 of 1415

io. of,

16. The code signing system of claim 15, wherein the software application includes a unique

digital signature for each sensitive APIlibrary.

17. The code signing system of claim 16, wherein:

5 the software application includesa signature identification for each unique digital

signature;

__each Sensitive API library includes a signatureidentifier; and

the virtual machine comparesthe signature identification and the signature identifier to

match the uniquedigital signatures with sensitive API libraries.

10 |

18. The code signing system of claim 1, wherein the digital signature is generated using a

private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

15 19. The code signing system of claim 18, wherein:

- the digital signatureis generated by applying the private signature key toa hashof the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the software application to obtain a generated hash, applying the public signature key to the

20~—digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

32

Page 1277 of 1415

Page 1278 of 1415

fy :

@ ©
20. The code signing system of claim 1, wherein the API further comprises:

a description string that is displayed by the mobile device when the software application

attempts to access the API.

5 21. The code signing system of claim 1, wherein the application platform comprises an

operating system.

22. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

10

23. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

24. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

15. module (SIM) card.

25. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.

20 26. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

33

Page 1278 of 1415

Page 1279 of 1415

o™ om,

27. The code signing system of claim 1, wherein the API interfaces with a proprietary data

model on the application platform.

28. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

5 installed on a mobile device.

29. A method of controlling access to sensitive application programminginterfaces on a mobile

device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

10=application programminginterface (API);

determining whetheror not the software application includesa digital signature

: associated with the sensitive API; and

if the software application does not include a digital signature associated with the

sensitive API, then denying the software application access to the sensitive API.

15

30. The method of claim 29, compnising the additional step of:

if the software application does notinclude a digital signature associated with the

sensitive API, then purging the software application from the mobile device.

20 31. The method of claim 29, wherein the digital signature is generated by a code signing

authority.

34

Page 1279 of 1415

Page 1280 of 1415

10

15

20

os. oo,

32. The methodof claim 29, comprising the additional stepsof:

if the software application includesa digital signature associated with the sensitive API,

then verifying the authenticity of the digital signature; and ~

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

33. The method of claim 32, comprising the additionalstepof:

if the digital signature is not authentic, then purging the software application from the

mobile device.

34. The method of claim 32, wherein the digital signature is generated by applying a private

signature-key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprisingthesteps of:

storing a public signature key that correspondsto the private signature key on the mobile

device;

generating a hash ofthe software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

35. The methodof claim 34, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

35

Page 1280 of 1415

Page 1281 of 1415

ot a

36. The methodof claim 29, comprising the additional stepof:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

5 37. The methodof claim 36, comprisingthe additional step of:

receiving a commandfrom theusergranting or denying the software application access

to the sensitive API.

38. A method of controlling access to an application programminginterface (API) on a mobile

10. device bya software application created by a software developer, comprising the steps of:
receiving the software application from the software developer;

reviewing the software application to determineif it may access the API;

if the software application may access the API, then appendinga digital signature to the

software application;

15 verifying the authenticity of a digital signature appendedto a software application; and

providing access to the API to software applications for which the appendeddigital
signature is authentic.

"39. The methodofclaim 38, wherein thestep of reviewing the software application is performed

20 by acode signing authority.

36

Page 1281 of 1415

Page 1282 of 1415

10

15

20

40. The method of claim 38, wherein-the.step of appendingthe digital signature to the software

application is performed by a method comprisingthe steps of:

calculating a hash of the software application; and

applying a signature key to the hashof the software application to generate the digital

signature.

41. The methodof claim 40, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHA]).

42. The methodof claim 40, wherein the step ofverifying the authenticity of a digital signature

comprisesthe stepsof:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

determiningif the digital signature is authentic by comparing the calculated hash with the

recovered hash.

43. The methodof claim 42, comprising the further step of, if the digital signature is not

authentic, then denying the software application access to the API.

37

Page 1282 of 1415

Page 1283 of 1415

oY rae

44. The methodof claim 42, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

45. A methodof controlling access to a sensitive application programminginterface (API) on a

5 mobile device, comprising the steps of:

registering one or more software developers that are trusted to design software
applications which access the sensitive API;

receiving a hash of a software application;

determiningif the software application was designed by oneofthe registered software

10 developers; and

if the software application was designed by one of the registered software developers,

then generating a digital signature using the hash of the software application,

wherein

the digital signature may be appended to the software application; and

15 the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application.

46. The methodof claim 45, wherein the step of generating the digital signature is performed by

a code signing authority.

20

47. The methodof claim 45, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

38

Page 1283 of 1415

Page 1284 of 1415

10

15

20

a,

48. The method of claim 47, wherein the mobile device verifies the authenticity of the digital

signature by performing the additionalsteps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash;

determiningif the digital signature is authentic by comparing the calculated hash with the

recovered hash; and

if the digital signature is not authentic, then denying the software application access to

the sensitive API.

49. A methodofrestricting access to application programming interfaces on a mobile device,

comprising the steps of:

loading a software application on the mobile device that requires access to one or more

application programming interface (API);

determining whetherornot the software application includes an authentic digital

signature associated with the mobile device; and

if the software application does not include an authentic digital signature associated with

the mobile device, then denying the software application access to the one or more APIs.

39

Page 1284 of 1415

Page 1285 of 1415

10

1S

20

rN a>

50. The methodof claim 49, comprising the additionalstepof:

if the software application does not include an authentic digital signature associated with

the mobile device, then purging the software application from the mobile device.

$1. The method of claim 49, wherein:

the software application includesa plurality of digital signatures; and

the plurality of digital signatures includes digital signatures respectively associated with

different types of mobile devices.

52. The method of claim 51, wherein each ofthe plurality of digital signatures is generated by a

respective corresponding code signing authority.

53. The method of claim 49, wherein the step of determining whether or not the software

application includes an authentic digital signature associated with the mobile device comprises

the additionalsteps of:

determining if the software application includesa digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signature.

54. The method of claim 53, wherein the one or more APIs includes one or more APIs classified

as sensitive, and the method further comprisesthe steps of, for each sensitive APT:

determining whetheror not the software application includes an authentic digital

signature associated with the sensitive API; and

40

Page 1285 of 1415

Page 1286 of 1415

10

15

20

if the software application does not include an authentic digital signature associated with

the sensitive API, then denying the software application access to the sensitive API.

55. The method of claim 52, wherein eachofthe plurality of digital signaturesis generated by

its corresponding code signing authority by applying a respective private signature key

associated with the code signing authority to a hash ofthe software application.

56. The method of claim 55, wherein the step of determining whetheror not the software

application includes an authentic digital signature associated with the mobile device comprises

the steps of:

determining if the software application includes a digital signature associated with the

mobile device; and

if so, then verifying the authenticity of the digital signature, _

wherein the step of verifying the authenticity of the digital signature is performed by a method

comprising the stepsof:

storing a public signature key on a mobile devicethat correspondsto the private signature

key associated with the code signing authority which generates the signature associated with the

mobile device; |

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

41

Page 1286 of 1415

Page 1287 of 1415

ABSTRACT es

- A code signing system and method is provided. The code signing system operates in

conjunction with a signed software application having a digital signature and includes an
application platform, an application programming interface (API), and a virtualmachine. The

5 API is configured to link the software application with the application platform. The virtual

machine verifies the authenticity of the digital signature in order to control access to the API by

the software application.

42

Page 1287 of 1415

Page 1288 of 1415

“ => 10/381219
©

1/7

Application
Y

Application
Developer Y 12 Code signer

Signed
Application

Y 22

Network

 Signed
Application

Y
22

Device

P

10

Figure 1

Page 1288 of 1415

Page 1289 of 1415

Application Y uses
LibraryAFigu re 2

Test Application Y
in device simutator
with no signature

verification.

~

Application Y
forwarded toCode

Signing Authority

Application Y
reviewed by Code
Signing Authority

Code Signing
Authority signs

Application Y with
Digital Signature

Rejection
Notification to

Software
Developer

 Accept Code?

Retum Application 48
Y to Software
Developerwith

AppendedDigital!
Signature

52.

 Application Y
loaded on Mobile

Device.

Page 1289 of 1415

Page 1290 of 1415

_ ~ 10/381219

Application X (signed)

APILibrary B ApplicationZ

API Library A with sensitive API Application Y (signed)

78 70

Signature Identification - A

Digitat Signature - A

ature Identification - C

Some|Digital Signature - C

ig Public Key .
Description to Verify Signature

Core Software & String identifier
Data Models

Signature
Virtual Machine
Mobile Device

Figu re 3

Page 1290 of 1415

Page 1291 of 1415

Application
Platform

Application Y
(signed)

94E 96E

Signature ID-E J

Library with sensitive API

Public key
to verify
signature

’ Signature - E

|SignatureID-F||SignatureID -F|F

Signature - F— a

Description
string

Signature
identifier

Virtual Machine

Mobile Device

Mobile Deviceboneneennnnnnnnnn nn ne nnnnnn ben een ee ee ee nn ne eeeecen neen ge nseeee nnn ee eoee en een oe te een nen ne ee eee reneee en eert

Mobile DeviceLape eeeeeeee en ne eeenneeee eeeeeeeeeenNe eeeean re en ne eeeenen ener eeneeecaen gee enre ene naeenennenereel

62E
62F

) 62G
61

Figure 3A

Page 1291 of 1415

Page 1292 of 1415

~ ~ 104381219

5/7
102

 Application Loaded
on Mobile Device

 ; Does Application
Need Accessto Sensitive

API Library?

2 .

5 Figu re 4

5 Virtual Machine
3 100 Retrieves Public
} \ Key and Signaturej Identifier from API

3 Library
 Proper

Signature on
Application?,

 Signature
Verified?

 User Prompted

116

Application Not
Loaded or
Executed

Execute

Application?

 Virtual Machine
executes

Application and
linkds with API

Library

 120

Page 1292 of 1415

Page 1293 of 1415

6/7

/ Application \,
~ Developed

Receive Target
Signing Request

210

220

Developer
Trusted by
Authority?

Developer
Database

Database

270

Target .

Private Key ey? Reject Application }

260

Y

Sign Application

280 \na
Return /

Signature

Figure 5

Page 1293 of 1415

Page 1294 of 1415

10/381219

gainbl4O19

oro,Zv9SUO}}BDIUNWILUODsweysAsqnsNBebuey-HOYusa01AaqJaUIO|v9‘@9¢98&9:
&|auoydosolyy~.49028|OuyUuOD

i—}dsJanieoey
Jeyeads—99z9Z£92Po!é.pieoqhey8We:“aov2|0e95Odjeas=Mowe-Sey829229O/|ArenxnyrKe\dsiq

Page 1294 of 1415

Page 1295 of 1415

SP ATENT COOPERATION TR

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's oragents file reference See Notification of Transmittal of International
PWO-0445 FOR FURTHER ACTION Preliminary Examination Report (Form PCT/IPEA/416)

Intemational application No. internationalfiling date (day/month/year) Priority date (day/month/year)

PCT/CA01/01344 20/09/2001 21/09/2000

international Patent Classification (IPC) or national classification and IPC
GO6F1/00

Applicant

RESEARCH IN MOTIONLIMITEDetal.

1. This international preliminary examination report has been prepared bythis International Preliminary Examining Authority
and is transmitted to the applicant according to Article 36.

This REPORTconsists of a total of 4 sheets, including this cover sheet.

[This report is also accompanied by ANNEXES,ie. sheets of the description, claims and/or drawings which have
been amendedandare the basis for this report and/or sheets containing rectifications made before this Authority
(see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of sheets.

This report contains indications retating to the following items:

Basis of the report

Priority

Non-establishmentof opinion with regard to novelty, inventive step and industrial applicability

Lack of unity of invention

Reasoned statement underArticle 35(2) with regard to novelty, inventive step or industrial applicability;
citations and explanations suporting such statement
Certain documents cited

Certain defects in the international application

Certain observations on the international application

Date of submission of the demand Date of completion of this report

18/04/2002 15.11.2002

Nameand mailing address of the intemational Authorized officer
Preliminary examining authority:
——=aEuropean Patent Office

)) D-80298 Munich Kerschbaumer,JTel. +49 89 2399 - 0 Tx: 523656 epmu d

Fax: +49 89 2399 - 4465 TelephoneNo. +49 89 2399 2989

Form PCTAPEA/409 (cover sheet) (January 1994)

Page 1295 of 1415

Page 1296 of 1415

INTERNATIONAL PRELIMINARY

EXAMINATION REPORT International application No. PCT/CA01/01344

1. Basis of the report ’

1. With regard to the elementsof the international application (Replacement sheets which have been furnished to
the receiving Office in response to an invitation underArticle 14 are referredto in this report as “originally tiled”
and are not annexedto this report since they do not contain amendments (Rules 70.16 and 70.17)). ‘
Description, pages:

1-28 as originally filed

Claims, No.:

4-109 as received on 28/06/2002—with letter of 28/06/2002

Drawings, sheets:

V/7-717 as originally filed

2. With regard to the language,all the elements marked above were available or furnished to this Authority in the
languagein which the international application wasfiled, unless otherwise indicated underthis item.

These elements were available or furnished to this Authority in the following language: , whichis:

C1 the languageof a translation furnished for the purposesofthe international search (under Rule 23.1(b)).

Ci ihe language of publication of the international application (under Rule 48.3(b)).

Othe languageof a translation furnished for the purposesof international preliminary examination (under Rule
55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequencedisclosed in the international application, the
international preliminary examination was carried out on the basis of the sequencelisting:

[1 contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

The statement that the subsequently furnished written sequencelisting does not go beyond the disclosurein
the international application as filed has been furnished.

°

O

Oo

(1 furnished subsequently to this Authority in computer readable form.
A

O The statement that the information recorded in computer readable form is identical to the written sequence
listing has been furnished. ‘

4, The amendments have resulted in the cancellation of:

the description, pages:
1 the claims, Nos.:

Form PCT/IPEA/409 (Boxes j-Vill, Sheet 1) (July 1998)

Page 1296 of 1415

Page 1297 of 1415

INTERNATIONAL PRELIMINARY

EXAMINATION REPORT international application No. PCT/CA01/01344

‘ [] the drawings, sheets:

5. [1 This report has been established as if (some of) the amendments had not been made, since they have been
considered to go beyond the disclosure asfiled (Rule 70.2(c)):

(Any replacement sheet containing such amendments must be referred to under item 1 and annexedto this
report}

6. Additional observations, if necessary:

lll. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

1. The questions whetherthe claimed invention appears to be novel, to involve an inventive step (to be non-
obvious), or to be industrially applicable have not been examined in respectof:

& the entire international application.

(«claims Nos. .

because:

(1 the said international application, or the said claims Nos. relate to the following subject matter which does
not require an international preliminary examination (specify):

i ihe description, claims or drawings (inciicate particular elements below) or said claims Nos. are so unclear
that no meaningful opinion could be formed (specify):
see separate sheet

C1 the claims,or said claims Nos. are so inadequately supported by the description that no meaningful opinion
could be formed.

(no intemational search report has been established for the said claims Nos. .

2. A meaningful international preliminary examination cannot be carried out dueto the failure of the nucleotide
and/or amino acid sequencelisting to comply with the standard provided for in Annex C of the Administrative
Instructions:

Othe written form has not been furnished or does not comply with the standard.

° (1 the computer readable form has not been furnished or does not comply with the standard.

Farm PCT/APEA/409 (BoxesI-VI, Sheet 2) (July 1998)

Page 1297 of 1415

Page 1298 of 1415

‘INTERNATIONAL PRELIMINARY International application No. PCT/CA01/01344
EXAMINATION REPORT- SEPARATE SHEET

Re Item Ill

Although system claims 1, 6, 56, 77 and method claims 27, 36, 43, 47, 68, 87, 104 ‘

have been drafted as separate independentclaims, they appearto relate effectively to

the same subject-matter and to differ from each other only with regard to the definition

of the subject-matter for which protection is sought or in respect of the terminology

used for the features of that subject-matter. The aforementioned claims therefore lack

conciseness. Moreover,lack of clarity of the claims as a whole arises, since the plurality

of independent claims makesit impossible to determine the matter for which protection

is sought, and places an undue burden on others seeking to establish the extent of the

protection.

Hence, system claims 1, 6, 56, 77 and method claims 27, 36, 43, 47, 68, 87, 104 do not

meet the requirements of Article 6 PCT.

Form PCT/Separate Sheet/409 (Sheet 1) (EPO-April 1997)

Page 1298 of 1415

Page 1299 of 1415

eeeeee

04-07-2002 — —=—A0101344

10

15

20

25

- 30° .

Weclaim:

1. A code signing systemforoperation in conjunction with a software applicationhaving a _
digital signature and a signature identification, where the digital signature is associated with the

Signature identification, comprising:

an application platform;

an application programming interface (APD having an associated signature identifier, the

APIis configured to link the software application with the application platform; and

a virtual machinethat verifies the authenticity of the digital signature in order to control

access to the API by the software application where the signature identifier corresponds to the

signature identification.

2. The cade signing system of claim 1, wherein the virtual machine denies the software

application access to the APIif the digital signature is not authenticated.

3. The code signing systém of claim 1, wherein the virtual machine purges the software

applicationif the digital signature is not authenticated.

4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

Signing authority.

6. A code signing system for operation in conjunction with a software application having a

digital signature and a signature identification where the digital signature is associated with the

signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature

identifier, each configured to link the software application with a resource on the application

platform; and

AMENDED SHEET

Page 1299 of 1415

Page 1300 of 1415

94-07-2002

15

20

25

30

a virtual machinethat verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification corresponds to
the signatureidentifier,

wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library.

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified

as sensitive and having an associated signature identifier, and wherein the virtual machine uses

the digital signature and the signature identification to control access to the sensitive APIs.

9, The code signing system of claim 8, wherein the code signing system operates in

conjunction with a plurality of software applications, wherein one or more of the plurality of

software applications has a digital signature and a signature identification, and wherein the

virtual machine verifies the authenticity of the digital signature of each of the one or more of the

plurality of software applications, where the signature identification corresponds to the signature

identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

10. The code signing system ofclaim 6, wherein the resource on the application platform

comprises a wireless communication system.

11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The codesigning system of claim 6, wherein the resource on the application platform

comprises a data store.

AMENDED SHEET

Page 1300 of 1415

oT CAOTOTS4”

Page 1301 of 1415

04-07-2002--—— ee

10

15

20

25

30

- CA010134-

13. The code signing system of claim 6, wherein the resource on the application platform

comprises a user interface (UD.

14. The code signing system of claim 1, further comprising:

a plurality of API libraries, each of the plurality of API libraries includesa plurality of

APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

15. The code signing system of claim 14, wherein at least one of the plurality of API

libraries is classified as sensitive,

wherein access to a sensitive API library requires a digital signature associated with a signature

identification where the signature identification correspondsto a signature identifier associated

with the sensitive API library;

wherein the software application includesat least one digital signature and at least one

associated signature identification for accessing sensitive API libraries; and

wherein the virtua] machine authenticates the software application for accessing the

sensitive APIlibrary by verifying the one digital signature included in the software application

that has a signature identification corresponding to the signature identifier of the sensitive API

library.

16. The code signing system of claim 1, wherein the digital signature is generated using a

private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

17, The code signing system of claim 16, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash

of the- software application to obtain a generated hash, applying the public’signature key to the

3

AMENDED SHEET

Page 1301 of 1415

Page 1302 of 1415

04-07-2002 ane = CA0101344

10

15

20

25

30

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

18, The code signing system of claim 4, wherein the API further comprises:

a descriptionstring that is displayed by the mobile device when the software application ,

attempts to access the API.

19. The code signing system of claim 1, wherein the application platform comprises an
operating system.

20. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

21. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

22. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

module (SIM)card.

23. The code signing system of claim 1, wherein the software application is a Java application
for a mobile device.

24. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

25. The code signing system of claim 1, wherein the API interfaces with a proprietary data

model on the application platform.

26. The code signing system of claim 1, wherein the virtual machineis a Java virtual machine

installed on a mobile device... ‘

AMENDED SHEET

Page 1302 of 1415

Page 1303 of 1415

04-07-2002 Se —="€A0101344

10

18

20

25

30

Porm wwer mm yp

27. A method of controlling access to sensitive application programming interfaces on a mobile
device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive

application programminginterface (API) having a signatureidentifier;

determining whether the software application includes a digital signature and a signature

identification; and

denying the software application access to the sensitive API where the signature

identification does not correspond with the signature identifier. .

28. The method of claim 27, comprising the additional stepof:

purging the software application from the mobile device where the signature

identification does not correspond with the signature identifier.

29. The method of claim 27, wherein the digital signature and the signature identification are

generated by a code signing authority.

30. The method of claim 27, comprising the additional stepsof:

verifying the authenticity of the digital signature where the signature identification

cotresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signatureis

not authenticated.

31. The method of claim 30, comprising the additional step of:

purging the software application from the mobile device where the digital signature is not

authenticated..-

32. The method of claim 30, wherein the digital signature is generated by applying a private

signature key to a hash of the software application, and wherein the step of verifying the

authenticity of the digital signature is performed by a method comprising the steps of*

5

AMENDED SHEET

Page 1303 of 1415

Page 1304 of 1415

~0#67-2002

device;

CA0101344

storing a public signature key that correspondsto the private signature key on the mobile

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

33. The method of claim 32, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

10 =34. The methed of claim 27, comprising the additional step of:

displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

35. The method of claim 34, comprising the additional step of:

15

to the sensitive API.

receiving a command from the user granting or denying the software application access

20 comprising the steps of:

36. A method of controlling access to an application programming interface (APD having a

signature identifier on a mobile device by a software application created by a software developer,

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the software application

where the software application satisfies at least one criterion;;

25 verifying the authenticity of the digital signature appended to the software application

authenticated.

wherethe signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

AMENDED SHEET

Page 1304 of 1415

Page 1305 of 1415

a

04-07-2002—==— . aa CA0101344

10

15

20

25

37. The method of claim 36, wherein the step of determining whether the software application

satisfies at least one criterion is performed by a codesigning authority.

38. The method of claim 36, wherein the step of appending the digital signature and the

signature identification to the software application includes generating the digital signature

comprising the stepsof:

calculating a hash of the software application; and

applying a signature keyto the hash of the software application to generate the digital

signature.

39. The method of claim 38, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHA1).

40. The methodof claim 38, wherein the step of verifying the authenticity of the digital

signature comprises the stepsof:

providing a corresponding signature key on the mobile device;
calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered

hash; and

authenticating the digital signature by comparing the calculated hash with the recovered

hash.

41. The method of claim 40, comprising the further step of denying the software application

access to the API wherethe digital signature is not authenticated..

42. The method of claim 40, wherein the signature keyis a private signature key and the

corresponding signature key is a public signature key.

AMENDED SHEET

Page 1305 of 1415

Page 1306 of 1415

‘04-07-2002 Sa : ==. 6A0101344

10

15

20

25

43. A method of controlling accessto a sensitive application programming interface (API)

having a signature identifier on a mobile device, comprising the stepsof:

registering one or more software developers that are trusted to develop software
applications which access the sensitive API;

receiving a hash of a software application; .

determining whether the hash was sent by a registered software developer; and
generating a digital signature using the hash of the software application and a signature

identification corresponding to the signature identifier where the hash was sentby the registered

software developer;,

wherein

the digital signature and the signature identification are appendedto the software

application; and

the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application where the signature identification
corresponds with the signature identifier.

44. The method of claim 43, wherein the step of generating the digital signature is performed by

a code signing authority.

45, The method of claim 43, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

46. The method of claim 45, wherein the mobile device verifies the authenticity of the digital

signature byperforming the additional stepsof:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature keyto the digital signature to obtain a recovered

hash:

AMENDED SHEET

Page 1306 of 1415

Page 1307 of 1415

10

15

20

25

—04-07-2002 Sr ~CAOTO134-

determining whetherthe digital signature is authentic by comparing the calculated hash

with the recovered hash; and

denying the software application access tothe sensitive API wherethe digital signature is

not authenticated..

47. A methodofrestricting access to application programming interfaces on a mobile device,

comprising the steps of:

loading a software application having a digital signature and a signature identification on

the mobile device that requires access to one or more application programming interfaces (APIs)

having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with

the signature identifier, and

denying the software application access to the one or more APIs where the software

application does not include an authentic digital signature .

48. The method of claim 47, wherein the digital signature and signature identification are

associated with a type of mobile device.

49. The method of claim 47, comprising the additional step of:

purging the software application from the mobile device where the software application

does not include an authentic digital signature..

50. The method of claim 47, wherein:

the software application includes a plurality of digital signatures and signature

identifications; and

the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

AMENDED SHEET

Page 1307 of 1415

Page 1308 of 1415

04-07=5002— . — CA010134-

10

15

20

25

30

51. The method of claim 50, wherein eachofthe plurality of digital signatures and associated

signature identifications are generated by a respectivecorresponding code signing authority.

52. The method of claim 47, wherein the step of determining whether the software application

includes an authentic digital signature comprises the additional steps of: “

verifying the authenticity of the digital signature where-the signature identification

corresponds with respective ones of the at least one signature identifier.

53. The method of claim 51, wherein each ofthe plurality of digital signatures and signature

identifications are generated by its corresponding code signing authority by applying a respective

ptivate signature key associated with the code signing authority to a hash of the software

application.

54. The method of claim47, wherein the step of authenticating the digital signature where the

signature identification corresponds with the signature identifier comprises the steps of:

verifying that the signature identification corresponds with the signature identifier authenticating

the digital signature where signature identification corresponds with the signature identifier

comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature

key associated with the code signing authority which generates the digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

55. The method of claim 47, wherein:
the mobile device includes a plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any.ofthe plurality of APIs requires an authentic global signature;

access to each ofthe plurality of sensitive APIs requires an authentic global signature and

an authentic digital signature associated with a signature identification; 0

10

AMENDED SHEET

Page 1308 of 1415

Page 1309 of 1415

04-07-2002

10

15

20

25

TO CA0101344

the step of determining whether the software application includes an authentic digital

signature and signature identification comprises the steps of:
determining whether the one or more APIs to which the software application requires

access includes a sensitive API;

determining whetherthe software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and

signature identification where the one or more APIs to which the software application requires .
access includes a sensitive API and the software application includes an authentic global

signature; and

the step of denying the software application access to the one or more APIs comprises the

steps of:

denying the software application access to the one or more APIs where the software
application does not include an authentic global signature; and

denying the software application access to the sensitive API where the one or more APIs
to whichthe software application requires access includesa sensitive API, the software

application includes an authentic global signature, and the software application does not include
an authentic digital signature and signature identifier required to access the sensitive API.

56. .Acode signing system for controlling access to application programming interfaces

(APIs) having signature identificaters by software applications, the code signing system

comprising:

a verification system for authenticating digital signatures provided by the respective

software applications to access the APIs where the signature identifications correspond with the
signature identificaters of the respective APIs and whereadigital signature for a software
application is generated with a signature identification corresponding to a signature identificater
to access at least one API; and

a control system for allowingaccessto at least one of the APIs where the digital signature

providedby the software application is authenticated by the verification system.

11

AMENDED SHEET

Page 1309 of 1415

Page 1310 of 1415

2eee

04-07-2002 ne >—CA010134-

10

15

20

25

30

57. Thecode signing system of claim 56, wherein a virtual machine comprises the

verification system and the control system. .

58. The code signing system of claim 57, wherein the virtual machine is a Java virtual

machine installed on a mobile device. ,

59. The code signing system of claim 56, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

60. The code signing system of claim 56, wherein the code signing system is installed on a

mobile device and the software application is a Java application for a mobile device.

61, The code signing system of claim 56, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

62. The code signing system of claim 56, wherein the APIs accessat least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UI).

63. The code signing system of claim 56, wherein the digital signature is generated using a

private signature key undera signature schemeassociated with the signature identification, and

the verification system uses a public signature key to authenticate the digital signature.

64. Thecode signing system of claim 63, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and
the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash arethe same. «

12

AMENDED SHEET

Page 1310 of 1415

Page 1311 of 1415

10

15

20

25

30

=64-07/2002 [— CA0teTS4

65. The code signing system of claim 56, wherein at least one of the APIs further comprises:

a description string that is displayedtoa user whenthe software application attempts to
access said at least one of the APIs.

66. The code signing system of claim 56, wherein the APIs provides access to at least one of

one or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

67.. The code signing system of claim 56, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs.

68.|A method of controlling access to application programming interfaces (APIs) having

signature identifiers by software applications, the method comprising:

authenticating digital signatures provided by the respective software applications to

access the APIs where the signature identifications correspond with the signature identifiers of

the respective APIs and wherea digital signature for a software application is generated with a

signature identification correspondingto a signature identifier to access at least one API; and

allowing accessto at least one of the APIs where the digital signature provided by the

software application is authenticated.

69. The method of claim 68, wherein one digital signature and one signature identification

are provided by the software application access a library ofat least one of the APIs.

70. The method of claim 68, wherein the digital signature and the signature identification of

the software application are generated by a code signing authority.

71. The method of claim 68, wherein the APIs access at least one of a cryptographic module

that implements cryptographic algorithms, a data store, a proprietary data model, and a user
~ interface (UB:

13

AMENDED SHEET

Page 1311 of 1415

Page 1312 of 1415

04-07-2005=——

10

15

20

25

30

ne CA0101344

72. The method of claim 68, wherein the digital signature is generated using a private

signature key undera signature scheme associated with the signature identification, and a public
Signature key is used to authenticate the digital signature.

73. The methodof claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application underthe signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a
recovered hash, and verifying that the generated hash with the recovered hash are the same.

74. The method of claim 68, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to
access said at least one of the APIs.

75. The methodofclaim 68, wherein the APIs provides access to at least one of one or more

core functions of a mobile device, an operating system, and hardware on a mobile device.

76. The methodof claim 68, wherein verification of a global digital signature provided by the

software application is required for accessing any of the APIs

77. A management system for controlling access by software applications to application

programming interfaces (APIs) having at least one signature identifier on a subset ofa plurality

of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to

software applications that require access to at least one of the APIs with a signature identifier on

the subset of the plurality of mobile devices, where a digital signature for a software application
is generated with a signature identification correspondingto a signatureidentifier, and the

Signature identifications provided to the software applications comprise thosesignature m

14

AMENDED SHEET

Page 1312 of 1415

Page 1313 of 1415

a SS CA010134¢04-07-2002 —=— —

10

15

20

25

30

identifications that correspond to the signature identifiers that are substantially only on the subset

of the plurality of mobile devices; wherein each mobile device of the subsetof the plurality of
mobile devices comprisesa .

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of

the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

78. The management system of claim 77, wherein a virtual machine comprises the

verification system and the control system.

79. The management system of claim 78, wherein the virtual machineis a Java virtual

machine and the software applications are Java applications.

80. The management system of claim 77, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs,

81. The management system of claim 77, wherein the APIs accessat least one of a

cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UD.

82.|The managementsystem of claim 77, wherein the digital signature is generated using a

private signature key under a signature scheme associated with the signature identification, and

the verification system uses a public signature key to authenticate the digital signature.

83. The management system of claim 82, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application underthe signature scheme; and

15

AMENDED SHEET

Page 1313 of 1415

Page 1314 of 1415

Oere -o

04-07-2002 —— —=€A0101344

10

15

20

25

30.

the verification system authenticates the digital signature by generating a hash ofthe

software application to obtain agenerated hash, applying the public signature key to thedigital—

signature to obtain a recovered hash, and verifying that the generated hash with the recovered .
hash are the same.

84. The management system of claim 77, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

accesssaid at least one of the APIs.

85. The management system ofclaim 77, wherein the subset of the plurality of mobile

devices comprises mobile devices under the control of at least one of a corporation and a carrier.

86. The managementsystem of claim77, wherein a global digital signature provided by the

software application has to be authenticated before the software application is allowed access to

any of the APIs on a mobile device of the subset of the plurality of mobile devices.

87. A method of controlling access by software applications to application programming

interfaces (APIs) having at least one signature identifier on a subset of a plurality of mobile

devices, the method comprising:

generating digital signatures for software applications with signature identifications

corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications

that require access to at least one of the APIs on the subsetof the plurality ofmobile devices,

wherethe signature identifications provided to the software applications comprise those

signature identifications that correspondto the signature identifiers that are substantially only on

the subset of the plurality ofmobile devices; wherein each mobile device of the subset of the

plurality of mobile devices comprises ,

a verification system for authenticating digital signatures provided by the respective

software applications to access respective APIs where the digital identifications correspond to

the digital-identifiers of the respective-APIs; and - “

16

AMENDED SHEET

Page 1314 of 1415

Page 1315 of 1415

re

002 Loe Sa CA0101342“#6722

10

15

20

25

30

a control system for allowing the software application to access at least one of the APIs

wherethe digital signature provided by the software applicationiis authenticated by the
verification system.

88. The methodofclaim 87, wherein a virtual machine comprises the verification system and
the control system.

89. The method of claim 88, wherein the virtual machineis a Java virtual machine and the

software applications are Java applications.

90. The methodofclaim 87, wherein the control system requires one digital signature and
one signature identification for each library of at least one of the APIs.

91. The methodofclaim 87, wherein the APIs accessat least one of a cryptographic module,

which implements cryptographic algorithms, a data store, a proprietary data model, and a user

interface (UJ).

92, The methodof claim 87, wherein atleast one of the digital signatures is generated using a
private signature key under a signature schemeassociated with a signature identification, and the

verification system uses a public signature keysto authenticate said at least oneofthe digital
signatures.

93. The method of claim 92, wherein:

at least one of the digital signatures is generated by applying the private signature key to
a hash of a software application under the signature scheme; and

the verification system authenticatessaid at least one of the digital signatures by
generating a hash of the software application to obtain a generated hash, applying the public

signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

17

AMENDED SHEET

Page 1315 of 1415

Page 1316 of 1415

oe ooo

04-07-2002 —==—-— oo. SS CA010134-

10

15

20

25

30

94. The methodof claim 87, wherein at least one of the APIs further comprises:

_ adescription string that is displayed to a user when the software application attempts to

accesssaid at least one of the APIs. ‘

95. The method of claim 87, wherein the subsetof the plurality of mobile devices comprises &

mobile devices under the control of at least one of a corporation and a carrier.

96. A mobile device for a subset of a plurality of mobile devices, the mobile device

comprising: .

an application platform having application programming interfaces (APIs);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and
a control system for allowing a software application to access at least one of the APIs

where a digital signature provided by the software application is authenticated by the verification

system, ,

wherein a code signing authority provides digital signatures and signature identifications

to software applications that require access to at least one of the APIs such thatthe digital

signature for the software application is generated according to a signature scheme of a signature

identification, and wherein the signature identifications provided to the software applications

comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

97. The mobile device of claim 96, wherein a virtual machine comprises the verification

system and the control system.

98. The mobile device of claim 97, wherein the virtual machine is a Java virtual machine and
the software application is a Java application.

99. The mobile device of claim 96, wherein the control system requires one digital signature

and one signature identification for each library of at least one of the APIs. ° “

18

AMENDED SHEET

Page 1316 of 1415

Page 1317 of 1415

Seoo: were mt

04-07"2002 —— a CA010134

10

15

20

25

100. The mobile deviceofclaim 96, wherein the APIs of the application platform access at |
least one of a cryptographic module, which implements cryptographic algorithms, a data store, a
proprietary data model, and a user interface (UI).

101. The mobile device of claim 96, wherein the digital signature is generated using a private

signature key underthe signature scheme,andthe verification system uses a public signature key

to authenticate the digital signature.

102. The mobile device of claim 101, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the

software application to obtain a generated hash, applying the public signature key to the digital

signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

103. The mobile device of claim 96, wherein at least one of the APIs further comprises:

a description string thatis displayed to a user when thesoftware application attempts to
access said at least one of the APIs.

104. A method of controlling access to application programming interfaces (APIs) of an

application platform of a mobile device for a subset of a plurality of mobile devices, the method

comprising:

receiving digital signatures and signature identifications from software applications that

require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to access at least one of the APIs wherea digital

signature provided by the software application is authenticated;

19

AMENDED SHEET

Page 1317 of 1415

Page 1318 of 1415

~——

10

15

20

25

30

—~o4-07*2002 | = CAOTOTS.

wherein a code signing authority provides the digital signatures and the signature

identifications to the software applications that require accessto at least one of the APIs such
thatthe digital signature for the software application is generated according to a signature

schemeof a signature identification, and wherein the signature identifications provided to the
w

software applications comprise those signature identifications that are substantially only : .
authorized to allow access on the subsetof the plurality of mobile devices.

105. The method of claim 104, wherein one digital signature and one signature identification

is required for accessing each library of at least one of the APIs.

106. The methodofclaim 104, wherein the APIs ofthe application platform accessatleast

one of a cryptographic module, which implements cryptographic algorithms,a data store, a

proprietary data model, and a user interface (UI).

107. The method of claim 104, whereinthe digital signature is generated using a private

signature key under the signature scheme, and a public signature key is used to authenticate the

digital signature.

108. The method of claim 107, wherein:

the digital signature is generated by applying the private signature key to a hash ofthe

software application underthe signature scheme; and

the digital signature is authenticated by generating a hash of the software application to

obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

109, The method of claim 104, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attemptsto
access said at least one of the APIs.

20

AMENDED SHEET

Page 1318 of 1415

Page 1319 of 1415

¥ 7

(19))
(12)

Europaisches Patentamt

Europ an Patent Offic

Offi e europ” ndes br vets

(43) Date of publication:
21.07.1999 Bulletin 1999/29

(21) Application number: 98310312.8

(22) Date offiling: 16.12.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FIFRGBGRIEITLILU
MC NL PT SE

Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 22.12.1997 US 995606

(71) Applicant: TEXAS INSTRUMENTSINC.
Dallas, Texas 75243 (US)

(72) Inventors:
« McMahon, Michael (NMI)

Plano, Texas 75074 (US)

(54)

(57)|Avwireless data platform (10) comprises a plu-
rality of processors (12, 16). Channels of communica-
tion are set up between processors such that they may
communicate information as tasks are periormed. A dy-
namic cross compiler (80) executed on one processor
compiles code into native processing code for another

ae

Network
4G ireertace

af

EP0930793A1

ME
(11) EP 0 930 793 A1

EUROPEAN PATENT APPLICATION

(61) intci® HO4Q 7/32, HO4B 1/38,
GO6F 9/38

* Lineberry, Marion C.
Dallas, Texas 75218 (US)

* Woolsey, Matthews A.
Plano, Texas 75023 (US)

*® Chauvel, Gerard (NMI)
06600 Antibes (FR)

(74) Representative: Potter, Julian Mark et al
D. Young & Co.,
21 New Fetter Lane

London EC4A 1DA (GB)

Mobile equipment with a plurality of processors

processor. A dynamic crosslinker (82) links the com-
piled codefor other processor. Native code may also be
downloadedto the platform through use of a JAVA Bean
(90) (or other language type) which encapsulates the
native code. The JAVA Bean can be encrypted and dig-
itally signed for security purposes.

Printed by Jouve. 75001 PARIS (FA)

BNSDOCID: <EP___0930793A1_I_>

Page 1319 of 1415

Page 1320 of 1415

10

20

2s

30

36

40

45

50

55

EP 0 930 793 A1

Description

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

[0001] This invention relates in general to mobile electronic devices and, more particularly, to a hardware and soft-
ware platform for mobile electronic devices.

DESCRIPTION OF THE RELATED ART

[C002] Handheld portable devices are gaining popularity as the power and, hence, functionality of the devicesin-
creases. Personal Digital Assistants (PDAs) are currently in widespread use and Smartphones, which combine some
of the capabilities of a cellular phone and a PDA,are expected to have a significant impact on communications in the
nearfuture.

[0003] Some devices currently incomorate one or more DSPs(digital signal processor) or other coprocessors for
providing cenain discrete features, such as voice recognition, and a general purpose processorfor other data process-
ing functions. The code for lhe DSP and the codefor the general purpose processoris generally stored in ROMs or
other nonvolatile memories, which are not easily modified. Thus, as improvements and new features becomeavailable,
itis ollen nol possible to upgrade the capabilities of the device. In particular, il is not possible to maximize the use of
the DSPs or other coprocessor which may be presentin the device.
[0004] Therefore, a need exists for a data processing architecture which can be upgraded and optimizes use of
multiple processors and coprocessors.

BRIEF SUMMARY OF THE INVENTION

[0005] The teachings of the present application disclose a mobile electronic device that comprises a coprocessor
for executing native code, a host processor system operable to execute native code corresponding to the host processor
system and processor independent code. The host processor system is operable to dynamically change the tasks
performed bythe digital signal coprocessor. Communication circuitry provides for communication between the host
processor system and the coprocessor.
[0006] This mobile electronic device significant advantages over the prior art. Because the host processor system
can dynamically allocate the tasks being performed by the coprocessor, which may bea digital signal processor, to
fully use the coprocessor. The host processor system may direct a routine to one of a plurality of coprocessors, de-
pending upon a variety of factors, such the present capabilities of each processor.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0007] For a more complete understanding of the present invention, and the advantages thereof, reference is now
madeto the following descriptions taken in conjunction with the accompanying drawings, in which:

Figure 1 illustrates a block diagram of a platform architecture particularly suited for general wireless data process-
ing;

Figure 2 illustrates a functional block diagram of the platform of Figure 1;

Figure3illustrates a functional block diagram of dynamic cross compiling and dynamic cross linking functions;

Figure 4 illustrate an embodimentof native code for execution on a processor being encapsulated in a JAVA Bean
wrapperfor downloading to a device;

Figure 5 illustrates the operation of transferring the encapsulated native code to a processor on a device froma
JAVA Bean located on a remote server, and

Figure6 illustrates a flow diagram describing security features associated with the operation of Figure 5.

BNSDOCID: <EP___0930793A1_I_>

Page 1320 of 1415

Page 1321 of 1415

10

18

20

25

30

35

40

45

$0

$5

EP 0 930 793 Al

DETAILED DESCRIPTION OF THE INVENTION

[c008] Figure1illustrates a preferred embodiment of a general wireless data platform architecture, which could be
used for example, in the implementation of a Smartphone or PDA. Thewireless data platform 10 includes a general
purpose (Host) processor 12 coupled to bus structure 14, including data bus 14a, address bus 14b and control bus
14c. One or more DSPs(or other coprocessors) 16,including the core processor 16a and the peripheralinterface 16b,
are coupled to bus 14 and to memory and traffic controller 18, which includes a DSP cache memory 18a, a CPU cache
48b, anda MMU (memory managementunit) 18c. Hardware acceleratorcircuit 20 (for accelerating a portable language
such as JAVA) and a video and LCD controller 22 are also coupled to the memory andtraffic controller 18. The output
of the video and LCD controller is coupled to an LCD orvideo display 24.
[0009] Memory & traffic controller 18 is coupled to bus 14 and to the main memory 26, shown as an SDRAM(syn-
chronous dynamic random access memory). Bus 14 is also connected to I/O controller 28, interlace 30, and RAM/
ROM32. A plurality of devices could be coupled to the wireless data platform 10, such as smartcard 34, keyboard 36,
mouse 38,or one or more serial ports 40, such as a USB(universal serial bus) port or an RS232 serial pon. Interface
30 can coupleto a flash memory card 42 and/or a DRAM card 44. The peripheral interface 16b can couple the DSP
16 toa DAC(digital to analog converter) 46, a network interface 48 or to other devices.
[0010] The wireless data platform 10 of Figure 1 utilizes both a general purpose processor 12 and a DSP 16. Unlike
current devices in which the DSP 16 is dedicated 10 specific fixed functions, the DSP 16 of Figure 1 can be used for
any numberof functions. This allows the user to derive the full benefit of the DSP 16.
[0011] One main area in which the DSP 16 can be usedis in connection with the man-machine interface (MMI).
importantly, functions like speech recognition, image and video compression and decompression, data encryption,
text-to-speech conversion, and so on, can be performed much moreefficiently using the DSP 16. The proposed ar-
chitecture allows new functions and enhancementsto be easily added to wireless data platform 10.
[0012] It should be notedthat the wireless data platform 10 is a general block diagram and many modifications could
be made. For example, Figure 1 illustrates separate DSP and processor caches 18a and 18b. As would be known to
one skilled in the art, a unified cache could also be used. Further, the hardware acceleration circuit 20 is an optional
item. Such devices speed the execution of languages such as JAVA; however, the circuit is not necessary for operation
of the device. Further, althoughtheillustrated embodiment showsa single DSP, multiple DSPs (or other coprocessors)
could be coupled to the buses.
[0013] Figure 2 illustrates a functional software architecture for the wireless data platform 10. This block diagram
presumesthe use of JAVA;it should be notedthat languages other than JAVA could be used as well. Functionally, the
software is divided into two groups, Host processor software and DSPsoftware. The Host software includes one or
more applets 41. The DSP API class 43 is a JAVA API package for JAVA applications or applets to accessthe func-
tionality of the DSP API 50 and Host DSPInterface Layer 52. A JAVAvirtual machine (VM) 45 interprets the applets.
The JAVA native interface 47 is the method which the JAVA VM executes host processor or platform specific code.
Native tasks 49 are non-JAVA programs which can be executed by the Host processor 12 without using the JAVA
native interlace. The DSP API 50, describedin greater detail hereinbelow, is an AP! (application program interface)
used the Host 12 to call to make use of the capabilities of the DSP 16. The Host-DSPInterface Layer 52 provides an
API for the Host 12 and DSP 16 to communicate with each other, with other tasks, or other hardware using channels
via the Host-DSP Communication Protocol. The DSP device driver 54 is the Host based device driverfor the Host
RTOS56(real time operating system) to communicate with the DSP 16. The Host RTOS 56is an operating system,
such as NUCLEUS PLUSby Accelerated Technology Incorporated.
[0014] Alternatively a non-real time operating system, such as WINDOWSCEby Microsoft Corporation, could be
used. The DSP Library 58 contains programs stored for execution on the DSP 16.
[0015] On the DSPside, one or more tasks 60 can be stored in memory tor execution by the DSP16. As described
below,the tasks can be movedin and outof the memory as desired, such that the functionality of the DSP is dynamic,
rather than static. The Host-DSP Interface layer 62 on the DSP side performs the same function as the Host-DSP
Interface layer 52 on the Host side, namely it allows the Host 12 and DSP 16 to communicate. The DSP RTOS 64is
the operating system for the DSP processor. The Host Device driver 66 is a DSP based device driver for the DSP
RTOS 64 to communicate with the Host 12. The Host-DSPInterface 70 couples the DSP 16 and Host 12.
[0016] inoperation, the software architecture shownin Figure 2 uses the DSP 16 asa variable function device, rather
thanafixed function device as in the prior art.

[0017] Accordingly, the DSP functions can be downloaded to the mobile device incorporating the architecture of
Figure 2 to allow the DSP 16 to perform various signal processing functions for the Host 12.
[0018] The DSP-APIprovides a device independent interface from the Host 12 to the DSP 16. The functions provide
the Host 12 with theability to load and schedule tasks on the DSP 16 andto control and communicate with those tasks.
The AP! functions include calls to: determine the DSP's available resources, create and control Host 12 and DSPtasks,
create and control data channels between Host 12 and DSP tasks, and communicate with tasks. These functions are

BNSDOCID: <EP___0930793A1_!_>

Page 1321 of 1415

Page 1322 of 1415

20

25

30

35

40

45

50

55

EP 0 930 793 At

described below. Each function returns a BOOLean result, which will be SUCCESSfor a successful operation, or
FAILURE. If the result is FAILURE, the errcode should be checked to determine which error occurred.

OSP_Get_MIPS

BOOL DSP_Get_MIPS(T_DevicelD DeviD, U32 ‘mips, U16 “errcode);
[0019} This function returns the current MIPS available on the DSP. This consists of the MIPS capability of the DSP
16 minus a base MIPS value (the MIPS value with no additional dynamic tasks, i.e. the kernel plus AP! code plus
drivers), minus the sum of the MIPS ratings for all loaded dynamic tasks. Tne errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_Get_Memory_Available

BOOL DSP_Get_Memory_Available(T_DevicelD DeviD, T_Size “progmem, T_Size “datamem, U16 *errcode);
[0020] This function will query the DSP 16 specified by Devi/D for the amounts of available memory for both program
memory and data memory. The resultant values are returned in the progmem and datamem parameters. The sizes
are specified in T_DSP_Words. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING

DSP_Alloc_Mem

BOOL DSP_Alloc_Mem(T_DevicelD DevID, U16 mempage, T_Size size, T_.DSP_Word **memptr, U16 ‘*err-
codes);
[0021] This function will allocate a block of memory on a DSP 16. The DeviD specifies which device on which to
allocate the memory. The mempageis 0 for program space, and 1 for data space. The size parameter specifies the
memory block size in T_.DSP_Words. The returned memptr will be a pointer to the memory block on the DSP 16, or
NULLonfailure. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_NOT_ENOUGH_MEMORY

DSP_Free_Mem

BOOL DSP_Free_Mem(T_DevicelD DeviID, U16 mempage, T_DSP_Word *memptr, U16 “errcode);
[0022] This function will free a block of memory on a DSPthat was allocated with the DSP_Alloc_Mem function. The
DevID specifies on which device the memory resides. The mempageis 0 for program space, and 1 for data space.
The mempir parameteris the pointer to the memory block. The errcode parameterwill contain the following possible
results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVAL!D_MEMPAGE
DSP_MEMBLOCK_NOT_FOUND

DSP_Get_Code_Iinto
BOOL DSP_Get_Code_info(char "Name, T_CodeHar *codehdr, U16 “errcode);

[0023} This function will access the DSP Library table and return the code headerfor the DSP function code specified
by the Name parameter. On return, the location pointed to by the codehdr parameterwill contain the code header
information. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_NAMED_FUNGC_NOT_FOUND

DSP_Link_Code

BOOL DSP_Link_Code(T_DevicelD DeviD, T_CodeHdr *codehdr, T_TaskCreate *tcs, U16 *errcode);
[0024] This function will link DSP function code so that it will run at a specified address on the DSP specified by
Dev!D. The codehar parameter points to the code headerfor the function. The dynamic crosslinkerwill link the code
based on information in the code header, and in the code (COFFfile). The dynamic crasslinker will allocate the memory
as needed, and link and load the code to the DSP 16. The ics parameteris a pointerto the task creation structure
neededin the OSP_Create_Task function. DSP_Link_Codewill fill in the code entry points,priority, and quantum fields
of the structure in preparation for creating a task. The errcode parameterwill contain the following possible results:

DSP_SUCCESS

BNSDOCIO: <EP___0930793A1_I_>

Page 1322 of 1415

Page 1323 of 1415

18

20

28

30

35

40

4s

50

55

EP 0 930 793 At

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NOT_ENOUGH_PROG_MEMORY
DSP_NOT_ENOUGH_DATA_MEMORY
DSP_COULD_NOT_LOAD_CODE

DSP_Put_BLOB
BOOL DSP_Put_BLOB(T_DevicelD DeviD, T_HostPtr srcaddr, T_DSP_Ptr destaddr, U16 mempage, T_Size

size, U16 *errcode);
(0025] This function will copy a specified Binary Large Object (BLOB) to the OSP 16. The Dev/D specifies on which
DSP 16 to copy the object. The srcador parameteris a pointer to the object in Host memory. The destaddris a pointer
to the location to which to copy the object on the DSP 16. The mempageis 0 for program space, and 1 for data space.
The size parameter specifies the size of the object in T.DSP_Words. The errcode parameterwill contain the following
possible results :

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Create_Task
BOOL DSP_Create_Task(T_DevicelD DevID, T_TaskCreate “*tcs, T_TaskID *TaskID, U16 *errcode);

[oo26] OSP_Create_Task requests the DSP 16 to create a task given the task parameters and the code locations
in the OSP's program space. The Task Creation Structure is show in Table 1:

Table 1.

Task Creation Structure.

T_DSP_Name|Name User defined nameforthe task.

U32 MIPS MIPS used bythe task.
T_ChanID Chanin The channel !D used for task input.
T_Chan!D GhanOut The channel! iO used for task output
T_StrmID Strmin The stream ID usedfor task input
T_StrmiD StrmOut The stream ID usedfor task output.

U16 Priority The task’s priority.
U32 Quantum The task's timeslice in system ticks.

T_Size StackReq The amount of stack required.
T_DSP_Ptr MsgHandler|Pointer to code to handle messagesto the task.
T_HOST_Ptr CallBack Pointer to Host code to handle messages from the task.
T_DSP_Ptr Create Pointer to code to execute when task is created.
T_DSP_Pir Start Pointer to code to execute when taskis started.

T_DSP_Ptr Suspend Pointer to code to execute when task is suspended.
T_DSP_Ptr Resume Pointer to code to execute when task is resumed.

T_DSP_Ptr Stop Pointer to code to execute when task is stopped.

{[0027] Oncethe taskis created, the Create entry point will be called, giving the task the opportunity to do any nec-
essary preliminary initialization. The Create, Suspend, Resume, and Stop entry points can be NULL. The resultant
TaskID contains both the device ID (Dev!D), and the DSP's task ID.If the Task/Dis NULL,the create failed. The errcode
parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_PRIORITY
DSP_CHANNEL_NOT_FOUND
DSP_ALLOCATION_ERROR

DSP_Start_Task
BOOL DSP_Start_Task(T_Task!D TaskID, U16 *errcode):

[0028] This function wil! start a DSP task specified by TaskID. Execution will begin at the task’s Start entry point. The

BNSDOCID: <EP___0930793A1_I_>

Page 1323 of 1415

Page 1324 of 1415

10

15

20

25

30

36

40

45

50

55

EP 0 930 793 A1

errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Suspend_Task
BOOL DSP_Suspend_Task(T_TaskiD TaskiD, U16 *errcode);

[0029] This function will suspend a DSP task specified by Task/D. Prior to being suspended,the task's Suspend
entry point will be called to give the task a chanceto perform any necessary housekeeping. The errcode parameter
will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Resume_Task
BOOL DSP_Resume_Task(T_TaskiD TaskiD, U16 “errcoda);

[C030] This function will resume a DSPtask that was suspended by DSP_Suspend_Task. Prior to being resumed,
ine task's Resume entry point will be calied to give the task a chanceto perform any necessary housekeeping. The
errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_TASK_NOT_SUSPENDED

DSP_Delete_Task

BOOL DSP_Delete_Task(T_TaskID TaskID, U16 *errcode);
[0031] This function will delete a DSP task specified by TaskiD. Prior to the deletion, the task's Stop entry pointwill
be called to give the task a chanceto perform any necessary cleanup. This should include freeing any memory that
wasallocated by the task, and returning any resources the task acquired. The errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Change_Task_Priority
BOOL DSP_Change_Task_Priority(T_TaskID TaskID, U16 newpriority, U16 *oldpriority, U16 *errcoda);

[0032] This function will change the priority of a DSP task specified by Task/D. Thepriority will be changed to newp-
riority. The possible values of newpriority are RTOS dependent. Upon return, the o/dpriority parameterwill be set to
the previous priority of the task. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEV!ID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_INVALID_PRIORITY

DSP_Get_Task_Status

BOOL DSP_Get_Task_Status(T_TaskiD TaskID, U16 “status, U16 “priority, T_Chan!D “Input, T_ChaniD “Output,
U16 “errcode);
[0033] This function returns the status for a DSP task specified by TaskiD. The status will be one of the following
values:

DSP_TASK_RUNNING
DSP_TASK_SUSPENDED
DSP_TASK_WAITFOR_SEM
DSP_TASK_WAITFOR_QUEUE
DSP_TASK_WAITFOR_MSG

[0034] The priority parameter wiil contain the task's priority, and the /nput and Output parameters will contain the
task's input and output channel IDs. respectively. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND

BNSDOCID: <EP___0930793A1_}_>

Page 1324 of 1415

Page 1325 of 1415

10

20

25

30

35

40

50

55

EP 0 930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Get_ID_From_Nam
BOOL DSP_Get_ID_From_Name(T_DevicelD DevID, T_.DSP_Name Name, T_DSP_ID *!ID, U16 *errcode);

[0035] This function returns the ID for a named object on the DSP 16. The named object may be a channel, a task,
a memory block, or any other supported named DSPobject. The errcode parameterwill contain the following possible
results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NAME_NOT_FOUND

DSP_Dbg_Read_Mem
BOOL DSP_Dbg_Read_Mem(DE VICE_ID DeviD, U8 mempage, DSP_PTRaddr, U32 count, DSP_WORD“buf,

U16 “errcode);
[0036) This function requests a block of memory. The mempage specifies program memory (0) or data memory (1).
The addr parameterspecifies the memory starting address, and the Count indicates how many T_DSP_Wordsto read.
The bufparameteris a pointerto a caller provided buffer to which the memory should be copied. The errcode parameter
will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Dbg_Write_Mem
BOOL DSP_Dbg_Write_Mem(T_DevicelD DeviD, Ui6 mempage, T DSP_Ptr addr, T_Count count,

T_DSP_Word “buf, U16 “errcode);
[0037] This function writes a block of memory. The mempage specifies program memory (0) or data memory (1).
The adarparameter specifies the memory starting address, and the countindicates how many T_DSP_Wordsto write.
The buf parameteris a pointer the buffer containing the memory to write. The errcode parameter will contain the
following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE

DSP_Dbg_Read_Reg
BOOL DSP_Dbg_Read_Reg(T_DevicelD DeviD, U16 RegiD, T_LDSP_Word *regqvalue, U16 *errcode);

[0038] This function reads a DSP register and returns the value in regvaiue. The RegiD parameter specifies which
register to return. If the RegfD is -1, then all of the register values are returned. The reqvalue parameter, which is a
pointer to a caller provided buffer, should point to sufficient storage to hold all of the values. The register IDs are DSP
specific and will depend on a particular implementation. The errcode parameter will contain the following possible
results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGISTER

DSP_Dbg_Write_Reg
BOOL DSP_Dbg_Write_Reg(T_DevicelD DeviD, U16 RegID, T_DSP_Word reqvaiue, U16 “errcode);

[0039] This function writes a DSP register. The RegiD parameterspecifies which register to modify. reqvalue contains
the new value to wrile. The register IDs are DSP specific and wiil depend on a particular implementation. The errcode
parameter will contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGISTER

DSP_Dbg_Set_Break
BOOL DSP_Dbg_Set_Break(T_DevicelD DeviD, DSP_Pir addr, U16 “errcode); This junction sets a break point

at the given code address (addr). The errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND

BNSODOCID: <EP___0930793A1_t_>

Page 1325 of 1415

Page 1326 of 1415

10

18

20

25

30

36

40

45

50

$5

EP 0 930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_Dbg_Cir_Break
BOOL DSP_Dbg_Cir_Break(T_DevicelD DeviD, T_DSP_Ptr addr, U16 *errcode);

[0040] This function clears a break point that was previously set by DSP_Dbg_Set_Breakat the given code address
(addr). The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BP_DID_NOT_EXIST

[0041] The DSP Device Driver 54 handles communications fram the Host 12 to the DSP 16. The driver functionswill
take the communication requests as specified in the Host-DSP Communications Protoce! and handle the transmission
of the information via the available hardware interface. The device driver is RTOS dependent and communications
hardware dependent.
[0042] The DSP Library 58 contains the blocks of code that can be downloaded to the DSP 16 for execution. Each
block of code will be previously unlinked, or relocatably linked asalibrary, so that the dynamic crosslinker can resolve
all address reterences. Each codeblock will also include information about the block's requirements for DSP MIPS
(millions of instructions per second), priority, time slice quantum, and memory. The format for the code block header
is shownin Table 2. The program memory and data memory sizes are approximations to give the Host 12 a quick
check on whether the DSP can support the task's memory requirements. If there appears to be sufficient space, the
dynamiccrosslinker can then attemptto link and load the code.It should be noled thal the dynamic crosslinker could
still fail, due to page alignment and contiguity requirements. In the preferred embodiment, the code is in a version 2
COFFfile format.

Table 2.

Code Block Header.

U16 Processor The target processortype.
T_DSP_Name|Name Task's name.

U32 MIPS Worst case MIPS required by the task.
T_Size ProgSize Total program memory size needed.
T_Size DataSize Total data memory size needed.
T_Size inFrameSize Size of a framein the task's input channel.

T_Size OuitFrameSize|Size of a framein the task's output channel.
T_Size InStrmSize Size of the task's input stream FIFO.
T_Size OutStrmSize Size of the task's output stream FIFO.
U16 Priority Task's priority.
U32 Quantum Task's time slice quantum (numberof system ticks).
T_Size StackReq Stack required.
T_Size CoffSize Total size of the COFFfile.

T_DSP_Ptr MsgHandler Offset to a message handlerentry pointfor the task.
T_DSP_Ptr Create Offset to a create entry point that is called when the taskis created.
T_DSP_Ptr Start Offset to the start of the task's code.

T_DSP_Pir Suspend Offset to a suspend entry pointthat is called prior to the task being suspended.
T_DSP_Pir Resume Offset to a resumeentry point that is called prior to the task being resumed.
T_DSP_Ptr Stop Offset to a stop entry point that is called prior to the task being deleted.
T_Host_Ptr CoffPtr Pointer to the location of the COFF data in the DSP Library.

{0043} A procedure for converting portable (processor independent) code, such as JAVA code, into linked target
code is shownin Figure 3. The procedure uses two functions, a dynamic cross compiler 80 and a dynamic crosslinker
82. Each function is implemented on the host processor 12. The dynamic crosslinkeris part of the DSP-APIin the
preferred embodiment. The cross compiler may also be part of the DSP-API.
[0044] The dynamic cross compiler 80 converts portable codeinto unlinked, executable target processor code. The
dynamic cross linker 82 converts the unlinked, executable target processor codeinto linked, executable target proc-
essor code. To do so,it must resolve addresseswithin a block of code, prior to loading on the DSP 16. The dynamic

BNSDOCID: <EP___0930793A1_I_>

Page 1326 of 1415

Page 1327 of 1415

10

1S

20

25

30

35

40

45

50

55

EP 0 930 793 At

cross linker 82 links the code segments and data segmentsof the function, allocates the memory on the OSP 16, and
loads the code and constant data to the DSP 16. The functions are referred ta as "cross" compiling and "cross"linking,
becausethe functions (compiling and linking) occur on a different processor(i.e., the host processor 12) from the target
processor which executes the code (i.e., the DSP 16).
[0045] The dynamic cross compiler 80 accepts previously unlinked code loaded on demandbya useror a user agent
(such as a browser). The codeis processedto either (1) identify "tagged" sections of the code or (2) analyze untagged
code segments for suitability of execution on the DSP 16. A tagged section of source code could delineate source
targetable to a DSP by predetermined markers such as "<start DSP code>" and <end DSP code>" embeddedin the
source code. If a tagged section is identified either directly or through analysis, a decision is made to either cross
compile or not based on the current processing state of the DSP 16. If a decision ts made to compile, the section of
code processed by compiling software that outputs unlinked, executable target processor code, using well known
compiling methods. A decision nat to compile could be madeif tor example, the DSP hasinsufficient available process-
ing capacity (generally stated as available MIPS- million of instructions per second)or insufficient available memory,
due to other tasks being executed by the DSP 16. The compiled code can be passed to the dynamic cross linker 82
for immediate use in the DSP 16, or could be savedin the DSPlibrary 58.
[0046] The dynamic cross linker 82 accepts previously unlinked code, whichis either (1) statically stored inconnection
with the host pracessor12 or (2) dynamically downloadedto the host processor 12 over a network connection (including
global networks such as the Intemet) or (3) dynamically generated by the dynamic cross compiler 80. The dynamic
cross linker 82 links the input code for a memory starting address of the OSP 16 determined at runtime. The memory
starting address can be determined from a memory map or memory table stored on and managed byeither the host
processor 12 or DSP 16. The dynamic crosslinker 82 convert referenced memory locations in the code to actual
memory locations in the DSP 16. These memory locations could include, for example, branch addressesin the code
or references to locations of data in the cade.

[0047] nthe preferred embodiment, the portable codeis in a COFF (commonobjectfile format) which containsall
information about the code, including whetherit is linked or unlinked.If it is unlinked, symbol tables define the address
which must be changedforlinking the code.
[0048] The conversion process described above has several significant advantages over the prior an. First, the
dynamic cross compiler 80 allows run-time decisions to be made about where to execute the downloaded portable
code. For example, in a system with multiple target processors (such as two DSPs 16), the dynamic cross compiler
80 could compile the portable code to any oneof the target processors based on available resaurcesor capabilities
The dynamic cross \inker 82 providesfor linking code to run onatarget processor which does not support relocatable
code. Since the codeis linked at run-time, memory locations in the DSP 16 (or other target processor) co not need to
be reserved, allowing optimum efficiency of use of all computing resources in the device. Because the compiling is
accomplished with knowledge of the architecture of the platform 10, the compiling can take advantage of processor
and platform specific features, such as intelligent cache architectures in one or both processors 12 and 16.
[0049] Thus, the DSP 16 can have various functions which are changed dynamically to fully use its processing
capabilities. For example, the user may wish to 12 load a userinterface including voice recognition. At that time, the
host processor 12 could download software and dynamically cross compile and crosslink the voice recognition software
for execution in the DSP 16. Alternatively, previously compiled software in the DSPlibrary 58 could be dynamically
crosslinked, based on the current status of the DSP 16, for execution.

[0050] The Host Device Driver handles communications from the DSP 16 to the Host Processor 12. The driver
functions takes the communication requests as specified in the Host-DSP Communications Protocol and handlestrans-
mission of the information via the available hardware interface. The device driver is RTOS dependent and communi-
cations hardware dependent.
[0051] The Host-DSP Communications Protocol governs the communications of commands and data between the
Host 12 and the DSP 16. The communications consist of several paths: messages, data channels, and streams. Mes-
sages are used to sendinitialization parameters and commandsto the tasks. Data channels carry large amounts of
data between tasks and between the DSP 16 and Host 12, in the form of data frames. Streams are used to pass
streamed data between tasks and between the DSP 16 and Host12.

[0052] Each task hasaneniry point to a message handler, which handles messages. The messagesare user defined
andwill includeinitialization parameters for the task's function, and commandsfor controlling the task. The tasks send
messagesto the Host 12 via the callback specified when the task is created. The prototype for the task’'s message
handler and the prototype for the Host's callback are shown here:

void TaskMsgHandier(T_ReplyRef replyref, T_MsgiD MsgiD, T_Count count, T_DSP_Word *buf);
void HostCaliBack(T_ReplyRef replyref T_MsglD MsgID, T_Count count, T_DSP_Word *buf);

[0053] The replyref parameter refers to an implementation dependent reference value, which is used to route the

BNSDOCID: <EP___0930793A1_I_>

Page 1327 of 1415

Page 1328 of 1415

10

15

20

25

30

3s

40

$0

55

EP 0 930 793 Al

reply back to the sender. For every Send_Message call, the recipient must call Reply_Message using the replyref
parameter. The actual messages may appearasfollows:

[eat[aowre![meae[eoont[oot

The muttiword data is sent least-significant wordfirst.
[0054] A JaskiDoft0 in the Send_Messagefunction indicates a system level message. The system level messages
are used to implement the DSP-API functions
[0055] Following are the Messagefunctions:

Send_Message

BOOL Send_Message(T_TaskiID TaskiD, T_MsgiD MsgiD, T_Count count, T_DSP_Word “msgbuf,
T_DSP_Word “replybuf, T_Size replybufsize, T_Count replycount, U16 “errcode);
[0056] This function will send a user defined messageto a task specified by TaskID. The Msg/Ddefines the message,
and the msgbufcontains the actual message data. The messagesize is count T_DSP_Words. The reply tothe message
will be containedin the replybufparameter, which points to a buffer of size repiybufsize, provided bythecaller. It should
be of sufficient size to handie the reply for the particular message. The encode parameterwill contain the following
possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

Reply_Message
BOOL Reply_Message(T_ReplyRef replyret, T_Count count, T_DSP_Word *buf, U16 *errcode):

[0057] This function is used to reply to messages. The repiyrefparameteris a reference usedto route the reply back
to the senderof the original message, and is implementation specific. The reply is contained in the buf parameter and
its size is count T_OSP_Words. The errcode parameterwill contain the following possible results:

DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BAD_REPLY_REF

[0058] The concept of channels is used to transmit frame-based data from one processor to another, or between
tasks on the same processor. Whencreated, a channel allocates a specified numberandsize of framesto contain the
data. Initially, the channelwill contain a list of empty frames. Tasks that produce data will request empty framesin
which to put the data, then oncefilled, the frame is returned to the channel. Tasks that consumedata will requestfull
frames trom the channel, and once emptied, the frame is returned to the channel. This requesting and returning of
frame buffers allows data to move about with a minimum of copying.
[0059] Each task has 4 specified Input and Output channel. Once a channelis created, it should be designated as
the input to one task, and the output to another task. A channel's ID includes a device ID, so channels can pass data
between processors. Channel dala flow across the Host-DSPinterface may appearas follows:

ChanPktFlag|ChannelID Datal...]

The following are the channel functions:
Create_Channel
BOOL Create_Channel(T_DevicelD DeviD, T_Size framesize, T_Count numframes, T_Chan!D *ChannellD, U16

“errcoda);
[0060] This function creates a data frame-based communication channel. This creates a channel control structure,
which maintains control of a set of frame buffers, whose count and size are specified in the numframes and framesize
parameters, respectively. When created, the channel allocates the data frames, and adds them toits list of empty
frames. ChannellD will return the |0 of the new channel. If the Devi/D is not that of the calling processor, a channel
control structure is created on both the calling processor and the Dev!D processor, to control data flowing across the
communications interface. The errcode parameter will contain the following possible results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING

 Reply message i MsgPkiFlag

Sent message i MsgPktFlag

10

BNSDOCID: <EP___0930793A1_i_>

Page 1328 of 1415

Page 1329 of 1415

20

25

30

35

40

50

§5

EP 0 930 793 A1

CHAN_ALLOCATION_ERROR
Del te_Channel
BOOL Delete_Channel(T_ChaniD ChanneliD, U16 *errcode):

[0061] This function deletes an existing channel specified by ChannellD. The errcode parameter will contain the
following possible results:

CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT RESPONDING
CHAN_CHANNEL_NOT_FOUND

Request_Empty_Frame
BOOL Request_Empty_Frame(T_LocalChanID Chn, T_DSP_Word **bufptr, BOOL WaitFlag, U16 *errcode);

[0062] This function requests an empty frame from the specified local channelID. If Chn is NULL, then the task's
output channel is used. Upon retum, the bufpir parameterwill contain the pointer to the framebuffer. li the WaitFlag
is TRUE,and there is no frame buffer available, the caller will be suspended until a buffer becomes available. If the
WaitFlag is FALSE, the function will return regardless. The errcode parameterwill contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_UNAVAILABLE

Return_Full_Frame
BOOLReturn_Full_Frame(T_LocalChaniD Chn, T_DSP_Word “buiptr, U16 “errcode);

[C063] Once a taskhasfilled a frame buffer, it returns is to the channel using this function. The buffer pointed to by
bufpir is returned to the channel ID specified. If Chn is NULL, then the task’s output channel is used. The errcode
parameterwill contain the following possible results:

CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR

Request_Full_Frame

BOOL Request_Full_Frame(T_LocaiChanID Chn, T_DSP_Word “*bufptr, BOOL WaitFiag, U16“errcode);
[0064] This function requests a full frame of data from the specified local channelID. If Chn is NULL, then the task's
input channel is used. Upon return, the bufpir parameterwill contain the pointer to the frame buffer. If the WaitFlag is
TRUE,and there are nofull frame buffers available, the caller will be suspended until a buffer becomes available. If
the WaitFiag is FALSE,the function will return regardless. The errcode parameter will contain the following possible
results:

CHAN_SUGCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_UNAVAILABLE

Return_Empty_Frame
BOOL Return_Empty_Frame(T_LocalChanlD Chn, T_DSP_Word *bufptr, U16 *errcode);

[0065] Once a task has usedthe data from a frame buffer, it should return the buffer to the channelusingthis function.
The buffer pointed to by bufpiris returned to the channel ID specified. {f Chnis NULL, then the task's input channelis
used. The errcode parameter will contain the following possible results:

CHAN_SUCGCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR

Set_Task_Input_Channel
BOOL Set_Task_Input_Channel(T_Task *TaskID, T_ChaniD ChanlD, U16 “errcode);

[C066] This function sets a task's input channel to the specified channel ID. The errcode parameterwill contain the
following possible results:

CHAN_SUCCESS
GHAN_DEVID_NOT_FOUND
GHAN_DEVID_NOT_RESPONDING
GHAN_TASK_NOT_FOUND
CHAN_CHANNEL_NOT_FOUND

Set_Task_Output_Channel
BOOLSet_Task_Output_Channel(T_Task *TaskID, T_ChanlD ChanlD, U16 ‘errcode);

[CO67]_ This function sets a task's output channel to the specified channel ID. The errcode parameterwill contain the
following possible results:

CHAN_SUCCESS

11

BNSDOCID: <EP___0930793A1_I_>

Page 1329 of 1415

Page 1330 of 1415

10

18

20

2s

30

3s

40

45

50

55

EP 0 930 793 Al

CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING
GHAN_TASK_NOT_FOUND
CHAN_CHANNEL_NOT_FOUND

(0068] Streams are used for data, which can not be brokeninto frames, but which continuously flow into and out of
a task. A siream will consist of a circular buffer (FIFO) with associated head andtail pointers to track the data asit
flows in and out. Each task can have a designated input and output stream. Stream data flow across the Host-DSP
interface may appearasfollows:

StrmPktFlag|Stream [D|Count|Datal...]|

Following are the stream functions:
Create_Stream

BOOL Create_Stream(T_DevicelD DeviD, T_Size FiFOsize, T_StrmiD *StreamlD, U16*errcode):
[0069] This function creates a FIFO-based communication stream. This creates a stream control structure, which
maintains control of a FIFO of size FiFOsize. Whencreated, the stream allocates an empty FIFO,andinitializes head
andtail pointers to handle data flow into and out of the stream. Stream/D will return the ID of the new stream. If the
DaviDis not that of the calling processor, a stream control structure is created on both the calling processor and the
DeviD processor, to control data flowing across the communications interface. The errcode parameterwill contain the
following possible results:

STRM_SUCCESS
STAM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_ALLOCATION_ERROR

Delete_Channel

BOOLDelete_Stream(T_Strm!D StreamlD, U16 *errcode);
[0070] This function deletes an existing stream specified by Stream!D. The errcode parameterwill contain the fol-
lowing possibie results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND

Get_Stream_Count

BOOL Get_Stream_Count(T_LocéalStrmiD StrmiD, T_Count “count, U16 *errcode);
[0071] This function requests the count of T.DSP_Words currently in the stream FIFO specified by Strm/D. The
count parameterwill contain the number upon return. The errcode parameterwill contain the following possible results:

STRM_SUCCESS
STRM_STREAM_NOT_FOUND

Write_Stream
BOOL Write_Stream(T_LocalStrmID Strm, T.DSP_Word “bufptr, T_Count count, T_Count *countwritten, U16

“errcode);

[0072] This function will write count number of T.DSP_Wordsto the stream specified by the Strm. If Strm is NULL,
the task’s output stream is used. The data is pointed to by the bufptr parameter. Upon return, countwritten will contain
the number of T_.DSP_Words actually written. The errcode parameterwill contain the following possible resulis:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND
STRM_STREAM_OVERFLOW

Read_Stream

BOOL Read_Stream(T_LocalStrm!D Strm, T_.DSP_Word *bufptr, T_Count maxcount, BOOL WaitFlag, T_Count
*countread, U16 “errcode),
[0073] This function reads data from the stream specified by Sirm. lf Strmis NULL,the task's input stream is used.
The data will be stored in the buffer pointed to by bufptr. Up to maxcount T_DSP_Wordswill be read from the stream.

The countread parameterwill contain the actual countof the data read. The errcode parameterwill contain the following
possible results:

STRM_SUCCESS

12

BNSDOCID: <EP___0930793A1_I_>

Page 1330 of 1415

Page 1331 of 1415

. EP 0 930 793 Al

STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND

S t_Task_Input_Stream
& BOOL Set_Task_input_Stream(T_Task *TaskiD, T_StrmiD StrmID, U16 *errcode);

[0074] This function sets a task's input stream to the specified stream ID. The errcode parameter will contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND

10 STRM_DEVID_NOT_RESPONDING
STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

Set_Task_Output_Stream
BOOL Set_Task_Output_Stream(T_Task ‘TaskiD, T_Strm!D StrmiD, U16 *errcode);

15 [0075] This function sets a task's output stream to the specified stream JD. The errcode parameter will contain the
following possible results:

STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING

20 STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

[0076] Data types used herein are defined in Table 3:

Table 3

BOOL
25

30

38

feofBooleanvateTRUEarFALSEY—SSOSCS~S~S~S~S~SY
Pointer on the Host processor.40

T_DevicelD Processordevice ID.

T_Task!ID A structure containingfields for a device ID and a processorlocal task |D.

T_ChaniD A structure containingfields for a device 1D and a processor local channel ID.
45

s

T_LocalTaskID Local task ID.

T_LocalChaniD Local channelID.

55

13

BNSDOCID: <EP__0930793A1_|_>

Page 1331 of 1415

Page 1332 of 1415

10

18

20

25

30

35

40

45

50

&§

BNSDOCID: <EP__|

EP 0 930 793 At

Table 3 (continued)

T_DSP_Name Namefor DSP objects (RTOS dependent).

T_CodeHdr Code headerstructure for a DSP Library entry.

T_TaskCreate Task creation structure.

[0077] These tables define the messages passing between devices (i.e. Host to OSP 16). The device IDs present
as parametersin the corresponding function calls are not incorporated in the messages since they are usedto actually
route the messageto the device. Similarly, task IDs that include a device ID as their upperhalf for the function call will
not include the device !D in the message, but only the DSP's local task ID portion.

Table 4

 DSP-AP! Messages

Lid]d
t

!

ALLOC_MEM U16 mempage T_DSP_Word *mempir
T_Size size U16 errcode

FREE_MEM U16 mempage U16 errcode >
T_DSP_Word *memptr

U16 mempage
T_Sizesize

CGREATE_TASK T_TaskCreate tcs T_Task!D TaskID U16 errcode Po
START_TASK T_Task!D TaskiD U16 errcode Fe

RESUME_TASK T_TaskiD TaskID U16 errcode |
DELETE_TASK T_TaskiD TaskiD|Ui6ercode|Ui6ercode

GET_TASK_STATUS|T_TaskID TaskID U16 status

U16 priority

SetMes——_MEM_AVAIL T_Size progmem
T_Size datamem

PUT_BLOB T_DSP_Ptr destaddr Ui6 errcoda >

T_DSP_Word BLOB[size]

SUSPEND_TASK T_TaskID TaskiD U16 errcodefls

CHANGE_PRIORIT Y|T_Task!D TaskID U16 U16 oldpriority U16 errcode
newpriority

T_ChanID Input

T_ChaniD Output
U16 errcode

GET_ID T_DSP_Name Name T_DSP_ID ID >
U16 errcode

Table 5

 DSPInterface Layer / Channel Interface Layer Messages

CREATE_CHANNEL|T_Size framesize T_ChanlD ChannellD ~
T_Count numframes U16 errcode

14

O930793A1_l_>

Page 1332 of 1415

Page 1333 of 1415

10

15

20

25

30

35

40

45

50

55

EP 0 930 793 Al

Table 5 (continued)

DSPInterface Layer / Chann | Interface Layer Messages

Send Parameters Reply Parameters Direction Host = DSP

DELETE_CHANNEL T_GhanID ChannellD|U16 errcode 2

CREATE_STREAM T_Size FIFOsize T_Strm!D Stream!D >
U16 errcode

DELETE_STREAM |_StrmID StreamID U16 errcode
Table 6

 Debug Messages

Send Parameters Reply Parameters Direction Host <= DSP

READ_MEM U16 mempage T_DSP_Word mem[count]
T_DSP_Ptr addr U16 errcode
T_Count count

WRITE_MEM|U16 mempage U16 errcode >
T_DSP_Ptr addr

T_Count count
T_DSP_Word mem[count]

READ_REG U16 RegiD DSP_WORDregvalue a
U16 errcode

WRITE_LREG|U16 RegiD U16 errcode >
T_DSP_Word regvalue

SET_BREAK|T_DSP_Ptr addr >

CLR_BREAK|T_DSP_Ptr addr >

BREAK_Hit|T_DSP_Ptr addr U16 ACK e

[0078] Figures4 -6illustrate an embodimentfor downloading native codeto a target processor(i.¢., the host 12 or
DSP 16) in a secure andefficient manner. This embodiment for downloading code could be used, for example, in
downloading code from the Intemet, or other global network, from a Local or Wide Area Network, or from a peripheral
device, such as a PC Card or Smartcard.
[0079] in Figure 4, an embodiment of a JAVA Bean 90 is shown, where the Bean 90 acts as a wrapperfor native
code 92. The Bean {further includes severalattributes 94,listed as a Code Typeattribute 94a, a CodeSize attribute
94b and a MIPS Required attribute 94c. The Bean 90 has several actions 96, including a Load Code action 96a, a
Load Parameters action 96b and an Execute Parameter 96c.
[0080] In operation, the Load Code action 96a is usedto load external native code (native to the target processor)
into the Bean. Since JAVA Beans havepersistence, the Bean 90canstoreits internalstate, including the native code
92 and the attributes 94. The Load Parameters action 96bretrieves parameters from the native code 92 (using, for
example, the COFFfile format described above) and stores the parameters as attributes 94a-c. The Execute action
96c executes tasksinstalled in the DSP 16.

[0081] Figure5illustrates use of the Bean 90 to download codeto the target processor. In this example,it is assumed
thal the target processor is the DSP 16 (or one of multiple DSPs 16), although it could be used to download native
code to the host processor 12 as well. Further,it is assumedthat the desired Bean 90 is resident in a network server,
such as a LAN serveror an Intemetserver, although the Bean could beresidentin any devicein communication with
the platform 10, such as a Smartcard. For a wireless data platform 10, the connection to the network server 100 will
often be wireless.

[0082] In Figure 5, the platform 10 is coupled to a network server 100. The host processor 12, as shown in greater
detail in Figure 2, may execute one or more JAVA applets 41 through a JAVAvirtual machine 45. In order to downtoad
new code, the host 12 loads an applet 41 containing the Bean 90 from the network server 100 or the Bean, without
the containing applet, can be downloaded from the server 100. Once the wrapper Bean 90 has beenretrieved,it can
be queried for the size of the native code, code type (for which processor is the code intended) and MIPsrequired.If

15

BNSDOCID: <EP__0930793A1_I_>

Page 1333 of 1415

Page 1334 of 1415

10

15

20

25

30

35

40

45

sO

55

—_———_—————_—_—_—_—_—_—

EP 0 930 793 A1

the intended processor has sufficient resources to run the code 92, the code 92 can beinstalled to execute on the
intended processor, either the host processor 12 or DSP 16 in the architecture shown in Figure 5. Typically, the native
code 92 will be unlinked, compiled code. Thus, the crosslinker 82 of the DSP-AP! 50 will link the codeto an available
memory location. The Bean would passthebinary native code 92 to the dynamiccrosslinker 82, which would install
and execute the code.

[0083] A typical manner in which a download of native code might occur is when the useris running an applet 41 in
which a DSP function is desired. First, the applet 41 would check to see if the desired code wasinstalled as a task 60
in the DSP or was available in the DSP Library 58. If so, the task could be executed without a download.
[0084] If the task is not siored in the DSP 16 or the DSPlibrary 58, an object (referred to as the ° DSPLoader" object
herein) could be created to load the Bean 90. If the DSPLoaderclassis local on the host 12, JAVA will check to seeif
the Bean is available locally as well. In a first instance, ihere may be a Bean with the code stored locally. lf so, the
codefrom the Beanis installed to the DSP 16 (or to whichever processorspecified by the Code Type). Ifa Bean without
the codeis stored locally, the Bean can retrieve the code from the appropriate server.
[0085] Onthe other hand, if the 0SPLoader objectis not local, then JAVA will load the Bean 90 from the serverthat
wrote the applet 41. The code from the Bean will then be installed as described above.
[0086] While the downloading of native code is described in connection with the use of a JAVA Bean, it could also
be accomplished by wrapping the code within another language, such as an ActiveX applet.
[0087] Using a JAVA Bean(or other applet) as a wrapperto the native code hassignificant advantages.First, it
allows a simple, standard method for loading code onto oneof a plurality of processors. The Bean is created, code is
loadedinto the Bean andthe codeis linked to the appropriate processor Without wrapping the code within the Bean,
the process may take several hundred steps. Second,it allows multiple pieces of native code to be combined by a
single applet, providing for complex applications to be generated from multiple discrete routines using a single applet
to combine the routines as desired. Third, it takes advantage of the language's security features, thereby protecting
not only the JAVA codein the Bean 90, but the native code 92 as well. Other languages, such as ActiveX, have security
features as well.

[0088] Twoofthe most important security features are digital signing and encryption. A JAVA Bean or ActiveX applet
may be signed by the source of the code; when the Bean or applet is downloaded, the signature is verified by the
receiving application, which hasa list of trusted sources. If the Bean or applet is signed by a trusted source, it can be
decrypted using standard techniques. Accordingly, the native code is encrypted during transmisston along with the
code of the Bean or applet, preventing unauthorized modification of the code. Because the native code is secure and
comesfrom a trusted source,the altributes can also be trusted as accurate.

{0089} Figure 6 illustrates a flow chart describing the process of downloading native code for a processor using a
JAVA Bean,it being understood that the native code could be wrappedin an appletof a different language using similar
techniques. In step 110, the encrypted, digitally signed Bean 90 is downloaded to a device running a JAVAvirtual
machine. In step 172, the signature is verified.If it is not from a sourcelisted as a trusted source, exception processing
is enabled in step 114. In the case of the Bean coming from a trusted source, the exception processing function may
give the user an opportunity to accept the Bean,if the user is comfortabie with the source.If the signature is invalid,
the exception processing may delete the Bean 90 and send an appropriate error messageto the user.
[0090]_If ine signatureis valid and comes from a trusted source, the Bean is decrypted in step 116. This step decrypts
both the JAVA code and the native code in the Bean. (n step 118, the attributes are retrieved from the Bean 90 andin
step 120 the applet determines whether the appropriate processor has sufficient resources to run the code.If not, the
exception processing siep 114 may declineto install the native code, or steps may be taken to free resources.If there
are sufficient resources, the code is linked using the cross-linker and installed on the desired processor in step 122.
in step 124, the native code is executed.
[0091] Sample JAVA script for a Bean 90 is provided hereinbelow:

16

BNSDOCID: <EP___0930793A1_I_>

Page 1334 of 1415

Page 1335 of 1415

20

25

30

35

40

45

50

55

BNSDOCID: <EP___0930793A1_I_>

Page 1335 of 1415

EP 0 930 793 A1

packageti.dsp.loader;

import java.awt.*;
import java.io.*;
import java.net.*;

public class NativeBean extends Canvas implements Serializable
{

public NativeBeanQ) {

setBackground(Color.white);

funcData = new ByteArrayOutputStream();

{
funcCodeBase = new URL(“http:/Aocalhost”);

}
catch (MalformedURLException ¢) {

17

Page 1336 of 1415

EP 0 930 793 A1

}

public Dimension getMinimumSizeQ {

retum new Dimension(50, 50);
}

Public void loadCode() {

10

URL baseURL=null:
15

try {

baseURL = new URL(funcCodeBase.toString() + "/" + myFunction),
}

catch (MalformedURLException e) {
}20

DataInputStream source= null;
int read;
byte[] buffer,25

buffer = new byte[1024];
try {

source = new DataInputStream(baseURL.openStream());
30 } .

catch (IOException e) {
System.out.printin("IOException creating streams: " + e);

}

35 codeSize = 0:

funcData-reset();

try {
“0 while (true) {

read = source.read(buffer);

45 if (read == -1)
break;

funcData.write(buffer, 0, read);
}

50 }
catch (IOException e) {

System.out.printin("IOException: "+ e);
55

18

BNSDOCID: <EP__0930793A1_|_>

Page 1336 of 1415

Page 1337 of 1415

20

25

30

40

48

$0

$5

BNSDOCID: <EP__0930793A1_I_>

Page 1337 of 1415

EP 0 930 793 Al

codeSize = funcData.size();
System.out.printin("Code size =" + codeSize);

source.close();
}
catch (IOException e) {

System.out.printin(“IOException closing: " + e);
}

}

public synchronized String getFunctionName() {

retum myFunction;
}

public void setFunctionName(String function) {

myFunction = function;
}

public synchronized String getCodeBaseQ() {

return funcCodeBase.toStringQ);

}

public void setCodeBase(String newBase) {

try {
funcCodeBase = new URL(newBase);

}
catch (MalformedURLException e) {
}

}

public void installCodeQ {

FileOutputStream destination = null;
File libFile = new File(myFunction);

try {
destination = new FileOutputStream(libFile);

}
catch (IOException e) {

System.out.printin("IOException creating streams: "+e);
}

if (destination != null) {

Page 1338 of 1415

EP 0 930 793 At

try {
funcData.writeTo(destination);

}
5 catch (IOException e) { .

System.out.printin("IO Exceptioninstalling native code: " + ¢);
}

}

10 }
linkCode(funcData)

public void loadParametersQ) {
}

15

public void execute() {
}

20 public synchronized int getCodeSize() {

return codeSize;
}

25 public synchronized int getCodeType() {

return codeType;
}

90 public void setCodeType(int newType) {

codeType = newType;
}

35

private int codeSize = 0;
private int codeType = 1;
private String myFunction ="";

- private URL funcCodeBase = null;
private ByteArrayOutputStream funcData = null;

[0092] In the script set forth above, the NativeBean() routine creates the Bean 90 which will hold the native code.
45 The loadCode() routine gets the native code from the server. The getFunctionName() and getCodeBase() routines

retrieve attributes. The installCode() routine calls the cross linker to link the native code to the DSP and to load the
linked code. Tne loadParameters() routine instructs the Bean to examine the native code and determineits attributes.
The getCodesize() and geiCodetype() routines transter the attributes to the requesting applet.
[0093] Although the teachings disclosed herein have beendirected to certain exemplary embodiments, various mod-

50 ifications of these embodiments, as well as alternative embodiments,will be suggested to those skilled in the art.
[0094] Further and particular embodiments of the invention will now be enumerated with reference to the following
numbered clauses.

1. A mobile electronic device, comprising:55

a coprocessor for executing native code;
a host processor system operable to execute native code corresponding to the host processor systern and
processorindependentcode,said host processor sysiem operable to dynamically changethe tasks performed

20

BNSDOCID: <EP___0S30793A1_I_>

Page 1338 of 1415

Page 1339 of 1415

10

20

25

30

3s

40

45

50

55

EP 0 930 793 A1

by the digital signal coprocessor; and
circuitry for communicating between said host processor system and said coprocessor.

2. The mobile electronic device of clause 1 and further comprising network interface circuitry for receiving data
from a network.

3. The mobite electronic device of clause 2 wherein said network interface circuitry comprises wireless network

circuitry.

4. The mobile electronic device of clause 3 wherein said networkinterface circuitry comprisescircuitry tor inter-

facing with a global network.

5. Amethod of controlling a mobile electronic device comprising the stepsof:

executing native codein a coprocessor;
executing both native code and processor independent codein a host processor system;
dynamically changing the tasks performed bythedigital signal coprocessor with said host processor system,
and

communicating between said host processor system and said coprocessor.

6. The method of clause 5 and further comprising the step of receiving code through a network interface.

7. The method of clause 6 and further comprising the step of receiving code through a wireless network interface.

8. The method of clause 6 or 7 and further comprising the step of receiving code through a wireless network
interface from a global network.

9. A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code;

identify one or more sections of source code to be executed on one or more of said coprocessors; and
for each identified section of source code, determining a corresponding coprocessor; and
for each identified section of source code, compile said identified section of code into the native code
associated with said corresponding coprocessor and install said native code onto said corresponding
coprocessor, and

circuitry for communicating between said host processor system and said coprocessors.

10. The mobile electronic device of clause 9 wherein one or more of said coprocessors comprise digital signal
processors.

Claims

1. A mobile electronic device, comprising:

a coprocessorfor executing native code;
a host processor operable to execute native code corresponding to the host processor and pracessorinde-
pendent code, said host processor operable to dynamically change the tasks performed bythe digital signal
coprocessor; and
circuitry for communicating between said host processor and said coprocessor.

2. The mobile electronic device of Claim 1, wherein said coprocessor comprises a digital signal processor.

3. The mobile electronic device of Claim 1 or Claim 2, wherein said processor independent code comprises JAVA.

21

BNSDOCID: <EP___0930793A1_I_>

Page 1339 of 1415

Page 1340 of 1415

10

15

20

25

30

35

40

45

50

55

10.

11.

12.

13.

14.

15.

16.

17.

18,

EP 0 930 793 A1

The mobile electronic device of any preceding claim , wherein said host processor system is arranged to generate
native cade for said coprocessor.

The mobile electronic device of any preceding claim, wherein said host processoris arranged to generate native
codefor said coprocessor by compiling processor independent source code.

The mobile electronic device of any preceding claim, wherein said host processoris arranged to compile identified
blocks of source code.

The mobile electronic device of any preceding claim, wherein said host processor system is arrangedto identify
blocks of source codethat could be executed on the coprocessor and to compile said blocks of code.

The mobile electronic device of any preceding claims, further comprising:
a memory forstoring a library of routines that can be downloaded to said coprocessorfor execution.

The mobile electronic device of any preceding claim further comprising a hardware language accelerator.

The mobile electronic device of any preceding claim wherein said hardware accelerator comprises a JAVA accel-erator.

The mobile electronic device of any preceding claim further comprising network interface circuitry for receivingdata fram a network.

A method of controlling a mobile electronic device comprising of:

executing native code in a coprocessor;
executing both native code and processor independent codein a host processor
dynamically changing the tasks performed by the digital signal coprocessor with said host processor and
communicating between said host processor system and said coprocessor.

The method of claim 12 wherein said step of executing native code in a coprocessor comprises executing native
codein a digital signal processor.

The method of claims 12 and 13 further comprising generating native codefor coprocessorin said general process-
ing system.

The method of claim 14 wherein said step of generating native code comprisesthe step of generating native code
by compiling processor independent source code.

The method of any of claims 12 to 15 further comprising identifying blocks of said source code to compile for
execution on said coprocessor.

The method of any of claims 12-16 further comprising storing a library of routines for downloading from said host
processor system to said coprocessor for execution.

A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code;

identify one or more portions of source code to be executed on one or moreof said coprocessors; and
for each identified portion of source code, determining a corresponding coprocessor; and
for each identified portion of source code, compile said identified portion of code into the native cod
associated with said corresponding coprocessor andinstall said native code onto said corresponding
coprocessor; and

circuitry for communicating between said host processor system and said coprocessors.

22

BNSDOCID: <EP__0930793A1_I_>

Page 1340 of 1415

Page 1341 of 1415

EP 0 930 793 A1

19. A method of controlling a mobile electronic device, comprising:

executing source code on a host processor system;
identifying one or more portions of source code to be executed on one or more coprocessors; and

5 for each identified portion of source code, determining a corresponding coprocessor, and
for each identified portion of source code, compiling said identified portion of cadeinto the native code asso-
ciated with said corresponding coprocessorandinstalling said native code onto said corresponding coproc-
essor; and

communicating between said host processor sysiem and said coprocessors.
10

15

20

25

30

35

40

45

$0

55

23

BNSDOCID: <EP___0930793A1_I_>

Page 1341 of 1415

Page 1342 of 1415

EP 0 930 793 Al

 Network
ur treerface

al
Host-DSP Interface Layer

OSP RTOS

Host Device Driver

24

BNSDOCID: <EP___0930793A1_I_>

Page 1342 of 1415

Page 1343 of 1415

-7

BNSDOCID: <EP___0930703A1_!_>

Page 1343 of 1415

EP 0 930 793 Al

Unlinked
taragt asde

tost Provessor”

Java Bean

Persistent Binary Data ~ IZ
~

25

Page 1344 of 1415

EP 0 930 793 Al

HO

 etéecetiep (ea

“PROKERING

{ee
BINGeog TO Catteni

Orscexcor

SXawTe Ce ov
Ce2eRESTHNNOLG PRCEROR

124

26

BNSDOCID: <EP__0930793A1_|_>

Page 1344 of 1415

Page 1345 of 1415

EP 0 930 793 A1

O) European Patent EUROPEAN SEARCH REPORT Appileation Number
Office EP 98 31 0312

WO 98 40978 A (SAGEM ;DEMEURE JEAN ANDRE 0407/32
(FR); DIMECH JEAN MARC (FR)) H04B1/38
17 September 1998 GO6F 9/38
* page 4, line 22 - line 27 +#
* page 5, line 25 - line 28 *
* page 8, line 26 - line 29 *

EP O 869 691 A (DEUTSCHE TELEKOM AG)
7 October 1998

* column 2, line 4 - line 22 *

GB 2 310 575 A (WESTINGHOUSE ELECTRIC
CORP) 27 August 1997
* page 5, line 16 - line 25 *

WO 97 26750 A (CELLPORT LABS INC)
24 July 1997
* page 18, line 6 — page 22, line 26 *

Os August1989 CFETTE BRUCE A ET AL) SEARCHED(inL.chs)
* column 4, line 49 —- line 58 * H04Q
* column 13, line 14 - line 18 * HO4M

----- GO6F

The present search report has been drawnupfor al! claims
Place of search Date of compiet.on of the search Examiner

BERLIN 31 May 1999 Leouffre, M
CATEGORYOF CITED DOCUMENTS : theory orprinciple underlying the invention earfer patent document, but published on, or

X : particularly relevant if taken alone after the filing date
Y = particularly relevantif combined with another + decument cited in tie appliationdocument of the same category : documentcited for other reasons
A : technological background weno eeneas senenen see tees aesseeguecassa saseequcies cece ceecessia sens cueetecesenee teseneasansees
O :non-written disclosure : memberot the same patem family, correspondingP : imermedate document document

EPOFORM150303,82{POdC01)

27

BNSDOCID: <EP___0930793A1_I_>

Page 1345 of 1415

Page 1346 of 1415

EP 0 930 793 Al

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEANPATENT APPLICATION NO. EP 98 31 0312

This annex lists the patent family membersralating to the patent documents cited In the above-mentionad European saarch reparl.
The members are as contained in the European Patent Office EDP file on
The European Patent Offica is in no wayliable for these particulars which are merely given for the purpose of information.

31-05~-1999

Patent document Publication Patent family Publication
ciled in search report dale member(s} date

WO 9840978 17-09-1998 2760917
2760918
6921998 PP>

18-09-1998
18-09-1998
29-09-1998

EP 0869691 07-10-1998 19713965 > 08-10-1998

6B 2310575 27-08-1997 1264397 > 28-08-1997

5732074
1525197
2243454
0875111

24-03-1998
11-08-1997
24-07-1997
04-11-1998

EPOFORMPasso

28

BNSDOGID: <EP___0930793A1_I_>

Page 1346 of 1415

For mare details about this annex : see Official Journal of the European Patent Office, No. 12/82

Page 1347 of 1415

 PCT @....0 INTELLECTUAL PROPERTY oncamreamcADIntemational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/05600

GO6F 12/00 (43) International Publication Date: 4 February 1999 (04.02.99)

(21) International Application Number: PCT/US98/15340|(81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) International Filing Date: 24 July 1998 (24.07.98) SE).

(30) Priority Data: Published
08/901,776 28 July 1997 (28.07.97) US Without international search report and to be republished

upon receiptof that report.

(71) Applicant: APPLE COMPUTER, INC. [US/US], Law Dept.,
M/S: 38-PAT, 1 Infinite Loop, Cupertino, CA 95014 (US).

(72) Inventors: GARST, Blaine; 3307 Bay Court, Belmont, CA
94002 (US). SERLET, Bertrand; 218 Colorado Avenue,
Palo Alto, CA 94301 (US).

(74) Agents: HECKER,Gary, A.et al.; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
dus).

(54) Titles METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

(57) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API),a toolkit, a framework, a runtime library, a dynamic link library (DLL), an applet (e.g. a Java or ActiveX applet),
or any other reusable resource. The present invention allows the resource library to be selectively used only by authorized end user software
programs. The present invention can be used to enforce a “per—program"licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text string and a corresponding license
key are embedded in a program that has been licensed to use a resource library. The license text string and the license key are supplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text string includes information about the terms of the license under which the end user program is allowed to use
the resource library. The license key is used to authenticate the license text string. The resource library in turn is provided with means for
reading the license text string and the license.key, and for determining, using the license key, whether the license text string is authentic
and whether the license text string has been altered. Resource library functions are made available only to a program having an authentic
and unaltered license text string.

BNSDOCID: <WO__S905600A2_I_>

Page 1347 of 1415

Page 1348 of 1415

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
Céate d'Ivoire
Cameroon
China
Cuba
Czech Republic
Germany
Denmark
Estonia

BNSDOCID: <WO___9905600A2_|_>

Page 1348 of 1415

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
iE
IL
Is
IT
JP
KE
KG
KP

Spain
Finland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Treland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan
Saint Lucia
Liechtenstein
Sri Lanka
Liberia

Ls
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
Mx
NE
NL
NO
NZ
PL
PT
RO
RU
sD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco
Republic of Moldova
Madagascar
The former Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

SI
SK
SN
SZ
™
TG
TJ
™
TR
TT
VA
UG
us
UZ
VN
yu
Zw

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

Page 1349 of 1415

10

15

20

25

WO 99/05600 PCT/US98/15340

METHOD AND APPARATUS FOR ENFORCING SOFTWARELICENSES

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

The present invention relates generally to the distribution of computer

software, and more particularly to a method and apparatus for automated

enforcement of computer software licenses.

2. BACKGROUND ART

Some computer software programs use so-called "resource libraries" to

provide part of their functionality. There is usually a license fee required to

use a resource library. Under current schemes, it is not always possible to

charge the license fee to all users of a resource library. This problem can be

understood by comparing software structures that use resource libraries with

basic software structures that do not.

sic tr

Figure 1 illustrates a basic software structure. In the example of Figure

1, the software comprises two layers. These layers are the operating system

110, and the application program 120. Operating system 110 is responsible for

controlling the allocation and usage of hardware resources such as memory,

central processing unit (CPU) time, disk space, and peripheral devices.

Operating system 110 provides a variety of specific functions that can be

BNSDOCID: <WO___990S600A2_I_>

Page 1349 of 1415

Page 1350 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

utilized by a variety of software programs such as application program 120.

Application program 120 provides specific end user functions, such as word

processing, database management, and others. Application program 120

communicates with the computer hardware via functions provided by

operating system 110. Operating system 110 provides an interface between

hardware 100 and application program 120.

Resource Libraries

Figure 2 illustrates a second software structure. The software structure

of Figure 2 contains an additional layer of software, resource library 215,

interposed between application program 220 and operating system 110.

Resource library 215 provides a pre-packaged set of resources or routines that

can be accessed by software programssuchas application program 220 during

execution. These resources provide higher level functions than those

provided by operating system 210. For example, these resources may provide

routines for managing a graphical user interface, for communicating with

other computers via a network, or for passing messages between program

objects. Typically, resource library 215 provides one or more resources or

functions that can be used by manydifferent software programs. By using the

pre-packaged resources provided by resource library 215, a software program

such as application program 220 can be made smaller and program

development time can be shortened because the program itself need not

include code to provide the functions provided by resource library 215.

BNSDOCID: <WO__9905600A2_I_>

Page 1350 of 1415

Page 1351 of 1415

10

15

20

25

WO 99/05600 PCT/US98/15340

In addition to application programs, resource libraries are used by other

types of software programs, including device drivers, utility programs and

other resource libraries.

Resource library 215 constitutes any set of one or more resources that

exists separately from an application program or other software program and

that can be used by more than one software program. For example, resource

library 215 may comprise an application program interface (API), a toolkit, a

framework, a resource library, a dynamic link library (DLL), an applet, or any

other reusable resource, including an application program that can be accessed

by another program (e.g. by using object linking and embedding (OLE)).

Examples of resource libraries include Windows DLL's (DLL's used with the

Microsoft Windows (TM) operating environment), the Apple Macintosh (TM)

toolkit, the OpenStep API from NeXT Software, Inc., OLE enabled application

programssuch as Microsoft Word (TM), Java packages, and ActiveX applets.

A software program typically utilizes a resource provided by a resource

library by sending an appropriate messageto the resource library and

supplying the parameters required for the resource to be executed. Assuming

the appropriate parameters have been supplied, the resource executes, and an

appropriate response message is returned to the requesting program.

A software program may use resources provided by several different

resource libraries, a resource library may be used by several different programs,

and a resource library may itself use other resource libraries. Figure 3

illustrates a computer system that includes several programs and several

resource libraries. In the example of Figure 3, there are two application

BNSDOCID: <WO__9905600A2_1_>

Page 1351 of 1415

Page 1352 of 1415

Page 1353 of 1415

Page 1354 of 1415

Page 1355 of 1415

Page 1356 of 1415

Page 1357 of 1415

Page 1358 of 1415

Page 1359 of 1415

Page 1360 of 1415

Page 1361 of 1415

Page 1362 of 1415

Page 1363 of 1415

Page 1364 of 1415

Page 1365 of 1415

Page 1366 of 1415

Page 1367 of 1415

Page 1368 of 1415

Page 1369 of 1415

Page 1370 of 1415

Page 1371 of 1415

Page 1372 of 1415

Page 1373 of 1415

Page 1374 of 1415

Page 1375 of 1415

Page 1376 of 1415

Page 1377 of 1415

Page 1378 of 1415

Page 1379 of 1415

Page 1380 of 1415

Page 1381 of 1415

Page 1382 of 1415

Page 1383 of 1415

Page 1384 of 1415

Page 1385 of 1415

Page 1386 of 1415

Page 1387 of 1415

Page 1388 of 1415

Page 1389 of 1415

Page 1390 of 1415

Page 1391 of 1415

Page 1392 of 1415

Page 1393 of 1415

Page 1394 of 1415

Page 1395 of 1415

Page 1396 of 1415

Page 1397 of 1415

Page 1398 of 1415

Page 1399 of 1415

Page 1400 of 1415

Page 1401 of 1415

Page 1402 of 1415

Page 1403 of 1415

Page 1404 of 1415

Page 1405 of 1415

Page 1406 of 1415

Page 1407 of 1415

Page 1408 of 1415

Page 1409 of 1415

Page 1410 of 1415

Page 1411 of 1415

Page 1412 of 1415

Page 1413 of 1415

Page 1414 of 1415

Page 1415 of 1415

