determining whether the one or more APIs to which the software application requires

access includes a sensitive API;
| determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and
signature identification where the one or more APIs to which the software application requires
access includes a sensitive APT and the software application includes an authentic global
signature; and

the step of denying the software application access to the one or more APIs comprises the
steps of:

denying the software application access to the one or more APIs where the software
application does not include an authentic global signature; and

denying the software application access to the sensitive API where the one or more APIs
to which the software application requires access includes a sensitive API, the software
application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive APIL.

112, (New) A code signing system for controlling access to application programming
interfaces (APIs) having signature identificaters by software applications, the code signing
system comprising:

a verification system for authenticating digital signatures provided by the respective
software applications to access the APIs where the signature identifications correspond with the
signature identificaters of the respective APIs and where a digital signature for a software
application is generated with a signature identification corresponding to a signature identificater
to access at least one API; and

a control system for allowing access to at least one of the APIs where the digital signature

provided by the software application is authenticated by the verification system.

113. (New) The code signing system of claim 112, wherein a virtual machine comprises the

verification system and the control system.

CLI- 1513306v2 12

GOOGLE EXHIBIT 1004
Page 1001 of 1415 Part 3 of 3

114, (New) The code signing system of claim 113, wherein the virtual machine is a Java

virtual machine installed on a mobile device.

115, (New) The code signing system of claim 112, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

116. (New) The code signing system of claim 112, wherein the code signing system is
installed on a mobile device and the software application is a Java application for a mobile

device.

117. (New) The code signing system of claim 112, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

118. (New) The code signing system of claim 112, wherein the APIs access at least one of a
cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UI).

119. (New) The code signing system of claim 112, wherein the digital signature is generated
using a private signature key under a signature scheme associated with the signature
identification, and the verification system uses a public signature key to authenticate the digital

signature.

120, (New) The code signing system of claim 119, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

CLI- 1513306v2 13

Page 1002 of 1415

121. (New) The code signing system of claim 112, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

122, (New) The code signing system of claim 112, wherein the APIs provides access to at
least one of one or more core functions of a mobile device, an operating system, and hardware on

a mobile device.

123, (New) The code signing system of claim 112, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APTs.

124. (New) A method of controlling access to application programming interfaces (APIs)
having signature ‘iden’siﬁers by software applications, the method comprising:
authenticating digital signatures provided by the respective software applications to
access the APIs where the signature identifications correspond with the signature identifiers of
the respective APIs and where a digital signature for a software application is generated with a
signature identification corresponding to a signature identifier to access at least one API; and
allowing access to at least one of the APIs where the digital signature provided by the

software application is authenticated.
125. (New) The method of claim 124, wherein one digital signature and one signature
identification are provided by the software application access a library of at least one of the

APIs,

126. (New) The method of claim 124, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

127. (New) The method of claim 124, wherein the APIs access at least one of a cryptographic
module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (UI).

CLI- 1513306v2 14

Page 1003 of 1415

128. (New) The method of claim 124, wherein the digital signature is generated using a
private signature key under a signature scheme associated with the signature identification, and a

public signature key is used to authenticate the digital signature.

129. (New) The method of claim 128, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to
obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

130. (New) The method of claim 124, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

131. (New) The method of claim 124, wherein the APIs provides access to at least one of one
or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

132, (New) The method of claim 124, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs

133. (New) A management system for controlling access by software applications to
application programming interfaces (APIs) having at least one signature identifier on a subset of
a plurality of mobile devices, the management system comprising:

a code signing authority for providing digital sighatures and signature identifications to
software applications that require access to at least one of the APIs with a signature identifier on
the subset of the plurality of mobile devices, where a digital signature for a software application
is generated with a signature identification corresponding to a signature identifier, and the

signature identifications provided to the software applications comprise those signature

CLI- 1513306v2 15

Page 1004 of 1415

identifications that correspond to the signature identifiers that are substantially only on the subset
of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of
mobile devices comprises

a verification system for authenticating digital signatures provided by the respective
software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of
the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

134, (New) The management system of claim 133, wherein a virtual machine comprises the

verification system and the control system.

135. (New) The management system of claim 134, wherein the virtual machine is a Java

virtual machine and the software applications are Java applications.

136. (New) The management system of claim 133, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

137. (New) The management system of claim 133, wherein the APIs access at least one of a
cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UI).

138. (New) The management system of claim 133, wherein the digital signature is generated
using a private signature key under a signature scheme associated with the signature
identification, and the verification system uses a public signature key to authenticate the digital

signature,

139. (New) The management system of claim 138, wherein:
the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

CLI- 1513306v2 16

Page 1005 of 1415

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

140. (New) The management system of claim 133, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

141. (New) The management system of claim 133, wherein the subset of the plurality of
mobile devices comprises mobile devices under the control of at least one of a corporation and a

carrier.

142. (New) The management system of claim 133, wherein a global digital signature provided
by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

143. (New) A method of controlling access by software applications to application
programming interfaces (APIs) having at least one signature identifier on a subset of a plurality
of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications
corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications
that require access to at least one of the APIs on the subset of the plurality of mobile devices,
where the signature identifications provided to the software applications comprise those
signature identifications that correspond to the signature identifiers that are substantially only on
the subset of the plurality of mobile devices; wherein each mobile device of the subset of the

plurality of mobile devices comprises

CLI- 1513306v2 17

Page 1006 of 1415

a verification system for authenticating digital signatures provided by the respective
software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APIs
where the digital signature provided by the software application is authenticated by the

verification system.

144. (New) The method of claim 143, wherein a virtual machine comprises the verification

system and the control system.

145, (New) The method of claim 144, wherein the virtual machine is a Java virtual machine

and the software applications are Java applications.

146, (New) The method of claim 143, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

147, (New) The method of claim 143, wherein the APIs access at least one of a cryptographic
module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

148. (New) The method of claim 143, wherein at least one of the digital signatures is
generated using a private signature key under a signature scheme associated with a signature
identification, and the verification system uses a public signature keys to authenticate said at

least one of the digital signatures.

149, (New) The method of claim 148, wherein:

at least one of the digital signatures is generated by applying the private signature key to
a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by

generating a hash of the software application to obtain a generated hash, applying the public

CLI- 1513306v2 18

Page 1007 of 1415

signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

150. (New) The method of claim 143, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

151. (New) The method of claim 143, wherein the subset of the plurality of mobile devices

comprises mobile devices under the control of at least one of a corporation and a carrier.

152, (New) A mobile device for a subset of a plurality of mobile devices, the mobile device
comprising:

an application platform having application programming interfaces (APIs);

a verification system for authenticating digital signatures and signature identifications
provided by the respective software applications to access the APIs; and

a control system for allowing a software application to access at least one of the APIs
where a digital signature provided by the software application is authenticated by the verification
system;

wherein a code signing authority provides digital signatures and signature identifications
to software applications that require access to at least one of the APIs such that the digital
signature for the software application is generated according to a signature scheme of a signature
identification, and wherein the signature identifications provided to the software applications
comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

153. (New) The mobile device of claim 152, wherein a virtual machine comprises the

verification system and the control system.

154. (New) The mobile device of claim 153, wherein the virtual machine is a Java virtual

machine and the software application is a Java application.

CLI- 1513306v2 19

Page 1008 of 1415

155, (New) The mobile device of claim 152, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

156. (New) The mobile device of claim 152, wherein the APIs of the application platform
access at least one of a cryptographic module, which implements cryptographic algorithms, a

data store, a proprietary data model, and a user interface (UT).

157. (New) The mobile device of claim 152, wherein the digital signature is generated using a
private signature key under the signature scheme, and the verification system uses a public

signature key to authenticate the digital signature.

158. (New) The mobile device of claim 157, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

159. (New) The mobile device of claim 152, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs,

160. (New) A method of controlling access to application programming interfaces (APIs) of
an application platform of a mobile device for a subset of a plurality of mobile devices, the
method comprising:

receiving digital signatures and signature identifications from software applications that
require to access the APIs

authenticating the digital signatures and the signature identifications; and

CLE 1513306v2 20

Page 1009 of 1415

allowing a software application to access at least one of the APIs where a digital
signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature
identifications to the software applications that require access to at least one of the APIs such
that the digital signature for the software application is generated according to a signature
scheme of a signature identification, and wherein the signature identifications provided to the
software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

161. (New) The method of claim 160, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APIs.

162. (New) The method of claim 160, wherein the APIs of the application platform access at
least one of a cryptographic module, which implements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UT).

163. (New) The method of claim 160, wherein the digital signature is generated using a
private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

164. (New) The method of claim 163, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to
obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

CLI- 1513306v2 21

Page 1010 of 1415

165. (New) The method of claim 160, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

CLI- 1513306v2 22

Page 1011 of 1415

REMARKS

This paper responds to the notice of non-compliant amendment mailed May 21, 2007.
The examiner is invited to contact the undersigned in case there are any questions or comments.

Respectiully submitted,

{ fj(/‘é\
John V//Biernacki
Reg. Mo. 40,511
Jone$, Day

North Point

901 Lakeside Avenue
Cleveland, OH 44114-1190
(216) 586-7747

CLI- 1513306v2 23

Page 1012 of 1415

Electronic Acknowledgement Receipt

EFS ID: 1811276

Application Number: 10381219

International Application Number:

Confirmation Number: 9761
Title of Invention: Software code signing system and method
First Named Inventor/Applicant Name: David P Yach

David B Cochran

Jones Day
North Point
Correspondence Address: 901 Lakeside Avenue
Cleveland OH 44114-1190
us -
Filer: Stephen D. Scanlon/Debra Pejeau
Filer Authorized By: Stephen D. Scanlon
Attorney Docket Number: 555255012423
Receipt Date: 25-MAY-2007
Filing Date: 20-MAR-2003
Time Stamp: 11:27:25
Application Type: U.S. National Stage under 35 USC 371
Payment information:
Submitted with Payment no

File Listing:

Page 1013 of 1415

Document - . S s Multi Pages
Number Document Description File Name File Size(Bytes) Part /.zip| (if appl.)
1 10289USPCTResponse.pdf 731624 yes 23
Multipart Description/PDF files in .zip description
Document Description Start End
Preliminary Amendment 1 1
Claims 2 22
Applicant Arguments/Remarks Made in an Amendment 23 23
Warnings:
Information:
Total Files Size (in bytes): 731624

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt
similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see
37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date
shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions|

of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EQ/903 indicating acceptance of the
application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt,
in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary
components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the
International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due
course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement
Receipt will establish the international filing date of the application.

Page 1014 of 1415

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.0O, Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov

APPLICATION NO. I FILING DATE FIRST NAMED INVENTOR I ATTORNEY DOCKET NO. I CONFIRMATION NO.
10/381,219 03/20/2003 David P Yach 555255012423 9761
7590 05/21/2007
. EXAMINER
David B Cochran I
Jones Day . AVERY, JEREMIAH L
North Point ART UNIT PAPER NU
901 Lakeside Avenue I I A MBER
Cleveland, OH 44114-1190 ‘ 2131
I MAIL DATE I DELIVERY MODE
05/21/2007 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

Page 1015 of 1415

Application No. Applicant(s)
Notice of Non-Compliant 10381219 YACHET AL.
Amendment (37 CFR 1.121) Examiner Art Unit
Jeremiah Avery 2131

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

The amendment document filed on 83 May 2007 is considered non-compliant because it has failed to meet the
requirements of 37 CFR 1.121 or 1.4. In order for the amendment document to be compliant, correction of the following
item(s) is required.

THE FOLLOWING MARKED (X) ITEM(S) CAUSE THE AMENDMENT DOCUMENT TO BE NON-COMPLIANT:
O 1. Amendments to the specification:
O A. Amended paragraph(s) do not include markings.
[0 B. New paragraph(s) should not be underlined.
(] C. Other

[] 2. Abstract:
[A. Not presented on a separate sheet. 37 CFR 1.72.
[0 8. Other

(O 3. Amendments to the drawings:
O A. The drawings are not properly identified in the top margin as “Replacement Sheet,” “New Sheet,” or
“Annotated Sheet” as required by 37 CFR 1.121(d).
[J 8. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings

showing amended figures, without marklngs in compliance with 37 CFR 1.84 are required.
(0 c.Other

[0 4. Amendments to the claims:

[0 A. A complete listing of all of the claims is not present.

[} B. The listing of claims does not include the text of all pending claims (including withdrawn claims)

] C. Each claim has not been provided with the proper status identifier, and as such, the individual status
of each claim cannot be identified. Note: the status of every claim must be indicated after its claim
number by using one of the following status identifiers: (Original), (Currently amended), (Canceled),
(Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).

% D. The claims of this amendment paper have not been presented in ascending numerical order.

E. Other:

5. Other (e.g., the amendment is unsigned or not signed in accordance with 37 CFR 1.4):
Claims section should start on a separate page from page 1.

For further explanation of the amendment format required by 37 CFR 1.121, see MPEP § 714.

TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:

1. Applicant is given no new time period if the non-compliant amendment is an after-final amendment, an amendment
filed after allowance, or a drawing submission (only). If applicant wishes to resubmit the non-compliant after-final
amendment with corrections, the entire corrected amendment must be resubmitted.

2. Applicant is given one month, or thirty (30) days, whichever is longer, from the mail date of this notice to supply the
correction, if the non-compliant amendment is one of the following: a preliminary amendment, a non-final amendment
(including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental
amendment filed within a suspension period under 37 CFR 1.103(a) or (c), and an amendment filed in response to a
Quayle action. If any of above boxes 1. to 4. are checked, the correction required is only the corrected section of the
non-compliant amendment in compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) only if the non-compliant amendment is a non-final
amendment or an amendment filed in response to a Quayle action.

Failure to timely respond to this notice will result in:

Abandonment of the application if the non-compliant amendment is a non-final amendment or an amendment
filed in response to a Quayle action; or

Non-entry of the amendment if the non-compliant amendment is a preliminary amendment or supplemental
amendment.

Legal Instruments Examiner (LIE), if applicable Telephone No.

U.S. Patent and Trademark Office Part of Paper No.

Page 1016 of 1415

* Continuation Sheet (PTOL-324) Application No.
PTOL-324 (04-06) Notice of Non-Compliant Amendment (37 CFR 1.121)

Page 1017 of 1415

* Continuation Sheet (PTOL-324) Application No.

Page 1018 of 1415

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of
Internat'l. Appl'n. No. :
Internat'l. Filing Date ;
U.S. Serial No.

U.S. Filing Date
Priority Date Claimed:
Title

Art Unit

Examiner

Docket No.

Commussioner for Patents
Washington, D.C. 20231

David P. Yach; Michael S. Brown; Herbert A. Little
PCT/CA01/01344

09/20/2001

10/381,219

03/20/2003

09/21/2000

Software Code Signing System And Method

2131

J. Avery

555255012423

Preliminary Amendment

PATENT

This paper responds to the notice of non-compliant amendment mailed April 3, 2007.
Any fees due should be charged to Jones Day Deposit Account No. 501432, ref: 555255-012423.

Prior to taking up this case for initial examination, please amend the application as

follows.

The Claims

Please cancel original claims 1-56.

Please add the following new claims 57-165.

57. (New) A code signing system for operation in conjunction with a software application

having a digital signature and a signature identification, where the digital signature is associated

with the signature identification, comprising:

CLI-1513306v1

Page 1019 of 1415

an application platform;

an application programming interface (API) having an associated signature identifier, the
APl is configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control
access to the API by the software application where the signature identifier corresponds to the

signature identification.,

58. (New) The code signing system of claim 57, wherein the virtual machine denies the

software application access to the API if the digital signature is not authenticated.

59. (New) The code signing system of claim 57, wherein the virtual machine purges the

software application if the digital signature is not authenticated.

60. (New) The code signing system of claim 57, wherein the code signing system is installed

on a mobile device.

61. (New) The code signing system of claim 57, wherein the digital signature is generated by

a code signing authority.

62. (New)} A code signing system for operation in conjunction with a software application
having a digital signature and a signature identification where the digital signature is associated
with the signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APls) associated with a signature
identifier, each configured to link the software application with a resource on the application
platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control
access to the APIs by the software application where the signature identification corresponds to
the signature identifier,

wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

CLI-1513306v1 2

Page 1020 of 1415

63. (New) The code signing system of claim 62, wherein the plurality of APIs are included
in an API library.

64, (New) The code signing system of claim 62, wherein one or more of the plurality of
APIs is classified as sensitive and having an associated signature identifier, and wherein the
virtual machine uses the digital signature and the signature identification to control access to the

sensitive APIs.

65. (New) The code signing system of claim 64, wherein the code signing system operates
in conjunction with a plurality of software applications, wherein one or more of the plurality of
software applications has a digital signature and a signature identification, and wherein the
virtual machine verifies the authenticity of the digital signature of each of the one or more of the
plurality of software applications, where the signature identification corresponds to the signature
identifier of the respective sensitive APls, in order to control access to the sensitive APIs by each

of the plurality of software applications.

66. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a wireless communication system.

67. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a cryptographic module which implements cryptographic algorithms.

68. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a data store.

69. (New) The code signing system of claim 62, wherein the resource on the application

platform comprises a user interface (Ul).

70. (New) The code signing system of claim 57, further comprising:

CLI-1513306v! 3

Page 1021 of 1415

a plurality of API libraries, each of the plurality of API libraries includes a plurality of
APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

71. (New) The code signing system of claim 70, wherein at least one of the plurality of API
libraries is classified as sensitive;

wherein access to a sensitive API library requires a digital signature associated with a
signature identification where the signature identification corresponds to a signature identifier
associated with the sensitive API library;

wherein the software application includes at least one digital signature and at least one
associated signature identification for accessing sensitive API libraries; and

wherein the virtual machine authenticates the software application for accessing the
sensitive API library by verifying the one digital signature included in the software application
that has a signature identification corresponding to the signature identifier of the sensitive API

library.

72. (New) The code signing system of claim 57, wherein the digital signature is generated
using a private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

73. (New) The code signing system of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash
of the software application to obtain a generated hash, applying the public signature key to the
digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

74. (New) The code signing system of claim 60, wherein the API further comprises:
a description string that is displayed by the mobile device when the software application

attempts to access the APL

CLI-1513306v1 4

Page 1022 of 1415

75. (New) The code signing system of claim 57, wherein the application platform comprises

an operating system.

76 (New) The code signing system of claim 57, wherein the application platform comprises

one or more core functions of a mobile device.

77. (New) The code signing system of claim 57, wherein the application platform comprises

hardware on a mobile device.

78. (New) The code signing system of claim 57, wherein the hardware comprises a

subscriber identity module (SIM) card.

79. (New) The code signing system of claim 57, wherein the software application is a Java

application for a mobile device.

80. (New) The code signing system of claim 57, wherein the API interfaces with a

cryptographic routine on the application platform.

81. (New) The code signing system of claim 57, wherein the API interfaces with a

proprietary data model on the application platform.

82. (New) The code signing system of claim 57, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

83. (New) A method of controlling access to sensitive application programming interfaces
on a mobile device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive
application programming interface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and

CLI-1513306v] 5

Page 1023 of 1415

denying the software application access to the sensitive API where the signature

identification does not correspond with the signature identifier.

84. (New) The method of claim 83, comprising the additional step of:
purging the software application from the mobile device where the signature

identification does not correspond with the signature identifier,

85. (New) The method of claim 83, wherein the digital signature and the signature

identification are generated by a code signing authority.

86. (New) The method of claim 83, comprising the additional steps of:

verifying the authenticity of the digital signature where the signature identification
corresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

87. (New) The method of claim 86, comprising the additional step of:
purging the software application from the mobile device where the digital signature is not

authenticated.

88. (New) The method of claim 86, wherein the digital signature is generated by applying a
private signature key to a hash of the software application, and wherein the step of verifying the
authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile
device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

89. (New) The method of claim 88, wherein the digital signature is generated by calculating
a hash of the software application and applying the private signature key.

CLI-1513306vi 6

Page 1024 of 1415

90. (New) The method of claim 83, comprising the additional step of:
displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive API.

91. (New) The method of claim 90, comprising the additional step of:
receiving a command from the user granting or denying the software application access

1o the sensitive APL

92. (New) A method of controlling access to an application programming interface (API)
having a signature identifier on a mobile device by a software application created by a software
developer, comprising the steps of:

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the software application
where the software application satisfies at least one criterion;;

verifying the authenticity of the digital signature appended to the software application
where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

93. (New) The method of claim 92, wherein the step of determining whether the software

application satisfies at least one criterion is performed by a code signing authority.

94. (New) The method of claim 92, wherein the step of appending the digital signature and
the signature identification to the software application includes generating the digital signature
comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

CLI-1513306v1 7

Page 1025 of 1415

95. (New) The method of claim 94, wherein the hash of the software application is
calculated using the Secure Hash Algorithm (SHAT1).

96. (New) The method of claim 94, wherein the step of verifying the authenticity of the
digital signature comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered
hash; and

authenticating the digital signature by comparing the calculated hash with the recovered
hash.

97. (New) The method of claim 96, comprising the further step of denying the software

application access to the API where the digital signature is not authenticated.

98. (New) The method of claim 96, wherein the signature key is a private signature key and

the corresponding signature key is a public signature key.

99. (New) A method of controlling access to a sensitive application programming interface
(API) having a signature identifier on a mobile device, comprising the steps of:

registering one or more software developers that are trusted to develop software
applications which access the sensitive APT;

receiving a hash of a software application;

determining whether the hash was sent by a registered software developer; and

generating a digital signature using the hash of the software application and a signature
identification corresponding to the signature identifier where the hash was sent by the registered
software developer;
wherein

the digital signature and the signature identification are appended to the software

application; and

CLI-1513306v1 8

Page 1026 of 1415

the mobile device verifies the authenticity of the digital signature in order to control
access to the sensitive API by the software application where the signature identification

corresponds with the signature identifier.

100. (New) The method of claim 99, wherein the step of generating the digital signature is
performed by a code signing authority.

101. (New) The method of claim 99, wherein the step of generating the digital signature is
performed by applying a signature key to the hash of the software application.

102. (New) The method of claim 101, wherein the mobile device verifies the authenticity of
the digital signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered
hash;

determining whether the digital signature is authentic by comparing the calculated hash
with the recovered hash; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

103. (New) A method of restricting access to application programming interfaces on a mobile
device, comprising the steps of:

loading a software application having a digital signature and a signature identification on
the mobile device that requires access to one or more application programming interfaces (APIs)
having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with
the signature identifier; and

denying the software application access to the one or more APTs where the software

application does not include an authentic digital signature .

CLI-1513306v1 9

Page 1027 of 1415

104. (New) The method of claim 103, wherein the digital signature and signature

identification are associated with a type of mobile device.

105. (New) The method of claim 103, comprising the additional step of:
purging the software application from the mobile device where the software application

does not include an authentic digital signature. .

106. (New) The method of claim 103, wherein:

the software application includes a plurality of digital signatures and signature
identifications; and
the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

107. (New) The method of claim 106, wherein each of the plurality of digital signatures and
associated signature identifications are generated by a respective corresponding code signing

authority.

108. (New) The method of claim 103, wherein the step of determining whether the software
application includes an authentic digital signature comprises the additional steps of:
verifying the authenticity of the digital signature where the signature identification

corresponds with respective ones of the at least one signature identifier.
109. (New) The method of claim 107, wherein each of the plurality of digital signatures and
signature identifications are generated by its corresponding code signing authority by applying a

respective private signature key associated with the code signing authority to a hash of the

software application.

CLI-1513306v1 10

Page 1028 of 1415

110. (New) The method of claim 103, wherein the step of authenticating the digital signature
where the signature identification corresponds with the signature identifier comprises the steps
of:
verifying that the signature identification corresponds with the signature identifier authenticating
the digital signature where signature identification corresponds with the signature identifier
comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature
key associated with the code signing authority which generates the digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash: and

comparing the generated hash with the recovered hash.

111. (New) The method of claim 103, wherein:

the mobile device includes a plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any of the plurality of APIs requires an authentic global signature;

access to each of the plurality of sensitive APIs requires an authentic global signature and
an authentic digital signature associated with a signature identification;

the step of determining whether the software application includes an authentic digital
signature and signature identification comprises the steps of:

determining whether the one or more APIs to which the software application requires
access includes a sensitive API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and
signature identification where the one or more APIs to which the software application requires
access includes a sensitive API and the software application includes an authentic global
signature; and

the step of denying the software application access to the one or more APIs comprises the
steps of’

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

CLI-1513306v1 1i

Page 1029 of 1415

denying the software application access to the sensitive API where the one or more APIs
to which the software application requires access includes a sensitive API, the software
application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive APIL

112. (New) A code signing system for controlling access to application programming
interfaces (APIs) having signature identificaters by software applications, the code signing
system comprising:

a verification system for authenticating digital signatures provided by the respective
software applications to access the APIs where the signature identifications correspond with the
signature identificaters of the respective APIs and where a digital signature for a software
application is generated with a signature identification corresponding to a signature identificater
to access at least one API; and

a control system for allowing access to at least one of the APIs where the digital signature

provided by the software application is authenticated by the verification system.

113. (New) The code signing system of claim 112, wherein a virtual machine comprises the

verification system and the control system.

114. (New) The code signing system of claim 113, wherein the virtual machine is a Java

virtual machine installed on a mobile device.

115. (New) The code signing system of claim 112, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.
116. (New) The code signing system of claim 112, wherein the code signing system is
installed on a mobile device and the software application is a Java application for a mobile

device.

117. (New) The code signing system of claim 112, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

CLI-1513306v] 12

Page 1030 of 1415

118. (New) The code signing system of claim 112, wherein the APIs access at least one of a
cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UT).

119. (New) The code signing system of claim 112, wherein the digital signature is generated
using a private signature key under a signature scheme associated with the signature
identification, and the verification system uses a public signature key to authenticate the digital

signature.

120. (New) The code signing system of claim 119, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

121. (New) The code signing system of claim 112, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.
122, (New) The code signing system of claim 112, wherein the APIs provides access to at
least one of one or more core functions of a mobile device, an operating system, and hardware on

a mobile device,

123. (New) The code signing system of claim 112, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APIs.

CLI-1513306v1 13

Page 1031 of 1415

124. (New) A method of controlling access to application programming interfaces (APIs)
having signature identifiers by software applications, the method comprising:
authenticating digital signatures provided by the respective software applications to
access the APIs where the signature identifications correspond with the signature identifiers of
the respective APIs and where a digital signature for a software application is generated with a
signature identification corresponding to a signature identifier to access at least one API; and
allowing access to at least one of the APIs where the digital signature provided by the

software application is authenticated.

125, (New) The method of claim 124, wherein one digital signature and one signature
identification are provided by the software application access a library of at least one of the

APIs.

126. (New) The method of claim 124, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

127. (New) The method of claim 124, wherein the APIs access at least one of a cryptographic
module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (UT).

128. (New) The method of claim 124, wherein the digital signature is generated using a
private signature key under a signature scheme associated with the signature identification, and a

public signature key is used to authenticate the digital signature.

129. (New) The method of claim 128, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to
obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

CLI-1513306v1 14

Page 1032 of 1415

130. (New) The method of claim 124, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

131. (New) The method of claim 124, wherein the APIs provides access to at least one of one
or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

132, (New) The method of claim 124, wherein verification of a global digital signature

provided by the software application is required for accessing any of the APIs

133. (New) A management system for controlling access by software applications to
application programming interfaces (APIs) having at least one signature identifier on a subset of
a plurality of mobile devices, the management system comprising;

a code signing authority for providing digital signatures and signature identifications to
software applications that require access to at least one of the APIs with a signature identifier on
the subset of the plurality of mobile devices, where a digital signature for a software application
is generated with a signature identification corresponding to a signature identifier, and the
signature identifications provided to the software applications comprise those signature
identifications that correspond to the signature identifiers that are substantially only on the subset
of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of
mobile devices comprises

a verification system for authenticating digital signatures provided by the respective
software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APlIs; and

a control system for allowing the respective software applications to access at least one of
the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

134. (New) The management system of claim 133, wherein a virtual machine comprises the

verification system and the control system.

CLI-1513306v1 15

Page 1033 of 1415

135. (New) The management system of claim 134, wherein the virtual machine is a Java

virtual machine and the software applications are Java applications.

136. (New) The management system of claim 133, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

137. (New) The management system of claim 133, wherein the APIs access at least one of a
cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UT).

138. (New) The management system of claim 133, wherein the digital signature is generated
using a private signature key under a signature scheme associated with the signature
identification, and the verification system uses a public signature key to authenticate the digital

signature.

139. (New) The management system of claim 138, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.
140. (New) The management system of claim 133, wherein at least one of the APIs further
comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

CLI-1513306v1 16

Page 1034 of 1415

141. (New) The management system of claim 133, wherein the subset of the plurality of
mobile devices comprises mobile devices under the control of at least one of a corporation and a

carrier.

142, (New) The management system of claim 133, wherein a global digital signature provided
by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

143, (New) A method of controlling access by software applications to application
programming interfaces (APIs) having at least one signature identifier on a subset of a plurality
of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications
corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications
that require access to at least one of the APIs on the subset of the plurality of mobile devices,
where the signature identifications provided to the software applications comprise those
signature identifications that correspond to the signature identifiers that are substantially only on
the subset of the plurality of mobile devices; wherein each mobile device of the subset of the
plurality of mobile devices comprises

a verification system for authenticating digital signatures provided by the respective
software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APIs
where the digital signature provided by the software application is authenticated by the

verification system.

144, (New) The method of claim 143, wherein a virtual machine comprises the verification

systern and the control system.

145. (New) The method of claim 144, wherein the virtual machine is a Java virtual machine

and the software applications are Java applications.

CLI-1513306v1 17

Page 1035 of 1415

146. (New) The method of claim 143, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

147. (New) The method of claim 143, wherein the APIs access at least one of a cryptographic
module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

148. (New) The method of claim 143, wherein at least one of the digital signatures is
generated using a private signature key under a signature scheme associated with a signature
identification, and the verification system uses a public signature keys to authenticate said at

least one of the digital signatures.

149. (New) The method of claim 148, wherein:

at least one of the digital signatures is generated by applying the private signature key to
a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by
generating a hash of the software application to obtain a generated hash, applying the public
signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.
150. (New) The method of claim 143, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APls.

151, (New) The method of claim 143, wherein the subset of the plurality of mobile devices

comprises mobile devices under the control of at least one of a corporation and a carrier.

152. (New) A mobile device for a subset of a plurality of mobile devices, the mobile device
comprising:

an application platform having application programming interfaces (APIs);

CLI-1513306v1 18

Page 1036 of 1415

a verification system for authenticating digital signatures and signature identifications
provided by the respective software applications to access the APIs; and

a control system for allowing a software application to access at least one of the APIs
where a digital signature provided by the software application is authenticated by the verification
system,;

wherein a code signing authority provides digital signatures and signature identifications
to software applications that require access to at least one of the APIs such that the digital
signature for the software application is generated according to a signature scheme of a signature
identification, and wherein the signature identifications provided to the software applications
comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

153. (New) The mobile device of claim 152, wherein a virtual machine comprises the

verification system and the control system.

154. (New) The mobile device of claim 153, wherein the virtual machine is a Java virtual

machine and the software application is a Java application.

155. (New) The mobile device of claim 152, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

156. (New) The mobile device of claim 152, wherein the APIs of the application platform
access at least one of a cryptographic module, which implements cryptographic algorithms, a
data store, a proprietary data model, and a user interface (UI).

157. (New) The mobile device of claim 152, wherein the digital signature is generated using a
private signature key under the signature scheme, and the verification system uses a public

signature key to authenticate the digital signature,

158. (New) The mobile device of claim 157, wherein:

CLI-1513306vi 19

Page 1037 of 1415

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

159. (New) The mobile device of claim 152, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APls.

160. (New) A method of controlling access to application programming interfaces (APIs) of
an application platform of a mobile device for a subset of a plurality of mobile devices, the
method comprising:

receiving digital signatures and signature identifications from software applications that
require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to access at least one of the APIs where a digital
signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature
identifications to the software applications that require access to at least one of the APIs such
that the digital signature for the software application is generated according to a signature
scheme of a signature identification, and wherein the signature identifications provided to the
software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

161. (New) The method of claim 160, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APIs.

CLI-1513306v1 20

Page 1038 of 1415

162. (New) The method of claim 160, wherein the APIs of the application platform access at

least one of a cryptographic module, which implements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UI).

163. (New) The method of claim 160, wherein the digital signature is generated using a

private signature key under the signature scheme, and a public signature key is used to

authenticate the digital signature.

164. (New) The method of claim 163, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to
obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

165. (New) The method of claim 160, wherein at least one of the APIs further comprises:

a description string that is displayed to a user when the software application attempts to

Resp?wﬁmir submitted,

/ / / ,
A LgM
John V. Biernacki

Reg. Ng/40,511

Jones, Pay

North Point

501 Lakeside Avenue

Cleveland, OH 44114-1190

access said at least one of the APIs.

CLI-1513306v1 21

Page 1039 of 1415

Electronic Acknowledgement Receipt

EFS ID: 1740440

Application Number: 10381219

International Application Number:

Confirmation Number: 9761
Title of Invention: Software code signing system and method
First Named Inventor/Applicant Name: David P Yach

David B Cochran

Jones Day
North Point
Correspondence Address: 901 Lakeside Avenue
Cleveland OH 44114-1190
us -
Filer: Stephen D. Scanlon
Filer Authorized By:
Attorney Docket Number: 555255012423
Receipt Date: 03-MAY-2007
Filing Date: 20-MAR-2003
Time Stamp: 12:14:53
Application Type: U.S. National Stage under 35 USC 371
Payment information:
Submitted with Payment no

File Listing:

Page 1040 of 1415

Document - . S s Multi Pages
Number Document Description File Name File Size(Bytes) Part /.zip| (if appl.)
1 Preliminary Amendment 10289USPCTPrelim.pdf 729990 no 21
Warnings:
Information:
Total Files Size (in bytes): 729990

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt
similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see
37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date
shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions
of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EQO/903 indicating acceptance of the
application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt,
in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary
components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the
International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due
course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement
Receipt will establish the international filing date of the application.

Page 1041 of 1415

UNITED STATES PATENT AND TRADEMARK OFFICE W

T T T e e T ——— Ae————
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alcxandna, Virginia 22313- 1450

Www,uspto.gov

L APPLICATION NO, FILING DATE I FIRST NAMED INVENTOR I ATTORNEY DOCKETNO. | CONFIRMATION NO“I
10/381,219 03/20/2003 David P Yach 555255012423 9761
7590 04/03/2007
. EXAMINER
David B Cochran [I
Jones Day AVERY, JEREMIAH L
North Point - PP ——
901 Lakeside Avenue L ART UNIT ' R NUMB I
Cleveland, OH 44114-1190 2131
I SHORTENED STATUTORY PERIOD OF RESPONSE I MAIL DATE I DELIVERY MODE |
3 MONTHS 04/03/2007 ' PAPER

Please find below and/or attached an Office communication concernihg this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS
from the mailing date of thls communication.

PTOL-90A (Rev. 10/06)

Page 1042 of 1415

Application No. Applicant(s)
Notice of Non-Compliant 10/381,219 YACH ET AL.
Amendment (37 CFR 1.121) Examiner - | ArtUnit
Jeremiah Avery 2131

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

The amendment document filed on 20 March 2003 is considered non-compliant because it has failed to meet the

requirements of 37 CFR 1.121 or 1.4. In order for the amendment document to be compliant, correction of the following
item(s) is required.

THE FOLLOWING MARKED (X) ITEM(S) CAUSE THE AMENDMENT DOCUMENT TO BE NON-COMPLIANT:
(J 1. Amendments to the specification:
] A. Amended paragraph(s) do not include markings.
[] B. New paragraph(s) should not be underlined.
[] C. Other

[2. Abstract:
[J A. Not presented on a separate sheet. 37 CFR 1.72.
(J B.Other _____

[J 3. Amendments to the drawings:
[J A. The drawings are not properly identified in the top margin as “Replacement Sheet,” “New Sheet,” or
“Annotated Sheet” as required by 37 CFR 1.121(d).
(O] B. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings

showing amended figures, without markings, in compliance with 37 CFR 1.84 are required.
] C.Other_____

X 4. Amendments to the claims:

[] A. A complete listing of all of the claims is not present. :

[] B. The listing of claims does not include the text of all pending claims (including withdrawn claims)

[J C. Each claim has not been provided with the proper status identifier, and as such, the individual status
of each claim cannot be identified. Note: the status of every claim must be indicated after its claim
number by using one of the following status identifiers: (Original), (Currently amended), (Canceled),
(Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).

[] D. The claims of this amendment paper have not been presented in ascending numerical order.

E. Other: See Continuation Sheet.

[J 5. Other (e.g., the amendment is unsigned or not signed in accordance with 37 CFR 1.4):

For further explanation of the amendment format required by 37 CFR 1.121, see MPEP § 714.

TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:

1. Applicant is given no new time period if the non-compliant amendment is an after-final amendment or an amendment
filed after allowance. If applicant wishes to resubmit the non-compliant after-final amendment with corrections, the
entire corrected amendment must be resubmitted.

2. Applicant is given one month, or thirty (30) days, whichever is longer, from the mail date of this notice to supply the
correction, if the non-compliant amendment is one of the following: a preliminary amendment, a non-final amendment
(including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental
amendment filed within a suspension period under 37 CFR 1.103(a) or (c), and an amendment filed in response to a
Quayle action. If any of above boxes 1. to 4. are checked, the correction required is only the corrected section of the
non-compliant amendment in compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) only if the non-compliant amendment is a non-final
amendment or an amendment filed in response to a Quayle action.

Failure to timely respond to this notice will result in:
Abandonment of the application if the non-compliant amendment is a non-final amendment or an amendment
filed in response to a Quayle action; or

Non-entry of the amendment if the non-compliant amendment is a preliminary amendment or supplemental
amendment.

Legal Instruments Examiner (LIE), if applicable Telephone No.

U.S. Patent and Trademark Office Part of Paper No. 20070327

Page 1043 of 1415

Ly

b *
Conti?uation Sheet (PTOL-324) Application No. 10/381,219

Continuation of 4(e) Other: The numbering of the claims within the preliminary amendment is improper. Claims 1-56 were cancelled and
then claims 1-109 were added. However, MPEP 714 states, inter alia, that "The original numbering of the claims must be preserved
throughout the prosecution. When claims are canceled, the remaining claims must not be renumbered. For example, when applicant
cancels all of the claims in the original specification and adds a new set of claims, the claim listing must include all of the canceled claims
with the status identifier (canceled) (the canceled claims may be aggregated into one statement). The new claims must be numbered
consecutively beginning with the number next following the highest numbered claim previously presented (whether entered or not) in
compliance with 37 CFR 1.126." Thus, the new set of claims cannot begin with claim 1, but must start with claim 57 and ascend in proper
numerical order.

AYAZ Shik
SUPERVISORY PATENT EXAAINER
TECHNOLOGY CEnTER 2100

Page 1044 of 1415

[/ﬂ/PATENT 9 ’3 ’

Attorney Docket No. 555255012423

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: David P. Yach, et al.
‘ Serial No.: 10/381,219
Filed: March 20, 2003
For: A SOFTWARE CODE SIGNING SYSTEM AND METHOD
Art Unit: 2131
Examiner: Avery, Jeremiah L.

Commissioner For Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

In accordance with the duty of disclosure imposed by 37 C.F.R. § 1.56, applicants hereby
advise the United States Patent and Trademark Office of certain references which may be
material to the determination of patentability of the above-identified application. The references
are identified on the attached Form PTO-1449 and copies of the references are enclosed, if
required. Applicants respectfully request that these references be considered and made of record
in the present application by completing and returning the enclosed Form PTO-1449.

No fee is believed to be due for entry of this Information Disclosure Statement.
However, if any fee should be required, please charge such fee to Jones Day's Deposit Account

No. 501432, Reference No. 555255-012423.

Respectfully submitted,
! kr_c:‘y Seriify thed this correspoadence (—DW E M/I/\
is beisg deposited today vith the Unised David B. Cochran

States Posial Service as first clase maib i

3a eavelope addressed to: Commissionsr fos Reg. No. 39,142

Patents, P.O. Box 1450, Al JONES DAY

mu.u@ i . North Point

o0 b / 2007~ 901 Lakeside Avenue
N 0/ - Cleveland, Ohio 44114

By:

(216) 586-3939

Page 1 of 1
CLI-1146631vl

Page 1045 of 1415

PTO/SB/08B (08-03)

Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

e required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known
Application Number 10/381,219
ORMATION DISCLOSURE | Filing Date March 20, 2003

STATEMENT BY APPLICANT | First Named Inventor pa.iq P Yach, et al

Art Unit 2131
(Use as many sheets as necessary) -

Examiner Name Avery, Jeremiah L.

Sheet 1 of 1 Attorney Docket Number |555255.012423 /

NON PATENT LITERATURE DOCUMENTS
Examiner | Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of
Initials* No.! the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue T2
number(s), publisher, city and/or country where published.
Communication of Notices of Opposition (R. 57(1) EPC) dated 26-09-2006
and Working Translation, 16 pages

ISO/IEC FCD 7816-9 "ldentification cards ...", Part 9: Additional interindustry
commands and security attributes”, 17.06.1999, S. 8 bis 13, 29 bis 31 (D5), 12 pages

ISO/IEC FDIS 7816-8 "ldentification cards ...", Part 8: Security related
interindustry commands", 25.06.1998, S. 2, 3, 6 bis 13 (D6), 13 pages

ISO/IEC 7816-4 "Information Technology - Identification Cards...", Part 4:
Interindustry Commands for Interchange”, 1995, S. 12 bis 16 (D7), 6 pages

o Pr—
Handbuch der Chipkarten, W. Rankl/W. Effing, 3. Auflage Hanser-Verlag
Munchen, 1999, S. 197 bis 203, 261 bis 272, 740, 795 bis 797 (D8), 18 pages

Examiner Date
Signature Considered

*EXAMINER: Initial if reference considered, whether or not citatior is in conformance with MPEP 609. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

1 Applicant’s unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the
amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO:
Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Page 1046 of 1415

‘I Claim C . vate

. Date

3 |

Original |
Final

fﬂnai'."

L} S| 8| 2 |Originat .

QN

Kl =
18 65 - fog| - I
6]. 56 106 I 2 e
71]. 57 107, N
8] |58 108 ~——
€ &9 100 —
10]

. . v gtaple additional shest hers .
(LEFT INSIDE}

\

Page 1047 of 1415

If more than 160 ofalims or 10-acfions

)
60
[-1 11 61 111 [
12 . - - |62 -~ 112] N
63 113 —
i B L1 . 64 114
6] 65 1 —-
16 66 11 -
16) 68]. 18]
19 -leg 11
° 20 70 20 ~
21 171 12
22 72 - {22~ .
.o - m . h : 73 be o2 Y) . ﬂ - -
24 : 74 = o
25] - 75 - i 15‘
26| 76 26] - C
27 77| :
128 78 v 28]
29 - 79 NES
{80 80 130
DA 81} 61 a1
Jaz] 82]
<1184 11 1 [les] 1-] N
1ol 115 s
%] ' 1661 1 1T
a7 87§ 3
38] - ~ 88 r
.. ” .\ L M oM ” .' _J
40]. » BN 80 404‘-
.- |9t a1,
— A . {92 N -
: J 1 03 =
45] - “F 1o I
46] ° . - e - lo6] o .l“
2 I O A O 5 1
48 1. de | 28] . |: sl -1 . ' 4 | .
4. 149 : ~188] <1 L.} N) j . L
_Is0 od_1 1. - .
. L

«~

Application or Docket Number
PATENT APPLICATIO.N FEE DETERMINATION RECORD l 0 /, 3 8 1 2 l 4
Effective January 1, 2003
CLA|MS AS FlLED - PART i ’ SMALL ENTITY OTHER THAN
{Column 1) Column 2 TYPE [OR SMALL ENTITY
TOTAL CLAIMS. RATE FEE RATE FEE
FOR NUMBER FILED NUMBER EXTRA BASIC FEE} 375.00 |qR[BASIC FEE] =00
TOTAL CHARGEABLE CLAMS | =, minus 20= |* X$ 9= orl xsta-
*
INDEPENDENT CLAIMS i 3= = =
2 minus X42= Jor X84=
EULTIPLE DEPENDENT CLAIM PRESENT 0
+140= OR] +280=
* If the difference in column 1 is less than zero, enter *C” in column 2 TOTAL OR TOTAL | =g
CLAIMS AS AMENDED - PART n OTHER THAN
Column 1 , Column 2) (Column 3) SMALLENTITY OR SMALLENTITY
M HIGHEST
g REMAINING NUMBER SENT ADDI- ADDI-
[AFTER PREVIOUSLY PE)E(TM RATE]TIONAL RATE | TIONAL
a AMENDMENT PAID FOR FEE FEE
= 3
g Totai * Minus - 0 = X$ 9= OR X$18=
w " _
5 Independent |« Minus e X42= . OR X84=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM D
+140= OR|] +280=
TOTAL TOTAL
ADDIT. FEE OR oo FeE
Column 1 Column 2) (Column 3)
CLAM HIGHEST
o REMAINING NUMBER PRESENT ADDI- ADDI-
E AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE | TIONAL
bl AMENDMENT PAID FOR FEE FEE
= . . .
g Total . Minus » P = X$ 9= OR X$18=
g Independent |« Minus e =
< X42= OR X84=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM [
+140= OR +280=
TOTAL TOTAL
ADDIT FEE OR apoir Fee
Column 2) (Column 3)
CLAIMS HIGHEST
4] REMAINING NUMBER PRESENT ADDI- ADDI-
E AFTER PREVIOUSLY EXTRA RATE [TIONAL RATE | TIONAL
w AMENDMENT PAID FOR FEE FEE
=
0
4
g 'Indpnendnm ’.

Page 1048 of 1415

P

PATENT <
Attorney Docket No. 555255012423

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: David P. Yach, et al.

’ Serial No.: 10/381,219
Filed: March 20, 2003
~ For: CODE SIGNING SYSTEM AND METHOD EC E ‘VE D
o Art Unit: 2131 R
DEC 1 72003
Examiner: , Not yet assigned

Commissioner For Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

advise the United States Patent and Trademark Office of certain references which may be
material to the determination of patentability of the above-identified application. The references
are identified on the attached Form PTO-1449 and copies of the references are enclosed.
Applicants respectfully request that these references be considered and made of record in the
present application by completing and returning the enclosed Form PTO-1449.

No fee is believed to be due for entry of this Information Disclosure Statement.
However, if any fee should be required, please charge such fee to Jones Day's Deposit Account
No. 501432, Reference No. 555255012423.

Respectfully submitted,

I hereby certify that this correspondence
is being deposited today with the United
States Postal Service as first class mail ia

dn envelope addressed to: Commissioner for DaVIa/B Cochran
Patents. P.O. Box 1430. Alexandria. VA Reg. No. 39,142
22313-1450 : JONES DAY
on_,Q@ML_ /L, 2003 North Point

, ’) 901 Lakeside Avenue
By.. Cleveland, Ohio 44114
(216) 586-3939

Page 1 of 1
CLI-1146631v1

Page 1049 of 1415

‘)

FORM PTO-1449 (Modified) Atty Docket No.: 555255012423
U.S. DEPARTMENT OF COMMERCE —
PATENT AND TRADEMARK OFFICE Application No.: 10/381,219
INFORMATION DISCLOS Applicants: David P. Yach, et al.
. STATEMENT BY A PPLIC o~ LG Filing Date: March 20, 2003
‘ (Use several sheets if necessaryKg neatSs
. Group: 2131
{37 CFR 1.98(b))
U.S. PATENT (AND PATENT PUBLICATION) DOCUMENTS
Exam. Document No. Date Name Class Subclass | Filing Date
Init. MM/DDIYYYY
< AA |5 |9 4 g8 | 4 11/02/1999 | Apperson et al.
' AB 6 1 7 2 1 12/05/2000 | Shear et al.
AC
AD REGCEIMED
AE [| T N N | - g sy g
AF DEC 1 72003
AG)
AH Technology Center 4100
Al
Al
AK
AL
AM
FOREIGN PATENT OR PUBLISHED FOREIGN PATENT APPLICATION
Publication Translation
Exam. Date of the Country or Patent
Init. Document Number Grant Office Class Subclass Yes No
AN 9 |9 0 S 6 0 0 02/04/1999 | WO
AO 0 |9 3 0 |7 9 3 07/21/1999 | EP
AP
AQ
AR
OTHER DOCUMENTS (Including Author, Title, Date**, Relevant pages, Place of Publication***)
AS
AT
AU
Examiner Date Considered

EXAMINER: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of
this form with next communication to applicant.

CLI-1146628v1

!
1

* Page 1050 of 1415

1of1l

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/05600
06F A2
G 12/00 (43) International Publication Date: 4 February 1999 (04.02.99)
(21) International Application Number: PCT/US98/15340 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 24 July 1998 (24.07.98) SE).
(30) Priority Data: Published
08/901,776 28 July 1997 (28.07.97) us _ Without international search report and to be republished
upon receip! of that report.

(71) Applicant: APPLE COMPUTER, INC. [US/US]; Law Dept.,
M/S: 38-PAT, 1 Infinite Loop, Cupertino, CA 95014 (US).

(72) Inventors: GARST, Blaine; 3307 Bay Court, Belmont, CA
94002 (US). SERLET, Bertrand; 218 Colorado Avenue,
Palo Alto, CA 94301 (US).

(74) Agents: HECKER, Gary, A. et al; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
(us).

(54) Title: METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES
(5T) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API), a toolkit, a framework, a runtime library, a dynamic link library (DLL), an applet (e.g. a Java or ActiveX applet),
or any other reusable resource. The present invention allows the resource library to be selectively used only by authorized end user software
programs. The present invention can be used to enforce a "per-program" licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text string and a comresponding license
key are embedded in a program that has been licensed to use a resource library. The license text string and the license key are supplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text string includes information about the terms of the license under which the end user program is allowed to use
the resource library. The license key is used to authenticate the license text string. The resource library in tum is provided with means for
reading the license text string and the license key, and for determining, using the license key, whether the license text string is authentic
and whether the license text string has been altered. Resource library functions are made available only to a program having an authentic
and unaltered license text string.

Page 1051 of 1415

i

AT Austria

AU Australia

AZ Azesbaijan

BA Bosnia and Herzegovina
BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzeriand

a Cbte d'Ivoire
M Cameroon

CN China

Cu Cuba

cz Czech Republic
DE Germany

DK Denmark

EE Estonia

EREREE BERVAGEEE

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Isracl
Iceland
Italy
Japen
Kenya

Democratic People's
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

St
SK

§E38E§5dHd239k2

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Sloveni
Slovakia
Senegal
Swaziland
Chad

Togo
Tajikistan
Turkmeaistan

Turkey

Trinidad and Tobage
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

Yugoslavia

Zimbabwe

Page 1052 of 1415

WO 99/05600 PCT/US98/15340

METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES
ACK E IN ON
5 1 FIELD OF THE NTION

The present invention relates generally to the distribution of computer
software, and more particularly to a method and apparatus for automated
enforcement of computer software licenses.

10
2. BACKGROUND ART

Some computer software programs use so-called "resource libraries” to
provide part of their functionality. There is usually a license fee required to
15 use a resource library. Under current schemes, it is not always possible to
charge the license fee to all users of a resource library. This problem can be
understood by comparing software structures that use resource libraries with

basic software structures that do not.
20 Basic Software Structure

Figure 1 illustrates a basic software structure. In the example of Figure
1, the software comprises two layers. These layers are the operating system
110, and the application program 120. Operating system 110 is responsible for
25 controlling the allocation and usage of hardware resources such as memory,
central processing unit (CPU) time, disk space, and peripheral devices.

erating system 110 provides a variety of specific functions that can be
g Sy p P

Page 1053 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

25

Page 1054 of 1415

utilized by a variety of software programs such as application program 120.
Application program 120 provides specific end user functions, such as word
processing, database management, and others. Application program 120
communicates with the computer hardware via functions provided by
operating system 110. Operating system 110 provides an interface between

hardware 100 and application program 120.
our: ibrarj

Figure 2 illustrates a second software structure. The software structure
of Figure 2 contains an additional layer of software, resource library 215,
interposed between application program 220 and operating system 110.
Resource library 215 provides> a pre-packaged set of resources or routines that
can be accessed by software programs such as application program 220 during
execution. These resources provide higher level functions than those
provided by operating system 210. For example, these resources may provide
routines for managing a graphical user interface, for communicating with
other computers via a network, or for passing messages between program
objects. Typically, resource library 215 provides one or more resources or
functions that can be used by many different software programs. By using the
pre-packaged resources provided by resource library 215, a software program
such as application program 220 can be made smaller and program
development time can be shortened because the program itself need not

include code to provide the functions provided by resource library 215.

10

15

20

Page 1055 of 1415

WO 99/05600 PCT/US98/15340

In addition to application programs, resource libraries are used by other
types of software programs, including device drivers, utility programs and

other resource libraries.

Resource library 215 constitutes any set of one or more resources that
exists separately from an application program or other software program and
that can be used by more than one software program. For example, resource
library 215 may comprise an application program interface (API), a toolkit, a
framework, a resource library, a dynamic link library (DLL), an applet, or any
other reusable resource, including an application program that can be accessed
by another program (e.g. by using object linking and embedding (OLE)).
Examples of resource libraries include Windows DLL's (DLL's used with the
Microsoft Windows (TM) operating environment), the Apple Macintosh (TM)
toolkit, the OpenStep API from NeXT Software, Inc., OLE enabled application
programs such as Microsoft Word (TM), Java packages, and ActiveX applets:

A software program typically utilizes a resource provided by a resource
library by sending an appropriate message to the resource library and
supplying the parameters required for the resource to be executed. Assuming
the appropriate parameters have been supplied, the resource executes, and an

appropriate response message is returned to the requesting program.

A software program may use resources provided by several different
resource libraries, a resource library may be used by several different programs,
and a resource library may itself use other resource libraries. Figure 3
illustrates a computer system that includes several programs and several

resource libraries. In the example of Figure 3, there are two application-

10

15

20

25

Page 1056 of 1415

WO 99/05600 PCT/US98/15340

programs 300 and 310, and three resource libraries 320, 330, and 340.
Application program 300 uses resources provided by operating system 110 and
by resource libraries 320 and 330. Application program 310 uses resources
provided by operating system 110 and by resource libraries 330 and 340. The
resources of resource library 330 are thus shared by application programs 300

and 310.

License Fee

Generally, computer software is licensed to an end user for a fee. The
end user pays a single purchase price or license fee in exchange for the right to
use the end user program on a computer system. Resource libraries are often
packaged or “bundled” with an end user program by the maker of the program
such that the end user receives a copy of resource libraries required by a
program when the end user buys a copy of the program. The price of the
resource library is built into the end user program price. The end user
program developer, in turn, pays a royalty to the resource library vendor for

the right to bundle and resell the resource library.

Since a resource library can be used with multiple end user programs,
once the end user receives a copy of the resource library, the end user can use
the resource library with any other program that is compatible with the
resource library. In this case, the resource library vendor receives no
additional revenue when the vendor's resource library is used with additional
programs. Accordingly, it would be desirable for a resource library vendor to
be able to ensure that an end user can use the resource library only with

programs for which a license fee has been paid to the vendor for use of the

WO 99/05600 . PCT/US98/15340

resource library. Thus there is a need for a software mechanism for enforcing
software license agreements that automatically ensures that a resource library
can only be used by programs that have been licensed for use with the

resource library by the resource library vendor.

Page 1057 of 1415

WO 99/05600 PCT/US98/15340

SUMMARY OF THE INVENTION

The present invention comprises a method and apparatus for enforcing
software licenses for resource libraries. The term "resource library" as used
5 herein refers to any reusable software resource that is usable by more than one
program or other resource library. The term "resource library" includes, but is
not limited to, an application program interface (API), a toolkit, a framework,
a runtime library, a dynamic link library (DLL), an applet (e.g. a Java or
ActiveX applet), an application program whose functionality can be accessed
10 by other programs (e.g. using OLE) or any other reusable resource. The present
invention allows thé resource library to be selectively used only by authorized
end user software programs. The present invention can be used to enforce a
“per-program” licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs, as well as

15 site licenses and other licensing schemes.

In one embodiment, an access authorization indicator such as a license
text string and a corresponding license key are embedded in a program that
has been licensed to use a resource library. The license text string and the

20 license key are supplied, for example, by a resource library vendor to a
program developer who wants to use the resource library with an end user

program being developed.

The license text string includes information about the terms of the
25 license under which the end user program is allowed to use the resource
library. In one embodiment, the license key is an algorithmic derivation, such

as, for example, a digital signature, of the license text string that is used to

Page 1058 of 1415

10

15

20

Page 1059 of 1415

WO 99/05600 PCT/US98/15340

authenticate the license text string. The resource library in turn is provided
with a checking routine that includes means for reading the license text string
and the license key, and for determining, using the license key, whether the
license text string is authentic and whether the license text string has been
altered. Resource library functions are made available only to a program

having an authentic and unaltered license text string.

In one embodiment, the license key constitutes the resource library
vendor's digital signature of the license text string. The resource library has a
checking routing for verifying the resource library vendor's digital signature.
The resource library is unlocked and made available for use with the
requesting program only if the license text string is verified as authentic by the
resource library. For a given program, only the resource library proprietor- can
produce a license key for a particular license agreement that will unlock the
resource library for that program and that program only. Any modification of
the license key or the license agreement text string in the requesting software
program is detected by the checking routine, causing the resource library to
remain locked. The license text string may also specify an expiration date for
the license, in which case the resource library is unlocked only if the

expiration date has not yet occurred.

In one embodiment, a per-site enforcement method is provided, in
which any software program present at a given user site works with the
resource library once the resource library is provided with the proper per-site

license key.

WO 99/05600 PCT/US98/15340

5

10

15

20

25

Page 1060 of 1415

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an example of a software structure.

Figure 2 illustrates an example of a software structure including a

resource library.

Figure 3 illustrates an example of a software structure including several

application programs and resource libraries.

Figure 4 illustrates an embodiment of a computer system that can be

used with the present invention.

Figure 5 illustrates a software structure of one embodiment of the

present invention.

Figure 6 illustrates a software structure of one embodiment of the

present invention.

Figure 7 is a flow chart illustrating the operation of one embodiment of

the present invention.

Figure 8 illustrates a software structure of one embodiment of the

present invention.

'Figure 9 illustrates a software structure of one embodiment of the

present invention.

WO 99/05600 PCT/US98/15340

10

15

Page 1061 of 1415

Figure 10 is a flow start illustrating the operation of one embodiment of

the present invention.

Figure 11 is a flow start illustrating the operation of one embodiment of

the present invention.

Figure 12 is a flow start illustrating the operation of one embodiment of

the present invention.

Figure 13 illustrates a software structure of an embodiment of the

present invention using the OpenStep APL

Figure 14 illustrates an embodiment of the invention in which the

resource library is an applet.

WO 99/05600 PCT/US98/15340

10

15

20

Page 1062 of 1415

10

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for enforcing software licenses is described. In
the following description, numerous specific details are set forth in order to
provide a more thorough description of the present invention. It will be
apparent, however, to one skilled in the art, that the present invention may be
practiced without these specific details. In other instances, well-known

features have not been described in detail so as not to obscure the invention.

Co ter S

The present invention can be implemented on any of a variety of
computer systems, including, without limitation, network computers, special
purpose computers, and general purpose computers such as the general
purpose computer illustrated in Figure 4. The computer system shown in
Figure 4 includes a CPU unit 400 that includes a central processor, main
memory, peripheral interfaces, input-output devices, power supply, and
associated circuitry and devices; a display device 410 which may be a cathode
ray tube display, LCD display, gas-plasma display, or any other computer
display; an input device 430, which may include a keyboard, mouse, digitizer,
or other input device; non-volatile storage 420, which may include magnetic,
re-writable optical, or other mass storage devices; a transportable media drive
425, which may include magnetic, re-writable optical, or other removable,
transportable media, and a printer 450. The computer system may also
include a network interface 440, which may include a modem, allowing the
computer system to communicate with other systems over a communications

network such as the Internet. Any of a variety of other configurations of

10

15

20

Page 1063 of 1415

WO 99/05600 PCT/US98/15340

11

computer systems may also be used. In one embodiment, the computer
system comprises an Intel Pentium (tm) CPU and runs the Microsoft
Windows 95 (tm) operating environment. In another embodiment, the
computer system comprises a Motorola 680X0 series CPU and runs the

NeXTStep operating system.

When a computer system executes the processes and process flows

described herein, it is a means for enforcing software licenses.

The invention can be implemented in computer program code in any

desired computer programming language.
Licensi dul

Figure 5 is a block diagram illustrating software components of one .
embodiment of the present invention. As shown in Figure 5, this
embodiment, like the prior art embodixﬁent of Figure 2, includes computer
hardware 100, operating system 110, application program 220 and resource
library 215. However, the present invention adds two additional components:
Program licensing module 500 and resource library licensing module 510.

These modules are shown in greater detail in Figure 6.

Figure 6 illustrates program licensing module 500 and resource library
licensing module 510 in one embodiment of the present invention. As
shown in Figure 6, program licensing module 500 contains license text string
600 and license key 610. License text string 600 contaiﬁs data specifying terms

of the software license agreement under which the resource library vendor

WO 99/05600 PCT/US98/15340

10

15

20

25

30

Page 1064 of 1415

12

has licensed the program containing program licensing module 510 to use the
vendor's resource library. For example, license text string 600 may include the

following text:

Table 1: Example License Text String

*(c) Copyright 1997. Resource Library Vendor, Inc. Program A is
licensed to use Resource Library D. No expiration date. This
license may not be legally copied or transferred to another
program. "

In the example shown in Table 1, license text string 600 specifies the name of
the resource library vendor ("Resource Library Vendor, Inc.), the name of the
program licensed to use the resource library ("Program A"), and the name of
the resource library that has been licensed ("Resource Library D"). License text

string 600 also indicates that the license has "No expiration date.”

License key 610 is algorithmically derived from license text string 600.
In one embodiment, license key 610 comprises a digital signature of the

resource library vendor.

A digital signature is a mechanism that has been developed to help
ensure the integrity of electronic messages. A digital signature is used to
authenticate an electronic message and to determine whether an electronic

message has been altered.

One form of digital signature uses a message digest. A message digest is
a value that is generated when an electronic message is passed through a one
way encryption process (“digesting process”) such as a hashing routine. An
ideal digesting process is one for which the probability that two different

electronic messages will generate the same message digest is near zero. In this

WO 99/05600 . PCT/US98/15340

10

15

20

Page 1065 of 1415

13

form of digital signature, both the originator and the recipient need to know
which digesting process is being used. The originator generates the electronic
message, and generates a message digest by passing the electronic message
through the digesting process. The originator digitally signs the resulting
message digest, for example by performing an algorithmic operation on the
message digest using the originator's private key. Alternatively, instead of
generating a message digest and signing the message digest, a sender may sign

the message itself.

To verify the authenticity of a digitally signed message, the recipient .
obtains the electronic message and the digital signature of the sender. The .
recipient verifies the digital signature using an appropriate verification
process. For example, in one embodiment, the recipient verifies the digital
signature by performing an algorithmic process on the digital signature using
the sender's public key. The verification process verifies that the electronici
message was (1) digitally signed by the sender, and (2) that the electronic i
message content was not changed from the time that it was signed to the time

that the digital signature was verified.

In the present embodiment of the invention, the "message” that is
digitally signed is license text string 600. The signer is the resource library

vendor. The result is license key 610.

License text string 600 and license key 610 are used by resource library
licensing module 510 to verify that a requesting program has been licensed to
use the resource library. As shown in Figure 6, resource library licensing

module 510 includes a license verification module 620. When a program

WO 99/05600 PCT/US98/15340

10

15

20

25

Page 1066 of 1415

14

requests access to the resource library, resource library licensing module 510
reads license text string 600 and license key 610 from the requesting program.
In one embodiment, license text string 600 and license key 610 are sent to the
resource library by the requesting program along with a request for access to
the resource library. In another embodiment, resource library licensing
module 510 reads license text string 600 and license key 610 from a constant

definition section of the requesting program.

Resource library licensing module 510 uses license key 610 to verify the
content of license text string 600 in the same manner as a digital signature is
used to verify an electronic message. Using license verification module 620,
resource library licensing module 510 verifies that license text string 600 is
authentic (i.e. was generated by the resource library vendor) and unaltered. If
the verification process is unsuccessful, indicating that the digital signature is
not good, resource library licensing module 510 refuses the requesting
program's request for access to the resource library. If the verification process
is 'successful, resource library licensing module 510 inspects the license to

determine any license limitations included in license text string 600.

The example license text string 600 shown in Table 1 above identifies
“Program A" as the program that is licensed to use the resource library, and
states that the license has "No expiration date.” Resource library licensing
module 510 obtains the name of "Program A" from license text string 600, and
checks whether the requesting program is Program A. If the requesting
program is a program other than Program A, access to the resource library is

denied.

WO 99/05600 PCT/US98/15340

10

15

20

Page 1067 of 1415

15

Rather than specifying "No expiration date" as in the present example,
license text string 600 may specify an expiration date and/or a beginning date
for the license. If any such dates are specified in license text string 600,
resource library licensing module 510 checks to make sure that the current
date falls within the period of validity of the license prior to granting access to
the resource library. If the current date is not within the license's period of

validity, the requesting program is denied access to the resource library.
Access Procedure

The process used by a resource library to grant or deny access to a
requesting program in one embodiment of the invention is illustrated in
Figure 7. In one embodiment, this process occurs the first time a program .
requests access to a resource library. In another embodiment, this process - ._

occurs each time the resource library receives a request for access.

As shown in Figure 7, the process begins with a requesting program
making a request to use the resource library at step 700. At step 705, the
resource library obtains the requesting program's license text and license key.
The license text and license key may, for example, be included in the request,
or the resource library may read the license text and license key from a
constant declaration area of the requesting program, or the resource library

may obtain the license text and license key by some other means.

After obtaining the license text and license key, the resource library
verifies the authenticity of the license text, using the license key, at step 710.

At step 725, a the resource library determines whether the verification is

WO 99/05600 PCT/US98/15340

10

15

20

Page 1068 of 1415

16

successful. If the authenticity of the license text is not verified, access to the

resource library is denied at step 730.

If the verification of the authenticity of the license text is successful, the
resource library checks the license terms included in the license text at step
735. At step 740, the resource library determines whether a limited validity
period is specified in the license text. If no validity period is specified, the
process continues on to step 755. If a validity period is specified, the resource
library checks whether the validity period has expired at step 745. The validity
period will have expired either if the current date is before a beginning date
specified in the license text or if the current date is after an expiration date
specified in the license text. If the validity period has expired, access to the

resource library is denied at step 750.

If the validity period has not expired, processing continues to step 755.
At step 755, the resource library determines whether the requesting program is
the same program as the program specified in the license text. If the
requesting program is not the program specified in the license text, access to
the resource library is denied at step 760. If the requesting program is the
program specified in the license text, the resource library checks whether there
are any other license terms contained in the license text at step 765. If there are
no other license terms, access to the resource library is granted at step 770. If
there are other license terms, the resource library checks whether those terms
are satisfied at step 775. If the terms are not satisfied, access to the resource
library is denied at step 780. If the terms are satisfied, access to the resource

library is granted at step 785.

10

15

20

Page 1069 of 1415

WO 99/05600 PCT/US98/15340
17

The invention may be implemented in the Objective-C language.
Objective-C is essentially the ANSI C language with object messaging
extensions. A full description of the Objective-C language appears in "Object-
Oriented Programming and the Objective-C Language,” published by Addison-
Wesley (ISBN 0-201-63251-9) (1993), and incorporated by reference herein.
However, the invention can also be implemented in any other suitable

computer programming language.

As described below, the invention can be implemented by embedding
appropriate segments of program code in the source code of a program that
uses a resource library and in the source code of the resource library itself.. The
resource library is compiled to produce an executable implementation which

can be linked to a compiled and executable version of the program.
ication Program Interface (API

In one embodiment of the invention, the resource library is an
application program interface ("API"). An API has three major functions: it
receives requests from an application program to carry out fundamental
operations such as receiving user input or displaying output; it converts each
request into a form understandable by the particular operating system then in
use; and it receives responses and results from the operating system, formats

them in a uniform way, and returns them to the application program.

APIs generally are prepared in an executable implementation which is
compiled specifically for the underlying operating system. This is necessary

because different operating systems provide different calling mechanisms and

WO 99/05600 PCT/US98/15340

10

15

20

Page 1070 of 1415

18

communications methods for such primitive operations as reading and
writing a mass storage device. For example, an API may provide a "draw(x,y)"
function that can be called by an application program to draw a point at
coordinates (x,y) on the display device of a computer system. Upon receipt of a
draw(x,y) request from an application program, the API converts the request
into a command or function call specific to the operating system then in use.
For example, the API might convert the draw(x,y) request into a series of
machine instructions to load registers with the x,y values and call an
operating system function or generate an interrupt. The person writing the

application program need not worry about such details.

In some cases the API refers to or calls functions locéted in an external
function library such as a set of device drivers rather than directly calling the
operating system. Device drivers are small executable programs that enable
the operating system to address and work with particular hardware devices
such as video adapters and printers. Device drivers also constitute a form of

resource library.

Depending on the operating system, the API can be prepared in any of
several executable formats such as a runtime library, device linked library
(DLL), or other executable file. The API is provided to the end user in one of
these object code versions, or "implementations,” of the APL. In industry
usage the term API can refer to a definition or specification of functions in the
API], to the source code of the API that implements such functions, or to the
executable version of such source code which is ultimately distributed to and

used by end users. Examples of APIs are the OpenStep API, available from

WO 99/05600 PCT/US98/15340

10

15

20

25

Page 1071 of 1415

19

NeXT Software, Inc., Redwood City, California, and the Visual Basic DLL

available from Microsoft Corporation, Redmond, Washington.

The term API as used herein also includes the Java programming
language. Rather than being distributed in executable form, Java programs are
distributed as packages of "bytecodes.” The bytecodes are compiled at runtime
into executable code by a Java Virtual Machine (JVM) resident on the
computer on which the Java program is run. Different JVM's are used for
different computer processors and operating systems. However, all JVM's
read the same bytecode. Accordingly, Java bytecode programs and packages are
platform independent. Java bytecode programs and packages need only be
written in one form. The JVM's take care of adapting the bytecode to different
computer platforms. Packages of Java bytecode can be used by different Java

programs, and, as such, constitute resource libraries.

Generally the end user can buy the executable version of the API .
implementation separately from any particular application program from its
creator or vendor, or the end user may buy the API implementation bundled

with an application program that requires and uses the API to run.

In either case, the API implementation is installed in executable form
in the end user's computer system (typically by copying it to a mass storage -
device such as a hard disk). After the API implementation is installed, the
end user can launch (begin running) an application program which uses the
API implementation. The application program locates the API
implementation on the hard disk and references, calls, or is linked to the API

implementation. In operation, when the application program needs to carry

WO 99/05600 PCT/US98/15340

10

15

20

Page 1072 of 1415

20

out an operation implemented in the API implementation, such as drawing a
line on the screen, the application program calls the appropriate function in
the API implementation. The appropriate function in turn tells the operating
system (or the device independent windowing extensions, or another device

driver) how to execute the desired operation.

A significant advantage of the use of APIs is that an application
program, such as a word processor, can be written to communicate only with
the AP], and not with the operating system. Such an application program can
be moved or ported to a different operating system without modifying the
program source code. Because of this, application programs written for APIs
are said to be operating system independent, meaning that the application
program source code can be moved without modification to another
computer system having a different operating system, and recompiled and
linked with an API implementation prepared for that operating system. The
ability to move unmodified application source code to different operating

systems is a key advantage of using APIs.

However, from the point of view of API vendors, APIs also have the
significant disadvantage that an end user needs only one copy of the API to
run multiple application programs which are compatible with the API. Since
the API provides generic input, output, and processing functions, it will work
with a variety of different end user application programs. Some software
vendors desire to restrict use of their API implementations to one application,
or to require the end user to purchase a key to the API for each application
acquired by the end user, so that the end user pays a different or larger fee to

use additional application programs.

10

15

20

Page 1073 of 1415

WO 99/05600 PCT/US98/15340

21

The present invention provides a way to arrange a resource library such
as an API to work only with particular authorized application or other end

user programs.

API License Embodiment

As is well known in the art, the source code of a computer program can
be divided into several components including a variables declaration area, a
constant declaration area, and a procedure definition area. Figure 9 illustrates
an embodiment of the present invention that is used with an API. As shown
in Figure 9, in this embodiment, an application program 900 is provided with
a LicenseKeyString constant 902 and a LicenseAgreementString constant 904
in the constant declarations area 901 of the application program's source code.
In the embodiment of Figure 9, LicenseKeyString 902 and

LicenseAgreementString 904 are declared as global string constants.

In one embodiment, LicenseAgreementString 904 contains a text string,
prepared by the vendor of the API, that describes in human readable text the
license restrictions concerning use of the API applicable to the application
program. For example, the LicenseAgreementString may read, "This API is
licensed for individual internal use only for concurrent use only with Word
Processor application program.” The specific text of the
LicenseAgreementString is prepared by the licensor of the API. The text can be

any arbitrary combination of words, symbols, or numbers.

10

15

20

WO 99/05600 PCT/US98/15340

The LicenseKeyString 904 contains a key corresponding to and based
upon the LicenseAgreementString 902. For example, the LicenseKeyString
can be a digital signature of the LicenseAgreementString prepared by
providing the LicenseAgreementString and a private key of the API vendor to
a digital signature process. The precise method of generating the
LicenseKeyString is not critical, provided that only the licensor of the API can
generate a unique LicenseKeyString corresponding to the
LicenseAgreementString. The values of the two strings are created by the
vendor of the API and are provided to the person or company that is
developing the end user application program (for example, the API vendor
can send the two string values to the application program developer by e-
mail). The application program developer is instructed by the API vendor to
place the string declarations in the source code of the developer's end user
application program. The two values may be public, so the API vendor or
developer need not keep the values secret or hidden from users of the end
user application program. The two strings are compiled into the executable
form (or, in the case of Java, the bytecode packages) of the application program.
This binds the LicenseKeyString and LicenseAgreementString into the

executable code (or bytecode) of the application program.

As further shown in Figure 9, API 920 is provided with an UNLOCK
function 923 and a CHECK LICENSE function 921 for testing whether the
LicenseKeyString matches the LicenseAgreementString. In the embodiment
of Figure 9, the CHECK LICENSE function 921 includes sub-function CHECK
922.

Page 1074 of 1415

10

15

20

Page 1075 of 1415

WO 99/05600 PCT/US98/15340
23

API Procedure

Figure 10 is a flow diagram of processing steps of the UNLOCK function
923. The process of Figure 10 may, for example, be carried out at runtime,
when both the application program and the API are compiled, linked, and

running.

The UNLOCK function is called by the API upon initialization of the
API, for example, upon being called by application program 900 or by some
other calling function, object, or program (the "calling entity"). Processing
begins at step 1002. The UNLOCK function first checks to see whether the. API
has been provided with a site license that allows the API to be used with any
calling entity on the computer in which the API has been installed. In this
embodiment, a site license is indicated by adding an appropriate
LicenseKeyString and LicenseAgreementString to the API when the API is
installed. This process is described in greater detail below. An appropriate.
LicenseAgreementString may, for example, be "API site license granted. This
API may be used with any application program at the site at which it is
installed." The corresponding appropriate LicenseKeyString may, for
example, be derived by applying the API vendor's private key and a digital

signature process to the LicenseAgreementString.

The process of checking for a site license begins at step 1004 where the
UNLOCK function locates and extracts (to the extent they have been provided
to the API) a LicenseKeyString and a LicenseAgreementString from within the
API. Control is then passed to step 1006 where the function tests whether the

API is licensed under a site license for unrestricted use with any application

10

15

20

PCT/US98/15340
WO 99/05600

24

program. The test of step 1006 is accomplished by verifying the authenticity of
the LicenseKeyString and LicenseAgreementString extracted from the API,
and, if authentic, determining whether the LicenseAgreementString indicates

that a site license has been granted.

The authenticity of the LicenseAgreementString and LicenseKeyString
is determined by passing the LicenseAgreementString, the LicenseKeyString,
and a copy of the API vendor's public key stored in the API implementation to
the CHECK process 922. CHECK process 922 uses a digital signature
authentication ("DSA") process to verify the authenticity of the

LicenseAgreementString.

The DSA process used by CHECK process 922 can be any digital
signature authentication process capable of reading an input string and a key
purportedly representing the digital signature of the input string, applying an
appropriate authentication process, and determining the validity of the input
string by testing whether the key constitutes the signatory's digital signature of
the input string. An exemplary DSA process is disclosed, for example, in U.S.
Patent Application Serial No. 08/484,264, "Method and Apparatus for Digital
Signature Authentication,” assigned to the assignee hereof. The DSA
technology of RSA Data Security, Inc. also can be adapted for use with the
invention. A per-session cache can be used to improve execution speed of the

CHECK process.

If the LicenseKeyString is determined to be the API vendor's valid
digital signature of the LicenseAgreementString, the LicenseAgreementString

is inspected to determine whether it indicates that a site license has been

Page 1076 of 1415

10

15

20

WO 99/05600 PCT/US98/15340

25

granted. If the LicenseAgreementString does so indicate, the test of step 1006
succeeds and control is passed to step 1014. At this point the UNLOCK
function returns a positive result to the calling entity, and allows the calling
entity to use the APIL

If the test of step 1006 fails, control is passed to step 1008 where the
UNLOCK function extracts and reads the LicenseKeyString and
LicenseAgreementString from a data segment (for example, the compiled
constant declarations area) of the calling entity. Alternatively, the calling
entity may transmit the LicenseKeyString and the LicenseAgreementString to
the APL. Having obtained the calling entity’s LicenseKeyString and
LicenseAgreementString, control is passed to step 1010 where the function |
tests whether the calling entity is licensed to use the API. This test comprises
two parts. One part, using CHECK process 922 as described above, determines
whether the LicenseAgreementString is a LicenseAgreementString validly
issued by the API vendor. A second part examines the
LicenseAgreementString for the terms of the included license, and determines
whether those terms are met. If the result is positive then control is passed to
step 1014. At this point, use of the API with the calling entity is authorized
and the API returns control to the calling entity so that the calling entity

resumes normal execution.

If the result is negative then the calling entity is not licensed to use the
API, and control is passed to step 1012. At step 1012 the API generates an error
message such as "API Not Licensed For Use With This Application program,”
and declines access to the calling entity.

Page 1077 of 1415

05600 PCT/US98/15340
WO 99/

26

Steps 1006 and 1010 carry out the license tests by calling the CHECK
LICENSE function 921 shown in Figure 9 and Figure 11. Processing steps of
the CHECK LICENSE function 921 are illustrated in Figure 11.

5 The process flow of the CHECK LICENSE function starts at step 1102.
Control is passed to step 1104 where the CHECK LICENSE function assembles
the LicenseKeyString 902, LicenseAgreementString 904, and a copy of the API
vendor's public key 1106 as function call arguments, in preparation for calling
the CHECK function 922. As discussed more fully below, the public key 1106 is

10 prepared by the API vendor based upon a secret private key. The three
arguments are passed to the CHECK function at step 1108.

If the CHECK function (described in greater detail below) returns a FAIL

or false state, control is passed to step 1124 and the CHECK LICENSE function

15 itself returns a fail state. If the CHECK function returns a PASS or true state,
control is passed to step 1112 where the CHECK LICENSE function checks the
termé of the license specified in the LicenseAgreementString. At step 1114, the
CHECK LICENSE function checks whether the name of the calling entity is the
same as the name of the licensed entity specified in the

20 LicenseAgreementString. If the name of the calling entity is incorrect, control
passes to step 1124, where a fail message is passed to the UNLOCK function.

If the name of the calling entity is correct, the CHECK LICENSE
function tests whether the LicenseAgreementString contains an expiration
25 date at step 1116. An expiration date can be placed in the
LicenseAgreementString by the API vendor to establish a termination date
after which use of the API by the calling entity is no longer allowed. CHECK

Page 1078 of 1415

10

15

20

PCT/US98/15340
WO 99/05600

27

LICENSE may, for example, test for an expiration date by searching for a text
string that indicates an expiration date, such as, for example, "expiration date"

or "valid until."

If the test of step 1116 is positive, control is passed to step 1118 where the
CHECK LICENSE function tests whether the current date, as maintained, for
example by a computer clock or operating system, is greater than the
expiration date found in the LicenseAgreementString. If the test of step 1118
passes, control is passed to step 1120. If the test of step 1118 fails, then CHECK
LICENSE returns a FAIL message at block 1124.

At step 1120, the CHECK LICENSE function checks whether the
LicenseAgreementString specifies any additional license terms. If there are no
other terms, CHECK LICENSE returns a PASS message at block 1126. If there
are other terms, CHECK LICENSE determines whether those terms are met a‘g
block 1122. If any of the other terms are not met, CHECK LICENSE returns a-
FAIL message at block 1124. If all of the additiona] terms are met, CHECK
LICENSE returns a PASS message at block 1126.

The operation of the CHECK function called by CHECK LICENSE at
block 1108 is illustrated in Figure 12. As shown in Figure 12, the purpose of
the CHECK function is to verify the authenticity of a license agreement string
by verifying that a corresponding license key string constitutes a valid digital
signature of the license agreement string. The CHECK function begins at step
1202 and receives as input a LicenseKeyString, a LicenseAgreementString, and
a vendor's public key in step 1203. The public key is generated by the resource

library vendor using any known public/private key pair generation process, as

Page 1079 of 1415

10

15

20

Page 1080 of 1415

WO 99/05600 : ' PCT/US98/15340

28

is well known in the field of cryptography. For example, key generation using
Fast Elliptical Encryption (FEE) can be done, or Diffie-Hellman key generation

can be used.

In step 1204 the CHECK function verifies that the LicenseKeyString
comprises the digital signature of the LicenseAgreementString. In step 1208,
the CHECK function tests whether the verification of step 1204 succéssfully
verified the LicenseKeyString as comprising the digital signature of the
LicenseAgreementString. If so, the LicenseAgreementString is valid, and
CHECK returns a Boolean true or pass value. If not, the

LicenseAgreementString is invalid, and CHECK returns false or failure.

Since the LicenseKeyString of the present embodiment comprises the
digital signature of the LicenseAgreementString, the LicenseAgreementString
cannot be changed in any way without the change being detected. Stated more
generally, because the identifier (e.g. the LicenseKeyString) of the invention is
a unique key mathematically derived from a particular text string that
specifies license terms for a particular end user program (e.g. the
LicenseAgreementString), the identifier can be used to detect any changes to
the license terms. This prevents unauthorized modification of the text string
from extending use of a resource library to an unlicensed program. For
example, if an end user attempts to modify the expiration date using a
debugger or machine language editor, the identifier will no longer match the
license text string. Without knowing the private key of the véndor, the end

user cannot generate a matching identifier.

0 PCT/US98/15340
WO 99/0560

29

When a 127-bit private key's is used by the vendor to create the
identifier used in the present invention, a determined hacker attempting to
forge the private key would need to exhaustively search the 127-bit space,
requiring extensive computing resources and an impractical amount of time.

5 Thus, the protection provided by the present invention cannot easily be

cracked and the security of the invention as a whole is extremely high.

In addition to allowing per program resource library licensing, if the

API vendor or licensor desires to grant a site license for the API to the end

10 user, so that the API is licensed for use with any number of application
programs, the API may be provided with a LicenseKeyString and a
LicenseAgreementString providing for such unrestricted use. In this
embodiment, the API vendor provides a site license key string to the end user
as authorization to use the API with any number of applications and other ”‘

15 end user programs at that site. The site license key string comprises a digitaf)
signature of a site license agreement string created by the API vendor. The site
license agreement string may be pre-embedded in the API by the vendor.
During installation of the API, an installation program provided with the API
asks the end user whether a site license key is known. If so, the end user

20 enters the site license key, and the installation program writes the site license
key to a reserved location in the APL Thereafter, when the API initializes, the
API tests for the presence of the site license key. If it is present, and it
comprises a valid digital signature for the site license text string stored
elsewhere in the API, the API is permitted to be used with any application

25 program Wthh is calling it.

Page 1081 of 1415

WO 99/05600 PCT/US98/15340

10

15

20

25

Page 1082 of 1415

30

OpenStep API

In one embodiment of the invention, the API used is the object-
oriented OpenStep API 820 shown in Figure 8. A specification of the
OpenStep API has been published by NeXT Software, Inc. under the title
"OPENSTEP SPECIFICATION," dated October 18, 1994. Implementations of
the OpenStep API include implementations for the Windows NT and Solaris
operating systems that are available from NeXT Software, Inc. and SunSoft,

Inc., respectively.

As shown in Figure 8, the OpenStep API 820 comprises computer
program code organized as an Application Kit 802, Foundation Kit 808, and
Display Postsc:riptTM system 804. (Display Postscript™ is a trademark of Adobe
Systems Incorporated.) /

Application Kit 802 provides basic resources for interactive application
programs that use windows, draw on the screen, and respond to user actions
on the keyboard and mouse. Application Kit 802 contains components that
define the user interface. These componernits include classes, protocols, C
language functions, constants and data types that are designed to be used by
virtually every application running under the OpenStep API. A principal
purpose of Application Kit 802 is to provide a framework for implementing a

graphical, event-driven application.

Foundation Kit 808 provides fundamental software functions or
building blocks that application programs use to manage data and resources.

Foundation Kit 808 defines basic utility classes and facilities for handling

10

15

20

Page 1083 of 1415

WO 99/05600 PCT/US98/15340
31

multi-byte character sets, object persistency and distribution, and provides an
interface to common operating system facilities. Foundation Kit 808 thus
provides a level of operating system independence, enhancing the developer's

ability to port an application program from one operating system to another.

Display Postscript system 804 provides a device-independent imaging
model for displaying documents on a computer screen. Display Postscript is
defined by Adobe Systems Incorporated. Display Postscript system 804

provides an application-independent interface to Postscript.

Separate from the API 820, but also logically located between the
application program 800 and the operating system 810, is a set of device -
dependent windowing extensions 806. Extensions 806 enable Display
Postscript system 804 to communicate with specific graphics and display
hardware in the end user's computer system, such as the video memory or

other video display hardware.

Figure 13 illustrates an embodiment of the invention used with the
OpenStep API of Figure 8. As shown in Figure 13, in this embodiment, the
license text string and the license key string of the invention are implemented
in a property list area 1302 (Info.plist) of the application program code 800.
Two string properties are added to the property list area 1302:
NSLicenseAgreement 1304, that stores the software license terms applicable to
application program 800, and NSLicenseKey 1306, that stores the license key
corresponding to NSLicenseAgreement 1304. In this embodiment, as in the

embodiment of Figure 9, NSLicenseKey 1306 is derived from the

WO 99/05600 PCT/US98/15340

5

10

15

20

30

35

" Page 1084 of 1415

32

NSLicenseAgreement string 1304 generated from the license agreement string

using a digital signature process and a vendor's private key.

Example values of the two strings placed in the Info.plist are shown in

Table 2.
Table 2 — Info.plist Strings

NSLicenseKey = "Ab76LY2GbbO0GgK2KY17BgHy35";

NSLicenseAgreement = " (c) Copyright 1996, EOF AddOnTools
Inc.., ReportWriter licensing agreement: This is
demonstration software valid until November 2, 1996.
This software cannot be legally copied.";

In the OpenStep embodiment of Figure 13, the UNLOCK function 1308
is implemented as part of Application Kit 802. In one embodiment, UNLOCK
function 1308 is implemented by adding appropriate code to a non-redefinable
private Application Kit function (such as, for example, _NXAppZone() in
NSApplication.m). An example of source code that may be added is shown in’

Table 3.

Table 3 - UNLOCK Code added in OpenStep API Implementation

static BOOL licenseChecked = NO;
if (! licenseChecked)
{
NSDictionary *info;
NSString *key, *agreement;
/* First check the unlimited (per-site) license */
info = [NSDictionary
dictionaryWithContentsOfFile:@"/OpenStep/AppKit.dll/Info
.plist*]l; // real path TBD
key = [info objectForKey:@"NSLicenseKey"];
agreement = [info
objectForKey:@"NSLicenseAgreement"];
if (!NSCheckLicense(key, agreement))
{
/* now check for the per-app license */
info = [[NSBundle mainBundle] infoDictionaryl];

10

15

20

30

Page 1085 of 1415

WO 99/05600 PCT/US98/15340

33
key = [info objectForKey:@"NSLicenseKey"];
agreement = [info

objectForKey:@"NSLicenseAgreement "] ;
if (!NSCheckLicense(key, agreement))
{
NSLog (@"*** Sorry no valid license for
$@", [NSApp appName]);
}
}
licenseChecked = YES;
}

The NSCheckLicense() function, which is called twice in the code
segment of Table 3, as shown in Figure 13, is implemented in the Foundation
Kit portion 808 of the OpenStep API 820. The NSCheckLicense function 1310
corresponds to the CHECK LICENSE function 921 illustrated in Figure 9. The
NSCheckLicense function 1310 verifies NSLicenseAgreement string 1304
using NSLicenseKey string 1306 and a digital signature authentication process.
The NSCheckLicense function 1310 has the following definition:

extern BOOL NSCheckLicense(NSString *1licenseKey,
NSString *licenseAgreement);

The NSCheckLicense function 1310, like the Check License function 921 of
Figure 9, applies a CHECK function 1312 to NSLicenseAgreement string 1304
and NSLicenseKey 1306, using the API vendor's public key, to determine the
validity of NSLicenseAgreement string 1304. In the embodiment of Figure 13,
CHECK function 1312 includes in its code a copy of the API vendor's public
key 1314.

In the embodiment of Figure 13, API 820 includes a "GEN" process 1316
that can be used by an API vendor to rapidly generate license key strings for
use by CHECK function 1312. GEN process 1316 receives as input a license

agreement string and a secret private key, and produces as output a licensing

WO 99/05600 PCT/US98/15340

10

15

20

30

Page 1086 of 1415

34

key string, using a digital signature generating process. The private key may,
for example, be a 127-bit private key, although any other size private key may
be used. The signature generating process used by GEN process 1316 is
compatible with the digital signature authentication process used by CHECK
function 1312. GEN process 1316 itself can be made entirely public and
implemented in the API provided that the private key of the API vendor is
maintained in secrecy. For example, the GEN process can be part of the
OpenStep API Foundation Kit 808 as shown in Figure 13. GEN also can be

maintained in a separate program module.

The logical relationship between GEN and CHECK is:

CHECK(GEN(LicenseAgreementString, PrivateKey), Public Key,
LicenseAgreementString) => YES

CHECK(random1l, random2) => NO with a very high probability

In one embodiment of the invention, a shell is provided for the GEN
process. The shell can receive as input a license agreement template string,
such as:

(c) Copyright 1995, %@, %@ licensing agreement; Demo

software valid until %@; This agreement cannot be
legally copied

where %@ represents additional data to be provided by the API vendor. The
shell then asks the user (i.e. the API vendor) to input the additional data, for
example a company name, a product name, an expiration date, from which
the shell generates a specific license agreement string. The shell then asks for

the private key and applies GEN to create a corresponding license key.

WO 99/05600 PCT/US98/15340

10

15

20

Page 1087 of 1415

35

The same shell can be used for per-program license keys or per-site

license keys, using different templates.

In one embodiment of the invention, an installer program is provided
for installing a resource library on an end user computer. The installer
program is provided with a feature enabling the end user to provide a site
license key during installation. For example, if the resource library is the
OpenStep AP, additional code is added to the OpenStep API installer
program. The user is asked during the installation of the resource library if
the user has obtained a per-site license. If the user replies yes, the user is asked
to enter the site license key string. In one embodiment, the user is also asked
to enter the site license agreement string. In another embodiment, the site
license agreement string is stored in the resource library, such as, for example,
in the OpenStep API DLL Application Kit's Info.plist resource file. The site
license key and site license agreement are validated by the CHECK LICEI\iSE
function as described above. Use of the resource library is permitted only if
the site license key string input by the user corresponds to (i.e. is found to
comprise the resource library vendor's digital signature of) the site license

agreement string.
ava

| The present invention may be used with resource libraries such as Java
class files, Java applets, and Java bytecode packages. Figure 14 illustrates an
embodiment of the invention in which the resource library is a Java applet.
In the embodiment shown in Figure 14, an applet is called from an H’I'ML
page 1402 via applet tag 1404. Applet tag 1404 includes the name of the

WO 99/05600 PCT/US98/15340

10

15

20

25

30

Page 1088 of 1415

36

applet's class file and applet parameters 1406. Applet parameters 1406 include
a license agreement string parameter 1408 and a license key string parameter
1410. License agreement string parameter 1408 specifies a license agreement
string that contains terms of a license to use the called for applet. License key
string parameter 1410 specifies a license key used to authenticate the license
agreement string. As in other embodiments of the invention, in this
embodiment, the license key string comprises a digital signature by the
resource library (applet) vendor of the license agreement string. Table 4

illustrates an example of applet tag 1404.

Table 4

<APPLET CODE="Applet.class" WIDTH=250 HEIGHT=75>

<PARAM NAME=LicenseAgreementString VALUE="Web page

orderform.html licensed to use applet 'Applet.class'>

<PARAM NAME=LicenseKeyString VALUE="4kd094kak2rtxOkzq">

</APPLET>

In the example of Table 4, the license agreement string specifies the
name of the HTML page ("orderform.html") and the name of the licensed

applet ("applet.class”).

As shown in Figure 14, applet 1434 is accessed when HTML page 1402 is
loaded by a HTML browser 1430 running in a client computer 1420. In the
embodiment of Figure 14, HTML browser 1430 runs on top of an API 1424
which in turn runs on top of operating system 1422. HTML browser 1430

“includes a Java virtual machine 1432 for running Java applets.

Upon encountering applet tag 1404 while loading HTML page 1402,
HTML browser 1430 retrieves the class files that constitute applet 1434 from

storage locations on client computer 1420 and/or from one or more server

10

15

20

Page 1089 of 1415

WO 99/05600 PCT/US98/15340

37

computers, as applicable. One of the class files includes CheckLicense class file
1436. After HTML browser 1430 has retrieved all the required components of
applet 1434, applet 1434 is initialized. During initialization, or at a later time,
the CheckLicense function provided by CheckLicense class file 1436 is called.
As in other embodiments of the invention, the CheckLicense function
determines whether the requesting entity (HTML page 1402) possesses a valid
license to use the requested resource (applet 1434) by testing the authenticity of
the license specified by LicenseAgreementString parameter 1408 using the
license key specified by LicenseKeyString parameter 1410 and the applet
vendor's public key 1438. If the CheckLicense function determines that HTML
page 1402 possesses a valid license, applet 1434 is allowed to execute. If not,
execution of applet 1434 is terminated, and an error message is sent to H'I'ML

browser 1430.

Thus, an improved method and apparatus for enforcing software
licenses has been presented. Although the present invention has been -
described with respect to certain example embodiments, it will be apparent to
those skilled in the art that the present invention is not limited to these
specific embodiments. For example, although the invention has been
described for use in stand-alone computer systems, the invention can be used
to enforce licenses in a network environment as well. Further, although the
operation of certain embodiments has been described in detail using specific
software programs and certain detailed process steps, different software may be
used, and some of the steps may be omitted or other similar steps may be
substituted, without departing from the scope of the invention. Other
embodiments incorporating the inventive features of the present invention

will be apparent to those skilled in the art.

WO 99/05600 PCT/US98/15340

10

15

20

Page 1090 of 1415

38

CLAIMS

1. In a computer operating environment comprising a software
program and a software resource, an apparatus for limiting use of said
software resource comprising: -

an access authorization indicator associated with said software program;

means in said software resource for reading said access authorization
indicator;

means in said software resource for determining whether said access
authorization indicator is valid;

means for allowing access by said software program to said software

resource only if said access authorization indicator is determined to be valid.

2. The apparatus of claim 1 wherein said access authorization

indicator comprises terms of a license for use of said software resource.

3. The apparatus of claim 1 wherein said access authorization

indicator comprises terms of a site license.

4. The apparatus of claim 1 wherein said access authorization

indicator is embedded in said software program.

5. The apparatus of claim 1 wherein said software resource

comprises an APIL

10

15

20

Page 1091 of 1415

WO 99/05600 PCT/US98/15340

39

6. The apparatus of claim 1 wherein said software resource
comprises a runtime library.

7. The apparatus of claim 1 wherein said software resource
comprises a dynamic link library.

8. The apparatus of claim 1 wherein said software resource
comprises an applet.

9. The apparatus of claim 1 wherein said software resource

comprises a bytecode package.

10. The apparatus of claim 1 wherein said software resource

comprises an OLE enabled application program.

11. The apparatus of claim 4 wherein said access authorization -

indicator is specified in a constant declaration area of said software program.

12. The apparatus of claim 4 wherein said access authorization

indicator comprises a property of a property list of said software program.

13. The apparatus of claim 1 further comprising an identifier
associated with said access authorization indicator and wherein said means for
determining the validity of said access authorization indicator comprises
means for determining whether said access authorization indicator is valid

based on said identifier.

10

15

20

Page 1092 of 1415

WO 99/05600 : PCT/US98/15340

40

14. The apparatus of claim 13 further comprising means for

receiving said identifier from an end user.

15. The apparatus of claim 14 further comprising means for storing

said identifier in said software resource.

16. The apparatus of claim 13 wherein said identifier is embedded in

said software program.

17. The apparatus of claim 13 wherein said identifier comprises a

digital signature of said access authorization indicator.

18. The apparatus of claim 16 wherein said identifier is specified in a

constant declaration area of said software program.

19. The apparatus of claim 16 wherein said identifier comprises a

property of a property list of said software program.

20. The apparatus of claim 17 wherein said means for determining
whether said access authorization indicator is valid based upon said identifier

comprises a means for digital signature authentication.

21. The apparatus of claim 2 further comprising means for

determining whether said terms of said license are met.

WO 99/05600 ’ PCTUS98/15340
41

22. The apparatus of claim 13 wherein:
said software program comprises said access authorization indicator and
said identifier;
said access authorization indicator comprises terms of a license for use
5 of said software resource;
said identifier comprises a digital signature of said access authorization

indicator.

23. In a computer operating environment, a method for limiting use
10 of a software resource comprising:
receiving a request from a software program to use said resource;
obtaining an access authorization indicator associated with said
software program;
determining whether said access authorization indicator is valid; -
15 allowing said software program to use said software resource only if

said access authorization indicator is determined to be valid.

24. The method of claim 23 wherein said access authorization
indicator comprises terms of a license for use of said software resource.
20
25. The method of claim 24 wherein said license comprises a site

license.

26. The method of claim 23 wherein said access authorization

25 indicator is embedded in said software program.

Page 1093 of 1415

WO 99/05600 PCT/US98/15340
42

27. The method of claim 23 wherein said software resource

comprises an APL

28. The method of claim 23 wherein said software resource

5 comprises a runtime library.

29, The method of claim 23 wherein said software resource

comprises a dynamic link library.

10 30. _The method of claim 23 wherein said software resource

comprises an applet.

31. The method of claim 23 wherein said software resource
compﬁses a bytecode package.
15
32. The method of claim 23 wherein said software resource

comprises an OLE enabled application program.

33. The method of claim 26 wherein said access authorization

20 indicator is specified in a constant declaration area of said software program.

34. The method of claim 26 wherein said access authorization

indicator comprises a property of a property list area of said software program.

Page 1094 of 1415

10

15

20

Page 1095 of 1415

WO 99/05600 PCT/US98/15340
43

35. The method of claim 23 wherein said determining the validity of
said access authorization indicator comprises determining whether said access
authorization indicator is valid based on an identifier associated with said

access authorization indicator.

36. The method of claim 35 further comprising accepting said

identifier from a user.

37. The method of claim 36 further comprising storing said identifier

in said software resource.

38. The method of claim 35 wherein said identifief is embedded in

said software program.

39. The method of claim 35 wherein said identifier comprises a

digital signature of said access authorization indicator.

40. The method of claim 38 wherein said identifier is specified in a

constant declaration area of said software program.

41. The method of claim 38 wherein said identifier comprises a

property of a property list area of said software program.

42. The method of claim 35 wherein a digital signature
authentication means is used in determining whether said access

authorization indicator is valid based upon said identifier.

WO 99/05600 PCT/US98/15340

10

15

20

Page 1096 of 1415

43. The method of claim 24 further comprising determining

whether said terms of said license are met.

44. The method of claim 35 wherein:

said software program comprises said access authorization indicator and
said identifier;

said access authorization indicator comprises terms of a license for use
of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

45. A program storage device readable by a machine, tangibly
embodying a program of instructions executable by the machine to perform a
method for limiting use of a software resource, said method comprising:

receiving a request from a software program to use said resource;

obtaining an access authorization indicator associated with said
software program;

determining whether said access authorization indicator is valid;

allowing said software program to use said software resource only if

said access authorization indicator is determined to be valid.

46. The program storage device of claim 45 wherein said access
authorization indicator comprises terms of a license for use of said software

resource.

47. The program storage device of claim 46 wherein said license

comprises a site license.

WO 99/05600 PCT/US98/15340

10

15

20

Page 1097 of 1415

45
48. The program storage device of claim 45 wherein said access
authorization indicator is embedded in said software program.

49. The program storage device of claim 45 wherein said software

resource comprises an APL

50. The program storage device of claim 45 wherein said software

resource comprises a runtime library.

51. The program storage device of claim 45 wherein said software

resource comprises a dynamic link library.

52. The program storage device of claim 45 wherein said software

resource comprises an applet.

53. The program storage device of claim 45 wherein said software

resource comprises a bytecode package.

54. The program storage device of claim 45 wherein said software

resource comprises an OLE enabled application program.

55. The method of claim 48 wherein said access authorization

indicator is specified in a constant declaration area of said software program.

10

15

20

Page 1098 of 1415

WO 99/05600 PCT/US98/15340

46

56. The program storage device of claim 48 wherein said access
authorization indicator comprises a property of a property list area of said

software program.

57. The program storage device of claim 45 wherein said
determining the validity of said access authorization indicator comprises
determining whether said access authorization indicator is valid based on an

identifier associated with said access authorization indicator.

58. The program storage device of claim 57 wherein said method

further comprises accepting said identifier from a user.

59. The program storage device of claim 58 wherein said method

further comprises storing said identifier in said software resource.

60. The program storage device of claim 57 wherein said identifier is |

embedded in said software program.

61. The program storage device of claim 57 wherein said identifier

comprises a digital signature of said access authorization indicator.

62. The program storage device of claim 60 wherein said identifier is

specified in a constant declaration area of said software program.

63. The program storage device of claim 60 wherein said identifier

comprises a property of a property list area of said software program.

WO 99/05600 PCT/US98/15340
47

64. The program storage device of claim 57 wherein a digital
signature authentication means is used in determining whether said access

authorization indicator is valid based upon said identifier.

5 65. The program storage device of claim 46 in which said method

further comprises determining whether said terms of said license are met.

66. The program storage device of claim 57 wherein:
said software program comprises said access authorization indicator and
10 said identifier;

said access authorization indicator comprises terms of a license for:use
of said software resource;

said identifier comprises a digital signature of said access authorization
indicator. .

15

67. An article of manufacture comprising:

a computer readable medium having computer readable program code
embodied therein for accessing a resource library, said computer readable
program code in said article of manufacture comprising:

20 computer readable program code embodying an access authorization

indicator for accessing said resource library.
68. The article of manufacture of claim 67 wherein said access

authorization indicator comprises terms of a license for use of said software

25 resource.

Page 1099 of 1415

10

15

20

25

Page 1100 of 1415

WO 99/05600 PCT/US98/15340
48

69. The article of manufacture of claim 67 wherein said computer
readable program code comprises a software program and wherein said access

authorization indicator is embedded in said software program.

70. The article of manufacture of claim 67 wherein said software

resource comprises an APL

71. The article of manufacture of claim 67 wherein said software

resource comprises a runtime library.

72. The article of manufacture of claim 67 wherein said software

resource comprises a dynamic link library.

73. The article of manufacture of claim 67 wherein said software

resource comprises an applet.

74. The article of manufacture of claim 67 wherein said software

resource comprises a bytecode package.

75. The article of manufacture of claim 67 wherein said software

resource comprises an OLE enabled application program.

76. The article of manufacture of claim 69 wherein said access
authorization indicator is specified in a constant declaration area of said

software program.

10

15

20

Page 1101 of 1415

WO 99/05600 PCT/US98/15340

49

77. The article of manufacture of claim 69 wherein said access
authorization indicator comprises a property of a property list of said software

program.

78. The article of manufacture of claim 67 further comprising
computer readable program code embodying an identifier associated with said

access authorization indicator.

79. The article of manufacture of claim 78 wherein said identifier is

embedded in said software program.

80. The article of manufacture of claim 78 wherein said identiﬁér

comprises a digital signature of said access authorization indicator.

81. The article of manufacture of claim 78 wherein said identifier is

specified in a constant declaration area of said software program.

82. The article of manufacture of claim 78 wherein said identifier

comprises a property of a property list of said software program.

83. The article of manufacture of claim 78 wherein:

said software program comprises said access authorization indicator and
said identifier;

said access authorization indicator comprises terms of a license for use
of said software resource;

said identifier comprises a digital signature of said access authorization

indicator.

WO 99/05600

Page 1102 of 1415

1/12

Application Program

Operating System

| 1

Computer Hardware \

Application Program

v

PCT/US98/15340

120

FiG. 1

110

100

220

Resource Library

N

~

v h 4

215

FIG. 2

Operating System

| 1

Computer Hardware \

110

100

SUBSTITUTE SHEET (RULE 26)

WO 99/05600 PCT/US98/15340

2/12

FIG. 3
Application Program 1 Application Program 2 \
300 K 4 4 4+ 310
v \ - h
Resource Resource Besource
r Library 1 (- Library 2 Library 3
320 A~
.340
3 < | 330 J . v
Operating System \

T 110
w

Computer Hardware -\

100

SUBSTITUTE SHEET (RULE 26)

Page 1103 of 1415

WO 99/05600

450

Page 1104 of 1415

3/12

FIG. 4
Display
r divice
410
400 \
Network
interface CPU
Printer input device
\ 430
SUBSTITUTE SHEET (RULE 26)

PCT/US98/15340

Mass storage

Removabie
Media

420

425

WO 99/05600 : PCT/US98/15340

4/12

Application Program

|Prog. Lic. Mod.l \
N A \ 220
510
\‘

: 500
R.L. Lic. Mod.
Resource Library \
% 215 FIG. 5
v A

Operating System

T 110
«

Computer Hardware \

100
Prog. Lic. Mod.
610
\
License Ke \
600
A
1o~ .., FlG.6
A
License m
Verification \
620
R.L. Lic. Mod.
SUBSTITUTE SHEET (RULE 26)

Page 1105 of 1415

WO 99/05600 PCT/US98/15340

5/12

760
FIG. 7 -
Reaq.
program Access denied
ident. in No
Program sends text?
request message 755
f— to resource library Yes
700
F- 770
h 4
R.L. obtains Other.
program's ficence terms in Access granted
/- text and license key lic. text? No
705
765
Yes
h 4

780

/‘ R.L. verifies license _ /—
Other
710 terms Access denied
satitisfied? No

725 /‘

775 Yes

r‘ 785

Access granted

Access denied \

730

Check License
K‘ Terms
735 ‘
/‘ 750

Limited - L

validity Period Denied

period? expired? Access Denie

740 Yes r—
745

SUBSTITUTE SHEET (RULE 26)

Page 1106 of 1415

WO 99/05600 PCT/US98/15340

6/12

FIG. 8
820 \ Application Program \
800
Application Kit \
802
Display Postscript
r System
Foundation
804 Kit
Device-Dependent .\
Windowing
/ Extensions 808
806
Operating System -\
810
SUBSTITUTE SHEET (RULE 26)

Page 1107 of 1415

WO 99/05600 PCT/US98/15340

7/12

FIG. 9
Application Program '\
/-—-— Constant Declarations 900
901 I LicenseKeyString 1‘\\
l LicenseAgreementString]-N 902
904
y
— UNLOCK el | N
23/ 920
923 1 |cHEck License
921/ CHECK o
T~
Operating System \
910

SUBSTITUTE SHEET (RULE 26)

Page 1108 of 1415

WO 99/05600

Start UNLOCK
function

A

Page 1109 of 1415

Read LicenseKey-
String and License-
AgreementString
from API

Site

8/12

1002

1004

PCT/US98/15340

FIG. 10

A 4

License?

1006

Read LicenseKey-
String and License-
AgreementString

from calling entity 1008
Entity R
Licensed? 4
1010
Return Fail/
Deny Access
1012

Returmn Success/

Grant Access N

1014

SUBSTITUTE SHEET (RULE 26)

WO 99/05600

PCT/US98/15340

Stant CHECK
LICENSE function

9/12

h 4

1102

Assemble Public Key,

LicenseKeyString
/ and License-

1104 AgreementString

as argument

/_(LicenseAgreementString)\
4

N\

904
‘/-(LicenseKeyString j\

,—(_ Vendor Public Key)\902 FIG. 11

A 4

1106

Call CHECK
/" function
1108
CHECK No
function
pass?
1110

Yes -

/- Check licence terms

1112

Current
date
valid?

1118

A

Date
limited?

$ /— 1124

Return FAIL Return PASS

—

1126

Page 1110 of 1415

SUBSTITUTE SHEET (RULE 26)

WO 99/05600 PCT/US98/15340

10/12

Start CHECK
function
1202
FiG. 12
b 4
Receive
| LicenseKeyString,
/ LicenseAgmtString,
1203 and vendor pub.key
v
Verify that
LicenseKeyString
/ comprises digital
signature of
1204 LicenseAgmtString
/— Return PASS Retum FAIL \
1210A 1212
SUBSTITUTE SHEET (RULE 26)

Page 1111 of 1415

Page 1112 of 1415

WO 99/05600 PCT/US98/15340
FIG. 13
800 1302
\ =
Application Program [
Info.plist /1 304
820 - | NSLicenseAgreement -
N NSLicenseKey _\
Application Kit y (g\ Unlock 1306
[802
Foundation
. . Kit /1 310
Display Postscript NSCheck =
System License /1 312
f 1314
804 _—
Device-Dependent 1316
Windowing \\
r Extensions Gen \
806 808
Operating System \
810

~ SUBSTITUTE SHEET (RULE 26)

WO 99/05600 PCT/US98/15340

12/12

FIG. 14 .
i

/1402 /

HTML Browser

HTML Page
/-1434 1436
i
| Applet Tag 1406 Applet CheckLicense
/ Applet Parameters == "ﬁ’ 1438 ——“'Wend. Pub. KeyJ

1404

I LicAgmtString ~
Li KevStri \ Java Virtual Machine
icenseKeyString 1408

1432/

1410

Operating System

Client Computer

N

1420

SUBSTITUTE SHEET (RULE 26)

Page 1113 of 1415

v

IS St . «

Page 1114 of 1415

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(S1) International Patent Classification 6 : (11) International Publication Number: WO 99/05600
A3
GOGF 1/00, 9/46 (43) International Publication Date: 4 February 1999 (04.02.99)
(21) International Application Number: PCT/US98/15340 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 24 July 1998 (24.07.98) SE).
(30) Priority Data: Published
08/901,776 28 July 1997 (28.07.97) us With international search report.

Before the expiration of the time limit for amending the claims

(71) Applicant: APPLE COMPUTER, INC. [US/US}; Law Dept. and to be republished in the event of the receipt of amendments.

M/S: 38-PAT, 1 Infinite Loop, Cupertino, CA 95014 (US).

(88) Date of publication of the international search report:

(72) Inventors: GARST, Blaine; 3307 Bay Court, Belmont, CA 14 May 1999 (14.05.99)
94002 (US). SERLET, Bertrand; 218 Colorado Avenue,
Palo Alto, CA 94301 (US). :

(74) Agents: HECKER, Gary, A. et al.; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
us).

(54) Title: METHOD AND APPARATUS FOR ENFORCING SOFTWARE LICENSES

Application Program
IProg. Lic. Modl \
X 220 Prog. Lic. Mod.
510 k 610
\“ 500 \ Lic. Text Str. <
~ ticense Ke
RL. Lic. Mod. 800
Resource Library -\ 4+ k
510 500
3 215 \‘
A A License
. Verification
R.L. Lic. Mod.
10
r

Computer Hardware \

100
(57) Abstract

The present invention comprises a method and apparatus for enforcing software licenses for resource libraries such as an application
program interface (API), a toolkit, a framework, a runtime library, a dynamic link library (DLL), an applet (¢.g. a Java or ActiveX applet),
or any other reusable resource. The present inveation allows the resource library to be selectively used only by authorized end user software
programs. The present invention can be used to enforce a “per—program" licensing scheme for a resource library whereby the resource
library is licensed only for use with particular software programs. In one embodiment, a license text string and a corresponding license
key are embedded in a program that has been licensed to use a resource library. The license text string and the license key are supplied,
for example, by a resource library vendor to a program developer who wants to use the resource library with an end user program being
developed. The license text string includes information about the terms of the license under which the end user program is all wed to use
the resource library. The license key is used to authenticate the license text string. The resource library in tum is provided with means for
reading the license text string and the license key, and for determining, using the license key, whether the license text string is authentic
and whether the license text string has been altered. Resource library functions are made available only to a program having an authentic
and unaitered license text string.

Page 1115 of 1415

BREQ0920Q3RQRREEESREEREREER

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania

Armenia

Austria

Australia

Azerbaijan

Bosnia and Herzegovina
Barbados

Belgium

Burkina Faso

Bulgaria

Beain

Brazil

Belarus

Canada

Central African Republic
Congo

Switzerland

Cbte d'Ivoire

Cameroon

geR=g

(2]
onm

HERTRIIIRS

EREREE BERNWABERESQ

sgg

FOR THE PURPOSES OF INFORMATION ONLY

1L

United Kingdom

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea

E

Saimt Lucia

H

MR

RRBEEINEZAEES

Lesotho

Lithusni

Luxem

Latvia

Monaco

Republic of Moldova

The former Yugoslav
Republic of Macedonia
Mali

433238RE2R=

[=]
SE&F

g$83

Page 1116 of 1415

INTE._ .ATIONAL SEARCH REPORT

Inte onal Application No

PCT/US 98/15340

CLASSIFICATION OF SUBJECT MA R

A. TTE
IPC 6 GO6F1/00 GO6F9/46

According to Intemational Patent Classitication (IPC) or to both national classitication and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system tollowad by classitication symbots)

IPC 6 GO6F

Documentation searchad other than minimurn documantation to the extent that such documents are included in the fields searched

Electronic data base consulted during the nternational search (name of data base and, where practicat, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, whare appropriate, of the relevant passages

Retevant to ctaim No.

see abstract; figure 4

see claims 1-9

18 November 1993
see abstract; figure 3D
see claims 1-57

A WO 97 14087 A (ERICKSON JOHN S)
17 April 1997

see abstract; figures 1,4,10,12
paragraph 1

11 June 1997

Y EP 0 667 572 A (IBM) 16 August 1995

see page 4, line 53 - page 5, line 27

Y EP 0 570 123 A (FISCHER ADDISON M)

see page 7, paragraph 2 - page 9,

A EP 0 778 512 A (SUN MICROSYSTEMS INC)

1-83

1-83

1-83

D Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

° Special categones of cited documents :

“A* document defining the general state of the art which is not
considered to be of parnticular relevance

“E" eartior document but published on or after the intemational
fiing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specitied)

‘0" d g to an orat e, use, exhibition or
other means

"P* document published prior to the intemational filing date but
later than the priority date claimed

“T" later document published after the intemational filing date
or priority date and not in contlict with the application but
cited to understand the principle or theory undertying the
invention

“X* document of particular relevance; the claimed nvention
cannot be considered novel or cannct be considered to
involve an inventive step when the document is taken alone

“Y* document of particular relevance; tha claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
Lr‘\em. such combination being obvious to a person skilled

the ant.

“&* document member of the same patent tamily

Date of the actual compiation of the intemationa!l search Date of mailing of the intemational search repont
12 March 1999 19/03/1999
Name and mailing address ot the ISA Authorized officer
European Patent Office. P.B. 5818 Patentiaan 2
NL - mf;gv Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
1 Fax: (+31-70) 340-3016 Pe Powell, D

Form PCTASA210 (second sheet) (July 1982)

Page 1117 of 1415

INTERNAT VNAL SEARCH REPORT
inte: snal Application No
.nformation on patent tamily members PCT/US 98/15340
Patent document Publication Patent family Publication

cited in search report date member(s) date
- EP 0667572 16-08-1995 JP 7230380 A 29-08-1995
us 5673315 A 30-09-1997
EP 0570123 18-11-1993 us 5412717 A 02-05-1995
AU 3820993 A 18-11-1993
CA 2095087 A 16-11-1993
JP 6103058 A 15-04-1994
us 5311591 A 10-05-1994
WO 9714087 17-04-1997 us 5765152 A 09-06-1998
AU 7662496 A 30-04~-1997
EP 0778512 11-06-1997 us 5708709 A 13-01-1998
JP 9288575 A 04-11-1997

Form PCTASA210 (patent tamdy annex) (July 1982)

Page 1118 of 1415

EP 0930 793 A1

Europaisches Patentamt
European Patent Office

(19) 0’
Office européen des br v ts

(12)

(43) Date of publication:
21.07.1999 Bulletin 1999/29

(21) Application number: 98310312.8

(22) Date of filing: 16.12.1998

T

(1) EP 0930 793 A1

EUROPEAN PATENT APPLICATION

(51) Intcre: HO4Q 7/32, HO4B 1/38,
GO6F 9/38

(84) Designated Contracting States:
ATBECHCYDEDKESFIFRGBGRIEITLILU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO sI

(30) Priority: 22.12.1997 US 995606

(71) Applicant: TEXAS INSTRUMENTS INC.
Dallas, Texas 75243 (US)

(72) Inventors:
¢ McMahon, Michael (NMl)
Plano, Texas 75074 (US)

¢ Lineberry, Marion C.
Dallas, Texas 75218 (US)

¢ Woolsey, Matthews A.
Plano, Texas 75023 (US)

e Chauvel, Gerard (NMI)
06600 Antibes (FR)

(74) Representative: Potter, Julian Mark et al
D. Young & Co.,
21 New Fetter Lane
London EC4A 1DA (GB)

(54)

(57) A wireless data platform (10) comprises a plu-
rality of processors (12, 16). Channels of communica-
tion are set up between processors such that they may
communicate information as tasks are performed. A dy-
namic cross compiler (80) executed on one processor
compiles code into native processing code for another

Mobile equipment with a plurality of processors

processor. A dynamic cross linker (82) links the com-
piled code for other processor. Native code may also be
downloaded to the platiorm through use of a JAVA Bean
(90) (or other language type) which encapsulates the
native code. The JAVA Bean can be encrypted and dig-
itally signed for security purposes.

Printed by Jouve, 75001 PARIS (FR)

Page 1119 of 1415

10

15

20

25

30

35

40

45

50

EP 0930 793 A1
Description
BACKGROUND OF THE INVENTION

TECHNICAL FIELD
{0001] This invention relates in general to mobile slectionic
ware platform for mobile electronic devices.

DESCRIPTION OF THE RELATED ART

[0002] Handheld portable devices are gaining popularity as the power and, hence, functionality of the devices in-
creases. Personal Digital Assistants (PDAs) are currently in widespread use and Smartphones, which combine some
of the capabilities of a cellular phone and a PDA, are expected to have a significant impact on communications in the
near future.

[0003] Some devices currently incorporate one or more DSPs (digital signal processor) or other coprocessors for
providing certain discrete features, such as voice recognition, and a generai purpose processor for other data process-
ing functions. The code for the DSP and the code for the general purpose processor is generally stored in ROMs or
other nonvolatile memories, which are not easily modified. Thus, as improvements and new features become available,
it is often not possible to upgrade the capabilities of the device. In particular, it is not possible to maximize the use of
the DSPs or other coprocessor which may be present in the device.

[0004] Therefore, a need exists for a data processing architecture which can be upgraded and optimizes use of
multiple processors and coprocessors.

BRIEF SUMMARY OF THE INVENTION

[0005] The teachings of the present application disclose a mobile electronic device that comprises a coprocessor

for executing native code, a host processor system operable to execute native code corresponding to the host processor
system and processor independent code. The host processor system is operable to dynamically change the tasks
performed by the digital signal coprocessor. Communication circuitry provides for communication between the host
processor system and the coprocessor.

[0006] This mobile electronic device significant advantages over the prior art. Because the host processor system
can dynamically allocate the tasks being performed by the coprocessor, which may be a digital-signal processor, to
fully use the coprocessor. The host processor system may direct a routine to one of a plurality of coprocessors, de-
pending upon a variety of factors, such the present capabilities of each processor.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0007] For a more complete understanding of the present invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with the accompanying drawings, in which:

Figure 1 illustrates a block diagram of a platform architecture particularly suited for general wireless data process-
ing;

Figure 2 iltustrates a functional block diagram of the platform of Figure 1,
Figure 3 illustrates a functional block diagram of dynamic cross compiling and dynamic cross linking functions;

Figure 4 illustrate an embodiment of native code for execution on a processor being encapsulated in a JAVA Bean
wrapper for downloading to a device;

Figure 5 illustrates the operation of transferring the encapsulated native code to a processor on a device from a
JAVA Bean located on a remote s rver; and

Figur 6 illustrates a flow diagram describing security featur s associated with the operation of Figure 5.

Page 1120 of 1415

15

20

25

30

35

40

45

50

55

EP 0930 793 A1
DETAILED DESCRIPTION OF THE INVENTION

[0008] Figure 1 illustrates a preferred embodiment of a general wireless data platform architecture, which could be
used for example, in the impiementation of a Smartphone or PDA. The wireless data platform 10 includes a general
purpose (Host) processor 12 coupled to bus structure 14, including data bus 14a, address bus 14b and control bus
14c. One or more DSPs (or other coprocessors) 16, including the core processor 16a and the peripheral interface 16b,
are coupled to bus 14 and to memory and traffic controller 18, which includes a DSP cache memory 18a, a CPU cache
18b, and a MMU (memory management unit) 18¢c. Hardware accelerator circuit 20 (lor accelerating a portable language
such as JAVA) and a video and LCD controiier 22 are also coupled to the memory and traffic controller 18. The output
of the video and LCD controlier is coupled to an LCD or video display 24.

[0009] Memory & traffic controller 18 is coupled to bus 14 and to the main memory 26, shown as an SDRAM (syn-
chronous dynamic random access memory). Bus 14 is also connected to |/O controller 28, interface 30, and RAM/
ROM 32. Aplurality of devices could be coupled to the wireless data platform 10, such as smartcard 34, keyboard 36,
mouse 38, or one or more serial ports 40, such as a USB (universal serial bus) port or an RS232 serial port. Interface
30 can couple to a flash memory card 42 and/or a DRAM card 44. The peripheral interface 16b can couple the. DSP
16 to a DAC (digital to analog converter) 46, a network interface 48 or 1o other devices.

[0010] The wireless data platform 10 of Figure 1 utilizes both a general purpose processor 12and a DSP 16. Unlike
current devices in which the DSP 16 is dedicated to specific fixed functions, the DSP 16 of Figure 1 can be used for
any number of functions. This allows the user to derive the full benefit of the DSP 16.

[0011] One main area in which the DSP 16 can be used is in connection with the man-machine interface (MMI).
Importantly, functions like speech recognition, image and video compression and decompression, data encryption,
text-to-speech conversion, and so on, can be performed much more efficiently using the DSP 16. The proposed ar-
chitecture allows new functions and enhancements to be easily added to wireless data platform 10.

[0012] It should be noted that the wireless data platform 10 is a general block diagram and many modifications could
be made. For example, Figure 1 illustrates separate DSP and processor caches 18a and 18b. As would be known to
one skilled in the art, a unified cache could also be used. Further, the hardware acceleration circuit 20 is an optional
item. Such devices speed the execution of languages such as JAVA; however, the circuit is not necessary for operation
of the device. Further, although the illustrated embodiment shows a single DSP, multiple DSPs (or other coprocessors)
could be coupled to the buses.

[0013] Figure 2 illustrates a functional software architecture for the wireless data platform 10. This block diagram
presumes the use of JAVA: it should be noted that languages other than JAVA could be used as well. Functionally, the
software is divided into two groups, Host processor software and DSP software. The Host software includes one or
more applets 41 . The DSP API class 43 is a JAVA AP| package for JAVA applications or applets to access the func-
tionality of the DSP API 50 and Host DSP Interface Layer 52. A JAVA virtual machine (VM) 45 interprets the applets.
The JAVA native interface 47 is the method which the JAVA VM executes host processor or platform specific code.
Native tasks 49 are non-JAVA programs which can be executed by the Host processor 12 without using the JAVA
native interface. The DSP API 50, described in greater detail hereinbelow, is an API (application program interface)
used the Host 12 to call to make use of the capabilities of the DSP 16. The Host-DSP Interface Layer 52 provides an
AP for the Host 12 and DSP 16 to communicate with each other, with other tasks, or other hardware using channels
via the Host-DSP Communication Protocol. The DSP device driver 54 is the Host based device driver for the Host
RTOS 56 (real time operating system) to communicate with the DSP 16. The Host RTOS 56 is an operating system,
such as NUCLEUS PLUS by Accelerated Technology Incorporated.

[0014] Altematively a non-real time operating system, such as WINDOWS CE by Microsoft Corporation, could b
used. The DSP Library 58 contains programs stored for execution on the DSP 16.

{0015] On the DSP side, one or more tasks 60 can be stored in memory for execution by the DSP16. As described
below, the tasks can be moved in and out of the memory as desired, such that the functionality of the DSP is dynamic,
rather than static. The Host-DSP Interface layer 62 on the DSP side performs the same function as the Host-DSP
Interface layer 52 on the Host side, namely it allows the Host 12 and DSP 16 1o communicate. The DSP RTOS 64 is
the operating system for the DSP processor. The Host Device driver 66 is a DSP based device driver for the DSP
RTOS 64 to communicate with the Host 12. The Host-DSP Interface 70 couples the DSP 16 and Host 12.

[0016] In operation, the software architecture shown in Figure 2 uses the DSP 16 as a variable function device, rather
than a fixed function device as in the prior art.

[0017] Accordingly, the DSP functions can be downloaded to the mobile device incorporating the architectur of
Figur 2 to allow the DSP 16 to perform various signal processing functions for the Host 12.

[0018] Th DSP-API provides adevice indep ndentinterfac fromthe Host 12toth DSP 16. Th functions provide
the Host 12 with th ability to load and schedule tasks onth DSP 16 and to control and communicat with those tasks.
Th APl functions include calls to: determine th DSP's available resources, creat and control Host 12 and DSP tasks,
create and control data channels between Host 12 and DSP tasks, and communicat with tasks. These functions are

Page 1121 of 1415

15

20

25

30

35

40

50

EP 0930 793 A1

described below. Each function returns a BOOLean result, which will be SUCCESS for a successful operation, or
FAILURE. If the result is FAILURE, the errcode should be checked to determine which error occurred.
DSP_G t_MIPS .
BOOL DSP_Get_MIPS(T_DevicelD DevID, U32 *mips, U16 “errcode);
[0019] This function returns the current MIPS available on the DSP. This consists of the MIPS capability of the DSP
16 minus a base MIPS value (the MIPS value with no additional dynamic tasks, i.e. the kemel plus API code plus
orivers), minus the sum of the MIPS ratings for ali ioaded dynamic tasks. The errcode parameter will contain the
following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_Get_Memory_Available
BOOL DSP_Get_Memory_Available(T_DevicelD DevID, T_Size *progmem, T_Size “datamem, U16 “errcode);
[0020] This function will query the DSP 16 specified by DevIDfor the amounts of available memory for both program
memory and data memory. The resultant values are returned in the progmem and datamem parameters. The sizes
are specified in T_DSP_Words. The errcode parameter wiil contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_Alloc_Mem
BOOL DSP_Alloc_Mem(T_DevicelD DeviD, U16 mempage, T_Size size, T_DSP_Word **memptr, U16 “err-
code),
[0021] This function will allocate a block of memory on a DSP 16. The DevID specifies which device on which to
allocate the memory. The mempage is O for program space, and 1 for data space. The size parameter specifies the
memory block size in T_DSP_Words. The returned memptr will be a pointer to the memory block on the DSP 16, or
NULL on failure. The errcode parameter will contain the following possible resuits:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_NOT_ENOUGH_MEMORY
DSP_Free_Mem
BOOL DSP_Free_Mem(T_DevicelD DevID, U16 mempage, T_DSP_Word *memptr, U16 “errcods);
[0022] This function will free a biock of memory on a DSP that was allocated with the DSP_Alloc_Mem function. The
DeviD specifies on which device the memory resides. The mempage is O for program space, and 1 for data space.
The memptr parameter is the pointer to the memory block. The errcode parameter will contain the following possible
results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_MEMBLOCK_NOT_FOUND
DSP_Get_Code_Info
BOOL DSP_Get_Code_info(char *"Name, T_CodeHdr *codehdr, U16 “errcode);
[0023] This function will access the DSP Library table and return the code header for the DSP function code specified
by the Name parameter. On return, the location pointed to by the codehdr parameter will contain the code header
information. The errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_NAMED_FUNC_NOT_FOUND
DSP_Link_Code
BOOL DSP_Link_Code(T_DevicelD DeviID, T_CodeHdr ‘codehdr, T_TaskCreate "tcs, U16 *errcode);
[0024] This function will link DSP function code so that it will run at a specified address on the DSP specified by
DeviD. The codehdrparam ter points toth code header forth function. Th dynamic cross link r will link th code
bas doninformationinthecod h ader,andinth cod (COFFfil). The dynamic cross link rwillallocat th memory
as n eded, and link and load th code to the DSP 16. Th tcs param t ris a point rto th task creation structure
neededinthe DSP_Cr ate_Task function. DSP_Link_Code willfill inth code ntry points, priority, and quantum fi Ids
of the structur in preparation for creating a task. Th errcode paramet r will contain the following possible resutts:
DSP_SUCCESS

Page 1122 of 1415

10

20

25

30

35

40

45

50

55

EP 0930793 A1

DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NOT_ENOUGH_PROG_MEMORY
DSP_NOT_ENOUGH_DATA_MEMORY
DSP_COULD_NOT_LOAD_CODE
DSP_Put_BLOB
BOOL DSP_Put_BLOB(T_DevicelD DevID, T_HostPir srcaddr, T_DSP_Ptr destaddr, U16 mempage, T_Size
size, U16 “errcode);
[0025] This function will copy a specified Binary Large Object (BLOB) to the DSP 16. The DeviD specifies on which
DSP 16 to copy the object. The srcaddr parameter is a pointer to the object in Host memory. The destaddris a pointer
to the location to which to copy the object on the DSP 16. The mempage is 0 for program space, and 1 for data space.
The size parameter specifies the size of the object in T_DSP_Words. The errcode parameter will contain the following
possible results :
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_Create_Task
BOOL DSP_Create_Task(T_DevicelD DevID, T_TaskCreate “tcs, T_TasklD *TaskiD, U16 “errcode);
[0026] DSP_Create_Task requests the DSP 16 to create a task given the task parameters and the code locations
in the DSP's program space. The Task Creation Structure is show in Table 1:

Table 1.

Task Creation Structure.
Data Type Field Name | Description
T_DSP_Name | Name User defined name for the task.
u32 MIPS MIPS used by the task.
T_ChanlD Chanin The channel ID used for task input.
T_ChaniD ChanOut The channel ID used for task output
T_StmiD Stmin The stream ID used for task input
T_StmID StrmOut The stream ID used for task output.
u16 Priority The task's priority.
u32 Quantum The task's timeslice in system ticks.
T_Size StackReq The amount of stack required.
T_DSP_Ptr MsgHandler | Pointer to code to handle messages to the task.
T_HOST_Ptr CallBack Pointer to Host code to handle messages from the task.
T_DSP_pPtr Create Pointer to code to execute when task is created.
T_DSP_Ptr Start Pointer to code to execute when task is started.
T_DSP_Ptr Suspend Pointer to code to execute when task is suspended.
T_DSP_Ptr Resume Pointer to code to execute when task is resumed.
T_DSP_Ptr Stop Pointer to code to execute when task is stopped.

[0027] Once the task is created, the Create entry point will be called, giving the task the opportunity to do any nec-
essary preliminary initialization. The Create, Suspend, Resume, and Stop entry points can be NULL. The resultant
TaskID contains both the device ID (DeviD), andthe DSP's task ID. If the Task/Dis NULL, the create failed. The errcode
parameter will contain the following possible results: "
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_PRIORITY
DSP_CHANNEL_NOT_FOUND
DSP_ALLOCATION_ERROR
DSP_Start_Ta k
BOOL DSP_Start_Task(T_TaskiD TaskID, U16 *errcode); .
[0028] This function will start a DSP task sp cified by Task/D. Execution willb gin atth task's Start ntry point. The

Page 1123 of 1415

10

15

20

25

30

35

40

45

50

55

EP 0930 793 A1

errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND

DSP_Suspend_Task
BOOL DSP_Suspend Task!T_TaskiD TaskID, U116 *orrcods);
[0029] This function will suspend a DSP task specified by Task/D. Prior to being suspended, the task's Suspend
entry point will be called to give the task a chance to perfform any necessary housekeeping. The errcode parameter
will contain the following possible resuits:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_Resume_Task
BOOL DSP_Resume_Task(T_TaskID TasklD, U16 “errcode);
{0030] This function will resume a DSP task that was suspended by DSP_Suspend_Task. Prior to being resumed,
the task's Resume entry point wiil be called to give the task a chance to perform any necessary housekeeping. The
errcode parameter will contain the following possible resufts:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_TASK_NOT_SUSPENDED
DSP_Delete_Task
BOOL DSP_Delete_Task(T_TasklD TaskID, U16 *errcode);
[0031] This function will delete a DSP task specified by TaskiD. Prior to the deletion, the task's Stop entry point will
be called to give the task a chance to perform any necessary cleanup. This should include freeing any memory that
was allocated by the task, and retuming any resources the task acquired. The errcode parameter will contain the
following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_Change_Task_Priority
BOOL DSP_Change_ Task_Prionity(T_TasklD TaskiD, U16 newpriority, U16 *oldpriority, U16 *errcode);
[0032] This function will change the priority of a DSP task specified by Task/D. The priority will be changed to newp-
riority. The possible values of newpriority are RTOS dependent. Upon return, the oldpriority parameter will be s t to
the previous priority of the task. The errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_INVALID_PRIORITY
DSP_Get_Task_Status
BOOL DSP_Get_Task_Status(T_TaskID TaskID, U16 *status, U16 *priority, T_ChaniD *Input, T_ChanlD *Output,
U16 “errcode);
[0033] This function returns the status for a DSP task specified by Task/D. The siatus will be one of the following
values:
DSP_TASK_RUNNING
DSP_TASK_SUSPENDED
DSP_TASK_WAITFOR_SEM
DSP_TASK_WAITFOR_QUEUE
DSP_TASK_WAITFOR_MSG
[0034] The priority parameter wilf contain th task's priority, and the Input and Output paramet rs will contain the
task’s input and output chann | IDs, respectively. The errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND

Page 1124 of 1415

20

25

30

35

40

45

50

EP 0930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
DSP_Get_ID_From_Name
BOOL DSP_Get_ID_From_Name(T_DevicelD DeviD, T_DSP_Name Name, T_DSP_ID *ID, U16 "errcode);
[0035] This function returns the |D for a named object on the DSP 16. The named object may be a channel, a task,
a memory block, or any other supported named DSP object. The errcode parameter will contain the following possible
results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_NAME_NOT_FOUND
DSP_Dbg_Read_Mem
BOOL DSP_Dbg_Read_Mem(DEVICE_ID DeviD, U8 mempage, DSP_PTR addr, U32 count, DSP_WORD “buf,
U16 *errcode);
[0036] This function requests a block of memory. The mempage specifies program memory (0) or data memory (1).
The addr parameter specifies the memory starting address, and the count indicates how many T_DSP_Words to read.
The bufparameter is a pointerto a caller provided buffer to which the memory should be copied. The errcode parameter
will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_Dbg_Write_Mem
BOOL DSP_Dbg_Write_Mem(T_DevicelD DeviD, U16 mempags, T DSP_Ptr addr, T_Count count,
T_DSP_Word *but, U16 “errcode);
[0037] This function writes a block of memory. The mempage specifies program memory (0) or data memory (1).
The addr parameter specifies the memory starting address, and the count indicates how many T_DSP_Words to write.
The buf parameter is a pointer the buffer containing the memory to write. The errcode parameter will contain the
following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_MEMPAGE
DSP_Dbg_Read_Reg
BOOL DSP_Dbg_Read_Reg(T_DevicelD DevID, U16 RegID, T_DSP_Word *regvalue, U16 *errcode);
[0038] This function reads a DSP register and retums the value in regvalue. The ReglD parameter specifies which
register to return. If the ReglD is -1, then all of the register values are retumed. The regvalue parameter, which is a
pointer to a caller provided buffer, should point to sufficient storage to hold all of the values. The register IDs are DSP
specific and will depend on a particular implementation. The errcode parametei will contain the following possible
results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGISTER
DSP_Dbg_Write_Reg
BOOL DSP_Dbg_Write_Reg(T_DevicelD DevID, U16 RegID, T_DSP_Word regvalue, U16 *errcods);
{0039] This tunction writes a DSP register. The Regl/D parameter specifies which register to modify. regvalue contains
the new value to write. The register IDs are DSP specific and will depend on a particular implementation. The errcode
parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_INVALID_REGISTER
DSP_Dbg_Set_Break
BOOL DSP_Dbg_Set_Break(T_DevicelD DevID, DSP_P1r addr, U16 *errcode); This function sets a br ak point
atthe giv ncod addr ss (addr). Th errcode parameter will contain the following possible results:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND

Page 1125 of 1415

10

15

20

25

30

40

EP 0930 793 A1

DSP_DEVID_NOT_RESPONDING
DSP_Dbg_Clr_Break
BOOL DSP_Dbg_Clr_Break(T_DevicelD DevID, T_DSP_Ptr addr, U16 *errcode);

[0040] This function clears a break point that was previously set by DSP_Dbg_Set_Break at the given code address
(addr). The errcode parameter will contain the following possible results:

DSP_SUCCESS

DSP_DEVID_NOT_FOUND

DSP_DEVID_NOT_RESPONDING

DSP_BP_DID_NOT_EXIST
[0041] The DSP Device Driver 54 handles communications from the Host 12 to the DSP 16. The driver functions wiil
take the communication requests as specified in the Host-DSP Communications Protocol and handte the transmission
of the information via the available hardware interface. The device driver is RTOS dependent and communications
hardware dependent. ’
[0042] The DSP Library 58 contains the blocks of code that can be downicaded to the DSP 16 for execution. Each
block of code will be previously unlinked, or relocatably linked as a library, so that the dynamic cross linker can resolve
all address references. Each code block will also include information about the block's requirements for DSP MIPS
(millions of instructions per second), priority, time slice quantum, and memory. The format for the code block header
is shown in Table 2. The program memory and data memory sizes are approximations to give the Host 12 a quick
check on whether the DSP can support the task's memory requirements. If there appears to be sufficient space, the
dynamic cross linker can then attempt 1o link and load the code. It should be noted that the dynamic cross linker could
still fail, due to page alignment and contiguity requirements. in the preferred embodiment, the code is in a version 2
COFF file format.

Table 2.

Code Block Header.
Data Type Field Name Description
u16 Processor The target processor type.
T_DSP_Name | Name Task's name.
u32 MIPS Worst case MIPS required by the task.
T_Size ProgSize Total program memory size needed.
T_Size DataSize Total data memory size needed.
T_Size InFrameSize Size of a frame in the task's input channel.
T_Size OutFrameSize | Size of a frame in the task's output channel.
T_Size InStrmSize Size of the task’s input stream FiFO.
T_Size OutStrmSize Size of the task's output stream FIFO.
uU16 Priority Task's priority.
us32 Quantum Task's time slice quantum (number of system ticks).
T_Size StackReq Stack required.
T_Size CoftSize Total size of the COFF file.
T_DSP_Ptr MsgHandler Offset to a message handler entry point for the task.
T_DSP_Ptr Create Offset to a create entry point that is called when the task is created.
T_DSP_Ptr Start Offset to the start of the task's code.
T_DSP_Ptr Suspend Offset to a suspend entry point that is called prior to the task being suspended.
T_DSP_Ptr Resume Offset to a resume entry point that is called prior to the task being resumed.
T_DSP_Ptr Stop Offset to a stop entry point that is called prior to the task being deleted.
T_Host_Ptr CofiPtr Pointer to the location of the COFF data in the DSP Library.

[0043] A procedure for converting portable (processor independent) code, such as JAVA code, into linked target
code is shown in Figure 3. The procedure uses two functions, a dynamic cross compiler 80 and a dynamic cross linker
82. Each function is impl m nted on the host proc ssor 12. The dynamic cross linker is part of the DSP-API in the
preferr d embodiment. The cross compil r may also be part of th DSP-API.

[0044] Th dynamic cross compil r80 conv rts portable code into unlinked, executable target proc ssor cod . The
dynamic cross linker 82 converts the unlinked, executable target processor cod into linked, ex cutabl target proc-
essor code. To do so, it must resolve addresses within a block of cod , prior to loading on the DSP 16. The dynamic

Page 1126 of 1415

20

25

30

35

40

45

50

55

EP 0930 793 A1

cross linker 82 links the code segments and data segments of the function, allocates the memory on the DSP 16, and
loads the code and constant data to the DSP 16. The functions are referred to as “cross" compiling and "cross” linking,
because the functions (compiling and linking) occur on a different processor (i.e., the host processor 12) from the target
processor which executes the code (i.e., the DSP 16).

[0045] The dynamic cross compiler 80 accepts previously unlinked code loaded on demand by a user or a user agent
(such as a browser). The code is processed to either (1) identify "tagged” sections of the code or (2) analyze untagged
code segments for suitability of execution on the DSP 16. A tagged section of source code could delineate source
targetable to a DSP by predetermined markers such as "<start DSP code>" and <end DSP code>" embedded in the
source code. If a tagged section is identified either directly or through analysis, a decision is made to either cross
compile or not based on the current processing state of the DSP 16. If a decision is made to compile, the section of
code processed by compiling software that outputs unlinked, executable target processor code, using well known
compiling methods. A decision not to compile could be made if for example, the DSP has insufiicient available process-
ing capacity (generally stated as available MIPS - million of instructions per second) or insufficient available memory,
due to other tasks being executed by the DSP 16. The compiled code can be passed to the dynamic cross linker 82
for immediate use in the DSP 16, or could be saved in the DSP library 58.

[0046] The dynamic cross linker 82 accepts previously unlinked code, which is either (1) statically stored in connection
with the host processor 12 or (2) dynamically downloaded to the host processor 12 over a network connection (including
global networks such as the Intemet) or (3) dynamically generated by the dynamic cross compiler 80. The dynamic
cross linker B2 links the input code for a memory starting address of the DSP 16 determined at runtime. The memory
starting address can be determined from a memory map or memory table stored on and managed by either the host
processor 12 or DSP 16. The dynamic cross linker 82 convert referenced memory locations in the code to actual
memory locations in the DSP 16. These memory locations could include, for example, branch addresses in the code
or references to locations of data in the code.

{0047] in the preferred embodiment, the portable code is in a COFF (common object file format) which contains all
information about the code, including whether it is linked or unlinked. If it is unlinked, symbol tables define the address
which must be changed for linking the code.

[0048] The conversion process described above has several significant advantages over the prior art. First, the
dynamic cross compiler 80 allows run-time decisions to be made about where to execute the downloaded portable
code. For example, in a system with multiple target processors (such as two DSPs 16), the dynamic cross compiler
80 could compile the portable code to any one of the target processors based on available resources or capabilities.
The dynamic cross linker 82 provides for linking code to run on a target processor which does not support relocatable
code. Since the code is linked at run-time, memory locations in the DSP 16 (or other target processor) do not need to
be reserved, allowing optimum efficiency of use of all computing resources in the device. Because the compiling is
accomplished with knowledge of the architecture of the platform 10, the compiling can take advantage of processor
and platform specific features, such as intelligent cache architectures in one or both processors 12 and 16.

[00489] Thus, the DSP 16 can have various functions which are changed dynamically to fully use its processing
capabilities. For example, the user may wish to 12 load a user interface including voice recognition. At that time, the
host processor 12 could download software and dynamically cross compile and cross link the voice recognition software
for execution in the DSP 16. Alternatively, previously compiled software in the DSP library 58 could be dynamically
cross linked, based on the current status of the DSP 16, for execution.

[0050] The Host Device Driver handles communications from the DSP 16 to the Host Processor 12. The driver
functions takes the communication requests as specified in the Host-DSP Communications Protocol and handles trans-
mission of the information via the available hardware interface. The device driver is RTOS dependent and communi-
cations hardware dependent.

[0051] The Host-DSP Communications Protocol govems the communications of commands and dala between the
Host 12 and the DSP 16. The communications consist of several paths: messages, data channels, and streams. Mes-
sages are used to send initialization parameters and commands to the tasks. Data channels carry large amounts of
data between tasks and between the DSP 16 and Host 12, in the form of data frames. Streams are used to pass
streamed data between tasks and between the DSP 16 and Host 12.

[0052] Eachtaskhas an entry point to a message handler, which handles messages. The messages are user defined
and will include initialization parameters for the task's function, and commands for controlling the task. The tasks send
messages to the Host 12 via the callback specified when the task is created. The prototype for the task's message
handler and the prototype for the Host's callback are shown here:

void TaskMsgHandler(T_ReplyRef replyref, T_MsgID MsgID, T_Count count, T_DSP_Word *buf);
void HostCallBack(T_ReplyRef replyref T_MsglD MsgiD, T_Count count, T_DSP_Word *buf);

[0053]) The replyref param ter r fers to an implementation dependent referenc value, which is used to route th

Page 1127 of 1415

10

15

20

25

30

35

40

45

50

EP 0930 793 A1

reply back to the sender. For every Send_Message call, the recipient must call Reply_Message using the replyref
parameter. The actual messages may appear as follows:

Sent message MsgPktFlag | taskid | replyref | msgid | count | bufl.....]

Reply message i MsgPktFlag | -1 replyref | msgid | count | buff.....]

The multiword data is sent least-significant word first.
[0054] A TaskiDof 0 in the Send_Message function indicates a system level message. The system level messages
are used to implement the DSP-API functions
[0055] Following are the Message functions:
Send_Message
BOOL Send_Message(T_TasklD TaskiD, T_MsglD MsglD, T_Count count, T_DSP_Word *msgbuf,
T_DSP_Word “replybuf, T_Size replybufsize, T_Count replycount, U16 *errcode);
[0056] This function will send a user defined message to a task specified by Task/D. The MsglD defines the message,
and the msgbufcontains the actual message data. The message size is count T_DSP_Words. The reply tothe message
will be contained in the replybuf parameter, which points to a buffer of size replybufsize, provided by the caller. It should
be of sufficient size to handle the reply for the particular message. The errcode parameter will contain the following
possible resulis:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_TASK_NOT_FOUND
Reply_Message
BOOL Reply_Message(T_ReplyRef replyref, T_Count count, T_DSP_Word *buf, U16 “errcode);
[0057] This function is used to reply to messages. The repiyref parameter is a reference used to route the reply back
to the sender of the original message, and is implementation specific. The reply is contained in the buf parameter and
its size is count T_DSP_Words. The errcode parameter will contain the following possible resuits:
DSP_SUCCESS
DSP_DEVID_NOT_FOUND
DSP_DEVID_NOT_RESPONDING
DSP_BAD_REPLY_REF
[0058] The concept of channels is used to transmit frame-based data from one processor to another, or betw en
tasks on the same processor. When created, a channel allocates a specified number and size of frames to contain the
data. Initially, the channel will contain a list of empty frames. Tasks that produce data will request empty frames in
which to put the data, then once filled, the frame is returned to the channel. Tasks that consume data will request full
frames trom the channel, and once emptied, the frame is retumed to the channel. This requesting and returning of
frame buffers allows data to move about with a minimum of copying.
[0059] Each task has a specified Input and Output channel. Once a channel is created, it should be designated as
the input to one task, and the output to another task. A channel's ID includes a device ID, so channels can pass data
between processors. Channel data flow across the Host-DSP interface may appear as follows:

ChanPktFlag] Channel ID ' Count | Dataf...] |

The following are the channel functions:
Create_Channel
BOOL Create_Channel(T_DevicelD DevID, T_Size framesize, T_Count numframes, T_ChanlD *ChannellD, U16
*errcods);
[0060] This function creates a data frame-based communication channel. This creates a channel control structure,
which maintains control of a set of frame buffers, whose count and size are specified in the numframes and framesize
parameters, respectively. When created, the channel allocates the data frames, and adds them to its list of empty
frames. ChannelID will return the 1D of the new channel. If the DeviD is not that of the calling processor, a channel
control structure is created on both the calling processor and th DeviD proc ssor, to control data flowing across the
communications int rfac . Th ernrcode param ter will contain th following possibl results:
CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING

10

Page 1128 of 1415

20

25

30

35

40

45

50

EP 0930 793 A1

CHAN_ALLOCATION_ERROR
Delete_Channel
BOOL Delete_Channel(T_ChanlD ChannellD, U16 “errcode);
[0061] This function deletes an existing channel specified by ChannellD. The errcode parameter will contain the
following possible results:
CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT RESPONDING
CHAN_CHANNEL_NOT_FOUND
Request_Empty_Frame
BOOL Request_Empty_Frame(T_LocalChanlD Chn, T_DSP_Word **bufptr, BOOL WaitFlag, U16 “errcode);
[0062] This function requests an empty frame from the specified local channel ID. If Chnis NULL, then the task's
output channel is used. Upon retum, the bufptr parameter will contain the pointer to the frame buffer. If the WaitFlag
is TRUE, and there is no frame buffer available, the caller will be suspended untit a buffer becomes available. If the
WaitFlagis FALSE, the function will retum regardiess. The enmcode parameter will contain the following possible results:
CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_UNAVAILABLE
Return_Full_Frame
BOOL Return_Full_Frame(T_LocalChanlD Chn, T_DSP_Word *bufptr, U16 “errcode);
[0063] Once a task has filled a frame buffer, it retums is to the channel using this function. The buffer pointed to by
bufptr is returned to the channel ID specified. If Chnis NULL, then the task’s output channel is used. The errcode
parameter will contain the following possible results:
CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR
Request_Full_Frame :
BOOL Request_Full_Frame(T_LocalChaniD Chn, T_DSP_Word **bufptr, BOOL WaitFlag, U16 errcode)
[0064] This function requests a full frame of data from the specified local channel ID. If Chnis NULL, then the task's
input channel is used. Upon retum, the bufptr parameter will contain the pointer to the frame buffer. If the WaitFlag is
TRUE, and there are no full frame buffers available, the caller will be suspended until a buffer becomes availabl . If
the WaitFlag is FALSE, the function will return regardless. The errcode parameter will contain the followung possible
results:
CHAN_SUCCESS "
CHAN_CHANNEL_NOT_FOUND)
CHAN_BUFFER_UNAVAILABLE
Return_Empty_Frame
BOOL Return_Empty_Frame(T_LocalChanlD Chn, T_DSP_Word "bufptr, U16 “errcods);
[0065] Once atask has used the data from a frame buffer, it should return the butfer to the channel using this function.
The buffer pointed to by bufptris returned to the channel ID specified. If Chnis NULL, then the task's input chann |is
used. The errcode parameter will contain the following possible results:
CHAN_SUCCESS
CHAN_CHANNEL_NOT_FOUND
CHAN_BUFFER_CTRL_ERROR
Set_Task_input_Channel
BOOL Set_Task_Input_Channel(T_Task “TaskID, T_ChanlD ChanlD, U16 “errcode);
[0066] This function sets a task's input channel to the specified channel ID. The errcode parameter will contain the
foliowing possible results:
CHAN_SUCCESS
CHAN_DEVID_NOT_FOUND
CHAN_DEVID_NOT_RESPONDING
CHAN_TASK_NOT_FOUND
CHAN_CHANNEL_NOT_FOUND
Set_Task_Output_Channel
BOOL Set_Task_Output_Channel(T_Task *TaskiD, T_ChanlD ChanlD, U16 *errcode);
[0067] This function s ts a task’s output channel to the specified channel ID. The errcode parameter will contain the
following possible results:
CHAN_SUCCESS

1

Page 1129 of 1415

10

15

20

25

30

35

40

45

50

55

EP 0930 793 A1

CHAN_DEVID_NOT_FOUND

CHAN_DEVID_NOT_RESPONDING

CHAN_TASK_NOT_FOUND

CHAN_CHANNEL_NOT_FOUND
[0068] Streams are used for data. which can not be broken into frames, but which continuously flow into and out of
a task. A stream will consist of a circular buffer (FIFO) with associated head and tail pointers to track the data as it
flows in and out. Each task can have a designated input and output stream. Stream data flow across the Host-DSP
interface may appear as foliows:

StrmPktFlag | Stream ID I Count—l Data|...] I

Foliowing are the stream functions:
Create_Stream
BOOL Create_Stream(T_DevicelD DeviD, T_Size FIFOsize, T_StrmlID *StreamiD, U16 *errcode);
[0069] This function creates a FIFO-based communication stream. This creates a stream control structure, which
maintains control of a FIFO of size FIFOsize. When created, the stream allocates an empty FIFO, and initializes head
and tail pointers 1o handie data fiow into and out of the stream. StreamiD will return the ID of the new stream. If the
DeviID is not that of the calling processor, a stream control structure is created on both the calling processor and the
DeviD processor, to control data flowing across the communications interface. The errcode parameter will contain the
following possible results:
STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_ALLOCATION_ERROR
Delete_Channel
BOOL Delete_Stream(T_StrmlD StreamiD, U16 “errcode);
[0070] This function deletes an existing stream specified by Streaml/D. The errcode parameter will contain the foi-
lowing possible resuits:
STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND
Get_Stream_Count
BOOL Get_Stream_Count(T_LocalStrmID StrmiD, T_Count “count, U16 “errcods);
[0071] This function requests the count of T_DSP_Words currently in the stream FIFO specified by StrmiD. The
count parameter will contain the number upon return. The errcode parameter will contain the following possible resuits:
STRM_SUCCESS
STRM_STREAM_NOT_FOUND
Write_Stream
BOOL Write_Stream(T_LocalStrmID Strm, T_DSP_Word *bufptr, T_Count count, T_Count *countwritten, U16
*errcods);
[0072] This function will write count number of T_DSP_Words to the stream specified by the Strm. If Strm is NULL,
the task’s output stream is used. The data is pointed to by the bufptr parameter. Upon return, countwritten will contain
the number of T_DSP_Words actually written. The errcode parameter will contain the following possible results:
STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND
STRM_STREAM_OVERFLOW
Read_Stream
BOOL Read_Stream(T_LocalStrmiD Strm, T_DSP_Word “bufptr, T_Count maxcount, BOOL WaitFiag, T_Count
*countread, U16 “errcode),
[0073] This function reads data from the stream sp cified by Strm. If Strm is NULL, th task’s input stream is used.
Th data will be stored in the buffer pointed to by bufptr. Up 1o maxcount T_DSP_Words willb r ad from the stream.
The countread parameter will contain the actual countof th data read. Th errcode parameter will contain the following
possible r sults:
STRM_SUCCESS

12

Page 1130 of 1415

[0074] This function sets a task's input stream to the specified stream ID. The errcode parameter will contain the

EP 0930 793 A1

STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_STREAM_NOT_FOUND
Set_Task_Input_Str am
5 BOOL Set_Task_Input_Stream(T_Task *TaskID, T_StrmlD StrmiD, U16 “errcode);

following possible results:
STRM_SUCCESS

STRM_DEVID_NOT_FOUND

STRM_DEVID_NOT_RESPONDING

STRM_TASK_NOT_FOUND

STRM_STREAM_NOT_FOUND

Set_Task_Output_Stream

BOOL Set_Task_Output_Stream(T_Task *TaskID, T_StrmiD StrmiD, U16 “errcode);

15 [0075] This function sets a task's output stream to the specified stream |D. The errcode parameter will contain the

following possible results:
STRM_SUCCESS
STRM_DEVID_NOT_FOUND
STRM_DEVID_NOT_RESPONDING
STRM_TASK_NOT_FOUND
STRM_STREAM_NOT_FOUND

Data types used herein are defined in Table 3:

20

[0076]

25

35

40

50

Page 1131 of 1415

Table 3
Symbol Description
S8 Signed 8-bit integer.
us Unsigned 8-bit integer.
S16 Signed 16-bit integer.
u16 Unsigned 16-bit integer.
832 Signed 32-bit integer.
u32 Unsigned 32-bit integer.
T_HostWord A word on the Host processor.
T_DSP_Word A word on the DSP processor.
BOOL Boolean value (TRUE or FALSE).
T_HostPtr Pointer on the Host processor.
T_DSP_Ptr Pointer on the DSP processor.
T_DevicelD Processor device ID.
T_TaskiD A structure containing fields for a device 1D and a processor local task ID.
T_ChanID A structure containing fields for a device ID and a processor local channel ID.
T_MsglD Message ID.
T_DSP_ID An object ID on the DSP.
T_Count Data type for a count.
T_Size Data type for a size.
T_HostCallBack | Value used when tasks send message back to the Host.
T_ReplyRef M ssag r plyr ference.
T_LocalTaskiD Local task iD.
T_LocalChanID | Local chann iID.

13

EP 0 930 793 At

Table 3 (continued)

Symbol Description
T_DSP Name Name for DSP objects (RTOS dependent).

® T_CodeHdr Code header structure for a DSP Library entry.
T_TaskCreate Task creation structure.

[0077] These tables define the messages passing between devices (i.e. Host to DSP 186). The device |Ds present
as parameters in the corresponding function calls are not incorporated in the messages since they are used to actually
route the message to the device. Similarly, task IDs that include a device !D as their upper half for the function call will
not include the device ID in the message, but only the DSP's local task 1D portion.

Table 4
" DSP-API Messages
Message Send Parameters Reply Parameters Direction Host &
DsP
20 GET_MIPS None U32 mips -
GET_MEM_AVAIL T_Size progmem -
T_Size datamem
ALLOC_MEM U16 mempage T_DSP_Word ‘memptr -
T_Size size U16 errcode
25
FREE_MEM U16 mempage U16 errcode -
T_DSP_Word *memptr :
PUT_BLOB T_DSP_Ptr destaddr U16 errcode -
U16 mempage
30 T_Size size
T_DSP_Word BLOB;size]
CREATE_TASK T_TaskCreate tcs T_TaskiD TasklD U16 errcode -
START_TASK T_TasklD TaskID U16 errcode -
% | SUSPEND_TASK T_TaskID TaskD U16 errcode -
RESUME_TASK T_TaskID TaskID U16 errcode -
DELETE_TASK T_TasklD TaskID U16 errcode -
40 CHANGE_PRIORIT Y | T_TaskID TaskiD U16 U16 oldpriority U16 errcode -
newpriority)
GET_TASK_STATUS T_TasklD TaskID U16 status -
U 16 priority
T_ChanliD Input
45 T_ChanlID Output
U16 errcode
GET_ID T_DSP_Name Name T_DSP_IDID -
U16 errcode
50
Table 5
DSP Interfa e Layer / Channel Interface Lay r Messages
55 Message Send Parameters Reply Parameters Direction Host < DSP
CREATE_CHANNEL | T_Size framesize T_ChanlD ChannellD -
. T_Count numframes | U16 rrcode

14

Page 1132 of 1415

20

25

30

35

40

45

50

55

EP 0930 793 At

Table 5 (continued)

DSP Interface Layer / Channel Interface Layer Messages

M ssage Send Parameters Reply Parameters Direction Host < DSP
DELETE_CHANNEL T_ChaniD ChannellD | U16 errcode -
CREATE_STREAM T_Size FIFOsize T_StrmID StreamID —
U16 errcode
DELETE_STREAM I_StrmiD Stream|D U16 errcode -
Table 6
Debug Messages
Message Send Parameters Reply Parameters Direction Host < DSP
READ_MEM U16 mempage T_DSP_Word memcount] | —
T_DSP_Ptr addr U16 errcode
T_Count count
WRITE_MEM | U16 mempage U16 errcode -
T_DSP_Ptr addr
T_Count count -
T_DSP_Word mem|count]
READ_REG U16 RegID DSP_WORD regvalue -
U16 errcode
WRITE_REG | U16 ReglD U16 errcode -
T_DSP_Word regvalue
SET_BREAK | T_DSP_Ptr addr U16 errcode -
CLR_BREAK | T_DSP_Ptraddr U16 errcode -
BREAK_HIT T_DSP_Ptr addr U16 ACK «

[0078] Figures 4 - 6 illustrate an embodiment for downloading native code to a target processor (i.e., the host 12 or
DSP 16) in a secure and efficient manner. This embodiment for downloading code could be used, for example, in
downloading code from the Intemet, or other global network, from a Local or Wide Area Network, or from a peripheral
device, such as a PC Card or Smartcard.

[0078] in Figure 4, an embodiment of a JAVA Bean 90 is shown, where the Bean 90 acts as a wrapper for native
code 92. The Bean further inciudes several attributes 94, listed as a Code Type attribute 94a, a Code Size attribute
94b and a MIPS Required attribute 94c. The Bean 90 has several actions 96, including a Load Code action 96a, a
Load Parameters action 96b and an Execute Parameter 96¢.

{0080] In operation, the Load Code action 96a is used to load external native code (native 1o the target processor)
into the Bean. Since JAVA Beans have persistence, the Bean 90 can store its intemal state, including the native code
92 and the attributes 94. The Load Parameters action 96b retrieves parameters from the native code 92 (using, for
example, the COFF file format described above) and stores the parameters as attributes 94a-c. The Execute action
96¢ executes tasks installed in the DSP 16.

[0081] Figure Sillustrates use of the Bean 90 to download code to the target processor. In this example, it is assumed
that the target processor is the DSP 16 (or one of multiple DSPs 16), atthough it could be used to download native
code to the host processor 12 as well. Further, it is assumed that the desired Bean 90 is resident in a network server,
such as a LAN server or an intemet server, although the Bean could be resident in any device in communication with
the platform 10, such as a Smartcard. For a wireless data platform 10, the connection to the network server 100 will
often be wireless.

[0082] In Figure 5, the platform 10 is coupled to a network server 100. Th host processor 12, as shown in greater
detail in Figure 2, may ex cute on or more JAVA applets 41 through a JAVA virtual machine 45. In ord r to download
new code, the host 12 loads an applet 41 containing the Bean 90 from the network s rver 100 or the Bean, without
the containing applet, can be downloaded from the s rver 100. Once the wrapper Bean 80 has been retrieved, it can
be queried for the size of the native code, code type (for which processor is the code int nded) and MiPs r quired. if

15

Page 1133 of 1415

R

20

25

30

35

40

45

50

EP 0930 793 A1

the intended processor has sufficient resources to run the code 92, the code 82 can be installed to execute on the
intended processor, either the host processor 12 or DSP 16 in the architecture shown in Figure 5. Typically, the native
code 92 will be unlinked. compiled code. Thus, the cross linker 82 of the DSP-API 50 will link the code to an available
memory location. The Bean would pass the binary native code 92 to the dynamic cross linker 82, which would install
and execute the code.

[0083] A typical manner in which a download of native code might occur is when the user is running an applet 41 in
which a DSP function is desired. First, the anplet 41 would check to see if the desired code was installed as a task 60
in the DSP or was available in the DSP Library 58. If so, the task could be executed without a download.

[0084] If the task is not stored in the DSP 16 or the DSP library 58, an object (referred to as the * DSPLoader" object
herein) could be created to load the Bean 90. If the DSPLoader class is local on the host 12, JAVA will check to see if
the Bean is available locally as well. In a first instance, there may be a Bean with the code stored locally. If so, the
code from the Bean is installed to the DSP 16 (or to whichever processor specified by the Code Type). If a Bean without
the code is stored locally, the Bean can retrieve the code from the appropriate server.

[0085] On the other hand, if the DSPLoader object is not local, then JAVA will load the Bean 80 from the server that
wrote the applet 41. The code from the Bean will then be installed as described above.

[0086] While the downloading of native code is described in connection with the use of a JAVA Bean, it could also
be accomplished by wrapping the code within another language, such as an ActiveX applet.

[0087] Using a JAVA Bean (or other applet) as a wrapper to the native code has significant advantages. First, it
allows a simple, standard method for loading code onto one of a plurality of processors. The Bean is created, code is
loaded into the Bean and the code is linked to the appropriate processor. Without wrapping the code within the Bean,
the process may take several hundred steps. Second, it allows multiple pieces of native code to be combined by a
single applet, providing for complex applications to be generated from multiple discrete routines using a single applet
to combine the routines as desired. Third, it takes advantage of the language's security features, thereby protecting
not only the JAVA code in the Bean 90, but the native code 92 as well. Other languages, such as ActiveX, have security
features as well.

[0088] Two of the most important security features are digital signing and encryption. A JAVA Bean or ActiveX applet
may be signed by the source of the code; when the Bean or applet is downloaded, the signature is verified by the
receiving application, which has a list of trusted sources. If the Bean or applet is signed by a trusted source, it can be
decrypted using standard techniques. Accordingly, the native code is encrypted during transmission along with the
code of the Bean or applet, preventing unauthorized modification of the code. Because the native code is secure and
comes from a trusted source, the attributes can also be trusted as accurate.

[0089] Figure 6 illustrates a flow chart describing the process of downloading native code for a processor using a
JAVA Bean, it being understood that the native code could be wrapped in an applet of a different language using similar
techniques. In step 110, the encrypted, digitally signed Bean 390 is downloaded to a device running a JAVA virtual
machine. In step 112, the signature is verified. If it is not from a source listed as a trusted source, exception processing
is enabled in step 114. In the case of the Bean coming from a trusted source, the exception processing function may
give the user an opportunity to accept the Bean, if the user is comfortable with the source. If the signature is invalid,
the exception processing may delete the Bean 90 and send an appropriate error message to the user.

[0090] If the signature is valid and comes from a trusted source, the Bean is decrypted in step 116. This step decrypts
both the JAVA code and the native code in the Bean. In step 118, the attributes are retrieved from the Bean 90 and in
step 120 the applet determines whether the appropriate processor has sufficient resources to run the code. If not, th
exception processing step 114 may decline to install the native code, or steps may be taken to free resources. If there
are sufficient resources, the code is linked using the cross-linker and installed on the desired processor in step 122.
In step 124, the native code is executed.

[0091] Sample JAVA script for a Bean 90 is provided hereinbelow:

16

Page 1134 of 1415

10

15

20

25

35

40

50

55

Page 1135 of 1415

EP 0930 793 At

package ti.dsp.loader;
import java.awt.®;
import java.io.®;
import java.net.*;
public class NativeBean extends Canvas implements Serializable
{
public NativeBean() {
setBackground(Color.white);
funcData = new ByteArrayOutputStream();

try {
funcCodeBase = new URL("http://locathost™);

}
catch (MalformedURLException €) {

17

EP 0930 793 A1

}
}
5 public Dimension getMinimumSize() {
return new Dimension(50, 50);
}

10

public void loadCode() {

URL baseURL = null;

15
try {
baseURL = new URL(funcCodeBase.toString() + "/" + myFunction);
}
catch (MalformedURLExceptione) {
20 }

DatalnputStream source = null;
int read;
byte(] buffer;
25
buffer = new byte{1024};

ry {
source = new DatalnputStream(baseURL.openStream());

30 }
catch (IOException e) {
System.out.printin("IOException creating streams: " + e);
}
35 codeSize = 0;
funcData.reset();
try {
“° while (true) {
read = source.read(buffer);
4s if (read == -1)
break;
funcData.write(buffer, 0, read);
}
50

}
catch (IOException ¢) {
System.out.printin("IOException: " + ¢);

}

55

18

Page 1136 of 1415

EP 0930 793 A1

codeSize = funcData.size();
System.out.println("Code size = " + codeSize);

® ry {
source.close();

}
catch (IOException €)

10 : Systcm.out.println("XOException closing: " + ¢);
\ }
s public synchronized String getFunctionName() {
return myFunction;
}
20 public void setFunctionName(String function) {
myFunction = function;
}
i public synchronized String getCodeBase({
: return funcCodeBase.toString();

30
public void setCodeBase(String newBase) {

ty {

w funcCodeBase = new URL(newBase);

}
catch (MalformedURLException ¢) {

}
}

public void installCode() {

40

FileOutputStream destination = null;
File libFile = new File(myFunction);
45

try {
destination = new FileQutputStream(libFile);

}
catch (IOException c) {

System.out.printin("IOException creating streams: " + ¢);
}

if (destination != null) {

- 50

55

19

Page 1137 of 1415

10

15

20

25

30

35

40

45

50

55

EP 0930 793 A1

ry {
funcData.writeTo(destination);
}

catch (I0Exception ¢) {]

System.out.printin(*IO Exception installing native code: " + e);
1
J

}
linkCode(funcData)

public void loadParameters() {

}

public void execute() {

}
public synchronized int getCodeSize() {

return codeSize;
}

public synchronized int getCodeType() {

return codeType;
}

public void setCodeType(int newType) {

codeType = newType;
}

private int codeSize = 0;

private int codeType = I;

private String myFunction = "":

private URL funcCodeBase = null;

private ByteArrayOutputStream funcData = null;

[0092] In the script set forth above, the NativeBean() routine creates the Bean 90 which will hold the native code.
The loadCode() routine gets the native code from the server. The getFunctionName() and getCodeBase() routines
retrieve attributes. The installCode() routine calls the cross linker 1o link the native code to the DSP and to load the
linked code. The loadParameters() routine instructs the Bean to examine the native code and determine its attribut s.
The getCodesize() and getCodetype() routines transfer the attributes to the requesting applet.

[(0093] Although the teachings disclosed herein have been directed to certain exemplary embodiments, various mod-
ifications of these embodiments, as well as altemative embodiments, will be suggested to those skilled in the art.
[0094] Further and particular embodiments of the invention will now be enumerated with reference to the following
numbered clauses.

1. A mobil electronic device, comprising:
a coprocessor for xecuting nativ code;

a host proc ssor system operable to execute native code corresponding to the host processor syst m and
processor independent code, said host processor system operable to dynamically change the tasks performed

20

Page 1138 of 1415

EP 0930 793 A1

by the digital signal coprocessor; and
circuitry for communicating between said host processor system and said coprocessor.

2. The mobile electronic device of clause 1 and further comprising network interface circuitry for receiving data

5 from a network.
3. The mobile electronic device of clause 2 wherein said network interface circuitry comprises wireless network
circuitry.
10 4. The mobile electronic device of clause 3 wherein said network interface circuitry comprises circuitry for inter-
facing with a global network.
5. A method of controlling a mobile eiectronic device comprising the steps of.
15 executing native code in a coprocessor;
executing both native code and processor independent code in a host processor system,
dynamically changing the tasks performed by the digital signal coprocessor with said host processor system,
and
communicating between said host processor system and said coprocessor.
20
6. The method of clause 5 and further comprising the step of receiving code through a network interface.
7. The method of clause 6 and further comprising the step of receiving code through a wireless network interface.
25 8. The method of clause 6 or 7 and further comprising the step of receiving code through a wireless network
interface from a global network.
9. A mobile electronic device, comprising:
30 a plurality of coprocessors;
a host processor system operable to:
execute source code;
identify one or more sections of source code to be executed on one or more of said coprocessors, and
35 for each identified section of source code, determining a corresponding coprocessor, and
for each identified section of source code, compile said identified section of code into the native code
associated with said corresponding coprocessor and install said native code onto said corresponding
coprocessor; and
40 circuitry for communicating between said host processor system and said coprocessors.
10. The mobile electronic device of clause 9 wherein one or more of said coprocessors comprise digital signal
processors.
45
Claims
1. A mobile electronic device, comprising:
50 a coprocessor for executing native code,
a host processor operable to execute native code corresponding to the host processor and processor inde-
pendent code, said host processor operable 1o dynamically change the tasks performed by the digital signal
coprocessor, and
circuitry for communicating between said host processor and said coproc ssor.
55
2. Th mobile electronic d vice of Claim 1, wherein said coprocessor compris s a digital signal processor.
3. The mobile el ctronic device of Claim 1 or Claim 2, wherein said processor ind pendent code compris s JAVA.

Page 1139 of 1415

21

10

15

20

25

30

35

40

45

50

Page 1140 of 1415

10.

1.

12,

13.

14,

18,

16.

17.

18.

EP 0930 793 A1

The mobile electronic device of any preceding claim , wherein said host processor system is arranged to generate
native code for said coprocessor.

The mobile electronic device of any preceding claim, wherein said host processor is arranged to generate native
code for said coprocessor by compiling processor independent source code.

The mobile electronic device of any preceding claim, wherein said host processor is arranged to compile identified
blocks of source code.

The mobile electronic device of any preceding claim. wherein said host processor system is arranged to identify
blocks of source code that could be executed on the coprocessor and to compile said blocks of code.

The mobile electronic device of any preceding claims, further comprising:
a memory for storing a library of routines that can be downloaded to said coprocessor for execution.

The mobile electronic device of any preceding claim further comprising a hardware language accelerator.

The mobile electronic device of any preceding claim wherein said hardware accelerator comprises a JAVA accel-
erator.

The mobile electronic device of any preceding claim further comprising network interface circuitry for receiving
data from a network.

A method of controlling a mobile electronic device comprising of:

executing native code in a coprocessor,

executing both native code and processor independent code in a host processor

dynamically changing the tasks performed by the digital signal coprocessor with said host processor and
communicating between said host processor system and said coprocessor.

The method of claim 12 wherein said step of executing native code in a coprocessor comprises executing native
code in a digital signal processor.

The method of claims 12 and 13 further comprising generating native code for coprocessor in said general process-
ing system.

The method of claim 14 wherein said step of generating native code comprises the step of generating native code
by compiling processor independent source code.

The method of any of claims 12 to 15 further comprising identifying blocks of said source code to compile for
execution on said coprocessor.

The method of any of claims 12-16 further comprising storing a library of routines for downloading from said host
processor system to said coprocessor for execution.

A mobile electronic device, comprising:

a plurality of coprocessors;
a host processor system operable to:

execute source code;

identify one or more portions of source code to be executed on one or more of said coprocessors; and
for each identified portion of source code, determining a corresponding coprocessor; and

for each id ntifi d portion of sourc cod , compil said id ntified portion of cod into th nativ code
associated with said corresponding coprocessor and install said native code onto said corr sponding
coprocessor; and

circuitry for communicating between said host processor syst m and said coprocessors.

22

EP 0930 793 A1

19. A method of controlling a mobile electronic device, compfising:

10

15

20

25

30

35

40

45

50

55

Page 1141 of 1415

executing source code on a host processor system;

identifying one or more portions of source code 1o be executed on one or more COpProcessors: and

for each identified portion of source code, determining a corresponding coprocessor. and

for each identified portion of source code, compiling said identified portion of code into the native code asso-
ciated with said corresponding coprocessor and installing said native code onto said corresponding coproc-
essor; and

communicating between said host processor system and said coprocessors.

23

EP 0930 793 A1

] ro
2('_/ {Cortrofler
e tm ARM RAM/ ROM
;:% A L %0 Ly (3
' ¢
2 2

/ / Host - - 2
Applet [S i
ool DSP API Clans /43 ?:m ’9'
45
L e d & . Lo
q Nasve w‘ o
Sava Native Inseslace ‘(? Tus 4 ot /%
ey [ose]
,].___‘,5° : Task l Task l Task 2
5‘2’ /"‘J"
AL
Hou-05P buaface Layor Hou-DSP inafice Lays

S e U | LR
56 3 ,{osrnmmv \ffl.'o '/ u«o.ﬁ«oﬁ-l"“v

24

Page 1142 of 1415

EP 0930 793 A1

g0

.-/—J

ﬁn&wt\ erass : ‘ ‘
owiler

Unlinked

J ‘hrj:‘ CHD-
s
B~ LA
Dyrame Crsg Ta
‘ tnlcar @
| e -

\;Hos“ Proressor 1L

Q

f’;jm 3

JavaBean -
\> . Code Type a4
e .
-

Native Code ~ ¥,

q(> [LewdCose [[LowdPurems || Exeome

v daig il‘w. v L Fi ¥

25

Page 1143 of 1415

Page 1144 of 1415

EP 0 930 793 A1

ereceTlon
PRETINR

g

DecHeT o V1
ccer ampairs p T

SUFRGEAT

% —\20

cxauEe G

COWESMLNEG PRACECAR

124

26

0
{
. _ . £ Z. foo
gl G s
12 “°“%W?§gmenWﬂmu
Jevu ‘ i -
I '——Jr Cade }zgmw‘q’p“ : wl e GiC .
jasid ‘Nanve Tasks o |
. —
— /7? 5
Dwisap sgud, poo IO

Fi6. {

)

EP 0 930 793 A1

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 98 31 0312

DOCUMENTS CONSIDERED TO BE RELEVANT
Category| Chtation ot ﬁ?;r::::‘ lwgnsirs\adgiz;—;ﬁon. where appropriate, zo‘l:cl;av:“m :k:ﬁs;%no:ﬂ?a T;;E
P,X |WO 98 40978 A (SAGEM ;DEMEURE JEAN ANDRE 1,2,4, H04Q7/32
(FR): DIMECH JEAN MARC (FR)) 11,12, HO4B1/38
17 September 1998 18,19 606F9/38
* page 4, line 22 - line 27 *
« page 5, line 25 - line 28 *
* page 8, line 26 - line 29 *
P.X EP O 869 691 A (DEUTSCHE TELEKOM AG) 1-4,
7 October 1998 11-14,
18,19
*« column 2, line 4 - line 22 *
A GB 2 310 575 A (WESTINGHOUSE ELECTRIC 1,2,12,
CORP) 27 August 1997 18,19
* page 5, line 16 - line 25 *
A WO 97 26750 A (CELLPORT LABS INC) 1,12,18,
24 July 1997 19
* page 18, line 6 - page 22, line 26 *
A US 4 862 407 A (FETTE BRUCE A ET AL) 1,12,18,| TECHNICAL RELDS
29 August 1989 19 SEARCHED (Int.CL6)
* column 4, line 49 - line 58 * HO4Q
* column 13, line 14 - line 18 * HO4M
——— GO6F
Tha preseni search report has been drawn up for all claims
= Place of search Cuale of compict on of the search Exammner
§ BERLIN 31 May 1999 Leouffre, M
§ CATEGORY OF CITED DOCUMENTS T : theory or principle undertying the invention
- E : earfier patort cocument, but published en, or
§ 5Sparﬁadaﬂyrdavamiﬂucnram aferthe ngdale
: partiasarly relevant if combined with another D : document cited in the appdication
3 A ma.m::i:'memcmory L : document dited tor other reasons
5 O : non—writien dgisciosure & : member of ihe same patert family, comesponding
I P :inlermmed ate document document

Page 1145 of 1415

27

Page 1146 of 1415

EPQ FORM P0489

EP 0930 793 A1)

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 98 31 0312

This annex iists the patent family members relating to the patert cocuments cited in e above-mentioned European search report.
The members are as contained in the European Patent Otfice EDP file on
The European Patent Offica is in no way liable for these particulars which are merely given for the purpose of information.

31-05-1999
Patent document Publication Patent family Publication

cned 1 search report cate member(s) date

W0 9840978 A 17-09-1998 FR 2760917 A 18-09-1998 -
FR 2760918 A 18-09-1998
AU 6921998 A 29-09-1998

EP 0869691 A 07-10-1998 DE 19713965 A 08-10-1998

GB 2310575 A 27-08-1997 AU 1264397 A 28-08-1997

W0 9726750 A 24-07-1997 us 5732074 A 24-03-1998
AU 1525197 A 11-08-1997 -
CA 2243454 A 24-07-1997
EP 0875111 A 04-11-1998

US 4862407 A 29-08-1989 NONE -

For more detalls about this annex : see Official Journal of the European Patent Office, No. 12/82

28

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of
the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

e BLACK BORDERS

o TEXT CUT OFF AT TOP, BOTTOM OR SIDES

e FADED TEXT

o ILLEGIBLE TEXT

e SKEWED/SLANTED IMAGES

e COLORED PHOTOS

e BLACK OR VERY BLACK AND WHITE DARK PHOTOS

e GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
please do not report the images to the
Problem Image Mailbox.

Page 1147 of 1415

JC o V02 ReCd FCTPTO 2 1 AUG 2003 /;5 o

AlYG-21-03 16:10 FROM:JONES DAY Cf.EVELFt\ND ID:216 579 212 PAGE 1/3
o/ .
()NES Facsimile Transmission
North Point, 804 Lakeside Avenue » CI veland, Ohio 441141190 « (216) 586-3939
Facsimile: (216) 579-0212
o] dipejeau@jonesday.com
‘ August 21, 2003

Please hand deliver the following facsimile to:

Name: Office of Initial Patent Examination's Facsimile No.: 703-746-9195
Filing Receipt Corrections .

Company: United States Patent & Trademark Number of pages (including this page): 3

Office
Telephone No.: From: Debra L. Pejeau
Title: Patent & Trademark Assistant
Send Copies To: Direct Telephone No.: (216) 586-7387
JP No.: JP259360
O Copies distributed _.___ CAM No.: 555255-012-423

Querettn™s iitiale
Re:

Originals Will Not Foliow

NOTICE: This communication is intended to be confidential to the person to whom it Is addressed, and it is subject lo copyright
protection, If you are not the intended recipient or the agent of the intended recipient or if you are unable to deliver this
communication to the intended recipient, please do not read, copy or use this communication or show it to any other person, but
notify the sender immediately by telephone at the direct telephons number noted above, '

Message: |
Application Number 10/381,219 (Intl Filing Date 09/20/2001)

Dear Sir or Madam,

Please correct the application title on the attached Filing Receipt as indicated and issue a
Corrected Filing Receipt. Thank you.

| Respectfully submitted,
Debra L. Pejeau

Pl ase call us immediately if th facsimile you receiv is incomplete or illegible. Please ask for

the facsimile operator.
CLI-1082528v1

Jones, Day, Reavis & Pogu
AL evss anf . AALIMRIR o DALLAS » FRANKFURT » HONG XONG ¢« HOUSTON « IRVINE « LONDON + LOB ANGELES

Recevd o < 64730275 f 103170 PH st Deyight Tim] 4242 Egn - Skl Gicarona - Svae - Thee 0K - iSrwcron

Page 1148 of 1415

.

ALG-21- 3 16:13 FROM:JONES DAY CLEVELAND ID:216 579 212 PAGE 273

“Unittep Stares PaTENT anD TRADEMARK OFFIGE

UNITED STATES DEPARTMENT OF COMMERCE
Usiitrd Stntsn Patsnt nod Treuderwerk (3T
Addrexy COMMISSIONER OF PATENTS AND TRADEMARKS

L‘L‘ﬂ:‘% 130450

APPLICATION NUMBER FILING DATE GRP ARTUNIT. | Fil. FEE RECD |ATTY.DOCKETNO| DRAWINGS | TOT CLAIMS | IND CLAIMS

10/381,219 0372012003 2131 3258 ' 555255012423 7 109 12
CONFIRMATION NO. 9761
S)avid B Cochran . FILING RECEIPT
e may (U A g AR R I EBT
901 Lakeside Avenue "0Ca00000010312502°

Cleveland, OH 44114-1190

Date Mailed: 06/25/2003

Receipt is acknowledged of this regular Patent Application. It will be considered in its order and you will be
notified G5 1o e reculis of the examination, Fe sura to prevde the LT, PELIDATION M om o e r oot .
NAME OF APPLICANT, and TITLE OF INVENTICN when inquiling about ihis application. F e transmiiue by
check or draft are subject to colleclion. Piease verify the accuracy of the data presented on this receipt. If an
error is noted on this Filing Receipt, please write to the Office of Initia] Patent Examination's Filing
Receipt Corrections, facsimile number 703-746-9195. Please provide a copy of this Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts” for this application, please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply
to the Notice, the USPTO will generate another Filing Receipt incerporating the requested corractions (if
appropriate). ’

Applicant(s)
David P Yach, Waterloo, ON, CANADA; .

Michael 8 Brown, Waterloo, ON, CANADA,;
. . Herbert A Little, Waterloo, ON, CANADA;

Domestic Priority data as claimed by applicant

This application is a 371 of PCT/CA01/01344 09/20/2001
which claims benefit of 60/234,152 09/21/2000

and claims benefit of 60/235,354 09/26/2000

and claims benefit of 60/270,663 02/20/2001

Foreign Applications

Projected Publication Date: 09/25/2003

Non-Publication Request: No

Early Publication Request: No

Title cofiware
/\ Code signing system and method

Received from < 2165790212 > at §/21/03 4:17:19 PM [Eastem Dayfight Time]

Page 1149 of 1415

»

P

»
AlG~-21-03 16:168 FROM:JONES DAY CLEVELAND ID:216 579 ©212

, >

PAGE

Preliminary Class
713

LICENSE FOR FOREIGN FILING UNDER
Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set farth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The ficense is subject to revocation upan wiitten natification. The
date indicated is the effeclive date of the license, unless an earlier license of similar scope has been granted
under 37 CFR 513 or 5.14.

s e r e 3t e rehdinad by the licensee ang fhey LE USEG al @ly Lhit uh Ul aiel o elictive baie Mhereot
unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR
1.53(d). This license is not retroactive. .

Th grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject
malter as imposed by any Government contract or the provisions of existing laws relating to espionage and the
natienal security or the export of technical dala. Licensees shouid apprise themseives of current ragulaticns
especially with respect to certain countries, of other agencies, particularly the Cffice of Defenise Tiade Coaticls,
Depariment of Stale (wilh respect to Arms, Munitions and Implements of War (22 CFR 121-128)),; the Office of
Export Administration, Depariment of Commerce (15 CFR 370.10 (j)); the Office of Foreign Assets Controt,
Depariment of Treasury (31 CFR Parts 500+) and the Department of Energy. '

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may slill petition for a license under 37 CFR
5.12, if a license is desired befare the expiration of 6 months from the filing date of the application. If 6 months
has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy
order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

Received from < 2163700212 > at 8121103 4:17:19 P [Eastem Dayfight Time]

Page 1150 of 1415

373

. Page 1of2

UNITED STaTES PATENT AND TRADEMARK OFFIGE

UNITED STATES DEPARTMENT OF COMMERCE
United States Potent sod Teademork Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS

PO. Box 1450

Alexandria, Vinginiu 22313-14350

WP KoY

| USS. APPLICATION NUMBER NO] FIRST NAMED APPLICANT | ATTY. DOCKET NO.]
10/381,219 David P Yach 555255012423
| INTERNATIONAL APPLICATION NO.]
) PCT/CAQ1/01344

?Oa:éi lB):yochran | 1arimcpate | PrioriTY DATE |
North Point 09/20/2001 09/21/2000
901 Lakeside Avenue
Cleveland, OH 44114-1190 CONFIRMATION NO. 9761

371 ACCEPTANCE LETTER

0 A

“0C000000010312504*

Date Mailed: 06/25/2003

NOTICE OF ACCEPTANCE OF APPLICATION UNDER 35 U.S.C 371 AND 37 CFR 1.495

The applicant is hereby advised that the United States Patent and Trademark Office in its capacity as a
Designated / Elected Office (37 CFR 1.495), has determined that the above identified international application has
met the requirements of 35 U.S.C. 371, and is ACCEPTED for national patentability examination in the United
States Patent and Trademark Office.

The United States Application Number assigned to the application is shown above and the relevant dates are:

03/20/2003 03/20/2003
DATE OF RECEIPT OF 35 U.S.C. 371(c)(1), (c)(2) and DATE OF RECEIPT OF ALL 35 U.S.C. 371
(c)(4) REQUIREMENTS REQUIREMENTS

A Filing Receipt (PTO-103X) will be issued for the present application in due course. THE DATE APPEARING
ON THE FILING RECEIPT AS THE " FILING DATE" IS THE DATE ON WHICH THE LAST OF THE 35 U.S.C.
371 REQUIREMENTS HAS BEEN RECEIVED IN THE OFFICE. THIS DATE IS SHOWN ABOVE. The filing date
of the above identified application is the international filing date of the intemational application (Article 11(3) and
35 U.S.C. 363). Once the Filing Receipt has been received, send all correspondence to the Group Art Unit
designated thereon.

The following items have been received:

Copy of the International Application filed on 03/20/2003
Copy of the International Search Report filed on 03/20/2003
Copy of IPE Report filed on 03/20/2003

Preliminary Amendments filed on 03/20/2003

Oath or Declaration filed on 03/20/2003

Request for Immediate Examination filed on 03/20/2003
Copy of references cited in ISR filed on 03/20/2003

U.S. Basic National Fees filed on 03/20/2003

Assignee Statement filed on 03/20/2003

Page 1151 of 1415

Page 2 of 2

Applicant is reminded that an

Y communication
to the address given in the h

S to the United States Patent and Trademark Office must be mailed
eading and inclugd

e the U.S. application no. shown above (37 CFR 1.5)

TAMALA D HOLLAND

Telephone: (703) 3055483

PART 3 - OFFICE Cory
FORM PCT/DO/EO/903 (371 Acceptance Notice)

Page 1152 of 1415

DT16Recd PCT/PTO 20 MAR cuw

B Express Mail No. EV 243791125 US
] r) March 20, 2003
‘1 FORM PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY 'S DOCKET NUMBER

(REV. 01-2003)

TRANSMITTAL LETTER TO THE UNITED STATES | 555255012423
DESIGNATED/ELECTED OFFICE (DO/EQ/US) [VS APLICATIONNG (ko w57 Cr 15

CONCERNING A FILING UNDER 35 U.S.C. 371 1 0 / 38 1 2 1 9
INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED
PCT/CA01/01344 September 20, 2001 September 21, 2000
TITLE OF INVENTION

SOFTWARE CODE SIGNING SYSTEM AND METHOD
APPLICANT(S) FOR DO/EO/US

David P. Yach; Michael S. Brown; Herbert A, Little
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1.} This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
2.[7] This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.

3. E This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include
items (5), (6), (9) and (21) indicated below.

4.[7] The US has been elected (Article 31).
5. E A copy of the International Application as filed (35 U.S.C. 371(c)(2))
a. g’ is attached hereto (required only if not communicated by the International Bureau).
b. E] has been communicated by the International Bureau.
c. D is not required, as the application was filed in the United States Receiving Office (RO/US).

N / Al 6 E] An English language translation of the International Application as filed (35 U.S.C. 371{(c)(2)).
a. [isattached hereto.
b. D has been previously submitted under 35 U.S.C. 154(d)(4).
7. I:] Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
a. [:] are attached hereto (required only if not communicated by the International Bureau).
b. D have been communicated by the International Bureau.
c. D have not been made; however, the time limit for making such amendments has NOT expired.

d. [J have not been made and will not be made.

8. D An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371 (c)(3)).
9. X An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). (3 pgs)

10. D An English language translation of the annexes of the International Preliminary Examination Report under PCT
Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 20 below concern document(s) or information included:
11.[J An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. g An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13,]2 A preliminary amendment. (2 ,99 ;) 5 P@ S
14. [:] An Application Data Sheet under 37 CFR 1.76.
15.[] A substitute specification.
16.p4 A power of attorney andéorchramgeufatdress-etter. [2' f@f)
17. D A computer-readable form of the sequence listing in accordance with PCT Rule 13¢er.2 and 37 CFR 1.821 - 1.825.
18.[] A second copy of the published international application under 35 U.S.C. 154(d)(4).

19. L__I A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).

20. [:] Other items or information:

page 1 of 2

Page 1153 of 1415

Y A
. i D09 Rec'dPLTIPTO 2 & MAR 2003
. L 0 4“3“8 Ni(ifzw%e 9FR 1.5) INTERNATIONAL APPLICATION NO. ATTORNEY'S DOCKET NUMBER
\J PCT/CA01/01344 555255012423
21.@ The following fees are submitted: CALCULATIONS PTO USE ONLY
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)):

Neither international preliminary examination fee (37 CFR 1.482)
nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO

and International Search Report not prepared by the EPO or JPO........... $1060.00
International preliminary examination fee (37 CFR 1.482) not paid to
USPTO but International Search Report prepared by the EPOor JPO $900.00
International preliminary examination fee (37 CFR 1.482) not paid to USPTO
but international search fee (37 CFR 1.445(a)(2)) paid to USPTO $750.00
International preliminary examination fee (37 CFR 1.482) paid to USPTO
but all claims did not satisfy provisions of PCT Article 33(1)-(4) $720.00
International preliminary examination fee (37 CFR 1.482) paid to USPTO
and all claims satisfied provisions of PCT Article 33(1)-(4) $100.00
ENTER APPROPRIATE BASIC FEE AMOUNT = § 900
Surcharge of $130.00 for furnishing the oath or declaration later than 30 months
from the earliest claimed priority date (37 CFR 1.492(e)). $
CLAIMS NUMBER FILED NUMBER EXTRA RATE $
Total claims 109 -20 = 89 x $18.00 $ 1602
Independent claims 12 .3 = 9 x $84.00 $ 756
MULTIPLE DEPENDENT CLAIM(S) (if applicable) + $280.00 $
TOTAL OF ABOVE CALCULATIONS = $ 2358
0O Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above $
are reduced by 1/2. +
SUBTOTAL = 3258
Processing fee of $130.00 for fumishing the English translation later than 30 months $
from the earliest claimed priority date (37 CFR 1.492(f)).
TOTAL NATIONAL FEE = 3258
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be $
accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). $40.00 per property + 40
TOTAL FEES ENCLOSED = |$ 3298
Amount to be $
refunded:
charged: $
a. [] A check in the amount of § to cover the above fees is enclosed.
b. E Please charge my Deposit Account No, _501432 in the amount of $ _3298 to cover the above fees.

A duplicate copy of this sheet is enclosed.

*
*ff(ref. 555255012423)

c. The Commissioner is hereby authorized to char§e z’fny additional fees which may be required, or credit any
overpayment to Deposit Account No. 501432 A duplicate copy of this sheet is enclosed.

P =

d. [[] Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card
information should not be included on this form. Provide credit card information and authorization on PTO-2038.

NOTE: Where an appropriate time limit under 37 CFR 1.495 has net been met, a petition to revive (37 CFR 1.137 (a)

or (b)) must be filed and granted to restore the application to pending status.
/"‘:j W
SEND ALL CORRESPONDENCE TO: D
David B. Cochran, Esq. 14

Jones Day GNATURE
901 Lakeside Ave./North Point David B. Cochran
Cleveland, Ohio 44114 NAME
39,142
REGISTRATION NUMBER

FORM PTO-1390 (REV 01-2003) page 2 of 2

Page 1154 of 1415

' | 10/381219
‘ DT09Rec’'d PCT/PTO 2 0 MAR 2003

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of : David P. Yach; Michael S. Brown; Herbert A. Little £V 243791125 US
Express Mail” Mailing Label fo.

Internat'l. Appl'n. No. ; PCT/CA01/01344 Date of Deposit __March 20,2003

Internat'l. Filing Date : 09/20/2001 I hereby ce:ify Uie. e p2pai or fees is
being depositod 1.1 Lo L T In £t

U.S. Serial No. : Not yet assigned Service “Express 71T O

service under 37 .

US.FilingDate ~ : 03/20/2003 e e Wt gy et
Priority Date Claimed: 09/21/2000 By Mlﬁﬁ@g&@
Title : Software Code Signing System And Method

Art Unit : Not yet assigned

Examiner : Not yet assigned

Docket Né. : 555255012243

Date: March 20, 2003

Commissioner for Patents
Washington, D.C. 20231

Preliminary Amendment

Prior to taking up this case for initial examination, please amend the application as
follows.

The Claims

Please cancel original claims 1-56.
Please add the following new claims 1-109.

i. (New) A code signing system for operation in conjunction with a software application
having a digital signature and a signature identification, where the digital signature is associated
with the signature identification, comprising:

an application platform;

CLI-1069294v1

Page 1155 of 1415

an application programming interface (API) having an associated signature identifier, the
API is configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control
access to the API by the software application where the signature identifier corresponds to the

signature identification.

2. (New) The code signing system of claim 1, wherein the virtual machine denies the

software application access to the API if the digital signature is not authenticated.

3. (New) The code signing system of claim 1, wherein the virtual machine purges the

software application if the digital signature is not authenticated.

4. (New) The code signing system of claim 1, wherein the code signing system is installed

on a mobile device.

5. (New) The code signing system of claim 1, wherein the digital signature is generated by

a code signing authority.

6. (New) A code signing system for operation in conjunction with a software application
having a digital signature and a signature identification where the digital signature is associated
with the signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature
identifier, each configured to link the software application with a resource on the application
platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control
access to the APIs by the software application where the signature identification corresponds to
the signature identifier,

wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

CLI-1069294v1

Page 1156 of 1415

7. (New) The code signing system of claim 6, wherein the plurality of APIs are included in
an API library.

8. (New) The code signing system of claim 6, wherein one or more of the plurality of APIs
is classified as sensitive and having an associated signature identifier, and wherein the virtual
machine uses the digital signature and the signature identification to control access to the

sensitive APITs.

9. (New) The code signing system of claim 8, wherein the code signing system operates in
conjunction with a plurality of software applications, wherein one or more of the plurality of
software applications has a digital signature and a signature identification, and wherein the
virtual machine verifies the authenticity of the digital signature of each of the one or more of the
plurality of sofiware applications, where the signature identification corresponds to the signature
identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

10. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a wireless communication system.

11. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a cryptographic module which implements cryptographic algorithms.

12. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a data store.

13. (New) The code signing system of claim 6, wherein the resource on the application

platform comprises a user interface (UI).

14. (New) The code signing system of claim 1, further comprising:

CLI-1069294v1

Page 1157 of 1415

a plurality of API libraries, each of the plurality of API libraries includes a plurality of
APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

15. (New) The code signing system of claim 14, wherein at least one of the plurality of API
libraries is classified as sensitive;

wherein access to a sensitive APT library requires a digital signature associated with a
signature identification where the signature identification corresponds to a signature identifier
associated with the sensitive API library;

wherein the software application includes at least one digital signature and at least one
associated signature identification for accessing sensitive API libraries; and

wherein the virtual machine authenticates the software application for accessing the
sensitive API library by verifying the one digital signature included in the software application
that has a signature identification corresponding to the signature identifier of the sensitive API

library.

16. (New) The code signing system of claim 1, wherein the digital signature is generated
using a private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

17. (New) The code signing system of claim 16, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash
of the software application to obtain a generated hash, applying the public signature key to the
digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

18. (New) The code signing system of claim 4, wherein the API further comprises:
a description string that is displayed by the mobile device when the software application

attempts to access the APL

CLI-1069294v1

Page 1158 of 1415

19. (New) The code signing system of claim 1, wherein the application platform comprises

an operating system.

20. (New) The code signing system of claim 1, wherein the application platform comprises

one or more core functions of a mobile device.

21. (New) The code signing system of claim 1, wherein the application platform comprises

hardware on a mobile device.

22. (New) The code signing system of claim 21, wherein the hardware comprises a

subscriber identity module (SIM) card.

23. (New) The code signing system of claim 1, wherein the software application is a Java

application for a mobile device.

24. (New) The code signing system of claim 1, wherein the API interfaces with a

cryptographic routine on the application platform.

25. (New) The code signing system of claim 1, wherein the API interfaces with a proprietary

data model on the application platform.

26. (New) The code signing system of claim 1, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

27. (New) A method of controlling access to sensitive application programming interfaces
on a mobile device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive
application programming interface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and

CLI-1069294v1

Page 1159 of 1415

denying the software application access to the sensitive API where the signature

identification does not correspond with the signature identifier.

28. (New) The method of claim 27, comprising the additional step of:
purging the software application from the mobile device where the signature

identification does not correspond with the signature identifier.

29. (New) The method of claim 27, wherein the digital signature and the signature

identification are generated by a code signing authority.

30. (New) The method of claim 27, comprising the additional steps of:

verifying the authenticity of the digital signature where the signature identification
corresponds with the signature identifier.; and

denying the software application access to the sensitive API where the digital signature is

not authenticated.

31. (New) The method of claim 30, comprising the additional step of:
purging the software application from the mobile device where the digital signature is not

authenticated.

32. (New) The method of claim 30, wherein the digital signature is generated by applying a
private signature key to a hash of the software application, and wherein the step of verifying the
authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile
device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

33. (New) The method of claim 32, wherein the digital signature is generated by calculating
a hash of the software application and applying the private signature key.

CLI-10692%4v1

Page 1160 of 1415

34. (New) The method of claim 27, comprising the additional step of:
displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive APL

35. (New) The method of claim 34, comprising the additional step of:
receiving a command from the user granting or denying the software application access

to the sensitive AP

36. (New) A method of controlling access to an application programming interface (API)
having a signature identifier on a mobile device by a software application created by a software
developer, comprising the steps of:

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

appending a digital signature and a signature identification to the software application
where the software application satisfies at least one criterion;;

verifying the authenticity of the digital signature appended to the software application
where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

authenticated.

37. (New) The method of claim 36, wherein the step of determining whether the software

application satisfies at least one criterion is performed by a code signing authority.

38. (New) The method of claim 36, wherein the step of appending the digital signature and
the signature identification to the software application includes generating the digital signature
comprising the steps of: |

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

CLI-1069294v1

Page 1161 of 1415

39. (New) The method of claim 38, wherein the hash of the software application is
calculated using the Secure Hash Algorithm (SHAT).

40. (New) The method of claim 38, wherein the step of verifying the authenticity of the
digital signature comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash,;

applying the corresponding signature key to the digital signature to obtain a recovered
hash; and

authenticating the digital signature by comparing the calculated hash with the recovered
hash.

41. (New) The method of claim 40, comprising the further step of denying the software

application access to the API where the digital signature is not authenticated.

42. (New) The method of claim 40, wherein the signature key is a private signature key and

the corresponding signature key is a public signature key.

43. (New) A method of controlling access to a sensitive application programming interface
(API) having a signature identifier on a mobile device, comprising the steps of:

registering one or more software developers that are trusted to develop software
applications which access the sensitive API;

receiving a hash of a software application,

determining whether the hash was sent by a registered software developer; and

generating a digital signature using the hash of the software application and a signature
identification corresponding to the signature identifier where the hash was sent by the registered
software developer;
wherein

the digital signature and the signature identification are appended to the software

application; and

CLI1-1069294v1

Page 1162 of 1415

the mobile device verifies the authenticity of the digital signature in order to control
access to the sensitive API by the software application where the signature identification

corresponds with the signature identifier.

44. (New) The method of claim 43, wherein the step of generating the digital signature is
performed by a code signing authority.

45. (New) The method of claim 43, wherein the step of generating the digital signature is
performed by applying a signature key to the hash of the software application.

46. (New) The method of claim 45, wherein the mobile device verifies the authenticity of the
digital signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered
hash;

determining whether the digital signature is authentic by comparing the calculated hash
with the recovered hash; and

denying the software application access to the sensitive APT where the digital signature is

not authenticated.

47. (New) A method of restricting access to application programming interfaces on a mobile
device, comprising the steps of:

loading a software application having a digital signature and a signature identification on
the mobile device that requires access to one or more application programming interfaces (APIs)
having at least one signature identifier;

authenticating the digital signature where the signature identification corresponds with
the signature identifier; and

denying the software application access to the one or more APIs where the software

application does not include an authentic digital signature .

CLI-1069294v]

Page 1163 of 1415

48. (New) The method of claim 47, wherein the digital signature and signature identification

are associated with a type of mobile device.

49. (New) The method of claim 47, comprising the additional step of:
purging the software application from the mobile device where the software application

does not include an authentic digital signature. .

50. (New) The method of claim 47, wherein:

the software application includes a plurality of digital signatures and signature
identifications; and
the plurality of digital signatures and signature identifications includes digital signatures

and signature identifications respectively associated with different types of mobile devices.

51. (New) The method of claim 50, wherein each of the plurality of digital signatures and
associated signature identifications are generated by a respective corresponding code signing

authority.

52. (New) The method of claim 47, wherein the step of determining whether the software
application includes an authentic digital signature comprises the additional steps of:
verifying the authenticity of the digital signature where the signature identification

corresponds with respective ones of the at least one signature identifier.
53. (New) The method of claim 51, wherein each of the plurality of digital signatures and -
signature identifications are generated by its corresponding code signing authority by applying a

respective private signature key associated with the code signing authority to a hash of the

software application.

CLI-1069294v1

Page 1164 of 1415

54. (New) The method of claim 47, wherein the step of authenticating the digital signature
where the signature identification corresponds with the signature identifier comprises the steps
of:
verifying that the signature identification corresponds with the signature identifier authenticating
the digital signature where signature identification corresponds with the signature identifier
comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature
key associated with the code signing authority which generates the digital signature;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

55. (New) The method of claim 47, wherein:

the mobile device includes a plurality of APIs;

at least one of the plurality of APIs is classified as sensitive;

access to any of the plurality of APIs requires an authentic global signature;

access to each of the plurality of sensitive APIs requires an authentic global signature and
an authentic digital signature associated with a signature identification;

the step of determining whether the software application includes an authentic digital
signature and signature identification comprises the steps of:

determining whether the one or more APIs to which the software application requires
access includes a sensitive API;

determining whether the software application includes an authentic global signature; and

determining whether the software application includes an authentic digital signature and
signature identification where the one or more APIs to which the software application requires
access includes a sensitive API and the software application includes an authentic global
signature; and

the step of denying the software application access to the one or more APIs comprises the
steps of:

denying the software application access to the one or more APIs where the software

application does not include an authentic global signature; and

CLI-1069294v1

Page 1165 of 1415

denying the software application access to the sensitive API where the one or more APIs
to which the software application requires access includes a sensitive API, the software
application includes an authentic global signature, and the software application does not include

an authentic digital signature and signature identifier required to access the sensitive APL

56. (New) A code signing system for controlling access to application programming
interfaces (APIs) having signature identificaters by software applications, the code signing
system comprising:

a verification system for authenticating digital signatures provided by the respective
software applications to access the APIs where the signature identifications correspond with the
signature identificaters of the respective APIs and where a digital signature for a software
application is generated with a signature identification corresponding to a signature identificater
to access at least one API; and

a control system for allowing access to at least one of the APIs where the digital signature

provided by the software application is authenticated by the verification system.

57. (New) The code signing system of claim 56, wherein a virtual machine comprises the

verification system and the control system.

58. (New) The code signing system of claim 57, wherein the virtual machine is a Java virtual

machine installed on a mobile device.

59. (New) The code signing system of claim 56, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

60. (New) The code signing system of claim 56, wherein the code signing system is installed

on a mobile device and the software application is a Java application for a mobile device.

61. (New) The code signing system of claim 56, wherein the digital signature and the

signature identification of the software application are generated by a code signing authority.

CLI-1069294v1

Page 1166 of 1415

62. (New) The code signing system of claim 56, wherein the APIs access at least one of a
cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UI).

63. (New) The code signing system of claim 56, wherein the digital signature is generated
using a private signature key under a signature scheme associated with the signature
identification, and the verification system uses a public signature key to authenticate the digital

signature.

64. (New) The code signing system of claim 63, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

65. (New) The code signing system of claim 56, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.
66. (New) The code signing system of claim 56, wherein the APIs provides access to at least
one of one or more core functions of a mobile device, an operating system, and hardware on a

mobile device.

67. (New) The code signing system of claim 56, wherein verification of a global digital

signature provided by the software application is required for accessing any of the APIs.

68. (New) A method of controlling access to application programming interfaces (APls)

having signature identifiers by software applications, the method comprising:

CLI-1069294v1

Page 1167 of 1415

authenticating digital signatures provided by the respective software applications to
access the APIs where the signature identifications correspond with the signature identifiers of
the respective APIs and where a digital signature for a software application is generated with a
signature identification corresponding to a signature identifier to access at least one API; and

allowing access to at least one of the APIs where the digital signature provided by the

software application is authenticated.

69. (New) The method of claim 68, wherein one digital signature and one signature
identification are provided by the software application access a library of at least one of the
APIs.

70. (New) The method of claim 68, wherein the digital signature and the signature

identification of the software application are generated by a code signing authority.

71. (New) The method of claim 68, wherein the APIs access at least one of a cryptographic
module that implements cryptographic algorithms, a data store, a proprietary data model, and a

user interface (UI).

72. (New) The method of claim 68, wherein the digital signature is generated using a private
signature key under a signature scheme associated with the signature identification, and a public

signature key is used to authenticate the digital signature.

73. (New) The method of claim 72, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to
obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

74. (New) The method of claim 68, wherein at least one of the APIs further comprises:

CLI-1069294v1

Page 1168 of 1415

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

75. (New) The method of claim 68, wherein the APIs provides access to at least one of one
or more core functions of a mobile device, an operating system, and hardware on a mobile

device.

76. (New) The method of claim 68, wherein verification of a global digital signature
provided by the software application is required for accessing any of the APIs

77. (New) A management system for controlling access by software applications to
application programming interfaces (APIs) having at least one signature identifier on a subset of
a plurality of mobile devices, the management system comprising:

a code signing authority for providing digital signatures and signature identifications to
software applications that require access to at least one of the APIs with a signature identifier on
the subset of the plurality of mobile devices, where a digital signature for a software application
is generated with a signature identification corresponding to a signature identifier, and the
signature identifications provided to the software applications comprise those signature
identifications that correspond to the signature identifiers that are substantially only on the subset
of the plurality of mobile devices; wherein each mobile device of the subset of the plurality of
mobile devices comprises

a verification system for authenticating digital signatures provided by the respective
software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the respective software applications to access at least one of
the APIs where the digital signatures provided by the respective software applications are

authenticated by the verification system.

78. (New) The management system of claim 77, wherein a virtual machine comprises the

verification system and the control system.

CLI-1069294v1

Page 1169 of 1415

79. (New) The management system of claim 78, wherein the virtual machine is a Java virtual

machine and the software applications are Java applications.

80. (New) The management system of claim 77, wherein the control system requires one

digital signature and one signature identification for each library of at least one of the APIs.

81. (New) The management system of claim 77, wherein the APIs access at least one of a
cryptographic module, which implements cryptographic algorithms, a data store, a proprietary

data model, and a user interface (UT).

82. (New) The management system of claim 77, wherein the digital signature is generated
using a private signature key under a signature scheme associated with the signature
identification, and the verification system uses a public signature key to authenticate the digital

signature.

83. (New) The management system of claim 82, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.
84. (New) The management system of claim 77, wherein at least one of the APIs further
comprises:

a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

85. (New) The management system of claim 77, wherein the subset of the plurality of mobile

devices comprises mobile devices under the control of at least one of a corporation and a carrier.

CLI-1069294v1

Page 1170 of 1415

86. (New) The management system of claim 77, wherein a global digital signature provided
by the software application has to be authenticated before the software application is allowed

access to any of the APIs on a mobile device of the subset of the plurality of mobile devices.

87. (New) A method of controlling access by software applications to application
programming interfaces (APIs) having at least one signature identifier on a subset of a plurality
of mobile devices, the method comprising:

generating digital signatures for software applications with signature identifications
corresponding to respective signature identifiers of the APIs; and

providing the digital signatures and the signature identifications to software applications
that require access to at least one of the APIs on the subset of the plurality of mobile devices,
where the signature identifications provided to the software applications comprise those
signature identifications that correspond to the signature identifiers that are substantially only on
the subset of the plurality of mobile devices; wherein each mobile device of the subset of the
plurality of mobile devices comprises

a verification system for authenticating digital signatures provided by the respective
software applications to access respective APIs where the digital identifications correspond to
the digital identifiers of the respective APIs; and

a control system for allowing the software application to access at least one of the APIs
where the digital signature provided by the software application is authenticated by the

verification system.

88. (New) The method of claim 87, wherein a virtual machine comprises the verification

system and the control system.

89. (New) The method of claim 88, wherein the virtual machine is a Java virtual machine

and the software applications are Java applications.

90. (New) The method of claim 87, wherein the control system requires one digital signature

and one signature identification for each library of at least one of the APIs.

CLI-1069294v1

Page 1171 of 1415

91. (New) The method of claim 87, wherein the APIs access at least one of a cryptographic
module, which implements cryptographic algorithms, a data store, a proprietary data model, and

a user interface (UI).

92. (New) The method of claim 87, wherein at least one of the digital signatures is generated
using a private signature key under a signature scheme associated with a signature identification,
and the verification system uses a public signature keys to authenticate said at least one of the

digital signatures.

93. (New) The method of claim 92, wherein:

at least one of the digital signatures is generated by applying the private signature key to
a hash of a software application under the signature scheme; and

the verification system authenticates said at least one of the digital signatures by
generating a hash of the software application to obtain a generated hash, applying the public
signature key to said at least one of the digital signatures to obtain a recovered hash, and

verifying that the generated hash with the recovered hash are the same.

94. (New) The method of claim 87, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

95. (New) The method of claim 87, wherein the subset of the plurality of mobile devices

comprises mobile devices under the control of at least one of a corporation and a carrier.

96. (New) A mobile device for a subset of a plurality of mobile devices, the mobile device
comprising;

an application platform having application programming interfaces (APIs);

a verification system for authenticating digital signatures and signature identifications

provided by the respective software applications to access the APIs; and

CLI-1069294v1

Page 1172 of 1415

a control system for allowing a software application to access at least one of the APIs
where a digital signature provided by the software application is authenticated by the verification
system,;

wherein a code signing authority provides digital signatures and signature identifications
to software applications that require access to at least one of the APIs such that the digital
signatufe for the software application is generated according to a signature scheme of a signature
identification, and wherein the signature identifications provided to the software applications
comprise those signature identifications that are substantially only authorized to allow access on

the subset of the plurality of mobile devices.

97. (New) The mobile device of claim 96, wherein a virtual machine comprises the

verification system and the control system.

98. (New) The mobile device of claim 97, wherein the virtual machine is a Java virtual

machine and the software application is a Java application.

99. (New) The mobile device of claim 96, wherein the control system requires one digital

signature and one signature identification for each library of at least one of the APIs.

100. (New) The mobile device of claim 96, wherein the APIs of the application platform
access at least one of a cryptographic module, which implements cryptographic algorithms, a

data store, a proprietary data model, and a user interface (UI).

101. (New) The mobile device of claim 96, wherein the digital signature is generated using a
private signature key under the signature scheme, and the verification system uses a public
signature key to authenticate the digital signature.

102. (New) The mobile device of claim 101, wherein:

the digital signature is generated by applying the private signature key to a hash of the

software application under the signature scheme; and

CLI-1069294v1

Page 1173 of 1415

the verification system authenticates the digital signature by generating a hash of the
software application to obtain a generated hash, applying the public signature key to the digital
signature to obtain a recovered hash, and verifying that the generated hash with the recovered

hash are the same.

103. (New) The mobile device of claim 96, wherein at least one of the APIs further
comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

104. (New) A method of controlling access to application programming interfaces (APIs) of
an application platform of a mobile device for a subset of a plurality of mobile devices, the
method comprising:

receiving digital signatures and signature identifications from software applications that
require to access the APIs

authenticating the digital signatures and the signature identifications; and

allowing a software application to access at least one of the APIs where a digital
signature provided by the software application is authenticated;

wherein a code signing authority provides the digital signatures and the signature
identifications to the software applications that require access to at least one of the APIs such
that the digital signature for the software application is generated according to a signature
scheme of a signature identification, and wherein the signature identifications provided to the
software applications comprise those signature identifications that are substantially only

authorized to allow access on the subset of the plurality of mobile devices.

105. (New) The method of claim 104, wherein one digital signature and one signature

identification is required for accessing each library of at least one of the APIs.

106. (New) The method of claim 104, wherein the APIs of the application platform access at
least one of a cryptographic module, which implements cryptographic algorithms, a data store, a

proprietary data model, and a user interface (UI).

CLI-1069294v1

Page 1174 of 1415

107. (New) The method of claim 104, wherein the digital signature is generated using a
private signature key under the signature scheme, and a public signature key is used to
authenticate the digital signature.

108. (New) The method of claim 107, wherein:

the digital signature is generated by applying the private signature key to a hash of the
software application under the signature scheme; and

the digital signature is authenticated by generating a hash of the software application to
obtain a generated hash, applying the public signature key to the digital signature to obtain a

recovered hash, and verifying that the generated hash with the recovered hash are the same.

109. (New) The method of claim 104, wherein at least one of the APIs further comprises:
a description string that is displayed to a user when the software application attempts to

access said at least one of the APIs.

Respectfully submitted,

=

Datid B. Cochran

Reg. No. 39,142

Jones, Day

North Point

901 Lakeside Avenue
Cleveland, OH 44114-1190

CLI-1069294v1

Page 1175 of 1415

Lu/seizuy
TeTD 2 0 MAR 2009

WO 02/25409

y Code Signing System And Method

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from and is related to the following prior applications:

5 "Code Signing System And Method," United States Provisional Application No. 60/234,152,
filed September 21, 2000; "Code Signing: System And Method," United S;tates Provisional
Application No. 60/235,354, filed September 26, 2000; and "Code Signing System And

Method," United States Provisional Application No. 60/270,663, filed February 20, 2001.

10 BACKGROUND

1. FIELD OF THE INVENTION
This invention relates generally to the field of security protocols for software
applications. More particularly, the invention provides a code signing system and metho;i that is
particularly well suited for Java™ applications for mobile communication devices, such as
15 Personal Digital Assistants, cellular telephones, and wireless two-way communication devices

{(collectively referred to hereinafter as "mobile devices" or simply “devices™).

2. DESCRIPTION OF THE RELATED ART
Security pfotocols involving softw&e code signiﬁg schemes are known. Typically, such
20 security protocols are used to ensure the reliability of software applications that are downloaded
from the Internet. In a typical software code signing scheme, a digital signature is attached to a
software application that identifies the software developer. Once the software is downloaded by
a user, the user typically must use his or her judgment to determine whether or not -the soﬁware

1

Page 1176 of 1415

WO 02/25409 PCT/CA01/01344

application is reliable, based solely on his or her knowledge of the software developer's
reputation. This type of code signing scheme does not ensure that a software application written
by a third party for a mobile device will properly interact with the de_vice’s native applications
and other resources. Because typical code signing protocols are not secure and rely solely on the
5 judgment of the user, there is a serious risk that destructive, "Trojan horse" type software
applications may be downloaded and installed onto a mobile device.

There also remains a need for network operators to have a system and method to maintain

control over which software applications are activated on mobile devices.
Tﬁere remains a further need in 2.5G 'and 3G networks where corporate clients or
10 network operators would like to control the types of software on the devices issued to its

employees.

SUMMARY

A code signing system and Iﬁethod is provided. The code signing system operates in
15 conjunction with a software application having a digital signature and includes an application
platform, an application programming interface (API), and a virtual machine. The API is
configured to link the software application with the application platform. The virtual machine
verifies the authenticity of the digital signature in order to control access to the API by the

software application.
20 A code signing system for operation in conjunction with a software application having a
digital signature, according to another embodiment of the invention comprises an application

platform, a plurality of APIs, each configured to link the software application with a resource on

Page 1177 of 1415

WO 02/25409 PCT/CA01/01344

the application platform, and a virtual machine that verifies the authenticity of the digital
signature in order to control access to the API by the softwarg application, wherein the virtual
machine verifies the authenticity of the digital signature in order to control access to the plurality
. of APIs by the software application.

5 According to a further embodiment of the invention, a method of controlling access to
sensitive application programming interfaces on a mobile device comprises the steps of loading a
software application on the mobile device that requires access to a sensitive API, determining
whether or not the software application includes a digital signature associated with the sensitive
API, and if the software application does not include a digital signature associated with the

10 sensitive API, then denying the software application access to the sensitive APL
In another embodiment of the invention, a method of controlling access to an application
programming interface (API) on a mobile device by a software application created by a software
developer comprises the steps of receiving the software appliéation from the software developer,
reviewing the software application to determine if it may access the API, if the software
15 application may- access the API, then appending a digital signature to the software application, °
verifying the authenticity of a digital signature appended to a software application, and providing
access to the API to software applications for which the_appended digital signature is authentic.
A method of restricting access to a sensitive API on a mobile device, according to a
further embodiment of the invention, comprises the steps of registering one or more software
20 developers that are trusted to design software applications which access the sensitive API,
receiving a hash of a software application, determining if the software application was designed

by one of the registered software developers, and if the software application was designed by one

Page 1178 of 1415

WO 02/25409 PCT/CA01/01344

of the registered software developers, then generating a digital signature using the hash of the
software application, wherein the digital signature may be appended to the software application,
and the mobile device verifies the authenticity of the digital signature in order to control access
to the sensitive API by the software application.

5 In a still further embodiment, a method of restricting access to application programming
interfaces on a mobile device comprises the steps of loading a software application on the mobile
device that requires access to one or more API, determining whether or not the software
application includes a digital signature associated with the mobile device, and if the software
application does not include a digital signature associated with the mobile device, then denying

10 the software application access to the one or more APIs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram illustrating a code signing protocol according to one embodiment of
the invention,;
() Fig. 2 is a flow diagram of the code signing protocol described above with reference to
Fig. 1;
Fig. 3 is a block diagram of a code signing system on a mobile device;
Fig. 3A is a block diagram of a code signing system on a plurality of mobile devices;
Fig. 4 is a flow diagram illustrating the operation of the code signing system described
0 above with reference to Fig. 3 and Fig. 3A;
Fig. 5 is a flow diagram illustrating the management of the code signing authorities

described with reference to Fig. 3A; and

Page 1179 of 1415

WO 02/25409 PCT/CA01/01344

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented.

DETAILED DESCRIPTION
5 Referring now to the drawing figures, Fig. 1 is a diagram illustrating a code signing
protocol according to one embodiment of the invention. An application developer 12 creates a
software application 14 (application Y) for a mobile device that requires access to one or more
sensitive APIs on the mobile device. The software application Y 14 may, for example, be a Java
application that operates on a Java virtual machine installed on the mobile device. An API
10 enables the software application Y to interface with an application platform that may include, for -
example, resources such as the device hardware, operating system and core software and data
models. In order to make function calls to or otherwise intéract with such device resources, a
software application Y must access one or more APIs. APIs can thereby effectively “bridge” a
software application and associated device resources. In this description and the appendéd
15 claims, references to API access should be interpreted to include access of an API in such a way
as to allow a software application Y to interact with one or more corresponding device resources.
Providing access to any API therefore allows a software application Y to interact with associated
device resources, whereas denying access to an API prevents the software application Y from
interacting with the associated resources. For example, a database API may communicate with a
20 device file or data storage system, and access to the database API }vould provide for interaction
" between a software application Y and the file or data storage system. A user interface (UI) APT

would communicate with controllers and/or control software for such device components as a

Page 1180 of 1415

WO 02/25409 PCT/CA01/01344

screen, a keyboard, and any other device components that provide output to a user or accept

input from a user. In a mobile device, a radio API may also be provided as an interface to

wireless communication resources such as a transmitter and receiver. Similarly, a cryptographic

g API may be provided to interact with a crypto module which implements crypto algorithms on a

5 device. These are merely illustrative examples of APIs that may be provided on a device. A

device may include any of these example APIs, or different APIs instead of or in additioﬁ to
those described above.

Preferably, any API may be classified as sensitive by a mobile device manufacturer, or

possibly by an API author, a wireless network operator, a device owner or operator, or séme

10 other entity that may be affected by a virus or malicious code in a device software application.

For instance, a mobile device manufacturer may classify as sensitive those APIs that interface

with cryptographic routines, wireless communication functions, or prbprietary data models such

as address book or calendar entries. To protect against unauthorized access to these sensitive

APIs, the application developer 12 is required to obtain one or more digital signatures from the

15 mobile device manufacturer or other entity that classified any APIs as sensitive, or from a code

signing authority 16 acting on behalf of the manufacturer or other entity with an interest in

protecting access to sensitive device APIs, and append the signature(s) to the software

application Y 14.

In one embodiment, a digital signature is obtained for each sensitive API or library that

20 includes a sensitive API to which the software application requires access. In some cases,

multiple signatures are desirable. This would allow a service provider, company or network

operator to restrict some or all software applications loaded or updated onto a particular set of

Page 1181 of 1415

WO 02/25409 PCT/CA01/01344

mobile devices. In this multiple-signature scenario, all APIs are restricted and locked until a
“global” signature is verified for a software application. For example, a company may wish to
prevent its employees from executing any software applications onto their devices without first
obtaining permission fr&m a corporate information technology (IT) or computer services

5 department. All such corporate mobile devices may then be configured to require verification of
at least a global signature before a software application can be executed. Access to sensitive
device APIs and libraries, if any, could then be further restricted, dependent upon verification of
respective corresponding digital signatures.

The binary executable representation of software application Y 14 may be independent of

10 the particular type of mobile device or model of a mobile device. Software application Y 14 may
for example be in a write-once-run-anywhere binary format such as is the case with Java
software applications. However, it may be desirable to have a digital signature for each mobile
device type or model, or aiternatively for each mobile device platform or manufa(':turer.
Therefore, software application Y 14 may be submitted to several code signing authorities if

15 software application Y 14 targets several mobile devices.

Software application Y 14 is sent from the application developer 12 to the code signing .
authority 16. In the embodiment shown in Fig. 1, the code signing authority 16 reviews the
software application Y 14, although as described in further detail below, it is contemplated that
the code signing authority 16 may also or instead consider the identity of the application

X0 developer 12 to determine whether or not the software application Y 14 should be signed. The

code signing authority 16 is preferably one or more representatives from the mobile device

Page 1182 of 1415

WO 02/25409 PCT/CA01/01344

manufacturer, the authors of any sensitive APIs, or possibly others that have knowledge of the
operation of the sensitive APIs to which the software application needs access.

If the code signing authority 16 determines that software application Y 14 may access the
sensitive API and therefore should be signed, then a signature (not shown) for the software

5 appl{cation Y 14 is generated by the code signing authority 16 and appended to the software
application Y 14. The signed software application Y 22, comprising the software application Y
14 and the digital signature, is then returned to the application developer 12. The digital
signature is preferably a tag that is generated using a private signature key 18 maintained solely
by the code signing authority 16. For example, according to one signature scheme, a hash of the
10 software application Y 14 may be generated, using a hashing algorithm such as the Secure Hash
Algorithm SHA1, and then used with the private signature key 18 to create the digital signature.
In some signature schémes, the private signature key is used to encrypt a haéh of information to
be signed, such as software application Y 14, wherqas in other schemes, the private key may be
used in other ways to generate a signature from the information to be signed or a transformed
15 version of the information.

The signed'software application Y 22 may then bé sent to a mobile device 28 or
downloaded by the mobile device 28 over a wireless network 24. It should be understood,
however, that a code signing protocol according to the present invention is not limited to
software applications that are downloaded over a wireless network. For instance, in alterdaﬁve

20 embodiments, the signed software application Y 22 may be downloaded to a personal computer
via a computer network and loaded to the mobile device through a serial link, or may be acquired

from the application developer 12 in any other manner and loaded onto the mobile device. Once

Page 1183 of 1415

WO 02/25409 PCT/CA01/01344

the signed software application Y 22 is loaded on the mobile device 28, each digital signature is

preferably verified with a public signature key 20 before the software application Y 14 is granted

access to a sensitive API library. Although the signed software application Y 22 is loaded onto a

device, it should be appreciated that the software application that may eventually be executed on

5 . the device is the software application Y 14. As described above, the signed software application

Y 22 includes the software application Y 14 and one or more appended digital signatures (not

shown). When the signatures are verified, the software application Y 14 can be executed on the
device and access any APIs for which corresponding signatures have been verified.

The public signature key 20 corresponds to the private signature key 18 maintained by

10 the code signing authority 16, and is preferably installed on the mobile device along with the

sensitive API. However, the public key 10 may instead be obtained from a public key repository

(not shown), using the device 28 or possibly a personal computer system, and installed on the

device 28 as needed. According to one embodiment of a signature scheme, the mobile device 28

calculates a hash of the software application Y 14 in the signed software application Y 22, using

15 the same hashing algorithm as the code signing authority 16, and uses the digital signature and

the public signature key 20 to recover the hash calculated by the signing authority 16. The

resultant locally calculated hash and the hash recovered from the digital signature are then

compared, and if the hashes are the same, the signature is verified. The software application Y

14 can then be executed on the device 28 and access any sensitive A.PIS for which the

20 corrcsp(;nding signature(s) have been verified. As described above, the invention is in no way

limited to this particular illustrative example signature scheme. Other signature schemes,

Page 1184 of 1415

WO 02/25409 PCT/CA01/01344

including further public key signature schemes, may also be used in conjunction with the code

signing methods and systems described herein.
Fig. 2 is a flow diagram 30 of the code signing protocol described above with reference
to Fig. 1. The protocol begins at step 32. At step 34, a software developer writes the software
5 application Y for a mobile device that requires access to a sensitive API or library that exposes a
sensitive APT (API library A). As discussed above, some or all APIs on a mobile device may be
classified as sensitive, thus requiring verification of a digital signature for access by any software
applic‘ation such as software application Y. In step 36, application Y is tested by the software
developer, preferably using a device simulator in which the digital signature verification function
10 has been disabled. In this manner, the software developer may debug the software application Y
before the digital signature is acquired from the code signing authority. Once the software
application Y has been written and debugged, it is forwarded to the code signing authority in step

38.

In steps 40 and 42, the code signing authority reviews the software application Y to
15 determine whether or not it should be given access to the sensitive API, and either accepts or
rejects the software application. The‘code signing authority may apply a number of criteria to
determine whether or not to grant the software application access to the sensitive API including,
for example, the size of the software application, the device resources accessed by the APIL, the
perceived utility of tﬁe software application, the interaction with other software applications, the
20 inclusion of a virus or other destructive code, and whether or not the developer has a contractual
obligation or other business arrangement with the mobile device manufacturer. Further details of

managing code signing authorities and developers are described below in reference to Fig. 5.

10

Page 1185 of 1415

WO 02/25409 PCT/CA01/01344

If the code signing authority accepts the software application Y, then. a digital signature,
and preferably a signature identification, are appended to the software application Y in step 46.
As described above, the digital signature may be generated by using a hash of the software
application Y and a private signature key 18. The signature identification is described below

5 with reference to Figs. 3 and 4. Once the digital signature and signature identification are
appended to the software application Y to generate a signed software application, the signed
software application Y is returned to the software -developer in step 48. The software developer
may then license the signed software application Y to be loaded onto a mobile device (step 50).
If the code signing authority rejects the software application Y, however, then a rejection

10 notification is preferably sent to the software developer (step 44), and the software application Y
will be unable to access any API(s) associated with the signature.

In an alternative embodiment, the software developer may provide the code signing
authority with only a hash of the software application Y, or provide the software application Y in
some type of abridged format. If the. software application Y is a Java application, then the device

15 independent binary *.class files may be used in the hashing operation, although device dependent
files such as *.cod files used by the assignee of the present application may instead be used in
hashing or other digital signature operations when software applications are intended for
operation on particular devices or device types. By providing only a hash or abridged version of
the software application Y, the software developer may have the software application Y signed

20 without revealing proprietary code to the code signing authority. The hash of the software
application Y, along with the private signature key 18, may then be used by the code signing

authority to generate the digital signature. If an otherwise abridged version of the software

11

Page 1186 of 1415

WO 02/25409 PCT/CA01/01344

application Y is sent to the code signing authority, then the abridged version may similarly be
used to generate the digital signature, provided that the abridging scheme or algorithm, like a
hashing algorithm, generates different outputs for different inputs. This ensures that every
software application will have a different abridged version and thus a different signature that can
5 only be verified when appended to the particular corresponding software application from which
the abridged version was generated. Because this embodiment does not enable the code signing
authority to thoroughly review the software application for viruses or other destructive code,
however, a registration process between the software developer and the code signing authority
may also be required. For instance, the code signing authority may agree in advance to provide a
10 trusted software developer access to a limited set of sensitive APIs.

In still another alternative embodiment, a software application Y may be submitted to
more than one signing authority. Each signing authority may for example be responsible for
signing software applications for particular sensitive APIs or APIs on a particular model of
mobile device or set of mobile devices that supports the sensitive APIs required by a software

15 . application. A manufacturer, mobile communication network operator, service provider, or
corporate client for example may thereby have signing authority over the use of sensitive APIs
for their particular mobile device model(s), or the mobile devices operating on a particular
network, subscribing to one or more particular services, or distributed to corpérate employees.
A signed software application may then include a software application and at least one appended

20 digital signature appended from each- of the signing authorities. Even though these signing

authorities in this example would be generating a signature for the same software application,

12

Page 1187 of 1415

WO 02/25409 PCT/CA01/01344

different signing aﬁd signature verification schemes may be associated with the different signing
authorities.

Fig. 3 is a block diagram of a code signing system 60_ on a mobile device 62. The system

60 includes a virtual machine 64, a plurality of software applications 66-70, a plurality of API

5 libraries 72-78, and an application platform 80. The application platform 80 preferably includes
all of the résources on the mobile device 62 that may be accessed by the software applications -

66-70. For instance, the application platform may include device hardware 82, the mobile

device's operating system 84, or core software and data models 86. Each API library 72-78

preferably includes a piurality of APIs that interface with a resource available in the application

10 platform. For instance, one API library might include all of the APIs that interface with a

calendar prc'ygram and calendar entry data models. Another API library might include all of the

APIs that interface with the transmission circuitry and functions of thé mobile device 62. Yet

another API lib.rary might include all of the APIs capable of interfacing with lower-level services

performed by the mobile device's operating system 84. In addition, the plurality of API libraries

15 72-78 may include both libraries that expose a sensitive API 74 and 78, such as an interface to a

cryptographic function, and libraries 72 and 76, that may be accessed without exposing sensitive

APIs. Similarly, the plurality of software applications 66-70 may include both signed software

applications 66 and 70 that require access to one or more sensitive APIs, and unsigned software

applications such as 68. The virtual machine 64 is preferably an object oriented run-time

20 environment such as Sun Micro System's JI2ME™ (Java 2 Platform, Micro Edition), which

manages the executién of all of the software applications 66-70 operating on the mobile device

62, and links the software applications 66-70 to the various API libraries 72-78.

13

Page 1188 of 1415

WO 02/25409 PCT/CA01/01344

Software application Y 70 is an example of a signed software application. Each signed
software application preferably includes an actual software application such as software
application Y comprising for example software code that can be executed on the application
platform 80, one or more signature identifications 94 and one or more cérresponding digital

5 signatures 96. Preferably each digital signature 96 and associated signature identification 94 in a
signed software application 66 or 70 corresponds to a sensitive API library 74 or 78 to which the
software application X or software application Y requires access. The sensitive API library 74 or
78 may include one or more sensitive APIs. In an glternative embodiment, the signed software
applications 66 and 70 may include a digital signature 96 for each sensitive API within an API

10 Ilibrary 74 or 78. The signature identifications 94 may be unique integers or some other means of
relating a digital signature 96 to a specific API library 74 or 78, API, application platform 80, or
model of mobile device 62.
API library A 78 is an example of an API libréry that exposes a sensitive API. Each API
library 74 and 78 including a sensitive API should preferably include a desi:riptioﬂ string 88, a
15 public signature key 20, and a signature identifier 92. The signature identifier 92 preferably
corresponds to a signature identification 94 in a signed software application 66 or 70, and
enables the virtual machine 64 to quickly match a digital signature 96 with an API library 74 or
7'8. The public signature key 20 corresponds to the private signature key 18 maintained by the
code siéning authority, and is used to Qen'fy the authenticity of a digital signature 96. The
20 description string 88 may for example be a textual message that is displayed on fhe mobile
device when a signed software application 66 or 70 is loaded, or alternatively when a software

application X or Y attempts to access a sensitive API. '

14

Page 1189 of 1415

WO 02/25409 PCT/CA01/01344

Operationally, when a signed software application 68-70, respectively inpluding a
software application X, Z, or Y, that requires acceés to a sensitive API library 74 or 78 is loaded
onto a mobile device, the virtual machine 64 searches the signed for an appended digital

" signature 96 associated with the API library 74 or 78. Preferably, the appropriate digital

5 signature 96 is located by the virtual machine 64 by matching the signature identifier 92 in the

API library 74 or 78 with a signature identification 94 on the signed software application. If the

signed software application includes the appropriate digital signature 96, then the virtual

machine 64 verifies its authenticity using the public signature key 20. Then, once the

appropriate digital signature 96 has been located and verified, the description string 88 is

10 preferably displayed on the mobile device before the software application X or Y is executed and

accesses the sensitive APL. For instance, the description string 88 may display a message stating

that "Application Y is attempting to access API Library A," and thereby provide the mobile
device user with the final control to grant or deny access to the sensitive APIL

Fig. 3A is a block diagram of a code signing system 61 on a plurality of mobile devices

15 62E, 62F and 62G. The system 61 includes a plurality of mobile devices each of which only
three are illustrated, mobile devices 62E, 62F and 62G. Also shown is a signed software
application 70, including a software application Y to which two digital signatures 96E and 96F
with corresponding signature identifications 94E and 94F have been appended. In the example
system 6i, each pair composed of a digital signature and idéntification, 94E/96E and 94F/96F,

20 cormresponds to a model_ pf mobile device 62, API library 78, or associated platform 80. If
signature identifications 94E and 94F correspond to different models of mobile device 62, then

when a signed software application 70 which includes a software application Y that requires

15

Page 1190 of 1415

WO 02/25409 PCT/CA01/01344

access to a sensitive API library 78 is loaded onto mobile device 62E, the virtual machine 64
searches the signed software application 70 for a digital signature 96E associated with the API
library 78 by matching identifier 94E with signature identifier 92. Similarly, when a signed
software application 70 including a software application Y that requires access to a sensitive API

5 library 78 is loaded onto a mobile device 62F, the virtual machine 64 in device 62F searches the
signed software application 70 for a digital signature 96F associated with the API library 78.
However, when a software application Y in a signed software application 70 that requires access

- to a sensitive API library 78 is loaded onto a mobile device model for which the application
developer has not obtained a digital signature, device 62G in the example of Fig. 3A, the virtual

10 machine 64 in the device 64G does not fiﬂd a digital signa'ture appended to the software
appliqation Y and consequently, access to the API]ibr'ary 78 is denied on device 62G. It should

be appreciated from the foregoing description that a software application such as software
application Y may have multiple device-specific, libral;y-specific, or API-specific signatures or
some combination of such signatures appended thereto. Simﬂariy, different signature

15 verification requirements may be configured for the different devices. For example, device 62E
may require verification of both a global signature, as well as additional signatures for any
sensitive APIs to which a software application.requires access in order for the software
application to be executed, whereas device 62F may require verification of only a global
signature and device 62G may reqﬁﬁe verification of signatures only for its sensitive APIs. It

20 should also be apparent that a communication system may include devices (not shown) on which
a software api:alication Y received as part of a signed software application such as 70 may

execute without any signature verification. Although a signed software application has one or

16

Page 1191 of 1415

WO 02/25409 PCT/CA01/01344

more signatures appended thereto,.the software application Y might possibly be executed on

some devices without first having any of its signature(s) verified. Signing of a software

application preferably does not interfere with its execution on devices in which digital signature
verification is not implemented. |

5 Fig. 4 is a flow diagram 100 illustrating the operation of the code signing system

described above with reference to Figs. 3 and 3A. In step 102, a software application is loaded

onto a mobile device. Once the software application is loaded, the device, preferably using a

virtual machine, determines whether or not the software application requires access to any API

libraries that expose a sensitive API (step 104). If not, then the software application is linkéd

10 with all of its required API libraries and executed (step 118). If the software application does

require access to a sensitive API, however, then the virtual machine vérifies that the software

application includes a valid digital signature associated any sensitive APIs to which access is

required, in steps 106-116.

In step 106, the virtual machine retrieves the public signature key 20 and signature

15 identifier 92 from the sensitive API library. The signature identifier 92 is then used by the

virtual machine in step 108 to determine whether or not the software application has an appended

digital signature 96 with a corresponding signature identification 94. If not, then the software

application has not been approved for access to the sensitive API by a code signing authority,

and the softwére application is preferably prevented from being executed in step 116. .In

20 alternative embodiments, a software application without a proper digital signature 96 may be

purged from the mobile device, or may be denied access to the AP] library exposing the sensitive

API but executed to the extent possible without access to the API library. It is also contemplated

17

Page 1192 of 1415

WO 02/25409 PCT/CA01/01344

that a user may be prompted for an input when signature verification fails, thereby providing for
user control of such subsequent operations as purging of the software application from the
device.

If a digital signature 96 corresponding to the sensitive API library is appended to the
5 software application and located by the virtual machine, then the virtual machine uses the public
key 20 to verify the authenticity of the digital signature 96 in step 110. This step may lbe
performed, for example, by using the signature verification scheme described above or other
alternative signature schemes. If the digital signature 96 is not authentic, then the software
application is preferably either not executed, purged, or restricted from accessiné the sensitive
10 API as described above with reference to step 116. If the digital signature is authentic, however,
then the description string 88 is preferably displayed in step 112, warning the mobile device user
that the software application requires accless to a sensitive API, and possibly prompting the user
for authorization to execute or load the software application (step 114). When more than one
signature is to be verified for a software aéplication, fhen the steps 104-110 are preferably
15 repeated for each sigqature before the user is prompted in step 112. If the mobile device vser in
step 114 authorizes fche software application, then it may be executed and linked to the sensitive

API library in step 118.
Fig. Sis a flow diagram 200 illustrating the management of the code signing authorities
described with reference to Fig. 3A. At step 210, an application developer has developed a new
20 software application which is intended to be executable one or more target device models or
types. The target devices may include sets of devices from different manufacturers, sets of

device models or types from the same manufacturer, or generally any sets of devices having

18

Page 1193 of 1415

WO 02/25409 PCT/CA01/01344

particular signature and verification requirements. The term “target device” refers to any such
set of devices having a common signature requirement. For example, a set of devices requiring
verification of a device-specific global signature for execution of all software applications may
comprise a target device, and devices that require both a global signature and further signatures
5 for sensitive APIs may be part of more than one target device set. The software application may
be written in a device independent manner by using at least one known API, supported on at least
one target device with an API library. Preferably, the developed softh‘xre application is intended

to be executable on several target devices, each of which has its own at least one API library.
At step 220, a code signing authority for one target device receives a target-signing
10 request from the developer. The target signing request includes the software application or a
hash of the software application, a developer identifier, as well as at least one target device
identifier which identifies the target device for which a signature is being requested. At step 230,
the signing authority consults a developer database 235 or other records to determine whéther or
not to trust developer 220. This determination can be made according to several criteria
15 discussed above, such as whether or not the developer has a contractual obligation or has entered
into some other type of business arrangement with a device manufacturer, network operator,
‘service provider, or device manufacturer. If the developer is trusted, then the method préceeds at
step 240. However, if the developer is not trusted, then the software application is rejected (250)
and not signed by the signing authority. Assuming the developer was trusted,- at step 240 the
20 signing authority determines if it has the target private key corresponding to the submitted target
identifier by consulting a private key store such as a target private key database 245. If the target

private key is found, then a digital signature for the software application is generated at step 260

19

Page 1194 of 1415

WO 02/25409 PCT/CA01/01344

and the digital signature or a signed software application including the digital signature appended
to the software application is returned to the developer at step 280. However, if the target private

' key is not found at step 240, then the software application is rejected at step 270 and no digital
signature is generated for the software application.

5 Advantageously, if target signing authorities follow compatible embodiments of the
method outlined in Fig. 5, a network of ;arget signing authorities may be established in order to
expediently manage code signing authorities and a developer community code signing process
providing signed software applications for multiple targets with low likelihood of destructive
code.

10 Should any destructive or otherwise problematic code be found in a software application
or suspected.because of behavior exhibited when a software application is executed on a device,
then the registration or privileges of the corresponding application developer with any or all
signing authorities may also be suspended or revoked, since the digital signature provides an
audit trail through which the developer of a problematic software application may be identified.

15 Insuch an event, devices may be informed of the revocation by being configured to periodically
download signature revocation lists, for example. If software applications for which the
corresponding digital signatures have been revoked are running on a device, the device may then
halt execution of any such software application and possibly purge the software application from
its local storage. If preferred, devices may also be configured to re-execute digital signature

20 verifications, for instance periodically or when a new revocation list is downloaded.

Although a digital signature generated by a signing authority is dependent upon

authentication of the application developer and confirmation that the application developer has

20

Page 1195 of 1415

WO 02/25409 PCT/CA01/01344

been properly registered, the digital signature is preferably generated from a hash or otherwise

transformed version of the software application and is therefore application-specific. This

contrasts with known code signing schemes, in which API access is granted to any software

applications arriving from trusted application developers or authors. In the code signing systems

5 and methods descriBed herein, API access is granted on an application-by-application basis and
thus can be more strictly controlled or regulated.

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented. The mobile communication device 610 is preferably a

{

two-way communication device having at least voice and data communication capabilities. The

10 device preferably .has the capability to communicate with other computer systems on the Internet.
Depending on the functionality provided by the device, the device may be referred to as a data
messaging device, a two-way pager, a cellular telephone with data messaging capabilities, a
wireless Internet appliance or a data communication device (with or without telephony
capabilities).

15 Where the device 610 is enabled for two-way communications, the device will
incorporate a communicgtion subsystem 611, including a receiver 612, a transmitter 614, and
associated components such as one or more, preferably embedded or intemal, antenna elements
616 and 618, local oscillators (1L.Os) 613, and a processing module such as a digital signal
processor (DSP) 620. As will be apparent to those skilled in the field of communications, the

20 vparticular design of the communication subsystem 611 will be dependent upon the
communication network in which the device is intended to operate. For example, a device 610

destined for a North American market may include a communication subsystem 611 designed to

21

Page 1196 of 1415

WO 02/25409 : PCT/CA01/01344

operate within the Mobitex™ mobile communication system or DataTAC™ mobile
communication'system, whereas a device 610 intended for use in Europe may incorporate a
General Packet Radio Service (GPRS) communication subsystem 611.

Network access requirements will also vary depending upon the type of network 919. For

5 example, in the Mobitex and DataTAC networks, mobile devices such as 610 are registered on

the network using a unique identification number associated with each device. In GPRS

networks however, network access is associated with a subscriber or user of a device 610. A

GPRS device therefore requires a subscriber identity module (not shown), commonly referred to

as a SIM card, in order to operate on a GPRS network. Without a SIM card, a GPRS device will

10 not be fully functional. Local or non-network communication functions (if any) may be operable,

but the device 610 will be unab]e‘to carry out any functions involv.ing communications over
network 619, other than any legally required operations such as “911” émergency calling.

When required network registration or activation procedures have been completed, a

device 610 may send and receive communication signals over the network 619. Signals received

15 by the antenna 616 through a communication network 619 are input to the receiver 612, which

may perform such common receiver fur‘lcticns as signal amplification, frequency down

conversion, filtering, channel se]ccﬁon and the like, and in the example system shown in Fig. 6,

analog to digital conversion. Analog to digital conversion of a received signal allows more

complex communication functions such\as demodulation and decoding to be performed in.the

20 DSP620.Ina éimilar manner, signals to be transmitted are processed, including modulation an&

encoding for example, by the DSP 620 and input to the transmitter 614 for digital to analog

22

Page 1197 of 1415

WO 02/25409 PCT/CA01/01344

conversion, frequency up conversion, filtering, amplification and transmission over the
communication network 619 via the antenna 618.

The DSP 620 not only processes communication signals, but also provides for receiver

and transmitter control. For exampie, the gains applied to communication signals in the receiver
5 612 and transmitter 614 may be adaptively controlled through automatic gain control algorithms
implemented in the DSP 620.

The device 610 preferably includes a microprocessor 638 which controls the overall
operation of the device. Communication functions, including at least data and voice
communications, are performed through the communication subsystem 611. The microprocessor

10 638 also interacts with further device subsystems or resources such as the display 622, flash
memory 624, random access memory (RAM) 626, auxiliary input/output (I/O) subsystems 628,
serial port 630, keyboard 632, speaker 634, microphone 636, a short-range communications
subsystem 640 and any other device subsystems generally designated as 642. APIs, including
sensitive APIs requiring veﬁfication of one or more corresponding digital signatures before

15 access is granted, may be provided on the device 610 to interface between software applications
and any of the resources shown in Fig. 6.

Some of the subsystems shown in Fig. 6 perform communication-related functions,
whereas other subsystems may provide “resident” or on-device functions. Notably, some
subsystems,. such as keyboard 632 and display 622 for example, may be used for both

20 communication-related functions, such as entering a text message for transmission over a

communication network, and device-resident functions such as a calculator or task list.

23

Page 1198 of 1415

WO 02/25409 PCT/CA01/01344

Operating system software used by the microprocessor 638, and possibly APIs to be

accessed by software applications, is preferably stored in a persistent store such as flash memory

624, which may instead be a read only memory (ROM) or similar storage element (not shown).

Those skilled in the art will appreciate that the operating system, specific device software

5 applications, or parts thereof, may be temporarily loaded into a vol‘atjle store such as RAM 626.

It is contemplated that received and transmitted communication signals may also be stored to
RAM 626.

The microprocessor 638, in addition to its operating system functions, preferably enables

execution of software applications on the device. A predetermined set of applicatioﬁs which

10 control basic device operations, including at least data and voice communication applications for

example, will normally be installed on the device 610 during manufacture. A preferred

application that may be loaded onto the device may be a personal information manager (PIM)

application having the ability to organize and manage data items relating to the device user such

as, but not limited to e-mail, calendar events, voice mails, appointments, and task items.

15 Naturally, one or more memory stores would be available on the device to facilitate storage of

PIM daté items on the device. Such PIM application would preferably have the ability to send

and receive data items, via the wireless network. In a preferred embodiment, the PIM data items

are seamlessly integrated, synchronized and updated, via the wireless network, with the device

user’s corresponding data items stored or associated with a host computer system thereby

20 creating a mirrored host computer on the mobile device with respect to the data items at least.

This would be especially advantageous in the case where the host computer system is the mobile

device user’s office computer system. Further applications, including signed software

Page 1199 of 1415

WO 02/25409 PCT/CA01/01344

applications as described above, may also be loaded onto the device 610 through the network

619, an auxiliary I/O subsystem 628, serial port 630, short-range communications subsystem 640

or any other suitable subsystem 642. The device microprocessor 638 may then verify any digital

signatures, possibly including both “global” device signatures and API-specific signatures,

5 appended to such a software application before the software application can be executed by the

microprocessor 638 and/or access any associated sensitive APIs. Such flexibility in application

installation increases the functionality of the device and may provide enhanced on-device

functions, communication-related functions, or both. For example, secure communication

applications may enable electronic commerce functions and other such financial transactions to

10 be performed using the device 610, through a crypto API and a crypto ‘module which implements
crypto algorithms on the device (not shown).

In a data communication mode, a received signal such as a text message or web page
download will be processed by the communication subsystem 611 and input to the
microprocessor 638, which will preferably further process the received signal for output to the

15 display 622, or alternatively to an auxiliary I/O device 628. A user of device 610 may also
compose data items such as email meséages for example, using the keyboard 632, which is
preferably a complete alphanumeric keyboard or telephone-type keypad, in conjunction with the
display 622 and possibly an auxiliary /O device 628. Such composed items may then be
transmitted over a communication n_etwork through the communication subsystem 611.

20 For voice communications, overall operation of the device 610 is substantially similar,
except that received signals would preferably be output to a speaker 634 and signals for

transmission would be generated by a microphone 636. Alternative voice or audio VO

25

Page 1200 of 1415

WO 02/25409 PCT/CA01/01344

subsystems such as a voice message recording subsystem may also be implemented on the
device 610. Although voice or audio signal outpi:t is preferably accomplished primarily through
the speaker 634, the display 622 may also be used to provide an indication of the identity of a
calling party, the duratioﬁ of a voice call, or other voice call related information for example.

5 * The serial port 630 in Fig. 6 would normally be implemented in a personal digital
assistant (PDA)-type communication device for which synchronization with a user’s desktop
computer (not shown) may be desirable, but is an optional device component. Such a port 630
would enable a user to set preferences througﬁ an external device or software application and
would extend the capabilities of the device by providing for information or software downloads

10 to the device 610 other than through a wireless communication network. The alternate download
path may for example be used to load an encryption key onto the device through a direct and thus
reliable and trusted connection to thereby enable secure device communication.

A short-range communications subsystem 640 is a further optional componenf which
may provide for communication between the device 624 and different systems or devices, which

15 need not necessarily be similar devices. For example, the subsystem 640 miay include an infrared
device and associated circuits and components or a Bluetooth™ communication module to
provide for communication with similarly-enabled systems and devices.

The embodiments described herein are examples of structures, systems or methods
having elements corresponding to the elements of the invention recited in thé claims. This

20 written description may enable those skilled in the art to make and use embodiments having
alternative elements that likewise correspond to the elements of the invention recited in the

claims. The intended scope of the invention thus includes other structures, systems or methods

26

Page 1201 of 1415

WO 02/25409 PCT/CA01/01344

that do not differ from the literal language of the claims, and further includes other structures,
systems or methods with insubstantial differences from the literal language of the claims.

For example, when a software application is rejected at step 250 in the method shown in
Fig. 5, the signing authority may request that the developer sign a contract or enter into a

S business relationship with a device.marvlufacturer or other entity on whose behalf the signing
authority acts. Similarly, if a software application is rejected at step 270, authority to sign the
software application may be de]egatéd to a different signing authority. The signing of a software
application following delegation of signing of the software application to the different authority .
can proceed substantially as shown in Fig. 5, wherein the target signing authority that received

10 the original request from the trusted developer at step 220 requests that the software application
be signed by the different signing authority on behalf of the trusted developer from the target
signing authority. Once a trust relationship has been established between code signing
authorities, target private code signing keys could be shared between code signing authorities to
improve performance of the method at step 240, or a device may be configured to validate digital
15 signatures from either of the truged signing authorities.

In addition, although described primarily in the context of software applications, code
signing systems and methods according to the present invention may also be applied to other
device-related components, including but in no way limited to, commands and associated
command arguments, and libraries configured to interface with device resources. Such

20 commands and libraries may be sent to mobile devices by c'levice manufacturers, device owners,
network operators, service providers, software application developers and the like. It would be

desirable to control the execution of any command that may affect device operation, such as a

27

Page 1202 of 1415

WO 02/25409 PCT/CA01/01344
command to change a device identification code or wireless communication network address for
example, by requiring verification of one or more digital signatures before a command can be

executed on a device, in accordance with the code signing systems and methods described and

claimed herein.

28

Page 1203 of 1415

WO 02/25409 PCT/CA01/01344

We claim:
1. A code signing system for operation in conjunction with a software application having a
digital signature, comprising:
an application platform;
5 an application programming interface (API) configured to link the software application
with the application platform; and
a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application.

10 2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the AP] if the digital signature is not authentic.

3. The code signing system of claim 1, wherein the virtual machine purges the software
application if the digital signature is not authentic.

15
4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

20 signing authority.

29

Page 1204 of 1415

WO 02/25409 PCT/CA01/01344

6. A code signing system for operation in conjunction with a software application having a
digital signature, comprising:
an application platform;
a plurality of application programming interfaces (APIs), each configured to link the
5 software application with a resource on the application platform; and
a virtual machine that verifies the authenticity of the digital signature in order to control
access to the API by the software application,
wherein the virtual machine \}erifies the authenticity of the digital signature in order to control
access to the plurality of APIs by the software application.
10

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library. '

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified
15 as sensitive, and wherein the virtual machine uses the digital signature to control access to the

sensitive APIs.

9. The code signing system of claim 8, for operation in conjunction with a plurality of software

applications, wherein one or more of the plurality of software applications has a digital signature,
20 and wherein the virtual machine verifies the authenticity of the digital signature of each of the

one or more of the plurality of software applicatiohs in order to control access to the sensitive

APIs by each of the plurality of software applications.

30

Page 1205 of 1415

WO 02/25409 PCT/CA01/01344

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system.

5 11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform
comprises a data store.
1
10
13. The code signing system of claim 6, wherein the resource on the application platform

7
comprises a user interface (UI).

14. The code signing system of claim 1, further comprising:

15 a plurality of API libraries each including a plurality of APIs, wherein the virtual
machine controls access to the plurality of API libraries by the software application.
15. The code signing system of claim 14, wherein one or more of the plurality of API libraries is

classified as sensitive, and wherein the virtual machine uses the digital signature to control

20 access to the sensitive API libraries by the software application.

31

Page 1206 of 1415

WO 02/25409 PCT/CA01/01344

16. The code signing system of claim 15, wherein the software application includes a unique

digital signature for each sensitive API library.

17. The code signing system of claim 16, wherein:
5 the software application includes a signature identification for each unique digital
signature;
each sensitive API library includes a signature identifier; and
the virtual machine compares the signature identification and the signature identifier to
match the unique digital signatures with sensitive API libraries.
10
18. The code signing system of claim 1, wherein the digital signature is generated using a
private signature key, and the virtual machine uses a public signature key to ven'fy the

authenticity of the digital signature.

15 19. The code signing system of claim 18, wherein: ‘
the digital signature is generated by applying the private signature key to a hash of the
software application; and
the virtual machine verifies the authenticity of the digital signature by generating a hash
of the software application to obtain a generated hash, applying the public signature key to the

20 digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

32

Page 1207 of 1415

WO 02/25409 PCT/CA01/01344

20. The code signing system of claim 1, wherein the API further comprises:
a description string that is displayed by the mobile device when the software application

attempts to access the APL

5 21. The code signing system of claim 1, wherein the application platform comprises an

operating system.

22. The code signing system of claim 1, wherein the application platform comprises one or more
core functions of a mobile device.

10

23. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

24. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

15 module (SIM) card.

25. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.
20 26. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

33

Page 1208 of 1415

WO 02/25409 PCT/CA01/01344

27. The code signing system of claim 1, wherein the API interfaces with a proprietary data

model on the application platform.

28. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

5 installed on a mobile device.

29. A method of controlling access to sensitive application programming interfaces on a mobile
device, comprising the steps of:
loading a software application on the mobile device that requires access to a sensitive
10 application programming interface (API);
determining whether or not the software application includes a digital signature
associated with the sensitive API; and
if the software application does not include a digitai signature associated with the
sensitive API, then denying the software application access to the sensitive APIL.
15
30. The method of claim 29, comprising the additional step of:
if the software application does not include a digital signature associated with the

sensitive API, then purging the software application from the mobile device.
20 31. The method of claim 29, wherein the digital signature is generated by a code signing

authority.

34

Page 1209 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

32. The method of claim 29, comprising the additional steps of:

if the software application includes a digital signature associated with the sensitive API,
then verifying the authenticity of the digital signature; and

if the digital signature is not authentic, then denying the software application access to

the sensitive APL

33. The method of claim 32, comprising the additional step of:
if the digital signature is not authentic, then purging the software application from the

mobile device.

34. The method of claim 32, wherein the digital signature is generated by applying a private
signature key to a hash of the software application, and wherein the step of verifying the
authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile
device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

35. The method of claim 34, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

35

Page 1210 of 1415

10

15

20

WO §2/25409 PCT/CA01/01344

36. The method of claim 29, comprising the additional step of:
displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive APL

37. The method of claim 36, comprising the additional step of:
receiving a command from the user granting or denying the software application access

to the sensitive APIL.

38. A method of controlling access to an application programming interface (API) on a mobile
device by a software application created by a software developer, comprising the steps of:
receiving the software application from the software developer;
reviewing the software application to determine if it may access the API;
if the software application may access the API, then appending a digital signature to the
software application;
verifying the authenticity of a digital signature appended to a software application; and
providing access to the API to software applications for which the appended digital

signature is authentic.

39. The method of claim 38, wherein the step of reviewing the software application is performed

by a code signing authority.

36

Page 1211 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

40. The method of claim 38, wherein the step of appending the digital signature to the software
application is performed by a method comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

41. The method of claim 40, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHA1).

42. The method of claim 40, wherein the step of verifying the authenticity of a digital signature
comprises the steps of:

providing é corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered
hash; and

determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash.

43. The method of claim 42, comprising the further step of, if the digital signature is not

authentic, then denying the software application access to the API.

37

Page 1212 of 1415

WO 02/25409 PCT/CA01/01344

44. The method of claim 42, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

45. A method of controlling access to a sensitive application programming interface (API) on a
5 mobile device, comprising the steps of:
registering one or more software developers that are trusted to design software
applications which access the sensitive API;
receiving a hash of a software application;
determining if the software application was designed by one of the registered software
10 developers; and
if the software application was designed by one of thé registered software developers,
then generating a digital signature using the hash of the software application, .
wherein
the digital signature may be appended to the software application; and
15 the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application.

46. The method of claim 45, wherein the step of generating the digital signature is performed by
a code signing authority.

20

47. The method of claim 45, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

38

Page 1213 of 1415

10

15

20

hash;

WO 02/25409 PCT/CA01/01344

48. The method of claim 47, wherein the mobile device verifies the authenticity of the digital
signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;
applying the corresponding signature key to the digital signature to obtain a recovered
determining if the digital signature is authentic by comparing the calculated hash with the
recovered hash; and

if the digital signature is not authentic, then denying the software application access to

the sensitive APIL.

49. A method of restricting access to -application programming interfaces on a mobile device,
comprising the steps of:

loading a software application on the mobile device that requires access to one or more
application programming interface (API);

determining whether or not the software application includes an authentic digital
signature associated with the mobile device; and ,

if the software application does not include an authentic digital signature associated with

the mobile device, then denying the software application access to the one or more APIs.

39

Page 1214 of 1415

10

15

20

WO 02/25409 PCT/CA01/01344

50. The method of claim 49, comprising the additional step of:
if the software application does not include an authentic digital signature associated with

the mobile device, then purging the software application from the mobile device.

51. The method of claim 49, wherein:
the software application includes a plurality of digital signatures; and
the plurality of digital signatures includes digital signatures respectively associated with

different types of mobile devices.

52. The method of claim 51, wherein each of the plurality of digital signatures is generated by a

respective corresponding code signing authority.

53. The method of claim 49, wherein the step of determining whether or not the software
application includes an authentic digital signature associated with the mobile device comprises
the additional steps of:

determining if the software application includes a digital signature associated with the
mobile device; and

if so, then verifying the authenticity of the digital signature.

54. The method of claim 53, wherein the one or more APIs includes one or more APIs classified
as sensitive, and the method further comprises the steps of, for each sensitive API:

| determining whether or not the software application includes an authentic digital
signature associated with the sensitive API; and

40

Page 1215 of 1415

WO 02/25409 PCT/CA01/01344

if the software application does not include an authentic digital signature associated with

the sensitive AP], then denying the software application access to the sensitive APL

55. The method of claim 52, wherein each of the plurality of digital signatures is generated by
5 its corresponding code signing authority by applying a respective private signature key

associated with the code signing authority to a hash of the software application.

56. The method of claim 55, wherein the step of determining whether or not the software
application includes an authentic digital signature associated with the mobile device comprises
10 the steps of:
determining if the software application includes a digital signature associated with the
mobile device; and
if so, then verifying the authenticity of the digital signature,
wherein the step of verifying the authenticity of the digital signature is performed by a method
15 comprising the steps of:
storing a public signature key on a mobile device that corresponds to the private signature
key associated with the code signing authority which generates the signature associated with the
mobile device;
generating a hash of the software application to obtain a generated hash;
20 applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

41

Page 1216 of 1415

0 0 0 0O OO A

WO 02/25409 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

‘0 0 0O N

(10) International Publication Number

WO 02/25409 A2

(51)
@n

(22)

(25)
(26)

30)

(71)

International Patent Classification’: GO6F 1/00
International Application Number: PCT/CA01/01344
International Filing Date:

20 September 2001 (20.09.2001)
Filing Language: English
Publication Language: English
Priority Data: .
60/234,152 21 September 2000 (21.09.2000) US

60/235,354
60/270,663

26 September 2000 (26.09.2000)
20 February 2001 (20.02.2001)

us
us

Applicant (for all designated States except US): RE-
SEARCH IN MOTION LIMITED [CA/CA]; 295 Phillip
Street, Waterloo, Ontario N2L 3W8 (CA).

(72) lInventors; and

(75)

74

81)

Inventors/Applicants (for US only): YACH, David, P.
[CA/CA]; 254 Castlefield Avenue, Waterloo, Ontario N2K
2N1 (CA). BROWN, Michael, S. [CA/CA]; 7 Danube
Street, Heidelberg, Ontario NOB 1Y0 (CA). LITTLE,
Herbert, A. [CA/CA]; 504 Old Oak Place, Waterloo,
Ontario N2T 2V8 (CA).

Agent: PATHIYAL, Krishna, K.; Research In Motion
Limited, 295 Phillip Street, Waterloo, Ontario N2L 3W8
(CA).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, 1S, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,

[Continued on next page]

(54) Title: CODE SIGNING SYSTEM AND METHOD

N

12 ;epvﬂ"git;'; Code signer
18
Signed
' Application
Lo Y 22
—
24
Wireless
Network \\
Signed
22 Application
Y
- 28
Device
12
P~
20
1 0/

Page 1217 of 1415

(57) Abstract: A code signing system and method is pro-
vided. The code signing system operates in conjunction with
a signed software application having a digital signature and
includes an application platform, an application programming
interface (API), and a virtual machine. The API is configured
10 link the software application with the application platform.
The virtual machine verifies the authenticity of the digital sig-
nature in order to control access to the API by the software
application.

10/381219

WO 02/25409 PCT/CA01/01344
117
Application
Y
S~ 16
~~ | Application .
12 Developer Y Code sngner_
| ™8
Signed
Application
Y 22
_—
24
Wireless
Network
Signed
29 Application
Y 28
Device
12
-APl .
P 20
1 0/
Figure 1

Page 1218 of 1415

WO 02/25409

Figure 2

N

44

~

217

Y

. LibraryA

A

Test ApplicationY

with no signature
verification.

A

forwarded toCode
Signing Authority

A

reviewed by Code
Signing Authority

Rejection
Notification to
Software

Developer

Lg———No Accept Code?

Page 1219 of 1415

Application Y uses |/

in device simulator | _~

32

36

38

ApplicationY —/

40

Application’Y -/

PCT/CA01/01344

Code Signing
Authority signs
Application Y with
Digital Signature

A

Return Application
Y to Software
Developer with
Appended Digital
Signature

Y

ApplicationY

loaded on Maobile
Device.

107381219

48

50

e 10/381219

k] e P)

WO 02/25409 PCT/CA01/01344
‘ 3/7
| e e e e e e e e e
72
80 AN 66
\ 74 l \ AP LibraryD (
. \}— API Library C with sensitive AP 68 P Application X (signed)
Application Platform \.[/ API Library B ApplicationZ
B2\ AP AR | Y (signed
Pl Library A with sensitive ication Y (sign
L« Device Hardware o App {signed)
78 70
84 .
\.A Operating System
Signature Identification - A
i Digital Signature - A
Description P;(J)b{l;;lfig’y Signature e o
8| coe Schvare & String Signature Identifier r_j’ Signature identification -C | \
Data Models \ C Digital Signature - C

I 7
88/ 20/ \ .

92

Virtual Machine

Mobile Device

Figure3

Page 1220 of 1415

paved, & 1
BEaS S o T
WO 02/25409

S vy _,;" i.‘l;“"" !
. » ~
ew

a4/7

10/381219

PCT/CA01/01344

[S—g0

4

f\m

[S—70

A 4

Application

=

Library with sensitive API Application Y
Platform (82 (signed)
Device
94E 96E
Hardware [‘ ﬂ
System Description || oo <Y || Signature Signature - E
strin. o verify identifier
Core Software 9 signature Signature ID - F L\
& Data Models Signature - F
— ¢ 5
\\84 LVSB 88 20 92 96F 94F
Virtual Mac:hine
Co.
Mobile Device
[/ Mobile Device
\. Mobile Device /
\525 \
62F

o

Page 1221 of 1415

Figure 3A

62G

WO 02/25409

Figure 4

100\

107381219

PCT/CA01/01344

517

102

Application Loaded
on Mobile Device

104 \
Does Application

Need Access to Sensitive
API Library?

Yes

v

1086 Virtual Machine"
\ Retrieves Public
Key and Signature
Identifier from API
Library

/108

Proper

Z

2
o

Signature on
Application?

Yes

110
o

Signature

A4

Verified?

Yes

J

User Prompted }—"

116 Application Not

Loaded or
Executed

f———No

Execute
Application?

Yes

A 4

118 Virtual Machine
\— executes
Application and -
linkds with API
Library

2 120

Page 1222 of 1415

107381219

. WO 02/25409 PCT/CA01/01344

6/7
210

Application
Developed

220
A
Receive Target

Signing Request

250

230
Developer
Trusted by

N»@jec’t Applica@
Authority?

245 J
/ , 240 / 270

Developer
Database

Target
Private Key HavzeTirget Nw@eject Applica@
Database y

Y
A 4

260
Sign Application </
280 \/200

A

Return
Signature

Figure 5

Page 1223 of 1415

PCT/CA01/01344

WO 02/25409

717

0v9

SuOojJESIUNWIWOY
abuey-yoys

8¢9

9¢9
auoydouoip

ve9

¢e9

. Jiod [eusg

Microprocessor

9 ainbi4
019
A%
swa)sAsqng 179
991A8 (] JBY0
: |ouon jda)
19 819
niwsuel | F
s|eubig -
€19 /
SO1
029 4%’
oJjuo
19410, 919
dsa Janeoay :
sjeubis %
929 N
¥29
Aowsaiy
yseid
¢e9

Page 1224 of 1415

- Express Mail No. EV 243791125 US

March 20, 2003

v PTO/SB/01 (03-01)
Approved for use through 10/31/2002. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Y

(ECLARATION FOR UTILITY OR [AtiermyDock t Numb ¢ | SOSZ5%2 23
D -
DESIGN First Nam d Inv ntor David P. YACH
PATENT APPLICATION COMPLETE IF KNOWN
(37 CFR 1.63) Application Number /
0 March 20, 2003
Declaration I:I Declaration Filing Date
Submitted OR Submitted after Initial Group Art Unit
with Initial gl;ng é;u;c?gr?e))
ili 16 (e
L Filing required) Examiner Name]

As a below named inventor, | hereby declare that:
My residence, mailing address, and citizenship are as stated below next to my name.

I believe | am the original, first and sole inventor (if only one name is listed below) or an criginal, first and joint inventor (if plural
names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

SOFTWARE CODE SIGNING SYSTEM AND METHOD

AN

) (Title of the Invention)
the specification of which

is attached hereto

OR
I:' was filed on (MM/DD/YYYY) as United States Application Number or PCT International
Application Number and was amended on (MM/DD/YYYY) (if applicable).

| hereby state that | have reviewed and understand the contents of the above identified specification, including the claims, as
amended by any amendment specifically referred to above.

| acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56, including for continuation-
inapan applications, material information which became available between the filing date of the prior application and the national or
PCT international filing date of the continuation-in-part application.

| hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or (f), or 365(b) of any foreign application(s) for patent, inventor's
or plant breeder's rights certificate(s), or 365(a) of any PCT international application which designated at least one country other
than the United States of America, listed below and have also identified below, by checking the box, any foreign application for
patent, inventor's or plant breeder’s rights certificate(s), or any PCT intemational application having a filing date before that of the
application on which priority is claimed.

Prior Foreign Application Foreign Filing Date Priority Certified Copy Attached?
Number(s) Country (MM/DD/YYYY) Not Claimed YES NO

L 0 O
[] L1 O
[L O
[[01

D Additional foreign application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto:
[Page 1 of 2]

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needs of the individual case. Any comments on
the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC
20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231. -

Page 1225 of 1415

PTO/SB/01 (03-01)
Approved for use through 10/31/2002. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information uniess it contains a valid OMB control number.

DECLARATION — Utility or Design Patent Application

Direct all correspondence to: D g:";;orrg'z dNeuLna]g: OR . Correspondence address below
David B. Cochran, Esq.

Name
JONES DA

Address NQH_D_EQ]_DL_QDJ.LGKBSM&&LGQQ‘Q_

Cleveland Ohio -

City /g\ State- : ZIP 4%
USA (216) 586-3939 (216) 579-0212

Country Telephone Fax

| hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the

validity of the application or any patent issued thereon.

NAME OF SOLE OR FIRST INVENTOR :

D A petition has been filed for this unsigned inventor

; OD Given Name —2¥1 Family Name YACH
l - (first and middle [if any]) or Surname
Inventor's .
Signature &/ % c ﬁi(Date 17 March 2003
[
Waterloo Ontario CANADA Canadian
Residence: City <= State Country Citizenship
295 Phillip Street
Mailing Address
Waterloo Ontario N2L. 3w8 CANADA
City State 2IP Country

NAME OF SECOND INVENTOR:

D A petition has been filed for this unsigned inventor

Given Name Michael S.

Family Name BROWN

(first and middie it any[}] or Surname
Inventor's < ‘ g/l/'/\/ (
Signature /% (/Za,(/ S’ Date/%/l [01 20073
Waterloo ‘ﬁ Ontario CANADA Canadian
Residence: City (\/A State . Country Citizenship
Mailing Address 295 Phillip Street
Waterloo Ontario N2L 3W8 CANADA
: State ZIP Country

Additional inventors are being named on the 1 supplemental Additional Inventor(s) sheet(s) PTO/SB/02A attached hereto.

Page 1226 of 1415

[Page 2 of 2]

PTO/SBI/02A (10-00)

Approved for use through 10/31/2002. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

ADDITIONAL INVENTOR(S)

DEC LARATlON Supplemental Sheet

Page1l of 1 _

Name of Additional Joint Inventor, if any: [0 A petition has been filed for this unsigned inventor

Herbert A. LITTLE

O Given Family Name
/2)/0 Name . or Surname
T
Inventor's K
Signature # a % Cﬁ Dat#&b /-7' 23,

Waterloo Ontario CANADA Canadian
Residence: State Country Citizenship

295 Phillip Street
Mailing Address

Mailing Address

i CANADA
City Waterloo th;gno 21p N2L 3wW8 Country
Name of Additional Joint Inventor, if any: 0 A petition has been filed for this unsigned inventor
Given Family Name
Name or Surname
Inventor's
Signature Date
Residence: City State Country Citizenship
Mailing Address
Mailing Address
City State ZIP Country

Name of Additional Joint Inventor, if any: 3 A petition has been filed for this unsigned inventor

Given Family Name
Name or Surname
Inventor's
| Signature Date
Residence: City State Country Citizenship

Mailing Address

Mailing Address

City State ZIP Country

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needs of the individual case. Any comments
on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington,
DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

Page 1227 of 1415

Express Mail No. EV 243791125 US

7 March 20‘03

Please type a plus sign (+) inside this box ——P»
PTO/SB/81 (02-01)
Approved for use through 10/31/2002. OMB 0651-0035
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required 1o respond to a collection of information unless it display a valid OMB control number.
Application Number

Filing Date
First Named Inventor D

POWER OF ATTORNEY OR Title Software Code Slani
AUTHORIZATION OF AGENT Group Art Unit

Examiner Name

_ Attorney Docket Number |555255012423 J/

i hereby appoint:
Place Customer
D Practitioners at Customer Number [] ——— | Number Bar Code
OR Label here
Practitioner(s) named below:
Name Registration Number
Krishna K. Pathiyal, Esq. 44435

Robert C. Liang, Esq. 48091

***Please see attached sheet™*

as my/our attorney(s) or agent(s) to prosecute the application identified above, and to transact all
business in the United States Patent and Trademark Office connected therewith.

Please change the correspondence address for the above-identified application to:
[:] The above-mentioned Customer Number.

OR Place Customer
(1 Practitioners at Customer Number | | ———» | NumberBar Code
Label here
OR
::gi,:/:;t';al Name David B. Cochran, Esq.
Address JONES DAY
Address North Point, 901 Lakeside Avenue
City Cleveland | state | Ohio | zip 44114
Country USA
Telephone (216) 586-3939 | Fax {(216) 579-0212
l am the:

O Applicant/Inventor.

Assignee of record of the entire interest. See 37 CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTOISB/96).

SIGNATURE of Applicant or Assignee of Record
Mihal)‘az;iidis President and Co-CEO on behalf of Research In Motion Limited

Signature / <

Date [0[G?J

NOTE: Signatures of all e inveniorS or assignees of record of the entire interest or their representative(s) are required. Submit multiple

Name

forms if more than one sj nature is required, see below".
4 *Total of 2 forms are submitted. (PTO/SB/81 (02-01) and “Supplemental Page Listing Additional Agents of Record)
Burden Hour Statement This form is estimated to take 3 minutes to complete. Time will vary dependln upon the needs of the individual case. Any comments on
the amount of time you are required to complete this form should be sent to the Chief Informatnon icer, U.S. Patent and Trademark Office, Washington, DC
i i for Patents, Washington, DC 20231.

20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: A

Page 1228 of 1415

555255012423

SOFTWARE CODE SIGNING SYSTEM AND METHOD

* SUPPLEMENTAL PAGE LISTING ADDITIONAL AGENTS OF RECORD

ADAMO, Kenneth R., Reg. No. 27,299
ARNDT, Barbara E., Reg. No. 37,768
ASAM, Michael R. Reg. No. 51,417
BIERNACK]I, John V., Reg. No. 40,511
COCHRAN, David B., Reg. No. 39,142
COOPER, Lorri W., Reg. No. 40,038
FAY, Regan J., Reg. No. 26,878
FEELING, F. Drexel, Reg. No. 40,602
FRANZ, Paul E., Reg. No. 45,910
GRIFFITH, Calvin P., Reg No. 34,831
MAIORANA, David M., Reg. No. 41,449
O'HEARN, Timothy J., Reg. No. 31,552
ROSE, Mitchell, Reg. No. 47,906
SAUER, Joseph M., Reg. No. 47,919
SCANLON, Stephen D., Reg. No. 32,755
SERRA, Wayne M., Reg. No. 51,138
SHEAFEFER, Jenny L., Reg. No. 45,099
SWITZER, H. Duane, Reg. No. 22,431
VARY, Michael W., Reg. No. 30,811
WAMSLEY, III, James L., Reg. No. 31,578

allof JONES DAY
North Point
901 Lakeside Avenue
Cleveland, Ohio 44114
us

Page 1229 of 1415

PTO-1556
(5/87)

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

“U.S. Government Printing Office: 2001 — 481-697/59173

Page 1230 of 1415

‘. T

i

Effective October 1, 2001

PATENT APPLICATION FEE DETERMINATION'RECORD

Application or Docket Number

CLAIMS AS FILED - PART |

=i the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, nter "3.”
Th *Highest Number Previously Paid For" (Total or Independent) is the high st number found in the appropriate box in column 1.

SMALL ENTITY OTHER THAN
(Column 1) Column 2 TYPE [OR SMALL ENTITY
TOTAL CLAIMS RATE | FEE RATE | FEE
FOR NUMBEREILED___| NUMBER EXTRA BASIC FEE R [BASIC FEE @dﬂ
OF b/ —
TOTAL CHARGEABLE CLAIMS /d? minus 20= |* Y? X$ 9= OR X$18= bo?/ d
*
INDEPENDENT CLAIMS minus 3 = ? = -
I /A _ Xa2= or| x84 |75,
I MULTIPLE DEPENDENT CLAIM PRESENT D
+140= OR| +280=
* If the difference in column 1 is less than zero, enter “0” in column 2 TOTAL OR TOTAL
CLAIMS AS AM ENDED - PART I ‘ OTHER THAN
Column2) (Column3) SMALLENTITY OR SMALLENTITY
i ~ HIGHEST
: ADDI- ADDI-
< REMAINING NUMBER : L
£ - I pREVIOUSLY | st RATE |TIONAL RATE | TIONAL
] | AMENDMENT PAID FOR FEE FEE
= . '
' l% | Minus ok = i X$ 9= QR' X$18=
3 Independent |« Minus ook = X42= OR X84=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM] -
~ ‘ | +140= or| +280=
— TOTAL OR TOTAL
ADDIT. FEE ADDIT. FEE
(Column 2) _ (Column 3)
RIGHEST -
® REMAINING NUMBER | PRESENT . ADDI- ADDI-
E AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE | TIONAL
w AMENDMENT | PAID FOR FEE FEE
= . - .
g Mlnu§ - = X$ 9= lor X$18=
%‘ Independent |« Minus ok = a2 on| e
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM E] .
+140= OR - 4+280=
TOTAL| OR JOTAL
_ ADDIT. FEE ADDIT. FEE
Column 1 (Column 2) _ (Column 3) ‘
CLAIMS HIGREST
o REMAINING NUMBER PRESENT ADDI- ADDI-
e AFTER PREVIOUSLY | EXTRA RATE |TIONAL 'RATE | TIONAL
mk AMENDMENT PAID FOR FEE " FEE
E .
Otal . . - _
% Te * ' Minus ok X$ 9= OR X$18=
£ |Independent |+ Minus ok =
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM D
+140= OR | +280=
* Ifmeentrylncolumnﬂslessmanm ntry in column 2, write “0” in column 3. ‘
* If the “High st Number Previously Paid For” IN THIS SPACE i less than 20, enter "20. ADD,IO,IQ'E' OR spom PeE

FORM PTO-875 (Rev. 8/01)

Page 1231 of 1415

*U S GPO.2001 482-124 7 59197

Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

| of 2

. TAMALA HOLIAND
o FPIRALEGAL SPECIALIST
i DESIGNATED OL'F}G{I
3 (7083) 305-8463
ol
; ; SERIAL NO. FILING DATE
 MULTIPLE DEPENDENT CLAIM :
! FEE CALCULATION SHEET APPLICANTIS]
*{ (FOR USE WITH FORM PTO-875)
;) LAIVS
ASFILED | 1., enOMENT f2nd AMENDMENT . : °
IN'D.‘ DEP. | IND. DEP. IND. DEP. IND. DEP. IND. DEP. IND. DEP.]
1 I { " ' Bl / / 1
2 | o T Ny 52 / /
[! I - 53 [.
4 L : } b4 A |
3 i &5 7 i
6 I) L 56 AN
7 THI i 57 1 7
8 i t 58 /
9] : 59 /
10 | C 80’ /-
1 [| 61 Vi
12 !) 62 /
13 T] 63 !
14 i !] 64 / -
15] 1 66 /
16 g [i 66 {
17 i t 67 /
18 | ! | I 68 7 ;
19 ; i | 69 /¢
20 g - 10 -
21) | (ot {
22 g] [72 l
23 i i | 78 /
24 : | | 74 Vi
25 i f i 76 {
26 ‘ j | 76 /
27 i 1 | 77 | »
28 | ’ { 78 /
29 I 7 79 {
30]] { 80 {
31 | ! 81 /
32 A) - 83 /
33] / 83 i
34 |] 84 7
35 j ki i 85]
36 L | 88 /
s | 1]] 8 Il
38 | [‘ 88 1
39 i { 89 !
4 NE { { 90 £
41 i ! i 91 ’
42 Hl T 1 82 L
43 i/ / 93 :
44 i ‘ / 94 i
5 | [i % B
46 NI / % /
PO T B - o, 17
48 i J] [a8: :"' .
49 AN / 9 .
%0 T/] 100 ;
o T | O g el B
TOTAL e 4—! : E"EI“‘ '
DEP. HH
PTO-1380 (3-78) +MAY BE USED FOR ADDITIONAL CLAIMS OR AMENDMENTS 5.5, SR ARTMENT ot COMMERCE
|

Page 1232 of 1415

! REMALEGAL SPECIALIGT .
. DESIGNATED OSFCE - .
. : . (703) 3058483 T
: 5 S8ERIAL NO. FILING DATE
‘MULTIPLE DEPENDENT CLAIM L
.| FEE CALCULATION SHEET RRPLTCARTE)
‘i (FOR USE WITH FORM PTO-875)
N , ' LAIMS
ASEILED A ENT f2nd AMENEMENT) * *
b, | per. § b, | per. | mo. | oep. o. | oer. | o, | oer. L o, | oep.
F11 B . B i R
ELl IR - |
i il i / B S]
wd s l
16 i .
106 [B
27 i T/
! 48 i
IBD 1
10 -
11 :
12 ;
13 i
14 ;)
15 ‘
16
17 N 67
18) - 68 5
19 69 d
20 70
21 7
22 72
23 ; 73
24 : %4
25 E 75
26 76
27 ! 77
28 78
29 | 79
30 i 80
31 81
32 i ‘82
33 ! 83
34 84
35 85
36 86
37 ! 81
38 88
39 : 89
40 90
41 9t
42 92
e 93
m 94
45 9%
46 %
a1 o
48 98!
49 . 9
%0 T 100°
T % | | [)
e ' B
T 7 !
PT0-1360 (3-78)] | +MAY BE USED FOR ADDITIONAL CLAIMS OR AMENDMENTS Y5, QEPARTMENT of COMMERCE
it)

il .

Page 1233 of 1415

ATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference see Notification of Transmittal of International Search Report

l l FOR FURTHER (Form PCT/ISA/220) as well as, where aaap?)licable, item 5 below.
PCA-0445 ACTION
{nternational application No. international filing date (day/month/year) (Earliest) Priority Date (day/month/year)
PCT/CA 01/01344 20/09/2001 21/09/2000
Applicant

RESEARCH IN MOTION LIMITED |

T
:

This Intemnational Search Report has been prepared fby this Internationat Searching Authority and is transmitted to the applicant
according to Article 18. A copy is being transmitted t4 the International Bureau.

This Intemational Search Report consists of a total of 3 sheets.
itis also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report
a. With regard to the language, the international search was carried out on the basis of the international application in the
tanguage in which it was filed, unless otherwise indicated under this item.
the international search was carried out on the basis of a translation of the international application furnished to this
Authority (Rule 23.1(b)).

b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search
was carried out on the basis of the sequence listing :

contained in the international application in written form.

filed together with the international application in computer readable form.
furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readble form.

the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the
international application as filed has been furnished.

the statement that the information recorded in computer readable form is identical to the written sequence listing has been
furnished

Certain claims were found unsearchable (See Box I).

00O 0O BOobod

Unity of invention is lacking (see Box 1).

4. With regard to the title,
[:] the text is approved as submitted by the applicant.
m the text has been established by this Authority to read as foliows:
SOFTWARE CODE SIGNING SYSTEM AND METHOD

5. With regard to the abstract,

[X] the textis approved as submitted by the appiicant.

D the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box Ill. The applicant may,
within one month from the date of mailing of this international search report, submit comments to this Authority.

6. The figure of the drawings to be published with the abstract is Figure No. 2

D as suggested by the applicant. D None of the figures.
m because the applicant failed to suggest a figure.
D because this figure better characterizes the invention.

Form PCT/ISA/210 (first sheet) (July 1998)

Page 1234 of 1415

INTERNATIONAL SEARCH REPORT

International Application No

A 01/01344

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, PAJ

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WO 99 05600 A (APPLE COMPUTER)
4 February 1999 (1999-02-04)

abstract; figures 5,6,9
page 6, 1ine 1 - Tine 15
page 19, line 4 - line 14

page 24, 1ine 6 — line 23
page 25, line 23 - line 26

page 20, line 19 -page 21, line 4

1,2,6,7,
12-15,
21,26,
27,29,32

11,18,
19,26,
31,38-56

m Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the ar which is not
considered to be of particular relevance

"E" earlier document but published on or after the intemational
filing date

L document which may throw doubts on priotity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*Q" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T

e

e

later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention

* document of particular relevance; the claimed invention

cannot be considered nove! or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled

in the art.

document member of the same patent famify

Date of the actual completion of the international search

12 April 2002

Date of mailing of the international search repon

22/04/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
1 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Powell, D

Form PCT/ISA/210 (second sheet) (July 1992)

Page 1235 of 1415

page 1 of 2

INTERNATIONAL SEARCH REPORT

Interpational Application No
‘A 01/01344

C.(Continuation) DOCUMENTS CONSIl!RED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

P,Y

EP 0 930 793 A (TEXAS INSTRUMENTS INC)
21 July 1999 (1999-07-21)

abstract; figure 6
page 15, line 54 -page 16, line 5
page 16, line 32 - line 44

US 6 157 721 A (SIBERT W OLIN ET AL)
5 December 2000 (2000-12-05)

abstract; figures 2,3,5,8,14

column 2, line 27 - 1ine 65

column 11, line 7 - line 19

column 15, line 23 - line 41

& AU 36815 97 A (INTERTRUST TECHNOLOGIES
CORP) 19 February 1998 (1998-02-19)

US 5 978 484 A (APPERSON NORMAN ET AL)
2 November 1999 (1999-11-02)

abstract; figure 5

column 2, line 41 - line 60
column 3, line 44 - line 57
column 8, line 17 - line 25

1,3-6,
8-10,20,
22-24,
28-33,
36,37

34,35

11,18,
19,26,
31,34,
35,38-56

11,18,
19,31,
34,35

Form PCTASA/210 (continuation of second sheet) (July 1982)

Page 1236 of 1415

page 2 of 2

INTERNATIONAL SEARCH REPORT

ation on patent family members

International Application No

A 01/01344
Patent document Publication Patent family Publication

cited in search report date member(s) date

W0 9905600 A 04-02-1999 US 6188995 Bl 13-02-2001
EP 1023664 A2 02-08-2000
WO 9905600 A2 04-02-1999

EP 0930793 A 21-07-1999 CN 1249643 A 05-04-2000
EP 0930793 Al 21-07-1999
JP 11312152 A 09-11-1999

us 6157721 A 05-12-2000 AU 3205797 A 05-12-1997
AU 3681597 A 19-02-1998
CN 1225739 A 11-08-1999
EP 0898777 A2 03-03-1999
JP 2001501763 T 06-02-2001
WO 9743761 A2 20-11-1997
us 6292569 B1 18-09-2001
US 2002023214 Al 21-02-2002

US 5978484 A 02-11-1999 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

Page 1237 of 1415

PCT/CAQ1/01344
I.ENT COOPERATION TREAT

From the INTERNATIONAL BUREAU

PCT To:
Commissioner
NOTIFICATION OF ELECTION US Department of Commerce
United States Patent and Trademark
(PCT Rule 61.2) Office, PCT
2011 South Clark Place Room
CP2/5C24
e Arlington, VA 22202
Date of mailing (day/month/year) ~ || United-States-of-America-- et
17 September 2002 (17_09'02) in its capacity as elected Office
International application No. Applicant's or agent’s file reference
PCT/CAQ1/01344 PCA-0445
International filing date (day/month/year) Priority date (day/month/year)
20 September 2001 (20.09.01) 21 September 2000 (21.09.00)

Applicant

YACH, David, P. et al

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:

22 April 2002 (22.04.02)

D in a notice effecting later election filed with the International Bureau on:

2. The election was
D was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under
Rule 32.2(b).

Authori ffi
The International Bureau of WIPO utharized officer
34, chemin des Colombett s Denise POSPIEZNY
1211 Geneva 20, Switzerland
Facsimile No.: (41-22) 740.14.35 Telephone No.: (41-22) 338.83.38
Form PCT/IB/331 (July 1992) CA0101344

Page 1238 of 1415

.

N

~ (19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Burcau

(43) International Publication Date

00 0 0 0 0

(10) International Publication Number

28 March 2002 (28.03.2002) PCT WO 02/25409 A3
(51) International Patent Classification’: GO6F 1/00 (72) laventors; and
(75) Inventors/Applicants (for US only): YACH, David, P.

(21) International Application Number: PCT/CA01/01344 [CA/CAJ; 254 Castlefield Avenue, Waterloo. Ontario N2K

2N1 (CA). BROWN, Michael, S. [CA/CA]: 7 Danube

(22) International Filing Date: Street. Heidelberg, Ontario NOB 1YO (CA) LITTLE,

20 September 2001 (20.09.2001) Herbert, A. [CA/CA]. 504 Old Oak Place, Waterloo,

Ontario N2T 2V8 (CA).
(25) Filing Language: English (74) Agent: PATHIYAL, Krishna, K.; Research In Motion
L) Limited, 295 Phillip Street, Waterloo, Ontario N2L 3W8

(26) Publication Language: English (CA).

(30) Priority Data: (81) Designated States (national): AE. AG. AL, AM. AT, AU.
60/234.152 21 September 2000 (21.09.2000) US AZ.BA, BB, BG.BR.BY,BZ.CA, CH,CN.CO, CR.CU,
60/235.354 26 September 2000 (26.09.2000) US CzZ, DE. DK, DM. DZ, EC, EE, ES, Fl. GB, GD. GE. GH.
60/270,663 20 February 2001 (20.02.2001) US GM.HR.HU,ID,IL,IN.IS.JP.KE, KG.KP. KR, KZ. LC,

LK. LR, LS. LT. LU. LV, MA. MD, MG. MK. MN, MW,

(71) Applicant (for all designated States except US): RE- MX, MZ, NO, NZ, PL. PT, RO, RU. SD, SE, SG, SI. SK.

SEARCH IN MOTION LIMITED [CA/CAY; 295 Phillip
Street, Waterloo. Ontario N2L 3W8 (CA).

SL. TJ. T™M, TR, TT, TZ. UA. UG. US, UZ, VN, YU, ZA.
ZW.

[Continued on next page]

2
Start

Appiication Y uses| /'
UbraryA

Test Application Y

with no signatue
e

Applicaton ¥
torwardod toCade}—"
Sigring Authority

Aophcaton ¥
reviewed by Code L/
Signing Authonty

N 2
Rejection JK/ ::" 5":‘9 %
N Accept Coade? Yes ——n! hOTTY g

WO 02/25409° A3

Page 1239 of 1415

(54) Title: SOFTWARE CODE SIGNING SYSTEM AND METHOD

(57) Abstract: A code signing system and method is provided.
The code signing system operates in conjunction with a signed
software application having a digital signature and includes
an application platform, an application programming interface
(APD), and a virtual machine. The API is configured to link the
software application with the application platform. The virtual
machine verifies the authenticity of the digital signature in
order to control access to the API by the software application.

WO 02/25409 A3 lllllllllllwlll!lllllllllllllllIIIllllllllllllllIIIlllllllIIllllll!lllllll

(84) Designated States (regional): ARIPO patent (GH. GM. — before the expiration of the time limit for amending the
KE. LS. MW. MZ. SD. SL. SZ, TZ. UG, ZW). Eurasian claims and 1o be republished in the event of receipt of
patent (AM. AZ, BY,. KG. KZ, MD. RU. T}. TM). European amendments

patent (AT. BE. CH. CY. DE. DK, ES. FI, FR. GB. GR. [E.
IT. LU. MC. NL. PT. SE. TR), OAPI patent (BF, BJ. CF. (88) Date of publication of the international search report:

i CG, CL. CM, GA. GN. GQ. GW, ML, MR, NE. SN. TD, 13 June 2002
TG).

For rwo-letter codes and other abbreviations. refer to the "Guid-

¢ Published: ance Notes on Codes and Abbreviations"” appearing at the begin-

— with international search report ning of each regular issue of the PCT Gazerte.

Page 1240 of 1415

DT

{ PATENT COOPERATION TREATb

)

WiFg -

INTERNATIONAL SEARCH REPORT

(PCT Anticle 18 and Rules 43 and 44)

Applicant’'s or agent's file reference FOR FURTHER see Notification of Transmittal of International Search Report
H (Form PCT/ISA/220) as well as, where applicable, item 5 below.
PCA~0445 ACTION
International application No. International filing date (day/month/year) (Earliest) Priority Date (day/month/year)
)
PCT/CA 01/ 01344 20/09/2001 21/09/2000
Applicant

RESEARCH IN MOTION LIMITED

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant
according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of 3 sheets.
Itis also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report
a. With regard to the language, the international search was carried out on the basis of the international application in the
language in which it was filed, uniess otherwise indicated under this item.
the international search was carried out on the basis of a translation of the international application fumished to this
Authority (Rule 23.1(b)).

b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search
was carried out on the basis of the sequence listing :

contained in the international application in written form.

filed together with the international application in computer readable form.
furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readble form.

the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the
international application as filed has been furnished.

the statement that the information recorded in computer readable form is identical to the written sequence listing has been

00 0O 0oood

furnished
2. Certain claims were found unsearchable (See Box |).
3. Unity of invention is lacking (see Box It).
4. With regard to the title,

[[] thetextis approved as submitted by the applicant.
m the text has been established by this Authority to read as follows:
SOFTWARE CODE SIGNING SYSTEM AND METHOD

5. With regard to the abstract,

m the text is approved as submitted by the applicant.

' D the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box 1ll. The applicant may,
within one month from the date of mailing of this international search report, submit comments to this Authority.

6. The figure of the drawings to be published with the abstract is Figure No. 2
D as suggested by the applicant. D None of the figures.
IX] because the applicant failed to suggest a figure.
]:] because this figure better characterizes the invention.

Form PCT/ISA/210 (first sheet) (July 1998)

Page 1241 of 1415

INTERNATIONAL SEARCH REPORT
{

(" national Application No

A.
IPC 7

CLASSIFICATION OF UBJEC’EH

GO6F1/00

According to Internationa! Patent Classification (IPC) or to both national classification and IPC

‘/CA 01/01344

B. FIELDS SEARCHED

IpCc 7

-

GO6F

Minimum documentation searched (classification system followed by classification symbois)

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

Electronic data base consulled during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant 1o claim No.

WO 99 05600 A (APPLE COMPUTER)
4 February 1999 (1999-02-04)

abstract; figures 5,6,9

page 6, line 1 - line 15

page 19, line 4 - line 14

page 20, line 19 -page 21, line 4
page 24, 1line 6 - line 23

page 25, line 23 - line 26

1,2,6,7,
12-15,
21,26,
27,29,32

19,26,
31,38-56

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

° Special categories of cited documents :

‘A* document defining the generatl siate of the ar which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

°L* documen! which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

} "0O* document referring to an oral disclosure, use, exhibition or

other means

“P* document published prior 10 the internationat filing date but
later than the priority date claimed

T laler document published afier the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention

X document of patlicular relevance; the claimed invention

cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention

cannot be considered lo involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

in the an.

*&" document member of the same patent family

Date of the actual completion of the international search

12 April 2002

Date of mailing of the internationatl search report

22/04/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Authorized officer

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Powell, D
Fomn PCT/ISA/210 (second sheet) (July 1992)
page 1 of 2

Page 1242 of 1415

INTERNATIONAL SEARCH REPORT

C.(Continuation) DOCUMENTSE‘ERED TO BE RELEVANT

. (" " -national Application No
T/CA 01/01344

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Aelevant to claim No.

P,Y

EP 0 930 793 A (TEXAS INSTRUMENTS INC)
21 July 1999 (1999-07-21)

abstract; figure 6
page 15, line 54 -page 16, line &
page 16, line 32 - line 44

US 6 157 721 A (SIBERT W OLIN ET AL)
5 December 2000 (2000-12-05)

abstract; figures 2,3,5,8,14

column 2, line 27 - line 65

column 11, line 7 - line 19

column 15, line 23 - 1ine 41

& AU 36815 97 A (INTERTRUST TECHNOLOGIES
CORP) 19 February 1998 (1998-02-19)

US 5 978 484 A (APPERSON NORMAN ET AL)
2 November 1999 (1999-11-02)

abstract; fiqgure 5

column 2, Tine 41 - 1line 60
column 3, line 44 - line 57
column 8, 1ine 17 - line 25

1,3-6,
8-10,20,
22-24,
28-33,
36,37

34,35

11,18,
19,26,
31,34,
35,38-56

11,18,
19,31,
34,35

Farm PCTASA/210 (continuation of second sheet) (July 1992)

Page 1243 of 1415

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

national Application No

T/CA 01/01344

Patent document ‘

5

Publication Patent family Publication
cited in search report date member(s) date
W0 9905600 A 04-02-1999 US 6188995 B1 13-02-2001
EP 1023664 A2 02-08-2000
Wo 9905600 A2 04-02-1999
EP 0930793 A 21-07-1999 CN 1249643 A 05-04-2000
T EP 0930793 Al 21-07-1999
, JP 11312152 A 09-11-1999
i UsS 6157721 A 05-12-2000 AU 3205797 A 05-12-1997
AU 3681597 A 19-02-1998
CN 1225739 A 11-08-1999
EP 0898777 A2 03-03-1999
JP 2001501763 T 06-02-2001
Wo 9743761 A2 20-11-1997
us 6292569 Bl 18-09-2001
Us 2002023214 Al 21-02-2002
US 5978484 A 02-11-1999 NONE

Form PCT/ASA/210 (patent family annex) (July 1992)

Page 1244 of 1415

WO 02/25409

A2 [N IIIIIIIMIIIIIIIII]IIIIIIIIIIIII (A

SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
YAYA

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

TG).

Page 1245 of 1415

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations. refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazelte.

10

15

20

> ng = Express Mail No. EV 243791125 US

March 20, ,ZYh /3812 1 9
DTO3Rec'd PCTIPTO 2 5 MAR %003

SOFTWARE CODE SIGNING SYSTEM AND METHOD

EVE"-IB?‘JJ.].ESUS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from and is related to the following prior applications:
"Code Signing System And Method," Uniied States Provisional Application No. 60/234,152,
filed September 21,i 2000; "Code Signing System And Method," United States Provisional
Application No. 60/235,354, filed September 26, 2000; and "Code Signing System And

Method," United States Provisional Application No. 60/270,663, filed February 20, 2001.

BACKGROUND

L. FIELD OF THE INVENTION

This invention relates generally to the field of security protocols for software
applivcations. More particularly, the invention provides a code signing system and method that is
particularly well suited for Java™ applications for mobile communication devices, such as
Personal Digital Assi;tants, cellular telephongs, and wireless two-way communication devices

(collectively referred to hereinafter as "mobile devices" or simply “devices”).

2. DESCRIPTION OF THE RELATED ART

Security protocols involving software code signing schemes are known. Typically, such
security protocols are used to ensure the reliability of software applications that are downloaded
from the Internet. In a typical software code signing scheme, ﬁ digital signature is attached to a
software application that identifies the software developer. Once the software is' downloaded by
a user, the user typically must use his or her judgment to determine whether or not the software

1

Page 1246 of 1415

TN AN

a_pplicaﬁon is reliable, based solely on his or her knowledge of the software developer's
reputation. This type of code signing scheme does not ensure that a software application written
b-y a third party for a mobile device will properly interact with the device's native applications
and other resburces. Because typical code signing protocols are not secure and rely solely on the
5 judgment of the user, there is a serious risk that dggtructive, "Trojan horse" type software
applications may be downloaded and installed onto a mobile device.
There also remains a need for network operators to have a system and method to maintain
control over which software applications are activated on mobile devices. R
There remains a further need in 2.5G and 3G networks where corporate clients or
10 network operators would like to control the types of software on the devices issued to its

employees.

SUMMARY

A code signing system and method is provided. The code signing system operates in

15 -- conjunction with a software application having a digital _signgture and includes an application

platform, an application programming interface (API), and a virtual machine. The ‘API is

configured to link the software application with the aﬁpliéation platform. The viﬁﬁai machine

verifies the authenticity of theA digital signature in orde:r to control access to the API by the
software application.

20 A code signing system for operation in conjuncti(;n with a software application having a

digital signature, according to another embodiment of the invention comprises an application

platform, a plurality of APIs, each configured to link the software application with a resource on

Page 1247 of 1415

the application platform; and a virtual machine that verifies the authenticity of the digital
signature in order to control access to the API by the. software ap'plicﬁtion, wherein the virtual
machine verifies the authenticity of the digital signature in order to control access to the plurality
of APIs by the software applicatioﬁ.

5 According to a further embodiment of the invention, a method of controlling access to
sensitive application programming interfaces on a mobile device comprises the steps of loading a
software application on the mobile device that requires access to a sensitive API, determining
whether or not the software application includes a digital signature associated with the sensitive
API, and if the software application does not include a digital signature associated with the

10 sensitive API, then denying the software application access to the sensitive APL
In another embodiment of the invention, a method of controlling access to an application
programming. interface (API) on a mobile device by a software application created by a software
developer comprises the steps of receiving the software application from the software developer,
reviewing the software application to determine if it may access the API, if the software

15 application may access the API, then appending a digital signature to the software application,

vérifying the authenticity of a digital signature appended to a software application, and providing -

access to the API to software applications for which the appended digital signature is authentic.

— A method of restricting access to a sensitive API on a mobile device, according to a

further embodiment of the invention, comprises the steps of registéﬂng one or more software
20 developers that are trusted to design soffware applications which access the sensitive API,

receiving a hash of a software application, determining if the software application was designed

by one of the registered software developers, and if the software application was designed by one

Page 1248 of 1415

i I
of the registered software developers, then generating a digital signature using the hash of the
software application, wherein the digital signature may be abpended to the software application,
and the mébile device verifies the authenticity of the digital signature in order to pontrol access
to the sensitive API by the software application.

5 In a still further embodiment, a method of restricting access to application programming
interfaces on a mobile device comprises the steps of loading a software application on the mobile
device that requires access to one or more API, determining whefher or not the soft‘v;are
application includes a digital signature associated with the mobile device, and if the software

application does not include a digital signature associated with the mobile device, then denying

10 the software application access to the one or more APIs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1is a diagram illustrating a code signing protocol according to one embodiment of
the invention;
15 Fig. 2 is a flow diagram of the code signing protocol described above with reference to
Fig 1, | o -
‘Fig. 3 is a block diagram of a code signing system on a mobile device;
Fig.3Aisa bldck ciiagram of a code signing system on a plurality of mobile devices;
. Fig. 4 is a flow diag-ram illustrating the opefaiion of the code signing system described

20 above with reference to Fig. 3 and Fig. 3A;

Fig. 5 is a flow diagram illustrating the management of the code signing authorities

described with reference to Fig. 3A; and

Page 1249 of 1415

Fig. 6 is a block diagram of a mobile communication device in which a code signing

system and method may be implemented.

DETAILED DESCRIPTION .

5 Referring now to the drawing figures, Fig. 1 is a diagram illustrating a code signing
protocol according to one embodiment of the invention. An application developer 12 creates a
software application 14 (application Y) for a mobile device that requires access to one or more
sensitive APIs on the mobile device. The software application Y 14 may, for example, be a Java
application that operates on a Java virtual machine installed on the mobile device. An API

10 enables the software application Y to interface with an application platform that may include, for
example, resources such as the device hardware, operating system and core software and data
models. In order to make function calls to or otherwise interact with such device resources, a
software application Y must access oﬁe or more APIs. APIs can thereby effectively “bridge” a
software application and associated device resources. In this description and the appended

15 clai-ms,, references to API access should be interpreted to include access of an API in such a way .
Vas to allow a software application Y to interact with one or more corresponding device resources.
Providing access to any API therefore allows a software application Y to interact with aséociated'
device resources, whereas déhyiﬁg access to an API prevents the software applicationk Y from
interacting with the associated resources. For example, a database API may communicate WEI{a

20 device file or data storage system, and access to the database API would provide for interaction
between a software application Y and the file or data storage system. A user interface (UI) API

would communicate with controllers and/or control software for such device components as a

Page 1250 of 1415

" ‘7:‘_ s, S

e o
screen, a keyboard, and any other device components that provide output to a user or accept
input from a user. In a mobile device, a radio API may also be provided as an interface to
wireless communication resources _such__as a transmitter and receiver. Similarly, a cryptographic
API may be provided to interact with a crypto module which imﬁierﬁentscrypto algorithms on a

5 device. These are merely illustrative examples of APIs that may be provided on a device. A
device may include any of these example APIs, or different APIs instead of or in addition to
those described above.

Preferably, any API may be classified as sensitive by a mobile device manufacturer, or

possibly by an API author, a wireless network operator, a device owner or operator, or some

10 other entity that may be affected by a virus or malicious code in a device software application. -

For instance, a mobile device manufacturer may classify as sensitive those APIs that interface

with cryptographic routines, wireless communication functions, or proprietary data models such

as address book or calendar entries. To protect against unauthorized access to these sensitive

APIs, the application developer 12 is required to obtain one or more digital signatures from the

15 mobile device manufacturer or other entity that classified any APIs as sensitive, or from a code

sigping auth(;ﬁgy_ 16 acting on behalf of the manufacfurer or other entity with an interest in

protecting access to sensitive device APIs, and append the signature(s) to the software
application Y 1A4.

In one embodiment, a digital signature is obtained for each sensitive API or library that

20 includes a sensitive API to which the software application requires access. In some cases,

multiple signatures are desirable. This would allow a service provider, company or network

operator to restrict some or all software applications loaded or updated onto a particular set of

Page 1251 of 1415

\! N
®
mobile \devices. In thié multiple-signature scenario, all APIs are restricted and locked until a
“global” signature is verified for a software application. For example, a company may wish to
prevent its employees from executing any software applications onto their devices without first
obtaining permission from a corporate information technology (IT) or computer services
5 department. All such corporate mobile devices may then be configured to require verification of
at least a global signature before a software application can be executed. Access to sensitive
device APIs and libraries, if any, could then be further restricted, dependent upon verification of
respective corresponding digital signatures.

The binary executable representation of software application Y 14 may be independent of
10 the particular type of mobile device or model of a mobile device. Software application Y 14 may
for example be in a write-once-run-anywhere binary format such as is the case with Java
software applications. However, it may be desirable to have a digital signature for each mobile
device type or model, or alternatively for each mobile device platform or manufacturer. -
Therefore, software application Y 14 may be submitted to several code signing authorities if

15 software application Y 14 targets several mobile devices.
- Soft'ware application Y 14 is sent from the applic_atioﬁ 'developer 12 to the code signing
authority 16. In the embodiment shown in Fig. 1, the code signing authority 16 reviews the
software application Y 14, although as described in furth;,r detail below, it is contemplated that
the code signing authority 16 may also or instead consider the identity of the application
20 developer 12 to determine whether or not the software application Y 14 should be signed. The

code signing authority 16 is preferably one or more representatives from the mobile device

Page 1252 of 1415

manufacturer, .the authors of any sensitive API;, or possibly others that have knowledge of the
operation of the sensitive APIs to which the software application needs access.
If the code signing authority 16 determines that software application Y 14 may access the
sensitive API and therefore should be-signed, then a signature- (not shown) for the software
5 application Y 14 is generated by the code signing authority 16 and appended to the software
application Y 14. The signed software application Y 22, comprising the software application Y
14 and the digital signature, is then returned to the application developer 12. The digital
signature is preferably a tag that is generated using a private signature key 18 maintained solely
by the code signing authority 16. For example, according to one signature scheme, a hash of the
10 software application Y 14 may be generated, using a hashing algorithm such as the Secure Hash
Algorithm SHA1, and then used with the private signature key 18 to create the digital signature.
In some signature schemes, the private signature key is used to encrypt a hash of information to
be signed, such as software application Y 14, whereas in other schemes, the private key may be
used in other ways to generate a signature from the information to be signed or a transformed
15 - version of the information.

. The "signed software a.pplicva‘tion Y 22 may then be sent to a mobile device 28 or
downloaded by the mobile device 28 over a wireless network 24. It should be understood,
however, that a code signing protocol according to the present invention is not limited to
software applications that are downloaded over a wireless netv\}ork. For instance, in alternative

20 embodiments, the signed software application Y 22 may be downloaded to a personal computer
via a computer network and loaded to the mobile device through a serial link, or may be acquired

from the application developer 12 in any other manner and loaded onto the mobile device. Once

Page 1253 of 1415

the signed software application Y 22 is loaded on the mobile device 28, each digital signature is

preferably verified with a public signature key 20 before the software application Y 14 is granted

access td a sensitive API library. Although the signed software application Y 22 is loaded onto a

device, it should be appreciated that the software application that may eventually be executed on

5 the device is the software application Y 14. As described above, the signed software application

Y 22 includes the software application Y 14 and one or more appended digital signatures (not

shown). When the signatures are verified, the software application Y 14 can be executed on the
device and access any APIs for whic;h corresponding signatures have been verified.

The public signature kéy 20 corresponds to the private signature key 18 maintained by

10 the code signing authority 16, and is preferably installed on the mobile device along with the

sensitive API. However, the public key 10 may instead be obtained from a public key repository

(not shown), using the device 28 or pbssibly a personal computer systém, and installed on the

device 28 as needed. According to one embodiment of a signature scheme, the mobile device 28

calculates a hash of the software application Y 14 in the signed software application Y 22, using

15 the same hashing algorithm as.the code signing authority 16, and uses the digital signature and

the public sighaturerke_):/‘ 20 to recover the has_hbca'lculz‘ited by the signing authority 16. The

.resultant locally calculated hash and the hash recovered from the digital sighature are then

compared, and if the hashes are the same, the signature is veriﬁed. The software application Y

14 can then Bc execllted on the device 28 and access any sensitive APIs for which the

20 corresponding signature(s) have been verified. As described above, the invention is in no way

limited to this particular illustrative example signature scheme. Other signature schemes,

Page 1254 of 1415

> T
o
* including further ;;ublic key signature schemes, may also be used in conjunction with the code
signing methods and systems described herein.
Fig. 2 is a flow diagram 30 of the code signing protocol described above wit_h reference
to Fig. 1. The protocol bégins at step 32. At step 34;:a software developer writes the software
5 application Y for a mobile device that requires access to a sensitive API or library that exposes a
sensitive API (_A}?I library A). As discussed above, s&me or all APIs on a mobile c-ie.vicc may be
classified as sensitive, thus requiring verification of a digital signature for access by any software
application such as software application Y. In step 36, application Y is tested by the software
“developer, preferably using a device simulator in which the digital signature verification function
" 10 has been. disabled. In this manner, the software developér may debug the software application Y
before the digital signéturc is acquired from the code signing authority. Once the software
7 application Y has been writtgn and debuggéd, itis forwarded to the code signing a\ithority in step
-~ -38. | |

In steps 40 and 42, the code signing authority reviews the software application Y to
) 1.-5:‘ ' determir},e, whether or nét,it should be given access to the sensitive API, and either accepts or
. fc_éjects the software applicgtion. The code sign'iﬂgle;ﬁ;hdrity may apply"‘a"numbe; of ‘criteria to
determine whether or not to grant the software application access to the sensitive API including,
for example, the size of the software application, the device resources accessed by the API, the
- perceived utility §f tnhe softwére;;plicati“on, the interactién with other software appliéations, the
20 inclusion of a virus ér other destructive code, and whether or not the developer has a contractual
obligation or other business arrangement with the mobile device manufacturer. Further details of

managing code signing authorities and developers are described below in reference to Fig. 5.

10

Page 1255 of 1415

° e

If the code signing authority accepts the software application Y, then a digital signature,
and preferably a signature identification, are appended to. the software application Y in step 46.
As desnged above, the digital signature may be generated by using a hash of the software
application Y and a private signature key 18. The signature identification is described below

5 with reference to Figs. 3 and 4. Once the digital signature and signature identification are
app‘ended to the software application Y to generate a signed software application, the signed
software application Y is returned to the software developer in step 48. The software developer
may then license the signed software application Y to be loaded onto a mobile device (step 50).
If the code signing authority rejects the software application Y, however, then a rejection

10 notification is preferably sent to the software developer (step 44), and the software application Y
will be unable to access any API(s) associated with the signature.

In an alternative embodiment, the software developer may provide the code signing
authority with only a hash of the software application Y, or provide the software application Y in
some type of abridged format. If the software application Y is a Java application, then the device

15 independent ‘binary *.class files may be used in the hashing operation, although device dependent
files such >as *Lcod! -files used b;' the assignee of the present application may in§te§ad be used in
hashing or bthér ciigital signature operations when software applicatioﬁs are intended for
operation on péxficular devices or device types. By providing only a hash or abridged version of
the software ap.plication Y, the software developef may have the software application Y signed

20 without revealing proprietary code to the code signing authority. The hash of the software
application Y, along with the private signature key 18, may then be used by the code signing

authority to generate the digital signature. If an otherwise abridged version of the software

11

Page 1256 of 1415

N N
v : s

application Y is sent to the code signing authority, tﬂen the abridged version may similarly be
used to generate the digital signature, provided that the abridging scheme or algorithm, like a
hashing algorithm, generates different outputs for different inputs. This ensures that every
software application will héve a different abridged version and thus a different signature that can
5 only be verified when appended to the particular corresponding software application from which
the abridged version was generated. Because this embodiment does not enable the code signing
authority to thoroughly review the software application for viruses or other destructive code,
however, a registration process between the software developer and the code signing authority
may also be required. For instance, the code signing authority may agree in advance to provide a
10 - trusted software developer access to a limited set of sensitive APIs.

In still another alternative embodiment, a software application Y may be submitted to
mére than one signing authority. Each signing authority may for example be responsible for
signing software applications for particular sensitive APIs or APIs on a particular model of
mobile device or set of mobile devices that supports the sensitive APIs required by a software

15 - application. A manufacturer, ‘mobile communication network operator, service provider, or
,.Vcorporate client for example may thereby have signing authority over the use of s’ensitivelAPIs

for their particular mobile device model(s), or the mobile devices operating on a par.tic.u]ar
network, subscribing to one or more particular services, or distributed to corporate employees.

A signed software application may then include a software application and at least one appended

20 digital signature appended from each of the signing authorities. Even thou.ghl these signing

authorities in this example would be generating a signature for the same software application,

12

Page 1257 of 1415

T /\
o
different signing and signature verification schemes may be associated with the different signing
authorities.

Fig. 3 is a block diagram of a code signing system 60 on a mobile device 62. The system
60 includes a virtual machine 64, a plurality of software applications 66-70, a plurality of API
5 libraries 72-78, and an application platform 80. The application platform 80 preferably includes
all of the resources on the mobile device 62 that may be accessed by the software applications
66-70. For instance, the application platform may include device hardware 82, the mobile
device's opprating system 84, or core software and data models 86. Each API library 72-78
preferably includes a plurality of APIs that interface with a resource available in the application
10 platform. For instance, one API library might include all of the APIs that interface with a
calendar program and calendar entry data models. Another API library might include all of the
APIs that interface with the transmission cifcuitry and functions of the mobile device 62. Yet
another API library might include all of the APIs capable of interfacing with lower-level services
performed by the mobile device's operating system 84. In addition, the plurality of API libraries
15 72-78 may include both libraries that expose a sensitive API 74 and 78, such as an interface to.a
cryptographic function, and libraries 72 ahd 76, that may be acpesseq without exposing sensitive
APIs. Sinﬂlarly, the plurality of software applications 66-70 may include both signed software
applications 66 and 70 that require access to one or more sensitive APIs, and unsigned software
applications such as 68. The virtual machine 64 is preferably ‘an object oriented run-time
20 environment such as Sun Micro System's J2ME™ (Java 2 Platform, Micro Edition), which
manages the execution of all of the software applications 66-70 operating on the mobile device

62, and links the software applications 66-70 to the various API libraries 72-78.

13

Page 1258 of 1415

Software application Y 70 is an example of a signed software application. Each signed .
software application preferably includes -an actual software application such as software
application Y comprising for example software code that can be executed on the application
platform 80, one or more signature identiﬁcations 94 .and one or more corresponding digital

5 signatures 96. Preferably each digital signature 96-and associated signature identification 94 in a
signed software application 66 or 70 corresponds to a sensitive API library 74 or 78 to which the
software application X or software application Y requires access. The sensitive API library 74 or
78 may include one or more sensitive APIs. In an alternative embodimént, the signed software
applications 66 and 70 may include a digital signature 96 for each sensitive API within an API

10 library 74 or 78. The signature identifications 94 may be unique integers or some other means of
relating a digital signature 96 to a specific API library 74 or 78, API, application platform 80, or
model of mobile device 62.
API library A 78 is an ékample of an API library that exposes a sensitive AP1. Each API
library 74 and 78 including a sensitive API should preferably include a description string 88, a
15 public signature i(ey 20, and a signature identifier 92. The signature identifier 92 preferably
corresponds to a signature identification 94 in a signed software appiication 66 or 70, and
enables the i/irtual machine 64 to quickly match a digital signature 96 with an API library 74 or
78. The public signature key 20 corresponds to the private signature key 18 maintained by the
ccide signing authority, and 1s used to verify the authenticity of a digital signatuie 96. The
20 description string 88 may for example be a textual message that is displayed on the mobile
device when a signed software application 66 or 70 is loaded, or alternatively when a software

application X or Y attempts to access a sensitive APL

14

Page 1259 of 1415

Operationally, when a signed software application 68-70, respectively including a
software application X, Z, or Y, that requires access to a sensitive API library 74 or 78 is loaded
onto a mobile device, _thé vixtual machine 64 searches the signed for an appended digital
signature 96 associated with the API library 74 or 78. Preferably, the appropriate digital

5 signature 96 is located by the virtual machine 64 by matching 616 signature identifier 92 in the
API librafy 74 or 78 with a signature identification 94 on the signed software application. If the
signed software application includes the appropriate digital signature 96, then the virtual
machine 64 verifies its authenticity | using the public signature key 20. Then, once the
appropriate di-gital signature 96 has been located and verified, the description string 88 is

10 preferably displayed on the mobile device before the software application X or Y is executed and
acceéses the sensitive APL. For instance, the description string 88 may display a message stating
that "Apﬁlication Y is attempting to access API Library A," and thereby provide the mobile
device user with the final control to grant or deny access to the sensitive APL |

Fig. 3A is a block diagram of a code signing system 61 on a plurality of mobile devices

15 62E, 62F and 62G. The system 61 includes a plurality of mobile devices each of which onlg/
three are illustrated, mobile devices 62E, 62F and 62G. Also shown is a signed software -

- application 70, including a software application Y to which two‘ digital signatures 96E and 96F
with corresponding signature identifications 94E and 94F have been appended. In the example
"system 61, each pair composed of a digital signature and identification, 94E/96E and 94F/96F,

20 corresponds to a model of mobiie device 62, API library 78, or associated platform 80. If
signature identifications 94E and 94F correspond to different models of mobile device 62, then

when a signed software application 70 which includes a software application Y that requires

15

Page 1260 of 1415

o | ®
access to a sensitive API library 78 is loaded onto mobile device 62E, the virtual machine 64 |
searches the signed software application 70 for a digital signature 96E associated with the API
library 78 by matc_hing identifier 94E with signature identifier 92. Similarly, when a signed
software appiication 70 including a software applicaiion Y that requirés access to a sensitive API
5 library 78 is loaded onto a Ir-1(;i)ile device 62F; the virtual machine 64 in device 62F searches the
signed software application 70 for a digital signature 96F associated with the API library 78.
However, when a software application Y in a signed software application 70 that requires access
to a sensitive API library 78 is loaded onto a mobile device model for which the application
developer has not obtvained a digital signature, device 62G in the examblé of Fig. 3A, the virtual
10 machine 64 in the device 64G does not find a digital signature appended to the software
application Y and consequently, access to the API library 78 is denied on device 62G. It should
be appreciated from the foregoing description that a software. application such as software
application Y may have multiple device-specific, library-speciﬁc, or API-specific signatures or
some combination of such signatures appended thereto. Similarly, different signature
15 verification requirements- may be configured for the different devices.” For example, device 62E |
may require verification of both a global signaturé; as well as additional signatures for any
sensitive APIs to which a software application requires access in . order for the software
application to be executed, whereas device 62F may require verification of only a global
signature and device 62G may require verification of signatures only for its sensitive APLs. It
20 should also be apparent that a communication system may include devices (not shown) on which
a software application Y received as part of a signed software application such as 70 may

execute without any signature verification. Although a signed software application has one or

16

Page 1261 of 1415

i L >

i

L, me-)

more signatures appended thereto, the software application Y might possibly be executed on
some devices without first having any of its signature(s) verified. Signing of a software
application preferably does not interfere with its execution on devices in which digital signature
verification is not implemented.
-5 Fig. 4 is a flow diaéfﬁfn 100 illustrating the operation of the code signing system
described above with reference to Figs. 3 and 3A. In step 102, a software application is loaded
onto a mobile device. Once the software application is loaded, the device, preferably using a
virtual machine, determines whether or not the software application requires access to any API
libraries that expose a sensitive API (step 104). If not, then the software application is linked
10 with all of its required API libraries and executed (step 118). If the software applica/tion does
require access to a sensitive API, however, then the virtual machine verifies that the software
application includes a valid digii;i signature associated any. senéitive APIs to whicfi access is
required, in steps. 106-116. .
In step 106, the virtual machine retrieves the public signature key 20 and signature
15 identifier 92 from the sensitive API library. The signature identifier 92 is then used by the
virtual machine in step 108 to détérm_ine whether or not the software application has an appended
digital signature 96 wifh a cbﬁéébonding signature identification 94. If not, then the software
application has not been approved for access to the sensitive API by a code signing authority,
avﬁdkthe‘ software application is- preferably prevented from' l.)ei:ng executed in step 116. In
20 alternative embodiments, a software application without a proper digital signature 96 may be
purged from the mobile device, or may be denied access to the API library exposing the sensitive

API but executed to the extent possible without access to the API library. It is also contemplated

17

Page 1262 of 1415

that a user may be prompted for an input when signature verification fails, thereby providing for
user controi of such subsequent operations as purging of the software application from the
device. -
If a digitzﬂ signature 96 corresponding to the sensitive APT library is appended to the
5 software application and located by the virtual machine; then the virtual machine uses the public
key 20 to verify the authenticity of the dfgital signature 96 in step ll>0. This step may be
performed, for example, by using the signature verification scheme described above or other
a1t§mative signature schemes. If the digital signature 96 is not authentic, then the software
appli;:atiori is preferably either not exccute'd,-purged, or restricted fror-h accessing the sensitive
10 API as described above with referencelto step 116. If the digital signafure is authentic, however,
then the description string 88 is preferably displayed in step 112, warning the mobile device user
that the software application requires access to a sensitive Ai—”I, and pbésibly prompting the user
for -authorization to execute or load the software applicatign (step 114). When more than one
signature is to be verified for a software application, then the steps 104-110 are preferably
15 fepeated for each signature before the USer> is brompted in step 112. If the mobile device user in
step 114 authorizes the software applic'z‘ltion,' then it may be executed and linked to the sensitive
API library in stép’l 18.
Fig. 5 is a flow diagram 200 illlistfé‘tinﬁg the managemer# of the code .signing authorities
described wirth reference to Fig. 3A. At step élO, an application developér has developed a new
20 software application which is intended to be executable one or more target device models or
types. The target devices may include sets of devices from different manufacturers, sets of

device models or types from the same manufacturer, or generally any sets of devices having

18

Page 1263 of 1415

RN SN

Y

f . ;
i

particular signature and verification requirements. The term “target device” refers to any such
set of devices having a common signature requirement. For example, a set of devices requiring
verification of a device-specific global signature for_execution of all software applications may

comprise a target device, and devices that require both a global signature and further signatures

5 for sensitive APIs may be part of more“tha'n‘ one target device set. The software application may
B

be written in a device indépéndent manner by using at least one known API, supported on at least

one target device with an API library. Preferably, the developed software application is intended

to be executable on several target devices, each of which has its own at least one API library.

At step 220, a code signing authority for one target device receives a target-signing

- 10 requc;st from the de_\{e_loper.' The target signing request in‘cludes the software application or a

hash of the software application, a developer identifier, as well as at least one target device

.-‘identifier which ideniiﬁ_c_:s th‘c‘ta‘rge't device for which"a signature is being requested. _At step 230,

the signing authority consults a developer database 235 or other records to determine whether or

not to 'trust developér 220. This determination can be made according to several criteria

15 - discussed above; such as Wﬁether or not the developer has a contractual obligation or has entered

- into some other fype‘ of bg'siness,.grrangement with a device manufacturer, network operator,
service provider, or device _;manufacturer. If the developer is trusted, then the method pro_ceedi ?j,,_»,

step 240. However, if tl~16 developer is not trusted, then the software application is rejected (250)

and not signed by the sngnmg authority. Assdming thé developer was trusted, at step 240 the

20 signing authority determines if it has the target private key corresponding to the submitted target

identifier by consulting a private key store s‘uch as a target private key database 245. If the target

private key is found, then a digital signature for the software application is generated at step 260

19

Page 1264 of 1415

and the digital signature or a signed software application including the digital signature appended
to the software application is returned to the developer at step 280. However, if the target private

key is not found at step 240, then the software application is rejected at step 270 and no digital

signature is generated for the §oftwar_e application. - ~
5 _ Advantageously, if target signing authorities follow corﬁpétible embodiments of~ the
methch outlined in Fig. 5, a netwdri(of target signing ag*tlvl-oﬁi"es“may be established in order to |
expediently manage code signing \z_\uthoritics and a developer c<;mmunity code signing process
providing signed software applications for multiple targets with low likelihood of‘ destructive
code.

10 Should any destructive or otherwise problematic code be found in a software application
or suspéct_ed because of behavior exhibited when a software appiication is executed on a de\-/ice,
theﬁ thc-gégis;tfation orl_pﬁv'ilege"s. of »t'hc;,"corresponding application developer with any or all
signing authorities may also be’suspe_r}ded or revoked, since the digital signature provides an
aﬁdit trail through which the developer of a problematic software application may be idéntiﬁed.

15 In such an event, devices may be informed of the revocation by béi-ng configured to periodiéally "
download signature revocation liéfs, for example. If software applications for which the. -
,cénespotlding digital signatures han been revoked are running on a device, the device may then
halt execution of any sucfx software application and possibly' purge the software application from
its local sforage. If preferred, devices may also be configured to re-execute diéital signature

20 verifications, for instance periodically or when a new revocation list is downloaded. —

Although a digital signature generated by a signing authority is dependent upon

authentication of the application developer and confirmation that the application developer has

20

Page 1265 of 1415

been properly registered, the digital signature is preferably generated from a hash or otherwise

transformed version of the software application and is therefore application-specific. This

contrasts with known code signing schemes, in which API access is granted to any software

applicatiohs arriving from trusted application developers or autﬁors. In the code signing systems

5 and methods described herein, API access is granted on an application-by-application basis and
thus can be more strictly controll_qd or regulated. _

Fig. 6is a Block diagram of .a ;ob.ilé communication device in which a code signing

system and method may be implementedi “The mobile‘ communication device 610 is preferably a

two-way communication device having at léaét voice and data communication capabilities. The

10 device preferably has the capability to co@unicate with other computer systems on the Internet.

Depending on the functionality provided by the device, the device may be referred to as a data

messaging de\;ic;, éwtwo-way pager, a cellular telephone with data messaging capabilities, a

wireless Internet. appliance or a data communication device (with or without telephony

capabilities). _

15 | Wl.lere the device 610 is enabled for two-way comfnunicati%nﬁgglhe device will
incorporate a communicati‘on subsystem 611, including a receiver. 6&2,'5 transmitter 614, and
associated compOnents such as one or more, preferably embedded or internal, antenna elements
616 and 618, local oscillators (LOs) 613, and a processing module such as a digital signal
processor (DSP) 620 As will be apparent to thbsf: skilled in the field of communications, the

20 particular design of the communication subsystem 611 will ‘be dependent upon the
communication network in which the device is intended to operate. For example, a device 610

destined for a North American market may include a communication subsystem 611 designed to

21

Page 1266 of 1415

operate within the Mobitex™ mobile communication system or DataTAC™ mobile
communication system, whereas a device 610 intended for use in Europe may incorporate a
General Paéi(et Radio Service (GPRS) communication subsystem 611.

Network access requirements will also vary depending upon the type of network 919. For
5 example, in the Mobitex and DataTAC networks, mobile devices such as 610 are registered on
e thc;, network using a unique identification number aésociated with each device. In GPRS
networks however, network access is associated with a subscriber or user of a- dévice 610. A
GPRS device therefore requires a subscriber identity module (not shown), commonly referred to
| ~asa SIM card, in order to operate on a GPRS network. Wifhout a SIM card, a GPRS devipe will
10 ﬂot be fully functional. Local or non-network communication functions (if any) m;y be operable,
,bl_Jt the device 610 will be unable to carry out any functions involving communications over

network 619, other than any 'legally required operations such 'és “911” emergency calling.
When required. network registration or activation procedures have been completed, a
device 610 may send an;l recéi\;c communication signals over the network 619. Signals received
15 | by the antenna 616 through a communication network 619 are input to the receiver 612, which
may - perform such cqmmon,' receiver functions as signal amplification, freqﬁcncy down
conversion, filtering, channel selection and the like, and in the example system shown in Fig. 6,
~7 analog to digital conversion. Analog to digital conversion of a received signal allows more
Eomplex communication functions such as demodulation and 'decoding to be performed in the

20 DSP 620. In a similar manner, signals to be transmitted are processed, including modulation and

encoding for example, by the DSP 620 and input to the transmitter 614 for digital to analog

Dt *

22

Page 1267 of 1415

‘; i

conversion, frequency up conversion, filtering, amplification and transmission over the
communication network 619 via the antenna 618.

The DSP 620 not only processes communication signals, but also provides for receiver

and transmitter control. For example, t}}e gains applied to communicaﬁqn signals in the receiver

5 612_ and transmitter 614 may be adaptively controlled through automatic gain control algorithms

implemented in the DSP 620. T |

The device 610 preferably includes a microprocessor 638 which controls the overall
operation of the device. Communication fun;tions, ir;ci:dirig at least data and voice
communications, are performed through the communication subsystem 611. The microprocessor

10 638 also interacts with further device subsystems or resources such as the display 622, flash
memory 624, random access memory (RAM) 626, auxiliary input/output (I/O) subsystems 628,
serial port 630, keyboard 632, speaker 634, microphone 636, a short-range communications
subsystem 640 and any other device subsystems generally designated as 642. APIs, including
sensitive APIs requiring verification of one or more corresponding digital signatures before

15 accessis grantéd, may be provided on the device 610 to interface between software applications
and any of the resources shown in Fig. 6.

Some of the subsystems shown in Fig. 6 perform communication-related functions,
whereas other subsystems may provide “resident” or on-device functions. Notably, some
subsystems, sﬁch as keyboard 632 and display 622 for example, may be used for both

20 communication-related functions, such as entering a text message for transmission over a

communication network, and device-resident functions such as a calculator or task list.

23

Page 1268 of 1415

Operating system software used by the microprocessor 638, and possibly APIs to be

accessed by software applications, is preferably stored in a persistent store such as flash memory

624, which may instead be a read only memory (RQM) or similar storage element (not shown).

Those skilled; the .art will appreciate that the operating system, specific device software

5 applications, or parts thereof, may be temporarily loaded into a volatile store such as RAM 626.

It is contemplated that feceived.and transmitted communication signals may aIso'be stored to
RAM 626. -

The microprocessor 638, in addition to its operating system functions, preferably enables

execution of software applications on the device. A predetermined set of applications which

10 control basic device operations, including at least data and voice communication applications for

example, will normally be installed on the device 610 during manufacture. A preferred

application that may be loaded onto the device may be a personal information manager (PIM)

application having the ability to organize and manage data items relating to the device user such

as, but not limited to e-mail, calendar events, voice mails, appointmenfs, and task items.

‘15 Naturally, one or more memory stores would be available on the device to facilitate: storage of

PIM data items on the device. Such PIM application would preferably have the ability to send

~ and receive data items, via the wireless network. In a preferred embodiment,.the PIM data items

are seamlessly integrated, synchronized and updated, via the wireless r;etwork, with the device

user’s corresponding data items stored or associated-with a host computer system thereby

20 creating a mirroréd host computer on the mobile device with respect to the data items at least.

This would be especially advantageous in the case where the host computer system is the mobile

device user’s office computer system. Further applications, including signed software

24

Page 1269 of 1415

£ =

o °
applications as described above, may also be loaded onto the device 610 through the network
619, an auxiliary /O subsystem 628, serial port 630, short-range communications subsystem 640
or any other suitable subsystem 642. The device microprocessor 638 may then verify any digital
signa,tixres, possibly including both “global” device signatures and API-specific signatures,
5 appended to éuch a software appliéaﬁon before the software application can be executed by the

microprocessor 638 and/or access any associated sensitive APIs. Such flexibility in application

installation increases the functionality of the device and may provide enhanced on-device

o r— S

functions, communication-related functions, or both. For example, -secure communication
applications may enable electronic commerce functions and other such financial transactions to
10 be performed using the device 610, through a crypto API and a crypto module which implerﬁents
crypto algorithms on the device (not shown).
| 'In a data communication mode, a received signal such as a text message or web pagej
dbwnlqad will be processed b.yl the communication subsystem 611 and input to the
microprocessor 638, which will preferably further process _the received signal for output to the
15 display 622, or alternatively to an auxiliary I/O device 628. A user of device 610 may also
compose data items such as email messages for example, using the keyboard 632, which is
preferably.a complete alphanumeric keyboard or telephone-type keypad, in conjunction with the i
display 622 and possibly an auxiliéry /O device 628. Such composed items may then.be
transmitted over a communication network through the commurii_catibn subsystem 611.
20 ~ For voice communications, overail operation of the device 610 is substantially similar,
except that received signals would preferably be output to a speaker 634 and signals for

transmission would be generated by a microphone 636. Alternative voice or audio I/O

25

Page 1270 of 1415

N :/:-\

‘ l 1 : !

subsystems such as a voice message recording subsystem may also be implemented on the
device 610. Although voice or audio signal output is preferably accomplished primarily through

calling party, the duration of a voice call, or other voice call related ‘inf_c')rmation for example.
5 The serial port 630 in Fig. 6 would normally be impleménteg.in a personal digital
assistant (PDA)-type communication device for which synchronizatiop with a user’s desktop
- computer (not shown) may be desirable, but is an optional device compc:r;;nt. Such a port 630
wéuld enable a user to set preferences through an external device or software application and
would extend the capabilities of the device by providing for information or software downloads
10 to the device 610 other than through a wireless communication network. The alternate download
path may for example be used to load an encryption key onto the device through a direct and thus
reliable and trusted connection to thereby enable secure device communication.
A short-range communications subsystem 640 is a further optional component which
may provide for communication between the devicé 624 and different systems or devices, which
15 need not necessarily be similar devices. For example, the subsystem 640 may include an infrared
device and associated circuits and components or a Bluetooth™ communication module to
provide for communication with similarly-enabled systems and devices.
The embodiments described he'reinr are examples of structures, systems or methods
having elements corresponding to the elements 6f the invention recited in the claims. This
20 .v—vritten description may enable those skilled in the art to make and use embodiments having

alternative elements that likewise correspond to the elements of the invention recited in the

claims. The intended scope of the invention thus includes other structures, systems or methods

26

Page 1271 of 1415

D o
.
that do not differ from the literal language of the claims, and further includes other structures,
systems or methods with insubstantial differences from the literal language of the claims.
For example, when a software application is rejected at step 250 in the method shown in
“Fig. 5, the sigﬁing authority may. rc';quest that the developer sign a contract or enter into a
5 Dbusiness relationship with a device manufacturer or other entity on whose behalf the signing
authority acts. Similarly, if _a'sc.)ftware application is rejected at step 270, authority to sign the
software application may be delegated to a different signing authority. The signing of a software
application following delegation of signing of the software application to the different authority
can proceed substantialljas shov;'n in Fig. 5, wherein the target signing authority that received
10 the original request from the trusted developer at step 220 requests that the software application
be signed by the different signing authority on behalf of the trusted developer from the target
signing authority. Once a trust relationship has been established between code signing
authorities, target private code signing keys could be shared between code signing authorities to
improve performance of the method at step 240, or a device may be configured to validate digital
T 15 signatures from either of the trusted signing authorities.

“In addition, although described primarily in thé-context of software applications, code
signing systems and methods according to the present invention may also be applied to other
device-related components, including but in no way limited to, commands and associated
command arguments, and libraries configured to interface with device resources. Such

20 commands and libraries may be sent to mobile devices by device manufacturers, device owners,
network operators, service providers, software application developers and the like. It would be

desirable to control the execution of any command that may affect device operation, such as a

27

Page 1272 of 1415

TN

command to change a device identification code or wireless communication network address for
example, by requiring verification of one or more digital signatures before a command can be
executed on a device, in accordance with the code signing systems and methods described and

claimed herein.

28

Page 1273 of 1415

DTOIRecPCT/PTO 20 MAR 2003
We claim: B g
1. A code signing system for operation in conjunction with a software application having a
digital signature, comprising:
an application platform;
5 an application programming interface (APﬁ configured to link the software application
with the application platform; and -
a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application.

10 2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authentic.

3. The code signing system of claim 1, wherein the virtual machine purges the software
application if the digital signature is not authentic.

15
4. The code signing system of claim 1, v;/herein the code sigﬁing system is installéd onra mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

20 signing authority.

29

Page 1274 of 1415

N £
®

6. A code signing system for operation in conjunction with a software application having a
digital signature, comprising;:

an application platform;

a plurality of application programming interfaces (APIs), each configured to li_rlk the

5 software application with a resource on the application platform; and
- a virtual machine that verifies the authenticify of the mgital signature in order to control
access to the API by the software application,
wherein the virtual machine verifies the authenticity of the digital signature in order to control
access to the plurality of APIs by the 'software application.
10

7. The code signing system of claim 6, wherein the plurality of APIs are included in an API

library.

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified
15 as sénsitive, and wherein the virtual machine uses the digital signature to control access to the

sehsitive APIs.

9. The code signing syste;m of claim 8, for operation in conjunction with a plurality of software

applications, wherein one or mofe of the plurality of software applications has a digital signature,
20 and wherein the virtual machine verifies the authenticity of the digital signature of each of the

one or more of the plurality of software applications in order to control access to the sensitive

APIs by each of the plurality of software applications.

30

Page 1275 of 1415

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system. .

5 11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

- comprises a data store.

10
13. The code signing system of claim 6, wherein the resource on the application platform
comprises a user interface (UD).
14. The code signing system of claim I, further comprisihg:

15 a plurality of API libraries each including a plurality of APIs, wherein the virtual

machine controls access to the plurality of API libraries by the software application.

15. The code signing system of claim 14, wherein one or more of the plurality of API libraries is
classified as sensitive, and wherein the virtual machine uses the digital signature to control

20 access to the sensitive API libraries by the software application.

31

Page 1276 of 1415

/;‘_; L,

16. The code signing system of claim 15, wherein the software application includes a unique

digital signature for each sensitive API library.

17. The code signing system of claim 16, wherein:
5 the software application includes a signature identification for each unique digital
sjgnature;
_each sensitive API library includes a signatu_remidentiﬁer; and
the virtual machine compares the signature identification and the signature identifier to
match the unique digital signatures with sensitive API libraries.
10 |
18. The code signing system of claim 1, wherein the digital signature is generated using a
private signature key, and the virtual machine uses a public signature key to verify the

authenticity of the digital signature.

15 19. The code signing system of claim 18, wherein:
- the digital signature is .ge‘nerated by applying the private signature key to a hash of ihé.
software application; and

the virtual machine verifies the authenticity of the digital signature by generating a hash
of the software application to obtain a generated hash, applying the public signature key to. the

20 digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

32

Page 1277 of 1415

fTy K

I\..:. 'I‘

20. The code signing system of claim 1, wherein the API further comprises:
a description string that is displayed by the mobile device when the software application

attempts to access the APL

5 21. The code signing system of claim 1, wherein the application platform comprises an

operating system.

22. The code signing system of claim 1, wherein the application platform comprises one or more
core functions of a mobile device.

10
23. The code signing system of claim 1, wherein the application platform comprises hardware

on a mobile device.

24. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

15 module (SIM) card.

25. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.

20 26. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

33

Page 1278 of 1415

.’/\‘: /‘\\
27. The code signing system of claim 1, wherein the API interfaces with a proprietary data

model on the application platform.

28. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

5 installed on a mobile device.

29. A method of controlling access to sensitive application programming interfaces on a mobile
device, comprising the steps of:
loading a software application on the mobile device that requires access to a sensitive
10 application programming interface (API);
determining whether or not the software application includes a digital siénaiure
1 associated with the sensitive API; and
if the software application does not include a digital signature associated with the
sensitive API, then denying the software application access to the sensitive APL
15
30. The method of claim 29, comprising the additional step of:
if the software application does not include a digital signature associated with the

sensitive API, then purging the software application from the mobile device.

20 31. The method of claim 29, wherein the digital signature is generated by a code signing

authority.

34

Page 1279 of 1415

10

15

20

N SN
32. The method of claim 29, comprising the additional steps of:
if the software application includes a digital signature associated with the sensitive API,
then verifying the authenticity of the digital signature; and -
if the digital signature is not authentic, then denying the software application access to
the sensitive API.
33. The method of claim 32, comprising the additional step of:

if the digital signature is not authentic, then purging the software application from the

mobile device.

34. The method of claim 32, wherein the digital signature is generated by applying a private
signature key to a hash of the software application, and wherein the step of verifying the
authenticity of the digital signature is performed by a method comprising the steps of:

storing a public signature key that corresponds to the private signature key on the mobile
device;

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

35. The method of claim 34, wherein the digital signature is generated by calculating a hash of

the software application and applying the private signature key.

35

Page 1280 of 1415

N -~
36. The method of claim 29, comprising the additional step of:
displaying a description string that notifies a user of the mobile device that the software

application requires access to the sensitive AP

5 37. The method of claim 36, comprising the additional step of:
receiving a command from the user granting or denying the software application access

to the sensitive APL

38. A method of controlling access to an application programming interface (API) on a mobile
10 devicebya sqftware application created by a software developer, comprising the steps of:
receiving the software application from the software developer;
reviewing the software application to determine if it may access the API;
if the software application may access the API, then appending a digital signature to the
software application;
15 verifying the authenticity of a digital signature appended to a software application; and
providing access to the APl to softwére appi.icati(;ns for which the appended digital

signature is authentic.

"39. The method of claim 38, wherein the step of feviewing the software application is performed

20 by a code signing authority.

36

Page 1281 of 1415

40. The method of claim 38, wherein-th;..s_tep of appending the digital signature to the software
application is performed by a method comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

S signature.

41. The method of claim 40, wherein the hash of the software application is calculated using the

Secure Hash Algorithm (SHA1).

10 42. The method of claim 40, wherein the step of verifying the authenticity of a digital signature
comprises the steps of:
providing a corresponding signature key on the mobile device;
calculating the hash of the software application on the mobile device to obtain a
calculated hash;
15 applying the corresponding signature key to the digital signature to obtain a recovered
hash; and
determining if the digital signature is authentic by comparing the calculated hash with the

recovered hash.
20 43, The method of claim 42, comprising the further step of, if the digital signature is not

authentic, then denying the software application access to the APIL

37

Page 1282 of 1415

N 2N
44. The method of claim 42, wherein the signature key is a private signature key and the

corresponding signature key is a public signature key.

45. A method of controlling access to a sensitive application programming interface (API) on a
5 mobile device, co}rlpdsing the steps of:
registering one or more software developers that are trusted Ato design software
applications which access the sensitive API;
receiving a hash of a software applicaﬁon;
determining if the software application was designed by one of the registered software
10 developers; and
if the software application was designed by one of the registered software developers,
then generating 2; digital signature using the hash of the software application,
wherein
the digital signature may be ‘appended to the software aﬁplication; and
15 the mobile device verifies the authenticity of the digital signature in order to control

access to the sensitive API by the software application.

46. The method of claim 45, wherein the step of generating the digital signature is performed by
a code signing authority.

20
47. The method of claim 45, wherein the step of generating the digital signature is performed by

applying a signature key to the hash of the software application.

38

Page 1283 of 1415

Pt

48. The method of claim 47, wherein the mobile device verifies the authenticity of the digital
signature by performing the additional steps of:

providing a corresponding signature key on the mobile device;

5 calculating the hash of the software application on the mobile device to obtain a

calculated hash;

applying the corresponding signature key to the digital signature to obtain a recovered
hash;

determining if the digital signature is authentic by comparing the calculated hash with the

10 recovered hash; and
if the digital signature is not authentic, then denying the software application access to

the sensitive APL.

49. A method of restricting access to application programming interfaces on a mobile device,
15 comprising the steps of:
loading a software application on the mobile device that requires access to one or more
application programming interface (API);
determining whether or not the software application includes an authentic digital
signature associated with the mobile device; and
20 if the software application does not include an authentic digital signature associated with

the mobile device, then denying the software application access to the one or more APIs.

39

Page 1284 of 1415

N P

50. The method of claim 49, comprising the additional step of:
if the software application does not include an authentic digital signature associated with

the mobile device, then purging the software application from the mobile device.

5 51. The method of claim 49, whérein:

the software application includes a plurality of digital signatures; and

the plurality of digifal signatures includes digital signatures respectively associated with

different types of mobile devices.

10 52. The method of claim 51, wherein each of the plurality of digital signatures is generated by a

respective corresponding code signing authority.

53. The method of claim 49, wherein the step of determining whether or not the software
application includes an authentic digital signature associated with the mobile device comprises
15 the additional steps of:
determining if the software application includes a digital signature associated with the
mobile device; and

if so, then verifying the authenticity of the digital signature.

20 54. The method of claim 53, wherein the one or more APIs includes one or more APIs classified
as sensitive, and the method further comprises the steps of, for each sensitive API:
determining whether or not the software application includes an authentic digital
signature associated with the sensitive API; and

40

Page 1285 of 1415

10

15

20

if the software application does not include an authentic digital signature associated with
the sensitive API, then denying the software application access to the sensitive API.
55. The method of claim 52, wherein each of the plurality of digital signature? is generated by
its corresponding code signing authority by applying a respective private signature key

associated with the code signing authority to a hash of the software application.

56. The method of claim 55, wherein the step of determining whether or not the software
application includes an authentic digital signature associated with the mobile device comprises
the steps of:

determining if the software application includes a digital signatur¢ associated with the
mobile device; and

if so, then verifying the authenticity of the digital signature, _
wherein the step of verifying the authenticity of tl}e digital signature is performed by a method
comprising the steps of:

storing a public signature key on a mobile device that corresponds to the private signature
key associated with the code signing authority which generates the signature associated with the
mobile device; |

generating a hash of the software application to obtain a generated hash;

applying the public signature key to the digital signature to obtain a recovered hash; and

comparing the generated hash with the recovered hash.

41

Page 1286 of 1415

ABSTRACT |
- A code signing system and method is provided. The code signing system opératés in
conjunction with a signed software application having a digital signature and includes an
application platform, an épplicaﬁon programming interface (API), and a virtu‘alwr;achiné. The
5 API is configured to link the software application with the application platform. The virtual

machine verifies the authenticity of the digital signature in order to control access to the API by

the software application.

42

Page 1287 of 1415

-~ ~ 107381219
o

17

Application

Y

/16

-~ | Application
Developer Y

12 Code signer

Signed
Application

Y 22

_Network

Signed
29 Application
Y
/ 28
_ Device
12
-API .
Y ™20
10/
Figure 1

Page 1288 of 1415

107381219

)

207

- 34
. Application Y uses /
Figure 2 LibraryA
Y

30\ Test ApplicationY 3

in device simulator{ _~
with no signature
verification.

Y

Application’ Y
forwarded toCode —/
Signing Authority

Y

ApplicationY _/

reviewed by Code
Signing Authority

44\
Rejection Code Signing 46
Noatification to ” Authority signs
Software | No Accept Code Yes 1 Application Y with [~
Developer Digital Signature

Y

Return Application 48
Y to Software J
Developer with
Appended Digital
Signature

A

Application Y
loaded on Mobie —/
Device.

Page 1289 of 1415

- ~ 10/381219

Jm e e e e e e e S SS ST TSI
72
80 AN 66
- v \ -
\ 7 I API Library D /)
- \Ij API Library C with sensitive AP1 68 || Application X (signed)
76 -
Application Platform \l./ API Library B B ApplicationZ
82 -
\ AP Library A with sensitive APl Application Y (signed)
~ Device Hardware .
78 .70
84
\., Operating System
Signature Identification - A
i Digitat Signature - A
Description P:)b{'/?:;yy Signature / 9 9 \
A String " Identifier — - —
8| Core Software & Signature r_ Signature Identification-C N
Data Models — Digital Signature - C
1 %'f

®

92

/ /
g N

Virtual Machine .

Mobile Device

Figure 3

Page 1290 of 1415

417
[=80 [s [=70
Application Library with sensitive AP Application Y
Platform (‘—82 (SIgned)
Device 94E 96E
Hardware 1
Operating oublic k ' Signature ID-E
System Description tl:) vlgriff/y Signature Signature - E
Core Software string signature identifier Signature ID - F K
& Data Models : Signature - F
— A GC
t84 &86 88 20 92 96F 94F
_ Virtual Machine
C64
Mobile Device
f Mobile Device
\ Mobile Device /]
\GZE \
62F
62G

Page 1291 of 1415

Figure 3A

Figure 4

116

Page 1292 of 1415

100\

5/7

Application Loaded
on Mobile Device

104

= Does Application
Need Access to Sensitive
AP Library?

_ Yes

v

Virtual Machine
Retrieves Public
Key and Signature
Identifier from API

Library

108
P /
roper

Signature on

Application?

~ Yes

Signature
Verified?

No

Y

Application Not
Loaded or
Executed

Yes

v

User Prompted

Execute
Application?

|<¢—————No

Yes

Y

Virtual Machine

118
executes

. 110
/—

107381219

102

Application and
linkds with API

Library

»{ End

120

~ 10738121y

-3
Tied?

6/7

/" Application
~ Developed

\

Receive Target
Signing Request

250
230

Developer Developer
P Trusted by N Reject Application
Database !
_ Authority?

245 !
/ | 240 / 270

Target

Private Key HavEeT;grget N»Geject Application)

Database

Y
Y

260
Sign Application </
280 \/200

Return
Signature

Figure 5

Page 1293 of 1415

o9

10/381219

SuojEOIUNWWOYD
abuey-Hoys

. 8¢9

9€9
* | suoydosoiy k—
pE9

€9

P pJeoghay]

"

Microprocessor

g ainbi4
019
[A%S
sweysAsgng | e
80IAa(g Jay10 !
| |oJju0D e
I8 819
nwsues | %
sjeubig
€19
A SO
09 A%)
0Jjuo =5
1043U0D 919 79
dsa SEVNELEN
sjeubig %
929 N
A2 I
29
Aowa %@#ﬂ
usel '
229 .
Aejdsig

Page 1294 of 1415

WPATENT COOPERATION TR

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

H - g -
Applicant's or agent's file reference See Notification of Transmittal of International
PWO-0445 FOR FURTHER ACTION Preliminary Examination Report (Form PCT/IPEA/416)
Intemnational application No. International filing date (day/month/year) Priority date (day/month/year)
PCT/CA01/01344 20/09/2001 21/09/2000
International Patent Classification (IPC) or national classification and IPC
GO06F1/00
Applicant

RESEARCH IN MOTION LIMITED et al.

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority
and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 4 sheets, including this cover sheet.

O This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have
been amended and are the basis for this report and/or sheets containing rectifications made before this Authority
(see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of sheets.

3. This report contains indications relating to the following items:

I R Basis of the report
I 0O Priority
" Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
Iv O Lack of unity of invention
v O Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
citations and explanations suporting such statement
vi O Certain documents cited
vii O cCertain defects in the international application
vil O Certain observations on the international application
3
) Date of submission of the demand Date of completion of this report
18/04/2002 15.11.2002
Name and mailing address of the intemational Authorized officer

preliminary examining authority:
—_ European Patent Office

Q) D-80298 Munich Kerschbaumer, J
.J Tel. +49 89 2399 - 0 Tx: 523656 epmu d
Fax: +49 89 2399 - 4465 Telephone No. +49 89 2399 2999

Form PCT/IPEA/409 (cover sheet) (January 1994)

Page 1295 of 1415

INTERNATIONAL PRELIMINARY
EXAMINATION REPORT International application No. PCT/CA01/01344

. Basis of the report f

1. With regard to the elements of the international application (Replacement sheets which have been furnished to
the receiving Office in response to an invitation under Article 14 are referred to in this report as “originally filed”
and are not annexed to this report since they do not contain amendments (Rules 70.16 and 70.17)): *
Description, pages:

1-28 as originally filed

Claims, No.:

1-109 as received on 28/06/2002 with letter of 28/06/2002

Drawings, sheets:

1/7-717 as originally filed

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the
language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language: , which is:

1 the language of a translation furnished for the purposes of the international search (under Rule 23.1(b)).
[the language of publication of the international application (under Rule 48.3(b)).

O the language of a translation furnished for the purposes of international preliminary examination (under Rule
55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the
international preliminary examination was carried out on the basis of the sequence listing:

contained in the international application in written form.

filed together with the international application in computer readable form.
furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readable form.

The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in
the international application as filed has been furnished.

O OoO00goad

The statement that the information recorded in computer readable form is identical to the written sequence
listing has been furnished. ‘

4. The amendments have resulted in the cancellation of:

[the description, pages:
[O the claims, Nos.:

Form PCT/IPEA/409 (Boxes I-Vill, Sheet 1) (July 1998)

Page 1296 of 1415

INTERNATIONAL PRELIMINARY
EXAMINATION REPORT international application No. PCT/CA01/01344

. [0 the drawings, sheets:

5. [0 This report has been established as if (some of) the amendments had not been made, since they have been
considered to go beyond the disclosure as filed (Rule 70.2(c)):

(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this
report.)

6. Additional observations, if necessary:

lll. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

1. The questions whether the claimed invention appears to be novel, to involve an inventive step (to be non-
obvious), or to be industrially applicable have not been examined in respect of:

X the entire international application.

[claims Nos. .

because:

[the said international application, or the said claims Nos. relate to the following subject matter which does
not require an international preliminary examination (specify):

X the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear
that no meaningful opinion could be formed (specify):
see separate sheet

O the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion
could be formed.

O no intermational search report has been established for the said claims Nos. .
2. A meaningful international preliminary examination cannot be carried out due to the failure of the nucleotide

and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative
Instructions:

O the written form has not been furnished or does not comply with the standard.
‘ O the computer readable form has not been furnished or does not comply with the standard.

Form PCT/IPEA/409 (Boxes I-VIN), Sheet 2) (July 1998)

Page 1297 of 1415

'INTERNATIONAL PRELIMINARY International application No. PCT/CA01/01344
EXAMINATION REPORT - SEPARATE SHEET

Re ltem Il

Although system claims 1, 6, 56, 77 and method claims 27, 36, 43, 47, 68, 87, 104 .
have been drafted as separate independent claims, they appear to relate effectively to

the same subject-matter and to differ from each other only with regard to the definition

of the subject-matter for which protection is sought or in respect of the terminology

used for the features of that subject-matier. The aforementioned claims therefore lack
conciseness. Moreover, lack of clarity of the claims as a whole arises, since the plurality

of independent claims makes it impossible to determine the matter for which protection

is sought, and places an undue burden on others seeking to establish the extent of the
protection.

Hence, system claims 1, 6, 56, 77 and method claims 27, 36, 43, 47, 68, 87, 104 do not
meet the requirements of Article 6 PCT.

Form PCT/Separate Sheet/409 (Sheet 1) (EPO-April 1997)

Page 1298 of 1415

e

04-07-2002 e ' —=——CA0101344

10

15

20

25

We claim:
1. A code signing sys_tqu_f_m: pperation in conjunction with a software application havinga
digital signature and a signature identification, where the digital signature is associated with the
signature identification, comprising:

an application platform;

an application programming interface (API) having an associated signature identifier, the
API is configured to link the software application with the application platform; and

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the API by the software application where the signature identifier corresponds to the

signature identification.

2. The code signing system of claim 1, wherein the virtual machine denies the software

application access to the API if the digital signature is not authenticated.

3. The code signing systém of claim 1, wherein the virtual machine purges the software

application if the digital signature is not aunthenticated.

4. The code signing system of claim 1, wherein the code signing system is installed on a mobile

device.

5. The code signing system of claim 1, wherein the digital signature is generated by a code

signing authority.

6. A code signing system for operation in conjunction with a software application having a
digital signature and a signature identification where the digital signature is associated with the
signature identification, comprising:

an application platform;

a plurality of application programming interfaces (APIs) associated with a signature
identifier, each configured to link the software application with a resource on the application

platform; and

AMENDED SHEET

Page 1299 of 1415

==04-07-2002

10

15

20

25

30

a virtual machine that verifies the authenticity of the digital signature in order to control

access to the APIs by the software application where the signature identification corresponds to

the signature identifier,
wherein the virtual machine verifies the authenticity of the digital signature in order to

control access to the plurality of APIs by the software application.

7. The cede signing system of claim 6, wherein the plurality of APIs are included in an API
library.

8. The code signing system of claim 6, wherein one or more of the plurality of APIs is classified
as sensitive and having an associated signature identifier, and wherein the virtzal machine uses

the digital signature and the signature identification to control access to the sensitive APIs.

9. The code signing system of claim 8, wherein the code signing system operates in
conjunction with a plurality of software applications, wherein one or more of the plurality of
software applications has a digital signature and a signature identification, and wherein the
virtual machine verifies the authenticity of the digital signature of each of the one or more of the
plurality of software applications, where the signature identification corresponds to the signature

identifier of the respective sensitive APIs, in order to control access to the sensitive APIs by each

of the plurality of software applications.

10. The code signing system of claim 6, wherein the resource on the application platform

comprises a wireless communication system.

11. The code signing system of claim 6, wherein the resource on the application platform

comprises a cryptographic module which implements cryptographic algorithms.

12. The code signing system of claim 6, wherein the resource on the application platform

comprises a data store.

AMENDED SHEET

Page 1300 of 1415

04-07-2002""—— — - CA010134-

13. The code signing system of claim 6, wherein the resource on the application platform

comprises a user interface (UI).

14. The code signing system of claim 1, further comprising:
5 a plurality of API libraries, each of the plurality of API libraries includes a plurality of
APIs, wherein the virtual machine controls access to the plurality of API libraries by the software

application.

15. The code signing system of claim 14, wherein at least one of the plurality of API
10 libraries is classified as sensitive,
wherein access to a sensitive API library requires a digital signature associated with a signature
identification where the signature identification corresponds to a signature identifier associated
with the sensitive API library; ‘
wherein the software application includes at least one digital signature and at least one
15 associated signature identification for accessing sensitive API libraries; and
wherein the virtual machine authenticates the software application for accessing the
sensitive API library by verifying the one digital signature included in the software application
that has a signature identification corresponding to the signature identifier of the sensitive API

library.

20
16. The code signing system of claim 1, wherein the digital signature is generated using a
private signature key, and the virtual machine uses a public signature key to verify the
authenticity of the digital signature.

25 :

17. The code signing system of claim 16, wherein:
the digital signature is generated by applying the private signature key to a hash of the

software application; and
. the virtual machine verifies the authenticity of the digital signature by generating a hash
30 of the software application to obtain a generated hash, applying the public'signature key to the

3

AMENDED SHEET

Page 1301 of 1415

04-07-5002 == = CA0101344

digital signature to obtain a recovered hash, and comparing the generated hash with the

recovered hash.

18. The code signing system of claim 4, wherein the API further comprises:
5 a description string that is displayed by the mobile device when the software application s

attempts to access the APL

19. The code signing system of claim 1, wherein the application platform compﬁses an
operating system.

10
20. The code signing system of claim 1, wherein the application platform comprises one or more

core functions of a mobile device.

21. The code signing system of claim 1, wherein the application platform comprises hardware

15 on a mobile device.

22. The code signing system of claim 23, wherein the hardware comprises a subscriber identity

module (SIM) card.

20 23. The code signing system of claim 1, wherein the software application is a Java application

for a mobile device.

24. The code signing system of claim 1, wherein the API interfaces with a cryptographic routine

on the application platform.

25
25. The code signing system of claim 1, wherein the API interfaces with a proprietary data
model on the application platform.
26. The code signing system of claim 1, wherein the virtual machine is a Java virtual machine

30 installed on a mobile device. . .

AMENDED SHEET

Page 1302 of 1415

04-07-2002 —— —="CA0101344

10

15

20

25

30

Y e ey

27. A method of controlling access to sensitive application programming interfaces on a mobile

device, comprising the steps of:

loading a software application on the mobile device that requires access to a sensitive
application programming interface (API) having a signature identifier;

determining whether the software application includes a digital signature and a signature

identification; and
denying the software application access to the sensitive API where the signature

identification does not correspond with the signature identifier. .

28. The method of claim 27, comprising the additional step of:
purging the software application from the mobile device where the signature

identification does not correspond with the signature identifier..

29. The method of claim 27, wherein the digital signature and the signature identification are

generated by a code signing authority.

30. The method of claim 27, comprising the additional steps of:
verifying the authenticity of the digital signature where the signature identification

corresponds with the signature identifier.; and
denying the software application access to the sensitive API where the digital signature is

not authenticated.

31. The method of claim 30, comprising the additional step of:
purging the software application from the mobile device where the digital signature is not

authenticated.. -

32. The method of claim 30, wherein the digital signature is generated by applying a private
signature key to a hash of the software application, and wherein the step of verifying the
authenticity of the digital signature is performed by a method comprising the steps of:”

5

AMENDED SHEET

Page 1303 of 1415

—0467-2002

device;

CA0101344
generating a hash of the software application to obtain a generated hash;

storing a public signature key that corresponds to the private signature key on the mobile

applying the public signature key to the digital signature to obtain a recovered hash; and
comparing the generated hash with the recovered hash.
10

33. The method of claim 32, wherein the digital signature is generated by calculating a hash of
the software application and applying the private signature key.

34. The method of claim 27, comprising the additional step of:
15

application requires access to the sensitive APL

displaying a description string that notifies a user of the mobile device that the software

35. The method of claim 34, comprising the additional step of:
to the sensitive APL

20

receiving a command from the user granting or denying the software application access
comprising the steps of:

36. A method of controlling access to an application programming interface (API) having a
25

signature identifier on a mobile device by a software application created by a software developer,

receiving the software application from the software developer;

determining whether the software application satisfies at least one criterion;

where the software application satisfies at least one criterion;;

verifying the authenticity of the digital signature appended to the software application
authenticated.

appending a digital signature and a signature identification to the software application
where the signature identification corresponds with the signature identifier; and

providing access to the API to software applications where the digital signature is

AMENDED SHEET
Page 1304 of 1415

04-07-2002 —==— ' e CA0101344

10

15

20

25

e e e

37. The method of claim 36, wherein the step of determining whether the software application

satisfies at least one criterion is performed by a code signing authority.

38. The method of claim 36, wherein the step of appending the digital signature and the
signature identification to the software application includes generating the digital signature
comprising the steps of:

calculating a hash of the software application; and

applying a signature key to the hash of the software application to generate the digital

signature.

39. The method of claim 38, wherein the hash of the software application is calculated using the
Secure Hash Algorithm (SHA1).

40. The method of claim 38, wherein the step of verifying the authenticity of the digital
signature comprises the steps of:

providing a corresponding signature key on the mobile device;

calculating the hash of the software application on the mobile device to obtain a
calculated hash;

applsring the corresponding signature key to the digital signature to obtain a recovered
hash; and

authenticating the digital signature by comparing the calculated hash with the recovered
hash.

41. The method of claim 40, comprising the further step of denying the