
OLYMPUS EX. 1015 - 1/393

TDjaiire
REFEREN‘aon

MS - DOS, IBM PC:& COMPATIBLES

t. handle attributes: =
handle-‘attributes |.

ew‘attribute 4
: ‘makehandle

is: volatile
8 nonvolatile «

bility (for subfunct
volatile handles suppo

latile and non-volat
ndle attribute instructs the a
le he. pages allocated,to
the fvola&ileattribute. (defaul
24 p and all. ex anded me

ile Name Functions
L 20

OLYMPUSEX.1015 - 1/393

OLYMPUS EX. 1015 - 2/393

THE PROGRAMMER’S
TECHNICAL

REFERENCE:

MS-DOS, IBM PC & Compatibles

Dave W:illiams :

SIGMA PRESS - Wilmslow, United Kingdom _

|

OLYMPUSEX.1015 - 2/393

OLYMPUS EX. 1015 - 3/393

Copyright ©, D. Williams, 1990

All Rights Reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission.

First published in 1990 by

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.
Reprinted, 1992.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN:1-85058-199-1

Typesetting and design by |

Sigma Hi-Tech Services Ltd

Printed in Malta by
Interprint Lid.

_ Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgement of copyright names

Within this book, various proprietary trade names and names, as listed below, are
protected by copyright and are mentioned for descriptive purposes:

UNIX, AT&T, Allied Telephone and Telegraph; AST, RAMpage! AST Corporation;
Atari, ST, Atari Computer; Borland, Turbo C, Turbo Pascal, Turbo Lightning,
Borland; Amiga 2000, Commodore Business Machines; Compag, Deskpro, Compaq
Computer Corporation; Corona, Cordata, Cordata Computer; 10-Net, Fox Research, -

Inc.; Smartmodem, Hayes; IBM, PC, PCjr, PCIXT, PCIAT, XT/286, PS/2, TopView, |
DOS, PC-DOS, Micro Channel 3270 PC, RT PC, Token Ring, IBM Corporation;
Intel, iAPX286, iAPX386, LIM EMS, Communicating Applications Standard, Intel.
Corporation; Logitech, Logimouse, Logitech, Inc.; Microsoft, MS, MS-DOS, OS/2, |
Xenix, Windows, Windows/286, Windows/386, Microsoft Networks, LIM EMS, XMA,
Microsoft Corp.; Mouse Systems, Mouse Systems Corp.; Novell, NetWare,
Novell Corp.; DesQview, Quarterdeck Office Systems; ARC, SEAware, Inc.;
DoubleDOS, Softlogic; TaskView, Sunny Hill Software; Tandy, Tandy Corp.; Zenith,
Z-100, Zenith Radio Corporation; ShowPartner, Paintbrush, ZSoft Corporation;
‘LIM 4.0’ and ‘Expanded Memory Specification’ are copyright Lotus Development
Corp,Intel Corp, and Microsoft Corp; ‘EEMS’, ‘AQA 3.1’ and ‘Enhanced Expanded
Memory Specification’ are copyright by Ashton-Tate, Quadram, and AST.Various
other names are trademarks of their respective companiesFull acknowledgmentis
hereby madeofall such protection.

OLYMPUSEX.1015 - 3/393

OLYMPUS EX. 1015 - 4/393

Preface

This bookis a technical reference. It is NOT a tutorial. It is intended to replace the various (ex-
pensive) references needed to program for the DOSenvironment, that stack of magazines
threatening to take over your work area, and those odd tables and charts you can neverfind
whenyou need them.

The various Microsoft and IBM publications and references don’t always have the sameinfor-
mation. This has caused someconsternation aboutthe ‘undocumented’ features to be found in
DOS.In general,if a call doesn’t appear in the IBM DOSTechnical Referenceit is considered
‘undocumented’ although it may be in commonuse.

Microsoft’s offical policy toward DOShas beento put the burden of documenting and suppor-
ting their productto their vendors. Microsoft will not answer any questions concerning DOSdi-
rectly since they don’t officially supportit. This leaves what information IBM and other OEMs
(DEC, Zenith, et al) have chosen to publish, and the information obtained from programmers
who’ve poked aroundinsideit.

Now that Microsoft is sellingMSDOS3.3 and 4.0 over the counter they seem to be dragging
their feet over whetherthey will have to support the generic version since it doesn’t have an .
OEM nameonit anymore.In view oftheir push to OS/2 (OS/2! Just Say No!) further support of
DOSseemsunlikely.

A project this size takes a LOT of time and effort. I’ve tried to verify as much of the information
I’ve received as I could, but there’s just too muchfor absolutecertainty.

OLYMPUSEX.1015 - 4/393

OLYMPUS EX. 1015 - 5/393

OLYMPUSEX.1015 - 5/393

OLYMPUS EX. 1015 - 6/393

Contents

Chapter 1: DOSand the IBM PC 1

Chapter2: CPU Port Assignments, System Memory Map, BIOS Data Area,
Interrupts 00h to09h 10

Chapter 3: ThePC ROM BIOS 25

Chapter4; DOSInterrupts and Function Calls 34

Chapter5: Interrupts 22h Through 86h 98

Chapter 6: DOS Control Blocks and Work Areas 130

Chapter7: DOSFile Structure 140

Chapter8: DOSDisk Information 151

Chapter 9:Installable Device Drivers 171

Chapter 10: Expanded and Enhanced Expanded Memory Specifications 185

Chapter 11: Conversion Between MSDOSand Foreign Operating Systems 208
Chapter 12: Microsoft WindowsA.PI. 210

Chapter 13: Network Interfacing 269

Chapter 14: Mouse Programming — 300

Chapter15: Register-Level Hardware Access 310

Chapter 16: Video Subsystems and Programming - 315

Appendix 1: Keyboard Scan Codes 328

Appendix 2: Standard ASCII Character Codes . 342

Appendix 3; ASCII Control Codes ‘ 345

Appendix 4: IBM PC Interrupt Usage 347

Appendixs: List of IBM PC-XT-AT-PS/2 Diagnostic Error Codes 349

Appendix 6: Pinouts For VariousInterfaces 358

Appendix 7: ANSLSYS 370

Bibliography . 374

Index 380

OLYMPUSEX.1015 - 6/393

OLYMPUS EX. 1015 - 7/393OLYMPUSEX.1015 - 7/393

OLYMPUS EX. 1015 - 8/393

DOSand the IBM PC

Some History
Development of MS-DOS/PCDOSbeganin October 1980, when IBM began searching the mar-
ket for an operating system for the yet-to-be-introduced IBM PC. Microsoft hadnoreal opera-
ting system to sell, but after some research licensed Seattle Computer Products’ 86-DOSopera-
ting system, which had been written by a man named Tim Patersonearlier in 1980for use on that
company’s line of 8086, S100 bus micros. 86-DOS(also called QDOS, for Quick and Dirty
Operating System) had beenwritten as moreorless a 16-bit version of CP/M,since Digital Re-
search was showing no hurry in introducing CP/M-86.

This code was hurriedly polished up andpresented to IBM for evaluation. IBM had originally in-
tended to use Digital Research’s CP/M operating system, which was the industry standard at the
time. Folklore reports everything from obscure legal entanglements to outright snubbing of the
IBM representatives by Digital. Irregardless, IBM founditself left with Microsoft’s offering of
"Microsoft Disk Operating System 1.0". An agreementwas reached between the two, and IBM

- agreed to accept 86-DOSas the main operating system for their new PC. Microsoft purchased
all rights to 86-DOSin July 1981, and "IBM PC-DOS1.0" was ready for the introduction of the
IBM PC in October1981. IBM subjectedthe operating system to an extensive quality-assurance
program,reportedly found well over 300 bugs, and decided to rewrite the programs. Thisis why
PC-DOSis copyrighted by both IBM and Microsoft.

It is sometimes amusingto reflect on the fact that the IBM PC was not originally intended to run
MS-DOS.Thetarget operating system at the end of the developmentwasfor a (notyetin exist-
ence) 8086 version of CP/M. Onthe other hand, when DOS was originally written the IBM PC
did notyet exist! Although PC-DOSwas bundled with the computer, Digital Research’s CP/M-
86 would probably have been the main operating system for the PC exceptfor two things - Digi-
tal Research wanted $495 for CP/M-86 (considering PC-DOS was essentially free) and many
software developers foundit easier to port existing CP/M software to DOSthanto the new ver-
sion of CP/M. Several computer magazines claimed that Digital Research aided IBM in writing
DOS4.0, which was subsequently licensed back to Microsoft, which has droppedfurther devel-
opmentof the operating system totilt at the windmills of OS/2. OS/2? Notyet! After using DR-
DOS3.4 andnoting its behaviour, I now tendto seriously doubt Digital had any dealings with
PC-DOS4.0.

MS-DOSand PC-DOShave been run on more than just the IBM-PC and clones. Some of the
following have been done:

OLYMPUSEX.1015 - 8/393

OLYMPUS EX. 1015 - 9/393

2 The Programmer's Technical Reference

Hardware PC Emulation:

Commodore Amiga 2000 8088 or A2286D 80286 Bridge Board
IBM PC/AT 80286 AT adapter
Atari 400/800 Co-Power88 board
Apple Macintosh AST80286 board
Atari ST PC-Ditto II cartridge
AppleII TransPC8088 board, QuadRam QuadLink

Software PC Emulation:
AtariST PC-Ditto I

Apple Macintosh SoftPC

DOS Emulation: ;

Os/2 DOSemulationin "Compatibility Box"
QONX DOSwindow

SunOS / DOSwindow
Xenix DOS emulation with DOSMerge

What is DOS?
DOSexists as a high-level interface between an application program and the computer. DOS
stands for "Disk Operating System", which reflects the fact that its main original purpose wasto
provide aninterface between the computerandits disk drives.

DOSnowlets your programs do simple memory management,I/O from the system console, and
assorted system tasks (time and date, etc) as well as managingdisk operations. Versions 3.1 and
up also incorporate basic networking functions.

With the introduction of installable device drivers and TSR (terminate butstay resident) pro-
grams in DOS2.0,the basic DOSfunctions may be expandedto covervirtually anyscale of oper- i
ations required.

Other Operating Systems
There are a number of compatible replacements for Microsoft’s MS-DOS. Someare:

Consortium Technologies MultiDOS
Digital Research Concurrent DOS (multitasking)
Digital Research Concurrent DOS386—_(for 80386 computers) .
Digital Research ConcurrentDOSXM_(multitasking, multiuser)
Digital Research DR-DOS 3.31and4.0 (PC-DOS clones)

(multitasking, multiuser)

PC-MOS/386 (multitasking, multiuser)
Wendin-DOS (multitasking, multiuser)
VM/386 (multitasking) -

Various other operating systemsare available for the IBM PC. Theseinclude:

Digital Research CP/M-86
Digital Research Concurrent CP/M-86 (multitasking)
Minix (multitasking UNIX workalike)
Pick (database-operating system)

OLYMPUSEX.1015 - 9/393

OLYMPUS EX. 1015 - 10/393

DOSand the IBMPC 3

QNX(multitasking, multiuser)
UNIX (various systems from IBMitself, Microsoft-SCO,Bell, and various UNIX clones, Single
and multi user) (AIX, Xenix, AT&T System V, etc.)

"Shell" programs exist which use DOS only for disk managementwhile they moreor less com-
prise a newoperating system. These include:

DesQview
Windows
OmniView
GEM

TopView
-TaskView

Specific Versions of MS/PC-DOS
DOS1.xis essentially 86-DOS. DOS 2.x kept the multiplefile layout (the two hiddenfiles and
COMMAND.COM)butforail practical purposesis an entirely different operating system with
backwards compatibility with 1.x. I seriously doubt there has been much code from 1.x retained
in 2.x. DOS 3.x is merely an enhancementof 2.x; there seemslittle justification for jumping a
whole version number. DOS4.0,originating as it did from outside Microsoft, can justify a ver-
sion jump. Unfortunately, 4.x seemsto have very little reasontojustify its existence-Virtually all
ofits core features can be foundin oneversion or another of DOS 3.x.

DOSversion nomenclature: major.minor.minor. Thedigit to the left of the decimal point indi-
cates a major DOSversion change. 1.0 wasthefirst version. 2.0 added support for subdirec-
tories, 3.0 added support for networking, 4.0 added some minimal support for Lotus-Intel-
Microsoft EMS.

Thefirst minor version indicates customization for a major application. For example, 2.1 for the
PCjr, 3.3 for the PS/2s. The second minorversion does not seem to have any particular meaning.

- The main versions of DOSare:

PC-DOS1.0 August 1981 original release
PC-DOS 1.1 May 1982 bugfix, double sided drive support
MS-DOS1.25 June 1982 for early compatibles
PC-DOS 2.0 March 1983 for PC/XT, Unix-type subdirectory support
PC-DOS 2.1 October 1983 for PCjr, bugfixes for 2.0
MS-DOS2.11 October 1983 compatible equivalent to PC-DOS2.1
PC-DOS3.0 August 1984 1.2 meg drive for PC/AT, some new system calls
PC-DOS3.1 November 1984 bugfix for 3.0, implemented network support
MS-DOS 2.25 October 1985 compatible; extended foreign language support
PC-DOS3.2 December 1985 720k 3.5 inch drive support for Convertible
PC-DOS3.3 April 1987 for PS/2 series, 1.44 meg, multiple DOSpartitions
MS-DOS 3.31 November 1987 over-32 meg DOSpartitions, new functioncalls
PC-DOS 4.0 August 1988 minor EMSsupport, some new functioncalls
MS-DOS 4.01 January 1989 Microsoft version with somebugfixes

_ IBM’s PC-DOSis consideredto be the "standard" version of DOS; Microsoft has sold MS-DOS
over the counter only since version 3.2 (previously, Microsoft sold its versions only to OEMs).

OLYMPUSEX.1015 - 10/393

OLYMPUS EX. 1015 - 11/393

4 The Programmer's Technical Reference

Mostversions of DOSfunctionally duplicate the external DOS commands such as DISKCOPY,
etc. Although Microsoft announced that they would sell MS-DOS 4.0 only to OEMs,they ap-
parently changed the policy and are nowselling it over the counter.

Some versions of MS-DOSvaried from PC-DOSin the available external commands. Some

OEMsonly licensed the basic operating system code (the xDOS and xBIO programs, and
COMMAND.COM)from Microsoft, and either wrote the rest themselves or contracted them
from outside software houses like Phoenix. Mostof the external programsfor DOS 3.x and 4.x
are written in "C" while the 1.x and 2.x utilities were written in assembly language. Other OEMs
required customized versions of DOSfor their specific hardware configurations, such as Sanyo
55x and early Tandy computers, which were unable to exchange their DOSwith the IBM version.

At least two versions of DOS have been modified to be run entirely out of ROM. The Sharp
PCS5000 had MS-DOS1.25 in ROM,and the Toshiba 1000 and some Tandy 1000 models have
MS-DOS 2.11 in ROM.Digital Research has also announcedits DR-DOSis available ina ROM
version and Award Software is marketing DOScards to OEMs asa plug-in.

PC-DOS3.0 was extremely buggy on release. It does not handle the DOS environmentcorrectly
and there are numerous documented problemswith the batch file parser. The network support
codeis also nonfunctional in this DOSversion.It is recommendedthat users upgradeto at least
version 3.1.

DEC MS-DOSversions 2.11 for the Rainbow had the ANSISYSdevice driver built into the

main code. The Rainbow also used a unique quad density, single-sided floppy drive and its DOS
had special supportforit.

IBM hada version 1.85 of PC-DOSin April 1983, after the introduction of DOS2.0. It was evi-
dently for internal use only, supported multiple drive file searches (a primitive form of PATH),
built in MODE commandsfor screen support, a /P parameter for TYPE for pausedscreens, an
editable commandstack like the public domain DOSEDIT:COMutility, and could be set up to
remain completely resident in RAM instead of a resident/transientpart like normal DOS.Itisa
pity some of the neat enhancements didn’t makeit into DOS2.0. IBM also had an "internal use
only"version 3.4, evidently used while developing DOS4.0.

Someversions of DOS used in compatibles do not maintain the 1.x, 2.x, ... numbering system.
Columbia Data Products computers labelled DOS 1.25 as DOS 2.0. Early Compagslabelled
DOS 2.0 as DOS 1.x. Other versions incorporated special features - Compaq DOS 3.31 and
Wyse DOS3.21 both support 32-bitfile allocation tables in the same fashion as DOS4.x.

According to PC’'Week Magazine,July 4, 1988, Arabic versions of MS-DOSare shipping with a
hardware copy-protection system from Rainbow Technologies. This is similar to the short-lived
system used by AutoCAD 2.52 and a very few other MS-DOSprograms, where an adapter block
is plugged into the parallel port and software makesuse of coded bytes within the block. This ;
type of copy protection has been common on Commodoreproductsfor several years, whereit is
called a "dongle".

The AutoCAD dongle was defeated by a small programwritten within weeks of version 2.52’s
debut. Version 2.62 was released 3 months later, without the dongle. The DOS dongle will, how-
ever, prevent the system from booting at all unlessit is found.

This makes the Arabic version ofMS-DOSthefirst copy-protected operating system, a dubious
distinction at best. The modifications to the operating system to. support the dongle are not
knownat this time. Frankly, it would seem that burning the operating system into ROMs would
be cheaper and simpler.

OLYMPUSEX.1015 - 11/393

OLYMPUS EX. 1015 - 12/393

DOS and the IBMPC . 5

Versions ofDOSsold in Great Britain are either newer than those sold in the US oruse a differ-
ent numbering system. DOS3.4,4.0, 4.1, 4.2, and 4.3 had been released here between the USre-
leases of3.3 and 4.0.

Microsoft changed their OEM licensing agreements between DOSversions 2.x and 3.x. OEM
versions Of DOS 3.x must maintain certain data areas and undocumentedfunctionsin order to

provide compatibility with the networking features of the operating system. For this reason,
resident programswill be much morereliablewhen operating under DOS 3.x.

IBM’s release of DOS4.0 (and the immediate subsequentreleaseof a bugfix) is a dubious step
"forward". DOS4.0is the first version of DOS to come with a warranty; the catch is that IBM
warrants it only for avery slim list of IBM-packagedsoftware. 4.0 has some minor EMSsupport,
‘Supportfor large hard disks, and not muchelse. With its voracious RAM requirementsand lack
of compatibility with previous versions of DOS (many major software packages crash under
DOS4.0), plus the increasein price to a cool $150, there has been no greatrushto go to the ne-
west DOS

The Operating System Hierarchy
The Disk Operating System (DOS) and the ROM BIOSserve as an insulating layer between the
application program andthe machine, and as asource of services to the application program.

As the term ‘system’ might imply, DOSis not one program but a collection of programsde-
signed to work together to allow the user access to programs and data. Thus, DOSconsists of
several layers of "control" programs andaset of “utility” programs.

The system hierarchy may be thought of as a tree, with the lowest level being the actual hard-
ware. The 8088 or V20 processor sees the computer's address space as a ladder two bytes wide
and one million bytes long. Parts of this ladder are in ROM,parts in RAM,andpartsare notas-
signed. There are also various "ports" that the processor canuseto control devices.

The hardware is normally addressed by the ROM BIOS, which will always know where every-
thing is in its particular system. The chips may usually also be written to directly, by telling the
processorto write to a specific addressor port. This sometimes does not work as the chips may
notalwaysbe at the same addresses or have the samefunctions from machine to machine.

DOSStructure

DOSconsists of four components:
The boot record

The ROM BIOSinterface IBMBIO.COM or IO.SYS)
The DOSprogram file (IBMDOS.COM or MS-DOS.SYS)
The command processor (COMMAND.COMoraftermarket replacement)

The Boot Record

The boot record begins on track 0, sector 1, side 0 ofevery disketie formatted by the DOS FOR-
MAT command. The boot record is placed on diskettes to produce an error messageif you try to
Start up the system with a non-system diskette in drive A. For hard disks, the boot record resides

OLYMPUSEX.1015 - 12/393

OLYMPUS EX. 1015 - 13/393

6 The Programmer's Technical Reference

onthe first sector of the DOSpartition. All media supported by DOSuse onesectorfor the boot
record, .

Read Only Memory (ROM) BIOSInterface and Extensions
ThefileIBMBIO.COMorIO.SYSis the interface module to the ROM BIOS. Thisfile provides
a low-level interface to the ROM BIOSdevice routines and may contain extensions or changes
to the system board ROMs. Some compatibles do not havea ROM BIOSto extend,and load the
entire BIOS from disk (Sanyo 55x, Viasyn machines). Some versions of MS-DOS,such as those
supplied to Tandy, are named IBMBIO.COMbutare not IBMfiles.

These low-level interface routines include the instructions for performing operations such as
displaying information on the screen, reading the keyboard, sending data outto theprinter,
operating the disk drives, and so on.It is the operating system’s meansof controlling the hard-
ware. IBMBIO.COMcontains any modifications or updates to the ROM BIOSthatare needed
to correct any bugs or add supportfor other types of hardware such as new diskdrives. By using
IBMBIO.COMto update the ROM BIOSonthe fly whenthe user turns on their computer,
IBM doesnotneed to replace the ROM BIOSchipitself, but makes any corrections through the
cheaper and easier method of modifying the I]BMBIO.COMfile instead.

IBMBIO.COMalso keepstrack of hardware operations on an internal stack or "scratch pad"
area for the operating system to save information such as addressesit will need, etc. An example
of the use for this stack can be seen when running a program such as a word processor.If you
have told the word processorto save yourletter, it will write the data to your disk. During this
time, if you start typing some moreinformation, the keyboard generates a hardwareinterrupt.
Since you don’t wantthe process of writing the informationto the disk to be interrupted, DOS
allocates a slot in the stack for the keyboard’s hardware interrupt and whenit gets a chance,
(probably after the data has been written to the disk), it can process that interrupt andpick up
the characters you may have been typing. The STACKS= command in DOS 3.2+’s
CONFIG.SYSfile controls the numberofstack framesavailable for this purpose.

IBMBJO.COM also reads your CONFIG.SYSfile and installs any device drivers (ie.
DEVICE=ANSLSYS)or configuration commandsit mayfind there.

The DOS Program

The actual DOSprogramis the file IBMDOS.COM or MS-DOS.SYS.It provides a high-level
interface for user (application) programs. This program consists of file management routines,
data blocking/deblocking for the disk routines, and a. variety of built-in functions easily
accessible by user programs. \

Whena user program calls these function routines, they accept high-level information by way of
_ register and control block contents. When a user program calls DOSto perform an operation,

these functions translate the requirement into one or more calls to IBMBIO.COM,
MS-DOS.SYSorsystem hardware to completethe request.

The CommandInterpreter

The commandinterpreter, COMMAND.COM,is the part you interact with on the command
line. COMMAND.COMhasthreeparts. IBM calls them the "residentportion", the "initializa-
tion portion" and the "transient portion".

OLYMPUSEX.1015 - 13/393

OLYMPUS EX. 1015 - 14/393

DOSand the IBM PC 7

IBM’s original documentation spokeofinstalling alternate commandinterpreters (programs
other than COMMAND.COM)with the SHELL= statement in CONFIG.SYS. Unfortunately,
IBM chose not to document much of the interaction between IBMDOS.COM and IBM-
BIO.COM.Bythe time muchofthe interaction was widely understood, many commercial soft-
ware programs had been written to use peculiarities of COMMAND.COMitself.

‘wo programsexist that perform as actual "shells" by completely replacing COMMAND.COM
and substituting their own commandinterpreter to use with the hidden DOSfiles. These are
CommandPlus, a commercial package, and the very interesting shareware 4DOSpackage. Both
supply greatly enhanced batchlanguage andediting capabilities.

Note: DOS3.3 + checks for the presenceof a harddisk, and will default to COMSPEC=C\\,Pre-
- vious versions default to COMSPEC=A:\. Under some DOSversions, if COMMAND.COMis

not immediately available for reloading (i.e., swapping to a floppy with COMMAND.COM on
it) DOS may crash.

Resident Portion

The resident portion resides in memory immediately following IBMDOS.COMandits data
area. This portion contains routines to processinterrupts 22h (Terminate Address), 23h (Ctrl-
Break Handler), and 24h (Critical Error Handler), as well as a routine to reload the transient
portion if needed. For DOS3.x, this portion also contains a routine to load and executé external
commands,such asfiles with extensions of COM or EXE.

Whena program terminates, a checksum is used to determineif the application program over-
laid the transient portion of COMMAND.COM.Ifso,the residentportionwill reload the tran-
sient portion from the area designated by COMSPEC= in the DOSenvironment. If COM-
MAND.COMcannotbefound, thesystem will halt.

All standard DOSerror handling is done within the resident portion of COMMAND.COM.
This includes displaying error messages and interpreting the replies to the "Abort, Retry, Ig-
nore, Fail?" message.

Since the transient portion of COMMAND.COMis so large (containing the internal com-
mands and all those error messages), andit is not needed whentheuseris running an applica-
tion it can be overlaid that programif that application needs the room. Whenthe applicationis
through, the resident portion of COMMAND.COM brings the transient portion back into
memory to show the prompt. This is why you will sometimes see the message "Insert disk with
COMMAND.COM".It needsto getthe transient portion off the disk since it was overlaid with
the application program.

Theinitialization portion of COMMAND.COMfollowsthe resident portion and is given con-
trol during the boot-up procedure. This section actually processes theAUTOEXEC.BATfile.It
also decides whereto loadthe user’s programs when they are executed. Since this code is only
needed during start-up,it is overlaid by the first program which COMMAND.COMloads.
The transient portion is loaded at the high end of memory and it is the command processorit-
self. It interprets whatever the user types in at the keyboard, hence messages such as ‘Bad com-
mandorfile name’ forwhen the user misspells acommand.This portion contains all the internal
commands(i.e. COPY, DIR, RENAME, ERASE), the batch file processor (to run .BATfiles)
and a routine to load and execute external commands which are either .COM or .EXE files.

Thetransient portion of COMMAND.COM produces the system prompt, (C), and reads what

OLYMPUSEX.1015 - 14/393

OLYMPUS EX. 1015 - 15/393

8 The Programmer’s Technical Reference

the user types in from the keyboard andtries to do something with it. For any .COM or .EXE
files, it builds a commandline and issues an EXEC function call to load the program and trans-
fer controltoit.

DOSInitialization

The system is initialized by a software reset (Ctrl-Alt-Del), a hardware reset(reset button), or by
turning the computeron. TheIntel 80x8x series processors always lookfortheirfirst instruction
at the end of their address space (OFFFFOh) when powered up orreset. This address contains a
jumpto thefirst instruction for the ROM BIOS.

Built-in ROM programs (Power-OnSelf-Test, or POST, in the IBM) check machinestatus and
run inspection programsofvarious sorts. Some machinesset up a reserved RAM area with bytes
indicating installed equipment(ATand PCjr).

When the ROM BIOSfinds a ROM on an adapter card,it lets that ROM takecontrol of the sys-
tem so that it may perform any set up necessary to use the hardware or software controlled by
that ROM. The ROM BIOSsearches absolute addresses OC8000h through OE0000h in 2Kin-
crements in search of a valid ROM.A valid ROM is determined by thefirst few bytes in the
ROM.The ROM will have the bytes 55h, OAAh,a length indicator and then the assembly lan-
guage instruction to CALL FAR (to bring ina ‘FAR’routine). A checksum is done on the ROM
to verify its integrity, then the BIOS performs the CALL FAR to bring in the executable code.
The adapter’s ROM thenperformsits initialization tasks and hopefully returns controlof the
computerback to the ROM BIOSsoit can continuewith the bootingprocess.

The ROM BIOSroutinesthen look fora disk drive at A: or an option ROM (usually a hard disk)
at absolute address C:800h.If no floppy drive or option ROMis found, the BIOScalls int 19h
(ROM BASICifit is an IBM)ordisplays an error message.

Ifa bootable disk is found, the ROM BIOSloadsthefirst sector of data from the disk and then
- jumpsinto the RAM location holding that code. This code normallyis a routine to loadthe rest

of the codeoffthe disk,or to ‘boot’ the system.

The following actionsoccur after a system initialization:

The bootrecordis read into memory andgiven control.

2. The boot record then checks the rootdirectory to assure thatthe first twofiles are
IBMBIO.COMand IBMDOS.COM.Thesetwofiles must bethefirst twofiles, and they
mustbe in that order (IBMBIO.COMfirst, with its sectors in contiguous order).
Note: IBMDOS.COMneednotbe contiguous in version 3.x+.

The boot record loads IBMBIO.COMinto memory.

The initialization code in]BMBIO.COMloads IBMDOS.COM,determines equipment
status,resets the disk system,initializes the attached devices, sets the system parameters
and loads anyinstallable device drivers according to the CONFIG.SYSfile in the root
directory (ifpresent), sets the low-numbered interrupt vectors, relocatesBMDOS.COM
downward, andcalls the firstbyte of DOS.
Note: CONFIG.SYSmaybe a hiddenfile.

5. _DOSinitializes its internal working tables,initializes the interrupt vectors for interrupts
20h through 27h, and builds a Program SegmentPrefix for COMMAND.COMatthelowest
available segment. For DOSversions 3.10 up, DOSalsoinitializes the vectors for interrupts

OLYMPUSEX.1015 - 15/393

OLYMPUS EX. 1015 - 16/393

DOSandthe IBM PC . . 9

OFh through 3Fh. An initialization routineis includedin the resident portion and assumes
control duringstart-up. This routine contains the AUTOEXEC.BATfile handler and
determines the segment address where user application programs may be loaded. The
initialization routineis then no longer needed andis overlaid by thefirst program
COMMAND.COMloads.

Note: AUTOEXEC.BATmaybe a hiddenfile.

6. IBMBIO.COMuses the EXECfunctioncall to load andstart the top-level command
processor. The default commandprocessor is COMMAND.COMintherootdirectory of
the boot drive. If COMMAND.COMisin a subdirectory or another commandprocessoris
to be used, it must be specified by a SHELL= statement in the CONFIG.SYSfile. A
transient portionis loaded at the high end of memory.This is the commandprocessoritself,
containing ail of the internal commandprocessorsandthe batchfile processor. For
DOS2.x, this portion also contains a routine to load and execute external commands, such
as files with extensions of COM or EXE.This portion ofCOMMAND.COMalso produces
the DOS prompt (such as ‘A), reads the commandfrom the standard input device (usually
the keyboard or a batchfile), and executes the command.For external commands,it builds a
commandline and issues an EXECfunction call to load andtransfer control to the

program.

Note 1. COMMAND.COM maybea hiddenfile.

2. ForIBMDOS2.x,the transientportion of the commandprocessor contains the
EXECroutine that loads and executes external commands. For MS-DOS 2.x+ and

IBM DOS3.x+, the resident portion of the commandprocessorcontains the
EXECroutine.

3. IBMBIO only checksfora file named COMMAND.COM.It will loadanyfile of
that name ifno SHELL= commandis used.

That pretty much covers the boot-up process. After COMMAND.COMis loaded,it runs the
AUTOEXEC.BATfile and thenthe user gets a promptto begin working.

OLYMPUSEX.1015 - 16/393

OLYMPUS EX. 1015 - 17/393

CPU Port Assignments, System
Memory Map, BIOS Data Area,

Interrupts 00h to 09h

Introduction

For consistency in this reference, all locations and offsets are in hexadecimal unless otherwise
specified. All hex numbersare prefaced with a leading zeroif they begin with an alphabetic char-
acter, and are terminated with a lowercase H (h). The formats vary according to commonusage.

System Memory Map
The IBM PChandlesits address space in 64k segments,divided into 16k fractions and then fur-
then as necessary.

start start end

addr. addr. addr usage
(dec) (hex)

640k RAM Area

0k start of RAM, first K is interrupt vector table
16k 00000-03FFF PC-0 system board RAM ends32k 04000-0O7FFF
48k 08000-OBFFF

64k 10000-13FFF PC-1 system board RAM ends
80k 14000-l17FFF
96k 18000-1BFFF
112k 1C000~1FFFF
128k 20000-23FFF
144k 24000-27FFF
160k 28000-2BFFF
176k 2C000-2FFFF

192k 30000-33FFF
208k 34000-37FFF
224k 38000-3BFFF
240k 3C000-3FFFF

OLYMPUSEX.1015 - 17/393

OLYMPUS EX. 1015 - 18/393

256k
272k
288k
304k

320k
336k
352k
368k

384k
400k
416k:
432k

448k
464k
480k
496k

512k
528k
544k
560k

576k
592k
609k
624k

CPUPortsAssignments, System Memory Data, BIOS Data Area
40000-43FFF
44000-47FFF
48000-4BFFF
4C000-4FFFF

-50000-53FFF
54000-57FFF
58000-5BFFF
5C000-5FFFF

60000-63FFF
64000-67FFF
68000-6BFFF
6C000-6FFFF

70000-73FFF
74000-77FFF
78000-7BFFF
7C000-7FFFF

80000-83FFF
84000-87FFF
88000-8BFFF
8C000-8FFFF

90000-93FFF
94000-97FFF
98000-9BFFF
9CO00-9FFFF

PC-2 system

Ll

board RAM ends

the original IBM PC-1 BIOS limited memory to 544k

to 640k (top of RAM address space)
AQ0Q0Q ***** 64k ***** EGA address

640k

656k
672k
688k

A0000-A95B0
-AF8CO
-A3FFF

A4000-A7FFF
A8S000-ABFFF
ACOOO-AFFFF

MCGA 320x200
MCGA 640x480

this 64k
RAM with

BOOOO ***** 64k ***** mono and

704k
720k

736k
756k

BOOOO-B3FFF
B4000-B7 FFF

B8000-BBFFF
BCOOO-BFFFF

4k monochrome display

16k CGA uses

256 colour video buffer
2 colour video buffer

segment may be used for contiguous DOS
appropriate hardware and software

CGA address

PCjr and early Tandy 1000
BIOS revector direct write to the
B8 area to the Video Gate Array
and reserved system RAM

C0000 **#KKe 64k PREERKR E expansion ROM
768k
784k

800k

816k

DOOOO ***** 64k weeKE

832k

848k
864k
880k

C0000-C3FFF
C4000-CSFFF
C6000-C63FF
C6400-C7FFF
C8000-CBFFF
cA000
CCO00-CDFFF
CEO00-CFFFF

DOQ00-D7FFF
DAO0O00

D4000-D7FFF
D8000-DBFFF
DCOO00O-DFFFF

16k EGA BIOS
256

16k
some 2nd

8k

32k IBM Cluster Adapter
voice communications

C000;001E EGA BIOS signature (letters IBM

bytes Professional Graphics Display comm. area

hard disk controller BIOS, drive 0 default
floppy (high density) controller BIOSIBM PC Network NETBIOS

expansion ROM

PCjr first ROM cartridg
address area. :
Common expanded memory
board paging area.

E0000 ***** 64k ***** expansion ROM

896k
912k
928k

E0000-E3FFF
E4000-E7FFF
E8000-EBFFF

PCjr second ROM cartidge
address area

OLYMPUSEX.1015 - 18/393

OLYMPUS EX. 1015 - 19/393

12

944k ECOO0-EFFFF |

The Programmer's Technical Reference

FOO0O ***** 64k ***** system

960k
976k F4000-

F6000
992k

1024k

384k
15Mb
15Mb
128k

F0000-F3FFF

FFFFP

reserved by IBM
area (PCjr

ROM BASIC Begins BASIC)F8000-FB000
1008k FCOOO-FFFFF ROM BASIC and original

BIOS (Compatibility BIOS
in PS/2)
end of memory (1024k) for 8088 machines

spare ROM sockets on AT

cartridge address
cartridge

100000-15FFFF 80286/AT extended memory area, 1Mb motherboard
100000-FFFFFF 80286/AT extended memory address space
160000-FDFFFF Micro Channel RAM expansion (15Mb extended memory)
FEOOO00-FFFFFF system board ROM (PS/2 Advanced BIOS)

Note that the ROM BIOShas a duplicated address space which causes it to ‘appear’ both at the
end of the 1 megabyte real mode space andat the end of the 16 megabyte protected mode space.
The addresses from 0QE0000 to OFFFFF are equal to OFE0000 to OFFFFFE This is necessary due
to differences in the memory addressing between Real and Protected Modes.

PC Port Assignment
hex address Function Models

pcjr |pc [xr jar {cvr |mM30 |Ps20000-000F 8237 DMA controller Pc
0010-001F 8237 DMA controller AT PS2
0020-0027 8259A interrupt controller
0020-003F 8259A interrupt controller (AT)
0020-0021 Interrupt controller 1, 8259A Pc AT PS2
0040-0043 Programmable timer 8253 Pc
0040-0047 Programmable timers PS2
0040-005F 8253-5 programmable timers AT

(note: 0041 was memory refresh in PCs. Not used in PS/2)
0060-0063 Keyboard controller 8255A -PC
0060-006F 8042 keyboard controller . AT
0060 IOSGA keyboard input port PS2
0061 speaker Pejr PC xT AT cVT
0061 IOSGA speaker control M30 PS2
0061 On some clones, setting or clearing bit 2 controls Turbo mode
0062 IOSGA configuration control M30 PS2
0063 SSGA, undocumented PSs2
0064 keyboard auxiliary device PS2
0065-006A SSGA, undocumented Ps2
006B SSGA, RAM enable/remap PS2
006C-006F SSGA, undocumented PS2
0070 AT CMOS write internal register
0071 AT CMOS read internal register
0070-0071 CMOS real-time clock, NMI mask PS2
0070-007F CMOS real-time clock, NMI mask AT
0074-0076 reserved PS2
0800-008F SSGA DMA page registers PS2
0080-009F DMA page registers, 74L8612 AT
0090 central arbitration control port (Micro Channel)
0091 card selected feedback (Micro Channel)
0092 system control port A (Micro Channel)
0093 reserved (Micro Channel)
0094 system board setup (Micro Channel)
0096 POS ‘CD SETUP’ selector (Micro Channel)
0OA0-00A1 Interrupt controller 2, 8259A AT PS2
OOAO-OOAF IOSGA NMI mask register PS2
00BO-OOBF realtime clock/calendar, (undocumented) PS2
00CO-OODF reserved Pcejx PC XT AT CVT M30

OLYMPUSEX.1015 - 19/393

OLYMPUS EX. 1015 - 20/393

CPUPorts Assignments, System Memory Data, BIOS Data Area 13

00CO—OODF DMA controller 2, 8237A-5 AT PS2
OOEO-OOEF realtime clock/calendar, (undocumented) M30 PSs2
OOFO~—OOFF PS/2 math coprocessor I/O (Model 50+) (diskette IO on PCjr)
0100-0101 PS/2 POS adapter ID response (Micro Channel)
0102-0107 PS/2 POS adapter configuration response (Micro Channel)
01F0-01F8 Fixed disk AT Ps2
0200-0201 game-control adapter (joystick)
0200-020F Game controller pc AT
0020-002F IOSGA interrupt function Ps?
020C-020D reserved by IBM
0210-0217 expansion box (PC, XT)
021F reserved by IBM
0278-027F . Parallel printer port 2 AT
0278-027B Parallel printer port 3 PS2
02B0-02DF EGA (alternate) Pc AT
02E1 GPIB (adapter 0) AT
02E2-02E3 Data acquisition (adapter 0) AT

' 02F8-02FF Serial communications (COM2) Pc AT PS2
0300-031F Prototype card PC AT :
0320-032F hard disk controller PC
0348-0357 DCA 3278

0360-0367 PC Network (low address)
0368-036F Pc’ Network (high address) AT
0378-037F Parallel printer port 1 Pc AT
0378-037B Parallel printer port 2 PS2
0380-038F SDLC, bi-synchronous 2 Pc AT
0380-0389 BSC communications (alternate) PC
0390-0393 Cluster (adapter 0) pc AT
03A0-03A9 BSC communications (primary) Pc AT
03B0-03BF Monochrome/parallel printer adapter Pc AT
03B4-03B5 Video subsystem PS2
O3BA Video subsystem PS2
03BC-03BF Parallel printer port 1 PS2
03C0-03CF Enhanced Graphics Adapter
03C0-03DA Video subsystem and DAC PS2
03D0-03DF CGA, MCGA, VGA adapter control
03F0-03F7 Floppy disk controller PC AT PS2
03F8-03FF Serial communications (COM1) PC AT PS2
06E2-06E3 Data acquisition (adapter 1) AT
0790-0793 Cluster (adapter 1) Pc AT
OAB2-OAE3 Data acquisition (adapter 2) AT
0B90-0B93 Cluster (adapter 2) PC AT
QOEE2-0OEE3 Data acquisition (adapter 3) AT
1390-1393 Cluster (adapter 3) Pc AT
22E1 GPIB (adapter 1)
2390-2393 Cluster (adapter 4) PC AT
42E1 GPIB (adapter 2) AT
62E1 GPIB (adapter 3) AT
82E1 GPIB (adapter 4) . AT
A2E1 GPIB (adapter 5) AT
C2E1 GPIB (adapter 6) AT
E2E1 GPIB (adapter 7) AT

Noies:

1. These are functions commonacross the IBM range. The PCjr, PC-AT, PC Convertible and
PS/2 (both buses) have enhancements.In somecases, the AT and PS/2 series ignore,
duplicate, or reassign ports arbitrarily. Ifyour code incorporatesspecific port addresses for
videoor system board control it would be wise to have your application determine the
machinetype and video adapter and addressthe ports as required.

2. I/O Addresses,hex 000 to OFF are reserved for the system board I/O. Hex 100 to 3FFare
available on the I/O channel.

3. These are the addresses decoded by the currentset of adapter cards. IBM mayuseany of the
unlisted addresses for future use. 7

4, SDLC Communication and Secondary Binary Synchronous Communications cannot be
used together because their port addresses overlap.

5. IOSGA = I/O Support Gate Array; SSGA = System Support Gate Array.

OLYMPUSEX.1015 - 20/393

OLYMPUS EX. 1015 - 21/393

14 The Programmer’s Technical Reference

Reserved MemoryLocations
Interrupt Vector Table

000-3FF - 1k DOS interrupt vector table, 4 byte vectors for ints OOh-OFFh.
30:00 used as a stack area during POST and bootstrap routines. This stack

to 3F:FF aréa may be revectored by an application program.

The BIOS Data Area

addr. size description
40:00 °§ word COM1 port address These addresses are zeroed out in the OS/2
40:02 word COM2 port address DOS Compatibility Box if any of the oS/2
40:04 word COM3 port address COMxx.SYS drivers are loaded.
40:06 word COM4 port address
40:08 word LPT1 port address
40:04 word LPT2 port address
40:0C word LPT3 port address
40:0E word LPT4 port address (not valid in PS/2 machines)
40:0E word Ps/2 pointer to 1k extended BIOS Data Area at top of RAM

40:10 word equipment flag (see int 11h), bits:no floppy drive present1 if floppy drive present (see bits 6&7)
1 0 no math coprocessor installed

1 . if 80x87 installed (not valid in PCjr)
2,3 system board RAM (not used on AT or PS/2)

0,0 16k 0,1 32k
1,0 48k 1,1 64k4,5 initial video mode
0,0 no video adapter
0,1 40column colour (PCjr default)1,0 80column colour
1,1 MDA

6,7 number of diskette drives
0,0 1 drive 0,1 2 drives
1,0 3 drives ~ 1,1 4 drives

8 0 DMA present
1 DMA not present (PCjr, Tandy 1400, Sanyo

55x)
9,A,B number of RS232 serial ports

c game adapter (joystick)no game adapter1 if game adapter
D serial printer (PCjr only)

0 no printer
1 serial printer present

E,F number of parallel printers installed
Note The IBM PC and AT store the settings of the system board switches or CMOS

RAM setup information (as obtained by the BIOS in the Power-On Self Test
(POST)) at addresses 40:10h and 40:13h. 00000001b indicates ‘on’,00000000b is ‘off’.

40:12 byte reserved (PC, AT) number of errors detected by infrared keyboard
link (PCjr); POST status (Convertible)

40:13 word available memory size in Kbytes (less display RAM in PCjr)
this is the value returned by int 12h40:15 word reserved

40:17 byte keyboard flag byte 0 (see int 9h)
bit 7 insert mode on 3 alt pressed

6 capslock on 2 ctrl pressed
5 numlock on 1 left shift pressed
4 scrollock on 0 right shift pressed

40:18 byte keyboard flag byte 1 (see int 9h)
. bit 7 insert pressed 3 ctri-numlock (pause) toggled

6 capslock pressed 2 PCjr keyboard click active
5 numlock pressed 1 PCjr ctrl-alt-capslock held
4 scrollock pressed 0

OLYMPUSEX.1015 - 21/393

OLYMPUS EX. 1015 - 22/393

40:19
40:1A
40:1c
40:1E
40:3E

40:3F

40:40

40:41

40:42
40:49

40:44

40:4C

40:4E
40:50

40:60
40:61
40:62
40:63

40:65
40:66
40:67
40:6C
40:6E
40:69

40:70

40:71
40:72

byte
word
word

32bytes
byte

byte

byte

byte

7 bytes
byte

word

word

word
8 words

byte
byte
byte
word

byte
byte

5 bytesword
word
byte

byte

byteword

CPUPorts Assignments, System Memory Data, BIOS Data Area 1S

storage for alternate keypad entry (not normally used)pointer to keyboard buffer head character
pointer to keyboard buffer tail character
16 2-byte entries for keyboard circular buffer, read by int 16h
drive seek status - if bit=0, next seek will recalibrate byrepositioning to Track 0.
bit 3 drive D bit 2 drive c

1 drive B 0 drive A
diskette motor status (bit set to. indicate condition)
bit 7 write in progress 3 motor on (floppy 3)

6 2 motor on (floppy 2)
5 1. B: motor on (floppy 1)
4 0 A: motor on (floppy 0)motor off counter

starts at 37 and is decremented 1 by each system clock tick.motor is shut off when count = 0.
status of last diskette operation where:
bit 7 timeout failure 3 DMA overrun

6 seek failure 2 sector not found
5 controller failure 1 address not found
4 CRC failure 0 bad command

NEC floppy controller chip status
Video Control Data Area 1 from 0040:0049 through 0040:0066
current CRT mode (hex value)

00h 40x25 BW (CGA) Olh 40x25 colour (CGA)
O2h 80x25 BW (CGA) 03h 80x25 colour (CGA)
04h 320x200 colour (CGA) 05h 320x200 BW (CGA)
06h 640x200 BW (CGA) 07h monochrome (MDA)

extended video modes (EGA/MCGA/VGA or other)
08h lores,16 colour 09h med res,16 colour
OAh hires,4 colour OBh n/a
Och med res,16 colour ODh hires,16 colour
OEh hires,4 colour OFh hires,64 colour

number of columns on screen, coded as hex number of columns
20 col = 14h (video mode 8, low res 160x200 CGA graphics)40 col = 28h :
80 col = 46h

screen buffer length in bytes
- (mumber of bytes used per screen page, varies with video mode)
current screen buffer starting offset (active page)
cursor position pages 1-8
the first byte of each word gives the column (90-19, 39, or 79); the
second byte gives the row (0-24)
end line for cursor (normally 1)
start line for cursor (normally 0)
current video page being displayed (0-7)
base port address of 6845 CRT controller or equivalent
for active display 3B4h=mono, 3D4h=colour
current setting of the CRT mode register
current palette mask setting (CGA)
temporary storage for SS:SP during shutdown (cassette interface)timer counter low word
timer counter high word
HD_INSTALL (Columbia PCs) (not valid on most clone computers)
bit 0 0 8 inch external floppy drives

1 5.25" external floppy drives
1,2 highest drive address which int 13 will accept (since

the floppy drives are assigned 0-3, subtract 3 to
obtain the number of hard disks installed)
of hard disks connected to expansion controller
of hard disks on motherboard controller (if bit 6 or
7 = 1, no A: floppy is present and the maximum number
of floppies from int 11 is 3)

24 hour timer overflow 1 if timer went past midnight it is reset to
0 each time it is read by int 1Ah
BIOS break flag (bit 7 = 1 means break key hit)
reset flag PCjr keeps 1234h here for softboot when a cartridge isinstalled

ab ~~ sin

bits 1234h = soft reset, memory check will be bypassed
4321h = preserve memory (PS/2 other only)
5678h = system suspended (Convertible)

OLYMPUSEX.1015 - 22/393

OLYMPUS EX. 1015 - 23/393

16 The Programmer’s Technical Reference

9ABCh = manufacturing test mode (Convertible)
ABCDh = system POST loop mode (convertible)

40:74 byte status of last hard disk operation; PCjr special disk control
40:75 byte # of hard disks attached (0-2) ; PCjr special disk control
40:76 byte HD control byte; temp holding area for 6th param table entry
40:77 byte port offset to current hd adapter ; PCjr special disk control
40:78 4 bytes timeout value for LPT1,LPT2,LPT3,LPT4
40:7C 4 bytes timeout value for COM1,COM2,COM3,COM4 (0-OFFh secs, default 1)
40:80 word pointer to start of circular keyboard buffer, default 03:1E
40:82 word pointer to end of circular keyboard buffer, default 03:3E +
40:84 Video Control Data Area 2, 0040:0084 through 0040:008A
40:84 byte rows on the screen minus 1 (EGA only)
40:84 byte PCjxr interrupt flag; timer channel 0 (used by POST)
40:85 word bytes per character (EGA only)
40:85 2 bytes (PCjr only) typamatic character to repeat
40:86 2 bytes (PCjr only) typamatic initial delay
40:87 byte mode options (EGA only)

bit 1 0 EGA is connected to a colour display
1 EGA is monochrome.

bit 3 0 EGA is the active display,
1 ‘other’ display is active.

mode combinations:
bit 3 Bit l Meaning

0 0 EGA is active display and is colour
0 1 EGA is active display and is monochrome
1 0 EGA is not active, a mono card is active
1 1 EGA is not active, a CGA is active

40:87 byte (PCjr only) current Fn key code
80h bit indicates make/break key code?

40:88 byte feature bit switches (EGA only) O=on, 1=o0ffbit 3 switch 4
2 switch 3
1 switch 2
0 switch 1

40:88 byte (PCjr only) special keyboard status byte
bit 7 function flag 3 typamatic (O=enable, l=disable)

6 Fn-B break 2 typamatic speed (0=slow,1=fast)
5 Fn pressed 1 extra delay bef.typamatic (0=enable)
4 Fn lock 0 write char, typamatic delay elapsed

40:89 byte PCjr, current value of 6845 reg 2° (horizontal synch)
used by ctrl-alt-cursor screen positioning routine in ROM

40:8A byte PCjr CRT/CPU Page Register Image, default 3Fh
40:8B byte last diskette data rate selected

bit 7,6 Starting data transfer rate to use
00 500 kb/sec
01 300 kb/sec
10 250 kb/sec
11 reserved

5,4 Last step rate selected
3 Ending data transfer rate to use
2 Reserved
1 Reserved
0 1 combination floppy/fixed disk controller detected

0 XT floppy only controller (for 360kb drive) detectedData Transfer Rates
Kbits/sec Media Drive Sectors/Track

250 360K 360K 3
300 360K 1.2M 9
500 1.2M 1.2M 15
250 720K 720K 9
250 720K 1.4M 9
500 1.4M 1.4M 18

40:8C byte hard disk status returned by controller
40:8D byte hard disk error returned by controller
40:8E byte hard disk interrupt (bit 7=working interrupt)
40:8F byte combo_card - status of drives 0.and 1. bit 7 reserved

6 drive type determined for drive 1
5 drive multiple data rate capability for drive 1

0 no multiple data rate
1 multiple data rate

OLYMPUSEX.1015 - 23/393

OLYMPUS EX. 1015 - 24/393

40:904

40:94
40:96
40:97
40:98
40:9C
40:A0

40:Al
40:A2
40:A4
40:A8

40:B0
40:B4
40;B4

40:B5
40:B5

40:B6

40:B9

CPUPorts Assignments, System Memory Data, BIOS Data Area 17
4 1 then drive 1 has 80 tracks

0 then drive 1 has 40 tracks
3 reserved
2 drive type determined for drive 0
1 drive multiple data rate capability for drive 0

0 no multiple data rate
1 multiple data rate

0 1 then drive 0 has 80 tracks
0 then drive 0 has 40 tracks

bytes media state drive 0, 1, 2, 3
floppy media state

bit7,6 Datatransfer rate
00 - 500 K/sec
01 - 300 K/sec
10 - 250 K/sec
11 - reserved
double stepping required
media/drive determined
reserved

-0 present state
000 360k in 360k unestablished
001 360k in 1.2M unestablished
010 1.2M in 1.2M unestablished
011 360k in 360k established
100 360k in 1.2M established
101 #1.2M in 1.2M established
110 reserved
111 none of the above

2 bytes track currently seeked to drive 0, 1
byte keyboard flag byte 3 (see int 9h)
byte keyboard flag byte 2 (see int 9h)

dword segment:offset pointer to users wait flag
dword users timeout value in microseconds
byte real time clock wait function in use

bits 7 wait time elapsed and posted flag6-1 reserved

0 int 15h, function 86h (WAIT) has occurred
byte LAN A DMA channel flags

2 bytes status LAN A 0,1
dword saved hard disk interrupt vector
adword EGA pointer to table of 7 parameters. Format of table:

dword pointer to 1472 byte table containing 64 video parmsdword reserved
dword reserved
dword reserved
dword reserved
dword reserved
dword reserved

NWAW

2 words international support (Tandy 1000 TX)
byte keyboard NMI control flags (Convertible)
byte monochrome monitor hookup detect (Tandy 1000 TX)

00h not present OFFh present
dword keyboard break pending flags ‘ (Convertible)
byte extended equipment detect (5 bits) (Tandy 1000 TX)bit,o = 0 drive A is 5

1 drive A is 3
1=0 drive Ais 5

1 drive A is 3
2=0 Tandy 1000 keyboard layout

1 IBM keyboard layout
3 =0 CPU slow mode

1 CPU fast mode

4=0 internal colour video support enabled
1 internal colour video support disabled, external video

enabled (chg from mb’d to expansion card)
S$ = 0 no external monochrome video installed

1 external monochrome video installed
byte extended equipment detect (1 bit) (Tandy 1000 TX)

bit 0 = 0 drive c is 5
1 drive Cc is 3 .

byte port 60 single byte queue (Convertible)

OLYMPUSEX.1015 - 24/393

OLYMPUS EX. 1015 - 25/393

,

18

40:BA byte
40:BB byte
40:BC byte
40:BD 16bytes
40:CE word
to -04:8F

The Programmer's Technical Reference

scan code of last key (Convertible)
pointer to NMI buffer head (Convertible)
pointer to NMI buffer tail (Convertible)
NMI scan code buffer (Convertible)
day counter (Convertible and after)end of BIOS Data Area

DOSand BASIC Data Areas
40:90 -40:EF
O04:F0 16bytes
04:FF
05:00 byte

05:01
05:02-03
05:04 byte

05:05-0E
O5:0F
05:10 word
05:12 4 bytes
05:16 4 bytes
05:1A 4 bytes
05:1B-1F
05:20-21
05:22-2C

05:30-33
05:34-FF

reserved by IBM
Inter-Application Communications Area (for use by applications
to transfer data or parameters to each other)
DOS print screen status flag

00h not active or successful completion
Olh print screen in progress
OFFh error during print screen operation

Used by BASIC
PCjr POST and diagnostics work area
Single drive mode status byte

00 logical drive A
01 logical drive B

PCjr POST and diagnostics work area
BASIC: SHELL flag (set to 02h if there is a current SHELL)
BASIC: segment address storage (set with DEF SEG)
BASIC: int 1Ch clock interrupt vector segment:offset storage
BASIC: int 23h ctrl-break interrupt segment:offset storage
BASIC: int 24h disk error int vector segment:offset storage
Used by BASIC for dynamic storage
Used by DOS for dynamic storage :
Used by DOS for diskette parameter table. See int 1Eh for values
In DOS 1.0 this is located in the ROM BIOS, but in DOS 1.1 and
subsequently it is a part of DOS located at 05:22. The first byte
(out of eleven) of the Disk Parameter contains the hexadecimal
value CF in DOS 1.0 and DF in DOS 1.1 and later. DOS 1.0 24ms;
bos 1.1 26ms

Used by MODE command
Unknown —- Reserved for DOS Model and BIOS ID

At absolute addresses:

0008:0047

CO00:001E
FO00: FAGE

FOOO:FFF5
FO00: FFFE

IO.SYS or IBMBIO.COM IRET instruction. This is the dummy routine
that interrupts 01h, 03h, and OFh are. initialized to during POST.
EGA BIOS signature (the letters IBM)
table of characters 00h-7Fh used by int 10h video BIOS.
The first 128 characters are stored here and each occupies 8
bytes. The high bit ones are somewhere on the video adapter card.BIOS release date
PC model identification

ROM BIOS

copyright model sub-
date byte

09/02/86 FA
01/10/86 FB
01/10/86 FB
05/09/86 FB
01/10/84 FC
06/10/85 FC
11/15/85 FC
04/21/86 FC
02/13/87 FC
02/13/87 FC

Fc

revision machine
model

byte
00 00 PS/2 Model 30
00 ol XT :
00 oo XT-2 (early) . (640k motherboard
01 XT-2 (revised) (640k motherboard)-- -- AT
00 ol AT Model 239 6mHz (6.6 max governor)
o1 ao AT Model 319, 339 8mHz (8.6 max governor)
02 00 XT/286
04 00 PS/2 Model 50
05 00 PS/2 Model 60
00 7531/2 Industrial AT

OLYMPUSEX.1015 - 25/393

OLYMPUS EX. 1015 - 26/393

CPUPorts Assignments, System Memory Data, BIOS Data Area 19
FC 06 7552 ‘Gearbox’

06/01/83 FD Pcjr
11/08/82 FE XT, Portable PC, XT/370, 3270PC
04/24/81 FF Pc-0 (16k motherboard)
10/19/81 FF PC-1 (64k motherboard)+
08/16/82 FF Pc, XT, XT/370 (256k motherboard)
10/27/82 FF Pc, XT, XT/370 (256k motherboard)

1987 F8 PS/2 Model 80
1987 F8 ol 00 PS/2 Model 80 20mHz

09/13/85 F9 00 00. Convertible
2D Compaq PC (4.77mHz original)
9A Compaq Plus (XT compatible)

The IBM PC System Interrupts (Overview)
The interrupt table is stored in the very lowest location in memory, starting at 0000:0000h. The
locations are offset from segmentQ,i.e. location 0000h has the addressfor int 0, etc. The tableis
1024 bytes in length and contains 256 four byte vectors from OCh to OFFh. Each address’ location
in memory can be found by multiplying the interrupt numberby 4. For example, int 7 could be
found by (7x4 =28) or 1Bh (0000:001Bh).

These interrupt vectors normally point to ROM tablesor are taken over by DOS whenanappli-
cation is run. Some applications revector these interrupts to their own code to change the way
the system respondsto the user. DOSprovidesint 21h function 25h to change interrupts from a
high level; altering the interrupt vector table directly is not recommended, nor would it really
get you anywhere.

Interrupt Address -

Number (Hex) Type Function
0 00-03 CPU Divide by Zero
1 04-07 CPU Single Step
2 08-0B CPU Nonmaskable
3 0c-0F CPU Breakpoint4 10-13 CPU Overflow
5 14-17 BIOS Print Screen
6 18-1B hdw Reserved
7 1c-1F - hdw Reserved
8 20-23 hdw Time of Day
9 24-27 hdw Keyboard
A 28-2B hdw Reserved

B 2C-2F hdw Communications (8259)
Cc 30-33 hdw Communications
D 34-37 hdw Disk
E 38-3B hdw Diskette
F 3C-3F hdw Printer
10 40-43 BIOS Video
11 44-47 BIOS Equipment Check
12 48-4E BIOS Memory
13 4c-4P BIOS Diskette/Disk
14 50-53 BIOS Serial Communications
15 54-57 BIOS Cassette, System Services
16 58-5B Bios Keyboard
17 5C-S5SF BIOS Parallel Printer
18 60-63 BIOS ROM BASIC Loader
19 64-67 BIOS Bootstrap Loader
1A 68-6B BIOS Time of Day
1B 6C-6F BIOS Keyboard Break
ic 70-73 BIOS Timer Tick
iD 74-77 BIOS Video Initialization
LE 78-7B BIOS Diskette Parameters
1F 7C-7F BIOS Video Graphics Characters, second set
20 80-83 DOS General Program Termination

OLYMPUSEX.1015 - 26/393

OLYMPUS EX. 1015 - 27/393

20

21 84-87
22 88-8B
23 8C-8F
24 90-93
25 94-97
26 98-9B
27 9C-9F

28-3F AO-FF

40-43 100-115

44 116-119
45-47 120-131

48 132-135
49 136-139

50-5F 140-17F

60-67 180-19F

68-7F 1A0-1FF

80-85 200-217
86-FO 218-3C3
F1-FF 3C4-3FF

* = "undocumented”

The Programmer’s Technical Reference

Dos DOS Services Function Request
bos Called Program Termination Address
bos Control Break Termination Address
bos Critical Error Handler
DOS Absolute Disk Read
Dos Absolute Disk Write
DOS Terminate and Stay Resident
DOS Reserved for DOS

*23h Fast Screen Write
*2Ah Microsoft Networks - Session Layer Interrupt

2Fh Multiplex Interrupt
*30h Far jump instruction for CP/M-style calls

33h Used by Microsoft Mouse Driver
BIOS Reserved for BIOS

40h Hard Disk BIOS

4lh Hard Disk Parameters (except PCl)
42h Pointer to screen BIOS entry (EGA, VGA, PS/2)
43h Pointer to EGA initialization parameter table

BIOS First 128 Graphics Characters
BIOS Reserved for BIOS

45h Reserved by IBM (not initialized)
46h Pointer to hard disk 2 params (AT, PS/2)
47h Reserved by IBM (not initialized)

BIOS PCjr Cordless Keyboard Translation
BIOS PCjr Non-Keyboard Scancede Translation Table

4Ah Real-Time Clock Alarm (Convertible, PS/2)BIOS Reserved for BIOS
5Ah Cluster Adapter BIOS entry address

*SBh IBM (cluster adapter?) i
5Ch NETBIOS interface entry port

User Program Interrupts (available for general use)60h 10-Net Network
67h Used by LIM & AQA EMS, EEMS

Reserved by IBM
6Ch System Resume Vector (Convertible)
6Fh some Novell and 10-Net API functions
70h IRQ 8, Real Time Clock Interrupt (AT, PS/2)
7ih IRQ 9, LAN Adapter 1
72h IRQ 10 (AT, XT/286, PS/2) Reserved
73h IRQ 11 (AT, XT/286, PS/2) Reserved
74h IRQ 12 Mouse Interrupt (PS/2)
75h IRQ 13, Coprocessor Error
76h IRQ 14, Hard Disk Controller (AT, PS/2)
77h IRQ 15 (AT, XT/286, PS/2) Reserved i
7Ch IBM REXX88PC command languageROM BASIC

Used by BASIC Interpreter When BASIC is running
Reserved by IBM

OF1h-OFFh Interprocess Communications Area
*OF8h Set Shell Interrupt (OEM)
*O0F9h OEM SHELL service codes

OFAh USART ready (RS-232C)
OFBh USART RS ready (keyboard)

*OFEh used on ‘283 & ‘386
*OFFh used on ‘283 & '386

The IBM-PC System Interrupts (in detail)
Interrupt 00h Divide by Zero
(0:0000h)
(processorerror). Automatically called at end of DIV or IDIV operationthat results in error.
Normally set by DOSto display an error message andabort the program.

Interrupt 01h Single step
(0:0004h)

OLYMPUSEX.1015 - 27/393

OLYMPUS EX. 1015 - 28/393

CPUPorts Assignments, System Memory Data, BIOS Data Area . 21

‘Taken after every instruction when CPU Trap Flag indicates single-step mode (bit 8 of FLAGSis
1). This is what makes the “T’ command of DEBUGworkforsingle stepping. Is not generated
after MOV to segmentregister or POP of segmentregister. (unless you have a very early 8088
with the microcode bug).

Interrupt 02h Non-maskable interrupt
(0:0008h)
Vector not disabled via CLL. Generated by NMIsignal in hardware. This signal has various uses:

POST parity error: all except PCjr and Convertible
80x87 coprocessor interrupt: all except PCjr and Convertible
Keyboard interrupt: PCcjr, Convertible
I/O channel check: Convertible, PS/2 50+
Disk controller power-on request: Convertible
System suspend: Convertible
Realtime clock: Convertible
System watchdog timer: Ps/2 50+
Timeout interrupt: PS/2 50+
DMA timer time-out interrupt: PS/2 50+
Infrared keyboard link: Pcjr

Interrupt 03h Breakpoint
(0:000Ch)
Taken when CPU executesthe 1-byte int 3 (OCCh). Similar to 8080’s

(internal)
RSTinstruction. Generally used to set breakpoints for DEBUG.Also used by Turbo Pascal ver-
sions 1,2,3 when {$U +} specified

Interrupt 04h Divide overflow
(0:0010h)
Generated by INTOinstruction if OFflagis set. If flag isnot set,(internal) INTOiseffectively a
NOP. Usedto trap any arithmetic errors when program is ready to handle them rather than im-
mediately when they occur.

Interrupt 05h Print Screen
(0:0014h)
Service dumpsthe screen to the printer. Invoked byint 9 for shifted key 55 (PrtSc). Automat-
ically called by keyboard scan when PrtSckey is pressed. Normally executes a routine to print the
screen, but may call any routine that can safely be executed from inside the keyboard scanner.
Status and result byte are at address 0050:0000.

(internal) BOUND Check Failed (80286+)
Generated by BOUNDinstruction when the value to betested is less than the indicated lower
bound or greater than the indicated upper bound.

entry AH 05h
return absolute address 50:0

00h print screen has not been called, or upon return from a call
there were no errors

Olh print screen is already in progress
OFFh error encountered during printing

note 1. Uses BIOS services to read the screen.
2. Output is directed to LPT1.
3. Revectored into GRAPHICS.COM if GRAPHICS. COM is loaded.

Interrupt 06h Reserved by IBM
(0:0018h)
(ifiternal) Undefined Opcode (80286+)

OLYMPUSEX.1015 - 28/393

OLYMPUS EX. 1015 - 29/393

22 The Programmer’s Technical Reference

Interrupt 07h Reserved by IBM
(0:00COh)
(internal) No Math Unit Available (80286 +)

Interrupt 08h Timer
(0:0020h)
55mstimer‘tick’ taken 18.2 times per second. Updates BIOS clock and turns off diskette drive
motors after 2 seconds ofinactivity.
TROO

tinternal) Double Fault (80286+ protected mode) ;
Called when multiple exceptions occur on oneinstruction, or an exception occursin an excep-
tion handler. If an exception occurs in the double fault handler, the CPU goes into SHUT-
DOWNmode(whichcircuitry in the PC/AT convertsto a reset).

entry AH 08h
return absolute addresses:

40:6C number of interrupts since power on (4 bytes)
40:70 number of days since power on (1 byte)
40:67 day counter on all products after AT
40:40 motor control count - gets decremented and shuts off diskettemotor if zero

note Int 1Ch is invoked by int 08h as a user interrupt.

(internal) Double Fault (80286+ protected mode)
Called when multiple exceptions occur on oneinstruction, or an exception occurs in an excep-
tion handler. If an exception occurs in the double fault handler, the CPU goes into SHUT
DOWNmode(whichcircuitry in the PC/AT converts to a reset).

Interrupt 09h Keyboard
(0:0024h)
Taken whenevera key is pressed or released. This is normally a scan code, but may also be an
ACKor NAK ofa command on AT-type keyboards.
(RQ?)
note Stores characters/scan-codes in status at absolute addr. [0040:0017,18]

(internal) Math Unit Protection Fault (80286+ protected mode)
entry AH 09h
return at absolute memory addresses:

40:17 bit
right shift key depressed
left shift key depressed
control key depressed
alt key depressed
ScrollLock state has been toggled
NumLock state has been toggled
CapsLock state has been toggled
insert state is active

40:18
left control key depressed
left alt key depressed
SysReq key depressed
Pause key has been toggled
ScrollLock key is depressed
NumLock key is depressed
CapsLock key is depressed
Insert key is depressed

40:96
last code was the Elh hidden code
last code was the E0h hidden code
right control key down
right alt key down
101 key Enhanced keyboard installed
force NumLock if rd ID & kbx

UPWNHEROTNAUABWNRPOTTNAUPWNESO
OLYMPUSEX.1015 - 29/393

OLYMPUS EX. 1015 - 30/393

CPUPortsAssignments, System Memory Data, BIOS Data Area ; 23
last character was first ID character

doing a read ID (must be bit 0)40:97 pct
ScrolliLock indicator
NumLock indicator
CapsLock indicator
circus system indicator
ACK received
resend received flag
mode indicator update
‘keyboard transmit error flag

40:1E keyboard buffer (20h bytes)
40:1c buffer tail pointer
40:72 1234h if ctrl-alt-del pressed on keyboardscan code

1. Int 05h invoked if PrtSc key pressed.
2. Int 1Bh invoked if Ctrl-Break key sequence pressed.
3. Int 15h, AH=85h invoked on AT and after if SysReq key is pressed.4
5

NAMBWNKEOTA
EBnote

.» Int 15h, AH=4Fh invoked on machines after AT.
» Int 16h, BIOS keyboard functions, uses this interrupt.

Interrupt 0Ah EGAVertical Retrace
(0:0028h) used by EGAvertical retrace
(IRQ2)
Note: The TOPS and PCnetadaptersuse this IRQ line by default.

(internal) Invalid Task State Segment (80286+ protected mode)

Interrupt 0Bh Communications Controller (serial port) hdw. entry
(0:002Ch) Serial Port 2 (COM2)
(IRQ3)
Note I. IRQ3 may beused bySDLC (synchronous data-link control) or bisynchronous

communications cardsinstead ofaserial port.
The TOPS and PCnet adaptersuse this interrupt requestline as an alternate.
On PS/2s, COM? through COM8sharethis interrupt.
Onmany PCs, COM¢4sharesthis interrupt.
On the Commodore Amiga 2000 with the PC Bridge Board,this interruptis used for
communication between the Amiga system board and the Bridge Board. This was
probably the lowest IRQ level they felt safe using, but limits the A2000’s use of network
cards,etc.

WPwn

(internal) Not Present (80286+ protected mode)
Generated when loading a segmentregister if the segment descriptor indicates that the segment
is not currently in memory. May be used to implementvirtual memory.

Interrupt 0Ch Communications Controller (serial port) hdw. entry
(0:0030h) Serial Port 1 (COM1)or internal modem in P Cjr or Convertible
(IRQ4)
Note 1. IRQ4 maybe used bySDLC (synchronous data-link control) or bisynchronous

communicationscards instead ofa serial port.
2. OnsomePCs,this interruptis sharedbyCOM3.
3. Tandy computers use IROQ4instead of IRQ5 forthe hard disk interrupt.
4, Best performance of mice sometimes happens whenthey areconfiguredfor IRQ4

instead of[IRQ3, since some mousedrivers may lock system interrupts for long periods.

(internal) Stack Fault (80286+ protected mode)
Generated on stack overflow/underflow. Note that the 80286 will shut down in real modeif

SP =1 before a push.

OLYMPUSEX.1015 - 30/393

OLYMPUS EX. 1015 - 31/393

24 The Programmer’s Technical Reference

Interrupt 0Dh Alternate Printer, AT 80287
(0:0034h) used by hard disk onIBM and most compatibles, 60 Hz RAM
(IRQ5)
refresh, LPT2 on AT, XT/286, and PS/2, dummy CRTvertical retrace on PCjr
Note: Various Tandy 1000 models may usethis line for the 60Hhz RAM refresh oras ‘optional
bus interrupt’.

(internal) General Protection Violation (80286 +)
Called in real mode when aninstruction attempts to access a word operandlocated atoffset
OFFFFh or a PUSH MEM or POP MEMinstruction containsan invalid bit code in the second

byte.

Interrupt 0Eh Diskette Interrupt
(0:0038h)
Generated by floppy controller on completion ofan operation
(IRQ6)(sets bit 8 of40:3E)

(internal) Page Fault (80386+ native mode)

Interrupt 0Fh Reserved by IBM
(0:003Ch) IRQ7 used by PPlinterrupt (LPT1, LPT2)
(IRQ7)
Note: Generated by the LPT1 printer adapter when printer becomes ready. Manyprinter adap-
ters do notreliably generatethis interrupt.

OLYMPUSEX.1015 - 31/393

OLYMPUS EX. 1015 - 32/393

 THE PC ROM BIOS

Calling the ROM BIOS
The BIOSservices are invoked by placing the numberof the desired function in register AH,
subfunction in AL,setting the other registers to any specific requirementsof the function, and
invoking any ofints 10h through int 20h.

Whenthe interruptis called, all register and flag values are pushedinto the stack. The interrupt
address contains a pointer into.an absolute address in the ROM BIOSchip address space. This
location maybe further vectored into the IBMBIO.COM(or equivalent) file or userfile.

The address vector points to a particular BIOS command handler. The handler popsthe register
values, compares them toits list of functions, and executes the function ifvalid. When the func-
tion is complete, it may pass values back to the command handler. The handler will push the
values into the stack and then return control to the calling program.

Most functions will return an error code; some return more information. Details are contained
in the listings for the individual functions.

Register settings listed are the ones used by the BIOS. Some functions will return with garbage
values in unused registers. Do nottest for values in unspecified registers; your program mayex-
hibit odd behaviour.

Interrupt 10h Video Service
(0:0040h) The BIOS Video Services may be found in Chapter 16.

(internal) Coprocessor Error (80286+)
Generated by the CPU when the -ERRORpinis asserted by the coprocessor (usually 80x87, but
may be any multimaster CPU or alternate NDP such as Weitek, etc.). ATS and clones usually
wire the coprocessorto use IRQ13, but notall getit right.

Interrupt 11h Equipment Check
(0:0044h) Reads the BIOS Data Area and returns twobytes of setup info. entry. No parameters
arerequired
return AX Equipment listing word. Bits are:

0 number of floppy drives
9 no drives

1 bootable (IPL) diskette drive installed

OLYMPUSEX.1015 - 32/393

OLYMPUS EX. 1015 - 33/393

26 The Programmer’s Technical Reference

1 math chip
0 no math coprocessor (80x87) present :
1 math coprocessor (80x87) present i

(PS/2) 2 0 mouse not installed :
1 mouse installed i

(Pc) 2,3 system board RAM |
0,0 16k (PC-0, PC-1) i
0,1 32k :
1,0 48k :
1,1 64k (PC-2, XT) |
note 1. not commonly used. Set both bits to 1 |

2. both bits always 1 in AT
4,5 initial video mode

0,0 no video installed (use with dumb terminal)
rl 40x25 colour (CGA) |
,90 80x25 colour (CGA, EGA, PGA, MCGA, VGA) |
il 80x25 monochrome (MDA or Hercules, most superhires '

mono systems) !|t
|i

PRO 6,7 number of diskette drives (only if bit 0 is 1)
0,0 1 drives
0,1 2 drives
1,0 3 drives
1,1 4 drives

8 0 DMA present
1 no DMA (PCjr, some Tandy 1000s, 1400LT) !

9,A,Bnumber of RS232 serial ports (0-3) i
0,0,0 none :
0,0,1 1 fl
0,1,0 2 4
0,1,1 3
1,0,0 4 :

c 0 no game I/O attached i
1 game I/O attached (default for PCjr)

D serial accessory installation
0 no serial accessories installed :
1 Convertible - internal modem installed or PCjr - }serial printer attached

E,F number of parallel printers
0,0 none
0,1 one (LPT1, PRN)
1,0 two (LPT2)
1,1 three (LPT3)
note Models before PS/2 would allow a fourth parallel

printer. Remapping of the BIOS in the PS/2s does
not allow the use of LPT4.

Interrupt 12h MemorySize
(0:0048h) get system memory |
entry no parameters required
return AX number of contiguous 1K RAM blocks available for bos
Note 1. Thisisthe same valuestored in absolute address 04:13h..

2. Forsomeearly PC models, the amount ofmemory returnedbythis call is determined by
the settings of the dip switches on the motherboard and maynotreflectall the memory
thatis physically present.

3. For the PC/AT, the value returnedis the amount offunctional memory found during
the power-onself-test, regardless of the memory size configuration information stored |
in CMOS RAM.

4. Thevaluc returned doesnotreflect any extended memory (above the 1 Mb boundary)
that may be present on 80286 or 80386 machines.

Interrupt 13h Disk Functions
(0:0049h) The service calls for BIOSdisk functionsare located in Chapter8.

Interrupt 14h Initialize and AccessSerial Port For Int 14
(0:0050h)the following statusis defined:

OLYMPUSEX.1015 - 33/393

OLYMPUS EX. 1015 - 34/393

The PC ROMBIOS

serial status byte:
bits delta clear to send

delta data set ready
trailing edge ring detector
delta receive line signal detectclear to send
data set ready
ring indicator
receive line signal detect

HNOeWNhHOS
line status byte:bits 0 data readyoverrun error

parity error
framing error
break detect

transmit holding register empty
transmit shift register empty
time out note: if bit 7 set then other bits are invalid

SDAUOWNbe

27

Allroutines have AH=function number and DX=RS232 card number(0 based). AL=charac-
ter to send or received characteronexit, unless otherwise noted.

entry AH

AL

DX
return AH

AL
note

Function O1h
entry AH

AL
DX

return AH

00h Initialize And Access Serial Communications Port
bit pattern: BBBPPSLL
BBB = baud rate: 110, 150, 300, 600, 1200,

: 2400, 4800, 9600
PP = parity: O01 = odd, 11 = even
Ss = stop bits: o=1, 1=2
LL = word length:

parms for initialization:
bit pattern:

10 = 7-bits, 11 = 8-bits

0 word length
1 word length
2 stop bits
3 parity
4 parity
5 baud rate
6 baud rate
7 baud rate
word length 10 7 bits

11 8 bits

stop bits 0 1 stop bit
1 2 stop bits

parity 00 none
ol odd
11 even

baud rate 000 110 baud
001 150 baud
010 300 baud
011 600 baud
100 1200 baud
101 2400 baud
110 4800 baud

111 9600 baud (4800 on PCjr)
port number (0=COM1, 1=COM2, etc.)line status
modem status

To initialize the serial port to 9600 baud on PS/2 machines, seefns 04hand 05h.

Send Character in AL to Comm Port
Olh
character

port number (0 - 3)
RS232 status code

bit 0 data ready
1 overrun error
2 parity error
3 framing error

OLYMPUSEX. 1015 - 34/393

OLYMPUS EX. 1015 - 35/393

Function 02h
entry AHDX

‘return AL
AH

Function 03h
entry AHDX
return AH

Function 04h
entry AHAL

BH

BL

CH

cL

The Programmer's Technical Reference
break detected
transmission buffer register empty
transmission shift register empty
timeoutsai

modem status
bit

delta clear-to-send

delta data-set-~ready
trailing edge ring detected
change, receive line signal detected
clear-to-send
data-set-ready
ring received
receive line signal detected

SAUWNoO
Wait For A Character From Comm Port DX
02h
port number (0-3)
character received

error code (see above)(00h for no error)

Fetch the Status of Comm Port DX (0 or 1)03h
port (0-3)
set bits (01h) indicate comm-line status
bit 7 timeout
bit 6 empty transmit shift register
bit 5 empty transmit holding register
bit 4 break detected (’long-space’)
bit 3 framing error
bit 2 parity error
bit 1 overrun error
bit 0 data readyset bits indicate modem status
bit 7 received line signal detect
bit 6 ring indicator
bit 5 data set ready
bit 4 clear to send

bit 3 delta receive line signal detect
bit 2 trailing edge ring detector
bit 1 delta data set ready
bit 0 delta clear to send

Extended Initialize (Convertible, PS/2)04h
break status
Olh if break
00h if no break
parity
00h no parity
Olh odd parity
02h even parity
03h stick parity odd
04h stick parity even
number of stop bits
00h one stop bit
Olh 2 stop bits (1 if 5 bit word length)
word length
00h 5 bits
Olh 6 bits
o2h 7 bits
03h 8 bits
baud rate
00h 110
Olh 150
02h 300
03h 600
04h 1200 '
05h 2400
06h 4800
Oo7h 9600

OLYMPUSEX.1015 - 35/393

OLYMPUS EX. 1015 - 36/393

The PC ROM BIOS . 29
o8h 19200

DX comm port (0-3)
return AH line control status

AL modem status

note | Provides a superset of fn 00h capabilities for PS/2 machines.

Function 05h Extended Communication Port Control (Convertible, Ps/2)
entry AH oSh

AL 00h read modem control register
: Olh ' write modem control register

BL modem control register
bits 0 DTR data terminal ready

1 RTS request to send
2 outl
3 out2
4 loop
5,6,7 reserved

DX port number (0=COM1, 1=COM2, etc.)
return AH port status (see 00h above)

AL modem status (see 00h above)
BL modem control register (see Olh above)

FOSSIL Drivers

Interrupt 14h FOSSIL (Fido/Opus/Seadog Standard Interface Level) drivers
AFOSSILis a device driver for handling the IBM PC serial communications ports in a standard
fashion from an application (communications) program. A FOSSIL chains into the int 14h
BIOS communications vector and replaces many functions with enhanced routines that may be
easily accessed by an application.

For all functions, all registers not specifically containing a function return value must be
preserved acrossthecall.

entry AH 00h Set baud rate and parameters
AL byte

bits 7,6,5 baudrate
000 19200 baud
001 38400 baud
010 300 baud
011 600 baud
100 1200 baud
101 2400 baud
110 4800 baud
111 9600 baud
bits 4,3 parity
00 none
ol odd
10 none
11 even

bit 2 stop bits
0 1 stop bit
1 2 stop bits
bit 1 char length
0 5 bits plus value
other optional

DX port number (NOP if DX=00FFh)
return AX status (see fn 03h)
note Low-order 5 bits are undefined by FOSSIL 1.0 spec.

entry AH Olh Transmit character with waitAL ASCII value of character to be sent
DX port number (NOP if DX=00FFh)

return AX status bits (see function 03h)
note 1 Character is queued for transmission. If there is room in the

transmitter buffer when this call is made, the character will be stored

OLYMPUSEX.1015 - 36/393

OLYMPUS EX. 1015 - 37/393

30 The Programmer’s Technical Reference

and control returned to caller. If the buffer is full, the driver will
wait for room. Use this function with caution when flow control is
enabled.

entry AH 02h FOSSIL: Receive a character with wait
Dx port number (0-3) (NOP if DX=00FFh)

return AH RS-232 status code (see AH=00h above)
AL ASCII value of character received from serial port

note Will timeout if DSR is not asserted, even if function 03h returns data
ready.

entry AH 03h FOSSIL: Request status
Dx port number (NOP if DX=00FFh) \return AX status bit mask

AH bit 0 set RDA input data is available in buffer
1 set OVRN input buffer overrun
2 N/A
3 N/A
4 N/A
5 set THRE room is available in output buffer
6 set TSRE output buffer is empty
7 N/A

AL bit 0 N/A
1 N/A
2 N/A
3 set this bit is always set
4 N/A
5 N/A
6 N/A |
7 set DCD carrier detect L

note Bit 3 of AL is always returned set to enable programs to use it as a i
carrier detect bit on hardwired (null modem) links.

entry AH 04h Initialize FOSSIL driver
BX 4FP50h (optional)
DX port number (DX=O0FFh special)
ES:CX pointer to “Cc flag address (optional)return AX 1954h if successful

BL maximum function number supported (excluding 7Eh-OBFh)
BH revision of FOSSIL supported

note 1. DTR is raised when FOSSIL inits.
2. Existing baudrate is preserved. .
3. If BX contains 4F50h, the address specified in ES:CX is that of a *C flag

byte in the application program, to be incremented when “*C is’ detected
in the keyboard service routines. This is an optional service and only i
need be supported on machines where the keyboard service can’t (or
won't) perform an int 1Bh or int 23h when a control-Cc is entered. i

entry AH 05h Deinitialize FOSSIL driver
DX port number (DX=O00FFh special)return none

note 1. DTR is not affected.

2. Disengages driver from comm port. Should be done when operations on the
port are complete.

3. If DX=O00FFPh, the initialization that was performed when FOSSIL function
04h with DX=00FFh should be undone. i

entry AH 06h FOSSIL: Raise/lower DIR

AL DTR state to be set00h lower DTR :
Olh raise DTR

DX comm port (NOP if DX=00FFh) :
return none |
entry AH 07h FOSSIL: Return timer tick parameters
return AH ticks per second on interrupt number shown in AL

AL timer tick interrupt number (not vector!)
DX milliseconds per tick (approximate)

entry AH 08h FOSSIL: Flush output buffer
DX port number (NOP if DX=O0FFh)return none

OLYMPUSEX.1015 - 37/393

OLYMPUS EX. 1015 - 38/393

note
entry

return
note

entry

return
note 1.

entry

return

note

entry

return

note l.
2.

entry
return

note 1.
2.

3.

entry
return
note

entry

return
note 1.

2.

The PC ROM BIOS 31
Waits until all output is done.
AH ooh FOSSIL: Purge output buffer
DX port number (NOP if DX=00FPh)none

Returns to caller immediately.

AH OAh FOSSIL: Purge input buffer
DX port number (NOP if DX=00FFh)none

If any flow control restraint has been employed (dropping RTS or
transmitting XOFF) the port will be ‘released’ by doing the reverse,
raising RTS or sending XON.
Returns to caller immediately.

AH OBh FOSSIL: Transmit no wait
AL ASCII character value to be sent
Dx port number (NOP if DX=00FFh)
AX 0000h character not accepted

o00lh character accepted
This is exactly the same as the ‘regular’ transmit call except that if
there is no space available in the output buffer a value of zero is
returned in AX, if room is available a value 1 (one) is returned.

AH och FOSSIL: Nondestructive Read no Wait
DX port number (NOP if DX=00FFh)AH character

OFFFFh character not available
Reads async buffer.
Does not remove keycode from buffer.

AH ODh FOSSIL: Keyboard read no wait
AX IBM keyboard scan code or

OFFFFh if no keyboard character available
Use IBM-style function key mapping in the high order byte.
Scan codes for non function keys are not specifically required but may beincluded.
Does not remove keycode from buffer.

AH OEh FOSSIL: Keyboard input with wait
AX IBM keyboard scan code
Returns the next character from the keyboard or waits if nocharacter is available.

AH OFh Enable or Disable flow control
AL bit mask describing requested flow control

bits 0 XON/XOFF on transmit (watch for XOFF while sending)
1 CTS/RTS (CTS on transmit/RTS on receive)2 reserved

3 XON/XOFF on receive (send XOFF when buffer near full)
4-7 not used, FOSSIL spec calls for setting to 1

DX port number (NOP if DX=00FFh)none %

Bit 2 is reserved for DSR/DTR, but is not currently supported in anyimplementation.

TRANSMIT flow control allows the other end to restrain the transmitter
when you are overrunning it. RECEIVE flow control tells the FOSSIL to
attempt to do just that if it is being overwhelmed.
Enabling transmit Xon/Xoff will cause the FOSSIL to stop transmitting
upon receiving an Xoff. The FOSSIL will resume transmitting when an Xonis received.

Enabling CTS/RTS will cause the FOSSIL to cease transmitting when CTS is
lowered. Transmission will resume when CTS is raised. The FOSSIL will
drop RTS when the receive buffer reaches a predetermined percentage
full. The FOSSIL will raise RTS when the receive buffer empties below
the predetermined percentage full. The point(s) at which this occurs is
left to the individual FOSSIL implementor.
Enabling receive Xon/Xoff will cause the FOSSIL to send a Xoff when the
receive buffer reaches a pre-determined percentage full. An Xon will be
sent when the receive buffer empties below the predetermined percentage
full. The point(s) at which this occurs is left to the individual FOSSIL
implementor.

OLYMPUSEX.1015 - 38/393

OLYMPUS EX. 1015 - 39/393

32 The Programmer's Technical Reference

6. Applications using this function should set all bits ON in the high
nibble of AL as well. There is a compatible (but not identical) FOSSIL
driver implementation that uses the high nibble as a control mask. If
your application sets the high nibble to all ones, it will always work,
regardless of the method used by any given driver.

entry AH 10h Extended Ctrl-C/Ctrl-K checking and transmit on/off
AL flags bit mask byte (bit set if activated)

bits 0 enable/disable Ctrl-C/Ctri-K checking
1 disable/enable the transmitter
2-7 not used

DX port number (NOP if DX=00FFh)
return AX status byte

0000h control-C/K has not been received
000lh control-c/K has been received

note This is used primarily for programs that can't trust XON/XOFF at FOSSIL
le vel (such as BBS software).

entry AH 11h FOSSIL: Set current cursor location.
DH row (line) 0-24DL column 0-79

return none

note 1. This function looks exactly like the int 10h, fn 02h on the IBM PC. The
cursor location is passed in DX: row in DH and column in DL. This
function treats the screen as a coordinate system whose origin (0,0) is
the upper left hand corner of the screen.

2. Row and column start at 0.

entry AH 12h FOSSIL: Read current cursor location.
return DH row (line)

DL column
note 1. Looks exactly like int 10h/fn 03h in the IBM PC BIOS. The current cursor

location (same coordinate system as function 16h) is passed back in Dx.2. Row and column start at 0.

entry AH 13h FOSSIL: Single character ANSI write to screen.
AL value of character to display

return none

note This call might not be reentrant since ANSI processing may be through DOS.

entry AH 14h FOSSIL: Enable or disable watchdog processing
AL. 00h to disable watchdog

Olh to enable watchdog
DX port number (NOP if DX=00FFh)

return none
note 1. This call will cause the FOSSIL to reboot the system if Carrier Detect

for the specified port drops while watchdog is turned.on.
2. The port need not be active for this function to work.

entry AH 15h Write character to screen using BIOS support routines
AL ASCII code of character to display

return none i
note 1. This function is reentrant.

2. ANSI processing may not be assumed.

entry AH 16h Insert or Delete a function from the timer tick chain

AL 00h to delete a function |
Olh to add a function !ES:DX address of function

return AX 0000h successful
OFFFFh unsuccessful

entry AH 17h FOSSIL: Reboot system :
AL boot type i

00h cold boot
Olh warm boot

return none

entry AH 18h FOSSIL: Read block
cx IMaximum number of characters to transfer
DX port number (NOP if DX=0O0FFh)

OLYMPUSEX.1015 - 39/393

OLYMPUS EX. 1015 - 40/393

an

returnno 1.

2.

entry

return
note

entry

return
note 1.

2.
3.

entry

return

note l.

entry

return

note 1.
2.

3.

entry

return

The PC ROM BIOS 33

ES:DI pointer to user buffer fiAX number of characters transferred
This function does not wait for more characters to become available if
the value in CX exceeds the number of characters currently stored.
ES:DI are left unchanged by the call; the count of bytes actuallytransferred will be returned in AX.

AH 19h FOSSIL: Write block
cx maximum number of characters to transfer
Dx port number (NOP if DX=00FFh)
ES:DI pointer to user buffer
AX number of characters transfered
ES and DI are not modified by this call.

AH 1Ah FOSSIL: Break signal begin or end
AL 00h stop sending ‘break’

Olh start sending ‘break’
DX port number (NOP if DX=O00FFh)none

Resets all transmit flow control restraints such as an XOFF received fromremote.

Init (fn 04h) or UnInit (fn 05h) will stop an in-progress break.
The application must determine the ‘length’ of the break.AH

1Bh FOSSIL: Return information about the driver
cx size of user buffer in bytes
Dx port number (if DX=00PFh, port data will not be valid)ES:DI pointer to user buffer
AX number of characters transferred
ES:DI user buffer structure:

00h word size of structure in bytes
02h byte FOSSIL driver version
03h byte revision level of this specific driver
04h adword FAR pointer to ASCII ID string
08h word size of the input buffer in bytes
OAh word number of bytes in input buffer
och word size of the output buffer in bytes
OEh word number of bytes in output buffer
10h byte width of screen in characters
11h byte screen height in characters
12h byte actual baud rate, computer to modem (see mask in

function 00h)
The baud rate byte contains the bits that fn 00h would use to set the
port to that speed.

The fields related to a particular port (buffer size, space left in the
buffer, baud rate) will be undefined if port=OFFh or an invalid port iscontained in DX. ,

Additional information will always be passed after these, so that the
fields will never change with FOSSIL revision changes.

AH 7Eh FOSSIL: Install an external application function
AL code assigned to external application
ES:DX pointer to entry point
AX 1954h FOSSIL driver present

not 1954h FOSSIL driver not presentBH 00h failed
Olh successful

BL code assigned to application (same as input AL)
Application codes 80h-OBFh are supported. Codes 80h-83h are reserved.
An error code of BH=00h with AX=1954h should mean that another external
application has already been installed with the code specified in AL.
Applications are entered via a FAR call and should make a FAR return.

AH 7Fh FOSSIL: Remove an external application function
AL code assigned to external application
ES: DX pointer to entry pointAX 1954h
BH 00h failed

Olh successful

BL code assigned to application (same as input AL)

OLYMPUSEX.1015 - 40/393

OLYMPUS EX. 1015 - 41/393

34 The Programmer’s Technical Reference

Interrupt 15h Cassette I/O
(0:0054h)Renamed ‘System Services’ on PS/2 line. Issuing int 15h on an XT may cause a system
crash. On AT andafter, interrupts are disabled with CLI when theinterrupt service routineis
called, but most ROMversionsdonotrestore interrupts with STI.
Function 00h Turn Cassette Motor On (Pc, Pcjr only)
entry AE 00h
return CF set on error

AH error code
00h no errors
Olh CRC error
02h bad tape signals

no data transitions (PCjr)
03h no data found on tape

not used (PCjr)
04h no data

no leader (PCjr)
80h invalid command
86h no cassette present

not valid in PCjr
note NOP for systems where cassette not supported.

Function Olh Turn Cassette Motor Off (Pc, PCjr only)
entry AH Olh
return CF set on error

AH error code (86h)
note NOP for systems where cassette not supported.

Function 02h Read Blocks From Cassette (Pc, PCjr only)
entry AH 02h

cx count of bytes to read
ES: BX segment:offset + 1 of last byte read

return CF set on error
AH error code (Olh, 02h, 04h, 80h, 86h)

Dx count of bytes actually read
ES:BX pointer past last byte written

note 1. NOP for systems where cassette not supported.
2. Cassette operations normally read 256 byte blocks.

Function 03h Write Data Blocks to Cassette (Pc, Pcjr only)
entry AH 03h

cx count of bytes to write
ES:BX pointer to data buffer

return CF set on error
AH error code (80h, 86h)

cx 00h

ES: BX pointer to last byte writtentl
note 1. NOP for systems where cassette not supported.

2. The last block is padded to 256 bytes with zeroes if needed.
3. No errors are returned by this service.

Function OFh ESDI Format Unit Periodic Interrupt (PS/2 50+)
entry AH OFh

AL phase code
00h reserved
Olh surface analysis
02h formatting

return CF clear if formatting should continue
set if it should terminate

note 1. Called the BIOS on the ESDI Fixed Disk Drive Adapter/A during a format or
surface analysis operation after each cylinder is completed.

2. This function call can be captured by a program so that it will be
notified as each cylinder is formatted or analyzed. The program can count
interrupts for each phase to determine the current cylinder number. ,

3. The BIOS default handler for this function returns with CF set.

OLYMPUSEX.1015 - 41/393

OLYMPUS EX. 1015 - 42/393

The PC ROM BIOS . 35
Function 10h TopView API Function Calls (TopView)
entry AH 00h PAUSE Give Up CPU Time

return 00h after other processes run
Olh GETMEM allocate ‘system’ memory

BX number of bytes to allocate
return ES:DI pointer to a block of memory

02h PUIMEM deallocate ‘system’ memory
ES:DI pointer to previously allocated blockreturn block freed

03h PRINTC display character/attribute on screen
BH attribute
BL character
Dx segment of object handle for window
note BX=0 does not display anything, it positions thehardware cursor.

04h-09h unknown
10h unknown

AL 04h thru 12h

return TopView - unimplemented in DV 2.0x pops up
‘Programming error’ window in DV 2.0x

1lh unknown
12h unknown

13h GETBIT define a 2nd-level interrupt handler
ES:DI pointer to FAR service routine
return BX bit mask indicating which bit was

allocated 0 if no more bits availble
14h FREEBIT undefine a 2nd-level interrupt handler

BX bit mask from int 15/fn1013h
15h SETBIT schedule one or more 2nd-level interrupts

BX bit mask for interrupts to post
return indicated routines will be called at next 77?

16h ISOBI verify object handle
ES:DI possible object thandle
return BX ~1 if ES:DI is a valid object handle

0 if ES:DI is not
17h TopView - unimplemented in DV 2.00

return pops up ‘Programming Error’ window in DV 2.00
18h LOCATE Find Window at a Given Screen Location

BH column
BL row

ES segment of object handle for ?
. (0 = use default)

return ES segment of object handle for window which
is visible at the indicated position19h SOUND Make Tone

BX frequency in Hertz
cx duration in clock ticks (18.2 ticks/sec)
return immediately, tone continues to completion
note If another tone is already playing, the new tone

does not start until completion of the
previous one. In DV 2.00, it is possible to
enqueue about 32 tones before the process is
blocked until a note completes. In DV 2.00, the
lowest tone allowed is 20 Hz

1Ah OSTACK Switch to Task’s Internal Stack
return stack switched

1Bh BEGINC Begin Critical Region
return task-switching temporarily disabled
note Will not task-switch until End Critical

Region (AH=101Ch) is called
1Cch ENDC End Critical Region :

return task-switching enabled
1Dh STOP STOP TASK

ES segment of object handle for task to be stopped
(= handle of main window for that task)

return indicated task will no longer get CPU time
note At least in DV 2.00, this function is ignored

unless the indicated task is the current task.
1Eh START Start Task

ES segment of object handle for task to be started
(= handle of main window for that task)

OLYMPUSEX.1015 - 42/393

OLYMPUS EX. 1015 - 43/393

The Programmer's Technical Reference

return Indicated task is started up again
1Fh DISPEROR Pop-Up Error Window

BX bit fields:
0-12 number of characters to display
13,14 which mouse button may be pressed

to remove window
00 either
01 left
10 right
11 either

: 15 beep if 1
CH width of error window (0 = default)
cL height of error window (0 = default)
DS:DI pointer to text of message
DX segment of object handle
return BX status:

1 left button pressed
2 right button pressed
27 Esc key pressed

note Window remains on-screen until ESC or indicated
mouse button is pressed

20h TopView - unimplemented in DV 2.0x
return pops up ‘Programming Error’ window in DV 2.0x

21h PGMINT Interrupt Another Task (TopView)
BX segment of object handle for task to interrupt
DX:CX address of FAR routine to jump to next time taskis run

return nothing?
note The current ES, DS, SI, DI, and BP are passed to

the FAR routine
22h GETVER Get Version

BX 00h
return BX nonzero, TopView or compatible loaded

BH minor version
BL major version

notes TaskView vl.1C returns BX = 000ih
. DESQview v2.0 returns BX = OAOlh

23h POSWIN Position Window '

BX segment of object handle for parent window within
which to position the window (0 = full screen)

CH # columns to offset. from position in DL
cL # rows to offset from position in DL
DL bit flags

0,1 horizontal position00 current
ol center
10 left

11 right
2,3 vertical position

00 current
01 center
10 top
11 bottom

4 don’t redraw screen if. set
5-7 not used

ES segment of object handle for window to be
positioned

return nothing
24h GETBUF Get Virtual Screen Information

BX segment of object handle for window (0=default)
return CX size of virtual screen in bytes

DL 0 or 1, unknown
ES:DI address of virtual screen

25h USTACK Switch Back to User’s Stack
return stack switched back
note Call only after int 15h, fn101Ah

26h-2Ah DesQview (TopView?) - unimplemented in DV 2.0x
return pops up ‘Programming Error’ window in DV 2.0x

2Bh POSTTASK Awaken Task

DesQview 2.0 (Top View?)
BX segment of object handle for task

OLYMPUSEX.1015 - 43/393

OLYMPUS EX. 1015 - 44/393

The PC ROM BIOS

return nothing

37

2ch Start New Application in New Process
DesQview 2.0 (TopView?)
ES:DI pointer to contents of .PIF/.DVP file
BX size of .PIF/.DVP info
return BX segment of object handle for new task

00h if error
2Dh Keyboard Mouse Control DesQview 2.0+BL subfunction

00h determine whether using keyboard mouse
Olh turn keyboard mouse on
02h turn keyboard mouse off

return (calling BL was 00h)
BL 0 using real mouse

1 using keyboard mouse

Function 1ih Topview commands
entry AH lih

AL various

note In DesQview 2.0x, these function calls are identical to AH=0DEh, so thosebelow.

Function 20h PRINT.COM (DOS internal) (AT, XT-286, PS/2 50+)entry AH 20h
AL subfunction

00h unknown (PRINT)
Olh unknown (PRINT)
10h sets up SysReq routine on AT, XT/286, PS/2
ilh completion of SysReq routine (software only)

note AL=0 or 1 sets or resets some flags which affect what PRINT does when it
tries to access the disk.

Function 2ih Read Power-On Self Test (POST) Error Log (PS/2 50+)
entry AH 21h

AL 00h read POST log
Olh write POST log

BH device ID
BL device error code

return CF set on error
AH status

00h successful read
BX number of POST error codes stored
ES:DI pointer to error log

Olh list full
80h invalid command
86h function unsupported

note The log is a series of words, the first byte
code and the second is the device ID.

Function 40h Read/Modify Profiles

of which identifies the error

(Convertible)
entry AH 40h

AL 00h read system profile in CX,BX
Olh write system profile from CX, BX
02h read internal modem profile in BX
O3h write internal modem profile from BX

BX profile info
return BX internal modem profile (from 02h)

CX, BX system profile (from 00h)

Function 41h Wait On External Event (Convertible)
entry AH 4lh

AL condition type
bits 0-2 condition to wait for

0,0,0 any external event
0,0,1 compare and return if equal
0,1,0 compare and return if not equal
0,1,1 test and return if not zero
1,0,0 test and return if zero

3 reserved
4 0 user byte

1 port address

OLYMPUSEX.1015 - 44/393

OLYMPUS EX. 1015 - 45/393

38 The Programmer's Technical Reference
5-7 reserved

BH condition compare or mask valuecondition codes:
ooh any external event
Olh compare and return if equal
02h compare and return if not equal
03h test and return if not zero
04h test and return if zero

BL timeout value times 55 milliseconds
ooh if no time limit

DX I/O port address (if AL bit 4=1)
ES:DT pointer to user byte (if AL bit 4=0)

Function 42h Request System Power Off (Convertible)
entry AH 42h

AL 00h to use system profile
Olh to force suspend regardless of profile

return unknown

Function 43h Read System Status (Convertible)
entry AH 43h
return AL status byte

bit 0 LCD detached
1 reserved
2 RS232/parallel powered on
3 internal modem powered on
4 power activated by alarm
5 standby power lost
6 external power in use
7 battery low

Function 44h (De)activate Internal Modem Power (Convertible)
entry AH 44h

AL 00h to power off
Olh to power on

return unknown

Function 4Fh OS Hook - Keyboard Intercept (except PC, PCjr, and XT)
entry AH 4Fh

AL scan code, CF set
return AL scan code

CF set processing desired
clear scan code should not be used

note 1. Called by int 9 handler for each keystroke to translate scan codes.
2. An OS or a TSR can capture this function to filter the raw keyboard data

stream. The new handler can substitute a new scan code, return the same
scan code, or return the carry flag clear causing the keystroke to be
discarded. The BIOS default routine simply returns the scan code
unchanged.

3. A program can call Int 15h fn O0COh to determine whether the host
machine’s BIOS supports keyboard intercept.

Function 70h EEROM handler (Tandy 1000HX).
entry AH 00h read from EEROMBL ooh

Olh write to EEROM

BL word number to write (0-15)
DX word value to write

return Dx (AH=00h) word value
cP set on error (system is not a Tandy 1000 HX)

Function 80h OS Hook - Device Open (AT, XT/286, PS/2)
entry AH 80h

BX device ID
cx process ID

return : CF set on error
AH status

note 1. Acquires ownership of a logical device for a process.
2. This call, along with fns 81h and 82h, defines a simple protocol that can

be used to arbitrate usage of devices by multiple processes. A
multitasking program manager would be expected to capture int 15h and

OLYMPUSEX.1015 - 45/393

OLYMPUS EX. 1015 - 46/393

The PC ROMBIOS , 39

provide the appropriate service.
3. The default BIOS routine for this function simply returns with CF clearand AH=00h.

Function 81h OS Hook - Device Close (AT, X9T/286, PS/2)entry AH 81h
BX device ID
cx process ID

return CF get on error
AH status

note 1. Releases ownership of a logical device for a process.
2. A multitasking program manager would be expected to capture int 15h and

. provide the appropriate service.
3. The BIOS default routine for this function simply returns with the CFclear and AH=00h.

Function 82h Program Termination (AT, XT/286, PS/2). AH 82h
BX device ID

return CF set on error
AH status

note 1. Closes all logical devices opened with function 80h.
2. A multitasking program manager would be expected to capture int

15h and provide the appropriate service.
3. The BIOS default routine for this function simply returns with CFclear and AH=00h.

Function 83h Event Wait (AT, X1T/286, Convertible, PS/2 50+)entry AH 83h
AL 00h to set interval

Olh to cancel

CX:DxX number of microseconds to wait (granularity is 976 micro seconds)
ES:BX pointer to semaphore flag (bit 7 is set when interval expires)

(pointer is to caller’s memory) |
return CF set (1) if function already busy
note 1. Requests setting of a semaphore after a specified interval or cancels a

previous request.
2. The calling program is responsible for clearing the semaphore before

requesting this function.
3. The actual duration of an event wait is always an integral multiple of

976 microseconds. The CMOS date/clock chip interrupts are used to
implement this function.

4. Use of this function allows programmed, hardware-independent delays at a
finer resolution than can be obtained through use of the MS-DOS Get Time
function (int 21h/fn 2ch) which returns time in hundredths of a second.

Function 84h Read Joystick Input Settings (AT, XT/286, PS/2)
entry AH 84h

DX 00h to read the current switch settings (return in AL)
Olh to read the resistive inputsreturn CF set on error

(£n 00h)
AL switch settings (bits 7-4)
(fn O1h)
AX stick A (X) value
BX stick A (Y) value
cx stick B (X) value
Dx stick B (¥) value

note 1. An error is returned if DX does not contain a valid subfunction number.
2. If no game adapter is installed, all returned values are OOh.
3. Using a 250K Ohm joystick, the potentiometer values usually lie within

the range 0-416 (0000h-01A0h).

Function 85h System Request (SysReq) Key Pressed (except PC, PCjr, XT)
entry AH 85h ;

AL 00h key pressed
Olh key released

return CF set on error
AH error code

note 1. Called by BIOS keyboard decode routine when the SysReq key is detected.
2. The BIOS handler for this call is a dummy routine that always returns a

OLYMPUSEX.1015 - 46/393

OLYMPUS EX. 1015 - 47/393

40 The Programmer’s Technical Reference

success status unless called with an invalid subfunction number in AL.
3. A multitasking program manager would be expected to capture int 15h so

that it can be notified when the user strikes the SysReq key.

Function 86h Delay {except Pc, PCjr, XT)AH 86h
cxX,DX number of microseconds to wait

return CF clear after wait elapses
CF set immediately due to error

note 1. Suspends the calling program for a specified interval in microseconds.
' 2. The actual duration of the wait is always an integral multiple of 976

microseconds.
‘3. Use of this function allows programmed, hardware-independent delays at a

finer resolution than can be obtained through use of the MS-DOS Get Time
function (int 21h fn 2Ch) which returns time in hundredths of a second).

Function 87h Memory Block Move (2-3-486 machines only)AH 87h
cx number of words to move
ES:SI pointer to Global Descriptor Table (GDT)

offset O00h-OFh reserved, set to zero
00h null descriptor
08h uninitialized, will be made into GDT descriptor

10h-lih source segment length in bytes (2*CX-1 or greater)12h-14h 24-bit linear source address
15h access rights byte (always 93h)
16h-17h reserved, set to zero
18h-19h destination segment length in bytes (2*CX-1 or

greater)
1Ah-1Ch 24-bit linear destination address
1Dh access rights byte (always 93h)
1Eh-2Fh reserved, setto zero

20h uninitialized, used by BIOS
28h uninitialized, will be made into SS descriptor

return CF set on error
AH status

00h source copied into destination
Olh parity error
02h exception interrupt error
03h address line 20 gating failed

note 1. The GDT table is composed of six 8-byte descriptors to be used by the CPU
in protected mode. The four descriptors in offsets 00h-OFh and 20h~-2Fh
are filled in by the BIOS before the CPU mode switch.

2. The addresses used in the descriptor table are linear (physical) 24-bit
addresses in the range 000000h-OFFFFFFh - not segments and offsets -
with the least significant byte at the lowest address and the most
significant byte at the highest address.

3. Interrupts are disabled during this call; use may interfere with the
operation of comm programs, network drivers, or other software that
relies on prompt servicing of hardware interrupts.

4. This call is not valid in the 0S/2 Compatibility Box.
5. This call will move a memory block from any real or protected mode

address to any other real or protected mode address.

Function 88h Get Extended Memory Size (AT, X1T/286, PS/2)
entry AH 88h
return AX number of contiguous 1K blocks of extended memory starting ataddress 1024k
note This call will not work in the OS/2 Compatibility Box.

Function 89h Switch Processor to Protected Mode (AT, XT/286, PS/2)
entry AH 89h

BH interrupt number for IRQO, written to ICW2 of 8259 PIC #1
(must be evenly divisible by 8, determines IRQO-IRQ7)

BL interrupt number for IRQ8, written to ICW2 of 8259 PIC #2
(must be evenly divisible by 8, determines IRQ8-IRQ15)

ES:SI pointer to 8-entry Global Descriptor Table for protected mode:
offset 00h null descriptor, initialized to zero

08h GDT descriptor
10h IDT (Interrupt Descriptor Table) descriptor
18h DS, user’s data segment

OLYMPUSEX.1015 - 47/393

OLYMPUS EX. 1015 - 48/393

The PC ROMBIOS . 41
20h ES, user's extra segment
28h SS, user’s stack segment
30h cS, user’s code segment
38h uninitialized, used to build descriptor for BIOS

code segment .
return CF set on error

AH OFFh error enabling address line 20
cr clear function successful (CPU is in protected mode)

AH 00h
cs - user-defined selector
DS user-defined selector
ES user-defined selector
ss user-—defined selector

note The user must initialize the first seven descriptors; the eighth is
filled in by the BIOS to provide addressability for its own execution.
The calling program may modify and use the eighth descriptor for any
purpose after return from this function call.

Function 90h Device Busy Loop (except Pc, PCjr, XT)
entry AH 90h

AL predefined device type code:
00h disk (may timeout)
Olh diskette (may timeout)
02h keyboard (no timeout)
03h PS/2 pointing device (may timeout)
80h network

(no timeout)
OFCh hard disk reset (PS/2) (may timeout)
OFDh diskette motor start (may timeout)
OFEh printer (may timeout)

ES: BX pointer to request block for type codes 80h through OFFh
(for network adapters ES:BX is a pointer to network control block)

return CF 1 (set) if wait time satisfied
- 0 (clear) if driver must perform wait

note 1. Used by NETBIOS.
2. Generic type codes are allocated as follows:

00h-7Fh non-reentrant devices; OS must arbitrate access serially
reusable devices

80h-OBFh reentrant devices; ES:BX points to a unique control block
OCOh-OFFh wait-only calls, no complementary POST int 15/fn 91h call

3. Invoked by the BIOS disk, printer, network, and keyboard handlers prior
to performing a programmed wait for I/O completion.

4. A multitasking program manager would be expected to capture int 15h/fn
90h so that it can dispatch other tasks while I/O is in progress,

5. The default BIOS routine for this function simply returns with the CF
clear and AH=00h.

Function 91h Device POST . (AT, XT/286, PS/2 50+)
entry AH 91h

AL type code (see AH=90h above)
QO0h-7Fh serially reusable devices

: 80h-OBFh reentrant devices
ES: BX pointer to request block for type codes 80h through OBFh

return AH 00h
note 1. Used by NETBIOS.

2. Invoked by the BIOS disk network, and keyboard handlers to signal that
I/O is complete and/or the device is ready.

3. Predefined device types that may use Device POST are:
OOH disk (may timeout)
01H floppy disk (may timeout)
02H keyboard (no timeout)
03H PS/2 pointing device (may timeout)
80H network (no timecut)

4. The BIOS printer routine does not invoke this function because printer
output is not interrupt driven.

5. A multitasking program manager would be expected to capture int 15h/fn
91h so that it can be notified when I/O is completed and awaken the
requesting task.

6. The default BIOS routine for this function simply returns with the CF
flag clear and AH=00h.

OLYMPUSEX.1015 - 48/393

OLYMPUS EX. 1015 - 49/393

42 The Programmer's Technical Referencea

Function 0CcOh Get System configuration(XT after 1/10/86, PC Convertible, XT/286, AT, PS/2)
entry AH ocoh
return CF set if BIOS doesn’t support call

ES :BX pointer to ROM system descriptor table
bytes 00h-01h number of bytes in the following table (norm. 16 bytes)

O2h system ID byte; see Chapter 2 for interpretation
o3h secondary ID distinguishes between AT and XT/286, etc.
o4h BIOS revision level, 0 for 1st release, 1 for 2nd, etc.
05h feature information byte

bits 7 DMA channel 3 used by hard disk BIOS
6 second 8259 installed (cascaded IRQ2)
5 realtime clock installed
4 kbd intrcept:int 15h, fn 04h called upon int 09h
3 wait for external event supported (int 15fn41)

used on Convertible; reserved on ps/2 systems
2 extended BIOS area allocated at 640k
1 bus is Micro Channel instead of PC
0 reserved

06h unknown (set to 0) {xeserved by IBM)
07h unknown (set to 0) (reserved by IBM)
0sh unknown (set to 0)
09h unknown (set to 0) (Award copyright here)

note 1. Int 15h is also used for the Multitask Hook on PS/2 machines. No register
settings available yet.

2. The 1/10/86 XT BIOS returns an incorrect value for the feature byte.

Function 0Clh Return Extended BIOS Data Area Segment Address (PS/2)
entry AH ocih
return CF set on error

ES segment of XBIOS data areanote 1. The XBIOS Data Area is allocated at the high end of conventional memory
during the POST (Power-On-Self-Test) sequence.2¢ The word at 0040:0013h (memory size) is updated to reflect the reduced
amount of memory available for DOS and application programs.

3, The lst byte in the XBIOS Data Area is initialized to its length in Kk.
4. A program can determine whether the XBIOS Data Area exists by using int

15h/fn 0COh.

Function 0C2h Pointing Device BIOS Interface (DesQview 2.x) (PS/2)
entry AH oc2h

AL ooh enable/disable pointing device
BH 00h disable

Olh enable

Olh reset pointing device
Resets the system’s mouse or other pointing device, sets
the sample rate, resolution, and other characteristics
to their default values.
return BH device ID
note 1. After a reset operation, the state of the

pointing device is as follows:
disabled;
sample rate at 100 reports per second;
resolution at 4 counts per millimeter;
scaling at 1 to l.

2. The data package size is unchanged by this fn.
3. Apps can use the fn 0C2h subfunctions to

initialize the pointing device to other parms,
_ then enable the device with fn 00h.

O2h set sampling rate
BH 00h 10/second

01h 20/second
02h 40/second
03h 60/second
04h 80/second
o5h 100/second (default)
o6h 200/second

03h set pointing device resolution
BH ooh one count per mm

Olh two counts per mn
02h four counts per mm (default)

OLYMPUSEX.1015 - 49/393

OLYMPUS EX. 1015 - 50/393

The PC ROM BIOS 43

03h eight counts per mm
04h get pointing device type

return BH ID code for the mouse or other
pointing device.

05h initialize pointing device interface
Sets the data package size for the system's mouse or
other pointing device, and initializes the resolution,
sampling rate, and scaling to their default values.
BH data package size (1 - 8 bytes)

“note After this operation, the state of the
pointing device is as follows:
disabled;
sample rate at 100 reports per second;
resolution at 4 counts per millimeter;
and scaling at 1 to 1.

06h get status or set scaling factor
Returns the current status of the system’s mouse or other
pointing device or sets the device’s scaling factor.BH 00h return device status

return BL status byte
bits 0 set if right button pressed1 reserved

2 set if left button pressed3 reserved

4 0 1:1 scaling
1 23:1 scaling

5 0 device disabled
1 device enabled

6 0 stream mode
1 remote mode

7 reserved °
cL resolution

ooh 1 count per millimeter
O1lh 2 counts per millimeter
02h 4 counts per millimeter
03h 8 counts per millimeter

DL sample rate
OAh 10 reports per second
14h 20 reports per second
28h 40 reports per second
3Ch 60 reports per second
50h 80 reports per second
64h 100 reports per second
Oc8h 200 reports per second

Olh set scaling at 1:1
02h set scaling at 2:1

O7h set pointing device handler address
Notifies BIOS pointing device driver of the address for a
routine to be called each time pointing device data isavailable.
ES:BX address user device handler
return AL 00h

return CF set on error
AH status

00h successful
Olh invalid function
02h invalid input
03h interface error
04h need to resend
05h no device handler installed

note 1. The values in BH for those functions that take
different locations for each subfunction.

2. The user’s handler for pointing device data is
with four parameters on the stack:
SS:SP+0Ah status
SS:SP+08h x coordinate
SS:SP+06h y coordinate
SS:SP+04h z coordinate (always 0)
The handler must exit via a far return without
from the stack.

3. The status parameter word passed to the user’s

it as input are stored in

entered via a far call

removing the parameters

handler is interpreted as

OLYMPUSEX.1015 - 50/393

OLYMPUS EX. 1015 - 51/393

44

follows:
bits

entry AH
AL

The Programmer’s Technical Reference

0 left button pressed
1 right button pressed
2-3 reserved
4 sign of x data is negative
5 sign of y data is negative
6 x data has overflowed
7 y data has overflowed
8-0Fh reserved

Function 0C3h Enable/Disable Watchdog Timeout (PS/2 50+)0c3h
00h disable
Olh enable

return CF
BX timer counter

set on error

note 7 The watchdog timer generates an NMI.

Function 0C4h Programmable Option Select (PS/2 50+)
entry AH 04Ch

AL ooh return base POS register address
Olh enable slot

BL slot number
‘ 02h enable adapter

return CF

DX /note 1. Returns

set on error

base POS register address (if function 00h)
the base Programmable Option Select register address, enables a

slot for setup, or enables an adapter.
valid on machines with Micro Channel Architecture (MCA) bus only.2.

3. After a
for the
Port

slot is enabled with fn Olh, specific information can be obtained
adapter in that slot by performing port input operations:
Function

100h MCA ID (low byte)
101h MCA ID (high byte)
102h Option Select Byte 1

bit 0 0 if disabled
1 if enabled

103h Option Select Byte 2
104h Option Select Byte 3
105h Option Select Byte 4

bits 6-7 are channel check indicators
106h Subaddress Extension (low byte)
107h Subaddress Extension (high byte)

Function ODEh DesOQview Services (DesQview)
entry AH ODEH :

AL ooh Get Program Name
return AX offset into DESQVIEW.DVO of current

program's record:
byte length of name

n bytes name
2 bytes keys to invoke program (second =

00h if only one key used)
word ? (normally 0)
byte end flag: 00h for all but last

entry, which is OFFh
Olh Update ‘Open Window’ Menureturn none .

note Reads DESQVIEW.DVO, disables Open menu if file
not in current directory

02h unimplemented in DV 2.0x .
return nothing (NOP in DV 2.0x)

03h unimplemented in DV 2.0x
return nothing (NOP in DV 2.0x)

04h Get Available Common Memory
return BX bytes of common memory available

cx largest block available
DX total common memory in bytes

05h Get Available Conventional Memory
return BX K of memory available

cx largest block available

OLYMPUSEX.1015 - 51/393

OLYMPUS EX. 1015 - 52/393

06h

07h

08h

o9h

OAh

OBh

och

ODh

OEh

OFh

10h

ilh

12h

The PC ROMBIOS 45

Dx total conventional memory in kK
Get Available Expanded Memory
return BX K of expanded memory available

cx largest block available
DX total expanded memory in K

APPNUM Get Current Program’s Number
return AX number of program as it appears

on the ‘Switch Windows’ menu
GET (unknown)

‘return AX ooh unknown
Olh unknown

unimplemented in DV 2.00
return nothing (NOP in DV 2.00)
DBGPOKE Display Character on Status Line (DV 2.0+)BL character

veturn character displayed, next call will display
in next position (which wraps back to the start
of the line if off the right edge of screen)

note 1. Displays character on bottom line of *physical*
screen, regardless of current size of window
(even entirely hidden)

2. Does not know about graphics display modes, just
pokes the characters into display memory

APILEVEL Define Minimum API Level Required (DV 2.0+)
BL API level. A value higher than 02h pops up ‘You

need a newer version’ error window in DV 2.00.
BH unknown
return AX maximum API level?

GETMEM Allocate ‘System’ Memory (DV 2.0+)
BX number of bytes
return ES:DI pointer to allocated block
PUTMEM Deallocate ‘System’ Memory (DV 2.0+)
ES:DI pointer to previously allocated block
return nothing
Find Mailbox by Name : (DV 2.0+)
ES:DI pointer to name to find
Cx length of name
return BX 00h not found

01h found
DSs:SI object handle

Enable DesQview Extensions (DV 2.0+)
return AX and BX destroyed (seems to be bug, weren’t

saved & restored)
note 1. Sends a manager stream with opcodes OAEh, OBDh,and OBFh to task's window

2. Enables an additional mouse mode

PUSHKEY Put Key Into Keyboard Input Stream (DV 2.0+)BH scan code .
BL character

return BX unknown (sometimes, but not always, same
as BX passed in)

note A later read will get the keystroke as if it had
been typed by the user

Enable/Disable Auto Justification of Window (DV 2,.0+)
BL ooh viewport will not move automatically

nonzero viewport will move to keep cursor visiblereturn none

unknown (DV 2.0+)
BX ooh clear something?

nonzero set something?return none

Interrupt 16h Keyboard I/O
(0:0058h) Access the keyboard. Scancodes are found in Appendix 1. ASCII codes are found in
Appendix 2.

Function 00h Get Keyboard Input - read the next character in keyboard buffer,
if no key ready, wait for one.

entry AH 00h
return AH scan code

OLYMPUSEX.1015 - 52/393

OLYMPUS EX. 1015 - 53/393

46

note

The Programmer’s Technical Reference
AL ASCII character
Removes keystroke from buffer (destructive read)

Function Oih Check Keystroke Buffer - Do Not Clear
entryreturn

note

AH Olh
aF 0 (clear) if character in buffer

1 (set) if no character in buffer
AH scan code of character (if 2F=0)
AL ASCII character if applicable
Keystroke is not removed from buffer. The same character and scan code
will be returned by the next call to Int 16h/fn OOh.

Function 02h Shift Status - fetch bit flags indicating shift status
entry AH 02h
return AL status byte (same as [0040:0017])

bits 7 Insert on
6 CapsLock on.
5 NumLock on
4 ScrollLock on
3 Alt key down
2 Control key down
1 Left shift (left caps-shift key) down

. , 0 Right shift (right caps-shift key) down
note The keyboard flags byte is stored in the BIOS Data Area at 0000:0417h.

Function 03h Keyboard - Set Repeat Rate (PCjr, AT, XT/286, PS/2)
entry AH O3h

AL 00h reset typematic defaults (Pcjr)
Olh increase initial delay (Pcjr)
02h decrease repeat rate by 1 (PCjr)
03h increase both delays by fy (Pcjr)
04h turn off typematic (Pcjr)
05h set typematic rate (AT, PS/2)

BH 00h-03h for delays of 250ms, 500ms, 750ms, or 1 second
0,90 250ms
0,1 500ms
1,0 750ms
1,1 1 second

BL OQOh-1Fh for typematic rates of 30cps down to 2cps
00000 30 01011 10.9 10101 4.5
00001 26.7 01100 10 10110 4.3
00010 24 01101 9.2 10111 4
00011 21.8 01110 8.6 11000 3.7
00100 20 01111 8 11001 3.3
00101 18.5 10000 7.5 11010 3
00110 17.1 10001 6.7 11011 2.7
00111 16 10010 6 11100 2.5
01000 15 10011 5.5 11101 2.3
01001 13.3 10011 5.5 11110 2.1
01010 12 10100 5 11111 2

return nothing
note Subfunction 05h is available on ATs with ROM BIOS dated 11/15/85 and

later, the XT/286, and the PS/2.

Function 04h Keyboard Click Toggle (Pcjr and Convertible)
entry AH 04h .

AL 00h for click off
Olh for click on

return nothing

Function 05h Keyboard Buffer Write {AT or PS/2 with enhanced kbd)
(X1/286, PS/2, AT with ‘Enhanced’ keyboard)

entry AH o5hcH scan code
cL ASCII character

return CF set on error
AL Olh if buffer full

note Places a character and scan code in the keyboard type-ahead buffer.

OLYMPUSEX.1015 - 53/393

OLYMPUS EX. 1015 - 54/393

The PC ROM BIOS . 47

Function 10h Get Enhanced Keystroke And Read (Fll, F1l2 Enhanced Keyboard)
(XT/286, PS/2, AT with ‘Enhanced’ keyboard)

entry AH 10h
return AH scan code

AL ASCII character if applicable
note 1. Reads a character and scan code from the keyboard type-ahead buffer.

2. Use this function for the enhanced keyboard instead of Int 16h fn 00h. It
allows applications to obtain the scan codes for the additional Fll, F12,
and cursor control keys.

Function 1ih Check Enhanced Keystroke (F11-F12 on enhanced keyboard)
: (XT/286, PS/2, AT with ‘Enhanced’ keyboard)

entry AH lih
return 2P 0 (clear) if key pressed

AH scan code
AL ASCII character if applicable

1 if buffer is empty
note 1. Keystroke is not removed from buffer. The same char and scan code will be

returned by the next call to Int 16h/fn 10h.
2. Use this function for the enhanced keyboard instead of Int 16h/fn 00h. It

allows applications to test for the additional Fll, F12, and cursor
control keys.

Function 12h Extended Shift Status (F1ll, F12 Enhanced keyboard)
entry AH 12h
return AX status word

AL bit 0 right Shift key depressed
1 left Shift key depressed
2 Control key depressed
3 Alt key depressed
4 ScrollLock state active
5 NumLock state active
6 CapsLock state active
7 insert state is active

AH bit 0 left Control key pressed
1 left Alt key depressed
2 right Control key pressed
3 right Alt key depressed
4 Scroll Lock key depressed
5 NumLock key depressed
6 CapsLock key depressed
7 SysReq key depressed

note Use this function for the enhanced keyboard instead of int 16h/fn 02h.

Function 79h pcAnywhere
entry AH 79h pcAnywhere functionAL 00h installation check
return AX OFFFFh installed, otherwise not present

Function 79h pcAnywhere
entry AH 7Bh Enable/Disable OperationAL state

00h disabled
Olh enabled

return unknown

Function OEDh Borland Turbo Lightning API (partial)
entry AH OEDh

BH OEDh
BL function

00h installation check
02h pointer to Lightning internal data structure lobyte
03h pointer to Lightning internal data structure hibyte
04h load auxiliary dictionary
o6h autoproof mode
OFh get number of substitutions (segment)

DS:DI pointer to string to be processed
return AX exror code (unknown)

Function OFO0h Set CPU speed (Compaq 386)
entry AH OFOh set speed

OLYMPUSEX.1015 - 54/393

OLYMPUS EX. 1015 - 55/393

48 The Programmer’s Technical Reference ,
’ AL speed

00h equivalent to 6 mHz 80286 (COMMON)
Olh equivalent to 8 mHz 80286 (FAST) .
02h full 16 mHz (HIGH) :
03h toggles between 8 mHz-equivalent and speed set by system

board switch (AUTO or HIGH)
04h-07h unknown , :ft
08h full 16 mHz except 8 mHz-equivalent during floppy diskaccess

09h specify speed directly
cx speed value, 1 (slowest) to 50 (full), 3 ~=8088

return none? :
note Used by Compaq DOS MODE command.

Function OF1lh Read Current CPU Speed (Compaq 386)
entry AH OF1h
return AL speed code (see function OFOh above) '

if AL=09h, CX=speed code

Function OF2h Determine Attached Keyboard Type (Compaq 386)
entry AH OF2h -
return AL type

00h if 11-bit AT keyboard is in use
Olh if 9-bit Pc keyboard is in use

Interrupt 17h Printer
(0:005Ch)accessthe parallel printer(s). AH is changed. All otherregisters left alone.
Function 00h Print Character/send AL to printer DX (0, 1, or 2)
entry AH 00h

AL ASCII character code
DX printer to be usedooh PRN or LPT1

Olh LPT2
02h LPT3

return AH status byte
bits 0 time out

1 unused
2 unused
3 I/O error
4 printer selected
5 out of paper
6 acknowledge
7 not busy

Function O0ih Initialize Printer - set init line low, send OCh to printer DX
entry AH Olh ,

Dx printer port to be initialized (0,1,2)
return status as below

Function 02h Printer Status - read status of printer DX into AH
entry AH 02h

DX printer port to be used (0,1,2)
return AH status byte

bits 7 0 printer is busy
1 ready .

6 ACKnowledge line state
5 out-of-paper line state
4 printer selected line state
3 I/O error
2 unused
1 unused
0 time-out error

Interrupt 18h ROM BASIC
(0:0060h) Execute ROM BASIC at address OF600h:0000h
entry no parameters used
return jumps into ROM BASIC on IBM systems
note 1. Often reboots a compatible.

OLYMPUSEX. 1015 - 55/393

OLYMPUS EX. 1015 - 56/393

The PC ROM BIOS . 49
2. Used by Turbo C 1.5. 2.0 and later do not use it.
3. On IBM systems, this interrupt is called if disk boot failure occurs.

Interrupt 19h Bootstrap Loader / Extended MemoryVDISK ID
(0:0064h)
entry no parameters used
return nothing
note 1. Reads track 0, sector 1 into address 0000h:7C00h, then transfers control

to that address. If no diskette drive available, transfers to ROM-BASIC
via int 18h or displays loader error message.

2. Causes reboot of disk system if invoked while running. (no memory test
performed).

3. If location 0000:0472h does not contain the value 1234h, a memory test
will be performed before reading the boot sector.

4. VDISK from DOS 3.x+ traps this vector to determine when the CPU has
shifted from protected mode to real mode. A detailed discussion can be
found by Ray Duncan in PC Magazine, May 30, 1989.

5. Reportedly, some versions of DOS 2.x and all versions of DOS 3.x+
intercept int 19h in order to restore some interrupt vectors DOS takes
over, in order to put the machine back to a cleaner state for the
reboot, since the POST will not be run on the int 19h. These vectors are
reported to be: 02h, O8h, 09h, OAh, OBh, OCh, ODh, OEh, 70h, 72h, 73h,
74h, 75h, 76h, and 77h. After restoring these, it restores the original
int 19h vector and calls int 19h.

Interrupt {Ah Time ofDay
(0:0068h) Access the PC internal clock

Function 00h Read System Timer Tick Counter (except PC)
entry AH 00h .
return AL 00h if clock was read or written (via AH=0,1) within the

current 24-hour period.
nonzero midnight was passed since last read

CX:DX tick count (high 16 bits in CX)
note 1. The returned value is the cumulative number of clock ticks since

midnight. There are 18.2 clock ticks per second. When the counter
reaches 1,573,040, it is cleared to zero, and the rollover flag is set.

2. The rollover flag is cleared by this function call, so the flag will only
be returned nonzero once per day.

3. Int 1Ah/fn 01h can be used to set the counter to an arbitrary 32 bit
value.

Function 01h Set Clock Tick Counter Value (except PC)
entry AH Olh

CX:DX high word/low word count of timer ticksreturn none

note 1. The clock ticks are incremented by timer interrupt at 18. 2065 times persecond or 54.9254 milliseconds/count. Therefore:
counts per second 18 (12h)
counts per minute 1092 (444h)
counts per hour 65543 (10011h)
counts per day 1573040 (1800BOh)

2. The counter is zeroed when system is rebooted.
3. Stores a 32~bit value in the clock tick counter.
4. The rollover flag is cleared by this call.

Function 02h Read Real Time Clock Time (AT and after)
entry AH 02h
return CH hours in BCD

cL minutes in BCD
DH seconds in BCD
DL 00h standard time

Oih daylight savings time

CF 0 if clock running1 if clock not operating
note Reads the current time from the CMOS time/date chip.

OLYMPUSEX.1015 - 56/393

OLYMPUS EX. 1015 - 57/393

50 The Programmer's Technical Reference

Function 03h Set Real Time Clock Time (AT and after)
entry AH 03h

CH hours in BCD
cL minutes in BCD
DH seconds in BCD
DL © (clear) if standard time

1 (set) iff daylight savings time option
return none :
note sets the time in the CMOS time/date chip.

Function 04h Read Real Time Clock Date (AT and after)
entry AH 04h
return CH century in BCD (19 or 20)

cL year in BCD
DH month in BCD
DL day in BCD
cr 0 (clear) if clock is running

1 (set) if clock is not operating
note Reads the current date from the CMOS time/date chip.

Function 05h . Set Real Time Clock Date (AT and after)
entry AH o5h

CH century in BCD (19 or 20)
cL year in BCD
DH month in BCD
DL day in BcD

return none
note Sets the date in the CMOS time/date chip.

Function 06h Set Real Time Clock Alarm (AT and after)
entry AH 06h

CH hours in BCD
cL minutes in BCD
DH seconds in BCD

return CF set if alarm already set or clock inoperable
note 1. Sets alarm in the CMOS date/time chip. Int 4Ah occurs at specified alarm

time every 24hrs until reset with Int 1Ah/fn 07h.
2. A side effect of this function is that the clock chip’s interrupt level

(IRQ8) is enabled.
3. Only one alarm may be active at any given time.
4. The program using this function must place the address of its interrupt

handler for the alarm in the vector for Int 4Ah.

Function 07h Reset Real Time Clock Alarm (AT and after)
entry AH O7hreturn none
note 1. Cancels any pending alarm request on the CMOS date/time chip.

2. This function does not disable the clock chip’s interrupt level (IRQ8).

Function 08h Set Real Time Clock Activated Power On Mode (Convertible)
entry AH o8h '

CH hours in BCD :
cL minutes in BCD
DH seconds in BCD

Function 09h Read Real Time Clock Alarm Time and Status
(Convertible and PS/2 Model 30)

entry AH 09h
return CH hours in BCD

cL minutes in BCD
DH seconds in BCD
DL alarm status:

00h if alarm not enabled
Olh if alarm enabled but will not power up system
02h if alarm will power up system

Function OAh Read System-Timer Day Counter (PS/2)
entry AH OAh
return CF set on error

cx count of days since Jan 1,1980
note Returns the contents of the system’s day counter.

OLYMPUSEX.1015 - 57/393

OLYMPUS EX. 1015 - 58/393

The PC ROM BIOS , 51

Function OBh Set System-Timer Day Counter (PS/2)
entry AH OBh

Cx count of days since Jan 1,1980
return CF set on error
note Stores an arbitrary value in the system’s day counter.

Function 80h Set Up Sound Multiplexor (PCjr) (Tandy 1000?)
entry AH 80hAL sound source

ooh .source is 8253 timer chip, channel 2
Olh source is cassette input
02h source is I/O channel ‘audio in’ line
03h source is TI sound generator chip

return none
note Sets up the source for tones that will appear on the PCjr’s Audio Out bus

line or RF modulator.

Function 1Ah Read Time and Date (AT&T 6300)
entry AH OFEh
return BX days count (1=Jan 1, 1984)

CH hours
cL minutes
DH seconds
DL hundredths

note Day count in BX is unique to AT&T/Olivetti computers.

Interrupt 1Bh Control-Break
(0:006Ch) This interruptis called when the keyboard scanner of the IBM machinesdetects Ctrl

and Break pressed at the sametime.
Note 1. Ifthe break occurred while processing an interrupt, one or more end of interrupt

commands must be send to the 8259 Programmable Interrupt Controller.
2. AJlI/O devices should be resetin case an operation was underwayat the time.
3. Itisnormally pointed to an IRETduring system initializationso that it does nothing,

but some programschangeit toreturna cirl-C scan code and thus invoke int 23h.

Interrupt LCh TimerTick
(0:0070h)
Note 1. Taken 18.2065 times per second

2. Normally vectors to dummy IRET unless PRINT.COMhasbeeninstalled.
3. Ifanapplication moves the interrupt pointer,it is the responsibility of that application

tosave and restoreall registers that may be modified.

Interrupt LDh Vector ofVideo Initialization Parameters
(0:0074h) This doubleword address points to 3 sets of 16-bytes containing data to initializefor
video modes for video modes 0 & 1 (40 column), 2 & 3 (80 column), and 4, 5 & 6 (graphics) on
the Motorola 6845 CRT controller chip.

6845 registers:
RO horizontal total (horizontal sync in characters)
RL horizontal displayed (characters per line)
R2 horizontal sync position (move display left or right)
R3 sync width (vertical and horizontal pulse: 4-bits each)
R4 vertical total (total character lines)

"RS vertical adjust (adjust for 50 or 60 Hz refresh)
R6 vertical displayed (lines of chars displayed)
R7 vertical sync position (lines shifted up or down)
R8 interlace (bits 4 and 5) and skew (bits 6 and 7)
R9 max scan line addr (scan lines per character row)
R10 cursor start (starting scan line of cursor)
R11 cursor stop (ending scan line of cursor)
R12 video memory start address high byte (6-bits)
R13 video memory start address low byte (8-bits)
R14 cursor address high byte (6-bits)

OLYMPUSEX.1015 - 58/393

OLYMPUS EX. 1015 - 59/393

52 The Programmer's Technical Reference
R15 cursor address low byte (8-—bits)

6845 Video Init Tables:
table for modes 0 andl \
table for modes 2 and 3 \ each table is 16 bytes long and
table for modes 4,5, and 6 / contains values for 6845 registers
table for mode 7
4 words: size of video RAM for modes 0/1, 2/3, 4/5, and 6/7
8 bytes: number of columns in each mode
8 bytes: video controller mode byte for each mode

note 1. There are 4 separate tables, and all 4 must be initialized if all video
modes will be used.

2. The power-on initialization code of the computer points this vector to
the ROM BIOS video routines.

3. IBM recommends that if this table needs to be modified, it should be
copied into RAM and only the necessary changes made.

Interrupt LEh VectorofDiskette Controller Parameters
(0:0078h) Dword address points to data base table that is used by BIOS. Default location is at
OF000:0EFC7h. 11-byte table format: bytes:

00h 4-bit step rate, 4-bit head unload time
Olh J-bit head load time, 1-bit DMA flag
02h 54.9254 ms counts - delay till motor off (36-38 typ)
03h sector size:

00h 128 bytes
Olh 256 bytes
02h 512 bytes
03h 1024 bytes

04h last sector on track (8 or 9 typical)
05h inter-sector gap on read/write (42 typical)
o6h data length for DMA transfers (OFFh typical)
07h gap length between sectors for format (80 typical)
o8h sector fill byte for format (0F6éh typical)
09h head settle time (in milliseconds) (15 to 25 typical)bpos 1.0 0

pos 1.10 0
pos 2.10 15
Dos 3.1 1

10h motor start time (in 1/8 second intervals) (2 to 4 typ.)
DOS 2.10 2

note 1. This vector is pointed to the ROM BIOS diskette tables on system
initialization

2. IBM recommends that if this table needs to be modified, it should be
copied into RAM and only the necessary changes made.

Interrupt 1Fh Ptr to Graphics Character Extensions (Graphics Set2)
(0:007Ch) This is the pointer to data used by the ROM videoroutines to display characters
above ASCII 127 while in CGA medium and high res graphics modes.

Note 1. Doubleword address points to 1K table composed of288-byte characterdefinition
bit-patterns. First byte ofeach entry is top row,lastbyte is bottom row.

2. Thefirst 128 character patternsare located insystem ROM.
3. This vectoris set to 000:0 at system initialization.
4. Used by DOS’external GRAFTABL command.

OLYMPUSEX. 1015 - 59/393

OLYMPUS EX. 1015 - 60/393

 DOS Interrupts and
Function Calls

~

DOSRegisters
DOSuses the following registers, pointers, and flags whenit executes interrupts and function
calls:

General Registers
register definition
AX accumulator (16 bit)
AH accumulator high-order byte (8 bit)
AL accumulator low order byte (8 bit)
BX base (16 bit)
BH base high-order byte (8 bit)
BL base low-order byte (8 bit)
cx count (16 bit)
CH count high order byte (8 bit)
cL . count low order byte (8 bit)
Dx data (16 bit)
DH date high order byte (8 bit)
DL data low order byte (8 bit)

Segment Registers
register definition
cs code segment (16 bit)
DS ' data segment (16 bit)
ss stack segment (16 bit)
ES extra segment (16 bit)

Index Registers
register definition
DI destination index (16 bit)
sI source index (16 bit)

Pointers

register definition
SP stack pointer {16 bit)
BP base pointer (16 bit)
IP instruction pointer (16 bit)

OLYMPUSEX.1015 - 60/393

OLYMPUS EX. 1015 - 61/393

54 The Programmer's Technical Reference

Flags
AF, CF, DF, IF, OF, PF, SF, TF, 2F

Theseregisters, pointers, and flags are ‘lowest common denominator’ 8088-8086 CPU oriented. :
DOS makes no attemptto use any of the special or enhanced instructionsavailable on the later
CPUs which will execute 8088 code, such as the 80186, 80286, 80386, or NEV V20, V30, V40,or
V50.

DOSStacks
When DOStakes controlafter a function call, it switches to an internal stack. Registers which
are not used to return information (other than AX)are preserved. Thecalling program’s stack
must be large enough to accommodatethe interrupt system - at least 128 bytes in addition to
other interrupts.

DOSactually maintains three stacks -

stack 1: 384 bytes (in DOS 3.1)
for functions 00h and for ODh and up, andfor ints 25h and 26h.

stack2: 384 bytes (in DOS 3.1)
for function calls 01h through OCh.

stack3: 48 bytes (in DOS 3.1)
for functions ODh and above. This stackis the initial stack used bythe int 21h handler «
before it decides whichofthe othertwo to use.It is also used by function 59h (get
extended error), and 01h to OChif they are called during an int 24h(critical error)
handler. Functions 33h (get/set break flag), 50h (set process ID), 51h (get process ID)
and 62h (get PSP address) donot use any DOSstack under DOS3.x (under2.x, 50h and
51h use stack number2).

IBM and Microsoft made a change back in DOS3.0 or 3.1 to reduce the size of DOS. Theyre-
duced the space allocated for scratch areas when interrupts are being processed. The default
seemsto vary with the DOSversion and the machine, but 8 stack frames seems to be common.
That meansthatif you get more than 8 interrupts at the sametime, clock,disk, printer spooler,
keyboard, com port, etc. the system will crash. It happens usually on a network.
STACKS =16,256 means allow 16 interrupts to interrupt each other and allow 256 bytes for each
for scratch area. Fight is marginal.

DOS3.2 does somedifferent stack switching than previous versions. The interrupts which are
switched are 02h, 08h, 09h, OAh, OBh, O0Ch, ODh, OEh, 70h, 72h, 73h, 74h, 75h, 76h, and 77h.
DOS3.2 hasa special checkin the initialization code for a PCjr and don’t enablestack switching
on that machine. DOS 3.3 was changedso that no stack switching occurs on PC, PC-XT, or the
PC-Portable, and defaults to 9 stacks of 128 bytes in an AT.

DOSInterrupts

Microsoft recommendsthat a program wishing to examineor set the contents of any interrupt
vector use the DOS function calls 35h and 25h provided for those purposes and avoid refer-
encing the interrupt vector locations directly.

OLYMPUSEX. 1015 - 61/393

OLYMPUS EX. 1015 - 62/393

DOSInterrupts and Function Calls 55

DOSreservesinterrupt numbers 20h to 3Fh for its own use. This means absolute memory loca-
tions 80h to OFFh are reserved by DOS.The defined interrupts are as followswith all values in
hexadecimal.

DOSServices (quicklist)
Interrupt 21h Function Call Request
(0:0084h)
DOSprovides a wide variety of function calls for character device I/O,file management, mem-
ory management, date and time functions, execution of other programs, and more. They are

. grouped as follows:

call description
ooh program terminate
OLh-OCh character device I/O, CP/M compatibility format
ODh-24h file management, CP/M compatibility format
25h-26h nondevice functions, CP/M compatibility format
27h-29h file management, CP/M compatibility format
2Ah-2Eh nondevice functions, CP/M compatibility format2Fh-38h extended functions
39h-3Bh directory group
3Ch-46h extended file management
47h directory group
48h-4Bh extended memory management
54h-57h extended functions
5Eh-5Fh networking
60h-62h extended functions

63h-66h enhanced foreign language support

List of DOSservices:
* = undocumented

00h terminate program
Oih get keyboard input
02h display character to STDIO
03h get character from STDAUX
04h output character to STDAUX
O5h output character to STDPRN
O6h direct console I/O ~ keyboard to screen
O7h get char from std I/0 without echo
08h get char from std I/O without echo, checks for *c
09h display a string to STDOUT
OAh buffered keyboard input
OBh check STDIN status

Och clear keyboard buffer and invoke keyboard functionODh flush all disk buffers
OEh select disk
OFh open file with File Control Block
10h close file opened with File Control Block
lih search for first matching file entry
12h search for next matching file entry
13h delete file specified by File Control Block
14h sequential read from file specified by File Control Block
15h sequential write to file specified by File Control Block
16h find or create firectory entry for file
17h rename file specified by file control block18h* unknown
19h return current disk drive

1Ah set disk transfer area (DTA)
1Bh get current disk drive FAT
1ch get disk FAT for any drive
1Dh* unknown
1Eh* unknown

1Fh* read DOS disk block, default drive
20h* unknown

OLYMPUSEX. 1015 - 62/393

OLYMPUS EX. 1015 - 63/393

56

21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2ch
2Dh
2Eh
2Fh
30h
31h
32h*
33h
34h*
35h
36h
37h*
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
4ih
42h
43h
44h
45h
46h
47h
48h
49h
4Aah
4Bh
4cCh
4Dh
4Eh
4Fh
50h*
5ih*
52h*
53h*
54h
55h*
56h
57h
58h
59h
S5Ah
5Bh
5Ch
5Dh*
SEh*
SFh*
60h*
6lh*
62h
63h*
64h*
65h
66h
67h

The Programmer's Technical Reference
random read from file specified by FCB
random write to file specified by FCB
return number of records in file specified by FCB
set relative file record size field for file specified by FCB
set interrupt vector
create new Program Segment Prefix (PSP)
random file block read from file specified by FCB
random file block write to file specified by FCB
parse the command line for file name
get the system date
set the system date
get the system time
set the system time
set/clear disk write VERIFY
get the Disk Transfer Address (DTA)
get DOS version number |
TSR, files opened remain open
read DOS Disk Block
get or set Ctrl-Break
INDOS Critical Section Flag
get segment and offset address for an interrupt
get free disk space
get/set option marking character (SWITCHAR)
return country-dependent information
create subdirectory
remove subdirectory
change current directory
create and return file handle
open file and return file handle
close file referenced by file handle
read from file referenced by file handle -
write to file referenced by file handle
delete file
move file pointer (move read-write pointer for file)
set/return file attributes
device IOCTL (1/0 control) info
duplicate file handle
force a duplicate file handle
get current directory
allocate memory
release allocated memory
modify allocated memory
load or execute a program
terminate prog and return to DOS
get return code of subprocess created by 4Bh
find first matching file
find next matching file
set new current Program Segment Prefix (PSP)
puts current PSP into BX
pointer to the DOS list of lists
translates BPB (Bios Parameter Block, see below)
get disk verification status (VERIFY)
create PSP: similar to function 26h
rename a file

get/set file date and time
get/set allocation strategy (DOS 3.x)
get extended error information
create a unique filename
create a DOS file
lock/unlock file contents
network
network printer
network redirection
parse pathname
unknown

get program segment prefix (PSP)
get lead byte table (DOS 2.25)unknown

get extended country information (DOS 3.3)
get/set global code page table (DOS 3.3)
set handle count (DOS 3.3)

OLYMPUSEX. 1015 - 63/393

OLYMPUS EX. 1015 - 64/393

DOSInterrupts and Function Calls . 37

68h commit file , (DOS 3.3)
69h disk serial number (DOS 4.0)6Ah unknown
6Bh unknown
6ch extended open/create (DOS 4.0)

Calling the DOS Services
The DOSservices are invoked by placing the numberofthe desired function in register AH, sub-
function in AL,setting the other registers to any specific requirements of the function, and in-
voking int 21h.

‘Whenthe interruptjs called, all register and flag valuesare pushedinto the stack. Int 21h con-
tains a pointer into an absolute address in the IBMDOS.COMfile. This addressis the main loop
for the DOS command handler. The handler popsthe register values, compares them toits list
of functions, and executes the function if valid. When the function is complete, it may pass
values back to the command handler. The handlerwill push the values into the stack and then
return control to the calling program.

Most functions will return an error code; some return more information. Details are contained
in the listings for the individual functions. Extended error return codes for most functions may
be obtained by calling function 59h.

Register settings listed are the ones used by DOS. Somefunctions will return with garbage
values in unused registers. Do nottest for values in unspecified registers; your program may ex-
hibit odd behaviour.

DS:DX pointers are the data segment register (DS) indexed to the DH and DLregisters (DX).
DX always contains the offset address, DS contains the segment address.

The File Control Block services (FCB services) were part of DOS1.0. Since the release of DOS
2.0, Microsoft has recommendedthat these services not be used. A set of considerably more en-
hancedservices (handle services) were introduced with DOS2.0. The handle services provide
support for wildcards and subdirectories, and enhancederror detection via function 59h.

The data for the following calls was compiled from various Intel, Microsoft, IBM, and other
publications. There are manysubtle differences between MSDOSand PCDOSandbetween the
individual versions. Differences between theversions are noted as they occur.

There are various ways of calling the DOS functions. For all methods, the function numberis
loaded into register AH, subfunctions and/or parameters are loaded into AL or otherregisters,
and callint 21 by one of the following methods:

A. callinterrupt 21h directly (the recommended procedure).
B. performalong call to offset 50h in the program’s PSP.

1. This methodwill not work under DOSL.x.

2, Though recommendedby Microsoft for DOS2.0, this method takes more time andis no
longer recommended.

C. place the function number in CLand perform an intrasegmentcall to location 05hin the
current code segment. This location contains a long call to the DOSfunction dispatcher.
1. IBM recommendsthis method be used only whenusingexisting programs written for

different calling conventions (such as converting CP/M programs). This method should
be avoided unless you have somespecific useforit.

2. AXis always destroyed by this method.

OLYMPUSEX.1015 - 64/393

OLYMPUS EX. 1015 - 65/393

58 The Programmer’s Technical Reference

3. This methodis valid only for functions 00h-24h.

There are also various waysofexiting from a program.(assumingit is not intended to bea TSR).
All methodsexcept call 4Ch mustensure that the segmentregister contains the segment address
of the PSP.

A. Interrupt 21h, function 4Ch (Terminatewith Result Code). Thisis the ‘official’
recommended methodofreturning to DOS.

B. Interrupt 21h, function 00h (Exit Program). Thisis the early style int 21 functioncall. It
simply calls int 20h.

C. Interrupt 20h (Exit).
D. AJMPinstructionto offset 00h (int 20h vector) in the Program SegmentPrefix. Thisis just

a roundabout methodto call int 20h. This method wasset up in DOS1.0 for ease of
conversion for CP/M programs.It is no longer recommendedforuse.

E. AJMPinstruction to offset 05h (int 21 vector) in the Program SegmentPrefix, with AH set
to 00hor 4Ch. This is another CP/M type function.

Version Specific Information
Function Calls:

DOS2.x supports function calls 00h to 57h.

DOS2.25_isthe only version to support function 63h (foreign keyboard)

DOS3x has more sophisticated error handling anddetection functioncalls available than
2.%.

DOS3.0 supports function calls 00h to SCh and 62h, including new and changed function
calls for version 3.0:

3Dh Open File
59h Get Extended Error

5Ah Create Temporary File
5Bh Create New File

5Ch—_Lock/Unlock File Access

62h Get Program SegmentPrefix Address

DOS3.1 supports function calls 00h to 62h, including the new and
changed functioncalls for DOS 3.1:
5E00h Get Machine Name

5E02h Set Printer Setup
5H03h Get Printer Setup |
5F02h Get Redirection List Entry
5F03h Redirect Device
5F04h Cancel Redirection

DOS3.2_supports the following new functions: :

44h extended IOCTLfunctions i

DOS3.3 supports the following new functions:
, 44h—extended IOCTL functions

65h get extended country information (DOS3.3)
66h get/set global code pagetable (DOS3.3)

OLYMPUSEX. 1015 - 65/393

OLYMPUS EX. 1015 - 66/393

DOS Interrupts and Function-Calls 59
67h set handle count (DOS 3.3)
68h commit file (DOS3.3)

DOS4.0 supports the following new functions:
, 44h extended IOCTLfunctions

69h disk serial number

6Ch—extended open/create

DOSServices in Detail
Interrupt 20h Terminate Current Program
(0:0080h) Issue int 20hto exit from a program. This vectortransfers to the logic in DOSto re-
store the terminate address, the Ctrl-Break address, and thecritical error exit address to the
values they had on entry to the program. All the file buffers are flushed and all handles are
closed. You should closeall files changed in length (see function calls 10h and 3Eh) beforeis-
suing this interrupt. If the changedfile is not closed,its length, time, and date are not recorded
correctly in the directory.

For a program to pass a completion codeor an error code when terminating, it must use either
function call 4Ch (Terminate a Process) or 31h (Terminate Process and Stay Resident). These
two methodsare preferred over using int 20h and the codes returned by them canbeinterro-
gated in batch processing.

Important: Before youissue an interrupt 20h, your program must ensure that the CS
register contains the segment ofits Program SegmentPrefix.

Interrupt20h DOS-Terminate Program
entry no parameters
return The following vectors are restored from the Program Segment Prefix:

OAh Program TerminateOEh Control-c
12h Critical Error

note 1. IBM and Microsoft recommend using int 21 Fn 4Ch. Using int 20 is
officially frowned upon since the introduction of DOS 2.0

2. In DOS 3.2 at least, int 20h merely calls int 21h, fn OOh.

INT21H DOSservices

Function (hex)

* Indicates functions not documented in the IBM DOSTechnical Reference.

Note: some functions have been documented in other Microsoft or licensed OEM documenta-
tion.

Function 00h Terminate Program
Ends program, updates, FAT, flushes buffers, restores registers

entry AH ooh
cs segment address of PSP

return none
note 1. Program must place the segment address of the PSP control block in cs

before calling this function.
2. The terminate, ctrl-break, and critical error exit addresses (0Ah, OEh,

12h) are restored to the values they had on entry to the terminating
program, from the values saved in the program segment prefix at
locations PSP:000Ah, PSP:000Eh, and PSP:0012h.

3. All file buffers are flushed and the handles opened by the process areclosed. ©

4. Any files that have changed in length and are not closed are not

OLYMPUSEX. 1015 - 66/393

OLYMPUS EX. 1015 - 67/393

60 The Programmer's Technical Reference

recorded properly in the directory.
5. Control transfers to the terminate address.
6. This call performs exactly the same function as int 20h.
7. All memory used by the program is returned to DOS. DOS just goes up the

chain of memory blocks and marks any that are owned by the PSP which is
terminating as free.

8. Files opened with FCBs are not automatically closed.

Function 0Olh Get Keyboard Input
Waits for char at STDIN (if necessary), echoes to STDOUT

entry AH Olh
return AL ASCII character from STDIN (8 bits)
note 1. Checks char for Ctrl-c, if char is Ctrl-C, executes int 23h.

2. For function call 06h, extended ASCII codes require two function calls.
The first call returns 00h as an indicator that the next call will be an
extended ASCII code.

3. Input and output are redirectable. If redirected, there is no way todetect EOF.

Function 02h Display Output
Outputs char in DL to STDOUT

entry AH O2h
DL 8 bit data (usually ASCII character)

return none
note 1. If char is 08 (backspace) the cursor is moved 1 char to the left

(nondestructive backspace).
2. If Ctrl-c is detected after input, int 23h is executed.
3. Input and output are redirectable. If redirected, there is no way to

detect disk full. ,

Function 03h Auxiliary Input |
Get (or wait until) character from STDAUX :

entry AH 03h i
return AL ASCII char from auxiliary device
note 1. AUX, COM1, COM2 is unbuffered and not interrupt driven

2. This function call does not return status or error codes. For greater

control it is recommended that you
write an AUX device driver and use

3. At startup, PC-DOS initializes the
baud, no parity, one stop bit, and

4. If Ctrl-c is has been entered from

Function 04h Auxiliary Output
Write character to STDAUX

entry AH 04h
DL ASCII char to send to AUX

return none
note 1. This function call does not return

control it is recommended that you
write an AUX device driver and use

2. If Ctrl-c is has been entered from

use ROM BIOS routine (int 14h) or
IoctL.
first auxiliary port (COM1) to 2400
an 8-bit word. MSDOS may differ.
STDIN, int 23h is executed.

status or error codes. For greater
use ROM BIOS routine (int 14h) or
rocTL.

STDIN, int 23h is executed.
3. Default is COM1l unless redirected by DOS.
4. If the device is busy, this function will wait until it is ready.

Function 05h Printer Output
Write character to STDPRN

entry AL 05h
DL ASCII code for character to send

return none
note 1. If Ctrl-C is has been entered from STDIN, int 23h is executed.

2. Default is PRN or LPT1 unless redirected with the MODE command.
3. If the printer is busy, this function will wait until it is ready.

Function 06h Direct Console I/O
Get character from STDIN; echo character to STDOUT

00h-OFEh for console outputentry AH 06h
DL OFFh for console input, or

return 2F set no character available
clear character received

AL ASCII code for character
note 1. Extended ASCII codes require two function calls. The first call

OLYMPUSEX.1015 - 67/393

OLYMPUS EX. 1015 - 68/393

|41

|

Dos Interrupts and Functions Calls 61

returns 00h to indicate the next call will return an extended code
2. If DL is not OFFh, DL is assumed to have a valid character that is outputto STDOUT.
3. This function does not check for Ctrl-C or Ctrl-Prtsc.
4. Does not echo input to screen.
5. If I/O is redirected, EOF or disk full cannot be detected.

Function 07h Direct Console Input Without Echo (does not check BREAK)
Get or wait for char at STDIN, returns char in AL

entry AH O7h :
return AL ASCII character from standard input device
note 1. Extended ASCII codes require two function calls. The first call returns

00h to indicate the next call will return an extended code.
2. No checking for Ctrl-c or Ctrl-PrtSe is done.
3. Input is redirectable.

Function 08h Console Input Without Echo (checks BREAK)
Get or Wait for char at STDIN, return char in AL

entry AH 08h
return AL char from standard input device
note 1. Char is checked for Ctrl-c. If Ctrl-c is detected, executes int 23h.

2. For function call 08h, extended ASCII characters require two function
calls. The first call returns 00h to signify an extended ASCII code. Thenext call returns the actual code.

3. Input is redirectable. If redirected, there is no way to check EOF.

Function 09h Print String
Outputs Characters in the Print String to the STDOUT

entry AH 09h
DS:DX pointer to the Character String to be displayedreturn none

note 1. The character string in memory must be terminated by a $ (24h). The $ is
not displayed.

2. Output to STDOUT is the same as function call 02h.
3. The $ is not displayed but remains in AL forever unless popped.

Function OAh Buffered Keyboard Input
Reads characters from STDIN and places them in the buffer beginning at the
third byte.

entry AH OAh
DS:DX pointer to an input bufferreturn none

note 1. Min buffer size = 1, max = 255.
2. Char is checked for Ctrl-C. If Ctrl-c is detected, executes int 23h.3. Format of buffer Dx:

byte contents
L Maximum number of chars the buffer will take, including CR. Reading

SIDIN and filling the buffer continues until a carriage return (or
ODh) is read. If the buffer fills to one less than the maximum
number the buffer can hold, each additional number read is ignored
and ASCIL 7 (BEL) is output to the display until a carriage return
is read. (you must set this value)

2 Actual number of characters received, excluding the carriage
return, which is always the last character (the function sets is
value)

3-n Characters received are placed into the buffer starting here.
Buffer must be at least as long as the number in byte 1.

4. Input is redirectable. If redirected, there is no way to check EOF.
5. The string may be edited with the standard DOS editing commands as it is

being entered.
6. Extended ASCII characters are stored as 2 bytes, the first byte beingzero.

Function OBh Check Standard Input (STDIN) status
Checks for character available at STDIN

entry AH OBh
return AL OFFh if a character is available from STDIN

00h if no character is available from STDIN
note 1. Checks for Ctrl-c. If Ctrl-C is detected, int 23h is executed.

2. Input can be redirected.
3. Checks for character only, it is not read into the application

OLYMPUSEX.1015 - 68/393

OLYMPUS EX. 1015 - 69/393

62 The Programmer's Technical Reference

4. IBM reports that this call does not work properly under the DOSSHELL
program in DOS 4.00 and 4.01. DOSSHELL will return all zeroes. This
function works correctly from the command line or application.

Function o0Ch Clear Keyboard Buffer & Invoke a Keyboard Function (FCB)
Dumps buffer, executes function in AL (Olh, 06h, O7h, O8h, OAh only)

entry AH och
AL function number (must be Olh, 06h, 07h, O8h, or QAh)

return AL 00h buffer was flushed, no other processing performed
other any other value has no meaning

note 1. Forces system to wait until a character is typed.
2. Flushes all type-ahead input, then executes function specified by AL

(by moving it to AH and repeating the int 21 call).
3, If AL contains a value not in the list above, the keyboard buffer is

flushed and no other action is taken.

Function ODh Disk Reset
Flushes all currently open file buffers to disk

entry AH oDhreturn none
note 1. Does not close files. Does not update directory entries; files changed

in size but not closed are not properly recorded in the directory.
2. Sets DTA address to DS:0080h
3. Should be used before a disk change, Ctrl-C handlers, and to flush the

buffers to disk.

Function O0Eh Select Disk
Sets the drive specified in DL (if valid) as the default drive

entry AL OEh
DL new default drive number (0=A:,1=B:,2=C!,etc.)

return AL total number of logical drives (not necessarily physical)
note 1. For DOS 1.x and 2.x, the minimum value for AL is 2.

2. For DOS 3.x and 4.x, the minimum value for AL is 5.
3. The drive number returned is not necessarily a valid drive.
4. For DOS 1.x: 16 logical drives are available, A-P.

For DOS 2.x: 63 logical drives are available. (Letters are only used for
the first 26 drives. If more than 26 logical drives are
used, further drive letters will be other ASCII characters
ie {,], etc.

For DOS 3.x: 26 logical drives are available, A-Z.
For DOS 4.x: 26 logical drives are available, A~-Z.

Function OFh Open Disk File (FCB)
Searches current directory for specified filename and opens it

entry AH OFh
DS: DX pointer to an unopened FCB

return AL 00h if file found
OFFh if file not not found

note 1. If the drive code was 0 (default drive) it is changed to the actual
drive used (1=A:,2=B:,3=C:, etc). This allows changing the default
drive without interfering with subsequent operations on this file.

2. The current block field (FCB bytes C-D, offset 0Ch) is set to zero.
3. The size of the record to be worked with (FCB bytes E-F, offset OEh) is

set to the system default of 80h. The size of the file (offset 10h) and
the date (offset 14h) are set from information obtained in the root
directory. You can change the default value for the record size (FCB
bytes E-F) or set the random record size and/or current record field.
Perform these actions after open but before any disk operations.

4. With DOS 3.x the file is opened in compatibility mode (network).
5. Microsoft recommends handle function call 3Dh be used instead.
6. This call is also used by the APPEND command in DOS 3.2+
7. Before performing a sequential disk operation on the file, you must set

the Current Record field (offset 20h). Before performing a random disk
operation on the file, you must set the Relative Record field (offset
2ih). If the default record size of 128 bytes is incorrect, set it to
the correct value.

Function 10h Close File (FCB)
Closes a File After a File Write

entry AH 10h
DS:DX pointer to an opened FCB

OLYMPUSEX.1015-

69/393

OLYMPUS EX. 1015 - 70/393

return

note l.

2.

Dos Interrupts and Functions Calls | 63
AL 00h if the file is found and closed

OFFh if the file is not found in the current directory
This function call must be done on open files that are no longer needed,
and after file writes to insure all directory information is updated.
If the file is not found in its correct position in the current
directory, it is assumed that the diskette was changed and AL returns
OFFh. This error return is reportedly not completely reliable with Dosversion 2.x..

If found, the directory is updated to reflect the status in the FCB, the
buffers to that file are flushed, and AL returns 00h.
There is a subtle but dangerous bug in this function. If a Close request
is issued using a File Control Block that has not been previously
activated by a successful Open command, the file’s length will be
truncated to zero and the clusters previously assigned to the file are
left floating.

. Function lih Search For First Matching Entry (FCB)
Searches current disk & directory for first matching filename

entry

return

note l.

2.

3.

S.

AH 11h
DS: DX pointer to address of FCB
AL 00h successful match

OFFh no matching filename found
The FCB may contain the wildcard character ? under Dos 2.x, and ? or *under 3.x and 4.x.

The original FCB at DS:DX contains information to continue the search
with function 12h, and should not be modified.
If a matching filename is found, AL returns 00h and the locations at the
Disk Transfer Address are set as follows:
a. If the FCB provided for searching was an extended FCB, then the first

byte at the disk transfer address is set to OFFh followed by 5 bytes
of zeros, then the attribute byte from the search FCB, then the
drive number used (1=A, 2=B, etc) then the 32 bytes of the directory
entry. Thus, the disk transfer address contains a valid unopened FCB
with the same search attributes as the search FCB.

b. If the FCB provided for searching was a standard FCB, then the first
byte is set to the drive number used (1=A, 2=b, etc)), and the next
32 bytes contain the matching directory entry. Thus, the disk transfer
address contains a valid unopened normal FCB.

If an extended FCB is used, the following search pattern is used:
a. If the FCB attribute byte is zero, only normal file entries are found.

Entries for volume label, subdirectories, hidden or system files, arenot returned.

b. If the attribute byte is set for hidden or system files, or
subdirectory entries, it is to be considered as an inclusive search.
All normal file entries plus all entries matching the specified
attributes are returned. To look at all directory entries except the
volume label, the attribute byte may be set to hidden + system +
directory (all 3 bits on).

c. If the attribute field is set for the volume label, it is considered
an exclusive search, and ONLY the volume label entry is returned.

This call is also used by the APPEND command in DOS 3.2+

Function 12h Search For Next Entry Using FCB (FCB)
Search for next matching filename

entry

return

note 1.

Ny

AH 12h

DS:DX pointer to the unopened FCB specified from the previous Search
First (11h) or Search Next (12h)

AL 00h if matching filename found
OFFh if matching filename was not found

After a matching filename has been found using function call 11h, .
function 12h may be called to find the next match to an ambiguous

request. For DOS 2.x, ?'s are allowed in the filename. For DOS 3.x and
4.x, global (*) filename characters are allowed.
The DTA contains info from the previous Search First or Search Next.

» All of the FCB except for the name/extension field is used to keep
information necessary for continuing the search, so no disk operations
may be performed with this FCB between a previous function lih or 12h
call and this one.

If the file is found, an FCB is created at the DTA address and set up to
open or delete it.

OLYMPUSEX.1015 - 70/393

OLYMPUS EX. 1015 - 71/393

oF The Programmer’s Technical Reference
Function 13h Delete File Via FCB (FCB)

Deletes file specified in FCB from current directory
entry AH 13h

DS:DX pointer to address of FCB
return AL - 00h file deleted

OFFh if file not found or was read-only
note 1. All matching current directory entries are deleted. The global filename

character ‘?’ is allowed in the filename.
2. Will not delete files with read-only attribute set.
3. Close open files before deleting them.
4. Requires Network Access Rights.

Punction 14h Sequential Disk File Read (FCB)
Reads record sequentially from disk via FCB

entry AH 14h
DS: DX pointer to an opened FCB

return AL ooh successful read
Olh end of file (no data read)
o2h Data Transfer Area too small for record size specified or

segment overflow
03h partial record read, EOF found

note 1. The record size is set to the value at offset OEh in the FCB.
2. The record pointed to by the Current Block (offset OCh) and the Current

Record (offset 20h) fields is loaded at the DTA, then the Current Blockand Current Record fields are incremented.
3. The record is read into memory at the current DTA address as specified by

the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

4. If a partial record is read at the end of the file, it is passed to the
requested size with zeros and the error return is set to AL=03h.

Function 15h Sequential Disk Write (FCB)
Writes record specified by FCB sequentially to disk

entry AH 15h
DS:DX pointer to address of FCB

return AL 00h successful write
Olh diskette full, write cancelled
o2h disk transfer area (DTA. too small or segment wrap

note 1. The data to write is obtained from the disk transfer area.
2. The record size is set to the value at offset OFh in the FCB.
3. This service cannot write to files set as read-only.
4. The record pointed to by the Current Block (offset 0Ch) and the Current

Record (offset 20h) fields is loaded at the DTA, then the Current Block
and Current Record fields are incremented.

5. If the record size is less than a sector, the data in the DTA is written
to a buffer; the buffer is written to disk when it contains a full sector
of data, the file is closed, or a Reset Disk (function ODh) is issued.

6. The record is written to disk at the current DTA address as specified by
the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

Function 16h Create A Disk File (FCB)
Search and open or create directory entry for file

entry AH 16h
DS:DxX pointer to an FCBreturn AL 00h successful creation

OFFh no room in directory
note 1. If a matching directory entry is found, the file is truncated to zero

bytes.
2. If there is no matching filename, a filename is created.
3. This function calls function OFh (Open File) after creating or truncatinga file.
4. A hidden file can be created by using an extended FCB with the attribute

byte (offset FCB-1) set to 2.

Function 17h Rename File Specified by File Control Block (FCB)
Renames file in current directory

entry AH 17h
DS:DX pointer to an FCB (see note 4)

OLYMPUSEX.1015 - 71/393

OLYMPUS EX. 1015 - 72/393

Dos Interrupts and Functions Calls

return AL 00h successfully renamed
OFFh file not found or filename already exists

note 1. This service cannot rename read-only files
2. The ‘?’ wildcard may be used.
3. If the ‘?’ wildcard is used in the second filename, the corresponding

letters in the filename of the directory entry are not changed.
4. The FCB must have a drive number, filename, and extension in the usual

position, and a second filename starting 6 bytes after the first, atoffset 11h.
5. The two filenames cannot have the same name.
6. FCB contains new name starting at byte 17h.

Function 18h Internal to Dos
* Unknown ~- reportedly not used

entry AH 18h
return AL 00h

Function 19h Get Current Disk Drive
Return designation of current default disk drive

entry AH 19h
return AL current default drive (0=A, 1=B,etc.)
note Some other DOS functions use 0 for default, 1=A, 2=B, etc.

Function 1Ah Set Disk Transfer Area Address (DTA)
Sets DTA address to the address specified in DS:Dx

entry AH 1Ah
DS: DX pointer to buffer

return none

note 1. The default DTA is 128 bytes at offset 80h in the PSP. DOS uses the DTA
for all file I/o.

2. Registers are unchanged,
3. No error codes are returned.

2. Disk transfers cannot wrap around from the end of the segment to the
beginning or overflow into another segment.

Function 1Bh Get Current Drive File Allocation Table Information
Returns information from the FAT on the current drive

entry AH 1Bh

return AL number of sectors per allocation unit (cluster)
cx number of bytes per sector
DS: BX address of the current drive’s media descriptor byte
DX number of allocation units (clusters) for default drive

note 1. Save DS before calling this function.
2. This call returned a pointer to the FAT in DOS 1.x. Beginning with Dos

2.00, it returns a pointer only to the table’s ID byte.
3. IBM recommends programmers avoid this call and use int 25h instead.

Function 1Ch Get File Allocation Table Information for Specific Device
Returns information on specified drive

entry AH 1Cch
DL drive number (1=A, 2=B, 3=C, etc)

return AL number of sectors per allocation unit (cluster)
DS: BX address of media descriptor byte for drive in DL
cx sector size in bytes
DX number of allocation units (clusters)

note 1. DL = 0 for default.
2. Save DS before calling this function.
3. Format of media~descriptor byte:

bits: 0 0 (clear) not double sided
1 (set) double sided

1 0 (clear) not 8 sector
1 (set) 8 sector

2 0 (clear) nonremovable device
1 (set) removable device

3-7 always set (1)
4. This call returned a pointer to the FAT in DOS 1.x. Beginning with DOS

2.00, it returns a pointer only to the table’s ID byte.
5. IBM recommends programmers avoid this call and use int 25h instead.

Function 1Dh Not Documented by Microsoft
* Unknown - reportedly not used

OLYMPUSEX.

65

1015 - 72/393

OLYMPUS EX. 1015 - 73/393

66 - The Programmer’s Technical Reference

entry AH 1Dh
return AL 00h

Function 1Eh Not Documented by Microsoft
* Unknown - reportedly not used

entry AH 1Eh
return AL 00h
note Apparently does nothing.

Function 1Fh Get Default Drive Parameter Block
* Same as function call 32h (below), except that the table is

accessed from the default drive
entry AH 1Fh

other registers unknown
return AL 00h no error

OFFh error

DS: BX pointer to DOS Disk Parameter Block for default drive.
note 1. Unknown vector returned in ES:BX.

2. For DOS 2, 3, 4.x, this just invokes function 32h (undocumented, Read
DOS Disk Block) with DL=0.

Function 20h Unknown
* Internal - does nothing?

entry AH 20h
return AL 00h

Function 21h Random Read from File Specified by File Control Block (PCB)
Reads one record as specified in the FCB into the current DTA.

entry AH 21h
DS:DX address of the opened FCB

return AL 00h successful read operation
O1h end of file (EOF), no data read
02h DTA too small for the record size specified
03h end of file (EOF), partial data read

note 1. The current block and current record fields are set to agree with the
random record field. Then the record addressed by these fields is read
into memory at the current Disk Transfer Address.

2. The current file pointers are NOT incremented this function.
3. If the DTA is larger than the file, the file is padded to the requested

length with zeros.

Function 22h Random Write to File Specified by FCB (FCB)
Writes one record as specified in the FCB to the current DTA

entry AH 22h
DS: DX address of the opened FCB

return AL 00h successful write operation
Olh disk full; no data written (write was cancelled)
o2h DTA too small for the record size specified (write was

. cancelled)
note 1. This service cannot write to read-only files.

2. The record pointed to by the Current Block (offset O0Ch) and the Current
Record (offset 20h) fields is loaded at the DTA, then the Current Block
and Current Record fields are incremented.

3. If the record size is less than a sector, the data in the DTA is written
to a buffer; the buffer is written to disk when it contains a full sector
of data, the file is closed, or a Reset Disk {function ODh) is issued.

4. The current file pointers are NOT incremented this function. |
5. The record is written to disk at the current DTA address as specified by

the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound
would occur, the error return is set to AL=02h.

Function 23h Get File Size (FCB)
Searches current subdirectory for matching file, returns size in FCB

entry AH 23h
DS:DxX address of an unopened FCB

return AL OOh file found
OFFh file not found

note 1. Record size field (offset OEh) must be set before invoking this function
2. The disk directory is searched for the matching entry. If a matching

entry is found, the random record field is set to the number of records

OLYMPUSEX.1015 - 73/393

OLYMPUS EX. 1015 - 74/393

Dos Interrupts and Functions Calls 67

in the file. If the value of the Record Size field is not an even
divisor of the file size, the value set in the relative record field is
rounded up. This gives a returned value larger than the actual file size

3. This call is used by the APPEND command in DOS 3.2+

Function 24h Set Relative Record Field (FCB)
Set random record field specified by an FCB

entry AH 24h
DS:DX address of an opened FCB

return Random Record Fiéld of FCB is set to be same as Current Block
and Current Record.

note 1. You must invoke this function before performing random file access.
2. The relative record field of FCB (offset 21h) is set to be same as the

Current Block (offset O0Ch) and Current Record (offset 20h). ,3. No error codes are returned.
4. The FCB must already be opened.

Function 25h Set Interrupt Vector
Sets the address of the code DOS is to perform each time the specified
interrupt is invoked.

entry AH 25h
AL int number to reassign the handler to
DS: DX address of new interrupt vectorreturn none

note 1. Registers are unchanged.
2. No error codes are returned.
3. The interrupt vector table for the interrupt number specified in AL is

set to the address contained in DS:DX. Use function 35h (Get Vector) to
get the contents of the interrupt vector and save it for later use.

4. When you use function 25 to set an interrupt vector, DOS 3.2 doesn’t
point the actual interrupt vector to what you requested. Instead, it
sets the interrupt vector to point to a routine inside DOS, which does
this:

1. Save old stack pointer
2. Switch to new stack pointer allocated from DOS’s stack pool
3. Call your routine
4. Restore old stack pointer

The purpose for this was to avoid possible stack overflows when there are
a large number of active interrupts. IBM was concerned (this was an IBM
change, not Microsoft) that on a Token Ring network there would be a lot
of interrupts going on, and applications that hadn’t allocated very much
stack space would get clobbered.

Function 26h Create New Program Segment Prefix (PSP)
This service copies the current program-segment prefix to a new memory location
for the creation of a new program or overlay. Once the new PSP is in place, a DOS”

program can read a DOS COM or over lay file into the memory location immediatelyfollowing the new PSP and pass control to it.
entry AH 26h

DX segment number for the new PSP
return Current PSP is copied to specified segment
note 1. Microsoft recommends you use the newer DOS service 4Bh (EXEC) instead.

2. The entire 100h area at location 0 in the current PSP is copied into
location 0 of the new PSP. The memory size information at location 6 in
the new segment is updated and the current termination, ctrl-break, and
critical error addresses from interrupt vector table entries for ints
22h, 23h, and 24 are saved in the new program segment starting at OAh.
They are restored from this area when the program terminates.

Function 27h Random Block Read From File Specified by FCB
Similar to 21h (Random Read) except allows multiple files to be read.

entry AH 27h
cx number of records to be read
DS: DX address of an opened FCB

return AL 00h successful read
Olh end of file, no data read
02h DTA too small for record size specified (read

cancelled)
03h end of file

Cx actual number of records read (includes partial if AL=03h)
note 1. The record size is specified in the FCB. The service updates the Current

OLYMPUSEX.1015 - 74/393

OLYMPUS EX. 1015 - 75/393

68 The Programmer’s Technical Reference

Block (offset 0Ch) and Current Record (offset 20h) fields to the next
record not read.

2. If CX contained 0 on entry, this is a NOP.
3. If the DTA is larger than the file, the file is padded to the requested

length with zeros.
4. This function assumes that the FCB record size field (OEh) is correctly

set. If not set by the user, the default is 128 bytes.
5. The record is written to disk at the current DTA address as specified by

the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

Function 28h Random Block Write to File Specified in FCB
Similar to 27h (Random Write) except allows multiple files to be read.

entry AH 28h
Cx number of records to write
DS: DX address of an opened FCB

return AL 00h successful write
Olh disk full, no data written
02h DTA too small for record size specified (write cancelled)

Cx number of records written
note 1. The record size is specified in the FCB.

2. This service allocates disk clusters as required.
3. This function assumes that the FCB Record Size field (offset OEh) is

correctly set. If not set by the user, the default is 128 bytes.
4. The record size is specified in the FCB. The service updates the Current

Block (offset OCh) and Current Record (offset 20h) fields to the next
record not read.

5. The record is written to disk at the current DTA address as specified by
the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

6. If called with CX=0, no records are written, but the FCB’s File Size
entry (offset 1ch) is set to the size specified by the FCB’s Relative
Record field (offset 21h).

Function 29h Parse the Command Line for Filename
Parses a text string into the fields of a File Control Block

entry AH 29h
DS:SI pointer to string to parse
ES:DI pointer to memory buffer to fill with unopened FCB
AL bit mask to control parsing

bit 0 0 parsing stops if file separator found
1 causes service to scan past leading chars such as

blanks. Otherwise assumes the filename begins in the
first byte

1 0 drive number in FCB set to default (0) if string
contains no drive number

1 drive number in FCB not changed
2 0 filename in FCB set to 8 blanks if no filename no

string
1 filename in FCB not changed if string does not contain

a filename
3 0 extension in FCB set to 3 blanks if no extension in

string
1 extension left unchanged

4-7 must be zero
return AL 00h no wildcards in name or extension

O1h wildcards appeared in name or extension
OFFh invalid drive specifier

DS:ST pointer to the first byte after the parsed string
ES:DI pointer to a buffer filled with the unopened FCB

note 1. If the * wildcard characters are found in the command line, this service
will replace all subsequent chars in the FCB with question marks.

2. This service uses the characters as filename separators
pos 1 2:3. , + / [|] =" TAB SPACE
DOS 2,3,4 2: 7. , + = TAB SPACE

3. This service uses the characters
spo. , + <> | /\[] =" TAB SPACE
or any control characters as valid filename separators.

4. A filename cannot contain a filename terminator. If one is encountered,

OLYMPUSEX.1015 - 75/393

OLYMPUS EX. 1015 - 76/393

DOS Interrupts and Function Calls | 69
all processing stops. The handle functions will allow use of some of
these characters.

If no valid filename was found on the command line, ES:DI +1 points to a
blank (ASCII 32).
This function cannot be used with filespecs which include a path
Parsing is in the form D:FILENAME.EXT. If one is found, a corresponding
unopened FCB is built at ES:DI.

Function 2Ah Get Date :
Returns day of the week, year, month, and date

entryreturn

_ Function
set

entry

return

note l.

2.
3.

AH 2Ah
Cx year (1980-2099)
DH month (1-12)
DL day (1-31)
AL weekday 00h Sunday

Olh Monday
02h Tuesday
03h Wednesday
04h Thursday
oSh Friday
06h Saturday

Date is adjusted automatically if clock rolls over to the next day, and
takes leap years and number of days in each month into account.
Although DOS cannot set an invalid date, it can read one, such as
1/32/80, etc.
DesQview also accepts CX = 4445h and DX = 5351h, i.e. ‘DESQ’ as valid
DOS will accept CH=0 (midnight) as a valid time, but if a file’s time is
set to exactly midnight the time will not be displayed by the DIR command.

2Bh .Set Date

current system date
AH 2Bh
Cx year (1980-2099)
DH month (1-12)
DL day (1-31)
AL ooh no error (valid date)

OFFh invalid date specified
On entry, CX:DX must have a valid date in the same format as returned byfunction call 2Ah.
DOS 3.3+ also sets CMOS clock.

Under the DesQview system shell, this is the DV_GETVERSION check.
entry AH 2Bh

AL Olh DesQ call
cx 4445h ‘DE’ (invalid date used
DX 5351h *SsQ’ for DesQview ID)

return AH major version
AL minor version
AX OFFh DesQ not installed (DOS error code)

For DESQview 2.00+, installation check
entry AH 2Bh

AL subfunction (DV v2.00+)
Olh Get Version

return BX version (BH = major, BL = minor)
note Early copies of v2.00 return 0002h.

02h Get Shadow Buffer Info, and Start
return BH Shadowing rows in shadow buffer

BL columns in shadow buffer
DX segment of shadow buffer

04h Get Shadow Buffer Info
return BH rows in shadow buffer

BL columns in shadow buffer
DX segment of shadow buffer

o5h Stop Shadowing
cx 4445h (‘DE’)
DX 5351lh ('SQ’)

return AL OFFh if DESQview not installed
note In DESQview vl.x, there were no subfunctions; this call only

identified whether or not DESQview was loaded.

OLYMPUSEX.1015 - 76/393

OLYMPUS EX. 1015 - 77/393

70 The Programmer’s Technical Reference
Function 2Ch Get Time

Get current system time from CLOCKS driver
entry AH 2Cch
return CH hours (0-23)

cL minutes (0-59)
DH seconds (0-59)
DL hundredths of a second (0-99)

note 1. Time is updated every 5/100 second.
2. The date and time are in binary format.

Function 2Dh Set Time
Sets current system time

entry AH 2Dh
CH hours (0-23)
cL minutes (0-59)
DH seconds (0-59)
DL hundredths of seconds (0-99)

return AL 00h if no error
OFFh if bad value sent to routine

note 1. DOS 3.3+ also sets CMOS clock.
2. CX and DX must contain a valid time in binary.

Function 2Eh Set/Reset Verify Switch
Set verify flag

entry AH 2Eh
AL 00 to turn verify off (default)

o1 to turn verify on
return none
note 1. This is the call invoked by the DOS VERIFY command.

2. Setting of the verify switch can be obtained by calling call 54h.
3. This call is not supported on network drives.
4. DOS checks this flag each time it accesses a disk.

Function 2Fh Get Disk Transfer Address (DTA)
Returns current disk transfer address used by all DOS read/write operations

entry AH 2Fh
return ES:BX address of DTA
note 1. The DTA is set by function call 1Ah

2. Default DTA address is a 128 byte buffer at offset 80h in that program’s
Program Segment Prefix.

Function 30h Get DOS Version Number
Return DOS version and/or user number

entry AH 30h
return AH minor version number (i.e., DOS 2.10 returns AX = 0A02h)

AL major version number (0 for DOS 1.x)
BH OEM ID number

00h IBM
16h DEC (others not known)

BL: CX 24-bit user serial number
note 1. If AL returns a major version number of zero, the DOS version is below

1.28 for MSDOS and below 2.00 for PCDOS.
2. IBM PC-DOS always returns 0000h in BX and CX.
3. OS/2 v1.0 Compatibility Box returns a value of 10 for major version.
4. Due to the 0S/2 return and the fact that some European versions of DOS

carry higher version numbers than IBM’s DOS, utilities which check for a
DOS version should not abort if a higher version than required is found
unless some specific problems are known.

Function 31h Terminate Process and Stay Resident
KEEP, or TSR

entry AH 31h
AL exit code
DX program memory requirement in 16 byte paragraphs

return AX return code (retrievable by function 4Dh)
note 1. Files opened by the application are not closed when this call is made.

Memory can be used more efficiently if the block containing the copy of
the DOS environment is deallocated before terminating. This can be done
by loading ES with the segment contained in 2Ch of the PSP and issuing
function call 49h (Free Allocated Memory).

3. Unlike int 27h, more than 64k may be made resident with this call.

OLYMPUSEX.1015 - 77/393

OLYMPUS EX. 1015 - 78/393

DOS Interrupts and Function Calls 71

Function 32h Read DOS Disk Block

Retrieve the pointer to the drive parameter block for a drive
*

entry

return

Bytes
00h
Olh
O2h-03h
04h

05h

O6h-07h
“O8h
09h-OAh
OBh-0Ch
ODh-OEh

DOS 2.x
OFh
10h-11h
12h-15h
16h
17h

18h-1Bh
ich
1Eh
22h

DOS 3.
OFh
10h
12h
16h
17h
18h

1¢ch
1Eh

Dos 4.0
OFh
1lh
13h
17h
18h
19h
1Dh
1Fh
note 1.

Function

entry

2.

3.

4.

AH 32h

DL drive (O=default, 1=A:, etc.).
AL 00h if drive is valid

OFFh if drive is not valid
DS: BX pointer to DOS Drive Parameter Table. Format of block:
Type Value
byte Drive: O=A:, 1=B:, etc.
byte Unit within device driver (0, 1, 2, etc.)
word Bytes per sector
byte largest sector number in cluster (one less than sectors per

cluster)
byte Cluster to sector shift (i.e., how far to shift-left the

bytes/sector to get bytes/cluster)
word Number of reserved (boot) sectors
byte Number of copies of the FAT
word Number of root directory entries
word Sector # of lst data. Should be same as # of sectors/track.
word largest possible cluster number (one more than the number of data

clusters)

only
byte sectors for one copy of the FAT
word First sector of root directory
dword Address of device driver header for this drive
byte Media Descriptor Byte for this drive
byte OFFh indicates. block must be rebuilt (DOS 3.x) 00h indicates

block device has been accessed

dword address of next DOS Disk Block (OFFFFh means last in chain)
word starting cluster of current dir (0 = root)
64byts ASCIIZ current directory path string
byte Current Working Directory (2.0 only) (64 bytes)

byte number of sectors in one FAT copy
word first sector of root directory
dword address of device driver for this drive
byte media descriptor byte for medium
byte OFFh = block must be rebuilt, 00h indicates block accessed
dword address of next device block, offset = OFFFFh indicates last word

cluster at which to start search for free space when writing
word 00h, probably unused, values left from before
word OFFFFh indicates block was built

word number of sectors in one FAT copy
word first sector of root directory
dword address of device driver for this drive
byte media descriptor byte for medium
byte OFFh = block must be rebuilt, 00h indicates block accessed
dword address of next device block, offset = OFFFFh indicates last
word cluster at which to start search for free space when writingword unknown

Use [BX+0D] to find no. of clusters (1000h, 16-bit FAT: if not, 12-bit
(exact dividing line is probably a little below 1000h to allow for bad
sectors, EOF markers, etc.)
Short article by C.Petzold, PC Magazine Vol.5,no.8, and the article
‘Finding Disk Parameters’ in the May 1986 issue of PC Tech Journal.
This call is mostly supported in OS/2 1.0’s DOS Compatibility
Box. The dword at 12h will not return the address of the next
device driver when in the Compatibility Box.
Used by CHKDSK.

33h Control-Break Check
Get or set control-break checking at CONAH 33h

AL 00h to test for break checking
Olh to set break checking

DL 00h to disable break checking
Olh to enable break checking

OLYMPUSEX.1015 - 78/393

OLYMPUS EX. 1015 - 79/393

72 The Programmer's Technical Reference
02h internal, called by PRINT.COM (DOS 3.1)
03h unknown
04h unknown
O5h boot drive (DOS 4.0+)

return DL break setting (AL=00h)
00h if break=off
Olh if break=on
(if AL=05h) boot drive, A=1, B=2, etc)AL OFFh error

Function 34h Return INDOS Flag
* Returns ES:BX pointing to Critical Section Flag, byte indicating whether it

is safe to interrupt DOS.
entry AH 34h
return ES:BX points to 1-byte DOS "critical section flag”

note 1. If byte is 0, it is safe to interrupt DOS. This was mentioned in some
documentation by Microsoft on a TSR standard, and ‘PC Magazine’ reports
it functions reliably under DOS versions 2.0 through 3.3. Chris Dunford
(of CED fame) and a number of anonymous messages on the BBSs indicate it
may not be totally reliable.

2. The byte at ES:BX+1 is used by the Print program for this same purpose,
so it’s probably safer to check the WORD at ES:BX.

3. Reportedly, examination of DOS 2.10 code in this area indicates that the
byte immediately following this ‘critical section flag’ must be 00h to
permit the PRINT.COM interrupt to be called. For DOS 3.0 and 3.1
(except Compaq DOS 3.0), the byte before the ‘critical section flag’
must be zero; for Compag DOS 3.0, the byte O1AAh before it must be zero.

In DOS 3.10 this reportedly changed to word value, with preceding byte.
This call is supported in 0S/2 1.0’s DOS Compatibility Box
Gordon Letwin of Microsoft discussed this call on ARPAnet in 1984. He
stated:
a. this is not supported under any version of the DOS
b. it usually works under DOS 2, but there may be circumstances when it

doesn't (general disclaimer, don’t know of a specific circumstance)
c. it will usually not work under DOS 3 and DOS 3.1; the DOS is

considerably restructured and this flag takes on additional
meanings and uses

d. it will fail catastrophically under DOS 4.0 and forward.
Obviously this information is incorrect since the call works
fine through DOS 3.3. Microsoft glasnost?

aU

Function 35h Get Vector
Get interrupt vector

entry AH 35h
AL interrupt number (hexadecimal)

return ES:BX address of interrupt vector
note Use function call 25h to set the interrupt vectors.

Function 36h Get Disk Free Space
get information on specified drive

entry AH 36h
DL drive number (0=default, 1=A:, 2=B:, etc)

return AX number of sectors per cluster
OFFFFh means drive specified in DL is invalid

BX number of available clusters
cx bytes per sector
DX clusters per drive

note 1. Mult AX * CX * BX for free space on disk.
2. Mult AX * CX * DX for total disk space.
3. Function 36h returns an incorrect value after an ASSIGN command. Prior to

ASSIGN, the DX register contains 0943h on return, which is the free space
in clusters on the HC diskette. After ASSIGN, even with no parameters,
0901h is returned in the DX register; this is an incorrect value.
Similar results occur with DD diskettes on a PC-XT or a PC-AT. This
occurs only when the disk is not the default drive. Results are as
expected when the drive is the default drive. Therefore, the
circumvention is to make the desired drive the default drive prior to
issuing this function call.

4. Int 21h, function call 36h returns an incorrect value after an ASSIGN
command. Prior to ASSIGN, the DX register contains 0943h on return, which

OLYMPUSEX.1015 - 79/393

OLYMPUS EX. 1015 - 80/393

5.
DOSInterrupts and Function Calls , 73

is the free space in clusters on the HC diskette. After ASSIGN, even
with no parameters, 0901h is returned in the DX register; this is an
incorrect value. Similar results occur with DD diskettes on a PC-XT or
a PC-AT. This occurs only when the disk is not the default drive.
Results are as expected when the drive is the default drive. Therefore,
the circumvention is to make the desired drive the default drive prior
to issuing this function call.
This function supercedes functions 1Bh and 1Ch.

Function 37h SWITCHAR / AVAILDEV
: * Get/set option marking character (is usually "/"), and device type
: entry AH 37h
! - AL 00h read switch character (returns current character in DL)
t Olh set character in DL as new switch character

(DOS 2.x. 02h read device availability (as set by function AL=3)into DL. A 0 means devices that devices must be accessed
in file I/O calis by /dev/device. A non-zero value means
that devices are accessible at every level of the ,
directory tree (e.g., PRN is the printer and not a file
PRN).
AL=2 to return flag in DL, AL=3 to set from DL (0
= set,1 = not set).

(DOS 2.x) 03h get device availability, where:
DL 00h means /dev/ must precede device names

Olh means /dev/ need not precede device names
; return DL switch character (if AL=0 or 1)
| device availability flag (if AL=2 or 3)AL OFFh the value in AL was not in the range 0-3.

note 1. Functions 2 & 3 appear not to be implemented for DOS 3.x.
2. It is documented on page 4.324 of the MS-DOS (version 2) Programmer’s

Utility Pack (Microsoft - published by Zenith).
3. Works on all versions of IBM PC-DOS from 2.0 through 3.3.1.
4. The SWITCHAR is the character used for "switches" in DOS command

arguments (defaults to ‘/’, as in "DIR/P"). ‘-‘' is popular to make a
system look more like UNIX; if the SWITCHAR is anything other than ‘/’,
then ’/’ may be used instead of ‘\’ for pathnames.

5S. Ignored by XCOPY, PKARC, LIST.
6. SWITCHAR may not be set to any character used in a filename.
7. In DOS 3.x you can still read the "AVAILDEV" byte with subfunction 02h

but it always returns OFFh even if you try to change it to 0 withsubfunction 03h.
8. AVAILDEV=0 means that devices must be referenced in an imaginary

subdirectory "\dev" (similar to UNIX’s /dev/*); a filename ‘PRN.DAT’ can
be created on disk and manipulated like any other. If AVAILDEV != 0 then
device names are recognized anywhere (this is the default): ‘PRN.DAT’ is
synonymous with ‘PRN:’.

9. These functions reportedly are not supported in the same fashion in
various implementations of DOS. .

10. Used by DOS 3.3 CHKDSK, BASIC, DEBUG.

entry

return Function 38h Return Country-Dependent Information
(PCDOS 2.0, 2.1, MSDOS 2.00 only)

AH 38h
AL function code (must be 0 in DOS 2.x)
DS:DX pointer to 32 byte memory buffer for returned informationCF set on error

AX error code (02h)
BX country code
DS:DX pointer to buffer filled with country information:

bytes 00h,01h date/time formato000h USA standard HiM:S M/D/Y¥
ooolh European standard H:M:S D/M/Y
0002h Japanese standard H:M:S D:M:Y¥

02h ASCIIZ string currency symbol
03h byte of zeros
04h ASCIIZ string thousands separator
05h byte of zeros
06h ASCIIZ string decimal separator
o7h byte of zeros

24 bytes O08h-1Fh reserved

OLYMPUSEX.1015 - 80/393

OLYMPUS EX. 1015 - 81/393

74 The Programmer’s Technical Reference

Function 38h Get Country-Dependent Information
(PCDOS 3.x+, MSDOS 2.01+)

entry AH 38h
AL function code

ooh to get current country information
Olh-OPEh country code te get information for, for countries with

codes less than 255
OFFh to get country information for countries with a greaterthan 255

BX 16 bit country code if AL=0OFFh
DS:DX pointer to the memory buffer where the data will be returned

Dx OFFFFh if setting country code rather than getting info
return CF 0 (clear) function completed

1 (set) error
AX error code

02h invalid country code (no table for it)
(if DX OFFFFh)
BX country code (usually international telephone code)
DS:DX pointer to country data buffer

bytes 0,1 date/time format
0 USA standard HiM:sS M/D/Y
1 European standard H:M:S D/M/Y
2 Japanese standard H:M:S D:MsY

bytes 02h-06h currency symbol null terminated
byte O7h thousands separator null terminated
byte 08h byte of zeros .
byte 09h decimal separator null terminated
byte OAh byte of zeros
byte OBh date separator null terminated
byte och byte of zeros
byte ODh time separator null terminated
byte OEh byte of zeros
byte OFh currency format byte

bit 0 0 if currency symbol precedes the value
1 if currency symbol is after the value

1 0 no spaces between value and currency symbol
1 one space between value and currency symbol

2 set if currency symbol replaces decimal point
3-7 not defined by Microsoft

byte 10h number of significant decimal digits in currency
(number of places to right of decimal point)

byte 11h time format byte
bit 0 0 12 hour clock

1 24 hour clock
1-7 unknown, probably not used

bytes 12h-15h address of case map routine (FAR CALL, AL = char)
entry AL ASCII code of character to be converted to

uppercase
return AL ASCII code of the uppercase input character

byte 16h data-list separator character
byte 17h zeros
bytes 18h-21h 5 words reserved

note 1. When an alternate keyboard handler is invoked, the keyboard routine is
loaded into user memory starting at the lowest portion of available user
memory. The BIOS interrupt vector that services the keyboard is
redirected to the memory area where the new routine resides. Each new
routine takes up about 1.6K of memory and has lookup tables that return
values unique to each language. (KEYBxx in the DOS book) Once the
keyboard interrupt vector is changed by the DOS keyboard routine, the new
routine services all calls unless the system is returned to the US format
by the ctrl-alt-Fl keystroke combination. This does not change the
interrupt vector back to the BIOS location; it merely passes the table
lookup to the ROM locations.

2. Ctrl-Alt-Fi will only change systems with US ROMS to the US layout.
Some systems are delivered with non-US keyboard handler routines in ROM

3. Case mapping call: the segment/offset of a FAR procedure that performs
country-specific lower-to-upper case mapping on ASCII characters 80h to 0
OFFh. It is called with the character to be mapped in AL. If there is
an uppercase code for the letter, it is returned in AL, if there is no
code or the function was called with a value of less than 80h AL is
returned unchanged.

OLYMPUSEX. 1015 - 81/393

OLYMPUS EX. 1015 - 82/393

4.

DOSInterrupts and Function Calls 75

This call is fully implemented in MS-DOS version 2.01 and higher. It is
in version 2.00 but not fully implemented (according to Microsoft).

Function 38h Set Country Dependent Information
entry

return

entry

return

note 1.
2.
3.

AH 38h
AL code country code to set information for, for countries with

codes less than 255
OFFh to set country information for countries with a code

greater than 255
BX 16 bit country code if AL=OFFh ‘
DX OFFFFh
CF clear successful

set if error
AX error code (02h)

Function 39h Create Subdirectory (MKDIR)
Makes a subdirectory along the indicated pathAH 39h

DS: DX address of ASCIIZ pathname string
flag CF 0 successful

1 error

AX error code if any (03h, 05h)
The ASCIIZ string may contain drive and subdirectory.
Drive may be any valid drive (not necessarily current drive).
The pathname cannot exceed 64 characters.

Function 3Ah Remove Subdirectory (RMDIR)
entry

return

note l.
2.
3.

AH 3Ah
DS:DX address of ASCIIZ pathname string
CF clear successful

set AX error code if any (3, 5, 16)
The ASCIIZ string may contain drive and subdirectory.
Drive may be any valid drive (not necessarily current drive).
The pathname cannot exceed 64 characters,

Function 3Bh Change Current Directory (CHDIR)
entry

return

note 1.
2.
3.

AH 3Bh
DS:DX address of ASCIIZ string
flag CF 0 successful1 error

AX error code if any (03h)
The pathname cannot exceed 64 characters.
The ASCIIZ string may contain drive and subdirectory.
Drive may be any valid drive (not necessarily current drive).

Function 3ch Create A File (CREAT)

entry

return

note 1.

Function

entry

Create a file with handle
AH 3Ch
cx byte, attributes for file00h normal

O1h read only
02h hidden
03h system

DS:DX address of ASCII2Z filename string
CF 0 successful creation

1 error
AX 16 bit file handle

or error code (03h, 04h, 05h)
The ASCIIZ string may contain drive and subdirectory.
Drive may be any valid drive (not necessarily current drive).
If the volume label or subdirectory bits are set in CX, they are ignored
The file is opened in read/write mode
If the file does not exist, it is created. If one of the. same name
exists, it is truncated to a length of 0.
Good practice is to attempt to open a file with fn 3Dh and jump to an
error routine if successful, create file if 3Dh fails. That way an
existing file will not be truncated and overwritten

3Dh Open A File
Open disk file with handle

AH 3Dh

OLYMPUSEX.1015 - 82/393

OLYMPUS EX. 1015 - 83/393

76 The Programmer's Technical Reference

AL access code byte
(DOS 2.x) bits 0-2 file attribute

000 read only
ooL write only
010 read/write

3-7 reserved, should be set to zero
(DOS 3.x) bits 0-2 file attribute

000 read only
001 write only
010 read/write

3 reserved, should be set to zero
4~6 sharing mode (network)

000 compatibility mode (the way FCBs open files)
001 read/write access denied (exclusive)
010 write access denied
011 read access denied
100 full access permitted

7 inheritance flag
0 file inherited by child process
1 file private to child process

DS: DX address of ASCIIZ pathname string
return CF set on error

AX error code (01h, 02h, 03h, 04h, OSh, OCh)
AX 16 bit file handle

note 1. Opens any normal, system, or hidden file.
2. Files that end in a colon are not opened.
3. The rear/write pointer is set at the first byte of the file and the

record size of the file is 1 byte (the read/write pointer can be changed
through function call 42h). The returned file handle must be used for
all subsequent input and output to the file.

4. If the file handle was inherited from a parent process or was duplicated
by DUP or FORCEDUP, all sharing and access restrictions are alsoinherited.

5. A file sharing error (error 01h) causes an int 24h to execute with anerror code of 02h.

Function 3Eh Close A File Handle
Close a file and release handle for reuse

entry AH 3Eh
BX file handle

return flag CF 0 successful close1 error
AX error code if error (06h)

note 1. When executed, the file is closed, the directory is updated, and all
buffers for that file are flushed. If the file was changed, the time and
date stamps are changed to current.

2. If called with the handle 00000h, it will close STDIN (normally the
keyboard).

Function 3Fh Read From A File Or Device
Read from file with handle

entry AH — 3Fh
BX file handle
cx humber of bytes to read
DS:DX address of buffer

return flag CF 0 successful read
1 error

AX 0 pointer was already at end of file
or number of bytes read
or error code (05h, 06h)

note 1. This function attempts to transfer the number of bytes specified to a
buffer location. It is not guaranteed that all bytes will be read. If
AX < CX a partial record was read.

2. If performed from STDIN (file handle 0000), the input can be redirected
3. If used to read the keyboard, it will only read to the first CR.
4. The file pointer is incremented to the last byte read.

Function 40h Write To A Pile Or Device
Write to file with handle

entry AH 40h
BX file handle

OLYMPUSEX.1015 - 83/393

OLYMPUS EX. 1015 - 84/393

return

note 1.

2.
3.

4.
5.

Function
entry

return

note l.
2.

Function
entry

return

note l.

DOSInterrupts and Function Calls . 77
cx number of bytes to write
DS: DX address of buffer
flag CF 0 successful write1 error
AX number of bytes written

or error code (05h, 06h)
This call attempts to transfer the number of bytes indicated in CX from a
buffer to a file. If CX and AX do not match after the write, an error
has taken place; however no error code will be returned for this
problem. This is usually caused by a full disk.
If the write is performed to STDOUT (handle 0001), it may be redirected
To truncate the file at the current position of the file pointer, set the
number of bytes in CX to zero before calling int 21h. The pointer can
be moved to any desired position with function 42h.
This function will not write to a file or device marked read-only.
May also be used to display strings to CON instead of fn 09h. This
function will write CX bytes and stop; fn 09h will continue to write
until a $ character is found.
This is the call that DOS actually uses to write to the screen in DOS 2.x
and above.

41h Delete A File From A Specified Subdirectory (UNLINK)
AH 4ih
DS:DxX pointer to ASCIIZ filespec to delete
cF 0 successful

1 error
A error code if any (02h, 05h)

This function will not work on a file marked read-only.
Wildcards are not accepted.

42h Move a File Read/Write Pointer (LSEEK)
AH 42h
AL method code byte

ooh offset from beginning of file
Olh offset from present location
02h offset from end of file

BX file handle
cx most significant half of offset
DX least significant half of offset
AX low offset of new file pointer
DX high offset of new file pointer
CF 0 successful move

1 error
AX error code (01h, O6h)

If pointer is at end of file, reflects file size in bytes.
The value in DX:AX is the absolute 32 bit byte offset from the beginning
of the file. .

Function 43h Get/Set file attributes (CHMOD)
entry

return

AH 43h
AL 00h get file attributes

Olh set file attributes
cx file attributes to set

bit 0 read only
1 hidden file
2 system file
3 volume label
4 subdirectory
5 written since backup (archive bit)
6,7 not used
8 shareable (Novell NetWare)
9,F not used

DS:DX pointer to full ASCIIZ file name
CF set if error
AX error code (Olh, 02h, 03h, OSh)
cx file attributes on get

attributes:
Olh read only
o2h hidden
04h system
OFFh archive

OLYMPUSEX.1015 - 84/393

OLYMPUS EX. 1015 - 85/393

78 The Programmer's Technical Reference
note: This call will not change the volume label or directory bits.

Function 44h I/O Control for Devices (IOcTL)
Get or Set Device Information

entry AH 44h .
AL 00h Get Device Information

BX file or device handle
return DX device info

bit 7 set = character device
bit console input device

console output deviceNUL device
CLOCKS device
device is special
binary (raw) modenot EOF

network device (DOS 3.x)
can process IOCTL control
strings (subfns 2-5)bit 7 clear = file

FPROAUBRWNEOS
omND

bit 0-5 block device number
6 file has not been written
12 Network device (DOS 3.x)
14 unknown (DOS 3.x)
15 file is remote (DOS 3.x)Olh Set Device Information

BX device handle

DH 0 (DH must be zero for this call)
DL device info to set (bits 0-7 from

function 0)note DX bits:

0 1 console input device
1 1 console output device
2 1 null device
3 1 clock device
4 1 reserved

5 O binary mode - don’t check for control chars
1 cooked mode - check for control chars
0 EOF - End Of File on inputay

device is character device if set, if not, EOF is
0 if channel has been written, bits 0-5 arebiock device number

12 network device

14 1 can process control strings (AL 2-5, can only be
read, cannot be set)15 n reserved

02h Read Character Device Control StringBX device handle
cx number of bytes to read
DS:DX pointer to control string buffer
return AX number of bytes read

03h Write Device Control String
BX device handle
cx number of bytes to write
DS:DX pointer to buffer
return AX number of bytes written

04h Read From Block Device (drive number in BL)
BL drive number (0=default)
CX number of bytes to read
DS:DXxX pointer to buffer
return AX number of bytes read

05h Write Block Device Control String
BL drive number (0=default)
cx number of bytes to write
DS:DxX pointer to buffer
return AX number of bytes transferred

06h Get Input Handle Status
BX file or device handle
return AL OFFh device ready

00h device not ready
O7h Get Output Handle Status

OLYMPUSEX.1015 - 85/393

OLYMPUS EX. 1015 - 86/393

DOSInterrupts and Function Calls 79

return AL 00h not ready
OFFh ready

note For DOS 2.x, files are always ready for output.
08h Removable Media Bit (DOS 3.x+)

BL drive number (0=default)
return AX ooh device is removable

Oih device is nonremovable
OFh invalid drive specification

ooh Test whether Local or Network Device (DOS 3.x+)
BL drive number (0#default)
return DX attribute word, bit 12 set ifdevice is remote

OAh Is Handle in BX Local or Remote? (DOS 3.x+)BX file handle
return DX (attribute word) bit 15 set if file is remote
note If file is remote, Novell Advanced NetWare

2.0 returns the number of the file server
on which the handle is located in cx.

OBh Change Sharing Retry Count to Dx (DOS 3.x+)
cx delay (default=1)
DX retry count (default=3)

och General IOCTL (DOS 3.3 [3.27]) allows a device
driver to prepare, select, refresh, and query Code PagesBX device handle
CH category code

00h unknown (DOS 3.3)
Olh cOMn: (DOS 3.3)
03h CON (DOS 3.3)05h LPTn:

cL function
45h set iteration count
4Bh select code page
4Ch start code-page preparation
4Dh end code-page preparation
65h get iteration count
6Ah query selected code page
6Bh query prepare list

DS: DX pointer to parameter block. Format:
(for CL=45h) word number of times output is

attempted driver assumes device is busy
(for CL=4Ah,4Dh,6Ah) word length of data

word code page ID
(for CL=4Ch) word flags

word length of remainder of parameter block
word number of code pages following

n words code page 1,...,N
(for CL=6Bh) word length of following data

word number of hardware code pages
n words hardware code pages 1,...,N

word number of prepared code pages
n words prepared code pages 1,...,N

ODh Block Device Request (DOS 3.3+)
BL drive number (0=default)
CH category code

o8h disk drive
cL subfunction

40h set device parameters
4lh write logical device track
42h format and verify logical device
60h get device parameters
61h read logical device track
62h verify logical device track

DS:DX pointer to parameter block
(for fns 40h, 60h) byte special functions

bit 0 set if fn to use current BPB, clear if
Device BIOS Parameter Block field
contains new default BPB

1 set if function to use track fields

only. Must be clear if CL=60h2 set if all sectors in track same size
(should be set)

OLYMPUSEX.1015 - 86/393

OLYMPUS EX. 1015 - 87/393

8&0 The Programmer’s Technical Reference
3-7 reserved

byte device type
00h 320K/360K disk
Olh 1.2M disk
02h 720K disk
03h single-density 8-inch disk
04h double-density 8-inch disk
05h fixed disk
06h tape drive
07h other type of block device

word device attributes
bit 0 set if nonremovable medium

1 set if door lock supported
2-15 reserved

word number of cylinders
byte media type

00h 1.2M disk (default)
Olh 320K/360K disk

31 bytes device BPB (see function 53h)
word # of sectors per track (start of track

layout field)
N word pairs: number,size of each sector in track

(for functions 41h, 61h) byte reserved, must be zero
word number of disk head
word number of disk cylinder
word number of first sector to

read/write
word number of sectors

dword transfer address

(for functions 42h, 62h) byte reserved, must be zero
word number of disk head
word number of disk cylinder

note DOS 4.01 seems to ignore the high byte of the
number of directory entries in the BPB for
diskettes.

OEh Get Logical Device Map (DOS 3.2+) .
BL drive number (0=default)
return AL=0 block device has only one logical drive

assigned i..n the last letter used to |
reference the device (1=A:,etc) (1..26 DOS 3.0+)

OFh Set Logical Device Map (DOS 3.2+)
BL physical drive number (0=default)
note Maps logical drives to physical drives, similar

to DOS’s treatment of a single physical
floppy drive as both A: and B:

BL drive number: O=default, 1=A:, 2=B:, etc.
BX file handle
cx number of bytes to read or write
DS :DX data or buffer
DX data

return AX number of bytes transferred
or error code (call function 59h for extended error codes)
or status 00h not ready

OFFh ready
cF set if error

Function 45h Duplicate a File Handle (DUP)
entry AH 45h

BX file handle to duplicate
return CF clear AX duplicate handle

set AX error code (04h, 06h)
note 1. If you move the pointed of one handle, the pointer of the other will also

be moved.
2. The handle in BX must be open.

Function 46h Force Duplicate of a Handle (FORCEDUP or CDUP) '
Forces handle in CX to refer to the same file at the same i
position as BX ,

entry AH 46h
BX existing file handle
cx new file handle

OLYMPUSEX.1015 - 87/393

OLYMPUS EX. 1015 - 88/393

DOS Interrupts and Function Calls | 61
return CF. clear both handles now refer to existing file

set error
AX error code (04h, 06h)

note 1. If CX was an open file, it is closed first.
2. If you move the read/write pointer of either file, both will move.3. The handle in BX must be open.

Function 47h Get Current Directory
Places full pathname of current directory/drive into a buffer

entry AH 47h
DL drive (O=default, 1=A:, etc.)
DS:SI pointer to 64-byte buffer area

return CF clear DS:DI pointer to ASCIIZ pathname of current directory
set AX error code (OFh)

note: String does not begin with a drive identifier or a backslash.

“Function 48h Allocate Memory
Allocates requested number of 16-byte paragraphs of memory

entry AH 48h
BX number of 16-byte paragraphs desired

return CF clear AX segment address of allocated space
BX maximum number paragraphs available

set AX error code (07h, 08h)
note: BX indicates maximum memory availible only if allocation fails.

Function 49h Free Allocated Memory
Frees specified memory blocks

entry AH 49h
ES segment address of area to be freed

return CF clear successful
set AX error code (07h, 09h)

note 1. This call is only valid when freeing memory obtained by function 48h. .
2. A program should not try to release memory not belonging to it.

Function 4Ah Modify Allocated Memory Blocks (SETBLOCK)
Expand or shrink memory for a program

entry AH 4AH
BX new size in 16 byte paragraphs
ES segment address of block to change

return CF - clear nothing
set AX error code (07h, 08h, O9h)

or BX max number paragraphs available
note 1. Max number paragraphs availible is returned only if the call fails.

2. Memory can be expanded only if there is memory available.

Function 4Bh Load or Execute a Program (EXEC)
entry AH 4Bh

AL 00h load and execute program. A PSP is built for the
program the ctrl-break and terminate addresses are set tothe new PSP.

*Olh load but don’t execute (internal, DOS 3.x & DESQview)
(see note 1)

*O2h load but do not execute (internal, DOS 2.x only)
03h load overlay (do not create PSP, do not begin execution)

DS: DX points to the ASCIIZ string with the drive, path, and filename tobe loaded

ES: BX points to a parameter block for the load
(AL=00h) word segment address of environment string to passed

(O=use current)
dword pointer to the command line to be placed at

PSP+80h

dword pointer to default FCB to be passed at PSP+5Ch
dword pointer to default FCB to be passed at PSP+6Ch

(*AL=Olh) word segment of environment (0 = use current)
dword pointer to command line
dword pointer to FCB 1
dword pointer to FCB 2

(DOS 3.x+) dword will hold SS:SP on return
(DOS 3.x+) dword will hold program entry point (CS:IP) on return

(*AL=02h) word segment of environment (0 = use current)
dword pointer to command line

OLYMPUSEX.1015 - 88/393

OLYMPUS EX. 1015 - 89/393

82 The Programmer's Technical Reference

dword pointer to FCB 1
dword pointer to FCB 2

(AL=03h) word segment address where file will be loaded
word relocation factor to be applied to the image

return CF set error
AX error code (Olh, 02h, O5h, O8h, OAh, OBh)

CF clear if successful
for fn 00h, process ID set to new program’s PSP; get with function62h
for fn Olh and DOS 3.x+ or DESQview, process ID set to program's

PSP; get with function 62h
for fn Olh and DOS 2.x, new program’s initial stack and entry

point returned in registers
for fn 02h, new program's initial stack and entry point are

returned in the registers
note 1. If you make this call with AL=1 the program will be loaded as if you made

the call with AL=0 except that the program will not be executed.
Additionally, with AL=1 the stack segment and pointer along with the
program’s CS:IP entry point are returned to the program which made the
4B0lh call. These values are put in the four words at ES:BX+0Eh. On
entry to the call ES:BX points to the environment address, the command
line and the two default FCBs. This form of EXEC is used by DEBUG.COM.

2. Application programs may invoke a secondary copy of the command processor
(mormally COMMAND.COM) by using the EXEC function. Your program may pass
a DOS command as a parameter that the secondary command processor will
execute as though it had been entered from the standard input device. The
procedure is: :
A. Assure that adequate free memory (17k for 2.x and 3.0, 23k for 3.1 up}

exists to contain the second copy of the command processor and the
command it is to execute. This is accomplished by executing function
call 4Ah to shrink memory allocated to that of your current
requirements. Next, execute function call 48h with BX=OFFFFh. This
returns the amount of memory available.

B. Build a parameter string for the secondary command processor in the
form:

1 byte length of parameter string
xx bytes parameter string
_1 byte ODh (carriage return)

For example, the assembly language statement below would build the
string to cause execution of the command FOO.EXE:

DB 19,"/C C:FOO",13
C. Use the EXEC function call (4Bh), function value 0 to cause execution

of the secondary copy of the command processor. (The drive,
directory, and name of the command processor can be gotten from the
COMSPEC variable in the DOS environment passed to you at PSP+2Ch.)

D. Remember to set offset 2 of the EXEC control block to point to the
string built above.

3. All open files of a process are duplicated in the newly created process
after an EXEC, except for files originally opened with the inheritance
bit set to 1.

4. The environment is a copy of the original command processor’s
environment. Changes to the EXECed environment are not passed back to the
original. The environment is fellowed by a copy of the DS:DX filename
passed to the child process. A zero value will cause the child process
to inherit the environment of the calling process. The segment address
of the environment is placed at offset 2Ch of the PSP of the program
being invoked.

5. This function uses the same resident part of COMMAND.COM, but makes a |
duplicate of the transient part. i

6. How EXEC knows where to return to: Basically the vector for int 22h
holds the terminate address for the current process. When a process
gets started, the previous contents of int 22h get tucked away in the
PSP for that process, then int 22h gets modified. So if Process A EXECs
process B, while Process B is running, the vector for int 22h holds the
address to return to in Process A, while the save location in Process
B’s PSP holds the address that process A will return to when *it*
terminates. When Process B terminates by one of the usual legal means,
the contents of int 22h are (surmising) shoved onto the stack, the old
terminate vector contents are copied back to int 22h vector from
Process B’s PSP, then a RETF or equivalent is executed to return
control to process A.

OLYMPUSEX.1015 - 89/393

OLYMPUS EX. 1015 - 90/393

DOSInterrupts and Functions Calls . 8&3

7. To load an overlay file with 4B: first, don’t de-allocate the memory that
the overlay will load into. With the other 4Bh functions, the opposite
is true--you have to free the memory first, with function 4Ah. Second,
the ‘segment address where the file will be loaded’ (first item in the
parameter block for sub-function 03) should be a paragraph boundary

‘within your currently-allocated memory. Third, if the procedures within
the overlay are FAR -procs (while they execute, CS will be equal to the
segment address of the overlay area), the relocation factor should be
set to zero. On the other hand, if the CS register will be different
from the overlay area's segment address, the relocation factor should be
set to represent the difference. You determine where in memory the
overlay file will load by using the segment address mentioned above.
Overlay files are .EXEs (containing header, relocation table, and memory
image).

8. When function 00h returns, all registers are changed, including the
stack. You must resore SS, SP, and any other required registers.

9. PCDOS EXEC function 3 (overlay) lives in the transient piece of
COMMAND.COM and gets loaded when needed, thus the requirement for enough
free space to load the EXEC loader (about 1.5k). Under MSDOS the EXEC
system call lives in system space.

10. If you try to overlay an .EXE file with the high/low switch set to load
the in high memory nothing will happen. The high/Low switch is only for
process creation, not for overlays.

11. DOS 2.x destroys all registers, including SS:SP.

Function 4Ch Terminate a Process (EXIT)
Quit with ERRORLEVEL exit code

entry AH 4ch
AL exit code in AL when called, if any, is passed to next processreturn none

note 1. Control passes to DOS or calling program.
2. Return code from AL can be retrieved by ERRORLEVEL or function 4Dh.
3. All files opened by this process are closed, buffers are flushed, and the ;

disk directory is updated.
4. Restores: Terminate vector from PSP:000Ah

Ctrl-C vector from PSP:000Eh
Critical Error vector from PSP:0012h

Function 4Dh Get Return Code of a Subprocess (WAIT)
Gets return code from functions 31h and 4Dh (ERRORLEVEL)

entry AH 4Dh
return AL exit code of subprogram (functions 31h or 4Ch)AH circumstance which caused termination

00h normal termination
O1lh control-break or control-cC
02h critical device error

03h terminate and stay resident (function 31h)
note The exit code is only returned once (the first time).

Function 4Eh Find First Matching File (FIND FIRST)
entry AH 4Eh

cx search attributes

DS:DX pointer to ASCIIZ filename (with attributes)
return CF set AX error code (02h, 12h)

clear data block written at current DTA
format of block is: (info from BIX)

documented by Micro- 00h 1 byte attribute byte of search
soft as ‘reserved for |{Olh 1 byte drive letter for search
DOS’ use on subsquent |02h 11 bytes the search name used
Find Next calls’ och 2 bytes word value of last entry
function 4Fh OFh 4 bytes dword pointer to this DTA

13h 2 bytes word directory start
PC-DOS 3.10 (from INTERRUP.ARC)

00h 1 byte drive letter
O1h-0Bh bytes search template
och 1 byte search attributes

DOS 2.x (and DOS 3.x except 3.1?)
00h 1 byte search attributes
Olh 1 byte drive letter
02h-0Ch bytes search template
ODh-OEh 2 bytes entry count within directory

OLYMPUSEX.1015 - 90/393

OLYMPUS EX. 1015 - 91/393

84 The Programmer’s Technical Reference

OFh-12h 4 bytes reserved
13h-14h 2 bytes cluster number of parent directory

15h 1 byte file attribute
16h 2 bytes file time
18h 2 bytes file date
1Ah 2 bytes low word of file size
1ch 2 bytes high word of file size
1Eh 13 bytes name and extension of file found, plus

1 byte of Os. All blanks are moved from
the name and extension, and if an
extension is present it is preceded by a
period.

note 1. This function does not support network operations.
2. Wildcards are allowed in the filespec.
3. If the attribute is zero, only ordinary files are found. If the volume

label bit is set, only volume labels will be found. Any other attribute
will return that attribute and all normal files together.

4. To look for everything except the volume label, set the hidden, system,
and subdirectory bits all to 1.

Function 4Fh Find Next Matching File (FIND NEXT)
Find next ASCIIZ file

entry AH 4Fhreturn CF clear data block written at current DTA
set AX error code (02h, 12h)

note 1. If file found, DTA is formatted as in call 4Eh
2. Volume label searches using 4Eh/4Fh reportedly aren’t 100% reliable under

DOS 2.x. The calls sometime report there’s a volume label and point toa
garbage DTA, and if the volume label is the only item they often won’t
find it. Most references recommend the use of the older FCB calls for
dealing with the volume labels.

3. This function does not support network operations.
4. Use of this call assumes that the original filespec contained wildcards

Function 50h ‘Used Internally by DOS’ - Set PSP
* Set new Program Segment Prefix (current Process ID)

entry AH 50h
BX segment address of new PSP

return none - swaps PSPs regarded as current by DOS
note 1. By putting the PSP segment value into BX and issuing call 50h DOS stores

that value into a variable and uses that value whenever a file call is
made.

2. Note that in the PSP (or PDB) is a table of 20 (decimal) open file
handles. The table starts at offset 18h into the PSP. If there is an
OFFh in a byte then that handle is not in use. A number in one of the
bytes is an index into an internal FB table for that handle. For
instance the byte at offset 18h is for handle 0, at offset 19h handle i,
etc. up to 13h. If the high bit is set then the file associated by the
handle is not shared by child processes EXEC’d with call 4Bh.

3. Punction 50h is dangerous in background operations prior to DOS 3.x as it
uses the wrong stack for saving registers (same as functions 0..0Ch in
DOS 2.x)

4. Under DOS 2.x, this function cannot be invoked inside an int 28h handler
without setting the Critical Error flag.

5. Open File information, etc. is stored in the PSP DOS views as current. If
a program (eg. a resident program) creates a need for a second PSP, then
the second PSP should be set as current to make sure DOS closes that as
opposed to the first when the second application finishes.

6. See PC Mag Vol.5, No 9, p.314 for discussion, also used in BCOPY.ASM
7. Used by DOS 3.3 PRINT & DEBUG, DesQview 2.01, Windows 1.03, SYMDEB from

MASM 4.0. :

Function 5ih "Used Internally by DOS" - Get Program Segment Prefix
* Returns the PSP address of currently executing program

entry AH Sih
return BX address of currently executing program

offset
ooh 2 bytes program exit point
02h word memory size in paragraphs
O4h byte unused (0)

OLYMPUSEX.1015 - 91/393

OLYMPUS EX. 1015 - 92/393

05h
OAh
och
OEh
10h
12h
14h
16h
18h
2ch
2Eh
32h
34h
36h
38h
50h
53h
55h
5Cch
6ch
80h 1

note 1. Used in DOS 2.

DOS 2.x)

DOS Interrupts and Functions Calls 65

5 bytes
word
word
word
word

word
20 bytes
word
dword
word

dword
24 bytes
3 bytes
9 bytes

16 bytes
20 bytes
28 bytes

CP/M style entry point (far call to DOS)
terminate address (old int 22h)
terminate segment
break address (old int 23h)
break segment
error address (old int 24h)
error segment
parent PSP segment
DOS 2.0+ open files, OFFh = unused
DOS 2.0+ environment segment
far pointer to process’s SS:5P
DOS 3.x+ max open files
DoS 3.x+ open file table address
DOS 3.x+ open file table segment
unused by DOS versions before 3.3
DOs function dispatcher (FAR routine)
unused
FCB #1 extension
FCB #1, filled in from first cmdline argument
FCB #2, filled in from second cmdline argument
command tail / default DTA buffer

X, 3.xX uses 62h.
2. Function 5lh is dangerous in background operations prior to DOS 3.x as it

uses the wrong stack for saving registers (same as functions 0..0Ch in

3. 50h and 51h might be used if you have more than one process in a PC. For
instance if you have a resident program that needs to open a file you
could first call 51h to save the current ID and then call 50h to set the
ID to your PSP.

4. Under DOS 2.x, this function cannot be invoked inside an int 28h handler
without setting the Critical Error flag.

5. Used by DOS 3.3 PRINT, DEBUG.

Function 52h ‘Used Internally by DOS’ - IN-VARS
* . Returns a FAR pointer to a linked list of DOS data variables

entry AH 52h
return ES:BxX pointer to the DOS list of lists, for disk information. Does not c

access the disk, so information in tables might be incorrect if
disk has been changed. Returns a pointer to the following array
of longword pointers:
Bytes

(common) -02h

00h
04h

O8h

och

(DOS 2.x only)10h
1ih
13h

(DOS 3.x+)
10h

12h

Value
word

dword
dword

dword

dword

word
word
dword

word

dword

Description
segment of first memory control block available
through MALLOC
far pointer to first DOS Disk Parameter Block
far pointer to linked list of DOS open file
tables. (Open File Table List)
far pointer to CLOCK$: device driver, whether
installable or resident
far pointer to actual CON: device driver, whether
installable or resident

number of logical drives in system
largest logical sector size supported
far pointer to first disk buffer used by
the logical drives. The size of each
sector buffer is equal to the logical
sector size plus a 16 byte header.
(Sector Buffer Header) The number of
these buffers is set by CONFIG.SYS.
(Sector Buffer Structure)
beginning (not a pointer. The real
beginning!) of NUL device driver. This
is the first device on DOS’s linked list
of device drivers.

largest logical sector sector size
supported (most versions of DOS are
hardcoded to 200h)
far pointer to sector buffer structure
used by the logical drives. (Sector
Buffer Structure) ,

OLYMPUSEX.1015 - 92/393

OLYMPUS EX. 1015 - 93/393

86 The Programmer's Technical Reference

16h dword far pointer to drive path and seek
information table. (Drive Path Table)

1Ah adword far pointer to a table of FCBs. This
table is only valid if FCBS=xx was used
in CONFIG.SYS

1Eh word size of FCB table

20h byte number of logical drives presently
supported

21h byte value of LASTDRIVE= in CONFIG.SYS
(default 5)

22h ---- beginning (not a pointer-the real
beginning!) of the NUL device driver.
This is the first device on DOS’s linked
list of device drivers.

note 1. This call is not supported in OS/2 1.0’s DOS Compatibility Box.
2. Used by DOS 4.0 MEM.EXE, DOS 3.3 ASSIGN.COM, PRINT.COM, SUBST.EXE.3. Disk Parameter Block

offset size description
00h byte disk unit number, O=A, 1=B, etc. If this and the

next byte are OFFh this entry is the end of the
list and is not valid

Olh byte disk unit number passed to the block device
driver responsible for this logical drive

02h word the drive’s logical sector size in bytes
04h byte number of sectors per cluster -1. The number of

sectors per cluster must be a power of 2
05h byte allocation shift. The shift value used to calcu

late the number of sectors from the number of
clusters without having to use division. Number
of sectors = number of clusters < allocation
shift.

06h word number of reserved sectors at the beginning of I
the logical drive. May contain partition information.

08h byte number of FATs. Default 2
09h word number of root directory entries
OBh word first sector containing data (disk files)
ODh word last cluster number. Number of clusters in data

area +1. If less than OFF6h the FAT uses 12-bit , i
directory entries, otherwise 16 bit entries

OFh byte FAT size. Size of one FAT in logical sectors
10h word sector number of first root directory entry
12h dword far pointer to the block device driver
16h byte media descriptor byte (see Chapter 8)
17h byte media flag. If this is 0, the drive has been

accessed. If it is -1 or set to -1 DOS will
rebuild all data structures associated with this |
drive on the next access

18h dword far pointer to the next Disk Parameter Block

4. Open File Table List
offset size description
00h dword far pointer to the next table in the list. If the

offset of this pointer is OFFFFh, then the next
table is the final entry and invalid

04h word number of table entries. Each table entry is 53
bytes long. There will be at least one entry in
each table except the terminal entry

06h --- beginning of the Open File Table entries (note 5)

5. Open File Table Entry (35h bytes long)
offset size description
ooh word number of file handles referring to this file
02h byte access mode (see function 3Dh) 1O3h word unknown

05h word Device Information Word (see function 44h/00h)
06h dword far pointer to device info header if this is a

character device. If block device, this will be
a far pointer to the Disk Parameter Block

o7h dword pointer to device driver header if character device;
pointer to DOS Device Control Block if block device

OLYMPUSEX.1015 - 93/393

OLYMPUS EX. 1015 - 94/393

DOSInterrupts and Functions Calls 87
OBh word starting cluster of file
ODh word file time in packed format
OFh word file date in packed format
llh dword file size
15h dword current offset in file
19h word unknown
1Bh word last cluster read

1Dh word number of sector containing directory entry
iFh byte offset of directory entry within sector (byte offset/32)
20h 11 bytes filename in FCB format (no path, no period, blank padded)
2Bh 6 bytes PSP segment of file's owner
2Dh 3 bytes unknown - normally 0
3ih word PSP segment of file’s owner
33h-34h word unknown - normally 0

6. Sector Buffer Header: (DOS 2.x+)
offset size description
00h dword pointer to next disk buffer, OFFFFh if last
04h 4 bytes unknown
08h word logical sector number
10h 2 bytes unknown
12h dword pointer to DOS Device Control Block

7. Sector Buffer Structure, followed by 512 byte buffer
offset size description
00h dword far pointer to the next sector buffer. Buffers are filled

in the order of their appearance on this linked list.
The last buffer is valid and has the value OFFFFFFFFh

04h byte drive number. This is the drive that the data currently
in the buffer refers to. OFFh if never used.

05h byte data type flags. Bit fields which show the area of the
drive the buffer refers to

bits 1 FAT data
2 subdirectory data3 file data

5 contents of buffer may be overwritten if set
06h word logical sector number of buffered data :osh word access number

OAh dword far pointer to Disk Parameter Block
OEh word not used, normally 0

8. Drive Path Table Entry (array, one Slh-byte entry per drive):
offset size description
OOh 64 bytes current default ASCIIZ pathname with drive letter, colon,

and leading backslash
44h byte flags byte. All valid entries contain a 40h, last entrycontains 00h
45h adword far pointer to current Disk Parameter Block
49h word current block or track/sector number for this directory.

0 if root dir, -1 if never accessed
4Bh dword unknown. Usually -1
4Fh word offset of ’\’ in current path field representing root of

Function 53h*

entry AH
DS:SI
ES:BP

directory of logical drive (2 if not SUBSTed or JOINed,
otherwise number of bytes in SUBST/JOIN path)

"Used Internally by DOS" - Translate BPB
Translates BPB (BIOS Parameter Block, see below) into a DOS Disk
Block (see function call 32h).53h
pointer
pointer

to BPB (BIOS Parameter Block) -
to area for DOS Disk Block

Layout of Disk Block:
bytes
0o0h-Olh
02h
O3h-04h
o5h
06h-07h
O8h-09h

OAh

value

bytes per sector, get from DDB bytes 02h-03h.
sectors per cluster, get from (DDB byte 4) + 1
reserved sectors, get from DDB bytes 06h-07h
number of FATs, get from DDB byte 08h
number of root dir entries, get from DDB bytes 09h-OAh
total number of sectors, get from:
((DDB bytes ODh-OEh) - 1) * (sectors per cluster (BPB
byte 2)) + (DDB bytes OBh-0Ch)
media descriptor byte, get from DDB byte 16h

OLYMPUSEX.1015 - 94/393

OLYMPUS EX. 1015 - 95/393

88 The Programmer's Technical Reference , |
OBh-0Ch number of sectors per FAT, get from DDB byte OFh

return unknown

Function 54h Get Verify Setting

Get verify flag status |entry AH 54h
return AL 00h if flag off |

Olh if flag on i
note Flag can be set with function 2Eh. i

Function 55h ‘used Internally by DOS’ - Create ‘Child’ PSP
* Create PSP: similar to function 26h (which creates a new

Program Segment Prefix at segment in DX) except creates a ‘child’ i
PSP rather than copying the existing one.

entry A 55h
DX segment number at which to create new PSP.

return unknown
note 1. This call is similar to call 26h which creates a PSP except that unlike

call 26h the segment address of the parent process is obtained from the
current process ID rather than from the CS value on the stack (from the
INT 21h call). DX has the new PSP value and SI contains the value to be
placed into PSP:2 (top of memory).

2. Function 55 is merely a substitute for function 26h. It will copy the
current PSP to the segment address DX with the addition that SI is
assumed to hold the new memory top segment. This means that function !
26h sets SI to the segment found in the current PSP and then calls 'function 55h.

Function 56h Rename a File
entry AH 56h

DS:DX pointer to ASCIIZ old pathname :
ES:DI pointer to ASCIIZ new pathname

return CF clear successful rename
set AX error code (02h, 03h, OSh, 11h)

note 1. Works with files in same logical drive only.
2. Global characters not allowed in filename.
3. The name of a file is its full pathname. The file’s full pathname can be

changed, while leaving the actual FILENAME.EXT unchanged. Changing the
pathname allows the file to be ‘moved’ from subdirectory to subdirectory
on a logical drive without actually copying the file.

4. DOS 3.x allows renaming of directories.

Function 57h Get/Set a File’s Date and Time
Read or modify time and date stamp on a file’s directory entry entry AH 57h

AL function code
00h Get Date and Time
Olh Set Date and Time

CX time to be set a !DX date to be set |
02h unknown (DOS 4.0+) i
03h unknown

04h unknown (DOS 4.0+)
BX file handle

return CF clear CX time of last write (if AL = 0)
DX date of last write (if AL = 0)

set AX error code (Olh, 06h)
note Date/time formats are:

CX bits OBh-OFh hours (0-23) DX bits O9h-OFh year (relative to1980
OSh-0Ah minutes (0-59) 05h-08h nonth (0-12)
OOh-04h #2 sec. incr. (0-29) OOh-04h day of the month :

(0-31) i

Function 58h Get/Set Allocation Strategy (DOS 3.x+)
entry AH 58h

AL 00h Get Current Strategy
Olh Set New Current Strategy

BL new strategy if AH=1
00h First Fit - chooses the lowest block in memory which will

fit (this is the default) (use first memory block large

OLYMPUSEX.1015 - 95/393

OLYMPUS EX. 1015 - 96/393

DOSInterrupts and Functions Calls . 89
enough)

Olh Best Fit - chooses the smallest block which will fill the
request.

02h Last Fit - chooses the highest block which will fit.
return CF clear (0) successful

. set (1) error
AX error code (01h)

AX strategy code (CF=0)
note 1. Documented in Zenith DOS version 3.1, some in Advanced MSDOS.

2. The set subfunction accepts any value in BL; 2 or greater means last fit.
The get subfunction returns the last value set, so programs should check
whether the value is greater than or equal to 2.

Function 59h Get Extended Error Code (DOS 3.x+)
The Get Extended Error function call (59h) is intended to provide a commonset of
error codes and to supply more extensive information about the error to the appli-
cation. The information returned from function call 59h, in addition to the error
code, is the error class, the locus, and the recommended action. The error class
provides information about the error type (hardware, internal, system, etc.). The
locus provides information about the area involved in the failure (serial device,
block device, network, or memory). The recommended action provides a default ac-
tion for programs that do not understand the specific error code.

Newly written programs should use the extended error support both from interrupt
24h hard error handlers and after any int 21h function calls. FCB function calls
report an error by returning OFFh in AL. Handle function calls report an error by
setting the carry flag and returning the error code in AX. Int 21h handle func-
tion calls for DOS 2.x continue to return error codes 0-18. Int 24h handle func-
tion calls continue to return error codes 0-12. But the application can obtain
any of the error codes used in the extended error codes table by issuing function
call 59h. Handle function calls for DOS 3.x can return any of the error codes.
However, it is recommended that the function call be followed by function call
59h to obtain the error class, the locus, and the recommended action.

The Get Extended Error function (59h) can always be called, regardless of whether
the previous DOS call was old style (error code in AL) or new style (carry bit).
It can also be used inside an int 24h handler. You can either check AL or the
carry bit to see if there was no error, and call function 59h only if there was
an error, or take the simple approach of always calling 59h and letting it tell
you if there was an error or not. When you call function 59h it will return with
AX=0 if the previous DOS call was successful,

entry AH 59h
BX version code (0000 for DOS 3.0 and 3.1)

return AX extended error code:
Olh Invalid function number
02h File not found
o3h Path not found
04h Too many open files, no file handles left
O5h Access denied
06h Invalid handle
07h Memory control blocks destroyed
o8h Insufficient memory
09h Invalid memory block addressOAh Invalid environment
OBh Invalid format
och Invalid access code *
ODh Invalid data
OEh Reserved
OFh Invalid drive was specified
10h Attempt to remove the current directory
11h Not same device
12h No more files
13h Attempt to write on write-protected diskette
14h Unknown unit
15h Drive not ready
16h Unknown command
17h Bad CRC check
18h Bad request structure length19h Seek error

1Ah Unknown media type

OLYMPUSEX.1015 - 96/393

OLYMPUS EX. 1015 - 97/393

90

BH

1Bh
1Ch
1Dh
1Eh
1Fh
20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2ch
2Dh
2Eh
2Fh
30h
31h
32h

33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
4lh
42h
43h
44h
45h
46h
47h
48h

49h
4Ah
4Bh
4ch
4Dh
4Eh
4Ph
50h
5ih
52h
53h
54h
55h
56h
57h
58h

The Programmer’s Technical Reference
Sector not found
Printer out of paper
Write fault
Read fault
General Failure
Sharing violation
Lock violation
Invalid disk change
FCB unavailable
Sharing buffer overflow
Reserved

Reserved
Network: request not supported (DOS 3.1 + MS
Networks)
Remote computer not listening
Duplicate name on network
Network: name not found
Network: busy
Network: device no longer exists
NETBIOS command limit exceeded
Network: adapter hardware error
Incorrect response from network
Unexpected network error
Incompatible remote adapter
Print queue full
Not enough space for print file
Print file was deleted
Network: name was deleted
Network: Access denied
Network: device type incorrect
Network: name not found
Network: name limit exceeded
NETBIOS session limit exceeded
Temporarily paused
Network: request not accepted
Print or disk redirection paused (DOS 3.1 + MS
Networks)
Reserved

Reserved
File exists
Reserved
Cannot make directory entry
Fail on interrupt 24h
Too many redirections
Duplicate redirection
Invalid password
Invalid parameter
Network: device fault

Class of error:
Olh
O2h
03h
04h
05h
06h

Out of resource
Temporary situation
Authorization (denied access)Internal
Hardware failure
System failure

OLYMPUSEX.1015 - 97/393

OLYMPUS EX. 1015 - 98/393

note l.

call
38h
39h
3Ah
3Bh
3ch
3Dh
3Eh
3Fh
40h

DOS Interrupts and Function Calls 9]

07h Application program errorOsh Not found
09h Bad format
OAh Locked

OBh Media error (wrong volume ID, disk failure)
och Already existsODh Unknown

BL suggested action code:
oOlh Retry
02h ‘Delayed retry
03h Prompt user
04h Abort after cleanup
o5h Immediate abort
06h Ignore
O7h Retry after user intervention

CH locus (where error occurred):
Olh Unknown or not appropriate
02h Block device
O3h Network related
04h Serial device
05h Memory related

Not all DOS functions use the carry flag to indicate an error. Carry
should be tested only on those functions which are documented to use it.
None of the DOS functions which existed before 2.0 use the carry
indicator. Many of them use register AL as an error indication instead,
usually by putting OFFh in AL on an error. Most, but not all, the ‘new’
(2.x, 3.x) functions do use carry, and most, but not all, of the ‘old’
(1.x) functions use AL. vo
On return, CL, DI, DS, DX, ES, BP, and SI are destroyed - save before
calling this function if required.
DOS 2.x Error Codes: If you are using function calls 38h-57h with DOS
2.x, to check if an error has occurred, check for the following error
codes in the AX register:

error code call error code call error code
2 4ih 2,3,5 4ah 7,8,9
3,5 42h 1,6 4Bh 1,2,3,5,8,10,11
3,5,15 43h 1,2,3,5 4Eh 2,3,18
3 44h 1,3,5,6 4Fh 18
3,4,5 45h 4,6 56h 2,3,5,17
2,3,4,5,12 46h 4,6 57h 1,6
6 Ath 15
5,6 48h 7,8
5,6 49h 7,9
Note that extended error codes 13h through 1Fh correspond to error codes
00h through 0Ch returned by int 24h.

Function 5Ah Create Temporary File

entry

return

note l.
2.

Create unique filename (for temporary use) (DOS 3.x)AH 5Ah

DS: DX pointer to ASCIIZ directory pathname ending with a
backslash (\)cx file attribute

CF clear DS:DxX new ASCIIZ pathname
AX handle

set AX error code (03h, 05h)
The file created is not truly ‘temporary’. It must be removed by the user.
If the filename created already exists in the current directory, this
function will call itself again with another unique filename until a
unique filename is found.
The temporary filename usually consists of mixed letters and numbers. No
file extension appears to be generated.

Function 5Bh Create a New File (DOS 3.x+)
entry

return

note 1.
2.

AH 5Bh

DS:DX pointer to directory ASCIIZ pathname
CX file attribute

CF clear AX file handle .
DS:DX new ASCIIZ pathname

set AX error code (03h, 04h, 05h, 50h)
Unlike function 3Ch, function 5Bh will fail if the file already exists.
The new file is opened in read/write mode.

OLYMPUSEX.1015 - 98/393

OLYMPUS EX. 1015 - 99/393

92 The Programmer’s Technical Reference

Function 5Ch Lock/Unlock File Access (DOS 3.x+)
entry AH 5ch

AL 00h To lock file
Olh To unlock file

BX file handle
CX:DxX starting offset of region to lock
SIsDI size of region to lock

return CF clear successful
set AX error code (0Olh, O6h, 21h)

note 1. Close all files before exiting or undefined results may occur.2. Programs spawned with EXEC inherit all the parent's file handles but notthe file locks. ‘

Function 5Dh undocumented - Multifunction*

entry

return

note 1.
2.
3.

4.

Function

entry

DOS Internal - partial (DOS 3.x+t)AH SDh
AL subfunction

00h Indirect Function Call
DS:DX pointer to buffer containing register values AX,

BX, CX, DX, SI, DI, DS, ES for a call to int 21h
return as appropriate for function being called
note Does not check AH. Out of range values will crash

the system.
01h SYNC? (DOS 3.1+)

parameters unknown
note 1. Does something to each disk file in the System

File Table which has been written to.
2. If remote file, calls int 2FPh/fn1107h.
3. Seems to update the time stamp of all open files

which have been written to.
02h-05h Network functions? (DOS 3.1+)

parameters unknown
note Error unless network is loaded.

06h Get Address of Critical Error Flag
return CX unknown value

DX unknown value
DS:SI pointer to critical error flag

08h (unknown - used by COMMAND.COM)
09h (unknown - used by COMMAND.COM)
OAh Set Error Info (Error, Class, Action, and Locus)

DS:DxX address of 11-word error information table
words 0 to 7: values of AX, BX, CX, DX, SI, DI,

DS, ES that function 59h will
return

words 8 to 10: zero (reserved)cx unknown
DX unknown

DS:SI (for 06h) pointer to critical error flag
This call seems to have many different functions.
Function OAh; DOS 3.1+.
Function 06h; setting CritErr flag allows use of functions 50h/51h from
int 28h under DOS 2.x by forcing the use of the correct stack.
Functions 07h, 08h, 09h are identical in DOS 3.1 and call int 2Fh f£n1125h.

5SEh Network Printer (Partially documented by Microsoft)DOS 3.1+ with Networks software
AH SEh
AL 00 Get Machine Name

DS:DX pointer to 16-byte buffer for ASCIIZ name
return CH 0 if name not defined

cL NETBIOS name number if CH 0
DS: DX pointer to identifier if CH 0

note the ASCIIZ name is a 15 byte string padded to
length with zeroes

ol Set Machine Name
DS:DX pointer to ASCIIZ name
CH unknown
cL name number

02 Set Printer Control String
BX redirection list index
cx length of setup string (max 64 bytes)

OLYMPUSEX.1015 - 99/393

OLYMPUS EX. 1015 - 100/393

DOS Interrupts and Function Calls 93

DS:SI pointer to string buffer
03 Get Printer Control String

BX redirection list index
ES:DI pointer to string buffer

/ return CX length of setup string (max 64 bytes)return CF clear successful
set error

AX error code (01h for all listed subfunctions)
note 1. Used in IBM’s & Microsoft’s Network programs.

2. Partial documentation in Fall 1985 Byte.
3. These services require that the network software be installed.
4. Partial documentation in Advanced MS-DOS.
5. SHARE must be loaded or results can be unpredictable on 00h, or fail with02h or O3h.

Function 5Fh Network Redirection

, (DOS 3.1 + Microsoft Networks)
entry AH 5Fh

AL *00h Unknown
*Olh Unknown

02h Get Redirection List Entry
BX redirection list index
DS:SI pointer to 16 byte buffer for local device name
ES:DI pointer to 128 byte buffer for network name
return BH device status flag (bit 0=0 if valid)

(bit 0=1 if invalid)
BL device type

03 printer device
04 drive device

cx stored parameter value (user data)
DS:SI pointer to 16 byte local device

. name
ES:DI pointer to 128 byte network name

note DX and BP are destroyed by this call!
03h Redirect Device - Make Assign List Entry

Redirects a workstation drive or device to a server
directory or device.
BL device type

03 printer device
04 file device

cx stored parameter value
DS:SI pointer to ASCIIZ source device name
ES:DI pointer to destination ASCIIZ network path +

ASCIIZ password
04h Cancel Redirection Assignment

DS:SI pointer to ASCIIZ device name or network path tobe cancelled
return CF clear successful

set if error
AX error code

(fn 02h) O1h, 12h
(£n 03h) Olh, 03h, O5h, O8h
(fn 04h) O1h, OFh

note 1. Used in IBM's Network program.
2. Partial documentation in Fall 1985 Byte.
3. These services require that the network software be installed.
4. Partial documentation in Advanced MS-DOS.
5. SHARE must be loaded or the call will fail.
6. The network device name requires a password.

Function 60h undocumented ~ Parse pathname (DOS 3.x+)
* Perform name processing on a string (internal to DOS)

entry AH 60h
DS:SI pointer to ASCIIZ source string (null terminated)
ES:DI pointer to destination 67 byte (?) ASCIIZ string buffer

return ES:DI buffer filled with qualified name in form (drive):(path)CF oO no error
1 error

A error code (unknown)
note 1. Documented in Zenith 3.05 Tech Ref.

2. All name processing is performed on the input string: string substitution

OLYMPUSEX.1015 - 100/393

OLYMPUS EX. 1015 - 101/393

94 The Programmer's Technical Reference

is performed on the components, current drive/directories are prepended,
» and... are removed.

3. Example: If current drive/directory is c:\test, myfile.x is translated
to c:\test\myfile.x; ..\source\sample.asm is tranlated to c:\source\
sample.asm.

4. It is the caller’s responsibility to make sure DS:SI does not point to a
null string. If it does, SI is incremented, a null byte is stored at
ES:DI, and the routine returns.

5. Used by CHKDSK, at least in DOS 3.3, and DOS 3.x.
6. If path string is on a JOINed drive, the returned name is the one that

would be needed if the drive were not JOINed; similarly for a SUBSTed
drive letter. Because of this, it is possible to get a qualified name
that is not legal with the current combination of SUBSTs and JOINs.

Function 61h undocumented - (DOS 3.x)
* Internal to DOS - parameters not known

entry AH 61h
return AL 0
note Supposedly documented in Zenith DOS 3.05 Tech Ref.

Function 62h Get Program Segment Prefix (PSP) (DOS 3.x+)
entry
return

AH 62h
BX segment address of PSP

Function 63h Get Lead Byte Table (MS-DOS 2.25 only)

entry

return

note 1.
2.
3.

Added in DOS 2.25 for additional foreign character set support.
AH 63h
AL subfunction

ooh Get System Lead Byte Table Address
Olh Set/Clear Interim Console Flag

DL 0000h to clear interim console flag
o001h to set interim console flag

. 02h get interim console flag
DS:SI pointer to lead byte table (AL = 00h)
DL interim console flag (AL = 02h)
Function 63h destroys all registers except SS:SP on return.
Not supported in DOS 3.x or 4.x.
Note fn 63h does not return errors in AL or CF.

Function 64h Undocumented - Used internally by DOS
entry

note

AH 64h
AL 00h Get (something)

return DL unknown
Olh Set (something)DL unknown
02h Get and set (something)
DL new (something)
return DL old (something)

DOS 3.2+ internal function of some type? May be a network function.

Function 65h Get Extended Country Information (DOS 3.3+)

entry

return

Returns information about the selected country formats,
code pages, and conversion tables

AH 65h
AL info ID code

Olh get general internationalization info
02h get pointer to uppercase table03h unknown

04h get pointer to filename uppercase table05h unknown
O6h get pointer to collating sequence table
O7h get pointer to double-byte character set table

BX code page (~-1 = global code page)
Cx size of buffer (=5)
DX country ID (-1 = current country)
ES:DI pointer to country information buffercr set on error

AX error code (unknown)
otherwise:

cx size of country information returned
ES:DI pointer to country information:

OLYMPUSEX.1015 - 101/393

OLYMPUS EX. 1015 - 102/393

DOS Interrupts and Function Calls | 95
1 byte info ID

If info ID Il:
dword pointer to information

If info ID = 1:
word size
word country ID
word code page

34 bytes (see function 38h)
If info ID = 2:

dword - pointer to uppercase tableword table size

128 bytes uppercase equivalents (if any) of chars 80h-OFFh
If info ID = 4:

dword pointer to collating table
word table size

256 bytes values used to sort characters 00h-OFFh
If info ID = 6:

dword pointer to filename uppercase tableword table size

128 bytes uppercase equivalents (if any) of chars 80h-OFFh
If info ID = 7: (DOS 4.0)

unknown

Function 66h Get/Set Global Code Page Table (DOS 3.3+)

entry

return

note

Query/reset code page defaultsAH 66h
AL 00h Get Global Code Page

Olh Set Global Page
BX active code page
DX system code page (active page at boot time)cr clear successful

set AX error code (unknown)
if 00h BX active code page

DX system code page (active page at boot time)
BX = active code page: 437 = US, 860 = Portugal, 863 =.Canada (French)

865 = Norway/Denmark, 850 = multilingual

Function 67h Set Handle Count (DOS 3.3+)

entry

return

note

Supports more than 20 open files per processAH 67h

BX desired number of handles (max 255)
cF clear if OK
CF set if error

AX error code (unknown)
This function changes the 20-byte handle table pointer in the PSP
to point to a new, larger handle table elsewhere in memory.

Function 68h Commit File (DOS 3.3+)

entry

return

note 1.
2.

3.

Function

entry

return

note

Write all buffered data to disk
AH 68h
BX file handle
cr set AX error code (unknown)

clear successful

Faster and more secure method of closing a file in a network than currentclose commands.

This is effectively the same as DUPing the handle for a file and then
closing the new one, except that this call won’t fail if the system isout of handles.
If BX 20, no action is taken.

69h Disk Serial Number DOS 4.0+ (US versions)
Handles ‘Volume Serial Number’ on disks formatted with 4.0+

AH 69h Get Volume Serial Number
DS: DX pointer to table
DS: DX data table. Format:

word unknown (zeroes on my system.
dword disk serial number (binary)

11 bytes volume label or ‘NO NAME ‘ if none
8 bytes FAT type - string ‘FAT12 ‘ or ‘FAT16

The FAT type field refers to the number of bits per directory entry.

OLYMPUSEX.1015 - 102/393

OLYMPUS EX. 1015 - 103/393

96 The Programmer's Technical Reference

Function 6Ah Unknown (DOS 4.0?)

Function 6Bh Unknown (DOS 4.07?)

Function 6Ch Extended Open/Create DOS 4.0+ (US)
Combines functions available with Open, Create, Create New, and
Commit File

entry AH 6Ch
AL 00h reserved [which means there might be other subfunctions?]
BX mode format OWFO 0000 ISSS OAAA

AAA is access code (read, write, read/
write) SSS is sharing mode
I 0 pass handle to child

1 no inherit {interesting!]
F 0 use int 24h for errors

1 disable int 24h for all I/O on
this handle; use own error routine

W 0 no commit
. auto commit on all writes

CX create attribute
DL action if file exists/does not exists

bits 7-4 action if file does not exist
0000 fail
0001 create

3-0 action if file exists
0000 fail
0001 open
0010 replace/open

DH 00h ,
DS:SI pointer to ASCIIZ file name

return CF set on error
AX error code (unknown)
clear
BX file handle
cx action taken

Olh file opened
02h file created/opened
03h file replaced/opened

Function 89h undocumented - DOSSleep
* Not documented by Microsoft

entry AH 89h
return unknown
note 1. Function included in Microsoft C 4.0 startup code MSDOS.INC

2. Debugging shows that the first instruction on entry to DOS compares AH
with 64h (at least in DOS 3.2) and aborts the call if AH 64.

3. Possibly used in European MSDOS 4.0?

Aftermarket Application Installed Function Calls
Novell Netware 2.11: ;

Novell no longer recommendsthe int 21h method for invoking the Netware functions. Int 21h
will be supported indefinitely, but the net API calls for addressing the software through the
Multiplex Interrupt (2Fh). You may address the API through int 2Fh in the same mannerasint
21h; only the interrupt numberis different.

Novell APIcalls are referenced in Chapter 13. Most functions from OB6éh through OF9hare pre-
empted by NetWare;ifyour software usesanyof thesecalls for another purposeit will likely not
run under NetWare.

Note: Novell (and most others’) network software and SoftLogic’s DoubleDOSconflict on the
following int 21h functions OEAh-OEEh. Netware must use int 2Fh functions instead of 21h
functions ifDoubleD OSwill be used on the network.

OLYMPUSEX.1015 - 103/393

OLYMPUS EX. 1015 - 104/393

DOSInterrupts and Function Calls

Function OEAh DoubleDOS - Turn off task switching
entry AX OEFAh
return Task switching turned off.

Function OEBh DoubleDOS - Turn on task switching
entry AH OEBh
return Task switching turned on.

Function OECh DoubleDOS - Get virtual screen address
entry AH OECh
return ES segment of virtual screen
note Screen address can change if task switching is on!

Function OEFEh DoubleDOS - Release Timeslice
Give away time to other tasks

entry AH OEEh
‘ AL number of 55ms time slices to give away
return Returns after giving away time slices.

97

Function OFFh CED (CJ Dunford’s DOS macro and command-line editor)CED installable commands
entry AH OFFh

AL 00h Add Installable Command
Olh Remove Installable Command
O2h Reserved, may be used to test for CED installation

BL mode byte
bit 0 callable from DOS prompt

1 callable from application
2-7 not used in public domain CED

pDs:SI pointer to CR-terminated command name
ES:DI pointer to far routine entry point

return CF set on error
AX Olh invalid function

02h command not found (subfunction 1 only)
08h insufficient memory (subfunction 0 only)
OEh bad data (subfunction 0 only)

AH OFFh if CED not installed

OLYMPUSEX.1015 - 104/393

OLYMPUS EX. 1015 - 105/393

Interrupts 22h Through 86h
nna

Interrupt22h Terminate Address
(0:0088h)
This interrupttransfers control to the far (dword) addressat this interrupt location when anap-
plication program terminates. The default address for this interrupt is 0:0088h through
0:008Bh. This address is copied into the program’s Program Segment Prefix at bytes OAh
through ODhatthe time the segmentis created and is restored from the PSP when the program
terminates. The calling program is normally COMMAND.COMoran application. Do not issue
this interrupt directly, as the EXEC functioncall doesthis for you. If an application spawnsa.
child process,it must set the Terminate Address priorto issuing the EXECfunctioncall, other-
wise when the second program terminated it would return to the calling program’s Terminate
Address rather than its own. This address maybe set with int 21, function 25h.

Interrupt23h Ctrl-Break Exit Address
(0:008Ch)
If the user enters a Ctrl-Break during STDIN, STDOUT, STDPRN,or STDAUX,int 23his ex-
ecuted. If BREAK is on, int 23h is checked on MOSTfunction calls (notably 06h). If the user
written Ctrl-Break routine saves all registers, it may end with a return-from-interruptinstruc-
tion (IRET)to continue program execution.If the user-written interrupt program returns with
a long return,the carry flag is used to determine whether the program will be aborted. If the
carry flag is set, the program is aborted, otherwise execution continues (as with a return by
IRET).If the user-written Ctrl-Break interrupt uses function calls 09h or OAh, (Display String
or Buffered Keyboard Input) then a three-byte string of 03h-ODh-OAh (ETX/CR/LF)is sent to
STDOUT. If execution is continued with an IRET, I/O continuesfrom the start of the line. When
the interrupt occurs,all registers are set to the value they had when the original functioncall to
DOS was made. There are norestrictions on what the Ctril-Break handleris allowed to do, in-

cluding DOS function calls, as long as the registers are unchanged ifan IRETis used.If the pro-
gram creates a new segment and loads a second program whichitself changes the Ctr!-Break ad-
dress, the termination of the second program andreturn to the first causes the Ctrl-Break ad-
dress to be restored from the PSPto the valueit had before execution of the second program.

Interrupt 24h Critical Error Handler
(0:0090h)
Whenan unrecoverable I/O error occurs, control is transferred to an error handlerin the resi-
dent part of COMMAND.COMwith an int 24h. This may be the standard DOSerror handler
(Abort, Retry, Ignore?) ora user-written routine.

OLYMPUSEX.1015 - 105/393

OLYMPUS EX. 1015 - 106/393

DOSInterrupts 22h Through 86h . 99
Onentry to the error handler, AH will haveits bit 7=0 (high orderbit) if the error was a disk
error (probably the most commonerror), bit7=1 ifnot.

BP:SI contains the address of a Device Header Control Block from which additional informa-
tion can beretrieved (see below). Theregisteris set up for a retry operation and anerror codeis
in the lower halfofthe DI register with the upper halfundefined.

Theuserstackis in effect and contains the following from top to bottom:
IP DOS registers from the issuing int 24hcs int 24h

‘flags
AX user registers at time of original
BX int 21h requestCX
st
DI
BP

IP from original int 21h
cs from the user to DOS

To reroute thecritical error handler to a user-written critical error handler,the following should
be done: .

Before an int 24h occurs:

1. The user application initialization code should save the int 24h vector and replace the vector
with one pointing to the user error routine.

Whentheint 24h occurs: ;

2. Whenthe usererror routine received controlit should pushthe flag registers onto the stack
and execute a farcall to the original int 24h vector saved in step 1.

3. DOSgives the appropriate prompt, and waits for user input (Abort, Retry, Ignore, Fail).
After the user input, DOSreturns control to the usererror routine instruction following the
far call.

4, The usererror routine can now do any tasks necessary. To return to the original application at
the point the error occurred, the error routine needs to execute an IRETinstruction.
Otherwise, the user error routine should remove the IP, CS, andflag registers from thestack.
Control can then be passedto the desired routine.

Int 24h providesthe followingvaluesin registers on entry to the interrupt handler:
entry AH status byte (bits)

0 disk I/O hard error
1 other error - if block device, bad FAT

~ if char device, code in DI
6 unused
5 0 if IGNORE is not allowed

1 if IGNORE is allowed
4 0 if RETRY is not allowed

1 if RETRY is allowed
3 0 iff PAIL is not allowed

1 if FAIL is allowed
2\ disk area of error 00 = DOS area 01 = FAT
1/ 10 = root dir 11 = data area
0 0 if read operation

1 if write operation
AL drive number if AH bit 7 = 1, otherwise undefined

If it is a hard error on disk (AH bit 7=0), register AL contains
the failing drive number (0=A:, 1=B:, etc.).

BP:SI address of a Device Header Control Block for which error
occurred. Block device if high bit of BP:SI+4 = 1

DI (low byte) error code (note: high byte is undefined) error code

OLYMPUSEX.1015 - 106/393

OLYMPUS EX. 1015 - 107/393

100 The Programmer's Technical Reference

description
00h attempt to write on write-protected diskette
Olh unknown unit
o2h drive not ready
03h unknown command
04h data error (bad CRC)
05h bad request structure length
06h seek error
07h unknown media type
osh sector not found
09h printer out of paper
OAh write fault
OBh read fault
och general failure :
OFh invalid disk change (DOS 3.0+)
10h FCB unavailable (DOS 3.0+)
11h sharing buffer overflow (DOS 3.0+)

The handler mustreturn this information:

Theregisters are set such that if an IRET is executed, DOS responds according to (AL)asfol-
lows:
AL ooh IGNORE the error

Olh RETRY the operation
02h ABORT via int 22h (jump to terminate address)
03h FAIL the system call that is in progress (DOS 3.0+)

note 1. Be careful when choosing to ignore a response because this causes DOS to
believe that an operation has completed successfully when it may not have.

2. If the error was a character device, the contents of AL are invalid.

Other Errors

IfAH bit 7=1,the error occurred ona character device, or was the result ofa bad memory image
of the FAT: The device header passed in BP:SI can be examined to determine whichcase exists.If
the attribute byte high-orderbit indicates a block device, then the error was a bad FAT: Other-
wise, the error is on a character device.

Ifa character device is involved, the contents ofAL are unpredictable, andtheerror codeis in DI
as above.

1. Before giving this routine control for disk errors, DOS performsseveralretries. The
numberofretries varies according to the DOSversion.

2. For disk errors,this exit is taken only for errors occurring during an int 21h function call.
It is not used for errors during an int 25h or 26h.
This routine is entered in a disabledstate.

All registers must be preserved.
This interrupt handler should refrain from using DOSfunction calls. If necessary, it may
use calls 01h through 12h. Use ofany othercall destroys the DOSstack and leaves DOS
in an unpredictable state.

6. The interrupt handler must not change the contentsof the device header.
7. Ifthe interrupt handler handleserrorsitself rather than returning to DOS,it should

restore the application program’s registers from the stack, remove al] but thelast three
wordson the stack, then issue an IRET This will return to the program immediately after
the int 21h that experienced the error. Note thatif this is done DOSwill be in an unstable
state until a function call higher than 12h is issued, therefore not recommended.

8. For DOS3.x+, IGNORErequests (AL=0) are converted to FAIL forcritical errors that
occur on FAT or DIRsectors.

9. For DOS3.10 up, IGNORErequests (AL=0)are converted to FAIL requests for
networkcritical errors (50-79).

wew
OLYMPUSEX.1015 - 107/393

OLYMPUS EX. 1015 - 108/393

10.

AL

12.

DOSInterrupts 22h Through 86h , 101

The device headerpointed to by BP:SIis as follows:
dword pointer to next device (OFFFFh if last device)

word attributes:
bit 15 1 if character device.

If bit 15 is 1:
bit 0 = 1 if current standard input
bit 1 = 1 if current standard output
bit 2 = 1 if current NULL device
bit 3 = 1 if current CLOCK device

: 0 if block device.
bit 14 is the IOcCTL bit

word pointer to device driver strategy entry point
word pointer to device driver interrupt entry point

8 bytes character device named field for block devices. The first byte is
. the number of units. . . .

To tellifthe error occurred ona block or character device, lookat bit 15 in the attribute

field (WORD at BP:SI+4). ;
If the name ofthe characterdeviceis desired, look at the eight bytes starting at BP:SI +10.

Handling of Invalid Responses (DOS 3.0+)
A.

B.

C.

If IGNORE (AL=0)is specified by the user and IGNOREis not allowed(bit 5 =0), make
the response FAIL (AL=3).
If RETRY (AL=1)is specified by the user and RETRYisnot allowed (bit 4=0), make
the response FAIL (AL=3).
IfFAIL (AL=3)is specified by the user and FAILis notallowed (bit 3=0), make the
response ABORT. (AL=2)

Interrupt 25h Absolute DiskRead

Interrupt 26h Absolute Disk Write
(0:0094h, 0:0098h)
These transfer control directly to the device driver. On return, the original flags are still on the
stack (put there by the INT instruction). This is necessary because return information is passed
backin the currentflags. .

The numberofsectors specified is transferred between the given drive and the transfer address.
Logical sector numbersare obtained by numberingeach sector sequentially starting from track
0, head 0, sector J (logical sector 0) and continuing along the samehead, then to the next head
until the last sector on the last head ofthe trackis counted. Thus, logical sector 1 is track O, head
0, sector2; logical sector2 is track 0, head 0, sector 3; and so on. Numbering then continues wih
sector 1 on head 0 of the next track. Note that although the sectors are sequentially numbered
(for example, sectors 2 and 3 on track 0 inthe example above), they may not be physically ad-
jacent on disk, due to interleaving. Note that the mappingis different from that used by DOS
1.10 for double-sided diskettes.

The requestis as follows:

int 25 for Absolute Disk Read, except Compaq DOS 3.31 or DOS 4.0+
int 26 for Absolute Disk Write over-32Mb partitions
entry AL drive number (O=A:, 1=B:, etc)

cx number of sectors to read (int 25h) or write (int 26h)
DS: BX disk transfer address buffer (DTA)
DX first relative sector to read - beginning logical sector number

return CF set if error
AL error code issued to int 24h in low half of DI
AH Olh bad command

O2h bad address mark

OLYMPUSEX.1015 - 108/393

OLYMPUS EX. 1015 - 109/393

102 The Programmer's Technical Reference
03h write-protected disk
04h requested sector not found
08h DMA failure

10h data error (bad CRC}
20h controller failed
40h seek operation failed
80h attachment failed to respond

note 1. Original flags on stack! Be sure to pop the stack to prevent uncontrolledgrowth.

2. Ints 25 and 26 will try rereading a disk if they get an error the firsttime.

3. All registers except the segment registers are destroyed by these calls

int 25 for Absolute Disk Read, Compaq DOS 3.31 or DOS 4.0+
int 26 for Absolute Disk Write over-32Mb partitions
entry AL drive number (0=A:, 1=B:, etc)cx OFFFFh

DS:BX packet address. Packet format:
dword sector number

word number of sectors to read
dword transfer address

return same as above?

note 1. Original flags on stack! Be sure to pop the stack to prevent uncontrolledgrowth.

2. Partition is potentially 32M (and requires this form of the call) if bit
1 of device attribute word in device driver is set.

Interrupt27h TerminateAnd Stay Resident
(0:009Ch) (obsolete)
This vector is used by programsthat are to remain resident when COMMAND.COM regains
control.

After initializingitself, the program must set DXtoits last address plusonerelative to the pro-
gram’s initial DS or ES value (the offset at which other programscan be loaded), then execute
interrupt 27h. DOSthenconsiders the program as anextensionofitself, so the program is not
overlaid when other programsare executed. Thisis useful for loading programssuchasutilities
and interrupt handlers that must remain resident.

entry cs current program segment i

: Dx last program byte + 1
return none . i
note 1. This interrupt must not be used by .EXE programs that are loaded into the :

high end of memory.
2. This interrupt restores the interrupt 22h, 23h, and 24h vectors in the

same manner as interrupt 20h. Therefore, it cannot be used to install
permanently resident Ctrl-Break or critical error handler routines.

3. The maximum size of memory that can be made resident by this method is
64K. i

4. Memory can be more efficiently used if the block containing a copy of the
environment is deallocated before terminating. This can be done by |
loading ES with the segment contained in 2Ch of the PSP, and issuing /
function call 49h (Free Allocated Memory).

5. DOS function call 4Ch allows a program to pass a completion code to Dos,
which can be interpreted with processing (see function call 31h).

6. Terminate and stay resident programs do not close files.
7. Int 21, function 31h is the preferred method to cause a program to remain

resident because this allows return information to be passed and allows
a program larger than 64K to remain resident. '

8. It is possible to make an EXE program resident with this call by putting :
a 27h in the second byte of the PSP and terminating with a RET FAR.

. '

Interrupt 28h (not documented by Microsoft) \
* DOSIdle Interrupt
Int 28h has been provided by DOSsincerelease 2.0. The int 28h processis similar to the ‘Timer
Tick’ process provided by BIOSvia int 1Chin thatit is an ‘outbound’ (from DOS)call which an
application can ‘hook onto’to get service at a particular entry point. DOS normally onlyissues i

OLYMPUSEX.1015 - 109/393

OLYMPUS EX. 1015 - 110/393

DOSInterrupts 22h Through 86h 103

int 28h whenit receives a functioncall (int 21h) froma foreground application with an argument
in the range of0 thru 12 (OCh) in the AH register, orwhenitis idling waiting for keyboardinput.
In effect, when DOSissuesint28,it is saying to the backgroundtask ‘I’m not doinganything hot
right now,if you can use the time, go ahead’. This meansthat a foreground application which
doesn’t do many low-number DOSfunctions can preempt CPUtimeeasily.

Whenint 28h is being issuedit is usually safe to do DOScalls. You won’t get int 28hsif a pro-
gram is running that doesn’t do its keyboard input through DOS. You should rely on the timer
interruptfor these. It is used primarily by the PRINT-COM routines, but any numberof other
routines can be chainedtoit by saving the original vector and calling it with a FAR call (orjust
JMPingtoit) at the end of the new routine.

. Int 28h is not called at all when any non-trivial foregroundtask is running. As soon asa fore-
ground program hasa file open, int 28h no longer gets called. Could make a gooddriverfor for a
background program that worksas long asthere is nothing else going on in the machine.

DOSuses 3 separate internal stacks: one for calls 01h through OCh; anotherfor calls ODh and
above; and a third for calls 01h through OCh whenaCritical Erroris in progress. When int 28h is
called, any calls above 0Chcan be executed without destroying the internal stack used by DOS at
the time.

The byte whichis pushedon the stack before an int 28h just indicates which stack area is being
used by the currentint 21h call. In DOS3.1, the code sequencethatcalls int 28h looks like this:

PUSH SS:[0304]
INT 28
POP SS:[0304}

The low-order byte of the word pushed contains1 if the int 21h call currently in progress is for
services 1 through OCh,and0for service 0 and for ODh and up. Assumingthatthe last DOScall
was nota reentrantone,this tells you which set of DOSservices shouldbesafe to call.

entry no parameters available
return none

note 1. The int 28h handler may invoke any int 21h function except functions 00h
through 0Ch (and 50h/5ih under DOS 2.x unless DOS CritErr flag is set).

2. Apparently int 28h is also called during screen writes.
3. Until some program installs its own routine, this interrupt vector simply

points to an IRET opcode.
4. Supported in 0S/2 1.0’s DOS Compatibility Box.
5. It is possible, if you are careful, to enhance the background priority by

providing more int 28h calls than DOS normally would issue.
6. If the InDOS flag is zero on int 28h, then it was called by someone other

than DOS, and the word on the stack should NOT be examined. .

Interrupt29h (not documented by Microsoft)
* Internal - Quick Screen Output

This methodis extremely fast (much faster than DOS 21h subfunctions 2 and 9, for example),
and itis portable, even to ‘non-compatible’ MS-DOS computers.

entry AL ASCII value for character to output to screenreturn unknown

note 1. Documented by Digital Research’s DOS Reference as provided with the DECRainbow.

2. If ANSI.SYS is installed, character output is filtered through it.
3. Works on the IBM PC and compatibles, Wang PC, HP-150 and Vectra, DEC

Rainbow, NEC APC, Texas Instruments PC and others.
4. This interrupt is called from the DOS’s output routines if output is

going to a device rather than a file, and the device driver's attribute
word has bit 3 (04h) set to ‘1’.

OLYMPUSEX.1015 - 110/393

OLYMPUS EX. 1015 - 111/393

104 The Programmer’s Technical Reference

5. This call has been tested with MSDOS 2.11, PCDOS 2.1, PCDOS 3.1, PCDOS
3.2, PCDOS 3.3, PCDOS 4.01, and Compaq DOS 3.31.

6. Used in IBMBIO.COM as a vector to int 10, function OEh (write TTY)
followed by an IRET.

7. Most of the fast ANSI device drivers use this interrupt - ZANSI.SYS,NANSI.SYS, and PCMag’s ANSI.COM.

Interrupt2Ah Microsoft Networks - Session Layer Interrupt
* (not documented by Microsoft) entry AH 00h Check Network BIOS Installed

return AH nonzero if installed
Olh Execute NETBIOS Request
02h Set Net Printer Mode

03h Get Shared-Device Status (Check Direct 1/0)AL ooh
DS:SI pointer to ASCIIZ disk device name
return CF 0 if allowed

04h Execute NETBIOS
AL ooh for error retry

olh for no retry
ES:Bx pointer to network control block
return AX o000h for no error

AH Olh

AL error code (unknown) |
o5h Get Network Resource Information i

aL 00h
return AX reserved i

BX number of network names i
cx number of commands !Dx number of sessions :

06h Network Print-Stream Control
note NETBIOS 1.10

07h-19h unknown
20h unknown

note AL=0lh intercepted by DESQview 2.0.
80h Begin DOS Critical Section

AL 1 to 6
81h End DOS Critical Section

AL 1 to 6
82h Server Hook

stack AX from call to int 21h
return stack unchanged
note Called by the int 21h function dispatcher in DOS

3.10+ for function 0 and functions greater than
OCh except 59h.

84h Keyboard Busy Loop
note Similar to DOS’s int 28h.

Interrupt2Bh (not documented by Microsoft)
* Unknown- Internal Routine for DOS (IRET)

Interrupt2Ch (not documented by Microsoft)
* Unknown- Internal Routine for DOS (IRET)

Interrupt2Dh (not documented by Microsoft)
* Unknown - Internal Routine for DOS (IRET)

Interrupt 2Eh (undocumented by Microsoft) (DOS 2.0+)
* Internal Routine for DOS (Alternate EXEC)

This interrupt passes a commandline addressed by DS:SI to COMMAND.COM.The command .
line mustbe formatted just like the unformatted parameter area of a Program SegmentPrefix. \
Thatis, thefirst byte must be a countofcharacters, and the second and subsequent bytes must be
acommandline with parameters, terminated bya carriage return character.

OLYMPUSEX.1015 - 111/393

OLYMPUS EX. 1015 - 112/393

Interrupts 22h Through 86h , 105
Whenexecuted,int 2Eh will reload the transient part of the commandinterpreterif it is not cur-
rently in memory. If called from a program thatwascalled from a batchfile, it will abort the
batchfile. If executed from a program which has been spawned by the EXECfunction,it will
abort the whole chain and probably lock up the computer. Int 2Ehalso destroysall registers in-
cluding the stack pointer.

Int 2Ehis called from thetransientportion of the program to reset the DOS PSPpointersusing
the above Functions #81 & #80, and then reenters the resident program.

Whencalled with a valid commandline, the commandwill be carried out by COMMAND.COM
just as though you hadtypedit in at the DOS prompt.Notethatthe count doesnot include the
carriage return. This is an elegant way to perform a SET from an application program against
‘the master environmentblockfor example.

entry DS:SI pointer to an ASCIIZ command line in the form:
count byte
ASCII string
carriage return
null byte

note 1. Destroys all registers including stack pointer.
. Seems to work OK in both DOS 2.x and 3.x.
. It is reportedly not used by DOS.
. As far as known, int 2Eh is not used by DOS 3.1, although it was called

by COMMAND.COM of PCDOS 3.0, so it appears to be in 3.1 only for the
sake of compatibility.

®WwWh

Interrupt 2Fh Multiplex Interrupt
Interrupt 2Fhis the multiplex interrupt. A generalinterface is defined between two processes.It
is up to the specific application using interrupt 2Fh to define specific functions and parameters.

This interrupt is becoming more commonly usedasthe availible interrupt 21 functionsareget-
ting to be in short supply. Int 2Fh doesn’t require any support from DOSitselfforit to be used in
application programs.It’s not handled by DOS,but by the programs themselves.

Every multiplex interrupt handleris assigned a specific multiplex number. The multiplex num-
beris specified in the AH register; the AH valuetells which program yourrequestis directed to-
ward. Thespecific function that the handleris to performis placed in the AL register. Other par-
ameters are placesin the other registers as needed. The handlersare chainedinto the 2Fh inter-
rupt vector andthe multiplex numberis checkedto see if any other applicationis using the same
multiplex number. There is no predefined methodforassigning a multiplex number to a hand-
ler. You must just pick one. To avoid a conflict if two applications choose the same multiplex
number, the multiplex numbers used by an application should be patchable. In order to check
for a previousinstallation of the current application, you can search memory for a uniquestring
includedin your program.If the value you wanted in AH is taken but you don’t find thestring,
then another application has grabbedthatlocation.

Int 2Fh was not documented under DOS2.x. There is no reason notto use int 2Fh as the multi-
plex interrupt in DOS 2.x. The only problem is that DOS 2.x doesnotinitialize the int 2Fh vec-
tor, so whenyoutry to chaintoit like you are supposedto,it will crash. If your program checks
the vectorfor being zero andinitializesit itself or doesn’t chain in thatcase,it will work for you n
2.x just the sameas3.x.

DOS3.2itself contains some int 2Fh handlers- it uses values of 08h, 13h, and OF$h. There may
be more. NLSFUNC from DOS3.3 up usespart of int 2Fh and so does GRAFTABL.

For int 2Fh calls, register AH identifies which programis to handle the interrupt. AH values

OLYMPUSEX.1015 - 112/393

OLYMPUS EX. 1015 - 113/393

106 The Programmer’s Technical Reference

00h-7Fh are reserved for DOS,not that anyone cares much. Values OCOh-OFFh are reserved for
applications. Register AL contains the subfunction codeifused.
Function 00h unknown

Reportedly somehow used by PRINT.COM in DOS 3.3+.

Function Olh PRINT.COM
PC-DOS 3.3’s PRINT.COM hooks the following interrupt vectors: i

o5h PrintScreen Interrupt ft
13h BIOS Disk Interrupt i
14h BIOS Serial Communications Interrupt
15h BIOS ‘System Services’ Interrupt
17h BIOS Printer Interrupt
19h Bootstrap Loader Interrupt |
1ch Timer Tick
23h Control-cC Terminate Address |
24h Critical Error Handler Address |
28h DOS Idle Interrupt (undocumented)
2Fh Multiplex Interrupt ||

entry AH Olh iAL ooh PRINT Get Installed State
This call must be defined by all int 2Fh handlers. It is i
used by the caller of the handler to determine if the, :
handler is present. On entry,

AL=0. On return, AL contains the installed state as follows:
return AL OFFh installed

Olh not installed, not OK to install
ooh not installed, OK to install

Olh PRINT Submit File
DS:DxX pointer to submit packet

format byte level
dword pointer to ASCIIZ filename

return CF set if error
AX error code

note A submit packet contains the level (BYTE) and a pointer
to the ASCIIZ string (DWORD in offset:segment form). The
ASCIIZ string must contain the drive, path, and filename
of the file you want to print. The filename cannot
contain global filename characters.

return CF set if error
AX error code

02h PRINT Cancel File
On entry, AL=2 and DS:DX points to the ASCIIZ string for
the print file you want to cancel. Global filename
characters are allowed in the filename.

DS:DX pointer to ASCIIZ file name to cancel (wildcards OK)
return CF set if errorAX error code

03h PRINT Remove All Files
return CF set if error

AX error code

o4h PRINT Hold Queue/Get Status
This call holds the jobs in the print queue so that you
can scan the queue. Issuing any other code releases the
jobs. On entry, AL=4. On return, DX contains the error
count. DS:SI points to the print queue. The printqueue
consists of a series of filename entries. Each entry is
64 bytes long. The first entry in the queue is the file
currently being printed. The end of the queve is marked
by the entry having a null as the first character.

return DX error count
DS:SI pointer to print queue (null-string

terminated list of 64-byte ASCIIZ filenames)
CF set if error

AX error code

OLYMPUSEX.1015 - 113/393

OLYMPUS EX. 1015 - 114/393

Function 05h

‘entry AH

Function 06h
entry AH

AL

return (AH=00h)
(AH=01h)

Function © 08h
entry AH

AL

JAnterrupts 22h Through 86h | 107

other parameters unknown

Function 10h
entry AH

AL
return AL

Function 1lh
entry AH

AL

Olh function invalid
02h file not found
03h path not found
04h too many open files
05h access denied
08h queue full
o9h spooler busy
och name too long
OFh drive invalid

05h PRINT restart queue
return CF set if error

AX error code
06h unknown ~ may be used in DOS 3.3+ PRINT

DOS 3.0+ Critical Error Handler
o5h
AL 00h Installation Check

return AL 00h not installed, OK to
install

olh not installed, not OK to
install

OFFh installed
note This set of functions allows a user program to

partially or completely override the default
eritical error handler in COMMAND.COM.

AL xxh Handle Error - nonzero error code in AL (xxh
indicates nonzero extended error code)

return CF clear
ES:DI pointer to ASCIIZ error message

AL (2)
CF set use default error handler

ASSIGN
06h
00h Installation Check
Oih Get Memory Segment
AH nonzero if ASSIGN is installed
ES segment of ASSIGN work area

DRIVER. SYS
08h
00h Installation Check
return AL ooh not installed, OK to install

Olh not installed, not OK to install
OFFh installed

Olh unknown

SHARE
10h
00h Installation Check
00h not installed, OK to install
Olh not installed, not OK to install
OFFh installed

Multiplex - Network Redirection
1lh
00h Installation Check

return AL 00h not installed, OK to install
Olh not installed, not OK to install
OFFh installed

Olh-05h unknown
06h Close Remote File
07h-ODh unknown
OEh Do Redirection

stack word function to execute
return CF set on error

OFh Printer Setup
10h-1Eh unknown

OLYMPUSEX.1015 - 114/393

OLYMPUS EX. 1015 - 115/393

108

Function
entry AH

AL

L2h

1Eh

1Fh

The Programmer's Technical Reference
Do Redirection
stack
return
Printer
stack
return

20h-26h unknown

word function to execute
CF set on error
Setup
word function (7)
CF set on error (?)

Multiplex, DOS 3.x Internal Services
12h
00h

Olh

03h

04h

05h

o6h

08h

OAh

OBh

och

ODh

OEh

OFh

10h

Installation Check
return AL OFFh for compatibility with other int

2Fh functions
Close File (7}
stack word value - unknown
return BX unknown

CX unknown
ES:DI pointer to unknown value

note Can be called only from within DOS.
Get Interrupt Address
stack word vector number
return ES:BX pointer to interrupt vector

stack unchanged
Get DOS Data Segment
return DS segment of IBMDOS.COM file
Normalize Path Separator
stack word character to normalize
return AL normalized character (forward slash

turned to backslash)
stack unchanged

Output Character
stack
return
note

word character to output
stack unchanged
Can be called only from within Dos.

Invoke Critical Error
return
note

AL 0-3 for Abort, Retry, Ignore, Fail
Can be called only from within Dos.

Move Disk Buffer (7?)DS:DI
return
note

pointer to disk buffer
buffer moved to end of buffer list
Can be called only from within DOS.

Decrement Word
ES:DI
return
note

unknown
DS:DI
return
note
unknown
note
unknown
ES:DI
return
note
unknown
note

pointer to word to decrement
AX new value of word
Word pointed to by ES:DI decremented,
skipping zero.

pointer to disk buffer(?)
(?)
Can be called only from within Dos.

Can be called only from within Dos.

pointer to system file table entry (?)
AX (7)
Can be called only from within DOS.

Can be called only from within DOS.
Get Date and Time
return

note

AX current date in packed format
DX current time in packed format
Can be called only from within DOs.

Do Something to All Disk Buffers (7?)
return
note
unknown
DS:DI
return
note 1.

2

DS:DI pointer to first disk buffer
Can be called only from within DOs.

pointer fo (7)
DS:DI pointer to (?)
Can be called only from within Dos.
Calls on function 1207h.

Find Dirty Buffer

OLYMPUSEX.1015 - 115/393

OLYMPUS EX. 1015 - 116/393

Interrupts 22h Through 86h 109

DS:DI pointer to first disk buffer
return DS:DI pointer to first disk buffer

which has clean flag clear
2F clear if found

: set if not found
11h Normalize ASCIIZ Filename

DS:SI pointer to ASCIIZ filename to normalize
ES:DI pointer to buffer for normalized filename
return destination buffer. filled with uppercase

. filename, with slashes turned to backslashes
12h Get Length of ASCIIZ String

ES:DI pointer to ASCIIZ string
return CX length of string

13h Uppercase Character
stack word character to convert to uppercase
return AL uppercase character

stack unchanged
14h Compare FAR Pointers

DS:SI first pointer
ES:DI second pointer
return ZF set if pointers are equal

ZF clear if not equal15h unknown
DS:DI pointer to disk buffer
stack word (?)
return stack unchanged
note Can be called only from within Dos.

16h Get Address of System FCB
BX system file table entry number
return ES:DI pointer to system file table entry

17h Set Default Drive (7?)
stack word drive (O=A:, 1=B:, etc)
return DS:SI pointer to drive data block for

specified drive
stack unchanged

note Can be called only from within Dos.
18h Get Something (7?)

return DS:SI pointer to (7)19h unknown

stack word drive (0=default, 1=A:, etc)
return (?)

stack unchanged
note 1. Can be called only from within Dos.

2. Calls function 1217h.
1Ah Get File’s Drive

DS:SI pointer to filename
return AL drive

(O=default, 1=A:, etc, OFFh=invalid)
1Bh Set Something (?)cL unknown

return AL (?)
note Can be called only from within Dos.

ich Checksum Memory
DS:SI pointer to start of memory to checksum
cx number of bytes
DX initial checksum
return DX checksum

note 1. Can be called only from within Dos.
2. Used to determine when transient portion of

COMMAND.COM has been overlaid by application.1Dh unknown
1Eh Compare Filenames

DSs:SI pointer to first ASCIIZ filename
ES:DI pointer to second ASCIIZ filename
return ZF set if filenames equivalentclear if not
note Used by COPY command.

1Fh Build Drive Info Block
stack word drive letter
return ES:DI pointer to drive info block

(will be overwritten by next call)

OLYMPUSEX.1015 - 116/393

OLYMPUS EX. 1015 - 117/393

110 The Programmer’s Technical Reference

stack unchanged
note Can be called only from within Dos.

20h Get System File Table Number !
BX file handle i
return CF set on error, error code in AL

AL 06h (invalid file handle)
CF clear if successful

byte ES:[DI] system file table entry
number for file handle

21h unknown
DS:SI pointer to (?)
return (7?)
note Can be called only from within DOs.22h unknown

SS:SI pointer to (?)
return nothing(?) note Can be called only from within Dos.

23h Check if Character Device (?) |
return DS:SI pointer to device driver with same name

as (?) |
note Can be called only from within DOS. |

24h Delay 4
return after delay of (?) ms i
note Can be called only from within Dos.

25h Get Length of ASCIIZ String
DS:SI pointer to ASCIIZ string
return CX length of string

Function 14h NLSFUNC.COM i

entry AH 14h iother parameters unknown

Function 15h CD-ROM extensions , i
Microsoft CD-ROM driver versions 1.0 through 2.0 will work only up !
to DOS 3.31. DOS 4.0 and up require 2.1 drivers. :

entry AH 15h CD-ROM services

AL subfunctions |
00h Installation Check iBX 00h , i
return BX number of CD-ROM drive letters used :

cx starting drive letter (0=A:) i
note This installation check DOES NOT follow the format

used by other software.

Olh Get Drive Device List

ES:BX pointer to buffer to hold drive letter list (5 bytes per
drive letter)

return buffer filled, for each drive letter:
byte subunit number in driver |dword address of device driver header

02h Get Copyright File Name
Cx drive number (0=A:)
ES:BX pointer to 38-byte buffer for name of copyright filereturn CF set if drive is not a CD-ROM drive

AX error code (15h)

03h Get Abstract File Name '
ES:BX pointer to 38-byte buffer for name of abstract file !
cx drive number (0=A:)
return CF set if drive is not a CD-ROM drive

AX error code (15h)

04h Get Bibliographic Doc File Name
cx drive number (0=A:)
ES:BX pointer to 38-byte buffer for name of bibliographicdocumentation file

return CF set if drive is not a CD-ROM drive :
AX error code (15h)

05h Read VTOC (Volume Table of Contents)
cx drive number (0=A:)

OLYMPUSEX.1015 - 117/393

OLYMPUS EX. 1015 - 118/393

Interrupts 22h Through 86h . iil
DX sector index (0=first volume descriptor,

ml=second,...)
ES:BX pointer to 2048-byte bufferreturn CF set on error

AX error code (15h, 21h)
CF clear if successful

AX volume descriptor type
(1=standard, OFFh=terminator, 00h=other)

06h Turn Debugging On
BX debugging function to enable
note Reserved for development.

07h Turn Debugging Off
BX debugging function to disable
note Reserved for development.

O8h Absolute Disk Read
cx drive number (0=A:)
DX number of sectors to read
ES: BX pointer to buffer
SI:DI starting sector number
return CF set on error

AL error code (15h, 21h)

09h Absolute Disk Write
Cx drive number (0=A:)
DX number of sectors to write
ES:BX pointer to buffer
SI:DI starting sector number
note Corresponds to int 26h and is currently reserved and

nonfunctional.

OAh Reserved by Microsoft

OBh CD-ROM 2.00 - Drive Check
Cx drive number (0=A:)
return BX OADADh if MSCDEX.EXE installed

AX 0 if drive not supported
<> 0 if supported

och CD-ROM 2.00 - Get MSCDEX.EXE Version
return BH major version

BL minor version
note MSCDEX.EXE versions prior to 1.02 return BX=0.

ODh CD-ROM 2.00 - Get CD-ROM Drive Letters
ES:BX pointer to buffer for drive letter list

{1 byte per drive)
return Buffer filled with drive numbers (0=A:). Each byte

corresponds to the drive in the same position for
function 1501h.

OEh CDROM 2.00 - Get/Set Volume Descriptor Preference
BX subfunction

00h Get Preference
Dx ooh
return DX preference settings
Olh Set Preference
DH volume descriptor preference

1 primary volume descriptor
2 supplementary volume descriptor

DL supplementary volume descriptor preference
1 shift-Kanji

Cx drive number (0=A:)
return CF set on error

AX error code (01h, 15h)

OFh CD-ROM 2.00 - Get Directory Entry
cx drive number (0=A:)
ES:BX pointer to ASCIIZ pathname

OLYMPUSEX.1015 - 118/393

OLYMPUS EX. 1015 - 119/393

Function

entry AH

43h

~--High Sierra---

SI:DI
return

note

-~-ISo

--both formats-~--

Error

The Programmer's Technical Reference

pointer to 255-byte buffer for directory entryCF
AX
CF
AX

Directory entry format:
byte
byte
dword
dword
dword
dword

6 bytes
byte
byte

9660--~—
7 bytes

byte

byte
byte
word
word
byte

n bytes
byte

n bytes

codes:
Olh
15h
21h

set on error
error code
clear if succesful ,
disk format (0=High Sierra, 1=ISO 9660)

length of directory entry
length of XAR in LBN’s
LBN of data, Intel (little-Endian) format
LBN of data, Motorola (big-Endian) format
length of file, Intel format
length of file, Motorola format

date and time
bit flagsreserved

data and time
bit flags

interleave size
interleave skip factor
volume set sequence number, Intel format
volume set sequence number, Motorola format
length of file name
file name ,
(optional) padding if filename is odd length
system data

invalid function
invalid drive
not ready

Microsoft Extended Memory Specification (XMS)
The XMS version 2.00 for MS-DOS allows DOS programs to utilize
additional memory found in 80286 and 80386 machines. With some
restrictions, XMS adds about 64K to the 640K which DOS programs
can access directly. XMS also provides DOS programs with a
standard method of storing data in extended memory.

XMS (extended memory) services
Perform a FAR call to the driver entry point with AH set
to the function code
00h Get XMS Version Number

return AX 16 bit BCD version number (AX=0285h would
be XMS version 2.85)BX driver internal revision number

DX 0000h HMA does not exist
0001h HMA exists

note 1. No error codes are returned from this function.
2. DX indicates the presence of HMA, not its

availability.
Olh Request High Memory Area (1M to 1M + 64K)

DX HMA memory request in bytes (for TSR or
device drivers)
OFFFFh if application program

return AX 0000h failure

0001h success .
BL error code (80h, 81h, 90h, 91h, 92h)

02h Release High Memory Area ,
return AX 0000h failure

0001h success

BL error code (80h, 81h, 90h, 93h)
03h Global Enable A20

return AX 0000h failure
0001h success

BL error code (80h, 81h, 82h)
note Should only be used by programs which have

control of the HMA. The A20 line should be

turned off via Function 04h (Global Disable A20)
before a program releases control of the system.

OLYMPUSEX.1015 - 119/393

OLYMPUS EX. 1015 - 120/393

04h

OSh

06h

O7h

08h

09h

OAh

OBh

0Ch

Interrupts 22h Through 86h 113
Global Disable A20
return AX 0000h failure

000lh success

BL error code (80h, 82h, 94h)
note 1. This function attempts to disable the A20 line.

It should only be used by programs which havecontrol of the HMA.

2. The A260 line should be disabled before a program
releases control of the system.‘Local Enable A20

return AX 0000h failure .
0001h A20 is enabled

BL error code (80h, 81h, 82h)
note This function attempts to enable the A20 line. It

should only be used by programs which need
direct access to extended memory. Programs which
use this function should call Function 06h (Local
Disable A20) before releasing control of the
system.

Local disable A20
return AX 0000h failure

oooih success

BL error code (80h, 8lh, 82h, 94h)
note This function cancels a previous call to Fn 05h

(Local Enable A20). It should only be used by
programs which need direct access to extended
memory. Previous calls to Fn 05h must be
cancelled before releasing control of the system.Query A20

return AX 0000h failure
0001h success (A20 line is

physically enabled)
BL error code (00h, 80h, 81h)

Query Free Extended Memory
return AX size of largest free extended memory blockin K

BL error code (80h, 81h, OAQh)
Dx total free extended memory in K

note The 64K HMA is not included in the returned value
even if it is not in use.

Allocate Extended Memory Block
DX Amount of extended memory being requested in

K-bytes
return AX 0000h failure

BL error code (80h 81h AOh Aih)o00lih success

Dx 16 bit handle for memory block
Free Extended Memory Block .
Dx handle of block to free
return AX 0000h failure

BL error code (80h, 81h,
OA2h, OABh)

000i1h success
Move Extended Memory Block
DS:SI pointer to EMM structure

4 bytes number of bytes to move
2 bytes source handle
4 bytes offset into source block
2 bytes destination handle
4 bytes offset into destination block

return AX 0000h failure

BL error code (80h, 81h, 82h, OA3h,
OA4h, OASh, OA6h, OA7h, OA8h,
OASh)

oo00lh success
Lock Extended Memory Block
Dx XMS handle of block to lock
return AX 0000h failure

BL error code (80h, 81h, OA2h, OACh,
OADh)

0001h block is successfully locked

OLYMPUSEX.1015 - 120/393

OLYMPUS EX. 1015 - 121/393

il4 The Programmer’s Technical Reference
DX: BX 32-bit linear address of locked block

ODh Unlock Extended Memory Block
Dx XMS handle of block to unlock
return AX 0000h failure

BL error code (80h, 8ih,; OA2h, OAAh)
0001h success

OEh Get EMB Handle Information
DX handle for which to get info
return AX 0000h failure

BL error code (80h, 81h, OA2h)
0001h success
BH block’s lock count
BL number of free handles left
Dx block size in K

note To get the block’s base address, use Fn 0Ch (Lock
Extended Memory Block).

OFh Reallocate Extended Memory Block
BX New size for the extended memory block in K
Dx Unlocked extended memory block handle to

reallocate
return AX 0000h failure

BL error code (80h, 81h,
OAOh, OAlh, OA2h, OABh)

0001h success
10h Request Upper Memory Block (nonEMS memory above 640K)

DX Size of requested memory block in paragraphs
return AX 0000h failure

BL error code (80h, OBOh, OB1h)
DX size of largest available block

in paragraphs
0001h success
BX segment address of UMB
DX actual block size in paragraphs

note 1. UMBs are paragraph aligned.
2. To determine the size of the largest available

UMB, attempt to allocate one with a size of
OFFFFh.

11h Release Upper Memory Block
DX segment address of UMB to release
return AX 0000h failure

BL error code (80h, OB2h)
0001h success

UMBs cannot occupy memory addresses that can be banked by EMS 4.0. EMS
4.0 takes precedence over UMBs for physically addressable memory.
Programs should make sure that at least 256 bytes of stack space is
available before calling XMS API functions.
On many machines, toggling the A20 line is a relatively slow operation.
Error codes:

80h Function not implemented
8ih VDISK was detected
82h An A20 error occurred
8Eh A general driver error
8Fh Unrecoverable driver error
90h HMA does not exist
91h HMA is already in use
92h DX is less than the /HMAMIN= parameter
93h HMA is not allocated
OAOh All extended memory is allocated
OAlh All available extended memory handles are allocated
OA2h Invalid handle
OA3h Source handle is invalid
OA4h Source offset is invalid
OASh Destination handle is invalid
OAGh Destination offset is invalid
OA7h Length is invalid
OA8h Move has an invalid overlap
OA9h Parity error occurred
OAAh Block is not locked
OABh Block is locked
OACh Block lock count overflowed

OLYMPUSEX.1015 - 121/393

OLYMPUS EX. 1015 - 122/393

Interrupts 22h Through 86h - 1S
OADh Lock failed
OBOh Only a smaller UMB is available
OBlh No UMB’s are available
OB2h UMB segment number is invalid

Function5453h TesSeRact Standard for Ram-Resident Program Communication
entry AX 5453h TesSeRact function request

cx function select word:

bits 0 function 00h (check install - required)
1 function 01h (return userparms - required)
2 function 02h (check hotkey)
3 function 03h (replace int 24h)
4 function 04h (return Data Pointer)
5 function 05h (set extra hotkeys)
6-7 undefined - reserved for future use
8 function 10h (enable TSR)
9 function 11h (disable TSR)
10 function 12h (release TSR from RAM)
11 function 13h (restart TSR)
12 function 14h (get current status)
13 function 15h (set TSR status)
14 function 16h (get popup type)
15 undefined - reserved for future use
16 function 20h (call user procedure)
17 function 21h (stuff keyboard)
18-31 undefined - reserved for future use

Functions:
00h Check Install

DS:SI pointer to 8-character blank-padded name
return AX OFFFFh the TSR has already been loaded

Any other value indicates that it is safe to
install this TSR, using the ID number in CXcx TSR ID Number

Olh Return User Parameters
Cx TSR ID number
return AX ooh no matching TSR ID Number found

Otherwise,
ES:BX pointer to TsrParms structure (note 3)

02h Check Hotkey
cL scan code of hot key

return AX OFFFFh hotkey conflicts with TSR already loaded.
Any other value means OK to use hotkey.

03h Replace Default Interrupt 24h Handlercx TSR ID number
DS:SI pointer to new routine for int 24h
return AX <>0 unable to install handler (invalid ID

number)
00h successful installation

04h Return TesSeRact Internal Data Area Pointer
Cx TSR ID number

return AX 00h no matching TSR ID Number found.
Otherwise, FAR pointer to TsrData structure

ES: BX pointer to TSR’s internal data area (note 4)
05h Set Multiple Hot Keys

cx TSR ID number

DL number of additional hot keys to allocate
DS:SI pointer to table of hot keys

byte hotkey scan code
byte hotkey shift state
byte flag value to pass to TSR (nonzero)

return AX <>0 unable to install hotkeys (invalid ID
humber)

00h successful set
O6h-OFh not used
10h Enable TSR

cx TSR ID number

return AX <>0 unable to enable TSR (invalid ID number)
00h TSR enabled

1lh Disable TSR
CX TSR ID number
return AX <>0 unable to disable

OLYMPUSEX.1015 - 122/393

OLYMPUS EX. 1015 - 123/393

116

12h

13h

14h

15h

16h

20h

2ih

Team,

The Programmer’s Technical Reference

Release TSR [unload from RAM]
cx TSR ID number

return AX <>0 invalid TSR number i
note If any interrupts used by TSR have been grabbed by

another TSR, the TesSeRact routines will wait until it
is safe to remove the indicated TSR from memory.Restart TSR

cx TSR ID number of TSR which was unloaded but is still in
memory

return AX <>0 unable to restart TSR
(invalid ID #)00h success

Get TSR Status Word
Cx TSR ID number

return AX OFFFFh invalid TSR ID Code \
Any other value is current status flags

BX bit flags !
Set TSR Status Word

Cx TSR ID number . i
DX new bit flags
return AX <>0 unable to set status word
Get InDOS State at Popup
cx TSR ID number . |
return AX OFFFFh invalid TSR ID Code |

Any other value is current status flags
BX value of INDOS flag 'Call User Procedure

CX
ES:DI
return

TSR ID number
pointer to user-defined data
AX <>0 unable to pass pointer (invalid ID #)00h success

Stuff Keyboard
CX
DH

DL

sI
ES:DI
return

22h - 2Fh reserved

note 1. TesSeRact is based in part on work done by the Ringmaster Development
in efforts to develop a public domain TSR standard.

TSR ID number
scan code flag
ooh buffer contains alternating ASCII & scan codes
<>0 buffer contains only ASCII codes :
speed
00h stuff keystrokes only when buffer is empty
Olh stuff up to four keystrokes per clock tick :
02h stuff up to 15 keystrokes per clock tick
number of keystrokes
pointer to buffer to stuff
AX OFOFOh user aborted paste with “Cc or *Break

<>0 unable to stuff buffer (invalid ID #)
00h Success

2. Borland’s THELP.COM popup help system for Turbo Pascal and Turbo C fully !
supports the TesSeRact API.

3. TsrParms structure: i
blank-padded TSR name
TSR ID number
bitmap of supported functions
scan code of primary hotkey

8 bytes
word

dword
byte

byte

byte
dword
word
word

dword
word

dword
dword

byte
byte
byte

00h
OFFh

OFFh

pop up when shift states match
no popup (if shift state also OFFh)

shift state of primary hotkey
no popup (if scan code also OFFh)

number of secondary hotkeys
pointercurrent to extra hotkeys set by fn 05h

TSR status flags
PSP segment of TSR
DTA for
default
stack at popup
stack at background invocation

4. TesSeRact TSR Internal Data Area

TSR,
DS for TSR

revision level of TesSeRact library
type of
int 08h

popup in effect
eccurred since last invocation

OLYMPUSEX.1015 - 123/393

OLYMPUS EX. 1015 - 124/393

Interrupts 22h Through 86h 117

byte int 13h occurred since last invocation
byte active interrupts
byte active soft interrupts
byte DOS major version
byte how long to wait before popping up

dword pointer to INDOS flag
dword pointer to DOS critical error flag

word PSP segment of interrupted program
word PSP segment of prog interrupted by INT 28

adword DTA of interrupted program
aword DTA of program interrupted by INT 28

word 8S of interrupted program
word SP of interrupted program
word SS of program interrupted by INT 28
word SP of program interrupted by INT 28

dword INT 24 of interrupted program
3 words DOS 3+ extended error info

byte old BREAK setting
byte old VERIFY setting
byte were running MS WORD 4.0 before popup
byte MS WORD 4.0 special popup flag
byte enhanced keyboard call in use
byte delay for MS WORD 4.0

11 times:
dword old interrupt vector
byte interrupt number

dword new interrupt vector

Function 64h SCRNSAV2.COM
entry AH 64h

AL 00h installation check
return AL ooh not installed

OFFh installed
note SCRNSAV2.COM is a screen saver for PS/2's with VGA by Alan Ballard.

Function 7Ah Novell NetWare
entry AH 7Ah

AL 00h installation check
return AL 00h not installed

OFFh installed

ES:DI pointer to FAR entry point for routines otherwise accessed
through int 2ih

note 1. Returns address of entry point for IPX and SPX.
2. Parameters are listed under int 21.

Function O87h APPEND
entry AH o87h

. AL 00h APPEND installation check
return AH 0 if installed
olh APPEND - unknown
02h APPEND — version check

return unknown

Function 088h Microsoft Networks
entry AH 08sh

AL 00h network program installation check
return AH 0 if installed

BX installed component flags (test in this order!)
bits 2 messenger

3 redirector
6 server
7 receiver

‘other bits not used, do not test
Olh unknown
02h unknown
03h get current POST address

return ES:BX POST address
04h set new POST address

ES:BX new POST address
09h network version check

OLYMPUSEX.1015 - 124/393

OLYMPUS EX. 1015 - 125/393

118 The Programmer's Technical Reference
Function OAAh VIDCLOCK.COM
entry AH OAAh

AL ooh installation check
return AL 00h not installed

OFFh installed
note VIDCLOCK.COM is a memory-resident clock by Thomas G. Hanlin III.

Function OBOh GRAFTABL.COM or DISPLAY.SYS
parameters unknown

Function OBBh Network Functions
entry AH OBBh

AL 00h net command installation check
Olh, 02h unknown
03h get server POST address
04h get server POST address

Function 0D44Dh 4DOS Command Interpreter (COMMAND.COM replacement)
entry AX OD44Dh 4DO0S installation check

BX ooh
return If 4DOS is present in memory the following values will be returned:

AX 44pph :
BE minor 4DOS version number
BL Major 4DOS version number

(same format as DOS int 21h/fn 30)
cx 4DOS PSP segment address
DL 4D0S shell number (0 for the first shell, 1 for the second, etc.;

incremented each time a new copy of 4D0S is loaded over a root
copy, either in a different multitasker window or via nested
shells)

note 1. If you issue this call with BX 0 you will invoke some other function of
4DOS's low-memory server, and probably hang the system.

2. This function is available in swapping mode ONLY. Also note that this
tells you if 4DOS is loaded in memory somewhere - but not whether it is
the parent process of your program. For example if there is a root 4DOS
shell and a secondary copy of COMMAND.COM-this function will still work.
However, you can determine if 4DOS is your parent process by comparing
the value returned in the CX register with the PSP chain pointer at
location 16 in your own PSP.

Function OF7h AUTOPARK.COM (PD TSR hard disk parking utility)
entry AH OF7h

AL 00h installation check
return AL 00h not installed

OFFh installed
Olh set parking delay

BX:CX 32 bit count of 55ms timer ticks
note AUTOPARK is a TSR HD parker by Alan D. Jones.

Function Intel Communicating Applications Standard (CAS 1.01A)
entry AH (default; CAS multiplex number can be user-adjusted)

AL 00h Get Installed State .
, - yveturn AL 00h not installed

Olh not installed, not OK to
install

OFFh installed
note No errors are returned.

Olh Submit a Task
DS:DX ptr to ASCIIZ path and name of Task Control File
return AX positive event handle or neg. error code
note Files associated with a task must stay in

existence until the task is complete or an error
will result.

02h Abort the Current Event

return AX event handle of aborted event or negative
error code

note Terminating an event is not instantaneous. It
might take up to 30 seconds.

03h reserved
04h reserved
O5h Find Pirst Entry in Queue

OLYMPUSEX.1015 - 125/393

OLYMPUS EX. 1015 - 126/393

06h

Interrupts 22h Through 86h . 119
cx Status of the event you are seeking. This value

is compared with the field at offset 2 of the
Control File
0 —- event has successfully completed

- event is waiting to be processed
- number has been dialed

- connection has been made (sending)
- connection has been made (receiving)
- event was aborted

-1 - chooses an event without regard to status
This value will probably be used most often
Other negative values match error codes in Control
File.

DH direction:
0 - Search forward chronologically (from the

first to the last occurring event)
1 - Search backward chronologically (from the

last to the first occurring event)
DL queue to search:

0 - Find first control file in Task Queue
1 - Find first control file in Receive Queue
2 - Find first control file in Log Queue

ieWhbe

return AX 0, if successful, or negative error code
BX event handle for this file

Find Next Entry in Queue
DL queue to search:

0 ~- Find next control file in Task Queue
4 - Find next control file in Receive

Queue
2 - Find next control file in Log Queue

return AX 0, if successful, or negative error code
BX event handle for this file

Open a File
BX event handle
cx receive file number

0 - the Receive Control File
- first received file
- second received file
- third received file
~ nth received file

DL queue:
0 - open control file in Task Queue
1 - open control file in Receive Queue or the

received data

BwnNnre

file specified in the CX register.

o8h

09h

2 - Open control file in Log Queue.
return AX 0 if successful, or negative error code

BX DOS file handle for the requested file
Delete a File
BX event handle
cx receive file number

0 - delete all files associated with a specific
Receive Control File {including the RCF)

1 - delete first received file associated with
the event handle

2 - delete the second received file associated
with the event handle.

n - delete the nth received file associated with
the event handle

DL queue:
0 - delete control file in Task Queue
1 - delete a file or files associated with an

event in the Receive Queue.
2 - delete control file in Log Queue. It is

strongly recommended that this function NOT
be used to delete individual Log Control
Files to maintain the integrity of the log.

return AX 0 if successful, or negative error code
Delete All Files (in a queue)
DL queue:

0 - delete all control files in the Task Queue

OLYMPUSEX.1015 - 126/393

OLYMPUS EX. 1015 - 127/393

120

OAh

OBh

OcH

ODH

OEH

OFh

10h

lih

The Programmer’s Technical Reference
1 - delete all control files in the Receive Queue

and all received files
2 - delete all control files in the Log Queue

return AX 0 if successful or negative error code
Get Event Date
BX event handle of event whose date you want to get
DL queue:

0 -—- task queue
1 - receive queue
2 - log queue

return AX
Cx year (1980-2099)
DH month (1-12)
DL day (1-31)

Set Task Date
BX event handle
cx year (1980-2099)
DH month (1~12)
DL . day (1-31)
return AX
Get Event Time
BX event handle
DL queue:

0 - task queue
1 - receive queue
2 - leg queue

return AX
CH hour (0+23)
cL Minutes (0-59)
DH seconds (0-59)DL QO

Set Task Time
BX event handle
CH hour (0-23)
cL minutes (0-59)
DH seconds (0-59)
DL unused
return AX
Get External Data Block
DS:DX points to a 256-byte EDB area
return AX
note EDB area is filled with the External Data Block

0 if successful or negative error code

0 if successful or negative error code

0 if successful or negative error code

© if successful or negative error code

0 if successful or negative error code

block format: (values in decimal)

offset Length Description
0 1 CAS major version number
1 1 CAS minor version number .
2 68 ASCIIZ path to directory containing

Resident Manager and CAS software.
The path must end with a backslash |

70 13 ASCIIZ name of current phonebook (the
CAS subdirectory is assumed)

83 13 AZCIIZ name of current logo file (the
CAS subdirectory is assumed)

96 32 ASCIIZ default sender name
128 21 ASCIIZ CSID (CCITT fax device ID) i
149 107 Reserved

Get/Set Autoreceive State
DL function code: /

0 - get current autoreceive state
1 - set current state to value in DH ’
DH

return AX
rings before answer or 0 to disable
current state or negative error code
0 - Autoreceive disabled
positive # - # rings before hdw answers

Get Current Event Status
DS:DxX pointer to a 444 byte status area
return AX

BX
0 if successful or negative error code
number of the current event (AX=0)

Get Queue Status
DL queue:

Q - find status of Task Queue

OLYMPUSEX.1015 - 127/393

OLYMPUS EX. 1015 - 128/393

12h

13h

14h

15h

Interrupts 22h Through 86h , 121

1 - find status of Receive Queue
2 - find status of Log Queue

return AX # changes to queue since Resident Manager
started or negative error code If
changes exceeds 7FFFH, the count begins
again at 0.

BX current # of Control Files in queue
cx current # of received files

Get Hardware Status
DS:DxX pointer to a 128-byte status area

‘return AX 0 if successful, negative if not
pDS:DX pointer to filled 128-byte status area
Run DiagnosticsDL Mode

0 - report progress of diagnostics
1 ~ start running diagnostics

return if DL=1, AX=0 or a negative error code.
if DL=0, AX=40h or positive number indicating

diagnostics passed. A negative value
indicates failure and containes the
error code

Move Received File
BX event handle
cx receive file number

(must be nonzero to specify a received file)1 - first received file
2 - second received file
3 - third received file
n - nth received file

DS:DxX pointer to new ASCIIZ pathname and
filename. This file must not exist already

return AX 0 if successful or negative error code
note The path to the new directory must exist. This

function cannot create directories.
Submit a Single File to Send
DS:DX | pointer to variable-length data area
return AX positive event handle or neg. error code
note 1. variable-length data area format:

Offset Length Description
0 1 Transfer type:

0 - 200x200 dpi, facsimile mode
1 ~ 100x200 dpi, facsimile mode
2 - file transfer mode
3-127 - Reserved.

1 1 Text size (if ASCII file, fax mode)0 - 80-column
1 - 132-column
2+127 - reserved .
time to send, in DOS file time format
date to send, in DOS file time format
note: Setting both the time and date
fields to 0 schedules the file to be
sent immediately

6 32 ASCIIZ Destination Name (To: field)
38 80 ASCIIZ pathname of the file to send
118 47 ASCIIZ phone number to call
165 64 ASCIIZ application-specific tag field
229 #1 reserved; set to zero
230 1 cover page flag:

0 - don’t send cover page
1 - send cover page
2-127 - Reserved

231 23 reserved; set to zero
254 var ASCIIZ cover text (if offset 230=1)

2. The individual fields have the same meaning as ina Task Control File

3. You must set all fields, except for the
Application-Specific Tag field, before calling
this function. However, you can set the
Destination Name and Cover Text fields to an
empty string 16h-80h Reserved by Intel for future

BN NN

OLYMPUSEX.1015 - 128/393

OLYMPUS EX. 1015 - 129/393

122 The Programmer’s Technical Reference . |1

expansion

MSDOS 2Fh functions 01h (PRINT), 02h (ASSIGN), 10h (SHARE):return AX Error
Codes Description
Olh invalid function number
02h file not found
03h path not found
04h too many open files
05h access denied
06h invalid handle
08h queue full
09h busy
och name too long
OFh invalid drive was specified

CF clear (0) if OK
set (1) if error - error returned in AX

note 1. The multiplex numbers AH=0h through AH=7Fh are reserved for DOS.
Applications should use multiplex numbers 80h through OFFh.

2. When in the chain for int 2Fh, if your code calls DOS or if you execute ;
with interrupts enabled, your code must be reentrant/recursive. |

3. Important! In versions of DOS prior to 3.0, the int 2Fh vector was |
initialized to zero rather than being pointed into the DOS service area.
You must initialize this vector manually under DOS 2.x.

Miscellaneous Interrupts - in numeric order
Interrupt 30h FAR jumpinstruction for CP/M-style calls
note The CALL5entry point does a FAR jumpto here (not a vector!)

Interrupt 31h Unknown

Interrupt 32h Unknown

Interrupt 33h Used by Microsoft Mouse Driver Function Calls
See Chapter 14.

Interrupt 3Fh Overlay Manager Interrupt (Microsoft LINK.EXE)
Default overlay interrupt; may be changed with LINK commandline switch.

Interrupt 40h Hard Disk BIOS
Pointer to disk BIOS entry when a hard disk controlleris installed. The BIOS routines use int
30h to revectorthe diskette handler (original int 13h) here so int 40 may be used for hard disk
control. :

Interrupt 41h Hard Disk Parameters
Pointerto first Hard Disk Parameter Block, normally located in the controller card’s ROM.This 4
table may be copied to RAM and changed,andthis pointer revectoredto the newtable.

note 1. XT, AT,XT/2, XT/286, PS/2 except ESDI disks
2. format of parameter table is: i|

word cylinders i
byte heads
word starting reduced write current cylinder (XT only, 0 for others)
word starting write pre-comp cylinder
byte maximum ECC burst length
byte control byte

bits 0-2 drive option (XT only, 0 for others)
3 set if more than 8 heads |
4 always 0
5 set if manufacturer’s defect map on max cylinder+l
6 disable ECC retries

OLYMPUSEX.1015 - 129/393

OLYMPUS EX. 1015 - 130/393

Anterrupts 22h Through 86h 123
7 disable access retries

byte standard timeout (XT only, 0 for others)
byte formatting timeout (XT only, 0 for others)
byte timeout for checking drive (XT only, 0 for others)

_ word landing zone (AT, PS/2)
byte sectors/track (AT, PS/2)
byte QO (zeroes)

3, normally vectored to ROM table when system is initialized.

Interrupt 42h Pointer to screen BIOSentry
EGA,VGA,PS/2. Relocated (by EGA,etc.) video handler(original int 10h). Revectors int 10
calls to EGA BIOS.Also used by Zenith Z-100

Interrupt 43h Pointer to EGA graphics character table
‘The POSTinitializes this vector pointing to the default table located in the EGA ROM BIOS.
(PC-2 and up). Notinitialized if EGA not present. This vector was referred to (mistakenly) as
the Video Parameterstable in the original EGA BIOSlistings.

Interrupt 44h Pointerto graphics character table
(0:0110h) This table containsthe dotpatternsfor the first 128 characters in video modes4,5, and
6, and all 256 charactersin all additional graphics modes. Notinitialized if EGA notpresent.

1. EGA/VGA/CONV/PS- EGA/PCjr fonts, characters 00h to 7Fh.
2. Novell NetWare - High-Level Language API.
3. This interrupt is not used bysome EGAcards.
4, Also used by Zenith Z-100.

Interrupt 45h Reserved by IBM (not initialized)
also used by Zenith Z-100

Interrupt 46h Pointer to second hard disk parameter block
AT, XT/286, PS/2 (see int 41h) (except ESDIharddisks) (not initialized unless specific user soft-
ware calls forit)

Interrupt 47h Reserved by IBM (notinitialized)

Interrupt 48h Cordless Keyboard Translation
(0:0120h) This vector points to codeto translate the cordless keyboard scancodes into normal
83-key values, The transtated scancodesare then passed to int 9. (not initialized on PC or AT)
(PCjr, XT [never deliyered])

Interrupt 49h Non-keyboard Scan Code Translation Table Address (PCjr)
(0:0124h) This interruptis used for operation of non-keyboard devices on the PCjr, such as the
Keystronic Numeric Keypad, This interrupt hasthe addressofatable used to translate non-key-
board scancodes(greater than 85 excepting 255). This interrupt can be revectoredby a user ap-
plication. IBM recommendsthatthe default table be stored at the beginning of an application
that required revectoringthis interrupt, and that the default table be restored when the applica-
tion terminates. (not initialized on PC or AT)

The PCjr BIOScan interpret scancodesother than those generated by the keyboardto allow for
expansion. The keyboard generates scancodes from O1hto 055h,including OFFh. Any scancodes
above 55h (56h through 7Eh for make codes and OD6h through OFEhfor break codes)are pro-
cessed in the following manner:

1. ifthe incoming make code falls within the range ofthe translate table whose addressis
pointed to byint 49h,it is translated into the corresponding scancode. Any incoming break

OLYMPUSEX.1015 - 130/393

OLYMPUS EX. 1015 - 131/393

124 The Programmer's Technical Reference

codes above 0D5h are ignored.
2. ifthe new translated scancodeis less than 56h,it is processed by the BIOSas a keyboard

scancode and the samedata is placed in the BIOS keyboard buffer.
3. ifthe translated scancodeis higher than 55h or the incoming scancodeis outside the range of

thetranslate table, 40h is added creating a new extended scancode. The extended scancodeis
placed in the BIOS keyboardbufferwith the character code of 00h (NUL). This utilitizes the
range of96h through OBEhfor scancodes 56h through 7Eh.

The default translate-table maps scancodes 56h through 6Ah to existing keyboard values. Codes
6Bh theough OBEh are mapped (by adding 40h) to extended codes OABh through OFEhsince
they are outside the range of the default translatetable.

The formatof the translate tableis:
0 length - the number of nonkeyboard scancodes that are

mapped within the table (from 1 to n)
1 to n word high byte 00h (NUL) byte scancode with low order

byte representing the scancode mapped values relative to
their input values within the range of 56h through 7Eh

With this layout, all keyboard scancodes can be intercepted through int 9h and and non-key-
board scancodescan be intercepted throughint 48h.

Interrupt 4Ah Real-Time ClockAlarm (Convertible, PS/2)
(not initialized on PC or AT) Invoked by BIOS whenreal-time clock alarm occurs.

Interrupts 4Bh-4DhReserved by IBM (notinitialized)

Interrupt 4Eh Reserved by IBM (notinitialized)
Used instead of int 13h for disk I/O on TI Professional PC

Interrupt 4Fh Reserved by IBM (notinitialized)

Interrupt 50-57 IRQ0-IRQ7 Relocation
IRQO-IRQ7relocated by DesQview (normally not initialized)
TROQO-IRQ7 relocated by IBM 3278 Emulation Control] Program

Interrupt 58h Reserved by IBM (notinitialized)

Interrupt 59h Reserved by IBM (notinitialized)
GSS Computer Graphics Interface (GSS*CG])
entry DS:DX Pointer to block of 5 array pointers
return CF

AX ' yeturn code
Cr
AX error code

note 1. Int 59h is the means by which GSS*CGI language bindings communicate with \GSS*CGI device drivers and the GSS*CGI device driver controller. :
2. Also used by the IBM Graphic Development Toolkit

Interrupt 5Ah Reserved by IBM (notinitialized)
IBM Cluster Adapter BIOSentryaddress

Interrupt 5Bh Reserved by IBM (notinitialized)

Interrupt 5Ah ClusterAdapter BIOS entry address |
(normally notinitialized) i

Interrupt 5Bh Reserved by IBM (notinitialized)
Used by cluster adapter?

OLYMPUSEX.1015 - 131/393

OLYMPUS EX. 1015 - 132/393

Interrupts 22h Through 86h 125

Interrupt 5Ch NETBIOSinterface entry port, TOPS
See Chapter 13

Interrupts 5Dh -5Fh Reserved by IBM (notinitialized)

Interrupt 60h-67h User Program Interrupts
(available for general use) Various major programs makestandardizeduse of this group of in-
terrupts. Details of commonuse follows:

Interrupt 60h 10-Net Network
See Chapter13.

Interrupt 60h FTP Driver - PC/TCP Packet Driver Specification
See Chapter 13.

Interrupt 67h Used by Lotus-Intel-Microsoft Expanded Memory Specification
and Ashton-Tate/Quadram/AST Enhanced Expanded Memory Specification. See Chapter 10.

Interrupt 68h Not Used (notinitialized)
APPC/PC NetworkInterface. See Chapter 13.

Interrupts 69h -6Bh Not Used (notinitialized)

Interrupt 6Ch System Resume Vector (Convertible)
(not initialized on PC) DOS 3.2 Realtime Clock update

Interrupt 6Dh Not Used (notinitialized)
Paradise VGA- internal

Interrupt 6Eh Not Used(notinitialized)

Interrupt 6Fh 10-Net API
See Chapter 13.

Interrupt 70h IRQ 8, Real Time Clock Interrupt (AT, XT/286, PS/2)

Interrupt 71h IRQ 9, Redirected to IRQ 8 (AT, XT/286, PS/2)
LAN Adapter 1 (rerouted to int OAh [IRQ2] by BIOS)

Interrupt 72h IRQ 10 (AT, XT/286, PS/2) Reserved

Interrupt 73h IRQ 11 (AT, XT/286, PS/2) Reserved

Interrupt 74h IRQ 12 Mouse Interrupt (PS/2)

Interrupt 75h IRQ 13, Coprocessor Error (AT)
BIOS Redirects NDPerrors to int 2 (NMI).

Interrupt 76h IRQ 14, Hard Disk Controller (AT, XT/286, PS/2)

Interrupt 77h IRQ 15 (AT, XT/286, PS/2) Reserved

Interrupts 78h-79h Not Used

Interrupt 7Ah Reserved
Novell NetWare - Low-Level API
AutoCAD Device Interface

OLYMPUSEX.1015 - 132/393

OLYMPUS EX. 1015 - 133/393

126 The Programmer’s Technical Reference

Interrupt 7Bh-7Eh Not Used by IBM

Interrupt 7Ch REXX-PC API
IBM REXX-PC macro language
entry

return
note l.

AX o000h Initialize
DS:SI pointer to null terminated name of program to be executed
EB: BX pointer to null terminated argument string to be passed to the

program
DX:DI pointer to an environment control block in the format:

dword offset in segment to signature string
The segment is that contained in DX and the signature is
the uppercase ASCIIZ string ‘REXX’.

dword offset in DX to environment name ASCIIZ string
note: The environment name will be truncated if longer
than 32 characters.

dword offset in DX to the file extension ASCIIZ string
adword path search - word value of O or non-zero.

This controls the searching of the path for commands that
might be REXX programs. 0 means no search made, n-zero
means search first.

dword X‘AAAA’
This is a signature that allows REXXPC88 to call your own
defined routine when a command expression.needs to be
processed.

DD Segment:offset (standard INTEL format) of environment
work buffer, the first double word of the buffer MUST be
the entry point address of the environment service
routine to be called. The rest of the buffer may be used
in any way you choose and will NOT be examined or
modified by REXXPC88.none

The only way to tell if the program exists and can be executed is by
examining a value returned by the program in the next call described
below. If the program returns an end of program indication and a string
was expected instead, it means that the program was not found or could
not be executed for some reason.

. All registers except SS and SP are destroyed. The caller must save any
other registers of interest.

Function 01h Interpret REXX Command

entry
return

note

This call tells REXXPC88 to interpret the REXXPC88 program until a
value is produced.
AX 0001h

DS:Dx points to a result string, terminated by a CR + LF + NULL. The
final result string (which marks the end of the program)
consists of nothing but EOF + NULL. REXXPC88 will continue to
return this ‘end of program’ string until reinitialized via an
AX=01h call as described above.

All registers except SS and SP are destroyed. The caller must save any
other registers of interest.

Function 02h Termination

entry

return
note

This call allows resident REXXPC88 extensions to terminate execution of a
REXXPC88 program, typically after detecting an error.AX 0002h

DS:SI points to null terminated string to be displayed as an error
message before terminating the REXXPC88 program.none

Terminates the REXXPC88 program and returns control to DOS.

Function 03h Load

entry

This call tells REXXPC88 to look up a program variable and return its
current value (if any).
AX 0003h

DS:SI points to null terminated name of REXXPC88 program variable.
DS:DX points to the null terminated string value of the program

variable. DX is zero if the program variable is currently
undefined. This string is in REXXPC88’s data area and must he
treated as read-only.

OLYMPUSEX.1015 - 133/393

OLYMPUS EX. 1015 - 134/393

_Interrupts 22h Through 86h 127
return none

note 1. All registers except SS and SP are destroyed. The caller must save any
-other registers of interest.

Function 04h Store

' This call tells REXXPC88 to store a null terminated string as the value
of a program variable.

entry AX 0004h
DS:SI points to null terminated name of REXXPC88 program variable
ES: BX points:to null terminated string to be assigned to the variablereturn none

note 1. The string is copied into REXXPC88’s data dictionary. If there is
insufficient storage to store the string, REXXPC88 terminates execution
of the program with an error message and returns to DOS.

2. Registers: all registers except SS and SP are destroyed. The caller must
save any other registers of interest.

Function 05h User-Written Extensions
entry AX o0005h

SS:BP points to a C stack frame containing a two-byte pointer to the
null terminated function name, a two-byte integer specifying
the number of arguments, and a two-byte pointer to an array of
pointers (each two bytes) to the arguments (each argument is a
null terminated string).

return DS:SI must point to a null terminated result string. A pointer of NIL
(DS = 0, SI = 0) is reserved by REXXPC88 and indicates that ‘no
REXXPC88 extensions answered the function’.

note 1. Registers: all registers except SS, SP, and BP are available for use.
2. Stack: Since the amount of REXXPC88 stack space remaining for growth

can’t be ascertained by the user extension program, the user may wish to
switch to a local stack if he requires more than about 128 bytes of
stack growth.

Function 06h Queue

This call tells REXXPC88 to place data on the data or external interrupt
queue either FIFO or LIFO.

entry AX 06h
BH 00h Internal data queue accessible via PULL and PARSE PULL

Olh External interrupt queue accessible via LINEIN(EXQUE)
BL 00h Queue data FIFO on selected queue

Olh Queue data LIFO on selected queue
DS:SI points to null terminated string to be queued.

return AX 0000h Message queued successfully.
ooolh No REXXPC88 program running at current time. Message not

queued.
0002h Not enough storage available for message. Message not

queued.
0003h Either BH (queue number) or BL (FIFO/LIFO flag) out of

range. Message not queued.
note 1. For the Internal data queue a string may not exceed 127 characters.

“2. For the External int. queue a string may not exceed available storage.
3. Registers: all registers except SS and SP are destroyed. The caller must

save any other registers of interest.

Function 07h Check for Loaded Extension

This call provides a way for a REXXPC88 extension to find out if a copy
is already loaded, and to exchange information with a resident version.

entry AX 0007h
SS:BP points to a C stack frame containing a two-byte pointer to the

null terminated name of the REXXPC88 extension.
return If the extension is already loaded, then DS:SI points to an ASCIIZ string

‘1’, and other registers are used as desired by the extension to
communicate with its non-resident copy. (Generally, this involves
pointing ES:BX to the resident portion’s entry point), If the extension
is not yet resident, then DS:SI points to an ASCIIZ ‘0°.

note Registers: all registers except SS, SP and BP are available for use.

Function 08h Reserved
This call is reserved for communication between REXXSYS.SYS and REXXIBMR.

entry AX 0008h
return none

OLYMPUSEX.1015 - 134/393

OLYMPUS EX. 1015 - 135/393

128 The Programmer’s Technical Reference

entry AX oo08hreturn none
Function 09h Check for REXX Installed

This call provides external applications a way to determine if REXXIBMR
is installed.

entry AX 09h
return AX OFFFFh REXXIBMR is not installed

AX QAABAh REXXIBMR is installed
note It is assumed that your application will inspect the value of the 7Ch

interrupt vector prior to issuing this interrupt. If the vector is
0000:0000 then REXXIBMR is not installed and this function will cause
the system to crash.

Function 0OAh Uninstall resident version of REXX

This call is used to uninstall a resident version
entry AX oooaAh

BX OAAAAhreturn AX 0000h Resident version uninstalled
000ih Resident version cannot uninstall, as one interrupt

vector has been modified by some other program in a non-
conforming manner.

OFFFFh The installed resident version does NOT support
the uninstall request code (i.e., it is pre 0.55 level).

Interrupt 7Fh IBM 8514/A Graphics Adapter API
59 API functionsavailable, parameters unknown.

1. Used by second copy ofCOMMANDsetwith SHELL=
2. Not used by COMMAND/Cat DOSprompt

Interrupt 80h-85h Reserved by BASIC
Note Interrupts 80h through QEChare apparently unused andnotinitialized in most clone

systems.

Interrupt 86h Int 18 when relocated by NETBIOS

Interrupt 86h-0F0h Used by BASIC when BASICinterpreter is running

Interrupt 0E0h Digital Research CP/M-86function calls

Interrupt 0OE4h Logitech Modula-2 v2.0 Monitor Entry
entry AX 05h monitor entry

06h monitor exit
BX priority

return unknown

Interrupt OEFh GEMinterface (Digital Research)
entry cx 0473h

DS:DX pointer to GEM parameter block
note no other parameters are known

Interrupt 0F0h unknown
1. Used by secondary copy of COMMANDwhen SHELL=set
2. Notused by COMMAND/Cat DOS prompt
3. Used by BASIC while in interpreter
Interrupts OFLh-OFFh (absolute addresses 3C4h-3FFh)
Location of Interprocess Communications Area

Interrupt 0F8h Set Shell Interrupt (OEM)
Set OEM handlerfor int 21h calls from OF9h through OFFh
entry AH OF8h

DS:DX pointer to handler for Functions OF9h thru OFFh
note 1. To reset these calls, pass DS and DX with OFFFFh. DOS is set up to allow

ONE handler for all 7 of these calls. Any call to these handlers will

OLYMPUSEX.1015 - 135/393

OLYMPUS EX. 1015 - 136/393

Interrupts 22h Through 86h 129

result in the carry bit being set and AX will contain 1 if they are not
initialized. The handling routine is passed all registers just as the
user set them. The OEM handler routine should be exited through an IRET.

2. 10 ms interval timer (Tandy?)

Interrupt OF9h Reserved
First of 8 SHELLservice codes, reserved for OEM shell (WINDOW);use like HP Vectra user
interface?

Interrupt OFAh USARTready (RS-232C)

Interrupt OFBh USARTRSready (keyboard)

Interrupt 0FCh Unknown

Interrupt OFDhreservedfor user interrupt

Interrupt OFEh reserved by IBM

Interrupt OFFh reserved by IBM

OLYMPUSEX.1015 - 136/393

OLYMPUS EX. 1015 - 137/393

DOS Control Blocks and Work
Areas

DOS Address Space
Contrary to popular belief, DOSis notlimited to 640k ofwork space. This constraint is enforced _
by the mapping of ROM and video RAM into the default 1 megabyte CPU address space. Some ~
MSDOScompatible machines, such as the Sanyo 55x series, can have as much as 768k of con-
tiguous DOS workspace with the appropriate option boards. Since DOS has no real memory
management, it cannot deal with a fragmented workspace. Fragmented RAM (such as RAM
mappedinto the option ROM address space) can be dealt with as a RAMdiskor other storage
area by using a device driver or other software.

The 80386 CPU and appropriate control software can create a DOS workspace of more than
one megabyte. Certain add-on boards can also add more than a megabyte ofworkspace, but only
for specially written software. Since these are all proprietary schemes,little informationis avail-
able at present.

Storage Blocks
A storage block is used by DOSto record the amountand location of allocated memory within
the machine’s address space,

A storage block, a Program SegmentPrefix, and an environmentarea are built by DOSfor each
program currently resident in the address space. The storage blockis used by DOSto record the
address range of memory allocated to a program.It is used by DOStofind the nextavailable area
to load a program andto determineif there is enough memory to run that porogram. When a
memory areais in use,it is said to be allocated, Then the program ends,or releases memory,itis
said to be deallocated.

A storage block contains a pointer to the Program SegmentPrefix associated with each pro-
gram. This control block is constructed by IBMDOSfor the purpose of providing standardized
areas for DOS/program communication. Within the PSP are areas which are usedto save inter-

OLYMPUSEX.1015 - 137/393

OLYMPUS EX. 1015 - 138/393

DOS Control Blocks and WorkAreas , 131

rupt vectors, pass parameters to the program, record disk directory information, and to buffer
disk reads and writes. This control blockis 100h bytes in length andis followed by the program
module loaded by DOS.

The PSP contains a pointerto the environmentarea for that program.This area contains a copy
of the current DOS SET, PROMPT, COMSPEC,and PATH valuesas well as any user-set vari-
ables. The program may examine and modify this information as desired.

Eachstorage blockis 10h byteslong, although only 5 bytes are currently used by DOS.Thefirst
byte contains 4Dh(a capital M) to indicate that it contains a pointer to the next storage block. A
5Ah (a capital Z) in the first byte of a storage block indicatres there are no more storage blocks
following this one(it is the end of the chain). The identifier byte is followed by a 2 byte segment

numberfor the associated PSP for that program. The next 2 bytes contain the numberof seg-
ments whatare allocated to the program.If this is not the last storage block, then anotherstor-
age block follows the allocated memory area.

Whenthe storage block contains zero for the numberof allocated segments, then no storage is
allocated to this block andthe next storage block immediately followsthis one. This.can happen
when memory is allocated and then deallocated repeatedly.

IBMDOSconstructs a storage block and PSP before loading the commandinterpreter (default
is COMMAND.COM).

If the copy of COMMAND.COMis a secondary copy,it will lack an environment address at
PSP +2Ch.

Disk Transfer Area (DTA)

DOSusesan area in memory to contain the data forall file reads and writes that are performed
with FCB function calls. This are is known as the disk transfer area. This disk transfer area

(DTA)is sometimescalled a buffer. It can be located anywhere in the data area ofyour applica-
tion program andshouldbeset by your program.

Only one DTA can bein effect at a time, so your program must tell DOS what memory location
to use before using any disk read or write functions. Use function call 1Ah (Set Disk Transfer
Address) to set the disk transfer address. Use function call 2Fh (Get Disk Transfer Address) to
get the disk transfer address. Once set, DOS continuesto use that area for all disk operations
until another function call 1Ah is issued to define a new DTA. Whena programis given control
by COMMAND.COM,a default DTA large enough to hold 128bytes is established at 80h into
the program’s Program SegmentPrefix.

Forfile reads and writes that are performed with the extended function calls, there is no need to
seta DTA address. Instead, specify a buffer address whenyouissue the read orwrite call.

Program Segment Prefix
When DOSloadsa program,it first sets aside a section of memory for the program called the
program segment, or code segment. Then it constructs a control block called the program seg-
mentprefix, or PSP, in the first 256 (100h) bytes. Usually, the program is loadeddirectly after the
PSPat 100h.

OLYMPUSEX.1015 - 138/393

OLYMPUS EX. 1015 - 139/393

132 The Programmer's Technical Reference

The PSP contains various information used by DOSto help run the program. The PSPis always
located at offset O within the code segment. When a program recieves control certain registers
are set to point to the PSP. For a COMfile,all registers are set to point to the beginningof the |
PSP and the program begins at 100h. For the more complex EXEfile structures, only DS and ES
registers are set to point to the PSP. The linker determinesthe settings for the CS, IP, SS, and SP
registers and mayset the starting location in CS:IP to a location other than 100h.

IBMBIOprovides an IRET instruction at absolute address 847h for use as a dummyroutine for
interrupts that are not used by DOS.Thislets the interruptsdo nothing until their vectorsare re-
routed to their appropriate handlers.

The PSP (with offsets in hexadecimal) is formattedas follows:
= undocumented)

PROGRAM SEGMENTPREFIX
offset size CONTENTS

00h 2 bytes int 20h
02h 2 bytes segment address, end of allocation block
04h 1 byte reserved, normally 0
oSh 5 bytes FAR call to MSDOS function dispatcher {int 21h)
OAh 4 bytes previous termination handler interrupt vector (int 22h)
OEh 4 bytes previous contents of ctrl-c interrupt vector (int 23h)
12h 4 bytes prev. critical error handler interrupt vector (int 24h)
16h 22 bytes reserved for DOS |

* 2 bytes (16) parent process’ PSP i
* 20 bytes (18) ‘handle table ‘ used for redirection of files i

2Cch 2 bytes segment address of the program's environment block
2Eh 34 bytes reserved, DOS work area

* 4 bytes (2Eh) stores the calling process's stack pointer when switching
to DOS’s internal stack.

* (32h) DOS 3.x max open files
* 2 bytes (3Ah) size of handle table {|these functions are in here
* 4 bytes 3ch) handle table address Jout reported addresses vary

50h 3 bytes int 21h, RETF instruction
53h 2 bytes reserved - unused?
55h 7 bytes reserved, or FCB#1 extension
5ch 16 bytes default unopened File Control Block #1
6Ch 16 bytes default unopened FCB #2 (overlaid if FCB #1 opened)
80h 1 byte parameter length (number of chars entered after filename)
8lh aos parameters
OFFh 128 bytes command tail and default Disk Transfer Area (DTA)

1. Thefirst segmentofavailable memory is in segment (paragraph) form. For example, 1000h
would respresent 64k.

2. Offset 2Ch contains the segment address of the environment.

3. Programs mustnot alter any part of the PSP below offset 5Ch.

PSP (comments)

offsetO0h contains hex bytes ‘CD 20’, the int 20h opcode. A program can end by making a jump
to this location when the CS points to the PSP. For normalcases,int 21h/fn4Ch
should be used.

offsetO2h contains the segment-paragraph addressofthe end ofmemory as reported by DOS.
(which may notbe the sameas thereal end ofRAM). Multiply this numberby 10h or
16 to get the amountofmemory available. ex. 1000hwould be 64k.

OLYMPUSEX.1015 - 139/393

OLYMPUS EX. 1015 - 140/393

DOSControl Blocks and WorkAreas 133

offset04h ‘reserved or used by DOS’according to Microsoft

offsetO05h containsa longcall to the DOSfunction dispatcher. Programs mayjumpto this
address instead ofcalling int 21h if theywish. Used by BASIC and other CPM
object-code translated programs. Itisslowerthanstandardint21h. «

offset OAh, OEh, 12h
vectors (IP, CS) ©

offset16h PSP:16his the segment address of the invoking program’s PSP, which * will most
often be COMMAND.COMbutperhaps maybe a secondary non-permanent
COMMANDora multitasking shell, etc. At any rate, the resident shellversion of
COMMAND.COMhas PSP:16h = PSP, which indicates ‘don’t look any lowerin
memory’ for the commandinterpreter. To find the beginning of the allocation chain,
lookbackwards through the PSPlink addressesuntil the link addressis equalto the
PSP segmentaddressthatit resides in. This should be COMMAND.COM.To find
COMMAND.COM's environment,look at the word stored at offset OBD3h
(PC-DOS3.1 only). This is a segment address, so look there at offset0.

18h handle alias table (networking). Also youcan make PRN go to CON,* CONgo to
PRN, ERR go to PRN,etc. OFFh = available.

offset2Ch is the segment:offset address of the environmentfor the program usingthis
particular PSP. This pointer does not point to COMMAND.COM’s environment
unlessit is asecond copy of COMMAND.

offset2Eh the DWORDatPSP+2Ehis used by DOSto store the calling process’s * stack
pointer whenswitching to DOS’s ownprivate stack- at the end ofa DOSfunction
call, SS:SPis restored from this address.

offset 32h, 34h

* table ofnumberoffile handles (up to 64k ofhandles!)

offset40h 2 byte field points to the segment address ofCOMMAND.COM'’s PSPin *‘weird’
EXEfiles produced by Digital Research RASMPC/LINKPC.EXEfiles created with
these tools can causeall sorts ofproblems with standard MSDOSdebuggingtools.

offset50h contains a long call to the DOSint 21 function dispatcher.

offset 5Ch, 65h, 6Ch

contain FCB informationfor use with FCB functioncalls. Thefirst FCB may overlay
the secondifit is an extended call; your program should revectorthese areas to asafe
place ifyou intend to use them.

offset5Ch 16 bytesfirst command-lineargument(formatted as uppercase 11 character
filename)

offset6Ch 16 bytes second command-line argument (formatted as uppercase 11 character
filename)

OLYMPUSEX.1015 - 140/393

OLYMPUS EX. 1015 - 141/393

134 The Programmer’s Technical Reference

offset 7Ch-7Fh

‘reserved or used by DOS’

offset80h 1bytenumber ofbytes in commandline argument

offset 80h, 81h

contain the length and value ofparameters passed on the commandline.

offset81h 97 bytes unformatted commandline and/or default DTA

offset OFFh contains the DTA

_ The PSPis created by DOSforall programsand contains mostof the information you need to
know about a program running. You can change the environment for the current process, how-
ever, but for the parent process, DOSin this case, you needto literally backtrack to DOSor
COMMAND.COM's PSP. In orderto get there you must look at the current PSP. At offset 16h
of the current PSP segmentthere is a 2 byte segment address to the parent or previous process
PSP. From there you can manipulate the enviromentby looking atoffset 2Ch.

Try this under debug and explore the addresses locatedat these offsets;

offset length description
16h 2 segment address of parent process PSP
2Ch 2 segment address of environment block.

Remember under debug you will have to backtrack two times.

Programs Parent
command .com none
debug.com command.com
program debug.com

Memory Control Blocks
DOSkeepstrack of allocated and available memory blocks, and provides four function calls for
application programs to communicate their memory needs to DOS.Thesecalls are:

48h --- allocate memory (MALLOC)
49h --- free allocated memory
4Ah --- modify allocated memory blocks (SETBLOCK)
4Bh --- load or execute program (EXEC)

DOS manages memory as follows:

DOSbuildsa control block for each block of memory, whetherfree or allocated. For example,if
a program issues an ‘allocate’ (48h), DOSlocates a block of free memory thatsatisfies the re-
quest, and then ‘carves’ the requested memory out of that block. The requesting program is
passed thelocationofthefirst byte of the block that was allocated for it - a memory management
control block,describing the allocated block, has been built for the allocated block and a second
memory managementcontrolblock describes the amount ofspaceleft in the original free block
of memory. When you do a SETBLOCKto shrink an allocated block, DOS builds a memory
managementcontrol block for the area being freed and addsit to the chain of control blocks.
Thus, any program that changed memory thatis not allocatedto it stands a chanceofdestroying
a DOS memory managementcontrol block. This causes unpredictable results that don’t show
up until an activity is performed where DOSusesits chain ofcontrol blocks. The normalresult is

OLYMPUSEX.1015 - 141/393

OLYMPUS EX. 1015 - 142/393

DOS Control Blocks and WorkAreas , 135

a memory allocation error, which meansa system reset will be required.

Whena program (commandor application program)is to be loaded, DOSuses the EXEC func-
tion call 4Bh to perform the loading. This is the same function call that is available to applica-.
tions programsfor loading other programs. This function call has two options:

Function00h, toload and executea program (this is what the commandprocessoruses to load
and execute external commands)

Function03h, toload anoverlay (program) withoutexecutingit.

Although both functions perform their loading in the same way(relocation is performed for
EXE files) their handling ofmemory managementis different.

FUNCTION 0

For function 0 to load and execute a program, EXECfirst allocates the largest available block of
memory (the new program’s PSP will be at offset 0 in that block). Then EXECloadsthe pro-
gram. Thus, in most cases, the new program ownsall the memory from its PSP to the end of
memory, including memory. occupied by the transient parent of COMMAND.COM.Ifthe pro-
gram wereto issue its own EXEC functioncall to load and execute another program, the request
would fail because no available memory exists to load the new program into.

Note For EXE programs, the amount of memory allocatedis the size of the program’s
" memory imageplus the value in the MAX_ALLOCfield ofthe file’s header (offset OCh,

if that much memory is available. If not, EXECallocatesthe size of the program’s
memory imageplusthe value in the MIN_ALLOCfield in the header (offset OAh).
Thesefields are set by the Linker).

A well-behaved program uses the SETBLOCKfunction call when it receives control, to shrink
its allocated memory block downto the size it really needs. A COM program should remember
to set up its own stack before doing the SETBLOCK,sinceit is likely that the default stack sup-.
plied by DOSlies in the area of memory being used. This frees unneeded memory, which can be
used for loading other programs.

If the program requires additional memory during processing, it can obtain the memory using
the allocate function call andlater free it using the free memory functioncall.

Whena program is loaded using EXEC function call 00h exits, its initial allocation block (the
block beginning with its PSP) is automatically freed before the calling program regains control.
It is the responsibility of all programsto free any memory theyallocate before exiting to the call-
ing program.

FUNCTION 3

Forfunction3, to load an overlay, no PSPis built and EXEC assumesthe calling program hasal-
ready allocated memory to load the new program into - it will NOT allocate memory forit. Thus
the calling program should either allow for the loading of overlays when it determines the
amount of memory to keep whenissuing the SETBLOCKcall, or should initially free as much
memory as possible. The calling program should then allocate a block (based onthesize of the
program to be loaded)to hold the program thatwill be loaded using the ‘load overlay’ call. Note
that ‘load overlay’ does not checkto seeif the calling program actually owns the memory blockit
has been instructed to load into - it assumesthe calling program has followedtherules. If the
calling program does not own the memory into which the overlay is being loaded, there is a
chance the program being loadedwill overlay one of the control blocks that DOSuses to keep

OLYMPUSEX.1015 - 142/393

OLYMPUS EX. 1015 - 143/393

136 The Programmer’s Technical Reference

track ofmemory blocks.

Programsloaded using function 3 should not issue any SETBLOCKcalls since they don’t own
the memory they are operating in. (This memory is ownedbythe calling program.)

Because programsloaded using function 3 are given control directly by (and return contrroldi-
rectly to) the calling program, no memory is automatically freed when the called program exits.
It is up to the calling program to determine the disposition of the memory that had been occu-
pied by the exiting program. Notethatif the exiting program haditself allocated any memory,it
is responsible for freeing that memory beforeexiting.

Memory control blocks, sometimescalled ‘arena headers’ after their UNIX counterpart, are 16
bytes long. Only thefirst 5 bytes are used. 16 bytes areused for the memory control block, which
always starts at a paragraph boundary. When DOScall 48h is madeto allocate ‘x’ many para-
graphs of memory, the amountused upis actually one more thanthefigure in the BX register to
provide space for the associated memory control] block. The location of the memory control
blockis at the paragraph immediately before the segmentvalue returned in AX by the DOSint
21h/fn 48h calli.e. (CAX-1):0).

MEMORY CONTROLBLOCK
offset Size Function

0 1 byte ASCII M or 2 !
1-2 2 bytes PSP segment address of program owning this block of memory '
3-4 2 bytes Size of next MCB in 16-byte paragraphs
5-F 11 bytes unused

byte1 will always have the value of4Dh or SAh. The value 5Ah (Z)indicates the blockis the
last ina chain, all memory aboveit is unused. 4Dh (M) meansthat the block is
intermediatein a chain, the memory aboveit belongsto the next program or to DOS.

bytes2,3 hold the PSP segmentaddress ofthe program that ownsthe corresponding block of
memory. Avalue of0 meansthe blockisfree to be claimed, any other value represents
a segment address.

bytes3,4 indicate thesize in paragraphsofthe memory block. Ifyou knowthe address ofthe
first block, you can find the next block by addingthe length of the memory blockplus 1
to the segmentaddress of the contro! block. Finding the first block can be difficult, as
this varies according to the DOSversion and the configuration.

The remaining 11 bytes are not currently used by DOS,and maycontain‘trash’ charactersleft in
memory from prévious applications.

If DOS determines that the allocation chain of memory control blocks has been corrupted,it
will halt the system and display the message ‘Memory Allocation Error’, and the system will halt,
requiring a reboot.

_ Each memory block consists ofa signature byte (4Dh or 5Ah) then a word whichis the PSP value
of the ownerof the block (which allocatedit), followed by a word whichis the size in paragraphs
of the block. Thelast block has a signature of SAh. Ail others have 4Dh.If the owneris 0000 then
the blockis free.

|
t

Once a memory controlblock has been createdit should only be manipulated with the appropri- |
ate DOSfunction calls. Accidentally writing over any of the first 5 bytes of a memory control
block can cause a memory allocation error and cause the system to lock up.If the first byte is
overwritten with something other than an ‘M’ or a ‘Z’ then DOS will complain with an error re-

OLYMPUSEX.1015 - 143/393

OLYMPUS EX. 1015 - 144/393

DOS Control Blocks and WorkAreas 137

turn code of 7 signifying ‘Memory Control Blocks destroyed’. However, should you change the
ownershipor block size bytes, you've hadit.

When a .COM programisfirst loaded by DOSandgiven control, the memory control block im-
mediately preceding the Program SegmentPrefix contains the followingdata:

ID = +2!

Owner = segment address of PSP (= CS register of .cOM program)
Size = number of available paragraphs in DOS memory pool

An .EXEfile will have the following data in the memory controlblock for the program (just
prior to the PSP):

ID = 'M’

Owner = segment. address of PSP (= DS register of program)
Size = the number of paragraphs allocated to the program according to

the information in the .EXE program header

In the case of an .EXEprogramfile the amount of memory allocated dependson the contents of
the program header which informs the DOS loader how muchto allocate for each of the seg-
ments in the program. With an .EXE programfile there will always be a ‘Z’ memory control
block created in memory immediately after the end of the spaceallocatedto the program itself.
One important fact to remember about DOS memory allocation is that blocks of RAM allo-
cated by differentcalls to DOS function 48H will NOTbecontiguous. At the very best, they will
be separated by the 16 bytes of the memory control block, and at worst they could be anywherein
RAM that DOS managesto find a existing memory control block ofsufficient size to accomo-
date the memory request.

DOStreats the memory controlblocksasa kind oflinkedlist (term used loosely). It uses the ear-
lier MCBstofindthelater onesbycalculating the location ofthe next one from thesize of the
prior one. As such, erasing any of the MCB data in the chain of MCBswill upset DOSseverely,
as each call for a new memory allocation causes DOSto scan the whole chain of MCBs looking
fora free one thatis large enoughto fulfill the request.

A separate MCBis created for the DOS environmentstrings at each programload,so therewill
be many copies of theenvironment strewn through memory when you havea lot of memory resi-
dent programsloaded. The memory controlblocks for the DOS environment strings are notre-
turned to the DOS memory poolif the program goesresident, as DOSwill need to copythis en-
viroment for the next program loaded.

DOS Program Segment
Whenyouenter an external commandorcall a program through the EXECfunction call, DOS
determines the lowest available address spaceto useasthestartofavailable memory for the pro-
gram beingstarted. This areais called the Program Segment.

At offset 0 within the program segment, DOSbuilds the Program SegmentPrefix controlblock.
EXECloads the program after the Program SegmentPrefix (at offset 100h)andgivesit control.

The program returns from EXECbya jumpto offset 0 in the Program SegmentPrefix, by issuing
an int 20h,or by issuing an int 21h with register AH=00hor 4Ch,or bycalling location 50hin
the PSP with AH=00h or 4Ch.

It is the responsibility of all programsto ensurethat the CS register contains the segment ad-

OLYMPUSEX.1015 - 144/393

OLYMPUS EX. 1015 - 145/393

138 The Programmer's Technical Reference

dress of the Program SegmentPrefix when terminating by any of these methods exceptcall 4Ch.

All of these methodsresult in returning to the program that issued the EXEC. During this re-
turning process, interrupt vectors 22h, 23h, and 24h (Terminate, Ctrl-Break, and Critical Error
Exit addresses) are restored from the values saved in the PSP of the terminating program. Con-
trol is then given to the terminate address.

When a program receives control,the following conditions are in effect:

Forall programs:

1. The segment addressof the passed environmentis contained at offset 2Ch in the Program
SegmentPrefix.

2. The environmentis a series ofASCII strings totalling less than 32k bytes in the form:
‘NAME=value’ The default environmentis 160 bytes. Each string is a maximum of 127
bytes terminated bya byte of zeroes for a total of 128 bytes, and the entire set ofstrings is
terminated by another byte of zeroes. Following the byte of zeroes that terminates the set
of environmentstring is a set of initial arguments passed to a program that contains a word
count followed by an ASCIIZ string. The ASCIIZ string containsthe drive, path, and
filename.ext of the executable program. Programs mayuse this area to determine where the
program wasloaded from. The environmentbuilt by the commandprocessor (and passed
to all programsit invokes) contains a COMSPEC=string at a minimum (the parameter on
COMSPECisthe path used by DOSto locate COMMAND.COMondisk). The last PATH
and PROMPT commandsissued will also be in the environment, along with any
environmentstrings entered through the SET command.

The environmentthat you are passed is actually a copy of the invoking process’s
environment. If your application terminates and stays resident throughint 27h, you should
be awarethat the copy of the environmentpassed to youis static. Thatis, it will not change
even ifsubsequent PATH, PROMPT, or SET commandsareissued.

The size of the environment may be changed from its default of 160 bytes by using the
SHELL= commandin the CONFIG.SYSfrom in DOSversion 3.1 up, or
COMMAND.COMmaybe patchedin earlier versions.

The environmentcan be used to transfer information between processesor to store strings
for later use by application programs. The environmentis always located on a paragraph
boundary. Thisis its format:

byte ASCIIZ string 1
byte ASCIIZ string 2

byte ASCIIZ string n
byte of zeros (0)

Typically the environmentstrings have the form:

NAME = VALUE

The length of NAME or VALUEcan be anythingdesired as longasitstill fits into the 123
byte space (4 bytes are used by ‘SET’). Following the byte of zerosin the environment,a
WORDindicates the numberofother strings following. |

If the environmentis part of an EXECed commandinterpreter,it is followed by a copy of ;
the DS:DXfilenamepassedto the child process. A zero value causes the newly created /
process to inherit the parent’s environment.

OLYMPUSEX.1015 - 145/393

OLYMPUS EX. 1015 - 146/393

DOS Control Blocks and WorkAreas . 139

3. Offset 05h in the PSP contains codeto invoke the DOSfunction dispatcher. Thus, by
placing the desired function number in AH,a program can issue a long call to PSP +05h to
invoke a DOSfunction rather thanissuing an int 21h.

4. The disk transfer address (DTA)is set to 80h (default DTA in PSP).

5. File Control Blocks SCh and 6Ch are formatted from thefirst two parameters entered when
the commandwasinvoked.Notethatifeither parameter contained a path name, then the
corresponding FCBwill contain onlya valid drive number.Thefilenamefield will not be
valid.

6. Anunformatted parameterarea at 81h containsall the characters entered after the
_ command name(including leading and imbeddeddelimiters), with 80h set to the number of

characters. If the , , or | parameters were entered on the commandline,they (and the
filenames associated with them)will not appearin this area, because redirection of
standard input and outputis transparentto applications.

(For EXEfiles only)
7. DSandESregistersare set to point to the PSP.

8. CS, IPSS, and SP registersare set to the values passedbythelinker.

(For COMfiles only)
9. For COMfiles, offset 6 (one word) contains the numberofbytes available in the segment.

10. Register AX reflects the validity of drive specifiers entered with thefirst two parametersas
follows:

AH=0FFh if the second parameter contained an invalid drive specifier,otherwise AH=00h.

AL=0FFh is the first parameter contained an invalid drive specifier,otherwise AL=00h.

11. All four segmentregisters contain the segmentaddressoftheinital allocation block, that
starts within the PSP controlblock. All of user memory is allocatedto the program.If the
program needsto invoke another program through the EXECfunctioncall (4Bh),it must
first free some memory through the SETBLOCKfunctioncall to provide spacefor the
program being invoked.

12. The Instruction Pointer(IP) is set to 100h.

13. The SP registeris set to the endof the program’s segment. The segmentsizeatoffset6 is
rounded downto the paragraphsize.

14. Awordofzeroesis placed on top of the stack.

OLYMPUSEX.1015 - 146/393

OLYMPUS EX. 1015 - 147/393

DOSFile Structure

File Management Functions
Use DOSfunction calls to create, open, close, read, write, rename,find, and erase files. There
are twosets of function calls that DOS provides for supportoffile management. Theyare:

* File Control Block function calls (OFh-24h)
* Handle function calls (39h-69h)

Handle functioncalls are easier to use and are more powerful than FCBcalls. Microsoft recom-
mendsthat the handle functioncalls be used when writing new programs. DOS 3.0 up have been
curtailing use of FCB functioncalls; it is possible that future versions of DOS may not support
FCB functioncalls.

The following table comparesthe use of FCB calls to Handle functioncalls:

FCB Calls Handle Calls

Accessfiles in current Accessfiles in ANY directory
directory only.
Requires the application Doesnot require use of an FCB.
program to maintaina file Requiresa string with thedrive,
control block to open, path, and filename to open,create,
create, renameordelete rename,or deletea file. Forfile
a file. For I/O requests, I/O requests, the application program
the application program must maintain a 16bit file handle
also needs an FCB that is supplied by DOS.

The only reason an application should use FCB function calls is to maintain the ability to run
under DOS1.x. To to this, the program may use only function calls OOh-2Eh. Though the FCB
function calls are frowned upon, many of the introductory assembly language programming
texts use the FCB calls as examples.

FCB Function Calls

FCB functioncalls require the use,of one File Control Block per open file, which is maintained
by the application program and DOS. The application program supplies a pointer to the FCB

OLYMPUSEX.1015 - 147/393

OLYMPUS EX. 1015 - 148/393

DOSFile Structure . 141

andfills in the appropriate fields required by the specific function call. An FCB functioncall can
perform file managementon anyvalid drive, but only in the current logged directory. By using
the currentblock,current record, and record length fields of the FCB, you can perform sequen-
tial I/O by using the sequential read or write function calls. Random I/O can be performed by
filling in the random record andrecord length fields.

Several possible uses of FCB type calls are considered programming errors and should not be
done underany circumstances to avoid problemswithfile sharing and compatibility with later
versions ofDOS.

Someerrors are:

1. Ifprogram uses the same FCBstructure to access more than one openfile. By opening a
file using an FCB,doing I/O, and then replacing thefilenamefield in the file control block
with a new filename, a program can openasecondfile using the same FCB.Thisis invalid
because DOSwrites control information aboutthefile into the reservedfields of the FCB.

If the program replaces the filenamefield with the original filename and thentries to
perform I/O onthis file, DOS may become confused becausethe control information has
been changed. An FCB should neverbe used to opena secondfile without closing the one
thatis currently open. If more than one File Control Blockis to be open concurrently,
separate FCBs should be used.

2. A program should nevertry to use the reserved fields in the FCB,as the function of the
fields may change with different versions of DOS.

3. Adelete or a rename onafile thatis currently open is considered an error and should not
be attempted by an application program.

It is also good programmingpracticeto closeall files when I/O is done. This avoids potentialfile
sharing problemsthat require a limit on the numberoffiles concurrently open using FCB func-
tion calls.

Handle Function Calls

The recommended methodoffile managementis by using theextended ‘handle’ set of function
calls. These calls are not restricted to the current directory. Also, the handle calls allow the ap-
plication program to define the type of access that other processes can have concurrently with
the samefile ifthe file is being shared.

‘To create or opena file, the application supplies a pointer to an ASCIIZ string giving the name
and location of the file. The ASCIIZ string contains an optional drive letter, optional path, man-
datory file specification, and a terminal byte of00h. The following is an example of an ASCIIZ
string:

format: [drive][path] FILENAME.EXT,0

in MASM: db ‘A:\PATH\FILENAME.EXT’ ,0

If thefile is being created,the application program also suppliesthe attribute of thefile. This isa
set ofvalues that definesthefile read-only, hidden, system,directory, or volumelabel.

If the file is being opened, the program can define the sharing and access modesthatthefile is
opened in. The access mode informs DOS whatoperations your program will perform on this

OLYMPUSEX.1015 - 148/393

OLYMPUS EX. 1015 - 149/393

142 The Programmer's Technical Reference

file (read-only, write-only, or read/write) The sharing modecontrols the type of operations
other processes may perform concurrently on thefile. A program canalso control if a child pro-
cess inherits the open files of the parent. The sharing mode has meaning onlyif file sharing is
loaded whenthefile is opened.

To renameor deletea file, the appplication program simply needsto provide a pointer to the
ASCIIZ string containing the name and location ofthefile and another string with the new
nameifthefile is being renamed.

The open orcreate function calls return a 16-bit value referred to as the file handle. To do any
1/O toafile, the program uses the handleto referencethefile. Once a file is opened, a program
no longerneeds to maintain the ASCIIZstring pointingto thefile, nor is there any needto stay
in the samedirectory. DOSkeepstrackof the location ofthefile regardless of whatdirectory is
current.

Sequential I/O can be performed using the handle read (3Fh) or write (40h) function calls. The
offset in the file that I/O is performedto is automatically movedto the end ofwhatwasjust read
or written. If random I/Ois desired, the LSEEK (42h) function call can be used to set the offset
into the filewhere I/Ois to be performed.

Special File Handles
DOSreservesfive specialfile handles for use by itself and applications programs. Theyare:

0000h STDIN standard input device (input can be redirected)
0001h STDOUT standard output device (output can be redirected)
0002h STDERR standard error output device (output cannot be redirected)

Note: DOS opens STDERR for both writing and reading. Since STDIN
can be redirected, using STDERR to read the keyboard is a re
liable way to ensure that your program is actually reading the
keyboard, if that’s what you want to do.

0004h STDAUX standard auxiliary device
0005h STDPRN standard printer device (PRN, normally LPT1)

These handles are predefined by DOS andcan be used by an application program. They do not
need to be opened by a program, although a program canclose these handles. STDIN should be
treated as a read-only file, and STDOUT and STDERRshould betreated as write-onlyfiles.
STDIN and STDOUTcanberedirected. All handles inherited by a process can be redirected,
but not at the commandline. These handlesarevery useful for doing I/O to andfrom the console
device. For example, you could read input from the keyboard using the read (3Fh) function call
andfile handle 0000h (STDIN), and write output to the console screen with the write function
call (40h) andfile handle 0001h (STDOUT).If you wanted an output that could notbe redi-
rected, you could outputit using file handle 0002h (STDERR). This is very useful for error
messages that must be seen by a user.

File handles 0003h (STDAUX) and 0004h (STDPRN)can be both read from and written to.
STDAUXistypically a serial device and STDPRNis usually a parallel device.

Raw and Cooked File I/O

Raw and cooked modesoriginated in the Unix world and were provided with DOS 2.x+. They
apply only to character I/O (including the keyboard, screen, printer andserial ports - but not

OLYMPUSEX.1015 - 149/393

OLYMPUS EX. 1015 - 150/393

DOSFile Structure 143

block devices like disk drives), and only to the ‘new’2.x file handle I/O functions (not the old
FCBfile I/O functions). Raw modeis called ‘binary’ mode in DOS 3.x+, and cooked modeis
called ‘ASCII’. The common raw-cooked convention is from DOS2.x and other operating sys-
tems.

Thefive predefined DOSfile handles areall devices, so the mode can be changed from raw to
cooked via IOCTL. These handles are in cooked mode wheninitialized by DOS. Regularfile
handles that are notdevices are always in raw mode and cannotbe changedto cooked mode.

The predefined file handles STDIN (0000h) and STDOUT (0001h) and STDERR (0002h)are
all duplicate handles. Ifthe IOCTLfunction call is used to change the modeofany ofthese three
handles, the modeofall three handles is changed. For example, if [OCTL was used to change

. STDOUTto raw, then STDIN and STDERRwould also be changed to raw mode.

In the default cooked mode, DOS examinesthe character I/O data stream for certain special
control characters, and takes specific actionsif they are found. For example, Ctrl-Cis treated as
a Break interrupt, Ctrl-S pauses the screen display, and Ctrl-Z is treated as end-of-file. (If you
try to send Ctrl-Z to a printer through a DOSfile handle in cooked mode, DOScloses the
printerfile!) Also, input is buffered within DOSuntil a CR is detected - so you can’t process
each keyasit is pressed.

In raw mode, DOSignores special characters, passing them through without any special pro-
cessing, and does notbuffer inputlines. So to use file handle I/O and send bit-mapped graphics
to a printer through DOS,or process individual keystrokes immediately, or bypass Ctrl-C
checking, you needto switchthefile handle to raw mode. Raw modeis not automatically reset to
cooked mode by DOS when a program terminates, so it is a good idea to reset the file into
cooked mode before your program exits if the system was in cooked modeto begin with. I/O to
files is done in raw mode.

To set a file handle into raw modeor back into cooked mode, use DOS IOCTL(int 21h Fn 44h,
Chapter4):

1. Get the current modebits (Subfunction0).

2. Check thatthefile is a characterfile. (If not, exit.)

3. Switch the cooked modebit to raw orvice versa.

4. Set the modebits (Subfunction 1).

Microsoft C v4 and later do NOTset raw modefor binary files. When running with the CON
driver set to raw mode (to enhance display speed) programs compiled in MSCwill crash the
computer. A letter to Microsoft reporting this odd behaviour got the somewhatbizarre reply
that ‘Microsoft does not support the use of any TSRs’ from their techs. Raw madeis clearly do-
cumented by both IBM and Microsoft, and their own tools should takeit into account.

File I/O in Binary (Raw) Mode

The followingis true whena file is read in binary mode:

1. The characters “ S (scroll lock), ~ P (print screen), ~ C (control break) are not checked for
during the read. Therefore, no printer echo occurs if ~S or ~ P are read.

2. There is no echo to STDOUT(0001h).

OLYMPUSEX.1015 - 150/393

OLYMPUS EX. 1015 - 151/393

144 The Programmer's Technical Reference

3. Read the numberof specified bytes and returns immediately when thelast byte is received
or the endoffile reached.

4. Allowsno editing of the inputusing the function keysif the input is from STDIN (0000h).

The following is true whena file is written to in binary mode:

1. The characters ~ S (scroll lock), ~ P (print screen), ~ C (control break) are not checked for
during the write. Therefore, no printer echo occurs.

2. There is no echo to STDOUT(O001h).

3. The exact numberofbytes specified are written.

4. Does not caret (~) control characters, For example, Ctrl-D is sent out as byte 04h instead
of the two bytes ~ and D.

5. Does not expandtabs into spaces.

File I/O in ASCII (Cooked) Mode

The followingis true whena file is read in ASCII mode:

1. Checks for the characters ~C,*S; and *P.

2. Returns as many charactersas there are in the device input buffer, or the numberof
characters requested, whicheveris less. If the numberof characters requested wasless than
the number of charactersin the device buffer, then the next read will address the remaining ,
characters in the buffer.

3. Ifthere are no morebytes remaining in the device inputbuffer, read a line (terminated by
“M)into the buffer. This line may be edited with the function keys. The characters
returned terminated with a sequence of ODh, OAh (~ M, ~ J) if the numberofcharacters
requested is sufficient to include them. For example,if 5 characters were requested, and
only 3 were entered before the carriage return (ODh or ~ M) was presented to DOSfrom
the console device, then the 3 characters entered and ODh and OAh would bereturned.

However, if 5 characters were requested and 7 were entered before the carriage return,
only the first 5 characters would be returned. No ODh, 0Ah sequence would be returned in
this case. If less than the numberof characters requested are entered whenthecarriage
return is received, the characters received and ODh, OAh would be returned. The reason
the OAh (linefeed or ~ J) is added to the returned characters is to makethe devices look
like textfiles.

4. Ifa1Ah(* Z)is found,the inputis terminated at that point. No ODh, OAh (CR,LF)
sequence is added tothestring.

5. Echoing is performed.

6. ‘Tabs are expanded.

Thefollowing is true whena file is written to in ASCII mode:

1. The characters ~S,*P, and ~ Care checkedfor during the write operation.

2. Expandstabs to 8-character boundaries andfills with spaces (20h).

OLYMPUSEX.1015 - 151/393

OLYMPUS EX. 1015 - 152/393

DOSFile Structure 145

3. Carets controlchars, for example, ~ D is written as two bytes, ~ and D.
4, Bytes are output until the numberspecified is output ora ~ Zis encountered. The number

actually output is returned to the user.

Numberof Open Files Allowed
The numberoffiles that can be open concurrently is restricted by DOS. This numberis deter-
mined by howthefile is openedor created (FCB or handlefunction call) and the numberspeci-
fied by the FCBS and FILES commandsin the CONFIG.SYSfile. The numberoffiles allowed
open by FCB functioncalls and the numberoffiles that can be opened by handletypecalls are

. independentofone another.

Restrictions on FCB Usage
If file sharingis not loaded using the SHARE command,thereis no restriction on the numberof
files concurrently open using FCB function calls.

However, whenfile sharing is loaded, the maximum numberofFCBsopenis set by the the FCBS
command in the CONFIG.SYSfile.

The FCBS commandhastwo values you canspecify, ‘m’ and ‘n’. The value for ‘m’ specifies the
numberoffiles that can be opened by FCBs, andthevalue ’n’ specifies the number of FCBsthat
are protected from being closed.

When the maximum number of FCB opensis exceeded, DOS automatically closes the least re-
cently used file. Any attempt to accessthis file results in an int 24hcritical error message ‘FCB
not available’. If this occurs while an application program is running, the value specified for ‘m’
in the FCBS command should beincreased.

When DOSdetermines the least recently usedfile to close, it does not include thefirst ‘n’ files
opened, therefore thefirst ’n’ files are protected from being closed.

Restrictions on Handle Usage
The numberoffiles that can be open simultaneouslybyall processesis determined by the FILES
command in the CONFIG.SYSfile. The numberoffiles a single process can open depends on
the value specified for the FILES command.IfFILESis greater than or equalto 20,asingle pro-
cess can open 20files. If FILESis less than 20, the processcan openless than 20files. This value
includes the three predefined handles STDIN, STDOUT, and STDERR.This meansonly 17 ad-
ditional handlescan be added. DOS 3.3+ includes a function to use more than 20files per appli-
cation.

Allocating Space to a File

Files are not necessarily written sequentially on a disk. Space is allocated as needed and the next
location available on the disk is allocated as space for the next file being written. Therefore,if

OLYMPUSEX.1015 - 152/393

OLYMPUS EX. 1015 - 153/393

146 The Programmer’s Technical Reference

considerablefile generation has taken place, newly created files will not be written in sequential
sectors. However, due to the mapping (chaining) of file space via the File Allocation Table
(FAT) and the functioncalls available, any file may be usedin either asequential or random man-
ner.

Space is allocated in incrementscalled clusters. Clustersize varies according to the media type.
An application program should not concern itself with the way that DOSallocates space to a
file. The size ofa clusteris only importantin that it determines the smallest amount ofspace that
can be allocated to a file. A disk is considered full whenall clusters have beenallocatedtofiles.

MSDOS/ PCDOSDifferences

Thereis a problem ofcompatibility between MS-DOS and IBM PC-DOShavingto do with FCB
Open and Create. The IBM 1.0, 1.1,and 2.0 documentation of OPEN(call OFh) containsthe fol-
lowing statement:

‘The current block field (FCB bytes C-D)is set to zero [when an FCBis opened].’

This statement is NOT true of MS-DOS1.25 or MS-DOS2.00. The differenceis intentional,

and the reason is CP/M 1.4 compatibility. Zeroing that field is not CP/M compatible. Some
CP/M programswill not run when machinetranslated if that field is zeroed. The reasonit is
zeroed in the IBM versionsis that IBM specifically requestedthatit be zeroed. This is the reason
for the complaints from some vendors about the fact that IBM MultiPlan will not run under
MS-DOS.It is probably the reason that some other IBM programs don’t run under MS-DOS.

Note: Dowhatall MS/PC-DOSsystems programsdo:Set every single FCB field you want to
use regardless ofwhat the documentationsaysis initialized.

.COM File Structure
The COMfile structure was designed for DOS 1.0 and maximum compatibility with programs
ported from the CP/M operating system. COM files normally comprise one segment only. A
COMfile is loaded as a memory imageofthedisk file and the Instruction Pointeris set to offset
100h within the program.

EXE File Structure
The EXEfile is the native mode for DOS. EXE files may make use of multiple segments for
code,stack, and data. The design of the EXEfile reflects the segmented designof the Intel 80x86
CPU architecture. EXE files may be as Jarge as available memory and may makereferences to
specific segment addresses.

The EXE files produced by the Linker program consist of two parts, control and relocation
information and the load moduleitself.

The control and relocation information, which is described below,is at the beginningofthefile
in an area known as the header. The load module immediately follows the header. The load
module begins in the memory image of the module contructed by the Linker.

OLYMPUSEX.1015 - 153/393

OLYMPUS EX. 1015 - 154/393

DOSFile Structure 147

Whenyouare loading a file with the name *.EXE, DOS does NOTassumethatit isan EXEfor-
matfile. It looks at thefirst two bytes for a signature (the letters MZ)tellingit that it is an EXE
file. If it has the propersignature, then the load proceeds. Otherwise,it presumesthefile to bea
.COM formatfile.

If the file has the EXEsignature, then the internal consistency is checked. Pre-2.0 versions of
MSDOSdid not check the signature byte for EXEfiles.

The .EXE format can support programslarger than 64K.It does this by allowing separate seg-
mentsto be defined for code, data, and the stack, each ofwhich can beup to 64K long. Programs
in EXE format may contain explicit references to segment addresses. A header in the EXEfile
has information for DOSto resolve these references.

offset Size CONTENTS

00h BYTE 4Dh The Linker’s signature to mark the file as a valid .EXE
file (ASCII letters M and Z, for Mark Zbikowski,

Olh BYTE 5Ah one of the major DOS programmers at Microsoft)
02h-03h Length of the image mod 512 (remainder after

WORD dividing the load module image size by 512)
04h-05h WORD Size of the file in 512 byte pages including the header.
O6h-07h WORD Number of relocation table items following the header.
O8h-09h WORD Size of the header in 16 byte (paragraphs). This is used to

locate the beginning of the load module in the file
OAh-OBh WORD Minimum number of 16 byte paragraphs required above the end of

the loaded program.
OCh-ODh WORD Max number of 16 byte paragraphs required above the end of the

loaded program. If the minimum and maximum number of
paragraphs are both zero, the program will be loaded as high
in memory as possible.

OEh-OFh WORD Displacement in paragraphs of stack segment within load module.
This size must be adjusted by relocation. ~

10h-1ih WORD offset to be in SP register when the module is given control
(stack offset)

12h-13h WORD Word Checksum - negative sum of all the words in the file,
ignoring overflow.

14h-15h WORD Offset for the IP register when the module is given control
: (initial instruction pointer)

16h-17h WORD Displacement in paragraphs of code segment within load. module.
This size must be adjusted by relocation. (CS)

18h-19h WORD Displacement in bytes of first relocation item in the file.
1Ah-1iBh WORD Overlay number (0 for the resident part of the program)

The Relocation Table

The wordat 18h locatesthefirst entry in the relocation table. The relocation table is made up of
a variable numberof relocation items. The numberofitemsis containedat offset 06h. The relo-

cation item contains twofields- a 2 byte offset value, followed by a 2 byte segment value. These
two fields representthe displacementinto the load module before the moduleis given control.
Theprocessis called relocation and is accomplishedas follows:

1. The formatted part of the headeris read into memory.Its size is 1Bh.

2. Aportion of memory is allocated depending on thesize of the load module and the
allocation numbersin offsets OAh and OCh. DOSalwaystries to allocate OFFFFh
paragraphs. Sincethis call will always fail, the function returns the amount offree memory.
If this blocks larger than the minimumspecified at offset OAh and the loaded program
size, DOSwill allocate the size specified at offset OCh or the largest free memory space,
whicheveris less.

OLYMPUSEX.1015 - 154/393

OLYMPUS EX. 1015 - 155/393

148 The Programmer’s Technical Reference

3. A Program SegmentPrefix is built following the resident portion of the program thatis
performingthe load operation.

The formatted part of the header is read into memory (its size is at offset O8h)

The load modulesize is determined by subtracting the headersize from thefile size. Offsets
04h and O8h can be used for this calculation. The actual size is downward adjusted based on
the contentsofoffset 02h. Note thatall files created by the Linker programsprior to
version 1.10 always placed a valueof4 at this location, regardless of the actual programsize.
Therefore, Microsoft recommendsthat this field be ignoredif it contains a value of4. Based
on thesetting of the high/low loaderswitch, an appropriate segmentis determined for
loading the load module. This segmentis called the start segment.

6. Theload module is read into memory beginning at the start segment. The relocation table
is an orderedlist of relocation items. Thefirst relocation item is the one that has the lowest
offset in thefile.

7. The relocation table items are read into a work area one or more at a time.

Eachrelocation table item segmentvalueis added to the start segmentvalue. The
calculated segment, in conjunction with the relocation item offset value, points to a word in
the load module to whichis added the start segmentvalue. Theresult is placed back into
the word in the load module.

9. Onceall the relocation items have been processed, the SS and SPregisters are set from the
values in the header and the start segmentvalue is added to SS. The ES and DSregisters
are set to the segment address of the program segmentprefix. The start segmentvalueis
added to the headerCSregister value. The result, along with the headerIP value, is used to ,
give the module control.

‘NEW’ .EXE Format (MicrosoftWindows and
OS/2)
The ‘old’ EXE formatis documented here. The ‘new’ EXE formatputs more information into
the headersection andis currently used in applications that run under Microsoft Windows. The
linkerthat creates these files comes with the Microsoft WindowsSoftware DevelopmentKit and
is called LINK4. Ifyou try to run'a Windows-linked program under DOS,you will get the error
message “This program requires Microsoft Windows’. The OS/2 1.x file formatis essentially the
sameas the Windowsformat.

Standard File Control Block

Thestandardfile control block is defined as follows, with offsets in hex:

FILE CONTROL BLOCK
offset size Function

0 1 byte Drive number. For example:
Before open: 00h = default drive r

Olh = drive A:
02h = drive B: etc.

After open: 00h = drive Cc:
Olh = drive A:
02h = drive B: etc.

OLYMPUSEX.1015 - 155/393

OLYMPUS EX. 1015 - 156/393

10-13

‘14-15

16-17

18-19
20

21-25

8 bytes

bytes
bytesRw

2 bytes

4 bytes

2 bytes

2 bytes

2 bytes
1 byte

4 bytes

DOSFile Structure . 149

An 0 is replaced by the actual drive number during open.
Filename, left justified with blanks.
If a reserved device name is placed here (such as PRN), do not
include the optional colon.
Filename extension, left justified with trailing blanks.
Current block # relative to start of file, starting with 0
(set to 0 by the open function call). A block consists of 128
records, each of the size specified in the logical record size
field. The current block number is used with the current record
field: (below) for sequential reads and writes. ,
Logical record size in bytes.
Set to 80h by OPEN function. If this is not correct, you must
set the value because DOS uses it to determine the proper
locations in the file for all disk reads and writes.
File size in bytes.
In this field, the first word is the low-order part of the size.
Date file was created or last updated.
MM/DD/YY are mapped as follows:
15 14 13 12 11 10 9 8 7 6 5
Y ¥Y yY ¥Y ¥ Y YRommn
where: mm is 1-12

dd is 1-31

yy is 0-119 (1980-2099)
Time file was created or last updated.
These bytes contain the time when the file was created or last
updated.
The time is mapped in the bits as follows:

BYTE 16h BYTE 17h
F E D c B A 9 8 7 6 5 4 3 2 1 0
H H H H H M M M M M M D D D D D
binary # hrs 0-23 binary # minutes 0-59 bin. # 2-sec incr
note: The time is stored with the least significant byte first.
Reserved for DOS.
Current relative record number
(0-127) within the current block. This field and the Current
Block field at offset OCh make up the record pointer. This
field is not initialized by the OPEN function call. You must
set this field before doing sequential read-write. operations to
the diskette.
Relative Record.
Points to the currently selected record, counting from the
beginning of the file starting with 0. This field is not
initialized by the OPEN system call. You must set this field
before doing a random read or write to the file. If the record
size is less than 64 bytes, both words are used. Otherwise,
only the first 3 bytes are used. Note that if you use the File
Control Block at 5Ch in the program segment, the last byte of
the FCB overlaps the first byte of the unformatted parameterarea.

4 3 2 1 0
dadaddadadad

Note 1. Anunopened FCB consists of the FCB prefix (ifused), drive number, and
filename.ext properlyfilled in. An open FCBis one in which the remainingfields
have been filled in by the CREAT or OPENfunctioncalls.

2. Bytes 0-5 and 32-36 must besetby the user program.Bytes 16-31 areset by DOS
and mustnotbe changedby user programs.

3. Allwordfields are stored with the least significant byte first. For example, a record
length of 128 is stored as 80h atoffset 14, and 00h atoffset 15.

Extended File Control Block

The extendedfile control blockis used to create or searchforfiles in the disk directory that have

special attributes.
It adds a 7 byte prefix to the FCB, formatted as follows:

OLYMPUSEX.1015 - 156/393

OLYMPUS EX. 1015 - 157/393

150 The Programmer's Technical Reference

EXTENDED FILE CONTROLBLOCK
offset Size Function

00h 1 byte Flag byte containing OFFh to indicate an extended FCB
Olh 4 bytes Reserved by Microsoft .
06h 2 bytes Attribute byte +

Refer to int 2l1h/fnllh (search first) for details on using the attribute
bits during directory searches. This function is present to allow
applications to define their own files as hidden (and thereby excluded
from normal directory searches} and to allow selective directory searches

Any reference in the DOSfunction calls to an FCB, whether opened or unopened, may use
either a normal or extended FCB.If you are using an extended FCB, the appropriate register
should beset to the first byte of the prefix, rather than the drive-numberfield.

Commonpractice is to refer to the extended FCB as a negative offset from thefirst byte of a
standard File Control Block.

OLYMPUSEX.1015 - 157/393

OLYMPUS EX. 1015 - 158/393

DOS Disk Information

The DOS Area

All disks and diskettes formatted by DOSare created with a sectorsize of 512 bytes. The DOS
area (entire area fora diskette, DOSpartition for hard disks) is formatted as follows:

DOS AREA

partition table - variable size (hard disk only)
boot record - 1sector

first copy of the FAT - variable size
second copy of the FAT - samesizeasfirst copy
root directory - variable size
data area - variable depending ondisk size

Thefollowing sections describe each of the allocatedareas:

The Boot Record

The boot record resides on track 0, sector1, side 0 of every diskette formatted by the DOS FOR-
MATprogram. Forhard disks the bootrecord resides on thefirst sector of the DOSpartition.It
is put onall disks to provide an error messageifyoutry to start up with a nonsystem disk in drive
A.. If the disk is a system disk, the boot record contains a JMP instruction pointing to thefirst
byte of the operating system.

If the device is IBM compatible,it must be true that thefirst sector ofthe first FAT is located at
the samesectorforall possible media. This is because the FATsectoris read before the mediais
actually determined. The information relating to the BPBfor a particular media is kept in the
boot sectorfor the media. In particular, the format of the bootsectoris:

00h

03h
ODh
OEh
10h

3 bytes

8 bytes
byte
2 bytes
byte

DOS BOOT RECORD
JMP to executable code. For DOS 2.x, 3 byte near jump (0E9h).
For DOS 3.x, 2 byte near jump (0EBh) followed by a NOP (90h)
optional OEM name and version (such as IBM 2.1)
sectors per allocation unit (must be a power of 2)
B reserved sectors (starting at logical sector 0)

number of FATs

OLYMPUSEX.1015 - 158/393

OLYMPUS EX. 1015 - 159/393

152 The Programmer’s Technical Reference

llh 2 bytes maximum number of root directory entries
13h 2 bytes P number of sectors in logical image (total number of sectors in

media, including boot sector directories, etc.). If logical
disk size is greater than 32Mb, this value is 0 and the actual
size is reported at offset 26h

15h byte B media descriptor byte
16h 2 bytes number of sectors occupied by a single FAT
18h 2 bytes’ sectors per track
1Ah 2 bytes number of heads
1ch 2 bytes number of hidden sectors

EXTENDED BOOT RECORD (DOS 4.0+)
1Eh 2 bytes number of sectors per track
20h 2 bytes number of heads
22h 2 bytes number of hidden sectors ,
26h 4 bytes total number of sectors in media (32MB or larger indicated here)
27h byte physical drive number
28h byte reserved
29h byte extended boot record signature
30h 4 bytes volume serial number (assigned with a random function)
34h llbytes volume label
3Fh 8 bytes reserved

The three wordsatthe end return information about the media. The numberofheadsis useful

for supporting different multihead drives that have the same storage capacity but a different
numberofsurfaces. The numberofhidden sectorsis usefulfor drive partitioning schemes.

DOS3.2 uses a table called the BIOS Parameter Block (BPB) to determineif a disk has a valid
File Allocation Table. The BPBis locatedin thefirst sectorofa floppy disk. Although the BPBis
supposed to be on every formatted floppy disk, some earlier versions of DOSdid notcreate a
BPBandinstead assumedthatthe FATbegins at the secondsectorof the disk and that thefirst
FATbyte (Media Descriptor Byte) describes the disk format.

DOS3.2 readsin the whole of the BPBandtriesto useit - although strangely enough,it seemsas
if DOSis prepared to cope with a BPBthatis moreorless totally blank (it seemsto ignore the
descriptor byte and treatit as a DSDD 9-sectordisk).

DOS3.2 determinesifa disk has a valid boot sector by examiningthefirst byte oflogical sector0.
If that byte it a jumpinstruction OE9h, DOS 3.2 assumestherest ofthe sectoris a valid boot sec-
tor with a BPB.If thefirst byte is not OE9h DOS3.2 behaveslike previous versions, assumesthe
boot sectoris invalid and usesthefirst byte of the FAT to determine the media type. If the first
byte on the disk happensto be OE9h,but the disk does not havea BPB, DOS3.2will return a disk
error message.

The real problems occur ifsomeof the BPBdatais valid and someisn’t. Apparently some OEMs
have assumed that DOS would continue to ignore the formatting data on the disk, and have
failed to write much there during FORMATexcept the media descriptor byte (or, worse, have
allowed random junkto be written there). While this error is understandable, and perhaps even
forgivable, it remains their problem, not IBMs, since the BPBarea has always been documented
as containing the formatinformation that IBM DOS3.2 now requiresto be there.

The DOS File Allocation Table (FAT)
The File Allocation Table, or FAT, has three main purposes: i

1. to mark badsectors on the media

2. to determine which sectorsare free for use

OLYMPUSEX.1015 - 159/393

OLYMPUS EX. 1015 - 160/393

DOSDisk Information | 153
3. todeterminethe physical location(s) ofa file on the media.

DOSusesoneof two different schemesfor defining the File Allocation Table:

1. a12-bit FAT, for DOS1.x, 2.x,all floppies, and small hard disks

2. a16-bit FAT, for DOS 3.x+ hard disks from 16.8 to 32Mb

This section explains how DOSusesthe FATto convertthe clusters ofafile into logical sector
numbers.It is recommended that system utilities use the DOShandlecalls rather than interpre-
ting the FAT, particularly since aftermarketdisk partitioning or formatting software may have
been used.

The FAT is used by DOSto allocate disk spaceforfiles, one cluster ata time. In DOS 4.0, clusters
are referred to as ‘allocation units’. It means the same things; the smallest logical portion of a
drive.

The FAT consists ofa 12 bit entry (1.5 bytes) for each cluster on the disk or a 16bit (2 bytes) entry
whena hard disk has more than 20740 sectorsasis the case with fixed disks larger than 10Mb.

Thefirst two FAT entries mapa portionof the directory; these FAT entries contain indicators of
the size and formatofthe disk. The FAT can be ina 12 or 16 bit format. DOS determines whether
a disk has a 12 or 16 bit FAT by lookingat the total numberofallocation units on a disk. For all
diskettes and hard disks with DOSpartitionsless than 20,740sectors, the FAT uses a 12 bit value
‘to map a cluster. For larger partitions, DOS uses a 16 bit value.

The second, third, and fourth bit applicable for 16 bit FAT bytes always contains OFFFFh. The
first byte is used as follows: :

Media Descriptor Byte

MEDIA DESCRIPTOR BYTE

hex meaning normally used
value

00 hard disk 3.3+ extended DOS partition
ED double sided 9 sector 80 track Tandy 2000 720k 5 floppy
FO double sided 18 sector diskette PS/2 1.44 meg DSHD
F8 hard disk bootable hard disk at c:800
F9 double sided 15 sector diskette AT 1.2 meg DSHD

double sided 9 sector diskette Convertible 720k DSOD
FA IBM Displaywriter System disk 287k
FB IBM Displaywriter System disk 1 meg
Fc single sided 9 sector diskette DOS 2.0, 180k SSDD
FD double sided 9 sector diskette DOS 2.0, 360k DSDD
FE single sided 8 sector diskette DOS 1.0, 160k SSDD
FF double sided 8 sector diskette DOS 1.1, 320k SSDD

for 8 inch diskettes:
FD double sided 26 sector diskette IBM 3740 format DSSD
FE single sided 26 sector diskette IBM 3740 format SSSD

double sided 8 sector diskette IBM 3740 format DSDD

Thethird FAT entry begins mappingthe dataarea (cluster 002).

Note: These values are provided as a reference. Therefore, programs should not make useof
these values.

OLYMPUSEX.1015 - 160/393

OLYMPUS EX. 1015 - 161/393

154 The Programmer’s Technical Reference

Each entry contains a hexadecimal character (or 4 for 16 bit FATS). () indicates the high order
fourbit value in the case of 16 bit FAT entries. They can be:

(0)000h—ifthe cluster is unused and available

(OF)FF8h-(OF)FFFh to indicate the Jast cluster ofafile

(X)XXXh anyother hexadecimal numbersthat are the cluster numberofthe next
clusterin thefile. The cluster numberis the first clusterin thefile thatis

keptin thefile’s directory entry.

The values (OF)FFOh - (OF)FF7h are used to indicate reserved clusters. (OF)FF7hindicates a
badclusterif it is not part of the allocation chain. (OF)FF8h - (OF)FFFhare used as endoffile
markers.

Thefile allocation table always occupies the sector or sectors immediately following the boot
record. If the FAT is larger than 1 sector, the sectors occupy consecutive sector numbers. Two
copies of the FATare written, one following the other, for integrity. The FATis read into one of
the DOSbuffers whenever needed (open,allocate more space,etc).

12 Bit File Allocation Table

Obtain the startingclusterof thefile from the directory entry.

Now,to locate each subsequentsectorofthefile: 4

1. Multiply the cluster numberjust used by 1.5 (each FATentry is 1.5 bytes long).

2. The whole partof the productis offset into the FAT, pointing to the entry that maps the
cluster just used. That entry contains the cluster numberofthe next clusterin thefile.

3. Use a MOVinstruction to move the word atthe calculated FATintoaregister.

4. Ifthe last cluster used was an even number, keepthe low order12bits of the register,
otherwise, keep the high order 12bits.

5. Ifthe resultant 12 bits are (OFF8h-OFFFh) no moreclusters are in the file. Otherwise, the
next 12 bits contain the cluster numberof the nextclusterin thefile.

To convertthe cluster to a logical sector number(relative sector, such as that used by int 25h and
26h and DEBUG):

1. Subtract 2 from the cluster number

2. Multiply the result by the numberofsectors percluster.

3. Add the logical sector numberof the beginning ofthe data area.

12-bit FAT if DOSpartitionis smaller than 32,680 sectors (16.340 MB).

16 Bit File Allocation Table

Obtainthestarting cluster of thefile from the directory entry. Now to locate each subsequent

OLYMPUSEX.1015 - 161/393

OLYMPUS EX. 1015 - 162/393

DOSDisk Information . 155
clusterof thefile:

1. Multiply the cluster numberused by 2 (each FAT entry is 2 bytes long).

2. Use the MOVwordinstruction to move the word at the calculated FAToffsetinto a register.

3. Ifthe resultant 16 bits are (OFF8h-OFFFFh) no more clusters are in the file. Otherwise,
the 16 bits contain the cluster numberof the next cluster in thefile.

Compaq DOS makesavailable a new disk type (6) with 32 bit partition values, allowing 512
megabytes per hard disk (Compaq DOS 3.3.1)

DOSDisk Directory
The FORMATcommandinitially builds the root directory forall disks. Its location (logicalsec-
tor number) and the maximum numberofentries are available through the device driver inter-
faces.

Since directories other than the root directory are actually files, there is no limit to the number
ofentries that they may contain.

All directory entries are 32 bytes long, and are in the following format:

offset size DISK DIRECTORY ENTRY
00h 8 bytes Filename

The first byte of the filename indicates the file status.
The file status byte may contain the following values:
00h Directory entry has never been used. This is used to

limit the length of directory searches, for performancereasons.
05h Indicates that the first character of the filename

actually has an OEDh character.
OE5h Filename has been used but the file has been erased.
2Eh This entry is for a directory. If the second byte is

also 2Eh, the cluster field contains the cluster number
of this directory’s parent directory. (0000h if the
parent directory is the root directory). Otherwise,
bytes 00h-OAh are all spaces and the cluster field
contains the cluster number of the directory.
Any other character is the first character of a
filename. Filenames are left-aligned and if necessary
padded with blanks.

08h 3 bytes Filename extension if any
Three characters, left-aligned and padded with blanks if
necessary. If there is no file extension, this field contains
all blanks ,

OBh 1 byte File attributes
The attribute byte is mapped as follows:
hex bit meaning
00h (no bits set) normal; can be read or written without

restriction
Olh 0 file is marked read-only. An attempt to open the

file for out put using int 21h/fn 3Dh will fail and
an error code will be returned. This value can be
used with other values below.

02h 1 indicates a hidden file. The file is excluded from
normal directory searches.

o4h 2 indicates a system file. The file is excluded from
, normal directory searches.
o8h 3 indicates that the entry contains the volume label

in the first 11 bytes. The entry has no other usable
information and may exist only in the root directory.

‘

OLYMPUSEX.1015 - 162/393

OLYMPUS EX. 1015 - 163/393

156 The Programmer’s Technical Reference

10h 4 indicates that the file is a subdirectory
20h 5 indicates an archive bit. This bit is set to on

whenever the file is written to and closed. Used by
BACKUP and RESTORE.

6 reserved, set to 0
7 reserved, set to 0

note 1. Bits 6 and 7 may be used in OS/2.
note 2. Attributes 08h and 10h cannot be changed using

int21/43h.
note 3. The system files IBMBIO.COM and IBMDOS.COM (or

customized equivalent) are marked as read-only,
hidden, and system files. Files can be marked hidden
when they are created.

note 4. Read-only, hidden, system and archive attributes may
be changed with int21h/fn43h.

och 10 bytes Reserved by DOS: value unknown
16h 2 bytes File timestamp

These bytes contain the time when the file was created or last
updated. The time is mapped in the bits as follows:

BYTE 16h BYTE 17h
F E DC B A 9 8 7 6 5 4 3 2 1 #0
H H H H H M M M M M M D DD D OD

binary # hrs 0-23 binary # minutes 0-59 bin. # 2-sec incr
note: The time is stored with the least significant byte first.

18h 2 bytes File datestamp
This area contains the date when the file was created or last
updated. The mm/dd/yy are mapped in the bits as follows:

BYTE 18h BYTE 19h
F EoD c B A 9d 8 7 6 5 4 3 2 1 =°0
Y Y ¥ ¥ ¥ ¥ Y M MMM DD oOD=oOD iD

0-119 (1980-2099) 1-12 1~31
note: The date is stored with the least significant byte first.

1Ah 2 bytes First file cluster number
* (reserved in DOS 2, documented in DOS 3+)
This area contains the starting cluster number of the first
cluster in the file. The first cluster for data space on all
fixed disks and floppy disks is always cluster 002. The
cluster number is stored with the least significant byte first.

ich 4 bytes File size
This area contains the file size in bytes. The first word
contains the low order part of the size. Both words are stored .
with the least significant byte first.

The Data Area

Allocation ofspace fora file (in the data area) is done only when needed(it is not pre-allocated).
The space is allocated one cluster (unit allocation) at a time. A cluster is always one or more
consecutive sectornumbers, and all of the clusters in a file are ‘chained’ together in the FAT.

The clusters are arranged on disk to minimize head movementfor multisided media. All of the
space on a track (or cylinder) is allocated before moving on to the next track. This is accom-
plished by using the sequential sector numbers on the lowest-numbered head,thenall the sector
numberson the next head, and so on until all sectors of all heads of the track are used. Then the
next sector used will be sector 1 ofhead 0 on the nexttrack.

An interesting innovation that was introduced in MS-DOS3.0: disk space that is freed by
erasing a file is not re-used immediately, unlike earlier versions of DOS.Instead,free space is
obtained from the area not yet used during the currentsession,until all of it is used up. Only
then will spacethat is freed during the currentsession be re-used.

This feature minimizes fragmentationoffiles, since never-before-used spaceis always contigu-
ous. However, once any space has been freed by deleting a file, that advantage vanishesat the

OLYMPUSEX.1015 - 163/393

OLYMPUS EX. 1015 - 164/393

DOS Disk Information . 157

next system boot. The feature also greatly simplifies un-erasing files, provided that the need to
do an un-eraseis found during the same session andalso provided thatthefile occupies contigu-
ousclusters.

However, when one is using programs which make extensive use of temporary files, each of
which maybe created and erased manytimes during a session,the feature becomesa nuisance;it
forces the permanentfiles to move fartherandfarther into the innertracks ofthe disk, thus in-
creasing rather than decreasing the amountoffragmentation which occurs.

The feature is implemented in DOSby meansofa single 16-bit ‘last cluster used’ (LCU) pointer
for each physical disk drive; this pointeris a part of the physical drive table maintained by DOS.
At boot time, the LCU pointer is zeroed. Each time anothercluster is obtained from the free-
space pool (the FAT),its numberis written into the LCU pointer. Each timeafreshclusteris re-
quired, the FAT is searched to locate a free one; in older versions of DOSthis search always
beganat Cluster 0000,butin 3.x it beginsatthe cluster pointed to by the LCU pointer.

Forhard disks, thesize ofthefile allocation table and directory are determined when FORMAT
initializes it and are based on the size of the DOSpartition.

Floppy Disk Types
Thefollowing tables give the specificationsfor floppy disk formats:

IBM PC-DOSdisk formats:

of FAT size DIR total
sides sectors (entries) sectorssectors DIR sectors

/track sectors |/cluster

160k 5i/4 DOS 1.0 2 8 (40) 121 4 64 1 320 Original PC-0, 16k mbd
320k Si/4 Dos 1.1 2 8 (40) 1 7 #112 2 360 PC-1, 64k mbd
180k Sifa DOS 2.0 1 9 (40) 2 4 64 1 640 PC-2, 256k mbd
360k Si/4 DOS 2.0 2 9 (40) 2 7 #112 2 720 PC/xXT
1.2M Si/4 Dos 3.0 2 #15 (80) 7 #14 224 1 2400 PC/AT, PC/RT, XT/286
720k 3°/2 DOS 3.2 2 9 (80) 3 7 #112 #2 1440 Convertible, PS/2 25+
1.44M 31/2 DOS 3.3 2 18 (80) 9 14 224 1 2880 PS/2 50+
various MS-DOS disk formats:

200k 57/4 * 1 10 (40)
400k 5S*/, * ¥* 2 10 (40)
800k 5S*/, * 2 10 (80)
720k 5*/4 DOS2.11 2 9 (80) 3 7 112 2 1440 ‘Tandy 2000 (discontinued)

* Michtron DS-DOS 2.11 Plus and one version of MS-DOS 3.11 (vendor unknown)
** TallTree JFormat program

720k 5 pOos2.11 1 (80) DEC Rainbow SS/HD (disc.)
720k S DOS2.11 2 variable number of sectors Victor 9000 Pc (discont’d)

per track, more sectors on
outer tracks than innertracks.
Special DSDD drive.

Files in the data area are not necessarily written sequentially. The data area spaceis allocated
one clusterat a time, skipping over clusters already allocated. The first free cluster found is the
next Cluster allocated, regardless ofits physical location on the disk. This permits the mosteffi-
cientutilization of disk space because clusters freed by erasing files can be allocated for new
files. Refer back to the description of the DOS FATinthis chapter for more information.

SSDD single sided, double density (160-180k) 51/4

OLYMPUSEX.1015 - 164/393

OLYMPUS EX. 1015 - 165/393

158 The Programmer's Technical Reference

DSDD double sided, double density (320-360k) 5/4 t
DSQD double sided, quad density (720k) Sila, 3, /2
DSHD double sided, high density (1.2-1.44M) S°/a, 37/2

Muchofthe trouble with AT 1.2 meg drives has been through the inadvertent use of quad den-
sity disks in the high density drives. The high density disks use a higher-coercivity media than the
quads, and quads are not completelyreliable as 1.2Mb. Makesure you havethe correct disk for
your application.

Hard Disk Layout

The DOSharddisk routines perform the following services:

1. Allow multiple operating systems to be installed on the hard disk at the sametime.

2. Allowa user-selected operating system to be started from the hard disk.
i. In order to share the hard disk among operating systems, the disk maybe logically

divided into 1 to 4 partitions. The space within a given partition is contiguous, and can
be dedicated to a specific operating system. Each operating system may ‘own’ only one
partition in DOSversions2.0 through 3.2. DOS3.3 introduced the ‘Extended DOS
Partition’ which allows multiple DOSpartitions on the same hard disk. FDISK (ora
similar program from other DOS vendors)utility allows the user to select the number,
type, and size of each partition. Thepartition informationis kept in a partition table
that is embeddedin the masterhard disk bootrecord on thefirst sector of the disk. The
formatof this table varies from version to version of DOS.

ii. An operating system must consider its partition to be the entire disk, and must ensure
thatits functions and utilities do not access otherpartitions on the disk.

iii. Each partition may contain a bootrecordonits first sector, and any other programs or
data that you choose,including a different operating system. For example, the DOS
FORMAT command maybe used to format and place a copy of DOS in the DOS
partition in the same mannerthata diskette is formatted. You can use FDISK to
designate a partition as‘active’ (bootable). The master hard disk boot record causes
that partition’s bootrecord to receive control when the system is initialized. Additional
disk partitions could be FORTH, UNIX,Pick, CP/M-86, OS/2, or the UCSD
p-System.

SYSTEM INITIALIZATION

The boot sequenceis as follows:

1. System initializationfirst attempts to load an operating system from diskette driveA.If the
drive is not ready or a read error occurs,it then attempts to read a master hard disk boot |
record onthe first sectorof the first hard disk in the system.If unsuccessful, or if no hard
disk is present, it invokes ROM BASIC in an IBM PC ordisplays a disk error message on
most compatibles.

2. I[finitialization is successful, the master hard disk boot recordis given control andit
examines the partition table embeddedwithinit. Ifone of the entries indicates an active
(bootable) partition, its boot record is read from the partition’s first sector and given
control. If none of the partitions is bootable, ROM BASICis invoked on an IBM PC ora
disk error on most compatibles.

4. Ifany of the boot indicatorsare invalid, or if more than oneindicator is marked as bootable,
the message ‘INVALID PARTITION TABLEis displayed and the system stops.

OLYMPUSEX.1015 - 165/393

OLYMPUS EX. 1015 - 166/393

DOSDisk Information ° 159

5. Ifthe partition’s boot record cannot be successfully read within five retries due to read
errors, the message ‘ERROR LOADING OPERATING SYSTEM’appears and the system
stops.

6. Ifthe partition’s boot record does not contain a valid ‘signature’, the message ‘MISSING
OPERATING SYSTEM’appears,and the system stops.

Note: When changingthesize orlocation of any partition, you must ensurethatall existing
data on the disk has been backed up. The partitioning program will destroy the data on
the disk.

System programmers designing a utility to initialize/manage a hard disk must provide the fol-
lowing functions at a minimum:

1. Write the master disk boot record/partition table to the disk’s first sectorto initializeit.

2. Perform partitioningof the disk - that is, create or update the partition table information
(all fields for the partition) when the user wishesto create a partition. This may belimited
to creating a partition for only onetypeofoperating system,but mustallow reparatitioning
the entire disk, or adding a partition without interfering with existing partitions
(user’s choice).

3. Provide a means for marking a user-specified partition as bootable and resetting the
bootable indicator bytesfor all otherpartitions at the same time.

4. Such utilities should not changeor move anypartition information that belongs to another
operating system.

Boot Record/Partition Table

A boot record must be written on thefirst sector of all hard disks, and must contain the follow-

ing:

1. Code to load and give controlto the boot record for one of four possible operating
systems.

2. Apartition table at the end of the boot record. Each tableentry is 16 bytes long, and
contains the starting and ending cylinder, sector, and head for each of four possible
partitions, as wellas the numberofsectors preceding the partition and the numberof
sectors occupied by the partition. The ‘boot indicator’ byte is used by the boot record to
determineifone of the partitions contains a loadable operating system. FDISK
initialization utilities mark a user-selected partition as ‘bootable’ by placing a value of 80h
in the corresponding partition’s boot indicator (setting all other partitions’ indicatorsto 0
at the same time). The presence of the 80h tells the standard bootroutine to load the sector
whoselocation is contained in the following three bytes. Thatsectoris the actual boot
recordfor the selected operating system, and it is responsible for the remainderof the
system’s loading process(asit is from the diskette). All boot records are loaded at absolute
address 0:7C00.

Thepartition table with its offsets into the boot recordis: (except for Wyse DOS3.2 with 32 bit
allocation table, and DOS 3.3-up)

Offset Partit’n Purpose Head Sector cylinder
1BEh part 1 begins boot ind H s cyl

OLYMPUSEX.1015 - 166/393

OLYMPUS EX. 1015 - 167/393

160 The Programmer's Technical Reference

1c2h ends syst ind H Ss eyl
1c6h relative sector low word high word
1CAh # sectors low word high word
1CEh part 2 begins boot ind H s cyl
1D2h ends syst ind H s cyl
1D6h relative sector low word . high word
1DAh # sectors low word high word
1DEh part 3 begins boot ind H Ss cyl
1E2h ends syst ind H Ss cyl
1E6h relative sector low word high word
1EAh # sectors low word high word
1EEh part 4 begins boot ind H s cyl i
1F2h ends syst ind H s cyl :
1F6h relative sector low word high word
1FAh # sectors low word high word
1FEh signature hex 55 hex AA

Bootindicator (boot ind): The bootindicator byte must contain 0 for a non-bootable partition
or 80h for a bootable partition. Only one partition can be marked as bootable ata time.

System Indicator (sys ind): The sys ind field contains an indicator of the operating system that
‘owns’ the partition. IBM PC-DOScan only ‘own’ onepartition, though some versions of _
MSDOSallow all fourpartitions to be used by DOS.

The system indicators are:

System Indicator (sys ind)
00h unknown or unspecified
Olh DOS 12 bit FAT (DOS 2.x all and 3.x under 10 Mb)
04h DOS 16 bit FAT (DOS 3.0+. Not recognized by 2.x)ODBh DRI Concurrent DOS
OF2h 2nd DOS partition, some 3.2 and all 3.3+

There are bytes for XENIX,and other operating systems. Some manufacturers (such as Zenith,
Wyse, and Tandon) diddle with these system bytes to implement more than one DOSpartition
per disk. \

Cylinder (CYL) and Sector(S): The 1 byte fields labelled CYL contain the low order8 bits of the
cylinder number- the high order2 bits are in the high order 2 bits of the sector (S) field. This
corresponds with the ROM BIOSinterrupt 13h (disk I/O) requirements, to allow for a 10 bit cy-
linder number.

The fields are ordered in such a mannerthat only two MOVinstructions are required to proper-
ly set up the DX and CX registers for a ROM BIOScall to load the appropriate boot record
(hard disk booting is only possible from the first hard disk in the system, where a BIOSdrive
number of80h correspondsto the boot indicator byte).

All partitions are allocated in cylinder multiples and begin on sector 1, head 0, with the excep-
tion that the partition thatis allocated at the beginningof the disk starts at sector 2, to account
for the hard disk’s master boot record.

Relative Sector (rel sect): The numberofsectors preceding each partition on thediskis kept in
the 4 byte field labelled ‘rel sect’. This value is obtained by counting the sectors beginning with ;
cylinder 0, sector 1, head 0 of the disk, and incrementing the sector, head, and then track values
up to the beginningof the partition. This,if the disk has 17 sectors per track and 4 heads, and the
second partition beginsat cylinder 1, sector 1, head 0, and the partition’s starting relative sector
is 68 (decimal) - there were 17 sectors on each of 4 heads on 1 track allocated aheadofit. The
field is stored with theleast significant wordfirst.

Numberofsectors (#sects): The numberofsectorsallocated to the partition is kept in the ‘# of

OLYMPUSEX.1015 - 167/393

OLYMPUS EX. 1015 - 168/393

DOSDisk Information . - 161
sects’ field. Thisis a 4 byte field storedleast significant wordfirst.

Signature: Thelast 2 bytes of the boot record (S5AAh)are used as a signature to identify a valid
bootrecord. Both this record andthepartition boot record are requiredto contain the signatureat offset 1FEh.

Hard Disk Technical Information

Western Digital’s hard disk installation manuals make the claim that MSDOScan support only
2 hard drives. This is entirely false, and their purpose for making the claim is unclear. DOS
merely performsa functioncall pointed at the hard disk driver, which is normally in one of three
locations; a ROMat absolute address C:800, the main BIOS ROMifthe machineis an AT, ora
device driver installed through the CONFIG.SYSfile. Two hard disk controller cards can nor-
mally not reside in the same machine dueto lack of interrupt arbitration. Perstor’s ARLL con-
troller and some cards marketed by Novell can coexist with other controllers. Perstor’s technical
departmenthas had four controllers and eight hard disks in the same IBM XT functioning con-
currently.

A valid hard disk has a boot record arrangedin the following manner:
DB drive

headl
trkse
syste
head2
trkse
secto
secto

7 0 or 80h (80h marks a bootable, active partition); starting heads
cl ; starting track/sector (CX value for INT 13)m ; see below

7; ending head
c2 ; ending track/sector
vl ; absolute # of starting sector
r2 ; absolute # of last sector

The masterdisk boot record invokes ROM BASICifno indicator byte reflects a bootablesys-tem.

Whena partition’s boot recordis given control,it is passed its partition table entry address in
the DS:SI registers.

Determining Hard Disk Allocation
DOSdeterminesdisk allocation using the following formula:

where:

Ts
RS

BPD
BPS

CF
SPF

D * BPD
TS - RS -

BPS
SPF =

BPS * SPC
CF +

BPC

total sectors on disk

the number of sectors at the beginning of the disk that are reserved
for the boot record. DOS reserves 1 sector.
The number of directory entries in the root directory.
the number of bytes per directory entry. This is always 32.
the number of bytes per logical sector. Typically 512, but you can
specify a different number with VDISK.
The number of FATS per disk. Usually 2. VDISK is 1.
the number of sectors per FAT. Maximum 64.

OLYMPUSEX.1015 - 168/393

OLYMPUS EX. 1015 - 169/393

162 The Programmer’s Technical Reference

SPC The number of sectors per allocation unit.
BPC the number of bytes per FAT entry. BPC is 1.5 for 12 bit FATs. 2 for |

16 bit FATS.

To calculate the minimum partition size thatwill force a 16-bit FAT: |
i

CYL = (max clusters * 8)/(HEADS * SPT)

where:
CYL number of cylinders on the disk
max clusters 40692 (maximum number of clusters for a 12 bit FAT)
HEADS number of heads on the hard disk
SPT sectors per track (normally 17 on MFM)

DOS2.0 usesa ‘first fit’ algorithm whenallocating file space on the hard disk. Each time an ap-
plication requests disk space,it will scan from the beginning of the FAT untilit finds a contigu-
ous piece ofstorage large enoughforthefile.

DOS3.0 keeps a pointer into the disk space, and begins its search from the pointit lastleft off.
This pointeris lost when the system is rebooted. Thisis called the ‘nextfit’ algorithm.It is faster
thanthefirst fitand helps minimize fragmentation.

In eithercase,if the FCB function calls are used instead of the handle functioncalls, the file will
be brokeninto pieces starting with the first available space onthe disk.

BIOS Disk Routines

Interrupt 13h Disk I/O - access the disk drives (floppy and hard disk)
(0:004Ch) These calls do not try rereading disk ifan error is returned
Function 00h Reset - reset the disk controller chip
entry AH 00h

DL drive (if bit 7 is set both hard disks and floppy disks reset)
O0Oh-7Fh floppy disk
80h-OFFh hard disk

return AH status (see 01h below)
note 1. Forces controller chip to recalibrate read/write heads.

2. Some systems (Sanyo 55x) this resets all drives.
3. This function should be called after a failed floppy disk Read, Write,

verify, or Format request before retrying the operation. \
4. If called with DL = 80h (i.e., selecting a hard drive), the floppy

controller and then the hard disk controller are reset.
5. Function 0Dh allows the hard disk controller to be reset without

affecting the floppy controller.

Function 01h Get Status of Disk System
entry AH Olh

DL drive (hard disk if bit 7 set)
00h-7Fh floppy disk
80h-OFFh hard disk '

return AH ooh
AL status of most recent disk operation

ooh successful completion, no errors
Oih bad command
02h address mark not found
O3h tried to write on write-protected disk (floppy only)
04h sector not found
05h reset failed (hard disk)
06h diskette removed or changed (floppy only)
07h bad parameter table (hard disk)
o8sb DMA overrun (floppy only) !
OSh attempt to DMA across 64K boundary :
OAh bad sector detected (hard disk)
OBh bad track detected (hard disk)
och unsupported track or media type not found (floppy disk)

OLYMPUSEX.1015 - 169/393

OLYMPUS EX. 1015 - 170/393

DOS Disk Information 163

ODh invalid number of sectors on format (hard disk)
OEh control data address mark detected (hard disk)
OFh DMA arbitration level out of range (hard disk)10h uncorrectable CRC/EEC on read

llh ECC corrected data error (hard disk)20h controller failure
40h seek failed
80h timeout

OAAh drive not ready (hard disk)
OBBh ~ undefined error (hard disk)
occh write fault (hard disk)
OEOh status error (hard disk)
OFFh sense operation failed (hard disk)

note For hard disks, error code 1lh (ECC data error) indicates that a
recoverable error was detected during a preceding int 13h fn 02h

(Read Sector) call.

Function 02h Read Sectors - read one or more sectors from diskette
entry AH 02h

AL number of sectors to read
BX address of buffer (ES=segment)
CH track (cylinder) number (0-39 or 0-79 for floppies)

(for hard disk, bits 8,9 in high bits of CL)
cL sector number (1 to 18, not value checked)
DH head number (0 or 1)
DL drive (O=A, 1=B, etc.) (bit 7=0) (drive 0-7)

00h-7Fh floppy disk
80h-FFOh hard disk

ES:BX address to store/fetch data (buffer to fill)
(0000:0078) dword pointer to diskette parametersreturn CF 0 successful

AL number of sectors transferred
1 error

AH status (00h, 02h, O3h, 04h, O8h, 09h, 10h,
OAh, 20h, 40h, 80h)

note 1. Number of sectors begins with 1, not 0.
2. Trying to read zero sectors is considered a programming error; results

are not defined. .
3. For hard disks, the upper 2 bits of the 10-bit cylinder number are placed

in the upper 2 bits of register CL.
4. For hard disks, error code l1lh indicates that a read error occurred that

was corrected by the ECC algorithm; in this case, AL contains the burst
length. The data read is good within the limits of the ECC code. If a
multisector transfer was requested, the operation was terminated after
the sector containing the read error.

5. For floppy drives, an error may result from the drive motor being off at
the time of the request. The BIOS does not automatically wait for the
drive to come up to speed before attempting the read operation. The
calling program should reset the floppy disk system with function 00h
and retry the operation three times before assuming that the error
results from some other cause.

Function 03h Write Sectors ~ write from memory to disk
entry AH 03h

AL number of sectors to write (1-8)
cH track number (for hard disk, bits 8,9 in high bits of CL)
cL beginning sector number

(if hard disk, high two bits are high bits of track #)DH head number
DL drive number (0-7)

0Oh-7Fh floppy disk
80h-FFOh hard disk

ES:BX address of buffer for data
return CF 0 success

AL number of sectors written
1 error

AH status (see 01h above)
note 1. Number of sectors begins with 1, not 0.

2. Trying to write zero sectors is considered a programming error; resultsare not defined.
3. For hard disks, the upper 2 bits of the 10-bit cylinder number are placed

OLYMPUSEX.1015 - 170/393

OLYMPUS EX. 1015 - 171/393

164 The Programmer's Technical Reference

in the upper 2 bits of register CL.
4. For floppy drives, an error may result from the drive motor being off at

the time of the request. The BIOS does not automatically wait for the
drive to come up to speed before attempting the read operation. The
calling program should reset the floppy disk system with function OO0h
and retry the operation three times before assuming that the error ¢results from some other cause.

Function 04h Verify - verify that a write operation was successful
entry AH 04h

AL number of sectors to verify (1-8)
CH track number (for hard disk, bits 8,9 in high bits of CL) t
cL beginning sector number
DH head number
DL drive number (0-7)
DL drive number (0-7)

O00Oh-7Fh floppy disk
80h-FFOh hard disk

ES: BX address of buffer for data
return CF set on error

AH status (see O0lh above)
AL number of sectors verified

note 1. With IBM PC, XT, and AT with ROM BIOS earlier than 11/15/85, ES:BX should
point to a valid buffer.

2. Por hard disks, the upper 2 bits of the 10-bit cylinder number are placed
in the upper 2 bits of register CL.

3. This function can be used to test whether a readable media is in a floppy
drive. An error may result from the drive motor being off at the time of
the request since the BIOS does not automatically wait for the drive to
come up to speed before attempting the verify operation. The requesting
program should reset the floppy disk system with function 00h and retry
the operation three times before assuming that a readable disk is not
present.

Function 05h Format Track - write sector ID bytes for 1 track (floppy

entry

return

note l.
2.

disk)
AH OSh
AL number of sectors to create on this track

interleave (for XT hard disk only)
CH track (or cylinder) number (bits 8,9 in high bits of CL) FcL sector number
DH head number (0, 1)
DL drive number (0-3)

00h-7Fh floppy disk
80h-OFFh hard disk

ES: BX pointer to 4-byte address field (C-H-R-N) (except XT hard
disk)
byte 1 = (C) cylinder or track
byte 2 = (H) head 5
byte 3 = (R) sector
byte 4 = (N) bytes/sector (0 = 128, 1 = 256, 2 = 512, 3 =

1024)
CF set if error occurred

AH status code (see 01h above)
Not valid for ESDI hard.disks on PS/2. e
For floppy disks, the number of sectors per track is taken from the BIOS
floppy disk parameter table whose address is stored in the vector for
int 1Eh.
When this function is used for floppies on ATs or the PS/2, it should be
preceded by a call to int 13h/fn 17h to select the type of media toformat.

For hard disks, the upper 2 bits of the 10-bit cylinder number are
placed in the upper 2 bits of CL.
On the XT/286, AT, and PS/2 hard disks, ES:BX points to a 512-byte buffer
containing byte pairs for each physical disk sector as follows:
Byte Contents ,
0 00h good sector

80h bad sector
1 sector number
For example, to format a track with 17 sectors and an interleave of two,
ES:BX would point to the following 34-byte array at the beginning of a

OLYMPUSEX.1015 - 171/393

OLYMPUS EX. 1015 - 172/393

DOSDisk Information . 165
512-byte buffer:
db 00h, Olh, OOh, OAh, OOh, 02h, OOh, OBh, OOh, O3h, OOh, OCh
db 00h, 04h, OOh, ODh, 00h, OSh, OOh, OEh, 00h, O6h, OCh, OFh
db 00h, 07h, 00h, 10h, 00h, 08h, 00h, 21h, 00h, 09h

Function 06h Hard Disk - format track and set bad sector flags
(PC2, PC-XT, and Portable)

entry AH 06h
AL interleave value (XT only)
CH cylinder number (bits 8,9 in high bits of CL)
cL sector number
DH head :
DL drive (80h-OFFh for hard disk)
ES:BX 512 byte format buffer

the first 2*(sectors/track) bytes contain f£,n for each sector
f 00h good sector

80h bad sector
n sector number

return CF error
AH status code (see Olh above)

Function 07h Hard Disk - format the drive starting at the desired track
(PC2, PC-XT and Portable)

entry AH O7h
AL interleave value (XT only) (01h-10h)
CH cylinder number (bits 8,9 in high bits of CL) (00h-03FFh)
cL sectar number
DH head number (0-7)
DL drive number (80h-OFFh, 80h=C, 81h=D,...)
ES: BX format buffer, size = 512 bytes

the first 2*(sectors/track) bytes contain f,n for each sector
£ 00h good sector

80h bad sector
n sector number

return CF set on error
AH status code (see 01h above)

note Award AT BIOS routines are extended to handle more than 1024 cylinders.
AL number of sectors
CH cylinder number low 8 bits
cL sector number bits 0-5, bits 6-7 are high 2 cylinder bits
DH head number (bits 0-5) bits 6-7 are extended high cyls (1024)
DL drive number (0-1 for diskette, 80h-81h for hard disk)
ES: BX transfer address

Function 08h Read Drive Parameters (except Pc, Jr)
entry AH osh

DL drive number
00h-7Fh floppy disk
80h-OFFh hard disk

return CF set on error
AH status code (see above)

BL drive type (AT/PS2 floppies only)
Olh if 360 Kb, 40 track, 5"
02h if 1.2 Mb, 80 track, 5"
03h if 720 Kb, 80 track, 3"
04h if 1.44 Mb, 80 track, 3"

CH low 8 bits of maximum useable value for cylinder number
CL bits 6-7 high-order 2 bits of maximum cylinder number

0-5 maximum sector number
DH maximum usable value for head number
DL number of consecutive acknowledging drives (0-2)
ES:DI pointer to drive parameter table

note On the PC and PC/XT, this function is supported on hard disks only.

Function 09h Initialize Two Fixed Disk Base Tables (xT, AT, XT/286, PS/2)
(install nonstandard drive)

entry AH 09h
DL 80h-OFFh hard disk number

return CF set on error
AH status code (see 01h above)
For PC, XT hard disks, the disk parameter block format is:

OLYMPUSEX.1015 - 172/393

OLYMPUS EX. 1015 - 173/393

166 The Programmer's Technical Reference

OOh-0ih maximum number of cylinders
02h maximum number of heads
03h-04h starting reduced write current cylinder
O5h-06h starting write precompensation cylinder
O7h maximum ECC burst length -
08h drive options

bits 7 1 disable disk access retries
6 1 disable ECC retries
3-5 set to 0
0-2 drive option

09h standard timeout value
OAh timeout value for format drive
OBh timeout value for check drive
Och-OFh reserved

For AT and PS/2 hard disks:
00h-01h maximum number of cylinders
02h maximum number of heads
03h-04h reserved
05h-06h starting write precompensation cylinder
o7h maximum ECC burst length
osh drive options byte

bits 6-7 nonzero (10, 01, or 11) if retries disabled
5 1 if manufacturer’s defect map present at

maximum cylinder + 1
4 not used
3 L if more than 8 heads
0-2 not used

09h-OBh reserved
O0Ch-0Dh landing zone cylinder
OEh sectors per track
OFh reserved

note 1. For the xT, int 41h must point to the Disk Parameter Block.
2. Por the AT and PS/2, Int 41h points to table for drive 0 and Int 46h

points to table for drive 1.
3. Initializes the hard disk controller for subsequent I/O operations using

the values found in the BIOS disk parameter block(s).
4. This function is supported on hard disks only.

Function OAh Read Long (Hard disk) (xT, AT, XT/286, PS/2)
entry AH OAh

CH cylinder number (bits 8,9 in high bits of CL)
cL sector number (upper 2 bits of cyl # in upper 2 bits of CL)
DH head number
DL drive ID (80h-OFFh hard disk)
ES: BX pointer to buffer to fill

return CF set on error
AH status code (see Olh above)

AL number of sectors actually transferred
note 1. A ‘long’ sector includes a 4 byte EEC (Extended Error Correction) code.

2. Used for diagnostics only on PS/2 systems.
3. This function is supported on fixed disks only.
4. Unlike the normal Read Sector (02h) function, ECC errors are not

automatically corrected. Multisector transfers are terminated after any
sector with a read error.

Function OBh Write Long (XT, AT, XT/286, PS/2)
entry AB OBhAL number of sectors

CH cylinder (bits 8,9 in high bits of CL)
cL sector number
DH head number
DL drive ID (80h-OFFh hard disk)
ES: BX pointer to buffer containing datareturn CF set on error

AH status code (see 01h above)
AL number of sectors actually transferred

note 1. A ‘long’ sector includes a 4 byte EEC (Extended Error Correction) code.
2. Used for diagnostics only on PS/2 systems.
3. Valid for hard disks only.

OLYMPUSEX.1015 - 173/393

OLYMPUS EX. 1015 - 174/393

DOSDiskInformation | 167
Function 0Ch Seek To Cylinder (except PC, PCjr)
entry AH Och

cH lower 8 bits of cylinder
cL upper 2 bits of cylinder in bits 6-7
DH head number
DL drive number (0 or 1) (80h-OFFh for hard disk)return CF set on error

AH status code (see Olh above)
note 1. Positions heads over a particular cylinder, but does not move anydata.

2. This function-is supported on hard disks only.
3. The upper 2 bits of the 10-bit cylinder number are placed in the upper 2

bits of CL.
4. The Read Sector, Read Sector Long, Write Sector, and Write Sector Long

functions include an implied seek operation and need not be preceded by
an explicit call to this function.

Function 0Dh Alternate Hard Disk Reset (except PC, PCjr)
entry AH ODh

DL hard drive number (80h-OFFh hard disk)
return CF set on error

AH status code (see Olh above)
note 1. Not for PS/2 ESDI hard disks.

2. Resets the hard disk controller, recalibrates attached drives (moves the
read/write arm to cylinder 0), and prepares for subsequent disk I/O.

3. This function is for hard disks only. It differs from fn 00h by not
resetting the floppy disk controller.

Function 0Eh Read Sector Buffer (XT, Portable, PS/2)
entry AH OEh

ES:BX pointer to buffer
return CF set on error

AH status code (see 01h above)
AL number of sectors actually transferred

note 1. Transfers controller's sector buffer. No data is read from the drive.
2. Used for diagnostics only on PS/2 systems.
3. This fn is supported by the XT’s hard disk adapter only. It is ‘not

defined’ for hard disk adapters on the AT or PS/2.

Function OFh Write sector buffer (XT, Portable)
entry AH OFh

ES:BX pointer to buffer
return CF set if error

AH status code (see 0Olh above)
AL number of sectors actually transferred

note 1. Should be called before formatting to initialize the controller's sector
buffer.

2. Used for diagnostics only on PS/2 systems.
3. Transfers data from system RAM to the hard disk adapter’s internal sector

buffer.
4. No data is written to the physical disk drive. .
5. This fn is for the XT hard disk controller only. It is ‘not defined’ for

AT or PS/2 controllers.

Function 10h Test For Drive Ready (XT, AT, XT/286, PS/2)
entry AH 10h

DL hard drive number 0 or 1 (80h-OFFh)
return CF set on error

AH status code (see 0lh above)
note 1. Tests whether the specified hard disk drive is operational and

returns the drive’s status.
2. This function is supported on hard disks only.
3. Perstor and Novell controllers allow more than one hard drive.

Function 11h Recalibrate Drive (XT, AT, XT/286, PS/2)
entry AH 1lh

DL hard drive number (80h-OFFh hard disk)
return CF set on error

AH status code (see 01h above)
note 1. Causes the HD controller to recalibrate itself for the specified drive,

positioning the read/arm to cylinder 0, and returns the drive's status.
2. This function is for hard disks only.

OLYMPUSEX.1015 - 174/393

OLYMPUS EX. 1015 - 175/393

168 The Programmer’s Technical Reference

Function 12h Controller RAM Diagnostics (XT, Portable, PS/2)
entry AH 12h
return CF set on error

AH status code (see fn 01h above)
note 1. Used for diagnostics only on PS/2 systems.

2. Makes the hard disk controller carry out a built-in diagnostic test on
its internal sector buffer.

Function 13h Controller Drive Diagnostic (XT, Portable, PS/2)
entry AH 13h
return CF set on error

AH status code (see 01h above)
note 1. Used for diagnostics only on PS/2 systems.

2. Causes HD controller to run internal diagnostic tests of the attached
drive, indicating whether the test was passed by the returned status.

3. This function is supported on XT HDs only.

Function 14h Controller Internal Diagnostic (AT, XT/286)
entry AH 14h
return CF set on error

AH status code (see Olih above)
note 1. OEM is Western Digital 1003-WA2 hard/floppy combination controller in AT

and xT/286.
2. Used for diagnostics only in PS/2 systems.
3. Causes HD controller to do a built-in diagnostic self-test, indicating

whether the test was passed by the returned status.
4. This function is supported on hard disks only.

Function 15h Get Disk Type (except Pc and XT)
entry AH 15h

DL drive ID
O0Oh-7Fh floppy disk
80h-OFFh fixed disk

return CF set on error
AH error code (see 01h above) a

AH disk type
00h no drive is present
Olh diskette, no change detection present
02h diskette, change detection present
O3h fixed disk

CX:DX number of 512-byte sectors
note 1. Returns a code indicating the type of disk referenced by the specified

drive code.
2. This function is not supported on the PC or XT.

Function 16h Get Disk Change Status (diskette) (except PC, XT, & Jr)
entry AH 16h

DL drive to check
return CF set on error

AH disk change status
ooh no disk change

- Olh disk changed
DL drive that had disk change (00h-07Fh floppy disk)

note Returns the status of the change line, indicating whether the disk in the
drive may have been replaced since the last disk access. If this
function returns with CF set, the disk has not necessarily been changed;
the change line can be activated by simply unlocking and relocking the
disk drive door without removing the floppy disk.

Function 17h Set Disk Type for Format (diskette) (except PC and XT)
entry AH 17h ‘AL ooh not used

Olh 160, 180, 320, or 360Kb diskette in 360kb drive
02h 360Kb diskette in 1.2Mb drive
03h 1.2Mb diskette in 1.2Mb drive
04h 720Kb diskette in 720Kb drive

DL drive number (0-7)
return CF set on error

AH status of operation (see Olh above)
note 1. This function is probably enhanced for the PS/2 series to detect 1.44 in

1.44 and 720k in 1.44.

OLYMPUSEX.1015 - 175/393

OLYMPUS EX. 1015 - 176/393

DOS Disk Information 169

2. This function is not supported for floppy disks on the PC or xT.
3. If the change line is active for the specified drive, it is reset.
4. The BIOS sets the data rate for the specified drive and media type. The

rate is 250k/sec for double-density media and 500k/sec for high density
media. The proper hardware is required.

Function 18h Set Media Type For Format (diskette) (AT, XT2, XT/286, PS/2)
entry AH 18h

CH lower 8 bits of number of tracks

cL high 2 bits of number of tracks (6,7) sectors per track (bits 0-5)
DL drive number (0-7)

return CF clear no errors
AH ooh if requested combination supported

olh if function not available
och if not supported or drive type unknown
80h if there is no media in the drive

ES:DI pointer to 1l-byte disk parameter table for media type
CF set error code (see 01h above)

note 1. A floppy disk must be present in the drive.
2. This function should be called prior to formatting a disk with Int 13h Fn

05h so the BIOS can set the correct data rate for the media.
3. If the change line is active for the specified drive, it is reset.

Function 19h Park Hard Disk Heads (PS/2)
entry AH 19h

DL drive number (80h-OFFh)
return CF set on error

: AH error code (see fn Olh)
note This function is defined for PS/2 fixed disks only.

Function 1Ah ESDI Hard Disk — Low Level Format (PS/2)
entry AH 1Ah

AL Relative Block Address (RBA) defect table count
0 if no RBA table
0 if RBA table used

cL format modifiers byte
bits 0 ignore primary defect map

1 ignore secondary defect map
2 update secondary defect map
3 perform extended surface analysis
4 generate periodic interrupt
5 reserved - must be 0
6 reserved - must be 0
7 reserved - must be 0

DL drive (80h~-OFFh)
ES:BX pointer to RBA defect table

return CF set on error
AH error code (see fn O1h above)

note 1. Initializes disk sector and track address fields on a drive attached to
the IBM ‘ESDI Fixed Disk Drive Adapter/A’.

2. If periodic interrupt selected, int 15h/fn OFh is called after each
cylinder is formatted

3. If bit 4 of CL is set, Int 15h, AH=OFh, AL=phase code after each cylinder
is formatted or analyzed. The phase code is defined as:

Oo reserved
1 surface analysis
2 formatting

4. If bit 2 of CL is set, the drive’s secondary defect map is updated to
reflect errors found during surface analysis. If both bit 2 and bit 1
are set, the secondary defect map is replaced.

5. For an extended surface analysis, the disk should first be formatted by
calling this function with bit 3 cleared and then analyzed by calling
this function with bit 3 set.

Function 1Bh ESDI Hard Disk - Get Manufacturing Header (PS/2)
entry AH 1Bh

AL number of record
DL drive

ES: BX pointer to buffer for manufacturing header (defect list)return CF set on error
AH status

OLYMPUSEX.1015 - 176/393

OLYMPUS EX. 1015 - 177/393

170 The Programmer’s Technical Reference

note Manufacturing header format (Defect Map Record format) can be found in
the ‘IBM 70Mb, 115Mb Fixed Disk Drives Technical Reference’.

Function 1Ch ESDI Hard Disk - Get Configuration (PS/2)
entry AH 1ch

AL OAh Get Device Configuration
DL drive -
ES: BX pointer to buffer for device configuration

(drive physical parameter)
OBh Get Adapter Configuration

ES:BX pointer to buffer for adapter configuration
och Get POS Information

ES: BX pointer to POS information
OEh Translate RBA to ABA .

cH low 8 bits of cylinder number
cL sector number, high two bits of cylinder number

in bits 6 and 7
DH head number
DL drive number
ES: Bx pointer to ABA number

return CF set on error ww
AH status (see 01h)

note 1. Device configuration format can be found in IBM ESDI Fixed Disk Drive
2. Adapter/A Technical Reference.

ABA (absolute block address) format can be found in IBM ESDI Adapter
Technical Reference by using its Device Configuration Status Block.

OLYMPUSEX.1015 - 177/393

OLYMPUS EX. 1015 - 178/393

Installable Device Drivers

Device Driver Format

A device driver is a handler for communication between the system software and hardware de-
vices. The motherboard ROM and IBMBIO.COMorIO.SYSfiles contain the basic drivers for

allowing DOSto talk to the console,disk drives, serial and parallel ports, clock, and otherre-
sources.

DOShasfive builtin drivers, STDIN, STDOUT, STERR, STDPRN, or STDAUX.An ‘install-
able’ driver may be loaded in the CONFIG.SYSfile, and either replace one of the built-in dri-
vers or define a new resource, such as a mouse or expanded memory driver.

The device driver is a COM (memory image)file that containsall of the code needed to control
an add-in device. An EXEfile cannot be used since the EXE loader is part of COM-
MAND.COM,whichis not present when the device driver is being loaded by IBMBIO.COM or
IO.SYS. The COMfile must notload at the usual ORG 100h. Since the driver does not use the

Program SegmentPrefix,it is simply loaded withoutoffset, therefore the driverfile must have an
origin of 0 (ORG 0 or no ORGstatement). Driverfiles should not have a declared stack seg-
ment.

DOScaninstall the device driver anywhere in memory, so care must be taken in any FAR mem-
ory references. You should not expect that your driver will be loaded in the same place every
time.

Types of Devices
There are two typesof devices: Character devices and Block devices. Their attributes are as fol-
lows:

Character devices are designed to doserial I/O in a byte-by-byte manner. These devices have
names like CON, AUX,or PRN,and you can open channels (handles or FCBs)to do J/O much
like a diskfile. I/O may bein either cooked or raw mode.(see Chapter 7 for discussion of cooked
and raw modes). Because character devices have only one name, they can only support onede-
vice.

OLYMPUSEX.1015 - 178/393

OLYMPUS EX. 1015 - 179/393

172 The Programmer's Technical Reference

Block devices are normally implementedasdisk drives. They can do random I/Oin piecescalled
blocks, which are usually the physical sector size of the disk. These devices are not named as
character devices are, and cannotbe openeddirectly. Instead they are accessed byusing drive let-
ters such as A,B, C, etc. Block devices can have units within them. In this way, a single block
driver can be responsible for one or moredisk drives. For example,thefirst block device driver
can beresponsible for drives A, B, C, and D. This means it has four units defined and therefore
takes up fourdriveletters. The position ofthe driver in the chain ofall drives determines the way
in whichthedrive letters correspond,i.e, if asecond block device driver defines three units, then
those units are FE, F and G.

DOS1.x allows 16 block devices. DOS2.x allows 63, and DOS3.x allows26.It is recommended
that drivers limit themselves to 26 devices for compatibility with DOS 3.x and 4.x. When DOS
2.x passes the Z: drivespec, the drivespecs geta little weird, such as ~, [, or #. DOS 3.x+ will re-
turn an error message.

Creating a Device Driver
To create a device driver that DOScaninstall, you must do the following:

1. Create a memory image (COM)file with a device headerat thestartofthefile.

2. Originate the code(including the device header) at 0, instead of 100h.

3. Set the next device headerfield. Refer to ‘Pointer to Next Device Header Attribute Field’
for more information.

4. Set the attribute field of the device header. Refer to ‘Attribute Field’ for more information.

5. Set the entry points for the interrupt and strategy routines.
6. Fillin the name/unitfield with the nameofthe character device or the unit numberof the

block device.

DOSalways processes installable character device drivers before handling the default devices.
So to install a new CONdevice, simply name the device CON.Besure to set the standard input
device and standard output devicebits in the attribute field of anew CONdevice. The scan ofthe
device list stops on the first match so theinstallable device driver takes precedence. For in-
stance, installing ANSI.SYSreplacesthe built-in CONdriver.

DOSdoesn’t care aboutthe position of installed character devices versus block devices.

Structure of a Device Driver

A device driverconsists of three majorparts:
a device header

a Strategy routine
an interrupt routine

OLYMPUSEX.1015 - 179/393

OLYMPUS EX. 1015 - 180/393

Installable Device Drivers . 173

Device Header

The driver has a special headerto identify it as a device and to define the strategy and interrupt
entry points and its variousattributes. This headeris locatedat the beginning ofthefile. It con-
tains a pointer to the nextdriverin the chain,the attributesofthe device, offsets into the strategy
and interrupt routines, and the device ID.

This is the format of the device header:

DEVICE HEADER

offset Length Description
ooh word Pointer to next device header field, offset value

02h word Pointer to next device header field, segment value04h word Attribute .
o6h word Pointer to device strategy routine (offset only)
osh word Pointer to device interrupt routine (offset only)
OAh 8 bytes Name/Unit field

Pointer to Next Device Header Field

The device headerfield is a pointer to the device headerof the next devicedriver.It is a double-
word field that is set by DOSatthe time the device driver is loaded. Thefirst wordis the offset
and the second wordis the segment.

If you are loading only onedevice driver, set the device headerfield to -1 before loading the de-
vice. Ifyou are loading morethanonedevice driver,set the first word of the device driver header
to the offset of the next device driver’s header. Set the device driver headerfield of the last device
driverto -1.

Attribute Field

Theattribute field is a wordfield usedto identify the type of device this driver is responsible for.
This field distinguishes between block and character devices and determines which selected de-
vices are given special treatment. That describes the attributes of the device driver to the system.
Theattributesare:

ATTRIBUTE FIELD

word attr. description
bits

0
un oct

not current standard input device
current standard input device
not current standard output device
current standard output device
not current NUL device
current NUL device
not current CLOCK device
current CLOCK device
standard CON I/O routines should be used

. fast screen I/O (int 29h) should be used
5 - 10 ‘reserved for DOS’ - unknown ~ should be set to 0

11. doesn’t support removable media (default for DOS 2.x)
supports removable media (DOS 3.0+ only)

12 ‘reserved for DOS’ - unknown - should be set to 0
13 IBM format (block devices)

non-IBM format (block devices)
output till busy (character devices)
doesn‘t support IOCTL
supports IOCTL

1

2

3

4 PORPOCrFOROFHFSO
KO

14 KOrRFS

OLYMPUSEX.1015 - 180/393

OLYMPUS EX. 1015 - 181/393

174 The Programmer’s Technical Reference
15 0 block device

1 character device

Note: ifabitin the attribute word is defined only for onetype ofdevice,a driver for the other
type of device mustset that bit to 0.

BIT1 is the standard input and outputbit. It is used for character devices only. Usethis bit to
tell DOSifyour character device driver is the new standard input device or standard
output device.

BIT2 isthe NULattributebit. It is used for character devices only. Useit to tell DOS ifyour
character device driver is a NUL device. Although there is a NUL deviceattributebit,
you cannotreassign the NULdevice or replace it with your own routine. This attribute
exists for DOS so that DOScantell if the NUL deviceis being used.

BIT3_is the clock devicebit. It is used for character devices only. Default is 0. You can use it to
tell DOSifyour character device driveris the new CLOCKdevice.

BIT4 isthe ‘fast video output’bit. The default is 0, which uses the BIOSfor writing to the
screen. Whenset, this bit uses int 29h for muchfaster screen updates.

BITS 5-10 reserved for DOS, unknown.Shouldbesetto 0.

BIT 11 is the open/close removable media bit. Useit to tell DOSif the device driver
can handle removable media.This bit is valid forDOS 3.0+ only. This bit was
reserved in DOS 2.x. Since DOS 2.x does not lookatthis bit,its use is backward
compatible.

BIT12 reserved for DOS, unknown.Should besetto 0.

BIT 13 is the non-IBM formatbit. Whenused for block devicesit affects the operation of the
BUILD BPB(BIOSparameterblock) device call. For character devicesit indicates that
the devices implements the OUTPUT UNTIL BUSYdevice call. '

BIT 14 is the IOCTLbit. Itis used for both character and block devices. Useit to tell DOS

whetherthe device driver can handle control strings through the IOCTL function call
44h. Ifa device driver cannot process controlstrings, it should set bit 14 to 0. This way
DOScan return an error if an attempt is made through the IOCTLfunction call to send
or receive controlstrings to the device. If a device can process controlstrings, it should
set bit 14 to 1. This way, DOS makescalls to the IOCTL input and output device
function to send and receive IOCTLstrings. The IOCTLfunctionsallow data to be
sent to and from the device without actually doing a normalreador write. In this way,
the device driver can use the data for its own use, (for example, setting a baud rate or
stop bits, changing form lengths,etc.) It is up to the device to interpret the information
that is passed to it, but the information must notbe treated as a normalI/O request.

BIT 15 is the device type bit. Use it to tell the system the that driveris a block or character
device.

Pointer to Strategy Routine

This field contains a pointer to ‘device strategy’ function in the driver. This function is called
whenevera request is madeto the driver, and muststore the location of the request header from
DOS.This pointer is a word value, and so must be in the same segmentas the device header.

OLYMPUSEX.1015 - 181/393

OLYMPUS EX. 1015 - 182/393

. Installable Device Drivers 175

Pointer to Interrupt Routine

This field contains a pointer to the function which activates driver routines to perform the
command in the current request header. This is called by DOSafter the call to the strategy
function, and should reset to the request header address stored by ‘strategy’, to allow for the
possibility of interrupts betweenthe twocalls. This pointeris a word value, and so mustbein the
same segmentas the device header.

Name/Unit Field

This is an 8-byte field that contains the nameofa character device or the numberofunits in a
. block device. For the character names, the nameis left-justified and the spaceis filled to 8 bytes.

For block devices, the numberof units can be placed in thefirst byte. This is optional because
DOSfills in this location with the value returned by the driver’s INIT code. The other 7 bytes of
the block device ID are reserved and should notbe used.

Installing Device Drivers
DOSinstalls new device drivers dynamically at boot time by reading and processing the
DEVICE commandin the CONFIG.SYSfile. For example,if you have written a device driver
called RAMDISK,to installit put this command in the CONFIG.SYSfile:

DEVICE=[drive]{path] RAMDISK [parameters]

DOS makes a FAR call to the device driver at its strategy entry pointfirst, using the request
headerto pass information describing what DOSwants the device driver to do.

This strategy routine does not perform the request but rather queues the requestor saves a
pointer to the request header. The second entry pointis the interrupt routine andis called by
DOS immediately after the strategy routine returns. The interrupt routine is called with no
parameters. Its function is to perform the operation based on the queued request andset up any
return information.

DOSpassesthe pointer to the request headerin ES:BX.This structure consists of a fixed length
header (Request Header) followedby data pertinentto the operation to be performed.

Note:—Itis the responsibility of the device driver to preserve the machine state. For example,
save all registers on entry and restore them onexit.

The stack used by DOShas enough room onit to save all the registers. If more stack spaceis
needed,it is the device driver’s responsibility to allocate and maintain anotherstack.

All calls to execute device drivers are FAR calls. FAR returns should be executed to return to
DOS.

Installing Character Devices
Oneofthe functions defined for each device is INIT: This routine is called only once when the
device is installed and never again. The INIT routine returns the following:

A. A location 1o thefirst free byte of memory after the device driver, like a TSR thatis stored
in the terminating addressfield. This way, the initialization code can be used once and then

OLYMPUSEX.1015 - 182/393

OLYMPUS EX. 1015 - 183/393

176 The Programmer’s Technical Reference

thrown away to save space.

B. After setting the addressfield, a character device drivercan set the status word and return.

Installing Block Devices
Block devices are installed in the same way as characterdevices. Thedifference is that block de-
vices return additional information. Block devices mustalso return:

A. Thenumberofunits in the block device. This number determines the logical names the
devices will have. For example,if the currentlogical device letteris F at the time of the
install call, and the block device driver INIT routine returns three logical units, the letters
G, H, andI are assignedto the units. The mappingis determinedby the position ofthe
driver in the device list and the numberofunits in the device. The numberofunits
returned by INIToverridesthe value in the name/unitfield of the device header.

B. Apointer toa BPB (BIOS Parameter Block) pointerarray. This is a pointerto an array of
‘N’ word pointers there ‘N’is the numberofunits defined. These word pointers point to
BPBs. This way,if all of the units are the same, the entire array can point to thesame BPB
to save space. The BPBcontainsinformation pertinentto the devices such as the sector
size, numberofsectors perallocation unit, and so forth. The sector size of the BPB cannot
be greater than the maximumallottedsize set at DOSinitialization time. This array must be
protected below thefree pointer set by the return.

C. The media descriptorbyte. This byte is passed to devices so that they know what parameters
DOSis currently using for a particular drive unit.

Block devices can take several approaches. They can be ‘dumb’or‘smart’. A dumb device would
define a unit (and therefore a BPB) for each possible media drive combination. Unit 0=drive
O;single side, unit 1=drive 0;double side, etc. For this approach, the media descriptor bytes
would mean nothing. A smart device would allow multiple media perunit. In this case, the BPB
table returned at INIT mustdefine space large enough to accommodatethelargest possible me-
dias supported(sector size in BPB must be as large as maximum sector size DOSis currently
using). Smartdriverswill use the media descriptorbyte to pass information aboutwhat mediais
currently ina unit.

Request Header
The request headerpassesthe information describing what DOSwantsthe device driver to do.
Whena valid device driver command code or functionis called by your application program,
DOSdevelopsa data structure called the ‘Request Header’in ES:BX andpassesit to the strate-
gy entry point. This structure consists of a 13-byte defined header which may be followed by
other data bytes depending on the function requested.It is the device driver’s responsibility to
preserve the machinestate, for example,savingall registers including flags on entry and restor-
ing them onexit. There is enough room onthe stack whenstrategy or interruptis called to do
about 20 pushes.If more stack is needed, the driver should set aside its own stack space. The
fixed (‘static’) part of the request headeris as follows:

REQUEST HEADER
offset Length Field
00h byte Length in bytes of the request header
Olh byte Unit code. Determines subunit to use in block devices

Has no meaning for character devices

OLYMPUSEX.1015 - 183/393

OLYMPUS EX. 1015 - 184/393

Installable Device Drivers . 177
02h byte Command ‘code
03h word Status
05h 8 bytes Reserved for Dos
och varies Data appropriate for the operation

Request Header Length Field
Thelength in bytes ofthe total request header (0-255) plus any dataat the end ofthe header.

Unit Code Field

Theunit codefield identifies which unit in a block device driver the requestis for. For example,
if a block device driver has three units defined, then the possible values of the unit codefield
would be0,1, and 2. This field is not valid for character devices.

Command Code Field

The commandcodeinvokesa specific device driver function. Functions 0 through 12 are sup-
ported in all device drivers. Functions 13-15 are available only in DOS 3.0 or higher. Somefunc-
tions are relevant for either character or block devices but not both; nonethelessall functions
must have an executable routine present even if it does nothing butset the doneflag in the re-
turn status word in the request header.

The command codefield in the request header can have the followingvalues:

code name function
0 INIT initialize driver for later use (used once only)
1 MEDIA CHECK block devices only, NOP for character devices
2 BUILD BPB block devices only, NOP for character devices
3 IocTL input called only if device has IOCTL bit set
4 INPUT read data
5S NON-DESTRUCTIVE INPUT NO

WAIT character devices only
6 INPUT STATUS: character devices only
7 INPUT FLUSH character devices only
8 OUTPUT write data
9 OUTPUT write data with verify
10 OUTPUT STATUS character devices only
11 OUTPUT FLUSH character devices only .
12 IOCTL OUTPUT called only if device has IOCTL bit is set
13 DEVICE OPEN called only if OPEN/CLOSE/RM bit is set
14 DEVICE CLOSE called only if OPEN/CLOSE/RM bit is set
15 REMOVABLE MEDIA only if OPEN/CLOSE/RM bit set & device is block
16 OUTPUT UNTIL BUSY only called if bit 13 is set & device is character

Theindividual commandcodesare describedlaterin this chapter.

Status Field

The status word field is zero on entry andis set by the driver interrupt routine on return.

Thestatusfield in the request headercontains:

DEVICE DRIVER STATUSFIELD
size bit definition
byte 0

1
2

OLYMPUSEX.1015 - 184/393

OLYMPUS EX. 1015 - 185/393

178 The Programmer's Technical Reference

Error message return code
(with bit 15=1)

byte DONEBUSY
Reserved by DOS, unknownYOuUAWPwOTNHnHObw
Error

Thelow 8 bits of the status word define an error messageifbit 15 is set. These errors are:

00h write protectviolation O1lh unknown unit
02h device not ready 03h unknown command
04h CRCerror 05h bad drive requeststructure length
06h seek error 07h unknown media

08h sector not found 09h printer out ofpaper
OAh write fault OBh read fault

OCh general failure ODh_reserved
OEh reserved OFh invalid disk change

BIT8_is the donebit. Ifit is set, it means the operation is complete. The driversets the bit to 1
whenit exits.

BIT9|is the busy bit. It is only set by status calls and the removable media call.
BITS 10-14 are reserved.

BIT 15. is the errorbit. If this bit is set, the Low 8 bits of the status word(7-0) indicate the error
code.

Reserved For DOS

Official sources label this area as ‘reserved for DOS’. Another source indicates thatthis consists

of two double-word (4-byte) pointers to be used to maintain a linked list of request headers for
this device andalist of all current device requests being processed by DOS. This was apparently ‘
to be used for the undelivered multitasking version of DOS.

Device Driver Functions

All strategy routines are called with ES:BX pointing to the request header. The interrupt rou-
tines get the pointers to the request header from the queue thestrategy routines stores them in.
The commandcodein the request headertells the driver which function to perform.

Note: A DWORDpointersare storedoffsetfirst, then segment.

INIT

Command code = 0 (all devices)

OLYMPUSEX.1015 - 185/393

OLYMPUS EX. 1015 - 186/393

Installable Device Drivers 179

Performs all initialization required at DOS boot time to install the
driver and set local driver variables. This function is called onlyonce, when the driver is loaded.

ES:Bx pointer to 26-byte request header and data structureFormat of structure:
offset length field

ooh 13 bytes request header
ODh dword number of units (not set by character devices)
lih dword ending address of the driver’s resident code
15h dword pointer to BPB array (not set by character devices) /pointer

to remainder of arguments
19h byte drive number (DOS 3.0+ only)

WhenINITis called, the driver must do the following:

A. set the numberof units (block devices only)

B. set up the pointerto the BPBarray(block devicesonly)

C. perform anyinitialization code (to modems,printers,etc)

D. set the ending addressofthe resident program code

E. set the status word in the request header

To obtain information obtained from CONFIG.SYSto a device driver at INIT time, the BPB
pointerfield points to a buffer containing the information passed from CONFIG.SYSfollowing
the =. The buffer that DOS passesto the driver at INITafter thefile specification contains an
ASCII string for the file OPEN. The ASCIIstring (ending in Oh)is terminated by a carriage re-
turn (ODh)and linefeed (OAh).If there is no parameter informationafterthefile specification,
the file specification is immediately followedby a linefeed (OAh). This informationis read-only
and only system calls 01h-OCh and 30h can beissued by the INIT codeofthe driver.

The last byte parametercontainsthe driveletter for thefirst unit ofa block driver. For example,
0=A, 1=Bete.

Ifan INIT routine determines thatit cannotset up the device and wants to abort without using
any memory,follow this procedure:

A. set the numberofunits to 0

B. set the ending offset address at 0

C. set the endingoffset segment address to the code segment(CS)

Note: If there are multiple devicedriversin a single memory imagefile, the ending address
returnedbythe last INIT called is the one DOSuses.It is recommendedthatall device
drivers in a single memory imagefile return the same ending address.

Media Check

command code = 1 (block devices only)
Checks to see if disk had been changed since last access.

ES:BX pointer to 19-byte request header and data structure
Pormat of structure:
offset length field
00h 13 bytes request header
ODh byte media descriptor from BPB
OEh byte returned

OLYMPUSEX.1015 - 186/393

OLYMPUS EX. 1015 - 187/393

180 The Programmer’s Technical Reference

OFh dword returns a pointer to the previous volume ID (if bit
41=1 and disk change is returned) (DOS 3.0+)

Whenthe command codefield is 1, DOS calls MEDIA CHECKfora drive unit and passesits
current media descriptor byte. See ‘Media Descriptor Byte’later in this chapter for more infor-
mation about the byte. MEDIA CHECKreturnsoneof the following:

A. media not changed C. notsure
B. media changed D.error code

The driver must perform the following:

A. set the status word in the request header

B. set the return byte
00h don’t know if media has been changed
O0lh media has not been changed
-1 media has been changed

DOS3.0+:If the driver has set the removable mediabit 11 of the device headerattribute word
to 1 and the driver returns -1 (media changed), the driver must set the DWORDpointerto the
previous volume identification field. If DOS determines that the media changedis an error,
DOSgenerates an error OFh(invalid disk change) on behalf of the device.If the driver does not
implement volumeidentification support, but has bit 11 set to 1, the driver should seta pointer
to the string ‘NO NAMBP’,0.

Media Descriptor

Currently the media descriptor byte has been defined for a few media types. This byte should be
identical to the media byte if the device has the non-IBM formatbit off. These predetermined
values are:

media descriptor byte = 11312141400 0
(numeric order) 7 6 5 43 2° 1 «0

BIT MEANING
0 0 not double sided

1 double sided
1 0 not 8 sector

1 8 sector ;
2 0 nonremovable

1 REMOVABLE
3-7 ‘Must be set to 1

Build BPB (BIOS Parameter Block)
command code = 2 (block devices only)

ES: BX pointer to 22-byte request header and data structure
Format of structure:
offset length field
00h 13 bytes request header
ODh byte media descriptor from DOS
OEh dword transfer address (buffer address)
12h adword pointer to BPB table

DOScalls BUILD BPBunderthe following two conditions:

A. If‘media changed’is returned.

OLYMPUSEX.1015 - 187/393

OLYMPUS EX. 1015 - 188/393

Installable Device Drivers , 181

B. If ‘not sure’ is returned. If so, there are no used buffers. Used buffers are buffers with
changed data that have not yet beenwritten to the disk.

Thedriver must do the following:

A. set the pointer to the BPB.

B. set the status wordin the request header.

The driver must determine the correct media type currently in the unit to return the pointer to
the BPB table. The way the buffer is used (pointer passed by DOS) is determined by the
non-IBM format bit in the attribute field of the device header. If bit 13=0 (device is IBM
compatible), the buffer containsthe first sector of the FAT (most importantly the FAT ID byte).
‘The driver must not alter this buffer in this case. If bit 13=1 the buffer is a one sector scratch

area which can be used for anything.

For drivers that support volumeidentification and disk change, the call should cause a new
volumé identification to be read off the disk. This call indicates that the disk has been legally

‘changed.

If the device is IBM compatible, it must be true thatthe first sector ofthe first FAT is located at
the samesectorforall possible media. This is because the FAT sectoris read before the mediais
actually determined.

The information relating to the BPB for a particular media is kept in the boot sector for the
media.In particular, the formatof the bootsectoris:

For DOS 2.x, 3 byte near jump (OE9h). For DOS 3.x+, 2 byte near jump (OEBh) followed by a
NOP (90h)

8 bytes OEM name and version
BYTE : sectors per allocation unit (must be a power of 2)
WORD B reserved sectors (starting at logical sector 0)
BYTE number of FATs
WORD P max number of root directory entries
WORD number of sectors in logical image (total number of sectors in

media, including boot sector directories, etc.)B

BYTE media descriptor
WORD number of sectors occupied by a single FAT
WORD sectors per track ‘
WORD number of heads
WORD number of hidden sectors

The three wordsat the end returninformation about the media. The numberof headsis useful

for supporting different multihead drives that have the same storage capacity but a different
numberofsurfaces. The numberofhiddensectorsis useful for drive partitioning schemes.

INPUT / OUTPUT (IOCTL)
command code = 3 IOCTL Read

4 Read (block or character devices)
8 Write (block or character devices)
9 Write With Verify

12 IOCTL Write
16 Output Until Busy (character devices only)

ES: BX pointer to 24-byte request header and data structure

OLYMPUSEX.1015 - 188/393

OLYMPUS EX. 1015 - 189/393

182 The Programmer's Technical Reference
Format of structure:
offset length field
ooh 13 bytes request header
ODh byte media descriptor byte from BPB
OEh dword transfer address (buffer address)
12h word byte/sector count
14h word starting sector number (block devices)
16h dword (DOS 3.0+) pointer to the volume ID if error code OFh is

returned .

Thedriver must perform the following:

A. set the status wordin the request header

B. perform the requested function

C. set the actual numberofsectorsor bytes transferred

Noerror checking is performed on an JOCTL I/O call. However, the driver mustset the return
sector or byte count to the actual numberofbytes transferred.

Undercertain circumstancesa block device driver may be asked to do a write operation of 64k
bytes that seemsto be a ‘wrap around’ofthe transfer address in the BIOS I/O packet. This arises
due to an optimization added to write code in DOS.It will only happenin writes that are within a
sector size of 64k onfiles that are being extended past the current endoffile. It is allowable for
the device driver to ignore the balance of the write that wraps around,if it so chooses. For
example, a write of 10000h bytes worth of sectors with a transfer address of XXX:1 ignores the
last two bytes. A user program can neverrequest an I/O of more than OFFFFh bytes and cannot
wrap around (even to 0) in the transfer segment,so in that case the last two bytes can be ignored.

A program that uses DOSfunction calls can never request an input or output function of more
than OFFFFhbytes, therefore, a wrap aroundin the transfer (buffer) segment can neveroccur.It
is for this reason you can ignore bytes that would have wrapped aroundin the transfer segment.

If the driver returns an error codeof OFh (invalid disk change) it must puta DWORDpointer to
an ASCIIZ string whichis the correct volumeJD to ask the userto reinsert the disk.

DOS 3.0+:

The reference count of openfiles on the field (maintained by the OPEN and CLOSEcalls)
allows the driver to determine when to return error OFh. If there are no openfiles (reference
count=0)and the disk has been changed,the I/O is all right, and error OFhis not returned.If
there are openfiles (reference count 0) and the disk has been changed,an error OFh condition
may exist.

Nondestructive Input No Wait

command code = 5 (character devices only)
Reads a character from input stream but does not remove it from the
buffer

ES: BX pointer to 14-byte request header and data structureFormat of structure:
offset length field
00h 13 bytes request header
ODh byte read from device

Thedriver mustdo the following:

A. returnabyte from the device

OLYMPUSEX.1015 - 189/393

OLYMPUS EX. 1015 - 190/393

Installable Device Drivers , 183

B. set the status word in the request header.

If the character device returns busybit=0 (characters in the buffer), then the next characterthat
would be readis returned. This character is not removed form the buffer (hence the term nonde-
structive input). This call allows DOSto look ahead one character.

Status

command codes = 6 Input Status (character devices only)
10 Output Status (character devices only)

Check for characters waiting in input buffer

ES:BX pointer to 13-byte request header

This driver must perform the following:

A. perform the requested function

B. set the busybit

C. set the status word in the request header.

| Thebusybitis set as follows:
Forinput on unbuffered character devices:if the busy bit (bit 9) is 1 on return, a write request
would wait for completionof a current request. If the busybitis 0, there is no current request.
Therefore, a write request would start immediately.

For input on buffered character devices:if the busy bitiis 1 on return, a read request does to the
physical device.If the busy bit is 0, there are characters in the device buffer and a read returns
quickly.It also indicates that a user has typed something. DOS assumesall character devices
have a type-ahead input buffer. Devices that do not have this buffer should always return
busy=0 so that DOS does not hang waiting for information to be put in a buffer that does not
exist.

Flush Input Buffers
command code = 7 (character devices only)

Forces all data in buffers to specified device.

ES:BX pointer to 13-byte request header

This call tells the driver to flush (terminate) all pending requests that it has knowledgeof.Its
primary useis to flush the input queue on character devices.

Thedriver mustset the status word in the request header upon return.

Flush Output Buffers
scommand code 11 (character devices only)

Forces all data in buffers to specified device.

ES: BX pointer to 13-byte request header

Thiscall tells the driverto flush all output buffers and discards any pending requests.Its primary
use is to flush the output queue on characterdevices.

OLYMPUSEX.1015 - 190/393

OLYMPUS EX. 1015 - 191/393

184 The Programmer’s Technical Reference 3

Thedriver must set the status word in the request header upon return.

Open or Close (DOS 3.0+)
command code = 13 Open (block or character devices)

14 Close (block or character devices)

ES:BX pointer to 13-byte static request header

Thesecalls are designed to give the device information about the currentfile activity on the de-
vice ifbit 11 of the attribute word is set. On block devices, thesecalls can be used to managelocal
buffering. The device can keep a reference count. Every OPEN causesthe device to increment
the reference count. Every CLOSEcauses the device to decrementthe reference count. When
the reference countis 0, if means there are no openfiles in the device. Therefore, the device
should flush buffers inside the device it has written to because now the user can change the
media on a REMOVABLEmedia drive. If the media had been changed,it is advisable to reset
the reference count to 0 withoutflushing the buffers. This can be thoughtofas‘last close causes
flush’. These calls are more useful on character devices. The OPENcall can be used to send a de-

vice initialization string. On a printer, this could causea string to be sent to set the font, page
size, etc. so that the printer would always be in a knownstate in the I/O stream. Similarly, a
CLOSEcall can be used to send a poststring (like a form feed) at the end ofan I/O stream. Using
IOCTL to set these pre and post strings provides a flexible mechanism ofserial I/O device
stream control.

Since all processes have access to STDIN, STDOUT, STDERR, STDAUX, and STDPRN
(handles0, 1,2,3, and 4) the CON, AUX, and PRN devices are always open.

Removable Media (DOS3.0+)

command code = 15 (block devices only)
This call identifies the media type as removable or nonremovable.

ES: BX pointer to 13-byte static request header

To use this call, set bit 11 (temovable media) of the attribute field to 1. Block devices can only
use this call through a subfunction of the IOCTLfunctioncall (int 21h fn44h).
This call is useful becauseit allowsa utility to know whetherit is dealing with a nonremovable
media drive or with a removable media drive. For example, the FORMATutility needs to know
whether a drive is removable or nonremovable because it prints different versions of some
prompts.

Note: Noerror checkingis performed.It is assumedthatthis call always succeeds.

OLYMPUSEX.1015 - 191/393

OLYMPUS EX. 1015 - 192/393

10

Expanded and Enhanced
Expanded Memory Specifications

History
The Lotus/Intel/Microsoft Expanded Memory Managerwasoriginally a Lotus and Intel project
and was announcedasversion 3.0 in the second quarter of 1985 primarily as a means of running
larger Lotus worksheets by transparently paging unused sections to bank-switched memory.
Shortly afterward Microsoft announced support of the standard and version 3.2 was sub-
sequently released with support for Microsoft Windows. LIM 3.2 supported up to 8 megabytes
of paged memory. The LIM 4.0 supports up to 32 megabytes of paged memory.

Uses of Expanded Memory
The most commonuse for expanded memory is as a RAMdisk outside of DOS memory. The
Lotus 1-2-3 Release 2 spreadsheet and manyofits imitators can use EMSforstoringpart of the
spreadsheet. AutoCAD,DesignCAD,and some other CAD programscan make use of EMS,as
well as disk caching, etc. The MultiEdit word processor can also use EMS,andit looks like new
applications are slowly starting to join the ranks of EMS-awaresoftware.

The moststriking use of expanded memory is Quarterdeck’s DesQview. DesQview and the
AQA EEMSweredesigned for each other. When EEMSis available, DesQview can manage
multiple DOSpartitionsas a true multitasking manager. A program running under DesQview
sees EEMSas conventional memory.

DOS and Expanded Memory

DOS4.0 supports expanded memory for the internal functions of BUFFERSaswell as various
external programs (FASTOPENand VDISK,for example). 4.0 checks for the presence of the
Expanded Memory Managerdevice driver and passescallsto it like any other application. DOS
4.0 had a numberof bugs with its EMS functions (such as not recognizing various non-IBM
EMSmanagers and performing operations with the EMSboardprohibited by the LIM 4.0 spe-

OLYMPUSEX.1015 - 192/393

OLYMPUS EX. 1015 - 193/393

186 , The Programmer’s Technical Reference

cification it supposedly embraces). DOS 4.01 was quietly released immediately afterward but
still has problems. I have a real IBM 2Mb Expanded Memory Adapterin my AT (at $1395, I may |
have the only onein captivity!). Under DOS 4.01, XMA2EMS.SYSwill initialize only 1664k of
my 2048k. The card passes its own ROM anddisk diagnostics perfectly. VDISK will also not |
function, aborting with a ‘notenough memory’error. ~

The bug in DOS4.00 can cause DOS 4.00 to corruptfiles or entire directories when running pro-
gramsthat use expanded memory. The problem arises when using the DOS 4.00 /X option with |
BUFFERS, FASTOPEN,and VDISK commands. DOS 4.0 makes assumptions that are fun- |
damentally inconsistent with standard EMS4.0 usage. EMS 4.0 contains functions for saving !
and restoring the entire memory mapping context. Programs that need to change the memory i
mapusethese functionsto save the current map, mapin whatever memory they need, and then
restore the original map. These functions changethe entire map,including the pages ofmemory
being used by DOS 4.0 /X option. DOS4.0, however, assumesthat the mapforits pages NEVER
get changed.Theresultis that DOS 4.0 gets confused about which buffers are currently in mem-
ory and corruptsthe file data and/ordirectory data thatis buffered.

Since the only really practical use for EMS in DOS4.0 is in BUFFERS=, andany cachepro-
gram (including IBM’s own IBMCACHE)will blow BUFFERS= away, there’s not much rea-
son to worry about DOS4.0’s supposed EMSfunctionality.

Onevery good andone very bad result should come about from DOS4.0’s EMSsupport.First,
since IBM now officially recognizes EMS,sells EMS cards, and DOSsupports EMS (some-
what), we may see more programs makingbetter use ofEMS hardware.

Thebadresult is that IBM,for someidiotic reason, chooses to refer to EMS as ‘XMA.There al-
ready *IS* an XMAstandard, whichis defined by Microsoft, which uses 80286/80386 extended ,;
over-1-megabyte memory in a fashion much like EMS. Unfortunately, the XMAstandardis
little-knownand I’ve seen advertisements for ‘CMA expanded memory adapters(sigh). As if ex-
tended, expanded, enhanced expanded, EMS, EEMS,conventional, HMA,and XMAweren’t
confusing enoughalready.

What Was That Again?

Conventional Memory: Normal 0-640k address space, 8088 and 286/386 real mode |
High Memory: the 384k between the end of640 and the 1 meglimit of

the 8088 microprocessor
High Memory Area: (HMA)thefirst 64k oftheover-1-meg 286/386 address space
Extended Memory: the over-1-meg address spaceofthe 286/386, including

HMAUseofthis memory is defined by the Microsoft Extended
Memory Specification, or XMA .

Expanded Memory: Paged memory swapped in and outofa predetermined area 7
of the O-1meg real mode address area. The current
specifications are LIM 4.1and AQA EEMS3.2.

Display Memory: memory between 640k and 1 meg where memory-mapped
RAM from video cardsis accessed.

AST/QuadRAM/Ashton-Tate Enhanced Expanded Memory
Specification

The AQA EEMSmaintains upward compatibility with the LIM,butis a supersetof functions.

OLYMPUSEX.1015 - 193/393

OLYMPUS EX. 1015 - 194/393

Expanded and Enhanced Expanded Memory Specifications 187
The AQA EEMSpermits its pages to be scattered throughout the unused portion of the ma-
chine’s address space. On August 19, 1987, the new version of the Expanded Memory Specifica-
tion (EMS)was announcedby Lotus, Intel and Microsoft. This new versionof the specification
includes many features of the Enhanced Expanded Memory Specification (EEMS)originally
developed by AST Research, Quadram and Ashton-Tate, although the three original sponsoring
companies elected not to make the new specification upward compatible with EEMS. AST Re-
searchsays that they will endorse EMS 4.0 without reservation.

Thedefinitive document for the LIM-EMSisIntel part number 300275-004, August, 1987. The
definitive documentfor the AQA EEMSstandardis AST part number 00048-001B, June, 1987.

Both of these documentsarefree for the asking (Intel will even send you a floppy with the latest
drivers). Unfortunately, the Inte] documentation makes determining which functions are not
available under LIM 3.xa bit difficult. There are very few LIM 4.0 or EEMScardsin the hands of
users; most hardwareis LIM 3.1 or 3.2 spec.

EMSAddress Space Map

Mappingof the EMS addressspace: 32M

/

/

/
Expanded

/ Memory1024K
BIOS ROMs /

960K
Page Frame|--~-~-------------

LIM EMS through
12 16K-Byte version 3.2 uses
Physical this area only

Pages
768K|eee-= Divided into

T?TTTTT NN logical
640K . : pages

mene \ .

\

24 16K-Byte \
Physical
Pages* \

\

\
256K

\
a

\
Ltt

\
‘fret

\
0

\

\

OLYMPUSEX.1015 - 194/393

OLYMPUS EX. 1015 - 195/393

168 The Programmer's Technical Reference

The page frameis located above the 640k system RAM area, anywhere from 0A000h to OFFFFh.
This area is used by the video adapters, network cards, and add-on ROMs(asin hard disk con-
trollers). The page frames are mapped aroundareasthatare in use.

Writing Programs That Use Expanded Memory

In orderto use expanded memory, applications must perform these steps in the following order:

Determine if EMMis installed.

Determine if enough expanded memory pagesexist for your application. (Function3)

Allocate expanded memory pages (Functions4 or 18).

Getthe page frame base address (Function 2).

Mapin expanded memory pages (Functions5 or 17).

Read/write/execute data in expanded memory,justas if it were conventional memory.
NanWFFYNYPF

Return expanded memory pages to expanded memory poolbefore exiting (Functions 6 or
18).

Programming Guidelines

Thefollowing section contains guidelines for programmers writing applications that use EMM. .
1. Donot puta program’sstack in expanded memory.

2. Do notreplace interrupt 67h. This is the interrupt vector the EMM uses. Replacing
interrupt 67h could result in disabling the Expanded Memory Manager.

3. Do not map into conventional memory address space your application doesn’t own.
Applications that use the EMMto swap into conventional memory space, mustfirst
allocate this space from the operating system.If the operating system is not aware that a
region of memory it managesisin use,it will think it is available. This could have
disastrous results. EMM should notbe usedto ‘allocate’ conventional memory. DOSis
the proper manager of conventional memory space. EMM should only be used to swap
data in conventional memory space previously allocated from DOS.

4. Applications that plan on using dataaliasing in expanded memory must checkfor the
presence of expanded memory hardware. Data aliasing occurs when mapping onelogical
page into two or more mappable segments. This makes one 16K-byte expanded memory
page appear to be in more than one 16K-byte memory address space. Data aliasingis legal
and sometimesuseful for applications. Software-only expanded memory emulators cannot
perform data aliasing. A simple way to distinguish software emulators from actual
expanded memory hardwareis to attemptdata aliasing and check the results. For example,
map onelogical page into four physical pages. Write to physical page 0. Read physical
pages 1-3 to see if the datais there as well. If the data appearsin all four physical pages,
then expanded memory hardwareis installed in the system, and dataaliasing is supported.

5. Applications should always return expanded memory pagesto the expanded memory
manager upon termination. These pages will be made available for other applications. If
unneededpages are not returned to the expanded memory manager, the system could run

OLYMPUSEX.1015 - 195/393

OLYMPUS EX. 1015 - 196/393

Expanded and Enhanced Expanded Memory Specifications 189

out of expanded memory pages.or expanded memory handles.
6. ‘Terminate and stay resident programs (TSRs) should always savethe state of the map

registers before changing them. Since TSRs mayinterrupt other programs which may be
using expanded memory, they must not change the state of the page mappingregisters
withoutfirst saving them. Before exiting, TSRs mustrestore the state of the mapregisters.
Thefollowing sectionsdescribe the three ways to save and restore thestate of the map
registers.
i. Save Page Map and Restore Page Map(Functions8 and 9). This is the simplest of the

three methods. The EMMsavesthe mapregister contents in its own data structures -
the application does not needto provide extra storage locations for the mapping
context. The last mapping context to be saved, undera particular handle, will be
restored whena call to Restore Page Mapis issued with the same handle. This method
is limited to one mapping context for each handle and saves the context for only LIM
standard 64K-byte page frames.

ii. Get/Set Page Map (Function 15). This method requires the applicationto allocate
space for the storage array. The EMM saves the mapping context in an array whose
address is passed to the EMM. Whenrestoring the mapping context with this method,
an application passes the address of an array which contains a previously stored
mapping context. This methodis preferable if an application needs to do more than
one save beforearestore. It provides a mechanism for switching between more than
one mapping context.

iii, Get/Set Partial Page Map (Function 16). This method provides a wayfor saving a partial
mapping context. It should be used when the application does not need to save the
context of all mappable memory. This function also requires that the storage array be
part of the application’s data.

7. All functions using pointers to data structures must have those data structures in memory
which will not be mapped out. Functions 22 and 23 (Alter Map & Call and Alter Map &
Jump) are the only exceptions.

Page Frames
‘The bank switched memory chunksarereferred to as ‘page frames’. These frameconsist of four
16K memory blocks mapped into some of the normally unused system ROM address area,
0C0000-OEFFFF. Each 16K page is independentof the other and they can mapto discrete or
overlapping areas of the 8 megabyte expanded memory address area. Mostcards allow selection
of addresses to prevent conflict with other cards, such as hard disk controllers and other ex-
panded memory boards.

Calling the Manager
Applications programs communicate with the EMM device driver directly via user interrupt
67h. All communication between the application program andthe driver by-passes DOS com-
pletely. To call the driver, register AH is loaded with the numberof the EMMservice requested;
DXis loaded with thefile handle; and interrupt 67his called. ES:D] is used to pass the address of
a buffer orarray if needed.

On return AH contains 00hif the call was successful or an error code from 80h to 8Fhif unsuc-
cessful.

OLYMPUSEX.1015 - 196/393

OLYMPUS EX. 1015 - 197/393

190 The Programmer's Technical Reference

Testing For the Presence of the Expanded
Memory Manager
Before an application program can use the Expanded Memory Manager, it must determine
whether the manageris present. The two recommended methodsare the ‘open handle’ tech-
nique andthe‘get interrupt vector’ technique. -

The majority of application programscanuseeither the ‘open handle’orthe ‘get interrupt vec-
tor’ method. However,ifyour programis a device driverorif it interrupts DOS duringfile sys-
tem operations, you mustuseonly the ‘get interrupt vector’ method.

Device drivers execute from within DOSand can’t access the DOSfile functions; programs that
interrupt DOSduringfile operations havea similar restriction. During their interrupt process-
ing procedures, they can’t access the DOSfile functions because another program may be using
the system. Since the ‘get interrupt vector’ method doesn’t require the DOSfile functions, you
must use it for programsof this type.

The ‘Open Handle’ Method
Most application programscan use the DOS ‘Open Handle’ methodto test for the presenceof
the EMM.To usethis method,follow these stepsin order:

1. Issue an ‘open handle’ command (DOSfunction 3Dh)in ‘read only’ access mode(register
AL = 0). This function requires your program to point to an ASCII string which contains
the path nameofthefile or device in which you're interested (register set DS:DX contains
the pointer). In this casethefile is actually the reserved nameofthe expanded memory
manager.

You should format the ASCIIstring as follows:

ASCII_device_name DB ‘’EMMXXXX0’, 0

The ASCIIcodesfor the capital letters EMMXXXX0are terminated by a byte containing a
value ofzero.

2. IfDOSreturnsnoerror code, skip Steps 3 and 4 and goto Step 5. If DOSreturnsa “Too
many openfiles’ error code, go to Step 3. If DOSreturnsa ‘File/Path not found’errorcode,
skip Step 3 and go to Step 4.

3. IfDOSreturnsa“Joo manyopenfiles’ (not enough handles) status code, your program
should invoke the ‘openfile’ commandbefore it opensany otherfiles. This will guarantee
that at least onefile handle will be available to perform the function without causing this
error. After the program performsthe ‘openfile’ command,it should perform thetest
described in Step 6 and closethe‘file handle’ (DOSfunction 3Eh). Don’t keep the manager
‘open’after this status test is performed since ‘manager’ functionsare not available through
DOS. Goto Step 6.

4. IfDOSreturnsa ‘File/Path not found", the memory manageris notinstalled. If your
application requires the memory manager,the userwill have to reboot the system with a
disk containing the memory manager andthe appropriate CONFIG.SYSfile before
proceeding.

OLYMPUSEX.1015 - 197/393

OLYMPUS EX. 1015 - 198/393

10.

11.

12.

Expanded and Enhanced Expanded Memory Specifications 19]

If DOS doesn’t return an error status code you can assumethateither a device with the
name EMMXXXX0is resident in the system,ora file with this nameis on disk in the
currentdisk drive. Go to Step 6.

Issue an ‘J/O Control for Devices’ command (DOSfunction 44h) witha ‘get device
information’ command(register AL = 0). DOS function 44h determines whether
EMMXXXX0is a device ora file. You mustusethefile handle (register BX) which you
obtained in Step 1 to access the ‘EMM’device. This function returnsthe‘device
information’ ina word (register DX). Goto Step 7.

If DOSreturns any error code, you should assumethat the memory managerdevice driver
is not installed. Ifyour application requires the memory manager,the userwill have to
reboot the system with a disk containing the memory managerand the appropriate
CONFIG.SYSfile before proceeding.

If DOSdidn’t return an errorstatus, test the contents of bit 7 (counting from 0) of the
‘device information’ word(register DX) the function returned. Go to Step 9.

Ifbit 7 of the ‘device information’ word containsa zero, then EMMXXXXOisafile, and the
memory managerdevicedriver is not present. Ifyour application requires the memory
manager, the user will have to reboot the system with a disk containing the memory
manager and the appropriate CONFIG.SYSfile before proceeding.Ifbit 7 contains a one,
then EMMXXXX0is a device. Go to Step 10.

Issue an ‘I/O Controlfor Devices’ command (DOSfunction 44h)with a ‘get outputstatus’
command(register AL = 7). You mustusethefile handle you obtained in Step 1 to access
the ‘EMM’device (register BX). Go to Step 11.

If the expanded memory device driver is ready, the memory managerpassesa status value of
OFFh in register AL. The status value is 00h if the device driveris not ready. If the memory
managerdevice driveris ‘not ready’ and your application requires its presence, the user will
have to rebootthe system with a disk containing the memory manager and the appropriate
CONFIG.SYSfile before proceeding.If the memory managerdevice driveris ‘ready’, go to
Step 12.

Issue a ‘Close File Handle’ command (DOSfunction 3Eh)to close the expanded memory
device driver. You mustusethe file handle you obtained in Step 1 to close the ‘EMM’
device (register BX).

The ‘Get Interrupt Vector’ technique

Anytype ofprogram can use this methodto test for the presence ofthe EMM.

Use this method (not the ‘Open Handle’ method)ifyour program is a device driverorif it inter-
rupts DOSduringfile system operations.

Follow thesestepsin order:

1. Issue a ‘get vector’ command (DOSfunction 35h) to obtain the contents of interrupt vector
array entry number67h (addresses 0000:019Ch through 0000:019Fh). The memory
manageruses this interrupt vector to perform all manager functions. The offset portion of
this interrupt service routine addressis stored in the word located at address 0000:019Ch,
the segmentportionis stored in the word located at address 0000:019Eh.

OLYMPUSEX.1015 - 198/393

OLYMPUS EX. 1015 - 199/393

192 The Programmer’s Technical Reference

2. ‘Comparethe ‘device namefield’ with the contents of the ASCII string whichstarts at the
address specified by the segment portion of the contentsof interrupt vector address 67h
andafixed offset of OO0Ah.IfDOS loaded the memory managerat boottime this name
field will have the nameofthe devicein it. Since the memory manageris implemented as a
character device driver, its program origin is O000h. Device drivers are required to have a
‘device header’ locatedat the program origin. Within the ‘device header’ is an 8 byte
‘device namefield’. For a character modedevice driver this namefield is always located at
offset OOOAh within the device header. The device name field contains the nameof the
device which DOS uses whenit references the device.If the result of the ‘string compare’
in this technique is positive, the memory manageris present.

Terminate and Stay Resident (TSR) Program
Cooperation
In order for TSR’s to cooperate with each other and with other applications, a TSR mustonly
remap the DOSpartitionit lives in. This rule appliesatall times, even when no expanded mem-
ory is present.

Expanded Memory Services Quick List

wWODWIAHNAUBWNHRE
new LIM 4.0

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

(40h)
(41h)
(42h)
(43h)
(44h)
(45h)
(46h)
(47h)
(48h)
(49h)
(4Ah)
(4Bh)
(4ch)
(4Dh)
(4Eh)

Get Manager Status
Get Page Frame Segment
Get Number of Pages
Get Handle and Allocate Memory
Map Memory
Release Handle and Memory
Get EMM Version
Save Mapping Context
Restore Mapping Context
Reserved
Reserved
Get Number of EMM Handles
Get Pages Owned By Handle
Get Pages for All Handles
Get Or Set Page Map

specification:
(4Fh)
(50h)
(51h)
(52h)
(53h)
(54h)
(55h)
(56h)
(57h)
(58h)
(59h)
(5Ah)
(5Bh)
(5Ch)
(5Dh)
(5Eh)
(5Fh)
(60h)
(61h)

Get/Set Partial Page Map
Map/Unmap Multiple Pages
Reallocate Pages
Handle Attribute Functions
Get Handle Name
Get Handle Directory
Alter Page Map & Jump
Alter Page Map & Call
Move Memory Region
Get Mappable Physical Address Array
Get Expanded Memory Hardware
Allocate Raw Pages
Get Alternate Map Register Set
Prepare Expanded Memory Hardware
Enable OS/E Function Set
Unknown
Unknown

(EEMS) Get Physical Window Array
AST Generic Accelerator Card Support

OLYMPUSEX.1015 - 199/393

OLYMPUS EX. 1015 - 200/393

Expanded and Enhanced Expanded Memory Specifications . 193

Expanded Memory Services
Functions Defined in EMS 3.2 Specification

Interrupt 67h
Function 40h Get Manager Status
LIM Function Call 1

Returns a status code indicating whether the memory manager is
present and the hardware is working correctly.

entry AH 40h
return AH error status: 00h, 80h, 81h, &4h
note 1. Upward and downward compatible with both EMS and EEMS 3.2.

2. This call can be used only after establishing that the EMS driver is in
fact present

3. Uses register AX :
4. This function doesn’t require an EMM handle.

Function 41h Get Page Frame Segment Address
LIM Function Call 2

Obtain segment address of the page frame used by the EMM.
entry AH 4lh
return AEH error status: 00h, 80h, 81h, 84h

BX page frame segment address (error code 0)
note 1. Upward and downward compatible with both EMS and EEMS 3.2.

Uses registers AX & BX
This function doesn’t require an EMM handle.
The value in BX has no meaning if AH 0.MmWN

Function 42h Get Unallocated Page Count
LIM Function Call 3

Obtain total number of logical expanded memory pages present in the
system and the number of those pages not already allocated.

entry AH 42h
return AH error status: 00h, 80h, 8ih, 84h

BX 00h All EMS pages in have already been allocated. None are
currently available for expanded memory.

value number of unallocated pages currently available
DX total number of EMS pages

note 1. Upward and downward compatible with both EMS and EEMS 3.2. Note that EMS
and EEMS 3.2 had no mechanism to return the maximum number of handles
that can be allocated by programs. This is handled by the EMS 4.0 new
function 54h/02h.

2. Uses registers AX, BX, DX
3. This function doesn’t require an EMM handle.

Function 43h Get Handle and Allocate Memory
LIM Function Call 4

Notifies the EMM that a program will be using extended memory,
obtains a handle, and allocates a certain number of logical pages
of extended memory to be controlled by that handle

entry AH 43h
BX number of 16k logical pages requested (zero OK)

return AH error status: OOh, 80h, 8lh, 84h, 85h, 87h, 88h, 89h
DX unique EMM handle (see note 2)

note 1. Upward compatible with both EMS and EEMS 3.2; EMS and EEMS 3.2 do not
allow the allocation of zero pages (returns error status 89h). EMS 4.0
does allow zero pages to be requested for a handle, allocating pages
later using function 51h

2. Your program must use this EMM handle as a parameter in any function that
requires it. You can use up to 255 handles. The uppermost byte of the
handle will be zero and cannot be used by the application.

3. Regs AX & DX are used

Function 44h Map Memory
LIM Function Call 5

Maps one of the logical pages of expanded memory assigned to a
handle onto one of the four physical pages within the EMM’s page
frame.

OLYMPUSEX.1015 - 200/393

OLYMPUS EX. 1015 - 201/393

194

entry

return
note 1.

2.

The Programmer’s Technical Reference

AH 44h
AL physical page to be mapped (0-3)
BX the logical page to be mapped (zero through [number of pages

allocated to the EMM handle - 1]). If the logical page number is
OFFFFh, the physical page specified in AL will be unmapped (made
inaccessible for reading or writing).

DX the EMM handle your program received from Function 4 (Allocate
Pages).

AH error status: OOh, 80h, 81h, 83h, 84h, 8Ah, 8Bh
downward compatible with both EMS and EEMS 3.2; EMS and EEMS 3.2 do not
support unmap (logical page OFFFFh) capability. Also, EEMS 3.2 specified
there were precisely four physical pages; EMS 4.0 uses the subfunctions
of function 58h to return the permitted number of physical pages. This
incorporates the functionality of function 69h ("function 42") of EEMS.
uses register AX

Function 45h Release Handle and Memory
LIM Function Call 6

entry

return
note 1.

2.
3.

4.

Deallocates the logical pages of expanded memory currently assigned
to a handle and then releases the handle itself.

AH 45h
DX handle .
AH error status: 00h, 80h, 81h, 83h, 84h, 86h
upward and downward compatible with both EMS and EEMS 3.2.
uses register AX
when a handle is deallocated, its name is set to all ASCII nulls (binary
zeros).
a program must perform this function before it exits to DOS or no other
programs can use these pages or the EMM handle.

Function 46h Get EMM Version
LIM Function Call 7

entry
return

note 1.

2.

Returns the version number of the Expanded Memory Manager software.
AH 46h
AH error status: 00h, 80h, 81h, 84h
AL version number byte (if AL=00h)

binary coded decimal (BCD) format if version byte:
high nibble: integer digit of the version number
low nibble : fractional digit of version number
i.,e., version 4.0 is represented like this:

0100 0000
/ N\

4 . 9

upward and downward compatible with both EMS and EEMS 3.2. It appears
that the intended use for this function is to return the version of the
vendor implementation of the expanded memory manager instead of the
specification version.
uses register AX

Function 47h Save Mapping Context
LIM Function Call 8

entry

return
note 1.

2.

Save the contents of the expanded memory page-mapping registers on
the expanded memory boards, associating those contents with a
specific EMM handle.

AH 47h
Dx caller’s EMM handle (NOT current EMM handle)
AH error status: OOh, 80h, 8ih, 83h, 84h, 8Ch, 8Dh
upward and downward compatible with both EMS and EEMS 3.2.
This only saves the context saved in EMS 3.2 specification; if a driver,
interrupt routine or TSR needs to do more, functions 4Eh (Page Map
functions) or 4Fh (Partial Page Map functions) should be used.
no mention is made about the number of save contexts to provide. AST
recommends in their Rampage AT manual one save context for each handle
plus one per possible interrupt (5 + handles).
uses register AX
this function saves the state of the map registers for only the 64K page
frame defined in versions 3.x of the LIM. Since all applications written
to LIM versions 3.x require saving the map register state of only this
64K page frame, saving the entire mapping state for a large number of
mappable pages would be inefficient use of memory. Applications that use
a mappable memory region outside the LIM 3.x page frame should use

OLYMPUSEX.1015 - 201/393

OLYMPUS EX. 1015 - 202/393

Expanded and Enhanced Expanded Memory Specifications 195
functions 15 or 16 to save and restore the state of the map registers.

Function 48h Restore Page Map
LIM Function Call 9

entry

return
note l.

2.

mw

Restores the contents of all expanded memory hardware page-mapping
registers to the values associated with the given handle by a
previous function 08h (Save Mapping Context).AH 48h

DX caller‘s EMM handle (NOT current EMM handle)
AH error status: OOh, 80h, 81h, 83h, 84h, 8Eh
upward and downward compatible with both EMS and EEMS 3.2.
This only restores the context saved in EMS 3.2 specification; if a
driver, interrupt routine or TSR needs to do more, functions 4Eh (Page
Map functions) or 4Fh (Partial Page Map functions) should be used.
uses register AX
this function saves the state of the map registers for only the 64K page
frame defined in versions 3.x of the LIM. Since all applications written
to LIM versions 3.x require saving the map register state of only this
64K page frame, saving the entire mapping state for a large number of
mappable pages would be inefficient use of memory. Applications that use
a mappable memory region outside the LIM 3.x page frame should use
functions 15 or 16 to save and restore the state of the map registers.

Function 49h Reserved
LIM Function Call 10

This function was used in EMS 3.0, but was no longer documented in
EMS 3.2. It formerly returned the page mapping register I/O port
array. Use of this function is discouraged, and in EMS 4.0 may
conflict with the use of the new functions 16 through 30 (4Fh through
5Dh) and functions 10 and 11. Functions 10 and 11 are specific to the
hardware on Intel expanded memory boards and may not work correctly
on all vendors’ expanded memory boards.

Function 4Ah Reserved
LIM Function Cali ll

This function was used in EMS 3.0, but was no longer documented in
EMS 3.2. It was formerly Get Page Translation Array. Use of this
function is discouraged, and in EMS 4.0 may conflict with the use of
the new functions (4Fh through 5Dh).

Function 4Bh Get Number of EMM Handles
LIM Function Call 12

entry
return

note l.
2.

The Get Handle Count function returns the number of open EMM handles
(including the operating system handle 0) in the system.AH 4Bh

AH error status: 0Oh, 80h, 81h, 84h
BX handle count (AH=00h) (including the operating system handle

[0]).- max 255.
upward and downward compatible with EMS and EEMS 3.2.
uses registers AX and BX

Function 4Ch Get Pages Owned by Handle
LIM Function Call 13

entry

return

note 1.
2.

3.

Returns number of logical expanded memory pages allocated to a
specific EMM handle.

AH 4Ch
DX handle
AH error status: 00h, 80h, 8ih, 83h, 84h
BX pages allocated to handle, max 2048 because the EMM

allows a maximum of 2048 pages (32M bytes) of expanded memory.
This function is upward compatible with EMS and EEMS 3.2.
programmers should compare the number returned in BX with the maximum
number of pages returned by function 42h register DX, total number of
EMM pages. This should be an UNSIGNED comparison, just in case the spec
writers decide to use 16 bit unsigned numbers (for a maximum space of
one gigabyte) instead of signed numbers (for a maximum space of 512 mega
bytes). Unsigned comparisons will work properly in either case
uses registers AX and BX

Function 4Dh Get Pages for All Handies
LIM Function Call 14

Returns an array containing all active handles and the number of

OLYMPUSEX.1015 - 202/393

OLYMPUS EX. 1015 - 203/393

196

entry

return

note l.

4.

The Programmer’s Technical Reference

logical expanded memory pages associated with each handle.
AH 4Dh

ES:DI pointer to 1020 byte array to receive information on an array of
structures where a copy of all open EMM handles and the number of
pages allocated to each will be stored.

AH error status: 00h, 80h, 81h, 84h
BX number of active handles (1-255); array filled with 2-word en

tries, consisting of a handle and the number of pages allocated
to that handle. (including the operating system handle [0]). BX
cannot be zero because the operating system handle is alwaysactive and cannot be deallocated.

NOT COMPATIBLE with EMS or EEMS 3.2, since the new special OS handle
0000h is returned as part of the array. Unless benignuse of this
information is used (such as displaying the handle and count of pages
associated with the handle) code should be changed to only work with
handles between 01h and FFh and to specifically ignore handle 00h.
The array consists of an array of 255 elements. The first word of each
element is the handle number, the second word contains the number of
pages allocated.
There are two types of handles, ‘standard’ and ‘raw’. The specification
does not talk about how this function works when both raw and standard
handles exist in a given system. There is no currently known way to
differentiate between a standard handle and a raw handle in EMS 4.0.
uses registers AX and BX

Punction 4Eh Get or Set Page MapLIM Function Call 15

entry

return
note l.

2.

entry

return
note l.

2.

Gets or sets the contents of the EMS page-mapping registers on the
expanded memory boards. This group of four subfunctions is provided
for context switching required by operating environments and
systems. These functions are upward and downward compatible with
both EMS and EEMS 3.2; in addition, these functions now include the
functionality of EEMS function 6Ah ("function 43") involving all
pages. The size and contents of the map register array will vary
from system to system based on hardware vendor, software vendor,
number of boards and the capacity of each board in the system. Note
the array size can be determined by function 4Eh/03h. Use these
functions (except for 03h) instead of Functions 8 and 9 if you need
to save or restore the mapping context but don’t want (or have) to
use a handle.

00h Get Page Map
This call saves the mapping context for all mappable memory regions
(conventional and expanded) by copying the contents of the mapping
registers from each expanded memory board to a destination array.
The application must pass a pointer to the destination array.

AH 4Eh
AL 00h
ES:DI pointer to target array
AH error status: O0Oh, 80h, 81h, 84h, 8Fh
uses register AXdoes not use an EMM handle

Olh Set Page Map
This call the mapping context for all mappable memory regions
(conventional and expanded. by copying the contents of a source
array into the mapping registers on each expanded memory board in
the system. The application must pass a pointer to the source array

AH 4Eh
AL Olh
DS:SI pointer to source array
AH error status: OOh, 80h, 81h, 84h, 8Fh, OA3h
uses register AX
does not use an EMM handle

02h Get & Set Page Map
This call simultaneously saves the current mapping context and
restores a previous mapping context for all mappable memory regions
(both conventional and expanded). It first copies the contents of

OLYMPUSEX. 1015 - 203/393

OLYMPUS EX. 1015 - 204/393

entry

return
note

entry

return

note l.
2.

Expanded and Enhanced expanded Memory Specifications 197
the mapping registers from each expanded memory board in the system
into a destination array. Then the subfunction copies the contents
of a source array into the mapping registers on each of the expanded
memory boards.

* AH 4Eh
AL 02h
Ds:SI pointer to source array
ES:DI pointer to target array
AH error status: 00h, 80h, 81h, 84h, 8Fh, OA3h
uses register AX

03h Get Size of Page Map Save Array
AH 4Eh
AL 03h
AH error status: oOO0h, 80h, 81h, 84h, 8Fh
AL size in bytes of array
this subfunction does not require an EMM handle
uses register AX

Functions New to EMS 4.0

Function 4Eh Get or Set Page Map
LIM Function Call 16
entry

return

note.

AH 4Eh -
AL 00h if getting mapping registers

Olh if setting mapping registers
02h if getting and setting mapping registers at once
03h if getting size of page-mapping array

Ds:SI pointer to array holding information (AL=01h, 02h)
ES:DI pointer to array to receive information (AL=00h, 02h)
AH error status: 00h, 80h, 81h, 84h, 8Fh, OA3h
AL bytes in page-mapping array (fm 03h only)
ES:DI array of received information (fn 00h, 02h)
this function was designed to be used by multitasking operating systems
and should not ordinarily be used by application software.

Function 4Fh Get/Set Partial Page Map
LIM Function Call 16

return

These four subfunctions are provided for context switching required
by interrupt routines, operating environments and systems. This set
of functions provides extended functionality over the EEMS function
6Ah (function 43) involving subsets of pages. In EEMS, a subset of
pages could be specified by starting position and number of pages;
in this function a list of pages is specified, which need not be
contiguous. Interrupt routines can use this function in place of
functions 47h and 48h, especially if the interrupt routine wants to
use more than the standard four physical pages.

AH 4Fh
AL subfunction

00h get partial page map
DS:SI pointer to structure containing list of segments

whose mapping contexts are to be saved
ES:DI pointer to array to receive page map

Olh set partial page map
DS:SI pointer to structure containing saved partial

page map ,
02h get size of partial page map

BX number of mappable segments in the partial map to
be saved

AH error status (00h): OOh, 80h, 81h, 84h, 8Bh, 8Fh, OA3h
error status (Olh): 00h, 80h, 8lh, 84h, 8Fh, OA3h
error status (02h): 00h, 80h, 81h, 84h, 8Bh, 8Fh

AL size of partial page map for subfunction 02h
DS:SI (call 00h) pointer to array containing the partial mapping con

text and any additional information necessary to restore this
context to its original state when the program invokes a Set

OLYMPUSEX.1015 - 204/393

OLYMPUS EX. 1015 - 205/393

198 The Programmer’s Technical Reference
subfunction.

note uses register AX

Function 50h Map/Unmap Multiple Pages
LIM Function Call 17
entry AH 50h

AL 00h (by physical page)
Olh (by segment number)

cx contains the number of entries in the array. For example, if the
array contained four pages to map or unmap, then CX wouldcontain 4. :

DX handle

DS:SI pointer to an array of structures that contains the information
necessary to map the desired pages.

return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Bh, 8Fh
note 1. New function permits multiple logical-to-physical assignments to be made

in a single call.(faster than mapping individual pages)
2. The source map array is an array of word pairs. The first word of a pair

contains the logical page to map (OFFFFh if the physical page is to be
totally unmapped) and the second word of a pair contains the physical
page number (subfunction 00h) or the segment selector (subfunction 01h)
of the physical page in which the logical page shall be mapped.

3. A map of available physical pages (by physical page number and segment
selectors) can be obtained using function 58h/00h, Get Mappable Physical
Address Array.

4. uses register AX
5. Both mapping and unmapping pages can be done simultaneously.
6. If a request to map or unmap zero pages is made, nothing is done and no

error is returned.
7. Pages can be mapped or unmapped using one of two methods. Both methods

produce identical results.
A. A logical page and a physical page at which the logical page is to be

mapped. This method is an extension of Function 5 (Map Handle Page).
B. Specifies both a logical page and a corresponding segment address at

which the logical page is to be mapped. While functionally the same
as the first method, it may be easier to use the actual segment
address of a physical page than to use a number which only
represents its location. The memory manager verifies whether the
specified segment address falls on the boundary of a mappable
physical page. The manager then translates the segment address
passed to it into the necessary internal representation to map the
pages.

Function 51h Reallocate pages
LIM Function Call 18

This function allows an application to change the number of logical
pages allocated to an EMM handle.

entry AH 5lh :
BX number of pages desired at retur
Dx handle

return AH error status: OOh, 80h, 8ih, 83h, 84h, 87h, 88h
BX number of pages now associated with handle

note 1. uses registers AX, BX
2. Logical pages which were originally allocated with Function 4 are called

pages and are 16K bytes long. Logical pages which were allocated with
Function 27 are called raw pages and might not be the same size as pages
allocated with Function 4.

3. If the status returned in BX is not zero, the value in BX is equal to the
number of pages allocated to the handle prior to calling this function.
This information can be used to verify that the request generated the
expected results.

Function 52h Get/Set Handle Attributes
LIM Function Call 19
entry AH 52h

AL subfunction
00h get handle attributes
Olh set handle attributes

BL new attribute
00h make handle volatile
Olh make handle non-volatile

OLYMPUSEX.1015 - 205/393

OLYMPUS EX. 1015 - 206/393

return

note i.
2.

Expanded and Enhanced expanded Memory Specifications 199
02h get attribute capabilityDx handle

AH error status: (function 00h) 00h, 80h, 81h, 83h, 84h, 8Fh, 91h
error status: (function 01h) 00h, 80h, 81h, 83h, 84h, 8Fh, 90h,91h

error status: (function 02h) 00h, 80h, 81h, 84h, 8Fh
AL attribute (for subfunction 00h)

00h handle is volatile
Olh handle is nonvolatile

AL attribute capability (for subfunction 02h)
00h only volatile handles supported
Olh both volatile and non-volatile supported

uses register AX
A volatile handle attribute instructs the memory manager to deallocate
both the handle and the pages allocated to it after a warm boot. If all
handles have the volatile attribute (default) at warm boot the handle
directory will be empty and all expanded memory will be initialized to
zero immediately after a warm boot. ,
If the handle‘s attribute has been set to non-volatile, the handle, its
name (if it is assigned one), and the contents of the pages allocated
to the handle are all maintained after a warm boot.
Most PCs disable RAM refresh signals for a considerable period during a
warm boot. This can corrupt some of the data in memory boards.
Non-volatile handles should not be used unless it is definitely known
that the EMS board will retain proper function through a warm boot,
subfunction 02h can be used to determine whether the memory manager cansupport the non-volatile attribute.

Currently the only attribute supported is non-volatile handles and pages,
indicated by the least significant bit.

Function 53h Handle Name Functions
LIM Function Call 20

entry

return
note

entry

EMS handles may be named. Each name may be any eight characters. At
installation, all handles havetheir name initialized to ASCII nulis
(binary zeros). There is no restriction on the characters which may
be used in the handle name (ASCII chars 00h through OFFh). A name of
eight nulls (zeroes) is special, and indicates a handle has no name.
Nulls have no special significance, and they can appear in the
middle of a name. The handle name is 64 bits of binary informationto the EMM.

Functions 53h and 54h provide a way of setting and reading the names
associated with a particular handle. Function 53h manipulates names
by number.
When a handle is assigned a name, at least one character in the name
must be a non-null character in order to distinguish it from ahandle without a name.

00h Get Handle Name .

This subfunction gets the eight character name currently assigned toa handle.

The handle name is initialized to ASCII nulls (binary zeros) three
times: when the memory manager is installed, when a handle is
allocated, and when a handle is deallocated.

AH 53h
AL 00h
DX handle

ES:DI pointer to 8-byte handle name array into which the name currently
assigned to the handle will be copied.

AH error status: 00h, 80h, 81h, 83h, 84h, 8Fh
uses register AX

Olh Set Handle Name

This subfunction assigns an eight character name to a handle. A
handle can be renamed at any time by setting the handle’s name to a
new value. When a handle is deallocated, its name is removed (set
to ASCII nulls).

AH 53h
AL Olh
DX handle

DS:SI pointer to 8-byte handle name array that is to be assigned to the
handle. The handle name must be padded with nulls if the name is

OLYMPUSEX.1015 - 206/393

OLYMPUS EX. 1015 - 207/393

200 The Programmer’s Technical Reference

less than eight characters long.
return AH error status: OOh, 80h, 81h, 83h, 84h, 8Fh, OAlh
note uses register AX

Function 54h Handle Directory Functions
LIM Function Call 21

Function 54h manipulates handles by name. . !

00h Get Handle Directory
Returns an array which contains all active handles and the names
associated with each.

entry AH 54h
AL 00h
ES:DI pointer to 2550 byte target array

return AH error status: OOh, 80h, 8lh, 84h, 8Fh
AL number of active handles

note 1. The name array consists of 10 byte entries; each entry has a word
containing the handle number, followed by the eight byte (64 bit) name.

2. uses register AX
3. The number of bytes required by the target array is:

10 bytes * total number of handles
4. The maximum size of this array is:

(10 bytes/entry) * 255 entries = 2550bytes.

Olh Search for Named Handle
Searches the handle name directory for a handle with a particular
name. If the named handle is found, this subfunction returns the
handle number associated with the name. :

entry AH 54h
AL Oih

DS:SI pointer to an 8-byte string that contains the name of the handle
being searched for

return AH error status: OOh, 80h, 81h, 84h, 8Fh, AOh, OAlh
Dx handle number

note uses registers AX and DX

02h Get Total Handles
Returns the total number of handles the EMM supports, including the
operating system handle (handle value 0).

entry AH 54h

AL 02h
return Ad error status: 00h, 80h, 81h, 84h, 8Fh

BX total number of handles available
note 1. This is NOT the current number of handles defined, but the maximum number

of handles that can be supported in the current environment.
2. uses registers AX and BX

Function 55h Alter Page Map and Jump (cross page branch)
LIM Function Call 22

Alters the memory mapping context and transfers control to the
specified address. Analogous to the FAR JUMP in the 8086 family
architecture. The memory mapping context which existed before
calling function is lost.

entry AH 55h
AL ooh physical page numbers provided by caller

Olh segment addresses provided by caller
Dx handle

DS:SI pointer to structure containing map and jump address
return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Bh, 8Fh
note 1. Flags and all registers except AX are preserved across the jump.

2. uses register AX
3. Values in registers which don’t contain required parameters maintain the i

values across the jump. The values in registers (with the exception of
AX) and the flag state at the beginning of the function are still in the
registers and flags when the target address is reached.

4. Mapping no pages and jumping is not considered an error. If a request to
Map zero pages and jump is made, control is transferred to the target
address, and this function performs a far jump.

Function 56h Alter Page Map and Call (crass page call)
LIM Function Call 23

OLYMPUSEX.1015 - 207/393

OLYMPUS EX. 1015 - 208/393

entry

return
note 1.

entry

return:

note l.

2.

Expanded and Enhanced expanded Memory Specifications 201
00h and Olh

These subfunctions save the current memory mapping context, alter
the specified memory mapping context, and transfer control to the
specified address.

AH 56h

AL 00h physical page numbers provided by caller
Olh segment addresses provided by caller

DS:SI pointer to structure containing page map and call addressDX handle

AH error.status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Bh, 8Fh
Flags and all registers except AX are preserved to the called routine. On
veturn, flags and all registers except AX are preserved; AL is set tozero and AX is undefined.
uses register AX
Values in registers which don’t contain required parameters maintain the
values across the call. The values in registers (with the exception of
AX) and the flag state at the beginning of the function are still in the
registers and flags when the target address is reached.
Developers using this subfunction must make allowances for the additional
stack space this subfunction will use.

02h Get Page Map Stack Space Size
Since the Alter Page Map & Call function pushes additional
information onto the stack, this subfunction returns the number of
bytes of stack space the function requires.AH 56h

AL 02h

BX number of bytes of stack used per call
AH error status: 00h, 80h, 81h, 84h, 8Fh
if successful, the target address is called. Use a RETF to return and
restore mapping context
uses registers AX, BX

Function 57h Move/Exchange Memory Region
LIM Function Call 24

entry

return

note l.

entry

return

note 1.

2.

3.

00h Move Memory Region
Moves data between two memory areas. Includes moves between paged
and non-paged areas, or between two different paged areas.AH 57h

AL 00h
DS:SI pointer to request block
AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Fh, 92h,

93h, 94h, 95h, 96h, 98h, OA2h
uses register AX

OQlh Exchange Memory Region
Exchanges data between two memory areas. Includes exchanges between
paged and non-paged areas, or between two different paged areas.AH 57h

AL Olh
DS:SI pointer to the data structure which contains the source and

destination information for the exchange.
AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Fh, 93h, 94h, 95h,

96h, 97h, 98h, OA2h
The request block is a structure with the following format:
dword region length in bytes
byte 0=source in conventional memory

l=source in expanded memory
word source handle
word source offset in page or selector
word source logical page (expanded) or selector (conventional)
byte O=target in conventional memory

1=target in expanded memory
word target handle
word target offset in page or selector
word target logical page (expanded) or selector (conventional)
Expanded memory allocated to a handle is considered to be a linear array,
starting from logical page 0 and progressing through logical page 1, 2,
eee NM, +1, ... up to the last logical page in the handle.
uses register AX

OLYMPUSEX.1015 - 208/393

OLYMPUS EX. 1015 - 209/393

202 The Programmer’s Technical Reference

Function 58h Mappable Physical Address Array
LIM Function Call 25

These functions let you obtain a complete map of the way physical
memory is laid out in a vendor independent manner. This is a
functional equivalent of EEMS function 68h (‘function 41’). EEMS
function 60h (‘function 33’) is a subset call of 68h.

00h Get Array
Returns an array containing the segment address and physical page
number for each mappable physical page in a system. This array
provides a cross reference between physical page numbers and the
actual segment addresses for each mappable page in the system.

entry AH 58hAL 00h
ES:DI pointer to target array

return AH error status: 00h, 80h, 81h, 84h, 8Fh
cx entries in target array

note 1. The information returned is in an array composed.of word pairs. The first
word is the physical page’s segment selector, the second word the
physical page number. Note that values are not necessarily returned ina
particular order, either ascending/descending segment selector values or
as ascending/descending physical page number.

2. For compatibility with earlier EMS specifications, physical page zero
contains the segment selector value returned by function 41h, and
physical pages 1, 2 and 3 return segment selector values that correspond
to the physical 16 KB blocks immediately following physical page zero.

3. uses registers AX and CX
4. The array is sorted in ascending segment order. This does not mean that

the physical page numbers associated with the segment addresses are also
in ascending order.

Olh Get Physical Page Address Array Entries.
Returns a word which represents the number of entries in the array
returned by the previous subfunction. This number also indicates
the number of mappable physical pages in a system.

entry AH 58h
AL Olh

return AH error status: 00h, 80h, 81h, 84h, 8Fh
cx number of entries returned by 58h/00h

note 1. multiply Cx by 4 for the byte count.
2. uses registers AX and CX

Function 59h Get Expanded Memory Hardware Information
LIM Function Call 26

These functions return information specific to a given hardware
implementation and to use of raw pages as opposed to standard pages.
The intent is that only operating system code ever need use these
functions.

00h Get EMS Hardware Info
Returns an array containing expanded memory hardware configuration
information for use by an operating system.

entry AH 59hAL 00h
ES:DI pointer to 10 byte target array

The target array has the following format:
word: raw page size in paragraphs (multiples of 16 bytes)
word: number of alternate register sets
word: size of page maps (function 4Eh [15])
word: number of alternate registers sets for DMA
word: DMA operation -~ see full specification

return AH error status: 00h, 80h, 81h, 84h, 8Fh, OA4h
note 1. uses register AX

2. This function is for use by operating systems only. .
3. This function can be disabled at any time by the operating system.

Olh Get Unallocated Raw Page Count
Returns the number of unallocated non-standard length mappable pages
as well as the total number of non-standard length mappable pages
of expanded memory

entry AH 59h

OLYMPUSEX.1015 - 209/393

OLYMPUS EX. 1015 - 210/393

Expanded and Enhanced expanded Memory Specifications 203
AL Olh

return AH error status: 00h, 80h, 81h, 84h, 8Fh
BX unallocated raw pages available for use
DX total raw 16k pages of expanded memory

note 1. uses registers AX, BX, CX
2. An expanded memory page which is a sub-multiple of 16K is termed a raw

page. An operating system may deal with mappable physical page sizes
which are sub-multiples of 16K bytes.

3. If the expanded memory board supplies pages in exact multiples of 16K
bytes, the number of pages this function returns is identical to the
number Function 3 (Get Unallocated Page Count) returns. In this case,
there is no difference between a page and a raw page.

Function 5Ah Allocate Raw Pages
LIM Function Call 27

Allocates the number of nonstandard size pages that the operating
system requests and assigns a unique EMM handle to these pages.

entry AH SAh oy
AL 00h allocate standard pages

Olh allocate raw pages
BX number of pages to allocate

return AH error status: OOh, 80h, 81h, 84h, 85h, 87h, 88h
DX unique raw EMM handle (1-255)

note 1. it is intended this call be used only by operating systems
2. uses registers AX and DX
3. for all functions using the raw handle returned in DX, the length of the

physical and logical pages allocated to it are some non-standard length
{that is, not 16K bytes).

4. this call is primarily for use by operating systems or EMM drivers
supporting hardware with a nonstandard EMS page size.

Function 5Bh Alternate Map Register Set - DMA RegistersLIM Function Call 28

entry AH 00h Get Alternate Map Register Set
Olh Set Alternate Map Register Set

BL new alternate map register set number
ES:DI pointer to map register context save area if BL=0

02h Get Alternate Map Save Array Size
O3h Allocate Alternate Map Register Set
O4h Deallocate Alternate Map Register Set

BL number of alternate map register set
o5h Allocate DMA Register Set
06h Enable DMA on Alternate Map Register Set

BL DMA register set number
DL DMA channel number

O7h Disable DMA on Alternate Map Register Set
BL DMA register set number

08h Deallocate DMA Register Set
BL DMA register set number

return AH status: 00h, 02h 00h, 80h, 84h, 81h, 8Fh, OA4h
Olh Ooh, 80h, 81h, 84h, 8Fh, 9Ah, 9Ch, 9Dh,

OA3h, OA4h
03h, O5h 00h 80h 81h 84h, 8Fh, 9Bh, OA4h
04h 00h, 80h, 81h, 84h, 8Fh, 9Ch, 9Dh, OA4h
06h, O7h 00h, 80h, 81h, 84h, 8Fh, 9Ah, 9Ch, 9Dh, 9Eh,.

9Fh, OA4h
BL current active alternate map register set number if nonzero (AL=0)
BL number of alternate map register set; zero if not supported (AL=3)
DX array size in bytes (subfunction 02h)
ES:DI pointer to a map register context save area if BL=0 (AL=0)

note 1. this call is for use by operating systems only, and can be enabled or
disabled at any time by the operating system

2. This set of functions performs the same functions at EEMS function 6Ah
subfunctions 04h and 05h ("function 43").

3. 00h uses registers AX, BX, ES:DI
Olh uses register AX
02h uses registers AX and DX
03h uses registers AX and BX
04h uses register AX
05h uses registers AX, BX
06h uses register AX

OLYMPUSEX.1015 - 210/393

OLYMPUS EX. 1015 - 211/393

204 The Programmer's Technical Reference

07h uses register AX

Function 5Ch Prepare EMS Hardware for Warm Boot
LIM Function Call 29

Prepares the EMM hardware for a warm boot.
entry AH 5Ch i
return AH error status: 00h, 80h, 81h, 84h
note 1. uses register AX

2. this function assumes that the next operation that the operating system
performs is a warm boot of the system.

3. in general, this function will affect the current mapping context, the
alternate register set in use, and any other expanded memory hardware
dependencies which need to be initialized at boot time.

4. if an application decides to map memory below 640K, the application must
trap all possible conditions leading to a warm boot and invoke this
function before performing the warm boot itself.

Function 5Dh Enable/Disable OS Function Set Functions
LIM Function Call 30

Lets the OS allow other programs or device drivers to use the oS
specific functions. This capability is provided only for an OS
which manages regions of mappable conventional memory and cannot
permit programs to use any of the functions which affect that
memory, but must be able to use these functions itself.

entry AH 5Dh
AL 00h enable OS function set

olh disable OS function set
02h return access key (resets memory manager, returns access

key at next invocation)
BX,CX access key returned by first invocation

return BX,CX access key, returned only on first invocation of function
AH status 00h, 80h, 8ih, 84h, 8Fh, OA4h

note 1. this function is for use by operating systems only. The operating system
can disable this function at any time.

2. 00h uses registers AX, BX, CX
Olh uses registers AX, BX, CX
02h uses register AX

3. OOh, Olh: The OS/E (Operating System/Environment) functions these
subfunctions affect are:
Function 26, Get Expanded Memory Hardware Information
Function 28, Alternate Map Register Sets
Function 30, Enable/Disable Operating System Functions

Function 5Eh Unknown
LIM Function call (not defined under LIM)

Function 5Fh Unknown
LIM Function call (not defined under LIM)

Function 60h EEMS - Get Physical Window Array
LIM Function call (not defined under LIM)
entry AH 60h

ES:DI pointer to buffer
return AH status

AL number of entries
buffer at ES:DI filled

Function 61h Generic Accelerator Card Support
LIM Function Call 34
entry _ Contact AST Research for a copy of the Generic Accelerator Card
return _ Driver (GACD) Specification
note Gan be used by accelerator card manufacturer to flush RAM cache, ensuring

that the cache accurately reflects what the processor would see without
the cache.

Function 68h EEMS ~ Get Addresses of All Page Frames in System
LIM Function Call (not defined under LIM)

entry AH 68h

ES:DI pointer to buffer
return AH status

AL number of entries

OLYMPUSEX.1015 - 211/393

OLYMPUS EX. 1015 - 212/393

Expanded and Enhanced expanded Memory Specifications 205

buffer at ES:DI filled
note Equivalent to LIM 4.0 function 58h

Function 69h EEMS ~- Map Page Into Frame
LIM Function Call (not defined under LIM)
entry . AH 69h

AL frame number
BX page number
DX handle

return AH status.
note Similar to EMS function 44h

Function 6Ah EEMS ~ Page Mapping
LIM Function Call (not defined under LIM)
entry AH 6Ah

AL 00h Save Partial Page Map
CH first page frame
cL number of frames
ES:DI pointer to buffer which is to be filled

Olh Restore Partial Page Map
CH first page frame
cL number of frames

DI:SI pointer to previously saved page map
02h Save And Restore Partial Page Map

CH first page frame
cL number of frames

ES:DI buffer for current page map
DI:SI new page map

03h ‘Get Size Of Save Array
CH first page frame
cL number of frames

return AL size of array in bytes
04h Switch to Standard Map Register Setting
OSh Switch to Alternate Map Register Setting
06h Deallocate Pages Mapped To Frames in Conventional Mem.

cH first page frame
cL number of frames

return AH status

note Similar to LIM function 4Eh, except that a subrange of pages can be
specified

Expanded Memory Manager Error Codes
EMMerror codesare returned in AH after a call to the EMM (int 67h).

code meaning
ooh function successful

80h internal error in EMM software (possibly corrupted driver)8ilh hardware malfunction

82h EMM busy (dropped in EEMS 3.2)
83h invalid EMM handle
84h function requested not defined - unknown function code in AH.
85h no more EMM handles available
86h error in save or restore of mapping context
87h more pages requested than exist
88h allocation request specified more logical pages than currently available

in system (request does not exceed actual physical number of pages, but
some are already allocated to other handles); no pages allocated

89h zero pages; cannot be allocated (dropped in EMS 4.0)
8Ah logical page requested to be mapped outside range of logical pages

assigned to handle
8Bh illegal page number in mapping request (valid numbers are 0 to 3)
8Cch page-mapping hardware state save area full
8Dh save of mapping context failed; save area already contains context

associated with page handle
8Eh restore of mapping context failed; save area does not contain context for

requested handle
8Fh subfunction parameter not defined (unknown function)

OLYMPUSEX.1015 - 212/393

OLYMPUS EX. 1015 - 213/393

206 The Programmer’s Technical Reference
LIM 4.0 extended error codes:
90h attribute type undefined
91h warm boot data save not implemented
92h move overlaps memory
93h move/exchange larger than allocated region
94h conventional/expanded regions overlap
95h logical page offset outside of logical page
96h region larger than 1 MB
97h exchange source/destination overlap
98h source/destination undefined or not supported
99h (no status assigned)
9Ah alternate map register sets supported, specified set is not
9Bh all alternate map & DMA register sets allocated
9Ch alternate map & DMA register sets not supported
9Dh alternate map register or DMA set not defined, allocated or is currently

defined set
9Eh dedicated DMA channels not supported
9Fh dedicated DMA channels supported; specified channel is not
OAGh named handle could not be found
OA1h handle name already exists
OA2h move/exchange wraps around 1 MB boundary
OA3h data structure contains corrupted data
OA4h access denied

OLYMPUSEX.1015 - 213/393

OLYMPUS EX. 1015 - 214/393

11

Conversion Between MSDOS and
Foreign Operating Systems

Overview

Software portability is a popular topic in programmingtexts. In reallife, very little software is
ported from one system to another, and then normally only by necessity. When software must be
portable,it is often written in a proprietary high-level language designed for system portability.
InfoCom gamesand various CAD packagesfall into this category.

From timeto time the programmer maywishto target his software for a wider base of systems
than the oneheis currently working with. The usual reason is to broaden the market in which
the software will be sold without having to write a specific version for each machine. In other
cases it may be necessary to move existing software between machines when a particular ma-
chine becomes obsolescent,but there is a heavy investment insoftware. Many companies have
custom or proprietary software (engineering and inventory control are the most usual) which
mustbe ported from such machines.

Programs from many different operating systems. may be ported easily to MSDOS. Though
single-tasking and single-user, MSDOSprovides a rich applications program interface (API)
for the programmer. Porting software from MSDOSto a foreign OS can frequently be a source
of consternation to the programmer,as manyfunctionstaken for granted by DOS programmers
(nondestructive keyboard read, for example) do not exist in most microcomputer and many
mainframe operating systems.

When noncongruentfunction calls must be used between systems,it is probably best to build a
macrolibrary in whatever languageis being used and simply pass parameterstoit as a data struc-
ture. If data from a windowing OS such as AmigaDOSor MacOSis to be ported, use ofa win-
dowingshell is moreefficient than trying to duplicate all the various functions yourself.

Porting of software depends on ‘good’practice, i.e. placing hardware-dependent routines in
their own modules or noting such usein the main code.

OLYMPUSEX.1015 - 214/393

OLYMPUS EX. 1015 - 215/393

208 The Programmer's Technical Reference

Special Considerations
Whenporting from machinesusing the Motorola 68000 or anotherprocessor withalarge linear
address space (non-segmented architecture) and you should take care that data structures
moved from the ST to not exceed the 8088’s 64k segmentsizelimit. A program whichrequires
structures larger than 64k could be ported to 80386 machinesbut the large structures would only
be accessible in protected mode and would require switching in and outofprotected modeto ac-
cess the data. Thedifficulty involved would preclude such a solution unless absolutely necessary.
A partial solution wouldbe to port the software to anon-DOSOShaving an MSDOS‘window’
or emulation mode. Anothersolution would be to use one of the scientific number-crunching
boards such as the MicroWay TransPuter module andpass structures back andforthtoit.

If you are writing a program from scratch for multiple-platform operation, it would be wise to
check into using a compiler vendorwhosupports the platforms in question. Some vendorshave
a wide rangeofproducts. For instance:

Borland: Turbo Pascal CP/M-80
CP/M-86
MSDOS
MacIntosh

Lattice: Cc MSDOS
Atari ST

Amiga

Somevendorsoffer similar products to run under Unix, VMS,or OS/2 as well.

Onething MSDOSprogrammersmayfind to be eerily different is the way someotheroperating
systems (Unix, for example) perform functions. In MSDOS,operating system functions are ac-
cessed bysetting various CPU registers to specified values and calling the appropriate CPU in-
terrupt. MSDOS’function dispatcher examinesthe values in the registers and takes the appro-
priate action.

‘Portable’ operating systems such as Unix and many networking systems cannot be certain of
having any specific registers of CPU modesavailable, and thus build ‘request packets’ or‘call
blocks’, which are data structures the operating system can interpret, and thencalling an inter-
rupt. The OS kernel examinesthestructure and takes the appropriate action. Systems operating
this way are (relatively) easily transported among CPUtypes and make both multitasking and
multiprocessing mucheasierat the expense ofsome overhead.
Should it be necessary to do any extensive porting work, [highly recommend ArthurS. Tanen-
baum’s ‘Operating System Design and Implementation’ by Prentice-Hall. Tanenbaum discusses
operating systems from philosophy down to actual code and is an invaluable reference for
anyone doing low-level OS programming.

Example Operating Systems
Atari ST

The Atari ST’s operating system is called TOS,for Tramiel Operating System. TOSis single-
user, single-tasking, and almostcall-for-call compatible with MSDOS.Typically, the ST runs
TOS as a low-level interface for Digital Research’s GEM windowing environment.

OLYMPUSEX.1015 - 215/393

OLYMPUS EX. 1015 - 216/393

Conversion Between MSDOSand Foreign Operating Systems 209

Applications moved from MSDOSto TOSshould require no unusual modifications, though ap-
plications moved from the Atari ST to MSDOSwould be easiest to port by using GEM on the
PC. TOSservices are accessible through assembly language by manipulating the CPU registers,
as in MSDOS.TOSduplicates the UNIX-style file handling calls of MSDOSbutnotthe ‘unsup-
ported’ CP/M style FCBcalls.

CP/M

When Tim Paterson designed DOShe madeit easy to port the CP/M functions to his new Opera-
ting system. All CP/M-80calls are duplicated in MSDOS. These are the so-called FCB orFile
Control Block calls which are now officially discouraged by IBM and Microsoft. Newer handle

calls exist for most FCB calls. Porting software from MSDOSto CP/M maybedifficult due to the
sparseness ofsystem calls and limited (64k address space) CPU resources, CP/M waswritten ina
language called PL/M,but both CP/M and MSDOSweredesigned for easy use from an assem-
bly-languagelevel.

MacOS

Porting from MSDOSto the Appie MacIntosh OSshould require no special handling. Porting
from MacOS to MSDOSinvolves duplicating the massive windowing functions built into
MacOS.Microsoft’s Windowsis a licensee of Apple and would probably be the best choice,
though Aldus’ PageMaker program uses DRI’s GEM. The MacOSwaswritten in Pascal and
uses Pascal data structures and calling conventions.

AmigaDOS

AmigaDOSis a Unix variant with a windowingshell. Newer versions have the Bourneshell as an
option for their CLI, or CommandLineInterface. Most Amiga programs makelittle or no use
of the piping or multitasking structuresavailable under Unix and should not betoodifficult to
port. The Amiga’s windowing and mouseroutinesarefairly simple and could be duplicated by a
set of library routines or Quarterdeck’s DesQview could be used, which wouldalso duplicate the
multitasking and interprocessdata transfer available under AmigaDOS.

OS/2

Most new Microsoft language updates come with OS/2 and DOSvariants. Microsoft Windows
can duplicate most OS/2 windowing and piping functions if needed. Microsoft provides ‘dual
mode’ libraries for programsto run under either DOSor OS/2. Theofficial Microsoft interface
to OS/2’s 221 function calls is through the C language.

UNIX

Mostversions of Unix appear very much like CP/M from the programmer’s stand-point. Unix
has memory managementandhierarchic directory structures absent in CP/M. Most Unix sys-
tems use somesort of paged virtual memory and code generated by some Unix compilers tends
to be very large. Should it be necessary to porta large Unix system to DOS,it would probably be
best to use Quarterdeck’s DesQview AP] and EEMSor LIM 4.0. Virtually all Unix softwareis
written in C.

OLYMPUSEX.1015 - 216/393

OLYMPUS EX. 1015 - 217/393

12

Microsoft WindowsA.P.lI.

Overview

First released in November 1985, Microsoft Windowswasoriginally designed as a high-level in-
terface for display,sort of like a super-ANSISYSdriver. An application program running under
Windows could write to its output device without knowingorcaringif the display wasa screen or
a printer, or whatthe resolution of the output device was. Windowsalsoincludes graphics primi-
tives for applications, arbitration for multiple programs accessing the screen or devices, and
simple program-swapping and memory management capability.
Windows was a grand concept, and worthy ofserious consideration. However, Microsoft pre-an-
nouncedit by almost two years, and whenthe program finally did ship, it had a numberofprob-
lems. Microsoft got snarled up in making Windows into a super-goombah pseudo-Macintosh
‘operating environment’ with enough code overhead to turn a standard AT into a reasonable
facsimile of an asthmatic PCjr. It was SLOW. It was a RAM anddisk hog, unsuitable for use on
small floppy-based machines commonat the time. It was expensive, priced four times higher
than DOS, and programming in Windowsrequired tools available only in the Windows Devel-
opmentkit, priced at a princely $350 (now $500). And as a final blow, it could not perform its
task with normal DOSprograms, requiring applications developed specially for Windows.

Later versions of Windows,tailored to the 80286 or 80386 processors, were able to increase the
speed and functionality of the program somewhat. Despite the hard sell by some of the pro-
grammertypes at PC-Magazine and others, Windowshas been a deadplayersince its introduc-
tion. Interest in Windows picked up when Microsoft announced that programs running under
Windows would beeasyto portto the (then as yet unreleased) OS/2 operating system. Interest in
Windowsdied again when OS/2’s API turned outto besufficiently different from Windows to
makeit aboutasdifficult to port Windowsapplications as anythingelse.

Microsoft’s original idea of a universal display interface would be very useful in today’s world of
multiple graphics standards, but few programmers want to haul Windows’ overhead around.
Microsoft could have made Windowsan operating system in its own right, but has chosen not to ,
do so. As part of their latest push, Microsoft has announcedit will bundle Windows with
MSDOSinthe secondhalfof 1989.

OLYMPUSEX.1015 - 217/393

OLYMPUS EX. 1015 - 218/393

Microsoft Windows A.P_I. 211

Programming Windows

The Windows Application Program Interface (API) is designed to be accessible through the
linkable codelibraries provided in the Windows Software DevelopmentKit (SDK). The sug-
gested calling conventionsare set upfor the ‘C’ programminglanguage.

Windowshasits own built-in mouse driver and will ignore any other drivers or mouse control
utilities.

e

Versions

The following versions of Windowshave been released:

1.0 November 1985, original release
1.03 (common to Zenith and aftermarket packaged products)
2.0 . third quarter 1987, overlapping windows, EMS support
286 customized for maximum performance on the 80286 CPU
386 customized for use of the 80386 special instructions

Various ‘runtimekits’ of Windows have been provided for some commercial software packages
such as Ami or Ventura Publisher.

Windows2.0 added increased output performance (claimed up to 400%) for Windows applica-
tions, enhanced data exchange support for non-Windowsbased applications, a new visualinter-
face with overlapping windows(1.x windowscould not overlap), support for running multiple
applications in expanded memory, a new memory managertoallow efficient use of expanded
memory hardware, allowing a single application to be larger than 640Kb,and for the user to
switch rapidly between large applications which are running simultaneously.

All versions ofWindowsare reported to be backward-compatible.

Functions

The following function call listing is for Windows 1.03. Laterversions of Windows have en-
hanced capabilities. All conventionsare for the C language.
AccessResource

Sets file pointer for read access to resource hResInfo.
entry AccessResource({)

AccessResource(hInstance, hResInfo) :nFile
handle hiInstance;
handle hResInfo;

return int (DOS file handle)

AddAton :
Creates an atom for character string lpString.

entry AddAtom()
#undef NoAtom
AddAtom(IlpString) swAtom
ipstr lpString;return atom

AddFontResource

Adds font resource in lpFilename to system font table.
entry AddFontResource()

AddFontResource(lpFilename) :nFonts

OLYMPUSEX.1015 - 218/393

OLYMPUS EX. 1015 - 219/393

212 The Programmer's Technical Reference

lpstr ipFilename;
return short

AdjustWindowRect
Converts client rectangle to a window rectangle.

entry AdjustWindowRect()
#undef NoRect
AdjustWindowRect (lpRect, 1Style, bMenu)
lpRect lipRect;
long 1style;
Boolean bMenu;

return void

AllocResource
Allocates dwSize bytes of memory for resource hResInfo.

entry AllocResource()
AllocResource(hInstance, hResInfo, dwSize) shMemhandle hiInstance;
handle hResInfo;
adword dwSize;

return handle

AnsiLower
Converts character string lpStr to lower-case.

entry AnsiLower()
AnsiLower(lpStr):cChar
1lpstr ipstr;

return byte

AnsiNext
Returns long pointer to next character in string lpCurrentChar.

entry AnsiNext()
AnsiNext (lpCurrentChar) : lpNextChar
lpstr lpCurrentChar;

return i1pstr

AnsiPrev
Returns long pointer to previous character in string lpStart.
lpCurrentChar points to current character.

entry AnsiPrev()
AnsiPrev(lpStart, ipcurrentChar) :lpPrevChar
ipStr lpStart;
lpstr lpcurrentChar;

return I1pStr

AnsiToOem

Converts ANSI string to OEM character string. :
entry AnsiToOem()

AnsiToOem({ipAnsiStr, lpOemStr) :bTranslated
lipstr lpAnsiStr;
lpstr lpOemStr;

return Boolean

AnsiUpper
Converts character string (or character if lpString high word is zero) to
uppercase.

entry AnsiUpper()
AnsiUpper(l1pStr) :cChar
1pstr lpstr;

return byte

AnyPopup
Tells if a pop-up style window is visible on the screen.

entry AnyPopup()
AnyPopup() :bVisible

return Boolean

Arc
Draws arc from X3, ¥3 to X4, Y4, using current pen and moving
counter-clockwise. The arc’s centre is at centre of rectangle given by
X1, ¥1 and X2, Y2.

OLYMPUSEX.1015 - 219/393

OLYMPUS EX. 1015 - 220/393

Microsoft Windows A.P_I. . 213

entry Arc()
#undef NohDc

Arc(hDc, Xl, ¥1, X2, ¥2, X3, Y3, X4, Y4):BDrawn
hoc hpc;
short Xi;

‘short Y1;
short X2;
short Y2;
short X3;
short Y¥3;
short X4;
short Y4;

return Boolean

BeginPaint
Prepares window for painting, filling structure at lpPaint with

. painting data.
entry BeginPaint()

#fundef NoRect
#undef Nohbc
BeginPaint(hWnd, lpPaint):hbc
hWnd hWnd;

IpPaintStruct lpPaint;
return hpdc

BitBlt

Moves bitmap from source device to destination device. Source origin is
at XSrc, YSre. X,¥,,nWidth, nHeight give bitmap origin and dimensions on
destination device. DwRop defines how source and destination bits arecombined.

entry BitBlt()
#undef NohDc

BitBlt(hDestDc, X, Y, nWidth, nHeight, hSrcDC, XSrc, YSre,
dwRop) :bDrawn

hpc hDestDc;
short X;
short Y;
short nWidth;
short nHeight;
hpc hSrceDec;
short XSre;
short YSrc;
adword dwRop;return Boolean

BringWindowToTop
Brings pop-up or child window to top of stack of overlapping windows.

entry BringWindowToTop() .
BringWindowToTop(hWnd)hWnd hWnd;

return void

BuildcommDcB

Fills device control block lpDCB with control codes named by lpDef.
entry BuildcommDcB()

#undef NoComm

BuildCommDCB(lpDef, lpDCB):nResult
ipstr ipDef;

DCB FAR * lpDCB;
return short

CallMsgFilter
Passes message and code to current message-filter function.
Message-filter function is set using SetWindowsHook.

entry CallMsgFilter{)
fundef NoMsg
CallMsgFilter(lpMsg, nCode) :bResult
lpMsg lpMsg;
int nCode;

return Boolean

OLYMPUSEX.1015 - 220/393

OLYMPUS EX. 1015 - 221/393

214 The Programmer's Technical Reference
CallWindowProc

Passes message information to the function specified by lpPrevWndFunc.
entry CallwWindowProc()

#fundef NoWinMessages
CallWindowProc(lpPrevWndFunc, hWnd, wMsg, wparam, 1Param):1Reply
FarProc lpPrevWndFunc;
hwnd hWnd;

unsigned wMsg;
word wparam;
long lParam;

return long

Catch
Copies current execution environment to buffer lpcatchBuf.

entry Catch()
Catch (lpCatchBuf) : Throwback

lpcatchBuf lpCatchBuf;
return int

ChangeClipboardChainRemoves hWnd from clipboard viewer chain, making hWndNext descendant of
hWnd’s ancestor in the chain.

entry ChangeClipboardChain()
fundef NoClipBoard
ChangeClipboardChain (hWnd, hWndNext) :bRemoved
hWnd hwnd;
hwnd hWndNext;

return Boolean

ChangeMenu
Appends, inserts, deletes, or modifies a menu item in hMenu.

entry ChangeMenu ()
#undef NoMenus
ChangeMenu(hMenu, wlDChangeltem, lpNewItem, wlIDNewItem,

wChange) :bChanged
hMenu hMenu;
word wlDChangeItem;
lpstr lpNewItem;
word wlIDNewItem;
word wChange;

return Boolean

CheckDlgButton

Places or removes check next to button, or changes state of 3-state
button.

entry CheckDigButton()
#undef Noctimgr
CheckDligButton(hDlg, nIDButton, wCheck)
hWnd hDlg;
int nIDButton;
word wCheck;

return void

CheckMenulItem
Places or removes checkmarks next to pop-up menu items in hMenu.

entry CheckMenuItem({)}
#undef NoMenus
CheckMenuItem(hMenu, wIDCheckItem, wCheck) :boldcheck
hMenu hMenu;
word wiIDCheckIitem;
word wCheck;

return Boolean

CheckRadioButton
Checks nIDCheckButton and unchecks all other radio buttons in the group
from nIDFirstButton to niDLastButton.

entry CheckRadioButton()
#undef NoctlMgr
CheckRadioButton(hDlg, nIDFirstButton, nIDLastButton, nIDCheckButton)
hWnd hDlg;:
int nIDFirstButton;

OLYMPUSEX.1015 - 221/393

OLYMPUS EX. 1015 - 222/393

Microsoft Windows A.P.I. a , 215

int nIDLastButton:
int nIDCheckButton;

return void

childWindowFromPoint
Determines which, if any, child window of hWndParent contains Point.

entry ChildWindowFromPoint()#undef NoPoint

ChildWindowFromPoint (hWndParent, Point) :hWndChild
hwnd hWndParent;
point Point;

return hWnd

ClearCommBreak
Clears communication break state from communication device nCid.entry ClearCommBreak ()
fundef Nocomm
ClearCommBreak (nCid) :nResult
short nCid;

return short

ClientToScreen

Converts client coordinates to equivalent screen coordinates in place
entry ClientToScreen()

#undef NoPoint

ClientToScreen(hWnd, lpPoint)
hWnd hWnd;
lpPoint lpPoint;

return void

ClipCursor
Restricts the mouse cursor to a given rectangle on the screen.

entry ClipCursor()
#undef NoRect
ClipCursor(lpRect)
lpRect IlpRect;

return void

CloseClipboard
Closes the clipboard

entry CloseClipboard(}
#undef NoClipBoard
CloseClipboard(}:bClosedreturn Boolean

CloseComm

Closes communication device nCid after transmitting current output buffer.entry CloseComm()
#undef NoComm
CloseComm(nCid) :nResult
short ncid;

return short

CloseMetaFile
Closes the metafile and creates a metafile handle.

entry CloseMetaFile()
CloseMetaFile(hDc):hMF
handle hoDc;

return handle

CloseSound

Closes play device after flushing voice queues and freeing buffers.
entry CloseSound()

#undef NoSound
CloseSound()

return int

CloseWindow
Closes the specified window.

entry CloseWindow()
CloseWindow (hWnd) :nClosed

OLYMPUSEX.1015 - 222/393

OLYMPUS EX. 1015 - 223/393

216 The Programmer's Technical Reference
hWnd hwnd;

return int

CombineRgn
Combines, using nCombineMode, two existing regions into a new region,

entry CombineRgn()
#undef' NoRegion
CombineRgn(hDestRgn, hSrckgnl, hSreRgn2, nCombineMode) :RgnType
hRgn hDestkRgn;
hRgn hsrcRgnl;
hRgn hsrceRgn2;
short nCombineMode;

return short

CopyMetaFile
Copies source metafile to lpFilename and returns the new metafile.

entry CopyMetaFile()
CopyMetaFile(hSrcMetaFile, lpFilename) : hMF
handle hSrcMetaFile;
ipstr lpFilename;

return handle

copyRect
Makes a copy of an existing rectangle.

entry CopyRect()
#undef NoRect
CopyRect (lpDestRect, 1pSourceRect)
lpRect I1pDestRect;
lpRect lpSourceRectj;

return int

CountClipboardFormats
Retrieves a count of the number of formats the clipboard can render.

entry CountClipboardFormats()
#undef NoClipboard
CountClipboardFormats():nCount

return int

CountVoiceNotes

Returns number of notes in voice queue nVoice. i
entry CountVoiceNotes()

#undef NoSound
CountVoiceNotes (nVoice) :nNotes
int nVoice;

return int

CreateBitmap
Creates a bitmap having the specified width, height, and bit pattern.

entry CreateBitmap()
#undef NoBitmap
CreateBitmap(nWidth, nHeight, cPlanes, cBitCount, lpBits) :hBitmap
short nWidth;
short nHeight;
byte cPlanes;
byte cBitCount;
lpstr lpBits;

return hBitmap

CreateBitmapIndirect
Creates a bitmap with the width, height, and bit pattern given by
lpBitmap.

entry CreateBitmapIndirect()
#undef NoBitmap
CreateBitmapIndirect (1pBitmap) :hBitmap

Bitmap FAR * lpBitmap;
return hBitmap :

CreateBrushIindirect .
Creates a logical brush with the style, colour, and pattern given by
lpLogBrush.

entry CreateBrushIndirect()

OLYMPUSEX.1015 - 223/393

OLYMPUS EX. 1015 - 224/393

_ Microsoft Windows A.P.I. | 217

#undef NoGDI
#undef NoBrush
CreateBrushIindirect(lpLogBrush) :hBrush

LogBrush FAR * lpLogBrush;
return hBrush

CreateCaret
Creates caret or hWnd using hBitmap. If hBitmmap is NULL, creates solid
flashing black block nWidth by nHeight pixels; if hBitmap is 1, caret is
grey. .

entry CreateCaret()
fundef NoBitmap
CreateCaret (hWnd, hBitmap, nWidth, nHeight)
hWnd hwWrid;
hBitmap hBitmap;
int nWidth;
int nHeight;

return void

CreateCompatibleBitmap
Creates a bitmap that is compatible with the device specified by hDc.

entry CreateCompatibleBitmap()
#fundef NoHDC
#fundef NoBitmap
CreateCompatibleBitmap(hDC, nWidth, mnHeight):hBitmap
hpc hDc;
short nWidth;
short mnHeight;

return hBitmap

CreateCompatibleDc
Creates a memory display context compatible with the device specified byhpdc.

entry CreateCompatibleDC()
#undef NoHdc
CreateCompatibleDC (hDC) :hMemDc
hpc hpc;

return hDc

CreateDc

Creates a display context for the specified device.
entry CreateDC()

#undef NohDc

CreateDC(lpDriverName, lpDeviceName, lpOutput, lpInitData):hDc
ipstr ipDriverName;
lpstr lpDeviceName;
lpstr lpOutput;
lpstr lpInitData;

return hbdc

CreateDialog
Creates a modeless dialogue box.

entry CreateDialog()
#undef NoCtlmgr
CreateDialog(hInstance, lpTemplateName, hWndParent,
ipDialogFunc) :hDlg
handle hinstance;
lpstr lpTemplateName;
hWnd hWndParent;
farproc lpDialogFunc;

return hWND

CreateDiscardableBitmap
Creates a discardable bitmap.

entry CreateDiscardableBitmap()
#undef NohbDc
#undef NoBitmap
CreateDiscardableBitmap(hDC, X, Y):hBitmap
hpc hpc;
short X;
short Y;

OLYMPUSEX.1015 - 224/393

OLYMPUS EX. 1015 - 225/393

218 The Programmer’s Technical Reference
return hBitmap

CreateEllipticRgn
Creates an elliptical region whose bounding rectangle is defined by Xi,
Yl, X2, and Y2.

entry CreateEllipticRgn({)
#undef NoRegion
CreateEllipticRgn(X1, ¥1, X2, Y2):hRgn
short X1; .
short Y1;
short X2;
short Y2;

return hRgn

CreateEllipticRgnIndirect
Creates an elliptical region whose bounding rectangle is given by lpRect.

entry CreateEllipticRgnindirect()
ftundef NoRect
#undef NoRegion
CreateEllipticRgnIndirect (lpRect) :hRgn
lpRect lpRect;

return hRGN

CreateFont
Creates a logical font having the specified characteristics.

entry CreateFont()
fundef NoFont
CreateFont(nheight, nWidth, nEscapement, nOrientation, nWeight,
cItalic, cUnderline, cStrikeOut, nCharSet, cOutputPrecision,
cClipPrecision, cQuality, cPitchAndFamily, lpFacename):hFont
short nheight;
short nWidth;
short nEscapement ;
short nOrientation;
short nWeight;
byte cItalic;
byte cUnderline;
byte cStrikeout;
byte nCharSet;
byte cOutputPrecision;
byte cClipPrecision;
byte cQuality;
byte cPitchAndFamily;
ipstr 1lpFacename;

return hFont

CreateFontIndirect
Creates a logical font with characteristics given by lpLogFont.

entry CreateFontIndirect()#tundef NoGDI
#undef NoFont
CreateFontIndirect(lpLogFont) :hFont

LogFont FAR * lpLogFont;
return hFont

CreateHatchBrush

Creates a logical brush having the specified hatched pattern and colour.

entry CreateHatchBrush({)
#undef NoBrush
CreateHatchBrush(nIndex, rgbColor):Brush
short nIndex;
dword xrgbcColor;

return hBrush

CreateIc
Creates an information context for the specified device.

entry CreateIC()
#undef NohDc
CreateIc(lpPDriverName, lpDeviceName, lpOutput, lpInitData) :hIc
lpstr lpDriverName;
lpstr lpDeviceName;

OLYMPUSEX.1015 - 225/393

OLYMPUS EX. 1015 - 226/393

 _ Microsoft Windows A.P_L | 219

lpStr lpoutput;
lpstr lpInitData;

return hpDc

CreateMenu
' Creates an empty menu.

entry CreateMenu()
#undef NoMenus
CreateMenu() :hMenu

return hMenu

CreateMetaFile
, Creates a metafile display context.

entry CreateMetaFile({)
CreateMetaFile(lpFilename) :hbDc
ilpstr ipFilename;

- yeturn handle

CreatePatternBrush

Creates a logical brush having the pattern specified by hBitmap.
entry CreatePatternBrush()

#undef NoBitmap
#fundef NoBrush
CreatePatternBrush(hBitmap) :hBrush
hBitmap hBitmap;

return hBrush

CreatePen

Creates a logical pen having the specified style, width, and colour.
entry CreatePen()

#undef nOpen
CreatePen(nPenStyle, nWidth, rgbColor):hPen
short nPenStyle;
short nWidth;
adword rgbColor;return hPen

CreatePenIndirect

Creates a logical pen with the style, width, and colour given by lpLogPen.
entry CreatePenIndirect()

#fundef nOpen
CreatePenIndirect (lpLogPen) :hPen

LogPen FAR * lpLogPen;
return hPen

CreatePolygonkgn
Creates a polygon region having nCount vertices as given by lpPoints.

entry CreatePolygonkgn() .
#fundef NoPoint
#undef NoRegion
CreatePolygonRgn(lpPoints, nCount, nPolyFillMode):hRgn
lpPoint lpPoints;
short ncount;
short nPolyFiliMode;

return hRgn

CreateRectRgn
Creates a rectangular region.

entry CreateRectRgn()
f#fundef NoRegion
CreateRectRgn(X1, Y1, X2, ¥2):hRgn
short Xi;
short Yl;
short X2;
short Y2;

return hRgn

CreateRectRgnIndirect
Creates a rectangular region with the dimensions given by IlpRect.

entry CreateRectRgnIndirect(}
#fundef NoRect

OLYMPUSEX.1015 - 226/393

OLYMPUS EX. 1015 - 227/393

220 ' The Programmer's Technical Reference
#undef NoRegion
CreatRectRgnIndirect(lpRect) :hRgn
lpRect IlpRect;

return hkRgn

CreateSolidBrush
Creates a logical brush having the specified solid colour.

entry CreateSolidBrush()
#undef NoBrush
CreateSolidBrush(rgbColor) :hBrush
dword ragbColor;

return hBrush

CreateWindow
Creates tiled, pop-up, and child windows.

entry CreateWindow()
CreateWindow(1pClassName, lpWindowName, dwStyle, X,¥,nWidth, nHeight,

hWndParent, hMenu, hInstance, lpParam) : hWnd
ipstr lpClassName;
lpstr lpWindowName;
dword dwStyle;
int xX;
int Y;
int nWidth;
int nHeight;
hwnd hWndParent;
hMenu hMenu;
handle hinstance;
lpstr lpParam;

return hWnd

DefWindowProc
Provides default processing for messages an application chooses not to
process.

entry DefWindowProc()
#undef NoWinMessages
DefWindowProc(hWnd, wMsg, wParam, 1Param):1lReply
hwnd hWnd;

unsigned wMsg;
word wParam;
long lParam;

return long

DeleteAtom
Deletes an atom nAtom if its reference count is zero.

entry DeleteAtom()
#undef NoAtom
DeleteAtom(nAtom) :nOldAtom
atom nAtom;

return atom

DeleteDCc
Deletes the specified display context.

entry DeleteDC()
#undef NohDCc
DeleteDc (hDC) :bDeleted
hpc hbdc;

return Boolean

DeleteMetaFile
Deletes access to a metafile by freeing the associated system resources

entry DeleteMetaFile()
DeleteMetaFile(hMF) :bFreed
handle hMF;

return Boolean

DeleteObject .
Deletes the logical pen, brush, font, bitmap, or region by freeing all
associated system storage.

entry DeleteObject()
DeleteObject (hObject) :bDeleted

OLYMPUSEX.1015 - 227/393

OLYMPUS EX. 1015 - 228/393

Microsoft Windows A.P.I. . 221

handle hObject;
return Boolean

pestroyCaret
Destroys the current caret and frees any memory it occupied.

entry DestroyCaret({)
DestroyCaret()
hWnd hWnd;

return int

CombineRgn

Combines, using nCombineMode, two existing regions into a new region.
entry CombineRgn()

#undef NoRegion
CombineRgn(hDestRgn, hSrcRgnl, hSreRgn2, nCombineMode) :RgnType
hRgn hDestRgn;
hRgn hSrcRgnl;
hRgn hSreRgn2;
short nCombineMode;

return short

CopyMetaFile
Copies source metafile to lpFilename and returns the new metafile.

entry CopyMetaFile()
CopyMetaFile(hSrcMetaFile, lpFilename) :hMF
handle hSrcMetaFile;
lpstr lpFilename;

return handle

CopyRect
Makes a copy of an existing rectangle.

entry CopyRect ()
#fundef NoRect
CopyRect (lpDestRect, lIpSourceRect)
ipRect l1pDestRect;
1pRect lpSourceRect;

return int

CountClipboardFormats

entry

return

Retrieves a count of the number of formats the clipboard can render.
CountClipboardFormats()
#fundef NoClipboard
CountClipboardFormats():nCount
void

DestroyMenu

entry

return

Destroys the menu specified by hMenu and frees any memory it occupied.
DestroyMenu()
#undef NoMenus
DetroyMenu (hMenu) ;bDestroyed
hMenu hMenu;
Boolean

DestroyWindow

entry

return

Sends a WM_DESTROY message to hWnd and frees any memory it occupied.
DestroyWindow(}
DestroyWindow(hWnd) :bDestroyed
hWnd hWnd;
Boolean

DeviceModes

entry

return

Displays a dialogue box that prompts user to set printer modes.
DeviceModes()
DeviceModes(hWnd, hitem, lpString, lpString):lpString
hWnd hWnd;
handle hItem;
lpsStr lpString;
lpstr lpString;
ipstr

OLYMPUSEX.1015 - 228/393

OLYMPUS EX. 1015 - 229/393

222 The Programmer's Technical Reference

DialogBox
Creates a modal dialogue box.

entry DialogBox(}
#undef NoctlMgr
DialogBox(hIinstance, lpTemplateName, hWndParent,
lpDialogFuncc) :nResult
handle hiInstance;
ipstr lpTemplateName;
hwnd hWndParent;
FarProc lpDialogFuncc;

return int

DispatchMessage
Passes message to window function of window specified in MSG structure.

entry DispatchMessage()
#undef NoMsg
DispatchMessage(lpMsg):1Result
lpMsg IpMsg;

return long

DigDirList
Fills nIDListBox with names of files matching path specification.

entry DigDirList()
#undef Noctlmgr
#undef NocCtlMgr
DigDirList(hDlg, lpPathSpec, nIDListBox, niDStaticPath,

wFiletype):nListed
hwnd hDlg;
lpstr lpPathSpec;
int nIDListBox;
int nIDStaticPath;

unsigned wFiletype;
return int i

DigDirSelect
Copies current selection from nIDListBox to lpString.

entry DlgDirSelect()
#undef Noct1lMgr
#undef NoctlMgr
DlgDirSelect(hDlg, lpString, nIDListBox) :bDirectory
hwnd hDlg;
lpstr lpstring;
int nIDListBox;

return Boolean

DPtoLP
’ Converts into logical points the nCount device points given by lpPoints

entry DPtoLP()
#undef NoPoint
#undef NohDc
DPtoLP(hDC, lpPoints, ncount) :bConverted
hpc hDc;
lpPoint lpPoints;
short ncount;

return Boolean

DrawIcon
Draws an icon with its upper left corner at X, Y.

entry DrawIcon()
#undef NohDc
#undef NoDrawText
DrawIcon(hDC, X, ¥, hIcon):bDrawn
hpc hDc;
int X}
int Y;
hIcon hicon;

return Boolean

DrawMenuBar
Redraws the menu bar.

entry DrawMenuBar()

OLYMPUSEX.1015 - 229/393

OLYMPUS EX. 1015 - 230/393

Microsoft WindowsA.P.L . 223
#undef NoMenus
DrawMenuBar(hWnd)
hWnd hWnd;

return void

DrawText

Draws nCount characters of lpString in format specified by wFormat, using
current text and background colours. Clips output to rectangle given byipRect.

entry DrawText () :
#undef NoRect
#undef Nohpc
f#fundef NoDrawText .

DrawText(hDC, lpString, nCount, lpRect, wFormat)
hpc hpDc;
lpstr ipString;
int ncount;
lpRect IlpRect;
word wFormat;

return void

Ellipse

Draws ellipse with centre at the centre of the given bounding. rectangle.
Draws border with current pen. Fills interior with current brush.

entry Ellipse{)
#fundef NohDc

i Ellipse(hDC, X1, Y1, X2, Y2):bDrawn
‘I hpc hpc;
i short X1;
a short Yl;

short X2;
7 short Y2;

return Boolean

EmptyClipboard

Empties clipboard, frees data handles, and assigns clipboard ownership to
the window that currently has the clipboard open.

| entry EmptyClipboard()
i #fundef NoClipBoard

EmptyClipboard():bEmptiedi return Boolean

EnableMenuItem

Enables, disables, or greys a menu item, depending on wEnable.
entry EnableMenulItem(}

#undef NoMenus

EnableMenuItem(hMenu, wIDEnableItem, wEnable):bEnabled
hMenu hMenu;
word wIDEnableiItem;
word wEnable;

return Boolean

EnableWindow

Enables and disables mouse and keyboard input to the specified window.
entry EnableWindow{)

EnableWindow(hWnd, bEnable) :bDone
hwnd hwnd;
Boolean bEnable;

t return Boolean

i EndDialog
Frees resources and destroys windows associated with a modal dialogue box.

entry EndDialog()
#fundef NoCtlMgr
EndDialog(hDlg, nResult)
hWnd hD1g;
int nResult;return void

EndPaint . .
Marks the end of window repainting; required after each BeginPaint call.

OLYMPUSEX.1015 - 230/393

OLYMPUS EX. 1015 - 231/393

boboww

entry

lpPaintstruct lpPaint;return

EnumChildwindows

entry

return

EnumClipboardFormats

The Programmer's Technical Reference

EndPaint()
#fundef NoRect
#undef NohDC
EndPaint (hWnd, lpPaint)
hWnd hWnd;

void

Enumerates the child style windows belonging to hWndParent by passing
each child window handle and 1Param to the lpEnumFunc function.
EnumChildWindows()
EnumChildWindows(hWndParent, lpEnumFunc, 1Param) :bDone
hWnd hWndParent;
FarProc lpEnumFunc;
long 1Param;
Boolean

Enumerates formats from list of available formats belonging to the
clipboard.

entry EnumC lipboardFormats()

#undef NoClipBoard
EnumClipboardFormats (wFormats) :wNextFormat
word wFormats;

return word '

EnumFonts i
Enumerates fonts available on a given device, passing font information
through lpData to lpFontFunc function. :

entry EnumFonts() ,
#fundef NohDc
EnumFonts(hDC, lpFacenname, lpFontfunc, lpData) :nResult
hDc hbc;
lpstr 1pFacenname;
FarProc lpFontfunc;
lpstr lpData;

return short

EnumObjects
Enumerates pens or brushes (depending on. nobjectType) available on a
device, passing object information through lpData to lpObjectFunc
function.

entry EnumObjects()
#undef NohDc
EnumObjects(hDC, nObjectType, lpobjectFunc, lpData) :nResult
hpc hdc;
short nObjectType;
FarProc lpObjectFunc;
lpstr lpData;

return short

EnumProps
Passes each property of hWnd, in turn, to the lpEnumFunc function

entry EnumProps{)
EnumProps (hWnd, lpEnumFunc):nResult
hwnd hWnd;
FarProc lpEnumFunc;

return int

EnumWindows
Enumerates windows on the screen by passing handle of each tiled, iconic,
pop-up, and hidden pop-up window (in that order) to the lpEnumFunc
function.

entry EnumWindows({)
EnumWindows(lpEnumFunc, 1Param):bDone
FarProc lpEnumFunc;
long 1Param;

return Boolean

OLYMPUSEX.1015 - 231/393

OLYMPUS EX. 1015 - 232/393

Microsoft Windows A.PI. . 225
EqualRgn :

Checks the two given regions to determine if they are identical.
entry EqualRgn()

, fundef NoRegion
EqualRgn(hSrcl, hSrcRgn2) :bEqual

- ARgn hSrcl;
hRgn hSrcRgn2;

return Boolean

Escape :
Accesses device facilities not directly available through GDI.

entry Escape()
#undef Nohpc
Escape(hDC, nEscape, nCount, lpinData, lpOutData):nResult
hpce hdc;
short nEscape;
short nCount;
ipstr 1lpInData;
lpstr lpoutData;

return short

Escape - AbortDoc
Aborts the current job. lpInData, lpOutData, and nCount are not used.

entry Escape({)
#undef NohDc
Escape(hDC, AbortDoc, nCount, lpInData, OutData):nResult
hpc hDc;
short AbortDoc;
short nCount;
1pstr lpInData;
1lpstr OutData;

return short

Escape - DraftMode
Turns draft mode off or on. lpInData points to 1 (on) or O (off).
ncount is number of bytes at lpInData. lpOutData is not used.

entry Escape ()
#undef NohDc
Escape(hDC, DraftMode, nCount, lpInData, lpoOutData) ;nResult
hpc hDc;
short DraftMode;
short nCount;
lpstr lpInData;
1lpstr lpoOutData;

return short

Escape - EndDoc
Ends print job started by StartDoc. nCount, lpInData, lpoOutData are notused.

entry Escape ()
#undef Nohpc
Escape(hDC, EndDoc, nCount, lpInData, lpOutData):nResult
hDc hpc;
short ENDDOC;
short ncount;
lpstr 1pInData;
lpstr lpoutData;

return short

Escape - FlushOutput
Flushes output in device buffer; lpInData, lpOutData, and nCount are notused.

entry Escape ()
fundef NohDc
Escape(hDC, FlushOutput, nCount, lpInData, lpOutData):nResult
hpc hDc;
short FlushoOutput;
short ncount;
lpstr ipInData;
lpstr lpoutData;

return short

OLYMPUSEX.1015 - 232/393

OLYMPUS EX. 1015 - 233/393

226

Escape - GetColourTable
Copies RGB colour table entry to lpoutData. lpInData is colour table
index. nCount is not used.

The Programmer’s Technical Reference

entry Escape()
#undef NohDc
Escape(hDC, GetColourTable, nCount, lpInData, lpoutData) :nResult
BDC hdc;
short GetColourTable;
short ncount;
ipstr ipInData;
lpstr lpoOutData;

return short

Escape - GetPhysPageSize
Copies physical page size to POINT structure at lpoutData.
nCount are not used.

lpInData and

entry Escape ()
#undef NohDC
Escape(hDC, GetPhysPageSize, nCount, lpInData, lpoutData) ;nResult
hpc hDc;
short GetPhysPageSize;
short nCount;
ipstr 1lpInData;
lpstr lpOutData;

return short

Escape - GetPrintingoffset
Copies printing offset to POINT structure at lpoutData.
nCount are not used.

lpInData and

entry Escape ()
#undef NohDc
Escape(hDC, GetPrintingOffset, nCount, ipiInData,
lpOutData) :nResult
HDC hdc;
short GetPrintingOffset;
short ncount;
lpstr lpInData;
lpstr lpoutData;

return short

Escape - GetScalingFactor
Copies scaling factors to POINT structure at lpoUtData. lpInData and
ncount are not used.

entry Escape()
#tundef NohDC
Escape(hDc, GetScalingFactor, nCount, lpInData, lpOutData) :nResult
hpc hpc;
short GetScalingFactor;
short ncount;
lpstr . lpInData;
lpstr lpOutData;

return short

Escape - NewFrame
Ends writing to a page. nCount, IpInData and lpOutData are not used.

entry Escape ()
#undef NohDc
Escape(hDC, NewFrame, nCount, IpInData, lpOutData) :nResult
hpc hbc;
short NewFrame;
short nCount;
lipstr lpInData;
lpstr lpoutData;

return short

Escape - NextBand
Ends writing to a band. lpOutData gives rectangle to hold device
coordinates of next band. nCount and lpInData are not used.
Escape()
#undef NohDc
Escape(hDC, NextBand, nCount, lpInData, lpOutData):nResult

entry

OLYMPUSEX.1015 - 233/393

OLYMPUS EX. 1015 - 234/393

hpbc
short
short
ipstr
ipstr

return’ short

_ Microsoft Windows A.P.I. . 227
hpbe;
NextBand;
nCount;
lpInData;
lpoOutData;

Escape - QueryEcSupport
Tests whether an escape is supported by device driver. lpInData points to
the escape. nCount is the number of bytes at lpInData. lpOutData is not
used.

entry Escape()
' #undef NohpDc

Escape(hDC, QueryEcSupport, nCount, lpInData, lpOutData):nResult
hpc hDC;
short QueryEcSupport;
short nCount;
ipstr lpinData;
ipstr lpoutData;

return short

Escape - SetAbortProc
Sets abort function for print job. lpInData, lpOutData, and nCount are
not used.

entry Escape({)
#undef NohDc
Escape(hDC, SetAbortProc, nCount, lpInData, lpOutData):nResult
hpc hDC;
short SetAbortProc;
short ncount;
lpstr lpInData;
ipstr lpOutData;

return short

Escape - SetColourTable
\ Sets RGB colour table entry. lpInData points to table index and colour.

lpoutData points to RGB colour value to be set by device driver. nCount
is not used. :

entry Escape()
#undef NohDc
Escape(hDC, SetColourTable, nCount, lpInData, lpOutData) :nResult
hpc hDc;
short SetColourTable;
short nCount;
ipstr lpInData;
lpstr lpOutData;

return short

Escape - StartDoc
Starts print job, spooling NewFrame calls under same job until it
reaches ENDDOC. lpInData is name of document; nCount is its
length. lpOutData not used.

entry Escape ()
#undef NohDC
Escape(hDC, StartDoc, nCount, lpInData, OutData):nResult
hDc hbdc;
short StartDoc;
short nCount;
ipstr ipInData;
lpstr OutData;

return short

EscapeCommFunction
Executes escape function nFunc for communication device nCid.

entry EscapeCommFunction()
#undef NoComm
EscapeCommFunction(nCid, nFunc) :nResult
short ncid;
int nFunc};

return short

OLYMPUSEX.1015 - 234/393

OLYMPUS EX. 1015 - 235/393

228 The Programmer's Technical Reference

ExcludeClipRect
Creates new clipping region from existing clipping region less the given
rectangle.

entry ExcludeClipRect()
fundef NohDCc
ExcludeClipRect(hDC, X1, Y1, X2, Y2) :nRgnType
hDc hpc; ~
short Xi;
short Yi;
short X2;
short Y2;

return short

FatalExit
Halts Windows and prompts through auxiliary port (AUX) for instructions
on how to proceed.

entry FatalExit()
FatalExit (Code) :Result
int Code;

return void

FillRect
Fills given rectangle using the specified brush.

entry FillRect()}
#undef NoBrush
#undef NohDC
#fundef NoRect
FillRect(hDC, lpRect, hBrush):nResult
hpc hDc;
LPRECT l1pRect;
HBRUSH hBrush;

return int

PillRgn
Fills given region with brush specified by hBrush.

entry FillRgn()
#undef NoBrush
#undef NohDc
#undef NoRegion
FillRgn(hDCc, hRgn, hBrush) :bFilled
hoc hDc}
hRgn hRgn;
hBrush hBrush;

return Boolean

FindAtom
Retrieves atom (if any) associated with character string lpString.

entry FindAtom()
#undef NoAtom 4
FindAtom(lpString) :wAtom
lpstr lpString; !

return atom i

FindResource

Locates resource lpname having lpType and returns handle for accessing
and loading the resource. !

entry FindResource()
FindResource(hInstance, lpname, lpType) :hResInfo
handle hinstance;
lpstr lpname;
ipstr lpType;

return handle

FindWindow
Returns the handle of the window having the given class and caption.

entry FindWindow()
FindWindow(1lpClassName, lpWindowname) : hWnd
ipstr lpClassName;
ipstr lpWindowname;

return hWnd

OLYMPUSEX.1015 - 235/393

OLYMPUS EX. 1015 - 236/393

Microsoft WindowsA.P.L. . 229
FlashWindow :

entry

return

FloodFill

entry

return

Flashes the given window once by inverting its active/inactive state.
FlashWindow()
FlashWindow(hWnd, bInvert) :bInverted
hWnd hWnd;
‘Boolean bInvert;
Boolean

Fills area of the display surface with current brush, starting at xX, Y,
and continuing in all directions to the boundaries with the given
rgbColour.
FloodFill()
#undef NohDc
FloodFill(hDcC, X, Y, rgbColour) :bFilled
hpc hpc;
short X;
short Y;
dword rgbColour;
Boolean

FlushComm

entry

return

Flushes characters from nQueue of communication device nCid.
Flushcomm()
#undef NoComm
FlushComm(ncid, nQueue):nResult
short nCid;
int nQueue;
short

FrameRect

entry

return

Draws border for the given rectangle using the specified brush.
FrameRect()
#undef NoBrush
#undef NohDc
#undef NoRect
FrameRect(hDC, lpRect, hBrush) :nResult
hpc hpc;
lpRect lpRect;
hBrush hBrush;
int

FrameRgn

entry

return

Draws border for given region using hBrush. nWidth is width of vertical
brush strokes. nHeight is height of horizontal strokes.
FrameRgn()
#fundef NoBrush
#fundef NohDc
#undef NoRegion
PrameRgn(hDC, hRgn, hBrush, nWidth, nHeight) :bFramed
hoc hpc;
hRgn hRgn;
hBrush hBrush;
short nWidth;
short nHeight;
Boolean

FreeLibrary

entry

return

Removes library module hLibModule from memory if reference count is zero.
FreeLibrary()
FreeLibrary (hLibModule)
handle hLibModule;
handle

FreeProcInstance

entry

return

Removes the function instance entry at address lpProc.
FreeProciInstance()
FreeProcinstance(lpProc)
FarProc lpProc;
void

OLYMPUSEX.1015 - 236/393

OLYMPUS EX. 1015 - 237/393

230

FreeResource
Removes resource hResInfo fr

entry FreeResource()
FreeResource(hResData) : bFree
handle hResData;

return Boolean Returns handl

GetActiveWindow
entry GetActiveWindow()

GetaActiveWindow() :hWnd
return hWnd

GetAtomHandle
Returns the handle (relative

entry GetAtomHandle()
#undef NoAtom
GetAtomHandle(wAtom) :hMem
atom wAtom;

return handle

GetAtomName

Copies character string (up
lpBuffer.

entry GetAtomName(}
#fundef NoAtom
GetAtomName(wAtom, lpBuffer, nSize) :nLength
atom wAtom;
lpstr lpBuffer;
int nSize;

return word

GetBitmapBits
Copies lcount bits of specif

entry GetBitmapBits()
#undef NoBitmap
GetBitmapBits(hBitmap, 1Count, lpBits):lcopied
hBitmap hBitmap;
long lcount;
lpstr lpBits;

return long

GetBitmapDimension
Returns the width and height

entry GetBitmapDimension()
#undef NoBitmap
GetBitmapDimension(hBitmap) :ptDimensions
hBitmap hBitmap;

return dword

GetBkColour
Returns the current backgroun

entry GetBkColour()
#undef NohDC
GetBkColour(hDC) :rgbColour
hoc hpc;

return dword

GetBkMode
Returns the background mode of the specified device.

entry GetBkMode({)
#undef NohDC
GetBkMode (hDC) :BkMode
hpc hdc;

return short

GetBrushorg
Retrieves the current b

entry GetBrushorg()
#undef NoBrush
GetBrushOrg(hDC):dwOrigin
hpc hdc;

The Programmer’s Technical Reference

om memory if reference count is zero.

da

e to the active window.

to the local heap) of the atom string.

to nSize characters) associated with wAtom to

ied bitmap into buffer pointed to by lpBits. '

of the bitmap specified by hBitmap.

d colour of the specified device.

rush origin for the given display context.

OLYMPUSEX.1015 - 237/393

OLYMPUS EX. 1015 - 238/393

Microsoft Windows A.P.1. , 231

return dword

GetBValue
Retrieves the blue value of the given colour.

entry GetBValue()
. GetBValue(rgbColour) :cBlue

GetCaretBlinkTime
Returns the current caret flash rate.

entry GetCaretBlinkTime()
GetCaretBlinkTime() :wMSeconds

return word

GetClassLong
Retrieves information at nIndex in the WNDCLASS structure.

entry GetClassLong()
#fundef NoWinOffsets
GetClassLong(hWnd, nindex):long
hWnd hWnd;
int nindex;

return LONG

GetClassName

Copies hWnd’s class name (up to nMaxCount characters) into lpClassName.
entry GetClassName()

GetClassName(hWnd, nClassName, nMaxCount) :nCopied
hwnd hwnd;
lpstr nClassName;
int nMaxCount;

return int

GetClassWord
Retrieves information at nIndex in the WNDCLASS structure.

entry GetClassWord()
#undef NoWinOffsets
GetClassWord(hWnd, nIndex):word
hWnd hWnd;
int niIndex;

return word

GetClientRect

Copies client coordinates of the window client area to lpRect.
entry GetClientRect()

#undef NoRect
GetClientRect (hWnd, lpRect)
hwnd hWnd;
1lpRect lpRect;

return void

GetClipboardData
Retrieves data from the clipboard in the format given by wFormat.

entry GetClipboardData()
#undef NoClipboard
GetClipboardData(wFormat):hClipData
word wFormat;

return handle

GetClipboardFormatName
Copies wFormat’s format name (up to nMaxCount characters). into
ipFormatName. , ‘

entry GetClipboardFormatName({)
#undef NoClipboard
GetClipboardFormatName(wFormat, lpFormatName, nMaxCount):nCopied
word wFormat;
lpstr I1pFormatName;
int nMaxCount;

return int

GetClipboardOwner
Retrieves the window handle of the current owner of the clipboard.

entry GetClipboardoOwner()

OLYMPUSEX.1015 - 238/393

OLYMPUS EX. 1015 - 239/393

232 The Programmer's Technical Reference
#undef NoClipboard
GetClipboardowner() :hWnd

return hWnd

GetClipboardViewerRetrieves the window handle of the first window in the clipboard viewer
chain.

entry GetClipboardviewer()
#undef NoClipboard
GetClipboardViewer() :hWnd

return hWnd

GetClipBox
Copies dimensions of bounding rectangle of current clip boundary to
lpRect.

entry GetClipBox()
#undef NoRect
#fundef NohDC
GetClipBox(hDC, lpRect) :nRgnType
hpc hDc;
lpRect I1pRect;

return short

GetCodeHandle
Retrieves the handle of the code segment containing the given function.

entry GetCodeHandle()
GetCodeHandle(lpFunc) :hInstance
FarProc IlpFunc;

return handle

GetCommError
Fills buffer lpStat with communication status of device nCid. Returns
error code, if any.

entry GetCommError()
f#undef NoComm
GetCommError(nCid, lpStat):nError
short nCid;

ComStat FAR * lpStat;
return short

GetCommEventMask
Fills buffer lpStat with communication status of device nCid. Returns
error code, if any.

entry GetCommEventMask()
fundef NoComm
GetCommEventMask(nCid, lpStat):nError
short nCid;
int 1pStat;

return word

GetCommState
Fills buffer 1pDCB with the device control block of communication
device ncid.

entry GetCommState(}
#undef NoComm
GetCommState(nCid, IpDCB):nResult
short ncid;

DCB FAR * lpDCB;
return short

GetCurrentPosition
Retrieves the logical coordinates of the current position.

entry GetCurrentPosition()
#undef NohDC
GetCurrent Position(hDC) :ptPos
hpc hdc;

return dword

GetCurrentTask
Returns task handle of the current task.

entry GetCurrentTask({)

OLYMPUSEX.1015 - 239/393

OLYMPUS EX. 1015 - 240/393

Microsoft Windows A.P.I. 233

GetCurrentTask():hTask
return handle

GetCurrentTime
_ Returns the time elapsed since the system was booted to the current time.

entry GetCurrentTime()
GetCurrentTime():1Time

return long

GetCursorPos .

Stores mouse cursor position, in screen coordinates, in POINT structure.
entry GetCursorPos()

fundef NoPoint
GetCursorPos(lpPoint)
1pPoinT lpPoint;

return void

GetDCc

Retrieves the display context for the client area of the specified window.
entry GetDC()

#undef NohDc
GetDc (hWnd) :hpc
hWnd hWnd;

return hDc

GetDeviceCaps
Retrieves the device-specific information specified by nIndex.

entry GetDeviceCaps()
#undef NohDc
GetDeviceCaps(hDC, nIndex) :nValue
hpc hDc;
short nIndex;

return short

GetDlgItem :
Retrieves the handle of a dialogue item (control) from the given dialoguebox.

entry GetDlgiItem()
#undef NoCtlMgr
GetDigItem(hDlg, nIDDlgItem) :hctl
hWnd hDig;
int nIDDlgItem;

return hWnd

GetDlgItemInt
Translates text of nIDDlgItem into integer value. Value at lpTranslated
is zero if errors occur. bSigned is nonzero if minus sign might be
present. :

entry GetDigitemInt()
#undef NocCtlMgr
GetDlgItemInt(hDlg, nIDDigItem, lpTranslated, bSigned):wValue
hWnd hD1g;
int nIDDigitem;
Boolean FAR * ipTranslated;
Boolean bSigned;

return unsigned
GetDlgItemText

Copies nIDDigItem’s control text (up to nMaxCount characters) into
lpString.

entry GetDlgItemText()
fundef NocCt1lMgr
GetDigItemText(hDig, nIDDlgItem, lpString, nMaxCount) :nCopied
hWnd hDig;
int nIDDlgItem;
ipstr lpstring;
int nMaxCount;

return int

GetDoubleClickTime
Retrieves the current double-click time of the system mouse.

entry GetDoubleClickTime()

OLYMPUSEX.1015 - 240/393

OLYMPUS EX. 1015 - 241/393

234 The Programmer's Technical Reference

GetDoubleClickTime() :wClickTime
return word

GetEnvironment
Copies to lpEnviren the environment associated with the device attached
to a given port.

entry GetEnvironment()
GetEnvironment(lpPortName, lpEnviron, nmaxCount) :nCopied
lpstr lpPortName;
lpstr lpEnviron;
word nmaxCount;

return short

GetFocus
Retrieves the handle of the window currently owning the input focus.

entry GetFocus()
GetFocus():hwnd

return hwnd

GetGValue
Retrieves the green value of the given colour.

entry GetGValue()
GetGValue(rgbColour) :cGreen

GetInstanceData
Copies nCount bytes of data from offset pData in instance hInstance to
same offset in current instance.

entry Get InstanceData()
GetInstanceData(hinstance, pData, nCount):nBytes
handle hiInstance;
npstr pData;
int ncount;

return int

GetKeyState
Retrieves the state of the virtual key specified by nvirtKey.

entry GetKeyState()
GetKeyState(nVirtKey) :nState
int nVirtKey;

return int |

GetMapMode

Retrieves the current mapping mode.
entry GetMapMode()

#undef NohDc
GetMapMode(hDC) : nMapMode
hpc hDc;

return short

GetMenu
Retrieves a handle to the menu of the specified window.

entry GetMenu()
#undef NoMenus
GetMenu (hWnd) :hMenu
hWnd hwnd;

return HMENU

GetMenuString
Copies wIDItem’s menu label (up to nMaxCount characters) into lpString.
wFlag is MF _BYPOSITION or MF_BYCOMMAND.

entry GetMenuString() 7
#undef NoMenus
GetMenuString(hMenu, wIDItem, lpString, nMaxCount, wFlag):nCopied
hMenu hMenu;
word wiIDItem;

lpstr lpstring;
int nMaxCount;
word wFlag;

return int

OLYMPUSEX.1015 - 241/393

OLYMPUS EX. 1015 - 242/393

Microsoft Windows A.P.I. | © 235
GetMessage

Retrieves message in range wMsgFilterMin to wMsgFilterMax: stores at
IpMsg.

entry GetMessage()})
fundef NoMsg
GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax):bContinue
lpMsg 1pMsg;
hWnd hWnd;

unsigned wMsgFilterMin;
unsigned wMsgFilterMax;

return Boolean

GetMessagePos
Returns mouse position, in screen coordinates, at the time of the last
message retrieved by GetMessage.

entry GetMessagePos()
: GetMessagePos():dwPos

return dword

GetMessageTime
Returns the message time for the last message retrieved by GetMessage.

entry GetMessageTime({)
GetMessageTime():1Time

return long

GetMetaFile

Creates a handle for the metafile named by lpFilename.
entry GetMetaFile()

GetMetaFile(lpFilename) :hMF
ipstr I1pFilename;

return handle

GetMetaFileBits

Stores specified metafile as collection of bits in global memory block.
entry GetMetaFileBits()

GetMetaFileBits (hMF):hMem
handle hMF;

return handle

GetModuleFileName

Copies module filename (up to nSize characters) to lpFilename
entry GetModuleFileName()

GetModuleFileName(hModule, Ipfilename, nSize) :nLength
handle hModule;
Ipstr ipfilename;
int nSize;

return int

GetModuleHandle .

Returns module handle of module named by lpModuleName.
entry GetModuleHandle()

GetModuleHand1le(1pModuleName) : hModule
1pstr lpModuleName;

return handle

GetModuleUsage
Returns reference count of module hModule.

entry GetModuleUsage()
GetModuleUsage (hMModule) :ncount
handle hMModule;

return int

GetNearestColour :

Returns the device colour closest to rgbColour.
entry GetNearestColour()

#fundef NohDc

GetNearestColour(hObject, nCount, lpObject) :nCopied
hpc hObject;
dword ncount;

return dword

OLYMPUSEX.1015 - 242/393

OLYMPUS EX. 1015 - 243/393

236 The Programmer’s Technical Reference

GetObject
Copies nCount bytes of logical data defining hObject to lpObject.

entry Getobject()
GetObject (hObject, NCount, 1lpObject) :nCopied
handle hObject;
short NCount;
lpstr lpobject;

return short

GetParent
Retrieves the window handle of the specified window's parent (if any).

entry GetParent()
GetParent (hWnd) :hWndParent
hWnd hWnd;

return hWnd

GetPixel
Retrieves the RGB colour value of the pixel at the point specified by xX
and Y.

entry GetPixel()
#fundef NohDc
GetPixel(hpc, X, Y,):rgbcolour
hpce hoc;
short xX;
short Y;

return dword

GetPolyFillMode
Retrieves the current polygon-filling mode.

entry GetPolyFillMode()
#undef NohDc
GetPolyFillMode(hDC) :nPolyFillMode
hpc hDC;

return short

GetProcAddress
Returns address of the function named by lpProcName in module hModule.

entry GetProcAddress()
GetProcAddress(hModule, lpProcName):1lpAddress
handle hModule;
lpstr ipProcName;

return FarProc

GetProfileInt
Returns integer value named by lpKeyName in section lpSectionName from
the WIN.INI file. If name or section not found, nDefault is returned.

entry GetProfileInt()
GetProfileInt(lpSectionName, lpKeyName, nDefault) :nnKeyValue
lpstr 1psectionName;
lpstr lpKeyName}; i
Aint nDefault;

return int

GetProfileString

Returns character string named by lpKeyName in section lpSectionName from
the WIN.INI file. String is copied (up to nSize characters) to
lpReturnedString. If name or section are not found, lpDefault is returned.

entry GetProfilestring({)
GetProfileString(ipSectionName, lpKeyName, lpDefault,
1pReturnedString, nSize) :nLength
1pstr lpSectionName;
lpstr lpKeyName;
lpstr lpDefault;
ipstr lpReturnedString;
int nSize;

return int

GetProp
Retrieves data handle associated with lpsString from window property list.

entry GetProp{)
GetProp(hWnd, lpString):hData

OLYMPUSEX.1015 - 243/393

OLYMPUS EX. 1015 - 244/393

Microsoft Windows A.P.I. 237

hwnd hWnd;
1lpstr ipString;

return handle

GetRelAbs
Retrieves the relabs flag.

entry GetRelAbs ()
#undef NohDc
GetRelAbs (hDC) : nRelAbsMode
hpc hpe;

return short

GetROP2
Retrieves the current drawing mode.

entry GetROP2()
#undef Nohpc
GetROP2 (hDC) : nDrawMode
hoc hpc;

return short

GetRValue
Retrieves the red value of the given colour.

entry GetRValue()
: GetRValue(rgbColour) :cRed

GetScrollPos

Retrieves current position of scroll bar elevator identified by hWnd andnBar.

entry GetScrollPos()
fundef NoScroll
GetScrollPos(hWnd, nBar):nPos
hWnd hWnd:
int nBar;

return int

GetScrollRange
Copies minimum and maximum scroll bar positions for given scroll bar to
lpMinPos and lpMaxPos.

entry GetScrollRange()
f#fundef NoScroll
GetScrollRange(hwWnd, nBar, lpMinPos, lpMaxPos)
hWnd hWnd;
int nBar;
lpInt ipMinPos;
lpiInt lpMaxPos;

return void

GetStockobject
Retrieves a handle to a predefined stock pen, brush, or font.

entry GetStockObject() :
GetStockObject (nIndex) : hObject
short nIndex;

return handle
GetStretchBltMode

Retrieves the current stretching mode.
entry GetStretchBlitMode()

#undef NohpDc
GetStretchBltMode(hDC) :nStretchMode
npc hpe;

return short

GetSubMenu

Retrieves the menu handle of the pop-up menu at the given position inhmenu.
entry GetSubMenu ()

fundef NoMenus
GetSubMenu(hMenu, nPos) :hPopupmenu
hMenu hMenu;
int nPos;

return hMenu

OLYMPUSEX.1015 - 244/393

OLYMPUS EX. 1015 - 245/393

238 The Programmer’s Technical Reference
GetSysColour

Retrieves the system colour identified by nIndex.
entry GetSysColour()

#undef NoColour
GetSysColour (nIndex) :rgbColour
int nIndex;

return dword

GetSysModalWindowReturns the handle of a system-modal window, if one is present.
entry GetSysModalWindow()

GetSysModalWindow() : hWnd
return hWnd

GetSystemMenuAllows access to the System menu for copying and modification. bRevert is
nonzero to restore the original System menu.

entry GetSystemMenu()
#undef NoMenus
GetSystemMenu (hWnd, bRevert) :hSysMenu
hWnd hWnd;
Boolean bRevert;

return hMenu

GetSystemMetricsRetrieves information about the system metrics identified by nIndex.
entry GetSystemMetrics()

fundef NoSysMetrics
GetSystemMetrics(nIndex) :nValue
int nIndex;

‘return int

GetTempDrive :Returns letter for the optimal drive for a temporary file. cDriveLOetter
is a proposed drive.

entry GetTempDrive()
#undef NoOpenFile
GetTempDrive(cDriveLetter):cOptDriveLetter
byte cDriveLetter;

return byte

GetTempFileName
Creates a temporary filename.

entry GetTempFileName({)
#undef NoOpenFile 'GetTempFileName(cDriveLetter, lpPrefixstring, wUnique, ;

lpTempFileName) :wUniqueNumber

byte cDriveLetter;
lpstr lpPrefixString;
word wUnique;
lpstr lpTempFileName;

return int

GetTextCharacterExtra
Retrieves the current intercharacter spacing.

entry GetTextCharacterExtra()
#undef NohDC
GetTextCharacterExtra(hDC) :nCharExtra
hpc hbDc;

return short \

GetTextColour
Retrieves the current text colour.

entry GetTextColour()
#undef NohDC
GetTextCcolour(hDC) :rgbColour
hDc - hpe;

return dword

GetTextExtent
Uses current font to compute width and height of text line given by

OLYMPUSEX.1015 - 245/393

OLYMPUS EX. 1015 - 246/393

Microsoft WindowsA.P.I. , 239

lpString.
entry GetTextExtent()

#undef NohDc
GetTextExtent(hDC, lpString, nCount) :dwTextExtents
hdc hDc;
lpstr LpString;
short ncount;

return dword

GetTextFace
Copies the current font’s facename (up to nCount characters) into
lpFacename.

entry GetTextFace()
#fundef NohbDc
GetTextFace(hDC, nCount, lpFacename):nCopied
hpc hpc;
short ncount;
lpstr 1lpFacename;

return short

GetTextMetrics
Fills buffer given by lpMetrics with metrics for currently selected font.

entry GetTextMetrics()
#undef NoTextMetric
#undef NohDC
GetTextMetrics(hDC, lpMetrics) :bRetrieved
hpc hDC;

lpTextMetric lpMetrics;
return Boolean

GetThresholdEvent
Returns long pointer to a threshold flag. The flag is set if any voice
queue is below threshold (i.e., below a given number of notes).

entry GetThresholdEvent()
#undef NoSound

. GetThresholdEvent():lpInt
return IlpInt

GetThresholdsStatus
. Returns a bit mask containing the threshold event status. If a bit is

set, the given voice queue is below threshold.
entry GetThresholdStatus()

fundef NoSound
GetThresholdStatus():fStatus

return int

GetUpdateRect

entry

return

GetVersi

entry

return

Copies dimensions of bounding rectangle of window region that needs
updating to lpRect. bErase is nonzero if background needs erasing.
bUpdate is zero if window is up-to-date.
GetUpdateRect ()
#undef _NoRect
#undef NohpDc
GetUpdateRect (hWnd, lpRect, bErase) :bUpdate
hWnd hWnd;
lpRect IlpRect;
Boolean bErase;
‘Boolean

on .
Returns the current version of Windows.
GetVersion()
GetVersion():wVersion
word

GetViewportExt

entry
Retrieves the x and y-extents of the display context‘’s viewport.
GetViewportExt()
#undef NohpDc
GetViewportExt (hDC) :ptExtents
hpc ADC;

OLYMPUSEX.1015 - 246/393

OLYMPUS EX. 1015 - 247/393

240 The Programmer's Technical Reference
return dword

GetViewportorg
Retrieves X and Y coordinates of the origin of the display context’s
viewport.

entry GetViewportorg()
#undef NohDC
GetViewportorg(hDC) :ptorigin
hpc hbpc;

return dword

GetWindowDCc
Retrieves display context for entire window, including caption bar,

menus, scroll bars.
entry GetWindowDC()

#undef NohDc'
GetWindowDc (hWnd) :hDC
hWnd hwnd;

return hDC

GetWindowExt
Retrieves X and Y extents of the display context’s window.

entry GetWindowExt()
#undef NohDc
GetWindowExt (hDC):ptExtents
hpc hDc;

return dword

GetWindowLong
Retrieves information identified by nIndex about the given window.

entry GetWindowLong()
#undef NoWinoffsets
GetWindowLong(hWnd, nIndex):long
hwnd hwnd;
int nIndex;

return long

GetWindow0rg
Retrieves X and Y coordinates of the origin of the display context’s
window.

entry GetWindowOrg()
#undef NohDc
GetWindowOrg(hDC):ptorigin i
hpc hDC; !

return dword i

GetWindowRect

Copies dimensions, in screen coordinates, of entire window (including
caption bar, border, menus, and scroll bars..) to IpRect.

entry GetWindowRect()
#fundef NoRect
GetWindowRect (hWnd, lpRect)
hWnd hWnd;
lpRect lpRect;

return void

GetWindowText
Copies hWnd’s window caption (up to nMaxCount characters) into lpString.

entry GetWindowText()
GetWindowText (hwnd, lpString, nMaxCount) :nCopied
hwnd hwnd;
lpstr lpstring;
int nMaxCount}

return int

GetWindowTextLength
Returns the length of the given window’s caption or text.

entry GetWindowTextLength{)
GetWindowTextLength (hWnd) :nLength
hWnd hWnd;

return int

OLYMPUSEX.1015 - 247/393

OLYMPUS EX. 1015 - 248/393

_ Microsoft Windows A.P.I. . 24]

GetWindowWord

entry

return

Retrieves information identified by nIndex about the given window.
GetWindowWord()
#undef NoWinOffsets
GetWindowWord(hWnd, nIndex) :word
hwnd hWnd;
int niIndex;
word

GlobalAlloc :

entry

return

Allocates dwBytes of memory from the global heap. Memory type (e.g.,
fixed ox moveable) is set by wFlags.
GlobalAlloc()
#undef NoMemMgr
GlobalAlloc(wFPlags, dwBytes) :hMem
word wPlags;
adword dwBytes;
handle

GlobalCompact

entry

return

Compacts global memory to generate dwMinFree free bytes.
GlobalCompact()
f#fundef NoMemMgr
Globalcompact (dwMinFree) :dwLargest
dword dwMinFree;
adword

GlobalDiscard

entry
Discards global memory block hMem if reference count is zero.
GlobalDiscard()
GlobalDiscard (hMem) :holdMem

GlobalFlags

entry

return

Discards memory type of global memory block hMen.
GlobalFlags()
#undef NoMemMgr
GlobalFlags (hMem) :wFlags
handle hMem;
word

GlobalFree

entry

return

Removes global memory block hMem from memory if reference count is zero.
GlobalFree()
#undef NoMemMgr
GlobalFree(hmem) :hOldMem
handle hmem;
handle

GlobalHandle

entry

return

Retrieves the handle of the global memory if reference count is zero.
GlobalHandle()
#undef NoMemMgr
GlobalHandle(wMem) :dwmem
word wMem:
dword

GlobalLock

entry

return

Returns address of global memory block hMem, locks block in memory, and
increases the reference count by one.
GlobalLock()
#undef NoMemMgr
GlobalLock(hMem) :1pAddress
handle hMem;
lpstr

GlobalReAlloc

entry

Reallocates the global memory block hMem to dwBytes and memory type
wFlags.
GlobalReAlloc()
#undef NoMemMgr
GlobalReAlloc(hMem, dwBytes, wFlags) :hNewMem

OLYMPUSEX.1015 - 248/393

OLYMPUS EX. 1015 - 249/393

242 The Programmer’s Technical Reference
handle hMem;
dword dwBytes;
word wFlags;

return handle

Globalsize
Returns the size, in bytes, of global memory block hMem.

entry GlobalSize({)
#undef NoMemMgr
Globalsize(hMemmj):dwBytes
handle hMemnj;

return dword

GlobalUnlock
Unlocks global memory block hMem and decreases the reference count by one.

entry GlobalUnlock()}
#undef NoMemMgr
GlobalUnLock(hMem) :bResult
handle hMem;

return Boolean

‘

GreyString
Writes nCount characters of string at X, Y, using lpoutputFunc (or
TextOut if NULL). Grays text using hBrush. lpData specifies output
string (if lpOutputFunc is NULL) or data are passed to output function.
nWidth and nHeight give dimensions of enclosing rectangle (if zero,
dimensions are calculated).

entry GreyString() :
GreyString(hDc, hBrush, lpoOutputFunc, lpData, nCount, X, Y, nWidth,

nHeight) :bDrawn
hpc hoc;
hBrush hBrush;
FarProc lpoOutputFunc;
dword lpData;
int ncount;
int xX;
int Y;
int nWidth;
int nHeight;

return Boolean

HiByte
Returns the high-order byte of niInteger.

entry HiByte()
HiByte(nInteger) :cHighByte

HideCaret
Removes system caret from the given window.

entry HideCaret()
HideCaret (hWnd)
hwnd hWnd;

return void

HiliteMenuItem
Highlights or removes the highlighting from a top-level (menu-bar). menuiten.

entry HiliteMenuItem()
#undef NoMenus
HiliteMenuItem(hWnd, hMenu, wIDHiliteItem, wHilite) :bHilited
hwnd hWnd;
hMenu hMenu;
word wIDHiliteItem;
word wHilite;

return Boolean

HIword
Returns the high-order word of lInteger.

entry HIword()
Hiword(lInteger) :wHighWord

InflateRect

OLYMPUSEX.1015 - 249/393

OLYMPUS EX. 1015 - 250/393

entry

return

Microsoft Windows A.P.I. 243

Expands or shrinks the rectangle specified by lpRect by X units on the
left and right ends of the rectangle and ¥ units on the top and bottom.
InflateRect()
#tundef NoRect
InflateRect(lpRect, X, Y¥):nResult
ipRect lpRect;
int xX}
int Y;
int

InitAtomTable

entry

return

entry

return

Initializes atom hash table and sets it to nSize atoms.
InitAtomTable()
InitAtomTable (nSize) :bResult
int nSize;
Boolean

" _InSendMessage
Returns TRUE if window function is processing a message sent with
SendMessage.
InSendMessage{)
f#fundef NoWinMessages
InSendMessage():bInSendBoolean

IntersectClipRect

entry

return

Forms new clipping region from intersection of current clipping region
and given rectangle.
IntersectClipRect()
#undef Nohbc
IntersectClipRect(hDC, X1, Yl, X2, Y¥2):nRgnType
hDc hoc;
short X1;
short Y1;
short X2;
short ¥2;
short

IntersectRect

entry

return

Finds the intersection off two rectangles and copies it to lpDestRect.
IntersectRect()
#undef NoRect
IntersectRect (lpDestRect, lpSrclRect, lpSrc2Rect) :nIntersection
1IpRect lpDestRect;
lpRect lpSrclRect;
IpRect IpSrc2Rect;
int

InvalidateRect

entry

return

Marks for repainting the rectangle specified by lpRect (in client
coordinates). The rectangle is erased if bErase is nonzero.
InvalidateRect()
fundef NoRect
InvalidateRect(hwWnd, lpRect, bErase)
hWnd hwnd; -
ipRect IlpRect;
Boolean bErase;
void

InvalidateRgn

entry

return

Marks hRgn for repainting. The region is erased if. bErase is nonzero.
InvalidateRgn()
#undef NoRegion

InvalidateRgn(hWnd, lpRect, bErase)
hWnd hwnd;
hRgn lpRect;
Boolean bErase;
void

InvertRect

Inverts the display bits of the specified rectangle.

OLYMPUSEX.1015 - 250/393

OLYMPUS EX. 1015 - 251/393

244 The Programmer’s Technical Reference

entry InvertRect [)
#undef NohDc
#undef NoRect
InvertRect (hDc, lpRect) :nResult
hpc hpc;
LPRECT l1pRect;

return int

InvertRgn
Inverts the colours in the region specified by hRgn.

entry InvertRgn()
tundef NohDCc
f#undef NoRegion
InvertRgn(hDC, hRgn):binverted
hpc hpc;
hRgn hRgn;

return Boolean

Ischild
Returns TRUE if given window is a child of hParentwnd.

entry Ischild()
IsChild(hParentWnd, hWnd) :bchild
hWnd hParentWnd;
hWnd hWnd;

return Boolean

IsClipboardFormatAvailable
Returns TRUE if data in given format is available.

entry IsClipboardFormataAvailable()
#fundef NoClipBoard .
IsClipboardFormatAvailable(wFormat) :bAvailable
word wFormat;

return Boolean

IsDialogMessage

Determines whether lpMsg is intended for the given modeless dialogue box.
If so, the message is processed and bUsed is nonzero

entry IsDialogMessage()
#undef NoMsg
#fundef NocCtlMgr
IsDialogMessage(hDlg, 1lpMsg) :bUsed
hWnd hDlg;
lpMsg 1lpMsg;

return Boolean

IsDlgButtonChecked
fests whether nIDButton is checked. For a 3-state button, returns 2 for
greyed, 1 for checked, zero for neither.

entry IsDlgButtonChecked ()
#undef NoctimMgr
IsDlgButtonChecked(hDlg, 1lpMsg):bUsed
hWnd hD1g;
int lpMsg;

return word

IsIconic
Specifies whether or not a window is open or closed (iconic).

entry IsIconic()
IsIconic (hWnd) :biconic
hWnd hWnd;

return Boolean

IsRectEmpty
Determines whether or not the specified rectangle is empty.

entry IsRectEmpty ()
#undef NoRect
IsRectEmpty(lpRect) :bEmpty
lpRect il1pRect;

return Boolean

IsWindow

OLYMPUSEX.1015 - 251/393

OLYMPUS EX. 1015 - 252/393

entry

return

Microsoft Windows A.PI. 245
Determines whether: or not hWnd is a valid, existing window.
IsWindow()
IsWindow(hWnd) :bExists
hwnd hWnd;
Boolean

IsWindowEnabled

entry

return

Specifies whether or not hWnd is enabled for mouse and keyboard input.
IsWindowEnabled()
IsWindowEnab1led (hWnd) :bEnabled
hWnd hWnd;
Boolean

IsWindowVisible

entry

return

Determines whether or not the given window is visible on the screen.
IsWindowVisible()
IsWindowvisible(hWnd):bVisible
hWnd hWnd;
Boolean

KillTimer

entry

return

LineDDA

entry

return

LineTo

entry

return

Kills the timer event identified by hWnd and nIDEvent.
KillTimer()
KillTimer(hWnd, nIDEvent) :bKilled
hWnd hWnd;
short nIDEvent;
Boolean

Computes successive points in line starting at X1, Y1 and ending at X2,
Y2, passing each point and lpData parameter to lpLineFunc function.
LineDDA()
LineDDA(X1, Yl, X2, ¥2, lpLineFunclpData)
short X1;
short Yl;
short X2;
short Y2;
FarProc lpLineFunclpData;
void

Draws line with current pen from the current position up to, but not
including, the point xX, Y.
LineTo()
#undef NohDc
LineTo(hDC, X, ¥):bDrawn
hpc hpc;
short x?
short Y;
Boolean

LoadAccelerators

entry

return

Loads accelerator table named by lpTableName.
LoadAccelerators ({)
LoadAccelerators(hInstance, lpTableName) :hRes
handle hiInstance;
lpstr lpTableName;
handle

LoadBitmap

entry

return

Loads bitmap resource named by lpBitmapName.
LoadBitmap()
f#undef NoBitmap \
LoadBitmap(hInstance, lpBitmapName) :hBitmap
handle hInstance;
ipstr 1lpBitmapName;
hBitmap

LoadCursor

entry
Loads cursor resource named by lpCursorName.
LoadCursor()

OLYMPUSEX.1015 - 252/393

OLYMPUS EX. 1015 - 253/393

246 The Programmer’s Technical Reference
LoadCursor (hinstance, ipcursorName) :hCursor
handle hiInstance;

. lpstr lpcursorName;
return hCursor

LoadIcon
Loads icon resource named by lpIconName.

entry LoadIcon()
LoadIcon(hInstance, lpIconName) :hIcon
handle hiInstance;
ipstr lpiIconName;

return hicon

LoadLibrary
Loads the library module named by lpLibFilename.

entry LoadLibrary()
LoadLibrary (1pLibPileName) :hLibModule
ipstr lpLibFileName;

return handle

LoadMenu
Loads menu resource named by lpMenuName.

entry LoadMenu {)
#undef NoMenus
LoadMenu(hInstance, lpMenuName) :hMenu
handle hInstance;
ipstr lpMenuName;

return hMenu

LoadResource
Loads the resource hResInfo and returns a handle to the resource.

entry LoadResource()
LoadResource(hInstance, hResInfo) :hResData
handle hinstance;
handle hResInfo;

return handle

LoadString
Loads string resource wID into the buffer lpBuffer. Up to nBufferMax
characters are copied.

entry LoadString()
LoadString(hinstance, wID, lpBuffer, nBufferMax) :nSize
handle hiInstance;

unsigned wID;
ipstr lpBuffer;
int nBufferMax;

return int

LoByte
Returns the low-order byte of nInteger.

entry LoByte()
LoByte(nInteger) :cLowByte

LocalAlloc

Allocates wBytes of memory from the local heap. Memory type (@-9.-, fixed
or moveable) is set by wFlags.

entry LocalAlloc()
#undef NoMemMgr
LocalAlloc(wFlags, wBytes) :hMem
word wFlags;
word wBytes;

return handle

LocalCcompact
Compacts local memory to generate wMinFree free bytes.

entry Localcompact()
#undef NoMemMgr
LocalCompact (wMinFree) :wLargest
word wMinFree;

return word

OLYMPUSEX.1015 - 253/393

OLYMPUS EX. 1015 - 254/393

Microsoft Windows A.P.L . 247
LocalDiscard

Discards local memory block hMem if reference count is zero.
entry LocalDiscard{)

LocalDiscard(hmem) :holdMem

LocalFlags
Returns memory type of local memory block hMem.

entry LocalFlags()
#undef NoMemMgr
LocalFlags (hmem) :wFlags
handie hmem;

return word

LocalFree

Frees local memory block hMem from memory if reference count is zero.
entry LocalFree()

#undef NoMemMgr
LocalFree(hMem) :hOldMem
handle hMem;

return handle

LocalFreeze

Prevents compaction of the local heap.
entry LocalFreeze()

LocalFreeze (Dummy)

LocalHandle

Retrieves the handle of the local memory object whose address is wMem.
entry LocalHandle({)

#undef NoMemmgr
LocalHandle (wMem) :hmem
word wMem;

return handle

LocalHandleDelta

Sets the entry count for each new handle table created in the local heap.
entry LocalHandleDelta()

LocalHandleDelta(nNewDelta) :nCurrentDelta
LocalInit

Initializes the local heap.
entry LocallInit()

#undef NoMemMgr
LocaliInit(wValue, pString, pString):bResult
word wValue;

char NEAR * pString;
char NEAR * pString;return Boolean

LocalLock

Returns the address of the local memory block hMem, locks the block in
memory, and increases the reference count by one.

entry LocalLock()}
#undef NoMemMgr
LocalLock(hMem) :pAddress
handle hMem;

return char NEAR *

LocalMelt

Permits compaction of the local heap.
entry LocalMeit()

LocalMelt (Dummy)

LocalNotify
Sets the callback function for handling notification messages from localmemory.

entry LocalNotify()
f#undef NoMemMgr
LocalNotify(1pFunc) :lpPrevFunc
FarProc lpFunc;

return FarProc

OLYMPUSEX.1015 - 254/393

OLYMPUS EX. 1015 - 255/393

248 The Programmer’s Technical Reference
LocalReAllocReallocates the local memory block hMem to wBytes and memory type wFlags.
entry LocalReAlloc()

#undef NoMemMgr
LocalReAlloc(hMem, wBytes, wFlags) :hNewMem
handle hMem;
word wBytes;
word wFlags;

return handle

Localsize
Returns the size, in bytes, of local memory block hMem.

entry Localsize({)
#undef NoMemMgr
LocalSize({hmem) :wBytes
handle hmem;

return word

LocalUnlock ,Unlocks local memory block hMem and decreases the reference count by one.
entry Localunlock()

#undef NoMemMgr
LocalUnlock (hMem) :bResult
handle hMem;

return Boolean

LockData
Locks the data segment in memory.

entry LockData()
LockData (Dummy) :hMem

LockResource
Returns the memory address of the resource hResInfo, locks the resource
in memory, and increases the reference count by one.

entry LockResource()
LockResource (hResInfo) :1lpResInfo
handle hResInfo;

return l1pStr

LockSegment FunctionLocks the segment whose segment address is wSegment.
entry LockSegment()

#undef NoMemMgr
LockSegment (wSegment) :hSegment
word wSegment;

return handle

Loword
Returns the low-order word of lInteger.

entry LOword()
Loword (1lintger) :wLowWord

LPtoDP
Converts logical points into device points.

entry LPtoDP()
#undef NoPoint
#undef NohDc
LPtoDP(hDC, lpPoints, nCount) :bConverted
npc hbdc;
LPPoint lpPoints;
short ncount;

return Boolean

MakeIntAtom
Casts an integer for use as an argument in AddAtom.

entry MakeIntAtom()
MakeIntAtom(winteger) :nAtom

MakeIntResource
Casts an integer for use as an argument in AddAtom.

entry MakeIntResource()

OLYMPUSEX.1015 - 255/393

OLYMPUS EX. 1015 - 256/393

Microsoft Windows A.P.I. 249

MakeIntResource (nInteger) :lpIntegerID

MakeLong
Creates an unsigned long integer.

entry MakeLong{)
- MakeLong(nLowWord, nHighWord) :dwInteger

MakePoint

Converts a long value into a Point structure.
entry MakePoint() .

MakePoint (lValue) :ptPoint

MakeProcInstance

Returns function instance address for function IpProc. Calls to the
instance address ensure that the function uses the data segment ofinstance hInstance.

sentry MakeProcInstance()
MakeProcInstance(1pProc, hInstance) :lpAddress
FarProc lpProc;
handle hiInstance;

return FarProc

MapDialogRect

Converts the dialogue box coordinates given in lpRect to client,coordinates. ‘
entry MapDialogRect()

#undef NoRect
#undef NocCtlMgr
MapDialogRect(hDlg, lpRect)
hWnd hDlg;
lpRect IlpRect;

return void

Max

Returns the maximum value of A and B.
entry max ()

max(A, B):nMaximum

MessageBeep

Generates a beep at the system speaker when a message box is displayed.entry MessageBeep()
#undef NoMb

MessageBeep(wType) :bBeep
word wTlype;

return Boolean

MessageBox

Creates a window with given lpText and lpCaption containing the
predefined icons and push buttons defined by wType.

entry MessageBox ()}
#undef NoMb

MessageBox(hWndParent, ipText, lpCaption, wType) :nMenultem
hWnd hWndParent;
ipstr ipText;
lpstr IpCaption;
word wType;

return int

Min

Returns the minimum value of A and B.
entry min()

min(A, B):nMinimum

MoveTo

Moves the current position to the point specified by X and Y.entry MoveTo()
#undef Nohpc
MoveTo(hbDc, X, Y):ptPrevPos
hpc hpDc;
short X;
short XY;

OLYMPUSEX.1015 - 256/393

OLYMPUS EX. 1015 - 257/393

250 The Programmer’s Technical Reference
return dword

MoveWindow
Causes WM SIZE message to be sent to hWnd. X, Y, nWidth, and nHeight give
the new size of the window.

entry MoveWindow()}MoveWindow(hWnd, X, Y, nWidth, nHeight, bRepaint)
hWnd hWnd;
int X;
int Y;
int nWidth;
int nHeight;
Boolean bRepaint;

return void

OemToAnsi
Converts the OEM character string to an ANSI string.

entry OemToAnsi ()
OemToAnsi(1lpOemstr, lpAnsiStr):bTranslated
ilpstr LlpOemStr;
lpstr lpAnsiStr;

return Boolean

OffsetclipRgn
Moves clipping region X units along the X-axis and Y units along the
Y-axis.

entry offsetClipRgn()
#undef NohDC
OffsetClipRgn(hDc, X, Y):nRgnType
hpc hdc;
short x}
short Y;

return short

offsetRect
Moves given rectangle X units along the X-axis and Y units along the
Y-axis.

entry offsetRect()
#undef NoRect
OffsetRect(lpRect, X, Y)snResult
l[pRect IlpRect;
int x
int Y;

return int

offsetRgn
Moves the given region X units along the X-axis and Y units along
the Y-axis.

entry offsetRgn()
#undef NoRegion
offsetRgn(hRgn, X, Y)snRgntype
hRgn hRgn;
short x}
short Y;

return short

OpenClipboardOpens clipboard; prevents other applications from modifying its contents.
entry OpenClipboard()

#undef NoClipBoard
Openclipboard (hWnd) :bOpened
hwnd hWnd;

return Boolean

Opencomm
Opens communication device named by lpCommName. Transmit-queue and
receive-queue sizes are set by winQueue and woOutQueue.

entry Opencomm()}
fundef NoComm
Opencomm(1pComName, winWueue, wOutQueue) :nCid
lpstr lpcomName }

OLYMPUSEX.1015 - 257/393

OLYMPUS EX. 1015 - 258/393

. Microsoft Windows A.P.I. 251

word wiInWueue;
word wOutQueue;

return short

OpenFile
Creates, opens, reopens, or deletes file named by lpFileName.

entry OpenFile()
#undef NoOpenFile
OpenFile(lpFileName, lpReOpenBuff, wStyle):nFile
lpstr lpFileName;

lpofstruct lpReOpenBuff;
_ word wStyle;

return int

OpenIcon
Opens the specified window.

“entry OpenIcon()
Openicon(hwnd) :bopened
hWnd hWnd;

return Boolean

OpenSound
Opens the play device for exclusive use.

entry OpenSound()
fundef NoSound
OpenSound() :nVoices

return int

PaintRgn
Fills the region specified by hRgn with the currently selected brush.

entry PaintRgn()
#undef Nohpdc
#undef NoRegion
PaintRgn(hDC, hRgn):bFilled
hpc hoc;
hRgn hRgn;

return Boolean

PatBlt

Creates a bit pattern on the specified device, using dwRop to combine the
current brush with the pattern already on the device.

entry PatBlt()
#undef Nohpc

PatBlt(hpc, X, Y¥, nWidth, nHeight5, dwRop):bDrawn
hpc hpbc;
short xX;
short Y;
short nWidth;
short nHeight5;
dword dwRop;

return Boolean

PeekMessage
Checks application queue and places message (if any) at 1pMsg.

entry PeekMessage()
#undef NoMsg
PeekMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax,

bRemoveMsg) :bPresent
1pMsg IpMsg;
hWnd hWnd;

unsigned wMsgFilterMin;
word wMsgFilterMax;
Boolean bRemoveMsg;return Boolean

Pie

Draws arc starting at X3, Y3 and ending at X4, Y4 and connects centre and
two endpoints, using current pen. Moves counter-clockwise. Fills with
current brush. Arc’s centre is centre of bounding rectangle given by Xl,
Yl, X2, Y2.

OLYMPUSEX.1015 - 258/393

OLYMPUS EX. 1015 - 259/393

252 The Programmer’s Technical Reference
entry Pie()

#undef Nohpc
Pie(hpc, Xl, Yl, X2, ¥2, X3, Y3, X4, Y4):bDrawn -
hpc hDc;
short X1;
short Y1;
short X2;
short ¥2;
short X3;
short ¥3;
short M4;
short y4;

return Boolean

PlayMetaFilePlays the contents of the specified metafile on the given device context.
entry PlayMetaFile()

#undef NohDC
PlayMetaFile(hDc, hMF) :bPlayed
hoc hpdc;
handie hMF;

return Boolean

Polygon Draws a polygon by connecting the nCount vertices given by lpPoints.
entry Polygon()

#undef NoPoint
#undef NohDc
Polygon(hDc, lpPoints, nCount) :bDrawn
hpc hdc;
LPPoint lpPoints;
short ncount;

return Boolean

PolylineDraws a set of line segments, connecting the ncount points given by
lpPoints.

entry Polyline()
#undef NoPoint
#undef NohDc
Polyline(hpDc, lpPoints, nCount) :bDrawn
hpc hDc;
LPPoint lpPoints;:
short ncount}

return Boolean

PostAppMessagePosts message to application; returns without waiting for processing.
entry PostAppMessage()

fundef NoWinMessagesPostAppMessage(hTask, wMsg, wParam, 1Param) :bPosted
handle hTask;

unsigned wMsg;word wParam; i
long lParam;

return Boolean

PostMessage

Places message in application queue; returns without waiting for
processing.

entry PostMessage()
#undef NoWinMessages
PostMessage(hWnd, wMsg, wParam, lParam) :bPosted
hWnd hWnd;

unsigned wMsg;
word wParam;
long 1Param;

return Boolean

PostquitMessagenee = WM alITT message to the application and returns immediately.

OLYMPUSEX.1015 - 259/393

OLYMPUS EX. 1015 - 260/393

Microsoft Windows A.P.I. . 253

entry PostQuitMessage()
#undef NoWinMessages
PostQuitMessage(nExitCode)
int nExitCode;

return void

ptiInRect

Indicates whether or not a specified point lies within a given rectangle.entry PtInRect(}
#undef NoPoint .
#undef NoRect :

PtInRect(lpRect, Point):bInRect
lpRect I1pRect;
Point Point;

return Boolean

PtInRegion
Tests if X, Y is within the given region.

entry PtInRegion()
#undef Nohpc
#undef NoRegion
PtInRegion(hRgn, S, Y):bSuccess
hRgn hRgn;
short S;
short Y;

return Boolean

PtVisible

Tests if xX, Y is within the clipping region of the given display context.
entry PtVisible()

#undef NohDc

PtVisible(hDc, X, Y):bVisible
hpc hdc;
short X;
short Y;

return Boolean

ReadComm

Reads up to nSize bytes from the communication device nCid into buffer
ipBuf.

entry ReadComm({)
#undef NocComm

ReadComm(nCid, lpBuf, nSize):nBytes
short ncid;
lipstr 1pBuf ;
int nSize;

return short

Rectangle .
Draws rectangle, using current pen for border and current brush for
filling.

entry Rectangle()
#undef NohDc
Rectangle(hDC, Xl, Yl, X2, Y2):bDrawn
hpc hDc;
short Xl;
short ¥1;
short X2;
short Y¥2;

return Boolean

RectVisible

Determines if any part of given rectangle lies within clipping region.
entry RectVisible()

#undef NohDc
#tundef NoRect

RectVisible(hDC, 1pRect) :bVisible
hpc hoc;
lpRect lpRect;return Boolean

RegisterClass

OLYMPUSEX.1015 - 260/393

OLYMPUS EX. 1015 - 261/393

254 The Programmer’s Technical Reference
Registers a window class.

entry RegisterClass(}
#fundef NoBrush
#undef NoWndClass
RegisterClass (lpWndClass) :bRegistered

lpWndClass lpWndClass;
return Boolean

RegisterClipboardFormatRegisters a new clipboard format whose name is pointed to by lpFormatName.
entry RegisterClipboardFormat()

fundef NoClipBoard
RegisterxClipboardFormat(1pFormatName) :wFormat
lpstr lpFormatName;

return word

RegisterWindowMessageDefines a new window message that is guaranteed to be unique.
entry RegisterWindowMessage()

#undef NoWinMessages
RegisterwWindowMessage(lpString) :wMsg
lpstr lpstring;

return unsigned :

ReleaseCapture
Releases mouse input and restores normal input processing.

entry ReleaseCapture()
ReleaseCapture()

return void

ReleaseDC .Releases a display context when an application is finished drawing in it.
entry ReleaseDC() :

#undef NohpDc
ReleaseDc (hWnd, hDC) :nReleased
hwnd hwnd;
hpc hpc;

return int

RemoveFontResource
Removes from the font table the font resource named by lpFilename.

entry RemoveFontResource()
RemoveFontResource (1lpFilename) :bSuccess
lpstr lpFilename;

return Boolean

RemoveProp
Removes lpString from property list; retrieves corresponding data handle.

entry RemoveProp()
RemoveProp(hWnd, lpString) :hData
hWnd hWnd; ‘
lpstr lpstring;

return handle

ReplyMessageReplies to message without returning control to the SendMessage caller.
nentry ReplyMessage()

#undef NoWinMessages
ReplyMessage(lReply)
long 1Reply;

return void

RestoreDC
Restores display context given by hbC to previous state given by nSavedDc.

entry RestoreDC (}
#fundef NohDC
RestoreDc(hDC, nSavedDc) :bRestored
hbDc hpc;
short nSavedDC;

return Boolean

OLYMPUSEX.1015 - 261/393

OLYMPUS EX. 1015 - 262/393

Microsoft WindowsA.P.I. , 255

RGB .
Creates an RGB colour value from individual red, green, and blue values.

entry RGB({)
RGB(r,g,b):dword

return none

RoundRect
Draws rounded rectangle, using current pen for border, current brush for
filling.

entry RoundRect()
#undef NohDc
RoundRect(hDC, X1, Y1, X2, Y2.X3, Y¥3):bDrawn
hpe hdc;
short X1;
short Yi;
short X2;
short Y2 . X3;
short Y3;

return Boolean

SaveDC
Saves the current state of the display context hDc.

entry SaveDC()
#undef NohDc
SaveDC (hDC) :nSavedDc
hpc hDc;

return short

ScreenToClient
Converts the screen coordinates at lpPoint to client coordinates.

entry ScreenToClient()
#undef NoPoint
ScreenToClient (hWnd, 1lpPoint)
hWnd hWnd;
lpPoint lpPoint;

return void

ScrollWindow
Moves contents of client area XAmount along screen’s x-axis and YAmount
units along y-axis (right for positive XAmount; down for positive
YAmount).

entry ScrollWindow()
#fundef NoRect

ScrollWindow(hWnd, XAmount, YAmount, lpRect, lpClipRect)
hWnd hWnd;
int XAmount;
int YAmount; —~
lpRect lpRect;
lpRect l1pClipRect;

return void

SelectClipRgn
Selects given region as current clipping region for the specified displaycontext.

entry SelectClipRgn()
fundef NohDc
fundef NoRegion
SelectClipRgn(hDC, hRgn):nRgnType
hDc hDc;
hRgn hRgn;

return short

SelectObject
Selects hObject as current object, replacing previous object of same type.

entry SelectObject()
#undef NohDc
SelectObject(hbDc, hObject) :holdobject
hpc hpc;
handle hObject;

return handle

OLYMPUSEX.1015 - 262/393

OLYMPUS EX. 1015 - 263/393

256 The Programmer’s Technical Reference
SendDlgItemMessageSends a message to nIDDigItem within the dialogue box specified by hDig.
entry SendDlgItemMessage()

#fundef NoctlMgr
SendDlgItemMessage(hDlg, nIDDlgItem, wMsg, wParam, lParam) :1Result
hWnd hD1g;
int nIDDlgItem;

unsigned wMsg;
word wParam;
long 1Param;

return long

SendMessage
Sends a message to a window or windows.

entry SendMessage({)
#undef NoWinMessages
SendMessage(hWnd, wMsg, wParam, lParam) :1Reply
hWnd hWnd;

unsigned wMsg;
word wParam;
long 1Param;

return long

SetActiveWindow
Makes a tiled or pop-up style window the active window.

entry SetaActiveWindow()
SetActiveWindow (hWnd) :hWndPrev
hWnd hwnd;

return hwnd

SetBitmapBits
Sets bitmap bits to values given at lpBits. dwCount is byte count at
lpBits.

entry SetBitmapBits()
#undef NoBitmap
SetBitmapBits(hBitmap, dwCount, 1pBits) :bCopied
hBitmap hBitmap;
dword dwCount;
lpstr lpBits;

return Boolean

SetBitmapDimensionAssociates a width and height, in 0.1 millimeter units, with a bitmap.
entry SetBitmapDimension()

#undef NoBitmap
SetBitmapDimension(hBitmap, X, Y) :ptoldDimensions
hBitmap hBitmap;
short X;
short Y;

return Dword

SetBkColour
Sets the background colour to the device colour closest to rgbColour.

entry SetBkColour()
fundef NohDc
SetBkColour(hDC, rgbColour) :nOldColour
hpe hdc;
dword rgbColour;

return dword

SetBkMode
Sets the background mode used with text, hatched brushes, and line styles.

entry SetBkMode()
#undef NohDCc .
SetBkMode(hDC, nBkMode) :nOldMode
hpc hDc;
short nBkMode;

return short

SetBrushorg
Sets the origin of all brushes selected into the given display context.

OLYMPUSEX.1015 - 263/393

OLYMPUS EX. 1015 - 264/393

. Microsoft Windows A.P.I. 257

entry SetBrushOorg()
#undef NoBrush

SetBrushOrg(hDc, X, Y¥):dwOldorigin
ADC hDC;
int xX;
int Y;

return dword

SetCapture

Causes mouse input to be sent to hWnd, regardless of mouse cursorposition.
enter SetCapture()

' SetCapture(hWnd) :hWndPrev
hWnd hWnd;

return hWnd

‘SetCaretBlinkTime
Establishes the caret flash rate.

entry SetCaretBlinkTime()}
SetCaretBlinkTime (wMSeconds)
word wMSeconds;

return void

SetCaretPos

Moves caret to the position specified by X and Y.
entry SetCaretPos()

SetCaretPos(X, Y)
int x;
int ¥;return void

SetClassLong
Replaces long value at nIndex in the WNDCLASS structure.

entry SetClassLong()
#fundef NoWinOffsets

SetClassLong(hWnd, nIndex, 1NewLong) : lOldLong
hwnd hWnd;
int nIndex;
long 1NewLong;

return long

SetClassWord

Replaces word at the given nIndex in the WNDCLASS structure.
entry SetClassWord()

#undef NoWinOffsets

SetClassWord(hWnd, nIndex, wNewWord) :wOldword
hWnd hwnd;
int nindex;
word wNewWord;return word

SetClipboardData

Copies hMem, a handle for data having wFormat format, into the clipboard.
entry SetClipboardData()

#fundef NoClipboard
SetClipboardData(wformat, hMem):hClipData
word wformat;
handle hMem;

return handle

SetClipboardViewer
Adds hWnd to clipboard viewer chain. hWndNext is next window in chain.

entry SetClipboardViewer()
#undef NoClipboard
SetClipboardViewer (hWnd) :hWndNext
hWnd hWnd;

return hWnd

SetCommBreak

Sets a break state on communication device nCid and suspends charactertransmission.

OLYMPUSEX.1015 - 264/393

OLYMPUS EX. 1015 - 265/393

258 The Programmer’s Technical Reference
entry SetCommBreak()#undef NoComm

SetCommBreak (nCid) :nResult
short ncid;

return short

SetCommEventMask
Sets the event mask of the communication device nCid.

entry SetCommEventMask()
#undef NoComm :
SetCommEventMask (nCid, nEvtMask) : lpEvent
short nCid;
word nEvtMask;

return word FAR *

SetCommState
Sets a communication device to the state specified by the device control
block 1pDCB. The device to be set is identified by the ID field of the
control block.

entry SetCommState()#undef NoComm
SetCommState (1pDCB) :nResult
DCB FAR * lpDCB;

return short

setCursor
Sets cursor shape in hCursor, removes cursor from screen if hCursor is
NULL.

entry SetCursor()
SetCursor(hCursor):holdcursor
hCursor hCursor;

return hcCursor

SetCursorPos
Sets position of mouse cursor to screen coordinates given by X and Y.

entry SetCursorPos()
SetCursorPos(X, Y)
int xX:
int Y;

return void

SetDlgItemInt
Sets text of nIDDlgitem to string representing an integer.

entry SetDigItemInt()
#undef NoctlMgr
SetDlgitemInt(hDlg, nIDDlgItem, wValue, bSigned)
hWnd hDlg;
int nIDDigItem;
unsigned wValue;
Boolean bSigned;

return void

SetDlgItemText
Sets caption or text of nIDDlgItem to lpString.

entry SetDlgItemText ()
#undef Noct1lMgr
SetDlgItemText (hD1g, nIDDigitem, lpString)
hWnd hDlg;
int nIDDlgItem;
lpstr lpstring;

return void

SetEnvironment
Copies data at lpEnviron to environment associated with device attached
to given port.

entry SetEnvironment() .SetEnvironment (lpPortName, lpEnviron, nCount) :nCopied
ipstr lpPortName;
ipstr lpEnviron;
word ncount;

OLYMPUSEX.1015 - 265/393

OLYMPUS EX. 1015 - 266/393

Microsoft Windows A.P.I. | 259
return short

SetFocus

Assigns the input focus to the window specified by hWnd.
entry SetFocus ()

SetFocus (hWnd) :hWndPrev
hWnd hWnd;

return hWnd

setMapMode .
Sets the mapping mode of the specified display context.

entry SetMapMode()
-#undef NohDc

SetMapMode(hDC, nMapMode) :nO1ldMapMode
hDc hDc;
short nMapMode;

return short

SetMenu

Sets window menu to hmenu. Removes menu if hMenu is NULL.
entry SetMenu ()

f#undef NoMenus

SetMenu(hWnd, hMenu):bSet
hWnd hWnd;
hMenu hMenu;

return Boolean

SetMetaFileBits

Creates memory metafile from data in the given global memory block.
entry SetMetaFileBits()

SetMetaFileBits(hMem) :hMF
handle hMem;

return handle

SetPixel

Sets pixel at xX, Y¥ to the device colour closest to rgbColour.
entry SetPixel()

#undef NohpDc

SetPixel(hDC, X, Y, rgbColour):rgbActualColour
hpc hDc;
short xX;
short Y;
adword rgbColour;

return dword

SetPolyFil1lMode

Sets the polygon-filling mode for the specified display context.
entry SetPolyFillMode() .#undef NohDC

SetPolyFillMode(hDc, nPolyFillMode) :nOldPolyFillMode
hpbc hDc;
short nPolyFiliMode;

return short

SetPriority

Sets the task priority of the task hTask, and returns new priority.
SetPriority()

SetPriority(hTask, nChangeAmount }:nNew
handle hTask;
int nChangeAmount;return int

SetProp
Copies string and data handle to property list of hWnd.

entry SetProp()
SetProp(hWnd, lpString, hData) :bSet
hWnd hWnd;
lpStr lpString;
handle hData;

return Boolean

OLYMPUSEX.1015 - 266/393

OLYMPUS EX. 1015 - 267/393

260 The Programmer's Technical Reference
SetRect .

Fills RECT structure at lpRect with given coordinates.
entry SetRect()

#undef NoRect
SetRect(lpRect, X1, Y¥1, X2, Y2) enResult
lpRect lpRect;
int X1;
int Y1;
int X23
int Y2:

return int

SetRectEmpty
sets the rectangle to an empty rectangle (all coordinates are Zero).

entry SetRectEmpty ()
#tundef NoRect
SetRectEmpty (lpRect) :nResult
lpRect lpRect;

return int

SetRelAbs
Sets the relabs flag.

entry SetRelAbs()
#undef NohDC
SetRelAbs (hDC, nRelAbsMode) :nOldRelabsMode
hpc hDc;
short nRelAbsMode;

return short

SetResourceHandler
Sets the function address of the resource handler for resources with type
lpType. A resource handler provides for loading of custom resources.

entry SetResourceHandler({)
sSetResourceHandler(hInstance, IlpType, lpLoadFunc) : lpLoadFunc
handle hinstance;
lpstr ipType;
FarProc lpLoadFunc;

return FARPROC

SetROP2
Sets the current drawing mode.

entry SetROP2()
#undef NohDc
SetROP2(hDC, nDrawMode) :nOldDrawMode
hpc hDc;
short nDrawMode;

return short

SetScrollPos
Sets scroll bar elevator to nPos; redraws scroll bar if bRedraw isnonzero.

entry ‘SetScrollPos()
#undef NoScroll
SetScrollPos(hWnd, nBar, nPos, bRedraw) :nO1dPos
hwnd hWnd;
int nBar;
int nPos;
Boolean bRedraw;

return int

SetScrollRange
Set minimum and maximum scroll bar positions for a given scroll bar.

entry SetScrollRange({)
. #undef NoScroll

SetScrollRang(hWnd, nBar, nMinPos, nMaxPos, bRedraw)
hwnd hwnd;
int nBar;
int nMinPos;
int nMaxPos;
Boolean bRedraw;

return void

OLYMPUSEX.1015 - 267/393

OLYMPUS EX. 1015 - 268/393

Microsoft Windows A.P.I. 261

sSetSoundNoise .
Sets the source and duration of a noise from the play device

entry SetSoundNoise()#undef NoSound
SetSoundNoise(nSource, nDuration) :nResult
int nSource;
int nDuration;:

return int

SetStretchBltMode .
Sets the stretching mode for the StretchBlt function.

entry SetStretchBitMode()
- #undef NohDc

SetStretchMode(hDCc, nStretchMode) :nOldStretchMode
hpc hdc;
short nStretchMode;

return short

SetSysColours
Changes one or more system colours.

entry SetSysColours({)
#undef NoColour
SetSysColours(nChange, lpSysColour, lpColourValues)
int nChange;
lpInt lpSysColour;

long FAR * IlpColourValues;
return void

SetSysModalWindow
Makes the specified window a system-modal window.

entry SetSysModalWindow()
SetSysModalWindow(hWnd) :hPrevWnd
hWnd hwnd;

return hWnd

SetTextCharacterExtra
Sets the amount of intercharacter spacing.

entry SetTextCharacterExtra()}
#undef NohDc
SetTextCharacterExtra(hDC, nCharExtra) :nOldCharExtra
hpc nbdc;
short nCharExtra;

return short

SetTextColour
Sets text colour to the device colour closest to rgbColour.

entry SetTextcColour()
fundef Nohpc
SetTextcolour(hDC, rgbColour) :rgbOldcolour
hpc hDc;
adword rgbColour;

return dvword

SetTextJustification
Prepares GDI to justify a text line using nBreakExtra and nBreakCount.

entry SetTextJustification()
#undef NohDc
SetTextJustification(hDC, nBreakExtra, nBreakCount) :nSet
hpc hDc;
short nBreakExtra;
short nBreakCount;

return short

SetTimer

Creates system timer event identified by nIDEvent. wElapse is elapsed
milliseconds. lpTimerFunc receives timer messages; if NULL, messages go
to application queue.

entry SetTimer()
SetTimer(hWnd, nIDEvent, wElapse, lpTimerFunc) :nIDNewEvent
hWnd hWnd;
short nIDEvent;

OLYMPUSEX.1015 - 268/393

OLYMPUS EX. 1015 - 269/393

The Programmer’s Technical Reference262

unsigned wElapse; {
ParProc lpTimerFunc;

return short

SetViewportExt
Sets the X and Y extents of the viewport of the specified display context.

entry SetViewportExt ()
#undef NohDC
SetViewportExt(hDC, X, Y):ptOldExtents
hpc hDc;
short XxX;
short Y;

return Dword

SetViewportorg
Sets the viewport origin of the specified display context.

entry SetViewportOrg()
#undef WNohpc
SetViewportOrg(hDC, X, Y):ptoldorigin
hbc npc;
short xX:
short Y;

return Dword
SetVoiceAccent

Places an accent (tempo, volume, mode, and pitch) in the voice queue
nVoice.

entry SetVoiceAccent()
#undef NoSound
SetVoiceAccent(nVoice, nTempo, nVolume, nMmode, nPitch) :nResult
int nVoice;
int nTempo;
int nVolume;
int nMmode;
int nPitch;

return int

SetVoiceEnvelope
Places the envelope (wave shape and repeat count) in the voice queue
nVoice.

entry SetVoiceEnvelope(}
#undef NoSound
SetVoiceEnvelope(nVoice, nShape, nRepeat) :nResult
int nVoice};
int nShape;
int nRepeat;

return int

SetVoiceNote
Places a note in the voice queue nVoice.

entry SetVoiceNote()
#undef NoSound
SetVoiceNote(nVoice, nValue, nLength, nCdots):nResults
int nVoice;
int nValue;
int nLength;
int ncdots;

return int

SetVoiceQueueSize
Allocates nBytes of memory for the voice queue nVoice.

entry SetVoiceQueueSize()
#undef NoSound
SetVoiceQueueSize(nVoice, nBytes):nResult
int nvoice;
int nBytes;

return int
note Default is 192 bytes.

SetVoiceSound
Places a sound (frequency and duration) in the voice queue nVoice.

entry sSetVoiceSound()

OLYMPUSEX.1015 - 269/393

OLYMPUS EX. 1015 - 270/393

_ Microsoft Windows A.P.I. . 263
#undef NoSound
SetVoiceSound(nVoice, nFrequency, nDuration) :nResult
int nVoice;
int nFrequency;
int nDuration;

return’ int

setVoiceThreshold
Sets the threshold level to nNotes for the voice queue nVoice.

entry SetVoiceThreshold()
#fundef NoSound
SetVoiceThreshold(nVoice, nNotes) :nResult
int nVoice;
int nNotes;

return int

‘SetWindowExt
Sets the X and Y extents of the window of the specified display context.

entry SetWindowExt()
f#fundef Nohpc
SetWindowExt(hDC, X, Y):ptOldExtents
hpc hpc;
short X?
short Y;

return dword

sSetWindowLong
Changes the window attribute identified by nIndex.

entry SetWindowLong()
fundef NoWinOffsets
SetWindowLong(hWnd, nIndex, lNewLong) :101ldLong
hWnd hWnd;
int nIndex;
long 1lNewLong;

return long

SetWindoworg
Sets the window origin of the specified display context.

entry SetWindowOrg()
#undef NohDc
SetWindowOrg(hDC, X, Y):ptOldoOrigin
hbc hpc;
short X;
short YX?

return dword

SetWindowsHook
Installs a system and/or application hook function.

entry SetWindowsHook()
#fundef NoWH
SetWindowsHook(nFilterType, lpFilterFunc) :lpPrevFilterFunc
int nFilterType;
FarProc lpFilterFunc;

return FarProc

SetwindowText
Sets window caption (if any) or text (if a control) to lpString.

entry SetWindowText()
SetWindowText (hWnd, lpString)
hWnd hWnd;
ipstr lpString;

return void

SetWindowWord
Changes the window attribute specified by nIndex.

entry SetWindowWord()
#undef NoWinOffsets
SetWindowWord(hWnd, nindex, nNewWord) :wOldWord
hWnd hWnd;
int nindex;
word nNewWord;

OLYMPUSEX.1015 - 270/393

OLYMPUS EX. 1015 - 271/393

264 The Programmer’s Technical Reference

return word

ShowCaret
Displays newly-created caret or redisplays hidden caret.

entry ShowCaret()
ShowCaret (hWnd)
hWnd hWnd;

return void

ShowCursor
Adds 1 to cursor display count if bShow is nonzero. Subtracts 1 if bShow
is zero.

entry ShowCursor()
ShowCursor (bShow) :nCount
Boolean bShow;

return int

ShowWindow
Displays or removes the given window as specified by ncCmdshow.

entry ShowWindow()
ShowwWindow(hwWnd, nCmdShow) :bShown
hWnd hWnd;
int ncmdShow;

return Boolean

SizeofResource
Returns the size, in bytes, of resource hResInfo.

entry SizeofResource(}
SizeofResource(hInstance, hResInfo):wBytes
handle hinstance;
handle hResinfo;

return word

Startsound
Starts play in each voice queue.

entry StartSound()
#undef NoSound
StartSound():nResult

return int

Stopsound
. Stops playing all voice queues and flushes the contents of the queues.

entry StopSound()
#undef NoSOund
StopSound():nResult

return int

StretchBlt
Moves bitmap from source rectangle into destination rectangle, stretching
or compressing as necessary. Source origin is at XSrc, YSre. X, ¥,
nWidth, and nHeight give origin and dimensions of rectangle on
destination device. dwROP defines how source and destination bits are
combined.

entry StretchBlt()
#undef NohbDc
StretchBit(hDestDC, X, Y, nWidth, nHeight, hSrcDC, XSrc, ySre,

nSrcWidth, nSrcHeight, dwROP) :bDrawn
hpc hDestDc;
short x?
short Y;
short nWidth;
short nHeight;
hpc hSrcDc;
short xSrce;
short ySxre;
short nSrcwWidth;
short nSrcHeight;
dword dwROP;

return Boolean

‘

OLYMPUSEX.1015 - 271/393

OLYMPUS EX. 1015 - 272/393

Microsoft WindowsA.P.I. 265

SwapMouseButton
Swaps the meaning ‘of the left and right mouse buttons if bSwap is TRUE.

entry SwapMouseButton()
SwapMouseButton(bSwap) :bSwapped
Boolean bSwap;

return.Boolean

syncAllvoices
Places a sync mark in each voice queue. Voices wait at the sync mark
until all queues have encountered it.

entry SyncAllVoices{)
#undef NoSound
SyncAllVoices():nResult

return int

Textout
, Writes character string using current font and starting at X, Y.
entry Textout()

#undef NohDc
TextoOut(hDc, X, Y, lpString, nCount):bDrawn
hpc hbc;
short X;
short Y;
lpstr 1pString;
short nCount;

return Boolean

Throw

Restores the execution environment to the values in buffer lpCatchBuf.
Execution continues at the location specified by the environment with
the return value nThrowBack available for processing.

entry Throw()
Throw(lpCatchBuf, nThrowBacki)

lpcatchBuf lpcatchBuf;
int nThrowBacki;

return void

TranslateAccelerator
Processes keyboard accelerators for menu commands.

entry TranslateAccelerator()
#undef NoMsg
TranslateAccelerator(hWnd, hAccTable, lpMsg):nTranslated
hWnd hWnd;
handle hAccTable;
1pMsg IpMsg;

return int

TranslateMessage
Translates virtual keystroke messages into character messages.

entry Trans lateMessage()
#undef NoMsg
TranslateMessage(1lpMsg) :bTranslated
1pMsg 1pMsg;

return Boolean

TransmitCommChar
Places the character cChar at the head of the transmit queue for
immediate transmission.

entry TransmitCommChar()
#undef NoComm
TransmitCommChar(nCid, cChar):nResult
short nCid;
char cChar;

return short

UngetCommChar
Makes the character cChar the next character to be read from the receive
queue.

entry UngetCommChar()
#undef NoComm
UngetCommChar(nCid, cChar):nResulit

OLYMPUSEX.1015 - 272/393

OLYMPUS EX. 1015 - 273/393

266 The Programmer’s Technical Reference
short ncid;
char cChar;

return short

UnionRect
Stores the union of two rectangles at lpDestRect.

entry UnionRect ()
#tundef WNoRect
UnionRect (lpDestRect, lpSrclRect, lpSrc2Rect) :nUnion
lpRect IlpDestRect;
lpRect IpSrclRect;
lpRect lpSrc2Rect;

return int

UnlockData
Unlocks the data segment.

entry UnlockData()
UniockData (Dummy)

UnlockSegment
Unlocks the segment whose segment address is wSegment.

entry UnlockSegment()
#undef NoMemMgr
UnlockSegment (wSegment) :hMem
word wSegment;

return handle

Unrealizeobject
Directs GDI to reset the origin of the given brush the next time it is
selected.

entry Unrealizeobject {)
#undef NoBrush
UnrealizeObject (hBrush) :bUnrealized
hBrush hBrush;

return Boolean

UpdatewWindow
Notifies application when parts of a window need redrawing after changes.

entry UpdateWindow()}
UpdateWindow (hWnd)
hwnd hWnd;

return void

ValidateRect
Releases from repainting rectangle specified by lpRect (in client
coordinates). If lpRect is NULL, entire window is validated.

entry ValidateRect()
#undef NoRect
ValidateRect(hWnd, lpRect)
hWnd hWnd;
1pRect I1pRect;

return void

ValidateRgn
Releases hRgn from repainting. If hRgn is NULL, entire region is
validated.

entry ValidateRgn()
#undef NoRegion
ValidateRgn(hWnd, hRgn)
hWnd hWnd;
hRgn hRgn;

return void

WaitMessage
Yields control to other applications when application has no tasks to
perform.

entry WaitMessage({)
#undef NoWinMessages
WaitMessage()

return void

OLYMPUSEX.1015 - 273/393

OLYMPUS EX. 1015 - 274/393

Microsoft Windows A.P.I. 267

WaitSoundState
Waits until the play driver enters the state nState.

entry WaitSoundState()
fundef NoSound
WaitSoundState(nState) :nResult
‘int nState;

return int

WindowFromPoint
Identifies the window containing Point (in screen coordinates).

entry WindowFromPoint()
#undef NoPoint
WindowFromPoint (Point) :hwWnd
Point Point;

return hWnd

WinMain
Serves as entry point for execution of a Windows application.

entry WinMain() ,
WinMain(hInstance, hPrevinstance, lpCmdLine, nCmdShow) :nExitCode

WndProc -

Processes messages sent to it by Windows or the application’s mainfunction.
entry WndProc()

WndProc(hWnd, wMsg, wParam, 1Param):1lReply

WriteComm

Writes up to nSize bytes from buffer lpBuf to communicationdevice nCid.

entry WriteComm()
#fundef NoComm
WriteComm(nCid, lpBuf, nSize) :nbytes
short ncid;
1pStr 1pBuf;
int nSize;

return short

WriteProfilestring
Copies character string lpString to the WIN.INI file. The string replaces
the current string named by lpKeyName in section lpSectionname. If the
key or section does not exist, a new key and section are. created.

entry WriteProfileString()
WriteProfileString(lpApplicationName, lpKeyName, lpString):bResult
lpstr lpApplicationName;
lpstr ipKeyName;
lpStr lpstring;

return Boolean

Yield
Halts the current task and starts any waiting task.

entry Yield()
Yield():bResult

return Boolean

Errors
The following error codes are returned by Windows1.03:

Error Description
oolh Insufficient memory for allocation
002h Error reallocating memory
003h Memory cannot be freed
004h Memory cannot be locked
oo5h Memory cannot be unlocked
007h Window handle not valid
008h Cached display contexts are busy

OLYMPUSEX.1015 - 274/393

OLYMPUS EX. 1015 - 275/393

268

010h
013h
014h
015h
016h
100h
140h
180h
1c0h
1F0h
200h
240h
280h
2coh
2F0h
300h
301h
302h
303h
400h
40ih
402h
403h
404h
405h
406h
407h
408h
409h
410h
41lh
412h
4FFh
500h
501h
502h
503h
504h
505h
600h
700h

The Programmer’s Technical Reference

Clipboard already open
Mouse module not valid
Display module not valid
Unlocked data segment should be locked
Invalid lock on system queue
Lock memory errors
Local heap is busy
Invalid local handle
LocalLock count overflow
LocalUnlock count underflow
Global memory errors
Critical section problems
Invalid global handle
GlobalLock count overflow
GlobalUnlock count underflow
Task schedule errors
Invalid task ID
Invalid exit system call
Invalid BP register chain
Dynamic loader/linker errors
Error during boot process
Error loading a module
Invalid ordinal reference
Invalid entry name reference
Invalid start procedure
Invalid module handle
Invalid relocation record
Error saving forward reference
Error reading segment contents
Error reading segment contents
Insert disk for specified file
Error reading non-resident table
int 3Ph handler unable to load segment
Resource manager/user profile errors
Missing resource table
Bad resource type
Bad resource type
Bad resource type
Error reading resource
Atom manager errors
Input/output package errors

OLYMPUSEX.1015 - 275/393

OLYMPUS EX. 1015 - 276/393

Network Interfacing

Interrupt 60h FTP Driver - PC/TCP Packet Driver Specification
The handler for the interruptwill start with a 3-byte jump instruction, followed by the ASCIIZ
string ‘PKT DRVR’. To find the interrupt being used by the driver, an application should scan
through interrupt vectors 60h to 80h untilit finds one with the ‘PKT DRVRstring.

NetworkInterface classes/types:

Class

Class

Class

Class
Class
Class
Class
Class

entry

return

Olh

02h
Olh
03h
Olh
02h
03h
04h
05h
06h
o7h
08h

AX

CF
DH

Ethernet /IEEE 802.3
Olh 3COM 3€500/3C501
02h 3CcOM 3C505
03h MICOM-Interlan NIS5010
04h BICC Data Networks 4110
05h BICC Data Networks 4117
06h MICOM-Interlan NP600
o8h Ungermann~Bass PC-NIC
09h Univation.NC-516
OAh TRW Pc-2000
OBh MICOM-Interlan N1I5210
Och - 3COM 3C503
oDh 3COM 3C523
OEh Western Digital WD8003
OFh Spider Systems S4
ProNET-10
Proteon p1300
IEEE 802.5/ProNet-4
IBM Token-Ring Adapter
Proteon p1340
Proteon pl1344
Omninet
Appletalk
Serial Line
StarLAN
ARCnet
Olh Datapoint RIM

O1FFh Get Class
handler returned by function 02h
set on error
error code
Olh invalid handle number
O2h no interfaces of the specified class found
03h no interfaces of the specified type found
04h no interfaces of the specified number found
OSh bad packet type
06h interface does not support multicast messages
o7h this packet driver cannot terminate
08h invalid. receiver mode

OLYMPUSEX.1015 - 276/393

OLYMPUS EX. 1015 - 277/393

entry

return

note

entry

return

entry

return

entry

return

entry

return

note

entry

return

The Programmer’s Technical Reference
09h insufficient space
OAh type accessed but never released
oBh bad command
och packet could not be sent

CF clear if successful
BX version
cH class
Dx type
cL number
DS:SI pointer to name
AL driver type

Olh basic
02h extended
OFFh not installed

AH 02h - FTP Driver - Access Type
AL interface class
BX interface type
cx length of type
DL interface number
DS:SI pointer to type
ES:DI pointer to receiver
CF set on error

DH error code (see above)
CF clear if successful

AX handle
Receiver called with:
AX subfunction

00h application to return pointer to buffer in ES:DI
ES:DI 0:0 means throw away packet

Olh copy to DS:SI buffer completed
BX handle
cx buffer length when a packet is received

AH 03h - FTP Driver - Release Type
BX handle
CF set on error

DH error code (see above)
cr clear if successful

AB 04h - FTP Driver - Send Packet
cx length
DS:SI pointer to buffer
cr set on error

DH error code (see above)

AH 05h - FTP Driver - Terminate Driver For Handle
BX handle
cF set on error

DH error code (see above)

AH O6h ~— FIP Driver - Get Address
BX handle
cx length
ES:DI pointer to bufferCF set on error

DH error code (see above)
CF clear if successful

cx length
Copies the local net address associated with the handle into the buffer
AH
BX
CF

Interrupt 60h
entry AH

AL
DX
ES:SI

O7h - FTP Driver - Reset Interface
handle
set on error
DH error code (see above)

10-Net Network
11h Lock and Wait
drive number or 0
number of seconds to wait
Ethernet address or 0

OLYMPUSEX.1015 - 277/393

|
|j

OLYMPUS EX. 1015 - 278/393

Network Interfacing 271

DS:BX pointer to 3l-byte ASCIIZ semaphore namereturn AL status
00h successful
Olh timeout

02h server not responding
03h invalid semaphore name
04h semaphore list is full
05h invalid drive ID
06h invalid Ethernet address
07h ‘not logged in
08h write to network failed
09h semaphore already logged for this CPU

entry AH 12h Lock
AL drive number or 0 for default
ES:SI Ethernet address or 0

: DS: BX pointer to 31-byte ASCIIZ semaphore name
return AL status (see function 1ih)

01h semaphore currently logged
note Unlike function lih, this function returns immediately.

entry AH 13h Unlock
AL drive number or 0
ES:SI Ethernet address or 0
DS: BX pointer to 31-byte ASCIIZ semaphore name

return AL status (see function 1lh)
Olh semaphore not logged

entry AH 20h - FTP Driver ~ Set Receive Mode
BX handle
cx mode

Olh turn off receiver
02h receive only packets sent to this interface
O3h - mode 2 plus broadcast packets
04h mode 3 plus limited multicast packets
05h mode 3 plus all multicast packets
06h all packets

return CF set on error
DH error code

entry AH 21h - FTP Driver - Get Receive Mode
BX handle

return CF set on error /
DH error code (see function Olh above)CF Clear if successful
AX mode

entry AH 24h - FTP Driver - Get Statistics
BX handle

return CF set on error
DH error code

CF Clear if successful
DS:SI pointer to statistics buffer

dword packets in
dword packets out
dword bytes in
adword bytes out
dword errors in
dword errors out
daword packets dropped

Interrupt 5Ch NETBIOS interface entry port, TOPS
entry AH | 5Ch

ES:BX pointer to network control block
Subfunction in first NCB field (or with 80h for non-waiting call)
10h start session with NCB_NAME name (call)1lh listen for call

12h end session with NCB_NAME name (hangup)
14h send data via NCB_LSN15h receive data from a session
16h receive data from any session

OLYMPUSEX.1015 - 278/393

OLYMPUS EX. 1015 - 279/393

return

return
note 1.

VomWN

16
16

14

V6

The Programmer’s Technical Reference
17h send multiple data buffers
20h send unACKed message (datagram)
21h receive datagram
22h send broadcast datagram
23h receive broadcast datagram
30h add name to name table
31h delete name from name table
32h reset adapter card and tables
33h get adapter status
34h status of all sessions for name
35h cancel
36h add group name to name table70h unlink from IBM remote program (no Foh function)
7ih send data without ACK
72h send multiple buffers without ACK
78h find name
79h token-ring protocol trace

AL status
ooh successful
Olh bad buffer size
o3h invalid NETBIOS command
o5h timeout
06h receive buffer too small
osh bad session number
09h LAN card out of memory
OAh session closed
oBh command has been cancelled
ODh name already exists
OEh local name table full
OFh name still in use, can’t delete
1lh local session table full
12h remote PC not listening
13h bad NCB_NUM field
14h no answer to CALL or no such remote
15h name not in local name table
16h duplicate name
17h bad delete
18h abnormal end
19h name error, multiple identical names in use
1Ah bad packet
21h network card busy
22h too many commands queued
23h bad LAN card number
24h command finished while cancelling
26h command can’t be cancelled
OFFh NETBIOS busy

AL error code (0 if none)When the NETBIOS is installed ints 13h and 17h are interrupted by theNETBIOS. Int 18h is moved to int 86h and one of int 02h or 03h is usedby NETBIOS. Also, NETBIOS extends the int 15h/fns 90h and 9ih functions
(scheduler functions).
Normally not initialized.
TOPS network card uses DMA 1, 3 or none.
sytek PCnet card uses DMA 3.
Structure of Network Control Block:
byte ncb_command
byte ncb_retcode
byte ncb_lsn
byte neb_num
dword pointer to neb_buffer
word neb_length
bytes ncb_ callname
bytes ncb_name
byte ncb_rto
byte ncb_ sto
dword pointer to ncb_post
byte ncb lana_num
byte ncb_cmd_cplt
bytes ncb_reserve
Structure name:
hutes nm name

OLYMPUSEX.1015 - 279/393

OLYMPUS EX. 1015 - 280/393

byte
byte

6 bytes
byte
byte
byte
byte
word
word

f word
_ word

word
dword

! dword
| word
| , word

8 bytes
word
word
word

4 bytes
word
word
word
word
word

16 name

Interrupt 6Fh
entry AHDS: DX

8
8

12
return CL

AX
Network Interfacing 273

nm num
nm status

7. Structure A-status:
as_ID
as_jumpers
as post
as_major
as_minor
as_intervalas _creerr

as_algerr
ascolerr
asabterr

as_tcountas recount

as_retran
as_xresre
as res0

as_ncbfreeas ncbmax

as_nebx
as_resl
as_ sespend
asmsp
as_sesmaxas bufsize
asnames

structures as_name
10-Net
00h Login
pointer to login record
bytes user name
bytes password
bytes name of SuperStation
security levelstatus
ooooh successful
O1FFh time out on response
02FFh network (hardware) error
03FFh invalid password
O4FFh local resource not available
O5FFh server resource not available
O6FFh already logged in under different name
O7FFh login security failure (node)
O8FFh not logged in
O9FFh position calc error
OAFFh receive subfunction does not equal send subfunction

(i.e. read, write)
OBFFh request function not in rangeOCFFh no more server file handle entries left
ODFFh no more shared file table entries left
OEFFh no more user file handle entries left
OFFFh chat permit not on
10FFh not a server on request
L1IFFh no transporter board error
12FFh time out on send
13FFh item not found (spool item not in queue)
14FFh DOS access incompatible
15FFh record already locked
16FFh invalid parameter
17FFh record lock time out error
18FFh currently spooling to named device
19FFh dropped receive message (throttle)
1AFFh open sharing violation
1BFFh no more tuf entries left
1CFFh not file owner on open
1DFFh read security not passed
1EFFh write security not passed
LFFFh group security not passed
20FFh security file failure

OLYMPUSEX.1015 - 280/393

OLYMPUS EX. 1015 - 281/393

274

AH
DS: DX

return CX
AX

entry AH
Ds: DX

24

12

21FFh
22FFh
23FFh
24FFh
25FFh
26FFh
27FFh
28FFh
29FFh
2AFFh
2BFFh
2CFFh
2DFFh
2EFFh
2FFFh
OFFOLh
OFFO2h
OFFO3h
OFFO4h
OFFOSh
OFFO6h
OFFO7h
OFFO8h
OFF16h
OFF17h
OFF18h

Olh

pointer

The Programmer’s Technical Reference
activity file failure
spool control file failure
device not mounted (spooling)
spool file has not been terminated
device not mounted or is not being shared
duplicate node ID
file not found error
no more files
unknown internal system error
print queue is full or corrupted
invalid function
invalid handle
too many files opened
path not found
named file is active
timeout
network error
invalid password
no local buffer
superstation not available
node already logged in
login not valid from this node
node ID already in use
invalid parameter (bad length, invalid node ID, etc)
record locked by another user
sent message has been dropped

Logoff
to superstation ID or nulis (12 bytes)

number of files closed
status
OFFO8h

02h

pointer
bytes
byte

bytes

(see function 00h)
superstation ID not already logged in
Status of Node
to 512-byte record
user name (0 if none)
station type
ooh workstation
Olh superstation
02h gateway station
03h gateway active
04h logged into multiple superstations
osh reserved
list of superstations logged into more than one
superstation

bytes node ID
word message count for this station (send for user node,

receive for superstations)
for superstations only:

return CF
Wwud

word
byte

bit

byte
byte
byte
byte
byte
byte
bytes

bytes
bytes

drives allocated (bit 0=A:, bit 1=B:,..--)
user service flag

gate
print permit on?
SUBMIT is on
mail waiting for node
calendar waiting for you
news waiting for you
mail waiting for you

printers allocated (bit O=LPT1,..+)
number of unprinted spool files
number of opened files
number of logged on nodes
primary drive (1=A:)reserved
list of logged on node IDs (each 12 bytes, max 37 IDs)
(continues at offset 1F4h)
time: sec/min/hrs
date: day/mon/year (since 1980)

ORPNWHeEUAs~I

set on error
AX error code (see function 00h)

Be)

OLYMPUSEX.1015 - 281/393

OLYMPUS EX. 1015 - 282/393

entry AHDS:DI
return ES:BxX

---up to here,

ES:BxX

8
12

6

9
6

9
---beyond here,

N

entry AEH
DS: BX

. 12

03h
pointer
pointerword
word
word
word
byte
byte
word
byte
byte
word

NetworkInterfacing . 275

Get Address of Configuration Table
to node ID (optional)
te record (actually starts at [BX-41])local device table address
extended network error mapping table address
shared device table address
mounted device table address
receive buffer counter

. collect buffer counter
TUF address
enable flag
FCB keep flagreserved

10-Net v3.3---

word count of dropped Send6F
word buffer start address
word comm driver base address
word send/receive retry count
byte number of 550ms loops before timeoutword UFH address
word CDIR address
word “LTAB address
word SFH address
word FTAB address
word RLTAB address
word SMI address
word NTAB address
pointer to word address of first CT DRV
byte number of DRV entries ~
bytes login name
bytes node ID (blank-padded)
bytes node address
byte flag
byte CT_CFLG (chat permit)

bit 0 7~ CHAT permit1 sound bell
2-7 ?

byte cT_PSFLG
bit 0 SUBMIT permit

1 SUBMIT received
2 SUBMIT active
3 CHAT called FOXPTRM
4 KB initiated
5 PRINT permit
6-7 ?

byte in 10-Net flag
word receive message count
word send message count
word retry count
word _ failed count
word driver errors
word dropped responses/CHATs
bytes LIST ID/NTAB address (3 entries, LPT1-3)
bytes AUX ID/NTAB address (2 entries, COM1-2}
byte active CB channel
byte received 6F messages on queue
bytes activity counters for channels 1-910-Net v3.3---

byte bit 0 RS232 gate
1 Send6F gate (user set)2-7 ?

dword pointer into gate (user set)
dword pointer into 10-Net send
words addresses of timer blocks

04h Send
_ pointer to record

bytes receiving node’s ID
if first byte has high-order bit set, message is directed

to the CT_RGATE vector at the receiver

OLYMPUSEX.1015 - 282/393

OLYMPUS EX. 1015 - 283/393

276

return

entry

return

entry

return

entry

return

entry

return

entry

entry

return

note

entry

DS: DX
CF

AH
cx
DS:DX

12

CF

CF

AH
BX
cx:Dx
st
CF

CF

AH
DS:BX

12

none?

AH
DS: BX

NOoO
DS:DX

AH

ES:SI
DS: BX
AL

Same as

AH
AL

The Programmer’s Technical Reference
if second byte is 00h, first byte is taken as a cB

channel number and delivered to all nodes on same
channel

word length of data at DX
pointer to data (max 1024 bytes)set on error
AX error code (see function 00h)

05h Receive
number of seconds before timeout
pointer to receive buffer
bytes sending node’‘s ID
word length of message
bytes message (maximum 1024 bytes)set on error
AX error code (see function 00h)
clear if successful
AH OFEh if dequeued message is a CB message

07h Lock Handle
file handle
starting offset in file
record length
set on error
AX error code (see also function 00h)

o2h file not found

o8h Unlock Handle
file handle
mode
ooh unlock all
Olh unlock record at CX:DX
set on error
AX error code (see also function 00h)

02h file not found

09h Submit
pointer to recordbytes destination node ID (must be logged in)
word length+2 of following ‘command line’ text
bytes command line text («=100 bytes), system adds CR

OAh Chat
pointer to control parametersbytes sender ID, if nulls defaults to node’s userID
bytes destination user ID, ‘EVERYONE’ may be used
bytes destination node ID
pointer to chat message
word length+2 of following text
bytes text, max 101 bytes

OBh Lock Semaphore, Return Immediately
drive number or 00h
Ethernet address or 00h
pointer to 31-byte ASCIIZ semaphore namestatus
00h successful
Olh semaphore currently locked
02h server not responding
03h invalid semaphore name
04h semaphore list is full
oSh invalid drive ID
06h invalid Ethernet address
O7h not logged in
08h write to network failed
09h semaphore already logged in this CPU
int 60h/fn 12h.

och Unlock Semaphore
drive number or 0

OLYMPUSEX.1015 - 283/393

OLYMPUS EX. 1015 - 284/393

Network Interfacing 277
ES:SI Ethernet address or 0
DS:BX pointer to 31-byte ASCIIZ semaphore name

return AL status (see AH=0Bh)
Olh semaphore not locked

note Same as int 60h/fn13h.

entry AH ODh Who
t AL type code
i Olh return superstations only

i 02h - return non-superstations onlyotherwise return all
cx length of data
DS:DX pointer to array of records to be filled

12 bytes node ID
byte flags bit 1 workstation

2 superstation
3 xgate
4 active gate
5-7 ?

(if AL=Olh, record continues)
byte version number
word level number of 10Net software in responding node
(if AL=02h, record continues)

8 bytes user ID
byte version number
word level number

return cL number of records returned (responding stations)

entry AH OEh Spool /Print
DS:DxX pointer to record

word operation code
00h initiate spool
Olh abort print
02h close spool
03h delete spool
04h print
o5h get report info
06h set chat template
07h queue
08h return queue
09h queue non-spooled file for printing

11 bytes file name in FCB format
(if operation code = 00h or O6h, record continues)

byte notification
bit 0 notify at print start

notify server operator/reply
notify at print completion
explicit queuing onlyreserved
no form feed
do ID page
queue to top

byte days to keep (0FFh=forever)
byte bits 0,1: device (1=LPT1)

bits 4-7: remote drive to store spool file
i . (1=A,..-)
! word length of following data area
|

mIOUomWwfh

n bytes up to 64 bytes of description
(if operation code = 03h, record continues)

8 bytes user ID to associate with filename
(if operation code = 04h, record continues)

word block number
8 bytes user ID to associate with filename

(if operation code = 05h, record continues)
byte RRN to start retrieve
byte bits 0,1 local print device (LPTx)

bit 3 if set, return entries for all users
bits 4-7 not used?

word length of following area
n bytes up to 1500 bytes to receive $SCNTL records returned

OLYMPUSEX.1015 - 284/393

OLYMPUS EX. 1015 - 285/393

278

return

note

(if ope

(if ope

n

(if ope3
n

CF

SSCNTL
8 bytes

entry

entry

return

entry

return

bytes
bytes
bytes
byte

bit

byte
byte
bytes
byte
word
word
byte

AH
AL

CX
DS:DX
CF

AH
AL

cx
DS:Dx
CF

The Programmer’s Technical Reference

ration code = 07h, record continues)
byte queue number
byte pits 0,1 local print device (LPTx)

bits 2-7 not used?
word number of bytes of test print to be done
byte test code

Olh print device
02h test print count03h PRN

ration code = 08h, record continues)
byte queue location or $SCNTL location to start access

returns next item for access:
0Oh-7Fh queued items
80h-FEh non-queued, non-printed items
OFFh no more items

word unused
word length of following area
bytes up to 64 bytes to receive $SCNTL records (see note)

ration code = 09h, record continues)
bytes unusedbytes path to non-spooled file to be queued for printing
set on error
AX error code (see also function 00h)

OFF17h device not mounted
OFF18h already spooling to named device

record:
user ID
filename in FCB format
node ID
creation date
flags
0 notify at start
1 notify server operator/reply
2 notify at completion
3 explicit queueing only
4 reserved
5 no form feed at end
6 do ID page
7 queue to top
retention time in days
printing device (LPTx)
date last printed (0=never)
device containing spool file
bytes to print for test print
block number to start print
reserved

10h Attach/Detach Printer
subfunction
00h initiate spooling if LPT1 is mounted
Oih terminate spooling if LPT1 is mounted

ilh Lock FCB
mode
Olh sequential
o2h random
03h random block
number of records
pointer to FCB

set on error
AX error code (see also function 00h)

O2h file not found

12h Unlock FCB
mode
ooh sequential
Olh random
o2h random block
number of records
pointer to FCBset on error

OLYMPUSEX. 1015

- 285/393

OLYMPUS EX. 1015 - 286/393

Network Interfacing . 279

AX error code (see also function 00h)02h file not found

entry AH 13h 10-Net v3.3 ~ Get Remote Configuration TableAddress

. DS:DX pointer to node ID, 12 bytes blank~paddedreturn CF set on error

AX error code (see function 00h)CF clear if successful

ES:BX configuration table address on given machine

entry AH 14h 10-Net v3.3 - Get Remote Memory
BX:SI address of remote memory
cx length (¢=1024 bytes)
DS: DX pointer to node ID, 12 bytes blank-padded
DS:DI pointer to area to receive remote memory imagereturn CF set on error

‘ AX error code (see function 00h)CF clear if successful

Cx amount of memory copied to DS:SI

entry AH 15h Shared Device Information

AL Olh 10-Net v3.3 -— Get Shared Device EntryBX zero-based index

DS: SI pointer to node ID, 12 bytes blank-padded
ES:DI pointer to 85-byte buffer

return CF set on error

AX error code (see function 00h)CF Clear if successful

ES:DI buffer contains shared device table entry ofBXth device:
8 bytes device
8 bytes alias

64 bytes path
8 bytes password

byte access
4 bytes mask

02h 10-Net v3.3 - Set Shared Device Entry
DS:SI pointer to node ID, 12 bytes blank-padded
ES:DI pointer to valid shared device table entryreturn CF set on error

AX error code (see function 00h)

03h 10-Net v3.3 ~ Delete Shared Device EntryBX zero-based index

DS:SI pointer to node ID, 12 bytes blank-padded
return CF set on error .

AX error code (see function 00h)
entry AH 17h 10-Net v3.3 ~- Mount

AL local drive number (0=A:)
BL remote drive letter or ‘1‘'..‘3' for LPTx or ‘4’ or ‘5’ for COMx
DS:DxX pointer to node ID, 12 bytes blank-paddedreturn CF set on error

AX error code (see function 00h)

entry AH 18h 10-NET v3.3 ~ Unmount
AL local drive number (0=A:)
BL type

00h disk
01h-03h LPTx
04h,05h COMx

return CF set on error

AX error code (see function 00h)

Interrupt 68h APPC/PC

Function Olh APPC/PC
entry AE Olh

DS: Dx pointer to control block

OLYMPUSEX.1015 - 286/393

OLYMPUS EX. 1015 - 287/393

280

12 bytes
word

6 bytes
adword

if verb = 1B00h
word
bytes
bytes
bytes
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

oon

The Programmer’s Technical Reference
reserved
verb (action)
0

(high byte first) return code
0000h successful
0001h BAD_TP_ID
0002h BAD CONV_ID
0003h badlogical unit ID
0008h no physical unit attached
0110h bad state
o1Blh BAD_PART_LUNAME
01B2h bad mode name
0201h physical unit already active
0211h logical unit already active
0212h BAD_PART_SESS
0213h BAD_RU_SI2ES~
0214h BAD_MODE_SESS
0216h BAD_PACING_CNT
0219h EXTREMERUS
021Ah SNASVCNG_1
0223h SSCP_CONNECTED_LU
0230h invalid change
0243h too many TPs
0272h adapter close failure
0281h GET_ALLOC_BAD_TYPE
0282h unsuccessful
0283h pLc failure
0284h unrecognized DLC
o286h duplicate DLC
0301h SSCP_PU_SESSION_NOT_ACTIVE
0302h data exceeds RU size
0401h invalid direction
0402h invalid type
0403h segment overlap
0404h invalid first character
0405h table error
0406h conversion error
OFO0010000h APPC disabled
0F0020000h APPC busy
OF0030000h APPC abended
0F0040000h incomplete
(DISPLAY), control block continues0

(high byte first) logical unit ID
(high byte first) partner logical unit name
(high byte first) mode name
logical unit session limit
partner logical unit session limit
mode maximum negotiable session limit
current session limit
minimum negotiated winner limit
maximum negotiated loser limit
active session count
active CONWINNER session count
active CONLOSER session count
session termination count
bit 7: SESSIONTERMINATION_TARGET_DRAIN
bit 6: SESSION_TERMINATIONSOURCE DRAIN

if verb=2000h (Attach Physical Unit), control block continues
word
byte
byte
bytes
bytes
bytes
dword

omoO
dword
byte

0
version
release

(high byte’ first) net name
(high byte first) physical unit name0

pointer to SYSTEM_LOGEXIT routine, OFFFFFFFFh means
don't log errors
0

0 RETURN_CONTROL: COMPLETE
1 RETURN CONTROL: INCOMPLETE

if verb=2100h (Attach Logical Unit), control block continues

OLYMPUSEX.1015 - 287/393

OLYMPUS EX. 1015 - 288/393

Network Interfacing 281

word 70 offset to partner logical unit record
8 bytes (high byte first) logical unit name
8 bytes (high byte first) logical unit ID

byte logical unit local address
byte logical unit session limit

dword pointer to CREATE_TP_EXIT routine,
OFFFFFFFFh reject|incoming ALLOCATEs
00000000h queue ALLOCATESdword 0

dword . pointer to SYSTEM_LOG)EXIT routine, OFFFFFFFFh means
don’t log errors

adword 0
byte maximum TPs
byte queue depth
dword pointer to LU_LU_PASSword_EXIT routine, OFFFFFFFFh means

no password exit
adword 0
word total length of partner records

for each partner logical unit:
word length of this partner logical unit record
word 42 offset to mode records

8 bytes (high byte first) partner logical unit name
byte partner logical unit security capabilities

bit 7 already verified
6 conversation level security
5 session level security
4-0 not used?

byte partner logical unit session limit
word partner logical unit maximum MC_SEND LL

8 bytes (high byte first) partner logical unit DLC name
byte partner logical unit adapter number

17 bytes {counted string) partner logical unit adapteraddress
word total length of mode records

for each mode: /
word 16 length of this mode record

8 bytes (high byte first) mode name
word RU_SIZE high bound
word RU_SIZE low bound
byte mode maximum negotiable session limit
byte pacing size for receive

if verb=2200h (Detach Logical Unit), control block continues:
8 bytes (high byte first) logical unit ID

byte 0
if verb=2700h (Detach Physical Unit), control block continues:

byte Physical Unit type
ooh hard
Olh soft :

if verb=2B00h (Activate DLC), control block continues:
8 bytes (high byte first) DLC name

byte adapter number
Routines defined by LU_LU_PASSword_EXIT, CREATE TP EXIT, and
SYSTEM LOGEXIT pointers are called by pushing the“adword pointer
to theverb on the stack and then performing a FAR call.ACCESS LU LU PW verb:

12 bytes reserved
word 1900h

8 bytes (high byte first) logical unit ID
8 bytes (high byte first) logical unit name
8 bytes (high byte first) partner logical unit name

17 bytes {counted string) partner fully qualified logical unit name
byte password available (0=no, 1l=yes)

8 bytes password :
CREATE TP verb:

12 bytes reservedword 2300h
6 bytes 0

dword (high byte first) sense code900000000h Ok
O80F6051h SECURITY NOT VALID

084B6031h TP_NOT_AVAIL_RETRY

OLYMPUSEX.1015 - 288/393

OLYMPUS EX. 1015 - 289/393

282

8 bytes
8 bytes

dword
byte
byte
byte

65 bytes
6 bytes

word
adword

8 bytes
18 bytes

8 bytes
12 bytes
11 bytes
11 bytes

byte

SYSLOG verb:
12 bytes

word
10 bytes

word
adword
dword
dword
bytes
bytes
word
dword
byte

wooO

Function 02h
entry AHDS: DX

12

The Programmer's Technical Reference
084co000h TP_NOTAVAIL_NO_RETRY
10086021h TP_NAME_NOT_RECOGNIZED
10086034h CONVERSATIONTYPE_MISMATCH
10086041h|SYNC_LEVEL_NOT_SUPPORTED
(high byte first) TP ID
(high byte first) logical unit ID
(high byte first) conversation ID0 basic conversation, 1 mapped conversation
0 no sync level, 1 confirm
reserved
(counted string) transaction program name0
length of ERROR_LOG_DATA to return
pointer to ERROR_LOG_DATA buffer
(high byte first) partner logical unit name(counted string) partner fully qualified logical unit name
(high byte first) mode name0

(counted string) password
(counted string) user ID0 verification should be performed
1 already verified

reserved
2600h
0

(high byte first) type
(high byte first) subtype
pointer to ADDITIONALINFO
(high byte first) conversation ID
(high byte first) TP ID(high byte first) physical unit or logical unit name
length of data
pointer to data90

BPPC/PC
O2h

pointer to control block
bytes reserved
word verb (action)
byte poh if basic verbOlh if MC_ (mapped conversation) form of verb
bytes 0word (high byte first) primary return code

0000h successful
o001h parameter check
0002h state check
0003h allocation error
0005h deallocate abended
0006h deallocate abended program
0007h deallocate abended SVC
0008h deallocate abended timer
0009h deallocate normal return
0o0Ah data posting blocked
QOOBh posting not active
000Ch PROG_ERROR_NO_TRUNC
ooOoDh PROG ERROR TRUNC
000Bh PROG_ERROR_PURGING
000Fh CONV_FAILURE_RETRY
0010h CONV_FAILURENO_RETRY
0011h SVC_ERROR_NO_TRUNC
0012h SVC_ERROR_TRUNC
0013h SVC_ERROR_PURGING
0014h unsuccessful
0018h CNOS partner logical unit reject
0019h conversation type mixed
FOO1h APPC disabled
FO02h APPC busy
FOO3h APPC abended
FO004h incomplete

OLYMPUSEX.1015 - 289/393

OLYMPUS EX. 1015 - 290/393

Network Interfacing | "283
dword (high byte first) error codeooolh bad TP ID

0002h bad conversation ID
0004h allocation error, no retry
0005h allocation error, retry
0006h data area crosses segment boundary
0010h bad TPN length
o01lh bad CONV length
0012h bad SYNC level
0013h bad security selection
0014h bad return control

0015h SEC_TOKENS too big
0016h PIP_LEN incorrect0017h no use of SNASVCMG
0018h unknown partner mode
oo03ih confirm: SYNC_NONE
0032h confirm: bad state
0033h confirm: NOT_LLBDY
0041h confirmed: bad state
oo5lh deallocate: bad type
0052h deallocate: flush bad state
0053h deallocate: confirm bad state
0055h deallocate: NOT_LL_BDY
0057h deallocate: logLL_WRONG0061h flush: not send state
0091h post on receipt: invalid length
0092h post on receipt: not in receive state
0093h post on receipt: bad fill
OOALh prepare to receive:invalid type
0O0A2h prepare to receive: unfinished LL
OOA3h prepare to receive: not in send state
OOBLh receive and wait: bad state
00B2h receive and wait: NOT_LLBDY
OOBSh receive and wait: bad fill
oocih receive immediate: not in receive state
ooc4h receive immediate: bad fill
OOElLh request to send: not in receive state
OOFLh send data: bad LL
OOF2h send data: not in send state
0102h send error: log LL wrong
0103h send error: bad type
0121h test: invalid type
0122h test: not in receive state

8 bytes (high byte first) TP_ID :
dword (high byte first) conversation ID

if verb=0100h (Allocate or MC_Allocate), control block continues:
byte (MC_Allocate only) 0 basic conversation

1 mapped conversation

byte SYNC_LEVEL

! 00h none
. Olh confirm

word 0
byte RETURN_CONTROL

| _ Ooh when session allocated
| Olh immediate

02h when session free
8 bytes 0
8 bytes (high byte first) partner logical unit name
8 bytes (high byte first) mode name

65 bytes (counted string) TP name
byte Securityooh none

Olh same
02h pgm

11 bytes 0
11 bytes (counted string) password
11 bytes (counted string) user ID

word PIP DATA length
dword pointer to PIP DATA

if verb=0300h (Confirm or MCConfirm), then control block
continues:

OLYMPUSEX.1015 - 290/393

OLYMPUS EX. 1015 - 291/393

The Programmer’s Technical Reference
byte request to send received (0=no, l=yes)

if verb=0400h (Confirmed or Mc_Confirmed), no additional fields
if verb=0500h (Deallocate or MC_Deallocate), control block continues:

byte 0
byte Type

00h SYNC_LEVEL
Olh FLUSH
02h ABEND_PROC
03h ABEND_SVC
04h ABEND_TIMERoSh ABEND

word (MC_Deallocate only) length of error log data
daword (MC_Deallocate only) pointer to error log data

if verb=0600h (Flush or MC_Flush), no additional fields
if verb=0700h (Get_Attributes or Mc_Get_Attributes), control block
continues:

8 bytes (high byte first) logical unit ID
byte 0
byte SYNC_LEVEL (0=none, 1=confirm)

8 bytes (high byte first) mode name
8 bytes (high byte first) own net name
8 bytes (high byte first) own logical unit name
8 bytes (high byte first) partner logical unit name

18 bytes (counted string) partner's fully qualified logical unit. name

byte 0
11 bytes (counted string) user ID

if

if

if

if

verb=0800h (Get_Type), then control block continues:
byte type (0=basic conversation, i=mapped conversation)

verb=0900h (Post_onReceipt), then control block continues:
word maximum length
byte fill (O=buffer, 1=LL)

verb=0A00h (Prepare_to_Receive or MC_Prepare_to_Receive):
byte type (0=SYNC_LEVEL, 1=FLUSH)
byte locks (0O=short, 1=long)

verb=0B00h (Receive_and_ Wait or MC_Receive_and_Wait),
control block continues:

byte What Received00h data
Olh data complete
02h data incomplete
03h confirm
04h confirm send
05h confirm deallocate
o6h send

byte (MC_Receive_and_Wait only) fill (0=buffer, 1=LL)
byte Request_to Send Received (0=no, l=yes)
word maximumlength —
word data length
dword pointer to data

if verb=0Cc00h (Receive_Immediate or MC_Receive_Immediate),
control block continues:

byte What Received00h data
Olh data complete
02h data incomplete
03h confirm
04h confirm send
05h confirm deallocate
06h send

byte (MC_Receive_Immediate only) fill (O=buffer, 1=LL)
byte Request _to Send Received (0=no, l=yes)
word maximumlength ~
word data length
dword pointer to data

if verb=0E00h (Request_toSend or MC_Request_to_Send), no additional
fields

if verb=OF00h (Send_Data or Mc_Send_Data), control block continues:
byte request to send received (O=no, l=yes)
byte 9
word data length

OLYMPUSEX.1015 - 291/393

OLYMPUS EX. 1015 - 292/393

dword

if verb=1000h
byte
byte
adword
word
dword

if verb=1200h
byte

if verb=1300h
byte

Network Interfacing : 285
pointer to data
(Send_Error or MC_Send_Error)
request to send received (0=no, 1=yes)

type (Q=program, 1=SVC)
(McSend_Error only) LOG_DATA length
(MC_."Send_]Error only) pointer te LOG DATA
(Test orMC_Test), then control block continues:
(MC_Test only) test
(0=posted, 1=request_to_send received)
note error code has different interpretations for:
0 posted data
1 posted not data (primary return code = 0)
1 bad TP ID (primary return code = 1)
(Wait), then control block continues:number of conversations to wait on

note error codes have interpretations as for 1200h
(Test) above

Function 03h APPC/PC
entry AH 03h

DS: DX pointer to control block
12 bytes reserved

word
6 bytes

dword
word

8 bytes
if verb=2400h

8 bytes
if verb=2800h

byte

dword
if verb=2A00h

dword

dword
dword

dword
byte
byte

dword

dword

verb (action)0

(high byte first) return code (see AH=01h)0

(high byte first) logical unit ID
(TP Started), control block continues:
(high byte first) TP ID
(Get ALLOCATE), control block continues:
Type
00h dequeue
Olh test.
pointer to CREATE TP record
(Change Logical Unit). control block continues:
pointer to CREATETP_EXIT routine
OFFFFFFFFh reject incoming ALLOCATES
00000000h queue ALLOCATEs
0

pointer to SYSTEM_LOG EXIT routine, OFFFFFFFFh means
don't log errors” —0
maximum TPs
QUEUE ALLOCATES
ooh ~~ stopOlh resume

pointer to LU_LU_PASSword_EXIT routine, OFFFFFFFFh meansno exit
0

Function 04h APPC/PC
entry AH 04h

DS:DX- pointer to control block
12 bytes

word

6 bytes
dword
word

8 bytes
adword

reserved

verb (action)
2500h TP_ENDED
2900h TPVALID0

(nigh byte first) return code (see AH=01h)
(high byte first) TP_ID
pointer to CREATE_IP“record (only if verb = 2900h)

Function 05h Transfer Message Data
entry AH 05h

DS:DX pointer to control block
12 bytes reservedword

byte
1c00h
ooh user defined
01h NMVT

OLYMPUSEX.1015 - 292/393

OLYMPUS EX. 1015 - 293/393

286

5 bytes
adword

12 bytes
byte

byte
word

N bytes

The Programmer’s Technical Reference
O2h alert subvectors
03h PDSTATS subvectors
0

(high byte first) return code (see AH=01h)0
if bit 0 clear, add correlation subvector
if bit 1 clear, add product set ID subvector
if bit 2 clear, do SYSLOG
if bit 3 clear, send SSCP_PU_SESSION
bits 4-7 unknown
0

length of datadata

Function 06h Change Number of Sessions
entry

Function
entry

return

Function
entry

AH 06h
DS:DX pointer to control block

12 bytes
word

6 bytes
word
dword

8 bytes
8 bytes
8 bytes
8 bytes

byte
bit

byte
byte
byte
byte
byte
byte .

bit

reserved
1500h
0

(high byte first) primary return code (see AH=02h)
(high byte first) secondary return code (see AH=01h)
0000h accepted
0001h negotiated
0003h bad logical unit ID
0004h allocation failure, no retry
o005h allocation failure, retry
0151h can’t raise limits
0153h all modes must reset
0154h bad SNASVCMG limits
0155h minimum greater than total
0156h mode closed (prim return code = 1)

CNOS mode closed (prim return code = 18h)
0157h bad mode name (prim return code = 1)

CNOS bad mode name (prim return ‘code = 18h)
0159h reset SNA drains
015Ah single not SRC response
015Bh bad partner logical unit
015ch exceeds maximum allowed
015Dh change SRC drains
O15Eh logical unit detached
015Fh CNOS command race reject
(high byte first) logical unit IDblanks

(high byte first) partner logical unit name
(high byte first) mode name

7 use MODE_NAMESELECT_ALL rather than MODE_NAME
6 set negotiable values
5-0 ?

partner logical unit mode session limit
minimum CONWINNERS_SOURCEmaximum CONWINNERS TARGET
automatic activation
0
Drain
7 drain target
6 drain source
5 target responsible, not source4-0 ?

‘O7h Passthrough
AH O7h
DS:DxX pointer

(format
unknown

to control block
depends on application subsystem)

OFAh Enable/Disable APPC
AH OFAh
AL bit 0 0 enable

OLYMPUSEX.1015 - 293/393

OLYMPUS EX. 1015 - 294/393

Network Interfacing . 287

1 disable
return unknown

Function OFBh Convert
entry | AH OFBh

DS: DX pointer to control block
12 bytes reserved

word 1A00h
6 bytes 0

dword ° (high byte first) return code
byte conversionooh ASCII to EBCDIC

Olh EBCDIC to ASCII
byte character set

00h AE
Olh A
02h G

word length of string to convert
dword pointer to source
dword pointer to target

return unknown

Function OFCh Enable/Disable Message Tracing
entry AH OFCh

AL 00h disable tracing
Olh enable tracing

DX number of bytes to keep (0=all)
return unknown

Function OFDh Enable/Disable API Verb Tracing
entry AH OFDh

AL 00h disable tracing
O1lh enable tracing

return none

Function OFEh Trace Destination
entry AH OFEh

AL trace destinations
bits
0 storage (DS:DX pointer to trace stats record)
1 display
2 file (trace written to file OUTPUT.PC)
3 printer

return unknown
note 1. Do not move record while trace is active.

2. Trace Statistics Record
dword pointer to storage trace buffer
word max number of 80-byte records in trace
word (high-order byte first) current record number (must init to 0)
dword {high-order byte first) number of records written (init to 0)dword reserved

Function OFFh Set Passthrough
entry ~ AH OFFh

DS: DX pointer to passthrough exit routine
return unknown

Interrupt 6Fh Novell NetWare - PCOX API (3270 PC terminal interface)
Interrupt 6Fh 10-Net Network API
entry AH 00h Login

DS: DX login record
8 bytes user name
8 bytes password212 bytes name of super-station

return CL security level
AX status

oo000h good login
OFFO1h no response from superstation
OFFO2h network error
OFFO3h invalid password
OFF04h no local buffer

OLYMPUSEX.1015 - 294/393

OLYMPUS EX. 1015 - 295/393

285 The Programmer’s Technical Reference
OFFO5h superstation not available
OFFO6h node already logged in
OFFO7h login not valid from this node
OFFO8h node ID already in use

O1h Logoff
return CX number of files closed

AX status
0000h successful
OFFO8h superstation ID not already logged in

02h Status of node
DS:DxX pointer to 512-byte record

8 bytes user name (0 if none)
byte station type

00h workstation
Olh superstation
04h logged into multiple superstations

24 bytes list of superstations logged into more than one
superstation

12 bytes node ID
word message count for this station (send for user

node, receive for superstations)
for superstations only:
word drives allocated (bit O=A:, bit 1=B:,...)
byte user service flag

bit 0 mail waiting for you
1 news waiting for you
2 calendar waiting for you
3 mail waiting for node
4 SUBMIT is on
5-7 ?

byte printers allocated (bit O=LPT1,...)
byte number of unprinted spool files
byte number of opened files
byte number of logged on files
byte primary drive (1=A:)
byte reserved

n bytes list of logged on node IDs (each 12 bytes, max 38
IDs)

return CF set on error
AX error code

OFFOlh no response from node
OFFO2h network error
OFF04h no local buffer
OFF16h invalid node ID

03h Get Address of Configuration Table
return ES:BX pointer to record (actually starts at [BX-25])

word count of dropped Send6F
word buffer start address
word comm driver base address
word send/receive retry count
byte number of 550ms loopsword UFH address
word CDIR address
word LTAB address
word SFH address
word FTAB address
word RLTAB address
word SMI address
word NTAB address

ES:BX pointer to word address of first CT_DRV
byte number of DRV entries

8 bytes login name
12 bytes node ID

6 bytes node address
byte flag
byte CT_CFLG

bit 0 CHAT permit
i sound bell

byte CT_PSFLG :
0 SUBMIT permit
1 SUBMIT received

OLYMPUSEX.1015 - 295/393

OLYMPUS EX. 1015 - 296/393

Network Interfacing . 289
2 SUBMIT active
3 CHAT called FOXPTRM
4 KB initiated
5 PRINT permit
6,7 ?

byte reserved
word receive message count
word send message count
word retry count
word failed count
word driver errors
word dropped responses/CHATs

9 bytes list ID/NTAB address (3 entries-LPT1-3?)
6 bytes AUX ID/NTAB address (2 entries-COM1-2?7)

byte active CB channel
byte received int 6Fh messages on queue

9 bytes activity counters for channels 1-9
04h Send ,

DS: BX pointer to record
12 bytes receiving node’s ID

word length of data at Dx
DS:DX pointer to data (max 1024 bytes)return CF set on error
AX error code

OFFO1h timeout
OFFO2h network error
OFFO4h no local buffer

OFF16h invalid parameter (bad length)05h Receive
Cx number of seconds before timeout
DS:DX pointer to receive buffer

12 bytes sending node’s ID
word length of message

n bytes message (maximum 1024 bytes)return CF set on error
AX error code

OFFOlh timeout

OFF18h sent message has been dropped06h Unknown
07h Lock Handle

BX file handle
CX:DX starting offset in file
SI record length

return CF set on error
AX error code

OFFOlh timeout
02h file not found
OFF17h record locked by another user

08h Unlock Handle
BX file handle
AL mode

00h unlock all
Olh unlock record at CX:DxX

return CF set on error
AX error code

02h file not found
OBh Lock Semaphore, Return Immediately

AL drive number or 0
ES:SI Ethernet address or 0

DS: BX pointer to 3l1-byte ASCIIZ semaphore namereturn AL status
00h successful
Olh semaphore currently locked
02h server not responding
O3h invalid semaphore name
04h semaphore list is full
o5h invalid drive ID
06h invalid Ethernet address
07h not logged in
08h write to network failed
09h semaphore already logged in this CPU

OLYMPUSEX.1015 - 296/393

OLYMPUS EX. 1015 - 297/393

290 The Programmer’s Technical Reference
och unlock semaphore

AL drive number or 0
ES:SI Ethernet address or 0
DS: BX pointer to 31-byte ASCIIZ semaphore name

return AL status (see AH=0Bh)
1 semaphore not locked

ODh Who
Cx length of data
DS:DX pointer to array of records to be filled

12 bytes node ID
byte flag (l=workstation,

2=superstation)
return CL number of records returned (responding stations)
OEh spool/print
DS:DX pointer to record

word ooh initiate spool
Olh abort print
02h close spool
03h delete spool
04h print
o5h get report info

11 bytes file name
byte notification

bit 0 no notification
1 notify at print start
2 notify at print start and reply?
3 notify at print completion4 ?
5 no form feed
6 do ID page
7 ?

byte days to keep (0FFh=forever)
byte device (1=LPT1)
word length of following data area

n bytes $SCNT records returned if code in first word is05h
return CF set on error

AX error code
OFF16h invalid parameter
OFF17h device not mounted
OFF18h already spooling to named device

llh Lock FCB
AL mode

00h sequential
Olh random
02h random black

DS: DX pointer to FCB
return CF set on error ,

AX 02h file not found
OFFOlh timeout
OFF17h record locked by another user

12h Unlock FCB
AL mode

Ooh sequential
Olh random
02h random block

DS: DX pointer to FCB
return CF set on error

AX 02h file not found

Aftermarket Application Installed Function Calls
Novell Netware 2.11

Novell no longer recommends the int 21h methodfor invoking the Netwarefunctions. Int 21h
will be supported indefinitely, but the net API calls for addressing the software through the
Multiplex Interrupt (2Fh). You may address the API through int 2Fh in the same mannerasint
21h; only the interrupt numberis different.

OLYMPUSEX.1015 - 297/393

OLYMPUS EX. 1015 - 298/393

LpatyHRN
Network Interfacing | 291

Punction OB6h Novell NetWare SFT Level II -— Extended File Attributes
entry AH OBGh

AL 00h Get Extended File Attributes)
Olh Set Extended File Attributes)

cL attributes
, bit 0-3 ?

4 transaction tracking file
5 indexing file (to be implemented)
6 read audit (to be implemented)
7 -write audit (to be implemented)

DS:DX pointer to ASCIIZ pathname
return CF set on error

AL error code
OFFh file not found
8ch caller lacks privileges

cL current extended file attributes

Function OB7h unknown or not used. Novell?

Function O0B8h Novell Advanced NetWare 2.0+ - Printer Functions
entry AH OB8h

AL 00h Get Default Print Job Flags)
Olh Set Default Capture Flags)
02h Get Specific Capture Flags)
03h Set Specific Print Job Flags)
04h Get Default Local Printer)
05h Set Default Local Printer)
06h Set Capture Print Queue)
07h Set Capture Print Job)
oO8h Get Banner User Name)
09h Set Banner User Name)

cx buffer size
ES: BX pointer to buffer

return none

Function OBBh Novell NetWare 4.0 - Set End Of Job Statush
entry AH OBBh

AL new EOJ flag
00h disable EOJs
otherwise enable EOJs

return AL old EOI flag

Function OBCh Novell NetWare 4.6 - Log Physical Recordh
entry AH OBCh

AL flags
bit 0 lock as well as log record

1 non-exclusive lock
2-7 ?

BX file handle
CX:DX offset .
BP timeout in timer ticks (1/18 sec)
SI:DI length

return AL error code

Function OBDh Novell NetWare 4.6 - Release Physical Recordh
entry AH OBDhBX file handle

CX:DX offset
return AL error code

Function OBEh Novell NetWare 4.6 - Clear Physical Recordh
entry AH OBEh

BX file handle
CX:DX offset

return AL error code

Function OBFh Novell NetWare 4.6 - Log Record (FCB)
entry AH OBFh

AL flags
bit 0 lock as well as log record

1 non-exclusive lock

OLYMPUSEX.1015 - 298/393

OLYMPUS EX. 1015 - 299/393

292

DS: DX
BX:CX
BP
Si:DI1

return AL

Function ocoh
entry AH

DS: DX
BxX:CX

return AL

Function o0cih
entry AH

DS:DxX
BX:CX

return AL

Function 0C2h

The Programmer's Technical Reference
2-7 ?
pointer to FCB
offset
timeout in timer ticks (1/18 sec)
length
error code

Novell NetWare 4.6 - Release Record (FCB)
ocoh
pointer to FCBoffset
error code

Novell NetWare 4.6 ~- Clear Record (FCB)
ocih

pointer to FCBoffset
error code

Novell NetWare 4.6 - Lock Physical Record Seth
entry AH oOCc2h

AL flags
bit 0 ?

1 non-exclusive lock
2-7 ?

BP timeout in timer ticks (1/18 sec)
return AL error code

Function 0C3h Novell NetWare 4.6 - Release Physical Record Seth
entry oc3h
return AL error code

Function 0C4h Novell NetWare 4.6 - Clear Physical Record Seth
entry AH c4h
return AL

Function OC5Sh
entry AHAL

CX:DX
return AL

océ6h
AH
AL

Function
entry

return AL

oc7h
AH
AL

Function
entry

error code

Novell NetWare 4.6 - Semaphores
ocsSh
ooh Open Semaphore)
DS:DX pointer semaphore name
cL initial value
return CX:DX semaphore handle

BL open count
Olh Examine Semaphore)
return CX semaphore value (sign extended)

DL open count
02h Wait On Semaphore)

BP timeout in timer ticks (1/18 sec)
03h Signal Semaphore)
04h Close Semaphore)
semaphore handle (except function 00h)
error code

Novell NetWare 4.6 - Get or Set Lock Mode
oc6h
ooh set old ‘compatibility’ mede
Oih set new extended locks mode
02h get lock mode
current lock mode

Novell NetWare 4.0 - TTS
oc7h
00h TTS Begin Transaction (NetWare SFT level II)
Olh TTS End Transaction (NetWare SFT level IT)
02h TTS Is Available (NetWare SFT level IT)
03h TTS Abort Transaction (NetWare SFT level ITI)
04h TTS Transaction Status)
05h TTS Get Application Thresholds)
06h 7™TS Set Application Thresholds)
O7h TTS Get Workstation Thresholds)
o8h TTS Set Workstation Thresholds)

OLYMPUSEX.1015 - 299/393

OLYMPUS EX. 1015 - 300/393

return AL

Function o0C8h
entry AH

return AL

Function 0c9h
entry AH
return AL

Function OCAh
entry AHDS:DX

return AL

Function ocBh
entry AH

return AL

Function ocCh
entry AH

DS: DX
return none

Function o0CDh
entry AB

Function OCEh
entry AHDS: DX
return AL

Function 0o0cFh
entry AH

Function 0ODOh
entry AH

DS: DX

return AL

Network Interfacing 293

varies according to function called
(00h) error code

CX:DX transaction reference number
(Olh) error code
{O2h) completion code

00h [TTS not available
Olh TTS available
OFDh TTS available but disabled

(03h) error code
(04h-08h) unknown

Novell NetWare 4.0 - Begin Logical File Lockingoc8h
if function 0C6h lock mode OOh:
DL mode

00h no wait
Olh wait

if function 0Ccé6éh lock mode Olh:
BP timeout in timer ticks (1/18 sec)error code

Novell NetWare 4.0 - End Logical File Locking
ocgh
error code

Novell NetWare 4.0 Log Personal File (FCB)OCAh
pointer to FCB
if function 0Céh lock mode Olh:
AL log and lock flag

00h log file only
01h lock as well as log file

BP timeout in timer ticks (1/18 sec)
error code

Novell NetWare 4.0 - Lock File Set
ocBh .
if function 0C6éh lock mode OOh:
DL mode

00h no wait
Olh wait

if function 0C6h lock mode Olh:
BP timeout in timer ticks (1/18 sec)error code

Novell NetWare 4.0 - Release File (FCB)
occh
pointer to FCB

Novell NetWare 4.0 - Release File Set
OcDhhreturn none

Novell NetWare 4.0 - Clear File (FCB)
OCEh
pointer to FCBerror code

Novell NetWare 4.0 - Clear File Set
ocFhhreturn AL 00h

Novell NetWare 4.6 - Log Logical RecordODth

pointer record string
if function 0C6h lock mode Olh:
AL flags

bit 0 lock as well as log the record
1 non-exclusive lock
2-7 ?

BP timeout in timer ticks (1/18 sec)
error code

OLYMPUSEX.1015 - 300/393

OLYMPUS EX. 1015 - 301/393

294 The Programmer's Technical Reference

Function ODlh Novell NetWare 4.6 - Lock Logical Record Seth
entry AH OD1h

if function O0C6h lock mode 00h:
DL mode

00h no wait
Olh wait
if function oc6éh lock mode 01h:

BP timeout in timer ticks (1/18 sec)
return AL error code

Function O0D2h Novell NetWare 4.0 - Release Logical Record Seth
entry AH OD2h

DS: DX pointer to record string
return AL error code

Function 0D3h Novell NetWare 4.0 - Release Logical Record Seth
entry AH OD3h
return AL error code

Function O0D4h. Novell NetWare 4.0 - Clear Logical Record Seth
entry AH OD4h

DS:DX pointer to record string
return AL error code

Function 0D5h Novell NetWare 4.0 - Clear Logical Record Seth
entry AH OD5h
return AL error code

Function OD6h Novell NetWare 4.0 - End Of Jobh
entry AH OD6h
return AL error code

Function OD7h Novell NetWare 4.0 - System Logouth
entry AH OD7h
return AL error code

Functions OD8h, OD9h unknown - Novell NetWare?

Function ODAh Novell NetWare 4.0 - Get Volume Statistics
entry AH ODAh

DL volume number
ES:DI pointer to reply buffer

return AL 00h
reply buffer
word sectors/block
word total blocks
word unused blocks
word total directory entries
word unused directory entries

16 bytes volume name, null padded
word removable flag, 0 = not removable

Function ODBh Novell NetWare 4.0 - Get Number Of Local Drivesh
entry AH ODBh
return AL number of local disks

Function ODCh Novell NetWare 4.0 - Get Station Number (Logical ID)
entry AH ODCh
return AL station number

ooh iff NetWare not loaded or this machine is a
non-dedicated server

cx station number in ASCII

Function ODDh Novell NetWare 4.0 - Set Error Modeh
entry AH opDh

DL error mode
00h display critical I/O errors
Olh extended errors for all I/O in AL
02h extended errors for critical I/O in AL

return AL previous error mode

OLYMPUSEX.1015 - 301/393

OLYMPUS EX. 1015 - 302/393

Function ODEh
entry AH

AL

return AL

Function ODFh
entry AHAL

return AL

Function 0EO0h
entry AH

DS:SI

ES:DI
return AL

Function OElh
entry AH

DS:SI

ES:DI
return AL

Function OE2h
entry AH

DS:SI1
ES:DI

Network Interfacing

Novell NetWare 4.0 - Get/Set Broadcast ModeODEh
broadcast mode

00h receive console and workstation broadcasts
Olh receive console broadcasts only
02h receive no broadcasts
03h store all broadcasts for retrieval
04h get broadcast mode
o5h . disable shell timer interrupt checks
06h enable shell timer interrupt checksold broadcast mode

Novell NetWare 4.0 - CaptureODFh

00h Start LPT Capture)
Olh End LPT -Capture)
02h Cancel LPT Capture)
03h Flush LPT Capture)
04h Start Specific Capture)
OSh End Specific Capture)
06h Cancel Specific Capture)
07h Flush Specific Capture)error code

Novell NetWare — Print SpoolingOEOh

pointer to request buffer
subfunction in third byte of request buffer:
00h spool data to a capture file
Olh close and queue capture file
02h set spool flags
03h spool existing file
04h get spool queue entry
OSh remove entry from spool queue
06h get printer status —
09h create a disk capture file
pointer to reply buffererror code

Novel] NetWare 4.0 - Broadcast MessagesOElh

pointer to request buffer
subfunction in third byte of request buffer:
00h send broadcast message
Olh get broadcast message
02h disable station broadcasts
O3h enable station broadcasts
04h send personal message
OSh get personal message
06h open message pipe
O7h close message pipe
08h check pipe status
09h broadcast to console
pointer to reply buffererror code

Novell NetWare 4.0 - Directory PunctionsOE2h

pointer to request buffer
pointer to reply buffer
subfunction in third byte of request buffer:
ooh Set Directory Handle)
Olh Get Directory Path)
02h Scan Directory Information)
03h Get Effective Directory Rights)
04h Modify Maximum Rights Mask)05h unknown

06h Get Volume Name)
07h Get Volume Number)O8h unknown

OLYMPUSEX.1015 - 302/393

295

OLYMPUS EX. 1015 - 303/393

296 The Programmer's Technical Reference
09h unknown
OAh Create Directory)
OBh Delete Directory)
och Scan Directory For Trustees)
oDh Add Trustee To Directory)
OEh Delete Trustee From Directory)
OFh Rename Directory)
10h Purge Erased Files)
1lh Restore Erased File)
12h Allocate Permanent Directory Handle)
13h Allocate Temporary Directory Handle)
14h Deallocate Directory Handle)
15h Get Volume Info With Handle)
16h Allocate Special Temporary Directory Handle)
17h retrieve a short base handle (Advanced NetWare 2.0)
18h restore a short base handle (Advanced NetWare 2.0)
igh Set Directory Information)

return AL error code

Function OE3h Novell NetWare 4.0 - Connection Control
entry AH E3h

DS:SI pointer to request buffer
ES:DI pointer to reply buffer

subfunction in third byte of request buffer
00h login
Olh change password
02h map user to station set
03h map object to number
o4h Map number to object
05h get station’s logged information
06h get station’s root mask (obsolete)
o7h map group name to number
O8h Map number to group name
o9h get memberset M of group G
OAh Enter Login Area)
OBh unknown
och unknown
ODh Log Network Message)
OEh get disk utilization (Advanced NetWare 1.0)
OFh scan file information (Advanced NetWare 1.0)
10h set file information (Advanced NetWare 1.0)
11h get file server information (Advanced NetWare 1.0)
12h unknown
13h get internet address (Advanced NetWare 1.02)
14h login to file server (Advanced NetWare 2.0)
15h get object connection numbers (Advanced NetWare 2.0)
16h get connection information (Advanced NetWare 1.0)
17h-31h unknown
32h create object (Advanced NetWare 1.0)
33h delete object (Advanced NetWare 1.0)
34h rename object (Advanced NetWare 1.0)
35h get object ID (Advanced NetWare 1.0)
36h get object name (Advanced NetWare 1.0)
37h scan object (Advanced NetWare 1.0)
38h change object security (Advanced NetWare 1.0)
39h create property (Advanced NetWare 1.0)
3Ah delete property (Advanced NetWare 1.0)
3Bh change property security (Advanced NetWare 1.0)
3ch scan property (Advanced NetWare 1.0)
3Dh read property value (Advanced NetWare 1.0)
3Eh write property value (Advanced NetWare 1.0)
3Fh verify object password (Advanced NetWare 1.0)
40h change object password (Advanced NetWare 1.0)
4lh add object to set (Advanced NetWare 1.0)
42h delete object from set (Advanced NetWare 1.0)
43h is object in set? (Advanced NetWare 1.0)
44h close bindery (Advanced NetWare 1.0)
45h open bindery (Advanced NetWare 1.0)
46h get bindery access level (Advanced NetWare 1.0)
47h scan object trustee paths (Advanced NetWare 1.0)
48h-0C7h unknown

OLYMPUSEX.1015 - 303/393

OLYMPUS EX. 1015 - 304/393

 return AL

Function 0OE4h
entry AHAL
return AL

Function OE4h
entry AH

cL
bit

DX:DX
return AL

Function OE5h
entry AH

DS: DX
return AL

Function OE6h
entry AH

CX:DX
DS:SI
ES:DI

return AL

Function OE7h
entry AH

DS:DX

Network Interfacing | 297
Oc8h Check Console Privileges)
ocoh Get File Server Description Strings)
OCAh Set File Server Date And Time)
OCBh Disable File Server Login)
occh Enable File Server Login)
OCDh Get File Server Login Status)
OCEh Purge All Erased Files)
OCcFh Disable Transaction Tracking)
ODOh Enable Transaction Tracking)
ODIh . Send Console Broadcast)
OD2h Clear Connection Number)
OD3h Down File Server)
OD4h Get File System Statistics)
OD5h Get Transaction Tracking Statistics)
OD6h Read Disk Cache Statistics)
OD7h Get Drive Mapping Table)
OD8h Read Physical Disk Statistics)
OD9h Get Disk Channel Statistics)
ODAh Get Connection’s Task Information)
ODBh Get List Of Connection’s Open Files)
opch Get List Of Connections Using A File)
ODDh Get Physical Record Locks By Connection and File)
ODEh Get Physical Record Locks By File)
ODFh Get Logical Records By Connection)
OE0h Get Logical Record Information)
OELh Get Connection’s Semaphores)
OE2h Get Semaphore Information)
OE3h Get LAN Driver’s Configuration Information)OE4h unknown

OE5h Get Connection’s Usage Statistics)
OECh Get Object’s Remaining Disk Space)
OE7h Get Server LAN I/O Statistics)
OE8h Get Server Miscellaneous Information)
OE9h Get Volume Information)error code

Doublebos
OE4h
00h Check status

0 if DoubleDOS is active

Novell NetWare 4.0 - Set File Attributes (FCB)OE4h

file attributes byte
0 read only
1 hidden
2 system
3-6 undocumented
7 shareable
pointer to FCB
error code

Novell NetWare 4.0 - Update File Size (FCB)OESh :
pointer to FCB
error code

Novell NetWare 4.0 - Copy File To File (FCB)OE6h

number of bytes to copy
pointer to source FCB
pointer to destination FCB
error code

Novell NetWare 4.0 - Get File Server Date and Timeh
OE7h

pointer to 7-byte reply buffer
byte year - 1900
byte month
byte day
byte hours

OLYMPUSEX.1015 - 304/393

OLYMPUS EX. 1015 - 305/393

298

return unknown

Function OE7h
entry AHDL

return AL

Function OE9h
entry AH

AL
DX

return AL
AH

Function OEFAh
entry AH

AL

return AH

Function OEBh
entry OEBhDS: DX

return AL

Function 0OECh
entry AH

DS: DX
return none

Function OEDh
entry AH

DS: DX
return AL

Function OEEh
entry AH
return CX:BX:AX

Function OEFh
entry AH

buffer

return ES:DI

The Programmer's Technical Reference

byte minutes
byte seconds
byte day of week (0 = Sunday)

Novell NetWare 4.6 - Set FCB Re-open Mode
OE8h
mode
00h no automatic re-open
olh auto re-open
error code

Novell NetWare 4.6 - Shell’s ‘Get Base Status’
OE9h
00h Get Directory Handle
drive number to check (0 = A:)
network pathbase
base flags:
00h drive not currently mapped to a base
Olh drive is mapped to a permanent base
02h drive is mapped to a temporary base
03h drive exists locally

Novell NetWare 4.6 - Return Shell Version
OEAh

00h get specialized hardware information
return AL hardware type

00h IBM PC
Olh Victor 9000

Olh Get Workstation Environment Information)
ES:DI pointer to 40-byte buffer
return buffer filled with three null-terminated entries:

major operating systemversion
hardware type

00h if MSDOS system

Novell NetWare 4.6 - Log File
Log File
pointer to ASCIIZ filename
if function OC6h lock mode Olh:
AL flags

00h log file only
Olh lock as well as log file

BP timeout in timer ticks (1/18 second)
error code

Novell Netware 4.6 - Release Fileh
OECh

pointer to ASCIIZ filename

Novell NetWare - Clear Fileh
OEDh

pointer to ASCIIZ filenameerror code

Novell NetWare - Get Node Address
OEEh

= six-byte address

(Physical ID)

Novell Advanced NetWare 1.0+ - Get Drive Info
OEFh
00h Get Drive Handle Table)
Olh Get Drive Flag Table)
02h Get Drive Connection ID Table)
03h Get Connection ID Table)
04h Get File Server Name Table)
pointer to shell status table

OLYMPUSEX.1015 - 305/393

OLYMPUS EX. 1015 - 306/393

Network Interfacing | 299

Function OFO0h Novell Advanced NetWare 1.0+ - Connection IDentry AH OFOh

AL 00h Set Preferred Connection ID)
Olh Get Preferred Connection ID)
02h Get Default Connection ID)
03h LPT Capture Active)
04h Set Primary Connection ID)
05h Get Primary Connection ID)
06h Get Printer Status)DL preferred file server

return AL selected file server

Function OFlh Novell Advanced NetWare 1.0+ - File Server Connectionentry AH OFlh

AL 00h Attach To File Server)
DL preferred file server

Olh Detach From File Server)
02h Logout From File Server)

return AL completion code

Function OFlh Novell NetWare - unknown
entry AH OF2h
return unknown

Function OF3h Novell Advanced NetWare 2.0+ - File Server File Copyentry AH OF3h

ES:DI pointer to request string
word source file handle
word destination file handle
adword starting offset in source
dword starting offset in destination

_ adword number of bytes to copyreturn AL status/error code
CX: Dx number of bytes copied

Function OF3h Novell NetWare
Pile Server File Copyh

entry AH OF3h
return unknown

OLYMPUSEX.1015 - 306/393

OLYMPUS EX. 1015 - 307/393

14

Mouse Programming
a

General Information
The current generation ofPC mice are all based on the Microsoft design originally introduced in
June 1983. The Microsoft design (now de facto industry standard) uses a CPU software inter-
rupt and asetof interrupt function calls to interpret data obtained from the pointing device. The
original Microsoft mice used a card pluggedinto the system bus and a proprietary connection tothe mouse. Later designs and mostclones use a serial connection, a major exception being the
IBM PS/2series’ ‘pointing device port’.

There are varioustypes of mice on the market. Various arrangements ofwheels, balls, or a light-
reflecting grid are used to detect mouse motion. Other systems often emulate the mouse in soft-
ware while providing a different hardware implementation. These include trackballs, some joy-
sticks, and some touch pads(such as the Koala pad). Thereis at least one program which will let
a standardjoy-stick emulate a mouse. Trackballs and joy-sticks are useful when desk space is ata
premium. Mostof these devices communicate with the system through some form of the Micro-
soft mouse API.

Mouse movementis defined in terms of mickeys (according to Bill Gates, this unit of measure-
ment was namedfor the cartoon character Mickey Mouse). There are approximately 200 mic-
keys per inch of mouse movement. The mousepolls the current mickey count and sendsthe in-
formation to the mousedriver at regularintervals.

The mousedriver transforms the mickey count into screen pixels. The number of mickeys re-
quired to movethe cursor one pixel is adjustable through a function call. The default mickey-to-
pixel ratio is 1:10n the X axis (horizontal) and 2:1 on the Y axis (vertical).
In graphics modes the mouse cursor can be moved onepixel atatime. In text modes the mouse
cursor usually moves one character cell at a time. For example, on a Hercules screen in text
mode,the smallest increment the mouse cursor can move is 9 pixels horizontally or 14 vertically.
Whenthe mouse is moved,the cursor movesa set amount. In orderto allow fine positioning of
the cursor, the ratio between mouse movement and cursor movement mustbe small. This would
makeit difficult to make large adjustments of cursor position without excessive mouse move-
ment. To solve this problem, some simple mouse drivers implementa ‘double-speed threshold’.
The mouse and cursor move in a 1:1 ratio up to a certain speed (mickeys per second) and then

OLYMPUSEX.1015 - 307/393

OLYMPUS EX. 1015 - 308/393

Mouse Programming | 301
the driver multiplies the mickey count b ing i i iry two before processing it, effectively doubling the cur-sor speed. Double-speed mouse drivers are common. B® y °
A better solution is the ‘ballistic’ driver. The mouse driver monitors the mickey count and
modifies the count according to an arithmetic function or table. The mickey/pixelrate is varied
in asmoothratio from slowestto fastest.

The Microsoft mouse driver is not re-entrant. That is, a driver function may notcall another
driver function and returnto its previousstate.

Register Usage
The mousedriver is accessed much the same as DOS. Appropriate valuesare placed in the CPU
registers and interrupt33his called. On return, the requested action is performed and whatever
return codesare givenare in heregisters.

With the Microsoft Mousedevice driverthe registers are used as follows:

AX mouse event flags:
bit significance
0 mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5-15 reserved

BX button state
bit significance
0 left button is down
1 right button is down
2-15 reserved

cx X coordinate
DX Y coordinate
DS mouse driver data segment
DI raw horizontal mickey count
SI raw vertical mickey count

Interrupt 33h Function Requests
Interrupt 33h Microsoft Mouse Driver Extensions
The Microsoft mouse driver hooks into the int 10h video BIOSvector and watchesfor a change
in screen mode. The mousedriverwill automatically adapt to any supported BIOS video mode.
The Microsoft driver makes 35 functions available to applications. Other brands of mousedri-
vers may add more. The mouse driver does not check inputvalues,so all registers used bya call
mustbe set by the application program.

Function Requests

Function 00h Reset Driver and Read Status
entry AX 0000h
return AX status

o000h hardware or driver not installed
OFFFFh reset successful

BX number of buttons
0000h other than two
0002h two buttons

OLYMPUSEX.1015 - 308/393

OLYMPUS EX. 1015 - 309/393

302 The Programmer's Technical Reference
0003h Mouse Systems mouse

note 1. Checks current screen mode and resets mouse mode if required.
2. Hides cursor and positions it to centre of screen, sets all defaults.

Function Olh Show Mouse Cursor
entry .AX oo0lh
return none

Function 02h Hide Mouse Cursor
entry AX 0002hreturn none
note Multiple calls to hide the cursor will require multiple calls to function

Olh to unhide it.

Function 03h Get Button Status
entry AX 0003h
return BX button status byte

bits 0 left button
1 right button
2 middle button (Mouse Systems mouse)
3-7 not used

CX column
DX row

note If bit is 0, button is normal. If bit is 1, button is pressed.

Function 04h Set Mouse Cursor Position
entry AX 0004hcx column

DX row
return none
note PCM v8n8 reports Microsoft as saying, ‘If the screen is not in a mode

with a cell size of 1x1, the parameter values are rounded to the nearest
horizontal or vertical coordinate values permitted for the current
screen mode.’ Mefford reports that the Microsoft driver actually
truncates instead of rounding. This may explain the reported tendencies
of some Microsoft products toward not recognizing non-MS mice.

Function 05h Return Button Press Data
entry AX 0005h

BX button ID byte (BL)
bits 0 left

1 right
2 middle (Mouse Systems mouse)

return AX button states (AL}
bits 0 left button

1 right button
2 middle button (Mouse Systems mouse)

BX # times specified button pressed since last call
cx column at time specified button was last pressed
Dx row at time specified button was last pressed

note If bit is 0, button is normal. If bit is 1, button is pressed.

Function 06h Return Button Release Data
entry AX 0006h

BX button ID byte (BL)
bits 0 left

1 right
2 middle (Mouse Systems mouse)

return AX button states (AL)
bits 0 left button

1 right button
2 middle button (Mouse Systems mouse)

BX no. of times specified button released since last call
cx column at time specified button was last released
Dx row at time specified button was last released

note If bit is 0, button is normal. If bit is 1, button is pressed.

Function 07h Define Horizontal Cursor Range
entry AX 0007hcx minimum column

DX Maximum column
return none

OLYMPUSEX.1015 - 309/393

OLYMPUS EX. 1015 - 310/393

Mouse Programming 303

Function 08h Define Vertical Cursor Range
entry AX 0008h

cx minimum row
DX maximum row

return none
note If the minimum value is greater than the maximum value, the values are

swapped.

Function 09h Define Graphics Cursor
entry AX 0009h |

BX column of cursor hot spot in bitmap (-16 to 16)
cx row of cursor hot spot (-16 to 16)
ES: DX pointer to bitmap

16 words screen mask
16 words cursor mask

return none

. note Each word defines the sixteen pixels of a row, low bit rightmost.

Function OAh Define Text Cursor
entry AX 000Ah

BX select hardware/software text cursor
00h software

cx screen mask value or scan line start
DX cursor mask value or scan line stop

Olh hardware
return none
note When the software cursor is selected, the char/attribute data at the

current screen position is ANDed with the screen mask and then XORed
with the cursor mask.

Function OBh Read Motion Counters
entry AX 000Bh
return CX number of mickeys mouse moved horiz. since last call

DX number of mickeys mouse moved vertically
note 1. A mickey is the smallest increment the mouse can sense.

2. Positive values indicate up/right.
3. This call ignores overflow and sets mickey count to 0 on completion.

Function 0ch Define Interrupt Subroutine Parameters
entry AX 000Ch

cx bit mask

bit 0 call if mouse moves (note 3)
1 call if left button pressed
2 call if left button released
3 call if right button pressed
4 call if right button released
5 call if middle button pressed (Mouse Systems)
6 call if middle button released (Mouse Systems)7-15 not used

Dx address of FAR routine (note 4)
return unknown
note 1. When the subroutine is called, it is passed these values:

AH condition mask (same bit assignments as call mask)BX button state
cx cursor column
Dx cursor row

DI vertical mickey count
sI horizontal mickey count

2. According to PCM v8n8, the DI and SI registers shown above are correct
for the Microsoft Mouse and were shown reversed in some versions of the
Microsoft Mouse Programmer’s Reference Guide.

3. The Microsoft documentation reads ‘cursor’ instead of ‘mouse’. The
Microsoft driver looks at mouse position, though. (PCM v8n8). Logitech
and Mouse Systems watch for cursor position.

4. The complete call is DS:DX. The segment value (DS) is taken care of by
the mouse driver. You need only pass DX.

Function O0ODh Light Pen Emulation On
entry AX 000Dh
return none

note 1. Light pen emulation is on by default when using the Microsoft driver.

OLYMPUSEX.1015 - 310/393

OLYMPUS EX. 1015 - 311/393

304 The Programmer's Technical Reference

2. If a real light pen is present in the system, fn OEh must be used to
disable emulation.

Function OEh Light Pen Emulation off
entry AX QOOEhreturn none

Function OFh Define Mickey/Pixel Ratio
‘entry AX OOOFh —

cx mickeys per 8 pixels horizontally (default 8)
Dx mickeys per 8 pixels vertically (default 16)

return none

Function 10h Define Screen Region for Updating (Conditional off)
entry AX 0010h

DX pointer to region you want to update (note 2)
return none
note 1. Mouse cursor is hidden during updating, and needs to be explicitly turned

on again.
2. The complete call is DS:DX. The segment value (DS) is taken care of by

the mouse driver. You need only pass Dx.
3. Array format:

offset value
Olh left x-screen coordinate
02h top y-screen coordinate
03h right x-screen coordinate
04h bottom y-screen coordinate

Function 11h not documented by Microsoft

Function 12h Set Large Graphics Cursor Block
entry AX 0012h

BH cursor width in words
CH rows in cursor
BL horizontal hot spot (-16 to 16)
cL vertical hot spot (-16 to 16)
Dx pointer to bit map of screen and cursor maps (note 2)

return AH OFFFFh successful
note 1. PC Mouse. Not documented by Microsoft

2. The complete call is DS:DX. The segment value (DS) is taken care of by
the mouse driver. You need only pass Dx.

Function 13h Define Double-Speed Threshold
entry AX 0013h

DX threshold speed in mickeys/second,
0000h default of 64/second

return none
note If speed exceeds threshold, the cursor’s on~screen motion is doubled.
Function 14h Exchange Interrupt Subroutines
entry AX 0014h

BX:DX pointer to FAR routine
cx call mask (see function 000Ch)

return BX:DX FAR address of previous interrupt routine
cx call mask of previous interrupt routine

Function 15h Return Driver State Storage Requirements
entry AX 0015h
return BX size of buffer needed to store driver state

Function 16h Save Driver State
entry AX 0016h

DX offset into buffer
return none

Function 17h Restore Driver State
entry AX 0017h

DX offset into buffer containing saved state
return none

Function 18h-1Ch not documented by Microsoft

OLYMPUSEX.1015 - 311/393

OLYMPUS EX. 1015 - 312/393

Function 18h
entry AX

cx
bit

Dx
return AX

Mouse Programming 305
Set Alternate Mouse User Handler
0018h
call mask
0 call if mouse moves
1 call if left button pressed
2 call if left button released
3 call if right button pressed
4 call if right button released
5 call if shift button pressed during event
6 ‘call if ctrl key pressed during event
7 call if alt key pressed during event8-15 not used
offset to user subroutine
OFFFFh error

note 1. When the subroutine is called, it is passed the following values:AX
BX
Cx
DX
DI
SI

condition mask (same bit assignments as call mask)button state
cursor column
cursor row

horizontal mickey count
vertical mickey count

2. Up to three handlers can be defined by separate calls to this function.
Function 19h
entry AX

cx
_xeturn AX

BX: DX
CX

note

Return User Alternate Interrupt Vector0019h

call mask (same as 0018h above)
status OFFFFh no vector or mask found
pointer to user interrupt vector (0 if AX=0FFFFh)
call mask (0 if AX=0FFFFh)

Attempts to find a user event handler (defined by function 18h) whosecall mask matches Cx.

Function 1Ah
entry AX

BX
Cx
Dx

return none

Function 1Bh
entry AX
return BX

: Cx
DX

Function ich
entry AX

BX

return none
note

Set Mouse Sensitivity001Ah

horizontal speed
vertical speed
double speed threshold in mickeys/second,
0000h sets default of 64/second

Return Mouse Sensitivity001Bh

horizontal speed
vertical speed
double speed threshold

Set Mouse Interrupt Rate
001Cch

interrupt rate desired: (BL)
00h no interrupts allowed
Olh 30 interrupts per second
02h 50 interrupts per second
03h 100 interrupts per second
04h 200 interrupts per second
04h-FFh not defined

If a value larger than 04h is used, the Microsoft InPort driver may be
have unpredictably.

Function 1Dh
entry AX

BX
note

Function 1Eh
entry AX
return BX

Function 1Fh
entry AXreturn AX

Define Display Page Number001Dh

display page number
The cursor will be displayed on the specified page.

Return Display Page NumberOO1Eh

display page number

Disable Mouse Driver
001Fh
001Fh successful

OLYMPUSEX.1015 - 312/393

OLYMPUS EX. 1015 - 313/393

306

ES: BX
note 1. Restores vectors for int 10h and int 71h (8086) or int 74h (286/386).

2. If you restore int 33h to ES:BX, driver will be completely disabled.
Function 20h
entry AX 0020hreturn none
note Restores vectors for. int 10h and int 7ih (8086) or int 74h (286/386)

which were removed by function 1Fh.

Function 21h
entry AX
return AX

BX

note Identical to function 0000h, but does not reset the mouse.
Function 22h
entry AX

BX

return none

_ note values other than 00h are valid only for Microsoft international mousedriver software.

Function 23h
entry AX
return BX
note See function 0022h.

Function 24h
entry BX
return AX

cL

Function 42h
entry AX
return AX

BX

Function 43-49h unknown

Function 50h
entry AHBX

The Programmer’s Technical Reference
OFFFFh unsuccessful
old int 33h vector

Enable Mouse Driver

Software Reset
0021h
0021h mouse driver not installed
OFFFFh mouse driver installed
oo0o02zh mouse driver is installed

Set Message Language
0022h
language number (BL)
00h English
Olh French
02h Dutch
03h German
04h Swedish
o5h Finnish
06h Spanish
O7h Portuguese
Osh Italian
other values not used

Get Message Language
0023h
current language number (BL)

Get Software Version, Mouse Type, and IRQ Number
0024h
OFFFFh on error, else
major version
minor version
mouse interface type
Olh bus mouse
02h serial mouse
03h Microsoft InPort
04h IBM PS/2 Pointing Device port
05h Hewlett-Packard mouse
IRQ interrupt request number
00h PS/2 pointing device
Olh not defined
O2h IRQ2
03h IRQ3

o7h IRQ7)

PCMouse - Get MSmouse Storage Requirements
0042h
OFFFFh successful
buffer size in bytes for functions 50h and 52h
00h MSmouse not installed
42h functions 42h, 50h, and 52h not supported

Pcmouse - Save MSmouse State
50h
buffer size

OLYMPUSEX.1015 - 313/393

OLYMPUS EX. 1015 - 314/393

ES:DX
return AX

Function 51h

Function: 52h
entry AH

BX
ES: DX

return AX

_ Mouse Programming . 307
pointer to buffer
OFFFFh successful

unknown

PCMouse ~ Save MSmouse State
50h
buffer size
pointer to buffer
OFFFFh successful

Interrupt 10h (Video BIOS) Microsoft Mouse Driver EGA Support
The following functions are appended to BIOSint 10h and implemented as the EGA Register
Interface Library:

oFOh read one register
OFlh write one register
OF2h read consecutive register range
OF3h write consecutive register range
OF4h read non-consecutive register set
OFS5h write non-consecutive register set
OF6h revert to default register values
OF7h define default register values
OFAh get driver status

Function OFOh Microsoft Mouse driver EGA support - Read One Register
entry AH OFOh

BH pointer for register/data chips
BL pointer
DX port number

(pointer/data chips)
ooh CRT Controller (25 registers) (3B4h mono, 3D4h colour)
08h sequencer (5 registers) (3C4h)
10h graphics controller (9 registers) . (3CEh)
18h attribute controller (20 registers) (3COh)
(single registers)
20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono, 3DAh colour)
30h graphics 1 position register (3cCch)
38h graphics 2 position register (3CAh)return BL data

note All other registers are restored.

Function OFlh Microsoft Mouse driver EGA support - Write One Register
entry AH OF1lh

BH pointer. for pointer/data chips (ignored for single registers)
BL pointer for pointer/data chips or data for single registers
DX port number (see function OFO0h) :

return BH and DX are not restored, all other registers are restored

Function OF2h Microsoft Mouse driver EGA support - Read Register Rangeentry AH OF2h -
CH starting pointer value
cL number of registers (must be 1)
Dx port number

00h CRT controller (3B4h mono modes, 3D4h colour modes)
O8h sequencer (3¢4h)
10h graphics controller (3CEh)
18h attribute controller (3c0h)

ES:BX pointer to buffer, CL bytes
return CX is not restored, all other registers are restored

Function OF3h Microsoft Mouse driver EGA support - Write Register Range
entry AH OF3h

CH starting register
cL number of registers (must be 1)
DX port number

00h CRT controller (3B4h mono modes, 3D4h colour modes)
08h sequencer (3C4h)
10h graphics controller (3CEh)

OLYMPUSEX.1015 - 314/393

OLYMPUS EX. 1015 - 315/393

308

ES:BX
return BX, CX,
Function 0F4h
entry AH

cx
ES:BX

byte

byte
byte
byte

Function OF5h
entry AHCX

ES:BxX
byte

byte
byte
byte

Function OF6h
entry AH
return all registers restored

Function OF7h MS Mouse driver EGA support - Define Default Register Table
entry AHcx

DX

ES: BX

18h

OF4h

number of registers (must be 1)
pointer to 4-byte table of records in this format:0-2

(pointer/data chips)
00h cRTC (3B4h mono modes, 3D4h colour modes)
08h sequencer (3C4h)
10h graphics controller (3CEh)

. 18h attribute controller (3CO0h)
(single registers)

20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono modes,

3DAh colour)
30h graphics 1 position register (3CCh)
38h graphics 2 position register (3CAh)

1 must be zero
2 pointer value (0 for single registers)
3 EGA Register Interface fills in data read from register

Microsoft Mouse driver EGA support - Read Register Set
OFSh

number of registers (must be greater than 1)
pointer to 4-byte table of records in this format:Q-2

(pointer/data chips)

(single

1
2
3

MS Mouse driver EGA support - Revert to Default Registers
OF6h

OF7h
VGA colour select flag

allows EGA Register Interface to recognise byte
offset 14h of the table pointed to by ES:BX as the value
for the VGA colour select register

port number
(pointer/data chips)

5448h

00h
08h
10h
18h
(single
20h
28h
30h
38h

pointer to table of one byte entries, one byte to be
written to each register (all registers must be written)

return BX and DX are not restored, all other registers are restored

The Programmer's Technical Reference
attribute controller (3c0h)

pointer to buffer, CL bytes
DX are not restored, all other registers are restored
Microsoft Mouse driver EGA support ~ Read Register Set

specified in bytes 0-2.
return CX is not restored, all other registers are restored

00h CRT controller (3B4h mono modes,3D4h colour modes)
08h sequencer (3c4h) ‘
10h graphics controller (3CEh)
18h attribute controller (3C0h)
registers)
20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono modes,

3DAh colour) :
30h graphics 1 position register (3cch)
38h graphics 2 position register (3CAh)must be zero

pointer value (0 for single registers)
data to be written to register specified in bytes 0-2.

return CX is not restored, all other registers are restored

CRT controller (3B4h mono modes, 3D4h colour modes)
sequencer (3c4h)
graphics controller (3CEh)
attribute controller (3c0h)
registers)
miscellaneous output register (3C2h)
Feature Control register (3BAh mono, 3DAh colour)
graphics 1 position register (3cch)
graphics 2 position register (3CAh)

port number

port number
OLYMPUSEX.1015 - 315/393

OLYMPUS EX. 1015 - 316/393

Mouse Programming 309 ‘

Functions OF8h, OF9h unknown

Function OFAh Microsoft Mouse driver EGA support - Interrogate Driver
entry AH OPAh

BX 00h
return AX restored

BX oo00h if mouse driver not present
ES:BX pointer to EGA Register Interface version number, if present:

byte 0 major release number
byte 1 minor release number (in 100ths)

OLYMPUSEX.1015 - 316/393

OLYMPUS EX. 1015 - 317/393

Register-Level Hardware Access

8255 Peripheral Interface Chip (PIC)

TheIntel 8255 has 3 1-byte registers, referred to as ports A, B, or C. They are locatedat port ad-
dresses 60h-62h. Ports A and C are read-only, B is read/write. In the IBM PC,setting bit 7 of port
B changes information in port A, andsetting bit 2 determines the contents of the lower 4 bits of
port C.(bit 3 in the XT)

60h port A read-only
byte (normal) 8-bit scancodes from keyboard (all machines)

(PC: port B bit 7-1) equipment byte as returned by int 11hbit 0 0 = no diskette drives installed
1 not used
2,3 banks of RAM on motherboard
4,5 display

1,1 monochrome
1,0 80x25 colour
0,1 40x25 colour

6,7 number of diskette drives

61h port B read/write
byte

bit 0 PC, XT, jxr controls gate of 8253 timer chip channel 2
1 PC, XT, jr output to speaker
2 PC select contents of port Cc
3 Pc, jr 0 text mode (default)

1 graphics mode
xT select contents of port C

4 PC, xT 0 enable RAM (default)
1 disable RAM (not very useful)

5 PC, XT 0 enable expansion slot error signals
1 disable expansion slot error signals

5,6 jr select sound source
0,0 8253 chip
0,1 cassette port
1,0 sound line on expansion bus
1,1 TI 76496 sound chip

7 PC select contents of port A, acknowledge keyboard
xT keyboard acknowledge only

62h port C read only
(when port B bit 2=1 on PC or port B bit 3=1 on XT)
byte

bit 0-3 PC bottom half of configuration switch 2
(RAM in expansion slots)

0 PCjr 1 incoming keystroke lost
1 xT 0 no math coprocessor installed (default)

1 math coprocessor installed

15

OLYMPUSEX.1015 - 317/393

OLYMPUS EX. 1015 - 318/393

Register-Level Hardware Access : 31]

2 pcjr 0 modem card installed
2,3 XT banks of RAM on system board
3 pcjr - 0 128k RAM upgrade installed

1 64k RAM (default)
4 Pc, jr cassette input

xT not used
5 PC, XT, jr output of 8253 channel 2
6 Pc, XT 1 expansion slot error check

jr 1 keyboard data
7 , PC, xT 1 parity error check

jx 0 keyboard cable connected
1 keyboard cable not connected (default)

(when port B bit 2=0 on PC or port B bit 3=0 on XT)
bit 0-3 PC top half of configuration switch 2 (unused)

0,1 xT display type
1,1 monochrome
1,0 80x25 colour
0,1 40x25”°colour

2,3 xT number of diskette drives
4,7 PC,XT same as if port B bit 2=1

The AT keeps its configuration settings in a Motorola MC146818 chip along with
the real-time clock. It has no 8255 chip as such, although the same port ad-
dresses are used to control the timer chip and receive data from the keyboard.
The chip has 64 registers numbered 00h-3Fh. To read a register, first send its
number to port address 70h

CMOS RAM map, PC/AT:

offset
00h
Olh
02h
O3h
O4h
OSh
06h
07h
08h
Ooh
OAh
OBh
och
ODh
OEh
OFh
10hwre

1lh

; 12h

and then read it from 7ih.

contents
Seconds
Second Alarm
Minutes
Minute Alarm
Hours
Hour Alarm
Day of the Week
Day of the Month
Month
Year

Status Register
Status Register
Status Register
Status Register
Diagnostic Status Byte
Shutdown Status Byte
Disk Drive Type for Drives A: and B:
The drive-type bytes use bits 0:3 for the first drive
and 4:7 for the other Disk drive types:

vaAwYy

00h no drive present
Olh double sided 360k
02h high capacity (1.2 meg)O3h-O0Fh reserved

(AT) :Reserved (PS/2):drive type for hard disk Cc:
(PS/2):drive type for hard disk D:
(AT, XT/286):hard disk type for drives C: and
D: Format of drive-type entry for AT, XT/286:

0 number of cyls in drive (0-1023 allowed)
2 number of heads per drive (0-15 allowed)
3 starting reduced write compensation (not used

on AT)
5 starting cylinder for write compensation
7 max. ECC data burst length, XT only
8 control byte

Bit
7 disable disk-access retries
6 disable ECC retries
5-4 reserved, set to zero
3 more than 8 heads
2-0 drive option on XT (not used by AT)

OLYMPUSEX.1015 - 318/393

OLYMPUS EX. 1015 - 319/393

312 The Programmer’s Technical Reference
9 timeout value for XT (not used by AT)

12 landing zone cylinder number
14 number of sectors per track (default

17, 0-17 allowed)
& 13h Reserved
47 14h Equipment Byte (corresponds to sw. 1 on PC and XT)
¢ 15h-16h Base Memory Size (low, high)

17h-18h Expansion Memory Size (low,high)
19h-20h Reserved

(PS/2) POS information Model 50 (60 and 80 use a 2k
CMOS RAM that is not accessible through software)

21h-2Dh Reserved (not checksummed)
2Eh-2Fh Checksum of bytes 10 through 20 (low,high)
30h-31h Exp. Memory Size as Determined by POST (low,high)
32h Date Century Byte
33h Information Flags (set during power-on)

» 34h-3Fh Reserved
3. The alarm function is used to drive the BIOS WAIT function (int

15h function 90h).
4. To access the configuration RAM write the byte address (00-3Fh)

you need to access to I/O port 70h, then access the data via I/O
port 7ih.

5. CMOS RAM chip is a Motorola 146818.
6. The equipment byte is used to determine the configuration for the

POST power-on diagnostics.
7. Bytes 00-0Dh are defined by the chip for timing functions, bytes

OEh-3Fh are defined by IBM.
8. Compaq 386 uses came CMOS chip as IBM AT. Extra functions:

byte 45 (2Dh) stores additional info not maintained by AT.
bit 0 indicates is Compaq dual-mode monitor installed

1 indicates whether keyclick is enabled
2 not used .
3 if non-Compaq graphics adapter installed

8259 Interrupt Controller

The 8259 Interrupt Controller chip providesvital support services for the CPU.Ina typical PC,
interrupt signals can originate from severaldifferentplaces (i.e. keyboard,disk drive,etc.). The
8088, however, has only one inputline on whichto receive an interrupt signal. The 8259 chipis
therefore employed to manage the various interrupt sources andpresenta single, controllable
interrupt signal to the central processor.

As configured for use in the PC,the 8259 chip can acceptupto eight independentsignals num-
bered 0 through7. For each interruptit receives, the 8259 can present an interrupt signal to the
CPU.Furthermoreit presents to the CPU a unique interrupt type codefor each of the eight in-
terrupt sources. This allows us to assign a unique interrupt service routine to each differentin-
terrupt source. Theeightsignal inputs to the 8259 are wired onto the controlbusso that any de-
vice tied into the bus system can access this interrupt mechanism. Onthe controlbus, the signals
are named IRQO through IRQ7.

Becauseeach signal is independent, provision must be made for the possibility of two or more
signals occurring at the sametime. The 8259 managessuch an event by holding onto the second-
ary interrupt(s) while the processorservicesthefirst. When thatinterrupt has been serviced, the
next oneis signalled to the processor. For events that occur at exactly the same moment,the
8259 passes them to the processorinapriority order, where interrupt source 0 hasthe highest
priority and interrupt source7 has the lowest. One very important consequenceofthis scheme is
that the CPU mustindicate tothe 8259 whenit has completedthe servicing of each interrupt.
This mustbe kept in mind wheneveraninterruptservice routineis written.

Becauseit has been designed for use in manydifferent applications, the 8259 is an extremely
complex chip. Fortunately mostof this complexity is handled by the BIOS, which programsthe
properconfiguration informationinto the 8259 on power-up. The 8259is thus configuredto sig-

OLYMPUSEX.1015 - 319/393

OLYMPUS EX. 1015 - 320/393

Register-Level Hardware Access , 313

nal interrupt type codes 08h-OFh to correspondwithinterrupt sources 0-7. Note that the two
highest-priority interrupts, IRQO and IRQ1,are wired directly on the system board. Therest of
the interrupt sources are obtained from adaptercards plugged into the expansionslots.

Programming the 8259 consists of two basic actions. First, you can enableor disable each inter-
rupt source independently by writing a value into the interrupt maskregister, or IMR. The IMR
is a one-byte register within the 8259 that we can access via I/O port 21h. Eachbit in the IMR
correspondsto the interrupt source withits bit number(i.e. bit 0-[RQO,bit 1-IRQ1,etc). Ifa bit
in the IMRis 0, then its corresponding interrupt source in enabled. A signal appearing on that
input to the 8259 will cause an interruptto be sent to the CPU.Ifthe IMRbitis 1, then the inter-
rupt sourceis disabled (or masked) and cannot generate an interrupt. Keep in mindthat the
state of the interrupt flag within the CPU will ultimately determine whetheror not any interrupt
‘signal is received.

The second 8259 programming action that we must be concerned withis the signalling of the
end of an interrupt service routine. This is accomplished by sending the ‘end of interrupt’ (EOT)
command,represented by 20h, to the interrupt commandregister within the 8259. Coinciden-
tally, this one-byte register is accessed via I/O port 20h.

Interrupt Sources

8259 Input Type Code Device
IRQO 08h system timer (channel 0)
IRQ1 09h keyboard
IRQ2 OAh EGA and CGA
IRQ3 OBh COM2
IRQ4 0Ch coMl
TROS ODh hard disk
TROE6 OEh floppy drive
IRQ7 OFh parallel printer

Interrupt Mask Register:

O: All interrupts disabled (use CLI instruction)
1: Interrupts enabled (use STI instruction)

if Interrupt Flag (in CPU)
if Interrupt Flag (in CPU)

Interrupt Mask Register

IMR bit=0: IRQ enabled

IRQO IMR bit=1: IRQ disabled
IRQL Set IMR with MOV AL,xyz [

IRQ2 OUT 21H,AL |
IRQ3

IRO4
IRQS

IRQ6
IRQ7

OLYMPUSEX.1015 - 320/393

OLYMPUS EX. 1015 - 321/393

16

Video Subsystems and
Programming

Quick List of Interrupt 10h Functions
00h Determine or Set Video State
Olh Set Cursor Type
02h Set Cursor Position
03h Read Cursor Position
04h Read. Light Pen
05h Select Active Page
o6h Scroll Page Up
O7h Scroll Page Down
o8h Read Character Attribute
09h Write Character and Attribute
OAh Write Character
OBh Set Colour Palette
och Write Dot
ODh Read Dot
OEh Write TTY
OFh Return Current Video State
10h Set Palette Registers
11h Character Generator Routine
12h Alternate Select
13h Enhanced String Write
14h Load LCD Character Font
15h Return Physical Display Parameters
1Ah Display Combination Code
1Bh Functionality/State Information
ich Save/Restore Video State
40h Set Graphics Mode (Hercules Graphics Card)
4ih Set Text Mode (Hercules Graphics Card)
42h Clear Current Page {Hercules Graphics Card)
43h Select Drawing Page (Hercules Graphics Card)
44h Select Drawing Function (Hercules Graphics Card)
45h Select Page to Display (Hercules Graphics Card)
46h Draw One Pixel (Hercules Graphics Card)
47h Find Pixel value (Hercules Graphics Card)
48h Move to Point (Hercules Graphics Card)
49h Draw to Point (Hercules Graphics Card)
4ah Block Fill (Hercules Graphics Card)
4Bh Display Character (Hercules Graphics Card)
4ch Draw Arc (Hercules Graphics Card)
4Dh Draw Circle (Hercules Graphics Card)
4Eh Fill Area (Hercules Graphics Card)
6Aah Direct Graphics Interface Standard {DGIS)
6Fh Set Video Mode (VEGA Extended EGA/VGA)

OLYMPUSEX.1015 - 321/393

OLYMPUS EX. 1015 - 322/393

70h
71ih
72h
73h
8ih

' 82h
OBFh
OFOh
OFlh
OF2h
OF3h
OF4h
OFSh
OF6h

OF7h

OFAh
OFEh
OFFh

Video Subsystems and Programming
Get Video RAM Address
Get INCRAM Addresses
Scroll Screen Right
Scroll Screen Left
unknown

315

(Tandy 1000)
(Tandy 1000)
(Tandy 1000)
(Tandy 1000)

(DesQview)
Get Current Window Info (DesQview)
Compaq Portable Extensions
Microsoft Mouse driver EGA support - Read One Register
Microsoft Mouse driver EGA support - Write One Register
Microsoft Mouse driver EGA support - Read Register Range
Microsoft Mouse driver EGA support - Write Register Range
Microsoft Mouse driver EGA support - Read Register Set
Microsoft Mouse driver EGA support - Read Register Set
Microsoft Mouse driver EGA support - Revert to Default

Registers
Microsoft Mouse driver EGA support - Define Default Reg.

Table
Microsoft Mouse driver EGA support - Interrogate Driver
Get Virtual Buffer Address
Update Video Buffer

(Topview/DesQview/Taskview)
(Topview/DesQview/Taskview)

Interrupt 10h Video I/O - services to handle video output

(0:0040h)

The ROM video routines in the original PC BIOSare designed for use with the Colour Graphics
Adapter and incorporatecodetotest for the horizontalretrace before writing. The checkis per-
formed no matter what actual display adapteris installed. The ROM charactertable for the first
128 charactersis located at OFAGEhin the PC. Int 01Fh can be used to point to a secondtable of
128 characters. CS, SS, DS, ES, BX, CX, DX are preservedduring call. All others are destroyed.

Function 00h
entry AH

AL

16
16

Colour
Colour

16
16

Colour
Colour

16
16

Colour
Colour

16 Colour
4 Colour
4 tone grey
2 Colour
monochrome
16 Colour
16 Colour
4 Colour

N/A
N/A

16 Colour
16 Colour
monochrome
16&64 Colour
2 Colour

13h
14h

16 Colour
16&64 Colour
256Colour

Determine or Set Video State

00h set video mode
display mode: CGA|PCjr|MDA]MCGA|EGA]VGA|851400h 40x25 B/W text 8x8 CGA|/PCjr EGA |

40x25, 320x400 graphics MCGA
40x25, 360x400 graphics VGA|
40x25 B/W tet 8x14 | ATI VIP

Olh 40x25 colour text 8x8 CGA|PCcjr| | JEGA| I
40x25 8x14 | ATI VIP

02h 80x25 B/W text 8x8 CGA/PCjr EGA
640x400 80x25 8x8 MCGA
720x400 80x25 VGA

80x25 B/W 8x14 | ATI VIP
03h 80x25 colour text 8x8 CGA/PCjr MCGA}EGA|VGA
04h 320x200 colour graphics CGA|PCjr EGA
05h 320x200 B/W graphics 8x8 CGA|PCjr EGA
06h 640x200 B/W graphics 8x8 CGA|PCjr EGA
07h 80x25 monochrome text 9x14 MDA EGA|VGA
08h 160x200 colour graphics CGA|/PCjr
o9h 320x200 colour graphics Pcjr VGA
OAh 640x200 colour graphics pejr
OBh BIOS font load EGA|VGA
0Ch BIOS font load EGA|VGA
ODh 320x200 graphics 40x25 8x8 EGA|VGA
OEh 640x200 graphics 80x25 8x8 EGA|VGA
OFh 640x350 graphics 80x25 8x14 EGA|VGA
10h 640x350 colour 80x25 8x14 EGA/VGA
1ih 640x480 graphics MCGA VGA

= 40x25 8x8 320x200 256/256k A000 VGA,MCGA,ATI VIP
= 80x25 8x8 640x200 Lava Chrome II EGA
= 640x400 16 Tecmar VGA/AD

12h 640x480 graphics 8x16 | |vGa|640x480 80x30 8x16 ATI EGA Wonder

13h 320x200 graphics 8x8 | |mcca| [vGa|e514
14h-20h used by EGA and VGA graphics modes
14h 640x200 80x25 8x8 Lava Chrome II EGA
15h 640x350 80x25 8x14 Lava Chrome II EGA
16h 640x350 80x25 8x14 Lava Chrome II EGA

OLYMPUSEX.1015 - 322/393

OLYMPUS EX. 1015 - 323/393

316 The Programmer's Technical Reference

16 Colour 800x600 Tecmar VGA/AD
17h 640x480 80x34 8x14 Lava Chrome II EGA

132x25 Tecmar VGA/AD
monochrome 18h 132x44 8x8 Tseng Labs EVA

640x480 80x34 8x14 Lava Chrome II EGA
16 Colour 1024x768 Tecmar VGA/AD
monochrome 19h 132x25 8x14 Tseng Labs EVA
monochrome 1Ah 132x28 8x13 Tseng Labs EVA
256 Colour 640x350 Tecmar VGA/AD
256 Colour 1Bh 640x400 Tecmar VGA/AD
256 Colour 1ch 640x480 Tecmar VGA/AD
256 Colour 1Dh 800x600 Tecmar VGA/AD
monochrome 21h Hercules Graphics, Graphics Page 1
monochrome 22h Hercules Graphics, Graphics Page 2

22h 132x44 8x8 Tseng Labs EVA
132x44 8x8 Ahead Systems EGA2001
132x43 Allstar Peacock (VGA)

23h 132x25 6x14 Tseng Labs EVA
132x25 8x14 Ahead Systems EGA2001

16 Colour , 132x25 8x8 ATI EGA Wonder/ ATI VIP
132x28 Allstar Peacock (VGA)

24h 132x28 6x13 Tseng Labs EVA
132x25 Allstar Peacock (VGA)

25h 640x480 80x60 8x8 Tseng Labs EVA
16 Colour 640x480 80x60 VEGA VGA

26h 80x60 8x8 Tseng Labs EVA .
640x480 80x60 8x8 Ahead Systems EGA2001

80x60 Allstar Peacock (VGA)
16 Colour 27h 720x512 VEGA VGA
monochrome 132x25 8x8 ATI EGA Wonder, ATI VIP

28h unknown VEGA VGA
16 Colour 29h 800x600 VEGA VGA
16 Colour 800x600 Allstar Peacock (VGA)

2Ah 100x40 Allstar Peacock (VGA)
256 Colour 2Dh 640x350 VEGA VGA
256 Colour 2Eh 640x480 . VEGA VGA
256 Colour 2Fh 720x512 VEGA VGA
256 Colour 30h 800x600 VEGA VGAunknown AT&T 6300
16 Colour 640x400 80x25 8x16 Logitech EGA
16 Colour 31h 1056x350 132x25 8x14 Logitech EGA
16 Colour 32h 640x400 80x25 8x16 Logitech EGA
16 Colour 33h 640x480 80x30 8x16 Logitech EGA
16 Colour 132x44 8x8 ATI EGA Wonder/ATI VIP
monochrome 34h 720x348 90x25 8x14 Logitech EGA
16 Colour 35h 720x350 90x25 8x16 Logitech EGA
16 Colour 36h 960x720 VEGA VGA
16 Colour 37h 1024x768 VEGA VGA
monochrome 132x44 8x8 ATI EGA Wonder/ATI VIP
2 Colour 40h 640x400 80x25 8x16 Compaq Portable II
2 Colour 640x400 80x25 8x16 AT&T 6300, AT&T VDC600

, 80x43 VEGA VGA, Tecmar VGA/AD
80x43 Video? V-RAM VGA
80x43 Tatung VGA

16 Colour , 4lh 640x200 AT&T 6300132x25 VEGA VGA
132x25 Tatung VGA
132x25 Video? V-RAM VGA

16 Colour 42h 640x400 80x25 8x16 AT&T 6300, AT&T VDC600132x43 VEGA VGA

16 Colour 640x400 80x25 8x16 Logitech EGA
132x43 Tatung VGA

‘ 132x43 Video? V-RAM VGA
43h unsupported 640x200 of 640x400 viewport | AT&T 6300

80x60 VEGA VGA

16 Colour 640x400 80x25 8x16 Logitech EGA
80x60 Tatung VGA
80x60 Video? V-RAM VGA

44h disable VDC and DEB output AT&T 6300
100x60 VEGA VGA

4 Colour 320x200 40x25 8x16 Logitech EGA

OLYMPUSEX.1015 - 323/393

OLYMPUS EX. 1015 - 324/393

4c

2c
2¢
16
2c¢

olour

olour
olour
colour
olour

monochrome
16 Colour
monochr.
monochr.?

monochrome
16 colour

monochrome
monochrome
16

16

16
16

16

16

16
16

16
16

2c
4c
ac
mon
2c
ac
4c
4c
mon
2c
16
16
16
16
16

2c
2c
2c
16
256
256
256
256
256

colour

Colour

Colour
Colour

Colour

Colour

Colour
Colour

colour
Colour

olour
olour
olour
ochrome
olour
olour
olour
olour
ochrome
olour
colour
Colour
Colour
Colour
Colour

olour
olour
olour
Colour
Colour
Colour
Colour
Colour
colour

45h

46h

47h
48h
49h
4Dh
4Eh
4Fh
50h

5lh

52h

53h

54h

55h

56h

S7h

58h

59h

5Eh

5Fh

Video Subsystems and Programming . 317

320x200

640x400
800x600
800x600
640x400
640x480

640x480

640x480

640x480

752x410

800x560

800x600

752x410

800x600

800x600
800x600
800x600
800x600
800x600
800x600
800x600

640x400
640x400
640x400
640x480
640x480

100x60
100x60
40x25
132x28
132x28
80x25
100x40
100x37
80x50"
80x30
120x25
120x43
132x25
132x25

80x43

80x34
80x30
132x25
80x34
80x30
132x44
132x43
94x29
80x60
100x40
132x43
132x43
132x43
132x43
13243
100x42
132x25
132x43
132x43
132x43
132x25
132x25
132x25
132x25
132x25
132x25
132x25
80x66
94x29
132x43
132x43
132x43
132x43
132x43
132x25
132x25
132x25
132x25
132x25
100x75
80x33
100x75

100x75
100x75

80x66

80x25

8x16

8x16
8x15
8x16

8x88x16

9x14
8x16

8x16
8x14

9x8

8x14

8x14

8x8
7x9
8x9

8x14

7x9
8x14
7x16
8x16

7x16
8x8
8x14
8x8
7x9
8x9

7%9
8x14
7x16
8x16

7X16

8x14
8x8

8x8
8x8
8x8
8x8

8x16

Tatung VGA
Video? V-RAM VGA
Logitech EGA
Tatung VGA
Video? V-RAM VGA
Logitech EGA
AT&T VDC600
AT&T VDC600
AT&T 6300, AT&T VDC600
Lava Chrome II EGA
VEGA VGA
VEGA VGA
VEGA VGA
Ahead Systems EGA2001
Paradise EGA-480
VEGA VGA
Taxan 565 EGA
Lava Chrome II EGA
Paradise EGA-480
VEGA VGA
ATI EGA Wonder
Lava Chrome II EGA
Ahead Systems EGA2001VEGA VGA
ATI EGA Wonder
Lava Chrome II EGA
ATI EGA Wonder/ATI VIP
Lava Chrome II EGA
Paradise EGA-480
Paradise VGA 256k
Paradise VGA on multisynec
Taxan 565 EGA
ATI EGA Wonder
Lava Chrome II EGA
AST VGA Plus
Hewlett-Packard D1180A
AT&T VDC600
Paradise EGA-480
Paradise VGA 256k
Paradise VGA on multisync
Taxan 565 EGA
AST VGA Plus
Hewlett-Packard D1180A
AT&T VDC600
ATI VIP 256k
Lava Chrome II EGA
NSI Smart EGA+
Paradise VGA
Paradise VGA on multisync
Taxan 565 EGA
AT&T VDC600
NSI Smart EGA+
Paradise VGA
Paradise VGA on multisync
Taxan 565 EGA
AT&T VDC600
Paradise VGA 256k
ATI EGA Wonder/ATI VIP
AT&T VDC600
AST VGA Plus
Hewlett-Packard D1180A
Paradise VGA
AT&T VDC600
AST VGA Plus
Hewlett-Packard D1180A
ATI VIP 256k
Paradise VGA,VEGA VGA
AST VGA Plus
AT&T VDC600
Paradise VGA
AST VGA Plus

OLYMPUSEX.1015 - 324/393

OLYMPUS EX. 1015 - 325/393

318 The Programmer's Technical Reference

256 Colour 640x480 Hewlett-Packard D1180A
256 Colour 640x480 80x30 8xlé AT&T VDC600 (512K)

60h ?x400 80x? Corona/Cordata BIOSv4.10+
752x410 VEGA VGA

60h 400 line graphics+80col text Corona/Cordata BIOSv4.10+
752x410 VEGA VGA

16 Colour 752x410 Tatung VGA
16 Colour 752x410 Video7 V-RAM VGA

61h 400 line graphics Corona/Cordata BIOSv4.10+
720x540 VEGA VGA

16 Colour 720x540 Tatung VGA
16 Colour 720x540 Video7 V-RAM VGA

62h 800x600 VEGA VGA
16 Colour 800x600 Tatung VGA

16 Colour 800x600 Video7 V-RAM VGA
2 Colour 63h 1024x768 Video7 V-RAM VGA
4 Colour 64h 1024x768 Video7 V-RAM VGA
16 Colour 65h 1024x768 Video7 V-RAM VGA
256 Colour 66h 640x400 Tatung VGA
256 Colour 640x400 Video7 V-RAM VGA
256 Colour 67h 640x480 Video? V-RAM VGA
256 Colour 69h 720x540 Video? V-RAM VGA

: 70h extended mode set Everex Micro Enhancer EGA
AX 0070h
BL mode (graphics mode if graphics res. listed)

00h 640x480 multisyne
Olh 752x410 multisyne
02h reserved
03h 80x34 multisyne
04h 80x60 multisynec
05h 94x29 multisyne
O6h 94x51 multisyne
O7h reserved
O8h reserved
09h 80x44 EGA
OAh 132x25 EGA
OBh 132x44 EGA
och 132x25 CGA
ODh 80x44 TTL mono
OEh 132x25 TTL mono
OFh 132x44 TTL mono

16 Colour 7ih 800x600 100x35 8x16 NSI Smart EGA+
2 Colour 74h 640x400 Toshiba 3100

7Eh Special Mode Set Paradise VGA, AT&T VDC600
BX horizontal dimension of the mode desired
cx vertical dimension of the mode desired

(both BX/cX in pixels for graphics modes, rows
for text modes)

Dx number of colours of the mode desired
(use 00h for monochrome modes}

return AL 7Eh if successful (AT&T VDC600}
BH 7JEh if successful (Paradise VGA)

7Fh Special Function Set | Paradise VGA, AT&T VDC600
BH 00h Set VGA Operation

Olh Set Non-VGA Operation
02h Query Mode Status

return BL 00h if operating in VGA mode
olh if non-VGA mode.

CH total video RAM size in 64k byte units
cL video RAM used by the current mode
03h Lock Current Mode

Allows current mode (VGA or non-VGA) to
survive reboot.

04h Enter CGA Mode (AT&T VDC600 only)
05h Enter MDA Mode (AT&T VDC600 only)

BH OAh, 0Bh, 0Ch, ODh, 0OEh, OFh
write Paradise registers 0,1,2,3,4,5
(port 03CEh indices A,B,C,D,E,F)

OLYMPUSEX.1015 - 325/393

OLYMPUS EX. 1015 - 326/393

 - note l.

Wn

13.

14.
15.

Video Subsystems and Programming | 319
BL value to set in the Paradise register.
BH 1Ah,1Bh,1Ch,1Dh, 1Eh,1Fh

read Paradise registers 0,1,2,3,4,5
(port 03CEh indices A,B,C,D,E,F)

return AL 7Fh if successful (AT&T VDC600)
BH 7Ph if successful (Paradise VGA)
BL value of the Paradise register

note colour modes (0,1,2,3,4,5,6) will set non-VGA CGA
operation. Monochrome mode 7 will set non-VGA

. MDA/Hercules operation.
82h 80x25 B&W AT&T VDC overlay mode

*

83h 80x25 AT&T VDC overlay mode *
86h 640x200 B&W AT&T VDC overlay mode *
ocoh 640x400 2/prog palette AT&T VDC overlay mode *
oc4h disable output AT&T VDC overlay mode *
ODOh 640x400 DEC VAXmate AT&T mode

If the high bit in AL is set, the display buffer is not cleared when a
new mode is selected. This may be used to mix modes on the display; for
example, characters of two difference sizes might be displayed
Modes 8-10 are available on the PCjr, Tandy 1000, and PS/2
IBM claims 100% software and hardware emulation of the CGA with the MCGA
chipset. All registers may be read and written as CGA. All charactersare
double-scanned to give 80x25 with 400 line resolution. The attributes
for setting border colour may be set on MCGA, but the borders will
remain the default colour (they cannot actually be set)
The IBM Colour Graphics Adapter (CGA) is too slow for the screen to be
updated before the vertical retrace of the monitor is completed. If the
video RAM is addressed directly, the screen will have ‘snow’ or
interference. IBM’s default is to turn the adapter off when it is being
updated, ie ‘flickering’ when the display is scrolled. :
The vertical retrace signal may be ignored when using the MCGA adapter.
The MCGA will not generate snow when written to. There is no flicker withthe MCGA.

The PCjr Video Gate Array uses a user-defined block of main system RAM
from 4 to 32k in size instead of having dedicated memory for the display.
Vertical retrace may be ignored when writing to the PCjr. There is no
flicker with the PCjr display.
The Hercules Graphics Card has 750x348 resolution
The Hercules Graphics Card takes 64k beginning at B:000 (same as MDA)
The CGA, MCGA, and VGA adapters use hardware address B:800
The BIOS clears the screen when the mode is set or reset.
For AT&T VDC overlay modes, BL contains the DEB mode, which may be 06h,40h, or 44h

Int 10 will take the shapes of the first 128 characters (00h-7Fh) from
the table located in ROM at absolute address F000:FA6E. The EGA and VGA
have hardware capability to change this.
The presence or absence of colour burst is only significant when a compo
site monitor is being used. For RGB monitors, there is no functional
difference between modes 00h and 01h or modes 02h and 03h.
On the CGA, two palettes are available in mode 04h and one in mode 05h.
The Corona built-in hi-res mono adapter similar to the Hercules but not
identical. The Corona graphics memory address is not fixed; instead one
of the control registers must be loaded with the buffer address. This
makes it impossible to run most commercial graphics software, unless
there is specifically a Corona option. The design was actually quite
impressive - you could do hi-speed animation by switching buffers
(similar to switching pages on other configurations) but you could use as
many as you could fit in available memory, at 32k per page. In addition,
the mono text buffer is always available, and independent of graphics,
making it easy to overlay text and graphics on the same screen.
Unfortunately the Corona never really took off, and no one else picked
up on the design.

Function Olh Set Cursor Type - set the size of the cursor or turn it off
entry AH Olh

CH bit values:

bits 0-4 top line for cursor in character cell
5-6 blink attribute

0,0 normal
0,1 invisible (no cursor)
1,0 slow {not used on original IBM PC)

OLYMPUSEX.1015 - 326/393

OLYMPUS EX. 1015 - 327/393

320

return
note l.

2.

3.
4.

Function 02h

The Programmer's Technical Reference

1,1 fast (may be
cL bit values:

bits 0-4 bottom line for cursor innone
The ROM BIOS default cursors are: start

monochrome mode 07h: 11
text modes 00h-03h: 6

The blinking in text mode is caused by hardware and cannot be turned off,
though some kludges can temporarily fake a nonblinking cursor.
The cursor is automatically turned off in
The cursor can be turned off in several ways. On the MDA, CGA,

20h causes the cursor to disappear. Techniquessetting register CH
that involve setting illegal starting and
display mode tend to be unreliable. Another method of turning off the
cursor in text mode is to position it to a non-displayable address, such
as (X,Y)=(0,25).
For the EGA, MCGA,

the values as appropriate for the
mapping is called cursor emulation.
BIOS cursor shape in 43 line modes,

A separate cursor is maintained for each display page, and each can be
regardless of the currently active

entry AH 02h
BH video page

00h graphics mode
03h modes 2 and 3
O7h modes 0 and 1

DH row (Y=0-24)
DL column (X=0-79 or 0-39)

return none

note 1. (0,0) is upper left corner of the screen2.

set independently with this function
page.

3. The maximum value for each text coordinat
and current display mode, as follows:
19,24 O8h
39,24 00h, Olh, 04h, OSh, 09h, ODh, 13h
79,26 02h, 03h, O6h, O7h, OAh, OEh, OFh
79,29 lih, 12h

Function 03h Read Cursor Position - return the
entry AH 03h

BH page number
00h in graphics modes
03h in modes 2 & 3
O7h in modes 0 & l

return CH top line for cursor (bits 4-0)
cL bottom line for cursor (bits 4-0)
DH row number (Y=0-24)
DL column number (X=0-79 or 0-39)

note A separate cursor is maintained for each

Function 04h Read Light Pen - fetch light pen information
entry
return

note l.
2.

checked independently with this function
active page.

AH 04h
AH 00h light pen not triggered
AH Olh light pen is triggered, v

BX pixel column
CH raster line
Cx (EGA) raster line (0-nnn)
DH row of current position
DL column of current positio

Not supported on PS/2.
The range of coordinates returned by this
display mode.
On the CGA, the graphics coordinates retu
continuous. The y coordinate is always a multiple of
coordinate is either a multiple of four (

and VGA in text modes 00h-03h, the BIOS accepts cursor
start and end values as though the character cell were 8x8, and remaps

true character cell dimensions. This
One problems is that the BIOS remaps
but returns the unmapped cursor shape.

Set Cursor Position - reposition the cursor to (X,Y)

erratic on Tandy 1000TX)

character cell

end
12

7

graphics mode. and VGA,

ending lines for the current

e depends on the video adapter

, 10h,

position of the cursor

display page, and each can be
regardless of the currently

(CGA, Jr, EGA)

alues in registers
(X=0-319,639) graphics mode
(Y¥=0~199) old graphics modes

new graphics modes
(¥=0-24) text mode

n (X=0-79 or 0-39) text mode

function depends on the current

rned by this function are not
two; the x

for 320-by-200 graphics modes)

OLYMPUSEX.1015 - 327/393

OLYMPUS EX. 1015 - 328/393

width.

Function 05h
entry AH

AL

for PCjr, most
AL

Corona/Cordata

BH
BL

Pejr

DX

Function 06h
entry AH

AL

BH
CH
cL
DH
DL

return none
note 1. Push BP

2. Affects

Function 07h
entry AHAL

return none

Video Subsystems and Programming . 321

Select Active
o5h
number of new
0-7 modes

- modes
modes

or a multiple of eight (for 640-by-200 graphics modes).
| 4. Careful selection of background and foreground colours is necessary to
' obtain maximum sensitivity from the light pen across the full screen

Page - set page number for services 6 and 7

active page
00h and Olh (CGA)
02h and 03h (CGA)
02h and 03h (EGA)

0-3
0-7

0-7 mode ODh (EGA)
0-3 mode OEh (EGA)
0-1 mode OFh (EGA)
0-1 mode 10h (EGA)
0 set address of graphics bitmap buffer (modes 60h,61h)

BX segment of buffer
OFh get address of graphics bitmap buffer (modes 60h, 61h)

BX segment of buffer
Tandy 1000s only:

80h to read CRL/CPU page registers
8lh to set CPU page register to value in BL
82h to set CRT page register to value in BH
83h to set both CPU and page registers ,

(and Corona/Cordata BIOS v4.10+)BIOS v4.10+
00h set address of graphics bitmap buffer (video modes

60h, 6ih)
BX segment of buffer

OFh get address of graphics bitmap buffer (video modes
60h, 61h)

CRT page number for subfunctions 82h and 83h
CPU page register for subfunctions 81h and 83h

return standard PC none
if called with AH bit 7=1 then
BH CRT page register {if AL = 80h)
BL CPU page register (if AL = 80h)

segment of graphics bitmap buffer (video modes 60h,6l1h; AL=0Fh)

Scroll Page Up
06h

note 1. Mono adapter has only one display page
2. CGA has four 80x25 text pages or eight 40x25 text pages
3. A separate cursor is maintained for each display page
4. Switching between pages does not affect their contents
5. Higher page numbers indicate higher memory positions

- scroll up or initialize a display ‘window’

number of lines blanked at bottom of page
00h blank
attributes to
row (Y) of
column (X) of
row (Y) of
column (X) of

entire window
be used on blank line
upper left corner or window
upper left corner of window
lower right corner of window
lower right corner of window

before scrolling, pop after
current video page only

Scroll Page Down ~ scroll down or clear a display ‘window’O7h
number of lines to be blanked at top of page
00h blank
attributes to
row (¥) of
column (X) of
row (Y) of
column (X) of

entire window
be used on blank line
upper left corner or window
upper left corner of window
lower right corner of window
lower right corner of window

note 1. Push BP before scrolling, pop after
2. Affects current video page only

OLYMPUSEX.1015 - 328/393

OLYMPUS EX. 1015 - 329/393

322 The Programmer’s Technical Reference

Function 08h Read Character Attribute-of character at current cursor pos.
entry AH 08h

BH display page number - text mode
return AH character attribute - text mode

AL ASCII code of character at current cursor position
note In video modes that support multiple pages, characters and their

attributes can be read from any page, regardless of the page currently
being displayed.

Function 09h Write Character and Attribute - at current cursor position
entry AH 09h

AL ASCII code of character to display
BH display page number - text mode
BL attribute (text modes) or colour (graphics modes)
cx number of characters to write

return none
note 1. CX should not exceed actual rows available, or results may be erratic.

2. Setting CX to zero will cause runaway.
3. All values of AL result in some sort of display; the various control

characters are not recognized as special and do not change the current
cursor position.

4. Does not change cursor position when called - the cursor must be advanced
with int 10 function OAh.

5. If used to write characters in graphics mode with bit 7 of AH set to 1
the character will by XORed with the current display contents. This
feature can be used to write characters and then ‘erase’ them.

6. In graphics mode the bit patterns for ASCII character codes 80h-OFFh are
obtained from a table. On the standard PC and AT, the location is at
interrupt vector 01Fh (0000:007Ch). For ASCII characters 00h-07Fh, the
table is at an address in ROM. On the PCjr the table is at interrupt
vector 44h (0000:00110h) and is in addressable RAM (may be replaced by
the user).

7. All characters are displayed, including CR, LF, and BS.
8. In graphics modes, the dup factor in CX produces a valid result only for

the current row. If more characters are written than there are remaining
columns in the current row, the result is unpredictable.

9. For the EGA, MCGA, and VGA in graphics modes, the address of the
character definition table is stored in the vector for int 43h.

Function OAh Write Character-display character(s) (use current attribute)
at current cursor position

entry AH OAh
AL ASCII code of character to display
BH display page - text mode
BL colour of character (graphics mode, PCjr only)
op4 number of times to write character

return none
note 1. CX should not exceed actual rows available, or results may be erratic.

2. All values of AL result in some sort of display; the various control
characters are not recognized as special and do not change the current
cursor position.

3. If used to write characters in graphics mode with bit 7 of BL set to 1
the character will by XORed with the current display contents. This
feature can be used to write characters and then ‘erase’ them.

4. In graphics mode the bit patterns for ASCII character codes 80h-OFFh are
obtained from a table. On the standard PC and AT, the location is at
interrupt vector 01Fh (0000:007C). For ASCII characters 0Oh-07Fh, the
table is at an address in ROM. On the PCjr the table is at interrupt
vector 44h (0000;00110) and is in addressable RAM (may be replaced by
the user).

5. In graphics modes, replication count in CX works correctly only if all
Characters written are contained on the same row.

6. All characters are displayed, including CR, LF, and BS.
7. For EGA, MCGA, and VGA in graphics modes, the address of the character

definition table is stored in the vector for int 43h.
8. After a character is written, the cursor must be moved explicitly with Fn

02h to the next position.

Function 0Bh Set Colour Palette - set palette for graphics or text border
Selects a palette, background, or border colour.

entry AH OBh

OLYMPUSEX.1015 - 329/393

OLYMPUS EX. 1015 - 330/393

Video Subsystems and Programming | 323
BH “00h select border (text mode)

BL colour 0-15, 16-31 for high-intensity characters
BH Olh set graphics palette with value in BL

(CGA) BL 0 green/red/yellow
1 cyan/magenta/white

(EGA): (graphics modes)BH Qo

BL has border colour (0-15) & high intensity bkgr’d colour (16-31)BH 1

BL contains palette being selected (0-1)return none

note 1. Valid in CGA mode 04h, PCjr modes 06h, O8h-OAh.2.
Although the registers in the MCGA may be set as if to change the border,
the MCGA will not display a border no matter what register settings areused.

3. In text modes, this function selects only the border colour. The

4.

5.

6.

background colour of each individual character is controlled by the
upper 4 bits of that character’s attribute byte.
On the CGA and EGA, this function is valid for palette selection only in
320-by-200 4-colour graphics modes. :
In 320-by-200 4-colour graphics modes, if BH=0lh, the following palettesmay be selected:
Palette Pixel value Colour

0 0 same as background
1 green
2 red"
3 brown or yellow

1 0 same as background
1 cyan
2 Iagenta
3 white

On the CGA in 640-by-200 2-colour graphics mode, the background colour
selected with this function actually controls the display colour for non
zero pixels; zero pixels are always displayed as black.

7. On the PCjr in 640-by-200 2-colour graphics mode, if BH=00h and bit 0 of
BL is cleared, pixel value 1 is displayed as white; if bit 0 is set,
pixel value 1 is displayed as black.

Function 0ch Write Dot - plot one graphics pixel
entry AH och

AL dot colour code (0/1 in mode 6, 0-3 in modes 4 and 5)
(set bit 7 to XOR the dot with current colour)0-3 mode 04h, O5h
0-1 mode 06h

BH page number (ignored if adapter supports only one page)
cx column (X=0000h ~ 027Fh)

(0 - 319 in modes 4,5,13, 0 - 639 in modes 6,14,15,16)
DX row (Y¥=0000h ~- 00C7h) (0 - 199 CGA)return none

note 1. Video graphics modes 4-6 only.
2. The range of valid pixel values and (x,y) coordinates depends on thecurrent video mode.

3. If bit 7 of AL is set, the new pixel value will be XORed with the current
contents of the pixel.

Function ODh Read Dot - determine the colour of one graphics pixelentry AH ODh
BH page
CX column (X=0000h - 027Fh) (0-319 or 639)
DX row (Y¥=0000h ~ 00C7h) (0-199)return AL colour of dot

note 1. Only valid in graphics modes.
2. The range of valid (x,y) coordinates and possible pixel values depends onthe current video mode.

3. Register BH is ignored for display modes that support only one page.

Function 0Eh Write TTY-write one character and update cursor. Also handles
CR (ODh), beep (07h), backspace (10h), and scrollingentry AH OEh :

AL ASCII code of character to be written
BH page number (text)

OLYMPUSEX.1015 - 330/393

OLYMPUS EX. 1015 - 331/393

324 The Programmer's Technical Reference

BL foreground colour (video modes 6 & 7 only) (graphics)
return none
note 1. The ASCII codes for bell, backspace, carriage return, and line-feed are

recognized and appropriate action taken. All other characters are
written to the screen and the cursor is advanced to the next position.

2. Text can be written to any page regardless of current active page.
3. Automatic linewrap and scrolling are provided through this function.
4. This is the function used by the DOS CON console driver.
5. This function does not explicitly allow the use of attributes to the

characters written. Attributes may be provided by first writing an ASCII
27h (blank) with the desired attributes using function 09h, then over
writing with the actual character using this function. While clumsy
this allows use of the linewrap and scrolling services provided by this
function.

6. The default DOS console driver (CON) uses this function to write text to
the screen.

Function 0Fh Return Current Video State - mode and size of the screen
obtains the current display mode of the active video controller.

entry AH OFh
return AH number of character columns on screen

AL mode currently set (see AH=00h for display mode codes)
BH current active display page | :

note 1. If mode was set with bit 7 set ("no blanking"), the returned mode will
also have bit 7 set.

2. This function can be called to obtain the screen width before clearing
the screen with Fns 06h or O7h.

Function 10h Set Palette Registers (PCjr, Tandy 1000, EGA, MCGA, VGA)
entry AH 10h

AL 00h Set Individual Palette Register
BH colour value to store
BL palette register to set

(on MCGA, only BX = 0712h is supported)return none
note On the MCGA, this function can only be called

with BX=0712h and selects a colour register set
with eight consistent colours.

O1lh Set Border Colour (overscan) (Jr, EGA, VGA)
BH colour value to store

return none

02h Set All Palette Registers and Border
ES:DX pointer to 17-byte colour list

bytes 0-15 values for palette regs. 0-15
byte 16 value for border colour

register
return none
note In 16-colour graphics modes, the following default

palette is set up:
Pixel value Colour

olh blue
02h green
03h. cyan
04h red
05h magenta
06h brown
O7h white
Osh grey
09h light blue
OAh light green
OBh light cyan
och light red
ODh light magenta
OEh yellow
OFh intense white

03h Toggle Blink/Intensity Bit (Jr & later exc Conv.)
BL ooh enable intensity

Olh enable blink

OLYMPUSEX.1015 - 331/393

OLYMPUS EX. 1015 - 332/393

04h

OSh

06h

07h

return

08h
return

09h

return

10h

return

1ih

12h

13h

14h

15h

return

16h

17h

return

Video Subsystems and Programming . 325
return none

unknown
unknown

unknown

Get Palette Register Value (VGA)
. BL palette register number

BH palette register colour value

Get Border Colour (overscan) (VGA)BH colour value

Read All Palette Registers and Overscan Register (VGA)
ES: DX pointer to buffer address (17 bytes)
ES:DxX buffer contains palette values in bytes

O00h-OFh and border colour in byte 10h.

Set Individual Video DAC Colour Register (MCGA, VGA)
BX register number .
CH new value for green (0-63)
cL new value for blue (0-63)
DH new value for red (0-63)none

note If greyscale summing is enabled, the weighted
greyscale value for each register is calculated
as described under Subfn 1Bh and is stored into
all three components of the colour register.

unknown

Set Block of Video DAC Colour Registers (MCGA, VGA)
BX starting colour register
cx number of registers to set
ES:DX pointer to a table of 3*CX bytes where each

3-byte group represents one byte each of red,
green and blue (0-63) in that order.return none

note If greyscale summing is enabled, the weighted
greyscale value for each register is calculated
as described under Subfn 1Bh and is stored into
all three components of the colour register.

Set Video DAC Colour Page (VGA)
BL 00h select paging mode

. BH 00h select, 4 pages of 64 registers
Olh select 16 pages of 16 registers

Olh select register page
BH page number (00h to 03h or 00h to OFh)return none

note This function not valid in mode 13h (320-by-200
256-colour graphics).

unknown

Read Individual Video DAC Colour Register (MCGA, VGA)
BX palette register number
CH green value
cL blue value
DH red value

unknown

Read Block of Video DAC Colour Registers (MCGA, VGA)
BX starting palette register
cx number of palette registers to read
ES:DX pointer for palette register list (3 * CX bytes

in size)
cx number of red, green and blue triples in buffer

OLYMPUSEX.1015 - 332/393

OLYMPUS EX. 1015 - 333/393

return
note

BH
BL

ES:DX

none

The Programmer’s Technical Reference
ES:DX address of buffer with colour list

note The colour list returned in the caller's buffer consists
of a series of 3-byte entries corresponding to the
colour registers. Each 3~-byte entry contains the
register’s red, green, and blue components in that order.

18h Set Pixel Mask (undocumented)
BL new pixel value

19h Read Pixel Mask (undocumented)
BL value read

1Ah Read Video DAC Colour-Page State (VGA)
return BH current page

BL paging mode
00h four pages of 64 registers
O1lh sixteen pages of 16 registers

1Bh Perform Greyscale Summing (MCGA, VGA)
BX starting palette register
cx number of registers to convert

return none
note 1. For each colour register, the weighted sum of its red,

green, and blue values is calculated (30 red + 59 green
+ 11 blue) and written back into all three components of
the colour register.

2. The original red, green, and blue values are lost.

colour value
if AL=00h palette register to set (00h-0Fh)
if AL=03h 00h to enable intensity

Olh to enable blinking
if AL=02h pointer to 16-byte table of register values

followed by the overscan value:
bytes 0-15 values for palette registers 0-15
byte 16 value for border register

pAC is Digital to Analog Convertor circuit in MCGA/VGA chips.
Function 11h
entry AH

AL

Character Generator Routine (EGA and after)
11h
The following functions will cause a mode set, completely
resetting the video environment, but without clearing the video
buffer.

00h, 10h Load User-Specified Patterns or Fonts (EGA, MCGA, VGA)
BH number of bytes per character pattern
BL block to load in map 2
cx count of patterns to store
Dx character offset into map 2 block (lst code)
ES: BP pointer to user font table

return none
note 1. If AL=10h, page 0 must be active. The bytes per

character, rows, and length of the refresh buffer are
recalculated.

2. The controller is reprogrammed with the maximum scan line
(points-1), cursor start (points-2), cursor end (points-
1), vertical display end ((rows*points)-1), and
underline locations (points-1, mode 7 only).

3. If subfn 10h is called at any time other than immediately
after a mode set, the results are unpredictable.

4. On the MCGA, a subfn 00h call should be followed by a
subfn 03h call so that the BIOS will load the font into
the character generator’s internal font pages.

5. Subfn 10h is reserved on the MCGA. If it is called, subfn
00h is performed.

6. Text modes only.

Olh, 11h Load ROM 8 by 14 Character Set (EGA, VGA)
BL block to. load

return none
note 1. Text modes only.

OLYMPUSEX.1015 - 333/393

OLYMPUS EX. 1015 - 334/393

2.

3.

02h, 12h

return
note 1.

2.

03h

(EGA/MCGA) bits

(VGA) bits

return
note l.

2.

3

04h,14h

return
note 1.

2.

3.

4.

5.

6.

Video Subsystems and Programming , 327

For AL=1lh, page 0. must be active. The points (bytes per
character), rows, and length of the refresh buffer arerecalculated.

The controller is reprogrammed with the maximum scan line
(points-1), cursor start (points-2), cursor end (points—
1), vertical display end ((rows*points)-1), and
underline location (points-1, mode 7 only).
If subfn 11h is called at any time other than right after
a mode set, the results are unpredictable.
Subfns Olh and 11h are reserved on the MCGA. If either is

‘called, subfn 04h is performed instead.

Load ROM 8x8 Double-Dot Patterns (EGA, MCGA, VGA)BL block to load
none

Text modes only.
If AL=12h, page 0 must be active. The points (bytes per
character), rows, and length of the refresh buffer arerecalculated.

The controller is reprogrammed with the maximum scan line
(points-1), cursor start (points-2), cursor end (points-
1), vertical display end ((rows*points)-1), and underline
location (points-1, mode 7 only).
If subfn 12h is called at any time other than right after
a mode set, the results are unpredictable.
For the MCGA, a subfn 02h call should be followed by a
subfn 03h call so the BIOS will load the font into the
character generator’s internal font pages.
Subfn 12h is reserved on the MCGA. If it is called, subfn02h is executed.

Set Block Specifier (EGA, MCGA, VGA)
BL block specifier select mode
0-1 char block selected by attr bytes with bit 3
2-3 char block selected by attr bytes with bit 3
4-7 not used (should be 0) :0,1
2,3
6-7

BRO
74 char block selected by attr bytes with bit 3
5 char block selected by attr bytes with bit 3

not used (should be 0)

0
1

none

Determines the char blocks selected by bit 3 of char
attribute bytes in text display modes.
When using a 256 character set, both fields of BL should
select the same character block. In such cases,
character attribute bit 3 controls the foreground
intensity. When using 512-character sets, the fields of
BL designate the blocks holding each half of the
character set, and bit 3 of the character attribute
selects the upper or lower half of the character set.

- When using a 512-char set, a call to int 10h/fnl0h/ subfn
00h with BxX=0712h is recommended to set the colour
planes to eight consistent colours.

Load ROM 8x16 Text Character Set (MCGA, VGA)BL block
none
For text modes.

If AL=14h, page 0 must be active. The points (bytes per
char), rows,.and refresh buffer length are recalculated
The controller is reprogrammed with the maximum scan line
(points-1), cursor start (points-2), cursor end (points-
1), vertical display end (rows*points -1 for 350 and 400
line modes, or rows*points*2 -1 for 200 line modes), and
underline location (points -1, mode 7 only).
If subfn 14h is called any time other than just after a
mode set, the results are unpredictable.
For MCGA, a subfn 04h call should be followed by a subfn
03h call so that the BIOS will load the font into the
character generator’s internal font pages.
Subfn 14h is reserved on the MCGA. If it is called, subfn
04h is executed.

OLYMPUSEX.1015 - 334/393

OLYMPUS EX. 1015 - 335/393

328

20h

return
note l.

21h

2.

return
note 1..

3.

return
note 1.

23h

24h

30h

2.
3.

4.

The Programmer's Technical Reference

Set User 8x8 Graphics Chars (int 1Fh) (EGA, MCGA, VGA)
ES: BP pointer to user font tablenone
This table is used for chars 80h-OFFh in graphics modes
04h-06h.
If this subfn is called at any time other than just after
a Mode set, the results are unpredictable.

Set int 43h for User Graphics Chars (EGA, MCGA, VGA)
BL character rows specifier

OOH if user specified (see register DL)
olh 14 (OEh) rows
02h 25 (19h) rows
03h 43 (2Bh) rows

cx bytes per character (points)
DL character rows per screen if BL=00h
ES:BP pointer to user tablenone

The video controller is not reprogrammed.
This function works for graphics modes.
If this subfn is called at any time other than right
after a mode set, the results are unpredictable.

Set int 43h for ROM 8x14 Font (EGA, MCGA, VGA)
BL character rows specifier

00h if user specified (see register DL)
Olh 14 (0OEh) rows
02h 25 (19h) rows
03h 43 (2Bh) rows

DL character rows per screen (if BL=00h)none

The video controller is not reprogrammed.
This function works for graphics modes.
If this subfn is called at any time other than right
after a mode set, the results are unpredictable.
When this subfn is called on the MCGA, subfn 24h is
substituted.

Set int 43h for ROM 8x8 Double Dot Font (EGA, MCGA, VGA)
BL character row specifier

ooh if user specified (see register DL)
Olh 14 (OEh) rows
o2h 25 (19h) rows
03h 43 (2Bh) rows

DL character rows per screen (BL=00h)
return none
note 1. Updates the video BIOS data area. The video

controller is not reprogrammed.
2. Provides font selection in graphics modes.
3. If called at any time other than immediately

after a mode set the results are unpredictable.

Set int 43h for 8x16 Graphics Font (MCGA, VGA)
BL character row specifier

00h if user specified (see register DL)
olh 14 (OEh) rows
02h 25 (19h) rows
03h 43 (2Bh) rows

DL character rows per screen (BL=00h)
return none
note 1. Updates the video BIOS data area. The video

controller is not reprogrammed.
2. Provides font selection in graphics modes.
3. If called at any time other than immediately

after a mode set the results are unpredictable.

Get Font Information (EGA, MCGA, VGA)
BH pointer specifier

00h current int 1Fh pointer
Oih current int 43h pointer

OLYMPUSEX.1015 - 335/393

OLYMPUS EX. 1015 - 336/393

Video Subsystems and Programming . 329
02h ROM 8x14 char font ptr (EGA, VGA only)
03h ROM 8x8 double dot font pointer

(characters 00h-7Fh)
04h ROM 8x8 double dot font (top half)

(characters 80h-0FFh)
05h ROM text alternate (9x14) pointer

(EGA, VGA only)
06h ROM 8x16 font (MCGA, VGA only)
07h ROM alternate 9x16 font (VGA only)

return CX points (bytes per character)
DL rows (character rows on screen -1)
ES:BP pointer to font table

Function 12h Alternate Select (EGA and after)
entry AH 12h ,

- BL 10h Return Configuration Information (EGA, VGA)
return BH 00h if colour mode is in effect (3Dx)

Olh if mono mode is in effect (3Bx)
BL 00h if 64k EGA memory installed

Olh if 128k EGA memory installed
02h if 192k EGA memory installed
03h if 256k EGA memory installed
10h EGA adapter is installed (use to check)

CH feature bits (see note 2)
cL switch settings (see note 3)

note 1. Obtains information for the active video subsystem.
2. The feature bits are set’ from Input Status register 0 in

response to an output on the specified Feature Control
register bits:

Feature Feature Control Input Status
Bit(s) Output Bit Bit
0 0 5
1 0 6
2 1 5
3 1 6
4-7 not used

3. The bits in the switch settings byte indicate the state
of the EGA’s configuration DIP switch (l=off, O=on).

bit 0 configuration switch 1
1 configuration switch 2
2 configuration switch 3
3 configuration switch 4
4-7 not used

20h Select Alternate Print Screen Routine (EGA, VGA)return none

note Selects PrtSc routine for screen modes using more thanthe default BIOS 25 lines.

30h Select Vertical Resolution for Text Modes (VGA)AL 00h 200 scan lines
Olh 350 scan lines
02h 400 scan lines

return AL 12h if function supported
00h VGA not active

note The selected value takes effect the next time int 10h/Fn
00h is called to select the display mode.

31h Enable/Disable Default Palette Loading (MCGA, VGA)
AL 00h enable default palette loading

Olh disable default palette loading
return AL 12h if function was supported

32h Enable/Disable Video Addressing (MCGA, VGA)AL ooh enable video access
Olh disable video access

return AL 12h if function was supported
note Enables or disables CPU access to the video adapter’s I/O

ports and video refresh buffer.

33h Enable/Disable Default Greyscale Summing (MCGA, VGA)
AL ooh enable greyscale summing

OLYMPUSEX.1015 - 336/393

OLYMPUS EX. 1015 - 337/393

330

Function 13h
entry

return
note i.

2.

AH
AL

:BP
none

Recognizes CR, LF, BS, and bell.This function is not available on the original IBM pc or XT unless an EGA
or later video adapter is installed.

Function 14h
entry AH

AL

The Programmer’s Technical Reference
Olh disable greyscale summing

return AL 12h if function was supported
note 1. Works for the currently active display.2. When enabled, greyscale summing occurs during displaymode selection, palette programming, and colour register

loading.

34h Enable/Disable Text Cursor Emulation (VGA)
AL 00h enable cursor emulation

Olh disable cursor emulation
return AL 12h if function was supported
note 1. Works for currently active display.2. When cursor emulation is enabled the BIOS automatically

remaps int 10h/Fn Olh (Cursor Starting & Ending Lines)
for the current character cell dimensions.

35h Switch Active Display (PS/2) (MCGA, VGA)
AL 00h disable initial video adapter

Olh enable motherboard video adapter
02h disable active video adapter
03h enable active video adapter
80h *undocumented* set. system board video

active flag
ES:DX 128 byte save area puffer if AL=00h, 02h or 03h

return AL 12h if function was supportednote 1. Allows selection of one of two video adapters in the
system when memory Or port addresses conflict.2. This subfn cannot be used unless both video adapters have
a disable capability (int 10h/Fni12h subfn 32h).

3. If there is no conflict between the system board video
and the adapter board video in memory or port usage,
both video controllers can be active simultaneously.

36h Enable/Disable Video Refresh (VGA)
AL 00h enable refresh

Olh disable refresh
return AL 12h if function supportednote Enables or disables the video refresh for the currently

active display.

55h unknown (used by ATI and Taxan video boards) fns 00h and
02h

Enhanced String Write (except original PC)
13h
00h Write String, Don’t Move cursor
Olh Write String and Update Cursor02h Write String of Alternating Characters and Attributes;

Don’t Move Cursor
bit 0: set in order to move cursor after write
bit 1: set if string contains alternating chars and

attributes :
o3h Write String of Alternating Characters and Attributes;

Move Cursor
pit 0: set in order to move cursor after write
bit 1: set if string contains alternating characters and

attributes

display page number
attribute (if AL=00h or O1h)
length of string
row of starting cursor position (y)
column of starting cursor position (x)
pointer to start of string

Load LCD Character Font (convertible)
14h
ooh load user-specified font

OLYMPUSEX.1015 - 337/393

OLYMPUS EX. 1015 - 338/393

 return unknown

Function i5h
entry AH
return AX

Video Subsystems and Programming . - 331
BH number of bytes per character -
BL 00h load main font (block 0)

Olh load alternate font (block 1)cx number of characters to store
Dx character offset into RAM font area
ES:DI pointer to character font
Olh load system ROM default font
BL 00h load main font (block 0)

olh load alternate font (block 1)
02h set mapping of LCD high intensity attribute
BL 00h ignore high intensity attribute

Olh map high intensity to underscore
02h map high intensity to reverse video
03h map high intensity to selected alternate font

Return Physical Display Parameters (Convertible)15h
Alternate display adapter type
0000h none
5140h LcD
5151h mono
5153h CGA

ES:DI pointer to parameter table:
word # Information

Olh monitor model number
02h vertical pixels per meter
03h horizontal pixels per meter
04h total number of vertical pixels
O5h total number of horizontal pixels
06h horizontal pixel separation in micrometers
O7h vertical pixel separation in micrometers

Functions 15h-19h apparently not used

Function 1Ah

entry AH

return AL

Get or Set Display Combination Cede (PS/2) (MCGA, VGA)
Using the compatibility BIOS of the PS/2 Models 50, 60, 80
there is a way to determine which video controller and attached
display are on the system. The Display Combination Code (DCC) is
a Video BIOS function that provides the capability.
1Ah .
00h read display combination code
Olh write display combination code
BH inactive display code (if AL=01h)
BL active display code (if AL=O01h)
1Ah indicates Compatibility BIOS is supported, any other

value is invalid
BH Display Combination Code (DCC) (if AH=00h)

00h no display . .
Olh IBM monochrome adapter and 5151 display
02h IBM colour/graphics adapter w/5153 or 5154 colour display
03h reserved
04h IBM EGA, 5153 or 5154 colour display
05h IBM EGA, 5151 monochrome display
06h IBM PGA, 5175 colour display
07h VGA, analog monochrome display
O8h VGA, analog colour display
09h reserved
OAh MCGA, digital colour display
OBh MCGA, analog monochrome display
och MCGA, analog colour display
ODh-OFEh reserved
OFFh unknown display type

BL active display device code (if AH=00h)
note This function may be used to test for VGA, since it is not supported in

earlier adapters. If AL is still 14h when the call completes, a VGA or
MCGA compatible adapter is present.

Function 1Bh
entry ABBX

Functionality/State Information (PS/2) (MCGA, VGA)
1Bh
implementation type (always 0000h)

OLYMPUSEX.1015 - 338/393

OLYMPUS EX. 1015 - 339/393

332 The Programmer's Technical Reference

ES:DI pointer to 64 byte buffer
return AL 1Bh if function supported

ES:DI buffer filled
00h-03h address of functionality table (see note 1)04h current video mode
OSh-06h number of columns
O7h-O08h length of regen buffer in bytes
O9h-OAh starting address in regen buffer of upper left corner of

display
OBh-0Ch cursor position for page 0 (y,x)
ODh-OEh cursor position for page 1 (y,x)
OPh-10h cursor position for page 2 (y,x) i
1lh-12h cursor position for page 3 (y,x) :
13h-14h cursor position for page 4 (y,x) |
15h-16h cursor position for page 5 (y,x)
17h-18h cursor position for page 6 (y,x)
19h-1Ah cursor position for page 7 (y,x)
1Bh cursor starting line
1ch cursor ending line
1Dh active display page
1Eh-1Fh adapter base CRTC port address (3BXh mono, 3DXh colour)
20h current setting of register 3B8h or 3D8h !
21h current setting of register 3B9h or 3D9h
22h number of character rows
23h-24h character height in scan lines
25h Dcc of active display
26h pcc of alternate (inactive) display
27h-28h number of colours supported in current mode (0 for mono}
29h number of pages supported in current mode
2An number of scan lines active

ooh 200 scan lines
Olh 350 scan lines
02h 400 scan lines

‘03h 480 scan lines

04h-OFFh reserved :
2Bh primary character block . |
2Cch secondary character block :
2Dh miscellaneous flags byte :

bit 0 all modes on all displays on (always 0 on MCGA) . {
1 greyscale summing on
2 monochrome display attached
3 default palette loading disabled |
4 cursor emulation enabled (always 0 on MCGA)
5 O=intensity; 1=blinking6 reserved
7 reserved

2Eh-30h reserved
31h video memory available

00h 64k
Olh 128k
02h 192k
03h 256k

32h save pointer state flags byte |bit 0 512 character set active
1 dynamic save area active
2 text mode font override active |
3 graphics font override active
4 palette override active
5 DCC override active
6 reserved
7 reserved

33h-3Fh reserved

note State Functionality Table format (16 bytes)
00h modes supported #1

bit 0 mode 00h supported
1 mode 01h supported
2 mode 02h supported
3 mode 03h supported
4 mode 04h supported
5 mode 05h supported
6 mode 06h supported

OLYMPUSEX.1015 - 339/393

OLYMPUS EX. 1015 - 340/393

Video Subsystems and Programming 333

7 mode 07h supported
Olh modes supported #2

bit 0 mode 08h supported
1 mode 09h supported
2 mode OAh supported
3 mode OBh supported
4 mode 0Ch supported
5 mode ODh supported
6 mode OEh supported
7 mode OFh supported

02h modes supported #3
bit 0 mode 10h supported

1 mode 11h supported
2 mode 12h supported
3 mode 13h supported
4-7 reserved

03h to 06h reserved
O7H scan lines available in text modes

bit 0 200 scan lines :
1 350 scan lines
2 400 scan lines3-7 reserved

osh total number of character blocks available in text modes
09h maximum number of active character blocks in text modes
OAh miscellaneous BIOS functions #1

bit 0 all modes on all displays function supported (0 on MCGA)
1 greyscale summing function supported
2 character font loading function supported
3 default palette loading enable/disable supported
4 cursor emulation function supported
5 EGA 64-colour palette present
6 colour palette present
7 colour paging function supported

OBh miscellaneous BIOS functions #2
bit 0 light pen supported

1 save/restore state function 1Ch supported (0 on MCGA)
2 intensity blinking function supported
3 Display Combination Code supported
4-7 reserved

och to 0Dh reserved
OEh Save pointer function flags

bit 0 512 character set supported
1 dynamic save area supported
2 text font override supported
3 graphics font override supported
4 palette override supported
5 pcc extension supported
6 reserved
7 reserved

OFh reserved

Function 1Ch Save/Restore Video State (PS/2 50+) (VGA)
entry AH 1ch

AL 00h return state buffer size
olh save video state

ES:BX buffer address
02h restore video state

ES:BX buffer address of previously saved state
cx requested states (1 byte)

bits 0 save or restore video hardware state
1 save, or restore BIOS data areas
2 save or restore colour registers and DAC state
3-OFh reserved

return AL 1ch if function supported
BX number of 64 byte blocks needed (function 00h)

note 1. VGA only.
2. Saves or restores the digital-to-analog converter (DAC} state and colour

registers, BIOS video driver data area, or video hardware state.
3. Subfn 00h is used to determine the size of buffer to contain the

specified state information. The caller must supply the buffer.
4. The current video state is altered during a save state operation -

OLYMPUSEX.1015 - 340/393

OLYMPUS EX. 1015 - 341/393

334 The Programmer's Technical Reference

(AL=01h). If the requesting program needs to continue in the same video
state, it can follow the save state request with an immediate call torestore

Function 40h
entry AH
return unknown

Function 41h
entry AH
return unknown

Function 42h
entry AH
return unknown

Function 43h
entry AH

AL
return unknown

Function 44h

the video state.

Set Graphics Mode (Hercules Graphics Card)40h

Set Text Mode (Hercules Graphics Card)4lh

Clear Current Page (Hercules Graphics Card)42h

Select Drawing Page (Hercules Graphics Card)43h

page number (0 or 1)

Select Drawing Function (Hercules Graphics Card)
entry AH 44h

AL 00h clear pixels
01h set pixels
02h invert pixelsreturn unknown

Function 45h
entry AH

AL
return unknown

Function 46h

Select Page to Display (Hercules Graphics Card)45h
page number (0 or 1)

Draw One Pixel (Hercules Graphics Card)
entry AH 46h

DI x (0-720)
BP y (0-347)

return unknown

note Function 44h determines operation and function 43h which page to use.
Function 47h

Find Pixel Value (Hercules Graphics Card)
entry AH 47h

DI x (0-720)
BP y (0-347)

return AL 00h pixel clear
Olh pixel set

note Function 43h specifies page that is used.

Function 48h
Move to Point (Hercules Graphics Card)

entry AH 48h
DI x (0-720)
BP y (0-347)return unknown

Function 49h
Draw to Point (Hercules Graphics Card)

entry AH 49h
DI x (0-720)
BP y (0-347)

return unknown

note Function 48h or 49h specify first point, 44h operation and 43h page touse.

Function 4Ah
entry AH
return unknown

Function 4Bh

Block Fill (Hercules Graphics Card)4Aah

Display Character (Hercules Graphics Card)
entry AH 4Bh

AL ASCII code for character to display
DI x (0-720)
BP y (0-347)

OLYMPUSEX.1015 - 341/393

OLYMPUS EX. 1015 - 342/393

Video Subsystems and Programming . 335
return unknown

note Unlike the other BIOS character functions character position is specified
in pixels rather than rows and columns.

Function 4ch Draw Arc (Hercules Graphics Card)
entry AH 4Ch
return unknown

Function 4Dh Draw Circle (Hercules Graphics Card)
entry AH 4Dh .
return unknown

Function 4Eh Fill Area (Hercules Graphics Card)
entry AH 4Eh
return unknown

‘Function 6Ah Direct Graphics Interface Standard (DGIS)
entry AH 6Ah

AL 00h Inquire Available Devices
BX 00h
cx 00h

DX buffer length (may be zero)
ES:DI address of buffer

return BX number of bytes stored in buffer
cx bytes req‘d for all descriptions (0 if no DGIS)

note Buffer contains descriptions and addresses of
DGIS-compatible display(s) and printer(s)

Olh Redirect Character Output
cx 00h

ES:DI address of device to send INT 10 output to
return CX 00h output could not be redirected

not 00h int 10h output now routed to requested
display

02h Inquire int 10h Output Device
ES:DI 0:0

- return ES:DI 0:0 if current display is non-DGIS
else address of current DGIS int 10h display

Function 6Fh Set Video Mode (VEGA Extended EGA/VGA)
entry AH 6F

AL 05h
BL mode resoltn colours

62h 800x600 16
65h 1024x768 16
66h 640x400 256
67h 640x480 256
68h 720x540 256
69h 800x600 256

Function 70h Get Video RAM Address (Tandy 1000)
entry AH 70h
return AX Segment addresses of the following

BX Offset address of green plane
CX segment address of green plane
DX segment address of red/blue plane

note (red offset = 0, blue offset = 4000)

Function 71h Get INCRAM Addresses (Tandy 1000)
entry AH 7ih
return AX segment address of the following

BX segment address of INCRAM
cx offset address of INCRAM

Function 72h Scroll Screen Right (Tandy 1000)
entry AH. 72h

AL number of columns blanked at left of page
ooh blank window

BH attributes to be used on blank columns

CH,CL row, column address of upper left corner
DH, DL row, column address of lower right corner

OLYMPUSEX.1015 - 342/393

OLYMPUS EX. 1015 - 343/393

336 The Programmer’s Technical Reference

Function 73h Scroll Screen Left (Tandy 1000)
entry AH 73h

AL number of columns blanked at right of page00h blank window
BH attributes to be used on blank columns
cH,CL row, column address of upper left corner
DH, DL row, column address of lower right corner

Function 81h DESQview video - Get Video Buffer Segment :
entry AH 8lh :

DX 4456h (‘DV’)
return ES segment of DESQview data structure for video buffer

byte ES:[0] current window number (DV 2.0+)
note This function is probably meant for internal use only, due to the magic |

value required in DX.

Function 82h DESQview - Get Current Window Info
entry AH 82h

DX 4456h (‘DV’)
return AH unknown i

AL current window number |BH unknown

BL direct screen writes :
0 program does not do direct writes
1 program does direct writes, so shadow buffer not usable ;CH unknown

cL current video mode !
DS segment in DESQview for data structure

for DV 2.00+, structure is:
byte DS:[0] window number
word DS:[1]) segment of other data structure
word DS:[3] segment of window’s object handle

ES segment of DESQview data structure for video buffer ,

note This function is probably meant for internal use only, due to the magic |
value required in DX.

Function OBFh Compaq Portable Extensions
entry AH OBFh

AL subfunction

00h Select External Monitor i
(all registers preserved, the internal monitor is blanked ‘l
and the external monitor is now the active monitor) iOlh Select Internal Monitor
(all registers preserved, the external monitor is blanked
and internal monitor is now active monitor)

02h Set Master Mode of Current Active Video Controller
BH 04h CGA

05h EGA
07h MDA

03h Get Environment
BX 0000h

return BH active monitor i
ooh external
Olh internal

BL master mode

oon switchable VDU not present04h CGA
05h EGA
O7h MDA

CH 00h (reserved)
cL switchable VDU mode supported (1 byte) bits:

0 CGA supported
1,2 reserved (1)
3 MDA supported
4-7 reserved (1) i

DH internal monitor type ,
00h none :
Olh dual-mode monitor

02h 5153 RGB monitor i
03h Compaq colour monitor
04h 640x400 flat panel display

OLYMPUSEX.1015 - 343/393

OLYMPUS EX. 1015 - 344/393

Video Subsystems and Programming 337

DL external monitor type.
00h none
Olh dual-mode monitor
O2h 5153 RGB monitor
03h Compaq colour monitor
04h 640x400 flat panel display

04h Set Mode Switch Delay
BH switch

00h enable delay
Olh disable delay

Function OEFh MSHERC.COM - Installation Check?
entry AH OEFh
return DX unknown value
note MSHERC.COM is a program included with the PC Tech Journal high-level

benchmark suite that adds video modes 08h and 88h for Hercules cards,
and supports text in the new graphics modes.

Functions OFOh, OFlh, OF2h, OF3h, OF4h, OF5h, OFAh
Microsoft Mouse Driver EGA Support.
See Chapter 14 for details.

OF6h, OF7h,

Function OFEh Get Virtual Buffer Address (text mode only)
(Topview/DesQview/Taskview)

entry AH OFEh
ES:DI pointer to assumed video buffer

return ES:DI pointer to actual video buffer
note 1. This alternate video buffer can be written to directly, in the same

manner as writing to B:000 or B:800. The MT program will manage the
actual display.

2. There is no need to synchronize vertical retrace when writing to the
alternate buffer: this is managed by the MT program

3. If TopView or DESQview is not running, ES:DI is returned unchanged.
4. TopView requires that function OFFh be called every time you write into

the buffer to tell TopView that something changed
5. This function returns the address of the virtual screen in the ES:DI

registers. If TaskView returns a virtual screen address, you can use a
combination of BIOS functions and writing directly to the virtual screen
which will automatically update the real screen when it is visible. You
do not have to synchronize screen writing to the virtual screen even if
the screen is in a colour text mode. A common way of using this function
is to place the real screen address in the ES:DI registers, put OFEh in
the AH register, then issue an interrupt 10h. If neither TopView nor
TaskView are present, the values of ES and DI will remain the same.

Function OFFh Update Real Display (text mode only) (TopView)
Update Video Buffer (LTopview/DesQview/Taskview)

entry AH OFFh
cx number of sequential characters that have been modified
DI offset of first character that has been modified
ES segment of video buffer

return unknown
note 1. DesQview supports this call, but does not require it

2. Avoid CX=0.
3. This function is unnecessary in TaskView, but using it will provide

compatibility with TopView as well. After
directly to the virtual screen, place the

you have written information
start address of the changed

information in ES:DI, the number of integers (not bytes) changed in Cx,
OFFh in AH, and call int 10h. In TopView, the screen will be updated to
reflect your changes. In TaskView, the visible screen will automatically
reflect your changes.

OLYMPUSEX.1015 - 344/393

OLYMPUS EX. 1015 - 345/393

These scan codes are generated bypressing a key on the PC’s keyboard. This is the ‘make’ code.
A ‘break’ code is generated when the key is released. The break scancodeis 128 higher than the
makecode, andis generatedby setting bit 7 of the scan code byteto 1.

IBM PC Keyboard Extended Codes
The keyboard returns an 0 in the ASCII codebyte to indicate that the code passed in the Scan
Codebyteis ‘special’.

Codes marked with an asterisk (*) are available only on the ‘enhanced’ keyboard.

key
escape

Flowoannubwnr
tab
backtab
RETURN
Home

UpArrow
PgUp
grey -
LArrow
keypad 5
RArrow
grey +
End
pnarrow
PgDn
Ins
Del
Prtse
L shift

Normal

0:82
0;83

42

Appendix 1 |

Shift

0:15

Keyboard Scan Codes

Control

0;148*

0;119
0;141*
0;132

03115
hone

0;116

0;117
0;145*
0;118
0;146*
0;128
0;114

Alt

0;120
0;121
0;122
0;123
0;124
0:125
0;126
07127
0;128
0;129
0;130
0;131
0;165*
0;15

0;166*
0;151*
0;152*
0;153*

o ~e ~J
0;154*
none

0;155* o we ~~
0;156*
0;160*
0;161*
0:162*
0;163*

NFPWNEFAKHDUSELOD~!
pe

OLYMPUSEX.1015 - 345/393

OLYMPUS EX. 1015 - 346/393

R shift
alt key
capslock
spacebar
control
numlock
scrollck
'

aN
Ctrl -
Ctrl 5
Ctrl +
ctrl1-*

soneaaamNNRECEtHAOQVOSDSewUroOMoanoD
F10
F1l
F12
F1l
F12

Shift Byte
Right shift
Left Shift
Control
Alt

54
56

57
29
69
70
39
26
27
40
43
53
51
52

30
48
46
32
18
33
34
35
23
36
37
38
50
49
24
25
16
19
31
20
22
47
17
45
21
44

0;59
0;60
0O;61
0;62
0;63
0;64
0;65
0;66
0:67
0;68
07152
0;153
03133
0;134

ol
02
04
08

Keyboard Scan Codes

0;84
0;85
0;86
0;87
0;88
0;89
0;90
0;91
0:92
0;93
0;:162
07163
0;135
0;136

0;149*

0;142*
0;143*
0;144*
0;150*

0;94
0;95
0:96
0;97
0;98
0;99
0;100
0;101
0;102
0;103
0;172
0;173
0;137
0;138

339

0;164*

0;30
0748
0746
0;32
0;18
0;33
0734
0735
0:23
0;36
0;37
0;38
0;50
0749
0O;24
0;25
0;16
0;19
0;31
0;20
0722
0;47
0;17
0;45
Q;21
0O;44
0;104
0;105
07106
0;107
0;108
0;109
0;110
0O;1121
0;112
0;113
0;182 Tandy
0;183 Tandy
0;139 IBM
0;140 IBM

A shift byte can be created by adding together as manyof the above as desired. Thatis, the shift
combination Control+Alt would be represented by a hex C, which is 04 + 08.

OLYMPUSEX.1015 - 346/393

OLYMPUS EX. 1015 - 347/393

340 The Programmer’s Technical Reference

BIOSkeystroke codes in hexadecimal
keyEsc

it
2@
34
4$
5%
6*
7&
B*

KO=.Q

atanter
trl

hiftBBOTAKN--TSSRROTQheeOMeoDyoOoreKct
Nes NVA
Rshift
Prtsc
Alt
Space
CapsL
Fl
F2
F3
F4

F5
F6
F7
F8
F9
F10

Normal
011B
0231 /1°
0332 ‘2°
0433 43°
0534 ‘4°
0635 ‘5°
0736 ‘6°
0837 #67"
0938 *8F
OA39 =6'9°
0B30 ‘0°
oc2D *-'
OD3D ‘='
OEO8
OFO9
1071 ‘q’'
1177 ‘w'
1265 ‘e’
1372 ‘rr!
1474 «‘*t"
1579 ‘y’
1675 fu’
1769 ‘i!’
186F ‘o'!
1970 6‘p’
1A5B '['
1B5D ‘}’
1coD

1E61 ‘a’
1F73 ‘8s’
2064 ‘qd’
2166 ‘f’
2267 ‘'g’
2368 th’
246A ‘3’
256B ‘k’
266C ‘1’
273B ‘3°
2827 are
2960 aes

2B5c ‘\'
2C7A ‘2!
2D78 ‘x’
2E63 ‘c’
2F76 vt
3062 ‘b*
316E ‘n’
326D ‘m’
332C ‘,’
342E /.'
352F ‘/'

B72A ‘#!

3920 °°

3B00
3c00
3D00
3E00

3F00
4000
4100
4200
4300
4400

Shift
011B
0221 ‘1°
0340 ‘@"
0423 «'#
0524 «‘$"
0625 *%
O75E °**
0826 ‘&’
O92A +
OA28 *('
OB29 ‘)*
OCSF «'OD2B ‘F'
OEO8
OFOO
1051 ‘Q
1157 ‘We
1245 'E
1352 ‘R!
1454 tT
1559 'Y"
1655 ‘Ur
1749 IP
184F ‘O°
1950 ‘Pt
1ATB ‘{'
1B7D ‘}*
1c0D

1E41 ‘aA’
1F53 ‘8’
2044 ‘Dp’
2146 ‘F'
2247 'G’
2348 'H’
244A ‘5°
254B ‘K’
264c 'L!
273A ‘3°
2822 °"'
297E '7!

2B7c ‘| "2CSA 2"
2D58 ‘Xx’
2843 ‘Cc’
2P56 Vv"
3042 ‘BF
314E ON’
324D ‘'M!
333c "7
343E
353F ‘2°

3920 °°

5400
5500
5600
5700

5800
5900
5A00
5B00
5c00
5D00

Control
011B

0300

6000
6100

6200
6300
6400
6500
6600
6700

Alt

7800
7900
7A00
7B00
7000
7D00
7E00
7F00
8000
8100
8200
8300

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

6A00
6B00

6c00
6D00
6E00
6F00
7000
7100

OLYMPUSEX.1015 - 347/393

OLYMPUS EX. 1015 - 348/393

NumLock
Scroll
7 Home
8 up
9 PgUp
Grey -
4 left
5.

6 right
Grey +
1 End
2 down
3 PgDn
Ins
Del

4700
4800
4900
4A2D
4B00

4D00
4E2B
4F00
5000
5100
5200
5300

aoe

aye.

4737
4838
4939
4A2D
4B34
4c35
4D36
4E2B
4¥F31
5032
5133
5230
532E

Keyboard Scan Codes

47"
*g°
49°eae

‘qr
ss?
6?
‘4
oe
‘97
43°
107oot

34]

-Anentry of"--" means you can’t get that combination out of the BIOS.

OLYMPUSEX.1015 - 348/393

OLYMPUS EX. 1015 - 349/393

Appendix 2

Standard ASCII Character Codes

dec hex char control code dec hex chr dec hex chr dec hex chr
0 0 ctr1-@ NUL Null 32 20 SP 64 40 @ 96 60 '
1 1 Ctrl-A SOH Start of Heading 33 21 1! 65 41 A 97 61 a
2 2 Ctr1-B STX Start of Text 34 22 " 66 42 B 98 62 b
3 3 Ctrl-C ETX End of Text 35 23 # 67 43 Cc 99 63 c¢
4 4 Ctrl-D EOT End of Transmit 36 24 §$ 68 44 D 100 64 @
5 5 Ctrl-E ENQ Enquiry 37. 25 & 69 45 E 101 65 e
6 6 Ctrl-F ACK Acknowledge 38 26 & 70 46 F 102 66 f£
7 7 Ctr1-G BEL Bell 39 27 ° 71 #47°=«G 103 67 g
8 8 Ctrl-H BS Back Space 40 28 (72 #48 #&H 104 68 h
9 9 Ctrl-I HT Horizontal Tab 41 29) 73 #49 #+&TF 105 69 i

10 .OA cCtrl-3J LF Line Feed 42 2A * 74 4A J 106 6A j
11 OB Ctrl-K VT Vertical Tab 43 2B + 75 4B K 107 6B k
12 OC Ctrl-L FF Form Feed 44 2c , 76 «6«4cd«€O€i& 108 6c 1
13 OD Ctrl-M CR Carriage Return 45 2D - 77 +#4D M 109 6D m
14 OE Ctrl1-N sO Shift out 46 2E . 78 #4E N 110 6E n
15 OF Ctri-O SI Shift In 47 2F / 79 #4F O 111 6F o
16 10 cCtrl-P DLE Data Line Escape 48 30 0 80 50 P 112 70 p
17. 121 #=Ctrl-Q DC1 Device Control 1 49 31 1 81 51 Q 113 71 q
18 12 Ctril-R DC2 Device Control 2 50 32 2 82 52 R 114 72
19 13 Ctrl-S DC3 Device Control 3 51 33 3 83 53 S$ 115 73 s
20 14 Ctril-T DC4 Device Control 4 52 34 4 84 54 T 116 #74 t
21 #15 Ctrl-U NAK Negative Acknowledge 53 35 5 85 55 U 117 75 u
22 16 Ctri-vV SYN Synchronous Idle 54 36 6 86 56 V 118 76 v
23 #17 Ctrl-wW ETB End of Transmit Blk 55 77 7 87 57 wW 119 77w
24 #18 Ctrl-X CAN Cancel 56 38 8 gs se x 120 78 x
25 19 Ctrl-Y EM End of Medium 57 39 9 89 59 Y¥ 121 79 y
26 JIA Ctrl-Z SUB Substitute 58 3A 3: 90 SA 2Z 122 JA 2
27 1B Ctri-[{ ESC Escape 59 3B ; 91 SB [23 7B28 1c cCtrl-\ FS File Separator 60 3c < 92 5c \ 124 7C f
29 ID Ctrl-j] GS Group Separator 61 3D = 93 SD]j 125 7D }
30 1E cCtrl-* RS Record Separator 62 3E > 94 SE * 126 7E 7~
31 1F cCtrl-_ US Unit Separator 63 3F ? 95 5F 127 JF DEL

ASCII = The American National Standard Codefor Information Interchange

The complete documentdescribing the ASCII standard, ‘X3.4-1977: American National Stand-
ard Codefor InformationInterchange’ can be orderedfor $5.00 (plus $4 postage) from

American National StandardsInstitute

1430 Broadway
New York, NY 10018
212/354-3300

OLYMPUSEX.1015 - 349/393

OLYMPUS EX. 1015 - 350/393

X3.64
0/0
O/1
0/2
0/3
0/4
0/5
0/6
0/7
0/8
0/9
0/10
0/11
0/12
0/13
0/14
0/15
1/0
1/1
1/2
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
1/11
1/12
1/13
1/14
1/15
2/0
2/1
2/2
2/3
2/4
2/5
2/6
2/7
2/8
2/9
2/10
2/11
2/12
2/13
2/14
2/15
3/0
3/1
3/2
3/3
3/4
3/5
3/6
3/7
3/8
3/9
3/10
3/11
3/12
3/13
3/14
3/15
4/0
4/1
4/2

Dec
000
ool
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066

Oct
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
052
052
053
054
oss
056
057
060
061
062
063
064
065
066
067
070
O71
072
073
074
075
076
077
100
10L
102

Hex
00
01
02
03
04
05
06
07
08
09
OA
OB
oc
oD
OE
OF
10
11
12
13
14
15
16

StandardASCII Character Codes 343

1968 ASCII CODE
EBCDIC

00
o1
02
03
37
2D
2E
2F
16
05
25
0B
oc
OD
OE
OF
10
11
12
13
3¢
3D
32
26
18
19
3F
27
1c
1D
1E
1F
40
5A
7F
7B
5B
6c
50
7D
4D
5D
5c
4E
6B
60
4B
61
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
7A
5E
4c
7E
6E
oF
7c
cl
c2

+teOmPe
~

WANIAMAWNHON!|
neow

OWpasd

meaning
“@ Null, ctri-@
“A Start of Header
“B Start of Text
“Cc End of Text
*D End of Transmission
*E Enquire, WRU
“FP HEREIS
4G Bell
“H Backspace, \b
“I TAB, \t
“I Newline, NL, \n
“K Vertical Tab
“L Form Feed, \f
“M Return, \r,
“N Shift out
*O Shift in
“Pp
*O XON, Start Reader
“R DC2, Tape Punch ON
“s XOFF, Stop Reader
“7 Dc4, Tape Punch OFF
*U : Nak

Vv Sync
Ww End of Tape Blockx Cancel

“Y End of Medium
Z CP/M End of File
{ Escape, \E
\ File Separator
j Group Separator
* Record Separator

Unit Separator

. Exclamation mark
Double Quote

Apostrophe, Single Quote

Splat, Star, asterisk

Comma

Period
Slash, Stroke

Question Mark
Commercial AT

OLYMPUSEX.1015 - 350/393

OLYMPUS EX. 1015 - 351/393

344

4/3
4/4
4/5
4/6
4/7
4/8
4/9
4/10
4/11
4/12
4/13
4/14
4/15
5/0
5/1
5/2
5/3
5/4
5/5
5/6
5/7
5/8
5/9
5/10
5/11
5/12
5/13
5/14
5/15
5/16
6/0
6/1
6/2
6/3
6/4
6/5
6/6
6/7
6/8
6/9
6/10
6/11
6/12
6/13
6/14
6/15
7/0
7/1
7/2
7/3
7/4
7/5
7/6
W/7
7/8
7/9
7/10
7/11
7/12

7/13
7/14
7/15

067
068
069
070
O71
072
073
074
075
076
077
078
079
080
o8l
082
083
084
085
086
087
088
089
030
091
092
093
094
095

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127

103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174

175
176
177

The Programmer's Technical Reference
c3
c4
cs
cé
c7
cs
cg
D1
D2
D3
D4
DS
D6
D7
Ds
Dg
E2
E3
E4
ES
E6
ET
E8
E9
AD
EO
BD
5F
6D

79
81
82
83
B84
85
86
87
88
89
91
92
93
94
95
96
97
98
99
A2
AJ
A4
AS
AG
Al
As
Ag
co
4F

DO
7E
07

ISSKONKKEMCCHNDAONOREMKAGUHMOAMMOA
>IweANMMESEHHNDOTDAEPweUEOQhOAaaAOD~

?

Left square bracket
Backslash
Right Square Bracket
Circumflex
Underline or Back Arrow(old)
Back Arrow on older codes
Accent Grave

Left Brace
Vertical Bar, Pipe, (Confirm on some
older systems)
Right Brace
Tilde (ESC on some old sys)
DEL, RUBOUT

ASCII = American Standard Codefor Information Exchange

EBCDIC = Extended Binary-Coded Decimal Interchange Code

OLYMPUSEX.1015 - 351/393

OLYMPUS EX. 1015 - 352/393

OLYMPUS EX. 1015 - 353/393

OLYMPUS EX. 1015 - 354/393

OLYMPUS EX. 1015 - 355/393

OLYMPUS EX. 1015 - 356/393

OLYMPUS EX. 1015 - 357/393

OLYMPUS EX. 1015 - 358/393

OLYMPUS EX. 1015 - 359/393

OLYMPUS EX. 1015 - 360/393

OLYMPUS EX. 1015 - 361/393

OLYMPUS EX. 1015 - 362/393

OLYMPUS EX. 1015 - 363/393

OLYMPUS EX. 1015 - 364/393

OLYMPUS EX. 1015 - 365/393

OLYMPUS EX. 1015 - 366/393

OLYMPUS EX. 1015 - 367/393

OLYMPUS EX. 1015 - 368/393

OLYMPUS EX. 1015 - 369/393

OLYMPUS EX. 1015 - 370/393

OLYMPUS EX. 1015 - 371/393

OLYMPUS EX. 1015 - 372/393

OLYMPUS EX. 1015 - 373/393

OLYMPUS EX. 1015 - 374/393

OLYMPUS EX. 1015 - 375/393

OLYMPUS EX. 1015 - 376/393

OLYMPUS EX. 1015 - 377/393

OLYMPUS EX. 1015 - 378/393

OLYMPUS EX. 1015 - 379/393

OLYMPUS EX. 1015 - 380/393

OLYMPUS EX. 1015 - 381/393

OLYMPUS EX. 1015 - 382/393

OLYMPUS EX. 1015 - 383/393

OLYMPUS EX. 1015 - 384/393

OLYMPUS EX. 1015 - 385/393

OLYMPUS EX. 1015 - 386/393

OLYMPUS EX. 1015 - 387/393

OLYMPUS EX. 1015 - 388/393

OLYMPUS EX. 1015 - 389/393

OLYMPUS EX. 1015 - 390/393

OLYMPUS EX. 1015 - 391/393

OLYMPUS EX. 1015 - 392/393

OLYMPUS EX. 1015 - 393/393

