
OLYMPUS EX. 1010 - 526/1582

Part D: Directions of MS-DOS

2. Resource script: The resource script is an ASCII file that generally has the extension
.RC. This file contains definitions of menus, dialog boxes, string tables, and keyboard
accelerators used by the program. The resourcescript can also reference otherfiles
that contain icons, cursors, bitmaps, and fonts in binary form, as well as other read-
only data defined by the programmer. When a program is running, Windowsloads
resources into memory only whenthey are needed and in most cases can discard
them if additional memory spaceis required.

SAMPLE.RC,the resource script for théSAMPLEprogram,is shown in Figure 17-12;it
contains only the definition of the menu used in the program.

#include "sample.h"

Sample MENU
BEGIN

POPUP "&Typeface"
BEGIN

MENUITEM "&Script", IDM_SCRIPT, CHECKED
MENUITEM “&Modern", IDMMODERN
MENUITEM "&Roman", IDM_ROMAN

END
END

Figure 17-12. The resource scriptfor the SAMPLEprogram.

3. Header(or include) file: This file, with the extension .H, can contain definitions of
constants or macros, as is customary in C programming. For Windowsprograms, the
headerfile also reconciles constants used in both the resource script and the pro-
gram source-codefile. For example, in the SAMPLE.RC resourcescript, each item in
the pop-up menu (Script, Modern, and Roman) also includesan identifier —
IDM_SCRIPT, IDM_.MODERN,and IDM_ROMAN,respectively. These identifiers
are merely numbers that Windowsusesto notify the program of the user's selection
of a menu item. The same namesare usedto identify the menuselection in the C
source-codefile. And, because both the resource compiler and the source-code com-
piler must have accessto these identifiers, the headerfile is included in both the
resourcescript and the source-codefile.

The headerfile for the SAMPLE program, SAMPLE.H,is shownin Figure 17-13.
#define IDM_SCRIPT 1
#define IDM_MODERN 2
#define IDM_ROMAN 3

Figure 17-13. The SAMPLE.H headerfile.

4. Module-definition file: The module-definition file generally has a .DEF extension.
The Windowslinkerusesthis file in creating the executable .EXEfile. The module-
definition file specifies various attributes of the program’s code and data segments,
andit lists all imported and exported functionsin the source-cadefile. In large pro-
gramsthat are divided into multiple code segments, the module-definitionfile allows
the programmerto specify different attributes for each code segment.

516 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 526/1582

OLYMPUS EX. 1010 - 527/1582

 Article 17: Windows

The module-definition file for the SAMPLE program is named SAMPLE.DEFandis
shownin Figure 17-14.
NAME SAMPLE

DESCRIPTION , 'Demonstration Windows Program'
STUB 'WINSTUB. EXE"
CODE MOVABLE
DATA MOVABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 4096
EXPORTS WndProc

Figure 17-14. The SAMPLE.DEF module-definitionfile.

Makefile: To facilitate construction of the executable file from these different com-

ponents, Windows programmersoften use the MAKEprogram to compile only those
files that have changedsince the last time the program waslinked. To do this, the
programmerfirst creates an ASCIItext file called a makefile. By convention, the
makefile has no extension.

The makefile for the SAMPLE program is named SAMPLEand is shownin Figure
17-15. The programmercan create the SAMPLE.EXE executable file by executing

C>MAKE SAMPLE <Enter>

Amakefile often contains several sections, each beginning withatarget filename,
followed by a colon and one or more dependentfilenames, such as

sample.obj : sample.c sample.h

If either or both the SAMPLE.C and SAMPLE.Hfiles have a later creation time than

SAMPLE.OB], then MAKErunsthe program or programslisted immediately below.
In the case of the SAMPLE makefile, the program is the C compiler, and it compiles
the SAMPLE.C source code:

cl -c -Gsw -W2 -Zdp sample.c

Thus,if the programmer changesonly oneof the severalfiles used in the develop-
ment of SAMPLE,then running MAKEensuresthat the executable file is brought up
to date, while carrying out only the required steps.

sample.obj : sample.c sample.h
cl -c -Gsw -W2 -Zdp sample.c

sample.res : sample.rc sample.h
re -r sample.rc

sample.exe : sample.obj sample.def sample.res
link4 sample, /align:16, /map /line, slibw, sample
re sample.res
mapsym sample

Figure 17-15. The makefilefor the SAMPLEprogram.

Section Il: Programming in theMS-DOS Environment 517

OLYMPUSEX. 1010 - 527/1582

OLYMPUS EX. 1010 - 528/1582

Part D: Directions of MS-DOS

Construction ofa Windows program

The makefile shows the steps that create a program’s .EXEfile from the various
components:

1. Compiling the source-codefile:

cl -c -Gsw -W2 -Zdp sample.c

This step uses the CL_EXE C compiler to create a .OBJ object-modulefile. The com-
mandline switches are

— -c: Compiles the program but doesnot link it. Windows programs must be linked —
with Windows’ LINK4linker, rather than with the LINK program the C compiler
would normally invoke.

~ -Gsw: Includes two switches, -Gs and -Gw. The-Gs switch removes stack checks

from the program. The -Gw switch inserts special prologue and epilogue code in
all far functions defined in the program. This special code is required for Win-
dows’ memory management.

— -W2: Compiles with warninglevel 2. This is the highest warning level, andit causes
the compiler to display messages for conditions that may be acceptable in normal C
programsbutthat can cause serious errors in a Windows program.

— -Zdp: Includes two switches, -Zd and -Zp. The -Zd switch includes line numbers
in the .OBJ file — helpful for debugging at the source-codelevel. The -Zp switch
packsstructures on byte boundaries. The -Zp switch is required, because data
structures used within Windowsare in a packed format.

2. Compiling the resourcescript:

re ~r sample.rc

This step runs the resource compiler and converts the ASCII .RC resourcescript into a
binary .RES form. The -r switch indicates that the resource script should be compiled
but the resources should not yet be added to the program’s .EXEfile.

3. Linking the program:

link4 sample, /align:16, /map /line, slibw, sample

This step uses the special Windowslinker, LINK4. Thefirst parameterlisted is the
nameofthe .OBJ file. The /align:16 switch instructs LINK4 to align segmentsin the
.EXEfile on 16-byte boundaries. The /map and /line switches cause LINK4to create a
MAPfile that contains program line numbers — again, useful for debugging source
code. Next,slibw is a reference to the SLIBW.LIB file, which is an importlibrary that
contains module names and ordinal numbers for all Windowsfunctions. The last

parameter, sample, is the program’s module-definition file, SAMPLE.DEF.
4, Adding the resources to the .EXEfile:

re sample.res

518 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 528/1582

OLYMPUS EX. 1010 - 529/1582

Article 17: Windows

This step runs the resource compiler a secondtime, using the compiled resourcefile,
SAMPLE.RES. This time, the resource compiler adds the resourcesto the .EXEfile.

Header or
include files

(.H or .INC)

Module
definition file

(.DEF)

Program
source code

<.C, .PAS, or .ASM)

Resource script
(.RC)

Cor Pascal

Compiler or
Macro Assembler

RC.EXE

Resource compiler

 Object module Compiled resources
(OBJ) (.RES)

 LINK4.EXE
Windowlinker

Executable

without resources

(EXE)

Mapfile
(.MAP)

MAPSYM.EXE

Converts mapfile
to symbolfile

RC.EXE

Resource compiler

Executable

(.EXE)
Symbolfile

(SYM)

Figure 17-16. A block diagram showing the creation ofa Windows .EXEfile.

Section HU: Programming in the MS-DOSEnvironment 519

OLYMPUSEX. 1010 - 529/1582

OLYMPUS EX. 1010 - 530/1582

Part D: Directions of MS-DOS

5, Creating a symbol (SYM)file from the linker’s map (MAP)file:
mMapsym sample

This step is required for symbolic debugging with SYMDEB.

Figure 17-16 on the preceding page shows how the various components of a Windowspro-
gram fit into the creation of a .EXEfile. ,

Program initialization

520

The SAMPLE.C program shownin Figure 17-11 contains some codethat appears in almbst
every Windows program. The statement

#include <windows.h>

appearsat the top of every Windows source-codefile written in C. The WINDOWSHfile,
provided with the Microsoft Windows Software DevelopmentKit, contains templates for
all Windowsfunctions, structure definitions, and #define statements for many mnemonic
identifiers.

Someof the variable names in SAMPLE.C may look unusual to C programmers because
they begin with a prefix notation that denotes the data type of the variable. Windows
programmers are encouraged to use this type of notation. Some of the more common
prefixes are

Prefix DataType

iorn Integer (16-bit signed integer)
w Word (16-bit unsigned integer)
| Long (32-bit signed integer)
dw Doubleword (32-bit unsigned integer)
h Handle (16-bit unsigned integer)
SZ Null-terminated string
Ipsz Longpointer to null-terminatedstring
Ipfn ——s Long pointerto a function

The program’s entry point (following some startup code) is the WinMain function,
whichis passed the following parameters: a handle to the current instance of the
program (hinstance), a handle to the most recent previous instance of the program
(hPrevInstance), a long pointerto the program’s command line (ipszCmdLine), and a
number (nCmdShow)thatindicates whether the program should initially be displayed as a
normally sized window oras an icon.

Thefirst job SAMPLE performsin the WinMain function is to register a window class—a
structure that describes characteristics of the windowsthat will be created in the class.

These characteristics include backgroundcolor, the type of cursor to be displayed in the
window, the window’s initial menu andicon, and the window function (the structure
membercalled IpfnWndProc).

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 530/1582

OLYMPUS EX. 1010 - 531/1582

Article 17: Windows

Multiple instances of a program can share the same window class, so SAMPLEregisters the
window class only forthe first instance of the program:

if (!hPrevInstance}
{

wndclass.style = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra =0;
wndclass.cbWndExtra =0;
wndclass.hInstance = hiInstance ;
wndclass.hicon = NULL ; .

wndclass.hCursor : = LoadCursor (NULL, IDC_ARROW) ;
wndclass-.hbrBackground = GetStockObject (WHITE_BRUSH) ;
wndclass.lpszMenuName = szAppName ;
wndclass.lpszClassName = szAppName ;

RegisterClass (&wndclass) ;
}

The SAMPLE program then creates a window using the CreateWindow call, displaysit to
the screen by calling ShowWindow,and updatesthe client area by calling UpdateWindow:

hWnd = CreateWindow (szAppName, "Demonstration Windows Program",
WS_OVERLAPPEDWINDOW, :
(int) CW_USEDEFAULT, 0,
(int) CW_USEDEFAULT, 0,
NULL, NULL, hInstance, NULL) ;

ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd) ;

The first parameter to CreateWindow is the name of the window class. The second param-
eter is the actual text that appears in the window’stitle bar. The third parameteris the style
of the window — in this case, the WINDOWS.Hidentifier WS_OVERLAPPEDWINDOW.
The WS_OVERLAPPEDWINDOWis the most common windowstyle. The fourth through
seventh parameters specify the initial position and size of the window.Theidentifier
CW_USEDEFAULTtells Windowsto position and size the window accordingto the default
rules.

After creating and displaying a Window, the SAMPLE program enters a piece of code
called the message loop:

while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;

This loop continues to execute until the GetMessagecall returns zero. When that happens,
the program instance terminates and the memoryrequired for the instanceis freed.

Section II: Programming in the MS-DOS Environment 521

OLYMPUSEX. 1010 - 531/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 532/1582

Part D: Directions of MS-DOS

The Windows messaging system

Interactive programswritten for the normal MS-DOS environment generally obtain user
input only from the keyboard, using either an MS-DOSor a ROM BIOSsoftware interrupt
to check for keystrokes. Whenthe user types something, such programsact on the key-
stroke and then return to wait for the next keystroke. .

Programs written for Windows, however, can receive user input from a variety of sources,
including the keyboard, the mouse, the Windowstimer, menus,scroll bars, and controls,
such as buttons andedit boxes.

Moreover, a Windows program must be informedofother events occurring within the
system. For instance, the user of a Windows program might choose to make its window
smalleror larger. Windows must make the program aware of this change so thatthe pro-
gram can adjust its screen outputto fit the new window size. Thus, for example, if a Win-
dows program is minimized as an icon and the user maximizes its windowtofill the full
screen, Windows must inform the program that the size of the client area has changed
and needsto be re-created.

Windowscarries out this job of keeping a program informed of other events through the
use of formatted messages. In effect, Windows sends these messages to the program. The
Windows program receives and acts upon the messages.

This messaging makesthe relationship between Windows and a Windows program much
different from the relationship between MS-DOSand an MS-DOSprogram. Whereas
MS-DOSdoesnotprovide information until a program requests it through an MS-DOS
function call, Windows must continually notify a program ofall the events thataffectits
window.

Window messages can be separated into two major categories: queued and nonqueued.

Queued messages are similar to the keyboard information an MS-DOS program obtains
from MS-DOS. When the Windowsuser presses a key on the keyboard, moves the mouse,
or presses one of the mouse buttons, Windowssaves information about the event (in the
form of a data structure) in the system message queue. Each message is destined for a par-
ticular window in a particular instance of a Windows program. Windowstherefore deter-
mines which window should get the information and then places the message in the
instance’s Own message queue.

A Windows program retrieves information from its queue in the message loop:

while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

The msg variable is a structure. During the GetMessagecall, Windowsfills in the fields of
this structure with information about the message. Thefields are as follows:

522 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 532/1582

OLYMPUS EX. 1010 - 533/1582

|

Article 17: Windows

© hwnd: The handle for the windowthatis to receive the message.
© iMessage: A numeric code identifying the type of message(for example, kéyboard

or mouse).

@ wParam: A 16-bit value containing information specific to the message. See The
‘Windows Messages below.

e /Param: A 32-bit value containing information specific to the message.
® time: Thetime, in milliseconds, that the message was placed in the queue. The time

is a 32-bit value relative to the time at which the current Windowssession began.
® pt.x: The horizontal coordinate of the mouse cursorat the time the event occurred.
© pty: The vertical coordinate of the mouse cursorat the time the event occurred.

GetMessage always returns a nonzero value except whenit receives a quit message. The
quit message causes the message loop to end. The program should then terminate and
return control to Windows.

Within the message loop, the TranslateMessage function translates physical keystrokes into
character-code messages. Windowsplaces these translated messages into the program’s
message queue.

The DispatchMessage function essentially makes a call to the window functionofthe win-
dow specified by the hwndfield. This window function (WndProc in SAMPLE)is indicated
in the lpfnWndProcfield of the windowclassstructure.

When DispatchMessage passes the message to the window function, Windowsuses the
first four fields of the message structure as parameters to the function. The window func-
tion can then process the message. In SAMPLE,for instance, the four fields passed to
WndProc are hwnd (the handle to the window), iMessage (the numeric message iden-
tifier), wParam, and [Param. Although Windowsdoesnot pass the time and mouse-
position information fields as parameters to the window function,this information is
available through the Windowsfunctions GetMessageTime and GetMessagePos.

A Windows program obtains only a few specific types of messages through its message
queue. These are keyboard messages, mouse messages, timer messages, the paint message
that tells the program it must re-create the client area of its window, and the quit message
that tells the program it is being terminated.

In addition to the queued messages, however, a program’s window function also receives
many nonqueued messages. Windows sends these nonqueued messages by bypassing the
message loop and calling the program’s window function directly.

Manyof these nonqueued messagesare derived from queued messages. For example,
whenthe userclicks the mouse onthe menu bar, a mouse-click messageis placed in the
program’s message queue. The GetMessage function retrieves the message and the Dis-
patchMessagefunction sendsit to the program’s window function. However, because this
mouse message affects a nonclient area of the window (an area outside the window’s cli-
ent area), the window function normally doesnot processit. Instead, the function passes
the message back to Windows. In this example, the message tells Windowsto invoke a
pop-up menu. Windowscalls up the menu and then sends the window function several
nonqueued messagesto inform the program ofthis action.

Section Il: Programming in theMS-DOSEnvironment 523

OLYMPUSEX. 1010 - 533/1582

OLYMPUS EX. 1010 - 534/1582

Part D: Directions of MS-DOS ,

A Windows program is thus message driven. Once a program reaches the message loop,
it acts only when the window function receives a message. And, although a program
receives many messagesthat affect the window, the program usually processes only some
of them, sending the rest to Windowsfor normal default processing.

The Windows messages

Windows can send a window function more than 100 different messages. The
WINDOWS.H headerfile includesidentifiersfor all these messages so that C programmers
do not have to rememberthe message numbers. Some of the more common messages and
the meanings of the wParam and [Param parametersare discussed here:

WM_CREATE. Windows sends a window function this nonqueued message while pro-
cessing the CreateWindow call. The Param parameteris a pointerto a creation structure.
A window function can perform some programinitialization during the WM_CREATE|
message.

WM_MOVE. Windows sends a windowfunction the nonqueued WM_MOVEmessage
whenthe window has been movedto anotherpart of the display. The /Param parameter
gives the new coordinates of the window relative to the upperleft corner of the screen. ;

WM_SIZE. This nonqueued messageindicates that the size of the window has been
changed. The new size is encoded in the (Param parameter. Programsoften save this
windowsize forlater use.

WM_PAINT. This queued message indicates that a region in the window’sclient area
needs repainting. (The message queue can contain only one WM_ PAINT message.)

WM_COMMAND.This nonqueued message signals a program that a user has selected a
menu item or has triggered a keyboard accelerator. Child-window controls also use
WM_COMMANDto send messagesto the parent window.

WM_KEYDOWN. The wParam parameterof this queued messageis a virtual key code
that identifies the key being pressed. The /Param parameterincludes flags that indicate
the previous key state and the numberof keypresses the message represents.

WM_KEYUP. This queued messagetells a window function that a key has been released.
The wParam parameteris a virtual key code.

WM_CHAR. This queued message is generated from WM_KEYDOWN messages during
the TranslateMessage call. The wParam parameter is the ASCII code of a keyboard key.

WM_MOUSEMOVE. Windowsusesthis queued messagetotell a program about mouse
movement. The /Param parameter contains the coordinates of the mouserelative to the -
upperleft cornerof the client area of the window. The wParam parametercontainsflags
that indicate whether any mouse buttonsor the Shift or Ctri keys are currently pressed.

WM_xBUTTONDOWN. This queued messagetells a program that a button on the mouse
was depressed while the mouse was in the window'sclient area. The xcan beeitherL, R,
or M fortheleft, right, or middle mouse button. The wParam and lParam parameters are
the same as for WM_MOUSEMOVE.

524 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 534/1582

OLYMPUS EX. 1010 - 535/1582

Article 17: Windows

WM_xBUTTONUP. This queued message tells a program that the user has released a
mouse button.

WM_xBUTTONDBLCLK. Whenthe user double-clicks a mouse button, Windows
generates a WM_xBUTTONDOWN messageforthefirst click and a queued
WM_.xBUTTONDBLCLK messagefor the secondclick.

WM_TIMER. When a Windows program sets a timer with the SetTimer function,
Windows places a WM_TIMER message in the message queueat periodic intervals.
The wParam parameteris a timer ID. (if the message queue already contains a
WM_TIMER message, Windows doesnot add another one to the queue.)

WM_VSCROLL. A Windows program that includesa vertical scroll bar in its window

receives nonqueued WM_VSCROLLmessagesindicating various typesof scroll-bar
manipulation.

WM_.HSCROLL. This nonqueued message indicates a user is manipulating a horizontal
scroll bar.

WM_CLOSE. Windows sends a window function this nonqueued message whenthe user
has selected Close from the window’s system menu. A program can query the userto de-
termine whetherany action, such as savingafile to disk, is needed before the program
is terminated.

WM.QUERYENDSESSION. This nonqueued messageindicates that the useris shutting
down Windowsbyselecting Close from the MS-DOSExecutive system menu. A program
can request the userto verify that the program should be ended. If the window function —
returns a zero value from the message, Windowsdoesnot end the session.

WM_. DESTROY. This nonqueued messageis the last message a window function receives
before the program ends. A window function can perform somelast-minute cleanup while
processing WM_ DESTROY.

WM_OQUIT. This is a queued message that never reachesthe window function becauseit
causes GetMessageto return a zero value that causes the program to exit the message loop.

Message processing

Programmers can chooseto process some messages and ignore others in the window
function. Messages that are ignored are generallypassed on to the function
DefWindowProcfor default processing within Windows.

Because Windows eventually has access to messages that a window function does not
process,it can send a program messages that might otherwise be regarded as pertaining to
system functions — for example, mouse messagesthat occur in a nonclient area of the win-
dow, or system keyboard messagesthat affect the menu. Unless these messages are passed
on to DefWindowProc, the menu and other system functions do not work properly.

A program can, however, trap someofthese messagesto override Windows’ default pro-
cessing. For example, when Windowsneedsto repaint the nonclient area of a window (the
title bar, system-menubox, andscroll bars), it sends the window function a WM_NCPAINT

Section I Programming in the MS-DOSEnvironment 525

OLYMPUSEX. 1010 - 535/1582

OLYMPUS EX. 1010 - 536/1582

Part D: Directions of MS-DOS

(nonclient paint) message. The window function normally passes this message to
DefWindowProc, which then calls routines to update the nonclient areas of the window.
The program can, however, choose to process the WM_.NCPAINT message andpaint the
nonclientarea itself. A program that doesthis can, for example, draw its own scroll bars.

The Windowsmessaging system also notifies a program of important events occurring
outside its window. For example,if the MS-DOS Executive were simply to end the Win-
dowssession whenthe userselects the Close option from its system menu,then applica-
tions that were still running would not haVe a chanceto save changedfiles to disk. Instead,
whenthe user selects Close from thelast instance of the MS-DOS Executive’s system
menu, the MS-DOSExecutive sends a WM_QUERYENDSESSION messageto each cur-
rently running application.If any application responds by returning a zero value, the MS-
DOSExecutive does not end the Windowssession.

Before responding, an application can process the WM_QUERYENDSESSION message
and display a message box askingtheuserif a file should be saved. The message box
should include three buttons labeled Yes, No, and Cancel. If the user answers Yes, the pro-
gram can savethe file and then return a nonzero value to the WM_QUERYENDSESSION
message. If the user answers No, the program can return a nonzero value without saving
the file. But if the user answers Cancel, the program should return a zero value so that ;
the Windowssession will not be ended.If a program does not process the
WM_QUERYENDSESSION message, DefWindowProc returns a nonzero value.

When a userselects Close from the system menuofa particular instance of an application,
tather than from the MS-DOSExecutive’s menu, Windows sends the window function a
WM_CLOSE message. If the program has an unsavedfile loaded, it can query the user with
a message box —— possibly the same one displayed when WM_QUERYENDSESSIONis
processed. If the user responds Yes to the query, the program cansavethefile and then
call DestroyWindow. If the user responds No, the program can call DestroyWindow
without saving the file. If the user responds Cancel, the window function doesnotcall
DestroyWindow and the program will not be terminated.If a program does not process
WM._CLOSE messages, DefWindowProc calls DestroyWindow.

Finally, a window function can send messages to other window functions,either within
the same program or in other programs, with the Windows SendMessage function. This
function returns control to the calling program after the message has been processed. A
program can also place messages in a program’s message queue with the PostMessage
function. This function returns control immediately after posting the message.

For example, when a program makes changesto the WIN.INIfile.(a file containing
Windowsinitialization information), it can notify all currently running instancesof these
changes by sending them a WM_WININICHANGEmessage:

SendMessage (-1, WM_WININICHANGE, 0, OL) ;

The -1 parameterindicates that the messageis to be sent to all window functions of
all currently running instances. Windowscalls the window functions with the
WM_WININICHANGEmessage and then returns control to the program that sent the
message. ,

526 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 536/1582

OLYMPUS EX. 1010 - 537/1582

apma

Article 17; Windows

SAMPLE’s message processing

The SAMPLE program shownin Figure 17-11 processesonly four messages:
WM_COMMAND, WM_SIZE, WM_ PAINT, and WM_ DESTROY. All other messages are
passed to DefWindowProc.Asis typical with most Windows programswrittenin C,
SAMPLEusesa switch and case construction for processing messages.

The WM_COMMANDmessagesignals the program that the user has selected a new font
from the menu. SAMPLEfirst obtains a handle to the menu and removes the checkmark

from the previously selected font:

hMenu = GetMenu (hWnd) ;
CheckMenuitem (hMenu, nCurrentFont, MF_UNCHECKED) ;

The value of wParam inthe WM_COMMANDmessageis the menu ID of the newly
selected font. SAMPLE saves thatvalue in a static variable (nCurrentFont) and then places a
checkmark on the new menu choice:

nCurrentFont = wParam ;
CheckMenuItem (hMenu, nCurrentFont, MF_CHECKED) ;

Because the typeface has changed, SAMPLE mustrepaintits display. The program does
not repaint it immediately, however. Instead,it calls the InvalidateRect function:

InvalidateRect (hWnd, NULL, TRUE) ;

This causes a WM_.PAINT messageto be placed in the program’s message queue. The
NULLparameterindicates that the entire client area should be repainted. The TRUE
parameterindicates that the background should be erased.

The WM_SIZE message indicates that the size of SAMPLE’s client area has changed.
SAMPLEsimply saves the new dimensionsof the client area in twostatic variables:

LOWORD (lParam) ;
HIWORD (lParam) ;

xClient

yClient

The LOWORD and HIWORD macrosare defined in WINDOWS.H.

Windowsalso places a WM_PAINT message in SAMPLE’s message queue whenthesize
of the client area has changed.Asis the case with WM_COMMAND,,the program does
not have to repaint the client area immediately, because the WM_ PAINT messageis in the
message queue.

SAMPLEcan receive a WM_PAINT message for many reasons. Thefirst WM_PAINT mes-
sage it receives results from calling UpdateWindowin the WinMain function.Later, if the
currentfont is changed from the menu, the program itself causes a WM_ PAINT message
to be placed in the message queuebycalling InvalidateRect. Windows also sends a win-
dow function a WM__PAINT message wheneverthe user changesthesize of the window
or whenpart of the window previously covered by another window is uncovered.

Programs begin processing WM_ PAINT messagesby calling BeginPaint:

BeginPaint (hWnd, &ps) ;

Section II: Programming in the MS-DOSEnvironment—527

OLYMPUSEX. 1010 - 537/1582

OLYMPUS EX. 1010 - 538/1582

Part D: Directions ofMS-DOS

528

The SAMPLEprogram thencreates a font based on the currentsize of the client area and
the current typeface selected from the menu:

hFont = CreateFont (yClient, xClient / 8,
0, 0, 400, 0, 0,. 0, OBM_CHARSET,
OUT_STROKE_PRECIS, OUT._STROKE_PRECIS,
DRAFT_QUALITY, (BYTE) VARIABLE_PITCH |
cFamily [nCurrentFont - IDMSCRIPT],

szFace {nCurrentFont - IDM_SCRIPT]) ;

The fontis selected into the device context (a data structure internal to Windowsthat

describes the characteristics of the output device); the program also savesthe original
device-context font:

hFont = SelectObject (ps.hdc, hFont) ;

And the word Windows is displayed:

TextOut (ps.hdc, 0, 0, "Windows", 7) ;

Theoriginal font in the device context is then selected, and the font that was createdis
now deleted:

DeleteObject (SelectObject (ps.hdc, hFont)) ;

Finally, SAMPLEcalls EndPaint to signal Windowsthat the client area is now updated and
valid:

EndPaint (hWnd, &ps) ; ,

Although the processing of the WM_ PAINT message in this program is simple, the
method used is commonto all Windows programs. The Begin Paint and EndPaint func-
tions always Occurin pairs, first to get information aboutthe area that needs repainting
and then to mark that area as valid.

SAMPLE will display this text even when the program is minimized to be displayed as an
icon at the bottom of the screen. Although most Windowsprogramsuse a customized icon
for this purpose, the window-class structure in SAMPLEindicates that the program’s icon
is NULL, meaning that the program is responsible for drawing its own icon. SAMPLE does
not, however, make any special provisions for drawing the icon. To it, the icon is simply
a small client area. As a result, SAMPLE displays the word Windowsinits “icon,” using a
smallfont size.

Windows sends the window function the WM_DESTROY messageas a result of the
DestroyWindow function that DefWindowProc calls when processing a WM_.CLOSE
message. The standard processing involves placing a WM_QUIT message in the message
queue:

PostQuitMessage (0) ;

When the GetMessage function retrieves WM_QUIT from the message queue, GetMessage
returns 0. This terminates the message loop and the program.

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 538/1582

OLYMPUS EX. 1010 - 539/1582

peererephAT(t

Article 17: Windows

Forall other messages, SAMPLE calls DefWindowProcand exits the window function by
returning the value from thecall:

return DefWindowProc (hWnd, iMessage, wParam, 1Param) ;

This allows Windowsto perform default processing on the messages SAMPLEignores.

Windows’ multitasking

Most operating systems or operating environmentsthat allow multitasking use whatis
called a preemptive scheduler. Generally, the procedure involves use of the computer’s
clock to switch rapidly between programsand allow each a small timeslice. When
switching between programs,the operating system must preserve the machinestate.

Windowsis different. It is a nonpreemptive multitasking environment. Although Windows
allows several programsto run simultaneously, it never switches from one program to
allow another to run. It switches between programs only when the currently running pro-
gram calls the GetMessage function or the related PeekMessage and WaitMessage
functions.

When a Windows program calls GetMessage and the program’s message queue contains
a message other than WM_ PAINT or WM_TIMER, Windowsreturnis controlto the pro-
gram with the next message. However,if the program’s message queue contains only a
WM_PAINT or WM_TIMER message and another program’s queue contains a message
other than WM_ PAINT or WM_TIMER, Windowsreturnscontrolto the other program,

' which is also waiting for its GetMessagecall to return.

(Windowsalso switches between programs temporarily when a program uses
SendMessage to send a message to a window function in another program,but control
returns to the calling program after the window function has processed the message sent
toit.)

To cooperate with Windows’ nonpreemptive multitasking, programmers shouldtry to
‘perform message processing as quickly as possible. Programscan, for example, split a
large amountofprocessing into several smaller pieces to allow other programsto run in
the interval. During long processing a program can also periodically call PeekMessage to
allow other programsto run.

Graphics Device Interface

Programsreceive input through the Windows message system. For program output,
Windowsprovides a device-independentinterface to graphics output devices, such as the
video display, printers, and plotters. This interface is called the Graphics Device Interface,
or GDI.

Section II: Programming in the MS-DOS Environment 529

OLYMPUSEX. 1010 - 539/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 540/1582

Part D: Directions of MS-DOS

The device context (DC)

When a Windows program needsto send outputto the video screen, the printer, or
another graphics output device, it mustfirst obtain a handle to the device's device context,
or DC. Windows provides a numberof functions for obtaining this device-context handle:

BeginPaint. Used for obtaining a video device-context handle during processing of a
WM_ PAINT message. This device context applies only to the rectangular section of the
client area thatis invalid (needs repainting). This region is also a clipping region, meaning
that a program cannotpaint outside this rectangle. BeginPaintfills in the fields of a
PAINTSTRUCTstructure. This structure contains the coordinatesof the invalid rectangle
and a byte that indicatesif the backgroundofthe invalid rectangle has been erased.

GetDC. Generally used for obtaining a video device-context handle during processing of

messages other than WM_ PAINT. The handle obtained with this function references only
the client area of the window.

GetWindowDC. Used for obtaining a video device-context handle that encompasses the —
entire window,including thetitle bar, menu bar, andscroll bars. A Windows program can
use this functionif it is necessary to paint over areas of the window outside the client area.

CreateDC. Usedfor obtaining a device-context handle for the entire display or for a
printer, a plotter, or other graphics outputdevice.

CreatelC. Usedfor obtaining an information-context handle, whichis similar to a
device-context handle but can be used only for obtaining information about the output
device, not for drawing.

CreateCompatibleDC. Used for obtaining a device-context handle to a memory device
context compatible with a particular graphics output device. This function is generally
used for transferring bitmaps to a graphics output device.

CreateMetaFile. Used for obtaining a metafile device-context handle. A metafile is a collec-
tion of GDI calls encoded in binary form.

The Windows program uses the device-context handle whencalling GDI functions. In
addition to drawing, the various GDI functions can change theattributes of the device con-
text, select different drawing objects (such as pens andfonts) into the device context, and
determine the characteristics of the device context.

Device-independent programming

Windowssupports such a wide variety of video displays, printers, and plotters that pro-
grams cannot make assumptions aboutthe size and resolution of the device. Furthermore,
because the user can generally alter the size of a program’s window,the program must be
able to adjustits output appropriately. The SAMPLE program,for example, showed how °
the window function can use the WM_SIZE message to obtain the current size of a win-
dow to create a font that fits text within the window’sclient area.

Programscan also use other Windowsfunctions to determine the physical characteristics
of a device. For instance, a program can use the GetDeviceCaps function to obtain

530 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 540/1582

OLYMPUS EX. 1010 - 541/1582

Article 17: Windows

information about the device context, including the resolution of the device, its physical
dimensions, andits relative pixel height and width.

Then, too, the GetTextMetrics function returns information about the current font selected

in the device context. In the default device context, this is the system font. Many Windows
programsbasethesize of their display output on the size of a system-font character.

Device-context attributes

The device context includesattributes that define how the graphics output functions work
on the device. When a programfirst obtains a handle to a device context, Windowssets
these attributes to default values, but thé program can change them. Some of these
device-contextattributes are as follows:

Pen. Windowsusesthe current pen for drawing lines. The default pen producesa solid
black line 1 pixel wide. A program can changethe pen color, change to a dotted or dashed
line, or make the pen draw a solid line wider than 1 pixel.

Brush. Windowsuses the current brush (sometimescalled a pattern)forfilling areas. A
brushis an 8-pixel-by-8-pixel bitmap. The default brushis solid white. Programs can
create colored brushes, hatched brushes, and customized brushes based on bitmaps.

Background color. Windowsuses the backgroundcolortofill the spaces in and between
characters when drawing text and to color the open areas in hatched brushstrokes and
dotted or dashed penlines. Windows uses the backgroundcoloronly if the background
mode(anotherattribute of the display context) is opaque.If the background modeis
transparent, Windowsleaves the backgroundunaltered. The default background color
is white.

Text color. Windowsusesthis color for drawing text. The default is black.

Font. Windowsusesthe font to determine the shape of text characters. The default is
called the system font, a fixed-pitch font that also appears in menus, caption bars, and
dialog boxes.

Additional device-context attributes (such as mapping modes)are described in the follow-
ing sections.

Mapping modes

 Most GDI drawing functions in Windows have parameters that specify the coordinates or
size of an object. For instance, the Rectangle function has five parameters:

Rectangle (hDC, x1, yl, x2, y2) ;

Thefirst parameteris the handle to the device context. The others are

@ x1: horizontal coordinate of the upperleft corner of the rectangle.
® yl: vertical coordinate of the upper left corner of the rectangle.
® x2: horizontal coordinate of the lower right cornerof the rectangle.
® 2: vertical coordinate of the lowerright corner ofthe rectangle.

Section Il: Programming in theMS-DOSEnvironment 531

OLYMPUSEX. 1010 - 541/1582

OLYMPUS EX. 1010 - 542/1582

Part D: Directions ofMS-DOS

In the Rectangle and most other GDI functions, coordinates are logical coordinates, which
are not necessarily the same as the physical coordinates (pixels) of the device. To translate
logical coordinates into physical coordinates, Windows uses the current mapping mode.

In actuality, the mapping mode defines a transformation of coordinates between a win-
dow,whichis defined in termsof logical coordinates, and a viewport, whichis defined in
terms of physical coordinates. For any mapping mode, a program can define separate win-
dow and viewport origins. The logical point defined as the window origin is then mapped
to the physical point defined as the viewportorigin. For some mapping modes, a program
can also define window and viewport extents, which determine how the logical coordi-
natesare scaled to the physical coordinates.

Windows programscan select one of eight mapping modes. Thefirst six are sometimes
called fully constrained, because the ratio between the window and viewport extents is
fixed and cannot bechanged.

In MM_TEXT, the default mapping mode, coordinates on the x axis increase from left to
right, and coordinates on the y axis increase from the top downward.In the otherfive fully
constrained mapping modes, coordinates on the x axis also increase from left to right, but
coordinates on the y axis increase from the bottom upward. The six fully constrained -
mapping modes are

MM_TEXT. Logical coordinates are the same as physical coordinates.
MM_LOMETRIC: Logical coordinatesare in units of 0.1 millimeter.
MM_HIMETRIC: Logical coordinates are in units of 0.01 millimeter.
MM_LOENGLISH: Logical coordinates are in units of 0.01 inch.
MM_HIENGLISH: Logical coordinates are in units of 0.001 inch.
MM_TWIPS: Logical coordinates are in units of “1440 inch. (These units are Y20 of a
typographic point, which is approximately ¥72 inch.)

The seventh mapping modeis called partially constrained, because a program can change
the window and viewport extents but Windowsadjusts the values to ensure that equal
horizontal and vertical logical coordinates translate to equal horizontal and vertical physical
dimensions:

@ MM_JISOTROPIC: Logical coordinates represent the same physical distance on both
the x and y axes.

The MM_ISOTROPIC mapping modeis useful for drawing circles and squares. The
MM_LOMETRIC, MM_HIMETRIC, MM_LOENGLISH, MM_HIENGLISH, and

MM_TWIPS mapping modesare also isotropic, because equallogical coordinates map to
the same physical dimensions on both axes.

The final mappingmode is sometimes called unconstrained because a program is free to
set different window and viewport extents on the x and y axes.

@ MM_ANISOTROPIC:Logical coordinates are mappedto arbitrarily scaled physical
coordinates.

532 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 542/1582

OLYMPUS EX. 1010 - 543/1582

Article 17: Windows

Functions for drawing

Windowsincludes several functions that programs can use to draw in the client area of a
window. The most commonofthese functions are

SetPixel. Sets a point to a particular color.

LineTo. Drawsa line from the current position to a point specified in the LineTo function.
The currentposition is defined in the device context and can be altered before the call to
LineTo with the MoveTo function, which changes the current position but does not draw
anything. Windows uses the current pen and the current drawing mode (see below) for
drawingtheline.

Polyline. Draws multiple lines muchlike a series of LineTo calls but does notalter the cur-
rent position on completion.

Rectangle. Drawsa filled rectangle with a border. Parameters to the Rectangle function
specify the coordinates of the upperleft and lower right corners of the rectangle. Windows
drawsthe borderof the rectangle with the current pen and current drawing mode defined
in the device context,justas if it were using the Polyline function then Windowsfills the
rectangle with the current brush defined in the device context.

Ellipse. Uses the same parameters as Rectangle but drawsanellipse within the rectangular
area.

RoundRect. Draws a rectangle with rounded corners. Two parametersto this function
define the height and width of an ellipse that Windows uses for drawing the rounded
corners.

Polygon. Draws a polygon connecting a series of points andfills the enclosed areas in
either an alternate or winding mode. The winding mode causes Windowstofill every area
within the polygon: The alternate modefills every other area. For a polygonthat defines a

five-pointedstar, for instance, the centerisfilled if the modeiis winding butis notfilled if
the modeis alternate.

Arc. Draws a curvedline that is part of the circumferenceofan ellipse.

Chord. Similarto the Arc function, but Windows connects the beginning and ending
points of the arc with a straightline. The areais filled with the current brush defined in
the device context.

Pie. Similar to the Arc function, but Windows drawslines from the beginning and ending
points of the arc to the centerof the ellipse. The area is filled with the current brush
defined in the device context.

TextOut. Writes text with the currentfont, text color, backgroundcolor, and background
mode (transparent or opaque).

Windowsalso includes other drawing functionsforfilling areas, formatting text, and trans-
ferring bitmaps.

Section I:Programming in theMS-DOS Environment 533

OLYMPUSEX. 1010 - 543/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 544/1582

Part D: Directions of MS-DOS

Raster operations for pens

When Windowsuses a pen to write to a device context, it mustfirst determine which pix-
els of the destination are to be altered by the pen (the foreground) and which pixels will
not be affected (the background). With dotted and dashed pens, the background —
the space between the dots or dashes —is left unaltered if the drawing modeis trans-
parentandisfilled with the backgroundcolorif the drawing mode is opaque.

When Windowsalters the pixels of the destination that correspondto the foreground of
the pen, the most obviousresult is that the color of the current pen definedin the display
context is used to color the destination. But this is not the only possible result. Windows
also generalizes the process by using a logical operation to combine the pixels of the pen
andthe pixels of the destination.

This logical operation is defined by the drawing modeattribute of the device context. This
drawing mode can beset to one of 16 binary raster operations (abbreviated ROP2).

Thefollowing table shows the 16 binary raster operation codes defined in WINDOWS.H.
‘The column headed “Resultant Destination” shows how the destination changes, depend-
ing on the bit pattern of the pen and the bit pattern of the destination before theline is
drawn. The words OR, AND, XOR, and NOTarethe logical operations.

Binary Raster
Operation

~R2_ BLACK

R2_COPYPEN

R2_.MERGEPEN

R2_MASKPEN

R2_XORPEN

R2_NOTCOPYPEN

R2_NOTMERGEPEN

R2_NOTMASKPEN

R2_.NOTXORPEN

R2_.MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_.NOP

R2_NOT

R2_WHITE

Resultant
Destination

0

pen

pen ORdestination
pen ANDdestination
pen XORdestination
NOT pen
NOT(pen ORdestination)
NOT(pen ANDdestination)
NOT(pen XORdestination)
pen OR (NOTdestination)
pen AND (NOTdestination)
(NOT pen) ORdestination
(NOT pen) ANDdestination
destination

NOTdestination
1

The default drawing mode defined in a device context is R2_COPYPEN,which simply
copies the pento the destination. However,if the pen coloris blue, the destination is red,
and the drawing mode is R2_MERGEPEN,then the drawnline appears as magenta, which

534 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 544/1582

OLYMPUS EX. 1010 - 545/1582

Article 17: Windows

results from combining the pen and destination colors.If the pen coloris blue, the desti-
nation is red, and the drawing mode is R2_NOTMERGEPEN,then the drawnline is green,
because the blue pen andthe red destination are combinedinto magenta, which Windows
then inverts to make green.

Bit-block transfers

Windowsalso uses logical operations when transferring a rectangular pixel pattern(a bit
block) from one device context to another or from onearea of a device context to another
area of the same device context.

!
|

While line drawing involvesa logical combination of twosets of pixels (the pen’and the
destination), the bit-block transfer functions perform a logical combination ofthree sets
of pixels: a source bitmap, a destination bitmap, and the brush currently selected in the
destination device context. As shownin the preceding section, there are 16 different ROP2.
drawing modesfor all the possible combinationsof twosets of pixels. The tertiary raster
operations (abbreviated ROP3)for bit-block transfers require 256 different operations for
all possible combinations.

Windowsdefines three functionsfor transferring rectangular pixel patterns: BitBlt Cbit-
block transfer), StretchBlt (stretch-block transfer), and PatBlt (pattern-block transfer). Of
these three functions, StretchBlt is the most generalized. StretchBlt transfers a bitmap from
a source device context to a destination device context. Function parameters specify the
origin, width, and height of the bitmap. If the source and destination widths and heights
are different, Windowsstretches or compresses the bitmap appropriately. Negative values
ofwidths and heights cause Windowsto draw a mirror image of the bitmap.

TheBitBlt function transfers a bitmap from a source device context to a destination device
context, but the width and height of the source and destination must be the same.If the
source and destination device contexts have different mapping modes, Windowsuses
StretchBlt instead.

In both BitBlt and StretchBit, Windows performsa bit-by-bit logical operation with thebit
block in the source device context, the bit block in the destination area of the destination
device context, and the brush currently selected in the destination device context.
Although Windows supportsall 256 possible raster operations with these three bitmaps,
only a few have been given WINDOWS.Hidentifiers:

Raster Resultant

Operation Destination

BLACKNESS 0

SRCCOPY source

SRCAND source ANDdestination

SRCPAINT source OR destination

(more)

Section IT: Programming in the MS-DOS Environment 535

OLYMPUSEX. 1010 - 545/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 546/1582

Part D: Directions of MS-DOS

Raster Resultant

Operation Destination

SRCINVERT source XORdestination

SRCERASE source AND (NOTdestination)

MERGEPAINT source OR (NOTdestination)
NOTSRCCOPY NOTsource

NOTSRCERASE NOT(source OR destination)
DSTINVERT NOTdestination

PATCOPY pattern
MERGECOPY source AND pattern
PATINVERT destination XOR pattern
PATPAINT source OR (NOTdestination) OR pattern
WHITENESS 1

The PatBit function is similar to BitBlt and StretchBlt but performsa logical operation only
between the currently selected brush and a destination area of the device context. Thus,
only 16 raster operations can be used with PatBlt; these are equivalentto the binary raster
operations used with line drawing.

Text and fonts

‘Windows supports file-based text fonts in two different formats: raster and vector. The
raster fonts, such as Courier, Helvetica, and Times Roman,are defined by digital represen-
tations of thebit patterns of the characters. Fontfiles usually contain several differentsizes
for each typeface. The vectorfonts, such as Modern,Script, and Roman,are defined by
points that are connected to form the letters and can bescaledto different sizes.

When using a device such as a printer, which has built-in fonts, Windowscan also use
these device-basedfonts.

To specify a font, a Windows program uses the CreateFontfunction to create a logical
font—a detailed description of the desired font. Whenthislogical font is selected into a
device context, Windowsfinds the actual font that best fits this description. In many cases,
this match is not exact. The program can then call GetTextMetrics to determine the char-
acteristics of the actual font that the device will use to display text.

Windows supports both fixed-width and variable-width fonts, as well as such attributes as
italics, underlining, and boldfacing. Programscan alsojustify text with the GetTextExtent
call, which obtains the width of a particular text string. The program can then insert extra
spaces between words with SetTextJustification or it can insert extra spaces between
letters with SetTextCharacterExtra.

Metafiles

536

As explainedearlier, a metafile is a collection of GDI function calls stored in a binary
coded form. A program can create a metafile by calling CreateMetaFile and givingit either

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 546/1582

OLYMPUS EX. 1010 - 547/1582

Article 17: Windows

an MS-DOSfilename or NULL as a parameter. If CreateMetaFile is given an MS-DOSfile-
name, Windowscreates a disk-based metafile; if the parameter is NULL, Windowscreates
a metafile in memory. The CreateMetaFile call returns a handle to a metafile device con-
text. Any GDIcalls that reference this device-context handle becomepart ofthe metafile.

When the program calls CloseMetaFile, Windowscloses the metafile device context and
returns a handle to the metafile. The program can then “play” this metafile on another
device context (such as the video display) withoutcalling the GDIfunctionsdirectly.

Metafiles provide a useful wayto transfer device-independentpictures between programs.

Data Sharing and Data Exchange

Windows includes a variety of methods by which programs can share and exchangedata.
These methodsare discussed in the following sections.

Sharing local data among instances

Multiple instances of the same program can share datain thestatic data area of the pro-
gram’s data segment. Later instances of a program can thus call GetInstanceData and copy
configuration options established by theuserin the first instance. Multiple instances of
programscan also share resources, such as dialog-box templates.

The WindowsClipboard

The WindowsClipboard is a general-purpose mechanism thatallows a userto transfer
data from one program to another. Programsthat support the Clipboard generally include
a top-level menu item called Edit, which invokes a pop-up menuthat offers at least these
three options:

® Cut: Copies the current selection to the Clipboard and deletes the selection from the
current programfile.

® Copy: Copies the current selection to the Clipboard without deleting the selection
from the current programfile.

@ Paste: Copies the contents of the Clipboard to the current programfile.

The Clipboard can hold only one item at a time. A program can transfer data to the Clip-
board throughthe function call SetClipboardData. With this function, the program passes
the Clipboard a handle to a global memory block, which then becomesthe property of the
Clipboard. A program can access Clipboard data through the complementary function
GetClipboardData.

The Clipboard supports several formats:

@ Text: ASCII text; each line ends with a carriage return and linefeed, and the text is
terminated with a NULL character.

® Bitmap: A collection of bits in the GDI bitmap format.

Section IZ: Programming in the MS-DOS Environment—537

OLYMPUSEX. 1010 - 547/1582

OLYMPUS EX. 1010 - 548/1582

Part D: Directions of MS-DOS

® Metafile Picture: A structure that contains a handle to a metafile along with other
information suggesting the mapping mode and aspectratio of the picture.

® §SYLK: Microsoft’s Symbolic Link format.
@ DIF: Software Arts’ Data Interchange Format.

Programscanalso use the Clipboard for storing data in private formats.

Some programs, such as the CLIPBRD program included with Windows, can also become
Clipboard viewers. Such programs receive a message wheneverthe contents of the Clip-
board change.

Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE)is a protocol that cooperating programscan use to
exchangedata without user intervention. DDE makesuseof thefacilities in Windows that
enable programs to send messages among themselves.

In DDE,the program that needs data from another programis called the client. The client
sends a WM_DDE_INITIATEmessageeither to a dedicated server program orto all cur-
rently running programs. Parameters to the WM_ DDE_ INITIATE message are atoms,
which are numbersreferring to text strings. A server application that has the data the client
needs sends a WM_DDE_ACK message backto the client. The client can then be more
specific about the data it needs by sending the server a WM_DDE_. ADVISE message. The
server can then pass global memory handlesto the client with the WM_DDE_ DATA
message.

Internationalization

Windowsincludes several features that ease the conversion andtranslation of programs
for international markets. Among these features are keyboard drivers appropriate for many
European languages and use of the ANSI characterset, which provides a richer set of
accented letters than does the character set resident in the IBM PC and compatibles.

‘Windowsalso includes several functionsthat assist in language-independent coding. The
AnsiUpper and AnsiLowerfunctionstranslate characters or strings to uppercase or lower-
case in the full ANSI character set, rather than the more limited ASCII characterset. In
addition, the AnsiNext and AnsiPrev functions allow scanning of text strings that may
contain 2 or more bytes per character.

Windows programmers can also help in program translation by defining all text strings
used within the program as resources contained in the resourcescript file. Because the
resourcescript file also contains menu templates and dialog-box templates,it thus
becomesthe only file that needs alteration when a foreign-language version of the
programis created.

Charles Petzold

538 The MS-DOSEncyclopedia -

OLYMPUSEX. 1010 - 548/1582

OLYMPUS EX. 1010 - 549/1582

Part E

Programming Tools |

OLYMPUSEX. 1010 - 549/1582

OLYMPUS EX. 1010 - 550/1582

OLYMPUSEX. 1010 - 550/1582

OLYMPUS EX. 1010 - 551/1582

Article 18: Debugging in the MS-DOS Environment
Article 18

Debugging in the MS-DOS Environment

It is axiomatic that any program will need debugging at sometimein its development
cycle, and programs written to run under MS-DOSare no exception. This article provides
an introduction to the debugging tools and techniquesavailable to the serious program-
mer developing code in the MS-DOS environment. Space does not permit a thorough

i. investigation of the philosophy, psychology, and science of debugging computer pro-
grams; instead, a brief and practical discussion of the basic debugging approachesis pre-
sented, along with some rules-of-thumbfor choosing the best approach. Norare the details
of every single utility and commandincludedin this article; these are described in detail
in the reference sections of this volume. The commandsandutility programsthat are
most useful for debugging are discussed andillustrated with examples andcase histories
that also serve as models for the various debugging methods.

The readerofthis article is assumed to be a programmerwith sufficient experience to
understand an assembly-language program. The readeris also assumedto be familiar with
MS-DOS — termslike FCB and PSP are not explained. A reader without this background in
MS-DOSneed not be deterred, however; these terms are thoroughly explained elsewhere
in this book. Besides assembly language, examplesin this article are written in Microsoft
QuickBASIC and Microsoft C. A detailed knowledge of these languagesis not required; the
examples are short and straightforward.

The reader should also keep in mind that the examples given here are real but not neces-
sarily realistic. To avoid the tedium that accompanies debugging, the examples have been
designedto reveal their bugs fairly quickly. All the methods and techniques shownare
accurate in detail but not always in scale. Mostof the debugging examples presented here
would require one-half to one hour ofwork.It is possible for real debugging sessions to
last for hours or days, especially if the wrong approachortool is chosen. Oneof the pur-

posesofthis article is to help the programmerchoosethe correct tool and,thus, to reduce
the tedium.

There are more than a dozenlistings in this article. Some of them are correct and others
contain errorsfor use in illustrating debugging techniques. Many of the programs serve
as examples in multiple sectionsof the article. The following summaryof the programs
(Table 18-1) is given to avoid confusion and to provide a commonlocation to consult for
explanations of the programs.

The Programs

Section I: Programming in the MS-DOSEnvironment 541

OLYMPUSEX. 1010 - 551/1582

OLYMPUS EX. 1010 - 552/1582

Part E; Programming Tools

542

Table 18-1. Summary ofExample Programs.

Name: EXP.BAS

Figure: 18-1
Status: Incorrect — do notuse.
Purpose: Computes EXP(x) (the exponential of x) to a specified precision using an

infinite series.

Compiling: QB EXP;
LINK EXP; -

Parameters:|Prompts for value for x and a convergencecriterion. Enter zero to quit.

Name: EXP.BAS

Figure: 18-3
Status: Correct version of Figure 18-1.
Purpose: Computes EXP(x) (the exponential of x) to a specified precision using an

infinite series.

Compiling: QB EXP;
LINK EXP;

Parameters: Promptsfor value for « and a convergencecriterion. Enter zero to quit.

Name: COMMSCOP.ASM

Figure: 18-4
Status: Correct.

Purpose: Monitors the activity on a specified COM port and places a copyofall
transmitted and received data in a RAM buffer. Each entry in the bufferis
tagged to indicate whether the byte was sent by or received by the applica-
tion program undertest. Control is provided to start, stop, and resumetrac-
ing by meansofa control interrupt. When tracing is stopped and resumed,
a markeris left in the buffer. COMMSCOPis a terminate-and-stay-resident
(TSR) program.

Compiling: _ MASM COMMSCOP;
LINK COMMSCOP;
EXE2BIN COMMSCOP.EXE COMMSCOP.COM
DEL COMMSCOP.EXE

Parameters: Installed by entering COMMSCOP; no parametersforinstallation. The
TSRis controlled by passing parameter data in registers with an Interrupt
60H call. The registers can have the following values:

AH: Command:

00H STOP

01H FLUSH AND START
02H RESUME TRACE

03H RETURN TRACE BUFFER ADDRESS

(more)

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 552/1582

OLYMPUS EX. 1010 - 553/1582

Article 18: Debugging in the MS-DOS Environment

Dx: COMport:
00H COM1

01H COM2

Interrupt 60H returnsthe following in responseto function 3:

CX Buffer count in bytes
DX Segmentaddress of buffer
BX Offset address of buffer

Name: COMMSCMD.C

Figure: 18-5
Status: Correct.

Purpose: Controls the COMMSCOPprogram byissuing Interrupt 60H calls.
C version.

COMPILING: MSC COMMSCMD,

LINK COMMSCMD,

Parameters:©Commandsare issued by
COMMSCMD [[cmad]I pori]]
where: cmd isthe commandto be executed:

STOP Stop trace
START Flush buffer and start trace

RESUME Resumea stopped trace
port is the COM port (1 = COM1, 2 = COM2)

If cmd is omitted, STOP is assumed;ifport is omitted, 1 is assumed.

Name: COMMSCMD.BAS

Figure: 18-6
Status: Correct.

Purpose: Controls the COMMSCOPprogram byissuing Interrupt 60Hcalls.
QuickBASIC version.

Compiling: QB COMMSCMD;
LINK COMMSCMDUSERLIB;

Parameters:|Commandsare issued by
COMMSCMD I[[cmd]l,pori]
where: cmd is the commandto be executed:

STOP Stop trace
START Flush buffer andstart trace

RESUME Resume a stopped trace
port isthe COM port (1 = COM1, 2 = COM2)

If cmd is omitted, STOP is assumed;ifport is omitted, 1 is assumed.

Name COMMDUMP.BAS

Figure: 18-7
Status: ‘ Correct.

Purpose: Produces a formatted dump of the communications trace buffer.
(more)

Section Il: Programming in theMS-DOS Environment 543

OLYMPUSEX. 1010 - 553/1582

OLYMPUS EX. 1010 - 554/1582

Part E; Programming Tools

544

Compiling:|QBCOMMDUMP;
LINK COMMDUMP. USERLIB;

Parameters:|No parameters. When COMMDUMPisinvoked,it formats and dumpsthe
entire buffer.

Name: TESTCOMM.ASM

Figure: 18-9
Status: Incorrect— do not use.

Purpose: Provides test data for the COMMSCOProutine.
Compiling: MASM TESTCOMM;

LINK TESTCOMM;

Parameters:|No parameters. TESTCOMMreads data from the keyboard and writes to
COM1and reads COM]data anddisplays it on the screen. Ctrl-C cancels.

Name: TESTCOMM.ASM

Figure: 18-10
Status: Correct version of Figure 18-9.
Purpose: Provides test data for the COMMSCOProutine.
Compiling: MASM TESTCOMM;

LINK TESTCOMM;

Parameters:|No parameters. TESTCOMMreadsdata from the keyboard and writes to
COM1and reads COM]data anddisplays it on the screen. Ctrl-C cancels.

Name: BADSCOP.ASM

Figure: 18-11
Status: Incorrect version of Figure 18-4 — do notuse.
Purpose: Monitorsthe activity on a specified COM port and places a copyofall

transmitted and received data in a RAM buffer. Each entry in the bufferis
tagged to indicate whether the byte was sent by or received by the applica-
tion program undertest. Controlis provided to start, stop, and resumetrac-

. ing by meansof a control interrupt. When. tracing is stopped and resumed,
a markeris left in the buffer. BADSCOPis a terminate-and-stay-resident
(TSR) program.

Compiling: MASM BADSCOP;
LINK BADSCOP;
EXE2BIN BADSCOP.EXE BADSCOP.COM

DEL BADSCOP.EXE

Parameters: Installed by entering BADSCOP; no parametersfor installation. The TSRis
controlled by passing parameter data in registers with an Interrupt60H
call. The registers can have the following values:

AB: Command:

00H STOP

01H FLUSH AND START

(more)

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 554/1582

OLYMPUS EX. 1010 - 555/1582

paceriAi
Article 18: Debugging in the MS-DOSEnvironment

02H RESUME TRACE

03H RETURN TRACE BUFFER ADDRESS

DX: COMport:
00H COM1

01H COM2

Interrupt 60H returnsthe following in response to function 3:

CX Buffer count in bytes
DX Segmentaddressofbuffer
BX Offset address of buffer

Name: UPPERCAS.C .

Figure: 18-13
Status: Incorrect — do notuse.

Purpose: Converts a fixed string to uppercase andprintsit.
Compiling:|MSC/ZiUPPERCAS;

LINK: UPPERCAS/CO;
Parameters:|No parameters.

Name: UPPERCAS.C

Figure: 18-14
Status: Correct version of Figure 18-13.
Purpose: Converts a fixed string to uppercase andprintsit.
Compiling: MSC /Zi UPPERCAS;

LINK UPPERCAS/CO;
Parameters: No parameters.

Name: ASCTBL.C

Figure: 18-16
Status: Incorrect — do not use.

Purpose: Displaysa table of all displayable characters.
Compiling: MSC /Zi ASCTBL;

LINK ASCTBL/CO;
Parameters: No parameters.

Name: ASCTBL.C

Figure: 18-17
Status: Correctversion of Figure 18-16.
Purpose: Displays a table of all displayable characters.
Compiling: MSC /Zi ASCTBL;

LINK ASCTBL/CO;

Parameters: No parameters.

Section I: Programmingin the MS-DOS Environment 545

OLYMPUSEX. 1010 - 555/1582

OLYMPUS EX. 1010 - 556/1582

Part E: Programming Tools

Debugging Tools and Techniques

MS-DOSprovides a wide variety of tools to aid in the debugging process. Some are
intended specifically for debugging. For example, the DEBUG program is delivered with
MS-DOSandprovides basic debugging aid; the more sophisticated SYMDEBis supplied
with MASM,Microsoft’s macro assembler, CodeView, a debuggerfor high-order languages,
is supplied with Microsoft C, Microsoft Pascal, and Microsoft FORTRAN.Others are gen-
eral MS-DOSservices and features that are also useful in the debugging process.

Debugging,like programming, has aspects of both an art and a craft. The craft — the
mechanical details of using the tools —is discussed both here and elsewherein this
volume,but the main subjectof this article is the art of debugging —the choice of the
correcttool, the best techniquesto use in various situations, the methods of extracting the
clues to the problem from a recalcitrant program.

Debugging a program is a form of puzzle solving. As with mostintellectual detective
work, the following rule applies:

Gatherenough information and the solution will be obvious.

Thecraft of debugging involves gathering the data; the art lies in deciding which data to
gather and in noticing whenthe solution has become obvious.

The methodsofgathering data for debugging, listed in order of increasing difficulty and
tediousness,fall into four major categories:

® Inspection and observation
@ Instrumentation

® Use of software debugging monitors (DEBUG, SYMDEB, and CodeView)
® Use of hardware debuggingaids

As mentioned above, part of the art of debugging is knowing which methodto use. This
is one of the mostdifficult aspects of debugging —sodifficult, in fact, that even program-
mers with years of experience make mistakes. Many programmers have spent hours
single-stepping through a program with DEBUG onlyto discover that the cause of the
problem would have been obviousif they had given the program’s output even a cursory
check. The only universal rule for choosing the correct debugging methodis

Try them all, starting with the simplest.

Inspection and observation

Inspection and observationis the oldest and, usually, the best method of program debug-
ging.It is also the basis for all the other methods. Thefirst step with this method, as with
the others, is to gatherall the pertinent materials. Program listings, file layouts, report
layouts, and program design materials (such as algorithm descriptions and flowcharts)
are all extremely valuable in the debugging process.

546 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 556/1582

OLYMPUS EX. 1010 - 557/1582

Article 18: Debugging in the MS-DOS Environment

Desk-checking

Before a programmer can determine what a program is doing wrong,he or she must
know the correct operation of the program. There was a time, when computers wererare
and expensive resources, that programmers were encouraged notto runtheir programs
until the programs had been thoroughly desk-checked. The desk-checking process in-
volves sitting down with a listing, a hand calculator, and some sample data. The program-
merthen “plays computer,” executing each line of the program manually and writing
downon paperthe results of each program step. This process is extremely slow and
tedious. When the desk-checking is completed, however, the programmernot only has
found most of the bugs in the program but also has becomeintimately familiar with the
execution of the program and the values of the program variables at each step.

The adventof inexpensive yet powerful personal computers, combinedwiththe rising
cost of programmertime, has made complete desk-checking nearly obsolete. It is now
cheaperto run the program andlet the computer find the errors. However, the usefulness
ofthe desk-checking technique remains. Many programmersfindit helpful to manually
execute those sections of a program that they suspect are causing trouble. Even if they
don’t find errors in the code, the insight they gain into the workings of the code and the
valuesofthe variables at each step can be invaluable when applying other debugging
techniques.

The inspection-and-observation methodology

The basic technique of the inspection-and-observation methodis simple: After gathering
all the required materials, run the program and observe. Observe very carefully; events
that seem insignificant may be the very clues neededto discover where the program is
going astray. As the program executes, note whether each section performscorrectly.
Doesthe program clear the screen whenit should? Doesit ask for input when it should?
Doesit produce the correct results? Observable events are the debugger’s milestones in
the execution of the program.If the program clears the screen but writes purple asterisks
instead of requesting input, then the problem lies somewhereafter the program issues the
Clear Screen commandbutbefore it writes the input prompt on the screen. At this point,
the program listing and design data become important. Inspect the listing and examine
the areaafter the last successful milestone and before the missing milestone. Look for a
logic error in the code that could explain the observed data.

If the program producesprinted reports, they may also be useful. Watch the screen and
listen to the printer. Clues can sometimes be foundin the order in which things happen.
Thelight on the disk drive can be anotherindication of activity. See how disk activity co-
ordinates with screen andprinter events. Try to identify each section of the program from
these clues. Then usethis informationto localize the inspection of the listing to isolate
the erroneous code.

The values of data given in reports and on the screen can also give clues to what’s going
wrong. Examining the data and reconstructing the values used to compute it sometimes
leads to inferences about data problems. Perhaps a variable was misspelled in the code

Section II: Programming in the MS-DOS Environment 547

OLYMPUSEX. 1010 - 557/1582

OLYMPUS EX. 1010 - 558/1582

Part E: Programming Tools

or perhapsa datafile is in the wrong format or has been corrupted. With this information,
the bug can often be isolated. However, a very thorough knowledge of the program andits
algorithmsis required. See Desk-checking above.

MS-DOSprovides four commandsandfilters that are useful in the collection and examina-
tion of data for debugging: TYPE, PRINT, FIND, and DEBUG.All these commandsdisplay
the data inafile in some way. If the data is ASCII (displayable) characters, TYPE and

. PRINT can be used, with some help from FIND.Binaryfiles can be examined and modi-
fied with the DEBUGutility. See USER COMMANDS:FIND; PRINT; TYPE; PROGRAMMING
UTILITIES: pesuc.

The TYPE commandprovides the simplest way to display ASCII data files. This method
can be used to examine both input and outputfiles. Checking the input files may uncover
some bad (or unexpected) data that causes the program to malfunction; examining the
outputfiles will show whethercalculations are being performed correctly and may help
pinpoint the erroneouscalculationsif they are not.

The FIND utility is useful in locating specific data in a file. Using FIND is more accurate
and definitely less tedious than examining thefile manually using the TYPE command.
The /N switch causes FINDto also displaythe relative line numberof the matching line —
information that is most useful in debugging.

Sometimes the data is too complex to be examined on the screen and printed copy is
needed. The PRINT command will produce hard copy of an ASCIIfile as will the TYPE
commandif itsoutput is redirected to the printer with the >PRN command-line parameter
after the filename.

Notall data files contain pure ASCII data, and displaying such non-ASCIIfiles requires a
different approach. The TYPE commandcan be used, but nonprintable characters will
produce garbage on the screen. This technique canstill prove usefulif the file has a large
amount of ASCIIdataorif the records are regular and the ASCII information always
appears at the samelocation, but no information can be gained about non-ASCII numeric
data in such files. Note also that the entire file might not be displayed using TYPE because
if TYPE encounters a byte containing 1AH (Control-Z), it assumesit has reached the end
of thefile and stops.

Clearly, a more useful tool for examining non-ASCII files would be a program that dumps |
- the file in hexadecimal, with an appropriatetranslation of all-displayable characters. Such

programsexist in the public domain (through bulletin-board services, for instance) and, in
any event, are notdifficult to write. MS-DOS does notinclude a stand-alonefile-dumping
program amongits standard commandsandutilities, but the DEBUG program can be
used, with minor inconvenience,to display files. This program is discussedin detail later
in this article; for now, simply follow these instructions to use DEBUGasa file dumper.
To load DEBUGand the program to be debugged,use the form

DEBUG [drive:][path]filename.ext

DEBUGwill display a hyphen as a prompt. To see the contentsofthe file, enter D (the
DEBUGDisplay Memory command) and press Enter. DEBUG will display thefirst 128
(80H)bytesofthe file in hexadecimal and will also show any displayable characters.

548 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 558/1582

OLYMPUS EX. 1010 - 559/1582

Article 18: Debugging in the MS-DOS Environment

To see therestof the file, simply continue entering D until the desired area is found. Hard
copy ofthe contents ofthe display can be made byusing the PrtSc key (or Ctrl-PrtSc to
print continuously). Note that the offset addressesfor the bytesin thefile begin at the
value in the program’s CS:IP registers, which can be viewed by using the Debug R (Display
or Modify Registers) command. To obtain the true offsets, subtract CS:IP from the address .
shown.

The essenceofthe inspection-and-observation methodis careful and thoughtful observa-
tion. The computer and the operating system can providetools to aid in thecollection of
data, but the most important tool is the programmer’s mind. By applyingthelogical skills
they already possess to the observed data, programmers can usually avoid the more
complex forms of debugging.

Instrumentation

Debuggingby instrumentationis a traditional method that has been popular since pro-
grams were holes punchedin cards. In general, this method consists of adding something
to the program,either internally or externally, to report on the progress of program execu-
tion. Programmerscall this added mechanism instrumentation becauseofits resemblance
to the measuring instruments used in science and engineering. Instrumentation can be
software, hardware, or a combination of both; it can be internal to the program or external
to it. Internal instrumentation is always software, but external instrumentation may be
either hardwareor software.

Internal instrumentation

Internal instrumentation usually consists of display or print statements placed at strategic
locations. Othersignals to the user can be usedif they are available. For instance, the sys-
tem beeper can be soundedat key locations, perhaps in a coded sequenceofbeeps; if the
device being debugged haslights that can be accessed by the program,these lights can be
flashed at important locations in the program. Beeping and flashing do not, however,
possess the information content usually required for debugging, so display or print state-
ments are preferred.

The use of display or print statements to display key data and milestones on the screen or
printer requires careful planning. First, apply the techniques of inspection and observation
described in the previous section to determine the most probable points offailure. Then,if
there is some doubt about what path execution is taking through the code, embed mes-
sagesof the following types after key decision points:

BEGINNING SORT PHASE

ENDING PRINCIPAL CALCULATION

PROCESSING RECORD XX

A second wayto use display or print statement instrumentation is to embed statements that
display the data andinterim valuesusedfor calculations. This technique can be extremely
useful in finding problemsrelated to the data being processed. Consider the QuickBASIC
program in Figure 18-1 as an example. The program has no syntax errors and compiles
cleanly, but it sometimes produces an incorrect answer.

Section II: Programming in the MS-DOS Environment 549

OLYMPUSEX. 1010 - 559/1582

OLYMPUS EX. 1010 - 560/1582

Part E: Programming Tools

550

' EXP.BAS -- COMPUTE EXPONENTIAL WITH INFINITE SERIES

Boi ofe OG ake RC eK fe oc fe oie oo oe 92 2 fe RR oR 2 ok oA A oe oe ake ok 2k ok ok a oo oe oi oR ok oR oo oe eo Kok ROK
"ox

* EXP
Vox

*
*

converge are printed.
entered.

' Initialize program variables'

INITIALIZE:
TERMS = 1
FACT 1
LAST 1.E35
DELTA = 1.B34
EX =:1

i

' Input user data

INPUT "Enter number: "; X
IF X = 0 THEN END

INPUT "Enter convergence criterion (.0001 for 4 places): "; C

' Compute exponential until difference of last 2 terms is < C

WHILE ABS (LAST - DELTA) >= C
LAST = DELTA
FACT = FACT * TERMS
DELTA = X*TERMS / FACT

This routine computes EXP(x) using the following infinite series:

x

EXP (xX) = 1 t+ cre tree teem mee + rn +
1!

*
* *
* *
* *
* , *

* The program requests a value for x and a value for the convergence *#
* criterion, C. The program will continue evaluating the terms of *

' * the series until the difference between two terms is less than C. #*
* *
* *
* ¥
* #
* *
* *

The result of the calculation and the number of terms required to

iO 2 oo ie oie ois 28a ie fee ake RO oe oR oe oeeeoO ie ok ok RK Kk ok OK oo ORK oR OK KK

EX = EX + DELTA
TERMS = TERMS + 1

WEND

Figure 18-1. A routine to compute exponentials, : (more)

The MS-DOS Encyclopedia

*

eeHR
*x*2 x%*3 x74 x*5

2! 3! 4! 3!

The program will repeat until an x of 0 is
OLYMPUSEX. 1010 - 560/1582

OLYMPUS EX. 1010 - 561/1582

peopnN9

Article 18: Debugging in the MS-DOS Environment ~

' Display answer and number of terms required to converge

PRINT EX

PRINT TERMS; "elements required to converge”
PRINT

GOTO INITIALIZE

Figure 18-1. Continued.

The purposeof the EXP.BAS program is to compute the exponential of a given number
to a specified precision using an infinite series. The program computesthe value of each
term in the infinite series and addsit to a running total. To keep from executing forever,
the program checksthe difference between the last two elements computed and stops
whenthis difference is less than the convergencecriterion entered by the user.

When the program is run for several values, the following results are observed:
Enter number: ? 1

Enter convergence criterion (.0001 for 4 places): ? .0001
2.718282

10 elements required to converge

Enter number: ? 1.5

Enter convergence criterion (.0001 for 4 places): ? .0001
4.481686

11 elements required to converge

Enter number: _? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
5

3 elements required to converge

Enter number: ? 2.5

Enter convergence criterion (.0001 for 4 places): ? .0001
42.18249

15 elements required to converge

Enter number: ? 3

Enter convergence criterion (.0001 for 4 places): ? .0001
13

4 elements required to converge

Enter number: ? 0

Someofthese numbers areincorrect. Table 18-2 shows the computed values and the
correct values.

Section I: Programming in the MS-DOS Environment 551

OLYMPUSEX. 1010 - 561/1582

OLYMPUS EX. 1010 - 562/1582

Part E: Programming Tools

Table 18-2. The Computed Values Generated by EXP.BASand the Expected

Values.

x Computed Correct

1.0 2.718282 2.718282
1.5 4.481686 4.481689
2.0 5 7.389056

2.5 12.18249 12.18249
3.0 13 20.08554

Applying the methodsfrom thefirst section of this article and observing the data quickly
reveals a pattern. With the exception of 1, all whole numbersgive incorrect results, but all
numbers with fractions give results that are correct to the specified convergencecriterion.
Examinationof the listing shows no obvious reason for this. The answeris there, but only
an exceptionally intuitive numeric analyst would see it. Because no answeris obvious, the
nextstepis to validate the only information available — that whole numbers produceer-
rors and fractional ones do not. Repeating thefirst experiment with 2 and a number
very closeto 2 yields the following results:

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001
7.38167 :

13 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
5

3 elements required to converge

Entex number: ? 0

The outcomeis the same — repeating the experiment with a numberas nearto 2 as the
convergencecriterion permits (1.9999) produces the sameresult. The error is indeed
caused by the fact that the numberis an integer.

Becausenointuitive way can be foundto solve the mystery by inspection, the program-
mer must turn to the next method in the hierarchy, instrumentation. The problem has
something to do with the calculation of the terms of the series. Therefore, the section of
the program thatperformsthis calculation should be instrumented by placing PRINT
statements inside the WHILE loop (Figure 18-2) to display all the intermediate values
of the calculation.

WHILE ABS (LAST - DELTA) >= C
LAST = DELTA
FACT = FACT * TERMS

DELTA = X * TERMS / FACT

Figure 18-2. Instrumenting the WHILEloop. (more)

552 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 562/1582

OLYMPUS EX. 1010 - 563/1582

Article 18: Debugging in the MS-DOS Environment

EX = EX + DELTA s

PRINT "TERMS="; TERMS; "EX="; EX; "FACT="; PACT; "DELTA="; DELTA;
PRINT "LAST="; LAST

. TERMS = TERMS + 1
WEND

Figure 18-2. Continued.

Theprint statements used in this WHILEloopare typical of the type used for instrumenta-
tion. The program makes no attempt at fancy formatting. Theprint statements simply
identify each value with its variable name, allowing easy correlation of the data and the
codein the listing. Repeating the experiment with 1.999 and 2 yields

Enter number: ? 1.999
Enter convergence criterion (.0001 for 4 places): ? .0001
TERMS= 1 EX= 2.999 FACT= 1 DELTA= 1.999 LAST= 1E+34
TERMS= 2 EX= 4.997001 FACT= 2 DELTA= 1.998 LAST= 1.999
TERMS= 3 EX= 6.328335 FACT= 6 DELTA= 1.331334 LAST= 1.998
TERMS= 4 EX= 6.993669 FACT= 24 DELTA= .6653343 LAST= 1.331334
TERMS= 5 EX= 7.25967 FACT= 120 DELTA= .2660006 LAST= .6653343
TERMS= 6 EX= 7.348292 FACT= 720 DELTA= 8.862254E-02 LAST= .2660006
TERMS= 7 EX= 7,373601 FACT= 5040 DELTA= 2.530806E-02 LAST= 8.862254E-02
TERMS= 8 EX= 7.379924 FACT= 40320 DELTA= 6.323853E-03 LAST= 2.530806E-02

TERMS= 9 EX= 7,381329 FACT= 362880 DELTA= 1.404598E-03 LAST= 6.323853E-03
TERMS= 10 EX= 7.38161 FACT= 3628800 DELTA= 2.807791E-04 LAST= 1.404598E-03
TERMS= 11 EX= 7.381661 FACT= 3.99168E+07 DELTA= 5.102522E-05 LAST= 2.807791E-04
TERMS= 12 EX= 7.38167 FACT= 4.79001GE+08 DELTA= 8.499951B-06 LAST= 5.102522E-05

7.38167

13 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
TERMS= 1 EX= 3 FACT= 1 DELTA= 2 LAST= 1E+34
TERMS= 2 EX= 5 FACT= 2 DELTA= 2 LAST= 2

5

3 elements required to converge

Examination of the instrumentation printout for the two cases showsa drastically different
pattern. The fractional number went through13iterations following the expected pattern;
the whole number, however, quit on the third step. The loop is terminating prematurely.
Why? Lookat the values calculated for DEITA and LAST onthelast complete step. They
are the same,giving a difference of zero. Becausethis difference will always be less than
the convergencecriterion, the loop will always terminate early. A moment’s reflection
shows why. The numerator of the fraction for each term but thefirst in the infinite series is
a powerof the numberentered; the denominatoris a factorial, a product formed by multi-
plying successive integers. Because n! = n*(n—D!, when an integer is raised to a power
equalto itself and divided by thefactorial of that integer the result will always be the same
as the preceding term. That is what has happened here.

Section Il: Programming in theMS-DOSEnvironment)—553

OLYMPUSEX. 1010 - 563/1582

OLYMPUS EX. 1010 - 564/1582

Part E: Programming Tools

554

Nowthat the cause of the problem is found, it must be fixed. How can this problem be
prevented? In this case, the problem is caused byalogic error. The programmer misread
(or miswrote!) the algorithm and assumedthatthe criterion for termination wasthat the
difference between the last two termsbeless than the specified value. This is incorrect.
Actually, the termination criterion should be that the difference between the forming
EXP(x) and the last term beless than thecriterion. To simplify, the last term itselfmust be
less than the value specified. The correct programlisting, including the new WHILEloop,
is shownin Figure 18-3.

' EXP.BAS -- COMPUTE EXPONENTIAL WITH INFINITE SERIES

1 aie sc fe oe ote oe ee9oeaoie oo fe keee Oo oR os 2 oO oe eK ko ok 2 ok ooakOR
t

' EXP
1

‘ This routine computes EXP(x) using the following infinite series:1

' x x*2 x3 x*4 xA5

' EXP (x) = t 4 --- + -o- + wer $F H+ --- +
‘ 1! 2! 3! 4! 3!

The program requests a value for x and a value for the convergence
criterion, C. The program will continue evaluating the terms of
the series until the amount added with a term is less than C.

The result of the calculation and the number of terms required to
converge are printed. The program will repeat until an x of 0 is

*
*
*
*
*
*
*
*
*%
*
*
*
*
*
*
*

entered. *
*
Pd

*
*
*
*
*
*
*
*
*

sx
*
*
*
*
*
*
*
x
2 fe fe a Re fe oie ke 2g Ae eo eo og CHE oe Og ooa2 DE OC OK oie oc 9 CE eo ie ce fe fee oie Oo fe ok ook oOOR

' Initialize program variables'

INITIALIZE;
TERMS = 1
FACT = 1
DELTA = 1.535
EX = 1

' Input user data

INPUT "Enter number: "; X
IF X = 0 THEN END

INPUT "Enter convergence criterion (.0001 for 4 places): "; C

' Compute exponential until difference of last 2 terms is < Cc

Figure 18-3. Corrected exponential calculation routine. _ (more)

TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 564/1582

OLYMPUS EX. 1010 - 565/1582

Article 18: Debugging in the MS-DOS Environment

WHILE DELTA > C
FACT = FACT * TERMS

DELTA = X*TERMS / FACT .
EX = EX + DELTA
TERMS = TERMS + 1

WEND

' Display answer and number of terms required to converge'

PRINT EX

PRINT TERMS; "elements required to converge"
PRINT

GOTO INITIALIZE

Figure 18-3. Continued.

The program now producesthe correct results within the limits of the specified accuracy:

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001
7.381661

12 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
7.389047

12 elements required to converge

Enter number: ? 0

This example illustrates how easyit is to use internal instrumentation in high-order lan-
guages. Because these languages usually have simple formatted output commands, they
require verylittle work to instrument. When these output commandsare notavailable,
however, more work may be required. For instance, if the program being debuggedis in
assembly language,it is possible that the code required to format and print internal data
will be longer than the program being debugged. For this reason, internal instrumentation
is rarely used on small and moderate assembly programs. However, large assembly pro-
grams and systems often already have print formatting routines built into them; in these
cases, internal instrumentation may be as easy as with high-order languages. _

External instrumentation

Sometimesit is difficult to use internal instrumentation with a program.If, for instance,
_ the problem is timing related, adding print statements could cloudthe problem or, worse

yet, make it go away completely. This leaves the programmerin the frustrating position of
having the problem only whenthe cause can’t be seen and not having the problem when
it can. A solution to this type of problem can sometimes be foundby moving the instru-
mentation outside the program itself. There are two types of external instrumentation:
hardware and software.

Section I: Programming in the MS-DOS Environment—555

OLYMPUSEX. 1010 - 565/1582

OLYMPUS EX. 1010 - 566/1582

Part E: Programming Tools

Hardware instrumentation consists of whatever logic analyzers, oscilloscopes, meters,
lights, bells, or gongs are appropriate to the hardware and software undertest. Hardware
instrumentationis difficult to set up and tediousto use.It is, therefore, usually reserved for
those problemsdirectly associated with hardware. Such problemsoften arise when new
software is being run on new hardware and nooneis quite sure where the bugsare.
Because most programmers reading this book are developing software on tried-and-true
personal computer hardware and because most of those programmers are unlikely to have
a logic analyzer costing several thousand dollars, we will skip over the use of hardware
instrumentation for software debugging.If a logic analyzer must be used, the programmer
should rememberthat the debugging philosophy and techniques discussedin this article
can still be applied effectively.

MS-DOSprovidesa feature that is very useful in building external instrumentation soft-
ware: the TSR, or terminate-and-stay-resident routine. See PROGRAMMINGIN THE MS-

‘ DOS ENVIRONMENT:Cusromizine ms-bos: Terminate-and-Stay-ResidentUtilities. This
feature of the operating system allows the programmerto build a monitoring routine that
is, in essence, a part of the operating system and outside the application program. The TSR
is loaded as a normal program, but instead of leaving the system whenit is done, it remains
intact in memory. The operating system provides no way to reexecute the program afterit
terminates, so most TSRs are interrupt driven.

Because TSRs exist outside the application program, they can be usedto build external
instrumentation devices. This independenceallows them to perform monitoring functions
withoutdisturbing the logic flow of the application program. The only areas whereinter-
ferenceis likely are those where the TSR and the program must use commonresources.
These conflicts typically involve timing but can also involve other resources, such as I/O
devices, disk files, and MS-DOSresources, including environment space. Someof these
problemsare addressed in the next example.

The TSR type of external instrumentation software can prove useful in analyzing serial
communications. Such an instrumentation program monitors the serial communication
line and records all data. To detect protocol or timing problems, the program tags the
recordeddata so that transmitted data can be differentiated from received data. Hardware
devices exist that plug into the serial port and perform both the monitoring and tagging
function, but they are expensive and not always handy. Fortunately, this inexpensive piece
of software instrumentation will serve in many cases.

Software interruptcalls are made with the INT instruction. Althoughtheir service routines
must obeysimilar rules, these interrupts should not be confused with hardware interrupts
caused by external hardware events. Software interrupts in MS-DOSare used by an appli-
cation program to communicate with the operating system and, by extension in IBM sys-
tems, with the ROM BIOS. For example, on IBM PCs and compatibles, application pro-
grams can use software Interrupt 14H to communicate with the ROM BIOSserial port
driver. The ROM BIOSroutine, in turn, manages the hardware interrupts from the actual

556 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 566/1582

OLYMPUS EX. 1010 - 567/1582

Article 18: Debugging in the MS-DOSEnvironment

serial device. Thus, Interrupt 14H does not communicate directly with the hardware. All
the programsin this article deal with software interrupts to the ROM BIOS and MS-DOS.

A program totrace the serial data flow must have accessto the serial data, so such a pro-
gram mustreplace the vector for Interrupt 14H with onethat pointsto itself. The routine
can then record all the serial data and passit along throughtheserialport. Because the
goal is to minimizethe effect of this monitoring on the timing of the data, the method used
for recording the data should befast. This requirement rules out writing to a diskfile,
because unexpected delays can be introduced (and because doing disk I/O from an inter-
rupt service routine under MS-DOSisdifficult, if not impossible). Printing the data on
paperis clearly too slow, and data displayed on the screen is too ephemeral. Thus, about
the only thing that can be done with the datais to write it to RAM. Luckily, memory has
become cheap and most personal computers haveplenty.

Writing a routine that monitors and recordsserial data is not enough, however. The data
muststill flow throughtheserial port to and from the externalserial device. Thus,the
monitor program can have only temporary custody of the data and mustpass it on to the
serial interrupt service routine in the ROM BIOS. This is accomplished by using MS-DOS
function calls to extract the address oftheserial interrupt handler before the new vectoris
installed in its place. The processof intercepting interrupts and then passing the data on is
knownas “daisy-chaining” interrupt handlers. So long as such intercepting programs are
careful to maintain the data and conditions upon entrance for subsequentroutines(thatis,
so long as routines are well behaved; see PROGRAMMINGIN THE MS-DOS ENVIRON-
MENT: PROGRAMMING FOR MS-DOs), several interrupt handlers can be daisy-chained
together with no detriment to processing. (Woe be unto the person whobreaksthe daisy
chain— the results are annoying at best and unpredictable at worst.)

Theserial monitoring program,as described sofar, correctly collects andstores serial data
and then passesit on to the serial port. This may be intellectually satisfying, but it is not.of
muchuse in the real world. Some way must be providedto control the program —tostart
collection, to stop collection, to pause and resumecollection. Also, once datais collected,
a control function must be provided that returns the numberofbytes collected and their
starting location, so that the data can be examined.

From allthis, it is clear that a serial communications monitoring instrument must

Replace the Interrupt 14H vector with one pointingto itself.
Save the address of the old interrupt handler.
Collect the serial data, tag it as transmitted or received, and store it in RAM.

Pass the data on, in a completely transparent manner, to the old interrupt handler.
Provide some wayto control data collection.

VRWN
A program that meetsall thesecriteria is shown in Figure 18-4. The COMMSCOPprogram
has three major parts:

Section II: Programming in the MS-DOS Environment 557

OLYMPUSEX. 1010 - 567/1582

OLYMPUS EX. 1010 - 568/1582

Part E; Programming Tools

 Procedure Purpose

COMMSCOPE Monitoring and tagging
CONTROL External control

VECTOR_INIT Interrupt vectorinitialization

The COMMSCOPE procedure provides the new Interrupt 14H handlerthat intercepts the
serial I/O interrupts. The CONTROL procedure provides the external control needed to
makethe system work. The VECTOR_INIT procedure getsthe old interrupt handler
address, installs COMMSCOPEas the new interrupt handler, and installs the interrupt
handlerfor the control interrupt.

TITLE COMMSCOP -- COMMUNICATIONS TRACE UTILITY
FSCOGIORGI OGIGG ICIG”OICIGIGIC IGG GISGIAGG IG IOI

COMMSCOP --
THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT
AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH

ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE
WAS SENT BY OR RECEIVED BY THE SYSTEM.MeNeee
COMMSCOP IS INSTALLED BY ENTERING

COMMSCOP

THIS WILL INSTALL COMMSCOP AND SET UP A 64K BUFFER TO BE USED

FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR
EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT
30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD,
ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY
HOLD MORE THAN 30 SECONDS WORTH OF DATA.

MeNeNe
~

WHEN INSTALLED, COMMSCOP INTERCEPTS ALL INT 14H CALLS. IF THE
PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE-

CBIVE DATA, A COPY OF THE DATA BYTE, PROPERLY TAGGED, IS PLACED

IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL
INT 14H HANDLER.

me

eeeF¥%KHHRKRFHHeHHHHKHFHHFHKKHHHHKxFee#ReHHHEHHHFEREHeRKHHEHeHHHKHRKKRKKHHRKR7 COMMSCOP IS INVOKED BY ISSUING AN INT 60H CALL. THE INT HAS *
; THE FOLLOWING CALLING SEQUENCE: *
; x
; AH -- COMMAND *
; 0 -- STOP TRACING, PLACE STOP MARK IN BUFFER *
i 1 -- FLUSH BUFFER AND START TRACE *
; 2 =- RESUME TRACE *

; 3 -- RETURN COMM BUFFER ADDRESSES *
; DX -- COMM PORT (ONLY USED WITH AH = 1 or 2) + “
; Q -- COM1 *
i 1 -- COM2 a

Figure 18-4. Communicationstrace utility. (more)

558 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 568/1582

OLYMPUS EX. 1010 - 569/1582

Article 18: Debugging in the MS-DOS Environment

~

THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH = 3:

CX -- BUFFER COUNT IN BYTES

DX -- SEGMENT ADDRESS OF THE START OF THE BUFFER
BX -- OFFSET ADDRESS OF THE START OF THE BUFFER

*
*
*
*
a
*
*

THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE *
[r FOLLOWING FORM: *

*
*
*
*
*
*
*
*

x*#ReHHHOH
%

BYTE 0 -- CONTROL

BIT 0 -- ON FOR RECEIVED DATA, OFF FOR TRANS.
BIT 7 -- STOP MARK -- INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.
BYTE 1 -~°8-BIT DATA*eX*KHHe*

FORGO ROR RGR GO FOR KRIGORCI IO IOIGI ROR ROIS a ke okeak ok aka ok

CSEG SEGMENT

ASSUME CS:CSEG,DS:CSEG
ORG 100H 7TO MAKE A COMM FILE

INITIALIZE:
JMP VECTOR_INIT ;JUMP TO THE INITIALIZATION

3 ROUTINE WHICH, TO SAVE SPACE,
; IS IN THE COMM BUFFER

?
+ SYSTEM VARIABLES
’

OLD_COMM_INT DD ? +ADDRESS OF REAL COMM INT
COUNT DW 0 ;BUFFER COUNT

COMMSCOPE_INT EQU 60H ; COMMSCOPE CONTROL INT
STATUS DB 0 7PROCESSING STATUS

7 Q -- OFF
7 1 -- ON

PORT DB 0 +COMM PORT BEING TRACED
BUFPNTR DW VECTOR_INIT #NEXT BUFFER LOCATION

SUBTTL DATA INTERRUPT HANDLER
’ PAGE

FRR ee ok Ree eReaoR OR RR ORKOK OKeROK BROR ROR EK
i; * . *
7; * COMMSCOPE *
3; * THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA *
7 * IF APPROPRIATE. *
7 * *
; i eR oe oe oe ois oie fe ofc ofe ofc oe ke oe ake oft fe oft oe fe ae fe of ake fe fe oe aie of oie fe ois fe oe ole ok ode aft fe ade 2fe a ofe oe feof ee 2 fe oe eo ook de fe os ode ade eae oi oe
COMMSCOPE PROC NEAR

TEST CS: STATUS, 1 j;ARE WE ON?
JZ OLD_JUMP ; NO, SIMPLY JUMP TO OLD HANDLER

Figure 18-4. Continued. (more)

peststn,tttentittiesgettprAtpptngrr
Section I: Programming in the MS-DOSEnvironment—559

OLYMPUSEX. 1010 - 569/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 570/1582

Part E: Programming Tools

560

cMP AH, 00H
JE OLD_JUMP

CMP AH, 03H
JAE , OLD_JUMP

CMP AH, 02H
Je GET_READ

; DATA WRITE REQUEST -- SAVE IF APPROPRIATE

CMP DL, CS: PORT
JNE OLD_JUMP

PUSH DS
PUSH BX
PUSH cs
POP DS

MOV BX, BUFPNTR
Mov (BX),BYTE PTR 0
MOV [BX+1],AL
INC COUNT
INC COUNT
INC BX
INC BX
MOV BUFPNTR, BX
INZ WRITE_DONE

MOV STATUS, 0
WRITE_DONE:

POP BX
POP DS
JMP OLD_JUMP

,

+ PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE
?

GET_READ: |
CMP DL,CS:PORT
JNE OLD_JUMP

PUSH DS
PUSH BX
PUSH cs
POP DS

PUSHF
CLI
CALL OLD_COMM_INT

TEST AH, 80H
JNZ READ_DONE

Figure 18-4. Continued.

TheMS-DOSEncyclopedia

;SKIP SETUP CALLS?

;SKIP STATUS REQUESTS
¢

71S THIS A READ REQUEST?
7 YES, GO PROCESS

7IS WRITE FOR PORT BEING TRACED?
+ NO, JUST PASS IT THROUGH

7SAVE CALLER’S REGISTERS

7SET UP DS FOR OUR PROGRAM
poe

7GET ADDR OF NEXT BUFFER LOC
#;MARK AS TRANSMITTED BYTE
7SAVE DATA IN BUFFER
; INCREMENT BUFFER BYTE COUNT

7POINT TO NEXT LOCATION

;SAVE NEW POINTER
7ZERO MEANS BUFFER HAS WRAPPED

7 TURN COLLECTION OFF

*RESTORE CALLER’S REGISTERS

*PASS REQUEST ON TO BIOS ROUTINE

7IS READ FOR PORT BEING TRACED?
; NO, JUST PASS IT THROUGH

7SAVE CALLER'S REGISTERS
i.

;SET UP DS FOR OUR PROGRAM
,

7FAKE INT 14H CALL

7PASS REQUEST ON TO BIOS
;VALID READ?
+ NO, SKIP BUFFER UPDATE

(more)

OLYMPUSEX. 1010 - 570/1582

OLYMPUS EX. 1010 - 571/1582

MOV BX, BUFPNTR
MOV {BX],BYTE PTR 1
MOV (BX+1],AL
INC COUNT

INC COUNT
INC BX.
INC BX

MOV BUFPNTR, BX
‘INZ READ_DONE

MOV STATUS, 0
READ.DONE:

POP BX
POP DS
IRET

+ JUMP TO COMM BIOS ROUTINE
,

OLD_JUMP :
JMP CS :OLD_COMM_INT

COMMSCOPE ENDP

Article 18: Debugging in the MS-DOS Environment

7GET ADDR OF NEXT BUFFER LOC
7;MARK AS RECEIVED BYTE
*SAVE DATA IN BUFFER
; INCREMENT BUFFER BYTE COUNT
poe
7POINT TO NEXT LOCATION

;SAVE NEW POINTER
;ZERO MEANS BUFFER HAS WRAPPED

+TURN COLLECTION OFF

;RESTORE CALLER’S REGISTERS
,

SUBTTL CONTROL INTERRUPT HANDLER
PAGE
FRaiAoee2feROCR fe ee of 2 OR oe eo ke oe OO eo eae ok ok ko ok OK ORa

*

7 * CONTROL

*
Eo

7 * THIS ROUTINE PROCESSES CONTROL REQUESTS. *
* '

CONTROL PROC NEAR

CMP AH,00H
JNE CNTL_START
PUSH DS
PUSH BX
PUSH cs
POP DS

MOV STATUS, 0
MOV BX, BUFPNTR

MOV [BX], BYTE PTR 80H
MOV [BX+1],BYTE PTR OFFH
INC BX
INC BX

MOV BUFPNTR, BX
INC COUNT
INC COUNT
POP BX
POP DS
JMP CONTROL_DONE

Figure 18-4. Continued.

*
BR Re Oe ae 2k ee ee EK A oe of ke he oie fe fe9 fe aee oe oe oe Ro oc oooo ok ooA oo oo oOKK

*STOP REQUEST?
+ NO, CHECK’ START
;SAVE REGISTERS
poe

7;SET DS FOR OUR ROUTINE

*TURN PROCESSING OFF
#PLACE STOP MARK IN BUFFER
i

7 INCREMENT BUFFER POINTER

7 INCREMENT COUNT

+RESTORE REGISTERS
;

(more)

Section II: Programming in theMS-DOS Environment 561

OLYMPUSEX. 1010 - 571/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 572/1582

Part E; Programming Tools

CNTL_START:

CMP AH,01H ;START REQUEST?
JNE CNTL_RESUME ; NO, CHECK RESUME
MOV CS:PORT,DL ;SAVE PORT TO TRACE
MOV CS:BUFPNTR, OFFSET VECTOR_INIT ;RESET BUFFER TO START
MOV CS:COUNT, 0 ; ZERO COUNT
MOV CS:STATUS, 1 ;START LOGGING
JMP CONTROL_DONE

CNTL_RESUME:

CMP AH, 02H ;RESUME REQUEST?
ONE CNTL_STATUS ; NO, CHECK STATUS
CMP CS:BUFPNTR,0 ;END OF BUFFER CONDITION?
JE CONTROL_DONE ; YES, DO NOTHING
MOV CS:PORT,DL ;SAVE PORT TO TRACE
MOV CS:STATUS, 1 ; START LOGGING
JMP CONTROL_DONE

CNTL_STATUS:
CMP AH, 03H ;RETURN STATUS REQUEST?
JNE CONTROL_DONE 7 NO, ERROR. -- DO NOTHING
MOV CX,CS:COUNT *RETURN COUNT :
PUSH cs ;RETURN SEGMENT ADDR OF BUFFER
POP DX ,

MOV BX, OFFSET VECTOR_INIT #RETURN OFFSET ADDR OF BUFFER

CONTROL_DONE:
IRET

CONTROL ENDP

SUBTTL
PAGE INITIALIZE INTERRUPT VECTORS

RRoRRRRRRRRR GR ikakoR RK kok RR A
Ea *

* VECTOR_INIT *
* THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN *
* EXITS VIA THE MS~DOS TERMINATE-AND-STAY-RESIDENT FUNCTION. *

7 * A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE *
* IN THE BUFFER IS THE OFFSET OF VECTOR_INIT. *
* BS
* *FOCIGIGIGORGIGI IG IS GICIG IGG ICG GIG IORI GIGI TOK ak i a

EVEN *ASSURE BUFFER ON EVEN BOUNDARY
VECTOR_INIT PROC NEAR
é

* GET ADDRESS OF COMM VECTOR (INT 14H)
;

MOV AH, 35H

Figure 18-4. Continued. (more)

562 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 572/1582

OLYMPUS EX. 1010 - 573/1582

Article 18: Debugging in the MS-DOS Environment

MOV AL, 14H
INT 21H

+ SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_.COMM_INT, BX
MOV AX,ES
MOV WORD PTR OLD_COMM_INT[2},AX

7 SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX, OFFSET COMMSCOPE
MOV AH, 25H
MOV AL, 14H
INT 21H

7 INSTALL CONTROL ROUTINE INT

MOV DX, OFFSET CONTROL
MOV AH, 25H
MOV AL, COMMSCOPE_INT
INT 21H

; SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV AX, 3100H ;TERM AND STAY RES COMMAND
MOV DX, 1000H 764K RESERVED
INT 21H 7 DONE

VECTOR_INIT ENDP
CSEG ENDS

END INITIALIZE

Figure 18-4, Continued.

Thefirst executable statement of the program is a jump to the VECTOR_JINIT procedure.
Thevector initialization code is needed only duringinstallation;after initialization of the
vectors, the code can be discarded.In this case, the area wherethis code resides will
becomethestart of the trace buffer, therefore, it makes sense to put the initialization code
at the end of the program whereit can be overlaid by the trace buffer. The jumpat the start
of the program is required because the rules for making .COMfiles require that the entry
pointbethefirst instruction of the program.

Thevectorinitialization routine uses Interrupt 21H Function 35H (GetInterrupt Vector)
to get the addressofthe current Interrupt 14H service routine. The segment and offset ad-
dress (returned in the ES:BX registers) is stored in the doubleword at OLD_COMM_ INT.
Interrupt 21H Function 25H (Set Interrupt Vector) is then used to vectorall Interrupt 14H
calls to COMMSCOPE. Another Function 25Hcall sets Interrupt 60H to vector to the
CONTROLroutine. This interrupt, which provides the meansto control and interrogate
the COMMSCOPE routine, was chosen becauseit is unused by MS-DOS and because some
IBM technical materials list 60H through 66Has being available for user interrupts.CIf,
for somereason, Interrupt 60H is not available, simply change the equated symbol
COMMSCOPE_INTto an available interrupt.)

Section II: Programming in theMS-DOSEnvironment 563

OLYMPUSEX. 1010 - 573/1582

OLYMPUS EX. 1010 - 574/1582

Part E: Programming Tools

Whenthevectorinitialization process is complete, the routine exits and stays resident by
using Interrupt 21H Function 31H (Terminate and Stay Resident). As partof the termina-
tion process, the routine requests 1000H paragraphs,or 64 KB,ofstorage.A little over 500
bytes of this storage area is used for the code;the rest is available for trace data.If the serial
port is running at 2400 baud,a solid stream of data willfill this buffer in about two min-
utes. However, a solid 32 KB blockofdata is unusual in asynchronous communications
and, in reality, the buffer will usually contain many minutes worth ofdata. Note that the
buffer-handling routines in COMMSCOPE.requirethat the buffer be aligned on an even
byte boundary, so VECTOR_INITis preceded by the EVENdirective.

The interrupt service routine, COMMSCOPE,receives all Interrupt 14H calls. First
COMMSCOPE checksits ownstatus.If it has not been activated, it immediately passes
control to the real service routine.If the tracer is active, COMMSCOPE examinesthe Inter-
rupt 14H function in AH. Setup and status requests (AH = 0 and AH = 3) do notaffect trac-
ing, so they are passed ondirectly to the the real service routine. If the Interrupt 14H call
is a write-data request (AH = 1), COMMSCOPE movesthe byte marking the data as trans-
mitted and the data byte itself to the current buffer location and increments both the byte
count and the buffer pointer by2. If the buffer pointer goesto zero, the buffer has
wrapped;data collection is turned off and cannot be turned on again withoutclearing the
trace buffer. Because the buffer, which starts at VECTOR_JINIT, is always on anevenbyte /
boundary, there is no dangerof the first byte of the data pair forcing a wrap. After the
transmitted data is added to the buffer, COMMSCOPE passescontrol to the real service
routine.

A read-data request (AH = 2) must be handleda little differently. In this case, the data
to be collectedis not yet available. In order to get it, COMMSCOPE must pass controlto
the real service routine and then intercept the results on the way back. The code at
GET_READ fakesaninterruptto the service routine by pushing the flags onto the stack so
that the service routine’s IRET will pop them off again. COMMSCOPE thencalls the ser-
vice routine and, whenit returns, retrieves the incoming serial data character from AL.If
the incoming data byte is valid (bit 7 of AHis zero), the byte marking the data as received
and the data byte itself are placed in the trace buffer, and both the byte count and the
buffer pointer are incremented by 2. The buffer-wrap condition is detected and handled in
the same manneras with transmitted data. Because the real service routine has already
been called, COMMSCOPEexitsasif it were the service routine by issuing an IRET.

The CONTROL procedure provides the mechanism for external control ofthe trace pro-
cedure. The routine is entered wheneveran Interrupt 60H is executed, Commandsare
sent through the AH register and can cause the routine to STOP (AH = 0), START/FLUSH
(AH = 1), RESUME(AH=2), or RETURN STATUS(AH = 3). This routine also sets the com-

munications port to be traced. The required information is provided in DX using the same
formatas the Interrupt 14H routine. The port information is used only with START and
RESUMErequests. The RETURN STATUS commandreturnsdata in registers: the byte
count (CX), the segmentaddress of the buffer (DX), and the offset of the first byte in the
buffer (BX).

564 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 574/1582

OLYMPUS EX. 1010 - 575/1582

Article 18: Debugging in the MS-DOS Environment

The COMMSCOPprogramis assembledusing the Microsoft Macro Assembler (MASM),
linked using the Microsoft Object Linker (LINK), and then converted to a .COMfile using
EXE2BIN (see PROGRAMMING UTILITIES):

C>MASM COMMSCOP; ‘<Enter>
C>LINK COMMSCOP; <Enter>
C>EXE2BIN COMMSCOP.EXE COMMSCOP.COM -<Enter>
C>DEL COMMSCOP.EXE <Enter>

Thelinker will display the message Warning: no stack segment, this message can be
ignored becausethe rules for making a .COMfile forbid a separate stack segment.

The program is installed by simply typing COMMSCOP. Tracing can then be started and
stopped using Interrupt 60H. MS-DOSdoesnotallow residentroutines to be removed, so
COMMSCOPwill be in the system until the system is restarted. Also note that, because
COMMSCOPis well behaved, nothing disastrous will happen if multiple copies of itare _
accidentally installed. As each new copyis installed, it chains to the previous copy. When
Interrupt 14H is intercepted, the new routine dutifully passes the data on to the previous
routine, which repeats the process until the real service routine is reached. The data is
addedto the trace buffer of each copy, giving multiple, redundant copies of the same data.

Because Interrupt 60H is not chained,only the last copy’s buffer can be accessed. Thus,
the other copies simply waste 64 KB each.

Twotechniques can be usedto start or stop a trace. Thefirst is to issue Interrupt 60H
calls at strategic locations within the program being debugged. With assembly-language
programs,this is easy. The appropriate registers are loaded and an INT 60Hinstruction is
executed. Issuing this INT instruction is not much moredifficult with higher-order Micro-
soft languages— both QuickBASIC and C provide a library routine called INT86 that
allows registers to be loaded and INTinstructions to be executed. Un QuickBASIC,the
INTS86library routine is included in the File USERLIB.OBJ; in Microsoft C,it is included in
the file DOS.H.) EmbeddedInterrupt 60H calls can be convenient becausethey limit trac-
ing to those areas where processing is suspect. Because COMMSCOPmarksthe buffer

each time the trace is stopped and resumed,the separate pieces ofza trace are easy to dif-
ferentiate.

The second techniqueis to write a simple routine to start or stop the trace outside the pro-
gram being debugged. The example in Figure 18-5, COMMSCMD,is a Microsoft C program
that can perform these functions using the INT86library functionto issue Interrupt 60H
calls.

TRRReA OR A ie RR RSAoR RR Aoeoi oe ORRR ROR a OK OR ROR ok

**%*&FFHHHFHFRF
*

COMMSCMD *
*

This routine controls the COMMSCOP program that has been in- *
stalled as a resident routine. The operation performed is de- *
termined by the command line. The COMMSCMD program is invoked *
as follows: *

*

COMMSCMD [{[cmd] [port]] **

Figure 18-5. A serial-trace control routine written in C. . (more)

Section II: Programming in theMS-DOS Environment 565

OLYMPUSEX. 1010 - 575/1582

OLYMPUS EX. 1010 - 576/1582

Part E: Programming Tools

command to be executed

If cmd is omitted, STOP is assumed.
assumed.

#include <stdlib.h>
#include <stdio.h>

_ #include <dos.h>
#define COMMCMD 0x60

main(arge, argv)
int arge;
char *argv[];
{

int cmd, port, result;
static char commands[3] [10] = {"STOPPED",
union REGS inregs, outregs;

emd = 0;

port = 0;

if (argc > 1)
{

if (0 == stricmp(argv[1], "STOP")
emda = 0;

else if (0 == stricmp(argv[1], "START"))
cmd = 1;

else if (0 == stricmp(argv(1], "RESUME"))
cmd = 2;

if (arge == 3)
{

port = atoi(argv[2]);
if (port > 0)

port = port - 17

inregs.h.ah = cmd;
x.dx = port;

int86 (COMMCMD,
inregs.
result = &inregs,

printf ("\nCommunications tracing %s for port COM%1d:\n",
commands[cmd], port + 1)?

}

Figure 18-5. Continued.

566 TheMS-DOS Encyclopedia

where cmd is the
STOP -- stop trace
START -~ flush trace buffer and start trace
RESUME -- resume a stopped trace

port is the COMM port to be traced (1=COM1, 2=COM2, etc.)

If port is omitted, 1 is

GOOOIGGIGIGR RIGTOIOISI OCI ISIOI IDR J3ck oii kaBBR aCake

éoutregs);

*
*
*
*
a
*
*
*
*

/

"STARTED", "RESUMED"};
OLYMPUSEX. 1010 - 576/1582

OLYMPUS EX. 1010 - 577/1582

aepronee

Article 18: Debugging in the MS-DOSEnvironment

COMMSCMDis passed arguments in the commandline. Thefirst argumentis the com-
mand to be performed: STOP, START, or RESUME.If no commandis specified, STOPis
assumed, The second argumentis the port number: 1 (for COM)) or 2 (for COM2). If no
port numberis specified, 1 is assumed.

The COMMSCMDprogramusesa simpleIF filter to.determine the function to be per-
formed. The program tests the number of argumentsin the commandlineto seeif a port
has been specified. If the argument count (argc) is 3 (one for the command name,onefor
the command,and onefor the port number), the port number argumentis retrieved and
converted to an integer. The Interrupt 60H routine expects port numbersto bespecified in
the same mannerasfor Interrupt 14H,so the port numberis decrementedifit is not already
zero. The AH register is loaded with the command (cmd), the DX register is loaded with
the port number (por), and the INT86library function is then used to execute an Interrupt
60H call. When the interrupt returns, COMMSCMDdisplays a message showing the func-
tion and port.

The same function can be performed by the QuickBASIC program in Figure 18-6.
ae ok oi Re RR eR os fe ke 2s 2 oe oeeo RAG Ag Bei Ree ee Oe ic os a ae CORO ie He 2 2K oO oo es OK aR ok OR

COMMSCMD

This routine controls the COMMSCOP program that has been in-
stalled as a resident routine. The operation performed is de-
termined by the command line. The COMMSCMD program is invoked
as follows:

COMMSCMD [[cmd][(,port]]

where cmd is the command to be executed

STOP -- stop trace
START -- flush trace buffer and start trace

RESUME -- resume a stopped trace
port is the COMM port to be traced (1=COM1, 2=COM2, etc.)

If cmd is omitted, STOP is assumed. If port is omitted, 1 is

*
*
*
*
*
*
*
*
Ed

to
*
*
*
*
*
*
*

* assumed.
*
*

*
*
*
*
*
*
eo
*
*
*
*
ae
*
*
*
*
*
*
La
*FUGGCGIG CGCGIGIGOR IGISIGIOICIGG IG IGRI AIH IGAC HOR a kei ak fe ack ake akc a

'

' Establish system constants and variables' .

DEFINT A-Z

DIM INREG(7}, OUTREG(7) ‘Define register arrays

Figure 18-6. A QuickBASIC version ofCOMMSCMD. (more)

Section IL Programming in the MS-DOS Environment 567

OLYMPUSEX. 1010 - 577/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 578/1582

Part E: Programming Toolsi

RAX =
RBX =
RCX =
RDX =
RBP =
RSI =
RDI =
REL =

“ADO&WH|Oo
DIM TEXTS (2)

"STOPPED"
“STARTED"
"RESUMED"

TEXTS (0)
TEXTS (1)
TEXTS (2) =

‘ Process command-line tail1

C$ = COMMANDS

IF LEN(CS$) = 0 THEN
CMD = 0
PORT = 0
GOTO SENDCMD

END IF

COMMA = INSTR(CS$, ", ")
IF COMMA = 0 THEN

CMDTXT$ = CS
PORT = 0

ELSE

CMDTXTS = LEFTS(C$, COMMA -
PORT = VAL(MIDS(CS, COMMA +

END IF

IF PORT < 0 THEN PORT = 0

IF CMDTXT$ = "STOP" THEN
CMD = 0

ELSEIF CMDTXT$ = "START" THEN
CMD. = 1

ELSEIF CMDTXTS = "RESUME" THEN
CMD = 2

ELSE
CMD = 0

END IF

'

‘ Send command to COMMSCOP routine1

SENDCMD :

INREG(RAX) = 256 * CMD

Figure 18-6. Continued.

568 The MS-DOSEncyclopedia

‘Establish values for 8086

' registers1

'

‘Get command-line data

‘If no command line specified
"Set CMD to STOP
"Set PORT to COM1

‘Extract operands

1)
1)) - 1

(more)

OLYMPUSEX. 1010 -578/1582

OLYMPUS EX. 1010 - 579/1582

Article 18; Debugging in the MS-DOS Environment

INREG (RDX) = PORT :

CALL INT86(&H60, VARPTR(INREG(0)), VARPTR(OUTREG (0)))'

' Notify user that action is completet

PRINT : PRINT

PRINT "Communications tracing "; TEXTS (CMD);
IF CMD <> 0 THEN .

PRINT " for port COM"; MIDS(STRS(PORT + 1), 2); ":"
ELSE

PRINT
END IF

END

Figure 18-6. Continued.

Both versions of COMMSCMDaccepttheir commandsfrom the commandtail; both are
invoked with a STOP, START, or RESUME command andaserial port number(1 or 2).If
the operandsare omitted, STOP and COMIare assumed.

After data has been collected and safely placed in the trace buffer, it must be read before
it can be useful. Interrupt 60H provides a function (AH = 3) that returns the buffer address
and the numberofbytes in the buffer. The QuickBASIC routine in Figure 18-7 usesthis
function to get the address of the data and then formats the data on the screen.
Se ke oko oo ke eR ke ieea Re eoof oR kee oe ke ook ee ke ake ook a oi okie oak oR ka a ak a ao oe kk

' * COMMDUMP

*
*

* *

* This routine dumps the contents of the COMMSCOP trace buffer to *
* the screen in a formatted manner. Received data is shown in *

‘ # reverse video. Where possible, the ASCII character for the byte *

* is shown; otherwise a dot is shown. The value of the byte is *
* displayed in hex below the character. Points where tracing was *

' * stopped are shown by a solid bar. *
*
%ok os oe ae of 2 2h ee oR ode ie ie oe fe oie os ke ie oie oi fe fe oie ke ake ke cot oie oie ee oe RR Oa oe ake ok oie oe ie a oie eea oe cok

‘

' Establish system constants and variables'

DEFINT A-Z

DIM INREG(7), OUTREG(7) "Define register arrays

RAX = 0 ‘Establish values for 8086

RBX = 1 ' registers
RCX = 2 '
RDX = 3 '

Figure 18-7. Formatted dump routineforserial-trace buffer. (more)

Section II: Programming in the MS-DOS Environment ~ 569

OLYMPUSEX. 1010 - 579/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 580/1582

Part E: Programming Tools

570

RBP =
RSI
RDI
RFL =

"

anO
' Interrogate COMMSCOP to obtain
' trace buffert

INREG (RAX) = &H0300

NUM = OUTREG (RCX)
BUFSEG = OUTREG(RDX)
BUFOFF OUTREG (RBX)

If NUM = 0 THEN END

' Set screen up and display control data

CLS

KEY OFF
LOCATE 25, 1
PRINT "NUM ="; NUM;"BUFSEG = ";
PRINT HEX$(BUFOFF);
LOCATE 4, 1
PRINT STRINGS (80,"—")
DEF SEG = BUFSEG

' Set up display control variables

DLINE = 1
DCOL = 1
DSHOWN = 0

' Fetch and display each character in buffer

FOR I= BUFOFF TO BUFOFF+NUM-2 STEP 2
STAT = PEEK(I)
DAT = PEEK(I + 1)

IF (STAT AND 1) = 0 THEN
COLOR 7, 0

ELSE
COLOR 0, 7

END IF

RLINE = (DLINE-1) # 4 + 1

Figure 18-7. Continued.

The MS-DOS Encyclopedia

“Request address data and count
CALL INT86(&H60, VARPTR(INREG(0)), VARPTR(OUTREG(0)))

‘Number of bytes in buffer
‘Buffer segment address
‘offset of buffer start

HEX$ (BUFSEG) ;

f

addresses and count of data in

" BUFOFF = ";

(more)

OLYMPUSEX. 1010 - 580/1582

OLYMPUS EX. 1010 - 581/1582

Article 18; Debugging in the MS-DOS Environment
IF (STAT AND &H80) = 0 THEN

LOCATE RLINE, DCOL
CS = CHR$ (DAT)
IF DAT < 32 THEN C$ = "."

i PRINT C$;
HS = RIGHTS("00" + HEXS$(DAT), 2)
LOCATE RLINE + 1, DCOL
PRINT LEFTS(HS, 1);

LOCATE RLINE + 2, DCOL
PRINT RIGHTS(HS, 1);

ELSE

LOCATE RLINE, DCOL
PRINT CHR$ (178);
LOCATE RLINE + 1, DCOL
PRINT CHR$ (178);
LOCATE RLINE + 2, DCOL
PRINT CHR$ (178);

END IF

|‘

i
I

t

DCOL = DCOL + 1
IF DCOL > 80 THEN

COLOR 7, 0
DCOL = 1
DLINE = DLINE + 1
SHOWN = SHOWN + 1
IF SHOWN = 6 THEN

LOCATE 25, 50
COLOR 0, 7
PRINT "ENTER ANY KEY TO CONTINUE: ";

. WHILE LEN(INKEYS) = 0
WEND

COLOR 7, 0
LOCATE 25, 50
PRINT SPACES (29);
SHOWN = 0

END IF
IF DLINE > 6 THEN

LOCATE 24, 1
PRINT : PRINT : PRINT : PRINT

LOCATE 24, 1
: PRINT STRINGS (80, "-");

: . DLINE = 6
‘ ELSE

. LOCATE DLINE * 4, 1
PRINT STRINGS (80, "-");

END IF
END IF

NEXT I

END

Figure 18-7. Continued.

Section II: Programming in theMS-DOS Environment 571

OLYMPUSEX. 1010 - 581/1582

OLYMPUS EX. 1010 - 582/1582

Part E: Programming Tools

COMMDUMPis a simple routine. Like most debugging aids, it lacks needless frills. When -
it is executed,COMMDUMPdisplays the data in the trace buffer on the screen in the for-
mat shownin Figure 18-8.

.612832 . 132056780001086713265678888198671328567888010067 132856780081806713285679)
3333363333333339339333333333333333333

18128323132856786681886713285678660180671320567800010067132656780801086713205678

100160671326567800016667132056786668108671324567880010067 .#. Bs12832 567813286861)4

9333I9302Z 1 6333333033333333939333
40014067132056780801086713265678800108671320567880010067338 3181283239567813200881

10675678132088010867567813208061806756781320006108675678132000818867567813200Ee1
(333933I9339333333333333339333333333333333!
86675678132000810067567813200681886756781320000108675678132000610067567813280881

3333333333333333333333333333333333336021 16333333033333333333333333333333333333333
64675678 1328000100675678132608018867338 9101283230067 132056780881886713205678008 1986756781320000100675678152060010067 . # i.12832 .€8671326567880810867132656780861
08671326567806818867132056786881006713285678800188671320567888818867132056780081
9333
6067132656788081006713205678000160671320567800010067132656780001006713205678880 1

8067132656780661 .#.psn13928567880618067132056788001606713205678860100671328A

933333333333333382 1 34333333833
4667132656786801338 314128323132656780801806713285678888 18067132056788891886713248

UM = 1122 BUFSEG = 1313 BUFOFF = 208 ENTER “ANY: KEY: TO. CONTINUE: .

Figure 18-8. Formatted trace dump routine output.

Note that the data for each byte is presented in two forms.If the byte is greater than
IFH, the ASCII character represented by that numberis shown; otherwise, a dot is shown.
Directly below each character is the hexadecimal representation of the data. The display
showsreceived data in reverse video and transmitted data in normal video. The mark

placed in the buffer when collection is stopped and resumed is represented on the screen
as a vertical bar one character wide. The display pauses whenthescreenis full and waits
for a key to be pressed.

Datacollected and displayedin this way can.be invaluable to the programmertrying to
debug a program involving a communications protocol. The example shown aboveis
part of an ordered exchangeofsales data for a system using blocked transmissions and
ACK/NAKprotocol. Like all debugging, finding bugs in such a system requires the collec-
tion of large amounts of data. With no data, the causes of problemscan be almost impos-
sible to find; with sufficiently large amounts of data, the solutions are obvious.

Several things could be done to the COMMSCOPprogramto increaseits usefulness, For
instance, there are six unusedbits in the tag accompanying each data bytein the trace
buffer. These could be usedto record the status of the modem controlbits, to place timer
ticks in the buffer, or to coordinate the data with some outside event. (Such changes to
COMMSCOPwould require a more complicated COMMDUMProutine to display them.)

572 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 582/1582

OLYMPUS EX. 1010 - 583/1582

Article 18: Debugging in the MS-DOSEnvironment

Software debugging monitors

Debugging monitors provide the next level of sophistication in the hierarchy of debugging
methods. These monitors are coresident in memory with the application being debugged
and provide a controlled testing environment— thatis, they allow the programmerto con-
trol the execution of the program andto monitorthe results. They even allow some prob-
lemsto be fixed directly and the result reexecuted immediately, without the need to
reassemble or recompile.

These monitors are analogousto the TSR serial monitor from the previous section. The
debugging monitors, however, do not reside permanently in memory andare controlled
interactively from the keyboard during the execution of the program undertest. Although
this level of control is more flexible than instrumentation,it is also more intrusive into pro-
gram execution. While the debugging monitorsits and waits for input from the keyboard,
the application program is also idle. For programsthat must run in real time or must
respondto external stimuli, long delays can be fatal. Careful planning and’a thorough
knowledgeofthe internal workings of the program are required to debug in such an
environment. :

Other problems with debugging monitors arise from the nature of the monitors them-
selves. They are programs, no different from the application program being debugged and
are therefore limited to those things that can be done with software. For instance, they can
break (stop execution to allow investigation of program status) when a specific instruction
address is executed (because this can be done with software), but they cannot break
whena data address is referenced (because this would require special hardware). Because
these monitors reside in RAM,as do the application program and MS-DOS,they are sus-
ceptible to damage from a program running wild. Sometrial and error is usually involved
in locating the problem causing this kind of damage; breakpoints won’t work here because
the problem kills the monitor (and usually MS-DOSalso).

Microsoft provides three debugging monitors, each with greater capabilities than its pre-
decessor. In order of increasing sophistication, these three monitors are

Monitor Description

DEBUG A basic debugging monitor with the ability to load files, modify memory
and registers, execute programs, set simple breakpoints, trace execution,
modify disk files, and enter assembly-language statements into memory.

SYMDEB A more advanced debugging monitor incorporating all the features of
DEBUGplus more sophisticated data display, support for graphics pro-
grams, supportfor the Intel 80186/80286 microprocessors andtheIntel
80287 math coprocessor, improved breakpoints, improved tracing,
recognition of symbols from the program being debugged,and limited
source-line display.

CodeView The most sophisticated debugging monitor, incorporating the func-
tionality of SYMDEB (with somedifferences in the details) plus win-
dows, full source-line support, mouse support, and generally more
sophistication onall functions.

Section Il: Programming in thé MS-DOS Environment—573

OLYMPUSEX. 1010 - 583/1582

OLYMPUS EX. 1010 - 584/1582

Part E: Programming Tools

Althoughall these debugging monitors will be discussed here, this section is not intended
to be a tutorial on all the commandsand options of the monitors — those are presented
elsewherein this volume and in the manuals accompanying the monitors. See PROGRAM-
MING UTILITIES: vesuc; syMDEB; CopEViEw.Rather, this section uses case histories and
sample programsto illustrate the techniques for solving various types of common debug-
ging problems. Thecase histories have been chosen to show a wide range of problems,
from simple to extremely complex.

DEBUG

Although DEBUGisthe least sophisticated of the software debugging monitors,it is quite
useful with moderately complex programsandis an effective tool for learning basic
techniques.

Basic techniques
Thefirst sample program is written in assembly language.It is a test program that per-
formsserial input and output and was used to debug COMMSCOBtheserial-trace TSR
presentedearlier. The routine reads from the keyboard and writes to COM1 by means of
Interrupt 14H.It also accepts incomingserial data and displays it on the screen. This

process continuesuntil Ctrl-C is pressed on the keyboard.A serial terminalis attached ©
to COM1to serve as a data source. Figure 18-9 shows the erroneous program.

TITLE TESTCOMM — TEST COMMSCOP ROUTINE
FCGOGICGGIGOCIIORIGIORGIO GI IOR AGI AG ICI aca
*

* TESTCOMM ~ *
* THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS ¥*
* CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COM1 USING *
* INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE *
* SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *
* ON THE KEYBOARD. *
* *
* *SR Ske oe oe ok ie ke oie oo oe ea ode oe ok oo oe oe ooooeoo ok oo ooo oo kK oR ok oo ok ok ok

SSEG SEGMENT PARA STACK 'STACK'

DW . 128 DUP (?)}
SSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG,SS:SSEG , : :BEGIN PROC FAR

PUSH DS ;SET UP FOR RET TO MS-DOS
XOR AX, AX F
PUSH AX 7

Figure 18-9. Incorrect serial test routine. . (more)

574 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 584/1582

OLYMPUS EX. 1010 - 585/1582

Article 18: Debugging in the MS-DOS Environment

MAINLOOP:

. MOV AH,6 7USE MS-DOS CALL TO CHECK FOR
MOV DL, OFFH ; KEYBOARD ACTIVITY
INT 21 | j IF NO CHARACTER, JUMP TO
JZ TESTCOMM ; COMM ACTIVITY TEST

CMP. AL, 03 ;WAS CHARACTER A Ctr1-c?
JNE SENDCOMM ; NO, SEND IT TO SERIAL PORT
RET ; YES, RETURN TO MS~DOS

SENDCOMM: :

Mov AH, 01 ;USE INT 14H WRITE FUNCTION TO
- MOV DX,0 ; SEND DATA TO SERIAL PORT
INT 14H i

TESTCOMM:

MOV AH, 3 ;GET SERIAL PORT STATUS

MOV DX, 0 i. ,
INT 14H zo.
AND AH, 1 ;ANY DATA WAITING? ;
JZ MAINLOOP ; NO, GO BACK TO KEYBOARD TEST
MOV AH,2 . 7;READ SERIAL DATA
MOV Dx, 0 i.
INT 14H i.
MOV AH, 6 ;WRITE SERIAL DATA TO SCREEN
INT 21H an
JMP MAINLOOP ; CONTINUE

BEGIN ENDP
CSEG ENDS

END BEGIN

Figure 18-9. Continued.

Whenexecuted, this program produces a constant stream of zeros from theserial port.
Incomingserial data is not echoed on the screen, but the cursor movesasif it were. Fur-
ther, the Ctrl-C keystroke is not recognized, so the only way to stop the program is to
restart the system.

An examination ofthe listing should reveal the errors that cause these problems, but
things do not always happenthat way. For the purposesofthis case study, assumethat the
listing was no help. Instrumentation is more difficult for assembly-language programsthan
for programs written in higher-order languages,so in this case it is advantageous to go
directly to a debugging monitor. The monitor for this example is DEBUG.

Thefirst step in using DEBUGis not to invoke the monitor, rather, it is to gather all perti-
nentlistings, link maps, and program design documentation.In this case, the program is
so short that a link map will not be needed;all the design documentation that exists is in
the program comments.

Now begin DEBUGbytyping

C>DEBUG TESTCOMM.EXE <Enter>

Section II: Programming in the MS-DOSEnvironment 575

OLYMPUSEX. 1010 - 585/1582

OLYMPUS EX. 1010 - 586/1582

Part E: Programming Tools

Thefilename mustbe fully qualified; DEBUG makes no assumptions aboutthe extension.
Anytypeoffile can be examined with DEBUG,but only files with an extension of .COM,
.EXE, or .HEX are actually loaded and madeready for execution. Since TESTCOMMis a
.EXEfile, DEBUGloadsit and preparesit for execution in a manner compatible with the
MS-DOSloader. Type the Display or Modify Registers command,R.
-R <Enter>
AX=0000 BX=0000 CxX=0131 Dx=0000 SP=0100 BP=0000 sI=0000 DI=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IpP=0000 NV UP EI PL NZ NA PO NC
1ACD:0000 1E PUSH DS

Notice that the SS and CS registers have been loadedto their correct values and that SP
pointsto the bottom ofthe stack. DS and ES point to an address 100H bytes (10H para-
graphs) before the stack segment. (This is because the system sets these registers to point
to the program segmentprefix [PSP] when a .EXE program is loaded.) Normally, the pro-
gram code would be responsible for loading the correct value of DS, but this example does
not use the data segment, so the program doesn’t bother. The register display also shows
the instruction at the current value of CS:IP, 1ACD:0000H.Theinstruction pointer was set
to this address because the END statementin the source program specified the procedure
BEGINasthe entry point and that procedure beginsat CS:IP. Note that the instruction dis-
played below the register information has not yet been executed. This conditionis true for
all register displays in DEBUG —IP always points to the next instruction to be executed,
so the instruction at IP has not been executed.

From the symptomsobserved during program execution,it is clear that the keyboard data
is not reaching theserial port. The failure could be in the keyboard read routine or in the
serial port write routine. This code is compact and fairly linear, so the easiest way to find
out what is going on is to trace throughthefirst few instructions of the program. Executing
five instructions with the Trace Program Execution command,T,will dothis.
-T5 <Enter>

AX=0000 BX=0000 Cx=0131 DX=0000 SP=00FE BP=0000 SI=0000 DI=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0001 NV UP EI PL NZ NA PO NC

1ACD:0001 33c0 XOR AX, AX

AX=0000 BX=0000 CxX=0131 DxX=0000 SP=O00FE BP=0000 SI=0000 DI=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0003 NV UP EI PL 2R-NA PE NC
1ACD:0003 50 PUSH AX

AX=0000 BX=0000 Cx=0131 Dx=0000 SP=00FC BP=0000 SI=0000 Dzr=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0004 NV UP EI PL 2R NA PE NC

1ACD:0004 B406 MOV AH, 06

AX=0600 BX=0000 CxX=0131 Dx=0000 SP=00FC BP=0000 SI=0000 DI=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0006 NV UP BI PL 2R NA PE NC
1ACD:0006 B2FF MOV DL, FF

AX=0600 BX=0000 CxX=0131 DX=O0FF SP=00FC BP=0000 SI=0000° DI=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0008 NV UP EI PL ZR NA PE NC
1ACD:0008 CD15 INT 15

576 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 586/1582

OLYMPUS EX. 1010 - 587/1582

ceee

atesminejganianamamnranirannscnnanaresiasinentintan,Arrietajenapotenennaia

Article 18: Debugging in the MS-DOSEnvironment

The Trace command showsthe contents of the registers as each instruction is executed.
Theregister contents are after the execution ofthe instruction listed abovethe registers
and the instruction shown with the registers is the mex?instruction to be executed. The
first register display in this example representsthestate of affairs after the execution of the
PUSH DSinstruction,as indicated by SP. Thefirst three instructionsset up the stack so

. that the far return issued at the end of the program will pass control to the PSP for termina-
tion, The next two instructionsset the registers for a Direct Console I/O MS-DOScal]
(AH = 060, DL = HFFH for input). After these registers are set up, the program should ex-
ecute the MS-DOScall INT 21H. However, the next instruction to be executed is INT 15H.
This is the reason the keyboard data is not being read. The code requests INT 21, not 21H.
This mistake is a common one. The assembler’s default radix is decimal, so it converted 21

into 15H. This error can be corrected in memory from within DEBUG and, becausethein-
struction hasn't executedyet,the fix can be tested immediately. To make the correction,
use the Assemble MachineInstructions command,A.

-A 8 <Enter>

1ACD:0008 int 21 <Enter>
1ACD:000A <Enter>

The A 8 code instructs DEBUG to begin assembling at CS:0008H. DEBUG prompts with
the address and waits for an instruction to be entered. The letter H is not neededafter the

21 this time because DEBUG assumesall numbers entered with the Assemble command

are in hexadecimalform. In general, any valid 8086/8087/8088 assembly-languagestate-
ment can be entered this way and translated into executable machine code. See
PROGRAMMINGUTILITIES: pepua: A. Within its restrictions, the Assemble command

is a handy way of making changes. The Enter Data command,E, could also have been
used to change the 15H to a 21H, but the Assemble commandissafer, especially for com-
plex instructions. After the new instruction has been entered, press Enter again to stop
the assembly process.

There is a danger associated with making changes in memory during debugging: The
memory copy of the program is temporary; the changes exist only in memory and when
DEBUGexits, they are lost. Changes made to .EXE and .HEXfiles cannot be written back
to disk. To avoid forgetting the changes, write them down. When DEBUGexits, edit the
sourcefile immediately, Changes madeto otherfiles can be written back to disk with
DEBUG’s Write File or Sectors command, W.

To be sure that the change was madecorrectly, use the Disassemble (Unassemble)
Program command,U,to show the instructionsstarting at CS:0004H.
-U 4. <Enter>

1ACD:0004 B406 MOV AH, 06
1ACD:0006 B2FF MOV DL, FF
1ACD:0008 CD21 INT 21
1ACD:000A 740C JZ 0018
1JACD:000C 3c03 CMP AL, 03
1ACD:000E 7501 JNZ 0011
1ACD:0010 CB RETF

Section IT: Programming in the MS-DOSEnvironment 577

OLYMPUSEX. 1010 - 587/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 588/1582

Part E: Programming Tools

1ACD:0011 B401 MOV AH, 01
1ACD:0013 BA000O Mov. DX, 0000
1ACD:0016 CD14 Int 14

1ACD:0018 B403 "Mov. AH, 03
1ACD:001A BAOOOO MOV Dx0000
1ACD:001D CD14 INT 14
1ACD:001F 808401 AND AH, 01
1ACD:0022 74E0 JZ 0004

The change has been correctly made. Now,to test the change,start the program to seeif
characters make it out the serial port. The problem of data from theserial port not making
it to the screen remains, however, so instead of simply starting the program, set a break-
point at the location in the program that handles incoming serial data (CS:0024H). This.
technique allows the output section of the code to be tested separately. The breakpointis
set using the Go command,G.

-G 24 <Enter>

AX=0130 BX=0000 CX=0131 DxX=0000 -SP=00FC BP=0000 SI=0000 piI=0000
DS=1AAD ES=1AAD SS=1ABD CS=1ACD Ip=0024 NV UP EI PL NZ NA PO NC

1ACD:0024 B402 MOV AH, 02
-U <Enter>

JACD:0024 B402 MOV AH, 02
1ACD:0026 BA0000 MOV DX, 0000
1ACD:0029 CD14 INT 14

1ACD:002B B406 MOV AH, 06
1ACD:002D CD21 INT 21
1ACD:002F EBD3 JMP 0004
1AcD:0031 0000 ADD {BX+SI],AL
1ACD:0033 0000 ADD (BX+SI],AL
1ACD:0035 0000 ADD (BX+SI],AL
1ACD:0037 0000 ADD {BX+SI],AL
1ACD:0039 0000 ADD (BX+SI],AL
1ACD:003B 0000 ADD (BX+SI],AL
1ACD:003D 0000 ADD {BX+SIJ,AL
1ACD:003F 0000 ADD [BX+SI],AL
1ACD:0041 0000 ADD [BX+SI],AL
1ACD:0043 0000 ADD {BX+SI],AL

Asstated earlier, the serial port is attached to a serial terminal. After execution ofthe pro-
gram is started with the Go command,all keys typed on the keyboard are displayed cor-
rectly on the terminal, thus confirming the fix made to the INT 21H instruction. To test
serial input, a key must be pressed on the terminal, causing the breakpoint at CS:0024H
to be executed.

Thefact that location CS:0024H was reachedindicates that Interrupt 14H is detecting the
presence of an input character. To test if the character is now making it to the screen, a
breakpoint is needed after the write to the screen. The Disassemble commandshowsthe
instructions starting at the current IP value. The program ends at CS:002FH;the instruc-
tions shownafter that are whatever happened to be in memory whenthe program was
loaded. A good placeto set the next breakpoint is CS:002FH,just after the Interrupt 21H
call.

578 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 588/1582

OLYMPUS EX. 1010 - 589/1582

capeeeeetn

{t
\!i

Article 18; Debugging in the MS-DOSEnvironment

-G 2f <Enter>

AX=0600 BX=0000 CX=0131 Dx=0000 SP=00FC BP=0000 $1=0000 pr=0000
DS=i1AAD ES=1AAD SS=1ABD CS=1ACD IP=002F NV UP EI PL NZ NA PO Nc
1ACD:002F EBD3 | JMP 0004

DEBUGshowsthat the breakpoint was reached andthe characterdid not print(it should
have been ontheline after -G 2), so something must be wrong withthe Interrupt 21H
call. A breakpointjust before the MS-DOScall at CS:002DH should reveal the cause of the
problem.

-G 2a <Enter>

Ax=0662 BX=0000 CX=0131 DxX=0000 SP=00FC BP=0000 sSI=0000 DI=0000
DS=iAAD ES=1AAD SS=1ABD CS=1ACD IP=002D NV UP EI PL NZ NA PO NC
1ACD:002D CD21 INT 21

The key that was entered onthe serial terminal (b)is in AL, where it was returned by
Interrupt 14H. Unfortunately,it is not in DL, where it is expected by the Direct Console I/O
function (06H) of the MS-DOS command. The MS-DOSfunction wassimply printing a null
(00H) and then moving the cursor. An instruction (MOV DL,AL)is missing.

Fixing this problem requiresthe insertion of a line of code, whichis usually difficult to do
inside DEBUG. The Move (Copy) Data command,M, can be used to move the code located
below the point where theinsertion is to be made down2 bytes, but this wil! probably
throw any subsequent addressing off. It is usually easier to exit DEBUG,edit the sourcefile,
and then reassemble. In this case, however, because the instruction to be added is near the
last instruction, a patch can easily be made byentering only three instructions: the new
one and the twoit destroys.

“A 2a <Enter>

1ACD:002D mov dl,al <Enter>
1ACD:002F int 21 <Enter>

1ACD:0031 jmp 4 <Enter>
1ACD:0033 <Enter>
-U 2b <Enter>
1ACD:002B B406 MOV AH, 06
1ACD:002D 88Cc2.. MOV DL, AL
JACD:002F CD21 INT 21
1ACD:0031 EBD1 MP ©0004

1ACD:0033 0000 ADD [BX+SI],AL
1AcCD:0035 0000 ADD {BX+SI],AL
1ACD:0037 0000" ADD [BX+SI],AL
1ACD:0039 0000 ADD [BX+SI],AL

1ACD:003B 0000 ADD‘ [BX+SI], AL
1ACD:003D 0000 ADD [BX+SI],AL
1ACD:003F 0000 ADD [BX+SI],AL
1ACD:0041 0000 ADD (BX+SI],AL
JACD:0043 0000 ADD (BX+SI],AL
1ACD:0045 0000 ADD [BX+SI],AL
1ACD:0047 0000 ADD (BX+SI],AL
1ACD:0049 0000 ADD [BX+SI],AL

Section II: Programming in the MS-DOSEnvironment 579

OLYMPUSEX. 1010 - 589/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 590/1582

Part E: Programming Tools

580

The newline of code has been inserted and verified with the Disassemble command. The

fix is ready to test. The Trace command could be usedto single-step through the program
to verify execution. A word of warning is in order, however: The DEBUG Trace command
should never be usedto trace an Interrupt 21H call. Once the trace enters the MS-DOScall,
it will wander aroundfor a while and then lock the machine, requiring a restart. Avoid this
problem either by setting a breakpoint just beyond the Interrupt 21H call or by using the
Proceed Through Loop or Subroutine command,P. The Proceed commandoperatesin a
similar manner to the Trace command but doesnottrace loops,calls, and interrupts.

Becausethefix is fairly certain, use the Go commandin its simple form with no break-
points. The program will execute without further intervention from DEBUG.
-G <Enter>
lasdfgh
Program terminated normally
-Q <Enter>

The lasdfgh text entered on theserial terminal is displayed correctly. Whena Ctrl-C is
entered from the keyboard, the program terminates properly and DEBUG displays the
message Program terminated normally, Now exit DEBUG with the Quit command,Q.

The source code of TESTCOMMshould be edited immediately so that it reflects the two
changes made temporarily under DEBUG.Figure 18-10 showsthe correctedlisting.

TITLE TESTCOMM — TEST COMMSCOP ROUTINE
SCIORIIRIOI ER SOIOIORIICGSO ROR BGR ok ke SOG dO ake ak
*

* TESTCOMM
* THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS
* CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COM1 USING
* INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE
* SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED
* ON THE KEYBOARD.
*
*

+*&*F€eH&
AR Ao eC oe eos oe oe Ce 62 ois A os oie oe fe ie eootooe oe fe ke oe OR oeRo aR oo oR a RoE ROKK

SSEG SEGMENT PARA STACK 'STACK'

DW 128 DUP (?)
SSEG ENDS

CSEG SEGMENT
ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR
PUSH DS 7 SET UP FOR RET TO MS-DOS
XOR AX, AX ;
PUSH AX ;

Figure 18-10. Correct serialtest routine. (more)

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 590/1582

OLYMPUS EX. 1010 - 591/1582

Article 18; Debugging in the MS-DOS Environment

MAINLOOP:

'. , MOV AH,6 7USE DOS CALL TO CHECK FOR
: MOV DL, OFFH ; KEYBOARD ACTIVITY

INT 21H , 7 IF NO CHARACTER, JUMP TO
Jz TESTCOMM ; COMM ACTIVITY TEST

CMP AL, 03 7;WAS CHARACTER A Ctrl-C?
JNE SENDCOMM ; NO, SEND IT TO SERIAL PORT
RET ; YES, RETURN TO MS-DOS

SENDCOMM:

MOV AH, 01 7;USE INT 14H WRITE FUNCTION TO
MOV Dx, 0 ; SEND DATA TO SERIAL PORT
INT 14H ;

TESTCOMM:

MOV AH, 3 ;GET SERIAL PORT STATUS
MOV DX, 0 ;
INT 14H poe
AND AH, 1 sANY DATA WAITING?
JZ MAINLOOP ; NO, GO BACK TO KEYBOARD TEST
MOV AH, 2 ;READ SERIAL DATA
MOV DX, 0 GF
INT 14H a.
MOV AH, 6 ;WRITE SERIAL DATA TO SCREEN
MOV DL, AL ;
INT 21H Foe
JMP MAINLOOP 7 CONTINUE

BEGIN ENDP
CSEG ENDS

END BEGIN

Figure 18-10. Continued.

DEBUGhasarich set of commandsandfeatures. The preceding case study shows the
more common onesin their most straightforward aspect. Some of the other commands
and someuseful techniques are described below. See PROGRAMMINGUTILITIES:
DEBUG.

Establishing initial conditions
When a programis loadedfortesting, four areas may requireinitialization:

@ Registers
@ Data areas

® Default file-control blocks CFCBs)
® Commandtail

These areas may also require changes during testing, especially when the programmeris
working around bugsor establishing different test conditions.

Section II: Programming in the MS-DOSEnvironment 581

OLYMPUSEX. 1010 - 591/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 592/1582

Part E: ProgrammingTools

Registers. Registers are ordinarily set when the programis loaded. The values in them
depend on whether a .EXE, .COM,or .HEX file was loaded. Generally, the segmentregis-
ters, the IP register, and the SP register are set to appropriate values; with the exception of
AX, BX, and CX,therestof the registers are set to zero. BX and CX contain the length of
the loaded file. By MS-DOS convention, when a program is loaded, the contents of AL and
AHindicate the validity of the drive specifiers in the first and second DEBUG command-
line parameters, respectively. Each register contains zeroif the corresponding drive was
valid, O1H if the drive was valid and wildcards were used, or OFFH if the drive wasinvalid.

To changethe value of any register, use an alternate form of the Register command.Enter
R followed by the two-letter register name. Only 16-bit registers can be changed,so use the
X form of the general-purposeregisters:
-R AX <Enter>

DEBUG will respond with the current contents of the register and promptfor a new value.
Either enter a new hexadecimal value or press Enter to keep the current value:
AX 0000
:FFFF <Enter>

In this example, the new value of AX is FFFFH.

When changing registers, exercise caution modifying the segmentregisters. These regis-
ters control the execution of the program and should be changed only after careful and
thoughtful consideration.

The Register command can also be used to modify the CPU flags.

Data areas. \nitializing or changing data areas is easy, and several methodsare provided.
The Fill Memory command,F, can be usedto initialize areas of RAM.Forinstance,
-F 0 L400 0 <Knter>

fills DS:0000H through DS:03FFH with zero. (The absence of a segment override causes
the Fill commandto useits default segment, DS.) Entering

-F CS:100 200 1B "[Hello" 0D <Enter>

fills CS:0100H through CS:0200H with many repetitionsof the string 1B 5B 48 65 6C 6C 6F
OD. (Note that an address range was specified, not a length.)

Whenthe wholesale changing of memoryis not appropriate, the Enter command can be
used to edit a small numberof locations. The Enter command has two forms: One enters a

list of bytes into the specified memory location; the other prompts with the contents of
each location and waits for input. Either form can be used as appropriate.

Defaultfile-control blocks and the commandtail. The setting of the default FCBs and
of the commandtail are related functions. When DEBUGis entered, the first parameter
following the command DEBUGis the nameofthefile to be loaded into memoryfor
debugging.If the next two parameters are filenames, FCBsfor these files are formatted at

582 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 592/1582

OLYMPUS EX. 1010 - 593/1582

Article 18: Debugging in the MS-DOS Environment

DS:005CH and DS:006CH in the PSP. See PROGRAMMINGIN THE MS-DOS ENVIRON-

MENT:PROGRAMMING FOR Ms-DoOs:File and Record Management.If either parameter con-
tains a pathname,the corresponding FCB will contain only a valid drive number; the
filenamefield will not be valid. All filenames and switches following the nameofthefile
to be debugged are considered the commandtail and are saved in memorystarting at

. DS:0081H. The length of the commandtail is in DS:0080H. For example, entering

C>DEBUG COMMDUMP.EXE FILE1.DAT FILE2.DAT <Enter>

results in the first FCB (SCH), the second FCB (6CH), and the commandtail (81H) being
loaded as follows:

-D 50 <Enter>
42C9:0050 CD 21 CB 00 00 00 00 00-00 00 00 00 00 46 49 4c cleanness FIL

4209:0060 45 31 20 20 20 44 41 54-00 00 00 00 00 46 49 4c Ei DAT..... FIL
42C9:0070 45 32 20 20 20 44 41 54-00 00 00 00 00 00 00 00 E2 DAT........
42C09:0080 15 20 66 69 6C 65 31 2E-64 61 74 20 66 69 6C 65 . filel.dat file
4209:0090 32 2E 64 61 74 20 OD 74-20 66 69 6C 65 32 2E 64 2.dat .t file2.d
42C9:00A0 61 74 20 OD 00 00 00 00-00 00 00 00 00 00 00 00 At Le cece ee ee eee
42C9:00B0 00 00 00 00 00 00 00 00-00 G0 00 00 00 00 00 00 eee eee eens
42C9:00C0 CO 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00-.-.-

In this example, location DS:005CH contains an unopened FCB forfile FILE1.DAT on the
current drive. Location DS:006CH contains an unopened FCB for FILE2.DAT on the current
drive. (The second FCB cannot be used whereit is and must be movedto anotherlocation

before the first FCB is opened.) Location DS:0080H contains the length of the command
tail, 15H (21) bytes. The next 21 bytes are the commandtail prepared by DEBUG;they cor-
respond exactly to what the commandtail would be if the program had been loaded by
COMMAND.COMinstead of by DEBUG.

The default FCBs and the commandtail can also be set after the program has been loaded,
by using the NameFile or Command-Tail Parameters command, N. DEBUGtreats the
string of characters that follow the Name command as the commandtail: If the first two
parametersare filenames, they becomethe first and second FCBs, respectively. The Name
commandalso places the string at DS:0081H, with the length of the string at DS:0080H.
Entering the DEBUG command
-N FILE1.DAT FILE2.DAT <Enter>

producesthe sameresults as specifying the filenames in the commandline. When em-
ployed in this manner, the Name commandis usefulfor initializing command-tail data that
was not in the commandline or for changing the command-tail datato test different
aspects of a program.(If files are named in this manner, they are not validated until the
Load File or Sectors command,L, is used.) Note that the data following the Name com-
mand neednotbe filenames;it can be any parameters, data, or switchesthat the applica-
tion program expects to see.

Section II: Programming in the MS-DOS Environment 583

OLYMPUSEX. 1010 - 593/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 594/1582

Part E: Programming Tools

More on breakpoints
Thecase studyat the beginningof this section used breakpoints in their simplest form:
Onlya single breakpoint was specified at a time and the execution address was con-
sidered to be the current IP. The Go commandis also capable of setting multiple break-
points and of beginning execution at any address in memory. The more general form of
the Go commandis

Gl=address| |address (address...1\

If Go is used with no operands, execution begins at the current value of CS:IP and no
breakpoints areset. If the =address operand is used, DEBUGsets IP to the address speci-
fied and execution then begins at the new CS:IP. The other optional addresses are break-
points. When execution reaches one of these breakpoints, DEBUG stops and displays the
system’s registers. As many as 10 breakpoints can be set on one Go command, and they
can be in any order.

The breakpoint addresses must be on instruction boundaries because DEBUGreplaces
the instruction at each breakpoint address with an INT 03H instruction (OCCH), DEBUG
saves the replaced instructions internally. When any breakpoint is reached, DEBUG stops
execution andrestores the instructionsat all the breakpoints; if no breakpoint is reached,
the instructions are not restored and the Load command must be'usedto reload the origi-
nal program.

The multiple-breakpoint feature of the Go command allowsthe tracing of program exe-
cution when branchesexist in the code. When a program contains,for instance, a condi-
tional jump on the zero flag, a breakpoint can be placed in each of the two possible
branches. Whenthe branchis reached, one of the two breakpoints will be encountered
shortly thereafter. When DEBUGdisplays the breakpoint, the programmer knows which
branch wastaken. Moving through a program with breakpoints at key locationsis faster
than using the Trace command to execute each and everyinstruction.

Multiple breakpoints can also be used to home in on a bad piece of code. This technique
is particularly useful in those nasty situations when there are no symptoms exceptthatthe
system locks up and must be restarted. When debugging a problem such asthis, set break-
points at each of the major sections of the program and then note those breakpoints that
are executed successfully, continuing until the system locks up. The problem lies some-
where betweenthe last successful breakpoint and the next breakpoint set. Now repeat the
processes, setting breakpoints between the last breakpoint and the one that was never
reached. By progressively narrowing the gap between breakpoints, the exact offending
instruction can beisolated.

Some general comments about the Go command and breakpoints:

@ After a program has reached completion and returned to MS-DOS,it must be reloaded
with the Load commandbeforeit can be executed again. (DEBUGintercepts this
return and displays Program terminated normally.)

® Because DEBUG replaces program instructions with an INT 03H instruction to form
breakpoints, the break address must be on an instruction boundary.Ifit is not, the
INT 03H will be stuck in the middle of an instruction, causing strange and sometimes
entertaining results.

584 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 594/1582

OLYMPUS EX. 1010 - 595/1582

Article 18: Debugging in the MS-DOS Environment

® Breakpoints cannotbesetin data, because data is not executed.
© The target program’s SS:SP registers must pointto a valid stack that hasat least 6 bytes

of stack space available. When the Go commandis executed,it pushes the target pro-
L gram’s flags and CSandIPregisters onto the stack and thentransfers control to the
i program with an IRETinstruction. Thus,if the target program’s stack is notvalid or

is too small, the system maycrash.
| @ Finally, and obviously, breakpoints cannotbe set in read-only memory (the ROM

BIOS,for instance).

Using the Write commands
After a program has been debugged,fixed, and tested with DEBUG,the temptation exists
to write the patched program directly back to the disk as a .COMfile. This action is some-
timeslegitimate, but only rarely. The technique will be explained in a moment, butfirst a
sermon:

DON'TDOIT:

Oneof the greatest sadnesses in a programmer's life comes when,after a program has
been running wonderfully, enhancements are made to the source code and the recom-
piled program suddenly has bugsin it that haven’t been seen for months. Always make any
debugging patches permanentin the source file immediately.

gaCaOESREDE
Unless, of course, the source codeis not available. This is the only time saving a patched
program is permissible. For example, sometimes commercial programs require patching
because the program doesnot quite fit the hardware it must run on or because bugs have
been found in the program. The sourceof these patches is sometimes word-of-mouth,
sometimes a bulletin-board service, and sometimes the program’s manufacturer.

Even whenlegitimate reasons exist to save patched code, precautions should be taken. Be
very careful, meticulous, and alert as the patches are applied. Understand each step before
undertaking it. Most important ofall, always have a backupofthe original unpatched
program safely on a floppydisk.

Use the Write commandto write the program imageto disk. A starting address can op-
tionally be specified; otherwise the write starts at CS:0100H. The nameofthe file will be
either the name specified in the last Name commandor the nameof the program from the
DEBUG commandline if the Name commandhasnot been used. The numberofbytes to
be written is in BX and CX, with the mostsignificant half in BX. These registers will have
been loaded correctly when the program wasloaded, but they should be checkedif the
program has executed since it was loaded.

The .EXE and .HEXfile types cannot be written to disk with the Write command. The
command performs no formatting and only writes the binary image of memoryto the disk
file. Thus, all programs written with Write must be .COMfiles. The image of a EXE or
HEXfile can still be written as a .COMfile provided no segmentfixups are required and
provided the otherrules for a .COM file are followed. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT:PROGRAMMING FOR MS-DOs:Structure of an Application Program.
(A segmentfixup is a segment address that must be provided by the loader when the

Section Il: Programming in the MS-DOSEnvironment—585

OLYMPUSEX. 1010 - 595/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 596/1582

 Part E: Programming Tools

program is originally loaded. See PROGRAMMINGINTHE MS-DOS ENVIRONMENT:Pro-
GRAMMING Toots: Object Modules.) If a .EXE file containing a segment fixup is written as a
.COMfile, the new file will execute correctly only when loaded at exactly the same address
as the originalfile, and this is difficult to ensure for programs running under MS-DOS.

Ifit is necessary to patch a .EXE or HEX file and the exact addressesrelative to the start of
the file are known,use the following procedure: :

1. Rename(orbetter yet, copy) the file to an extension other than .EXE or .HEX.
2. Load the program image into memory by placing the new name on DEBUG’s com-

mand line. Note that the loadedfile is an image ofthe disk file and is not executable.
3. Modify the program image in memory, but never try to execute the program. Results

would be unpredictable and the program image could be damaged.
4. Write the modified image back to disk using a simple w. No other action is needed,

becausethe original load will have set the filename and the correct length in BX
and CX,

5. Renamethefile to a name with the correct .EXE orHEX extension. The new name

need not be the sameasthe original, but it should have the same extension.

The same technique can be usedto load, modify, and save datafiles. Simply make sure
that the file does not have an extension of .COM, .EXE, or HEX. Thedatafile will be
loaded at address CS:0100H. (DEBUGtreats the file much the same as a .COM file.) After

patching the data (the Enter command works best), use the Write commandto write it
backto the disk.

SYMDEB

SYMDEBis an extension of DEBUG;virtually all the DEBUG commands and techniques
still work as expected. The major new feature, and the source of the name SYMDEB,is
symbolic debugging: SYMDEBcanuseall public labels in a program for reference, instead
of using hexadecimaloffset addresses. In addition, SYMDEBallowsthe use of line num-
bers for reference in compatible high-order languages; source-line display withinSYMDEB
is also possible for these languages. Currently, the languages supporting these options are
Microsoft FORTRANversions 3.0 and later, MicrosoftPascal versions 3.0 andlater, and
Microsoft C versions 2.0 andlater. Versions 4.0 andearlier of the Microsoft Macro Assem-

bler (MASM) do not generate the data needed for line-number display and source-line
debugging.

In. addition to symbolic debugging, SYMDEB has added several other new features and has
- expanded existing DEBUG features:

@ Breakpoints have been made more sophisticated with the addition of“sticky”

breakpoints. Unlike the breakpoints set with the Go command,sticky breakpoints
remain attached to the program throughout a SYMDEBsession until they are explic-
itly removed. Specific commandsare supplied for listing, removing, enabling, and
disabling sticky breakpoints.

@ DEBUG’s Display Memory command, D, has been extended sothat data-can be
displayed in different formats.

586 The MS-DOSEncyclopedia

OLYMPUSEX. 1010-596/1582

OLYMPUS EX. 1010 - 597/1582

It
\
i
t
?

Article 18: Debugging in the MS-DOS Environment

Full redirection is supported.
A stack trace feature has been added.

Terminaté-and-stay-resident programs are supported.
A shell escape command has been addedto allow the execution of MS-DOS
commandsandprogramswithout leaving SYMDEBand the debuggingsession.

These additions allow more sophisticated debugging techniques to be used and, in some
cases, also simplify locating problems. To see the advantages of using symbols andsticky
breakpoints in debugging, consider a type of program that is one of the most difficult to
debug —the TSR.

Debugging TSRs with SYMDEB
. Terminate-and-stay-resident routines can be difficult to debug. They exist in two worlds

and can have bugs associated with each. At the outset, they are usually simple programs
that perform someinitialization task and then exit. At this point, they are transformed into
anothertype of beast entirely—resident routines that are more a part of the operating sys-
tem than of any application program. Each form of the program must be debugged sepa-
rately, using different techniques.

The TSR routine used for this case study is the same one created previously to serve
as external instrumentation to trace serial communications. The program wascalled
COMMSCOP, butto avoid confusion of that working program with the broken one pre-
sented here, the name has been changed to BADSCOP. BADSCOPwasassembled and
linked in the usual manner and then converted to a .COM file using EXE2BIN. Whenit was
installed, it returned normally, butat the first attempt to issue an Interrupt 14H,the system
locked up completely. Warm booting was notsufficient to restore it, and a power-on cold
boot was required to get the system working again.

Figure 18-11 is a listing of BADSCOP.The only difference from COMMSCOP, aside from the
errors, is the additionof two PUBLIC statements to makeall the procedure names and the
important data namesavailable to SYMDEB.

TITLE BADSCOP — BAD VERSION OF COMMUNICATIONS TRACE UTILITY
SRR CTO ICICI IGIIGIGIGCOCICIOIOIG GIG IK a AG aK kak dk ak

BADSCOP —
THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT
AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH
ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE
WAS SENT BY OR RECEIVED BY THE SYSTEM.

BADSCOP IS INSTALLED BY ENTERING

BADSCOP
es+%&HeHeeHRHKHHH **&€*HHFFHeKKHE

Figure 18-11, An incorrect version ofthe serialtrace utility. (more)

Section I: Programming in the MS-DOSEnvironment 587

OLYMPUSEX. 1010 - 597/1582

OLYMPUS EX. 1010 - 598/1582

Part E; Programming Tools

THIS WILL INSTALL BADSCOP AND SET UP A 64K BUFFER TO BE USED *

FOR DATA LOGGING. REMEMBER THAT 2 BYTES. ARE REQUIRED FOR *
EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT *
30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD, *

ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY *
; HOLD MORE THAN 30 SECONDS WORTH OF DATA. *

%

*£&**F**
WHEN INSTALLED, BADSCOP INTERCEPTS ALL INT 14H CALLS. IF THE
PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE-
CEIVE DATA, A COPY OF THE DATA BYTE,..PROPERLY TAGGED, IS PLACED
IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL
INT 14H HANDLER.

BADSCOP IS INVOKED BY ISSUING AN INT 60H CALL. THE INT HAS
THE FOLLOWING CALLING SEQUENCE:

AH — COMMAND

0 — STOP TRACING, PLACE STOP MARK IN BUFFER
) -— FLUSH BUFFER AND START TRACE

2 RESUME TRACE
3 - RETURN COMM BUFFER ADDRESSES

DX — COMM PORT (ONLY USED WITH AH = 1 or 2)
0 —.COM1 .
1 — COM2

THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH = 3:

CX — BUFFER COUNT IN BYTES
DX — SEGMENT ADDRESS OF THE START OF THE BUFFER
BX — OFFSET ADDRESS OF THE START OF THE BUFFER

THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE

FOLLOWING FORM: :

BYTE 0 — CONTROL

BIT 0 — ON FOR RECEIVED DATA, OFF FOR TRANS.
BIT 7? — STOP MARK — INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.
BYTE 1 — 8-BIT DATA

**¥&*&HF*HHHEHFFFFKFHBHFHF¥HF*FHFHHHFHFHF*FHRHFHKHRFeKREFKRKFOK
2A De oR 3g ale oc 8 5 ag ee eC Cafe 9oko ok 2 ook 2k oe ok 9oo oe ok ke oe oo ok ok oo ok ook ook ek ok ok ak ok ok

PUBLIC INITIALIZE, CONTROL, VECTOR_INIT, COMMSCOPE
PUBLIC OLD_COMM_INT, COUNT, STATUS, PORT, BUFPNTR

CSEG SEGMENT

ASSUME CS:CSEG,DS:CSEG
ORG 100H 7TO MAKE A COM FILE

Figure 18-11. Continued. : : (more)

588 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 598/1582

OLYMPUS EX. 1010 - 599/1582

Article 18: Debugging in the MS-DOS Environment

INITIALIZE:

: JMP VECTOR_INIT ;JUMP TO THE INITIALIZATION

; ROUTINE WHICH, TO SAVE SPACE,
; IS IN THE COMM BUFFER

;
+ SYSTEM VARIABLES
,

OLD_COMM_INT DD ? ;ADDRESS OF REAL COMM INT
COUNT DW 0 ; BUFFER COUNT
COMMSCOPE_INT EQU 60H ;COMMSCOPE CONTROL INT
STATUS DB 0 ;PROCESSING STATUS

; 0 - OFF
7; 1—- ON

PORT DB 0 ;COMM PORT BEING TRACED
BUFPNTR DW VECTOR_INIT *;NEXT BUFFER LOCATION

SUBTTL DATA INTERRUPT HANDLER
PAGE

J SISO OIC IG GIO CCCI ICICI GIOCIOR IG GIGI IOICGI IOICAGIC ICI ICI AGI ICR RA A AK* *

7 * COMMSCOPE *
; * THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA *

*
*
*

7 * IF APPROPRIATE.
*
2 FORK RG CR RSAC ARR GOR RCC GR ORR RICA AR AOA aie a ROR a aOR ROkk

COMMSCOPE PROC NEAR

TEST CS:STATUS, 1 ;ARE WE ON?

JZ OLD_JUMP ; NO, SIMPLY JUMP TO OLD HANDLER

CMP AH, OOH ;SKIP SETUP CALLS
JE OLD_JUMP ;

CMP AH, 03H ;SKIP STATUS REQUESTS
JAE OLD_JUMP ; ‘

CMP AH, 02H ;IS THIS A READ REQUEST?
JE GET_READ + YES, GO PROCESS

7 DATA WRITE REQUEST — SAVE IF APPROPRIATE

CMP DL, US:PORT ;IS WRITE FOR PORT BEING TRACED?
JNE OLD._JUMP ; NO, JUST PASS IT THROUGH

PUSH bs ;SAVE CALLER’S REGISTERS
PUSH BX i.
PUSH cs 7SET UP DS FOR OUR PROGRAM
POP bs pe
MOV BX, BUFPNTR ;GET ADDRESS OF NEXT BUFFER LOCATION

Figure 18-11. Continued. . (more)

Section If: Programming in the MS-DOS Environment 589

OLYMPUSEX. 1010 - 599/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 600/1582

Part E: Programming Tools

590

MOV
MOV
INC
INC
INC
INC
MOV
JNZ

MOV

WRITE_DONE:
POP
POP
JMP

j
?
i
GET_READ:

CMP
INE

PUSH
PUSH
PUSH
POP

PUSHF
CLI
CALL
TEST
INZ

MOV
MOV
MOV
INC
INC
INC
INC
MOV
JNZ

MOV
READ_DONE:

POP
POP
TRET

;
7 JUMP TO COMM
7

OLD_JUMP:
JMP

COMMSCOPE ENDP

[BX], BYTE PTR 0
{BX+1], AL
COUNT
COUNT
BX
BX
BUFPNTR, BX
WRITE_DONE

STATUS, 0

BX \DS
OLD_JUMP

DL, CS: PORT
OLD_JUMP

DS
BX
cs
DS

OLD_COMM_INT

AH, 80H
READ_DONE

BX, BUFPNTR
[BX], BYTE PTR 1
(BX+1],AL

COUNT
couNT
BX
BX

BUFPNTR, BX
READ_DONE

STATUS, 0

BX
DS

BIOS ROUTINE

OLD_COMM_INT

Figure 18-11. Continued.

The MS-DOS Encyclopedia

;MARK AS TRANSMITTED BYTE
;SAVE DATA IN BUFFER
7 INCREMENT BUFFER BYTE COUNT
7.

;POINT TO NEXT LOCATION
7
;SAVE NEW POINTER
;ZERO INDICATES BUFFER HAS WRAPPED

;TURN COLLECTION OFF — BUFFER FULL

*RESTORE CALLER’S REGISTERS
?

7PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

7IS READ FOR PORT BEING TRACED?
7 NO, JUST PASS IT THROUGH

;SAVE CALLER'S REGISTERS
é

7SET UP DS FOR OUR PROGRAM
i

;PAKE INT 14H CALL
Foe
;PASS REQUEST ON TO BIOS
;VALID READ?

; NO, SKIP BUFFER UPDATE

7GET ADDRESS OF NEXT BUFFER LOCATION
#;MARK AS RECEIVED BYTE
7 SAVE DATA IN BUFFER
; INCREMENT BUFFER BYTE COUNT
Foe

#POINT TO NEXT LOCATION

;SAVE NEW POINTER
72ERO INDICATES BUFFER HAS WRAPPED

;TURN COLLECTION OFF — BUFFER FULL

;RESTORE CALLER’S REGISTERS
,

(more)

OLYMPUSEX. 1010 - 600/1582

OLYMPUS EX. 1010 - 601/1582

Article 18: Debugging in the MS-DOS Environment

SUBTTL CONTROL INTERRUPT HANDLER
PAGE

FRR RORRICO OR SO IRGC GIGI ek a aR GR ORR GIGIdoko goa dG dC dk ak,
;
;
’

if
,

*

* CONTROL

* THIS ROUTINE PROCESSES CONTROL REQUESTS.
*

*
*
*
Lg

De ee ee oR ke oe eo oeieee aeee oR okeoOo oko ok OR ok oo ooKOok kokok

CONTROL PROC
CMP
JNE
PUSH
PUSH
PUSH
POP
MOV
MOV
MOV
MOV
INC
INC
POP —
POP
JMP

CNTL_START:
CMP
JNE
MOV
MOV
MOV
MOV
JMP

CNTL_RESUME:
CMP
JNE
CMP
JE
MOV
MOV
JMP

CNTL_STATUS:
CMP
JNE
MOV
PUSH
POP
MOV

NEAR

AH, 00H
CNTL_START
DS
BX
cs
Ds

STATUS, 0
BX, BUFPNTR
{BX),BYTE PTR 80H
[BX+1],BYTE PTR OFFH

COUNT
COUNT
BX
DS
CONTROL_DONE

AH, 01H
CNTL_RESUME

CS:PORT,DL
CS: BUFPPNTR, OFFSET VECTOR_INIT
CS:COUNT, 0
CS:STATUS,1
CONTROL_DONE

AH, 02H
CNTL_STATUS

CS:BUFPNTR, 0
CONTROL._DONE

CS:PORT, DL
CS:STATUS,1
CONTROL_DONE

AH, 03H
CONTROL_DONE

CX, CS: COUNT
cs
DX

BX, OFFSET VECTOR_INIT

Figure 18-11. Continued.

Section Il Programming in the MS-DOS Environment

?;STOP REQUEST?
+ NO, CHECK START
+ SAVE REGISTERS

7SET DS FOR OUR ROUTINE

+TURN PROCESSING OFF
#PLACE STOP MARK IN BUFFER

7 INCREMENT COUNT
po.

7RESTORE REGISTERS
?

7START REQUEST?
+ NO, CHECK RESUME
*SAVE PORT TO TRACE

7RESET BUFFER TO START
*ZERO COUNT
#START LOGGING

7;RESUME REQUEST?
+ NO, CHECK STATUS
;END OF BUFFER CONDITION?
3 YES, DO NOTHING
#SAVE PORT TO TRACE
;START LOGGING

s;RETURN STATUS REQUEST?
; NO, ERROR — DO NOTHING
;RETURN COUNT
#RETURN SEGMENT ADDR OF BUFFER
7

;RETURN OFFSET ADDR OF BUFFER

(more)

591

OLYMPUSEX. 1010 - 601/1582

OLYMPUS EX. 1010 - 602/1582

Part E: Programming Tools

CONTROL_DONE:
IRET

CONTROL ENDP

SUBTTL INITIALIZE INTERRUPT VECTORS
PAGE

FCGGOIIORI CGR GIGIUGGGIO AGA IGG AOR SOIR AGG aC IG A IOC
* *

* VECTOR_INIT *
* THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN *
* EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION. *

+ * A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE *
* IN THE BUFFER IS THE OFFSET OF VECTOR_INIT. *
* *
* *2 oe Se oe fe ekeoeee Oo fe Rope ake ee fe ofc eos fe oie oe 2k oe oe ae ae oi oe ok oe ae 2k Oe ok ok oo RK oR OK ok

EVEN 7;ASSURE BUFFER ON EVEN BOUNDARY
VECTOR_INIT PROC NEAR
;

+ GET ADDRESS OF COMM VECTOR (INT 14H)
;

MOV AH, 35H
MOV AL, 14H
INT 21H

7 SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT, BX
MOV AX, ES
MOV WORD PTR OLD_COMM_INT[2],AX

‘

¢ SET UP COMM INT TO POINT TO OUR ROUTINE

MoV DX, OFFSET COMMSCOPE
MOV AH, 25H
MOV AL, 14H
INT 21H

+ INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL
MOV AH, 25H
MOV AL, COMMSCOPE_INT
INT 21H

; SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV AX,3100H ;TERM AND STAY RES COMMAND
MOV DX, 1000H 764K RESERVED
INT 21H 7 DONE

Figure 18-11. Continued. (more)

592 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 602/1582

OLYMPUS EX. 1010 - 603/1582

osgemenineenacncareneemtntetintt,ae tSfeAR

 Article 18: Debugging in the MS-DOS Environmenteeeeeeeee

VECTOR_INIT ENDP

CSEG ENDS
END INITIALIZE

Figure 18-11. Continued.

‘In order to use the symbolic debugging features of SYMDEB, a symbolfile must be built in
a specific format. The SYMDEButility MAPSYM performsthis function, using the contents
of the .MAPfile built by LINK. MAPSYMis easy to use becauseit has only two parameters:
the .MAPfile and the /L switch (which triggers verbose mode). The symboltable for
BADSCOPis built as follows:

C>MAPSYM BADSCOP <Enter>

This operation produces a symbolfile called BADSCOP.SYM.

Armed with the .SYM file and the usual collection oflisting and design notes, the program-
mer can begin the debugging process using SYMDEB.

Thefirst task is to discoverif the BADSCOPTSRis installing correctly. To test this, run the
.COMfile under SYMDEBbytyping

C>SYMDEB BADSCOP.SYM BADSCOP.COM <Enter>

Note the orderin which operands are passed to SYMDEB — itis not the order that
would be expected. All switches Mone were used here) must immediately follow the
word SYMDEB. These switches must be followed in turn by the fully qualified names of
any symbolfiles Gn this case, BADSCOP.SYM). Only then is the nameof the file to be
debugged given. If BADSCOP expected any parameters in the commandtail, they would
belast. This potential need for command-tail data is the reason the nameofthefile to be
debugged follows the name of the symbolfile. SYMDEB knowsthatthe first non-.SYMfile
it encountersis the file to be loaded; the parametersthat follow the filename may be of
any form and number.

When SYMDEBbegins, it displays

Microsoft (R) Symbolic Debug Utility Version 4.00
Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

The debuggeridentifies itself and then notes the type of CPU it is running on — in this
case, an Intel 80286. The Display or Modify Registers command,R, gives the same display
that DEBUGgives, with one exception.
-R <Enter>
AX=0000 BX=0000 CX=0133 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FDO ES=1FDO0 SS=1FDO0 CS=1FDO IP=0100 NV UP EI PL NZ NA PO NC
CSEG: INITIALIZE:
1FD0:0100 £90701 JMP VECTOR_INIT

Section I: Programming in the MS-DOSEnvironment 593

OLYMPUSEX. 1010 - 603/1582

OLYMPUS EX. 1010 - 604/1582

Part E: Programming Tools

594

Theinstruction at CS:IP, JMP, is now preceded by the information that the instruction is
at label INITIALIZE within segment CSEG. An examination ofFigure 18-11 showsthatthis
is indeed the case.

To checkthatall the symbols requested with the PUBLIC statementare present, use the
X?« form of the Examine Symbol Map command.
-X?* <Enter>

CSEG: (1FD0)
0100 INITIALIZE 0103 OLD_COMM_INT. 0107 COUNT
010A PORT 010B BUFPNTR 010D COMMSCOPE
020A VECTOR_INIT

The display showsthat the value of CSEG (JFDOH) matchesthe currentvalue of CS. The
offset values shownfor the procedure names and data names match the numbers from an
assembledlisting. Because this is a .COM file, there is only one segment. If there had been
other segments —a data segment, for instance —they would have been shownwith their
values and associated labels and offsets.

0109 STATUS
O18F CONTROL

The purposeofthis test is to determine whether the problemsthis program is having are
caused by an incorrectinstallation. First, use the Trace Program Execution command,T, to
trace throughthefirst few steps.

-T7 <Enter>
AX=0000 BX=0000 CX=0133 DxX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

DS=1FDO ES=1FD0 SS=1FDO CS=1FD0 IP=020A NV UP EI PL NZ NA PO NCCSEG:VECTOR_INIT:
1FD0:020A B435
AX=3500 Bx=0000
DS=1FDO ES=1FDO
1FD0:020C BO14

MOV AH,35
CX=0133 Dx=0000
SS=1FDO CS=1FD0

MOV AL,14

SP=FFFE
IP=020C

37'S!
BP=0000 SI=0000 DpDr=0000

AX=3514 BX=0000 CxX=0133 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FD0 ES=1FDO0 SS=1FDO0 CS=1FDO IP=020E NV UP EI PL NZ NA PO NC

1PD0:020E CD21 INT 21 ;Get Interrupt Vector
AX=3514 BX=1375 cCX=0133 Dx=0000 SP=FFFE BP=0000 SI=0000 bDI=0000
DS=1FDO ES=1567 SS=1FDO CS=1FDO IP=0210 NV UP EI PL NZ NA PO NC

1FD0:0210 89150301 MOV [OLD_COMM_INT] , BX DS:0103=0000
AX=3514 BX=1375 CX=0133 DxX=0000 SP=FFFE BP=0000 SI=0000 Dr=0000
DS=1FD0 ES=1567 SS=1FDO CS=1FDO Ip=0214 NV UP EI PL NZ NA PO NC

1FDO:0214 8cco MOV AX,ES
AX=1567 BX=1375 CX=0133 DxX=0000 SP=FFFE BP=0000 sI=0000 DI=0000
DS=1FDO0 ES=1567 SS=1FDO0 CS=1FDO0 IP=0216 NV UP EI PL NZ NA PO NC

1FD0:0216 A30501 MOV [OLD_COMM_INT+02 (0105)],AxX DS:0105=0000
AX=1567 BX=1375 CX=0133 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FDO0 ES=1567 SS=1FDO0 CS=1FDO0 IpP=0219 NV UP EI PL NZ NA PO NC
1FD0:0219 BAQDO1 MOV DX,010D

This part of the program usesInterrupt 21H Function 35H to obtain the current vector for
Interrupt 14H. Note that, unlike DEBUG, SYMDEBcoasts right through an Interrupt 21H
call with no problems. It not only knows enough not to makethecall butalso displays the
type of function call being made, based on the value in AH.

The MS-DOS Encyclopedia

q
ii

{

{

NV UP EI PL NZ NA PO NC . |qv

V

+rennetmitrenenearer,neon

OLYMPUSEX. 1010 - 604/1582

OLYMPUS EX. 1010 - 605/1582

Article 18: Debugging in the MS-DOS Environment

To makesurethat the correctvector for the old Interrupt 14H handler has been stored, use
the Display Doublewords command, DD,in conjunction with a symbol name.
-DD OLD_COMM_INT Li <Enter>
1FD0:01030 1567:1375

This is the correct vector address (1567:1375H). Now trace throughthenextpart of the
program, which establishes the new vectors for interrupts.

-T8 <Enter>
AX=1567 BX=1375 CxX=0133 DX=010D SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FD0 ES=1567 SS=1FD0 cCS=1FDO IP=021C NV UP EI PL NZ NA PO NC

1FDO:021C B425 MOV AH,25 p's
AX=2567 BX=1375 CxX=0133 DX=010D SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FD0 ES=1567 SS=1FDO0 CS=1FDQ IP=021E NV UP EI PL NZ NA PO NC

1FDO:021E BO14 MOV AL,14 ,
AX=2514 BxX=1375 CxX=0133 DX=010D SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FD0 ES=1567 SS=1FD0 CS=1FDO IP=0220 NV UP EI PL NZ NA PO NC
1FD0:0220 CD21 INT 21 ;Set Vector
AX=2514 BX=1375 CxX=0133 DxX=010D SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FDO0 ES=1567 SS=1FDO CS=iFDO IP=0222 NV UP EI PL NZ NA PO NC

1FD0:0222 BASFO1 MOV DxX,018F
AX=2514 BX=1375 Cx=0133 Dx=018F SP=FFFE BP=0000 SI=0000 bDiI=0000

DS=1FDO0 ES=1567 SS=1FDO0 CS=1FDO IP=0225 NV UP EI PL NZ NA PO NC
1FD0:0225 B425 MOV AH,25 7'%!
AX=2514 BX=1375 CX=0133 DX=018F SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FDO0 ES=1567 SS=1FDO0 CS=1FDO0 IP=0227 NV UP EI PL NZ NA PO NC

1FD0:0227 BO60 MOV AL, 60 uu
AX=2560 .BX=1375 CX=0133 DX=018F SP=FFFE BP=0000 SsI=0000 pzI=0000
DS=1FD0 ES=1567 SS=1FDO CS=1FDO IP=0229 NV UP EI PL NZ NA PO NC
1FD0:0229 CD21 INT 21 ;Set Vector
AX=2560 BX=1375 Cx=0133 DX=018F SP=FFFE BP=0000 SI=0000 DI=0000
DS=1FDO0 ES=1567 SS=1FDO CS=1FDO. IP=022B NV UP EI PL NZ NA PO NC

1FD0:022B B80031 MOV AX,3100

Examination of these trace steps showsthat all went normally. The new Interrupt 14H
vector has been established at COMMSCOPE;the vector for the new Interrupt 60H hasalso
beencorrectly installed. Use the Go command,G,to allow the program to continue to
termination and then use the Quit command,Q,to exit SYMDEB.

-G <Enter>

Program terminated and stayed resident (0)
-Q <Enter>

SYMDEBdisplays the information that the program terminated with a completion code
of zero and stayed resident. This is as it should be, and the conclusionis that the installa-
tion portion of this TSR is running properly. The problem mustbein the real-time execu-
tion of the program.

Debuggingthe resident portion of a TSR is complicated but not especially difficult. A sim-
ple program is usedto exercise the TSR, andit is this program that is debugged. As this
driver program exercises the TSR, the tracing process continuesinto the resident routine.

Section II: Programming in the MS-DOS Environment 595

OLYMPUSEX. 1010 - 605/1582

OLYMPUS EX. 1010 - 606/1582

Part E: Programming Tools

Because symboltables exist for the TSR, symbolic debugging can be used tofollow its
execution.

The driver program will be TESTCOMM,shownin Figure 18-10. To make the program
more easily usable by SYMDEB,oneline has been added beforethe first SEGMENT
statement:

PUBLIC BEGIN, MAINLOOP, SENDCOMM, TESTCOMM

Using the .MAPfile produced by LINK, the MAPSYMroutine creates TESTCOMM.SYM.
TESTCOMMcan now be invoked with two symbolfiles:

C>SYMDEB TESTCOMM.SYM BADSCOP.SYM TESTCOMM.EXE <Enter>

SYMDEBwill load both symbolfiles and then load TESTCOMM.EXE. Because the nameof
the TESTCOMM.SYMfile matches the nameof the program being loaded, SYMDEB makes
TESTCOMM.SYMthe active symbolfile.

Use the Register commandto showthat the test program was properly loaded.
-R <Enter>

AX=0000 BX=0000 CxX=0133 DxX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=38EE ES=38EE SS=38FE CS=390E IP=0000 NV UP EI PL NZ NA PO NC
CSEG: BEGIN:
390E:0000 1E PUSH bs

Then use the Examine Symbol Map command to determine whether the symbolfiles
were loaded correctly. The form Xslists all the symbol maps and their segments; the form
X?* lists all the symbols for the current symbol map and segment.
-X* <Enter>

[38FE TESTCOMM]
[390E CSEG]

0000 BADSCOP
0000 CSEG

-X?* <Enter>

“CSEG: (3905)
0000 BEGIN 0004 MAINLOOP 0011 SENDCOMM 0018 TESTCOMM

The current symbol map and segment are shown in square brackets. The symbol map for
BADSCOPis also present but not selected. Note that there are no values associated with
BADSCOPin the listing produced by the X?* command,becauseall the symbols currently
available to SYMDEBare shown and only the symbols in TESTCOMM’s CSEGare available
(that is, TESTCOMM.SYMis the only active symbolfile).

Recall that the BADSCOPTSRloaded normally but locked the system upat the first attempt
to issue an Interrupt 14H. This behavior indicates that the problem is associated with an In-
terrupt 14H call. TESTCOMMrepeatedly makes the system fail, but which of the Interrupt
14H calls within TESTCOMMis causing the trouble is not known. The moststraightfor-
ward approach would be to put a breakpointjust before each Interrupt 14H instruction.
Use the Disassemble (Unassemble) command,U,to find thelocationof all Interrupt 14H
calls,

596 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 606/1582

OLYMPUS EX. 1010 - 607/1582

pesepegAptge,

Article 18: Debugging in the MS-DOS Environment

-U MAINLOOP L19 <Enter>
* CSEG:MAINLOOP:

390E:0004 B406 MOV AH, 06
390E:0006 B2FF MOV DL,FF
390E:0008 CD21 . INT 21
390B:000A 740C JZ TESTCOMM
390E:000C 3C03 CMP AL,03
390E:000E 7501 JNZ SENDCOMM
390E:0010 CB RETF
CSEG: SENDCOMM:

390E:0011 B401 MOV AE,01
390E:0013 BAOO0OO MOV DX, BADSCOP !CSEG
390E:0016 cD14 INT 14
CSEG: TESTCOMM:

390E:0018 B403 MOV AH, 03
390E:001A BA0000 MOV DX,BADSCOP !CSEG
390E:001D CD14 INT 14

390E:001F 805401 AND 2H,01
390B:0022 74E0 JZ MAINLOOP
390E:0024 B402 MOV AH, 02
390E:0026 BAO000 MOV DX, BADSCOP!CSEG
390E:0029 CD14 INT 14
390E:002B B406 MOV AH,06
390E:002D 8ADO MOV DL,AL
390B:002F CD21 . INT 21
390E:0031 EBD! JMP MAINLOOP

The Disassemble request starts at MAINZOOP andacts on the next 25 (19H)instructions.
SYMDEBdisplays symbol namesinstead of numbers wheneverit can. However,it does
get confused from time to time, so a grain of salt might be needed whenreadingthe dis-
assembly.Notice,for instance, the MOV DX,0 instructions at offsets 13H, LAH, and 26H.
SYMDEBhasdecided that what is being moved is not zero, but BADSCOPICSEG.(The !
identifies a mapnamein the same waya : defines a segment.) In this case, SYMDEB
searched its map tables for an address of zero and found one at CSEG in BADSCOP.This
segmenthasthe address of zero because it has not beeninitialized.

Ignoring the name confusions, the disassembly clearly shows the three INT 14H instruc-
tions at offsets 16H, 1DH, and 29H.Usethe Set Breakpoints command,BP, to set a sticky,
or permanent, breakpoint at each of theselocations. In this way, any Interrupt 14H call
issued by TESTCOMMwill be intercepted before it executes. Use the List Breakpoints
command,BL,to verify the breakpoints.
-BP 16 <Enter>
-BP iD <Enter>
~BP 29 <Enter>
-BL <Enter>

0 e 390E:0016 [CSEG:SENDCOMM+05 (0016)]
1 e 390E:001D [CSEG:TESTCOMM+05 (001D)]
2 e 390H:0029 [CSEG:TESTCOMM+11 (0029) }

Section II: Programming in theMS-DOSEnvironment—597

OLYMPUSEX. 1010 - 607/1582

OLYMPUS EX. 1010 - 608/1582

Part E: Programming Tools

TheList Breakpoints command showsthat breakpoint 0 is enabled andset to
SENDCOMM+05, or CS:0016H. Likewise, breakpoint1 is at CS:001DH and breakpoint2 is at
CS:0029H.It is important to trap on an Interrupt 14H so that the subsequentactionsof the
Interrupt 14H service routine can be traced. Now allow the program to executeuntilit
encounters a breakpoint.
-G <Enter>

AX=0300 BX=0000 cCx=0133 DxX=0000 SP=00FC BP=0000 SI=0000 DI=0000
DS=38EE ES=38EE SS=38FE CS=390E IP=001D NV UP EI PL ZR NA PE NC
390E:001D CD14 INT 14 ;BR1

Thefirst Interrupt 14H encountered is the one at the second breakpoint, breakpoint1, as
can beseen from the address at which execution broke. Also, SYMDEB was kind enough

_ to include the comment;BR7 on the disassembledline, indicating that this is Break Re-
quest 1. The instruction at this location is a requestfor serial port status (AH = 3) and the
registers are loaded correctly. Execution can now be passed to the TSR by simply exe-
cuting the current instruction. (Rememberthat the instruction displayed at a breakpoint
has not yet been executed.)
-T <Enter>

AX=0300 BxX=0000 Cx=0133 DX=0000 SP=00F6 BP=0000 SiI=0000 DI=0000
DS=38EE ES=38EE SS=38FE CS=1FDOQ IP=010D NV UP DI PL ZR NA PE NC

1FD0:010D 2EF606090101 TEST Byte Ptr CS:[0109],01 CS:0109=00

The single Trace command has moved execution into the TSR. Note that the Interrupt
14H has changedthe value of CS and jumpedto location 10DH off the new CS. This loca-
tion containsthe first instruction of the COMMSCOPE procedure in the TSR. SYMDEB
does not know that a different segment is being executed and mustbeinstructed to use a
different map table. Use the Open Symbol Map command,XO,to dothis,instructing
SYMDEBto set the active map table to BADSCOFP!.
-XO BADSCOP! <Enter>
-X?* <Enter>

CSEG: (0000)
0100 INITIALIZE 0103 OLD_COMM_INT 0107 COUNT 0109 STATUS
010A PORT 010B BUFPNTR 010D COMMSCOPE 018F CONTROL
020A VECTOR_INIT

The X?* command showsthat the BADSCOPsymbols are now the current map. They are
not usable, however, because the value of CSEG— zero —needsto be changedto the cur-
rent CS register. To correct this, use the SYMDEB Set Symbol Value command,Z. This
command can set any symbolin the current maptable to any value; the value can be a
number, another symbol, or the contents of a register. In this case, set the value of CSEG
in BADSCOFP!to the current contents of the CS register.

-2 CSEG CS <Enter>
-X* <Enter>

38FE TESTCOMM
390E CSEG

[0000 BADSCOP]
[1FDO CSEG]

598 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 608/1582

OLYMPUS EX. 1010 - 609/1582

Article 18: Debugging in the MS-DOS Environment

The X+* commandconfirms that BADSCOP!is now the selected symbol map andthat the
CSEG within it has the value iFDOH. The CSEG segment in TESTCOMMis an entirely dif-
ferent entity andstill has its correct value, which will be valid when the TSR returns.

With the symbols set, the debugging can begin by tracingthefirst few instructions. Be-
cause COMMSCOPEis not currently active, the routine should quickly pass the processing
on to the old interrupt handler.
-TS <Enter>
AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 SI=0000 DI=0000
DS=38EE ES=38EE SS=38FE CS=1FD0 IP=0113 NV UP DI PL 2R NA PE NC
1FD0:0113 7476 JZ COMMSCOPE+7E (018B)
AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 -SI=0000 DI=0000
DS=38EE ES=38EE S8S=38FE CS=1FDQ0 IP=018B NV UP DI PL ZR NA PE NC

1FD0:018B FF2E0301 JMP FAR [0103] DS:0103=0000
AX=0300 BX=0000 CX=0133 DxX=0000 SP=00F6 BP=0000 Sz=0000 DI=0000
DS=38EE ES=38EE SS=38FE cCS=0000 IP=0000 NV UP DI PL 2R NA PE NC

0000:0000 38156715 CMP [1567],BL DS:1567=00
AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 SI=0000 DI=0000
DS=38EE ES=38EE SS=38FE CS=0000 IP=0004 NV UP DI PL 2R NA PE NC

0000:0004 BC2CE1 MOV SP,E12C
AX=0300 BX=0000 CX=0133 Dx=0000 SP=212C BP=0000 SI=0000 DI=0000
DS=38EE ES=38ER SS=38FE CS=0000 IP=0007 NV UP DI PL ZR NA PE NC

0000:0007 2F , pas

STATUS is tested with a mask of 01H at CS:010DH;thetestsets the zero flag, indicating that
tracing is disabled. The JZ to COMMSCOPE+7E (CS:018BH)is taken. At this addressis a far
jump to the old Interrupt 14H handlerat 1567:1375H. The jumpis taken and then disaster
strikes. Instead of going to the correct address, processing is suddenly at 0000:0000H. Any
wild jump is dangerous, but a far jump into low memory is exceptionally so. This explains
the system’s locking up and requiring a cold bootto recover.

Nowthat the bug has been caughtin the act, it should be a simple matter to determine
what went wrong. When the BADSCOPTSRinstalled itself, it was seen to place the correct
offset address at 0103H. Yet wheneverthe resident portion of the TSRtries to use the value
at that address,it finds all zeros. Theinitialization routine placed the address at the symbol
OLD_.COMM_INT (JFD0:0103H). If that location is examined, the following is found:
-DD OLD_COMM_LINT Li <Enter>
1FD0:0103 1567:1375

This is the correct address, Why, then, did the programsfind zero there? Use the Display
Doublewords commandto look at the same memory location again, this time using the
specific address 0103H rather than a program symbol.
-DD 103 L1 <Enter>
38EE:0103 0000:0000

The dump of OLD_.COMM_INTlooked at 1FD0:0103H,but the simple dump looked at
38EE:0103H. The explanation is clear when the values of the registers just before the far
jump are examined. TheCSregister contains IFDOH andtheDSregister contains 38EEH.

Section I: Programming in theMS-DOS Environment 599

OLYMPUSEX. 1010 - 609/1582

OLYMPUS EX. 1010 - 610/1582

Part E: Programming Tools

This is the problem—there is a missing CS override on the indirect jump command.
When the TSRinstalled itself, CS and DS were the same because it was a .COM file. When

the TSR is enteredastheresult of an interrupt call, only CS is set; DS remains whatit was
in the calling program. Without an override, the CPU assumedthat the address of the desti-
nation of the far call waslocated at offset 103H from the DSregister. This offset, unfortu-
nately, contained zeros, and the program locked up the system.

The problem is now easily corrected. Exit SYMDEB with the Quit command andedit the
program source so that the offendingline reads
OLD_JUMP:

JMP CS: OLD_COMM_INT

Debugging C programs with SYMDEB
One of SYMDEB’s finest features is the ability to debug with source-line data from pro-
grams written in Microsoft C, Pascal, and FORTRAN.Theactual lines of C or FORTRAN
can be includedin the debugging display, and the addresses for breakpoints show which
line of code the breakpoints are in. Combined with symbolic debugging, these features
provide a powerfultool that can significantly reduce debugging time for programs
written in a supported language.

The following rather complicated case illustrates SYMDEBatits best. The program
BADSCOPfrom the previous example was not completely debugged. Although the patch
to the BADSCOP code at OLD_JUMP: did correct the disastrous problem that caused the
system to lock up, running the program in a realistic test situation reveals that a subtle
problemstill remains that might be in either BADSCOPor one of the support programs.

Before we investigate the problem, a quick review of the programs in the COMMSCOP
system is in order. At the heart of the system is the Interrupt 14H intercept program
COMMSCOP. Whenexecuted,this program installs itself as a TSR and interceptsall Inter-
rupt 14H calls. (The incorrect version of the COMMSCOPprogram is called BADSCOP.)
The installed COMMSCOPTSRpassesall Interrupt 14H calls on to the real service routine
in the ROM BIOSuntil it is commandedto start tracing. The COMMSCMDroutine controls
tracing. This control routine can request that COMMSCOPstart, stop, or resumetracing for
a specific serial port. These commandsarefacilitated through Interrupt 60H, which is
recognized by the COMMSCOPTSR as a command request. Whentracing is started, the
trace buffer is emptied by zeroing the trace count andsetting the buffer pointerto thefirst
buffer location. When tracing is stopped by COMMSCMD’s STOP command,a markeris
placed in the buffer to indicate the end of a trace segment. Tracing can be resumed with
COMMSCMD’s RESUME command. Resuming a trace preserves collected data and places
new trace data after the markerin the trace buffer. The RESUME commanddiffers from

the START commandin that the buffer is not emptied.

Now the problem: Whenthe serial data tracing is started with COMMSCMD(see Figure
18-5), data is collected normally. When COMMSCMDissues a STOP command and the
data is displayed with COMMDUMP(see Figure 18-7), the data appears normal. The
traced data ends with a stop mark just as it should. However, the RESUME command of

600 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 610/1582

OLYMPUS EX. 1010 - 611/1582

 epRAAARt
Article 18: Debugging in the MS-DOS Environment

COMMSCMDcausesthe stop mark to be overwritten with collected data. After this, when-
ever COMMDUMPdisplays data an extra byte appearsat the endof the data. The problem
could be with either BADSCOP or COMMSCMD. SYMDEBhasthefacilities to debug both
the routines at once.

Thefirst step in the debugging processis, as usual, to gatherall the listings and design
' documentation. As a part of this process, the symboltables needed for SYMDEB must be
prepared. The process of preparing a symboltable for BADSCOPhasalready been ex-
plained; however, preparing the SYMDEBinput and supportinglistings for a C program is
slightly more complicated.

First, when the C program is compiled, three switches must be specified. (C switches are
case sensitive and must be entered exactly as shown.)

CoMSC /Fc /2d /Od COMMSCMD; <Enter>

The /Zd switch produces an objectfile containing line-numberinformation that corre-
spondsto the line numbersof the sourcefile. The /Od switch disables optimization that
involves complex code rearrangement;localized optimization, peephole optimization, and
other simple forms of optimizationare still performed. The /Od switchis not required, but
code rearrangement can makethe resulting object code more difficult to debug.

The /Fc switch invokes a feature of C that is especially important for debugging with
SYMDEB: a listing that contains the C source lines and the generated assembler codeinter-
mixed. Thefile is a .COD file; the command line shown above would producethefile
COMMSCMD.COD.Figure 18-12 shows the contents of COMMSCMD.COD.

; Static Name Aliases

; $8142commands EQU commandsTITLE commscemd

; NAME commscmd.C

287
—TEXT SEGMENT BYTE PUBLIC 'CODE'
—TEXT ENDS
—DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

—BSS SEGMENT . WORD PUBLIC 'BSS'
—BSS ENDS

DGROUP GROUP CONST, W—BSS, —DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

EXTRN —int86:NEAR

EXTRN —printf:NEAR
EXTRN —stricmp: NEAR
EXTRN —atoi:NEAR
EXTRN —-chkstk: NEAR
—DATA SEGMENT

Figure 18-12. COMMSCMD.COD. (more)

Section I: Programming in theMS-DOSEnvironment 601

OLYMPUSEX. 1010 - 611/1582

OLYMPUS EX. 1010 - 612/1582

Part E: Programming Tools

$S8G148 DB 'STOP', OOh
$8G151 DB 'START', 00h

“$8G154 DB 'RESUME', 00h

$8G157 DB Oah, ‘Communications tracing %s for port COM%id:', Oah, 00h
$8142_commands DB 'STOPPED', 00h

ORG $+2
DB 'STARTED’, 00h
ORG $+2
DB "RESUMED', 00h
ORG $+2

—DATA ENDS

—TEXT SEGMENT :
LR RRR ROA A AR ACR NCR IC fe oe ee ee feeaC oe oC oe Ee oe oC oe eR ake oe a ake ee oe ae

pp RRR Ox : *
piek* ~~ COMMSCMD *
pie Ok *
;i*** #* This routine controls the COMMSCOP program that has been in- *
;1*** * Stalled as a resident routine. The operation performed is de- *
pi***e & termined by the command line. The COMMSCMD program is invoked *
7 1*** * as follows: *
plete *
pie Ok COMMSCMD [[cmd]{ port)] *
pike OF *
7.*** * where cmd is the command to be executed *
puke OF STOP -- stop trace *
prea START -- flush trace buffer and start trace *
pi eRR O# RESUME -- resume a stopped trace - *
pp OK port is the COMM port to be traced (1=COM1, 2=COM2, etc.) *
pl eR O# *
site * Tl cmd is omitted, STOP is assumed. If port is omitted, 1 is *
7i1*** * assumed. *
pieeR Ok *
GIGIISIC AGO GICIGR IG RGR RGI CCGG ICICI Ea ICICI ICR ACR ICR ar

| ee
7ie** #include <stdlib.h>
pieee #include <stdio.h>
71%** #include <dos.h>

7i*** #define COMMSCMD 0x60
pp eee

7*** main(argc, argv)
piee*e Unt argc;
; Line 29

PUBLIC _main
—main PROC NEAR

#** 000000 S85
x** 000001 8b
*** 000003 b8
*** 000006 28
ax* 000009 57
*** 00000a 56

Figure 18-12. Continued.

602 The MS-DOS Encyclopedia

push bp
ec mov bp, sp
22 00 mov ax, 34
00 00 call —chkstk

push ‘di
push si

OLYMPUSEX. 1010 - 612/1582

/

(more)

OLYMPUS EX. 1010 - 613/1582

" Article 18: Debugging in the MS-DOSEnvironment

pik*e*e char *argv[];
pi RRe {

7 Line 31
; arge = 4
; argv = 6
; cmd = ~4
; port = -6
; . result = -2
; inregs = -34
; outregs = ~20
pL REE int cmd, port, result;
pe RR static char commands[3] [10] = {"STOPPED", "STARTED", “RESUMED"};
7 RR union REGS inregs, outregs;
7
7 RE cmd = 0;
; Line 36

¥kk O0000b c7 46 fc 00 00 mov WORD PTR [bp-4],0 7omd
oR RE port = 0;
; Line 37

*** 000010 c7? 46 fa 00 00 mov WORD PTR [bp-6],0 port
pL eRE
pA if (argc > 1)
+ Line 39

*** 000015 83 7e 04 01 cmp WORD PTR [bp+4],1 Farge
#** 000019 7£ 03 jg $JCC25
#** 00001b e9 5d 00 . jmp $1145

$3CC25:
7 RE {
; Line 40
71K if (0 == stricmp(argv{1], "STOP"))
; Line 41

#%* 00001e b8 00 00 mov ax, OFFSET DGROUP:$SG148
##* 000021 50 : push ax
eee 000022 8b Se 06 mov bx, [bpt+6] fargv
eee 000025 ££ 77 02 . push WORD PTR [bx+2]
#e* 000028 e8 00 00 call ~stricmp
QO0002b 83 c4 04 add sp,4
xk 00002e 3d 00 00 cmp ax, 0
*kk 000031 74 03 je $JCC49
¥x* 000033 e9 08 00 jmp $1147

SJCC49:

pi eee cmd = 0;
7 Line 42 .

#** 000036 c7? 46 fe 00 00 mov WORD PTR [bp-4],0 7eomd
ple else if (0 == stricmp(argv[1], "START")

Figure 18-12. Continued. (more)

Section II: Programming in the MS-DOS Environment 603

OLYMPUSEX. 1010 - 613/1582

OLYMPUS EX. 1010 - 614/1582

Part E: ProgrammingTools

; Line 43
x*e* 00003b e9 3d 00 jmp $1149

$1147:

xek 00003e bs 05 00 mov ° ax,OFFSET DGROUP.:$SG151
#** 000041 50 push ax
**#* 000042 8b Se 06 mov bx, [ppt6] argv
#r* 000045 ff 77 02 push WORD PTR [(bx+2]
¥e* 000048 e8 00 00 call —stricmp
ee% 00004b 83 c4 04 add sp, 4
#k* 0000426 3d 00 00 , cmp ax,0
#** 000051 74 03 je $JCC81
#** 000053 e9 08 00 jmp $1150

$JCC81:

pees emd = 1;
; Line 44

*** 000056 c7? 46 fc 01 00 mov WORD PTR [bp-4],1 ;eomd
pl kex else if (0 == stricmp(argv(1), “RESUME"))
; Line 45

**+* 00005b e9 1d 00 jmp $1152
$1150:

¥¥* 00005e b8 Ob 00 mov ax, OFFSET DGROUP : $SG154
*** 000061 50 push ax
¥#* 000062 8b 5e 06 mov bx, {bp+6] jargv
¥** 000065 ££ 77 02 push WORD PTR [bx+2]
xk* 000068 e8 00 00 : call _stricmp
#** 00006b 83 c4 04 add sp,4
x#* 00006e 3a 00 00 emp ax,0
#e* 000071 74 03 je §gcc113
& 000073 e929 OS 00 jmp $1153

$JCC113:

pee cmd = 2;
; Line 46 : ,

#k* 000076 c7? 46 fc 02 00 mov WORD PTR [bp-4],2 ;omd
pike* }
; Line 47

$1153:
$1152:
$1149:

ple
pe if (arge == 3)
; Line 49

$1145:

*** O0007b 83 7e 04 03 cmp WORD PTR {bp+4],3 yarge
¥ek OOOOTE 74 03 je $JCC127
eee 000081 e9 ib 00 jmp $1155

SJCC127:

pee {
; Line 50
pee port = atoi(argv[2]); °
Figure 18-12. Continued. : (more)

604 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 614/1582

OLYMPUS EX. 1010 - 615/1582

?

,
,

,
:

’
,

7
?
;

,
:

?
,

t
,
,
7

Figure 18-12. Continued.

Article 18: Debugging in the MS-DOS Environment

Section Il: Programming in the MS-DOS Environment

Line 51

e 000084 8b Se 06 mov bx, [bp+6]
*** 000087 ff 77 04 push WORD PTR [bx+4]
k 00008a e8 00 00 call —atoi
*** 00008d 83 c4 02 add sp, 2
*** 000090 89 46 fa mov [bp-6],ax

pee if (port > 0)
Line 52

¥#* 000093 83 7e fa 00 cmp WORD PTR [bp-6],0
*** 000097 7£ 03 jg $gCC151
**k 000099 e9 03 00 jmp $1156

$JCC151:

pee port = port-1;
Line 53

*ek 00009c ff 4e fa dec WORD PTR {bp-6]
pl RRE }

Line 54

$1156:
7 RR

pK inregs.h.ah = cmd;
Line 56

$1155:

*** OOOOOL 8a 46 fe mov al, {[bp-4]
¥e* 0000a2 88 46 df mov {bp-33],al

py ak inregs.x.dx = port;
Line 57

*** 0000a5 8b 46 fa mov ax, [bp-6}
**e* 000088 89 46 e4 mov {bp-28],ax

pee result = int86(COMMCMD, &inregs,. éoutregs) ;
Line 58

*** 0000ab 8d 46 ec lea ax, [bp-20]
*** 0000ae 50 push ax
eee OOOOaL 8d 46 de lea ax, [bp-34)
#** Q000b2 50 push ax
#** 0000b3 b8 60 00 mov ax, 96
*** 0000b6 50 push ax
ee* 0000b7 eg 00 00 call —int86

*** Q000ba 83 c4 06 add sp,6
*** COO00bd 89 46 fe mov [bp-2],ax

pl RRR
pL REE

7 RRR printf("\nCommunications tracing %s for port COM%$1d:\n",
pp RRE commands[{cmd], port + 1);

Line 62

*** 0000c0 8b 46 fa mov ax, [bp-6]
*** 0000c3 40 inc ax

e 0000C4 50 push ax
*** 9000C5 8b 46 fc mov ax, [bp-4]
*** 0000cC8 8b c8 mov cx, ax
*k*k O000ca di ed shl ax, 1
*** 0000cc dt ed shl ax,1
***x 0000ce 03 cl add ax, CX
*** 000000 d1 e0 shl ax,1

pargv

;port

;port

jport

7omd

;port

;outregs

;inregs

7 result

7port

7omd

(more)

605

OLYMPUSEX. 1010 - 615/1582

OLYMPUS EX. 1010 - 616/1582

Part E: Programming Tools

*** 0000d2 05 40 00 add ax,OFFSET DGROUP:$S142_commands
*** 000005 50 push ax
*** 0000d6 bB 12 00 mov ax,OFFSET DGROUP:$SG157
*** 000009 50 push ax
¥** 0000da e8 00 00 call —printf
#*k* 0000dd 83 c4 06 add sp, 6

pee }
; Line 63

SEX138:

*** 000000 Se pop si
#** 0000e1 Sf pop di
eke 000002 8b e5 mov sp,bp
wee 000004 Sd pop bp
#** 0000e5 3 ret

—main ENDP
—TEXT ENDS
END

Figure 18-12. Continued.

After the C program is compiled,it must be linked using the /LI switch to indicate that the
line numberinformation is to be maintained:

C>LINK COMMSCMD /MAP /LI; <Enter>

The /MAPswitchisstill required to generate a mapfile of public namesfor use in building
the symbolfile, which is created in the usual manner:
C>MAPSYM COMMSCMD <Enter>

Everything needed to debug COMMSCMDand BADSCOPis now available. The first test is
an attemptto start tracing. To invoke SYMDEB, type

C>SYMDEB COMMSCMD.SYM BADSCOP.SYM COMMSCMD.EXE START 1 <Enter>

SYMDEBfirst loads the symbolfiles for COMMSCMD and BADSCOPandthenloads the
.EXEfile for COMMSCMD. BADSCOPis already in memory, having been loaded by simply
runningit. (It then stays resident.) The last two entries in the commandline load the com-
mandtail for COMMSCMDwith a start request for COM1. SYMDEB responds with

Microsoft (R) Symbolic Debug Utility Version 4.00
Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

Use the Register and Examine Symbol Map commandsto display theinitial register values
and symboltable information.

606 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 616/1582

OLYMPUS EX. 1010 - 617/1582

-R <Enter>
AX=0000 BX=0000 CX=1928
DS=2CAO0 ES=2CAO SS=2E85
—TEXT:__astart:
2CB0:010F B430
-X* <Enter>

(2CBO COMMSCMD]}
[2CBO _TEXT}
2E08 DGROUP

0000 BADSCOP
0000 CSEG

-X?* <Enter>
9876 __acrtused

—TEXT: (2CBO)
0010 _main
OOF9 —_-chkstk
01B9 _int86
02C2 __stbuf
0458 ~_-cinit
0572 —-dosret0
O5EA —_NMSG_WRITE

OF6D __flsbuf
1098 __forcdecpt
1125 __myalloc
1192 _flushall
11D1 —-nmalloc

1351 __amalloc
14AD _brkctl

DGROUP: (2E08)
0094 STKHOQ
009A __abrktb
018C __iob2
021E _errno

0226 __osmajor
0228 __oserr

0240 __argv
0278 ~-cflush

028A __asegr
03D0 —-bufout

9876

OOF6
010F
023A
0361
0507
OSTA
0613
1098
1098
1167
11C3
1217
1432

0096
OOEA
0204
0220
0226
0228
0242
027A
028C
05D0

DX=0000 SP=0800
CS=2CBO IP=010F

MOV AH, 30

—acrtmsg

—atoi
—astart 01AB

—printf 0270
—ftbuf 03E7
—exit 051E
—_dosretax 0586

—output 0E22
—-fassign 1098
—cfltcvt 109B
—Strlen 1182
_free 143
—write 12F1

—amexpand 146C

—_asizds 0098
—abrktbe OOEA
—lastiob 0212

—umaskval 0222
—dosvermajor 0227
—doserrno 022A
—environ 0244

—asegds 0286
—ambiksiz 0292
—-bufin 07D0

Article 18: Debugging in the MS-DOS Environment

BP=0000 SI=0000 DI=0000
NV UP EI PL NZ NA PO NC

—cintDIV

—strempi
—catox
—exit

——Maperror
—setargv
—cropzeros
_fflush
—ultoa
—_nfree
—cltoasub
—amlink

——atopsp
—abrkp
—aintdiv

—pspadr
—osminor
—osfile
child’

——aseg1
—fpinit
end

tor

O1AE __amsg_exit

0270 —stricmp
043C ~—nullcheck
054A __ctermsub
O5BA __NMSG_TEXT

OFO7 —_setenvp
1098 __positive
1103 ~isatty
118C __fptrap
11D1 ~malloc

12FD __cxtoa
148E __amallocbrk

O00EC ~__iob
0216 _fac

0224 __psp
0227 _dosverminor

023Eargc
0246 —__csigtab
0288 __asegn
03A8 _edata

The Register command showsthatthe first instruction to be executed will be at symbol
__astart in theTEXT segment. (Note that C puts a single underscore.in front ofall public
library and routine names; a double underscore indicates routinesfor C’s internal use.) The
Examine Symbol Map commandreveals that the symbol map COMMSCMD!has two seg-
ments, _TEXT and DGROUP, with _TEXTcurrently selected. The segment in BADSCOFP!,
CSEG, has no value assigned to it because SYMDEBdoesn’t know whereit is; one of the
debugging tasks is to determine the location of CSEG.

C placesinitialization and preamblecodeat the front of its object modules. This code can
be skipped during debugging, so this example begins at the label _ main. Examination of
the codeat this label using the Disassemble commandreveals the following:

Section Il: Programming in the MS-DOS Environment 607

OLYMPUSEX. 1010 - 617/1582

OLYMPUS EX. 1010 - 618/1582

Part E: Programming Tools

-U _main <Enter>
commsemd.C

29: int argc;
TEXT: main:
2CB0:0010 55 PUSH BP
2CB0:0011 8BEC MOV BP, SP
2CB0:0013 B82200 MOV AX, 0022
2CB0:0016 E8E000 CALL —chkstk
2CB0:0019 57 PUSH DI

This disassembly shows the way source-line information is displayed. These instructions
are generated by line 29 of COMMSCMD.C. Whenthe disassembly is compared with the
listing in Figure 18-12, the sameinstructions are seen. However, their addressesare differ-
ent. The addresses in the disassembly are relative to the start of the segment _TEXT, but
the addressesin thelisting are relative to the start of _ main. SYMDEBallowsaddressref-
erences to be maderelative to a symbol, so breakpoints can beset as displacements from
_main and the addresses shownin thelisting can be used.

Because the location of the problem being debugged is not known, breakpoints must be
placed strategically throughout COMMSCMDtotrace the execution of the program. Use
the Set Breakpoints commandto set the breakpoints.

“BP _maint+ie <Enter>
-BP _maint36 <Enter>
“BP _main+56 <Enter>
-BP _maint+76 <Enter>
-BP _main+7b <Enter>
“BP _maint+9c <Enter>
-BP _main+b7 <Enter>
~BP _mainte5 <Enter>
-BL <Enter>

0 e 2CB0:002E [_TEXT:_maint+tE (002E)] commsemd.c:41
1 e 2CB0:0046 [_TEXT:_main+36 (0046)] commscmd.C:42
2 e 2CB0:0066 [_TEXT:_maint+56 (0066)] commscmd.C:44 ’
3 e 2CB0:0086 [_TEXT:_main+76 (0086)] commscemd.C:46
4 e 2CB0:008B [_TEXT: .main+7B (008B)} commscemd.c:49
5 e 2CB0:00AC [_TEXT:_maint+9C (Q0AC)] commsemd.C:53
6 e 2CB0:00C7 [_TEXT:_main+B7 (00C7)] commscmd.c:58
7: e 2CBO:00F5 [_TEXT:_maintE5 (00F5)] commscemd.c:63

The List Breakpoints command showsthe breakpoint addresses in three ways:first the
absolute segment:offset address, then the displacement from the label _ main, andfinally
the line number in COMMSCMD.C.

Thefirst part of the COMMSCMDprogram decodesthe arguments andsets the appro-.
priate values for cmd andport. If there are no arguments, this decoding is skipped,if there
are arguments, the decoding beginsat line 41, so the first breakpointis set there.If the cri- .
terion of line 41 is met (the first argument is STOP), then line 42 is executed. The second
breakpoint is set there. Reaching the second breakpoint means that a STOP command was
properly decoded.If the command wasnot STOP, execution continuesat line 43. If this

608 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 618/1582

OLYMPUS EX. 1010 - 619/1582

Apn

Article 18: Debugging in the MS-DOS Environment

test is passed, line 44 is executed. This is the location of the third breakpoint.If the test at
line 44 fails but the one atline 45 is passed, then the breakpointat line 46 is executed.
Whetheror not one of the tests passes, execution ends upat line 49, At this point, the pro-
gram tests for the presence of a second operand.If there is a second operand, execution
traps at line 53, where the program decrementsthe port numberto putit in the proper

. form for the Interrupt 60H handler. Execution will then always stop in line 58, just before
the call to __int86. (_int86 is a library routine that loads registers and executes INT
instructions.)

When the program is run with START1 in the commandtail, it gives the followingresults:
-G <Enter>
AX=0022 BX=0F82 Cx=0019 DX=0098 SP=0F7E BP=0FA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=002E NV UP EI PL NZ NA PO NC
4i:
2CB0:002E BB3600
-G <Enter>
AX=0000 BxX=415A
DS=2E08 ES=2E08
44;

if (0 == stricmp(argv[1],"STOP"))
MOV AX, 0036 7BRO

CX=0000 DxX=0098 SP=0F7E BP=0FA4 SI=0089 DI=1065
SS=2E08 CS=2CBO IP=0066 NV UP EI PL ZR NA PE NC

cmd = 1;
2CB0:0066 C746FC0100 MOV Word Ptr [BP-04],0001 +BR2 SS:0FA0=0000
-G.<Enter>
AX=0000 BxX=415A
DS=2E08 ES=2E08

Cx=0000 DX=0098 SP=0F7E BP=0FA4 Si=0089 DI=1065
SS=2E08 CS=2CBO0 IP=008B NV UP EI PL 2R NA PE NC

49: if (arge == 3)
2CB0:008B 83760403 CMP Word Ptr [BP+04],+03 7BR4 SS:0FA8=0003
-G <Enter> .
AX=0001 BX=00D0 Cx=0000 Dx=0000 SP=0F7E BP=0FA4 Sr=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=00AC NV UP EI PL NZ NA PO NC

5 port = port-1;
2CBO:00AC FF4EFA DEC Word Ptr [BP-06] 7BR5 SS:0F9E=0001
-G <Enter> :
AX=0060 BX=00D0 cCxX=0000 DX=0000 SP=0F78 BP=0FA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=00C7 NV UP EI PL ZR NA PE NC

2CB0;00C7 E8EFOO CALL _int86 , 7BR6

Thefirst break occursat line 41, indicating that one or more arguments were presentin
the commandline. The next breakis at line 44, where the program sets the cmd codefor
Interrupt 60Hto 1, the correct value for a start request. The next break occursat line 49,
where the program checks the numberofarguments. If this numberis 3, then there is a
second argument in the command line. Rememberthat, in C, the first argumentis the ..
nameofthe routine, so an argument count of 3 actually meansthat there are 2 arguments
present.) The numberof argumentsis at BP+04, or SS:0FA8H,andit is indeed 3. Therefore,
the next breakis at line 53. The program decrements the current value ofport, leaving a
value of 0, which is what Interrupt 60H expects to see for COMI.

Continuing execution causesa breakjust before the call to _ int86. To validate that
the Interrupt 60H call is being made correctly, set a breakpointjust before the INT 60H
instruction is issued. Unfortunately, nolisting of_ int86 is available, so no alternative

Section H: Programming in the MS-DOS Environment 609

OLYMPUSEX. 1010 - 619/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 620/1582

Part E: Programming Tools

610

exists but to trace the execution of the routine until the INT instructionis issued. The

details of the processing are of nointerest to this debugging session, so they can be
ignored until an INT 60H is seen. (The traceoffers a great deal of information about how C
interfaces with subroutines. Studying the trace would be educational but is beyond the
scope of this example.)
-T 5 <Enter>
AX=0060 Bx=00D0
DS=2E08 ES=2E08
—TEXT:_int86:
2CB0:01B9 55
AX=0060 BX=00D0
DS=2E08 ES=2E08
2CB0:01BA 8BEC
Ax=0060 BX=00D0
DS=2E08 ES=2E08
2CB0:01BC 56
‘AX=0060 BX=00D0
DS=2E08 ES=2E08
2CB0:01BD 57
AX=0060 BX=00D0
DS=2E08, ES=2E08
2CB0:01BE 83ECOA

-T 5 <Enter>
AX=0060 Bx=00D0
DS=2E08 ES=2E08

2CB0:01C1 C646F6CD
AX=0060 Bx=00D0
DS=2E08 ES=2E08
2CB0:01C5 8B4604

AX=0060 BxX=00D0
DS=2F08 ES=2E08
2CB0:01C8 8846F7
AX=0060 BX=00D0
DS=2E08 ESs=2E08
2CBO0O:01CB 3C25
AX=0060 Bx=00D0
DS=2E08 ES=2E08
2CB0:01CD 740A
-T 5S <Enter>
AX=0060 Bx=00D0
DS=2E08 ES=2E08
2CB0:01CF 3C26
AX=0060 Bx=00D0
DS=2E08 ES=2E08
2CB0:01D1 7406
AX=0060 BxX=00D0
DS=2E08 ES=2E08
2CB0:01D3 C646F8CB
Ax=0060 Bx=00D0
DS=2E08 ES=2E08

Cx=0000 Dx=0000 SP=0F76 BP=OFA4 SI=0089 DI=1065
SS=2E08 CS=2CB0 IP=01B9 NV UP EI PL 2R NA PE NC

PUSH BP
CX=0000 DX=0000 SP=0F74 BP=OFA4 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01BA NV UP EI PL ZR NA PE NC

MOV BP, SP
CX=0000 DX=0000 SP=0F74 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01BC NV UP EI PL ZR NA PE NC

PUSH SI :
CX=0000 DX=0000 SP=0F72 BP=0F74 SI=0089 DI=1065
8S=2E08 CS=2CBO IP=01BD NV UP EI PL ZR NA PE NC

PUSH DI
CX=0000 DX=0000 SP=0F70 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01BE NV UP EI PL ZR NA PE NC

SUB SP,+0A

CX=0000 DxX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CBO IP=01C1 NV UP EI PL NZ AC PE NC

MOV Byte Ptr [BP-0A],CD ss
CX=0000 DX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01C5 NV UP EI PL NZ AC PE NC

Mov AX, [BP+04} ss
CX=0000 DxX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
$S8=2ER08 CS=2CBO IP=01C8 NV UP EI PL NZ AC PE NC

MOV [BP-09], AL ss
CX=0000 DxX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01CB NV UP EI PL NZ AC PE NC

CMP AL, 25 31%!
CX=0000 DX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01CD NV UP EI PL NZ AC PO NC

JZ —int86+20 (01D9)

CX=0000 DxX=0000 SP=0F66 BP=O0F74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01CF NV UP EI PL NZ AC PO NC

CMP AL, 26 716?

CX=0000 DX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
$S=2E08 CS=2CBO IP=01D1 NV UP EI PL NZ AC PE NC

JZ —int86+20 (01D9)
CX=0000 DxX=0000 SP=0F66 BP=OF74 SI=0089 DI=1065
$S=2E08 CS=2CB0 IP=01D3 NV UP EI PL NZ AC PE NC

MOV Byte Ptr [BP-08],CB ss
CX=0000 DX=0000 SP=0F66 BP=0F74 SI=0089 DI=1065
S$S=2E08 CS=2CBO0 IP=01D7 NV UP EI PL NZ AC PE NC

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 620/1582

: OF6A=BE

7 OF 78=0060

: OF 6B=01

: OF 6C=B0

(more)

OLYMPUS EX. 1010 - 621/1582

2CB0:01D7 EBOC
AxX=0060 BX=00D0
DS=2E08 ES=2E08
2CBO:01E5 8C5S6F4
-T 5 <Enter>

Ax=0060 BX=00D0
DS=2E08 ES=2E08
2CB0:01E8 8D46F6
AX=0F6A BX=00D0
DS=2E08 ES=2E08
2CB0:01EB 8946F2
AX=OF6A BxX=00D0
DS=2E08 ES=2E08
2CB0:01EE 8B7E06
AX=0F6A BX=00D0
DS=2E08 ES=2E08
2CB0:01F1 8BO5
AX=0100 BX=00D0
DS=2E08 ES=2E08
2CB0:01F3 8B5D02
-T 5 <Enter>
AX=0100 Bx=0000
DS=2E08 ES=2E08
2CB0:01F6 8B4D04
AxX=0100 Bx=0000
DS=2E08 ES=2E08
2CB0:01F9 8B5506
Ax=0100 Bx=0000
DS=2E08 ES=2E08
2CBO:01FC 8B7508
Ax=0100 Bx=0000
DS=2E08 ES=2E08
2CB0:01FF 8B7D0A
AX=0100 Bx=0000
DS=2E08 ES=2E08
2CB0:0202 55
~T 5 <Enter>

AX=0100 Bx=0000

DS=2E08 ES=2E08
2CB0:0203 83EDOE
AX=0100 Bx=0000
DS=2E08 ES=2E08
2CB0:0206 FFSE00
AX=0100 BX=0000
DS=2E08 ES=2E08
2E08:0F6A CD60
Ax=0100 BX=0000
DS=2E08 ES=2E08
1313:0190 80FCOO
AX=0100 BX=0000

DS=2E08 ES=2E08
1313:0193 7521

JMP
Cx=0000 DxX=
SS=2E08 CS=

MOV

Cx=0000 DxX=
SS=2E08 CS=

LEA
Cx=0000 DxX=

SS=2E08 CS=
MOV

CX=0000 Dx=
SS=2E08 CS=

MOV
cx=0000 DxX=
SS=2E08 CS=

MOV
Cx=0000 DX=
SS=2E08 CS=

MOV

CX=0000 Dx=
SS=2E08 CS=

MOV
CX=0000 DX=
SS=2E08 CS=

MOV
CX=0000 DxX=
SS=2E08 CS=

MOV
CX=0000 DxX=
SS=2E08 CS=

MOV
CX=0000 DX=
SS=2E08 CS=

PUSH

CX=0000 DX=
SS=2E08 CS=

SUB
Cx=0000 Dx=
SS=2E08 CS=

CALL
Cx=0000 DxX=
SS=2E08 CS=

INT
.CX=0000 DX=
SS=2E08 CS=

CMP

CX=0000 Dx=
SS=2E08 CS=

JNZ

Article 18: Debugging in the MS-DOS Environment

—int86+2C (01E5)
0000 SP=0F66
2CBO IP=01E5

[BP-0C],SS

0000 SP=0F66
2CBOQ IP=01E8

AX, [BP-0A]
0000 SP=0F66
2CBO IP=01EB

[BP-OE] , AX
0000 SP=0F66
2CBO IP=O01EE

DI; [BP+06]
0000 SP=0F66
2CBO IP=01F1

AX, [DI]
0000 SP=0F66
2CBO IP=01F3

BX, [D1I+02]

0000 SP=0F66
2CBO IP=01F6

CX, [DI+04]
0000 SP=0F66
2CBO IP=01F9

DX, [DI+06]
0000 SP=0F66
2CBO IP=01FC

SI, [DI+08]
0000 SP=0F66
2CBO IP=01FF

DI, (DI+0A}
0000 SP=0F66
2CBO IP=0202

BP

0000 SP=0F64
2CBO0 IP=0203

BP, +0E
0000 SP=0F64
2CB0 IP=0206

FAR [BP+00]
0000 spP=0F60
2E08 IP=OF6A

60
0000 SP=0F5A
1313 IP=0190

AH, 00
0000 SP=OFS5A

1313 IP=0193
01B6.

BP=0F74
SI=0089 pr=1065

NV UP EI PL NZ AC PE NC
SS:

BP=0F74 SI=0089 DI=1065
NV UP EI PL NZ AC PE NC

SS:
BP=0F74 SiT=0089 DI=1065

NV UP EI PL NZ AC PE NC
SS:

BP=0F74 SI=0089 DiI=1065
NV UP EI PL NZ AC PE NC

. Ss:
BP=0F74 SI=0089 DI=0F82

NV UP EI PL. NZ AC PE NC

DS:
BP=0F74 SI=0089 DI=0F82

NV UP EI PL NZ AC PE NC

DS:

BP=0F74 SI=0089 DI=0F82
NV UP BI PL NZ AC PE NC

DS:
BP=0F74 S$I=0089 DI=0F82

NV UP EI PL NZ AC PE NC
DS:

BP=0F74 SI=0089 DI=0F82
NV UP EI PL NZ AC PE NC

DS:

BP=0F74 S3I=#0000 DI=0F82
NV UP EI PL NZ AC PE NC

DS:

BP=0F74 SI=0000 DI=0000
NV UP EI PL NZ AC PE NC

BP=0F74 SI=0000 DI=0000
NV UP EI PL NZ AC PE NC

BP=0F66 SI=0000 Dr=0000
NV UP EI PL NZ AC PE NC

OF68=0F74

OF6A=60cD

OF 66=0060

OF 7A=0F82

OF82=0100

OF84=0000

OF 86=0000

OF88=0000

OF8A=0000

Orsc=0000

SS:0F66=O0F 6A
BP=0F66 SI=0000 DI=0000

NV UP EI PL NZ AC PE NC

BP=0F66 SI=0000 DI=0000
NV UP DI PL NZ AC PE NC

BP=0F66 SI=0000 DI=0000
NV UP DI PL NZ NA PO NC

Section LI: Programming in the MS-DOSEnvironment

OLYMPUSEX. 1010 - 621/1582

611

OLYMPUS EX. 1010 - 622/1582

Part E: Programming Tools

Whenthe Interrupt 60H call is encountered at offset OF6AH,the values passedto it can
be checked. AH contains 1 and DX contains 0 — the correct values for START COMI.

In order to use the symbols for BADSCOP, use the Open Symbol Map command, XO,to
switch to the correct symbol map. Then, because the value of CSEG is not defined in the
map, use the Set Symbol Value commandto set CSEG to the current value of CS. (CS was
changedto the correct value for BADSCOP whenthe program executed the INT 60H
instruction.)

-XO BADSCOP! <Enter>
-4 CSEG CS <Enter>
-X?* <Entexr>

CSEG: (1313)
0100 INITIALIZE 0103 OLD_COMM_INT 0107 COUNT 0109 STATUS
010A PORT 010B BUFPNTR 010D COMSCOPE 0190 CONTROL
020A VECTOR_INIT

Because the BADSCOP symbols now have meaning, a great deal of trouble can be avoided
bysetting a breakpoint at CONTROL, the entry pointfor Interrupt 60H,so that it will no
longer be necessary to trace the _int86 routine to find the INT 60H command.Execution
will automatically stop when the Interrupt 60H handler is entered.
-BP CONTROL <Enter>
-BL <Enter>

0 e 2CB0:002E [COMMSCMD!_TEXT:_maint1E (002E)] commsemd.c:41
1 e 2CB0:0046 [COMMSCMD!_TEXT:_main+36 (0046)] commscmd.c:42
2 e 2CB0:0066 [COMMSCMD!_TEXT:_main+56 (0066)} commscmd.c:44
3 e 2CB0:0086 [COMMSCMD!_TEXT:_maint76 (0086)] commscmd.C:46
4 6 2CB0:008B [COMMSCMD!_TEXT: main+7B (008B)] commsemd.c:49

5 e 2CB0:00AC [COMMSCMD!_TEXT:_main+9C (00AC)] commscmd.C:53
6 e 2CB0:00C7 [COMMSCMD!_TEXT:_main+B7 (00C7)] commsemd.C:58
7 e 2CB0:00F5 [COMMSCMD!_TEXT:_maintE5 (00F5)] .commscmd.C:63
8 e 1313:0190 [CSEGS: CONTROL]

With the housekeeping tasks done, the business of debugging BADSCOPcan begin. The
first thing CONTROL doesis check for a stop request.If no stop requestis present, the
routine jumpsto the checkfor a start request. (Thefirst test and jump were already com-
plete whenthe trace ended above.) Thetest for a start request is passed. CONTROL
places the port numberin a local variable, resets the buffer pointer and the buffer count,
and turns tracing status on. With all this complete, CONTROL returns.
-T 5 <Enter>
AX=01BB BX=E81E CX=3F48 DX=0000 SP=0F5A BP=0F66 SI=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01B6 NV UP DI PL NZ NA PO NC
1313:01B6 80FCO1 CMP AH, 01
AX=01BB BX=E81E CX=3F48 DX=0000 SP=0FS5A BP=0F66 SI=1CE7 DI=7400 -

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01B9 NV UP DI PL ZR NA PE NC
1313:01B9 751C JNZ CONTROL+47 (01D7)
AX=01BB BX=E81E CX=3F48 DX=0000 SP=0F5A BP=O0F66 SI=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01BB NV UP DI PL @2R NA PE NC
1313:01BB 2688160A01 MOV CS; [PORT], DL cs:010A=00

(more)

612 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 622/1582

OLYMPUS EX. 1010 - 623/1582

Article 18: Debugging in the MS-DOS Environment

AX=01BB BX=E81E CX=3F48 DX=0000 SP=O0F5A. BP=OF66 SI=1CE7 DI=7400

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01CO NV UP DI PL ZR NA PE NC
1313:01C0 2EC7060B010202 MOV Word Ptr CS:[BUFPNTR],VECTOR_INIT (0209) ¢S:010B=0202
AX=01BB BX=E81E CX=3F48 DX=0000 SP=O0FSA BP=0F66 SI=1CE7 DI=7400
DS=2E08 ES=2E08 .$S=2E08 CS=1313 IP=01C7 NV UP DI PL ZR NA PE NC

1313:01C7 2EC70607010000 MOV Word Ptr CS: [COUNT], 0000 CS:0107=0002
“TT 5) <Enter>
AX=01BB BX=E81E CX=3F48 Dx=0000 SP=0F5A BP=0F66 SI=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01CE NV UP DI PL 2R NA PE NC

1313:01CE 2EC606090101 MOV Byte Ptr CS:[STATUS],01 C8:0109=01
AX=01BB BX=E81E CX=3F48 DX=0000 SP=0F5A BP=0F66 SI=iCE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01D4 NV UP DI PL ZR NA PE NC

41313:01D4 EB2B JMP CONTROL+71 (0201)
AX=01BB BX=E81E CX=3F48 DxX=0000 SP=0F5A BP=0F66 SI=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0201 NV UP DI PL ZR NA PE NC
1313:0201 CF IRET
AX=01BB BX=E81E CX=3F48 DX=0000 SP=0F60 BP=0F66 SI=tCE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=2E08 IP=0F6C NV UP EI PL NZ AC PE NC
2E08:0F6C CB RETF :
AX=01BB BX=E81B CX=3F48 DxX=0000 SP=0F64 BP=OF66 SI=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=0209 NV UP EI PL NZ AC PE NC
2CB0:0209 5D POP BP

As can be seen from the trace, CONTROL performedcorrectly, so execution of the routine
can continue.

-G <Enter>

Communications tracing STARTED for port COM1:
AX=002F BxX=0001 CxX=0C13 DX=0000 SP=0FA6 BP=0000 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBOQ IP=00F5 NV UP EI PL NZ NA PE NC
2CB0:00F5 C3 RET . BRT

COMMSCMDhas written the message to the user and trappedat the breakpoint set at the
end of_main. The Examine Symbol Map command now showsthat SYMDEBhasauto-
matically switched to the symbol map for COMMSCMD.
-X* <Enter>

[2CBO COMMSCMD)
[2CBO _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

Noproblems have been encountered with the START command; now the same process of
checking COMMSCMD and BADSCOP must be repeated for the STOP command.(Evenif
problems had been found with the START command,it would be imprudentnotto test the
other commands—they could have errors, too.) SYMDEBcould be exited and restarted
with new commands, but this would mean theloss ofthe painfully created set of break-
points. Instead, a new copy of COMMSCMDis loaded without leaving SYMDEB. One
problem with this, however, is that when SYMDEBloads an .EXEfile, it adds the value of
the initial CS register to the addresses of the segments in the symbol map whose name

Section II: Programming in the MS-DOS Environment 613

OLYMPUSEX. 1010 - 623/1582

OLYMPUS EX. 1010 - 624/1582

Part E: Programming Tools -

matchesthe .EXEfile. This is fine the first time the program loads, but the secondtime,all
the values are doubled and therefore incorrect. To avoid this error, the addresses must be

adjusted before the load. Use the Set Symbol Value commandto subtract CS from each seg-
ment name in COMMSCMD!. The Examine Symbol Map command showsthe new values.

“4 TEXT _TEXT-CS <Enter>
-Z DGROUP DGROUP-CS <Enter>
-K*=<Enter>
[2CBO .COMMSCMD}

(0000 _TEXT]
0158 DGROUP

0000 BADSCOP
1313 CSEG

The NameFile or Command-Tail Parameters command, N, and the Load File or Sectors
command, L, can now be usedto load a new copy of COMMSCMD.EXE.

-N COMMSCMD.EXE <Enter>
“L <Enter>
“X* <Enter>
[2CBO COMMSCMD]

{2CBO _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

Notice that the segment values inside COMMSCMD!are the same as they were when the
program wasfirst loaded. Use the Name commandagain,this time to set the commandtail
to contain a STOP commandfor COM1. The breakpoint table from thefirst executionis
still set, so the program can nowbetraced in the same way.

“N STOP 1 -<Enter>
-G <Enter>
AX=0022 BX=OF84 CxX=0019 DxX=0098 SP=0F80 BP=0FA6 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=002E NV UP EI PL NZ NA PO NC

41: if (0 == stricmp(argv(1],"STOP"))
2CB0:002E B83600 MOV AX, 0036 + BRO
-G <Enter> :
AX=0000 BX=415A cCx=0000 Dx=0098 SP=0F80 BP=O0FAG SI=0089 DI=1065
DS=2E08 ES=2EQ08 SS=2E08 CS=2CB0 IP=0046 NV UP EI PL ZR NA PE NC
42: cmd = 0;
2CB0:0046 C746FC0000 MOV Word Ptr [BP-04],0000 7BR1 SS: 0FA2=0000
-G <Enter>
AX=0000 BX=415A CX=0000 DX=0098 SP=0F80 BP=OFA6 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2cB0 IP=008B NV UP EI PL 2R NA PE NC

49: if (argc == 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS: 0FAA=0003
-G <Enter>
AX=0001 BX=00D0 CX=0000 DxX=0000 SP=0F80 BP=O0FA6 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=00AC NV UP EI PL NZ NA PO NC
53: port = port-l;

(more)

614 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 624/1582

OLYMPUS EX. 1010 - 625/1582

Article 18: Debugging in the MS-DOS Environment

2CB0:00AC FF4EFA DEC Word Ptr [BP-06] ?BR5 SS:0FA0=0001
-G <Enter>

AX=0060 BX=00D0 cCx=0000 DxX=0000 SP=0F7A BP=OFA6 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=00C7 NV UP EI PL ZR NA PE NC
2CB0:00C7 E8EFOO . CALL —int86 . 7 BR6

COMMSCMDdetectedthat this is a stop request for COM1 andset the arguments for
_int&6 correctly. Because a breakpointis now set at CONTROL,tracing until the Interrupt
60Hcall is found is not necessary. Simply executing the program will causeit to stop at
CONTROL.

-G <Enter>
AX=001E BX=3F48 CX=0000 DxX=0000 SP=0F5C BP=O0F68 SI=7400 DI=E903
DS=2508 ES=2E08 .SS=2E08 CS=1313 IP=0190 NV UP DI PL NZ AC PO NC
CSEG: CONTROL:

1313:0190 80FC00 CMP AH,00 7BR8

Theregisters are set correctly for a stop request on COMI (AH = 0, DX = 0). The routine
can now betraced to checkfor correct operation. First, however, a quick look at the sym-
bol maps shows that SYMDEBhas automatically switched to BADSCOP’s symbols.
-X* <Enter>

2CBO COMMSCMD
2CBO _TEXT
2E08 DGROUP

[0000 BADSCOP}
{1313 CSEG]

-T 5 <Enter>
AX=001E BX=3F48 Cx=0000 Dx=0000 SP=0FSC BP=0F68 SI=7400 DI=E903
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0193 NV UP DI PL ZR NA PE NC

1313:0193 7521 INZ CONTROL+26 (01B6)
AX=001E BX=3F48 Cx=0000 Dx=0000 SP=0F5C BP=O0F68 SI=7400 DI=E903
DS=2E08 ES=2E08 SS=2E08 CS=1313. IP=0195 NV UP DI PL ZR NA PE NC
1313:0195 15 PUSH DS
AX=001E BX=3F48 CxX=0000 DX=0000 SP=0F5A BP=0F68 SI=7400 DI=E903

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0196 NV UP DI PL 2R NA PE NC
1313:0196 53 PUSH BX :
AX=001E BX=3F48 CxX=0000 Dx=0000 SP=0F5 BP=O0F68 SI=7400 DI=E903

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0197 NV UP. DI PL ZR NA PE NC
1313:0197 OE PUSH cs
AX=001E BX=3F48 CX=0000 DxX=0000 SP=0F56 BP=O0F68 SI=7400 DI=E903

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0198 NV UP DI PL ZR NA PE NC
1313:0198 1F POP DS

“-— 5 <Enter>
AX=001E BX=3F48 CX=0000 DX=0000 SP=0F58 BP=O0F68 SI=7400 DI=E903
DS=1313 EBS=2E08 SS=2E08 CS=1313 IP=0199 NV UP DI PL ZR NA PE NC

1313:0199 C6060390100 MOV ‘Byte Ptr [STATUS],00 , DS:0109=01
AX=001E BX=3F48 CX=0000 Dx=0000 SP=0F58 BP=0F68 SI=7400 DI=E903
DS=1313. ES=2E08 SS=2E08 CS=1313 IP=019E NV UP DI PL ZR NA PE NC

1313:019E 8B1E0B01 MOV BX, [BUFPNTR] DS: 010B=0202
AX=001E BX=0202 CX=0000 DxX=0000 SP=0F58 BP=O0F68 SI=7400 DI=E903
DS=1313 ES=2EQ8 SS=2E08 CS=1313 IP=01A2 NV UP DI PL ZR NA PE NC

(more)

Section II: Programming in theMS-DOSEnvironment 615

OLYMPUSEX. 1010 - 625/1582

OLYMPUS EX. 1010 - 626/1582

Part E: Programming Tools

616

to the CONTROL procedure before theregisters are restored. (Insert these lineslater with

1313:01A2 C60780 MoV Byte Ptr [BxX],80 DS:0202=80
AX=001E BX=0202 CxX=0000 DxX=0000 SP=0F58 BP=0F68 S1I=7400 DI=E£903
DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01A5 NV UP DI PL ZR NA PE NC

1313:01AS C64701FF MOV Byte Ptr [BxX+01],FF DS:0203=FF
AX=001E BX=0202 cCxX=0000 DxX=0000 SP=0F58 BP=0F68 SI=7400 DI=E903
DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01A9 NV UP DI PL ZR NA PE NC
4313:01A9 FFO60701 INC Word Ptr [COUNT] : DS:0107=0000
-T 5 <Enter>

AX=001E BX=0202 CX=0000 DX=0000 SP=0F58 BP=0F68 SI=7400 DI=E903
DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01AD NV UP DI PL NZ NA PO NC
1313:01AD FFO60701 INC Word Ptr [COUNT] bDS:0107=0001
AX=001B BX=0202 CxX=0000 Dx=0000 SP=0F58 BP=0F68 SI=7400 DI=E903
DS=1313 ES=2E08 SS=2E08 CS=1313 Ip=01B1 NV UP DI PL NZ NA PO NC
1313:01B1 5B POP BX
AX=001E BX=3F48 CxX=0000 DX=0000 SP=0F5A BP=O0F68 SI=7400 DI=£903
DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01B2 NV UP DI PL NZ NA PO NC
1313:01B2 1F POP Ds
AX=001E BX=3F48 CxX=0000 Dx=0000 SP=0F5C BP=0F68 SI=7400 DI=£903
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=+01B3 NV UP DI PL NZ NA PO NC
1313:01B3 EB4C JMP CONTROL+71 (0201)
AX=001E BX=3F48 CxX=0000 DxX=0000 SpP=0F5C BP=0F68 SI=7400 DI=E903
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0201 NV UP DI PL NZ NA PO NC
1313:0201 CF IRET

CONTROLcorrectly detected that this was a stop request. It then saved the user’s registers
and established a DS equal to CS. (Remember that BADSCOPis a .COMfile and CS = DS =
SS.) Having donethis, the routine moves a zero to STATUS, which turnsthe trace off. It
then moves80H FFHto the buffer to indicate the end of a trace session, increments
COUNTto allow for the new entry, and restores the user's registers. What it does not do
is increment the buffer pointer to allow for the stop marker. This behavioris entirely con-
sistent with the observed phenomena: Whena trace is stopped and resumed,the stop
markeris missing and the countis one too high. The fix is to add

INC BX ; INCREMENT BUFFER POINTER
INC BX ;
MOV BUFPNTR, BX ;

yourfavorite editor.)

Even though the bug has been found, the rest of the routine should be checked for other
possible bugs.
-G <Enter>

Communications tracing STOPPED for port. COM1:
AX=002F BxX=0001 CX=0C13 DX=0000 SP=0FA8 BP=0000 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CBO0 IP=00F5 NV UP EI PL NZ AC PO NC
2CB0:00FS C3 RET 7BR7 .

Loading a new copy of COMMSCMD,setting the commandtail to RESUME1, and monitor-
ing programexecutionyields the following:

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 626/1582

OLYMPUS EX. 1010 - 627/1582

Article 18: Debugging in the MS-DOS Environment

-N COMMSCMD.EXE <Enter>
~Z TEXT _TEXT-CS <Enter>
-Z DGROUP DGROUP-CS <Enter>
-X* <Enter>

[2CBO COMMSCMD] .
(0000 _TEXT]
0158 DGROUP

0000 BADSCOP
1313 CSEG

-L <Enter>
-X* <Enter>

[2CBO COMMSCMD]
{2CBO _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

-N RESUME 1 <Enter>
-G <Enter>
Ax=0022 BX=0F82 CxX=0019 Dx=0098 SP=O0F7E BP=0FA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=002E NV UP EI PL NZ NA PO NC

41: if (0 == stricmp(argv[1],"STOP"))
2CB0:002E B83600 MOV AX, 0036 7 BRO
-G <Enter>

AX=0000 BX=415A CX=0000 DX=0098 SP=0F7E BP=O0FA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IpP=0086 NV UP EI PL ZR NA PE NC

46: cmd = 2; ,
2CB0:0086 C746FC0200 MOV
-G <Enter>

AX=0000 BX=415A CxX=0000 DxX=0098 SP=0F7E BP=0FA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO0 IP=008B Nv UP EI PL ZR NA PE NC

49: if (arge == 3)
2CB0:008B 837E0403 CMP
-G <Enter>
AxX=0001 BX=00D0 CxX=0000 DxX=0000 SP=0F7E BP=0FA4 SI=0089 DI=1065

Word Ptr [BP-04],0002 7;BR3 SS:0FA0=0000

Word Ptr [BP+04],+03 7BR4 SS: 0FA8=0003

 DS=2E08 ES=2E08 SS=2E08 CS=2CBO0 IP=00AC NV UP EI PL NZ NA PO NC
53:
2CBO:00AC FF4EFA
-G <Enter>
AX=0060 BxX=00D0
DS=2E08 ES=2E08
2CB0:00C7 ES8EFOO
-G <Enter>
AX=0265 BX=001E
DS=2E08 ES=2E08
CSEG:CONTROL:
1313:0190 80FC00
-T 5 <Enter>
AX=0265 BX=001E
DS=2E08 . ES=2E08
1313:0193 7521
AX=0265 BX=001E
DS=2E08 ES=2E08
1313:01B6 80FCO1

port’ = port-1;
DEC Word Ptr (BP-06]

CX=0000 Dx=0000
SS=2E08 CS=2CBO0

CALL

CX=3F48 DxX=0000
SS=2E08 CS=1313

7BRS SS:0F9E=0001

SP=0F78 BP=OFA4 SI=0089 DI=1065
IP=00C7 NV UP EI PL 2R NA PE NC

—int86 7 BRE

SP=0F5A BP=O0F66 SI=0000 DI=7400
IP=0190 NV UP DI PL NZ AC PE NC

CMP AH, 00 7; BR8

CX=3F48 DxX=0000
SS=2E08 CS=1313

JNZ Cc
CX=3F48 DxX=0000
SS=2E08 CS=1313

SP=0F5A BP=OF66 SI=0000 DI=7400
IP=0193 NV UP DI PL NZ NA PO NC

ONTROL+26 (01B6)
SP=0F5A BP=0F66 SI=0000 DI=7400
IP=01B6 NV UP DI PL NZ NA PO NC

CMP AH, 01

(more)

Section II: Programming in theMS-DOSEnvironment 617

OLYMPUSEX. 1010 - 627/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 628/1582

Part E: Programming Tools

618

AX=0265 BX=001E CX=3F48 Dx=0000 SP=0FSA BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01B9 NV UP DI PL NZ NA PO NC
1313:01B9 751C JNZ CONTROL+47 (01D7)
AX=0265 BX=001E CX=3F48 Dx=0000 SP=0F5A BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01D7 NV UP DI PL NZ NA PO NC
1313:01D7 80FC02 CMP AH, 02
AX=0265 BX=001E CX=3F48 DxX=0000 SP=0F5A BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01DA NV UP DI PL ZR NA PE NC
1313:01DA 7516 ONZ CONTROL+62 (01F2)
—T 5 <Enter>
AX=0265 BX=001E CX=3F48 Dx=0000 SP=0F5A BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01DC NV UP DI PL ZR NA PE NC
1313:01DC 2E833E0B0100 CMP Word Ptr CS: [BUFPNTR] ,+00 . CS: 010B=0202
AX=0265 BX=001E CX=3F48 Dx=0000 SP=O0FS5A BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01E2 NV UP DI PL NZ NA PO NC
1313:01E2 741D Jz CONTROL+71 (0201)
AX=0265 BX=Q01E CX=3F48 Dx=0000 SP=0F5A BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01E4 NV UP DI PL NZ NA PO NC

1313:01E4 2E688160A01 MOV CS: [PORT],DL CS:010A=00
AxX=0265 BX=001E CX=3F48 Dx=0000 SP=0F5A BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01E9 NV UP DI PL NZ NA PO NC

1313:01E9 2EC606090101 MOV Byte Ptr CS: [STATUS] ,01 CS:0109=00
AX=0265 BX=001E CX=3F48 Dx=0000 SP=OF5A BP=0F66 Si=0000 DI=7400
DS=2E08 ES#2E08 SS=2E08 CS=1313 IP=01EF NV UP DI PL NZ NA PO NC
1313:01EF EB10 JMP CONTROL+71 (0201)
-T 5 <Enter>
AX=0265 BX=001E CX=3F48 DxX=0000 SP=O0FSA BP=0F66 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 IpP=0201 NV Up DI PL NZ NA PO NC
1313:0201 CF IRET

AX=0265 BX=001E CXx=3F48 Dx=0000 SP=0F60 BP=0F66 S$I=0000 Di=7400
DS=2E08 ES=2E08 SS=2E08 CS=2E08 IP=0F6C NV UP EI PL NZ AC PE NC
2E08:0F6C CB RETF
AX=0265 BX=001E CxX=3F48 Dx=0000 SP=0F64 BP=0F66 SI=0000 DI=7400

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=0209 NV UP EI PL NZ AC PE NC
2CB0:0209 5D POP BP

AX=0265 BX=001E CX=3F48 DX=0000 SP=0OF66 BF=0F74 S1=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=020A NV UP EI PL NZ AC PE NC
2CB0:020A 57 PUSH DI

AX=0265 BX=001E CX=3F48 DX=0000 SP=0F64 BP=0F74 SI=0000 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=020B NV UP EI PL NZ AC PE NC

2CB0:020B 8B7E08 MOV DI, [BP+08] 8S: 0F7C=0F90
-G <Enter>

Communications tracing RESUMED for port COM1:
Ax=002F BX=0001 CX=0C13 DX=0000 SP=0FA6 BP=0000 SI=0089 DI=1065
DS=2E08 ES=2EF08 S§=2E08 CS=2CB0 IP=00F5 NV UP EI PL NZ NA PE NC
2CB0:00F5 C3 RET 7BR7
-Q <Enter>

The processing of a resume requestis correct. Thus, the problem with stop processing .
in BADSCOPwasthe only problem. The corrected BADSCOP, whichis actually
COMMSCOPB, is shownin Figure 18-4,

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 628/1582

OLYMPUS EX. 1010 - 629/1582

Article 18: Debugging in the MS-DOS Environment

CodeView

CodeView is the most sophisticated debugging monitor produced by Microsoft. It
combinesthe philosophy and many of the commandsofits predecessors, DEBUG and
SYMDEB,with true-source-code debugging. Theavailability of source lines and symbols
allows CodeViewto rival the convenience of program development and debuggingpre-
viously available only in interpreters such as Microsoft GW-BASIC. However, this highlevel
of interaction with the source program is also the rootof its problems for advanced
debugging.

In order to provide the debuggerwith the tools to debug at the source-line level and to
interrogate program variables, CodeView is required to have a detailed knowledge of how
high-order languages work andoftheir internal conventions. This is not a problem for lan-
guageslike C, Pascal, and FORTRAN,versions of which are produced by the same com-
pany that created CodeView. The object code generated by these compilers obeys a
stringentset of rules and conventions. Assembly-language programs, however, tendto fol-

“low their ownrules andtraditions, making them quite different from C programs, with
their own separate debugging needs.

C, Pascal, and FORTRAN programmerswill find CodeView a dream to use. Assembly-
language programmersusing versions of MASMearlier than 5.0 will find CodeView cum-
bersomeandwill have to weigh its advantages overits disadvantages. All users will,
however, appreciate the good design and programming that have gone into CodeView.It
is pleasing to know that someone understands the programmer's debugging needsandis
trying to ease the burden.

CodeView has added several welcome functionsto the debugger’s repertoire, but one
of these new features towers above the rest —watchpoints. The debugger can watch the
values of program variables or expressions and set breakpoints on them, makingit possi-
ble to stop execution if an expression evaluatesto zero orif a location changes. Previous
debugging monitors have been limited to tracing and breaking on instructions. This new
facet of debugging changes, somewhat, the approachto resolving a bug.

In the previous discussion of debugging techniques, an orderly application of techniques
from inspection and observation through instrumentation to debugging monitors was
recommended. This sequenceis still recommended with CodeView, but now the instru-
mentation features have been integrated into the debugging monitor.

Asimple example
The following example shows how CodeViewuses the instrumentation approachto isolate
a problem and then uses the debugging monitor functionsto solveit. The example is also
an introduction to CodeView commands and techniques. The commandsare, for the most
part, similar to those used by SYMDEB. Those commandsthat differ greatly are indicated.
This example,like all the examples and demonstrationsin this article, is not intended to
be a complete tutorial — CodeView commandsare summarized elsewherein this book
and explained in detail in the manual accompanying the product. See PROGRAMMING
UTILITIES: copevirw. The example simply shows someof the more common CodeView
commands and demonstrates debugging techniques using them.

Section II: Programming in the MS-DOS Environment 619

OLYMPUSEX. 1010 - 629/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 630/1582

Part E: Programming Tools

620

UPPERCAS.C (Figure 18-13) is a simple program whosesole functionis to convert a canned
string to uppercase. When executed, the program prints a few of the characters from the
string and somethat aren’t in the string. Inspecting the listing doesn’t reveal the cause of
the problem. (Some readers with experience writing C programs will see the cause of the
problem, becauseit is quite common,pretend, for now,that the listing is of no help and
enjoy the wonders of CodeView.)

[RR RK oe 2 fe 5 Re a ee oR feoeeeAok oRORRRRR EO RE
* : *

* UPPERCAS.C *

* This routine converts a fixed string to uppercase and prints it. +* *

FOI COR UCIGUIIOICIGIOE I CIIICICCO IOCGUIICCC IG IG ROCIO ACK Hog a ania a /

#include <ctype.h>
#include <string.h>
#include <stdio.h>

main (argc, argv)

int argc;
char *argv(};

{

char *cp,C;

cp = "a string\n";

/* Convert *cp to uppercase and write to standard output */

while (*ep != '\0"')
{
c = toupper (*cptt+);
putchar(c);
}

}

Figure 18-13. An erroneous Cprogram to converta string to uppercase.

Like SYMDEB, CodeView requires some special preparation to produceasuitable exe-
cutable file. CodeView, however, makes the job much simpler. Using the Microsoft C Com-
piler, compile the program with
C>MSC /2i UPPERCAS; <Enter>

(Rememberthat C is case sensitive when interpreting switches, so the /Zi switch should
be entered exactly as shown.) The /Zi switch instructs the compiler to generate the symbol
tables and line-numberinformation needed by CodeView. Other options appropriate to
the program can also be included, but /Zi is required.

To form an executablefile, use the Microsoft Object Linker (LINK)as follows:

C>LINK /CO UPPERCAS; <Enter>

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 -630/158

OLYMPUS EX. 1010 - 631/1582

bearerptt

;
|

t
i{
{

Article 18: Debugging in the MS-DOS Environment

This commandline instructs LINK to build an executable file with the information

needed for CodeView. Other options can be used as needed or desired. The output of
LINK, UPPERCAS.EXE,will be larger than a .EXEfile built without /CO (about 2600 bytes
larger in this case),but the program will run correctly when executed without CodeView.

Starting CodeView is straightforward. Simply type
C>CV UPPERCAS <Enter>

CodeView loads UPPERCAS.EXE.It locates UPPERCAS.C,the sourcefile, and loads that
too. It then presents a full-screen display similar to this:

File View Search Hun Watch Options Language Calls Help|F8=Trace F5=Go
_SY] uppereas.0

% UPPERCAS .C

* This routine converts a fixed string to uppercase and prints it.*

include <ctype.h>
include <string.h>
#include <stdio.h>

main(argeargv)

int argc;
char argv];

¢

icrosoft (R) CodeView (R) Version 2.6

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
> .

This display has two windowsopen:the display window, which showsthe program being
debugged, and the the dialog window, which currently contains only the copyright notice
and a prompt(>) for input. The F6 function key moves the cursor back and forth between
the two windows.

CodeView can be instructed from either windowto go to a specific line (that is, to execute
‘until a specific line is reached). If the cursoris in the display window,use the arrow keys
to select a line and press the F7 key. Execution will proceed until the selected line (or the
end of the program) is reached. To startexecution without specifying a stop line, press F5.

The ‘samefunctions can be performed from the dialog window using typed commands,
which may seem more familiar. Enter the Go Execute Program command,G, optionally
followed by an address. Execution will continue until the specified address is reached

Section Il: Programming in the MS-DOS Environment 621

OLYMPUSEX. 1010 - 631/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 632/1582

Part E: Programming Tools

or until stopped by something else, such as the end of the program.In this sense, the _
CodeView Go commandis the same as that of DEBUG and SYMDEB.Unlike those rou-
tines, however, CodeView’s Go command doesnotallow an equals operator (=).

The addressfor the Go command can be specified in several ways. Because the display
windowis currently showing only source lines, it is appropriate to set the stop location in
terms ofline numbers. The syntax of a line-numberspecification is the same as in
SYMDEB — simply enter the line number preceded bya period:
>G ..27 <Enter>

Notethat the line numberis specified in decimal. This seemingly innocent statement
uncovers one of the problem areas in CodeView, especially for assembly-language pro-
grammers. The default radix for CodeView is decimal. This convention works well for
things associated with the C program, such as line numbers, but is very inconvenientfor
addresses and othersimilar items, which are usually in hexadecimal. Hexadecimal num-
bers must be specified using the cumbersome C notation. Thus, the number FF3EH would
be entered as Oxff3e. The radix can be changed using the Change Current Radix com-
mand, N (different from the DEBUG and SYMDEB N command). (The problemsassoci-
ated with hexadecimal numbersin early versions of CodeView are no longer present in
versions 2.0 andlater.)

The radix problem can be avoided,for the moment, by using labels. Issue
>G main <Enter>

to cause CodeView to execute until the main routine is reached. CodeView then shows

uppercas .C
ftinclude <ctype.h>
flinclude <string.h>
include <stdio.h>

nainlarge argu)

Laeoe
char *argul];

{

char *op,c;

cp = “a string\n";

/*« Convert *cp to uppercase and write to standard output */

uhile (*cp f= °\O’)
{

icrosoft (R) CodeView (R) Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
>g _main

622 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 632/1582

OLYMPUS EX. 1010 - 633/1582

7=a
po

Article 18: Debugging in the MS-DOS Environment

The display showsline 15 in reverse video, indicating that CodeView has stopped there.
Thisis thefirst line of the mainCQ module,butit is not executable. Press the F10 key,
which has the sameeffect as entering the Step Through Program command,P, in the dia-
log window,to cause line 19 to be executed. The reverse videoline is then 21, whichis the
next line to be executed. :

To see the changesto cp, *cp, and c, establish a watch on these three variables. To use the
Watch Word command, WW, for the word cp, type

>WW cp <Enter>

Whenentered from the dialog window, this command opens the watch window at the top
of the screen and displays the current value of cp. To display the expression at «cp, use the
Watch Expression command, W?,asfollows:
>W? cp,s <Enter>

This expression will display the null-delimited string at «cp. Finally, to see the ASCII char-
acter value of c, use the Watch ASCII command, WA:

>WA c <Enter>

Theresults of these watch commands are shownin the following screen:

File View Search Bun Watch Options Language Calis Help|F8=Trace F5S=Go
Sepppercas.C

S5C4:@FF@ 5527

SSC4:OFF2.

include <ctype .h>
Hinclude <string.h>
include <stdio.h>

nainfargce, argu)

int argc:
char *arguL];

{

char *cp,c;

edeWsooRee

The values displayed in the watch window are notyet defined becauseline 21, which
initialized cp, has not been executed.Press FS to rectify this. Press it again to bring the ex-
ecution of the program into the main loop.

Section LI: Programming in the MS-DOS Environment 623

OLYMPUSEX. 1010 - 633/1582

OLYMPUS EX. 1010 - 634/1582

Part E: Programming Tools

File View Search Run Watch Options Language Calls Help|F8=Trace F5=Go)
pee] Uppercas .Ceee

SSC4:@FF6 6036

"a string
55C4:OFFZ

*ep,c;

cp = "a string\n";

¢7* Convert *cp to uppercase and write to standard output */

while (“cp f= ’\@’)
{
c = toupper (*cptt);
putchar(e);
+.

The pointer cb now contains the correct address. The Display Memory command, D,
could be used to display the contents of DS:0036H,just as in DEBUG and SYMDEB.(This
step is not necessary, however, because there is a formatted display of memoryin the
watch windowat 1), The variable c has not yet beeninitialized.

624 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 634/1582

OLYMPUS EX. 1010 - 635/1582

——$——<——$

Article 18: Debugging in the MS-DOS Environment

Press the F8 key to execute line 27. A curious and unexpected thing happens, as shown in
the next screen:

File View Search Run Watch Options Language Calls Help|F8=Trace F5=Go
5_—_—————aSSS] OUppercas.C

S5C4‘@FF8 68838

“string
55C4:@FF2

char *cp,c;

cp = “a string\n":

7* Convert *cp to uppercase and write to standard output ¥*/

_ while (*cp {= ’\8’}
{ :

c = toupper(*cpt+);
Pietoes

Notice that the value of cp has changed from 0036H to 0038H. Theline of code, however,
indicates that the pointer should have been incremented by only one (#cp++). The second
characterof thestring, a blank, has been loadedinto c. This could explain the apparent
random selection of characters being displayed (actually every other character) and the
garbage characters displayed (the zero at the end of the string might be skipped, causing
the routine to continue converting until a zero is encouritered somewhere in memory).

Source-line debugging does not reveal enough about whatis happening in this case. To
look moreclosely at the mechanism of the program, the program mustberestarted.
Before doing this, set a breakpoint at line 27:
>BP .27 <Enter>

Section I: Programming in theMS-DOS Environment 625

OLYMPUSEX. 1010 - 635/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 636/1582

Part E: Programming Tools

Thenrestart (actually, reload) the program with the Reload Program command,L. Note
that watch commandsand breakpoints are preserved when a program is restarted.
Executing the restarted program with G yields

File View Search Run Watch Options Language Calls Help|F8=Trace F5S=Go
S| yppercas .C

cp : 55C4:O0FFO 08936
cp»s : “a string
c : SSC4:6FF2

*cp,c;

cp = “a string\n";

/* Convert *cp to uppercase and write to standard output */

while Gp t= ’\@’)
{
c= toupper Grcp++);
putchar(c);
+

The display showsline 27 in reverse video,indicating thatit is the next line to be executed.
The pointer cp hasthe correct value, as shown in the watch window. Now Press the F2 key
to turn on the register display and press F3 to show the assembly code.

626 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 636/1582

OLYMPUS EX. 1010 - 637/1582

Article 18: Debugging in the MS-DOS Environment

File View Search Run Watch Options Language Calls Help
uppercas .C cp : SSC4:@FF8 98836

4) cps | “a string
554‘ @FF2

: c = toupper(*cpt+);

5527-6626. FFAGFC INC Word Ptr [cp] | Peeshi)
5527 :8029 8Aa? MOV AL, Byte Ptr [BX]
5527 :682B 98 CBW
5527 :882C BEDS MOV _ BX, AX
6527 :B0ZE F687B30182 TEST Byte Ptr [BX+8133],82 ii ES = 5504
6527 8833 748C JZ _haint31. (8041) 8S = 5504)
6527 :8035 8BSEFC MOV BX, Word Ptr [cp] cS = 5527,
p527 8838 FF46FC INC Word Ptr [cp] IP = 6026
6527 :80838 GAG? MOV AL, Byte Ptr [BX]
5527 :883) 2C28 SUB AL, 26 NV UP
5527 :803F EB@S JMP wmain+39 (8049) EI PL
5527 :8041 SBSEFC MOV BX, Word Ptr [ep] NZ NA
6527 18844 FF46FC Word Ptr [cp]

The display highlights line 27, indicating that a breakpoint exists at this line. The line of
code at CS:0026H is in reverse video, indicating thatit is the next line to be executed.

The previous instruction has loaded BX with /cp/. Thefirst thing the codefor line 27
doesis increment the word at memory location /cp/. Theinitial value of cp is in BX, so the
*cp++ request can now be executed. Use the F8 key to single-step throughthelines of
code, Notice that when only sourcelines are on the screen, F8 steps one sourceline at a
time, but when assembly code is shown, F8 steps one assembly line at a time. Single-
stepping through the code, note how the registers and watch window change. Everything
appears normaluntil CS:0038H is executed.

Section I: Programming in the MS-DOS Environment 627

OLYMPUSEX. 1010 - 637/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 638/1582

Part E: Programming Tools

File View Search Run Watch Options Language Calls Help|F8=Trace F5=Go
[SSS| uppercas.0SSEES

55C4:6FFA 6838

"string
55C4° OFFZ

c = toupper(xcptt+)>
INC Word Ptr [cp]

6527:8029 8A07 Noy AL, Byte Ptr [BX]
6527:682B 98 CBW
6527 :802C SBD8 MoV BX, AX
6527 -8@ZE F687B30102 TEST Byte Ptr [BX+81B3],62

JZ _maint31 (0041)
MoU BX, Word Ptr [cp]
INC Word Ptr [cp]

5527 :663B: BAG?” PE Lit2 ena)Pe einen aa OG
6527 :683D 2024 SUB AL, 26
5527:803F EROS JMP _maintd9 (6049)
6527-8041 SBSEFC MOU BX,Vord Ptr [cp]
5527 :6044 FF46FC INC Word Ptr (cp]
Notice that the value of cp in the watch window has incremented again. Theline of C
code has two increments hiddenin it, not the expected single increment. Whyis this?

To find the answer, examine the toupperCO macro. Thefollowing definition, extracted
from CTYPE.H,explains what is happening:

#define _UPPER 0x1 /* uppercase letter */
#define LOWER Ox2 /* lowercase letter */
#define isupper (c) ((Letype+t)[c] & UPPER)
#define islower(c). ((_ctypet1)[c] & -LOWER)

#define _tolower (c) ((c)-'A'+'ta!l)
#define —toupper(c) ((c)-ta't'A')

#define toupper (c) ((islower(c)) ? ~toupper(c) : (c))
#define tolower (c) ((isupper(c)) ? —tolower(c) : (c))

The argumentto toupper(,c, is used twice, once in the macro that checks for lowercase,
islowerO, and once in _toupperQ. The argumentis replaced in this case with «cp++,
which has the famous C unexpectedside effects. Because the unary post-incrementis the
handiest way to perform the function desired in the program,fixing the problem by
changing the code in the main loop is undesirable. Another solution to the problem is to
use the function version of foupperO. Because toupperOis defined as a functionin
STDIO.H, simply deleting #include <ctype.h> would solve the problem. Unfortunately,
this would also deprive the program of the other useful definitions in CTYPE.H. (Admit-
tedly, the features are not currently used by the program,butlittle programs sometimes
grow into mighty systems.) So to keep CTYPE.H butstill remove the macro definition of

628 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 638/1582

OLYMPUS EX. 1010 - 639/1582

Article 18: Debugging in the MS-DOS Environment

toupper(), use the #undef command. (Because tolower(has the same problem,it should
also be undefined.) The corrected listing is shown in Figure 18-14.

ERRAAORRFKIRE SRooRRRGRR OR Ro RR ok ke
* : *
* UPPERCAS .C *

* This routine converts a fixed string to uppercase and prints it. *
* *

3g Re eR A A AAea ae eeieo oe a oe oe ee oe ke ok ke ee ee okRSa aR AR aR OR RR ok Ree /

#include <ctype.h>
#undef toupper
#fundef tolower
#include <string.h>
#include <stdio.h>

main (argé, argv)

int argc;
char *argv([);

char *cp,C;

cp = “a string\n";

/* Convert *cp to uppercase and write to standard output */

while (*cep != '\0"')
{
c = toupper (*cpt+t+);
putchar(c);
}

}

Figure 18-14. The corrected version ofUPPERCAS.C.

An example using screen output
A problem with DEBUGisthatit writes to the same screen as the program does. Both
SYMDEBand CodeView, however, allow the debuggerto switch back and forth between
the screen containing the program's output and the screen containing the debugger’sout-
put. This feature is a special option with SYMDEBand is sometimes clumsyto use, but
with CodeView, keeping a separate program output screen is automatic and switching
back andforth involves simply pressing a function key (F4).

The following example program is intended to display an ASCII lookuptable with ail the
displayable characters available on an IBM PC. The expected outputis shownin Figure
18-15.

Section I: Programming in the MS-DOSEnvironment 629

OLYMPUSEX. 1010 - 639/1582

OLYMPUS EX. 1010 - 640/1582

Part E: Programming Tools

ASCII LOOKUP TABLE

>78 9

-deSvvoa c+an

ASeap—"SOOOBOWBieSew HantOeeeSOWSSNee CSacePaceSCMODIeo noreECREONMe fe1CONAN--kt
+

1
a
4

1
A
Q
a

dii
a

i
T
Bp
+

TOSRtoxSrKONSe ©@Oeee1SOeweeOYee!WSReePERESOog VA4BOmsoN ooOEYNOeeoeeoeeeked
aMmfEROeeeSRO+

i]

Figure 18-15. The output expectedfrom ASCTBL.C.

The program that should producethis display, ASCTBL.C,is shown in Figure 18-16.

RR eeRK2AORR2Ae oeeSeS oO oe oe dea ok OK oR
*

ASCTBL.C

*
Ed

This program generates an ASCII lookup table for all displayable *
ASCII and extended IBM PC codes, leaving blanks for nondisplayable **

#
*

*
*
*

* codes.
*
* RC a De A os 9 CK Ae fe fe AE fe oe oe oe he 2 Eo ig 28 oe oeeooO RE22 Of co aR oe oe oo 2 oO Oko OK ok OK

#include <ctype.h>
#include <stdio.h>

main ()
{
int i, 3, k;

/* Print table title.

printf ("\n\n\n

*/

/* Print column headers. */
printf (" ")i
for (i = 0; i < 16; i++)

printf("sx ",
fputchar ("\n");

i);

Figure 18-16. An erroneousprogram to display ASCHcharacters.

630 The MS-DOSEncyclopedia

36M=ebateeeAY SOmteterySoeSz
we
>z

NeeRADIis
=i%I

>Bie"¥*hP0ooO}
ASCII LOOKUP TABLE\n\n");

\

/

(more)

OLYMPUSEX. 1010 - 640/1582

OLYMPUS EX. 1010 - 641/1582

TSee
Article 18: Debugging in the MS-DOS Environment

/* Print each line of the table. */
for (i = 0, k = 0; i < 16; itt)

{

/* Print first hex digit of symbols on this line. */
print£ ("SX ", Ad?
/* Print each of the 16 symbols for this line. */
for (j = 07; 4 < 16; J++)

{

/* Filter nonprintable characters. */
if ((k >= 7 && k <= 13) || (k >= 28 && k <= 31))

printf(" ");
else

printft("tc ", k);
k++;
} f

fputchar ("\n");
}

}

Figure 18-16. Continued.

The problem to be debuggedin this example is evident when the program in Figure 18-16
is compiled, linked, and executed. Here is the resulting display:

ASCII LOOKUP TABLE

@12345 6789488 COD CE F

Ae yt >*
Section II: Programming in the MS-DOS Environment 631

OLYMPUSEX. 1010 - 641/1582

OLYMPUS EX. 1010 - 642/1582

Part E: Programming Tools

Somethingis clearly wrong. The outputis jumbled and no pattern is immediately obvious.
To locate the problem,first prepare a .EXEfile and start CodeView as follows:

C>mMSC /Zi ASCTBL; <Enter>
C>LINK /CO ASCTBL; <Enter>
C>CV ASCTBL <Enter>

CodeViewstarts and displays the following screen:

 File View Search Run Watch Options Language Calls Help|F8=Trace F5=Co
eed ascthl .c

t

ie. *

4 * ASCTBL.C ,

Gs * This program generates an ASCII lookup table for all displayable
6; * ASCII and extended IBMPC codes, leaving blanks for nondisplayable

: * codes.
: *

18:

41: flinclude <ctype.h>
42: include <stdio.h>
43:
14: main()
45: ¢

16: int i, j, k;
17: /* Print table title. */

48: printf C'\n\n\n ASCII LOOKUP TABLE\n\n"); FS

+]
‘ t

icrosoft (R) CodeView (R) Version 2.0

(C) Copyright Microsoft Corp. 1986, 1987,
>

 All rights reserved.

Thestart of the source program is shown in the display window andthe dialog window
contains an input prompt. Press the F10 key three times to bring execution to line 21.
(Rememberthatthe line indicated in reverse video has not yet been executed.)

632 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 642/1582

OLYMPUS EX. 1010 - 643/1582

nye

Article 18: Debugging in the MS-DOS Environment

File View Search Run Watch Options Language Calls Help|F8=Trace F5=Go
ss]ascthl

finclude <ctype.h>
ftinclude <stdio.h>

maint}
{

int i, j, k;
7*« Print table title. */

printf C"\n\n\n ASCII LOOKUP TABLE\n\n"):

/7* Print column headers, */
rye Usaa or
for (i = @; i < 16; it+)

printh('ZX ", 13
fputchar("\n");

; /* Print each line of the table. */

icrosoft (R) CodeView (R) Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
>

The display heading has been printedat line 18. Press the F4 key to display what the pro-
gram has written on the screen.

ASCII LOOKUP TABLE

Section II: Programming in theMS-DOSEnvironment 633

OLYMPUSEX. 1010 - 643/1582

OLYMPUS EX. 1010 - 644/1582

Part E: Programming Tools

Note: Any information on the screen when youstarted CodeView will remain on the vir-
tual output screen until program execution clearsit or forcesit to scroll off.

The table heading has been properly written to the screen. Press the F4 key again to return
to the CodeView display. Continue executing the program with the F10 key to bring the
program toline 24.

File View Search Run Watch Options Language Calls
SSE] ascth1.C |

Hinclude <ctype.h>
flinclude <stdio.h>

main()
{

int i, j, k:
/* Print table title. #/

printf C'\n\n\n ASCIY LOOKUP TABLE\n\n"’);

/* Print column headers. */

printf (" ")3
for (i = @; i < 16; i++)

printh("%X ", 1):
yytkditokOa j } j

7* Print each line of the table. */

icrosoft (R) CodeView (R) Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.

At this point in program execution, the column headings have been written on the screen.
Press the F4 key again to see theresults.

634 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 644/1582

OLYMPUS EX. 1010 - 645/1582

 9A9RftniAercoegcpremagenetietem
Article 18: Debugging in the MS-DOS Environment

ASCII LOOKUP TABLE

@12345 678 9 ABCD E F
The outputof the program is still correct, so allow execution to continue by: pressing F4 to
return to the CodeView screen and then pressing the F10 key. This will execute thecall to
the fputcharOfunction to write a newline character.

File View Search Run Watch Options Language Calls Help|F8=Trace F5=Go
=1)Cl

printh(" "9;
for (i = @; i ¢ 16; i++)

printhC'%X ", 4);
fputchar("\n");

7* Print each line of the table. */
for Ci. =.6, k= 6). i < 16; r++) 7

{

/* Print first hex digit of symbols on this line. */
printf". =", i);
/* Print each of the 16 symbols for this line. */
for (J = @) J < 163 jee)

{

/* Filter non-printable characters, */
if (Ck >= 7 && k <= 139) Tf (k >= 28 && k <= 31)

printh(" "9; :
else

printf("%c “, kd);

ierosoft (R) CodeView (R) Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987, All rights reserved.
>

Section II: Programming in the MS-DOSEnvironment 635

OLYMPUSEX. 1010 - 645/1582

OLYMPUS EX. 1010 - 646/1582

Part E: Programming Tools

Examination of the output screen showsthatthe display is now incorrect.

ASCII LOOKUP TABLE

86123456789 ABCDEF HN
A lowercase h has been written to the screen instead of a newline character. Further ex-

ecution demonstrates that newline characters written with fpuicharQCare not working. A
closer inspection of the fputcharOfunction is needed.

To see what is happening, use the Reload Program command torestart execution at
the top of the program. Changethe cursor window with the F6 key, use the arrow keys
to place the cursor on line 24, and press F7. This brings execution back to line 24, where
SputcharOis called. Press the F3 key to place the display in assembly mode and the F2
key to show the CPU registers andflags. The first assembly instruction of the fputcharO
function call is about to be executed.

636 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 646/1582

OLYMPUS EX. 1010 - 647/1582

Article 18; Debugging in the MS-DOS Environment

asctbhi.C

fputchar("\n");

PUSH AX

CALL Sputchar (8194)
ADD SP, +82

for (i = 0, k= 83 i ¢ 16; i++)
MOY Word Ptr [11,6880
MOV Word Ptr [k],8080
CMP Word Ptr [£1],+18
JGE _maintc@ (0D8) .
JMP chaintSf (OB6F)
INC Word Ptr [i]
JMP chain+52 (8062)

printh("”X “, i):
E527: G8O6F FF76FE PUSH Word Ptr [1]
£527 :8872 B86ARG MoV Ax, 886A
5527 :8075 58 PUSH Ax

5527:8076 £84881 CALL printf (@1C1)

icrosoft (R) CodeView (R)} Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
>1
>

Notice that the parameter being passed to the function by meansofthe stack is 0068H. Use
the Display Memory commandto display DS:0068H. (Note the hexadecimal notation.)

File View Search Run Watch Options Language Calls Help|F8=Trace FS=Go

x

Sputchar (8194)
SP, +82

for (126, k= @; 4 ¢ 16; 1++)
Mov Word Ptr [11,8088
MOV Word Ptr [k],0008
CMP Word Ptr [i],+18
JGE _naintc8 (6808)
JMP _haintSf (O86F)
INC Word Ptr [il

JMP _maintS2 (8662)
printfh("“X ", 123

PUSH Word Ptr [iJ
MOV AX , 885A
PUSH AX

CALL printf (8101)

566D :6868 ~BA B@ 25 58 28 28 20 88

Section II: Programmingin the MS-DOSEnvironment 637

OLYMPUSEX. 1010 - 647/1582

OLYMPUS EX. 1010 - 648/1582

Part E: Programming Tools

The contents of memory atthis address consist of a null-delimited string containing a
newline character. The representation of \n is correct. To see how thestring is handled,
use the trace key, F8, to single-step through fpuicharQ and subordinate functions. These
functions are complicated; nearly 100 steps are required to reach the MS-DOSInterrupt
21H call that actually writes the screen.

File View Search Run Watch Options Language Calls Help|F8=Trace F5=Go
— SS | ascth] 0[psSS
6527: 10E9 $1 PUSH cx
5527:10EA BBCF Cx, DI
6527:4BEC 2BCA CX, DX

 6527:18F8 9C
6S27:16F1 @3F8 ADD S1,AX
bS27:16F3 9} POPF

poz? :10F4 7304 JNB _write+8Z C1OFA)
p52? 1866 B469 MoV AH, 49
6527 :10F8 EB1A SMP -writet9c (1114)
6527: 16FA @BCA OR AX, AX
6527 :1GFC 7516 JNZ -writet9c (1114)
6527 :16FE F687120248 TEST Byte Ptr ([BX+_osfile],46
P52? :1103 746B RY _weite+98 (1118)
6527:1185 SBSEA6 - MOU BX, Word Ptr ([BP+86)
6S27:1188 S83F1A CMP Byte Ptr [BX],1A '
p52? -11BB 7583 INZ _write+98 (1118) i NZ NA
6527:110D F8 CLC

a — HOWWDTEWPEEeaha

 B66D 8068 -0A 88 25 58 28 20 20 @0
bd @xf'84 18 i
B66) :@F8e 68 @8 DC @B-AY 88 96 OF heed
,

The AHregister’s contents, 40H, indicate that the Interrupt 21H call is a request for a write
to a device. The BX register has the handle of the device, 1, whichis the special file handle
for standard output(stdout). For this program as it was invoked, standard outputis the
screen. The CX register indicates that 1 byte is to be written; DS:DX points to the data to be
written. The contents of memory at DS:0F84H finally reveal the cause of the problem:
This memorylocation contains the address of the data to be written, not the data. The
jfputcharO function wascalled with the wronglevel of indirection.

Examinationofthelisting showsthat all the newline requests were made with

fputchar ("\n");

Strings specified with double quotes are replaced in C functions with the addressof the
string, but the function expectedthe actual character and notits address. The problem can
be corrected by replacing the fputchar(Ccalls with -

fputchar('\n');

The newline character will now be passed directly to the function.

638 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 648/1582

OLYMPUS EX. 1010 - 649/1582

AnttnttAptgp,

Article 18: Debugging in the MS-DOS Environment

This kind of problem can be avoided. C providestheability to check the type of each
‘parameterpassedto a function against the expected type.If the following definition is
includedat the top of the C program,incorrect types will generate error messages:
#define LINT_ARGS:

The correctedlisting is shown in Figure 18-17. This new program producesthe correct
output.

[RORRRCRCOORFORO RG ORG SOR AGRI AG a ak doe ook
*

* ASCTBL.C *

* This program generates an ASCII lookup table for all displayable *
* ASCII and extended IBM PC codes, leaving blanks for nondisplayable ¥*
* codes. *
* *

FORGOROGICICIICICI IO ICG HOGG IOk aC GIG ACAI GR di: AC i aC a ede aie ac ake ak ke /

#define LINT_ARGS

#include <ctype.h>
#include <stdio.h>

main ()

{ .
int i, 3, ky

/7* Print table title. */
printf ("\n\n\n ASCII LOOKUP TABLE\n\n");

/* Print column headers. */
printf (" ");
for (i = 0; i < 16; itt)

printf("sxX ", i);
fputchar('\n');

/* Print each line of the table. */
for (i = 0, k = 0; i < 16; i++)

{

/7* Print first hex digit of symbols on this line. #/
printf ("% ", i)7
/* Print each of the 16 symbols for this line. */
for (j = 0; 3 < 16; j++)

{
/* Filter nonprintable characters. */
if ((k >= 7 && k <= 13) |f (k >= 28 && k <= 31))

printf (" ");
else

printf("%c ", k);
k++;
}

fputchar('\n');
}

}

Figure 18-17. The correctASCII table generationprogram.

Section II: Programming in the MS-DOSEnvironment 639

OLYMPUSEX. 1010 - 649/1582

OLYMPUS EX. 1010 - 650/1582

Part E: Programming Tools

CodeView is a good choice for debugging C, Pascal, BASIC, and FORTRANprograms.
The fact that versions of MASMearlier than 5.0 do not generate data for CodeView makes
CodeViewa poorer choice for these assembly-language programs. These disadvantages
must be weighedagainstthe ability to set watchpoints and to trap nonmaskable interrupts
(NMIs). CodeView is also not as well suited as SYMDEB for debugging programsthat in-
teract with TSRs and device drivers, because CodeView does not provide any mechanism
for including symboltables for routines not linked together.

Hardware debugging aids

Hardware debuggers are a combination of hardware and software designedto beinstalled
in a PC system. The software provides features muchlike those available with SYMDEB
and CodeView. The advantages of hardware debuggers over purely software debuggers
can be summarized in three points:

® Crash protection
@ Manual execution break

® Hardware breakpoints

A hardware debuggercan provide program crash protection because ofits independence
from the PC software. If the program being debugged goes wild and destroys the operat-
ing system ofthe PC, the hardware debuggeris protected by virtue of being a separate
hardware system andis capable of recovering enough controlto allow the userto find
out what happened.

All hardware debuggers offer a means of breaking into the program undertest from some
external source — usually a push button in the handsofthe programmer. The mechanism
used to get the attention of the PC’s CPU is the nonmaskable interrupt (NMD.Thisinter-
rupt provides a more reliable meansof interrupting program execution than the Break key
becauseits operation is independentof the state of interrupts and other conditions.

Hardware debuggers usually have access to the address and data lines on the PC bus,
allowing them to set hardware breakpoints. Thus, these debuggers can beset to break
whenspecific addresses are referenced. They execute the breakpoint code from a debug-
ging monitor, which generally runs from their own memory. This memory is usually
protected from the regular operating system and the application program.

Although hardware debuggers can be usedto instrument a program, they should not be
confused with the external hardware instrumentation discussedearlierin this article. The

logic analyzers and in-circuit emulators mentioned there are general-purpose test instru-
ments; the hardware debuggers are highly specific devices intended to do only one thing
on onetype of hardware — provide debugging monitor functions at a hardwarelevelto
IBM PC-type machines,It is this specialization that makes hardware debuggers so much
easier to use for programmerstrying to get a piece of code running.

Becausethis volume deals only with MS-DOSand associated Microsoft software, a detailed
discussion of hardware debuggers and debugging would not be appropriate. Instead,a
few popular hardware products that work with MS-DOSutilities are mentioned and a gen-
eral discussion of debugging with hardwareis presented.

640 TheMS-DOSEncyclopedia

OLYMPUSEX. 1010 - 650/1582

OLYMPUS EX. 1010 - 651/1582

Article 18: Debugging in the MS-DOS Environment

Several manufacturers make hardware products that can be used for debugging. These
productsvary in the features offered andin their suitability for various kinds of debugging.
Three of these products that can be used with SYMDEBare.

@ IBM Professional DebugUtility
@ PC Probe and AT Probe from Atron Corporation
® Periscope from The Periscope Company,Inc.

These boards can be used with SYMDEBby specifying the /N switch whenthe program is
started, When used in this way, however, the hardware provideslittle more than a source
of NMIs to interrupt program execution; otherwise, SYMDEBrunsas usual. This restric-
tion may not be acceptable to a programmer who wantsto use the sophisticated debug-
ging software that accompanies these products and makesuse of their hardware features.
For this reason, these boards are rarely used with SYMDEB.

The general techniques of debugging with hardwareaids will already be familiar to the
reader—theyare the same techniquesdiscussedat length earlier in this article. The tech-
niquesof inspection and observation shouldstill be applied; instrumentationis facilitated
by hardware; a debugging monitor accompaniesall hardware debuggers and the same
techniques discussed for DEBUG, SYMDEB,and CodeView apply. No new techniques are
neededto use these devices. The changes in the details of the techniques come with the
addedfeatures available with the hardware debuggers. (Rememberthatall these features
are not universally available on all hardware debuggers.)

The manual interrupt feature of hardware debuggersis useful in a system crash. Every
programmer, especially assembly-language programmers, has had the situation where the
program runswild, destroys the operating system, and locks up the system. The tech-
niques described in previous sections ofthis article show that about the only wayto solve
these problems without hardware helpis to set breakpointsat strategic locations in the
program and see how many are passed before the system locks up. The breakpoints are
placed at finer and finer increments until the instruction-causing the crashis located.

This long and ugly procedure can sometimes be shortened with a hardware debugger.
Whenthe system crashes, the programmer can push the manual interrupt button, suspend
program execution, and give control to the debuggercard. At this point, the programmer
can use the debugging monitor software supplied with the card to sniff around memory
looking for something suspicious. Clues can sometimes be found by examining the pro-
gram’s stack and data areas— provided, ofcourse, that they arestill in memory and
haven’t been destroyed, along with the operating system, by the rampaging program. This
approachis not always an immediate solution to the problem, however; often,the start-
and-set-breakpoints process has to be repeated even with a hardware debugger. The hard-
ware will, however, possibly shed somelight on the causes of the problem and shorten the
procedure.

Another feature offered by many of the debugging boardsis the ability to set breakpoints
on events other than the execution ofa line of code. Often, these boards will allow the
programmerto break on a reference to a specific memorylocation, to a range ofmemory

Section II: Programming in the MS-DOSEnvironment 641

OLYMPUSEX. 1010 - 651/1582

OLYMPUS EX. 1010 - 652/1582

Part E: Programming Tools

locations, or to an I/O port. This feature allows a watch to be set on data, analogousto the
watchpoint feature of CodeView. This technique is almost always useful, as it is with
CodeView,but there is one class of problems whereit is essential to reaching a solution.

Considerthe case of a program that seemsto be running well. Every so often, however,
an ampersand appears in the middle of a payroll amount, or occasionally the program
makes an erroneous branch and executes the wrong path. Supposethat, after painstaking
investigation, the programmerdiscoversthat these problems are being caused by a change
in a specific location in memory sometime during the execution of the program. In debug-
ging, the discovery of the cause ofa problem usually leads almost instantly to a fix. Not so
in this case. That byte of memory could be changed by an error in the program,by a glitch
in the operating system or in a device driver, or by cosmic rays from outer space. Discover-
ing the culprit in a caselike this is almost impossible withoutthe help of hardware break-
points. Setting a breakpoint on the affected memory location and running the program
will solve the problem. As soon as the memory location is changed, the breakpoint will be
executed and the state of the system registers will point a clear finger at the instruction
that caused the problem.

Hardware debuggers can provide significant aid to the serious programmer. They are
especially helpful in debugging operating systems and operating-system services such as
device drivers. They are also helpful in complicated situations where many programs may
be running at the same time. The consensus among programmers who have hardware
debuggersis that they are well worth the money.

Summary

Although Microsoft and others have provided an impressive array of technology to aid
in program debugging, the most important tool a programmerhas is his or her native wit
andtalent. As the examplesin this article have illustrated, the technology makesthe task
easier, but never easy. In all cases, however,it is the programmer who debugs the program
andsolves the problems.

Technology will never be able to replace the personfor solving the problem of a bug-
ridden program.(This is an area whereartificial intelligence will undoubtedly fail.)
Therefore,it is the skills discussed in thefirst part of this article — debugging by inspec-
tion and observation — that deserve the greatest attention and practice. All the other tech-
niques and technologies, with their ever-increasing sophistication, are only extensions of
these basic techniques. A programmer who can debugeffectively at the lowestlevel of
technology wil] always be ready to use whatever advanced technology is available.

Therefore, as a final word, rememberthe rule that openedthis article:

Gather enough information andthe solution will be obvious.

All the rest ofthis article was merely a discussion of ways to gatherthe information.

Steve Bostwick

642 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 652/1582

OLYMPUS EX. 1010 - 653/1582

Article 19: Object Modules

Article 19
Object Modules

Object modules are used primarily by programmers. The end user of an MS-DOSappli-
cation need never be concerned with object code, object modules, and object libraries
because application programsare almost always distributed as .EXE or .COMfiles that can
be executed with a simple startup command.

An application programmerwriting in a high-level language can. use object modules and
object libraries without knowing either the format of object codeor the details of what the
utilities that process object modules, such as the Microsoft Library Manager (LIB) and the
Microsoft Object Linker (LINK), are actually doing. Most application programmers simply
regard the contents of an object moduleas a “black box” andtrust their compilers and
object module utility programsto do the right thing.

A programmerusing assembly language or an assembly-language debuggersuch as
DEBUGor SYMDEB,however, might want to know more about the content and function
of object modules. The use of assembly language gives the programmer more control over
the actual contents of object modules, so knowing how the modules are constructed and
examining their contents can sometimes help with program debugging.

Finally, a programmerwriting a compiler, an assembler, or a language translator must
knowthe details of object module format and processing. To take advantage of LIB and
LINK,a language translator must construct object modules that conform to the format and
usage conventions specified by Microsoft. ,

Note: This article assumes some background knowledge of the process by which source
code is converted into an executablefile in the MS-DOS environment. See PROGRAM-

MING IN THE MS-DOS ENVIRONMENT: PROGRAMMINGFOR MS-DOs: Structure of an

Application Program; PROGRAMMING Toots: The Microsoft Object Linker, PROGRAMMING
UTILITIES. .

The Use of Object Modules

Although some MS-DOSlanguagetranslators generate executable 8086-family machine
codedirectly from source code, most produce object code instead. Typically, a translator
processes eachfile of source code individually and leaves the resulting object module
ina separate file bearing a .OBJ extension. The source-codefiles themselves remain
unchanged.After all of a program’s source-code modules have beentranslated, the result-
ing object modules can be linked into a single executable program. Because object mod-
ules frequently represent only a portion of a complete program, each source-code module
usually contains instructionsthat indicate how its corresponding object code is to be
combined with the object code in other object modules whentheyare linked.

Section I: Programming in the MS-DOSEnvironment 643

OLYMPUSEX. 1010 - 653/1582

OLYMPUS EX. 1010 - 654/1582

Part E: Programming Tools

The object code contained in each object module consists of a binary image of the pro-
gram plus program structure information. This object codeis not directly executable. The
binary image correspondsto the executable codethatwil! ultimately be loaded into mem-
ory for.execution;it contains both machine code and program data. The program struc-
ture information includes descriptions of logical groupings defined in the source cade
(such as named subroutines or segments) and symbolic references to addresses in other
object modules.

The program structure informationis used bya linkage editor, or linker, such as Microsoft
LINKto edit the binary image of the program containedin the object module. The linker
combines the binary images from one or more object modules into a complete executable
program.

Thelinker’s output is a EXE file—afile containing executable machine code that can be
loaded into RAM and executed (Figure 19-1). Thelinker leaves intactall of the object
modulesit processes.

Source code

Languagetranslator or assembler

Object module
(OBIfile) <

Object module
librarian (LIB) —_

Objectlibrary

CLIBfile)

Linker (LINK)

 Executable

binary image
(EXE file)
 MS-DOSloader

(Program runs)

Figure 19-1. Generation ofan executable (EXE)file.

Object code-thus serves as an intermediate form for compiled programs. This form offers
two major advantages:

® Modular intermediate code. The use of abject modules eliminates the overhead of
repeated compilation of an entire program whenever changes are madeto parts ofits
source code. Instead, only those object modules affected by source-coderevisions
need be recompiled. .

® Shareable format. Object module formatis well defined, so object modules can be
linked even if they were produced by different translators. Many high-level-language
compilers take advantage of this commonality of object-code formatto support
“interlanguage”linkage.,

644 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 654/1582

OLYMPUS EX. 1010 - 655/1582

enpeRRARtte

Article 19: Object Modules

Contents ofan object module
Object modules contain five basic types of information. Someofthis information exists
explicitly in the source code (and is subsequently passed onto the object module), but
muchis inferred by the program translator from the structure ofthe source code and the
way memoryis accessed by the 8086.

Binary Image. As described earlier, the binary image comprises executable code (such as
opcodes and addresses) and program data. When object modulesare linked, the linker
builds an executable program from the binary image in each object moduleit processes,
The binary image in each object module is always associated with program structure in-
formationthattells the linker how to combineitwith related binary imagesin other object
modules.

External References. Because an object module generally represents only a small portion
of a larger program that will be constructed from several object modules,it usually con-
tains symbols that allow it to be linked to the other modules. Such references to corre-
sponding symbols in other object modules are resolved when the modulesare linked.

For example, consider the following short C program:

main ()
{

puts ("Hello, world\n");
}

This program calls the C function putsC to display a characterstring, but putsC is not
defined in the source code. Rather, the nameputs is a reference to a function that is exter-
nal to the program’s main() routine. When the C compiler generates an object module for
this program,it will identifyputs as an external reference.Later, the linker will resolve the
external reference by linking the object module containing the puts() routine with the
module containing the mainQroutine.

Address References. When a program is built from a group of object modules, the actual
values of many addresses cannot be computed until the linker combines the binary image
of executable code and the program data from each of the program’s constituent object
modules. Object modules contain informationthattells the linker how to resolve the
values of such addresses, either symbolically (as in the case of external references) orrela-
tively, in terms of some other address (such as the beginning of a block of executable code
or program data).

Debugging Information. An object module can also contain information that relates
addressesin the executable program to the corresponding source code.After the linker
performsits address fixups, it can use the object module’s debugging information to relate
a line of source code in a program module to the executable code that correspondstoit.

Miscellaneous Information. Finally, an object module can contain comments,lists of
symbols defined in or referenced by the module, module identification information, and

Section II: Programming in the MS-DOSEnvironment 645

OLYMPUSEX. 1010 - 655/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 656/1582

Part E: Programming Tools

information for use by an object library managerora linker (for example, the namesof
object libraries to be searched by default).

Object module terminology

Whenthe linker generates an executable program,it organizes the structural components
of the program accordingto the information containedin the object modules. The layout
of the executable program can be conceptually described as a run-time memory map
after it has been loaded into memory. :

Thebasic structure of every executable program for the 8086 family of microprocessors
must conform to the segmentedarchitecture of the microprocessor. Thus, the run-time
memory map of an executable program is partitioned into segments, each of which can be
addressed by using one of the microprocessor’s segmentregisters. This segmented struc-
ture of 8086-based programsis the basis for mostof the following terminology.

Frames. The memory address space of the 8086 is conceptually divided into a sequence
of paragraph-aligned, overlapping 64 KB regionscalled frames. Frame 0 in the 8086's ad-
dress space is the 64 KB ofmemorystarting at physical address 00000H (0000:0000in seg-
ment:offset notation), frame 1 is the 64 KB of memory starting at 00010H (0001:0000), and
so on.A frame numberthus denotes the beginning of any paragraph-aligned 64 KB of
memory. For example, the location of a 64 KB buffer that starts at address B800:0000 can
be specified as frame OB800H.

Logical Segments. The run-time memory map for every 8086 program is partitioned into
one or morelogical segments, which are groupingsof logically related portions of the pro-
gram. Typically, an MS-DOSprogram includesat least one code segment(that containsall
of the program’s executable code), one or more data segments (that contain program
data), and one stack segment.

When a program is loaded into RAM to be executed, each logical segment in the program
can be addressed with a frame number—thatis, a physical 8086 segment address. Before
the MS-DOSloadertransfers control to a program in memory,it initializes the CS and SS
registers with the segment addresses of the program’s executable code and stack seg-
ments. If an MS-DOSprogram has a separate logical segment for program data, the pro-
gram itself usually stores this segment’s address in the DSregister.

Relocatable Segments. In MS-DOSprograms, mostlogical segments are relocatable.
The loader determines the physical addresses of a program’s relocatable segments when
it places the program into memory to be executed. However, this address determination
poses a problem for the MS-DOSloader, because a program may contain references to the
address of a relocatable segment’even though the address value is not determined until
the program is loaded. The problem is solved by indicating where such references occur
within the program’s object modules. The linker then extracts this information from the
object modules andusesit to build a list of such address references into a segmentreloca-
tion table in the header of executable files. After the loader copies a program into memory
for execution,it uses the segmentrelocation table to update,orfix up, the segment address
references within the program.

646 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 656/1582

OLYMPUS EX. 1010 - 657/1582

Article 19: Object Modules

Considerthe following example, in which a program loadsthestarting addresses of two
data segmentsinto the DS and ES segmentregisters:

mov ax,seg _DATA
mov ds, ax . , Make DATA segment addressable through DS
mov ax,seg FAR_DATA
Mov es,ax ; Make FAR_DATA segment addressable through ES

The actual addresses of the _DATA and FAR_ DATA segments are unknown when the
source code is assembled and the corresponding object module is constructed. The assem-
bler indicates this by including segmentfixup information, instead of actual segmentad-
dresses, in the program’s object module. When the object module is linked, the linker
builds this segmentfixup information into the segmentrelocation table in the headerof the
program’s .EXEfile. Then, when the .EXEfile is loaded, the MS-DOSloaderusesthe infor-
mation in the .EXEfile’s header to patch the actual address values into the program.

Absolute Segmenis. Sometimes a program needs to address a predetermined segment of
memory.In this case, the program’s source code must declare an absolute segmentso that
a reference to the corresponding frame numbercan be built into the program’s object
module.

For example, a program might need to address a video display buffer located at a specific
physical address. The following assemblerdirective declares the nameof the segment and
its frame number:

VideoBufferSeg SEGMENT at 0B800h

SegmentAlignment. When a program is loaded, the physical address of each logical seg-
ment is constrained by the segment’s alignment. A segment can be page aligned (aligned
on a 256-byte boundary), paragraphaligned (aligned on a 16-byte paragraph boundary),.
word aligned (aligned on an even-byte boundary), or byte aligned (not aligned on any
particular boundary). A specification of each segment’s alignmentis part of every object
module’s program structure information.

High-level-languagetranslators generally align segments accordingto the type of data
they contain. For example, executable code segments are usually byte aligned; program
data segmentsare usually word aligned. With an assembler, segment alignment can be
specified with the SEGMENTdirective and the assembler will build this information into
the program’s object module.

Concatenated Segments. Thelinker can concatenate logical segments from different
object modules whenit builds the executable program. For example, several object mod-
ules may each contain part of a program's executable code. Whenthe linker processes
these object modules, it can concatenate the executable code from the different object
modules into one range of contiguous addresses.

The order in which the linker concatenates logical segments in the executable program is
determined by the order in which the linker processesits input files and by the program

Section II: Programming tn theMS-DOS Environment 647

OLYMPUSEX. 1010 - 657/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 658/1582

Part E: Programming Tools

structure information in the object modules. With a high-level-languagetranslator, the
translator infers which segments can be concatenated from the structure of the source
code and builds appropriate segment concatenation information into the object modules
it generates. With an assembler, the segmentclass type can be usedto indicate which
segments can be concatenated.

Groups ofSegments. Segments with different names may also be grouped together by the
linker so that they can all be addressed within the same 64 KB frame, even thoughthey are
not concatenated. For example, it might be desirable to group program data segments and
a stack segmentwithin the same 64 KB frame so that program data items and data on the
stack can be addressed with the same 8086 segmentregister.

In high-level languages,it is up to the translator to incorporate appropriate segment group-
ing information into the object modulesit generates, With an assembler, groups of seg-
ments can be declared with the GROUPdirective.

Fixups. Sometimes a compiler or an assembler encounters addresses whose values cannot
be determined from the source code. The addresses of external symbols are an obvious
example. The addresses of relocatable segments andof labels within those segments are
another example.

A fixup is a languagetranslator’s way of passing the buck about such addressesto the
linker. Typically, a translator builds a zero value in the binary imageat locations whereit
cannotstore an actual address. Accompanying each such location is fixup information,
which allows the linker to determine the correct address. The linker then completes the
fixup by calculating the correct address value and adding it to the value in the correspond-
ing location in the binary image. The only fixups the linker cannotfully resolve are those
that refer to the segment address of a relocatable segment. Such addresses are not known
until the program is actually loaded,so the linker, in turn, passes the responsibility to the
MS-DOSloaderby creating a segmentrelocation table in the header of the executablefile.

To processfixups properly,the linker needs three pieces of information: the LOCATION
of the value in the object module, the nature of the TARGET (the address whose value is
not yet known), and the FRAMEin which the address calculationsare to take place. Object
modules contain the LOCATION, TARGET, and FRAMEinformation the linker uses to
calculate the appropriate addressfor any given fixup.

Consider the “program”in Figure 19-2. The statement:

start: call far ptr FarProc

contains a reference to an address in the logical segment FarSeg2. Because the assembler
does not know the address of FarSeg2, it places fixup information about the address into
the object module. The LOCATIONto befixed upis 1 bytepast the label start (the 4-byte
pointer following the call opcode 9AH). The TARGETis the address referenced in the call
instruction— thatis, the label FarProc in the segment FarSeg2. The FRAMEto which

648 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 658/1582

OLYMPUS EX. 1010 - 659/1582

Article 19:Object Modules

the fixuprelates is designated by the group FarGroup andis inferred from the statement

ASSUME cs:FarGroup

inthe FarSeg2 segment.

title fixups

FarGroup GROUP FarSeg1,FarSeg2

0000 CodeSeg SEGMENT byte public ‘CODE’
ASSUME cs:CodeSeg

0000 9A 0000 ---- R start: call far ptr FarProc

0005 CodeSeg ENDS

0000 - FarSeg1 SEGMENT byte public ;part of FarGroup

0000 “ FarSeg1 ENDS

0000 / FarSeg2 SEGMENT byte public
ASSUME cs:FarGroup

0000 FarProc PROC far
0000 CB ret 7a FAR return

FarProc ENDP

0001 FarSeg2 ENDS

END

Figure 19-2. A sample “program”containing statementsfrom which the assembler derivesfixup information.

There are several different ways for a language translator to identify a fixup. For example,
the LOCATION might be a single byte, a 16-bit offset, or a 32-bit pointer, as in Figure 19-2.
The TARGET mightbe a label whoseoffsetis relative either to the base (beginning) of a
particular segmentor to the LOCATIONitself. The FRAME mightbea relocatable seg-
ment, an absolute segment, or a group of segments.

Taken together, all the information in an object module that concernsthe alignment and
grouping of segments can be regarded as a specification of a program’s run-time memory
map.In effect, the object module specifies what goes where in memory when a program
is loaded. The linker can then take the program structure information in the object mod-
ules and generatea file containing an executable program with the corresponding
structure.

Section I: Programming in the MS-DOS Environment 649

OLYMPUSEX. 1010 - 659/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 660/1582

Part E: Programming Tools

The Structure of an Object Module
Although object modules contain the information that ultimately determines the structure
of an executable program, they bearlittle structural resemblanceto the resulting execut-
able program. Each object module is made up of a sequenceofvariable-length object
records. Different types of object records contain different types of program information.

- Each object record begins with a 1-byte field that identifies its type. This is followed by a
2-byte field containing the length (in bytes) of the remainder of the record. Next comes the
actual structural or program information, represented in one or morefields of varied
lengths. Finally, each record ends with a 1-byte checksum.

The sequence in which object records appear in an object module is important. Because
the records vary in length, each object module must be constructedlinearly, from start to
end. More important, however,is the fact that some types of object records contain ref-
erences to preceding object records. Because the linker processes object records sequen-
tially, the position of each object record within an object module dependsprimarily on
the type of information each record contains.

Types ofobject records

Microsoft LINK currently recognizes 14 types of object records, each ofwhich carries a
specific type of information within the object module. Each type ofobject recordis
assigned an identifying six-letter abbreviation, but these abbreviations areused onlyin
documentation, not within an object module itself.As already mentioned,thefirst byte
of each object record contains a value that indicatesits type. In a hexadecimal dumpof
the contents of an object module, these identifying bytes identify the start of each object
record.

Table 19-1 lists the types of object records supported by LINK. The value of each record’s
identifying byte Gin hexadecimal) is included, along with the six-letter abbreviation and a
brief functional description. The functionsof the 14 types of object recordsfall into six
general categories:

®@ Binary data (executable code and program data) is contained in the LEDATA and
LIDATArecords.

@ Address binding andrelocation information is contained in FIXUPPrecords.
@ The structure of the run-time memory mapis indicated by SEGDEF, GRPDEF,

COMDEF, and TYPDEFrecords,

@ Symbol namesaredeclared in LNAMES, EXTDEF, and PUBDEFrecords.
Debugging informationis in the LINNUMrecord.

@ Finally, the structure of the object module itself is determined by the THEADR,
COMENT, and MODENDrecords.

650 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 660/1582

OLYMPUS EX. 1010 - 661/1582

Article 19: Object Modules

Table 19-1. Types of8086 Object Records Supported by Microsoft LINK.

 IDbyte Abbreviation Description

80H THEADR Translator Header Record
88H COMENT Comment Record

‘8AH MODEND - Module End Record

8CH EXTDEF External Names Definition Record

8EH TYPDEF Type Definition Record
90H PUBDEF Public Names Definition Record

94H LINNUM Line Number Record

96H LNAMES List of Names Record

98H SEGDEF Segment Definition Record
9AH GRPDEF Group Definition Record
9CH FIXUPP Fixup Record
0AOH LEDATA Logical Enumerated Data Record
0A2H LIDATA Logical Iterated Data Record
OBOH COMDEF Communal NamesDefinition Record

Object record order

The sequence in which the types of object records appear in an object moduleis fairly
flexible in some respects. Several record types are optional, andif the type of information
they carry is unnecessary, they are omitted from an object module. In addition, most
object record types can occur more than oncein the same object module. And, because
object recordsare variablein length,it is often possible to choose, as a matter of conve-
nience, between combining information into one large record or breaking it down into
several smaller records of the same type.

Asstated previously, an important constraint on the order in which object records appear
is the need for sometypes ofobject recordsto refer to information contained in other
records. Becausethe linker processes the records sequentially, object records containing
such information must precede the recordsthatrefer to it. For example, two types of object
records, SEGDEF and GRPDEF, refer to the names contained in an LNAMESrecord. Thus,
an LNAMESrecord must appear before any SEGDEF or GRPDEFrecordsthatrefer to it so
that the names in the LNAMESrecord are knowntothelinker by the time it processes the
SEGDEFor GRPDEFrecords.

A typical object module

Figure 19-3 contains the source code for HELLO.ASM,an assembly-language program
that displays a short message. Figure 19-4 is a hexadecimal dump of HELLO.OB],the object
module generated by assembling HELLO.ASM with the Microsoft Macro Assembler. Figure
19-5 isolates the object records within the object module.

Section I: Programming in theMS-DOS Environment 651

OLYMPUSEX. 1010 - 661/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 662/1582

Part E: Programming Tools

652

NAME HELLO

—TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT,ds:—DATA

start: .
mov ax,seg msg
mov ds, ax
mov dx,offset msg
mov ah, 09h
int 21h

mov . ax, 4C00h
int 21h

—TEXT ENDS

—DATA SEGMENT word public 'DATA'

msg DB ‘Hello, world’, 0Dh,0Ah,'$'

—DATA ENDS

—STACK SEGMENT stack 'STACK'

Dw 80h dup (?)

—STACK ENDS

END start

Figure 19-3. The source codefor HELLO, ASM.

0 12 3 4 5 6 7 8 9
0000 80 07 00 05 48 45 4c 4C 4F 00
0010 4F 44 45 04 44 41 54 41 05 53
0020 44 41 54 41 06 5F 53 54 41 43
0030 54 8B 98 07 00 28 11 00 07 02
0040 OF 00 05 03 01 01 98 07 00 74
0050 AO 15 00 01 00 00 BB 00 00 8E
0060 CD 21 BB 00 4C CD 21 D5 9C OB
0070 C4 06 04 02 02 B6 AD 13 00 02
0080 6F 2C 20 77 6F 72 6C 64 OD OA
0090 00 01 01 00 00 AC

A BC DEF
96
54
4B
01
00
DB
00
00
24

Figure 19-4. A hexadecimal dump ofHELLO.OByJ.

The MS-DOS Encyclopedia

7pProgram entry point

;DS:DX -> msg

;perform int 21H function 09H
; (Output character string)

;perform int 21H function 4CH
; (Terminate with return code)

7stack depth =

ai
05
1E
01
BA
ces
00
A8

00
43
SF
98
06

01
48
8A

00
4B
54
07
04
00
04
65
07

04 43
05 5F
45 58
00 48
01 ET
B4 09

02,02
6c 6C
00 cl

128 words

«». HELLO. .%...C€
ODE ,.DATA.STACK. —
DATA._STACK._TEX

Pr PrAVAsr™ Lr Pw aAnmAN

PATA rAM

OLYMPUSEX. 1010 - 662/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 663/1582

a(pepeRI,fA9Apt

Article 19: Object Modules

THEADR
0000 80 07 00 05 48 45 4C 4C 4F 00HELLO.

LNAMES
0000 96 25 00 00 04 43 -3...C
0010 4F 44 45 04 44 41 54 41 05 53 54 41 43 4B 05 SF ODE.DATA.STACK,_—
0020 44 41 54 41 06 5F 53 54 41 43 4B 05 5F 54 45 58 DATA._STACK._TEX
0030 54 8B T.

SEGDEF

0030 98 07 00 28 11 00 07 02 01 1E wee (ee eeee

SEGDEF
0030 98 07 00 48 ..eH
0040 OF 00 05 03 01 01 ee

SEGDEF
0040 98 07 00 74 00 01 06 04 01 EF! er ebee sees

LEDATA
0050 AO. 15 00 01 00 00 B8 00 00 8E DB BA 00 00 B4 09... eee ee ee eee eee
0060 Cb 21 BB 00 4C CD 21 DS of. Lel,

FIXUPP
0060 9C OB 00 C8 01 04 02 02 an a ee eee
0070 C4 06 04 02 02 BO2202ee

LEDATA :
0070 AO 13 00 02 00 00 48 65 6C 60—...4..- Hell

0080 6F 2C 20 77 6F 72 6C 64 OD OA 24 AB oO, world..$.

MODEND
0080 8A 07 00 C1
0090 00 01 01 00 00 AC eee

Figure 19-5. The object records in HELLO.OBJ.

As shown most clearly in Figure 19-5, each of the object records begins with the single byte
value identifying the record’s type. The second andthird bytes of each record contain a
single 16-bit value, stored with its low-orderbytefirst, that represents the length (in bytes)
ofthe remainderof the object record.

Thefirst record, THEADR,identifies the object module andthe last record, MODEND,
terminates the objectmodule. The second record, LNAMES,containsa list of segment
names and segment class names that LINK will use to lay out the run-time memory map.
The three succeeding SEGDEF records describe the three corresponding segments
defined in the source code.

Section II: Programming in theMS-DOS Environment 653

OLYMPUSEX. 1010 - 663/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 664/1582

Part E: Programming Tools

The order in which the object records appear reflects both the structure of the source
code and the record order constraints already mentioned. The LNAMESrecord appears
before the three SEGDEFrecords because each SEGDEFrecord contains a reference to

a name in the LNAMESrecord.

The binary data representing each of the two segmentsin the source code is contained
in the two LEDATArecords. Thefirst LEDATA record represents the _TEXT segment; the
second specifies the data inthe _ DATA segment. The FIXUPPrecord following the first
LEDATArecord contains information aboutthe address references in the _TEXT segment.
Again, the order in which the records appear is important: the FIXUPPrecord refersto
the LEDATArecord precedingit.

References between object records

Object records can refer to information in other recordseither indirectly, by means of
implicit references, or directly, by means of indexed references to namesor otherrecords.

Implicit References. Some types ofobject records implicitly reference anotherrecord in
the same object module. The most important example of such implicit referencingis in the
FIXUPPrecord, which always contains fixup information for the preceding LEDATA or
LIDATA record in the object module. Whenever an LEDATA or LIDATArecord contains a
value that needsto befixed up, the next record in the object module is always a FIXUPP
record containing the actual fixup information.

Indexed References to Names. Anobject record that refers to a symbolic name, such as
the name of a segmentor an external routine, uses an index into a list of names contained
in a previous object record. (The LNAMESrecord in Figure 19-5 is an example.) Thefirst
namein suchalist has the index number1, the second name has index number2, the third
has index number 3, and so on. Altogether, a list of as many as 32,767 (7FFFH) names can
be incorporatedinto an object module —generally adequate for even the most verbose
programmer. (LINK does, however, impose its own version-specific limits.)

IndexedReferences to Object Records. An object record canalsorefer to a previous
object record by using the sametype of index.In this case, the index numberrefers to one
of a list of object records of a particular type. For example, a FIXUPP record mightrefer to
a segmentby referencing one of several preceding SEGDEFrecords in the object module.
In that case, a value of 1 would indicate the first SEGDEF record in the object module, a
value of 2 would indicéate the second, and so on.

The index-numberfield in an object record can be either1 or 2 bytes long.If the number
is in the range 0-—7FH,the high-orderbit (bit 7) is 0 and the low-order7 bits contain the
index number,so thefield is only 1 bytelong:

bit 7 6 5 4 3 2 1 0

|o| index number

654 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 664/1582

OLYMPUS EX. 1010 - 665/1582

Article 19: Object Modules

If the index numberis in the range 80-7FFFH,thefield is 2 bytes long. The high-orderbit
of the first byte in the field is set to 1, and the high-orderbyte of the index number (which
must be in the range 0—7FH)fits in the remaining 7 bits. The low-order byte of the index
numberis specified in the second byteofthefield:

bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

pa high-order byte of index number low-order byte of index number
first byte second byte

The same format is used whetheran index refers to a list of names orto a previous object
record,

Microsoft 8086 Object Record Formats

Just as the design ofthe Intel 8086 microprocessorreflects the design ofits 8-bit predeces-
sors, 8086 object record formats are reminiscent of the 8-bit software tradition. In 8-bit sys-
tems, disk space and RAM wereoften at a premium. To minimize the space consumed by
object records, information is packedintobit fields within bytes and variable-length fields
are frequently used.

Microsoft LINK recognizes a major subsetof Intel’s original 8086 object module speci-
fication (Intel Technical Specification 121748-001).Intel also proposed a six-letter namefor
each type of object record and symbolic namesforfields. These names are documented in
the following descriptions, which appearin the order shownearlier in Table 19-1.

TheIntel record types that are not recognized by LINK provide information about an
executable program that MS-DOSobtainsin other ways. (For example, information about
run-time overlays is supplied in LINK’s commandline rather than being encoded in object
records.) Because they are ignored by LINK,they are not included here.

All 8086 object records conform to the following format:

V1
record] record chkvo[aA

The record type field is a 1-byte field containing the hexadecimal numberthat identifies
the type of object record (see Table 19-1).

The record length isa 2-bytefield that gives the length of the remainderof the object
record in bytes (excluding the bytes in the record type and record length fields). The
record length is stored with the low-orderbytefirst...

Section IT. Programming in theMS-DOSEnvironment 655

OLYMPUSEX. 1010 - 665/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 666/1582

Part E: Programming Tools

The body field of the record varies in size and content, depending on the record type.

The checksum isa 1-byte field that contains the negative sum (modulo 256) ofall other
bytes in the record. In other words, the checksum byte is calculated so that the low-order
byte of the sum ofall the bytes in the record, including the checksum byte, equals zero.

Note: As shown in the preceding example, the boxes used to depict the fields vary in size.
The square boxes usedfor record type and chksum indicate a single byte, the rectangular
box used for record length indicates 2 bytes, and the diagonallines used for body indicate
a variable-lengthfield.

656 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 666/1582

OLYMPUS EX. 1010 - 667/1582

Article 19: Object Modules

80H THEADRTranslator Header Record

The THEADRrecord contains the name of the object module. This name identifies an
object module within an object library or in messages produced bythelinker.

Record format

“f
T-module chkoe|eB

T-module name

The 7-module namefield is a variable-lengthfield that contains the nameofthe object
module. Thefirst byte of the field contains the numberof subsequent bytes that contain
the nameitself. The name can be uppercase or lowercase and can be anystring of
characters.

The T-module nameis used by LIB and LINK within error messages. Languagetranslators
frequently derive the T-module name from the nameofthefile that contains a program’s
source code. Assembly-language programmers can specify the 7-module name explicitly
with the assembler NAMEdirective.

Location in object module

Asits nameimplies, the THEADR record mustbethefirst record in every object module
generated by a languagetranslator.

Example

The following THEADRrecord was generated by the Microsoft C Compiler:
0 1 2 3 4 5 6 7 8 9 ABC DE F

0000 80 09 00 07 68 65 6C 6C 6F 2E 63 CB , «..-hello.c.

@ Byte OOH contains 80H,indicating a THEADRrecord.
® Bytes 01-02H contain 0009H,the length of the remainderof the record.
®@ Bytes 03-0AH containthe 7-module name. Byte 03H contains 07H,the length of

the name, and bytes 04H through 0AH contain the nameitself (hello.c). In object
modules generated by the Microsoft C Compiler, the THEADRrecord indicates
the filename that contained the C source code for the module.)

@ Byte OBH contains the checksum, OCBH.

Section II: Programming in theMS-DOS Environment 657

OLYMPUSEX. 1010 - 667/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 668/1582

Part E: Programming Tools

88H COMENT Comment Record

The COMENTrecord contains a character string that may represent a plain text comment,
a symbol meaningful to a program such as LIB or LINK,or even binary-encodedidentifica-
tion data. An object module can contain any number of COMENTrecords.

Record format

ty|crant ”* chk
88H length attrib ment ae sum

Attrib

Attrib is a 1-byte field in which onlythefirst 2 bits are meaningful:

7 6 5 4 3 2 1 0

ee]ofofetetefopurge

@ Ifbit 7 (nopurge) is set to 1, utility programs that manipulate object modules should
not delete the commentrecord from the object module. Bit 7 can thus protect an
important comment, such as a copyright message, from deletion.

® If bit 6 (xo list) is set to 1, utility programsthat canlist the contents of object modules
are directed notto list the comment. Bit 6 can thus hide a comment.

@ Bits 5 through 0 are unusedand should beset to 0.

bit

Microsoft LIB ignores the atirib field.

Commentclass

Commentclass is a 1-byte field whose value provides information about the type of
comment. Theoriginal Intel specification provided for the following possible comment
class values:

Value Use

00H Language-translator comment(the nameofthe translator that generated the
object module).

01H Copyright comment.
02—9BH ReservedforIntel proprietary software.

658 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 668/1582

OLYMPUS EX. 1010 - 669/1582

| Article 19: Object Modules

Microsoft language translators can generate several other classes of COMENTrecord that
communicate specific information about the object module to LINK:

Value

. 81H

9CH

9DH

SEH

9FH

0A1H

OCOH—

OFFH

Comment
Use

meee

Obsolete; replaced by commentclass 9FH.
MS-DOSversion number. Somelanguage translators create a COMENTrecord

with a 2-byte binary value in the commentfield indicating the MS-DOSver-
sion under which the module was created. This recordis ignored by LINK.

Memory model. The commentfield contains a string that indicates the mem-
ory model used by the languagetranslator. The string contains one of the
lowercaseletters s, c, m, |, and h to designate small, compact, medium,large,
and huge memory models. Microsoft language translators generate COMENT
records with this comment class only for compatibility with the XENIX ver-
sion of LINK. The MS-DOSversion of LINK ignores these COMENTrecords.

Sets Microsoft LINK’s DOSSEGswitch.

Default library search name. LINKinterprets the contents of the comment
field as the nameofa library to be searched in order to resolve external ref-
erences within the object module. The default library searchcan be overrid-
den with LINK’s NODEFAULTLIBRARYSEARCHswitch. ,

Indicates that Microsoft extensionsto the Intel object record specification are
used in the object module. For example, when COMDEFrecords are used
within an object module, a COMENTrecord with comment class 0A1H must
appearin the object module at some point before the first COMDEFrecord.
LINKignores the comment string in COMENTrecords with this comment
class.

Reservedfor user-defined commentclasses.

The commentfield is a variable-length string of bytes that represent the comment. The

length of the string is inferred from the length of the object record.
Location in object module

A COMENTrecord can appear almost anywhere in an object module. Only tworestric-
tions apply:

@ ACOMENTrecord cannot be placed between a FIXUPP record and the LEDATA or
LIDATArecord to whichit refers.

@® ACOMENTrecord cannotbethefirst or last record in an object module. (Thefirst
record must always be a THEADRrecord andthe last must always be MODEND.)

Section II: Programming in the MS-DOS Environment 659

OLYMPUSEX. 1010 - 669/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 670/1582

Part E: Programming Tools

Examples

660

The following three examplesare typical COMENTrecords taken from an object module
generated by the Microsoft C Compiler.

This first exampleis a language-translator comment:
0 12 3 4 5 6 7 8 9 ABCD B EF

0000 88 07 00 00 00 4D 53 20 43 68 —aaeee MS Cn

@ Byte 00H contains 88H,indicating that this is a COMENTrecord.
® Bytes 01-02H contain 0007H,the length of the remainderof the record.
@ Byte 03H (the attrib field) contains OOH. Bit 7 (20purge) is set to 0, indicating that

this COMENTrecord may be purged from the object module byautility program that
manipulates object modules.Bit 6 (no list) is set to 0, indicating that this comment
need not be excluded from anylisting of the module’s contents. The remainingbits
are all 0.

® Byte 04H (the commentclass field) contains 00H,indicating that this COMENTrecord
contains the nameof the languagetranslator that generated the object module.

® Bytes 05H through 08H contain the name ofthe languagetranslator, MSC.
® Byte 09H contains the checksum, 6EH.

The second example contains the nameof an objectlibrary to be searched by default
when LINK processes the object module containing this COMENTrecord:

0 12 3 4 5 6 7 8 9 A BCD E F

0000 88 09 00 00 9F 53 4C 49 42 46 50 10 teeSLIBFP.

® Byte 04H (the commentclass field) contains 9FH,indicating that this record contains
the nameofa library for LINKto use to resolve external references.

@ Bytes 05—-OAH contain the library name, SLIBFP. In this example, the namerefers to
the Microsoft C Compiler’s floating-point function library, SLIBFP.LIB.

Thelast example indicates that the object module contains Microsoft-defined extensions to
the Intel object module specification:

0 12 3 4 5 6 7 8 9 A BC DEF
0000 88 06 00 00 Al 01 43 56 3700 acv7

@ Byte 04H indicates the commentclass, 0A1H.
@ Bytes 05-07H, which contain the commentstring, are ignored by LINK.

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 670/1582

OLYMPUS EX. 1010 - 671/1582

fa(RGoN

Article 19: Object Modules

SAH MODEND Module End Record

The MODENDrecord denotes the end of an object module.It also indicates whether the
object module contains the main routine in a program, and it can, optionally, contain a
reference to a program’s entry point.

Record format

7

—,

Module type

The module type field is an 8-bit (-byte) field:

7 6 5 4 3 2 1 0

renfoweLetota}o|:|
® Bit 7 (main) is set to 1 if the module is a main program module.
®@ Bit 6 (start)is set to 1 if the MODENDrecord contains an entry point (start address).
® Bit 0 is set to 1if the start address field contains a relocatable address reference that

LINK mustfix up.If bit 6 is set to 1, bit O must also beset to 1, (The Intel specification
allowsbit 0 to be setto 0, to indicate that start address is an absolute physical address,
but this capability is not supported by LINK.)

bit

Start address

The start address field appears in the MODENDrecord only whenbit6 is set to 1:

d < 7 t sten arge
frame datum|target datum|gispiacement

Zz fo ‘

The format and interpretation of the start address field correspondsto the fixup field
of the FIXUPPrecord. The end dat field correspondsto the fix dat field in the FIXUPP
record, Bit 2 of the end dat field, which correspondsto the P bitin a fix dat field, must
be zero.

Location in object module

A MODENDrecord can appearonlyas the last record in an object module.

Section II: Programming in theMS-DOS Environment 661

OLYMPUSEX. 1010 - 671/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 672/1582

Part E: Programming Tools

Example

Consider the MODEND record of the HELLO.ASM example:

0 12 3 4 5 6 7 8 9 A BC DE F
0000 8A 07 00 c1 00 01 01 00 00 AC ne ee ee

® Byte OOH contains 8AH,indicating a MODENDrecord.
@ Bytes 01—-02H contain 0007H,the length of the remainderof the record.
@ Byte 03H contains OCIH (11000001B). Bit 7 is set to 1, indicating that this module is

the main module of the program.Bit 6 is set to 1, indicating that a start address field is
present. Bit 0 is set to 1, indicating that the address referenced in the start address
field must be fixed up by LINK.

@ Byte 04H (end datin the start address field) contains OOH. As in a FIXUPPrecord,
bit 7 indicates that the framefor this fixup is specified explicitly, and bits 6 through 4
indicate that a SEGDEF index specifies the frame. Bit 3 indicates that the target refer-
enceis also specified explicitly, and bits 2 through 0 indicate that a SEGDEF index
also specifies the target. See also FLXUPP 9CH Fixup Record below.

@ Byte 05H (frame datum in the start address field) contains O1H. This is a reference
to the first SEGDEFrecord in the module, whichin this example correspondsto the
—TEXTsegment. This reference tells LINK thatthe start addresslies in the _ TEXT
segmentof the module.

@ Byte 06H (target datum in the start address field) contains 01H. Thistoo is a ref-
erenceto the first SEGDEF record in the object module, which correspondsto the
_TEXT segment. LINK usesthe following target displacement field to determine
where in the _ TEXT segmentthe addresslies.

@ Bytes 07-08H Garget displacement in the start address field) contain 0000H.Thisis
the offset Gin bytes) of the start address.

@ Byte 09H contains the checksum, OACH.

662 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 672/1582

OLYMPUS EX. 1010 - 673/1582

AA9pp

Article 19: Object Modules

8CHEXTDEF External Names Definition Record

The EXTDEFrecord containsa list of symbolic external references — that is, references to
symbols defined in other object modules. The linker resolves external references by
matching the symbols declared in EXTDEF records with symbols declared in PUBDEF
records.

Record format

8CH length

C7

external referencelist

C1

can be
repeated

External referencelist

The externalreferencelist is a variable-lengthfield containing a list of names and name
types, each formatted as follows:

fs
name type

,

@ The namelength is a1-byte field containing the length of the namefield that follows
it. (LINKrestricts name length to a value between 01H and 7FH.)

@ The type index is a 1-byte reference to the TYPDEFrecord in the object module that
describes the type of symbol the namerepresents. A type index value of zero indi-
cates that no TYPDEFrecord is associated with the symbol. A nonzero value indicates
which TYPDEFrecord is associated with the external name. Microsoft LINK recog-
nizes TYPDEF records only for the purpose of declaring communalvariables. See’ 8EH
TYPDEF Type Definition Record below.

LINK imposesa limit of 1023 external names.

Location in object module

Any EXTDEFrecords in an object module must appear before the FEXUPPrecordsthat
reference them.Also, if an EXTDEFrecord contains a nonzero type index, the indexed
TYPDEFrecord must precede the EXTDEF record.

Example

Consider this EXTDEFrecord generated by the Microsoft C Compiler:
0 1 2 3 4 5 6 7 8 9 AB C DE F

0000 8c 25 00 OA SF SF 61 63 72 74 75 73 65 64 00 05 .%..—-acrtused..
0010 SF 6D 61 69 6E 00 05 SF 70 75 74 73 00 08 SF SF -main.._puts..—
0020 63 68 6B 73 74 6B 00 AS chkstk..

Section II- Programming in theMS-DOS Environment 663

OLYMPUSEX. 1010 - 673/1582

OLYMPUS EX. 1010 - 674/1582

Part E: Programming Tools

@ Byte 00H contains 8CH,indicating that this is an EXTDEFrecord.
Bytes 01—-02H contain 0025H,the length of the remainderofthe record.

'® Bytes 03—26H contain a list of external references. The first reference starts in byte
03H, which contains 0AH,the length of the name __acrtused. The nameitself fol-
lows in bytes 04—0DH. Byte OEH contains 00H, which indicates that the symbol’s type
is not defined by any TYPDEFrecordin this object module. Bytes OF—26H contain
similar references to the external symbols _main, _puts, and __chkstk.

® Byte 27H contains the checksum, 0A5H,

664 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 674/1582

OLYMPUS EX. 1010 - 675/1582

Article 19: Object Modules

8EH TYPDEFType Definition Record

The TYPDEFrecord contains details about the type of data represented by a name
declared in a PUBDEF or an EXTDEFrecord. This information may be used bythe linker
to validate references to names, or it may be used by a debuggerto display data according

-to type.

Starting with Microsoft LINK version 3.50, the COMDEFrecord should be usedfor declara-
tion of communalvariables. For compatibility, however, later versions of LINK recognize
TYPDEF records as well as COMDEFrecords.

Record format

1,
~ eight-leaf

length name descriptor

can be
repeated

Althoughthe original Intel specification allowed for many different type specifications,
such as scalar, pointer, and mixed data structure, LINK uses TYPDEFrecordsto declare
only communalvariables. Communalvariables represent globally shared memory areas —
for example, FORTRAN commonblocksor uninitialized public variablesin C.

The size of a communalvariable is declared explicitly in the TYPDEF record.Ifa
communalvariable has differentsizes in different object modules, LINK usesthe largest
declared size whenit generates an executable module.

Name

The name field of a TYPDEFrecord is a 1-bytefield that is always null; thatis, it contains a
single zero byte.

Eight-leafdescriptor

The eighti-leafdescriptor field, in the original Intel specification, was a variable-length
field that contained as manyaseight “leaves” that could be used to describe mixed data

Microsoft uses a stripped-downversion of the eight-leafdescriptor, becausethe field’s only
function is to describe communalvariables:

C1

leaf descriptor
77

can be
repeated

Section Il: Programming in theMS-DOSEnvironment 665

OLYMPUSEX. 1010 - 675/1582

OLYMPUS EX. 1010 - 676/1582

Part E: Programming Tools

666

©@=Thefirst field in the eight-leafdescriptor is a 1-bytefield that contains a zero byte.
® The leafdescriptor field is a variable-length field thatis itself divided into fourfields

(“leaves”) that describe the size and type of a variable. The two possible variable
types are NEAR and FAR.

If the field describes a NEARvariable (one that can be referenced as an offset within a

default data segment), the formatis

. inalength in bits
A,

— The 1-byte field containing 62H signifies a NEARvariable.
— The variable type field is a 1-byte field that specifies the variable type:

770 Array
79H Structure

7BH Scalar

Thisfield is ignored by LINK.
— The length in bits field is a variable-lengthfield that indicates the size of the com-

munalvariable. Its format depends onthesize it represents.If the size is less than
128 (80H)bits, length in bits is a 1-byte field containing the actual size ofthe field:

If the size is 128 bits or greater, it cannot be represented in a single byte value, so
the length in bits field is formatted with an extra initial byte that indicates whether
the size is represented asa 2-, 3-, or 4-byte value:

81H

84H 3-byte size

88H 4-byte size

2-byte size

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 676/1582

OLYMPUS EX. 1010 - 677/1582

nttNARAApte
Article 19: Object Modules

If the leafdescriptor field describes a FAR variable (one that must be referenced with
an explicit segment and offset), the format is

a|ome|variable numberof element type
elements index’

‘S9‘9

- The 1-byte field containing 61H signifies a FAR variable.
~ The 1-byte variable type for a FAR communalvariableis restricted to 77H (array).

(As with the NEAR variable type field, LINK ignoresthis field.)
— The numberofelements is a variable-length field that contains the numberof

elementsin the array. It has the same formatas the length in bits field in the leaf
descriptor for a NEARvariable.

— The element type index is an index field that references a previous TYPDEF
record. A value of.1 indicates the first TYPDEF record in the object module, a value
of 2 indicates the second TYPDEFrecord, and so on. The TYPDEFrecord refer-
enced must describe a NEARvariable. This way, the data type and size of the
elements in the array can be determined.

Location in object module

Any TYPDEFrecords in an object module must precede the EXTDEF or PUBDEFrecords
that reference them.

Examples

The following three examples of TYPDEFrecords were generated by the Microsoft C
Compiler version 3.0. (Later versions use COMDEFrecords.)

Thefirst sample TYPDEF record correspondsto the public declaration

int foo; /* 16-bit integer */

The TYPEDEFrecord is

0 1 2 3 4 5 6 7 8 9 ABCD EF

0000 8E 06 00 00 00 62 7B 10 TF2neb{..

® Byte 00H contains 8EH,indicating that this is a TYPDEF record.
® Bytes 01-02H contain 0006H,the length of the remainderofthe record.
@ Byte 03H (the name field) contains 00H, a null name.
® Bytes 04-—07H representthe eight-leafdescriptor field. Thefirst byte ofthis field

(byte 04H) contains 00H. The remaining bytes (bytes 05—-07H)representthe leaf
descriptorfield:
- Byte 05H contains 62H,indicating this TYPDEF record describes a NEARvariable.
~ Byte 06H (the variable type field) contains 7BH, which describesthis variable as

a scalar.

— Byte 07H (the length in bits field) contains 10H,the size ofthe variablein bits.

Section II: Programming in the MS-DOS Environment 667

OLYMPUSEX. 1010 - 677/1582

OLYMPUS EX. 1010 - 678/1582

Part E: Programming Tools

® Byte 08H contains the checksum, 7FH.

The next example demonstrates how the variable size contained in the length in bits field
of the leafdescriptor is formatted:

char foo2 [32768]; /* 32 KB array */

o 1 2 3 4 5 6 7 8 9 ABCD EB F

0000 8E 09 00 00 00 62 7B 84 00 00 04 04, sees b{.....

@ Thelength in bits field Cbytes 07-0AH)starts with a byte containing 84H, which in-
dicates that the actual size of the variable is represented as a 3-byte value (the follow-
ing 3 bytes). Bytes 08-OAH contain the value 040000H,the size of the 32 KB array
in bits.

This third C statement, becauseit declares a FAR variable, causes two TYPDEFrecordsto
be generated:

char far foo3[10] £2] [20]; /* 400-element FAR array */

The two TYPDEFrecords are

0 1 2 3 4 5 6 7 8 9 AB C D-E F
0000 8E 06 00 00 00 62 7B 08 87 8E 09 00 00 00 61 77 Dl. eee eee aw
0010 81 390 01 01 7E weed

@ Bytes 00—08H contain the first TYPDEF record, which defines the data type of the
elementsof the array (NEAR,scalar, 8 bits in size).

® Bytes 09-14H contain the second TYPDEFrecord. The /eafdescriptorfield of this
record declares that the variable is FAR (byte OEH contains 61H) and an array (byte
OFH,the variable type, contains 77H).
— Because this TYPDEF record describes a FAR variable, bytes 10Q—-12H represent

a numberofelements field. The first byte of the field is 81H, indicating a 2-byte
value, so the next 2 bytes (bytes 11-12H) contain the numberof elements in the
array, 0190H (400D).

@ Byte 13H (the elementtype index) contains 01H, which is a reference to thefirst
TYPDEFrecord in the object module — in this example, the one in bytes 00—08H.

668 The MS-DOS Encyclopedia -

OLYMPUSEX. 1010 - 678/1582

OLYMPUS EX. 1010 - 679/1582

nepeNRse,

Article 19: Object Modules

90H PUBDEFPublic Names Definition Record

The PUBDEFrecord containsa list of public names. When object modulesare linked, the
linker uses these namesto resolve external references in other object modules.

Record format

L7 77 11
. : public :

90H length public base public name offset type index
V2 1 ; S

can be -
repeated

Public base

Each name in the PUBDEFrecord refers to a location (a 16-bit offset) in a particular seg-
ment or group. The public base, a variable-lengthfield that specifies the segment or group,
is formatted as follows:

7; OZ
. : frame

groupmex eae index number

® Group index is an index field that references a previous GRPDEFrecord in the object
module. If the group index value is 0, no group is associated with this PUBDEF
record.

® Segment index is also an indexfield. It associates a particular segment with this
PUBDEFrecord by referencing a previous SEGDEFrecord. A value of 1 indicates the
first SEGDEF record in the object module, a value of 2 indicates the second, and so on.
If the segment index valueis 0, the group index must also be 0 — inthis case, the
Jrame number appearsin the public base field.

® The 2-byte frame number appears in the public base field only when the group
index and segment index are both 0. In other words, the frame number specifies
the start of an absolute segment.If present, the value in the frame numberfield indi-
cates the numberof the frame containing the public name.

Public name

Public nameisa variable-length field containing a public name. Thefirst byte specifies
the length of the name; the remainderis the nameitself. (The Intel specification allows
namesof1 to 255 bytes. Microsoft LINKrestricts the maximum length of a public name to
127 bytes.)

Section I: Programming in theMS-DOSEnvironment 669

OLYMPUSEX. 1010 - 679/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 680/1582

Part E: Programming Tools

Public offset

Public offset is a 2-byte field containing the offset of the location referred to by the public
name. Thisoffset is assumed to lie within the segment, group, or frame specified in the
public basefield.

Type index

Type index is an index field that references a previous TYPDEFrecord in the object mod-
ule. A value of 1 indicates the first TYPDEF record in the module, a value of 2 indicates the

second, and so on. The type index value can be0ifno data typeis associated with the
public name.

The public name, public offset, and type index fields can be repeated within a single
PUBDEFrecord. Thus, one PUBDEFrecord can declare a list of public names.

Location in object module

Any PUBDEFrecords in an object module must appearafter the GRPDEF and SEGDEF
records to which they refer. Because PUBDEFrecords are not themselves referenced by
any other type of object record, they are generally placed near the end of an object
module.

Examples

The following two examples show PUBDEFrecordscreated by the Microsoft Macro
Assembler.

Thefirst example is the record for the statement
PUBLIC GAMMA

The PUBDEFrecordis

o 12 3 4 5 6 7 8 9 A BCD EB F
0000 90 0c 00 00 01 05 47.41 4D 4D 41 02 00 00 FO GAMMA....

® Byte 00H contains 90H, indicating a PUBDEFrecord.
® Bytes 01-02H contain 000CH,the length of the remainder of the record.
® Bytes 03—-04H represent the public base field. Byte 03H (the group index) contains 0,

indicating that no groupis associated with the namein this PUBDEFrecord. Byte 04H
(the segment index) contains1, a referenceto the first SEGDEF record in the object
module. This is the segment to which the namein this PUBDEFrecordrefers.

@ Bytes 05—0AH represent the public name field. Byte 05H contains 05H (the length of
the name), and bytes 06-0AH contain the nameitself, GAMMA.

® Bytes OB-0CH contain 0002H,thepublic offset. The name GAMMA thusrefers to the
location that is offset 2 bytes from the beginning of the segment referenced by the
public base.

® Byte ODH is the type index. The value of the type index is 0, indicating that no data
type is associated with the name GAMMA.

@ Byte 0EH contains the checksum, OF9H.

670 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -680/1582

OLYMPUS EX. 1010 - 681/1582

 eaepnponentAfetN

Article 19: Object ModulesTTT

The next example is the PUBDEFrecord for the following absolute symboldeclaration:
PUBLIC ALPHA

ALPHA EQU 1234h

The PUBDEFrecordis

0123 45 678 9 ABCODEEFE
0000 90 OF 00 00 00 00 00 05 41 4c 50 48 41 341200 ALPHAA....
0010 Bi

@ Bytes 03—-06H (the public base field) contain a group index of 0 (byte 03H) anda
segment index of 0 (byte 04H). Since both the group index and segment index are 0,
a frame number also appears in the public base field. In this instance, the frame
number (bytes 05—06H) also happenstobe0.

@ Bytes 07-0CH (the public name field) contain the name ALPHA, precededbyits
length.

@ Bytes OD—OEFH(thepublic offset field) contain 1234H.Thisis the value associated
with the symbol ALPHA in the assembler EQU directive. If ALPHA is declared in
another object module with the declaration

EXTRN ALPHA: ABS

any references to ALPHA in that object module are fixed up as absolute references to
offset 1234H in frame 0. In other words, ALPHA would have-the value 1234H.

@ Byte OFH (the type index) contains0.

Section Il: Programming in the MS-DOSEnvironment 671

OLYMPUSEX. 1010 - 681/1582

OLYMPUS EX. 1010 - 682/1582

Part E: Programming Tools

94H LINNUM Line Number Record

The LINNUM recordrelates line numbers in source code to addresses in object code.

Record format

I “i bine number fine number|chk

y, -
can be

repeated

Line numberbase

The line number base describes the segment to which the line numberrefers. Although
the complete Intel specification allows the line numberbase to refer to a group or to an
absolute segment as well as to a relocatable segment, Microsoftrestricts referencesin this
field to relocatable segments. The format of the line numberbase field is

mr70

@ The group index field always contains a single zero byte.
@ The segment index is an index field that references a previous SEGDEF record. A

value of 1 indicates the first SEGDEF record in the object module,a value of 2 indicates
the second, and so on.

Line number

Line numberis a 2-byte field containing a line number between 0 and 32,767
(O-7FFFH).

Line number offset

The line numberoffset is a 2-byte field that specifies the offset of the executable code (in
the segmentspecified in the line number base field) to which the line numberin the line
numberfield refers.

The line number and line number offset fields can be repeated, so a single LINNUM
record can specify multiple line numbers in the same segment.

Location in object module

Any LINNUMrecordsin an object module must appearafter the SEGDEF records to which
they refer. Because LINNUM records are not themselves referenced by any other type of
object record, they are generally placed near the end of an object module.

672 ‘The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 682/1582

OLYMPUS EX. 1010 - 683/1582

eefoeGsR
Article 19: Object Modules

Example
The following LINNUMrecord was generated by the Microsoft C Compiler:

o 1 23 4 5 6 7 8 9 ABCD E F

0000 94 OF 00 00 01 02 00 00 00 03 00 08 00 04 00 OF eee eee.
0010 00 3c .-

® Byte 00H contains 94H,indicating that this is a LINNUMrecord.
@® Bytes 01-02H contain OOOFH,the length of the remainderofthe record.
@ Bytes 03—04H represent the line numberbase field. Byte 03H (the group index field)

contains 00H,as it must. Byte 04H (the segment index field) contains 01H, indicating
that the line numbers in this LINNUMrecord refer to code in the segment defined in
the first SEGDEFrecord in this object module.

® Bytes 05—-06H (a line numberfield) contain 0002H, and bytes 07—08H (a line num-
ber offset field) contain 0000H.Together, they indicate that source-code line number
0002 correspondsto offset OOOOH in the segmentindicated in the line number base
field.

Similarly, the two pairs of line number and line numberoffset fields in bytes 09-10H
specify that line number 0003 correspondsto offset 0008H andthat line number 0004
correspondsto offset OOOFH.

@ Byte 11H contains the checksum, 3CH.

Section I: Programming in the MS-DOS Environment 673

OLYMPUSEX. 1010 - 683/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 684/1582

Part E: Programming Tools

96H LNAMESList ofNames Record

The LNAMESrecordis a list of names that can be referenced by subsequent SEGDEF and
GRPDEFrecordsin the object module.

Record format

96H length

Namelist

Namelist is a variable-length field that contains the list of names. Each nameis preceded
by 1 byte that defines its length, which can be a value between 0 and 255 (0—-OFFH).

L1

namelist

A:

can be
repeated

The namesin thelist are indexed implicitly in the order they appear: The first name in the
list has an index of 1, the second namehasan index of 2, and so forth. References to the
namescontained in namelist by subsequent object records, such as SEGDEF, are accom-
plished by using this index number. LINK imposesa limit of 255 logical names per object
module.

Location in object module

Any LNAMESrecordsin an object module must appear before the GRPDEF or SEGDEF
records that refer to them. Becauseit does notrefer to any other type of object records, an
LNAMESrecord usually appears nearthestart of an object module.

Example

The following LNAMESrecord contains the segment and class namesspecified in all three
of the assembler statements:

—TEXT SEGMENT byte public 'CODE'
DATA SEGMENT word public 'DATA'
—STACK SEGMENT para public 'STACK'

The LNAMESrecordis

0 1 2 3 4 5 6 7 8 9 ABCD E F
0000 96 25 00 00 04 43 4F 44 45 04 44 41 54 41 05 53 .%...CODE.DATA.S
0010 54 41 43 4B 05 SF 44 41 54 41 06 SF 53 54 41 43 TACK._DATA._STAC
0020 4B 05 5F 54 45 58 54 8B K._TEXT.

@ Byte 00H contains 96H,indicating that this isan LNAMESrecord.
@ Bytes 01-02H contain 0025H,the length of the remainderof the record.

674 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 684/1582

OLYMPUS EX. 1010 - 685/1582

Article 19; Object Modulescrae

@ Byte 03H contains 00H,a zero-length name.
@ Byte 04H contains 04H,the length of the class name CODE,which is found in bytes

05—08H. Bytes 09—26H contain the class names DATA and STACKandthe segment
names _DATA, _STACK, and _TEXT, each preceded by1 byte givingits length.

@ Byte 27H contains the checksum, 8BH.

Section II: Programming in the MS-DOS Environment 675

OLYMPUSEX. 1010 - 685/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 686/1582

Part E: Programming Tools

98H SEGDEFSegment Definition Record

Record format

Segmentattributes

The ACBP byte

676

The SEGDEFrecord describes a logical segment in an object module.It defines the seg-
ment’s name, length, and alignment, and the way the segment can be combined with other
logical segments. LINK imposesa limit of 255 SEGDEFrecords per object module.

Object recordsthat follow a SEGDEFrecord canreferto it to identify a particular segment.

‘0 7 77 1

length segment segment segment name class name overlay nameichk9 attributes length index index index sum7? “L1 "1 2

Segment attributes is a variable-lengthfield:

ACBP frame

The contents and size of the segmentattributes field depend onthe first byte of the field,
the ACBPbyte:

bit 7 6 5 4 3 2 j 0

pk|efede
Thebit fields in the ACBP byte describe the following characteristics of the segment:

A Alignment in the run-time memory map
C Combination with other segments
B Big (asegmentof exactly 64 KB)
P Page-resident (not used in MS-DOS)

The Afield. Bits 7-5 of the ACBP byte, the A field, describe the logical segment’s
alignment:

A=0(000B) Absolute (located at a specified frame address)
A=1(001B) Relocatable, byte aligned ;
A=2(010B)_Relocatable, word aligned
A=3(011B) Relocatable, paragraph aligned
A=4(100B)_Relocatable, page aligned

The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 686/1582

OLYMPUS EX. 1010 - 687/1582

TheoriginalIntel specification includes two additional segment-alignmentvalues not
supported in MS-DOS.

The following examples of Microsoft assembler SEGMENTdirectives show the resulting
valuesfor the A field in the corresponding SEGDEF object record:

aseg SEGMENT at 400h 7; A=0
bseg SEGMENT byte public 'CODE’ 7; A= 1
cseg SEGMENT para stack ‘STACK' 7; A+ 3

The Cfield, Bits 4-2 of the ACBP byte, the C field, describe how the linker can combine
the segment with other segments. Under MS-DOS, segments with the same name andclass
can be combined in two ways. They can be concatenated to form onelogical segment, or
they can be overlapped. In thelatter case, they have either the same starting address or the
same end address and they describe a commonarea of memory.

Thevalue in the C field correspondsto one of these two methods of combining segments.
Meaningful values, however, also depend on whether the segmentis absolute (A = 0) or
relocatable (A = 1, 2, 3, or 4). If A= 0, then C must also be 0, because absolute segments -
cannot be combined. Valuesfor the C field are

C=0(000B) Cannot be combined, used for segments whose combinetypeis not
explicitly specified (private segments).

C=1(001B) Not used by Microsoft.
C=2(010B) Can be concatenated with another segmentof the same name; used for

segments with the public combinetype.
C=3(011B) Undefined.

C=4(100B) Asdefined by Microsoft, same as C = 2.
C=5(101B) Can be concatenated with another segment with the same name;used for

, segments with the stack combinetype.
C=6(110B) Can be overlapped with another segment with the same name; used for

segments with the common combinetype.
C=7(111B) Asdefined by Microsoft, same as C = 2.:

The following examples of assembler SEGMENTdirectives show the resulting values for
the C field in the corresponding SEGDEFobjectrecord:

aseg SEGMENT at 400H 7 C=0
bseg SEGMENT public 'DATA" 7; C=2
cseg SEGMENT stack 'STACK' 7 C=5
dseg SEGMENT common 'COMMON' 7 C= 6

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: ProcRAmminG Toots: The

Microsoft Object Linker.

The B andPfields, Bit 1 of the ACBP byte, the B field, is set to 1 (and the segmentlength
field is set to 0) only if the segmentis exactly 64 KB long.

Bit 0 of the ACBP byte,the P field, is unused in MS-DOS.Its value should alwaysbe0.

Section Il: Programming in the MS-DOS Environment 677

OLYMPUSEX. 1010 - 687/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 688/1582

Part E: Programming Tools

Frame numberandoffset

The frame number andoffset fields of the segment attributes field are presentonly if the
segmentis an absolute segment(A = 0 in the ACBP byte). Taken together, the frame num-
ber and offset indicate the starting address of the segment.

® Frame numberisa 2-bytefield that contains the frame numberofthestart of the
segment.

® Offsetis a 1-bytefield that contains an offset between 00H and OFH within the speci-
fied frame. LINK ignoresthe offset field.

Segment length

Segment length is a 2-bytefield that specifies the length of the segment in bytes. The
length can be from 00H to FFFFH.If a segmentis exactly 64 KB (10000H)in size, segment
length should be 0 and the Bfield in the ACBP byte should be 1.

Segment nameindex, class name index, and overlay name index

Each of the segment name index, class name index, and overlay name index fields
contains an index into the list of names defined in previous LNAMESrecordsin the object
module. An index value of 1 indicates the first name in the LNAMESrecord, a value of 2 the
second,and so on.

@ The segment name index identifies the segment with a unique name. The name may
have been assigned by the programmer,or it may have been generated by a compiler.

® The class name index identifies the segment with a class name (such as CODE,
FAR_DATA, and STACK). Thelinker places segments with the same class name into
a contiguous area of memory in the run-time memory map.

® The overlay name index identifies the segment with a run-time overlay. Starting with
version 2.40, however, LINK ignores the overlay name index. {n versions 2.40 and
later, command-line parameters to LINK,rather than information contained in object
modules, determine the creation of run-time overlays.

Location in object module

SEGDEFrecords must follow the LNAMESrecord to which theyrefer. In addition, SEGDEF
records must precede any PUBDEF, LINNUM, GRPDEF, FIXUPP, LEDATA,or LIDATA
recordsthat refer to them.

Examples

In this first example, the segmentis byte aligned:
o 12 3 4 5 6 7 8 9 A BC D EB F

0000 98 07 00 28 11 00 O07 02 OT TE eee (ea enee

@ Byte 00H contains 98H,indicating thatthis isa SEGDEF record.
@ Bytes 0i-02H contain 0007H,the length of the remainderofthe record.

678—The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 688/1582

OLYMPUS EX. 1010 - 689/1582

Article 19: Object Modulesef ee

@ Byte 03H contains 28H (00101000B), the ACBP byte. Bits 7—5 (the A field) contain1
, (001B), indicating that this segmentis relocatable and byte aligned. Bits 4-2 (the C

field) contain 2 (010B), which represents a public combine type. (Whenthis object
moduleis linked, this segment will be concatenated with all other segments with the
same name.) Bit 1 (the B field) is 0, indicating that this segment is smaller than 64 KB.
Bit 0 (the P field) is ignored and should be zero,asit is here.

@ Bytes 04—05H contain 0011H,the size of the segmentin bytes.
@ Bytes 06-08H index the list of names defined in the module’s LNAMESrecord. Byte

06H (the segment name index) contains 07H,so the nameof this segmentis the
seventh name in the LNAMESrecord. Byte 07H (the class name index) contains 02H,
so the segment’s class nameis the second namein the LNAMESrecord. Byte 08H (the
overlay name index) contains 1, a referenceto the first name in the LNAMESrecord.
(This nameis usually null, as MS-DOSignoresit anyway.)

@ Byte 09H contains the checksum, 1EH.

The second SEGDEFrecord declares a word-aligned segment. It differs only slightly from
thefirst.

0 1 2°3 4 5 67 8 9 ABCD E F
0000 98 07 00 48 OF 00 05 03 01 01 wecHeweeee

@ Bits 7—5 (the A field) of byte 03H (the ACBP byte) contain 2 (010B), indicating that
this segment is relocatable and wordaligned.

@ Bytes 04—05H contain the size of the segment, OOOFH.
® Byte 06H (the segment name index) contains 05H, whichrefers to the fifth name in

the previous LNAMESrecord.
© Byte 07H (the class name index) contains 03H,a reference to the third name in the

LNAMESrecord.

Section II: Programming in the MS-DOSEnvironment ‘679

OLYMPUSEX. 1010 - 689/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 690/1582

Part E: Programming Tools

9AH GRPDEF Group Definition Record
The GRPDEFrecord defines a group of segments,all of whichlie within the same 64 KB
frame in the run-time memory map. LINK imposesa limit of 21 GRPDEF records per
object module.

Record format

A
group name j|group component

9AH index descriptor
i, Ss

can be
repeated

Group name index

Group name index is an index field whosevalue refers to a name in the namelist field of
a previous LNAMESrecord.

Group componentdescriptor

The group componentdescriptor consists of twofields:

[pee]sonesegment index
1

@ Type isa1-byte field whose value is always OFFH,indicating that the following field
contains a segment index value. Theoriginal Intel specification defines four other
types of group component descriptor with the values OFEH, OFDH, OFBH,and OFAH.
LINKignores these other type values, however, and assumesthat the group compo-
nent descriptor contains a segment index value.

@ The segment index field contains an index numberthat refers to a previous SEGDEF
record.A value of1 indicates the first SEGDEF record in the object module, a value of
2 indicates the second, and so on.

The group component descriptorfield is usually repeated within the GRPDEFrecord, so
all segments constituting the group can be included in one GRPDEFrecord.

Location in object module

GRPDEFrecords must follow the LNAMES and SEGDEFrecords to which they refer. They
must also precede any PUBDEF, LINNUM, FIXUPP, LEDATA, or LIDATA recordsthat refer
to them.

680 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -690/1582

OLYMPUS EX. 1010 - 691/1582

Article 19: Object Modules3.FFuwr—-00—OaEEEEAETCTMOClee’

Example
The following example of a GRPDEFrecord correspondsto the assemblerdirective:

tgroup GROUP segl,seg2,seg3

The GRPDEFrecordis

012 3 45 678 9 ABCODEPF
0000 9A 08 00 06 FF 01 FF 02 FF 03 55) sn see eee uU

® Byte 00H contains 9AH,indicating that this is a GRPDEFrecord.
® Bytes 01—02H contain 0008H,the length of the remainderof the record.
@ Byte 03H contains 06H, the group name index. In this instance, the index number

refers to the sixth name in the previous LNAMESrecord in the object module. That
nameis the name of the group of segments defined in the remainder ofthe record.

@ Bytes 04—05H contain thefirst of three group component descriptor fields. Byte 04H
contains the required OFFH,indicating that the subsequentfield is a segment index.
Byte 05H contains 01H, a segmentindex thatrefersto the first SEGDEF record in the
object module. This SEGDEFrecord declared the first of three segments in the group.

®@ Bytes 06—07Hrepresent the second group componentdescriptor, this one referring to
the second SEGDEFrecord in the object module.

® Similarly, bytes 08-09H are a group componentdescriptorfield that references the
third SEGDEFrecord.

@ Byte OAH contains the checksum, 55H.

Section II: Programmingin the MS-DOS Environment 681

OLYMPUSEX. 1010 - 691/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 692/1582

Part E: Programming Tools

9CH FIXUPP Fixup Record

The FIXUP?record contains information that allowsthe linker to resolve (fix up) ad-
dresses whose values cannot be determined by the languagetranslator. FIXUPP records
describe the LOCATION ofeach address value to be fixed up, the TARGETaddressto
whichthe fixup refers, and the FRAMErelative to which the address computationis
performed.

To 7

thread fixup
Co 0:

can be can be
repeated repeated

Record format

Thread and fixupfields

A FIXUPPrecord can contain zero or more thread fields and zero or more fixup fields.
Each fixup field describes the method to be used by the linker to compute the TARGET
address to be placed at a particular location in the executable image, relative to a particular
FRAME.The information that determines the LOCATION, TARGET, and FRAMEcan be
specified explicitly in the fixup field. It can also be specified within the fixup field by a
reference to a previous threadfield.

A thread field describes only the methodto be used bythe linkerto refer to a particular
TARGET or FRAME.Because the same thread field can be referenced in several subse-

quent fixup fields, a FIXUPP record that uses thread fields may be smaller than one in
which thread fields are not used.

Thread and fixup fields are distinguished from one anotherby the high-orderbit of the
first byte in the field. If the high-orderbitis 0, the field is a thread field. If the high-order
bit is 1, the fieldis a fixup field.

The threadfield
A thread field contains information that can be referenced in subsequent thread or fixup
fields in the same or subsequent FIXUPPrecords.It has the following format:

C1
thread i

index

Ts

682 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 -692/1582

OLYMPUS EX. 1010 - 693/1582

Article 19: Object Modules

The thread data field is a single byte comprising five subfields:

0

thread

Bit 7 of the thread data byteis 0, indicating the start of a threadfield.
The D field (bit 6) indicates whetherthe thread field specifies a FRAMEor a

TARGET. The D bit is set to 1 to indicate a FRAMEorto 0 to indicate a TARGET.
Bit 5 of the thread data byteis not used. It should alwaysbe setto 0.
Bits 4 through 2 represent the methodfield. If D = 1, the methodfield contains0,1, 2,
4, or 5. Each of these numbers corresponds to one method of specifying a FRAME(see
Table 19-2). If D = 0, the method field contains0, 1, 2, 4, 5, or 6, each of which corre-
spondsto one of the methodsofspecifying a TARGET (see Table 19-3).

In the case of a TARGETaddress, only bits 3 and 2 of the method field are used. When
D =0, the high-order bit of the value in the method field is derived from the P bit in
the fix datfield of any subsequent fixup field thatrefers to this thread field. Thus,if
D = 0, bit 4 of the methodfield is also 0, and the only meaningful values for the
methodfield are 0, 1, and 2.
The thread numberfield (bits 1 and 0) contains a number between0 and3. This

numberis used in subsequent fixup or thread fields to refer to this particular thread
field.

The thread numberis implicitly associated with the D field by thelinker, so as many
as eight different thread fields (four FRAMEs and four TARGETs) can be referencedat
any time. A thread number can be reused in an object module and,ifit is, always
refers to the threadfield in whichit last appeared.

Table 19-2. FRAME Fixup Methods.

Method Description

0

1

2

The FRAMEis specified by a segment index.
The FRAMEis specified by a group index.
The FRAMEis indicated by an external index. LINK determines the FRAME

from the external name’s corresponding PUBDEFrecord in another object
module, which specifies either a logical segmentor a group.

The FRAMEis identified by an explicit frame number. (Not supported by
LINK.)

The FRAMEis determined by the segmentin which the LOCATIONis defined.
In this case, the largest possible frame numberis used.

The FRAMEis determined by the TARGET’s segment, group, or external
index.

Section IL Programming in the MS-DOS Environment 683

OLYMPUSEX. 1010 - 693/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 694/1582

Part E: Programming Tools

Table 19-3. TARGET Fixup Methods.

Method Description

0 The TARGETis specified by a segment index and a displacement. The
displacementis given in the target displacementfield of the FIXUPP record.

The TARGETis specified by a group index and a target displacement.
2 The TARGETis specified by anexternal index and a target displacement.

LINK adds the displacementto the address it determines from the external
name’s corresponding PUBDEFrecord in another object module.

pany

3 The TARGETis identifiedby an explicit frame number. (Not supported by
LINK.) .

4* The TARGETis specified by a segment index only.
5* The TARGETis specified by a group index only.
6* The TARGETis specified by an external index. The TARGETis the address

"associated with the external name.

7* The TARGETis identified by an explicit frame number. (Not supported by
LINK.)

* TARGET methods 4-7 are analogousto the preceding four, except that methods 4—7 do not use an explicit
displacementto identify the TARGET.Instead, a displacementof0 is assumed.

The index field either contains an index valuethat refers to a previous SEGDEF, GRPDEF, -
or EXTDEFrecord, or it contains an explicit frame number. The interpretation of the index
value dependsonthe value of the methodfield of the thread data field:

method=0 Segment index (reference to a previous SEGDEF record)
method = 1 Group index (reference to a previous GRPDEFrecord)
method =2—External index (reference to a previous EXTDEFrecord)
method =3° Frame number(not supported by LINK;ignored)

The fixup field
The fixup field provides the information needed by the linker to resolve a reference toa
relocatable or external address. The fixup field has the following format:

17 7

}ovat|de|frame catum ‘ergot Gatum
1 C1

The 2-byte /ocat field has an unusual format. Contrary to the usual byte orderin Intel data
structures, the mostsignificantbits of the locat field are found in the low-order, rather than
the high-order, byte:

low-order byte high-order byte
9 8 7 6 5 4 3 2 1 0

data record offset

684 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 694/1582

OLYMPUS EX. 1010 - 695/1582

Article 19: Object Modules—_rrrEeeeee

®@ Bit 15 (the high-orderbit of the Jocat field) contains1, indicating that this is a fixup
field. .

® Bit 14 (the / bit) is 1 if the fixup is segmentrelative and0 if the fixupis self-relative.
Bit 13 (the S bit) is currently unused and should alwaysbesetto 0.

@ Bits 12 through 10 representthe /oc field. This field contains a number between 0 and
5 that indicates the type of LOCATIONto befixed up:

loc =0 Low-order byte
loc=1 Offset

loc = 2 Segment
loc =3 Pointer (Segment:offset)
loc = 4 High-order byte (not recognized by LINK)
loc = 5 Loader-resolved offset (treated as loc = 1 by the linker)

@ Bits 9 through 0 (the data record offset) indicate the position of the LOCATIONto be
fixed up in the LEDATA or LIDATArecord immediately preceding the FIXUPPrecord.
This offset indicates either a byte in the data field of an LEDATA record or a data byte
in the conientfield of an iterated data block in an LIDATArecord.

The fix datfield is a single byte comprising five fields:

bit 7 6 5 4 3 2 1 0

T=TPT
@ Bit 7 (the F bit) is set to 1 if the FRAMEfor this fixup is specified by a reference to a

previous thread field. The F bit is 0 if the FRAME methodis explicitly defined in this
fixup field.

®@ Theinterpretation of the framefield in bits 6 through 4 dependsonthevalueof the
F bit. If F=1, the framefield contains a number between0 and3 that indicates the
thread field containing the FRAME method.If F = 0, the frame field contains0,1, 2,
4, or 5, corresponding to one of the methodsofspecifying a FRAMElisted in Table
19-2,

@ Bit 3 (the T bit) is set to 1 if the TARGETfor the fixup is specified by a reference to a
previous threadfield.If the T bit is 0, the TARGETis explicitly defined in this fixup

. field.

@ Bit 2 (the P bit) and bits 1 and 0 (the éargt field) can be considered a 3-bit field analo-
gousto the framefield.

® Ifthe 7 bit indicates that the TARGETis specified by a previous thread reference
(T = 1), the targt field contains a number between0 and3 that refers to a previous
threadfield containing the TARGET method.In this case, the P bit, combined with
the 2 low-order bits of the method field in the thread field, determines the TARGET
method.

Section I: Programming in the MS-DOS Environment 685

OLYMPUSEX. 1010 - 695/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 696/1582

Part E: Programming Tools

If the T bit is 0, indicating that the target is explicitly defined, the P and targt fields
togethercontain 0, 1, 2, 4, 5, or 6. This number correspondsto one of the TARGET
fixup methodslisted in Table 19-3. Cin this case, the P bit can be regarded as the
high-orderbit of the method number.)

Frame datum is an index field that refers to a previous SEGDEF, GRPDEF, or EXTDEF
record, depending on the FRAME method.

Similarly, the target datum field contains a’segment index, a group index,or an external
index, depending on the TARGET method.

The target displacementfield, a 2-byte field, is present only if the P bit in the fixdat field
is set to 0, in which case the target displacementfield contains the 16-bit offset used in
methods 0,1, and 2 of specifying a TARGET.

Location in object module

FLXUPP records must appear after the SEGDEF, GRPDEF, or EXTDEFrecords to which
they refer. In addition,if a FIXUPP record contains any fixup fields, it must immediately
follow the LEDATA or LIDATA record to whichthe fixupsrefer.

Examples

Although crucial to the properlinking of object modules, FIXUPP records areterse:
Almost every bit is meaningful. For these reasons,the following three examples of FIXUPP
recordsare particularly detailed.

A good wayto understand how a FIXUPP recordis put together is to compareit to the cor-
responding source code. The Microsoft Macro Assembleris helpfulin this regard, because
it marks in its source listing address referencesit cannot resolve. The “program”in Figure
19-6 is designed to show how someof the most frequently encountered fixups are encoded
in FIXUPP records.

TITLE fixupps
—TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT
EXTRN NearLabel:near
EXTRN FarLabel: far

0000 NearProc PROC near

0000 E9 0000 E jmp NearLabel ;relocatable word offset
0003 EB 00 & jmp short NearLabel ;relocatable byte offset
0005 EA 0000 ---- R jmp far ptr FarProc ;far jump to a known seg
QOOA EA 0000 ~--- E jmp FarLabel ¢far jump to an unknown seg

OOOF BB 0015 R mov bx,offset LocalLabel ;relocatable offset
0012 B8 ---- R mov ax,seg LocalLabel ;relocatable seg

Figure 19-6. A sample “program” showing how some commonfixups are encoded in FIXUPP records. (more)

686. The MS-DOSEncyclopedia

OLYMPUSEX. 1010 -696/1582

OLYMPUS EX. 1010 - 697/1582

Article 19: Object ModulesESeeYEOt

0015 C3 LocalLabel: ret

NearProc ENDP

0016 —TEXT ENDS

0000 FAR_TEXT SEGMENT byte public 'FAR_CODE'
ASSUME cs:FAR_TEXT

0000 FarProc PROC far

0000 CB ret

FarProc ENDP

0001 FAR_TEXT ENDS

END

Figure 19-6. Continued.

The assembler generates one LEDATArecordfor this program:

012 3 45 678 9 ABCODEPFP
0010 AO 1A 00 01 00 00 ES 00 00 EB OO EA 00 00 00 00 ee

0020 EA 00 00 00 00 BB 00 00 BB 00 00 C3 67) ance e eee g

Bytes 06—2BH (the daia field) of this LEDATA record contain 8086 opcodesfor each of
the instruction mnemonics in the source code. The gaps (zero values) in the data field
correspondto address values that the assembler cannotresolve. Thelinker will fix up the
address values in the gaps by computing the correct values and adding them to the zero
values in the gaps. The FIXUPPrecord that tells the linker how to do this immediately
follows the LEDATArecord in the object module:

0123 45 678 9 ABCODEPF
0000 9C 21 00 84 01 06 01 02 80 04 06 01 02 CC 06 04 wt... ee eee e eee
0010 02 02 CC OB 06 01 01 C4 10 00 01 01 15 00 C8 13... beeeeee
0020 04 01 01 a3

@ Byte 00H contains 9CH,indicating this isa FIXUPP record. .
@ Bytes 01—02H contain 0021H,the length of the remainderof the record.
@ Bytes 03-07H representthe first of the six fixup fields in this record:

o 12 3 4 5 6 7 8 9 AB C DE F
ee

The information in this fixup field will allow the linker to resolve the address refer-
encein the statement

jmp NearLabel

Section I: Programming in the MS-DOSEnvironment 687

OLYMPUSEX. 1010 - 697/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 698/1582

Part E: Programming Tools

— Bytes 03—04H (the Jocat field) contain 8401H (1000010000000001B). (Recall that
this field does not conform to the usualIntel byte order.) Bit 15 is 1, signifying that
this isa fixup field, not a thread field. Bit 14 (the bit) is 0, so this fixup is self-
relative. Bit 13 is unused and should besetto 0, asit is here. Bits 12-10 (the loc
field) contain 1 (001B), so the LOCATIONto befixed upis a 16-bit offset. Bits 9-0
(the data record offset) contain 1 (0000000001B), which informsthe linker that the
LOCATIONto befixed upis at offset 1 in the data field of the LEDATArecord im-
mediately preceding this FIXUPP record— in other words, the 2 bytes immedi-
ately following thefirst opcode OE9H.

— Byte 05H (the fix dat field) contains 06H (00000110B).Bit 7 (the F bit) is 0, mean-
ing the FRAMEforthis fixupis explicitly specified in this fixup field. Bits 6-4
(the frame field) contain 0 (000B), indicating that FRAME method0 specifies the
FRAME.Bit 3 (the T bit) is 0, so the TARGETforthis fixupis also explicitly speci-
fied. Bits 2-0 (the P bit) and the targtfield contain 6 (110B), so TARGET method6
specifies the TARGET.

— Byte 06H isa frame datum field, because the FRAMEis explicitly specified (the
F bit of the fix dat field = 0). And, because method0 is specified, the frame
datum is an index field that refers to a previous SEGDEFrecord.In this example,
the frame datum field contains 1, which indicates the first SEGDEF record in the
object module: the _TEXT segment.

— Similarly, byte 07H is a target datum, because the TARGETis also explicitly speci-
fied (the T bit of the fix dat field = 0). The fix dat field also indicates that
TARGET method6 is used, so the target datum is an indexfield thatrefers to the
external reference list ina previous EXTDEFrecord. The value ofthis index is 2,
so the TARGETis the second external reference declared in the EXTDEFrecord:

NearLabel in this object module.
@ Bytes 08-0CH represent the second fixup field:

This fixup field correspondsto the statement

jmp short NearLabel

The only difference between this statement andthe first is that the jump uses an 8-bit,
rather than a 16-bit, offset. Thus, the loc field (bits 12-10 of byte 08H) contains 0
(000B)to indicate that the LOCATIONto be fixed up is a low-order byte.

@ Bytes OD-11H representthe third fixup field in this FIXUPP record:

This fixup field correspondsto the statement

jmp far ptr FarProc

688 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 -698/1582

OLYMPUS EX. 1010 - 699/1582

In this case, both the TARGET’s frame (the segment FAR_ TEXT) andoffset (the label
FarProc) are knownto the assembler. Both the segment address and the label offset are
relocatable, however, so in the FIXUPP record the assemblerpasses the responsibility
for resolving the addressesto the linker.
— Bytes OD-OEH (the /ocat field) indicate thatthefield is a fixup field (bit 15 = D

andthat the fixup is segmentrelative (bit 14 the M bit = 1). The loc field (bits
12-10) contains 3 (011B), so the LOCATIONbeing fixed upis a 32-bit (FAR) pointer
(segment andoffset). The data record offset (bits 9-0) is 6 (00000001108);the
LOCATIONis the 4 bytes following the first far jump opcode (EAH)in the preced-
ing LEDATArecord.

~— In byte OFH (the fix datfield), the F bit and the framefield are 0, indicating that
method 0 (a segmentindex) is used to specify the FRAME.TheT bit is 0 Gmeaning
the targetis explicitly defined in the fixup field); therefore, the P bit and targt
fields together indicate method 4 (a segment index) to specify the TARGET.

— Because the FRAMEis specified with a segment index, byte 10H (the frame
datum field) is a reference to the second SEGDEFrecord in the object module,
whichin this example declared the FAR_ TEXT segment. Similarly, byte 11H (the
target datum field) references the FAR_TEXT segment.In this case, the FRAME
is the same as the TARGET segment; had FAR_TEXT been one of a groupofseg-
ments, the FRAME could havereferred to the groupinstead.

@ The fourth assembler statementis different from the third because it references a

segment not knownto the assembler:

jmp FarLabel

Bytes 12~16H contain the corresponding fixup field:
0 1 2 3 4 5 6 7 8 9 ABCDE F

SEES Me Ge: ae BES

Thesignificant difference between this and the preceding fixup field is that the
P bit and targt field of the fix dat byte (byte 14H) specify TARGET method6.In this
fixup field, the target datum (byte 16H)refersto the first EXTDEFrecordin the
object module, which declares FarLabel as an external reference.

@ Thefifth fixup field (bytes 17-1DH)is

 10 00 01 01 15 00

This fixup field contains information that enables the linker to calculate the value of
the relocatable offset LocalLabel:

mov bx, offset LocalLabel

Section IE Programming in the MS-DOS Environment 689

OLYMPUSEX. 1010 - 699/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 700/1582

Part E: Programming Tools

690

— Bytes 17-18H (the /ocat field) contain C410H (1100010000010000B).Bit 15 is 1,
denoting a fixup field. The M bit Cbit 14) is 1, indicating thatthis fixup is segment
relative. The Joc field (bits 12-10) contains 1 (O01B), so the LOCATIONis a 16-bit
offset. The data record offset (bits 9-0) is 10H (00000100008), a referenceto the
2 bytes in the LEDATArecord following the opcode OBBH.

~ Byte 19H (the fix dat byte) contains 00H. The F bit, framefield, T bit, P bit, and
targt field are all 0, so FRAME method 0 and TARGET method0 are explicitly
specified in this fixup field. »

— Because FRAME method0 is used, byte 1AH (the frame datum field) is an index
field. It contains 01H,a referenceto the first SEGDEFrecord in the object module,
which declares the segment _ TEXT.

Similarly, byte 1BH (the target datum field) references the _TEXT segment.
— Because TARGET method0 is specified, an offset, in addition to a segment,is

required to define the TARGET.This offset appears in the target displacement
field in bytes 1C-1DH. Thevalueofthis offset is 0015H, corresponding to theoffset
of the TARGET (LocalLabel) in its segment (_ TEXT).

@ Thesixth and final fixup field in this FIXUPP record (bytes 1E—22H)is

This correspondsto the segmentof the relocatable address LocalLabel:

mov ax,seg LocalLabel

—- Bytes IE—1FH (the /ocat field) contain C813H (1100100000010011B). Bit 15 is 1, so
this is a fixup field. The M bit Cbit 14) is 1, so the fixup is segmentrelative. The /oc
field (bits 12-10) contains 2 (010B), so the LOCATIONis a 16-bit segmentvalue.
The data record offset (bits 9-0) indicates the 2 bytes in the LEDATA record
following the opcode 0B8H.

— Byte 20H (the fix dat byte) contains 04H, so FRAME method 0 and TARGET
method 4 are explicitly specified in this fixup field.

- Byte 21H (the frame datum field) contains 01H. Because FRAME method 0 is
specified, the frame datum is an index valuethat refers to the first SEGDEF record
in the object module (corresponding to the _ TEXT segment).

— Byte 22H (the target datum field) contains 01H. Because TARGET method4 is
specified, the target datum also references the _ TEXT segment.

@ Finally, byte 23H contains this FIXUPP record’s checksum, 0A3H.

The next two FIXUPP records show how threadfields.are used. Thefirst of the two

contains six thread fields that can be referenced by both thread and fixup fields in sub-
sequent FIXUPPrecordsin the same object module:

012 3 45 678 9 ABCODEPRF
0000 9C OD 00 00 03 01 02 02 01 03 04 40 01 45 01 CO- @....

TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 700/1582

OLYMPUS EX. 1010 - 701/1582

po
ecprtga

Article 19: Object Modules

Bytes 03-—04H, 05-06H, 07—08H, 09—OAH, OB—0CH, and 0D-—OEH represent the six
thread fields in this FIXUPP record. The high-orderbit of the first byte of each of these
fields is 0, indicating that they are, indeed, thread fields and not fixup fields.

® Byte 03H, which contains 00H,is the thread data byteofthefirst thread field. Bit 7
of this byte is 0, indicating this is a threadfield. Bit 6 (the D bit) is 0, so this field
specifies a TARGET.Bit 5 is 0, as it must always be. Bits 4 through 2 (the method field)
contain 0 (000B), which specifies TARGET method0.Finally, bits 1 and 0 contain 0
(OOB), the thread numberthat identifies this thread field.

Byte 04H represents a segment index field, because method 0 of specifying a
TARGETreferences a segment. The value of the index, 3, is a referenceto the third
SEGDEFrecord defined in the object module.

® Bytes 05—06H, 07—08H, and 09—OAH contain similar thread fields. In each, the
method field specifies TARGET method 0. The three thread fields also have thread
numbers of 1, 2, and 3. Because TARGET method 0 is specified for each threadfield,
bytes OGH, 08H, and 0AH represent segment index fields, which reference the
second,first, and fourth SEGDEFrecords, respectively.

@ Byte OBH (the thread data byte ofthefifth thread field in this FIXUPP record) con-
tains 40H (01000000B). The D bit (bit 6) is 1, so this thread field specifies a FRAME.
The methodfield (bits 4 through 2) contains 0 (000B), which specifies FRAME
method 0. Byte OCH (which contains 01H)is therefore interpreted as a segment index
reference to the first SEGDEF record in the object module.

@ Byte ODHis the thread data byte of the sixth thread field. It contains 45H
(01000101B). Bit 6 is 1, which indicates that this thread specifies a FRAME. The
methodfield (bits 4 through 2) contains 1 (001B), which specifies FRAME method 1.
Byte OEH (which contains 01H)is therefore interpreted as a group index to the first
preceding GRPDEFrecord.

The thread numberfields of the fifth and sixth thread fields contain 0 and 1, respec-
tively, but these thread numbers do not conflict with the ones used in the first and
second thread fields, because the latter represent TARGETreferences, not FRAME
references. _

The next FIXUPP example appearsafter the preceding record,in the same object module.
This FIXUPP record contains a fixup field in bytes 03-05H that refers to a thread in the
previous FIXUPPrecord:

0 1 2 3 4 5 6 7 8 9 A B C DE F
0000 9C 04 00 C4 09 9D FEO0000eee

® Bytes 03—04H represent the 16-bit focat field, which contains C409H
(1100010000001001B). Bit 15 of the /ocat field is 1, indicating a fixup field. The M bit
(bit 14)is 1, so this fixupis relative to a particular segment, which is specified later in
the fixup field. Bit 13 is 0, as it should be.Bits 12-10 (the Joc field) contain 1 (001B),
so the LOCATIONto befixedupis a 16-bit offset. Bits 9-0 (the data record offset
field) contain 9 (0000001001B), so the LOCATIONto befixed up is represented at an
offset of 9 bytes into the data field of the preceding LEDATA or LIDATArecord.

Section II: Programming in theMS-DOSEnvironment 691

OLYMPUSEX. 1010 - 701/1582

OLYMPUS EX. 1010 - 702/1582

Part E: Programming Tools

692

@ Byte 05H (the fix dat byte) contains 9DH (10011101B). The F bit (bit 7) is 1, so this
fixup field references a thread field that, in turn, defines the methodof specifying
the FRAMEforthefixup. Bits 6—4 (the framefield) contain 1 (001B), the numberof
the thread that contains the FRAME method. This thread contains a method number

of 1, which references the first GRPDEF record in the object module, thus specifying
the FRAME.

The T bit (bit 3 in the fix dat byte) is 1, so the TARGET methodis also defined ina
preceding thread field. The targt fieldCbits 1 and 0 in the fix dat byte) contains 1
(O1B), so the TARGET thread field whose thread numberis 1 specifies the TARGET.
The P bit (bit 3 in the fix dat byte) contains 1, which is combined with the low-order
bits of the method field in the thread field that describes the target to obtain TARGET
method number4 (100B). The TARGET thread references the second SEGDEFrecord

to specify the TARGET.

The last FIXUPP exampleillustrates that the linker performs a fixup by adding the calcu-
lated address value to the value in the LOCATIONbeingfixed up. This function of the
linker can be exploited to use fixups to modify opcodes or program data, as well as to
resolve address references.

Consider how the following assembler instruction might be fixed up:

lea bx,alpha+10h ; alpha is an external symbol

Typically, this instruction is translated into an LEDATA record with zero in the LOCATION
(bytes 08-09H)to be fixed up:

0 1 2 3 4 5 6 7 8 9 ABC DEF
0000 AO 08 00 01 00 00 8D 1E 00 00 AC a eee eee

The corresponding FIXUPP record contains a target displacement of 10H bytes (bytes
08-09H):

0 1 2 3 4 5 6 7 8 9 ABC DE FE
0000 9C 08 00 C4 02 02 01 01 10 00 820 eee ee

This FIXUPP record specifies TARGET method2, whichis indicated by the targt field
(bits 2-0) of the fixdat field (byte 05H).In this case, the linker adds the target displace-
ment to the address it has determined for the TARGET (alpha) and then completes the
fixup by adding this calculated address value to the zero value in the LOCATION.

The sameresult can be achieved by storing the displacement (10H) directly in the
LOCATIONin the LEDATA record:

0 12 3 4 5 6 7 8 9 ABC DE FP
0000 AO 08 00 01 00 00 8D 1B 10 00 90222nee eee eee

Then, the target displacement can be omitted from the FIXUPPrecord:

0 12 3 4 5 67 8 9 ABCD E F
0000 9c 06 00 C4 02 06 0101 90022ee eee

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 702/1582

OLYMPUS EX. 1010 - 703/1582

Article 19: Object Modules

This FIXUPPrecord specifies TARGET method6, which does not use a target displace-
ment. The linker performsthis fixup by adding the address of alpha to the value in the
LOCATION,so the result is identical to the preceding one.

The difference between the two techniquesis that in thelatter the linker does not perform
error checking whenit addsthe caiculated fixup value to the value in the LOCATION.If
this second technique is used, the linker will not flag arithmetic overflow or underflow
errors whenit adds the displacement to the TARGET address. Thefirst technique, then,
trapsall errors; the second can be used when overflow or underflow is irrelevant and an
error message would be undesirable.

Section II: Programming in the MS-DOSEnvironment 693

OLYMPUSEX. 1010 - 703/1582

OLYMPUS EX. 1010 - 704/1582

Part E: Programming Tools

0AOH LEDATALogical Enumerated Data Record

The LEDATA record contains contiguous binary data — executable code or program
data — thatis eventually copied into the program’s executable binary image.

The binary data in an LEDATA record can be modified by the linkerif the recordis fol-

lowed by a FIXUPP record.

Record format

A /;

AOH ea index datay
can be

repeated

Segmentindex

The segment index is a variable-length index field. The index numberin thisfield refers
to a previous SEGDEFrecord in the object module. A value of 1 indicates the first SEGDEF
record, a value of 2 the second, and so on. That SEGDEFrecord,in turn, indicates the
segment into which the data in this LEDATA recordis to be placed.

Enumerated data offset

The enumerated data offset is a 2-byte offset into the segment referenced by the segment
index,relative to the base of the segment. Taken together, the segment index and the
enumerated data offset fields indicate the location where the enumerated data will be
placed in the run-time memory map.

Data

The data field contains the actual data, which can be either executable 8086 instructions
or program data. The maximum size of the data field is 1024 bytes.

Location in object module
Any LEDATArecords in an object module must be preceded by the SEGDEFrecordsto
which they refer. Also, if an LEDATA record requires a fixup, a FIXUPP record must imme-
diately follow the LEDATA record.

Example

The following LEDATArecord contains a simple text string:

0 12 3 4 5 6 7 8 9 A BC D E F
0000 AO 13 00 02 00 00 48 65 6C 6C GF 2C 20 77 OF 72. Hello, wor
0010 6C 64 OD OA 24 A8 . ld..$.

® Byte 00H contains OAOH, whichidentifies this as an LEDATA record.
@ Bytes 01—02H contain 0013H, the length of the remainderof the record.

694 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 704/1582

OLYMPUS EX. 1010 - 705/1582

Article 19: Object Modules

Byte 03H (the segment index field) contains 02H,a reference to the second SEGDEF
record in the object module.
Bytes 04-05H (the enumerated data offset field) contain 0000H.Thisis the offset,
from the base of the segmentindicated by the segmentindex field, at which the data
in the data field will be placed whenthe programis linked. Of course,this offsetis
subjectto relocation by the linker because the segmentdeclaredin the specified
SEGDEFrecord may berelocatable and may be combined with other segments
declared in other object modules,
Bytes 06-14H (the data field) contain the actualdata.
Byte 15H contains the checksum, OA8H.

Section II: Programming in theMS-DOSEnvironment 695

OLYMPUSEX. 1010 - 705/1582

OLYMPUS EX. 1010 - 706/1582

Part E: Programming Tools

0A2H LIDATALogical Iterated Data Record

Like the LEDATA record, the LIDATA record contains binary data— executable code or
program data. The data in an LIDATArecord, however, is specified as a repeating pattern
(iterated), rather than by explicit enumeration.

The data in an LIDATA record may be modified by the linkerifthe LIDATArecordis
followed by a FIXUPP record.

Record format

fs Ls

segment index iterated data block
"L S71

can be
repeated

iterated
data offset

Segment index

The segment index is a variable-length index field. The index numberin thisfield refers
to a previous SEGDEFrecord in the object module. A value of 1 indicatesthe first SEGDEF
record, 2 indicates the second, and so on. That SEGDEFrecord,in turn, indicates the
segmentinto which the data in this LIDATA record is to be placed when the program is
executed,

Iterated data offset

The iterated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
iterated data offset fields indicate the location where theiterated data will be placed in
the run-time memory map.

Iterated datablock

The iterated data blockis a variable-length field containing the actual data— executable
code and program data. Iterated data blocks can be nested, so one tierated data block
can contain one or more other iterated data blocks. Microsoft LINKrestricts the maximum

size of an iterated data block to 512 bytes.

The format of the iterated data block is

7
repeat block

@ Repeat countisa 2-byte field indicating the numberof times the contentfield is to
be repeated.

® Block count is a 2-byte field indicating the numberof iterated data blocks inthe
contentfield. If the block countis 0, the content field contains data only.

696 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 706/1582

OLYMPUS EX. 1010 - 707/1582

etnahgoptALEnetAGe
Article 19: Object Modules

@ Content isa variable-length field that can contain either nested iterated data blocks
, (if the block count is nonzero) or data Gf the block countis 0). If the content field

contains data, the field contains a 1-byte count of the numberofdata bytesin thefield,
followed by the actualdata.

Location in object module

Any LIDATArecords in an object module must be preceded by the SEGDEFrecordsto
which theyrefer. Also, if an LIDATA record requires a fixup, a FIXUPP record must imme-
diately follow the LIDATArecord.

Example

This sample LIDATA record correspondsto the following assembler statement, which
declares a 10-element array containing the strings ALPHA and BETA:

db 10 dup('ALPHA', 'BETA')

The LIDATArecord is

0 12 3 4 5 6 7 8 $ A BC D E F
0000 A2 1B 00 01 00 00 OA 00 02 00 O1 00 00 00 05 41 oo. ce cece eueeee A
0010 4C 50 48 41 01 00 00 00 04 42 45 54 41 AY LPHA..... BETA.

@ Byte 00H contains 0A2H,identifying this as an LIDATA record.
® Bytes 01-02H contain 1BH, the length of the remainderof the record.
@ Byte 03H (the segment index) contains 01H,a referenceto the first SEGDEFrecord in

this object module, indicating that the data declared in this LIDATA record is to be
placed into the segment described by thefirst SEGDEF record.

@ Bytes 04—05H (the iterated data offset) contain 0000H,so the data in this LIDATA
record is to be located at offset 0000H in the segmentdesignated by the segment
index.

@ Bytes 06—1CH represent an iterated data block:
— Bytes 06—07H contain the repeat count, OO0AH, whichindicates that the content

field of this iterated data block is to be repeated 10 times.
— Bytes 08-09H (the block countfor this iterated data block) contain 0002H, which

indicates that the content field of this iterated data block (bytes 0A—1CH)con-
tains two nested iterated data block fields (bytes O0A—13H and bytes 14-1CH).

— Bytes 0A—OBH contain 0001H,the repeat count for the first nested iterated data
block. Bytes OC-ODH contain 0000H,indicating that the contentfield of this
nested iteraied data block contains data, rather than more nested iterated data
blocks. The content field (bytes OE—13H)contains the data: Byte OEH contains
05H,the numberofsubsequent data bytes, and bytes OF—13H contain the actual
data (the string ALPHA).

— Bytes 14-1CH represent the second nested iterated data block, which has a format
similarto that of the block in bytes O0A-—13H. This second nested iterated data
block represents the 4-byte string BETA.

@ Byte 1DH is the checksum, 0A9H.

Section II: Programming in theMS-DOSEnvironment 697

OLYMPUSEX. 1010 - 707/1582

OLYMPUS EX. 1010 - 708/1582

Part E: Programming Tools

0BOH COMDEF Communal Names Definition Record

The COMDEFrecord is a Microsoft extension to the basic set of 8086 object record types
defined byIntel that declares a list of one or more communalvariables. The COMDEF
record is recognized by versions 3.50 andlater of LINK. Microsoft encourages the use
of the COMDEFrecord for declaration of communalvariables.

A. 4 “
communal type Iagnan| communal

name index|type length
i T0

bcan be
repeated

Record format

Communal name

The communal namefield is a variable-length field that contains the name of a communal
variable. The first byte of this field indicates the length of the name containedin the re-
mainderofthefield.

Type index

The type index field is an index field that references a previous TYPDEFrecord in the
object module. A value of1 indicates the first TYPDEF record in the module, a value of 2
indicates the second, and so on. The type index value can be 0 if no data type is associated
with the public name.

Data segmenttype

The data segment type field is a single byte thatindicates whether the communalvariable
is FAR or NEAR. There are only two possible values for data segmenttype:

61H FARvariable

62H NEARvariable

Communal length

The communallength is a variable-length field that indicates the amount of memory to be
allocated for the communalvariable. The contents of this field depend on the value in the
data segmenttype field. If the data segmenttype is NEAR (62H), the communallength
field contains the size (in bytes) of the communalvariable:

(Z

variable size
A

698 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 708/1582

OLYMPUS EX. 1010 - 709/1582

ANp

Article 19: Object Modules

If the data segmenttype is FAR (61H), the communallength field is formatted as follows:

Ce “A
numberof j
elements element size

Ce YZ

A FAR communalvariable is viewed as an array of elements of a specified size. Thus, the
numberofelementsfield is a variable-length field representing the numberof elementsin
the array, and the elementsize field is a variable-length field that indicates the size Gin
bytes) of each element. The amount of memory required for a FAR communalvariable is
thus the product of the number ofelements and the elementsize.

The formatof the variable size, numberofelements, and elementsize fields depends upon
the magnitude of the values they contain:

®@ If the value is less than 128 (80H),the field is formatted as a 1-byte field containing the
actual value:

value

® Ifthe value is 128 (80H)or greater, the field is formatted with an extra initial byte that
indicates whetherthe value is represented in the subsequent2,3, or 4 bytes:

81H |2-byte value

84H 3-byte value

88H 4-byte value

Groups of communal name, type index, data segment type, and communallength fields
can be repeated so that more than one communalvariable can be declared in the same
COMDEFrecord.

Location in object module

Any object module that contains COMDEFrecords must also contain one COMENTrecord
with the commentclass OAIH,indicating that Microsoft extensionsto the Intel object
record specification are included in the object module. This COMENT record must appear
before any COMDEFrecords in the object module.

Section Il: Programming in the MS-DOS Environment 699

OLYMPUSEX. 1010 - 709/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 710/1582

Part E: Programming Tools

Example

700

@ Byte 22H contains the checksum, 99H.

The following COMDEFrecord was generated by the Microsoft C Compiler version 4.0 for
these public variable declarations:

int foo; /* 2-byte integer */
char f002[32768]; /* 32768-byte array */
char far foo3{10} [2] [20]; /* 400-byte array */

The COMDEFrecordis

0123 45 678 9SABCDEPF
0000 BO 20 00 04 SF 66 6F 6F 00 62 02 05 SF 66 6F 6F . .-foo.b.._foo
0010 32 00 62 81 00 80 05 SF 66 6F 6F 33 00 61 81 90 2.b...._fo03.a..
0020 01 01 99 .

® Byte 00H contains OBOH,indicating that this isa COMDEFrecord.
@ Bytes 01-02H contain 0020H,the length of the remainder of the record. _
® Bytes 03-0AH, OB-15H, and 16—21H representthree declarations for the communal

variables foo, foo2,and foo3.' The C compiler prepends an underscore to each of the
namesdeclared in the source code, so the symbols represented in this COMDEF
record are _foo, _foo2, and _foo3.
— Byte 03H contains 04H,the lengthof thefirst communal namein this record.

Bytes 04-07H contain the nameitself (_foo). Byte 08H (the type index field) con-
tains 00H, as required. Byte 09H (the data segmenttype field) contains 62H,indi-
cating this isa NEAR variable. Byte OAH (the communal length field) contains
02H,thesize of the variable in bytes.

— Byte 0BH contains 05H,the length of the second communal name. Bytes 0C-10H
contain the name, _foo2. Byte 11His the type index field, which again contains
OOH as required. Byte 12H (the data segmenttype field) contains 62H,indicating
that _foo2 is a NEARvariable.

Bytes 13-—15H (the communallength field) contain the size in bytes of the variable.
Thefirst byte of the communallength field (byte 13H)is 81H,indicating that the
size is represented in the subsequent 2 bytes of data— bytes 14-15H, which con-
tain the value 8000H.

— Bytes 16-1BH represent the communal namefield for _foo3, the third communal
variable declared in this record. Byte 1CH (the type index field) again contains
00H as required. Byte IDH (the data segmenttype field) contains 61H, indicating
this is a FAR variable. This means the communallength field is formatted as a
numberofelements field (bytes 1E—20H, which contain the value 0190H) and an
element size field (byte 21H, which contains 01H). Thetotal size of this communal
variable is thus 190H times 1, or 400 bytes.

Richard Wilton

The MS-DOS Encyclopedia _

OLYMPUSEX. 1010 - 710/1582

OLYMPUS EX. 1010 - 711/1582

Article 20: The Microsoft Object Linker

Article 20

The Microsoft Object Linker

MS-DOSobject modules can be processed in two ways: They can be groupedtogether in
objectlibraries, or they can be linked into executable files. All Microsoft languagetransla-
tors are distributed with twoutility programs that process object modules: The Microsoft
Library Manager(LIB) creates and modifies object libraries; the Microsoft Object Linker
(LINK)processesthe individual object records within object modules to create executable
files.

The following discussion focuses on LINK becauseofits crucial role in creating an execut-
able file. Before delving into the complexities of LINK, however,it is worthwhile reviewing
how object modules are managed.

Object Files, Object Libraries, and LIB

Compilers and assemblers translate source-code modules into object modules (Figure
20-1). See PROGRAMMING IN THE MS-DOS ENVIRONMENT:PRoGRAMMING TOOLs:

Object Modules. An object module consists of a sequence of object records that describe
the form and content of part of an executable program. An MS-DOSobject module always
starts with a THEADRrecord; subsequentobject records in the module followthe
sequencediscussed in the Object Modulesarticle.

Object modules can bestoredin either of two types of MS-DOSfiles: objectfiles and object
libraries. By convention, objectfiles have the filename extension .OBJ and objectlibraries
have the extension .LIB. Although both objectfiles and object libraries contain one or

Languagetranslator or assembler

Object module Object module Objectlibrary
(.OBIfile) librarian (LIB) (.LIB file)

Linker (LINK)

Executable

binary image
(EXE file)

MS-DOSloader

(Program runs)

Figure 20-1. Object modules, object libraries, LIB, and LINK.

Section II: Programming in the MS-DOS Environment 701

OLYMPUSEX. 1010 - 711/1582

OLYMPUS EX. 1010 - 712/1582

Part E: Programming Tools

more object modules, the files and the libraries have different internal organization.
Furthermore, LINK processes objectfiles and libraries differently.

Thestructures of object files and libraries are compared in Figure 20-2. An objectfile is a
simple concatenation of object modules in any arbitrary order. (Microsoft discourages the
use ofobjectfiles that contain more than one object module; Microsoft language translators
never generate more than one object module in an objectfile.) In contrast, a library con-
tains a hashed dictionaryofall the public symbols declared in each of the object modules,
in addition to the object modules themselves. Each symbolin the dictionary is associated
with a reference to the object module in which the symbo! was declared.

LINKprocesses objectfiles differently than it does libraries. When LINK builds an execut-
ablefile, it incorporates all the object modules in all the objectfiles it processes. In con-
trast, when LINK processeslibraries, it uses the hashed symboldictionary in each library
to extract object modules selectively— it uses an object module from a library only when
the object module contains a symbolthat is referenced within some other object module.
This distinction between objectfiles and libraries is important in understanding what
LINK does.

Object module

Object module

Object module

Library header

Object module

Object module

Object module

Symboldictionary

(a)

Figure 20-2. Structures ofan objectfile and an object library. (a) An objectfile contains one or more object
modules, (Microsoft discourages using more than one object moduleper objectfile) (b) An object library con-
tains one or more object modulesplus a hashed symbol dictionary indicating the object modules in which
eachpublic symbolis defined.

702 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 712/1582

OLYMPUS EX. 1010 - 713/1582

Article 20: The Microsoft Object Linker

What LINK Does

The function of LINKis to translate object modules into an executable program. LINK’s
input consists of one or more objectfiles OBJ files) and, optionally, one or more libraries
CLIB files). LINK’s output is an executable file CEXEfile) containing binary data that can
beloaded directly from thefile into memory and executed. LINK can also generate a sym-
bolic address maplisting (MAPfile) ——a textfile that describes the organization of the
.EXE file and the correspondence of symbols declared in the object modules to addresses
in the executablefile.

Building an executablefile

LINK builds two types of information into a .EXEfile. First, it extracts executable code and
data from the LEDATA and LIDATArecords in object modules, arranges them in a specified
order according to its rules for segment combination and relocation, and copies the result
into the .EXEfile. Second, LINK builds a headerfor the .EXEfile. The header describes the
size of the executable program andalso contains a table of load-time segmentrelocations
andinitial values for certain CPU registers. See Pass 2 below.

Relocation andlinking

In building an executable image from object modules, LINK performs two essential tasks:
relocation and linking. As it combines and rearranges the executable code and datait ex-
tracts from the object modulesit processes, LINK frequently adjusts, or relocates, address

_ referencesto accountfor the rearrangements (Figure 20-3). LINK links object modules by
resolving address references among them.It does this by matching the symbols declared
in EXTDEF and PUBDEF object records (Figure 20-4). LINK uses FIXUPPrecordsto deter-
mine exactly how to compute both address relocations and linked address references.

Object Module Order

LINKprocessesinputfiles from three sources: objectfiles and libraries specified explicitly
by the user (in the commandline, in response to LINK’s prompts,or in a responsefile)
and object libraries named in object module COMENTrecords.

Code segment (B4H bytes)

Code segment (64H bytes) Label! at offset 10H
Label2at offset 74H

Labell at offset 10H Code segment(50H bytes)
Label2 at offset 10H

Module1 Module2 Combined code segment

Figure 20-3. A simple relocation. Both object modules contain code that LINK combines into onelogical
segment. In this example, LINK appends the 5OH bytes ofcode in Module? to the 64H bytes ofcode in Modulel.
LINKrelocates all references to addresses in the code segmentso that they apply to the combined segment.

Section II: Programming in the MS-DOS Environment 703

OLYMPUSEX. 1010 - 713/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 714/1582

Part E: Programming Tools

Code segment:

Code segmentCode segment
PUBDEF Label2

jmp Label2
EXTDEF Label2 i Label2: Label2: jmp Label2

Module1 Module2 Combined code segment

Figure 20-4. Resolving an externalreference. LINK resolves the external reference in Modulel (declared in
an EXTDEFrecord) with the address of Label2 in Module2 (declared in a PUBDEFrecord).

LINK alwaysusesall the object modulesin the objectfiles it processes. In contrast,it
extracts individual object modules from libraries — only those object modules neededto
resolve references to public symbols are used. This difference is implicit in the order in
which LINKreadsits inputfiles:

1. Objectfiles specified in the commandline or in response to the ObjectModules
prompt

2. Libraries specified in the commandline orin response to the Libraries prompt
3. Libraries specified in COMENTrecords

Theorder in which LINK processes object modulesinfluences the resulting executable
file in three ways. First, the order in which segments appear in LINK’s inputfiles is
reflected in the segment structure of the executable file. Second, the order in which LINK
resolves external references to public symbols depends on the order in whichit finds the
public symbols in its inputfiles. Finally, LINK derives the default name of the executable
file from the nameofthefirst input objectfile.

Segmentorder in the executable file

In general, LINK builds named segments into the executablefile in the order in whichit
first encounters the SEGDEF records that declare the segments. (The /DOSSEGswitch also
affects segment order. See Using the /DOSSEG Switch below.) This means that the orderin
which segments appearin the executable file can be controlled by linking object modules
in a specific order. In assembly-language programs,it is best to declare all the segments
used in the program in the first object module to be linked so that the segmentorderin
the executable file is under complete control.

Order in which references are resolved

LINKresolves external references in the order in which it encounters the corresponding
public declarations. This fact is important because it determines the order in which LINK
extracts object modules from libraries. When a public symbol required to resolve an exter- .
nal reference is declared more than once amongthe object modules in the inputlibraries,
LINKusesthefirst object module that contains the public symbol. This meansthat the
actual executable codeor data associated with a particular external reference can be
varied by changing the order in which LINK processesits inputlibraries.

704=The. MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 714/1582

OLYMPUS EX. 1010 - 715/1582

Article 20: The Microsoft Object Linker

For example, imaginethat a C programmerhas written two versions of a function named
myfunc() thatis called by the program MYPROG.C.Oneversion of myfunc()is for
debugging;its object module is found in MYFUNC.OBJ. The otheris a production version
whose object module resides in MYLIB.LIB. Under normalcircumstances, the program-
merlinks the production version of myfunc(,) by using MYLIB.LIB (Figure 20-5), To use
the debuggingversion of myfunc(), the programmerexplicitly includesits object module
(MYFUNC.OBJ) when LINKis executed. This causes LINKto build the debugging version
of myfunc(Cinto the executablefile because it encounters the debugging version in
MYFUNC.OBJ beforeit finds the other version in MYLIB.LIB.

To exploit the order in which LINKresolves external references,it is important to know
LINK’slibrary search strategy: Each individuallibrary is searched repeatedly (from first
library to last, in the sequence in which they are input to LINK) until no further external
references can be resolved.

main ()
{

EXTDEFformyfunc()
x=myfunc (y);

 MYPROG.OBJ

Executable code
contains myfunc()
derived from either
MYFUNC.OB] or

MYLIB.OBJ

myfunce(a)
int a;
{

 PUBDEFfor myfunc()

MYFUNC.OBJ

PUBDEFfor myfunc()

MYLIB.LIB

Figure 20-5. Ordered object moduleprocessing by LINK. (a) With the command LINK MYPROG,,,MYLIB,
theproduction version ofmyfunc() in MYLIB.LIBis used. (b) With the command LINK MYPROG+
MYFUNC,,,MYLIB, the debugging version ofmyfunc() in MYFUNC.OB] is used.

705Section II: Programming in the MS-DOSEnvironment

OLYMPUSEX. 1010 - 715/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 716/1582

Part E: Programming Tools

Start of
program

ModuleMAIN

ModuleA.

ModuleA ModuleC ModuleMAIN
Call C Call B Call A ModuleB

 LIB1.LIB LIB2.LIB MYPROG.OBJ ModuleC

ModuleB

MYPROG.EXE

Figure 20-6. Library search order. Modules are incorporated into the executablefile as LINK extracts them
from the libraries to resolve externalreferences.

The example in Figure 20-6 demonstratesthis search strategy. Library LIB1.LIB contains
object modules A and B, library LIB2.LIB contains object module C, and the objectfile
MYPROG.OB)J contains the object module MAIN, modules MAIN, A, and C each contain
an external reference to a symbol declared in another module. When this program is
linked with

C>LINK MYPROG,,,LIB1+LIB2 <Enter>

LINKstarts by incorporating the object module MAIN into the executable program.It
then searches the input libraries until it resolves all the external references:

Process MYPROG.OB],find unresolved external reference to A.

Search LIB1.LIB, extract A, find unresolved external reference to C.
Search LIB1.LIB again; reference to Cremains unresolved.
Search LIB2.LIB, extract C, find unresolved external reference to B.
Search LIB2.LIB again; reference to B remains unresolved.
Search LIB1.LIB again, extract B.
No more unresolved external references, so end library search.

NAWRWN
The order in which the modules appearin the executablefile thus reflects the orderin
which LINKresolves the external references; this, in turn, depends on which modules
were contained in the libraries and on the order in whichthe libraries are input to LINK.

Nameofthe executable file

If no filenameis specified in the commandline or in response to the Run File prompt,
LINK derives the name of the executable file from the nameofthefirst objectfile it pro-
cesses. For example,if the objectfiles PROG1.OBJ and PROG2.OBJ are linked with the
command

C>LINK PROGI+PROG2; <Enter>

the resulting executable file, PROG1.EXE,takes its name from thefirst objectfile pro-
cessed by LINK.

706 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 716/1582

OLYMPUS EX. 1010 - 717/1582

Article 20: The Microsoft Object Linker

Segment Order and Segment Combinations

LINKbuilds segments into the executablefile by applying the following sequenceofrules:

1. Segments appearin the executablefile in the order in which their SEGDEFdeclara-
tions first appear in the input object modules.

_2. Segmentsin different object modules are combinedif they have the same name and
class and a public, memory, stack, or common combinetype.All address references
within the combined segmentsare relocatedrelativeto the start of the combined
segment.

~ Segments with the same nameandeither the public or the memory combinetype
are combinedin the order in which they are processed by LINK. Thesize of the
resulting segment equalsthe total size of the combined segments.

— Segments with the same name and the siack combine type are overlappedso that
the data in each of the overlapped segments endsat the same address. Thesize of
the resulting segment equalsthe total size of the combined segments. The resulting
segmentis always paragraph aligned.

— Segments with the same name and the common combine type are overlapped so
that the data in each of the overlapped segments starts at the same address. The
size of the resulting segment equals the size of the largest of the overlapped
segments.

3. Segments with the same class name are concatenated.
4. Ifthe /DOSSEGswitch is used, the segments are rearranged in conjunction with

DGROUP. See Using the /DOSSEG Switch below.

Theserules allow the programmerto control the organization of segments in the execut-
able file by ordering SEGMENTdeclarations in an assembly-language source module,
which produces the same order of SEGDEFrecords in the corresponding object module,
and by placing this object modulefirst in the order in which LINK processesits inputfiles.

A typical MS-DOS program is constructed by declaringall executable code and data seg-
ments with the public combinetype, thus enabling the programmer to compile the pro- ,
gram’s source code from separate source-code modules into separate object modules.
When these object modules are linked, LINK combines the segments from the object
modules according to the aboverules to create logically unified code and data segments
in the executable file.

Segmentclasses LINK concatenates segments with the same class nameafterit combines segments with
the same segment nameandclass. For example, Figure 20-7 showsthe following compiling
andlinking:

C>MASM MYPROG1; <Enter>
C>MASM MYPROG2; <Enter>
C>LINK MYPROG1I+MYPROG2; <Enter>

Section II: Programming in the MS-DOSEnvironment—707

OLYMPUSEX. 1010 - 717/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 718/1582

Part E: Programming Tools

TEXT SE blic ' ' TEXT
SEGDEFfor TEXT segment
SEGDEF for FAR_TEXT ‘Cope
SEGDEFfor DATA class

nan

segment

MYPROG1.ASM MYPROG1.0BJ
_DATA
segment

TEXT SEGMENT public ‘CODE’

FAR_TEXT SEGMENT public 'CODE'

MYPROG2.ASM MYPROG2.0B]

SEGDEFfor TEXT
SEGDEFfor FAR_TEXT

MYPROG1.EXE

Figure 20-7. Segment order and concatenation by LINK. The start ofeachfile, corresponding to the lowest
address, is at the top.

After MYPROG1.ASM and MYPROG2.ASM have been compiled, LINK builds the _TEXT
and FAR_TEXT segments by combining segments with the same namefrom the different
object modules. Then, _TEXT and FAR_TEXTare concatenated because they have the
same class name ('CODE'). _TEXT appears before FAR_TEXTin the executablefile
because LINK encounters the SEGDEF record for _TEXT beforeit finds the SEGDEF
record for FAR_TEXT.

Segmentalignment

LINKalignsthe starting address of each segmentit processes accordingto the alignment
specified in each SEGDEFrecord.It adjusts the alignmentofeach segmentit encounters
regardless of how that segment is combined with other segments of the same name or
class, (The one exceptionis stack segments, which always start on a paragraph
boundary.)

_DATA SEGMENTbyte public _DATA SEGMENTwordpublic _DATA SEGMENT para public
35H bytes 35H bytes 35H bytes
Module! Module2 Module3

00H

 Module1

Module2

Module3

Resulting DATA segmentin .EXE file

SSeS

hs bytes (byte aligned)

35H bytes (wordaligned)

35H bytes (paragraph aligned) =——

Figure 20-8. Alignmentofcombined segments. LINK enforces segment alignment bypadding combined
segments with uninitialized data bytes.

708 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 718/1582

OLYMPUS EX. 1010 - 719/1582

Article 20: The Microsoft Object Linker

Segmentalignmentis particularly important when public segments with the same name
and class are combined from different object modules. Note what happensin Figure 20-8,
wherethe three concatenated _DATA segmentshave different alignments. To enforce the
word alignment and paragraph alignment of the _DATA segments in Module2 and
Module3, LINK inserts one or more bytes of padding between the segments.

Segment groups

A segmentgroup establishes a logical segment address to which all offsets in a group of
segments can refer. Thatis, all addresses in all segments in the group can be expressed as
offsets relative to the segment value associated with the group (Figure 20-9). Declaring
segments in a group doesnot affect their positions in the executable file; the segments in
a group may or maynot be contiguous and can appearin any order aslong asall address
references to the groupfall within 64 KB of each other.

DataGroup GROUP DataSeg1, DataSeg2
CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg

mov ax,offset DataSeg2:TestData
mov ax,offset DataGroup:TestData

CodeSeg ENDS

DataSeg1 SEGMENT para public 'DATA'
DB 100h dup(?)

DataSeg1 ENDS

DataSeg2 - SEGMENT para public 'DATA'
TestData DB 2

DataSeg2 ENDS
END

Figure 20-9. Example ofgroup addressing. Thefirst MOVloads the value OOH into AX (the offset of TestData
relative to DataSeg2); the second MOVloadsthe value 100H into AX (the offset of TestData relative to thegroup
DataGroup).

LINK reserves one group name, DGROUP, for use by Microsoft languagetranslators.
DGROUPis used to group compiler-generated data segments and a default stack segment.
See DGROUPbelow.

LINK Internals

Many programmers use LINK asa “black box” program that transforms object modules
into executablefiles. Nevertheless,it is helpful to observe how LINK processes object
records to accomplish this task.

Section II: Programmingin the MS-DOS Environment 709

OLYMPUSEX. 1010 - 719/1582

OLYMPUS EX. 1010 - 720/1582

Part E; Programming Tools

LINKis a two-passlinker; thatis, it reads all its input object modules twice. On Pass 1,
LINK builds an address map of the segments and symbols in the object modules. On Pass
2, it extracts the executable code and program data from the object modules and builds
a memory image — an exact replica — of the executablefile.

The reason LINK builds an image of the executable file in memory, instead of simply
copying code and data from object modulesinto the executablefile, is that it organizes the
executablefile by segments and not by the order in which it processes object modules.
The mostefficient way to concatenate, combine, and relocate the code anddatais to build
a map of the executable file in memory during Pass 1 and thenfill in the map with code
and data during Pass 2.

In versions 3.52 andlater, wheneverthe /I (/INFORMATION)switchis specified in the
commandline, LINK displays status messagesat the start of each pass.and as it processes
each object module.If the /M (/MAP)switch is used in addition to the /I switch, LINK also
displays the total length of each segment declared in the object modules. This information
is helpful in determining how the structure of an executablefile corresponds to the con-
tents of the object modules processed by LINK.

Pass 1

During Pass1, LINK processes the LNAMES, SEGDEF, GRPDEF, COMDEF, EXTDEF,and
PUBDEFrecordsin each input object module and usesthe information in these object
records to construct a symbol table and an address map of segments and segment groups.

Symboltable

As each object module is processed, LINK uses the symboltableto resolve external
references (declared in EXTDEF and COMDFFrecords) to public symbols. If LINK pro-
cessesall the object files without resolving all the external references in the symboltable,
it searches the inputlibraries for public symbols that match the unresolved external
references. LINK continues to search eachlibrary until all the external references in the
symboltable are resolved.

Segments and groups

LINK processes each SEGDEFrecord according to the segment name,class name, and
attributes specified in the record. LINK constructs:a table of named segments and updates
it as it concatenates or combines segments. This allows LINKto associate each public sym-
bol in the symboltable with an offset into the segment in which the symbolis declared.

LINKalso generates default segments into whichit places communalvariables declared
in COMDEFrecords. Near communalvariables are placed in one paragraph-aligned public
segment named c_common,with class name BSS (block storage space) and group

710 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 720/1582

OLYMPUS EX. 1010 - 721/1582

Article 20: The Microsoft Object Linker

DGROUP.Far communalvariables are placed in a paragraph-aligned segment named
FAR_BSS,with class name FAR_BSS. The combine type of each far communalvariable’s
FAR_BSSsegmentis private (that is, notpublic, memory, common, or stack). As many
FAR_BSS segments as necessary are generated.

After all the objectfiles have been read and all the external references in the symboltable
have been resolved, LINK has a complete mapofthe addressesofall segments and sym-
bols in the program. If a MAPfile has been requested, LINK creates the file and writes
the address maptoit. Then LINKinitiates Pass 2.

Pass 2

In Pass 2, LINK extracts executable code and program data from the LEDATA and LIDATA
recordsin the object modules.It builds the code and data into a memory imageof the
executable file. Duririg Pass 2, LINK also carries out all the address relocations and fixups
related to segment relocation, segment grouping, and resolution of external references, as
well as any other address fixups specified explicitly in object module FIXUPP records.

If it determines during Pass 2 that not enough RAMis available to contain the entire image,
LINKcreates a temporaryfile in the current directory on the default disk drive. (LINK ver-
sions 3.60 and later use the environmentvariable TMPto find the directory for the tempo-
rary scratchfile.) LINK then usesthis file in additionto all the available RAM to construct
the image of the executable file. dn versions of MS-DOSearlier than 3.0, the temporaryfile
is named VM.TMP;in versions 3.0 andlater, LINK uses Interrupt 21HFunction 5AH to
create thefile.)

LINKreadseach of the input object modules in the sameorderasit did in Pass 1. This time
it copies the information from each object module’s LEDATA and LIDATArecords into the
memory image of each segment in the proper sequence. This is when LINK expandsthe
iterated data in each LIDATArecord it processes.

LINK processes each LEDATA and LIDATArecord along with the corresponding FIXUPP
record, if one exists. LINK processes the FIXUPP record, performs the address calculations
requiredfor relocation, segment grouping, and resolving external references, and then
stores binary data from the LEDATA or LIDATA record, including the results of the address
calculations, in the proper segment in the memory image. The only exceptionto this
process occurs when a FIXUPPrecord refers to a segment address. In this case, LINK adds
the addressof the fixup to a table of segmentfixups; this table is used later to generate the
segmentrelocation table in the .EXE header.

Whenail the data has been extracted from the object modules and all the fixups have
been carried out, the memory image is complete. LINK now hasall the informationit
needsto build the .EXE header (Table 20-1). At this point, therefore, LINK creates the
executable file and writes the header andall segmentsintoit.

Section I: Programming in the MS-DOSEnvironment 711

OLYMPUSEX. 1010 - 721/1582

OLYMPUS EX. 1010 - 722/1582

Part E: Programming Tools

Table 20-1. How LINK Builds a .EXE File Header.

Offset Contents Comments

00H 'MZ' .EXEfile signature
02H Length of executable

image MOD 512 : . Total size of all segments plus .EXE
04H Length of executable image in _ file header

512-byte pages, including last “
partial page (if any)

06H Numberof run-time segment Numberof segmentfixups
relocations

08H Size of the .EXE headerin 16-byte Size of segmentrelocation table
paragraphs

0AH MINALLOC: Minimum amount of Size of uninitialized data and/or stack

RAM to be allocated above end of segments at end of program (0 if /HI
the loaded program (in 16-byte switch is used)
paragraphs)

0CH MAXALLOC: Maximum amount of 0 if /HI switch is used; value specified
RAMtobe allocated above end with /CP switch; FFFFH if /CP and
of the loaded program (in 16-byte /HIswitches are not used
paragraphs)

0EH Stack segment (initial value for SS Addressof stack segmentrelative to
register); relocated by MS-DOS start of executable image
when program is loaded

10H Stack pointer Cinitial value for Size of stack segment in bytes
register SP)

12H Checksum One’s complementof sum ofall words
in file, excluding checksumitself

14H Entry point offset Cinitial value for
register IP) . pe

16H Entry point segment (initial value MODENDobject record that specifies
‘for register CS); relocated by program start address
MS-DOSwhen program is loaded

18H Offset of start of segmentrelocation
table relative to start of .EXE

header

1AH Overlay number 0 for resident segments; >0 for overlay
segments

1CH Reserved

712 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 722/1582

OLYMPUS EX. 1010 - 723/1582

Article 20: The Microsoft Object Linker

Using LINK to Organize Memory

By using LINKto rearrange and combine segments, a programmer can generate an exe-
cutable file in which segment order and addressing serve specific purposes. As the follow-

ing examples demonstrate, careful use of LINK leads to more efficient use of memory and
-simpler, moreefficient programs.

Segment order for a TSR
 In a terminate-and-stay-resident (TSR) program, LINK mustbe usedcarefully to generate

segments in the executable file in the proper order. A typical TSR program consists of a
resident portion, in which the TSR application is implemented,and a transient portion,
which executes only onceto initialize the resident portion. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT:Customizinc Ms-bDos: Terminate-and-Stay-ResidentUtilities.

Because the transient portion of the TSR program is executed only once, the memory
it occupies should befreed after the resident portion has beeninitialized. To allow the
MS-DOSTerminate andStay Resident function (interrupt 21H Function 31H)to free this
memory whenit leaves the resident portion of the TSR program in memory, the TSR pro-
gram must haveits resident portion at lower addressesthanits transient portion.

Low Memory ResidentCodeSeg SEGMENT para

. (executable code)

ResidentCodeSeg ENDS

ResidentDataSeg SEGMENT word

. (program data) Resident

. portion
ResidentDataSeg ENDS

StackSeg SEGMENT para

- (stack)

StackSeg ENDS

TransientCodeSeg SEGMENT para

. (executable code)

TransientCodeSeg ENDS .Transient

portionTransientDataSeg SEGMENT word

(program data)

High Memory TransientDataSeg ENDS

Figure 20-10. Segmentorderfora terminate-and-stay-residentprogram.

Section II: Programming in theMS-DOS Environment 713

OLYMPUSEX. 1010 - 723/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 724/1582

Part E: Programming Tools

In Figure 20-10, the segments containing the resident code and data are declared before
the segmentsthat representthe transient portion of the program. Because LINK preserves
this segmentorder, the executable program hasthe desired structure, with resident code
and data at lower addresses than transient code and data, Moreover, the numberofpara-
graphsin the resident portion of the program, which must be computed before Interrupt
21H Function 31His called, is easy to derive from the segmentstructure: This value is the
difference between the segment address of the program segmentprefix, which immedi-
ately precedes thefirst segment in the resident portion, and the addressof thefirst seg-
mentin the transient portion of the program.

Groupsfor unified segment addressing

In some programsit is desirable to maintain executable code and data in separate logical
segments but to address both code and data with the same segmentregister. For example,
in a hardwareinterrupt handler, using the CS register to address program data is generally
simpler than using DSor ES.

In the routine in Figure 20-11, code and data are maintained in separate segmentsfor pro-
gram clarity, yet both can be addressed using the CS register because both code and data
segments are included in the same group. (The SNAP.ASMlisting in the Terminate-and-
Stay-Resident Utilities article is another example of this use of a group to unify segment
addressing.)

ISRgroup GROUP CodeSeg, DataSeg
CodeSeg SEGMENT byte public 'CODE'

ASSUME es: ISRgroup
mov ax, offset ISRgroup:CodeLabel

CodeLabel: mov bx, ISRgroup:DataLabel
CodeSeg ENDS

DataSeg SEGMENT para public 'DATA'
DataLabel DW ?

DataSeg ENDS
END

Figure 20-11. Code and data included in the samegroup. In this example, addresses within both CodeSeg
and DataSeg are referenced relative to the CS register by grouping the segments (using the assembler GROUP
directive) and addressing thegroup through CS (using the assembler ASSUMEdirective).

Uninitialized data segments

A segmentthat contains only uninitialized data can be processed by LINK in two ways,
depending on the position of the segmentin the program.If the segmentis not at the end
of the program, LINK generates a block of bytes initialized to zero to representthe seg-
mentin the executable file. If the segment appearsat the end of the program, however,
LINK doesnot generate a block of zeroed bytes.Instead,it increases the minimum run-
time memory allocation by increasing MINALLOC(specified at offset OAH in the .EXE
header) by the amount of memory required for the segment.

714 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 724/1582

OLYMPUS EX. 1010 - 725/1582

Article 20: The Microsoft Object Linker

Therefore,if it is necessary to reserve a large amountof uninitialized memory in a seg-
ment, the size of the .EXE file can be decreased by building the segmentat the end of a
program (Figure 20-12). This is why, for example, Microsoft high-level-languagetranslators
always build BSS and STACK segmentsat the end of compiled programs. (The loader does
notfill these segments with zeros; a program muststill initialize them with appropriate
values.)

(a) CodeSeg SEGMENT byte public 'CODE'
ASSUME cs:CodeSeg,ds:DataSeg
ret

CodeSeg ENDS

DataSeg SEGMENT word public 'DATA'
BigBuffer DB 10000 dup(?)
DataSeg ENDS

END

(b) DataSeg SEGMENT word public 'DATA'

BigBuffer DB "10000 dup (?)
DataSeg ENDS

CodeSeg SEGMENT byte public 'CODE'
ASSUME cs:CodeSeg, ds:DataSeg
ret

CodeSeg ENDS
END

Figure 20-12. LINKprocessing ofuninitialized data segmenis. (a) When DataSeg, which contains only
uninitialized data, isplaced at the end ofthisprogram,the size ofthe .EXEfile is only 513 bytes. (b) When
DataSeg is notplaced at the end oftheprogram,the size ofthe .EXEfile is 10513 bytes.

Overlays

If a program contains two or more subroutines that are mutually independent — thatis,
subroutinesthat do not transfer control to each other —LINKcan beinstructed to build

each subroutine into a separately loaded portion of the executable file. (This instruction
is indicated in the commandline when LINKis executed by enclosing each overlay sub-
routine or group of subroutines in parentheses.) Each of the subroutines can then be over-
laid as it is needed in the same area of memory (Figure 20-13). The amount of memory
required to run a program that uses overlaysis, therefore, less than the amount required
to run the same program without overlays.

A program that uses overlays must include the Microsoft run-time overlay manager. The
overlay manageris responsible for copying overlay code from the executable file into
memory whenever the program attemptsto transfer control to code in an overlay. A pro-
gram that uses overlays runs slower than a program that does not use them, becauseit
takes longerto extract overlays separately from the .EXEfile than it does to read the entire
.EXEfile into memoryat once.

Section II: Programming in the MS-DOSEnvironment 715

OLYMPUSEX. 1010 - 725/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 726/1582

Part E: Programming Tools

(a)

D Call E() (b)

©| cOverlay ||®||
area

B Call C() B Call C() D Call E()

A Call B() Call BC)
Call D() Call D(C)

LINK A+B+C+D+E; LINK A+(B+C)+(D+E);

Figure 20-13. Memory use in aprogram linked (a) without overlays and (b) with overlays. In (b), either
modules (B+C) or modules (D+E) can be loaded into the overlay area at run time.

The default object libraries that accompany Microsoft high-level-language compilers con-
tain object modules that support the Microsoft run-time overlay manager. The following
description of LINK’srelationship to the run-time overlay manager applies to versions
3.00 through 3.60 of LINK; implementation details may vary in future versions.

Overlay format in a .EXE file

An executable file that contains overlays has a .EXE header preceding each overlay (Figure
20-14). The overlays are numbered in sequence, starting at 0; the overlay numberis stored
in the wordat offset LAH in each overlay’s EXE header. Whenthe contents of the EXEfile
are loaded into memoryfor execution, only the resident, nonoverlaid part of the program
is copied into memory. The overlays must be read into memory from the .EXE file by the
run-time overlay manager.

Start offile
. .EXE header

Overlay number 0

 A
Overlay segments

EXE header

B
Cc

EXE header

D
E

Figure 20-14, .EXEfile structureproduced by LINK A + (B+C) + (D+E).

Overlay number 1

Overlay number 2
Endoffile

716 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 726/1582

OLYMPUS EX. 1010 - 727/1582

Article 20: The Microsoft Object Linker

Segments for overlays

When LINK producesan executablefile that contains overlays,it adds three segments
to those defined in the object modules: OVERLAY_AREA, OVERLAY_END,and
OVERLAY_DATA.LINKassigns the segment class name 'CODE' to OVERLAY_AREA
and OVERLAY_ENDandincludes OVERLAY_DATAin the default group DGROUP.

OVERLAY_AREAis a reserved segmentinto which the run-time overlay manageris
expected to load each overlay asit is needed. Therefore, LINKsets the size of
OVERLAY_AREAtofit the largest overlay in the program. The OVERLAY_ENDseg-
ment is declared immediately after OVERLAY_AREA,so a program can determine the
size of the OVERLAY_AREA segmentby subtracting its segment address from that of
OVERLAY_END. The OVERLAY_DATA segmentis initialized by LINK with information
about the executable file, the numberofoverlays, and other data useful to the run-time
overlay manager.

LINK requires the executable code used in overlays to be contained in segments whose
‘class names end in CODE and whose segment namesdiffer from those of the segments
used in the resident (nonoverlaid) portion of the program. In assembly language,thisis
accomplished by using the SEGMENTdirective; in high-level languages, the technique of
ensuring unique segment names depends on the compiler. In Microsoft C, for example, the
/A switch in the commandline selects the memory model and thus the segment naming
defaults used by the compiler, in medium,large, and huge memory models, the compiler
generates a unique segment namefor each C function in the source code. In Microsoft
FORTRAN,on the otherhand, the compiler always generates a uniquely named segment
for each SUBROUTINE and FUNCTIONin the source code, so no special programming
is required.

LINKsubstitutesall far CALL instructions from root to overlay or from overlay to
overlay with a software interrupt followed by an overlay numberandanoffset into the
overlay segment (Figure 20-15). The interrupt number can be specified with LINK’s
/OVERLAYINTERRUPTswitch;if the switch is omitted, LINK uses Interrupt 3FH by
default. By replacing calls to overlay code with a software interrupt, LINK provides a
mechanism for the run-time overlay managerto take control, load a specified overlay
into memory,andtransfer control to a specified offset within the overlay.

(a) EXTRN OverlayEntryPoint:far
call OverlayEntryPoint ; far CALL

(b) int IntNo ; interrupt number
specified with /OVERLAY INTERRUPT
switch (default 3FH)

DB OverlayNumber overlay number
DW OverlayEntry offset of overlay entry point

the overlay manager transfers

; (the address to which

7 control)

Figure 20-15. Executable code modification by LINKfor accessing overlays. (a) Code as written. (b) Code as
modified by LINK.

Section II: Programming in theMS-DOSEnvironment 717

OLYMPUSEX. 1010 - 727/1582

OLYMPUS EX. 1010 - 728/1582

Part E: Programming Tools

Run-time processing ofoverlays

The resident (nonoverlaid) portion of a program that uses overlaysinitializes the overlay
interrupt vector specified by LINK with the address of the run-time overlay manager. (The
OVERLAY_DATA segmentcontains the interrupt number.) The overlay manager then
takes control wherever LINK has substituted a software interrupt for a far call in the exe-
cutable code.

Each time the overlay manager executes,its.first task is to determine which overlay is
being called. It does this by using the return addressleft on the stack by the INT instruc-
tion that invokedthe overlay manager; this address points to the overlay numberstored in
the byte after the interrupt instruction that just executed. The overlay manager then deter-

_ moines whetherthe destination overlayis already resident and loadsit only if necessary.
Next, the overlay manager opensthe -EXEfile, using the filename in the OVERLAY_DATA
segment.It locates the start of the specified overlay in the file by examining the length
(offset 02H and offset 04H) and overlay number(offset 1AH) in each overlay’s EXE
header.

The overlay manager can then read the overlay from the .EXEfile into the
OVERLAY_AREA segment. It uses the overlay’s segment relocation table to fix up any seg-
mentreferences in the overlay. The overlay managertransfers control to the overlay with a
far call to the OVERLAY_AREAsegment, using the offset stored by LINK 1 byte after the
interrupt instruction (see Figure 20-15).

Interrupt 21H Function 4BH

LINK’s protocol for implementing overlays is not recognized by Interrupt 21H Function
4BH (Load and Execute Program). This MS-DOSfunction, when called with AL = 03H,
loads an overlay from a .EXEfile into.a specified location in memory. See SYSTEM CALLS:
INTERRUPT 21H: Function 4BH. However, Function 4BH does not use an overlay number, so
it cannot find overlays in a EXE file formatted by LINK with multiple .EXE headers.

DGROUP

LINKalways includes DGROUPinits internal table of segmentgroups. In object modules
generated by Microsoft high-level-language translators, DGROUP contains both the default
data segment andthe stack segment. LINK’s /DOSSEG and /DSALLOCATEswitches both
affect the way LINK treats DGROUP. Changing the way LINK manages DGROUPulti-
mately affects segment order and addressing in the executablefile.

Using the /DOSSEG switch
The /DOSSEGswitch causes LINK to arrange segments in the default order used by
Microsoft high-level-languagetranslators:

1. Allsegments with a class name ending in CODE. These segments contain executable
code.

2. All other segments outside DGROUP. These segmentstypically contain far data items.

718 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 728/1582

OLYMPUS EX. 1010 - 729/1582

i

Article 20: The Microsoft Object Linker

3. DGROUPsegments. These are a program’s near data and stack segments. The order
in which segments appear in DGROUPis
~— Any segments of class BEGDATA.(This class nameis reserved for Microsoft use.)
~ Any segments not of class BEGDATA, BSS, or STACK.
— Segments of class BSS.

Segmentsof class STACK.

This segmentorderis necessary if programs compiled by Microsoft translators are to run
properly. The /DOSSEGswitch can be used whenever an object module produced by an
assembleris linked ahead of object modules generated by a Microsoft compiler, to ensure
that segments in the executablefile are ordered as in the precedinglist regardless of the
order of segments in the assembled object module.

When the /DOSSEGswitchis in effect, LINK always places DGROUPat the end of the
executable program,with all uninitalized data segmentsat the end of the group. As dis-
cussed above,this placementhelps to minimize the size of the executable file. The
/DOSSEGswitch also causes LINKto restructure the executable program to support
certain conventions used by Microsoft languagetranslators:

@ Compiler-generated segments with the class name BEGDATAare placed at the begin-
ning of DGROUP.

@ The public symbols _edata and _end are generatedto point to the beginning of the
BSS and STACK segments.

® Sixteen bytes of zero are inserted in front of the _TEXT segment.

Microsoft compilers that rely on /DOSSEG conventions generate a special COMENTobject
record that sets the /DOSSEG switch whenthe record is processed by LINK.

Using the /HIGH and /DSALLOCATEswitches

When a program has been linked without using LINK’s /HIGH switch, MS-DOSloads
program code and data segments from the .EXEfile at the lowest address in the first avail-
able block of RAM large enoughto contain the program (Figure 20-16). The value in the
.EXEheaderat offset OCH specifies the maximum amount of extra RAM MS-DOS must
allocate to the program above whatis loaded from the .EXEfile. Abovethat, all unused
RAMis managed by MS-DOS. With this memoryallocation strategy, a program can use
Interrupt 21H Functions 48H (Allocate Memory Block) and 4AH (Resize Memory Block)
to increase or decrease the amountof RAMallocatedto it.

When a program is linked with LINK’s /HIGH switch, LINK zeros the wordsit stores in
the .EXE headerat offset OAH and OCH.Setting the words at OAH and OCHto zero indi-
cates that the program is to be loaded into RAMatthe highest address possible (Figure
20-16). With this memorylayout, however, a program can no longer change its memory
allocation dynamically becauseall available RAMis allocated to the program whenit is
loaded and the uninitialized RAM between the program segmentprefix and the program
itself cannotbefreed.

Section II: Programming in the MS-DOS Environment 719

OLYMPUSEX. 1010 - 729/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 730/1582

Part E: Programming Tools

System ROM,etc.

(Unused)

System ROM,etc.

Uninitialized program
RAM

Program codearid
data segments
copied from .EXE file

Uninitialized Specified in

program RAM -EXE header

Program code and ,
data segments
copied from .EXE file

Environment, PSP

Residentportion of
MS-DOS

Environment, PSP

Residentportion of
MS-DOS

00000H

@) (b)

Figure 20-16. Effect ofthe /HIGHswitch on run-time memory use. (a) Theprogram is linked without the
/HIGHswitch. (b) Theprogramis linked with the /HIGHswitch.

Theonly reason to load a program with this type of memory allocation is to allow a pro-
gram data structure to be dynamically extended toward lower memory addresses. For
example, both stacks and heaps can be implemented in this way. If a program's stack
segmentis the first segment in its memory map, the stack can grow downward without
colliding with other program data.

To facilitate addressing in such a segment, LINK provides the /DSALLOCATEswitch.
When a program is linked using this switch, all addresses within DGROUPare relocated in
such a waythat the last byte in the group has offset FFFFH. For example,if the program in
Figure 20-17 is linked without the /DSALLOCATE and /HIGH switches, the value ofoffset
DGROUP:Dataltem would be 00H;if these switches are used,thelinker adjusts the seg-
ment value of DGROUP downwardsothat the offset of Dataltem within DGROUP
becomes FFFOH.

Early versions of Microsoft Pascal (before version 3.30) and Microsoft FORTRAN (before
version 3.30) generated object code that hadto be linked with the /DSALLOCATEswitch.
Forthis reason, LINK sets the /DSALLOCATEswitch by defaultif it processes an object
module containing a COMENTrecord generated by one of these compilers. (Such a
COMENTrecord contains the string MS PASCAL or FORTRAN 77. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT:PRoGRAMMING Toots: Object Modules.) Apart from this
special requirementof certain language translators, however, the use of /DSALLOCATE
and /HIGHshould probably be avoided becauseofthe limitations they place on run-time
memory allocation.

720 TheMS-DOSEncyclopedia

OLYMPUSEX. 1010 - 730/1582

OLYMPUS EX. 1010 - 731/1582

Article 20: The Microsoft Object Linker

DGROUP GROUP —DATA

_DATA SEGMENT word public 'DATA'
DataItem DB 10h dup (?)
—DATA ENDS

_TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT, ds :DGROUP
mov bx, offset DGROUP:DataItem

_TEXT ENDS
END

Figure 20-17. The vaiue ofoffset DGROUP:Dataltem in thisprogram is FFFOH iftheprogram is linked with
the/DSALLOCATEswitch or OOHiftheprogram is linked without using the switch.

Summary

LINK’s characteristic support for segment ordering, for run-time memory management,
and for dynamic overlays has an impact in many different situations. Programmers who
write their own language translators must bear in mind the special conventions followed
by LINK in support of Microsoft language translators. Application programmers must be
familiar with LINK’s capabilities when they use assembly languageorlink assembly-lan-
guage programs with object modules generated by Microsoft compilers, LINK is a power-
ful program developmenttool and understanding its special capabilities can lead
to moreefficient programs.

Richard Wilton

Section If: Programming in the MS-DOSEnvironment 721

OLYMPUSEX. 1010 - 731/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 732/1582

SeeTTOTT a

eer ETE
Reet
SaICCa

rRaac

 sma EUcareSea ~
Gorentenant

Semenaerate

 SSTTS
 EocenecaaORa Secon

 asoI

BeraeS SreeSeaTILLTT DEERERSE
MENEEO eSea

Se
reEERLS

Santee

ea
SLSaTe SEANTEE

 BeRSLCeeaSSa

 SCORRr

BeCESRaTTLE

ScAEICCeea

A

 RRMAET

Seeeae ee SeeSRSeS
SS

 RaacmeeeSeeeneRCLeR

 NSeSSeSOLO

SESSMASI ETIIE

 aes

EESNPELEUNCEDOOREEROSE

ELCERIE,

psyrae
 petene Deeerannee Sere aeBoFoca
 SNSaa

fame senna

SeEC se Seee eres
Naaeae

 SSDSAEENEMINSEAOSSIIPISRO OT PaneaceOESOa

SODCNadTS saSoES SISeeeeSILaee

 ESS ae

 Sas

 EeRESEERE aSESSe

ReacteaesorreretrareteSasSSESE BONETSMTTOLaEL
 SRL

 enerRACSTEeT

 aN

EERESSNcca tL

SSRAEN RASEOStACTER
Semen SEN ce ss os SRAReENRE
 ProeRTTNnee

 Seon
 Su TREAT

 SROSIalaeRRacOd ae

SeteneeaSAT Baea Se

aRAATNBe eneeternatre IaeIACN

 RePORmee

SeaLe Se
a

 ALICEASRHETLERAOTE SORELRta

See Sa aca a Se Ee Sa TLSESa RSASPSea Ora

Seeneeeaa

SeRoEENSIISTEIT

OLYMPUSEX. 1010 - 732/1582

OLYMPUS EX. 1010 - 733/1582

OLYMPUSEX. 1010 - 733/1582

OLYMPUS EX. 1010 - 734/1582

OLYMPUSEX. 1010 - 734/1582

OLYMPUS EX. 1010 - 735/1582

User CommandsIntroduction

Introduction

This section of TheMS-DOSEncyclopedia describes the standard internal and external

MS-DOS commandsavailable to the user who is running MS-DOS(versions 1.0 through
3.2). System configuration options, special batch-file directives, the line editor (EDLIN),
and theinstallable device drivers normally included with MS-DOSare also covered,

Entries are arranged alphabetically by the name of the commandordriver. The config-
uration, batch-file, and line-editor directives appear alphabetically under the headings
CONFIG.SYS, BATCH,and EDLIN,respectively. Each entry includes

Command name

Version dependencies and network information
Command purpose
Prototype command and summaryofoptions
Detailed description of command
One or more examples of command use
Return codes (where applicable)
Informational and error messages

The experienced user can find information with a quick glanceat thefirst part of a com-
mand entry; a less experienced usercan refer to the detailed explanation and examples in
a more leisurely fashion. The next two pages contain an example of a typical entry from
the User Commandssection, with explanations of each component. This example is
followed bylistings of the commands by functional group.

The following terms are used for command-line variables in the sample syntax:

drive a letter in the range A—Z, followed by a colon,indicating a logical disk
drive.

path a specific location in a disk’s hierarchical directory structure; can include
the special directory names . and ..; elements are separated by backslash
characters (\).

pathname a file specification that can include a path and/ordrive and/orfilename
extension. ;

filename the nameofa file, generally with its extension; cannotinclude a drive or
path.

Note: PC-DOS, though notan official product name, is used in this section to indicate
IBM’sversion ofthe disk operating system originally provided by Microsoft. Commands
sometimeshave slightly different options or appearforthe first time in different versions
of MS-DOSand PC-DOS. When a commandappearsonly in the IBM versions, the abbre-
viation IBM appearsin the heading area. Significant differences between MS-DOS and
PC-DOSversions of a commandare indicated in the Syntax and Description portions
of the entry.

Section III: User Commands 725

OLYMPUSEX. 1010 - 735/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 736/1582

User CommandsIntroduction/Key

726

HEADING
The commandname as
the user would enterit
or as it would be used

in a batch or system-
configuration file.

ICON-1
MS-DOSversion

dependency.

ICON-2
Whether the command
is internal (built into
COMMAND.COM)or
external (loaded froma
disk file when needed).

ICON-3
The abbreviation IBM if

the commandis present
only in PC-DOSandthe
warning No Net if the
commandcannot be
used across a network.

PURPOSE
An abstract of command

purpose andusage.

SYNTAX

A prototype command
line, with variable names
in italic and optional
parameters in square
brackets. The various
elements of the com-
mand line should be
entered in the order

shown. Any punctuation
must be used exactly as
shown; in commands
that use commasas

separators, the comma
usually mustbe included
as a placeholderevenif
the parameteris omit-
ted. Except where noted,
commands, parameters,
and switches can be

entered in either upper-
case or lowercase. With
MS-DOSversions3.0

andlater, external com-
mandscan be preceded
by a drive and/or path.

The MS-DOS Encyclopedia

REPLAC]

REPLACE 3.2
Update Files ‘External

Purpose
Selectively adds or replaces files on a disk.

Syntax
REPLACE[drive:]pathname [drive:]|path\ [/AI/D]L/PIU/RIL/SII/W)
where:

pathname is the nameandlocation ofthe source files to Y€ transferred, optionally
Preceded by a drive; wildcard characters age/permittedin thefilename.

drive:path is the destinationforthefile being transffrred; filenames are not permit-
ted in the destination parameter.

A uansfers only those sourcefiles thgdo notexist at the destination (cannot
be used with /S or /D).

/D transfers only those sourcefiJés fvith a more recent date than their destina-
tion counterparts (cannot ye usqd with /A).

/P Prompts the user for coyflirmatign before eachfile is transferred.
dR allows REPLACEto oferwrite ddstination read-onlyfiles.

“sS searches all subdj€ctoriesofthd destination directory fora match withthesource filesXcannot be usedpovith /A).
Ww causes REPJACEto waitfor the flisk to be changed before transferringfiles,

Description

O14

‘The REPLACEutility allowsfiles to be updated qasily to more recent versigas. REPLACE
examines the source and destination directoriesfand, depending on the sWitches used in
the commandline, selectively updates matching files or copies only yyOsefiles that existonthe source. disk butnatthe destingtion disk

‘The pathname parameter (the source) specifies the name andfocationofthefiles to be
transferred foptionally preceded by a drive); wildcards are permitted in the filename. The '
drive:path parameter(the destination) specifies the locg¢fon ofthe files to be replaced
andcan corbistofa drive, a path, or both. If only a dijvé ip specified as the destination,
REPLACE a4sumes the current directory of the disk#h thaf drive. If the destination is omit-
ted completply, REPLACEassumes the current deve and directory. The /S switch causes
REPLACEtqalso searchall subdirectories of Xe destinatipn directoryforfiles to-be
replaced.
TheA,/D, Bnd /P switches allow selegfive replacement f files on the destination disk.
‘When the 4 switch is used, REPLAZE transfers only thos¢ files on the source disk that do
not exist in [he destination diregsOry. When the /D switcl{ is used, REPLACEtransfers only

‘The MS-DOS Encyclopedia

BELOW WHERE DESCRIPTION

A briefexplanation of A detailed description of
each command parame- the command,including
ter and switch. Drives,
paths, andfilenamesare
alwayslistedfirst, fol-
lowed by the switches in
alphabetic order. Any
special position required
for a filename or switch

is shown in the syntax
line and noted in the

explanation.

a full explanation of
MS-DOSversion depen-
dencies, default values,
possible interactions of
command parameters
and options,useful
background information,
and any applicable
warnings.

OLYMPUSEX. 1010 - 736/1582

OLYMPUS EX. 1010 - 737/1582

REPLACE

those sourcefiles that match the destination filenames but have a more recent date than
their destination counterparts| (The /D switch is not available with the PC-DOSversion of
REPLACE.) The /P switch causes REPLACE to prompt the userfor confirmation beforeeachfile is wansferred.
The /R switch allows the repldcementof read-only as well as normalfiles. If the /R switch
is not used and oneofthe destinationfiles sratwouktotherwise berepiaced atked
read-only, the REPLACE progtam terminatés with an error message. (REPLACE cannotbe
used to update hiddenor system files.)
The /W switch causes REPLACE to pauseahd waitfor the userto press any key before
beginningthetransferoffiles| This allows {he user to change disksin floppy-disk systems
with no fixed disk and in those cases wher¢ the REPLACEprogramitself is present onneither the source northe desjination disk]

Return Codes
The REPLACE operation yas successful.
An error was found in ty€ REPHACE commandline,
No matchingfiles Pete found tp replace.
The source or des¢fnation path was invalid or does notexist.
Oneofthefilesfo be replaced was marked read-only and the /R switch wasnot includegiin the commandline.

8 Memory yas insufficientto run|the REPLACE command.
15 Aninylid drive was specifiediinthe commandline.
Other Stapdard MS-DOSerror codes (feturned onafailed Interrupt 21H file-function

quest).
Examples

To replace thefiles in the directory \SOUR(E on 1 currentdrive with all matchingfiles
onthe disk in drive A that have a more recant gaffe, type
C>REPLACE Ar*,* \SOURCE /D <Enter>

To transfer from the disk in drive A only‘thosefiles thak are not already presentin the cur-
rent directory, type
C>REPLACE Ar*.* /A <Enter>

Messages
n File(s) added
After the replacement operation is completed,if the /A switchWvas used in the command
line, REPLACEdisplays the total numberoffiles added
n File(s) replaced
After the replacement operation is completed, REPJACEdisplaysthe total numberoffiles
processed,

Section Hl: UserCommands 915

User CommandsIntroduction/Key

RETURN CODES

Exit codes returned by
the command(if any)
that can betested in a

batchfile or by another
program.

EXAMPLES

, One or more examples
of the commandat work,
including examples of
the resulting output
where appropriate. User
entry appears in color;
do nottype the prompt,
whichappearsin black.
Press the Enter key
Cabeled Return on some

keyboards) as directed
at the end of each
commandline.

MESSAGES

An alphabetic list of
messages that may be
displayed when the
commandis used in
MS-DOSversion 3.2

(mayvaryslightly in
earlier versions). Both

messages generated by
the commanditself and

applicable messages gen-
erated by MS-DOSare
included. Following each
messageis a brief
explanation of the con-
dition that produces the
message and, where
appropriate, any action
that should be taken.

Section III: User Commands 727

OLYMPUSEX. 1010 - 737/1582

OLYMPUS EX. 1010 - 738/1582

User CommandsIntroduction

Contents by Functional Group
The MS-DOS commandscan be divided into several distinct groups accordingto the func-
tions they perform. Theseare listed on the following pages.

Command Action

System Configuration and Control =»
BREAK Set Control-C check.

COMMAND Install secondary copy of commandprocessor.
DATE Set date.

EXIT Terminate commandprocessor.
PROMPT Define system prompt.
SELECT Configure system disk for a specific country.
SET Set environmentvariable.

SHARE Install file-sharing support.
TIME Set system time.
VER Display version.

Character-Device Management
CLS Clear screen.

CTTY Assign standard input/output.
GRAFTABL Load graphics characterset.
GRAPHICS Print graphics screen-dump program.
KEYBxx Define keyboard.
MODE Configure device.
PRINT Printfile (backgroundprint spooler).

File Management
ATTRIB Changefile attributes.
BACKUP Backupfiles.
COMP Comparefiles.
COPY Copyfile or device.
DEL/ERASE Deletefile.

EDLIN Create or modify text file (see also commands below).
FC Comparefiles.
RECOVER Recoverfiles.

RENAME Changefilename.
REPLACE Updatefiles.
RESTORE Restore backupfiles.
TYPE Displayfile.
XCOPY Copyfiles.

(more)

728 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 738/1582

OLYMPUS EX. 1010 - 739/1582

User CommandsIntroduction

 Command Action

Filters

FIND Findstring.
MORE Display by screenful.
SORT Sortfile or character stream alphabetically.

DirectoryManagement
- APPEND

CHDIR

DIR

MKDIR

PATH

RMDIR

TREE

Disk Management
ASSIGN

CHKDSK

DISKCOMP
‘DISKCOPY

FORMAT

FDISK

JOIN
LABEL

SUBST

SYS

VERIFY

VOL

Set data-file search path.
Change current directory.
Display directory.
Makedirectory.
Define commandsearch path.
Removedirectory.
Display directory structure.

Assign drivealias.
Checkdisk status.

Compare floppydisks.
Copy floppy disks.
Initialize disk.

Configure fixed disk.
Join disk to directory.
Display volumelabel.
Substitute drive for subdirectory.
Transfer system files.
Setverify flag.
Display disk name.

Installable Device Drivers
ANSISYS

DRIVER.SYS

RAMDRIVE.SYS

VDISK.SYS

ANSI console driver.

Configurable external-disk-drive driver.
Virtual disk.

Virtual disk.

System-Configuration File Directives
BREAK Configure Control-C checking.
BUFFERS Configure interna! disk buffers.
COUNTRY Set country code.
DEVICE Install device driver.

DRIVPARM Set block-device parameters.
FCBS Set maximum openfiles using File Control Blocks (FCBs).

(more)

Section II: User Commands 729

OLYMPUSEX. 1010 - 739/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 740/1582

User CommandsIntroduction

Command

Action

System-Configuration File Directives (continued)
FILES

LASTDRIVE
SHELL

STACKS

Set maximum openfiles using handles.
Set highest logical drive.
Specify command processor.
Configure internal stacks.

Batch-File Directives

AUTOEXEC.BAT
ECHO

FOR

GOTO
IF

PAUSE

REM

SHIFT

EDLIN Commands

linenumber

44%wWOVEHMHOOP

730 The MS-DOS Encyclopedia

System startup batchfile.
Display text.
Execute commandonfile set.

Jumpto label.
Perform conditional execution.

Suspend batch-file execution.
Include commentline.

Shift replaceable parameters.

Editline.

Appendlines from disk.
Copylines.
Delete lines.

End editing session.
Insert lines.

List lines.

Movelines.

Display in pages.
Quit.

Replacetext.
Searchfor text.

Transfer anotherfile.

Write lines to disk,

OLYMPUSEX. 1010 - 740/1582

OLYMPUS EX. 1010 - 741/1582

ANSISYS

ANSLSYS 2.0 andlater
ANSI Console Driver External

Purpose

Allowsthe user to employ a subset of the American National StandardsInstitute (ANSD
standard escape sequencesfor control of the console.

Syntax

DEVICE=[drive:][path]ANSISYS

where:

drive:path is the drive and/or path to search for ANSLSYSif it is not in the root direc-
tory of the startup disk.

Description

The ANSLSYSfile contains an installable character-device driver that supersedes the
system’s default driver for the console device (video display and keyboard). After
ANSLSYSis installed by means of a DEVICE=ANSI.SYS command in the CONFIG.SYSfile
ofthe disk used to start the system, programscan use a subsetof the ANSI 3.64-1979 stan-
dard escape sequencesto erase the display, set the display mode andattributes, and con-
trol the cursor in a hardware-independentfashion. (A supplementaryset of escape
sequencesthat are not part of the ANSI standard allows reprogrammingof the keyboard.)

Programs that use ANSI.SYSfor control of the screen can run on any MS-DOS machine
without modification, regardless of its hardware configuration. However, most popular ap-
plication programsfor the IBM PC and compatibles circumvent ANSI.SYS and manipulate
the video controller andits video bufferdirectly to achieve maximum performance.

The ANSLSYSdevice driver detects ANSI escape sequences in a character stream and
interprets them as commandsto control the keyboard and display. An ANSI escape se-
quence is a sequence of ASCII characters, the first two of which must be the Escape char- .
acter (1BH)andtheleft-bracket character (5BH). The characters following the Escape and
left-bracket characters vary with the type of control function being performed; most con-
sist of an alphanumeric code followed bya letter. In some cases this code is a single char-
acter; in others it is more than one character or a two-part string separated by a semicolon.
Each ANSI escape sequence endsin a uniqueletter character that identifies the sequence;
case is significant for these letters. The escape sequences supported by the ANSI.SYS
driver are summarizedin the tables on the following pages.

An escape sequence cannotbe entereddirectly at the system prompt because each ANSI
escape sequence must begin with an Escape character, and pressing the Esc key (or Alt-27
on the numeric keypad) causes MS-DOSto cancel the commandline. There are three
methodsof executing ANSI escape sequencesthat do not require writing a program:

Section III: User Commands 731

OLYMPUSEX. 1010 - 741/1582

OLYMPUS EX. 1010 - 742/1582

ANSLSYS

® Include the escape sequences in a PROMPT command.
@ Enter the escape sequences into a word processoror text editor, save thefile as an

ASCII textfile, and then execute thefile by using the TYPE or COPY command(spec-
ifying CON as the destination for COPY) from the MS-DOSsystem prompt.
(if the escape sequences are echoed on the screen whenthefile is executed,a
DEVICE=ANSLSYS command was not included in the CONFIG.SYSfile when the

system was turned on.)
@ Place the escape sequencesin a batch (,BAT)file as part of an ECHO command.|

Whenthe batch file is executed, the sequencesare sent to the console.

When escape sequencesare entered using the PROMPT command, the Escape character
is entered as $e. When escape sequencesare entered using a word processorto create an
ASCIItext or batchfile, the Escape character is usually entered by pressing the Esc key or
by holding downthe Alt key while typing 27 on the numeric keypad. (See the documenta-
tion provided with the word-processorfor specific instructions.) In most cases, the escape
character will appear in the word processoror text editor as a back-arrow character (—)
or a caret—left bracket combination (“D).

Note: Whenthe escape character is representedas “[(asit is in EDLIN,for example), an
additionalleft-bracket character muststill be added to properly begin an ANSI escape se-
quence. Thus, the beginningof a valid ANSI escape sequence in EDLIN appears as “IL

Thetables in this section use the abbreviation ESC to show where the ASCII escape char-
acter 27 (BH) appearsin thestring. ,

Note: Case is significant for the terminal character in the string.

The following escape sequences control cursor movement:

Operation Escape Sequence_Effect

Cursor Up ESClnumberA Movesthe cursor up number rows (1-24,
default = 1). Has no effect if cursor is on

the top row.
Cursor Down ESCl[numberB Movesthe cursor down number rows

(1-24, default = 1). Has noeffect if cursor
is on the bottom row.

Cursor Right ESCimumberC Movesthe cursor right number rows (1-79,
default = 1). Has noeffectif cursoris in

the far right column.
Cursor Left ESC[numberD Movesthe cursorleft number rows (1-79,

default = 1). Has no effectif cursoris in
thefar left column.

Position Cursor ESC[row, columnH Movesthe cursorto the specified row
(1-25, default = 1) and column (1-80,
default = 1). If row is omitted, the semi-
colon before column must be specified.

(more)

732 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 742/1582

OLYMPUS EX. 1010 - 743/1582

ANSLSYS

 Operation Escape Sequence Effect

Position Cursor ESClrow;columnf Sameas above.

Save Cursor Position ESC{s Stores the current row and columnposition
of the cursor. Cursor can be restored to

this position later with a Restore Cursor
Position escape sequence.

Restore Cursor ESClu Movesthe cursorto the position of the
Position most recent Save Cursor Position escape

sequence.

The following two escape sequencesare usedto eraseall or part of the display:

Operation Escape Sequence_Effect

Erase Display ESC[2J Clears the screen and places the cursorat
the homeposition.

Erase Line ESC{K Erases from the cursor position to the end
of the same row.

The following escape sequencescontrol the width and the color capability of the display.
Theuse of any of these sequencesclears the screen.

Operation Escape Sequence Effect

Set Mode ESC[=0h Sets display to 40 x 25 monochrome(text).
ESC[=1h Sets display to 40 x 25 color(text).
ESC[=2h Sets display to 80 x 25 monochrome(text).
ESC[=3h Sets display to 80 x 25 color (text).
ESC[=4h Sets display to 320 x 200 4-color (graphics).
ESC[=5h Sets display to 320 x 200 4-color (graphics,

color burst disabled).

ESC[=6h Sets display to 640 x 200 2-color (graphics).

The following escape sequences control whether characters will wrap aroundtothe first
columnof the next row after the rightmost columnin the current row has beenfilled:

Operation Escape Sequence Effect

Enable Character ESC[=7h Sets character wrap.
Wrap .

Disable Character ESC[=71 Disables character wrap. (Note that the
Wrap terminatingletter is a lowercaseL.)

Section III: User Commands 733

OLYMPUSEX. 1010 - 743/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 744/1582

ANSLSYS-

The following escape sequence controls specific graphics attributes such as intensity,
blinking, superscript, and subscript, as well as the foreground and backgroundcolors:

ESClattrib; ...;attribm where:

attrib is one or more of the following values. Multiple values must be separated by ~
semicolons.

Value Attribute Value Foreground Value Background
Color Color

7) All attributes off 30 Black 40 Black

1 High intensity (bold) 31 Red 4l Red
2 Normal intensity 32 Green 42 Green
4 Underline (mono-

chromeonly) 33 Yellow 43 Yellow
5 Blink 34 Blue 44 Blue

7 Reverse video 35 Magenta 45 Magenta
8 Concealed Gnvisible) 36 Cyan 46 Cyan

37 White 4] White

Note: Values 30 through 47 meet the ISO 6429 standard.

The following escape sequence allows redefinition of keyboard keysto a specified string:

ESClcode;string; ...p

where: ~

code is one or more ofthe following values that represent keyboard keys.
Semicolons shownin this table must be entered in addition to the required
semicolonsin the commandline.

string is either the ASCII code for a single character or a string contained in quotation
marks. For example, both 65 and "A" can be used to represent an uppercase A.

Key . Code

Alone Shift- Ctrl- Alt-

Fl 0;59 0;84 0;94 0;104
F2 0;60 0;85 0;95 0;105
F3 0;61 0;86 0;96 0;106
F4 0;62 0;87 0;97 0;107 °
F5 0;63 0;88 0;98 0;108
F6 0;64 0;89 0;99 0;109

(more)

734 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 744/1582

OLYMPUS EX. 1010 - 745/1582

$$$asses

 Key Code

Alone Shift- Ctrl- Alt-

F7 . 0;65 0;90 0;100 0;110
F8 0;66 0;91 0;101 0;111

“FO 0;67 0;92 0;102 0;112
_ FIO 0;68 0;93 0;103 0;113

Home 0;71 55 0;119 -

Up Arrow 0;72 56 - -
Pg Up 0;73 57 0;132 ~
Left Arrow 0;75 52 0;115 -
Down Arrow 0;77 54 0;116 -
End 0;79 49 0;117 -
Down Arrow 0;80 50 - -

Pg Dn 0;81 51 0;118 -
Ins 0;82 48 - -
Del 0;83 46 - -
PrtSc - - 0114 -
A 97 65 1 0;30
B 98 66 2 0;48
C 99 67 3 0;46
D 100 68 4 0;32
E 101 69 5 0;18

F 102 70 6 0;33
G 103 71 7 0;34
H 104 72 8 0;35
I 105 73 9 0;23

J 106 74 10 0;36
K 107 75 11 0;37
L 108 76 12 —s«0;38
M 109 77 13 0;50
N 110 78 14 0;49
O 111 79 15 0;24
Pp 112 80 16 0;25
Q 113 81 17 0;16
R 114 - 82 18 0;19
8 115 83 19 0;31
T 116 84 20 0;20
U 117 85 21 0;22
Vv 118 86 22 0;47
WwW 119 87 23 0;17
x 120 88 24 0;45

(more)

Section II: User Commands 735

OLYMPUSEX. 1010 - 745/1582

OLYMPUS EX. 1010 - 746/1582

ANSLSYS

Key Code

Alone=Shift- —- Ctrl Alt-

Y 121 89 25 0;21
Z 122 90 26 0;44
1 49 33 - 0;120
2 50 64 - 0;121
3 51 35 oe 0;122

4 52 36 - 0;123
5 53 37 - 0;124
6 54 94 - 03125
7° 55 38 - 0;126
8 56 42 - 0;127
9 57 40 - 0;128
0 48 41 - 0;129
- 45 95 - 0;130
= 61 43 - 0;131
Tab 9 0;15 - -

Null 0;3 - - -

Examples

The following examples use ESC or $e to show where the ASCII escape character 27 (BH)
appears in the string. The PROMPT examples can be typed as shown,but for the examples
that use ESC to denote the escape character, the actual escape character should be typed in
its place.

To move the cursor to row 10, column 30 and display the string Main Menu, use the escape
sequence

ESC[10;30fMain Menu

or

ESC(10;30HMain Menu

To move the cursor to row 5, column 10 anddisplay the letter A (ESC/5;10fA), move the
cursor down one row (ESC/B), movethe cursor back one space anddisplaythe letter B
(ESC[DB), move the cursor down one row (ESC/B), and movethe cursor back one space
and display the letter C (ESC/DC), use the escape sequence

ESC[5; 10fAESC[BESC{DBESC[BESC[DC

To use ANSI escape sequences with the PROMPT commandto save the current cursor
position ($e/s), movethe cursorto row 1, column69 ($e/1;69f), display the currenttime
using the PROMPT command's $t function, restore the cursor position ($e/u4), and then

736 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 746/1582

OLYMPUS EX. 1010 - 747/1582

ANSLSYS

display the current path using the PROMPT command's $p function and display a greater-
than sign using the PROMPT command's $g function, use the escape sequence

C>PROMPT Se[s$e[1;69f$t$e[uSp$g <Enter>

To erase the display (ESC/2)), then movethe cursorto row 10, column30 and display the
string Main Menu (ESC/10;30fMain Menu), use the escape sequence

ESC(2JESC(10;30fMain Menu

To movethe cursor to row 5, column 40 (ESC/5;40f) and erase the remainderof the row
starting at the current cursor position (ESC/K), use the escape sequence

ESC[5; 40fESC(K

To movethe cursor to row 3 CESC/3;f), erase the entire row CESC/K), movethe cursor
down onerow (ESC/B), erase that entire row (ESC/K), move the cursor down one row and
erase that entire row, use the escape sequence

ESC[3; fESC[KESC[BESC[KESC[BESC{[K

To set the display mode to 25 rowsof 80 columnsin color (ESC/=3h) and disable character
wrap (ESCF71), use the escape sequence

ESC[=3hESC[=71

Note that ESC(=3h will alsoclear the screen.

To enable character wrap, use the escape sequence

ESC[=T7h

To set the foreground color to black and the backgroundcolor to blue (ESC/30;44m), clear
the display (ESC/2/), then position the cursor at row 10, column 30 anddisplay thestring
Main Menu (ESC/10;30fMain Menu), use the escape sequence

ESC(30;44mESC(2JESC[10;30fMain Menu

To (effectively) exchange the backslash and question-mark keys usingliteral strings to
denote the keys, use the escape sequence

ESC C'\"; NOMDESC["?"; WAM

To exchange the backslash and question-mark keys using each key’s ASCII value to denote
the key, use the escape sequence

ESC [92; 63pESC [63; 92p

To restore the backslash and question-mark keys to their original meanings, use the escape
sequence

ESC("\"; "\ "DESC ("2"; "OMD

or

ESC [92; 92pESC [63; 63p

Section IIT: User Commands 737

OLYMPUSEX. 1010 - 747/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 748/1582

ANSLSYS

To redefine the Alt-F9 key combination (ESC/0;112) so thatit issues a CLS command
(,"CLS") plus a carriage return (;13) to execute the CLS command,then issues a DIR com-
mandpiped through the SORTfilter starting at column 24 (;"DIR | SORT/+24") followed
by anothercarriage return, use the escape sequence

ESC(0;112;"CLS";13;"DIR | SORT /+24";13p

To restore the Alt-F9 key combinationto its original meaning, use the escape sequence

ESC([0;112;0;112p
738 The MS-DOS Encyclopedia

OLYMPUSEX. 1010-748/1582

OLYMPUS EX. 1010 - 749/1582

APPEND

APPEND 3.2
Set Data-File Search Path External

Purpose

Specifies a search path for open operations on datafiles. (Also supported with some
implementationsofversion 3.1, for use with networks.)

Syntax
APPEND[[drive:]path} [;[drive:]path ...]
or

APPEND;

where:

path is the nameofa valid directory, optionally preceded bya drive.

Description

APPENDis a terminate-and-stay-resident program that is used to specify a path or paths to
be searchedfor datafiles Gin contrast with the PATH command,whichspecifies a path to
be searched for executable or batch files). The search path can include a networkdrive.If
a program attempts to opena file andthe file is not found in the current or specified direc-
tory, each path given in the APPEND commandis searched.

If the APPEND commandis entered with a path consisting of only a semicolon character
G), a “null” search path for data files is set; that is, no directory other than the current or
specified directory is searched. This effectively cancels any search paths previously set
with an APPEND commandbutdoesnot free the memory used by APPEND.

An APPEND commandwithout any parameters displays the current search path(s) for data
files.

Note that a program cannot detect whether an openedfile was found whereit was ex-
pected (in the currentor specified directory) or in some otherdirectory specified in the
APPEND command.

Warning: When an assigned driveis to be part of the search path, the ASSIGN command
must be used before the APPEND command.Use of the ASSIGN commandshould be

avoided wheneverpossible because it hides drive characteristics from those programsthat
require detailed knowledgeofthe drive size and format.

Section III: User Commands 739

OLYMPUSEX. 1010 - 749/1582

OLYMPUS EX. 1010 - 750/1582

APPEND

Examples

To cause the directories C:\SYSTEM and C:\SOURCEto be searchedfor a file during an
open operationif the file is not found in the current or specified directory, type

C>APPEND C:\SYSTEM;C:\SOURCE <Enter>

To display the current search path for datafiles, type

C>APPEND <Enter>

MS-DOSthendisplays

APPEND=C: \SYSTEM;C:\SOURCE

To ensurethat no directories other than the current or specified directory are searched
during a file open operation, type

C>APPEND ; <Enter>

Messages

APPEND/ASSIGN Conflict
APPEND wasused before ASSIGN.

Incorrect DOS version ;

The version of APPENDis not compatible with the version of MS-DOSthat is running.

No appendeddirectories
The APPEND command had no parameters and no APPENDsearchpath is active.

740 ‘The MS-DOSEncyclopedia.

OLYMPUSEX. 1010 - 750/1582

OLYMPUS EX. 1010 - 751/1582

ASSIGN

ASSIGN 3.0 and later

Assign Drive Alias External

Purpose

Redirects requests for disk operations on onedrive to a different drive. (Available with
PC-DOSbeginning with version 2.0.)

Syntax

ASSIGN[x=y [...]]

where:

x is a valid designator (A, B,C, etc.) fora disk drive that physically exists in the
system.

y is a valid designatorfor the drive to be accessed by referencesto x.

Description

ASSIGNis a terminate-and-stay-resident program that redirects all references to drive xor
files on drive x to drive y. The ASSIGN commandis intended for use with application pro-
gramsthat require files to reside on drive A or B and have no provision within the pro-
gram for changing those drives.

Multiple drive assignments can be requested in the same ASSIGN commandline; the drive ‘
pairs must be separated with spaces, commas, or semicolons. Unlike the form in most
other MS-DOS commands, the drive letters are not followed by colon characters (:). When
a single drive is assigned, the equal sign is optional.

ASSIGN commandsare not incremental. Each new ASSIGN commandreplacesassign-
ments made with the previous ASSIGN commandand cancels any assignments not specifi-
cally replaced. Entering ASSIGN with no parameters cancels all current drive assignments.

Warning: Use of the ASSIGN command should be avoided whenever possible because it
hides drive characteristics from those programsthat require detailed knowledge of the
drive size and format; in particular, drives redirected with an ASSIGN statement should
never be used with a BACKUP, RESTORE, LABEL, JOIN, SUBST, or PRINT command.
ASSIGNcanalso defeat the checking performed by the COPY commandto preventa file
from being copied onto itself. The FORMAT,SYS, DISKCOPY, and DISKCOMP commands
ignore any drive reassignments made with ASSIGN.

With MS-DOSversions3.1 andlater, the SUBST commandshould be used instead of
ASSIGN.For example, the command

C>ASSIGN A=C <Enter>

should be replaced with the command

C>SUBST A: C:\ <Enter>

Section III: User Commands 741

OLYMPUSEX. 1010 - 751/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 752/1582

ASSIGN

Examples

To redirect all requests for drive A to drive C, type
C>ASSIGN A=C <Enter>

To redirect ali requests for drives A andBto drive C, type
C>ASSIGN A=C B=C <Enter> .

To cancelall drive redirections currently in effect, type
C>ASSIGN <Enter>

Messages

742.

Incorrect DOS version

The version of ASSIGN is not compatible with the version of MS-DOSthat is running.

Invalid parameter
Oneof the specified drive designators refers to a drive that does not exist in the systern.

The MS-DOS Encyclopedia

OLYMPUSEX.1010 -752/1582

OLYMPUS EX. 1010 - 753/1582

— . ATTRIB
. f -

ATTRIB 3.0 and later

ChangeFile Attributes External

Purpose

Sets, removes, or displaysa file’s read-only and/or archiveattributes.

i Syntax

ATTRIB [+R!-R] [+A -A] [drive:]pathname

where:

+R marksthefile read-only.
-R removes the read-only attribute.
+A sets the file’s archive flag (version 3.2).
-A removesthefile’s archive flag (version 3.2).
pathname is the name andlocation, optionally preceded by a drive,of the file whose

attributes are to be changed or displayed; wildcard characters are permitted in
the filename.

Description

Eachfile has an entry in the disk’s directory that contains its name, location, and size; the
date and time it was created or last modified; and an attribute byte. For normalfiles, bits 0,
1, 2, and 5 in the attribute byte designate, respectively, whetherthefile is read-only, hid-
den, or system and whetherit has been changedsinceit waslast backed up.

The ATTRIB commandprovides a way to alter the read-only and archivebits from the
MS-DOS commandlevel. If a file is marked read-only,it cannot be deleted or modified;
thus, crucial programs or data can be protected from accidental erasure.A file’s archive
flag can be used together with the /M switch of the BACKUP commandor the /M or /A
switch of the XCOPY commandto allow an incremental or selective backupoffiles from
one disk to another.

If the ATTRIB commandis entered with only a pathname,the current attributes of the
selected file are displayed. AnRis displayed next to the nameofa file that is marked read-
only and anA is displayed if the file has the archive flagset.

Examples

To makethe file MENUMGR.Cin the current directory of the current drive a read-onlyfile,
type

C>ATTRIB +R MENUMGR.C <Enter>

To display theattributes of the file LETTER.DOCin the directory \SOURCEon the disk in
drive D, type

C>ATTRIB D:\SOURCE\LETTER.DOC <Enter>

Section II; User Commands 743

OLYMPUSEX. 1010 - 753/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 754/1582

ATTRIB

MS-DOSthen displays

RA D: \SOURCE\LETTER .DOC ’ :

to indicate that the file is marked read-only and the archive flag has been set.

Toset the archive flag onallfiles in the directory \SYSTEM on drive C and mark them as
read-only, type
C>ATTRIB +A +R C:\SYSTEM*.* <Enter>

Messages

Access denied

ATTRIB cannotbe usedto alter or replace the attributes ofa file in use across a network.

DOS2.0 or later required .
ATTRIB does not work with versions of MS-DOSearlier than 2.0.

Incorrect DOS version

The version ofATTRIB is not compatible with the version of MS-DOSthatis running.

Invalid number ofparameters
More than twoattributes were used before the pathname.

Invalid path orfile not found
Thefile named in the commandline or one of the directories in the given path does not
exist.

Syntax error

Aninvalid attribute was supplied or the attribute was not properly placedbefore the path-
name in the commandline.

744 The MS-DOS Encyclopedia

OLYMPUSEX.1010 -754/1582

OLYMPUS EX. 1010 - 755/1582

/ BACKUPaf

BACKUP 2.0 and later

Back UpFiles External

Purpose

Creates backup copiesoffiles, along with the associated directory information necessary
to restore thefiles to their original locations.

Syntax

BACKUPsource destination [/A][/D:date][/L:filename] [/M] [/P} [/S] [/T:time]

where:

source is the location (drive and/or path) and, optionally, the nameofthefiles to
be backed up; wildcard characters are permitted in the filename.

destination__isthe drive to receive the backupfiles.
JA adds thefiles to existing files on the destination disk without erasing the

destination disk.

/D:date backs up only thosefiles modified on orafter date.
/L:filename createsalog file with the specified namein the root directory of the

disk being backed up.If filename is not specified, BACKUPcreates a
file named BACKUP.LOGandplaces the log entries there. Use of the
/L:filename switch may cause loss of IBM compatibility.

/M ’ backs up only thosefiles modified since the last backup.
/P packs the destination disk with as manyfiles as possible, creating sub-

directories, if necessary, to hold someofthefiles. Use of the /P switch
causes loss of IBM compatibility.

/S backs up the contentsofall subdirectories of the source directory.
/T:time backs up only those files modified on or after time.

Note: Not all switches are supported byall implementations of MS-DOS.

Description

The BACKUP commandcreates a backup copyofthe specifiedfile orfiles, transferring
them from either a floppy disk or a fixed disk to another removable or fixed disk. The
backup file is in a special formatthat includes information aboutthe original file’s location
in the directory structure. Files created by BACKUPcanberestoredto their original form
only with the RESTORE command.

BACKUPcan back upasingle file or manyfiles in the same operation. If only a driveletter
is given as the source,all the files in the current directory of that disk are backed up.If
only a path is given as the source,all the files in the specified directory are backed up.If
the /S switch is used,all the files in the currentor specified directory are backed up, and

Section III: User Commands 745

OLYMPUSEX. 1010 - 755/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 756/1582

BACKUP

thefiles in all its subdirectories as well. If both a path and a filename are entered as the
source, the specified file or files in the named directory are backed up.

If the sourcefile is marked read-only, the resulting backupfile will also be marked read-
only. If the source file’s archive bit is set, it will be cleared for both the source and the des-
tination files. BACKUPalso backs up hiddenfiles; the files will remain hidden on the desti-

‘nation disk.

If the destination disk is a floppy disk, its previous contents are erased aspart of the
backup operation (unless the /A switch is included in the commandline and the destina-
tion disk has already been used as a backup disk— thatis, the disk contains a valid
BACKUPID.@@@file). If the files being backed up do notfit onto a single floppydisk,the
user will be promptedto insert additional disks until the backup operation is complete.

If the destination disk is a fixed disk, the backed-upfiles are placed in a directory named
\BACKUP.Ifa \BACKUPdirectory already exists on the fixed disk, any files previously
containedin it are erased as part of the backup operation (unless the /A switch is included
in the commandline and the destination disk has already been used as a backup disk—
that is, the \BACKUPdirectory contains a valid BACKUPID.@@@file). Other files on the
destination fixed disk are not disturbed.

A control file named BACKUPID.@@@is placed on every floppy disk onto whichfiles are
backed up or in the /BACKUPdirectoryif the files arebacked up ontoa fixed disk. The
BACKUPID.@@@file has the following format:

Byte Value Use

00H 00 or FFH Notlast floppy disk/last floppy disk
01-02H nn Floppy disk numberin low-byte/high-byte decimal format
03-04H=omnnn Full year in low-byte/high-byte order
05H 41-31 Day of the month
06H 1-12 Monthof the year
07-0OAH=nmnn Standard MS-DOSsystem timeif the /T:time switch was used;

otherwise 0

OB-7FH 00 Not used

Each backed-upfile also has a 128-byte header added to it when it is created. The header
has the following format:

Byte Value Use

00H 00 or FFH Notlast floppy disk/last floppy disk on whichthis file resides
01H nn Floppy disk number
02-04H 00 Not used ,

(more)

746 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -756/1582

OLYMPUS EX. 1010 - 757/1582

BACKUP

Byte Value Use

05-44H=omn File’s full pathname, exceptfor drive designator
45-52H 00 Not used.

53H nn _ Length ofthefile’s pathnameplus one
54~7FH 00 Not used

The /T:time, /D:date, and /M switches allow incrementalor partial backups. The /T:time
switch excludesfiles modified or created before a certain time and should be used in the
form of the COUNTRY commandin effect. For the USA, the format is /T: hh:mm:ss. (The
/T:time switch is not supportedin all implementations of BACKUP.) The /D:date switch
excludesfiles modified or created before a certain date and should be usedin the form

of the COUNTRY commandin effect. For the USA,the format is /D: mm-dd-yy. The /M
switch selects only thosefiles that have been modified since the last backup operation.

|

The /L:filename switch causesalogfile to be created on the source disk. Thisfile
includes the nameof eachfile backed up,the time and date, and the numberofthe des-
tination disk that received that backupfile.Iffilename is omitted, the name defaults to
BACKUPLOG.Useofthe /L:filename switch can cause compatibility problems between
MS-DOSand PC-DOSbecause the backup logfile may match the search pattern and be
backedup,too, resulting in an extra file on the backup disk.

The /P switch causes backupfiles to be packed as densely as possible on the destination
disk. When manyshort files are being backed upto floppy disks, the numberoffiles that
fit on the destination disk may exceed the numberofentries that will fit in the destina-
tion’s root directory. If the /P switch is included in the commandline, subdirectories are
created on the destination disk as needed to use the disk space more effectively. The /P
switch is not supported under PC-DOS; backup disks created with the /P switch will not
be compatible with IBM’s BACKUP and RESTORE commands.

Warning: BACKUPshould not be used on disk directories or drives that have been
redirected with an ASSIGN,JOIN, or SUBST command.

Return Codes .

0 Backup operation wassuccessful.
1 No files were found to back up.
2 Somefiles were not backed up because of sharing conflicts (versions 3.0 andlater).
3 Backup operation was terminated by user.
4 Backup operation was terminated becauseof error.

Examples

To backupthe file REPORT.TXTin the current directory on the currentdrive, placing the
backupfile on the disk in drive A, type
C>BACKUP REPORT.TXT A: <Enter>

Section III: User Commands 747

OLYMPUSEX. 1010 - 757/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 758/1582

BACKUP

To backupallthefiles in the subdirectory B:\V2\SOURCE,placing the backupfiles on the
disk in drive A, type

C>BACKUP B:\V2\SOURCE A: <Enter>

To back upall the files with extension .C in the directory \V2\SOURCE onthe current
drive, placing the backup files on the disk in drive A, type
C>BACKUP \V2\SOURCE*.C A: <Enter> se

To back up all the files with the extension .ASM from the current directory on the current
drive and from all its subdirectories, placing the backup files on the disk in drive A, type

C>BACKUP *.ASM A: /S <Enter>~

To back up all the files that have been modified since the last backup from all the sub-
directories on drive C, placing the backup files on the disk in drive A, type
C>BACKUP C:\ A: /S /M <Enter>

To backupall the files with the extension .C from the directory C:\V2\SOURCEthat were
modified on or after October 16, 1985, placing the backupfiles on the disk in drive A, type
C>BACKUP C:\W2\SOURCE*.C A: /D:10-16-85 <Enter>

Messages

748

+«Backing up files to driveX: +
Diskette Number: n
This informational message informs the user of the progress of the BACKUP command.

«Last file notbacked up ++
The destination drive does not have enough space to back upthelastfile.

+«Not able to back upfile ++
Oneofthe system calls used by BACKUPfailed unexpectedly; for example, a file could not
be opened,read, or written.

Cannot create Subdirectory BACKUP on driveX:
Drive X is full or its root directoryis full.

DOS2.0 or later required
BACKUPdoes not work with versions of MS-DOSearlier than 2.0.

Error trying to open backuplogfile
Continuingwithout making log entries
The /L switch was used and BACKUPis unable to create the backup logfile.

The MS-DOSEncyclopedia

PrP PAVAsPT I ras AMA

TrAiaran

OLYMPUSEX. 1010 - 758/1582

OLYMPUS EX. 1010 - 759/1582

Ba

Files cannot be added to this diskette
unless the PACK (/P) switch is used
Set the switch (Y/N)?

The root directory of the destination disk is full and a subdirectory must be created to hold
the remainingfiles. Respond with Y to cause BACKUPto create a subdirectory and con-
tinue backing up files into it; respond with N to return to MS-DOS.

Incorrect DOS version

The version of BACKUPis not compatible with the version of MS-DOSthat is running.

Insert backupdiskette in driveX:
Strike any keywhen ready
This message prompts the userto insert a disk to receive the backupfiles into the speci-
fied destination drive.

Insert backup diskette n in driveX:
Strike any keywhen ready
Thefiles being backed up will not fit onto a single floppy disk; this message prompts the
userto insert the next floppy disk. Multiple-floppy-disk backup disks should be labeled
and numbered to match the numberdisplayed in this message.

Insert backup source diskette in driveX:
Strike any keywhen ready
This message prompts the userto insert the floppy disk to be backed up into the specified
source drive.

Insert last backup diskette in driveX:
Strike any keywhen ready
This message promptstheuserto insert the final disk that will receive the backupfiles
into the specified destination drive.

Insufficient memory
Available system memoryis insufficient to run the BACKUP program.

Invalid argument
‘One of the switches specified in the commandlineis invalid or is not supported in the ver-
sion of BACKUPbeing used.

Invalid Date/Time

An invalid date or time was given with the /D:date or /T:time switch.

Invalid drive specification
The source or destination drive specified in the commandlineis not available oris not
valid.

Invalid number ofparameters
At least two parameters, the source and the destination, must be specified in the com-
mandline; a maximum of seven switches can be specified after the source and
destination.

Section III: User Commands 749

OLYMPUSEX. 1010 - 759/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 760/1582

BACKUP

Invalid parameter
Oneof the switches supplied in the command lineis invalid,

Invalid path
The path specified as the sourceis invalid or does notexist.

Lastbackup diskette not inserted
Insert last backup diskette in driveX:
Strike any keywhen ready ee
The backupdisk inserted as the last backup disk was not the correct disk. Insert the cor-
rect disk.

No spacelefton device
The destination disk is full.

No suchfile or directory
The source specified is invalid or does notexist.

Source and target drives are the same
Thedisks specified as the source and destination disks are identical.

Source disk is Non-removable

The disk containing the files to be backed upis a fixed disk.

Target can not be used for backup
The disk specified as the destination disk is damaged or the /A switch was used in the
commandline and the disk does not contain a valid BACKUPID.@@@ file.

Target disk is Non-removable
Thedisk that will contain the backed-upfiles is a fixed disk.

Target is a floppy disk
or

Target is a hard disk
This informational message indicates which type of disk was specified as the destination
disk.

Too manyopenfiles

Too manyfiles are open. Increase the value of the FILES command in the CONFIG.SYS
file.

Unable to erasefilename
BACKUPis unable to erase an older version of a backed-upfile becausethefile is read-
only or is in use by another program.

750 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 760/1582

OLYMPUS EX. 1010 - 761/1582

BACKUP

Warning!Files in the target drive
X:\root directorywill be erased
Strike any keywhen ready
Thedestination is a floppy-disk drive and this message warnstheuserthatallfiles in its
root directory will be erased before the backup operation.

Warning!Files in the target drive
C:\BACKUPdirectorywill be erased
Strike any keywhen ready
BACKUPis ready to begin backing upfiles to the \BACKUPdirectory on drive C. All exist-
ing files in the \BACKUPdirectory will be deleted. Press Crtl-Break to terminate the
backup operation or press any key to continue.

Warning! Nofiles were found to backup
Nofiles were found on the source disk in the current or specified directory or no files were
found matchingthefilename supplied.

Section III: User Commands 751

OLYMPUSEX. 1010 - 761/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 762/1582

BATCH

BATCH 1.0 and later

System Batch-File Interpreter Internal

Purpose

Sequentially executes commandsstored in’a batchfile (a text-only file with aBAT
extension).

Syntax

filename||parameter! |parameter2 [...\

where:

filename is the nameofthe batch file to be executed, without the .BAT extension.
(Thefilenameis always %0 in the list of replaceable parameters.)

parameter1_isthe filename, switch, or string that is the valueof the first replaceable
parameter (%1).

parameier2_isthe filename, switch, or string that is the value of the second replaceable
parameter (%2). As many additional replaceable parameters can be speci-
fied as the commandline will hold.

Description
A batchfile is an ASCII textfile that contains one or more MS-DOS commands.It is a use-

ful way to perform sequencesof frequently used commands without having to type them
all each time they are needed. Whena batchfile is invoked by entering its name, the com-
mands it contains are carried out in sequence by a special batch-file interpreter built into
COMMAND.COM.Additional information entered in the batch-file commandline can be

passed to other programs by meansof replaceable parameters (see below).

A batch file must always have the extension .BAT. The file can contain any numberoflines
of ASCII text; each line can contain a maximum of 128 characters. Batch files can be cre-
ated with EDLIN or anothertext editor or with a word processor in nondocument mode.
(Formatted documentfiles cannot be used as batch files because they contain special con-
trol codes or escape sequencesthat cannot be processed by the batch-file interpreter.)
Batchfiles can also be created with the MS-DOS COPY commandbyspecifying the CON
device (keyboard) as the sourcefile and the desired batch-file nameas the destinationfile.
For example, after the command
C>COPY CON MYFILE.BAT <Enter>

eachlinethatis typed will be placed into MYFILE.BAT. This form of the COPY command
is terminated by pressing Ctrl-Z or the F6 key, followed by the Enter key.

The commandsin a batchfile can be any combination of internal MS-DOS commands
(such as DIR or COPY), external MS-DOS commands(such as CHKDSK or BACKUP), the
namesofother programsorbatchfiles, or the following special batch-file directives:

752 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -762/1582

OLYMPUS EX. 1010 - 763/1582

BATCH

 Command Action

mo ECHO Displays a message on standard output(versions 2.0 andlater).
i FOR ' Executes a command oneachofa setoffiles (versions 2.0 and

later).

GOTO Transfers control to anotherpointin a batch file (versions 2.0
| andlater).

IF Conditionally executes a command based on the existence of a
file, the equality of two strings, or the return code of a previously
run program (versions 2.0 andlater).

PAUSE Waits for the user to press a key before executing the remainder of
the batchfile.

REM Allows commentlines to be placed in batchfiles for internal
documentation.

SHIFT Provides access to more than 10 command-line parameters(ver-
sions 2.0 andlater).

|
|

These special batch commandsare discussedindividually, with examples, in the following
pages.

A batchfile is executed by entering its name, without the BAT extension, in response to
the MS-DOSprompt. The system’s command processor, COMMAND.COM,searches the
current directory and then each directory named in the PATH environmentvariable for a
file with the specified name and the extension .COM,.EXE,or .BAT,in that order. If a
.COM or .EXEfile is found,it is loaded into memory and receives control; if a .BAT file is
found,it is assumedto beatext file and is passed to the batch-file interpreter. (If two files
with the same nameexist in the same directory, one with a .COM or .EXE extension and
the other with a .BAT extension,it is not possible to execute the .BAT file-—the .COM or
.EXEfile is always loaded instead.)

If the disk that containsa batchfile is removed before all the commandsin the batchfile

are executed, COMMAND.COMwill promptthe user to replace the disk so that the batch
file can be completed. Execution ofa batch file can be terminated by pressing Ctrl-C or
Ctrl-Break, causing COMMAND.COMtoissue the message Terminate batchjob? (Y/N). If
the user respondswith Y, the batchfile is abandoned and COMMAND.COMdisplaysits
usual prompt.

The input redirection «), output redirection © or >>), and piping (1) characters have no
effect when they are used in a commandline that invokes a batchfile. However, they can
be used in individual commandlines within thefile.

Ordinarily, if a batchfile includes the name of anotherbatch file, control passes to the sec-
ond batch file and never returns. That is, when the commandsin the second batchfile are
completed, the batch-file interpreter terminates and any remaining commandsin thefirst

Section Il: User Commands 793
OLYMPUSEX. 1010 - 763/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 764/1582

BATCH

batchfile are not processed. However, a batchfile can execute anotherbatch file without
itself being terminated byfirst loading a secondary copy of the system’s command pro-
cessor. To accomplish this, the first batch file must contain a command of the form

COMMAND/C batch2

where batch2 is the name of the second batchfile. When all the commandsin the second

batch file have been processed, the secondary copy of COMMAND.COMexits and the
first batch file continues whereit left off. (See USER COMMANDS: comMMANDfordetails on
the use of the /C switch with COMMAND.COM.)

A batchfile can be made moreflexible by including replaceable parametersinsidethefile.
A replaceable parameter takes the form 9%, where 7 is a numeralin the range 0 through9.
Replaceable parameters simply hold places in the batchfile for filenamesor other informa-
tion that the user will supply in the command line whenthe batchfile is invoked.

Whena batchfile is interpreted and a command containing a replaceable parameteris
encountered, the corresponding value specified in the batch-file commandline is substi-
tuted for the replaceable parameter and the commandis then executed. The %0 replace-
able parameter is replaced by the nameofthebatchfile itself; parameters %1 through %9
are replaced sequentially with the remaining values specified in the commandline.Ifa
replaceable parameter references a command-line entry that does notexist, the parameter
is replaced with a null (zero-length) string.

For example,if the batch file MYBATCH.BATcontainsthe single line
COPY %1.COM %2.SAV

' and is executed by entry of

CoMYBATCH FILE1 FILE2 <Enter>

the actual commandthatis carried outis

COPY FILE1.COM FILE2,SAV

(The SHIFT batch command makesit possible to use more than 10 replaceable parame-
ters. See USER COMMANDS:BATCH:sHIFT)

An environmentvariableis a special case of a replaceable parameter. If the SET command
is used in the form

SET name=value

to add an environmentvariable to the system’s environmentblock,the string value will be
substituted for the string %name% whereverthelatter is encountered duringthe inter-
pretation of a batch file. This capability is available only in versions 2.x, 3.1, and 3.2. .

754 ‘The MS-DOS Encyclopedia

LUUIDITANAITI EV ANNAN T7RAIACON

OLYMPUSEX. 1010 - 764/1582

OLYMPUS EX. 1010 - 765/1582

BATCH: AUTOEXEC.BAT 1.0 andlater
System Startup Batch File

Description

The AUTOEXEC.BATfile is an optional batch file containing a series ofMS-DOS com-
mandsthat automatically execute whenthe system is turned on orrestarted.

When the system’s default command processor,COMMAND.COM,isfirst loaded,it
looksin the root directory of the current drive for a file named AUTOEXEC.BAT.If
AUTOEXEC.BATis not found, COMMAND.COMpromptsthe userto enter the current
time and date and then displays the MS-DOS copyright notice and command prompt. If
AUTOEXEC.BATis found, COMMAND.COMsequentially executes the commands within
the file. No promptsto enter the time and date are issued unless the TIME and DATE
commandsare explicitly included in the batch file; no copyright notice is displayed.

Typical uses of the AUTOEXEC.BATfile include

@ Running a program to set the system time and date from a real-time clock/calendar
located on a multipurpose expansion board (IBM PC, PC/XT, or compatibles only)

@ Using the MODE commandto configurea serial port or to redirect printing
Executing SET commandsto configure environmentvariables

@ Setting display colors on a color monitor(if the command DEVICE=ANSISYShas
been included in the CONFIG.SYSfile)

@ Installing terminate-and-stay-resident (TSR)utilities
@ Using the PATH commandto tell COMMAND.COM whereto find executable pro-

gram files if they are not in the current drive and/ordirectory
® Defining a custom prompt using the PROMPT command
@ Invoking an application program such as a database, spreadsheet, or word processor

A secondary copy of the command processor can also be loaded from within the
AUTOEXEC.BATfile. If this copy of COMMAND.COMis loaded with the /P switch,it too
searches for an AUTOEXEC.BATfile on the current drive and processesthefile ifit is
found. This feature can be useful for performing special operations. For example, on very
old PCs that are unableto start from a fixed disk, a secondary copy of the commandpro-
cessor can be used to makethe fixed disk’s copy of COMMAND.COMthe copy used by
the system from that point on (at the expense of some system memory).If the
AUTOEXEC.BATfile containing the lines

C:

COMMAND C:\ /P

is stored on the floppy disk in drive A whenthe system is turned onorrestarted, the
first line of the file causes drive C to becomethe current drive; then the secondline

Section III: User Commands 755

OLYMPUSEX. 1010 - 765/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 766/1582

BATCH: AUTOEXEC.BAT

permanently loads a secondary copy of COMMAND.COMfrom drive C andinstructs
COMMAND.COMtoreload its transient portion from the root directory of drive C when
necessary. This in turn triggers the execution of the AUTOEXEC.BATfile on the fixed
disk to perform the actual system configuration. Because the transient part of
COMMAND.COMwill be reloaded from the fixed disk when necessary, rather than
from the floppy disk, system performanceis improved considerably.

Example

756

The following example illustrates several common uses of the AUTOEXEC.BATfile to con-
figure the MS-DOSsystem at startup time. (The line numbers are included for reference
andare notpart of the actualfile.)

ECHO OFF
SETCLOCK

PROMPT pg
“MD D:\BIN

COPY C:\SYSTEM*.* D:\BIN > NUL
PATH=D: \BIN; C: \WP\WORD; C: \MSC\BIN;C: \ASM
APPEND D:\BIN;C:\WP\WORD;C:\ASM
SET INCLUDE=C: \MSC\ INCLUDE
SET LIB=C:\MSC\LIB

10 SET TMP=C:\TEMP

11. MODE COM1:9600,n,8,1,P
12 MODE LPT1:=COM1:

aonaufFWwWDw=
wo

Line 1 causes the batch-file processor to operatesilently; that is, the commandsin the
batch file are not displayed on the screen as they are executed.

Line 2 runs a utility program called SETCLOCK,which reads the current time and date
from a real-time clock chip on a multifunction board andsets the system time and date
accordingly.

Line 3 configures COMMAND.COM’s user promptsothatit displays the current drive and
directory.

Line 4 creates a directory named \BIN on drive D, whichin this case is a RAMdisk that
was created by an entry in the system’s CONFIG.SYSfile.f

Line 5 copies all the programs in the \SYSTEMdirectory on drive C to the \BIN directory
on drive D. The normal output of this COPY commandis redirected to the NUL device —
in effect, the output is thrown away— to avoid cluttering the screen.

Line 6 sets the search path for executable files and line 7 sets the search pathfordatafiles.
Note that the RAMdisk directory D:\BINis specified as the first directory in the PATH
command;therefore, if the name of a program is entered and it cannot be foundin the cur-
rent directory, COMMAND.COMwill look next in the directory D:\BIN.This strategy
allows commonly used programs(in this example, the programs in the \SYSTEMdirec-
tory that were copied into D:\BIN)to be located and loaded quickly.

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 766/1582

OLYMPUS EX. 1010 - 767/1582

BATCH: AUTOEXEC.BAT

Lines 8 through 10 add the environmentvariables INCLUDE,LIB, and TMPto the system’s
environment. Thesevariables are used by the Microsoft C Compiler and the Microsoft
Object Linker.

Line 11 configuresthe first serial communications port (COMI) andline 12 causes program
outputto the system’sfirst parallel port (LPT1) to be redirectedto thefirst serial port. This
pair of commandsallowsa serial-interface Hewlett Packard LaserJet printer to be used as
the system list device.

Note: Dependingonthe version of MS-DOSin use, some commandsin this example may
notbe available or may support different options. See the individual commandentries for
moredetailed information.

Section II; User Commands 757

OLYMPUSEX. 1010 - 767/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 768/1582

BATCH: ECHO

BATCH: ECHO 2.0 andlater

Display Text Internal

Purpose

Displays a message during the execution ofa batchfile and controls whether or not batch-
file commandsare listed on the screen as they are executed.

Syntax

ECHO [ON {OFF| message]

where:

ON enablesthe display of all subsequent batch-file commandsasthey are
executed.

OFF disables the display of all subsequent batch-file commandsas they are
executed.

message isa text string to be displayed on standard output.

Description

Each commandline of a batchfile is ordinarily displayed on the screen asit is executed.
The ECHO commandhasa dual usage: to control the display of these commands andto
display a messageto the user.

ECHOis used with ON or OFFto enable or disable the display of commands during
batch-file processing. If the ECHO commandis used with no parameter, the current status
of the batch processor's ECHO flag is displayed. Note that the ECHOflag is always forced
on at thestart of any batch-file processing, even if that batch file was invoked by another
batchfile.

The ECHO commandis notlimited to batch files; an ECHO command can also be issued
at the command prompt. ECHO OFFentered at the command promptprevents the
promptfrom subsequently being displayed. ECHO ONenteredinteractively restores the
display. If ECHO is entered interactively without a parameter, the current status of the
ECHOflagis displayed.

ECHOcanalso be followed by a message to be sent to standard output regardless of the
status of the ECHOflag (on oroff). Note that if ECHO is on, two copies of the message
are actually displayed, the first copy preceded by the word ECHO, ECHO messageisfre-
quently used to display prompts and informative text during the execution of a batchfile
because text following REM or PAUSE commandsis not displayed if ECHOis off.

ECHO message can also be used to build lists or other batchfiles dynamically while the
batch file is executing. For example, the messages in the following ECHO commandsare
usedto build the file STARTUP.BAT:

ECHO CHKDSK > STARTUP.BAT
ECHO DIR /W >> STARTUP.BAT

ECHO PROMPT Spg >> STARTUP.BAT

758 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -768/1582

OLYMPUS EX. 1010 - 769/1582

BATCH: ECHO

RRe

The first ECHO commandcauses the message CHKDSK to be redirected to thefile
STARTUP.BAT. The second and third ECHO commands cause the messages DIR/W and
PROMPT pg to be appendedto the existing contents of STARTUP.BAT. The completed
STARTUP.BATfile contains the following:
CHKDSK
DIR /W

PROMPT pg

Note: When the pipe symbol(|) is used in message, the symbol and any characters follow-
ing it are ignored until a redirection symbol(<, >, or >>) is encountered, at which point the
redirection symbol and the remaining characters are recognized. For example,if the line

ECHO DIR { SORT > STARTUP.BAT

was placed in a batchfile and subsequently executed, the only characters echoedto the
file STARTUP.BAT would be DIR; the pipe symbol and the characters between it and the
redirection symbol > would be ignored.

Examples

To disable the display of each batch-file commandasit is executed, include the following
line as the first line in the batchfile:

ECHO OFF

To display the message Nowformatting disk on standard output, include the following
line in the batchfile:

ECHO Now formatting disk

Todisplay the current status of the ECHOflag, include the following line in the batchfile:
ECHO

If the ECHOflag is currently off, MS-DOSdisplays:
ECHO is off

To echo a blanklineto the screen with versions 2.x, type a space after the ECHO com-
mand andpress Enter. To echo a blank line with versions 3.x, type the ECHO command
and a space, then hold down Alt and type 255 on the numeric keypad;finally, release the
Alt key and press Enter.

Messages

ECHOisoff

or

ECHOis on

If the ECHO commandis entered without a parameter, oneofthese lines is displayed to
give the currentstatus of the batch processor's ECHOflag.

Section LI: User Commands 759

OLYMPUSEX. 1010 - 769/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 770/1582

BATCH: FOR

BATCH: FOR | 2.0 and later
Execute Command on File Set Internal

Purpose

Executes a command or program for eachfile in a setoffiles.

Syntax

FOR %%variable IN (sef)DO command (batch processing)
of

FOR %uariable IN (set) DO command (interactive processing)

where: .

variable is a variable namethat can be any single character except the numerals 0
through 9,the redirection symbols (<, >, and >>), and the pipe symbol!(1);
case is significant.

set is one or morefilenames, pathnames, character strings, or metacharacters,
separated by spaces, commas, or semicolons; wildcard characters are per-
mitted in filenames.

command is any MS-DOS commandor program except the FOR command;thevari-
able name %%variable (or Yvariable in interactive mode) can be part of
the command.

Description

The FOR command allows sequential execution of the same command or program on
each memberofa setoffiles.

The set parameter can contain multiple filenames (including wildcards), pathnames, char-
acterstrings, or metacharacters such as the replaceable parameters %0 through %9. Each of
the following lines is an example ofa valid set:

(FILE1.TXT %1 $2 B:\PROG\LISTING?. TXT)
{(A:\81 A:\%2 C:\LETTERS*.TXT C:MEMO?. *)
(SPATHS)

Eachfilename from setis assigned in turn to %variable and thenthe specified command
or program is executed. (When the FOR commandline is executed in a batchfile, the
leading percent sign of %%variable is removed, leaving “variable, If a filenamein set
contains wildcards, each matchingfile is used before the batch processor goes on to the
next memberofset.

760 TheMS-DOS Encyclopedia

OLYMPUSEX.1010 -770/1582

OLYMPUS EX. 1010 - 771/1582

————________BATCHFor

Note: In versions 2.x, set can consist only ofa list of single filenames, a single filename
4} with wildcard characters, or a combination ofsingle filenames and metacharacters. In ver-

sions 3.x, however, all combinationsof these are allowed in the sameset.|

The FOR commandcanalso be used interactively at the MS-DOS prompt to perform a
single commandonseveralfiles without entering the same commandfor eachfile. When
FORis used in this manner, only one percent sign (%) should be used before the dummy
alphabetic variable; in this case, the percent sign is not removed during processing. When

| the FOR commandis used interactively, environmentvariables such as %PATH% cannotbe used as part of the filenameset.

Examples

To viewall the files with the extension .TXT in the current directory, include the following
line in the batchfile:

FOR %%X IN (*.TXT) DO TYPE %%X

To perform the same function interactively, type

CoFOR SX IN (*.TXT) DO TYPE %X <Enter>

To copy up to ninefiles to the disk in drive A, specifying the namesofthefiles in the
batch-file commandline, include the followingline in the batchfile:

FOR $%Y IN (%1 %2 %3 %4 %5 %6 %7 8 %9) DO COPY %8Y A:

(Recall that %0 is the nameofthe batchfile.)

To execute successive batch files under the control of one batchfile, use the /C switch with
COMMAND,asin the following batch-file line:
FOR %%Z IN (BAT1 BAT2 BAT3) DO COMMAND /C %%Z

Message

FOR cannotbe nested

The command or program performed by a FOR command cannot be another FOR
command.

Section III: User Commands 761

OLYMPUSEX. 1010 - 771/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 772/1582

BATCH: GOTO

BATCH: GOTO 2.0 andlater

Jumpto Label Internal

Purpose

Transfers program control to the batch-file line following the specified label.

Syntax

GOTO name

where:

- name isa batch-file label declared elsewherein thefile in the form :name.

Description

The GOTO commandcausesthe batch-file processorto transfer its point of execution to
the line following the specified label. If the label does not exist in the file, execution of the
batchfile is terminated with the message Label notfound.

A batch-file label is defined as a line with a colon character(:) in the first column, followed
by any text (including spaces but not other separator characters such as semicolons or
equalsigns). Only the first eight characters following the colon are significant; spaces are
not counted in the eight characters.

Examples

The GOTO commandis frequently used in combination with the IF and SHIFT batch
commands to perform some action based on the return code from a program. For exam-
ple, the following batchfile will back up a variable numberoffiles or directories, whose
namesare specified in the batch-file commandline, to a floppy disk in drive A. The batch
file accomplishes this by executing the BACKUP program with successive pathnames
specified in the commandline until BACKUPreturns a nonzero (error) code. Controlis
then transferred to the label :DONE, andthe batchfile is terminated.

ECHO OFF
: START
BACKUP %1 A:
IF ERRORLEVEL 1 GOTO DONE
SHIFT
GOTO START
: DONE

anoPWN=
Note that-the batch file includes two labels, :-START and :-DONE, in lines 2 and 7, respec-
tively. It also includes two GOTO commands, in lines 4 and 6. (The line numbersin the
listing above are includedonly for reference and are not presentin the actual batchfile.) If
the condition in line 4 is true (the BACKUP program returned anexit code of 1 or higher),
the remainderofline 4 is executed and program control passes to the :DONE label in

762 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 772/1582

OLYMPUS EX. 1010 - 773/1582

BATCH: GOTO

line 7. If the condition is false, program control passesto line 5, the SHIFT commandis
executed, and program control goesto line 6, where the GOTO statementreturns pro-
gram controlto line 2.

Message

Label not found

The specified label doesnotexist in the batchfile.

: Section II: User Commands 763

OLYMPUSEX. 1010 - 773/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 774/1582

BATCH:IF

BATCH:IF 2.0 and later

Perform Conditional Execution Internal

Purpose

Tests a condition and executes a commandor programif the condition is met. .

Syntax

IF [NOT] condition command

where:

condition is oneof the following:

ERRORLEVEL number

The condition is true if the exit code of the program last executed by
COMMAND.COMwasequal to or greater than number. Note that notall
MS-DOS commandsreturn explicit exit codes.

string1==string2
The condition is true if string1 and string2 are identical after parameter

_ substitution,case is significant. The strings cannot contain separator char-
acters such as commas, semicolons, equal signs, or spaces.

EXISTpathname
The condition is true if the specifiedfile exists. The pathname can include
metacharacters.

command is the commandor program to be executedif the condition is true.

Description

The IF commandprovides conditional execution of a command or program in a batchfile.
When condition is true, IF executes the specified command, which can be another IF
command, any other MS-DOSinternal command,or a program. When condition is not
true, MS-DOSignores command and proceedsto the nextline in the batch file. The sense
of any condition can be reversed by preceding the test or expression with NOT.

Examples

To branchto the label -ERRORif the file LEDGER.DATdoesnotexist, include the follow-
ing line in the batchfile:
IF NOT EXIST LEDGER.DAT GOTO ERROR

764 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 774/1582

OLYMPUS EX. 1010 - 775/1582

| BATCH:IF

To branchto the label -ONEPARifthe batch-file commandline does not contain at least
two parameters, include the following line in the batchfile:
IF "$2"==""GOTO ONEPAR

! or|{
IF $2~==~ GOTO ONEPAR

Notethat the existence of a replaceable parameter can be determined by concatenatingit
to anotherstring. In the first example, quotation marks are concatenated on either side of
the replaceable parameter; if %2 doesn’t exist, "%2"=="" evaluates to ""=="" whichis true
and will allow GOTO ONEPARto be executed. In the second example, a tilde characteris
concatenatedto the end of the replaceable parameter; if %2 doesn’t exist, the argument
becomes ~==~.

To copythe file specified by the first replaceable batch-file parameter to drive A onlyifit
doesnot already exist on the disk in drive A, include the followingline in the batchfile:
IF NOT EXIST A:%1 COPY %1 A:

To branchto the label -DONEif thefirst replaceable batch-file parameter exists in the
\PROGdirectory on drive C and in the \BACKUPdirectory on drive C, include the follow-
ing line in the batchfile:

IF EXIST C:\PROG\%1 IF EXIST C:\BACKUP\%1 GOTO DONE

Messages

Bad commandor filename

The commandfollowing the condition in the IF statement was misspelled, does not exist,
or was represented by a replaceable parameter that was not supplied in the commandline
that invoked the batchfile.

Syntax error
The condition specified in the IF statement cannotbetested.

Section Il: User Commands 705

OLYMPUSEX. 1010 - 775/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 776/1582

BATCH: PAUSE

BATCH: PAUSE 1.0 and later

Suspend Batch-File Execution Internal

Purpose

Displays a message, suspends execution of.a batchfile, and waits for theuser to press a
key.

Syntax

PAUSE [message]

where: |

message isa text string to be displayed on standard output.

Description

The PAUSE commanddisplays the message Strike a key when ready... and suspends
execution ofa batchfile until the user presses a key. This command can be usedto allow
time for the operator to change disks, change the type of forms ontheprinter, or take
someotheraction that is necessary before the batchfile can continue.

If the batch processor’s ECHOflag is on when the PAUSE commandis executed, the entire
line containing the PAUSE statementis displayed on the screen so that the optional mes-
sage is visible to the user. The message Strike a key when ready... is then displayed on a
new line and the system waits. Note that Strike a key when ready... is always displayed,
even if the ECHOflag is off. When the user presses a key, execution ofthe batchfile
resumes.

Note: Redirection symbols should not be used within message. They prevent the message
Strike a key when ready... from being displayed on the screen.

If the user presses Ctrl-C or Ctrl-Break while a PAUSE command is waiting for a key to be
pressed, a promptis displayed that gives the user the opportunity to terminate the execu-
tion of the batchfile. This same message is displayed wheneverthe user presses Ctrl-C or
Ctrl-Break during the execution of a batchfile; however, using PAUSE commands supple-
mented by appropriate ECHO commandsat strategic points within a batch file provides
the user with clearly defined breakpoints for terminatingthefile.

Examples

To display the message Put an empty disk in drive A and then wait until the user has
pressed a key, include the followingline in the batchfile:

PAUSE Put an empty disk in drive A

766 The MS-DOSEncyclopedia

LIPTANVAIPT TW ANNAN TFTIOAIACON

OLYMPUSEX. 1010 - 776/1582

OLYMPUS EX. 1010 - 777/1582

BATCH: PAUSE

Whenthis line of the batchfile is executed,if the ECHO flagis on, the user seesthefol-
lowing messageson the screen:

C>PAUSE Put an empty disk in drive A
Strike a key when ready .. .

If the ECHOflagis off, only the message Strike a key when ready... appears.

To display the message without the prompt and command, the PAUSE command can be
used immediately after an ECHO command,as follows:
ECHO OFF
CLs

ECHO Put an empty disk in drive A
PAUSE

This batchfile will display the following message on the screen:

Put an empty disk in drive A
Strike a key when ready...

Note that the message must be included in an ECHO command. With ECHO off, a PAUSE
message is not displayed.

Section III: User Commands 767

OLYMPUSEX. 1010 - 777/1582

OLYMPUS EX. 1010 - 778/1582

BATCH: REM

BATCH: REM 1.0 and later

Include Comment Line Internal

Purpose

Designates a remark, or comment,line in a batchfile.

Syntax

REM [message]

where:

message is any text.

Description

The REM commandallowsinclusion of remarks, or comments, within a batchfile.
Remarks are often used to documentthe purpose of other commandswithinthefile for
the benefit of those who may wish to modify thefile later.

If the ECHOflag is on, remarks are displayed on the screen during the execution of a
batch file. Thus, remarks can also be used to provide information, guidance, or prompts to
the user; however, the ECHO and PAUSE commandsare moresuitable for these purposes.

REMcanalso be usedaloneto insert blanklines in a batchfile to improve readability. (If
ECHOis on, the word REM will still be displayed.)

Note: The redirection symbols(<, >, and >>) and piping character (1) produce no mean-
ingful results with the REM commandandshould not be used.

Example

To documenta batchfile’s revision history with the internal comment This batchfile last
modified on 6/18/87, include the following line in the batchfile:

REM This batch file last modified on 6/18/87

768 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 778/1582

OLYMPUS EX. 1010 - 779/1582

BATCH: SHIFT

BATCH: SHIFT 2.0 andlater

Shift Replaceable Parameters Internal

Purpose

Changesthe position of the replaceable parameters in a batch-file commandline, thereby
allowing more than 10 replaceable parameters.

Syntax

SHIFT

Description

Ordinarily only 10 replaceable parameters (%0 through %9, where %0 is the nameof the
batchfile) can be referenced within a batch file. The SHIFT command allowsaccess to ad-

ditional parameters specified in the commandline by shifting the contents of each of the
previously assigned parameters to a lower number (%1 becomes %0, %2 becomes %1, and
so on). The previous contents of %0 are lost and are not recoverable. The eleventh param-
eter in the batch-file commandline is then moved into %9. This allows more than 10

parametersto be specified in the batch-file commandline and subsequently processed
in the batchfile.

Example

The following batch file will copy a variable numberof files, whose namesare entered in
the batch-file commandline,to the disk in drive A:

ECHO OFF
:NEXT
IF "31"==s"" GOTO DONE
COPY %1 A:
SHIFT
GOTO NEXT
: DONE

Section III: User Commands 769

OLYMPUSEX. 1010 - 779/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 780/1582

BREAK

BREAK 2.0 andlater

Set Control-C Check Internal

Purpose

Sets or clears MS-DOS$’s internal flag for Control-C checking.

Syntax

BREAK[ON/OFF]

Description

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro-
gram, unless the program itself contains instructions that disable MS-DOS’s Control-C han-
dling. As a rule, MS-DOSchecks the keyboard for a Contro!-C only whena characteris
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore, if a program executesfor long periods without performing such characterI/O,
detection ofthe user’s entry of a Control-C may be delayed. The BREAK ON command
causes MS-DOSto also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK OFF command disables such extended
Control-C checking. The default setting for BREAKis off.

If the BREAK commandis entered alone, the current status of MS-DOS’s internal BREAK
flag is displayed.

Examples
To display the current status of the MS-DOSinternal flag for extended Control-C checking,
type

C>BREAK <Enter>

MS-DOSdisplays
BREAK is off

or

BREAK is on

depending on thestatus of the BREAKflag.

To enable extended checking for Control-C during disk operations, type
C>BREAK ON <Enter>

770 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 780/1582

OLYMPUS EX. 1010 - 781/1582

BREAK

Messages
BREAKison

or

_ BREAKis off
Extended Control-C checking is enabled or disabled, respectively. These messages occur
in response to a BREAKstatus check.

Mustspecify ON or OFF
Aninvalid parameter was supplied ina BREAK command.

Section III: User Commands 771

OLYMPUSEX. 1010 - 781/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 782/1582

CHDIR or CD

CHDIR or CD 2.0 and later
Change Current Directory Internal

Purpose

Changesthe currentdirectory or displays the current path of the specified or default disk
drive.

Syntax

CHDIR [drive:|[path]
or

CD [drive:][path]

where:

drive is the letter of the drive for which the current directory will be changed or
displayed, followed by a colon. Note that use of the drive parameter does not
changethe currently active drive.

path is one or more directory names, separated by backslash characters (\), that
define an existing path.

Description

The CHDIR command, whenfollowed byan existing path, is used to set the working
directoryfor the default or specified disk drive.

The path parameter consists of the nameof an existing directory, optionally followed by
the namesof existing subdirectories, each separated from the next by a backslash charac-
ter. Ifpath begins with a backslash, CHDIR assumesthatthe first named directory is a sub-
directory of the root directory; otherwise, CHDIR assumesthatthefirst named directory is
a subdirectory of the current directory. The special directory name .. , which is an alias for
the parentdirectory of the currentdirectory, can be used asthe path.

When CHDIRis entered alone or with only a drive letter followed by a colon, the full path
of the current directory for the default or specified drive is displayed.

CDis simply an alias for CHDIR; the two commandsareidentical.

Examples

To change the currentdirectory for the current (default) disk drive to the path
\V2\SOURCE,type

c>CD \V2\SOURCE <Enter>

772 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 782/1582

OLYMPUS EX. 1010 - 783/1582

CHDIR or CD
=

To display the nameof the currentdirectoryfor the disk in drive D, type
C>CcD D: <Enter>

To return to the parentdirectory of the currentdirectory, type
C>cD .. <Enter>

Messages

Invalid directory
Oneofthe directories in the specified path does not exist.

Invalid drive specification
Aninvalid drive letter was given or the nameddrive does notexist in the system.

Section LI: User Commands 773

OLYMPUSEX. 1010 - 783/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 784/1582

CHKDSK

CHKDSK . 1.0 and later

Check Disk Status External

Purpose

Analyzes the allocation of storage space on‘a disk and displays a summary report of the
space occupied by files and directories,

Syntax

CHKDSK[drive:|[pathname] [/F\ [/V]

where:

drive is the letter of the drive containing the disk to be analyzed, followed by a
colon.

pathname is the location and, optionally, the nameof the file(s) to be checkedfor
fragmentation; wildcard characters are permitted in the filename.

/F repairs errors (versions 2.0 andlater).
/V “verbose mode,” reports the nameofeachfile asit is checked (versions

2.0 andlater).

Description

The CHKDSK commandanalyzesthe disk directory and file allocation table for consis-
tency and reports any errors. If the /V switch is included in the commandline, the name of
eachfile processed is displayed as the disk is being analyzed.

After analyzing the disk, CHKDSK displays a summaryof the disk and RAM space used
and available. The disk-space report includes

Total disk space in bytes
Numberofbytes allocated to hiddenfiles
Numberof bytes contained in directories
Numberof bytes containedin userfiles
Numberof bytes contained in bad (unusable) sectors
Numberofavailable bytes on the disk

(Hiddenfiles are files that do not appearin a directory listing. A bootable MS-DOSor
PC-DOSdisk always contains two hidden files —MSDOS.SYSand IO.SYS or IBMDOS.COM
and IBMBIO.COM,respectively—that contain the operating system. A volumelabel,if
present, counts as a hidden file. In addition, some application programscreate hiddenfiles
for copy protection or other purposes.)

Directory errors detected by CHKDSK include

®@ Invalid pointers to data areas
®@ Badfile attributes in directory entries

774 The MS-DOS Encyclopedia

OLYMPUSEX.1010 -784/1582

OLYMPUS EX. 1010 - 785/1582

: : CHKDSK

@-Damagetoa portion of the directory that makesit impossible to check one or more
paths

@ Damageto an entire directory that makesthe files contained in that directory
i inaccessible

File allocation table (FAT) errors detected by CHKDSK include

Defective disk sectors in the FAT

@ Invalid cluster (disk allocation unit) numbers in the FAT
® Lost clusters

@ Cross-linking of files on the same cluster

If the /F switch is included in the command line, CHKDSKwill attempt to repair errors in
disk allocation and recover as much data as possible. Because repairs usually involve
changesto the disk’s file allocation table that may causealoss of information, the useris
prompted for confirmation. Lost clusters are collected into files in the root directory with
namesof the form FILEnnnn.CHK.

If the commandline containsafile specification, CHKDSK will examine all files that
match the specification and report on their fragmentation — that is, on whetheror not
their sectors are contiguous on the disk. (Fragmentedfiles can degrade the performance of
the system becauseofthe time required to move the drive head back and forth across the
disk to reachthe variousparts of the file.) Files on a floppy disk can be collected into con-
tiguous sectors by copying them to an empty floppy disk. Files on a fixed disk can be col-
lected into contiguous sectors by backing them all up to floppy disks, erasingall files and
subdirectories on the fixed disk, and then restoring the files from the floppy disk.

Warning: CHKDSK should not be used on a network drive or on a drive created or
affected by an ASSIGN, JOIN, or SUBST command.

Examples

To check the disk in the current drive, type

C>CHKDSK <Enter>

If CHKDSKfinds no errors, a report such as the following is displayed:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38912 bytes in 3 hidden files

116736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory
566576 bytes free

Section III: User Commands 775

OLYMPUSEX. 1010 - 785/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 786/1582

CHKDSK

Note that the line containing the volume name andcreation date does not appearif the
disk has not been assigned a volume name.

If CHKDSKfinds errors, a message such asthe following is displayed:

Errors found, F parameter not specified.
Corrections will not be written to disk.

10 lost clusters found in 3 chains.
Convert lost chains to files (Y/N)?

A ¥ responseat this point does not convertthelost chainsto files; to do this, enter the
CHKDSK command again with the /F switch specified.

To correct any allocation errors found by the CHKDSK command,type

C>CHKDSK /F <Enter>

In this example, CHKDSK displays its usual report, followed by an error message:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38912 bytes in 3 hidden files

116736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory
566576 bytes free

10 lost clusters found in 3 chains.

Convert lost chains to files (Y/N) ?

A Yresponse causes CHKDSKto recoverthe lost chains of clusters intofiles in the root
directory, giving the files the names FILE0000.CHK,FILEQ001.CHK, FILE0002.CHK,and
soon. An Nresponse causes CHKDSK to free the lost chains of clusters without saving the
contentsto files.

To checkall files in the directory C:\SYSTEM with the extension .COMfor fragmentation,
type

C>CHKDSK C:\SYSTEM*.COM <Enter>

716‘ The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 786/1582

OLYMPUS EX. 1010 - 787/1582

CHKDSKeeeI

CHKDSKdisplays its usual report, followed bya list of fragmentedfiles:
Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38312 bytes in 3 hidden files

116736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory
566576 bytes free

C:\SYSTEM\ALUSQ.COM
Contains 2 non-contiguous blocks.

C:\SYSTEM\EJECT.COM

Contains 4 non-contiguous blocks.

Messages

. Does not exist.

or

-- Does not exist.

The. (alias for the current directory) or the .. (alias for the parent directory) entryis
missing.

filenameIs cross linked on clustern
Two or morefiles have been assigned the same cluster. Make a copy of bothfiles on
another disk and then delete them from the disk containing the error. One or both of the
resulting files may contain information belongingto theotherfile.

‘x lost clusters found iny chains.
Convert lost chainsto files (Y/N)?

Clusters have been identified that are not assigned to any existing file. If the /F switch was
includedin the original commandline, respond with Y to convert thelost clustersto files
in the root directory of the disk with namesof the form FILEnnmnn.CHK.If desired, the
recovered clusters can then be returnedto the free-disk-space pool by erasing the .CHK
files.

Allocation error, size adjusted.
Thesize ofthe file indicated in the disk directory is not consistent with the numberof
clusters allocated to thefile. If the /F switch was included in the commandline,thefile is
truncated to thesize indicated in the disk directory.

All specified file(s) are contiguous.
Theclusters belongingto the specified file(s) are allocated contiguously (without
fragmentation).

Section III: User Commands 777

OLYMPUSEX. 1010 - 787/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 788/1582

CHKDSK

Cannot CHDIR topathname
tree past this point not processed.
Thetree directory structure of the disk being checked cannot betraveledto the specified
directory. This message indicates severe damageto the disk’s directoriesorfiles.

Cannot CHDIRto root

Processing cannot continue.
In traversing the tree directory structure of the disk being checked, CHKDSK was unable
to returnto the root directory. This message indicates severe damageto thedisk’s directo-
ries orfiles.

Cannot CHKDSKaNetworkdrive

The drive containing the disk to be checked has been assigned to a network.

Cannot CHKDSKaSUBSTed or ASSIGNed drive

The drive containing the disk to be checked has been substituted or assigned.

Cannot recover . entry, processing continued.
The special directory entry . (alias for the current directory) is defective.

Cannot recover.. entry,
Entry has a bad attribute
or

Cannotrecover.. entry,
Entry has a bad link
or

Cannotrecover.. entry,
Entry has a bad size
The special directory entry .. (alias for the parent directory of the current directory)is
defective due to a badattribute, link, or size.

CHDIR.. failed, trying alternate method.
While checking thetree structure, CHKDSK wasunable to return to the parentdirectory
of the current directory. It will attempt to return to that directory by starting over at the
root directory and searching again.

Contains 2 non-contiguous blocks.
Theclusters assignedto the specified file are not allocated contiguously on the disk.

Directoryis joined
CHKDSKcannotprocess directories that have been joined using theJOIN command. Use
the JOIN /D commandto unjoin the directories, then run CHKDSK again.

Directory is totally empty, no.or..
The specified directory does not contain the usualaliases for the current and parent direc-
tories. This message indicates severe damageto the disk’s directoriesor files. Delete the
directory and recreateit.

778 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 -788/1582

OLYMPUS EX. 1010 - 789/1582

CHKDSK
of . —a—

Disk error reading FAT 2
or

Disk errorwriting FAT 2
Oneofthefile allocation tables for the disk being checked contains a defective sector.
MS-DOSwill use the alternate FATif oneis available.It is advisable to copyall thefiles on
the disk containing the defective sector to anotherdisk.

Errors found, F parameter not specified.
Corrections will notbe written to disk.

Errors were found on the disk being checked, but the /F switch was not included in the
commandline.

File allocation table bad driveX:

The disk is not an MS-DOSdisk. Repeat CHKDSKwith the /F option;if this message is —
displayed again, reformatthe disk.

File not found.

CHKDSKwasunableto find the specifiedfile.

First cluster numberis invalid, entry truncated.
The directory entry for the specified file contains an invalid pointer to the disk’s data area.
If the /F switch was included in the commandline,thefile is truncated to a zero-length
file.

General Failure error reading driveX:
The formatof the disk being checked is not compatible with MS-DOSorthe disk has not
been formatted for use by MS-DOS.

Has invalid cluster, file truncated.
Thefile directory contains an invalid pointer to the disk’s data area. If the /F switch was
included in the commandline,thefile is truncated to a zero-lengthfile.

Incorrect DOS version

The version of CHKDSKis not compatible with the version of MS-DOSthatis running.

Insufficient memory
Processing cannot continue.
The computer does not have enough memoryto contain the tables necessary for CHKDSK
to processthe specified disk.

Insufficient room in root directory.
Erasefiles in root and repeat CHKDSK.
The root directoryis full and does not have room for theentries for recovered files. Delete
somefiles from the root directory of the disk being checked and rerun the CHKDSK
program.

Section III: User Commands 779

OLYMPUSEX. 1010 - 789/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 790/1582

CHKDSK

780

Invalidcurrent directory
Processing cannot continue.
The directory structure of the disk is so badly damagedthatthe disk is unusable.

invaliddrive specification
The CHKDSK command contained an invalid disk drive.

Invalid parameter
One of the switches in the commandline isinvalid.

Invalid sub-directory entry.
The directory name specified in the commandline does notexist oris invalid.

Path not found.

Oneof the directories in the path specified in the commandline does not exist or is
invalid.

Probable non-DOSdisk

Continue (Y/N) ?

Thedisk being checked was not formatted by MS-DOSorthefile allocation table has been
severely damagedor destroyed.

Unrecoverable error in directory.
Convertdirectory to file (Y/N)?
The specified directory is damaged and unusable.If the /F switch was includedin the
original commandline, respond with Y to convert the damaged directory to a file in the
root directory of the disk with a nameof the form FILEnm7.CHK. If desired, the .CHKfile
can then be deleted. Anyfiles that were previously reached through the damaged direc-
tory will be lost.

The MS-DOS Encyclopedia

PrP PAVAsPT I ras AMA

FRMArAM

OLYMPUSEX. 1010 - 790/1582

OLYMPUS EX. 1010 - 791/1582

ss

CLS. 2.0 andlater
Clear Screen . Internal

Purpose

Clears the video display.

‘Syntax
CLS

Description

The CLS commandclearsthe video display and displays the current prompt.

In some implementations ofMS-DOS, properoperation of the CLS command may require
installation of the ANSI.SYS console driver with a DEVICE=ANSISYScommand in the
CONFIG:SYSfile. ,

Examples

To clear the screen, type
CoCLS <Enter>

To save the ANSI escape sequence used bythe CLS command (ESC{2]) into a file named
CLEARTXT,type

C>CLS > CLEAR.TXT <Enter>

Section III; User Commands 781

OLYMPUSEX. 1010 - 791/1582

OLYMPUS EX. 1010 - 792/1582

COMMAND , . |

COMMAND | 1.0 and later
Command Processor External

Purpose

Loads a secondary copy of the MS-DOSdefault command processor.

Syntax

COMMAND[drive:]|path] [device] [/E:n] [/P] [/C string]

where:

path is the name of the directory to be searched for COMMAND.COMwhen the
transient portion needs to be reloaded;a driveletter can be included with ver-
sions 2.0 and later. .

device is the nameof a character device to be used instead of CONfor the command

processor's input and output(versions 2.0 andlater).
/E:in is the initial size, in bytes, of the command processor’s environment block

(160-32768, default = 160) (version 3.2).
/P fixes the newly loaded command processor permanently in memory (versions

2.0 andlater).

Description.

782

/C string causes the commandprocessorto behave as a transient program and execute
the commandor program specified by string (versions 2.0 andlater).

The command processoris the module of the operating system that is responsible for
issuing promptsto theuser, interpreting commands, loading and executingtransient appli-
cation programs, and interpreting batch files. The file COMMAND.COMcontains the
MS-DOSdefault command processor,or shell. It is ordinarily loaded from the root direc-
tory of the system disk whenthe system is turned on or restarted, unless the SHELL com-
mandis used in the CONFIG.SYSfile to specify another command processoror an
alternate location forCOMMAND.COM.

With versions 1.x,COMMAND.COMis invoked by the COMMANDcommandin re-
sponse to a shell prompt or within a batch file. A second copyof the resident portion of
COMMAND.COMis loaded and the memory occupied by the original resident portionis
lost. The second copy of the transient portion simply overlays the original transient por-
tion. (Versions 1.x of COMMANDsupport no switches or other parameters and any speci-
fied in the commandline are ignored.) With versions 2.0 and later, the new copy of
COMMAND.COMis loaded in addition to the parent command processor and serves | -
as a secondary command processor.

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 792/1582

OLYMPUS EX. 1010 - 793/1582

COMMAND

The path parameter specifies the location of the COMMAND.COMfilethat is used to
reloadthe transientpart of the commandprocessorif it is overlaid by application pro-
grams.If absent, path defaults to the root directory of the system (startup) disk.

The device parameter allows a character device other than CONto be used by the com-
mandprocessorfor input and output. For example, use of AUX as the device parameter
allows a personal computerto be controlled from a terminalattachedto a serial port,
instead of from the usualbuilt-in keyboard and memory-mappedvideodisplay.

The secondary copy of COMMAND.COMordinarily remains in memory and serves as the
active commandprocessor until an EXIT commandis entered.If a /P switch is used with
the COMMANDcommand,the new copy of COMMAND.COMisfixed in memory and the
EXIT commandis disabled. In suchcases, the memory occupied by previously loaded
copies of COMMAND.COMis simply lost.

The /E: 2 switch controls the size of the environmentblock initially allocated for the
commandprocessor. The default size of the block is 160 bytes, but the /E:” switch allows
the initial allocation to be as large as 32768 bytes. This switch is frequently used when
COMMAND.COMisincluded in the SHELL commandin the CONFIG:SYSfile.

Whenthe /C string switch is included in the commandline, followed bya string desig-
nating a command or program name, the new copy of COMMAND.COMcarries out the
operation specified by string and then exits, returning controlto its parent command pro-
cessoror other program. This option allows.a batchfile to invoke another batch file and
then resume its own execution. (If a batchfile names anotherbatchfile directly without
using COMMAND/Cstring as an intermediary, the first batch file is terminated.) Note

that whenthe /C string switch is used in combination with other switches,iit must be
thelast switch in the commandline.

A secondary copy of COMMAND.COMalwaysinherits a copy of the environmentof
the commandprocessoror other program that loaded it. Changes made to the new
COMMAND.COM’s environmentwith a SET, PROMPT, or PATH command donot affect
the environmentof any previously loaded program or command processor.

Examples
To execute the batch file MENU2.BATfrom the batchfile MENU1.BAT andthen resume
execution of MENUL.BAT,include the following line in MENU1.BAT:

COMMAND /C MENU2

To cause COMMAND.COMto be loadedfrom the directory \SYSTEM ondrive C rather
than from the root directory and to allocate an initial environmentblock of 1024 bytes,
include the following line in the CONFIG.SYSfile:

SHELL=C:\SYSTEM\COMMAND.COM C:\SYSTEM /P /E:1024

Section II: User Commands 783

OLYMPUSEX. 1010 - 793/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 794/1582

COMMAND

Messages

Bad or missing commandinterpreter
The file COMMAND.COMis not presentin the root directory of the system disk and no
SHELL commandis presentto specify an alternate command processorfile or location, or
the location specified for COMMAND.COMin a SHELL commandis not correct. This mes-
sage may also be seen if COMMAND.COMis movedfrom its original location after the
system is booted. ee

Invalid device

The character device specified in the commandline is not valid or does notexist.

Invalid environmentsize specified
The value supplied with the /E: 7 switch wasless than 160 bytes or greater than 32768
bytes.

784 ~ TheMS-DOS Encyclopedia

OLYMPUSEX.1010 - 794/1582

OLYMPUS EX. 1010 - 795/1582

. COMP

COMP IBM

CompareFiles External

| Purpose

Comparestwofiles or sets offiles. This commandis available only with PC-DOS.

Syntax

COMP[primary] [secondary]

where:

primary is the nameofthefile to be compared against and can be preceded by a
drive and/or path; wildcard characters are permitted in the filename.

secondary is the nameofthefile to be compared with primary and can be preceded
by a drive and/orpath, wildcard characters are permitted in the filename.

Description

The COMP command comparesonefile orsetoffiles with another. As eachpairoffilesis
compared,the program reports whetherthefiles are identical, different in size, or the
same size but different in content.

The primary and secondary parameters can be any combinationofdrive,path, andfile-
name, optionally including wildcards to allow sets of files to be compared. (With versions

- Lx, using wildcards does not cause multiple file comparisons — only the first secondary
file whose name matchesthefirst primary filename is compared.) The primary parameter
generally designates the specific files to be compared; the secondary parameteris usually
only a drive and/or path, except whenthefiles being compared have different names or
extensions.

If both primary and secondary are omitted from the commandline, the COMP program
promptsfor them interactively. Ifprimary is given as a drive or path only, COMP assumes
*.*to be the primaryfile. If secondary is given as a drive or path only, COMP comparesall
files on that drive or path whose filenames match those of the primaryfiles.

The COMP commandis included only with PC-DOS. MS-DOSversions2.0 and later
provide a similar function in the FC command, whichalso displays the differences be-
tweenfiles.

Examples

To comparethe file MYFILE.DATon the disk in drive A with the file LEDGER.DAT on the
disk in drive B, type

C>COMP A:MYFILE.DAT B:LEDGER.DAT <Enter>

Section LIT: User Commands 785

OLYMPUSEX. 1010 - 795/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 796/1582

COMP

To compareall the files in the current directory of the disk in drive A with the
correspondingfiles in the current directory of the disk in drive D, type
C>COMP A:*.* D: <Enter>

To compareall thefiles with the extension .ASM in the directory C:\SOURCEwiththe
correspondingfiles with extension .BAK on the diskin drive B, type

C>COMP C:\SOURCE*.ASM B:*.BAK <Enter> _.

Messages

10 mismatches - ending compare
The primary and secondaryfiles are the same size but have more than 10 internal differ-
ences. The compare operation onthispairof files is aborted and COMPproceedsto the
nextpair offiles, if any.

filename andfilename
This informational message showsthefull filenamesof the twofiles currently being
compared.

Access Denied

An attempt was made to compare a lockedfile.

Cannot comparefile to itself
An attempt was made to comparea file with itself.

Compareerror atOFFSET nn
File 1=n

File 2 =n

This informational message itemizes thefirst 10 differences in data between the twofiles
being compared (if the files are the samesize), displaying thefile offset andthe differing
bytes from eachfile as hexadecimal values.

Compare morefiles (Y/N)?
Afterall specified pairs offileshave been compared, the COMP program allowsthe entry
of anotherpair of file specifications. Respond with Y or press Enter to continue; respond
with N to terminate the COMP program.

Enter 2ndfile nameordrive id

If the secondary filename was not specified in the COMP command, this message prompts
the userto enterit Cor a path,ifthe secondary file has the same nameas the primaryfile).

Enter primary file name
If no parameter was entered after COMP, this message promptstheuserto enterthe pri-
mary filename. If a drive or path is specified, COMP assumes«+ for the primary filename.
EOF marknot found

Thelast byte at the logical end ofthe file was not a Control-Z character (4Z, or 1AH). This
message is commonly seen during comparison oftwofiles that are not ASCII textfiles,
such as executable programfiles.

786 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 796/1582

OLYMPUS EX. 1010 - 797/1582

gscmttaer,peeAeeANcttptIipecee
COMP

. Files compare OK
Thefiles being compared were the same length and contained identical data.

File not found

The specified fileriame wasinvalid or the file does notexist.

- Files are different sizes

The twofiles being compared have different sizes recorded in the directory. No com-
parison on the data within thefiles is attempted.

File sharing conflict
COMPis unable to compare the two currentfiles because one of thefiles is in use by
anotherprocess.

Incorrect DOS version

The version of COMPis not compatible with the version of PC-DOSthat is running.

Insufficient memory
Theavailable system memory is insufficient to run the COMP program.

Invalid drive specification
Thedrive specification inprimary or secondaryis invalid or does not exist.
Invalid path
The path or directory in primary or secondary is invalid or does notexist.

Too manyfiles open
No more system file handles are available. Increase thevalue of the FILES commandin the
CONFIG.SYSfile and restart the system.

Section III; User Commands 787

OLYMPUSEX. 1010 - 797/1582

OLYMPUS EX. 1010 - 798/1582

CONFIG.SYS

CONFIG.SYS . 2.0 and later

System Configuration File

Purpose >

Allowsthe user to configure the operating system.

Description

The CONFIG.SYSfile is an ASCIItext file that MS-DOSprocesses during initialization
(whenthe system is turned onorrestarted). It allows the user to configure certain aspects
of the operating system, such as the numberof internal disk buffers allocated, the number
offiles that can be open at one time,the formats for date and currency, and the name and
location of the executable file containing the command processor. CONFIG.SYScan also
contain commandsthat extend the system with installable device drivers for terminal
emulation, virtual disks or RAMdisks, extended or expanded memory, and otherspecial
peripheral devices.

The CONFIG.SYSfile can be created or modified with EDLIN or with any othereditor or
word processorthat can produce ordinary ASCII text filesG@ondocumentfiles) and save
them to disk. The CONFIG.SYSfile must be in the rootdirectory of the disk that is used to
start the operating system in orderfor it to be processed during system initialization.
When changes are made to the CONFIG.SYSfile, they do not take effect until the system
is restarted.

Commandsin the CONFIG:SYSfile take the form

command |=|value

(Note that the equal sign is optional; any other valid MS-DOS separator [semicolon,tab, or
space] can be used instead.) The commandssupported are

Command Action

BREAK Controls extended checking for Control-C.
BUFFERS Specifies the numberofinternal disk-sector buffers available for use by

MS-DOSwhenreading from or writing to a disk.
COUNTRY Controls date, time, and currency formatting.
DEVICE Specifies the filename of an installable device driver.
DRIVPARM Redefines the default characteristics of the resident MS-DOSblock

device(s) (version 3.2).

FCBS Specifies the maximum. numberofsimultaneously openfile control blocks
(versions 3.0 andlater).

(more)

788 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 798/1582

OLYMPUS EX. 1010 - 799/1582

CONFIG.SYS

Command=Action

FILES _ Specifies the maximum numberof simultaneously openfiles controlled by
handles.

LASTDRIVE_Sets the highestvalid drive letter (versions 3.0 andlater),
_ SHELL Specifies the filename (andoptionally the drive and/orpath)of the system

command processor.
STACKS Sets the numberandsize of stack framesfor the system.

Each of these commandsis discussed in detail on the following pages.

Message .

Unrecognized command in CONFIG.SYS
A command in the CONFIG.SYSfile was misspelled, an invalid parameter was used, or a
commandwasincluded that is not compatible with the version of MS-DOSthat is running.
Correct the CONFIG.SYSfile and restart the system.

Section ITI: User Commands 789

OLYMPUSEX. 1010 - 799/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 800/1582

CONFIG.SYS: BREAK

CONFIG.SYS: BREAK > aoand later
Configure Control-C Checking

Purpose

Sets or clears MS-DOS’sinternalflag for Control-C checking,
Syntax

BREAK=ON iOFF

Description

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro-
gram, unless the program itself contains instructions that disable MS-DOS’s Control-C
handling. As a rule, MS-DOS checks the keyboard fora Control-C only when a characteris
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore,if a program executesfor long periods without performing such characterI/O,
detection of the user’s entry ofa Control-C may be delayed. The BREAK=ON command
causes MS-DOSto also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK=OFF commanddisables such extended
Control-C checking. The default setting for BREAKis off.

Extended Control-C checking can also be enabled or disabled at the command prompt
with the interactive form of the BREAK command wheneverthe system is running.

Example
To enable extended Control-C checking during MS-DOSdisk operations,insert the line

BREAK=0ON .

into the CONFIG.SYSfile and restart the system.

Message ,

Unrecognized command in CONFIG.SYS
Thesetting supplied for the BREAK command was not ON or OFF. Correct the
COMFIG.SYSfile and restart the system.

790 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 800/1582

OLYMPUS EX. 1010 - 801/1582

CONFIG.SYS: BUFFERS

CONFIG.SYS: BUFFERS 2.0 and later
Configure Internal Disk Buffers

Purpose

Sets the number of MS-DOS’s internal disk buffers.

Syntax

BUFFERS=7n

where:

nn is the numberof buffers (1—99, default = 2; default = 3 for IBM PC/AT and
compatibles).

Description

MS-DOSmaintains a set of internal buffers (sometimes referred to as a disk cache) in

whichit keeps copies of the sectors most recently read from or written to the disk. When-
ever a program requests a disk read, MS-DOSfirst searches the disk buffers to determine
whether a copy of the disk sector containing the required data is already present in RAM.
If the sectoris found, the actual disk access is bypassed. This technique can significantly
improve the overall performanceof the disk operating system.

By using the BUFFERS command in the CONFIG.SYSfile, the user can control the number
of buffers in MS-DOS’s disk cache. The default numberofbuffers is 2 for an IBM PC,

PC/XT, or compatible and 3 for an IBM PC/AT or compatible. The optimum numberof
buffers varies, depending in part on the characteristics and types of the system disk drives,
the types of application programsused on the system, the numberandlevels of subdirec-
tories in the file structure, and the amount of RAMin the system.

If the systern has only floppy-disk drives, the default setting of 2 buffers is sufficient. If the
system includes a fixed disk, increasing the numberofbuffers to 10 or so typically speeds
up overall system operation. Configuring the system for too many buffers, however, can
actually degrade the performance of the system.

Increases in the numberofbuffers should betailored to the type of application most fre-
quently used. For example,allocation of extra disk buffers will not improve the perfor-
mance of programsthat use primarily sequentialfile access but may considerably enhance
the execution times of programs that perform random access onarelatively small number
of disk records (such as the index for a databasefile). In addition,if the system has many
subdirectories organized in several levels, increasing the numberof buffers can signifi-
cantly increase the speed of disk operations. ,

The ideal numberof buffers for a given system is difficult to predict becauseof the interac-
tions between the access time ofthe disk, the speedofthe central processing unit, and the

Section III: User Commands 791

OLYMPUSEX. 1010 - 801/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 802/1582

CONFIG.SYS: BUFFERS

RAM requirements and disk access behavior of the mix of application programs. However,
a reasonably optimal numberof buffers can be quickly estimated experimentally by in-
creasing the numberof buffers in incrementsoffive or so, restarting the system, perform-
ing some simple timing tests on the most frequently used application programs, and
observing at what numberof buffers system performance beginsto degrade.

Example

To allocate 20 internal disk buffers, insert the line

BUFFERS=20

into the CONFIG.SYSfile and restart the system.

Message

Unrecognized command in CONFIG.SYS .
The value supplied for the BUFFERS commandwasnot a numberin the range 1 through
99.

792 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 802/1582

OLYMPUS EX. 1010 - 803/1582

CONFIG.SYS: COUNTRY

Set Country Code

Purpose

Configures MS-DO$’s internationalization support for a specific country.

Syntax

COUNTRY=nnn

where:

nnn is the international telephonedialing prefix for the country (001-999, default =
, 001):

Australia 061

Belgium 032
Denmark 045

Finland 358
France 033

Israel 972

Italy 039
Netherlands 031

Norway 047
Spain 034
Sweden 046

Switzerland 041

United Kingdom 044
USA 001

West Germany 049

Note: In versions 2.x (except 2.0), mmm is 01 through 99.Individual computer manufactur
ers determinethe specific codes supported by their versions of MS-DOS.

Description

The COUNTRY command enablesthe user to tailor MS-DOS'’s date, time, and currency
displays for a specific country. This capability, termed internationalization support, is
achieved through use of a country codethat controls the contents of the table MS-DOS
uses to format these displays Gincluding numeric separators). (The internationalization
table is made available to application programs through Interrupt 21H Function 38H.)
Beginning with version 3.0, PC-DOSalso supports the COUNTRY command,

Section II: User Commands 793

OLYMPUSEX. 1010 - 803/1582

OLYMPUS EX. 1010 - 804/1582

CONFIG.SYS: COUNTRY

Example

In West Germany,the formatfor the date is dd.mm_.yy. To configure MS-DOSto use this
date format, insert the line

COUNTRY=049

into the CONFIG.SYSfile andrestart the system.

Message

Invalid country code
The specified country code is not supported by the version of MS-DOSthat is running.

794 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 804/1582

OLYMPUS EX. 1010 - 805/1582

CONFIG.SYS: DEVICE _

CONFIG.SYS: DEVICE 2.0 andlater
Install Device Driver

Purpose

Loadsandlinks an installable device driver into the operating system duringinitialization.

Syntax .
DEVICE=|drive:][path]filename [options]

where:

filename isthe nameof the device-driverfile, optionally preceded by a drive and/or
path.

options—_specifies any switches or other parameters needed by the device driver, the
DEVICE commanditselfhas no switches.

Description

Device drivers are the modules of the operating system that control the interface between
the operating system and peripheral devices such as disk drives, magnetic-tape drives,
CRTterminals, and printers.

As supplied, MS-DOSalready contains device drivers for the keyboard, video display,serial
port, printer, real-time clock, and disk devices. Device drivers for additional peripheral
devices can be linked into the operatingsystem by adding a DEVICE commandto the
CONFIG:SYSfile, placing the file containing the device driver on the system startup disk
(or at the location specified by the drive: and/orpath parameter), and restarting the
computer. :

If a drive other than the one containing the system disk is named as the location of the
device driver, that drive musteither be accessible via the system’s default disk driver or be
a drive configured with a previous DEVICE command.

Most OEM implementations ofversion 3.2 provide three installable device drivers:
ANSLSYS, which allows the video display and keyboard to be controlled by ANSI standard
escape sequences; DRIVER.SYS, whichsupports externaldisk drives; and RAMDRIVE.SYS
(VDISK.SYS with PC-DOS), whichuses a portion of the machine’s RAM to emulate a disk
drive. See USER COMMANDS:ANSIL.SYS; DRIVER.SYS; RAMDRIVE.SYS; VDISK.SYS.

Many manufacturers of add-on products for MS-DOS machines(such as networkinterfaces
or Lotus/Intel/Microsoft Expanded Memory boards) also supply installable device drivers
for use with their hardware. For information concerning these drivers, see the product
manufacturer's user’s manual.

Section III: User Commands 795

OLYMPUSEX. 1010 - 805/1582

OLYMPUS EX. 1010 - 806/1582

CONFIG.SYS: DEVICE

Examples

To load the ANSI standard console driver, insert the line

DEVICE=ANSI.SYS

into the CONFIG.SYSfile, place the file ANSI.SYSin the root directory of the system disk,
andrestart the system.

To load the RAMDRIVE.SYSdriverlocated in the \DRIVERSdirectory on the disk in drive
A, configuring it for 1024 KB in extended memory,insert the line
DEVICE=A:\DRIVERS\RAMDRIVE.SYS 1024 /E

into the CONFIG.SYSfile andrestart the system.

Messages

Bad or missing filename
Thefilename specified in the DEVICE commandis invalid or does not exist orthefile

does not contain a valid MS-DOSinstallable device driver.
Sector size too large in file filename
The specified installable device driver uses a sectorsize thatis larger than the sector size
used by any ofthe system’s default disk drivers. Such a driver cannot be used because
MS-DO$’s internal disk buffers will not be large enough to hold a sector read from the
device.

796 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 806/1582

OLYMPUS EX. 1010 - 807/1582

CONFIG.SYS: DRIVPARM

CONFIG.SYS: DRIVPARM 3.2
Set Block-Device Parameters

Purpose

Alters the system’s list of characteristics for an existing block device.

Syntax

DRIVPARM=/D:7 [/C) (/F: 1] (/H: 7) [/N] [/S: 7] (/T: 72]

where:

/D:n is the drive number (0-255; 0 = A, 1 = B, etc.) and must alwaysbe thefirst
switch in the commandline.

/C indicates that the device provides door-lock-status support.
/F:n is a form-factor index from the following table (default = 2 if the DRIVPARM

commandis present but this switch is omitted):

0 320KB or 360 KB
1 1.2MB

2 720KB

38-inch single-density floppy disk
4 8-inch double-density floppy disk
5 Fixed disk

6 Tape drive
7 Other

/Hin is the numberof read/write heads 1-99).

/N indicates that the block device is not removable.

/Sin is the numberof sectors per track (1-99).
/T:n is the numberoftracks per side (1-999),

Note: The DRIVPARM command mustnot be usedto specify device characteristics that
the device driver is not capable of supporting.

Description

Wheneverthe device driver for a block device such as a disk drive or magnetic-tape drive
performs input or output, it refers to an’ internal table of characteristicsfor the device that

_ allowsit to convertlogical addresses to physical addresses. The DRIVPARM command
modifies the default MS-DOSvaluesin the table of characteristics for a particular block
device during system initialization (when the computeris turned onor restarted). Multiple
DRIVPARM commands, each modifying the characteristics of a different block device, can
beincluded in the same CONFIG.SYSfile. Any characteristics not specifically altered in

Section III; User Commands 797

OLYMPUSEX. 1010 - 807/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 808/1582

CONFIG.SYS: DRIVPARM

the DRIVPARM commandfor a particular device retain their original values, except for
/¥:n, which defaults to 2.

DRIVPARM commandsthatalter the characteristics for block devices controlled by install-
able device drivers must follow the DEVICE commandthat loads the device driveritself.

Example

Assumethat drive B is a floppy-disk drive originally configured for 40 tracks with 8 sectors
per track. To reconfigure the drive to read or write 80 tracks of 9 sectors each, insert the
line

_ DRIVPARM=/D:1 /3:9 /T:80

into the CONFIG.SYSfile and restart the system. For this commandto be valid the drive
must be capable of supporting these parameters.

Message
Unrecognized command in CONFIG.SYS
Aninvalid parameter was specified in a DRIVPARM command.

798 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -808/1582

OLYMPUS EX. 1010 - 809/1582

CONFIG.SYS: FCBS

CONFIG.SYS: FCBS 3.0 andlater
Set Maximum OpenFiles Using File Control Blocks (FCBs)

Purpose
Configures the maximum numberoffiles that can be open concurrently usingfile control
blocks (FCBs). This commandhas no practical effect unless either the file-sharing support
module SHARE.EXEor networking support has been loaded.

Syntax

FCBS=m,p

where:

m isthe maximum numberoffiles that can be open concurrently using FCBs (1-255,
default = 4). ,

p isthe numberoffiles opened with FCBsthat are protected against automatic closure
(0-m, default = 0).

Description

MS-DOSsupports two methodsoffile access:file control blocks andfile handles. A file
control block is a data structure thatstores information about an openfile.It resides inside
an application program’s memory space and is accessed by both MS-DOSandthe applica-
tion. (See USER COMMANDS:conFic.sys: FILEs for information on file handles.)

In a network environment, a large numberof active FCBs or improper use of FCBs by
an application can seriously degrade the performance of the network as a whole. Conse-
quently, MS-DOSversions 3.0 andlater provide the FCBS commandto enable the user to
limit the numberoffiles that can be open concurrently using FCBsifeither the file-sharing
support module SHARE.EXE(see USER COMMANDS:srare) or network support has
been loaded. If an application program attempts to exceed the specified numberoffiles,
MS-DOSclosesthefile with the least recently used FCB.

Thep parameter in the FCBS commandline allowsthe userto protectfiles from unilateral
closure by MS-DOS.Thevalue ofpis the numberoffiles, counting from thefirstfile
opened using an FCB, that cannot be closed automatically.

If the current value of FCBS is 4,0 (the default) whenthe file-sharing module SHARE.EXE
or network support is loaded, MS-DOSautomatically increases the maximum numberof
files that can be open concurrently to 16 and the numberoffiles protected against automa-
tic closure to 8. (When multiple FCBsrefer to the samefile, the file is counted only once.)

Section II: User Commands 799

OLYMPUSEX. 1010 - 809/1582

OLYMPUS EX. 1010 - 810/1582

CONFIG.SYS: FCBS

Examples

To set the maximum numberoffiles that can be concurrently open using FCBs to 10 and
protect none of the FCB-openedfiles against automatic closure by MS-DOS,insert the line

FCBS=10,0

into the CONFIG.SYSfile andrestart the system.

To set the maximum numberoffiles that can be concurrently open using FCBsto 8 but
protectthe first 4 FCB-openedfiles against automatic closure by MS-DOS,insert the line

FCBS=8, 4

into the CONFIG.SYSfile andrestart the system.

Message

Unrecognized command in CONFIG.SYS
Aninvalid number was specified as one of the parameters in the FCBS command.

800=The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 810/1582

OLYMPUS EX. 1010 - 811/1582

CONFIG.SYS: FILES

CONFIG.SYS: FILES 2.0 and later
Set Maximum OpenFiles Using Handles

Purpose

Configures the maximum numberoffiles and/or devices that can be open concurrently
using file handles.

Syntax
FILES=7

where:

nm isthe maximum numberoffiles and devices that can be open concurrently usingfile
handles (8-255, default = 8).

Description

MS-DOSsupports two methodsoffile access:file handles andfile control blocks (FCBs).
During initialization, MS-DOSallocates a data structure that holds information aboutfiles
and/or devices opened with the handle, or extended-file-management, function calls. This
structure resides inside the operating system’s memory spaceandis accessed only by
MS-DOS.(See USER COMMANDS:conria.sys: FcBs.) The default size of this data structure

allows8 files and/or devices to be open concurrently using the file-handle functions. The
FILES command enables the user to changethe size of the data structure. (Note thatin-
creasing the size of the data structure decreases the amount of RAM available to applica-
tion programs.)

The FILES command controls the maximum numberoffiles and/or devices opened with’
handles for all active processes in the system combined. Thelimit on the numberoffiles
and/or devices openedfor a single process using handlesis 20 or the numberofentries in
the allocated data structure, whicheveris less. Five of the 20 possible handles for a given
process are automatically assigned to standard input, standard output, standard error, stan-
dard auxiliary, and standardlist. However, since standard input, standard output, and
standard errorall default to the same device (CON), only three of the allocated data-
structure entries are actually expended. In addition, the preassigned standard device
handles for a process can be closed and reused for.otherfiles and devices, if necessary.

Section III: User Commands 801

OLYMPUSEX. 1010 - 811/1582

OLYMPUS EX. 1010 - 812/1582

CONFIG.SYS: FILES

Example

To set the maximum numberoffiles and/or devices that can be concurrently open using
the handle functionsto 20, insert the line
FILES=20

into the CONFIG.SYSfile and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified in the FILES command.

802 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 812/1582

OLYMPUS EX. 1010 - 813/1582

rcAINcrpoetpent

CONFIG.SYS: LASTDRIVE

CONFIG.SYS: LASTDRIVE . 3.0 andlater
Set Highest Logical Drive

Purpose

Defines the highestletter that MS-DOSwill recognize as a disk-drive code.

Syntax

LASTDRIVE=drive

where:

drive is a single letter (A—Z).

Description

MS-DOSblock devices (floppy-disk drives, fixed-disk drives, and magnetic-tape drives)
are referred to by logical drive codes consisting of a single letter from A through Z. In most
MS-DOSsystems, drives A and B are floppy-disk drives, drive C is a fixed disk, and drives
D and aboveare such devices as additional fixed disks, RAMdisks, or network volumes. In
some cases, a single physical drive (such as a very large fixed disk) is partitioned into two
or morelogical drives, each of whichis assigneda drive letter.

MS-DOSvalidates the drive code in a commandorfilename before carrying out a com-
mand. In the default case, MS-DOS recognizes a maximum of five drives (A~E), depend-
ing on the total numberof default devices and devices incorporated into the system using
installable device drivers. (MS-DOSdoes not considera driveletter valid unlessit refers to

a physical or logical device.) The LASTDRIVE commandconfigures MS-DOSto accept.
additional drive codes,to a total of 26 (A—Z). This also makesit possible to usefictitious
drive letters with the SUBST commandto assign a drive letter to a subdirectory.

If the letter code for a LASTDRIVE commandspecifies fewer drives than are physically
present in the system Gincluding installed device drivers), MS-DOSuses the actual number
of physical drives.

Example

To configure MS-DOSto recognize a maximum of eightlogical disk drives, insert the line
LASTDRIVE=H .

into the CONFIG.SYSfile and restart the system.

Message

Unrecognized command in CONFIG.SYS
Anillegal value was specified in the LASTDRIVE command.

Section III: User Commands 803

OLYMPUSEX. 1010 - 813/1582

OLYMPUS EX. 1010 - 814/1582

CONFIG.SYS: SHELL

CONFIG.SYS: SHELL 2.0 and later

Specify CommandProcessor

Purpose

Defines the nameand, optionally, the location of the file that contains the operating
system’s commandprocessor.

Syntax

SHELL=(drive:]|path]filename [options]

where:

filename is the nameofthe file containing the command processor, optionally pre-
ceded by a drive and/or path.

options__specifies any switches and other parameters needed by the designated com-
mand processor; the SHELL commanditselfhas no switches.

Description

The commandprocessor, or shell, is the user’s interface to the operating system.It is
responsible for parsing and carrying out the user’s commands,including the loading and °
execution of other programsfrom the disk. MS-DOSuses the SHELL commandin the
CONFIG.SYSfile to locate and load the commandinterpreter for the system duringits
initialization process.

The default shel! for MS-DOSis the file COMMAND.COM.Thisfile is loaded by MS-DOS
from the root directory of the system disk if no SHELL commandis found in the
CONFIG.SYSfile or if no CONFIG.SYSfile exists.

The most common use of the SHELL commandis simply to advise MS-DOSthat
COMMAND.COMisstored in a location other than the root directory, MS-DOSthen sets
the COMSPECvariable in the environment block to COMMAND.COM,preceded by the
location specified in the SHELL command.(This can beverified by typing the SET com-
mand at the command prompt.) Another common use of SHELLis to specify switches or
other parameters for COMMAND.COMitself (see USER COMMANDS: coMMaNpD).

Example

To specifythe file VISUAL.COMin the root directory of drive C as the system’s command.
processor, insert the line

SHELL=C: \VISUAL.COM

into the CONFIG.SYSfile and restart the system.

Message

Bad or missing commandinterpreter
The pathorfilename in the SHELL commandis invalid or the file does notexist.

804 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 814/1582

OLYMPUS EX. 1010 - 815/1582

 oNptGtotRRtHI,eRpy
CONFIG.SYS: STACK

CONFIG.SYS: STACKS | 3.2
Configure Internal Stacks

Purpose

Defines the numberandsize of stacks for system interrupt handlers.

Syntax

STACKS=number, size

where:

number isthe numberofstacks allocated for use by interrupt handlers (8-64, default =
9).

size is the size of each stack in bytes (32-512, default = 128).

Description

Each time certain hardware interrupts occur (02H, 08-OEH, 70H, and 72—77H), MS-DOS
version 3.2 switchesto an internal stack before transferring controlto the handlerthat will
service the interrupt. In the case of nested interrupts, MS-DOS checks to ensure that both
interrupts do not get the same stack. After the interrupt has been processed, the stack is
released. This protects the stacks owned by application programs or system device drivers
from overflowing when several interrupts occur in rapid succession.

The STACKS command configures the numberandsize of internal stacks available for
interrupt handling and thus controls the numberofinterrupts that can exist only partially
processed whilestill allowing anotherinterrupt to occur.

The number parameter sets the numberofinternal stacks to be allocated; number must
be in the range 8 through 64. The size parameteris the numberof bytesallocated per
stack frame; size must be in the range 32 through 512.

If too many interrupts occur too quickly and the poolof internal stack frames is exhausted,
the system halts with the message Internal Stack Overflow, Increasing the number
parameter in the STACKS command usually corrects the problem.

Example

To configure 10 stacks of 256 bytes eachfor use by interrupt handlers,insert the line

STACKS=10, 256

into the CONFIG.SYSfile and restart the system.

Message

Unrecognized command in CONFIG.SYS
Aninvalid numberwasspecified in the STACKS command.

Section III: User Commands 805

OLYMPUSEX. 1010 - 815/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 816/1582

COPY

COPY | 1.0 and later
Copy File or Device Internal

Purpose

Copies one or morefiles from one disk, directory, or filename to another. Can also copy
files to or from character devices.

Syntax

COPYsource [/A] [/B} [+source[/A] [/B]...] [destination] [/A] [/B][/V]

where: \
source is the namesof thefile(s) to be copied, optionally preceded by a drive

, and/or path; wildcard characters are permitted in filenames. The source
can also be a device.

destination__is the location and, optionally, the name(s) for the copiedfile(s) and can
be preceded by a drive; wildcard characters are permittedin the filename.
Thedestination can also be a device.

/A indicates that the previousfile is an ASCII textfile.
/B. indicates that the previousfile is a binaryfile.
/V performs read-after-write verification of destination file(s).

Description

The COPY command copies one or more sourcefiles to one or more destination files.
When multiple files are copied, the name of each sourcefile is displayed asit is processed.
The COPY command can also be used to send the contentsofa file to a character device

or to copy input from a character device intoafile.

The source parameter identifies the file or files to be copied. It can consist of any combina-
tion of drive, path, andfilenameorit can be a device name.If a path without a filenameis
specified,all files in the named directory are copied. Several sourcefiles can be concate-
nated into a single destination file by placing a + operator between their names;if the
source filename contains a wildcard but the destination name doesnot, all the source files
are concatenated into the specified destination.

Warning: When multiple source files are concatenated into a destination file with the
same nameas oneofthe sourcefiles, that filename should bespecified as the first source
file. Otherwise, the contents of the source file will be destroyed beforethe file is copied.

Whena device is specified as the source,it is usually the console (CON), for copying key-
board input to a file or another device. Keyboard input is terminated by pressing Ctrl-Z or
F6 (on IBM PCsor compatibles) and then the Enter key.

806 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 816/1582

OLYMPUS EX. 1010 - 817/1582

a
COPY

The destination parameter also can consist of any combination ofdrive, path,andfile-
nameor be a device name. Unlessthe sourcefiles are being renamed as part of the opera-
tion, destination is usually simply a drive and/or path specifying whereto place the
copied files. If no destination is specified, the source file is copiedto a file with the same
namein the current directory of the default disk drive;if the sourcefile in this case is itself

in the current directory of the current drive, an error message is displayed and the copy
operation is aborted.If files are being concatenated and no destinationis specified, the
sourcefiles are copied sequentially into onefile in the current directory with the same
nameasthefirst sourcefile. If the first sourcefile already exists, the secondfile and any
additional specified files are appended sequentially to thefirst sourcefile.

The /A and /B switches control the manner in which the COPY commandoperates ona
file. Both switches affect.the file specification immediately preceding them and any subse-
quentfile specifications in the command until another/A or /B switch is encountered,at
which pointthe new /A or /B switchtakeseffectfor the file immediately preceding it and
for any subsequentfiles.
The AA switch indicates thata file is an ASCIItext file. When the /A switch is applied toa
sourcefile, the file is copied upto, but not including,the first Control-Z “Z) characterin
the file. When the /A switch is applied to a destination file, a Control-Z characteris ap-
pended by the COPY commandasthelast characterof the newfile..

The /B switch indicates a binary file. When /B is applied to a source file, the exact number
of bytesin the original file are copied without regard to Control-Z or any other control
characters. When the /B switch is applied to a destination file, no Control-Z characteris
appendedto the newly createdfile.

The default values for the /A and /B switchesforfile-to-file copies are /A whensourcefiles
are being concatenated and /B otherwise. Whena file is being copied to or from a charac-
ter device, the /A switchis the default.

The /V switch causes a read-after-write verification of each block of the destinationfile. Its

effect is equivalent to that of the VERIFY ON command. No comparison is made between
the source and destination files— the /V switch simply causes MS-DOSto verify that the
destination file has been written correctly.

Examples .
To copythe file REPORT.TXTfrom the rootdirectory of the disk in drive B toafile natned
FINAL.RPTin the \WP\ DOCSdirectory on the current drive, type

C>COPY B:\REPORT.TXT \WP\DOCS\FINAL.RPT <Enter>

To makea copyofthefile A:\V2\SOURCE\ MENUMGR.Cin the current directory of the
currentdrive, type

C>COPY A:\V2\SOURCE\MENUMGR.C <Enter>

Section III: User Commands 807

OLYMPUSEX. 1010 - 817/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 818/1582

COPY

To copyall files with the extension .DOCin the current directory of the disk in drive A to
files with the samefilenames but a .TXT extension in the current directory of the current
drive, type

C>COPY A:*.DOC *.TXT <Enter>

To combinethe files PROLOG.C, MENUMGR.C, and EPILOG.C in the current directory of

the current drive into a single file named VISUAL.Cin the current directory of the current
drive, type *

C>COPY PROLOG.C+MENUMGR.CtEPILOG.C VISUAL.C <Enter>

To appendthe files MENUMGR.C and EPILOG.C to an existing file named PROLOG.C in
the current directory of the current drive, type

C>COPY PROLOG.C+MENUMGR.C+EPILOG.C <Enter>

To copythe file MENUMGR.MAPin the current directory of the current drive to the system
printer, type

C>COPY MENUMGR.MAP PRN <Enter>

To copy input from the keyboard (CON)to a file named MENU.BATin the currentdirec-
tory of the current drive, type

C>COPY CON MENU.BAT <Enter>

Text subsequently entered from the keyboardis placed into the file MENU.BATuntil a
Ctrl-Z or F6 is pressed.

To copyall files in the \MEMOSdirectory on the current drive to the \ARCHIVEdirectory
on the disk in drive B, type

C>COPY \MEMOS*.* B:\ARCHIVE <Enter>

or

C>COPY \MEMOS B:\ARCHIVE <Enter>

Messages

n File(s) copied
This informational message is displayed at the completion of a COPY commandandindi-
cates the total numberof sourcefiles processed.

Cannot do binary reads from a device
The COPY commandspecified a copy from a character device in binary mode. Reenter
the commandwithout a /B switch.

Contentofdestination lost before copy
Oneofthe source files specified as a destination file was overwritten prior to completion
of the copy. When the destination nameis the same as oneof the source names,thatfile
should be specified as the first sourcefile.

808 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 818/1582

OLYMPUS EX. 1010 - 819/1582

COPY

File cannot be copied ontoitself
The source directory andfilenameofa file being copied are the same as the destination
directory andfilename.

File not found

_Afile specified in the COPY commandis invalid or doesnotexist.

Invalid directory
A directory specified in the COPY commandis invalid or doesnot exist.

Section II: User Commands 809

OLYMPUSEX. 1010 - 819/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 820/1582

CTTY

CTTY 2.0 and later

AssignStandard Input/Output Device Internal

Purpose
Specifies the character device to be used as-standard input and output.-

Syntax |
CTTY device

where:

device is the logical character-device name.

Description

MS-DOSordinarily uses the computer’s built-in keyboard and screen (CON) as standard
input and output. The CTTY commandallows another character device to be assigned
instead.

CTTYallows MS-DOS commandsto be issued from a terminal attached to the computer's
serial port or from another custom device with a screen and keyboard. Although PRN and
NULare valid MS-DOS device names, they should not be used with this command,as they
have no input capability.

Programsthat do not use MS-DOSfunction calls to perform their input and output will not
be affected by the CTTY command. Microsoft BASIC is an example of such a program.

Examples

To use a terminal connectedto the serial port as standard input and outputfor programs,
type

c>CTTY AUX <Enter>

To reinstate the normal keyboard and video display (CON) as standard input and.output
for programs, type
C>CTTY CON <Enter>

onthe currently assigned console device.

Message

Invalid device
The specified device is not a legal character-device name or doesnotexist in the system.

810 | The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 820/1582

OLYMPUS EX. 1010 - 821/1582

nn
' ‘DATE

DATE | 1.0 andlater

Set Date Internal

Purpose

Sets or displays the system date.

Syntax

, DATE mm-dd-yy

or

DATE mm/dd/yy
or

DATE mm.dd.yy (versions 3.0 andlater)

where:

mm is the month (1-12).

dd is the day (1-31).
yy is the year (80-99 or 1980-1999; 80-79 or 1980-2079 with versions3.0 and

later).

Description

All computers that run MS-DOShaveaspartof their hardware configuration a timer, or
clock, that maintains the current system date and time. Among otheruses, the current date
and time are inserted into a file’s directory entry when thefile is created or modified.

The DATE commandallowsthe userto display or modify the current date that is being
maintained by the system’s real-time clock. The command is.executed automatically by
MS-DOS whenthe system is initialized, unless there is an AUTOEXEC.BATfile on the sys-
tem disk, in which case DATEis executed onlyif it is included in thefile.

A date entered using the DATE command doesnot permanently change the system date;
the newly entered date will be lost when the system is turned off or reset. On IBM PC/ATs ©
and compatibles, which have a built-in battery-backed clock/calendar, the system setup
program (found on the Diagnostics for IBM Personal Computer AT disk or equivalent) must
be used to permanentlyalter the date stored in the machine. On IBM PCs, PC/XTs, and
compatibles equipped with add-on cards containing battery-backed clock/calendarcir-
cuitry, it is generally necessary to run a time/date installation program (included with
the card) when the system is turned on to set the system date and time from the clock/
calendaron the card. The DATE commandusually has no effect on these card-mounted
clock/calendars.

Section II: User Commands $11

OLYMPUSEX. 1010 - 821/1582

OLYMPUS EX. 1010 - 822/1582

DATE

The order of the day, month, and year in the DATE command depends on the country
code,whichis set with the COUNTRY commandin the CONFIG.SYSfile. The format
shownhereis for the USA.

Examples

To set the system date to October15, 1987, type
C>DATE 10-15-87 <Enter>

or

C>DATE 10/15/87 <Enter>

or

C>DATE 10.15.87 <Enter>

To display the current system date, type

 G>DATE <Enter>

and MS-DOSwill respondin the form

Current date is Thu 10-15-1987

Enter new date (mm-dd-yy):

To leave the date unchanged,press the Enter key.

Messages

Current date is day mm-dd-yyyy
Enter new date (mm-dd-yy):
This informational message and prompt are displayed when MS-DOSis started and there
is no AUTOEXEC.BATfile on the system disk, when the DATE commandis entered alone,
or when the DATE commandis included in the AUTOEXEC.BATfile.

- Invalid date

Enter new date (mm_-dd-yy):
The date éntered in the commandline or in response to the prompt from the DATE com-
mand wasnot formatted properly or wasinvalid.

812 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 822/1582

OLYMPUS EX. 1010 - 823/1582

DELor ERASE

DEL or ERASE 1.0 and later
Delete File Internal

Purpose

Deletesafile or set of files. DEL and ERASE are synonymous.

Syntax
DEL [drive:][path]filename
or

ERASE[drive:]|path]filename

where:

filename_isthe nameofthefile(s) to be deleted, optionally preceded by a drive and/orp y

path; wildcard characters are permitted in the filename.

Description

The DEL command marks the directory entry for the specifiedfile as deleted and frees the
disk sectors occupied by the file. If the commandline ends with+.« or a directory name
(including the special directory names . and ..), MS-DOS promptsthe user for confirma-
tion before deleting all the files in the current or specified directory. Note that in the case
of a directory name,the directory itself is not removed; only thefiles within it are deleted.

Warning:If the filename specification begins with an + wildcard and the extension is
also * (for example, »xyz.*), DEL interprets the specification as *.* and promptsthe userfor
confirmation before deleting all files from the current or specified directory.

Examples

To delete the file HELLO.C from the current directory on the current drive, type

C>DEL HELLO.C <Enter>

Todeleteall files with the extension .OBJ from the \SOURCEdirectory onthe disk in drive
D,type

C>DEL D:\SOURCE*.OBJ <Enter>

To delete all files from the current directory on the currentdrive, type

C>DEL #.* <Enter>

or

C>DEL . <Enter>

In this case, MS-DOSwill promptfor confirmation thatallfiles should be deleted.

Section II: User Commands 813

OLYMPUSEX. 1010 - 823/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 824/1582

DEL or ERASE

To delete all files from the directory \WORD\LETTERSonthecurrentdrive, type

C>DEL \WORD\LETTERS <Enter> .

Again, MS-DOSwill promptfor confirmation thatall files should be deleted.

Messages

Access denied

Thespecifiedfile is read-only. Use the ATTRIB commandwith the -R switch to remove
the file’s read-only status.

Are you sure (Y/N)?
This message prompts the user for confirmation if the command would deleteallfiles in
a directory Gif the commandline ends with a directory name or *.*). Respond with Y to
delete all files in the directory; respond with N to terminate the command.

File not found
The filename in the commandis invalid or thefile does not exist in the specified directory.

Invalid directory
Oneof the directories namedin the file specification is invalid or does notexist.

Invalid drive specification
The drive code in thefile specification is invalid or the named drive does notexist in the
system,

814 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 824/1582

OLYMPUS EX. 1010 - 825/1582

DIR

DIR , 1.0 andlater

Display Directory - Internal

Purpose

Displaysa list of a directory’s files and subdirectories.

Syntax ;

DIR [drive:l[path)filename] {/P] {/W]

where:

filename is the nameofthefile, optionally preceded by a drive and/or path, whose —
directory entry is to be displayed; wildcard characters are permitted.

/P causes a pause after each screen pageofdisplay.
/W causes a wide display of filenames formattedfive across.

Description

The DIR commanddisplays information aboutthefiles in a directory. It also displays infor-
mation about the volume nameofthe disk that contains the directory, the total number of
files and subdirectories in the directory, and the amountof free space remaining on the
disk. ,

The normal format of the DIR command's outputis

Volume in drive C is HARDDISK

Directory of C:\ASM
<DIR> 9-19-85: 7:09p

. <DIR> 9-19-85 7:09p

LIB <DIR> 9-17-86 11:31p
SOURCE <DIR> 9-17-86 11:31p
AT86 EXE 41146 5-13-85 5:18p
CREF EXE 15028 10-16-85 4:00a

DEBUG COM 15552 3-07-85 1:43p
EXE2BIN EXE 2816 3-07-85 1:43p
EXEMOD EXE 11034 .10-16-85 4:00a
EXEPACK EXE 10848 10-16-85 4:00a
LIB EXE 28716 10-16-85 4:00a
LINK EXE 43988 10-16-85 4:00a

MAKE EXE 24300 10-16-85 4:00a.
MAPSYM EXE 18026 10-16-85 4:00a
MASM EXE 85566 10-16-85 4:00a
SYMDEB EXE 37021 10-16-85 4:00a

T86 EXE 49024 12-06-84 4:03p
17 File(s) 4022272 bytes free

Thefirst line shows the volumelabel of the disk that contains the directory being dis-
played; the second line gives the full pathnameofthe directory. The subsequentlines are

Section III: User Commands 815

OLYMPUSEX. 1010 - 825/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 826/1582

DIR

the namesofthe files and subdirectories within the current or specified directory. Fach
entry includes the time and date thefile or subdirectory was created orlast modified.

Files are shown with their exact size in bytes; directories are shown with the symbol
<DIR>.If the directory being listed is not the rootdirectory of the disk, it always contains
the two special directory entries . and .., whichare aliases for the current directory and the
parent directory, respectively. Thesealiases are included in the totalfile countin the last
line of the display.

Subsets of the files and subdirectories in the currentor specified directory of the current
or specified drive can be listed by including a filename with wildcardsin the command
line. For example,the filename «.DOC will cause DIRto list only the files with a .DOC
extension.-

If the commandline ends with a drive or path, DIR automatically appendsan «.*, causing.
all files and subdirectories in the currentor specified directory of the currentor specified
drive to belisted. If a filenameis included but no extension is given, DIR appendsa + to
the filename, causing all files with that nameto belisted, regardless of their extension.Ifa
filename ending witha . is included, nothing is appended andall matching subdirectories
and filenames without extensionsarelisted.

The /P switch causes a pausein the display after each screen page (23 lines plus a mes-
sage). The listing resumes whenthe user presses a key.

The /W switch causesthelist to be in a more compact format by omitting size and date/
time information and by displaying thefilenamesfive across:
Volume in drive C is HARDDISK

Directory of C:\ASM
. oe LIB SOURCE AT86 EXE
CREF EXE .DEBUG COM EXEZ2BIN EXE EXEMOD EXE EXEPACK EXE
LIB EXE LINK EXE MAKE EXE MAPSYM EXE MASM EXE
SYMDEB EXE T86 EXE

17 File(s) 4022272 bytes free

When the /W form ofthe listing is displayed, subdirectories are not easily distinguished
from files because the <DIR> symbolis not shown.

Examples

816

Tolist all files in the current directory on the current drive, type
C>DIR <Enter>

Tolist all files in the current directory on the disk in drive B, type
C>DIR Bi: <Enter>

or

C>DIR B:*.* <Enter>

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 826/1582

OLYMPUS EX. 1010 - 827/1582

DIR

To list all files in the directory \SOURCE onthe currentdrive, type

C>DIR \SOURCE <Enter>
or

C>DIR \SOURCE*.+# | <Enter>

Tolist all files with the extension .OBJ in the \LIB directory on the disk in drive D, type

C>DIR D:\LIB*.OBJ <Enter>

Tolist all files in the parent directory of the current directory on the currentdrive, type.

C>DIR .. <Enter> .

To list all files in the current directory on the current drive, sorted by filename and exten-
sion, type

C>DIR | SORT <Enter>

Tolist all files in the current directory on the current drive, sorted by extension, type

C>DIR ; SORT /+10 <Enter>

The /+ 10instructs SORTtosort the directory entries starting at the tenth column, whichis
the first column of the filename extension.

To list the subdirectories andfiles without extensions in the current directory, type

C>DIR *. <Enter>

To print the directory on an attached printer instead of displaying it on the screen, type
C>DIR > PRN <Enter>

To make a copyofthe directory ina file called FILES.TXT, type

C>DIR > FILES.TXT <Enter>

Messages

File not found

A filename was included in the commandline and no matchingfiles were found.

Invalid directory
An elementof the path included in the commandline doesnot exist.

Invalid drive specification
The specified drive is invalid or is not present in the system.

Strike a keywhen ready...
If the DIR commandincludes the /P switch, the display is suspendedafter each 23 lines
and this message promptsthe userto press a key to see the next screenfulofentries.

Section III: User Commands 817

OLYMPUSEX. 1010 - 827/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 828/1582

DISKCOMP

DISKCOMP 3.2

Compare Floppy Disks , External

Purpose

Compares two entire floppy disks on a sector-by-sector basis and reports any differences.
This commandwasincluded with PC-DOSbeginning with version 1.0. To compare indi-
vidualfiles, see USER COMMANDS:comp;Fc.

Syntax

DISKCOMP[drive1:] [drive2:] [/1] [/8)

where:

drivel is the drive containing the first disk to be compared.
drive2 is the drive containing the second disk to be compared.
/1 comparesonly the first sides of the disks.
/8 comparesonlythefirst eight sectors of each track.

Description

The DISKCOMP command comparesthe physical sectors of one floppy disk with those
of another. The drivel and drive2 parameters designate the drives holding the two disks
to be compared; the drives should always be of the same type. If drive2 is omitted,
DISKCOMPusesthe currentdrive. If both drivel and drive2 are omitted orare identical,
DISKCOMPperforms the comparison using a single drive, prompting the user to swap
disks as required.

Ordinarily, DISKCOMP determines the disk format by inspecting the disk in drivel. The /1
and /8 switches override this check sothat only oneside of the disksor onlythe first eight
sectors of each track are compared, regardless of the actual format of the disks. .

If all the sectors on all the tracks are identical, DISKCOMPdisplays the message Compare
OK. If differences are found, DISKCOMPreports them byissuing a message that includes
the numbersof the track and disk side (read/write head) where the differences occur.

Because DISKCOMPworksat the level of the disks’ physical sectors andis ignorant ofthe
control areas andfile structures imposed on a disk by MS-DOS,it also reports as errors bad
sectors that were marked during the FORMATprocess,

When DISKCOMPfinishes comparing twodisks,it displays a promptthat allows the user
to choose between comparing anotherpair of disks and returning to the MS-DOS com-
mandlevel. '

DISKCOMPcannot be used with a network drive or with a drive created or affected by an
ASSIGN,JOIN, or SUBST command,nor can it be used withfixed disks.

818 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 828/1582

OLYMPUS EX. 1010 - 829/1582

: DISKCOMPSrooo

Return Codes
0 Compareddisks wereidentical.

Differences were found between the compared disks.
DISKCOMPwasterminated with a Control-C.

Bad sector was found ononeof the disks being compared.
Initialization error was encountered: not enough memory, syntax error in command
line, or invalid drive specified in commandline.

RONA
Note: Return codes are not present in the PC-DOSversion of DISKCOMP.

Examples

To comparethe disk in drive A with the disk in drive B, type

C>DISKCOMP A: B: <Enter>

To compare twodisks using only drive A, type
C>DISKCOMP A: A: <Enter>

"To compareonly thefirst side of the disk in drive A with thefirst side of the disk in drive
B, type

C>DISKCOMP A: B: /1 <Enter>

To compare only thefirst eight sectors of each track on oneside of one disk with thefirst
eight sectors of each track on one side of another disk using only drive A, type

C>DISKCOMP A: A: /1 /8 <Enter>

Messages

Cannot DISKCOMPto or from

an ASSIGNed or SUBSTed drive

Oneofthe specified drives has been affected by an ASSIGN or SUBST command.

Cannot DISKCOMPto or from

a network drive
Oneof the specified drives is a network device.

Compare anotherdiskette (Y/N) ?
This prompt allows comparison of another pair of disks. Respond with Y to cause
DISKCOMPto promptfor insertion of the next pair of disks to be compared; respond with
N to exit to MS-DOS.

Compareerror on siden, trackn
A difference was detected between the two disks being compared.

Compare OK
The two disks being comparedare identical.

Section III: User Commands 819

OLYMPUSEX. 1010 - 829/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 830/1582

DISKCOMP

Compare process ended
The disk comparison was terminated as the result of a fatal error.

Comparing tracks,
n sectors per track, n side(s)
This informational message specifies the format of the two disks being compared.

DEVICE Support Not Present
Thedisk drive does not support MS-DOS3.2 device control.

DriveX not ready
Makesure a diskette is inserted into

the drive and the dooris closed

DISKCOMPwasunable to read the disk in the specified drive.

Drive types or diskette types
not compatible
Single-sided disks cannot be compared with double-sided disks, nor high-density disks
with double-density disks.

FIRST diskette bad or incompatible
DISKCOMPis unable to determine the formatofthefirst disk.

Incorrect DOS version

The version of DISKCOMPis not compatible with the version of MS-DOSthatis running.

Insert diskettewith directory that contains
COMMAND.COMindriveX and strike any keywhen ready
If the system was booted from a floppy disk and the system disk was then removed in
order to use DISKCOMP, the user must replace the system disk after the compare opera-
tion is complete.

Insert FIRST diskette in driveX:

Press any keywhen ready.. .
This message prompts the userto insert thefirst disk of a pair to be compared.

Insert SECOND diskette in driveX:
Press anykey when ready...
This message prompts the userto insert the second disk of a pair to be compared.

Insufficient memory
- The available system memoryis insufficient to load and execute the DISKCOMPprogram.

Invalid drive specification
Specified drive does not exist
or is non-removable

Oneofthe drives specified in the commandline is invalid or does not exist.

820 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 830/1582

OLYMPUS EX. 1010 - 831/1582

DISKCOMP

Invalid parameter
Do not specify filename(s)
Commandformat: DISKCOMPd:d: [/1][/8]

A syntax error was detected in the commandline, usually caused by an incorrect switch.

SECONDdiskette bad or incompatible
The second disk of a pair to be compared does not have the same format asthefirst disk or

' has bad sectors preventing DISKCOMPfrom determining its format.

Unrecoverable read error on driveX:
The disk in the specified drive contains an unreadablesector.

Section III: User Commands 821

OLYMPUSEX. 1010 - 831/1582

OLYMPUS EX. 1010 - 832/1582

DISKCOPY

DISKCOPY 2.0 and later

Copy Floppy Disks External

Purpose

Performs a sector-by-sector copy of one entire floppy disk to another floppy disk. This

commandwasincluded with PC-DOS beginning with version 1.0. To copy individualfiles,
see USER COMMANDS:copy.

Syntax

DISKCOPY[drivel] [drive2:] [/1]

where:

drivel is the drive containing the disk to be copied.
drive2 is the drive containing the disk that will become the copy.
/1 copiesonly thefirst side of the disk in drive1 (MS-DOSversion 3.2).

Description

The DISKCOPYcommand duplicates a floppy disk, performing the copy on a physical
sector-by-sector basis. The drivel parameterspecifies the location of the disk to be copied
(the source disk). The drive2 parameter specifies the location of the disk that will become
the copy (the destination disk). If drive2 is omitted, the current drive is used as the desti-
nation drive;ifboth drivel and drive2 parameters are omitted or are the same, DISKCOPY
performs the copy operation using a single drive, prompting the user to swap the disks as
necessary.

DISKCOPY examinesthe destination disk before writing any information and terminates
with an error messageif it does not have the same format as the source disk. If the destina-

tion disk is not formatted, DISKCOPY formatsit with the same format as the source disk, as
part of the DISKCOPYoperation.

Note: With MS-DOS versions 2.0 through 3.1, the destination disk must be formatted using
the FORMAT commandbefore DISKCOPYcan be used. All PC-DOSversions of

DISKCOPYwill automatically format the destination disk, if necessary.

When DISKCOPYfinishes copying a disk, it displays a promptthat allows the userto
choose between copying anotherdisk and returning to the MS-DOS commandlevel.

Because DISKCOPYcreates an exact duplicate of the source disk, any file fragmentation
present on the source disk is also present on the destination disk after the DISKCOPY
process is complete. To eliminate fragmentation of the sourcefiles, they should be copied
to the destination disk individually using COPY or XCOPY.

The DISKCOPY commandcannotbe used with a network drive or with a drive created or

affected by an ASSIGN,JOIN, or SUBST command,norcan it be used withfixed disks.

822 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 832/1582

OLYMPUS EX. 1010 - 833/1582

sco

Return Codes

0 Disk was copied successfully.
1 Nonfatal but unrecoverable read or write error occurred (no Interrupt 24H generated),
2 DISKCOPY wasterminated with a Control-C,

3 Fatal error was encountered: unreadable source disk or unformattable destination
disk.

4 Initialization error was encountered: not enough memory, syntax error in command
line, or invalid drive specified in commandline.

Note; Return codesare not present in the PC-DOSversion of DISKCOPY.

Examples

To copy the contents of the disk in drive A to the disk in drive B, type
C>DISKCOPY A: B: <Enter>

To copy the contents of the disk in drive A using only onedrive, type
C>DISKCOPY A: A: <Enter>

To copyonly thefirst side of the disk in drive A to the first side of the disk in drive B, type
C>DISKCOPY A: B: /1 <Enter>

Messages

Cannot DISKCOPYtoor from

an ASSIGNed or SUBSTed drive

Oneofthe specified drives has been affected by an ASSIGN or SUBST command.

Cannot DISKCOPYtoor from

a networkdrive

Oneofthe specified drives is a network device.

Copyanotherdiskette (Y/N) ?
This prompt allows copying of another disk. Respond with Y to cause DISKCOPYto
promptfor insertion of the nextset of disks; respond with N to exit to MS-DOS.

Copyingz tracks
n sectors per track, 2 side(s)
This informational message specifies the format of the source disk being copied.

Copy process ended
The DISKCOPYprocess has been successfully completed or has been terminated by a fatal
error. In the latter case, this message is preceded by another message explainingthe error.

DEVICE Support Not Present
The disk drive does not support MS-DOSversion 3.2 device control.

Section III: User Commands 823

OLYMPUSEX. 1010 - 833/1582

OLYMPUS EX. 1010 - 834/1582

DISKCOPY

Disk error while reading driveX:
Abort, Retry, Ignore?
Abadsector was detected onthe source disk. This does not necessarily invalidate the disk
copy; the bad sector may originally have been detected and flagged by the FORMATpro-
gram andtherefore not includedin any file. One solution is to copy the files individually
using the COPY command.

DriveX: not ready
Makesure a diskette is inserted into

the drive and the dooris closed

DISKCOPY was unable to read the disk in the specified drive.

Drive types or diskette types
not compatible
Single-sided disks cannot be copiedto or from double-sided disks, nor high-density disks
to or from double-density disks.

Formattingwhile copying
The destination disk was not previously formatted. It is given the same2 format as the
source disk as part of the DISKCOPY operation (MS-DOSversion3.2).

Incorrect DOS version

The version of DISKCOPYis not compatible with the version of MS-DOSthat is running.

Insert diskette with directory that contains
COMMAND.COMindriveX andstrike any keywhen ready
If the system was booted from a floppy disk and the system disk was then removedin
order to use DISKCOPY,the user must replace the system disk after the copy operationis
complete.

Insert SOURCEdiskette in driveX:

Press any keywhen ready...
or

Insert TARGETdiskette in driveX:

Press any keywhen ready...
These messages promptthe userto insert the source and destination disks before begin-
ning the copy operation.

Insufficient memory
The available system memoryis insufficient to load and execute the DISKCOPY program.
Invalid drive specification
Specified drive does not exist,
or is non-removable

Oneofthe drives specified in the commandlineis invalid or does notexist. A fixed disk
cannot be the source or destination disk fora DISKCOPY operation.

824 TheMS-DOS Encyclopedia

OLYMPUSEX. 1010 - 834/1582

OLYMPUS EX. 1010 - 835/1582

DISKCOPY

Invalid parameter
Do not specify filename(s)
Command Format: DISKCOPYd: d: [/1]}

A syntax error was detected in the commandline, usually caused by an incorrect switch or
by the useof a filename instead of (or in addition to) a disk drive.

- SOURCE diskette bad or incompatible
or

TARGETdiskette bad or incompatible
The source disk could not be read or the destination disk could not be formatted.

Target diskette is write protected
Thedestination disk has a write-protecttab onit.

Target diskette may be unusable
Unrecoverable read or write errors were encountered while copying the sourcediskto the
destination disk. The newly copied disk may not be an accurate copy.

Unrecoverable read error on driveX:

siden, trackn

or *

Unrecoverable write error on driveX:

siden, trackn
The disk in the specified drive contained a sector that could not be successfully read or
written.

Section III: User Commands 825

OLYMPUSEX. 1010 - 835/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 836/1582

DRIVER.SYS

DRIVER.SYS 3.2

Configurable External-Disk-Drive Driver External

Purpose

Installs and configures external disk drives or assigns logical drive letters to existing
floppy-disk drives.

Syntax

DEVICE=DRIVER.SYS /D:n{/C] (/F:n] {/H:n] [(/NI{/S:n) (/T: 1]

where:

/Din is the drive number (0-127 for floppy disks, 128-255 for fixed disks) and must
alwaysbethefirst switch in the commandline.

IC specifies that door-lock-status support is available.
/F:n is the form-factor index for the device (default = 2):

0 320/360 KB
1 1.2MB

2 720KB

3 8" single-density floppy disk
4 8" double-density floppy disk
5 fixed disk

6 magnetic-tape drive
7 other

/Hin is the numberof heads supported by thedisk drive (1-99).
/N specifies a nonremovable block device.
/S:n is the numberofsectors per track (1-40).
/T:n is the tracks per read/write head (1-999).

Description

When the computer is turned on or restarted, MS-DOS assigns numbersto all existing in-
.ternal disk drives. The DRIVER.SYSfile—aninstallable, configurable block-device driver
for external disk drives and other mass-storage devices — allowsinstallation of peripheral
devices that are not supported by the resident drivers in the MS-DOS BIOS module.
DRIVER.SYScanalso assign a logical driveletter to an existing disk drive, thus giving the
device two drive letters. (This allows such activities as copyingfiles between like media —
for example, copyingfiles from one 1.2 MB 5.25-inch disk to another— using the same
drive.)

826 TheMS-DOSEncyclopedia

OLYMPUSEX. 1010 - 836/1582

OLYMPUS EX. 1010 - 837/1582

DRIVER.SYSeee

The /D:7 switch assigns a unit numberto the additional disk drive or specifies the number
of the existing disk drive thatis to be assigneda logical drive letter. (Floppy-disk unit num-
bers begin at0; fixed-disk numbers begin at 80H.) For example,if the system contains two
floppy-disk drives (0 and 1), an external floppy-disk drive requiring DRIVER.SYS would
be assigned the value 2; MS-DOS would then assign that drive the next available drive let-
ter, If the numberused with the /D:n switch references an existing drive (for example,0,
the first floppy-disk drive), MS-DOSassigns the drive the next available drive letter, allow-
ing the onedrive unit to be referenced by two drive letters. The /D:7 switch is not op-
tional and must precedeall other switches in the commandline.

The /C, /F:n, and /N switches describe characteristics of the disk drive that is being se-
lected for use with DRIVER.SYS. The /C switch is included only if the device:has a status
line indicating whether the disk in the drive has been changed. (This information is used
by the driver to optimize disk accessesto the directory andfile allocationtable.) If the
device does not have a statusline, /C will have no effect. The /F:1 option describes the
form-factor index used by the device. The permissible values for 1 are given in the pre-
ceding table; the default type is a 720 KB disk. The /N switchindicates that the block
device is nonremovable. Access to such devices is more efficient than access to removable

media because MS-DOScaneliminate calls to the driver for a media-change check.

The /H:n,/S:n, and /T:n switches describe the physical layout of the recording medium.
/H:n specifies the numberof recording surfaces, or read-write heads, supported by the
drive (1-99). /S:n is the numberofsectors per track (—40) and /T:7 is the tracks per side
(1-999). (The total numberof physical sectors on a given disk is found by multiplying the
numberofheadsby the tracksperside and thesectors per track.) ,

Note: Thevalues used with these switches must be supported by the device being in-
stalled. If DRIVER.SYSis usedto assign a logical drive letter to an existing physical device,
the values used with the switches must be identical to the characteristics imposed by the
default device driver.

Examples

Toinstall a driver for an external 720 KB disk drive ina system that already has two
5.25-inch floppy-disk drives, insert the line

DEVICE=DRIVER.SYS /D:02

into the CONFIG.SYSfile and restart the system.

Assume that an IBM PCATor compatible has three disk drives installed: Drive A is a 1.2
MB5.25-inch floppy-disk drive; drive B is a 360 KB 5.25-inch floppy-disk drive, drive C is
a 30 MBfixed-disk drive. To assign the logical drive letter D to the existing driveA, effec-
tively giving the one drive two driveletters, insert the line ,

DEVICE=DRIVER.SYS /D:0 /F:1 /H:2 /S:15 /T:80 /C

into the CONFIG.SYSfile and restart the system.

Section III: User Commands 827

OLYMPUSEX. 1010 - 837/1582

OLYMPUS EX. 1010 - 838/1582

DRIVER.SYS

Messages

Bad or missing DRIVER.SYS
Thefile DRIVER.SYScould not be found in the root or specified directory or has been
damaged.

ERROR- Incorrect DOSversion .
The version of DRIVER.SYSis not compatible with the version of MS-DOSthatis running.

ERROR- No drive specified
The /D:n switch was not included in the commandline.

’ Loaded External Disk Driver for DriveX

The device driver has been successfully installed and this message informs the user of the
driveletter assignedto the device.

Sector size too large in file DRIVER.SYS
DRIVER.SYSusesa sectorsize thatis larger than the sector size used by any of the system’s
default disk drivers. The driver cannot be used because MS-DOS’s internal disk buffers will

not be large enoughto hold a sector read from the device.

828 The MS-DOS Encyclopedia .

OLYMPUSEX. 1010 - 838/1582

OLYMPUS EX. 1010 - 839/1582

EDLIN

EDLIN 1.0 andlater
Line Editor External

Purpose

Creates and changes ASCII text files.

Syntax

EDLIN [drive:)[path) filename [/B]

where:

filename isthe nameofan ASCII textfile to be created or edited, optionally preceded
. bya drive and/orpath.

/B causes logical end-of-file marks within the file to be ignored (versions 2.0 and
later).

Description

The EDLIN program is a simple line-oriented editor that can be used to create or maintain
shorttext files. The user references and edits text by line number; EDLIN displays these
numbers for convenience but they do not becomepartofthefile. Eachline ofthefile
being edited can be a maximum of 253 characters.

Thefilename parameterspecifies a plain ASCIItextfile; if the file does not already exist,
. EDLINcreates it.CEDLIN cannot be used on mostfiles created by word-processing pro-

grams because such documentfiles have embedded formatting codes and other format-
ting information that EDLIN cannotinterpret.) EDLIN does not assume any extensions; the
user must type the complete filename. CEDLIN does not permit editing of a BAKfile.)

If filenameis a previously existing textfile, EDLIN loadslines from the file into memory
until the editing buffer is 75 percent full or until a logical end-of-file mark or the physical
end of the file is reached. The /B switch forces EDLIN to ignore any logical end-of-file
marks (1AH,or Control-Z) the file may contain.If the file is too large for the edit buffer, the
Writé Lines to Disk (W) and Append Lines from Disk (A) commandsare used during the
edit session to process the remaining portionsofthefile.

Oncethefile is created or loaded into the editing buffer, EDLIN displays its asterisk
prompt(*) and the user can begin entering editing commands.

EDLIN commandsconsistof a single character, in either uppercase or lowercase, usually
preceded by one or more line numbers. More than one command can be entered on a
single line by separating the commands with semicolons. EDLIN does not execute a com-
mand until the Enter key is pressed.

Section II: User Commands 829

OLYMPUSEX. 1010 - 839/1582

OLYMPUS EX. 1010 - 840/1582

EDLIN

The EDLIN commandsare

Command Action

linenumber Edit line.

Appendlines from disk.
Copylines (versions 2.0 andlater).
Delete lines.

End editing session.
Insertlines.

’ List lines.

_Movelines (versions 2.0 andlater).

Display in pages (versions 2.0 andlater).
Quit without saving changes.
Replace text.
Searchfor text.

Transfer anotherfile into the edit buffer versions 2.0 andlater).
Write lines to disk.

BAYRPOVZMMBNOD
Each of these commandsis discussed in detail in the following pages.

AIL EDLIN commandsthat accept a line numberor range of line numbers can also recog-
nize the following symbolic references:

Symbol Meaning

#. Theline afterthe last line in the edit buffer
. Thecurrentline

+n or—-n A line numberrelative to the current line

(for example, +5 = five lines past the currentline)

Whenthe user terminates the editing session with the E command, EDLIN gives the new
file the same nameastheoriginalfile and renames the original (unchanged)file with the
extension .BAK. Any previousfile with the same name and the extension .BAKislost.
Whenthe user terminates the editing session with the Q command,the original filename
remains unchanged.

Example

To edit the file AUTOEXEC.BATin the root directory of the current drive, type
C>EDLIN \AUTOEXEC.BAT <Enter>

Messages

Cannotedit .BAK file — renamefile

Files with the extension .BAK cannot be edited with EDLIN. Renamethefile or copyit toa
file with the same name buta different extension.

830 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 840/1582

OLYMPUS EX. 1010 - 841/1582

EDLIN

Endofinputfile
Theentire file has been read into memory.

File is READ-ONLY

Files marked with the read-only attribute cannotbe edited. Remove the read-only attribute
with the ATTRIB commandor copythefile to a file with a different name.

File name must be specified
The commandline did not include a filename.

File not found
Thefile namedin the commandline could not be found or does notexist.
Incorrect DOS version

The version of EDLIN is not compatible with the version of MS-DOSthatis running.

Insufficient memory
Not enough memoryis available to carry out the requested command.

Invalid drive or file name

The commandline included a drive that iis invalid or doesnotexistin the system or the
filenameis not valid.

Invalid Parameter

The commandline contained anillegal switch or other invalid parameter.

Newfile

Thefile named in the commandline did not previously exist. Thefile is created and the
edit buffer is emptied.

Read errorin:filename —
MS-DOSwasunable to read the entire file, Run CHKDSKto determine whether thefile or
disk has been damaged.

Section III: User Commands 831

OLYMPUSEX. 1010 - 841/1582

OLYMPUS EX. 1010 - 842/1582

EDLIN: inenumber

EDLIN: linenumber 1.0 andlater

Edit Line

Purpose

Selects:a line of text for editing.

Syntax

linenumber

where:

linenumber_is the numberassigned by EDLINtothetextline to be edited (1-65534).

Description

The commandto edit a particularline of text is simply the line’s numberor one of the spe-
cial symbols or expressionsthat evaluate to a line number, followed by the Enterkey.
EDLINdisplays the current contents of the specified line and copies them to a special edit-
ing buffer called the template, then moves the cursor to a new line and displays a prompt
in theform of the line numberfollowed by a colon andan asterisk. If a line mamberis not
specified (thatis, if the Enter key alone is pressed in response-to the EDLIN prompt),
EDLINdisplaysthe line following the currentline and makesit the currentline.

Theuser can changethe text of the specified line by simply entering new text followed by
a press of the Enter key, leave the text unchanged by pressing Enter alone, or modify the
text by using special editing keys to change a portion of the text that has been placed in
the template. These editing keys andtheir actions are

Key Action

Fi Copies one character from the template to the newline.
F2char Copies all characters up to the specified character from the template to the

newline.

F3 Copiesall remaining characters in the template to the new line.
Del Doesnot copy (skips over) one character.
F4char Doesnot copy (skips over) all characters up to the specified character.
Esc Restarts editing for the currentline, leaving the template unchanged.
Ins Enters/exits character-insert mode. ,

F5 Makes the newly edited line the new template.
> Copies one character from the template to the newline.
- Deletes one character from the newline.
Backspace Deletes one character from the new line.

Note: Computers that are not IBM-compatible may usea different set of editing keys to
perform these actions.

832 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 842/1582

OLYMPUS EX. 1010 - 843/1582

EDLIN:linenumber

Control characters (those characters with ASCII codes in the range 0-1FH) cannotbe in-
serted into text with the usual Control-key cornbinations. Instead, the user must press the
sequence Ctrl-V, followed by an uppercase character or symbol. For example, Ctrl-C (ASCI
code 03H)is entered into text by pressing Ctrl-V followed byacapital C; the Escape char-
acter (ASCII code 1BH) is generated by pressing Ctrl-V followed bya left square-bracket

‘character ([D.

Examples
To editline 4, type
#4 <Enter>

To edit the line two lines ahead of the current line, type
¥+2 <Enter>

Section III: User Commands 833

OLYMPUSEX. 1010 - 843/1582

OLYMPUS EX. 1010 - 844/1582

EDLIN: A

EDLIN: A 1.0 andlater

Append Lines from Disk

Purpose

Readslines from thefile being edited into the edit buffer.

Syntax

inlA

where:

n is the numberoflines to be read from thefile.

Description

If the file being edited is.too largeto fit into the edit buffer, EDLIN ordinarily reads only
enoughtextto fill 75 percent of the buffer whenit opensthefile, reserving 25 percentof
the buffer for additions and changesto the text. The user must then employ the Write Lines
to Disk (W) and AppendLines from Disk (A) commandsto write and read successive
blocksof text until the entire file has passed throughthe edit buffer.

The A commandalonehasnoeffectif the edit buffer is 75 percent or more full. The W
command mustbe usedto write lines to the outputfile and delete them from the buffer;
then the A commandcanread new lines from the input file and append them to the end of
the text remaining in the buffer.

The nparameterspecifies the numberof lines to be read from thefile. If 2 is omitted or
is too large, EDLIN reads only enoughlinesto fill the editing buffer to 75 percentofits
capacity.

Examples

To append200lines from the disk file to the edit buffer, type

*200A <Enter>

To append as manylines from thefile as possible (until the edit buffer is 75 percent full),
type

*A <Enter>

Message

End ofinputfile -
Thelast section ofthe file being edited has been read into the edit buffer.

- 834 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 844/1582

OLYMPUS EX. 1010 - 845/1582

ai
EDLIN: C

EDLIN: C 2.0 andlater

Copy Lines

Purpose

Copies one or more lines from one location in the edit buffer to another.

' Syntax

[first], Uas#|, destination|,count]C

where:

first is the numberofthefirst line to be copied.
last is the numberofthelastline to be copied.
destination is the numberofthe line before which the copiedlines are to appear.
count is the numberoftimes to execute the copy operation.

Description

The CopyLines (C) commandcopies one or moretextlines, inserting the copied lines at
anotherlocation in the edit buffer. The original lines that were copied are unchanged.
EDLIN then renumbersthe edit buffer and makesthe first copied line at the destination
the new currentline.

The first and /ast line-number parameters define the block oflines to be copied. (Note
thatthefirst line number must be Jess than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line numberis used), but the
commas muststill be entered as placeholders. The destination parameter specifies the
line before which the copiedlines are to be inserted;it is not optional and mustnotfall
within the range of line numbers specified by first and last. One of the special symbols
. (current line) or # (end of buffer) or an expressionrelative to the current line number
(+or —/) can be used instead of absolute line numbers.

To replicate the line or lines multiple times, the copy operation can be repeated automat-
ically with the optional parameter count. The default value for countis one.

Examples

If the currentlineis line 10, to copy lines 10 through 15 and placethe copiedlines before
line 5, type

*10,15,5C <Enter>

or

*,15,5C <Enter>

or

*,+5,-5C <Enter>

Section Il:User Commands 835

OLYMPUSEX. 1010 - 845/1582

OLYMPUS EX. 1010 - 846/1582

EDLIN; C

If the currentline is line 10, to place three copiesoflines 10 through 15 beforeline 1, type

#10,15,1,3C <Enter>

or

*,15,1,3C <Enter>

or

*,+5,1,3C <Enter>

Messages

Entry error
The commandline contained an error such asa first line numberthat was greater than the
last line numberor a destination line numberthatfell within the range first, last.

Insufficient memory
The edit buffer does not have sufficient room for EDLIN to carry out the specified
command.

Must specify destination line number
No destination line number wasspecified in the commandline; therefore, no changes
were madeto the edit buffer.

836 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 846/1582

OLYMPUS EX. 1010 - 847/1582

EDLIN: D

EDLIN:D 1.0 andlater
Delete Lines

Purpose

Deletes one or more lines from the edit buffer.

‘Syntax

Lfirstll,/ast]D

where:

first is the numberofthefirst line to delete.
last is the numberof the last line to delete.

Description

The Delete Lines (D) command removesone or moretext lines from the edit buffer. The
line after the last line deleted becomesthe new currentline.

The first and Jast line-number parameters define the block oflines to be deleted. (Note
that the first line number must beless than or equalto the last line number.) Either or both
of these numbers can be omitted (in which case the current line numberis used), but a
leading commais required as a placeholderif first is omitted when /ast is present. One of
the special symbols . (currentline) or # (end of buffer) or an expressionrelative to the cur-
rent line number (+7 or —7) can be used instead of absolute line numbers.

Examples

If the current line is line 10, to delete the currentline, type

*10D <Enter>

or

*D <Enter>

If the current line is line 10, to delete lines 10 through 15, type
*10,15D <Enter>

or

*,15D <Enter>

or

*,+5D <Enter>

Section III: User Commands 837

OLYMPUSEX. 1010 - 847/1582

OLYMPUS EX. 1010 - 848/1582

EDLIN: D

Message we

838

If the currentline is line 10, to delete all lines from the currentline to the end of the buffer,
type

*10,#D <Enter>

or

*,#D <Enter>

Entryerror
The commandline contained an error such as a first tine numberthat was greater than the
last line number.

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 848/1582

OLYMPUS EX. 1010 - 849/1582

EDLIN: E

EDLIN:E , 1.0 andlater
End Editing Session

Purpose

Savesthe editedfile to disk and exits from EDLIN.

Syntax

E

Description

The End Editing Session (E) command writes the contents of the edit buffer to the current
directory of the disk in the current drive.If a previously existing file was being edited and
there is any text remaining in the originalfile that has not yet passed throughthe edit
buffer, EDLIN copies this text to the outputfile. EDLIN gives the newly edited file the same
nameas the originalfile and renamesthe original (unchanged)file with the extension
.BAK.Any previousfile with the same name and the extension .BAKis lost. EDLIN then
returns to MS-DOS.

If the disk does not have enoughspaceto hold the editedfile in addition to the original
file, EDLIN writes as muchoftheedited file as possible into a file with the extension .$$$;
the remainderof the edited text islost. The name and contentsoftheoriginalfile are left
unchanged.

Example

To end an editing session, type
*E <Enter>

Messages
Diskfull. Edits lost.

The disk does not contain enoughfree space for the edited file. A partial file may have
been created with the extension .$$$.

File Creation Error

The.BAKfile is marked read-only,the root directory is full or cannot contain any more
files, or the filename is the same as a volumelabelor directory name.

No room in directory forfile
The file could not be saved becauseits destination was the root directory and the root
directory is full.

Too manyfiles open

MS-DOSwasunableto openthe .BAKfile dueto a lack ofavailable system file handles.
Increase thevalue of the FILES commandin the CONFIG.SYSfile.

Section III: User Commands 839

OLYMPUSEX. 1010 - 849/1582

OLYMPUS EX. 1010 - 850/1582

EDLIN:I

EDLIN:I , 1.0 andlater
Insert Lines

Purpose
Inserts new lines into the edit buffer.

Syntax

[destination]1

where:

destination is the numberof the line before whichtextis to be inserted.

Description

TheInsert Lines (1) command enables insert mode and allows new text to be placed be-
tween previously existing lines of text. When insert modeis terminated,thefirst line fol-
lowing the inserted lines becomes the new currentline.

EDLIN places the new text before the line specified by the destination parameter. If
destination is omitted, EDLIN assumesthe currentline;if destination is larger than the
numberoflines in the edit buffer, EDLIN simply appendsthe new textafter the actuallast
line.One of the special symbols . (current line) or # (end of buffer) or an expressionrela-
tive to the current line number (+7 or —”) can be used instead of an absolute line number.

After an I command, EDLIN issues a prompt consisting of the line numberfor the inserted
text followed by a colon and anasterisk and continuesto issue such prompts each time the
Enter key is pressed until the user terminates insert mode by pressing Ctrl-C or Ctrl-Break.

_ Examples
If the currentline is line 10, to insert text before line 7, type
#71 <Enter>

or

*-3I <Entex>

To insert lines at the beginning of the buffer, type

*1I <Enter> /

To insert lines at the end of the buffer, type

*#1. <Enter>

Message

Insufficient memory
Theedit buffer does not have sufficient room for EDLIN to complete the specified
command.

840 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 850/1582

OLYMPUS EX. 1010 - 851/1582

EDLIN: L

EDLIN:L 1.0 and later
List Lines

Purpose

Displays one or morelines from the edit buffer.

Syntax

{firsé]l, dast\L
where:

first is the numberof the first line to be displayed.
last is the numberofthe lastline to be displayed.

Description

The List Lines (L) commanddisplays text lines on standard output. If the currentline lies
within the range oflines listed, EDLIN displays an asterisk next to its number. The current
line is not changed.

Thefirst and /ast line-number parameters define the block oflines to be listed. (Note that
the first line number mustbeless than or equalto thelast line number.) Either or bothof
these numbers can be omitted, but a leading commais required as a placeholderiffirst is
omitted when J/ast is present. One of the special symbols. (currentline) and # (end of
buffer) or an expression relative to the current line number (+7 or —7) can be used instead
of absolute line numbers.

If only thefirst line numberis specified, EDLIN displays text in 23-line increments starting
with that number.If only thelast line numberis specified, EDLIN displays text beginning
11 lines before the current line and continuing to the specifiedlast line. If no line numbers
are specified in the command, EDLINlists the 23 lines centered around the currentline; if
the current line numberis less than 13, EDLINlists the first 23 lines in the buffer.

Examples

To display lines 20 through 30, type

*20,30L <Enter>

If the currentline is 20, to display the 23 lines centered around the currentline, type

*L <Enter>

EDLINdisplays lines 9 through 31.

Message

Entry error

The commandline contained an error such asa first line numberthat was greater than the
last line number.

Section III: User Commands 841

OLYMPUSEX. 1010 - 851/1582

OLYMPUS EX. 1010 - 852/1582

EDLIN: M

EDLIN: M 2.0 and later

MoveLines .

Purpose |

Moves lines from oneplace in the edit buffer to another.

Syntax

(first) last), destinationM

where:

first is the numberofthefirst line to be moved.
last is the numberofthe lastline to be moved.

destination is the numberofthe line before which the movedlines are to be inserted.

Description —

The Move Lines (M) command transfers one or more text lines from one location in the
edit buffer to another. EDLIN then deletes the original lines and renumbers the edit buffer.
The first moved line becomes the new currentline.

The first and last line-number parameters define the block of lines to be moved. (Note
that the first line number must be less than or equalto thelast line number.) Either or both
of these numbers can be omitted Cin which case the current line numberis used), but the

commas muststill be entered as placeholders. The destination parameter specifies the
line before which the movedlinesare to be inserted;it is not optional and must notfall
within the range ofline numbers specified byfirstand last. One of the special symbols
. (current line) or # (end of buffer) or an expression relative to the current line number
(+n or —n) can be usedinstead of absolute line numbers.

Example

Ifthe currentlineis line 10, to move lines 10 through 15 and place them beforeline 5, type
*10,15,5M <Enter>

or

*,15,5M <Enter>

or

*,+5,-SM <Enter>

842 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 852/1582

OLYMPUS EX. 1010 - 853/1582

 EDLIN: M

Messages

Entryerror

The commandline contained an error such asa first line number that was greater than the
last line numberor a destination line numberthatfell within the range first, last.

_ Must specify destination line number
i Nodestination line number wasspecified in the commandline; therefore, no changes

were madeto the edit buffer.

Section II: User Commands 843

OLYMPUSEX. 1010 - 853/1582

OLYMPUS EX. 1010 - 854/1582

EDLIN:P

EDLIN: P 2.0 and later

Display in Pages

Purpose

Displayslines for viewing in successive screenfuls (pages).

Syntax

Lfirstl{,last\P

where:

first is the numberofthefirst line to be displayed.
last is the numberofthelast line to be displayed.

Description

The Display in Pages (P) commanddisplays text lines on standard output one screenful
at a time. Unlike the List Lines CL) command, which has no effect on the current line, P

~ causesthelast line displayed to become the new currentline. Thus, althoughthe edit
buffer is not actually organized into pages, the user can employ repeated P commandsto
sequentially view successive groupsoflines.

The first and last line-number parameters define the block oflines to belisted; the dis-
play starts with theline specified byfirst. (Note thatthe first line number must be less
than or equalto the last line number.) Either or both of these numbers can be omitted, but
a leading commais required as a placeholderif first is omitted when /ast is present. If
omitted, first defaults to the line after the current line and /ast defaults to the line 23 lines
after the current line. Oneofthe special symbols . (currentline) or # (end of buffer) or an
expressionrelative to the current line number (+7 or —7) can be used instead of absolute
line numbers.

Examples .
If the currentline is 20, to view the next pageoflinesin the edit buffer, type

*P <Enter> , ,

EDLINdisplays 23 lines, beginning with line 21, and changesthe currentline to line 43.

To view successive pagesof 23 lines, repeatedly type

*P <Enter>

Message

Entry error
The commandline contained an error such asa first line number that was greater than the
last line number.

844 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 854/1582

OLYMPUS EX. 1010 - 855/1582

EDLIN: Q

EDLIN: Q 1.0 andlater
Quit

Purpose

Terminates the editing session without saving the revised file.

Syntax

Q

Description
The Quit (Q) command causes EDLINto exit without saving any of the changes made to
the edited file during the session. The original file’s name and contentsare left unchanged
and no new file is created.

To reduce the danger of accidentally losing the contents of the edit buffer, EDLIN prompts
the user for confirmation before carrying out the Q command.

Example

To quit an editing session, type

*Q <Enter>

EDLINissues a prompt for confirmation and,if the response from the useris Y, exits to
MS-DOSwithout saving any changes madetothefile during the session.

Message

Abort edit (Y/N)?

This promptis displayed in response to the Q command. RespondwithYto exit to
MS-DOSwithout saving changes madeto the file; respond with N to continue the editing
session.

Section ILI: User Commands 845

OLYMPUSEX. 1010 - 855/1582

OLYMPUS EX. 1010 - 856/1582

EDLIN: R

EDLIN: R | 1.0 andlater
Replace Text

Purpose

Replaces one string in the edit buffer with another.
Syntax.

[firstll,asl (?|R[string1)/Zstring2]

where:

first is the numberofthefirst line to be searched.
last is the numberofthe last line to be searched.

? causes the user to be prompted for confirmation before each replacementis
made.

string1 is the sequence of characters to be searchedfor.
AZ is a Control-Z character.

string2 is the sequenceof characters to be substituted for string].

Note: The character limit for the Replace Text commandis 127 characters, including both
strings and all other parameters.

Description

The Replace Text (R) command substitutes one character string for another within a speci-
fied range oflines. The last line in which a replacement occurs becomes the new current
line.

The first and last line-number parameters define the range oflines to be searched for
strings to replace. (Note thatthe first line number mustbe less than or equalto the last line
number.) Either or both of these numbers can be omitted, but a leading commais required
as a placeholderif first is omitted when Jastis present. If omitted, first defaults to the
line after the current line and /ast defaults to the last line in the buffer. One of the special

symbols. (current line) or # (end of buffer) or an expressionrelative to the currentit line
number(+7 or —7) can be used instead of absolute line numbers.

If string] is omitted, EDLIN uses the string/ from the preceding R command,if there was
no preceding R command, EDLINdisplays an error message.If string2 is omitted, EDLIN
deletes all occurrencesof string1. string] must be separated from string2 by a Control-Z
(AZ) character.If string1 is omitted, a Control-Z, character muststill be inchided to mark
the beginning of string2, butif string2 is omitted when string! is present, the Control-Z
characterhas no effect andis therefore optional. (The Control-Z characteris entered by
pressing Ctrl-Z or the F6 key.)

846 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 856/1582

OLYMPUS EX. 1010 - 857/1582

EDLIN: RrowoOo

If the ? option is not included in the commandline, EDLIN displays each line that contains
a match after the replacementis carried out. If the ? option is used, EDLIN displays each
line containing a matchasit is found and promptsthe user for confirmation before the
string is replaced.

The matching operation is case sensitive; EDLIN carries out the substitution only on
" sequencesof characters that match string1 exactly. Wildcards are not permitted.

Examples

If the currentlineis line 10, to replace all occurrencesofthe string /ogical with thestring
bitwise in lines 11 through 20, type

*11,20Rlogical*Zbitwise <Enter>
or

*,20Rlogical*Zbitwise <Enter>

To cause EDLIN to promptfor confirmation before replacing eachstring, type
*11,20?Rlogical*Zbitwise <Enter>

or

*,20?Rlogical*Zbitwise <Enter>

To delete all occurrencesof the string OOH in line 20, type
20,20ROQ0H%Z <Entexr>

Messages

Entry error

The commandline contained an error such asa first line numberthat was greater than the
last line number.

Insufficient memory
Theedit buffer has insufficient room for EDLIN to carry out the specified Replace Text
command.

Line too long
The replacement would cause the line being edited to expand beyond 253 characters.

Not found

No occurrence or further occurrencesofthe string to be replaced were foundin the speci-
fied range oflines.

O.K.?

If the ? option is used in the commandline, this promptis displayed each time a matching
string is found. Respond with Y orpress the Enter key to replace the string and continue
searching; press any otherkey to leave the string unchanged and continue searching.

Section III: User Commands 847

OLYMPUSEX. 1010 - 857/1582

OLYMPUS EX. 1010 - 858/1582

EDLIN: $

EDLIN: S 1.0 andlater

Search for Text

Purpose

Searches the edit buffer for a characterstring.

Syntax

(firs#ll, lastl{?|Slstring]

where:

first is the numberofthefirst line to be searched.
last is the numberofthe last line to be searched.

? causes the user to be prompted for confirmation before the searchis
terminated.

string is the sequenceof characters to be searched for (maximum 126 characters).

Description

The Search for Text (S) commandsearchesfor a characterstring within a specified range
of lines. When a match is found, EDLIN displays the line containing the match and that
line becomes the new currentline. If no lines containing the specified string are found,
EDLIN displays the message Notfound and the current line number remains unchanged.

The first and last line-number parameters define the block of lines to be searchedfor
strings. (Notethat the first line number must be less than or equal to the last line number.)
Either or both of these numbers can be omitted, but a leading commais required asa
placeholderif first is omitted when /ast is present. If omitted, first defaults to the line
after the current line and /ast defaults to the last line in the buffer. One of the special
symbols . (current line) or # (end of buffer) or an expressionrelative to the currentline
number(+7 or —7) can be used instead ofabsolute line numbers.

If string is omitted, EDLINusesthe string from the last § commandorstring] from the
last Replace Text (R) commandinstead.

If the ? option is not included in the commandline, EDLIN displaysthefirst line that con-
tains a matchfor string, makesthis the new current line, and terminates the search.If the
? option is used, EDLIN displays each line containing a match for string asit is found, fol-
lowed by an O.K.? prompt. If the user responds with Y or presses the Enter key, EDLIN ter-
minates the search;if the user presses any other key, the search continues,

The matching operation is case sensitive; EDLIN reports only sequencesof charactersthat
match string exactly. Wildcards are not permitted.

848 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 858/1582

OLYMPUS EX. 1010 - 859/1582

EDLIN: S

Examples If the currentlineis line 10, to find the first occurrenceofthe string xyz in lines 11 through
20, type

*11,20Sxyz <Enter>
Or

*,20Sxyz <Enter>

To find a particular occurrence of proc in the edit buffer, type

*1,#2Sproc <Enter>

EDLINdisplays thefirst line containing proc and prompts with
0.K.?

Type Yor press Enterto stop the search; press any other key to continue the search.

Messages Entry error

The commandline contained an error such asafirst line number that was greater than the
last line number.

Not found .

No match or no further matches for string were found in the specified range oflines.

O.K.?

If the ? option is used in the commandline, this prompt is displayed each time a matching
string is found. Respond with Y or press the Enter key to stop searching; press any other
key to continue searching.

Section ITI: User Commands 849

OLYMPUSEX. 1010 - 859/1582

OLYMPUS EX. 1010 - 860/1582

EDLIN: T

EDLIN: T 2.0 and later |

Transfer AnotherFile

Purpose

Mergesthe contentsof anotherfile with thefile in the edit buffer.

Syntax ,

(destination)Tldrive: path)filename .
where:

destination is the numberof the linebefore whichthe text from filenameis to be
inserted.

path is the location of the file to be merged (versions3.0 andlater).
filename is the nameofthe disk file from whichtextis to be merged.8

Description

The Transfer Another File (T) command mergesthe contents of a text file with the current
contents of the edit buffer and then renumbers the contents of the edit buffer. The first line

of the merged text becomesthe currentline.

The destination parameter specifies the line before which the transferred lines are to be
inserted. If omitted, destination defaults to the current line. One of the special symbols
. (current line) or # (end of buffer) or an expression relative to the current line number
(+n or —7) can be used instead of an absolute line number.

The filename parameterspecifies thefile from which text is to be merged and caninclude
a drive and, in versions 3.0 andlater, a path. Ifa drive or path is not specified, thefile to
be mergedinto the edit buffer with the T command mustbein the current directory of the
currentdrive.

Example

If the currentline is line 10, to merge the contentsof the file named KEYDEFS.C before
line 10 of the edit buffer, type

*710Tkeydefs.c <Enter>

or

*Tkeydefs.c <Enter>

850 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 860/1582

OLYMPUS EX. 1010 - 861/1582

EDLIN: T

Messages

File not found

The specified filename doesnot exist in the current or specified location.

Notenough room to mergethe entirefile
The spaceavailable in the edit buffer is not sufficient to hold the entire file namedin the T
command.Use the Write Lines to Disk (W) command topartially empty the edit buffer.

Section III: User Commands 851

OLYMPUSEX. 1010 - 861/1582

OLYMPUS EX. 1010 - 862/1582

EDLIN: W

EDLIN: WW 1.0 and later

Write Lines to Disk

Purpose

Writes lines from the edit buffer to the disk. ,

Syntax

inlW

where:

n is the numberoflines to be written to thefile.

Description

If the file being edited is too largeto fit into the edit buffer, EDLIN ordinarily reads only
enoughtextto fill 75 percentof the buffer when it opensthefile, reserving 25 percent of
the buffer for changes and additionsto the text. The user must then employ the Write Lines
to Disk (W) command andthe AppendLines from Disk (A) commandto transfer succes-
sive blocksoftext from the disk until the entire file has passed through the edit buffer. The
W command causes EDLIN to writelines to the disk file and delete them from the buffer;
then the A command can read new lines from the inputfile, placing them after the end of
the text remaining in the buffer.

The 7 parameter specifies the numberoflines to be written to the outputfile; if 7 is omit-
ted or is larger than the numberof lines in the edit buffer, EDLIN writes only enoughlines
to leave the edit buffer about 25 percent full, EDLIN then renumbers the lines remaining in
the edit buffer so that the first remaining line becomesline numberone.

Examples

To write 200 lines from the edit buffer to disk (effectively deleting those lines from the
buffer), type

*200W <Enter>

To write lines from the edit buffer to the disk until the edit buffer is only 25 percentfull,
type

*W 6<Enter>

852 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 862/1582

OLYMPUS EX. 1010 - 863/1582

EXIT

EXIT 2.0 andlater
Terminate CommandProcessor Internal

Purpose

Terminates a secondary copy of the command processor.

' Syntax
EXIT

Description

Many communications programs, word processors, database managers, and other applica-
tion programsload and execute a secondary copy of the system’s command processor
(COMMAND.COM)to let the user carry out MS-DOS commandswithoutlosing the context
of the work in progress. Secondary copies of the commandprocessorare also commonly
used to execute one batch file underthe control of another. (For more information about
secondary copies of the commandprocessor, see USER COMMANDS: CoMMAND.)

The EXIT commandcancels a secondary command processor. The terminating processor
displays no message and control returnsdirectly to the parent program or command
processor.

EXIT hasnoeffect on the currently executing commandprocessorif it was loaded with
the /P (permanent) switchorifit is the original commandprocessor(the one loaded dur-
ing system initialization, when the computer was turned onorrestarted).

The EXIT commandalso allowsthe user to choose Close from the system menuif a
COMMANDwindowis open under Microsoft Windows.

Example ©

To terminate the currently executing commandprocessor, type

C>EXIT <Enter>

Message

Bad commandorfilename

The EXIT commanddid not exist in versions earlier than 2.0, so MS-DOSattempted to
execute a nonexistent program named EXITinstead.

Section LI: User Commands 853

OLYMPUSEX. 1010 - 863/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 864/1582

FC

FC

CompareFiles

Purpose

Compares twofiles andlists the differences on standard output.

Syntax .
, FC (/A) [/C)[/L] {/LBa] [/N [/nnnnl [/T](/W1 (arive:|pathname! (drive:pathname2

or

2.0 and later

External

FC [/B] [drive:]pathname! (drive:|pathname2

where:

pathname!

pathname2

/A

/B

/C

/L

/LBn

/N

/nnnn

/T

IW

Description

854

is the nameand location ofthefirst file to be compared, optionally pre-
cededby a drive; wildcard characters are not permitted.
is the name andlocation of the secondfile to be compared, optionally pre-
ceded by a drive; wildcard characters are not permitted.
causes FC to abbreviate the output when comparing ASCII textfiles .
(version 3.2).

causes a byte-by-byte (binary) comparison; may not be used with any
other switch (default whenfile extension is .EXE, .COM, SYS, .OBJ, -LIB,
or .BIN). ,

causes FC to ignore case when comparing alphabetic characters.
causes a line-by-line comparison of two ASCIItextfiles (default whenfile
extension is not .EXE, .COM, .SYS, .OBJ, .LIB, or .BIN) (version 3.2).
sets the size of the internalline buffer to lines (default = 100)

(version 3.2).

includes line numbers on the output of an ASCII file comparison
(version 3.2).

is the numberoflines that must matchto resynchronize during an ASCII
file comparison (default = 2; in versions 2.0 through 3.1, range = 1-9,
default = 3).

causes FC to comparetabsin textfiles literally (default = tabs expanded to
spaces, with stops at each eighth character position) (version 3.2).
causes FC to ignore spaces, tabs, and blanklines in textfiles.

The FC utility compares twotext files containing lines of ASCII text delimited by new-line
characters or two binaryfiles containing data of any type (such as executable programs).

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 864/1582

OLYMPUS EX. 1010 - 865/1582

FC

The differences between the twofiles are listed on standard output, which defaults to the
video display but can be redirected to anothercharacter deviceor a file or can be piped to
another program.

The FC program first examines the extensionsof the twofiles being compared and,in
most cases, selects the appropriate type of comparison automatically. However, the /B
switch can be usedto force a binary, or byte-by-byte, comparison of the twofiles named,
the /L switch can be usedto force a line-by-line comparison. When the /B switchis
present, use of the /L, /N, and /nnnn switches causes an error messageto be displayed;
any other switches in the commandlineare ignored. :

When comparing ASCII text files, FC loads a buffer with sequential sets of lines from each
file and compares the twosets. The size ofthis buffer defaults to 100 lines but can be modi-
fied by including the /LBn switch in the commandline.If differences are found, the name
of thefirst file, the last matchedline, and any mismatchedlines from thatfile are dis-
played,followed bythe first rematched line; then the nameofthe secondfile, the last
matchedline, and any mismatchedlines are displayed, followed by the first rematched
line from thatfile. The numberof consecutive matching lines that must be detected in
orderfor FC to considerthefiles resynchronizedis controlled with the /nnnn switch; the

' default is 2. ;

If no lines match,if no lines matchafterthe first mismatch,orif the numberof mis-
matchedlines exceedsthe size of the line buffer, FC displaysthe message Resynchfailed.
Files are too different (or ++Files are differentin versions 2.x and 3.0) and terminates.

The /C, /T, and /W switches modify the way in which twotextfiles are compared. The
/C switch causes FC to ignore case when comparing alphabetic characters. The /T switch
causes FC to compare tab characters (ASCII code 09H)literally, rather than expand them
to spaces before comparing correspondinglines. Finally, the /W, or whitespace, switch
causes FC to ignore spaces, tabs, and blank lines during the comparison.

The A and /N switches control the formatof the listing of differences between the two
text files. The /A switch causes FC to compress the listing of each mismatchedsetoflines
to the first and last lines of each set, separated by ellipsis points. The /N switch causes FC
to include the line numbersof the mismatchedlinesin the display. .

During a binary comparison of twofiles, FC’s buffer is reloaded as many times as is neces-
sary to compare the complete files. Unlike the procedure with text-file comparisons, no at-
tempt is made to resynchronize the data if a mismatch is detected and, regardless of the
numberof mismatches, the comparison processis not terminated. Any differences are dis-
played with theoffset from thestart of the file and the actual data from eachfile. If onefile
is shorter than the other, FC also displays a warning message at the end of the comparison.

The FC commandis present only in MS-DOS. PC-DOSversions1.0 andlater provide a
similar function in the COMP command.

Section III: User Commands 855

OLYMPUSEX. 1010 - 865/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 866/1582

FC

Examples

Assumethat FILELTXT and FILE2.TXTare in the current directory on the disk in the cur-
rent drive and that they contain the following lines:
FILE1.TXT

First line.
Second line.
Third line.
Fourth line.
Fifth line.
Sixth line.
Seventh line.

Eighth line.
Ninth line.
Tenth line.

FILE2.TXT

First line.
Second line.
Third line.
Fourth line.

. Sixth line.
Fifth line.
Seventh line.

Eighth line.
Ninth line.
Tenth line.

To comparethesefiles line by line, type

C>FC FILE1.TXT PILE2.TXT <Enter>

This will result in the following display:
eeekK filel.txt
Fourth line.
Fifth line.
Sixth line.
Seventh line.
eee File2.txt
Fourth line.
Sixth line.
Fifth line.
Seventh line.
wk RAR K

To compare the same twofiles and produce an abbreviatedlisting of differences that in-
cludes line numbers, type

CoFc /A /N FILE1.TXT FILE2.TXT

This will result in the following display:
weeks Filet .txt

4: Fourth line.

7: Seventh line.
eeeES File2.cxt

4: Pourth line.

7: Seventh line.
RE

856 The MS-DOSEncyclopedia

<Enter>
OLYMPUSEX. 1010 - 866/1582

OLYMPUS EX. 1010 - 867/1582

FC

Assumethat twobinaryfiles, FILE1.BIN and FILE2.BIN,are the same length and contain
only the following three differences:

Offset FILE1.BIN FILE2.BIN

19H 04H 03H
33H 4AH 4BH
42H 52H 51H

To compare these two binaryfiles, type

C>FC /B FILE1.BIN FILE2.BIN <Enter>

This will result in the following display:

00000019: 04 03
00000033: 4A 4B
00000042: 52 51

Note: Theuseof the /B switch in this example is optional; binary comparisonis the
default when .BIN files are compared.

Messages

filenamelonger than filename
After all the corresponding data in the twofiles was compared, data remained in one of
thefiles.

cannot open filename - No suchfile or directory
The specifiedfile cannotbe foundor doesnotexist.

DOS2.0 or later required
FC does not work with versions of MS-DOSearlier than 2.0,

Incompatible switches
The /B switch was used in combination with one or more of the other switches.

Incorrect DOS version

The version of FC is not compatible with the version of MS-DOSthatis running.

no differences encountered

The twofiles being comparedare identical.

out ofmemory
The available memoryin the transient program areais insufficient to compare the two
files,

Resynchfailed. Files are too different
The numberof mismatchedlines in an ASCII file comparison exceeded the numberof
lines that can be loadedinto FC’s comparison buffer (which by defaultis 100 lines). Rerun
the comparison using the /LB7 switchto allocate a larger buffer.

usage:fc [/a] [/b] [/c] [/1) [/IbNN] [/w] [/t] [/n] [/NNNN]filel file2
The commandline included an invalid switch or FC was entered without any switches or
other parameters.

Section III: User Commands 857

OLYMPUSEX. 1010 - 867/1582

OLYMPUS EX. 1010 - 868/1582

FDISK

FDISK — 3.2
Configure Fixed Disk ' External No Net

Purpose

Configures an MS-DOSpartition on a fixed disk. This commandis included with PC-DOS
beginning with version 2.0. ,

Syntax

FDISK

Description

A fixed disk can be divided into areas of contiguoustracks, or partitions, that are used by
different operating systems. A master control record (partition table) on the disk specifies
the ID numberandthestarting and ending disk tracks for each partition. Each fixed disk
can have as many asfour partitions, but only one partition can be active (bootable)at any
given time.

The FDISKutility is a menu-driven program that adds or deletes an MS-DOSpartition on a
fixed disk, selects one partition as active, and displays the size andstatusofall partitions.
With most implementations of MS-DOS,each fixed disk can contain only one MS-DOS
partition.

After an MS-DOSpartition is created, the FORMAT command must be usedto initialize the
partition’s directory structure. To makeit possible to start the computer from the MS-DOS
partition on the fixed-disk drive, the /S switch must be used with FORMATtotransfer the
operating-system files and the MS-DOSpartition mustbe the active partition.

Warning: If the MS-DOSpartition is deleted, any files stored in the partition are irretriev-
ably lost.

Examples

To display the currentpartitioning of the fixed disk, type
C>FDISK <Enter>

858 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 868/1582

OLYMPUS EX. 1010 - 869/1582

FDISK

The FDISK utility then displays the following menu:

Fixed Disk Setup Program Version 0.02
(C) Copyright Microsoft, 1985.

FDISK Options

Choose one of the following:

1. Create DOS Partition

2. Change Active Partition

Delete DOS Partition

4. Display Partition Data

Enter choice: [1]

Press ESC to return to DOS

Note:A fifth option, Select Next FixedDrive, will appearifmore than one fixed diskis in-
stalled in the system.

Chooseoption 4 (Display Partition Data). FDISK then displays the partition data for the
disk in the following form:

Display Partition Information

Partition Status Type Start End Size
1 A bos 0 613 614

Total disk space is 614 cylinders.

Press ESC to return to FDISK Options

Assumethat the low-level (hardware) formattingfor fixed-disk drive C has just been com-
pleted by using the drive manufacturer’s setup utility. To establish a bootable MS-DOSpar-
tition on the disk, type .
A>FDISK <Enter>

When the menuis displayed, press Enter to choose option 1 (Create DOSPartition). FDISK
responds with the following message:

Create DOS Partition

Do you wish to use the entire fixed ~
disk for DOS (Y/N)-42. 50 ee eae ?[Y)

Press ESC to return to FDISK Options

Topartition the entire fixed disk for MS-DOS,press Enterto select Y (the default), When
the FDISK main menuis again displayed, choose option 4 (Display Partition Data) to
verify that the MS-DOSpartition hasin fact been established onthefixeddisk.

Section II: User Commands 859

OLYMPUSEX. 1010 - 869/1582

OLYMPUS EX. 1010 - 870/1582

FDISK

Messages

860

n is not a choice. Please enterY or N.

The response to an FDISK prompt requiring a yes or no answer wasnot Y or N.

nis nota choice. Please enter a choice

The response to an FDISK prompt requiring a number wasnotin the proper range or was
not a number.

DOSpartition created
A new MS-DOSpartition has been established on the fixed disk. Use the FORMATutility
to create a directory structure in that partition.

DOSpartition deleted
The previously existing MS-DOSpartition on the fixed disk has been deleted. Anyfiles
contained in the partition are irretrievablylost.

DOS2.0 or later required
FDISK does not work with versions of MS-DOSearlier than 2.0.

Do you wishto usethe entire fixed
disk for DOS (Y/N).....2-ccecees rab,
Option 1, Create DOS Partition, has been chosen from the main menu. Respond with Y or
press Enterto use all available cylinders for a single DOSpartition; respond with N to
specify that only part of the fixed disk should be used.

Enter starting cylinder number. .:[n]
Option 1, Create DOS Partition, has been chosen from the main menu andthe userhasre-
sponded N to the Doyou wish to use the entirefixed diskforDOS? prompt. This message
then promptsfor the starting cylinder numberof the DOSpartition being created.

Enter the numberofthe partition you
want to make active................:[n]
Option 2, Change Active Partition, has been chosen from the main menuand this message
prompts the user to enter the numberofthe partition that will becomethe active partition.

Error loading operating system
An error occurred while attemptingto start the system from the fixed disk. Attempt to
restart the system.If that fails, start the system from a floppy disk and use the SYS com-
mand to copy a new set of the operating-system files to the fixed disk.

Error reading fixed disk
An unrecoverable hardware error was encountered while FDISK was reading data from
the fixed disk. The disk may require a low-level (hardware) formatting operation before
FDISK can be used;this is usually performed with a special utility program provided by
the drive manufacturer.

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 870/1582

OLYMPUS EX. 1010 - 871/1582

FDISK

Error writing fixed disk

An unrecoverable hardware error was encountered while FDISK was writing the new par-
tition control record tothe fixed disk. Test the fixed disk with hardware diagnostics before
further use.

Fixed disk already has a DOSpartition.
Thespecified fixed disk already contains an MS-DOSpartition. Be sure that the correct
fixed disk has been selected before proceeding.

Incorrect DOS version
The version of FDISK is not compatible with the version of MS-DOSthat is running.

Invalid partition table
Thefixed disk’s partition table is invalid and the operating system could not be loaded
from the fixed disk during system initialization. Restart the computer using a floppy disk
and rerun FDISK to determine and correct the problem.

Missing operating system
The DOSpartition is the active partition, but it does not contain the operating system.
(This message occurs only during system startup.) Use the SYS commandto install the
operating system.

No DOSpartition to delete.
The fixed disk does not contain an MS-DOSpartition.

Nofixed disks present
FDISK cannotdetect a fixed disk in the system. This may reflect a hardware problem with
the fixed disk or its controller.

No partitions defined.
This informational messageis displayed after the user has chosen option 4, Display
Partition Data, to indicate that no partitions are currently defined.

No partitions to make active
The fixed disk has not been previously partitioned using FDISK;therefore, an active parti-
tion cannotbe selected.

No space for annn cylinder partition.
Thefixed disk does not have enoughfree cylinders to create the desired partition.

No space to create a DOSpartition.
Thefixed disk does not have enoughfree cylinders to create an MS-DOSpartition.

Partitionis already active
Theselected partition is already active (bootable); therefore, no action was taken.

Partitionn made active

This informational message indicates that the selected partition has been madetheactive
partition.

Section IH: User Commands 861

OLYMPUSEX. 1010 - 871/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 872/1582

FDISK

Systemwill now restart
Insert DOS diskette in drive A:

Press any key when ready...
The DOSpartition has successfully been created. Strike any key and the system will restart
from the disk in drive A.

The current active partition isn.
This informational message indicates whichpartition is currently bootable.

Thetable partition can’t be madeactive.
The master partition record cannot be made bootable.

Total disk space isnnn cylinders.
This informational message indicates the total numberofcylinders on the fixed disk.

Total disk space isnnn cylinders.
Maximum available space is nun
cylinders atz.
The user has responded N to the Doyou wish to use the entirefixed diskforDOS? prompt
andthis informational message indicates how muchspaceis available for the DOS
partition. :

Warning: Data in the DOSpartition
willbe lost. Do you wish to
COMTMUE... ccc cece ecu c cee eceece ?[IN]

If the MS-DOSpartition is deleted,all files within the partition are lost. Be sure that the
files are backed upto anotherdisk before proceeding. Respond with N to return to the
FDISK main menu; respond with Y to delete the DOSpartition and lose any files withinit.

862 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 872/1582

OLYMPUS EX. 1010 - 873/1582

gt

FIND

FIND 2.0 and later
Find Character String External

Purpose

Searchesthe character stream fromafile or from standard input for a string and displays
any lines that contain the string on standard output.

Syntax

FIND [/C]{/NI] [/V] “string” ([drive:]lpath]filename] [[drive:l[path]filename...]

where:

string is the character string to be searchedfor, always enclosed in quotation marks;
case is significant.

ilename is the nameofthefile to be searched, optionally preceded by a drive and/orPp yp y

path; wildcard characters are not permitted.
/C displays only the countof the lines containing string.

_/N includesthe relative line number witheachline.

/V displays only those linesthat do not contain string.

Description

The FIND commandsearchesfor all occurrences of a specified string in one or morefiles
(or from standard input). Normally, FIND copieseachline in whichthestring is found to
standard output, which defaults to the video display but can be redirectedto a file or.
another character device or can be piped to another program.

Thestring to be searched for must be enclosed in quotation marks.If the searchstring it-
self contains sets of quotation marks, each of those sets of quotation marks must be sur-
roundedby an additional set of quotation marks. FIND’s string searchis case sensitive.

The search string can be followed by the namesofone or more sourcefiles; these file-
names cannot include wildcards. If no filename is supplied, FIND readslines from stan-
dard input; unless input has been redirected fromafile or from the output of another
program, this means that FIND readsinput from the keyboard. (Keyboard inputis termi-
nated by pressing Ctrl-Z or F6 followed by Enter.)

The /C switch counts the total numberof lines in which the string appears and sends the
count,rather than the lines themselves, to standard output.If the /C switch is used with /V,
only the total countoflines that do not contain the specified searchstring is displayed.If
both /C and /N are included in the same FIND command,the /N is ignored.

The /N switch includesa relative line number with eachline sentto standard output. This
is especially helpful when the output of FIND is to be used as a guideto editingthefiles.

The /V switch reverses the action of FIND sothatit copies to standard output all lines that
do not include the specified string.

Section III: User Commands 863

OLYMPUSEX. 1010 - 873/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 874/1582

FIND

Examples
To find and display all lines in the files BREAK.ASM, TALK.ASM, and SHELL.ASM that con-
tain the string es:, type
C>FIND "es:" BREAK.ASM TALK.ASM SHELL.ASM <Enter>

To find and display all lines in the file STORY.TXTthat contain the string he said “no”,
type .
C>FIND “he said ""no""" STORY.TXT <Enter>

To search the file \SOURCE\ MENUMGR.ASM onthe current drive and display all lines
that do not contain the string Error, type

C>FIND /V "Error" \SOURCE\MENUMGR.ASM <Enter>

To obtain a listing on the printerof the lines in the file SHELL.ASM in the current directory
of the current drive that contain the string proc, including line numbers, type

C>FIND /N "proc" SHELL.ASM > PRN <Enter>

To searchforall lines that contain twostrings, pipe the output of one FIND command to
be the input of another. For example, to find only those lines in the file MENUMGR.ASMin
the current directory of the current drive that contain both the strings MOV and AX, type
C>FIND "MOV" MENUMGR.ASM { FIND "AX" <Enter>

Messages

arnerecnnefilename
This informational message gives the nameofthe file that is currently being searched.

FIND:Access denied

Thespecified file is locked or being accessed by another application.

FIND:File not foundfilename
The specified file does not exist or the path or drive is not correct.

FIND: Invalid number ofparameters
The commandline did not include a searchstring.

FIND: InvalidParameteroption
The commandline included an invalid switch.

FIND: Read errorinfilename
A disk error occurred during processing of the specified file.

FIND: Syntax error
The commandline includedaninvalid search string. The string must be enclosed in
quotation marks.

Incorrect DOS version

The version of FIND is not compatible with the version of MS-DOSthatis running.

864—§TheMS-DOSEncyclopedia

OLYMPUSEX. 1010 - 874/1582

OLYMPUS EX. 1010 - 875/1582

$$________Formar

FORMAT 1.0 andlater
Initialize Disk External No Net

Purpose

Prepares a disk for use byinitializing the directory andfile allocation table (FAT).

‘Syntax

FORMAT[drive:][/S] (versions 1.x)

or

FORMAT[drive:] [/O] [/V] [/S] (versions 2.0-3.1)
or

FORMATdrive: {/1] [/Al [/8] [/N: 72][/T: 72] [/V] /S] (version 3.2)

or

FORMATdrive: [/1] [/B] [/N:nJ[/T: 7] (version 3.2)

where:

drive is the location of the disk to be formatted.

/1 formats a single-sided disk in a double-sided disk drive.
/4 formats a standard double-sided, double-density disk (360 KB) on a quad-

density disk drive.
/8 formats a disk with 8 sectors per track.
/B formats a disk with 8 sectors per track and preallocates space for the hidden

operating-system files.
/N:n formats a disk with m sectors per track.
/O formats a disk that is compatible with PC-DOSversions1.x.
{So creates a system (bootable) disk; for most implementations of FORMAT,this

mustbe the last switch in the commandline.

/T:n formats a disk with » tracks.

/V allows a volumelabel to be assignedto the disk after formatting.

Note: Each OEM determines which switcheswill be supported by the FORMATutility in-
cluded with the versions of MS-DOSsold with its computers.

Description

The FORMAT commandeffectively erases any existing data on a disk and creates a new
root directory and file allocation table. Each sector of-the disk is checked for defects and
unusable sectors are marked so that they will not be assignedtofiles.

Section Ill: User Commands 865

OLYMPUSEX. 1010 - 875/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 876/1582

FORMAT

Ifthe drive parameteris not supplied, the currentor default drive is formatted. (A drive
letter must be specified with version 3.2.) With versions 3.0 andlater, the FORMATpro-

gram displays a warningif the drive to be formatted is a fixed disk and asks for confirma-
tion before continuing.

Whenthe formatting operation is complete, FORMATdisplays the total amountof disk
space, the numberof byteslost to defective sectors, the space reserved for or occupied by
the hidden operating-system files (if the /B or /S switch was used), and the remaining free
disk space. If a floppy disk was formatted, FORMATthen promptsthe userto select be-
tween formatting another disk and returning to MS-DOS.

Normally, the type of disk drive determines the format that is given to a disk. For example,
if a disk is formatted in a standard double-sided, double-density drive, the format defaults
to double-sided, 40 tracks perside, 9 sectors per track. The version-specific default formats
are 9 or 15 sectors per track with versions 3.0 andlater, depending on the drive type; 9 sec-
tors per track with versions 2.x; and8 sectors per track with versions 1.x. The /1, A, /8,
/N:n, and /T:” switches can be usedto override the default format in somecases. (Notall
combinations of /N:n and /T:” are supported onall hardware.)

Note: A disk formatted with the 4 switch mightnot bereliably read on a single- or double-
sided double-density drive.

The /S switch creates a system (bootable) disk that contains a copy of the operating
system. After the format operation is complete, the two hiddenfiles IO.SYS and
MSDOS.SYS (or IBMBIO.COM and IBMDOS.COMin PC-DOS)and the nonhiddenfile

COMMAND.COMare copiedto the newly formatted disk. Most implementations of
FORMATrequire that the /S switch, if used, be the last switch in the commandline.

The /V switch allows a volumelabelto be assigned to the new disk. After formattingis
complete, FORMAT prompts the userfor a volume name, which can be as many as 11 char-
acters. (The characters «?/;}.,;:+=<>[]and tab are not permitted in a volumelabel.)
Volumelabels are displayed by the DIR, CHKDSK, TREE, and VOL commandsand,with
MS-DOSversions 3.1 and later and PC-DOSversions 3.0 andlater, can be modified with the
LABEL commandafter the disk has been formatted.

The /O switch causes FORMATto write an OE5H byteat the start of each directory entry so
that the resulting disk is compatible with MS-DOS and PC-DOSversionsLx.

The /B switch formats a disk for 8 sectors per track and reserves room onthe disk for the
operating-system files. The operating system can then be transferred to the disk with the
SYS command to makethe disk bootable. The /B switch cannot be used in the same
FORMAT commandline as the /V or /S switch.

Warning: Disks in drives affected by an ASSIGN,JOIN, or SUBST commandshould not be
formatted. Disks cannot be formatted over a network.

866 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 876/1582

OLYMPUS EX. 1010 - 877/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 878/1582

OLYMPUS EX. 1010 - 879/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 880/1582

OLYMPUS EX. 1010 - 881/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 882/1582

OLYMPUS EX. 1010 - 883/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 884/1582

OLYMPUS EX. 1010 - 885/1582

OLYMPUS EX. 1010 - 886/1582

OLYMPUS EX. 1010 - 887/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 888/1582

OLYMPUS EX. 1010 - 889/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 890/1582

OLYMPUS EX. 1010 - 891/1582

OLYMPUS EX. 1010 - 892/1582

OLYMPUS EX. 1010 - 893/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 894/1582

OLYMPUS EX. 1010 - 895/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 896/1582

OLYMPUS EX. 1010 - 897/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 898/1582

OLYMPUS EX. 1010 - 899/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 900/1582

OLYMPUS EX. 1010 - 901/1582

OLYMPUS EX. 1010 - 902/1582

OLYMPUS EX. 1010 - 903/1582

OLYMPUS EX. 1010 - 904/1582

OLYMPUS EX. 1010 - 905/1582

OLYMPUS EX. 1010 - 906/1582

OLYMPUS EX. 1010 - 907/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 908/1582

OLYMPUS EX. 1010 - 909/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 910/1582

OLYMPUS EX. 1010 - 911/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 912/1582

OLYMPUS EX. 1010 - 913/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 914/1582

OLYMPUS EX. 1010 - 915/1582

���������	�
�
�����
��
��OLYMPUS EX. 1010 - 916/1582

OLYMPUS EX. 1010 - 917/1582

OLYMPUS EX. 1010 - 918/1582

OLYMPUS EX. 1010 - 919/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 920/1582

OLYMPUS EX. 1010 - 921/1582

OLYMPUS EX. 1010 - 922/1582

OLYMPUS EX. 1010 - 923/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 924/1582

OLYMPUS EX. 1010 - 925/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 926/1582

OLYMPUS EX. 1010 - 927/1582

OLYMPUS EX. 1010 - 928/1582

OLYMPUS EX. 1010 - 929/1582

OLYMPUS EX. 1010 - 930/1582

OLYMPUS EX. 1010 - 931/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 932/1582

OLYMPUS EX. 1010 - 933/1582

OLYMPUS EX. 1010 - 934/1582

OLYMPUS EX. 1010 - 935/1582

OLYMPUS EX. 1010 - 936/1582

OLYMPUS EX. 1010 - 937/1582

OLYMPUS EX. 1010 - 938/1582

OLYMPUS EX. 1010 - 939/1582

OLYMPUS EX. 1010 - 940/1582

OLYMPUS EX. 1010 - 941/1582

OLYMPUS EX. 1010 - 942/1582

OLYMPUS EX. 1010 - 943/1582

OLYMPUS EX. 1010 - 944/1582

OLYMPUS EX. 1010 - 945/1582

OLYMPUS EX. 1010 - 946/1582

OLYMPUS EX. 1010 - 947/1582

OLYMPUS EX. 1010 - 948/1582

OLYMPUS EX. 1010 - 949/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 950/1582

OLYMPUS EX. 1010 - 951/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 952/1582

OLYMPUS EX. 1010 - 953/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 954/1582

OLYMPUS EX. 1010 - 955/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 956/1582

OLYMPUS EX. 1010 - 957/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 958/1582

OLYMPUS EX. 1010 - 959/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 960/1582

OLYMPUS EX. 1010 - 961/1582

OLYMPUS EX. 1010 - 962/1582

OLYMPUS EX. 1010 - 963/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 964/1582

OLYMPUS EX. 1010 - 965/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 966/1582

OLYMPUS EX. 1010 - 967/1582

OLYMPUS EX. 1010 - 968/1582

OLYMPUS EX. 1010 - 969/1582

OLYMPUS EX. 1010 - 970/1582

OLYMPUS EX. 1010 - 971/1582

OLYMPUS EX. 1010 - 972/1582

OLYMPUS EX. 1010 - 973/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 974/1582

OLYMPUS EX. 1010 - 975/1582

OLYMPUS EX. 1010 - 976/1582

OLYMPUS EX. 1010 - 977/1582

OLYMPUS EX. 1010 - 978/1582

OLYMPUS EX. 1010 - 979/1582

OLYMPUS EX. 1010 - 980/1582

OLYMPUS EX. 1010 - 981/1582

OLYMPUS EX. 1010 - 982/1582

OLYMPUS EX. 1010 - 983/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 984/1582

OLYMPUS EX. 1010 - 985/1582

OLYMPUS EX. 1010 - 986/1582

OLYMPUS EX. 1010 - 987/1582

OLYMPUS EX. 1010 - 988/1582

OLYMPUS EX. 1010 - 989/1582

OLYMPUS EX. 1010 - 990/1582

OLYMPUS EX. 1010 - 991/1582

OLYMPUS EX. 1010 - 992/1582

OLYMPUS EX. 1010 - 993/1582

OLYMPUS EX. 1010 - 994/1582

OLYMPUS EX. 1010 - 995/1582

OLYMPUS EX. 1010 - 996/1582

OLYMPUS EX. 1010 - 997/1582

OLYMPUS EX. 1010 - 998/1582

OLYMPUS EX. 1010 - 999/1582

���������	�
�
����
����
��OLYMPUS EX. 1010 - 1000/1582

OLYMPUS EX. 1010 - 1001/1582

OLYMPUS EX. 1010 - 1002/1582

OLYMPUS EX. 1010 - 1003/1582

OLYMPUS EX. 1010 - 1004/1582

OLYMPUS EX. 1010 - 1005/1582

OLYMPUS EX. 1010 - 1006/1582

OLYMPUS EX. 1010 - 1007/1582

OLYMPUS EX. 1010 - 1008/1582

OLYMPUS EX. 1010 - 1009/1582

OLYMPUS EX. 1010 - 1010/1582

OLYMPUS EX. 1010 - 1011/1582

OLYMPUS EX. 1010 - 1012/1582

OLYMPUS EX. 1010 - 1013/1582

OLYMPUS EX. 1010 - 1014/1582

OLYMPUS EX. 1010 - 1015/1582

OLYMPUS EX. 1010 - 1016/1582

OLYMPUS EX. 1010 - 1017/1582

OLYMPUS EX. 1010 - 1018/1582

OLYMPUS EX. 1010 - 1019/1582

OLYMPUS EX. 1010 - 1020/1582

OLYMPUS EX. 1010 - 1021/1582

OLYMPUS EX. 1010 - 1022/1582

OLYMPUS EX. 1010 - 1023/1582

OLYMPUS EX. 1010 - 1024/1582

OLYMPUS EX. 1010 - 1025/1582

OLYMPUS EX. 1010 - 1026/1582

OLYMPUS EX. 1010 - 1027/1582

OLYMPUS EX. 1010 - 1028/1582

OLYMPUS EX. 1010 - 1029/1582

OLYMPUS EX. 1010 - 1030/1582

OLYMPUS EX. 1010 - 1031/1582

OLYMPUS EX. 1010 - 1032/1582

OLYMPUS EX. 1010 - 1033/1582

OLYMPUS EX. 1010 - 1034/1582

OLYMPUS EX. 1010 - 1035/1582

OLYMPUS EX. 1010 - 1036/1582

OLYMPUS EX. 1010 - 1037/1582

OLYMPUS EX. 1010 - 1038/1582

OLYMPUS EX. 1010 - 1039/1582

OLYMPUS EX. 1010 - 1040/1582

OLYMPUS EX. 1010 - 1041/1582

���������	�
�
����
����
��OLYMPUS EX. 1010 - 1042/1582

OLYMPUS EX. 1010 - 1043/1582

���������	�
�
����
����
��OLYMPUS EX. 1010 - 1044/1582

OLYMPUS EX. 1010 - 1045/1582

���������	�
�
����
����
��OLYMPUS EX. 1010 - 1046/1582

OLYMPUS EX. 1010 - 1047/1582

���������	�
�
����
����
��OLYMPUS EX. 1010 - 1048/1582

OLYMPUS EX. 1010 - 1049/1582

OLYMPUS EX. 1010 - 1050/1582

